
mlxxxiii)

The TEXbook

The fine print in the upper right-hand
corner of each page is a draft of intended

index entries: it won't appear in the real book.
Some index entries will be in typewriter type

and/ or preceded by \ or enclosed in \ ...) , etc:
such typographic distinctions aren't shown here.

An index entry often extends for several pages:
the actual scope will be determined later.

Please note things that should be indexed but aren't.

(page i) I

The TEXbook
D 0 N A l D E. KNUTH Stanford University

Illv.stmtions by
DUANE BIBBY

-IT
ADDISON-WESLEY
PUBLISHING COMPANY

Reading, Massachusetts
Menlo Park, California
New York
Don Mills, Ontario
Wokingham, England
Amsterdam Bonn
Sydney Singapore · Tokyo
Madrid San Juan

Knuth, Donald En in
Bibby, Duane Hoberl

(page ii)

Thi::> manual deocribe::> '!)_,:X Vemion :J.O. Some of 1he advanced fea1ure::> men1ioned here are
ab::>en1 from earlier vemion::>.

The quo1a1ion on page Gl i::>copyrigh1 © 1970 by Se::>ame S1ree1 1 lnc. 1 and u::>ed by permi::>::>ion
of 1he Children'::> Televi::>ion Workshop.

'!) .. ;Xi::> a 1rademark of 1he American fv1a1hema1ical Socie1y.

META FONT i::> a 1rademark of Addi::>on .. We::>ley Publi::>hing Company.

Library of Congress cataloging in publication data

Knuth, Donald Ervin, 1938-
The TeXbook.

(Computers & Typesetting A)
Includes index.
1. TeX (Computer system). 2. Computerized

typesetting. 3. Mathematics printing. I. Title.
II. Series: Knuth, Donald Ervin, 1938-
Computers & typesetting ; A.
Z253.4.T47K58 1986 686.2'2544 85-30845
ISBN 0-201-13447-0
ISBN 0-201-13448-9 (soft)

'1\ventieth printing, revised, .\1Hy HW I
Copyrigh1 © 19841 198G by 1he American fv1a1hema1ical Socie1y
Thi::> book i::> publi::>hed join1ly by 1he American fv1a1hema1ical Socie1y and Addi::>on .. We::>ley
Publi::>hing Company. All righ1::> re::>erved. No pa1i of 1hi::> publica1ion may be reproduced1
::>1ored in a re1rieval ::>y::>1em 1 or 1ran::>mi11ed1 in any form or by any mean::>1 elec1ronic 1 me-
chanical1 pho1ocopying1 recording1 or o1henvi::>e 1 \vi1hou1 1he prior \vri11en penni&:>ion of 1he
publi::>her::>. Prin1ed in 1he Uni1ed S1a1e::> of America.

ISBN 0-201-l:l448-9
TUVWXYz .. !)() .. 97G54:l21

Knuth, Donald En in
copyright

(page iii)

Knuth, Jill Carler

To Jill:
For your books and brochures

(page i'<)

(page'<)

Preface

GENTLE READER: This is a handbook about TEX, a new typesetting system
intended for the creation of beautiful books------and especially for books

that contain a lot of mathematics. By preparing a manuscript in TEX forma(
you will be telling a computer exactly how the manuscript is to be transformed
into pages whose t:nJOgraphic quality is comparable to that of the world's finest
printers: yet you won't need to do much more work than would be involved if
you were simply typing the manuscript on an ordinary typewriter. In fact, your
total work will probably be significantly less, if you consider the time it ordinarily
takes to revise a typewritten manuscript, since computer text files arc so easy
to change and to reprocess. (If such claims sound too good to be true, keep in
mind that they were made by TEX's designer, on a day when TEX happened to
be working, so the statements may be biased: but read on anyway.)

This manual is intended for people who have never used TEX before,
as well as for experienced TEX hackers. In other words, it's supposed to be a
panacea that satisfies everybody, at the risk of satisfying nobody. Everything you
need to know about TEX is CAl)laincd here somewhere, and so arc a lot of things
that most users don't care about. If you arc preparing a simple manuscript, you
won't need to learn much about TEX at all: on the other hand, some things that
go into the printing of technical books arc inherently difficult, and if you wish to
achieve more complex effects you will want to penetrate some of TEX's darker
corners. In order to make it possible for many types of users to read this manual
effectively, a special sign is used to designate material that is for wizards only:
When the symbol

appears at the beginning of a paragraph, it warns of a :'dangerous bend" in
the train of thought: don't read the paragraph unless you need to. Brave and
CAl)Cricnccd drivers at the controls of TEX will gradually enter more and more
of these hazardous areas, but for most applications the details won't matter.

All that you really ought to know, before reading on, is how to get a
file of text into your computer using a standard editing program. This manual
CAl)lains what that file ought to look like so that TEX will understand it, but basic
computer usage is not explained here. Some previous experience with technical
typing will be quite helpful if you plan to do heavily mathematical work with
TEX, although it is not absolutely necessary. TEX will do most of the necessary

dangerou;; bend

vi Preface

formatting of equations automatically: but users with more experience will be
able to obtain better results, since there arc so many ways to deal with formulas.

Some of the paragraphs in this manual arc so esoteric that they arc rated

everything that was said about single dangerous-bend signs goes double for these.
You should probably have at least a month's experience with TEX before you
attempt to fathom such doubly dangerous depths of the system: in fact, most
people will never need to know T&X in this much detail, even if they usc it every
day. After all, it's possible to drive a car without knowing how the engine works.
Yet the whole story is here in case you're curious. (About T&X, not cars.)

The reason for such different levels of complcAity is that people change
as they grow accustomed to any powerful tool. VVhcn you first try to usc TEX,
you'll find that some parts of it arc very easy, while other things will take some
getting used to. A day or so later, after you have s-uccessfully t:n)csct a few
pages, you 'II be a different person: the concepts that used to bother you will now
seem natural, and you'll be able to picture the final result in your mind before it
comes out of the machine. But you'll probably run into challenges of a different
kind. After another week your perspective will change again, and you'll grow in
yet another way: and so OIL As years go by, you might become involved with
many different kinds of t:n)csctting: and you'll find that your usage of TEX will
keep changing as your CAl)Cricncc builds. That's the way it is with any powerful
tool: There's always more to learn, and there arc always better ways to do what
you've done before. At every stage in the development you'll want a slightly
different sort of manual. You may even want to write one yourself. By paying
attention to the dangerous bend signs in this book you'll be better able to focus
on the level that interests you at a particular time.

Computer system manuals usually make dull reading, but take heart:
This one contains JOKES every once in a while, so you might actually enjoy
reading it. (However, most of the jokes can only be appreciated properly if you
understand a technical point that is being made------so read c<-:rrefull;y.)

Another noteworthy characteristic of this manual is that it doesn't al-
ways tell the truth. VVhcn certain concepts of TEX arc introduced informally,
general rules will be stated: afterwards you will find that the rules aren't strictly
true. In general, the later chapters contain more reliable information than the

JOKES
truth

Preface vii

earlier ones do. The author feels that this technique of deliberate lying will ac-
tually make it easier for you to learn the ideas. Once you understand a simple
but false rule, it will not be hard to supplement that rule with its exceptions.

In order to help you internalize what you're reading, EXERCISES arc
sprinkled through this manual. It is generally intended that every reader should
try every exercise, except for questions that appear in the :'dangerous bend"
areas. If you can't solve a problem, you can always look up the answer. But
please, try first to solve it by yourself: then you'll learn more and you'll learn
faster. Furthermore, if you think you do know the solution, you should turn to
Appendix A and check it out, just to make sure.

The TEX language described in this book is similar to the author's first
attempt at a document formatting language, but the new system differs from
the old one in literally thousands of details. Both languages have been called
TEX: but henceforth the old language should be called TEX78, and its usc should
rapidly fade away. Let's keep the name TEX for the language described here,
since it is so much better, and since it is not going to change any more.

I wish to thank the hundreds of people who have helped me to formulate
this :'definitive edition" of the TEX language, based on their CAl)Cricnccs with
preliminary versions of the system. :0.-'Iy work at Stanford has been generously
supported by the l\ational Science Foundation, the Office of l\aval Research, the
IB:V'I Corporation, and the System Development Foundation. I also wish to thank
the American :0.-'Iathcmatical Society for its encouragement, for establishing the
TEX l;scrs Group, and for publishing the TUGlJo<-:rt newsletter (sec Appendix J).

St<-:rnford1 C;.:rlifornhr
June 1983

D. E. K.

'Tis oleasant, sure, to see one's name in orint;
A book's a book, although there's nothing in 't.

BYRON, English Bards and Scotch Reviewers (1809)

A question arose as to whether we were covering the field
that it was intended we should fill with this manual.

- RICHARD R. DONN ELLEY, Proceedings, United Tyoothetce of America (1897)

EXEHCISES
'I\:X78
?\at ional Science Foundation
OHke of !'\m·al He;;earch
IBJ'vi Corporation
Sy;;tem l)e.,.dopment Foundation
American J'viat hemat ical Society
'I'CGboat
Knuth, l)on
BVHO!'\
DO!'\!'\ELLEV

>age '<iii)

Contents Content;; oft hi;; manual, table

1 The l\ ame of the Game 1

2 Book Printing versus Ordinary T:n)ing 3

3 Controlling TEX 7

4 Fonts of Type 13

5 Grouping 19

6 Running TEX 23

7 How T&X Reads What You Ty1Je 37

8 The Characters You Type 43

9 TEX's Roman Fonts 51

10 Dimensions 57

11 Boxes 63

12 Glue 69

13 Modes 85

14 How TEX Breaks Paragraphs into Lines 91

15 How TEX :0.-'Iakes Lines into Pages 109

16 Typing :0.-'Iath Formulas 127

17 :0.-'Iore about :0.-'Iath 139

18 Fine Points of :0.-'Iathematics Typing 161

19 Displayed Equations 185

20 Definitions (also called :0.-'Iacros) 199

21 :0.-'Iaking Boxes 221

22 Alignment 231

23 Output Routines 251

Contents ix

24 Summary of Vertical :0.-'Iode 267

25 Sumnu;~,ry of Horizontal :0.-'Iode 285

26 Sumnmry of :0.-'Iath :0.-'Iode 289

27 Recovery from Errors 295

Appendices

A Answers to All the Exercises 305

B Basic Control Sequences 339

c Character Codes 367

D Dirty Tricks 373

E Example Formats 403

F Font Tables 427

G Generating Boxes from Formulas 441

H H:n)henation 449

I Index 457

J Joining the T&X Community 483

(page x) I

The Name of
the Game

Chapter 1: The N arne of the Game 1

English words like ·technology' stem from a Greek root beginning with the letters
Tf,y ... : and this same Greek word means ."Jrt as well as technology. Hence the
name T&X, which is an uppercase form of Tf,y.

Insiders pronounce the ,y of T&X as a Greek chi, not as an ·x', so that
T&X rhymes with the word blecchhh. It's the ·ch' sound in Scottish words like
loch or German words like Erell: it's a Spanish T and a Russian ·kh'. VVhcn you
say it correctly to your computer, the terminal may become slightly moist.

The purpose of this pronunciation exercise is to remind you that T&X
is primarily concerned with high-quality technical manuscripts: Its emphasis is
on art and technology, as in the underlying Greek word. If you merely want to
produce a passably good document------something acceptable and basically read-
able but not really beautiful------a simpler system will usually suffice. VVith TEX
the goal is to produce the finest quality: this requires more attention to detail,
but you will not find it much harder to go the extra distance, and you'll be able
to take special pride in the finished product.

On the other hand, it's important to notice another thing about TEX's
name: The ·E' is out of kilter. This displaced ·E' is a reminder that TEXis about
typesetting, and it distinguishes TEX from other system names. In fact, TEX
(pronounced tecks) is the admirable Text EXecutive processor developed by
Honeywell Information Systems. Since these two system names arc pronounced
quite differently, they should also be spelled differently. The correct way to refer
to TEX in a computer file, or when using some other medium that doesn't allow
lowering of the ·E', is to t:n)c ·TeX'. Then there will be no confusion with similar
muncs, and people will be primed to pronounce everything properly.

• EXERCISE 1.1
After you have mastered the material in this book, what will you be: A TEXpcrt,
or a TEXnician?

They do certainly give
very strange and new-fangled names to diseases.

PLATO, The Republic, Book 3 (c. 375 B.C.)

Technique! The very word is like the shriek
Of outraged Art. It is the idiot name

Given to effort by those who are too weak,
Too weary, or too dull to olay the game.

LEONARD BACON, Sophia Trenton (1920)

'1\:X (actually 'IJ.~X), meaning of
tau
ep;;ilon
chi
beauty
logo
TEX
Honeywell Information Sy;;tem;;
Bemer, Hobert, ;;ee TEX, ASCII
'1\:X
PLATO
BACO!\:

(page 2) I

Book Printing
versus

Ordinary Typing

Chapter 2: Book Printing vcrs'us Ordinary Twing

VVhcn you first started using a computer terminal, you probably had to adjust
to the difference between the digit ·1' and the lowercase letter ·I'. VVhcn you
take the neA-t step to the level of typography that is common in book publishing,
a few more adjustments of the same kind need to be made: your eyes and your
fingers need to learn to make a few more distinctions.

In the first place, there arc two kinds of quotation marks in books,
but only one kind on the t:n)(:writcr. Even your computer terminal, which has
more characters than an ordinary typewriter, probably has only a non-oriented
double-quote mark (11

), because the standard ASCII code for computers was not
invented with book publishing in mind. However, your terminal probably docs
have two flavors of single-quote marks, namely (and ' : the second of these is
useful also as an apostrophe. American keyboards usually contain a left-quote
character that shows up as something like ~, and an apostrophe or right-quote
that looks like 1 or ~.

To produce double-quote marks with T&X, you simply type two single-
quote marks of the appropriate kind. For example, to get the phrase

:•I understand."

(including the quotation marks) you should type

((I understand.''

to your computer.
A typewriter-like style of type will be used throughout this manual to

indicate T&X constructions that you might type on your terminal, so that the
symbols actually t:n)(:d arc readily distinguishable from the output T&X would
produce and from the comments in the manual itself. Here arc the symbols to
be used in the examples:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789"#$%&©>+-=,. :;?!
()<>[){}' '\1/_--

If your computer terminal doesn't happen to have all of these, don't despair:
T&X can make do with the ones you have. An additional symbol

u

is used to stand for a lJhrnk sp<-:rce, in case it is important to emphasize that a
blank space is being t:n)(:d: thus, what you re<-:rll;y type in the example above is

((Iuunderstand.''

VVithout such a s:ymbol you would have difficulty seeing the invisible parts of
certain constructions. But we won't be using very often, because spaces arc
usually visible enough.

3

quotation mark;;
ASCII
apo;;trophe
blank ;;pace

4 Chapter 2: Book Printing vcrs'us Ordinary Twing

Book printing differs significantly from ordinary t:n)ing with respect to
dashes, h:n)hcns, and minus signs. In good math books, these symbols arc all
different: in fact there usually arc at least four different s:ymbols:

a hy1Jhcn (-):
an en-dash (---):
an em-dash (------):
a minus sign (-).

Hyphens arc used for compound words like ·daughter-in-law' and ·X-ratcd'. En-
dashes arc used for number ranges like ·pages 13---34', and also in contcA--ts like
·exercise 1.2.6---52'. Em-dashes arc used for punctuation in sentences------they arc
what we often call simply dashes. And minus signs arc used in formulas. A
conscientious user of TEX will be careful to distinguish these four usages, and
here is how to do it:

for a hyphen, type a hyphen (-):
for an en-dash, type two hyphens(--):
for an em-dash, t:n)c three hyphens (---):
for a minus sign, type a hyphen in mathematics mode ($-$).

(:0.-'Iathcmatics mode occurs between dollar signs: it is discussed later, so you
needn't worry about it now.)

• EXERCISE 2.1
Explain how to t:n)c the following sentence to TEX: Alice said, :•I always usc an
en-dash instead of a hyphen when specifying page numbers like ·480---491' in a
bibliography."

• EXERCISE 2.2
VVhat do you think happens when you t:n)c four h:n)hcns in a row?

If you look closely at most well-printed books, you will find that certain
combinations of letters arc treated as a unit. For example, this is true of the
·r and the ·i' of ·find'. Such combinations arc called lig;-:rtures, and professional
typesetters have traditionally been trained to watch for letter combinations such
as ff, fi, fl, ffi, and ffl. (The reason is that words like ·finer don't look
very good in most styles of t:n)c unless a ligature is substituted for the letters
that clash. It's somewhat surprising how often the traditional ligatures appear
in English: other combinations arc important in other languages.)

• EXERCISE 2.3
Think of an English word that contains two ligatures.

The good news is that you do not have to concern yourself with liga-
tures: TEX is perfectly capable of handling such things by itself, using the same
mechanism that converts ·--' into ·---'. In fact, TEX will also look for combi-
nations of adjacent letters (like ·A' next to ·v') that ought to be moved closer
together for better appearance: this is called kerning.

da,-;he;;
hyphen;;
minu;; ;;ign;;
En-da,-;h
Em-da,-;h
bibliography
ligature;;
lwrning

Chapter 2: Book Printing vcrs'us Ordinary Twing

To summarize this chapter: VVhcn using TEX for straight copy, you t:n)c
the copy as on an ordinary typewriter, except that you need to be careful about
quotation marks, the number 1, and various kinds of hyphens/dashes. T&X will
automatically take care of other niceties like ligatures and kerning.

(Are you sure you should be reading this paragraph? The :'dangerous bemr'
sign here is meant to warn you about material that ought to be skipped on first

reading. And maybe also on second reading. The reader~ beware parabrraphs sometimes
refCr to concepts that axen)t explained until later chapters.)

If your keyboard does not contain a left>quote symbol1 you can type \lq1

followed by a space if the next character is a letter 1 or followed by a \ if the
next character is a space. Similarly1 \rq :yields a right~quote character. Is that dear?

\lq\lquiuunderstand.\rq\rq\u

In case you need to type quotes \Vithin quotes 1 for example a single quote
followed by a double quote1 you can)t simply type ''' because TE-X \Viii

interpret this as l') (namely1 double quote followed by single quote). If you have already
read Chapter 51 you might expect that the solution \Viii be to use brrouping-namely1

to t:yl)e something like {'}' '. But it turns out that this doesn)t produce the desired
result 1 because there is usually less space following a single right quote than there is
follmving a double right quote: \Vhat you get is)l' 1 which is indeed a single quote
followed by a double quote (if you look at it closely enough) 1 but it looks almost
like three equally spaced single quotes. On the other hand1 you certainly won)t want
to t:yl)e 'u' ' 1 because that space is much too large--it)s just as large as the space
between words-and T£X might even start a new line at such a space when making up
a paragraph! The solution is to type '\thinspace' ' 1 which produces) l' as desired.

• EXERCISE 2.4
OK 1 now you know how to produce l') and) l'; how do you get ;, : and : ;, ?

• EXERCISE 2.5
\Vhy do you think the author introduced the control sequence \thinspace to

solve the adjacent~quotes problem 1 instead of recommending the trickier construction
'$\.$'' (which also works)?

In modern Wit all orinted Trash, is
Set off with num'rous Breaks--and Dashes-

- JONATHAN SWIFT, On Poetry: A Rapsody (1733)

Some comoositors still object to work
in offices where tyoe~comoosing machines are introduced.

- WILLIAM STANLEY JEVONS, Political Economy (1878)

5

dangerou;; bend
lq
cq
quote;; within quote;;
thin;;pace

S\VIF'I'
JEVO!\:S

(page 0) I

Controlling
TEX

Chapter ,1: Controlling TFJX

Your keyboard has very few keys compared to the large number of symbols
that you may want to specify. In order to make a limited keyboard sufficiently
versatile, one of the characters that you can type is reserved for special usc,
and it is called the esc<-:tpe clu:rrErcter. VVhcncvcr you want to type something
that controls the format of your manuscript, or something that doesn't usc the
keyboard in the ordinary way, you should type the escape character followed by
an indication of what you want to do.

l\otc: Some computer terminals have a key marked ·ESC', but that is not
your escape character! It is a key that sends a special message to the operating
system, so don't confuse it with what this manual calls :•escape."

T&X allows any character to be used for escapes, but the :'backslash"
character ·Vis usually adopted for this purpose, since backslashes arc reasonably
convenient to type and they arc rarely needed in ordinary text. Things work out
best when different T&X users do things consistently, so we shall escape via
backslashes in all the examples of this manual.

Immediately after t:n)ing ·V (i.e., immediately after an escape character)
you type a coded command telling T&X what you have in mind. Such commands
arc called control sequences. For example, you might type

\input MS

which (as we will sec later) causes T&X to begin reading a file called ·MS. tex':
the string of characters ·\input' is a control sequence. Here's another example:

George P\'olya and Gabor Szeg\ 11 o.

T&X converts this to ·George P6lya and Gabor Szcgii.' There arc two control
sequences, \' and \ 11

, here: these control sequences have been used to place
accents over some of the letters.

Control sequences come in two flavors. The first kind, like \input, is
called a control word: it consists of an escape character followed by one or more
letters, followed by a space or by something besides a letter. (TEX has to know
where the control sequence ends, so you Inust put a space after a control word
if the neA-t character is a letter. For example, if you t:n)c ·\inputMS', T&X will
naturally interpret this as a control word with seven letters.) In case you're
wondering what a :'letter" is, the answer is that T&X normally regards the 52
symbols A ••• Z and a ... z as letters. The digits 0 ... 9 arc not considered to be
letters, so they don't appear in control sequences of the first kind.

A control sequence of the other kind, like \', is called a control s;ymlJol:
it consists of the escape character followed by a single nonletter. In this case you
don't need a space to separate the control sequence from a letter that follows,
since control sequences of the second kind always have exactly one symbol after
the escape character.

• EXERCISE 3.1
VVhat arc the control sequences in ·\I'm \exercise3. 1\\! ''!

7

e;;cape character
bacbla,-;h
control ;;equence;;
markup command;;, ;;ee control ;;(
input
Poly a
Szego
acute
umlaut

accent;;
control word
letter
control ;;ymbol

8 Chapter ,1: Controlling TF;X

• EXERCISE 3.2
VVc'vc seen that the input P\' olya yields ·POlya'. Can you guess how the French
words ·mathCmatiquc' and ·ccntimNrc' should be specified?

VVhcn a space comes after a control word (an all-letter control sequence),
it is ignored by T&X: i.e., it is not considered to be a :•reaP space belonging to
the manuscript that is being typeset. But when a space comes after a control
symbol, it's truly a space.

I\ ow the question arises, what do you do if you actually w."Jnt a space
to appear after a control word? VVc will sec later that TEX treats two or more
consecutive spaces as a single space, so the answer is not going to be :.t:n)c two
spaces." The correct answer is to type :•control space," namely

(the escape character followed by a blank space): T&X will treat this as a space
that is not to be ignored. l\oticc that control-space is a control sequence of the
second kind, i.e., a control symbol, since there is a single nonlcttcr (u) following
the escape character. Two consecutive spaces arc considered to be equivalent to
a single space, so further spaces immediately following \u will be ignored. But if
you want to enter, say, three consecutive spaces into a manuscript you can t:n)c
· \u \u \u'. Incidentally, typists arc often taught to put two spaces at the ends of
sentences: but we will sec later that T&X has its own way to produce extra space
in such cases. Thus you needn't be consistent in the number of spaces you type.

Nonprinting control characters like (return} might fOllow an escape character1

and these lead to distinct control sequences according to the rules. TE-X is
initially set up to treat \(return} and \(tab} the same as \u (control space); these
special control sequences should probably not be redefined1 because you can)t see the
difference between them when you look at them in a file.

It is usually unnecessary for you to usc :•control space," since control
sequences aren't often needed at the ends of words. But here's an example that
might shed some light on the matter: This manual itself has been typeset by
T&X, and one of the things that occurs fairly often is the tricky logo ·TEX', which
requires backspacing and lowering the E. There's a special control word

\TeX

that produces the half-dozen or so instructions necessary to typeset ·TEX'. VVhcn
a phrase like ·TEX ignores spaces after control words.' is desired, the manuscript
renders it as follows:

\TeX\ ignores spaces after control words.

l\oticc the CA--tra \following \TeX: this produces the control space that is neces-
sary because TEX ignores spaces after control words. VVithout this CA--tra \, the
result would have been

T&Xignorcs spaces after control words.

;;pace

;ret urni,
;tabi,
carriage-ret um, ;;ee ;ret urni,
logo
'1\:X

Chapter ,1: Controlling TFJX 9

On the other hand, you can't simply put \ after \TeX in all contexts. For
example, consider the phrase

the logo (\TeX'.

In this case an extra backslash doesn't work at all: in fact, you get a curious
result if you type

the logo '\TeX\',

Can you guess what happens? Answer: The \' is a control sequence denoting
an acute accent, as in our P\' olya example above: the effect is therefore to put
an accent over the next non blank character, which happens to be a period. In
other words, you get an accented period, and the result is

the logo "T&X:

Computers arc good at following instructions, but not at reading your mind.
TEX understands about 900 control sequences as part of its built-in

vocabulary, and all of them arc CAl)laincd in this manual somewhere. But you
needn't worry about learning so many different things, because you won't really
be needing very many of them unless you arc faced with unusually complicated
copy. Furthermore, the ones you do need to learn actually fall into relatively
few categories, so they can be assimilated without great difficulty. For example,
many of the control sequences arc simply the names of special characters used
in math formulas: you t:n)c ·\pi' to get ·rt', ·\Pi' to get ·II', ·\aleph' to get ·rr,
·\infty' to get ·~x>', ·\le' to get·:::;', ·\ge' to get·~', ·\ne' to get , ·\oplus' to
get · j, ·\otimes' to get · :>:;'. Appendix F contains several tables of such s:ymbols.

There)s no built~in relationship between uppercase and lowercase letters in
control sequence names. For example) :\pi) and :\Pi) and :\PI) and :\pi) are

four different control words.

The 900 or so control sequences that were just mentioned actually arcn 't
the whole story, because it's easy to define more. For example, if you want to
substitute your own favorite names for math symbols, so that you can remember
them better, you're free to go right ahead and do it: Chapter 20 CAl)lains how.

About 300 of TEX 's control sequences arc called primitive: these arc the
low-level atomic operations that arc not decomposable into simpler functions.
All other control sequences arc defined, ultimately, in terms of the primitive
ones. For example, \input is a primitive operation, but \' and \ 11 arc not: the
latter arc defined in terms of an \accent primitive.

People hardly ever usc TEX's primitive control sequences in their man-
uscripts, because the primitives arc well so primitive. You have to t:n)c
a lot of instructions when you arc trying to make TEX do low-level things: this
takes time and invites mistakes. It is generally better to make usc of higher-level
control sequences that state what functions arc desired, instead of typing out
the way to achieve each function each time. The higher-level control sequences

pi
Pi
aleph
infty
k
ge
ne
oplu;;
otime;;
upperca,-;e
lowen:a,-;e
primiti'<e
input

accent

10 Chapter ,1: Controlling TF;X

need to be defined only once in terms of primitives. For example, \ TeX is a con-
trol sequence that means :•t:n)csct the T&X logo": \' is a control sequence that
means :•put an acute accent over the neA-t character": and both of these con-
trol sequences might require different combinations of primitives when the style
of type changes. If T&X's logo were to change, the author would simply have
to change one definition, and the changes would appear automatically wherever
they were needed. By contrast, an enormous amount of work would be necessary
to change the logo if it were specified as a sequence of primitives each time.

At a still higher level, there arc control sequences that govern the overall
format of a document. For example, in the present book the author typed
·\exercise' just before stating each exercise: this \exercise command was
programmed to make T&X do all of the following things:

• compute the exercise number (e.g., ·3.2' for the second exercise in Chap-
ter 3):

• typeset ·~EXERCISE 3.2' with the appropriate typefaces, on a line by
itself, and with the triangle sticking out in the left margin:

• leave a little extra space just before that line, or begin a new page at
that line if appropriate:

• prohibit beginning a new page just after that line:
• suppress indentation on the following line.

It is obviously advantageous to avoid t:n)ing all of these individual instructions
each time. And since the manual is entirely described in terms of high-level
control sequences, it could be printed in a radically different format simply by
changing a dozen or so definitions.

How can a person distinguish a TE-X primitive from a control sequence that
has been defined at a higher level? There are two ways: (1) The index to this

manual lists all of the control sequences that are discussed1 and each primitive is marked
with an asterisk. (2) You can display the meaning of a control sequence while running
TE-X. If you type :\show\cs) where \cs is any control sequence1 TE-X \Viii respond
with its current meaning. For example1 :\show\ input) results in :> \input=\input.) 1

because \input is primitive. On the other hand 1 :\show\thinspace) yields

> \thinspace=macro:
->\kern .16667em.

This means that \thinspace has been defined as an abbreviation for :\kern .16667em) .
By typing :\show\kern) you can verify that \kern is primitive. The results of \show
appear on your terminal and in the log file that you get after running TE-X.

• EXERCISE 3.3
\Vhich of the control sequences \u and \(return} is primitive?

In the following chapters we shall frequently discuss :'plain T&X" for-
mat, which is a set of about 600 basic control sequences that arc defined in
Appendix B. These control sequences, together with the 300 or so primitives,

exerd;;e
;;how
thin;;pace
kern
log lik
plain 'IJ.yX
ba,-;k control ;;equence;;

Chapter ,1: Controlling TFJX

arc usually present when TEX begins to process a manuscript: that is why TEX
claims to know roughly 900 control sequences when it starts. VVc shall sec how
plain TEX can be used to create documents in a flexible format that meets many
people's needs, using some typefaces that come with the TEX system. However,
you should keep in mind that plain T&X is only one of countless formats that
can be designed on top of T&X's primitives: if you want some other format, it
will usually be possible to adapt TEX so that it will handle whatever you have in
mind. The best way to learn is probably to start with plain TEX and to change
its definitions, little by little, as you gain more experience.

Appendix E contains examples of formats that can be added to Appendix B
for special applications; fOr example1 there is a set of definitions suitable for

business correspondence. A complete specification of the format used to typeset this
manual also appears in Appendix E. Thus 1 if your goal is to learn how to design TE-X
formats 1 you will probably want to study Appendix E while mastering Appendix B.
After you have become skilled in the lore of control~sequence definition 1 you \Viii prob~
ably have developed some formats that other people \Viii want to use; you should then
write a supplement to this manual 1 explaining your style rules.

The main point of these remarks, as far as novice TEX users arc con-
cerned, is that it is indeed possible to define nonstandard TEX control sequences.
VVhcn this manual says that something is part of :'plain TEX/' it means that TEX
doesn't insist on doing things exactly that way: a person could change the rules
by changing one or more of the definitions in Appendix B. But you can safely
rely on the control sequences of plain TEX until you become an CAl)Cricnccd
TEXnical typist.

6<,~• EXERCISE 3.4
Y Y How many different control sequences of length 2 (including the escape char~
acter) are possible? How many of length 3?

Syllables govern the world.
- JOHN SELDEN, Table Talk (1689)

I claim not to have controlled events,
but confess olainly that events have controlled me.

- ABRAHAM LINCOLN (1864)

11

format;;
SELDE!\:
LI!\:COIS

page12) I

Fonts
of Type

Chapter 4: Fonts of Twc

Occasionally you will want to change from one t:n)(:facc to another, for example
if you wish to be bold or to emplncsize something. TEX deals with sets of up
to 256 characters called :•fonts" of type, and control sequences arc used to select
a particular font. For example, you could specify the last few words of the first
sentence above in the following way, using the plain TEX format of Appendix B:

to be \bf bold \rm or to \sl emphasize \rm something.

Plain T&X provides the following control sequences for changing fonts:

\rm switches to the normal :•roman" typeface:
\sl switches to a slanted roman typeface:
\it switches to italic style:
\ tt switches to a typewriter-like face:
\bf switches to an extended boldface style:

Roman
Shmted
Italic
Typewriter
Bold

At the beginning of a run you get roman type (\rm) unless you specify otherwise.
l\oticc that two of these faces have an :'oblique" slope for emphasis:

Shrnted t;nw is essenthdl;y the s<-:rme EtB rom<-:rn 1 but the letters Erre slightl;y skewed1

while the letters in italic type are drawn in a different style. (You can perhaps
best appreciate the difference between the roman and italic styles by contemplat-
ing letters that un'. in un unslunted ituhe fuee.) T:nJOgraphic conventions arc
presently in a state of transition, because new technology has made it possible
to do things that used to be prohibitively expensive: people arc wrestling with
the question of how much to usc their new-found typographic freedom. Slanted
roman type was introduced in the 1930s, but it first became widely used as
an alternative to the conventional italic during the late 1970s. It can be bene-
ficial in mathematical teA-ts, since slanted letters arc distinguishable from the
italic letters in math formulas. The double usc of italic type for two different
purposes------for example, when statements of theorems arc italicized as well as the
names of variables in those theorems------ has led to some confusion, which can now
be avoided with slanted type. People arc not generally agreed about the relative
merits of slanted versus italic, but slanted type is rapidly becoming a favorite
for the titles of books and journals in bibliographies.

Special fonts arc effective for emphasis, but not for sustained reading:
your eyes would tire if long portions of this manual were entirely set in a bold
or slanted or italic face. Therefore roman t:n)c accounts for the bulk of most
typeset material. But it's a nuisance to say ·\rm' every time you want to go
back to the roman style, so TEX provides an easier way to do it, using :•curly
brace" symbols: You can switch fonts inside the special s:ymbols { and } , without
affecting the fonts outside. For example, the displayed phrase at the beginning
of this chapter is usually rendered

to be {\bf bold} or to {\sl emphasize} something.

This is a special case of the general idea of :•grouping" that we shall discuss in
the neA-t chapter. It's best to forget about the first way of changing fonts, and

13

typeface
bold
font;;
rm
;;I
il
jj

bf
typewriter type
face
roman type
oblique
Slanted type
italic type
curly brace
brace
grouping

14 Chapter 4: Fonts of Twc

to usc grouping instead: then your T&X manuscripts will look more natural, and
you'll probably never* have to type ·\rm'.

• EXERCISE 4.1
Explain how to type the bibliographic reference ·l]rich Dieter, Jourrnd fiir die
reine und fJngewflndte .A:f;.:rtlwrw:r-tik 201 (1959), 37---70.' [l;sc grouping.]

VVc have glossed over an important aspect of quality in the preceding
discussion. Look, for example, at the italicized and shrnted words in this sentence.
Since italic and slanted styles slope to the right, the d's stick into the spaces that
separate these words from the roman type that follows: as a result, the spaces
appear to be too skimpy, although they arc correct at the base of the letters.
To equalize the effective white space, TEX allows you to put the special control
sequence · \F just before switching back to unslantcd letters. VVhcn you t:n)c

{\it italicized\/} and {\sl slanted\/} words

you get italicized and shrnted words that look better. The ·\F tells TEX to add an
:'it;-:dic correction" to the previous letter, depending on that letter: this correction
is about four times as much for an ·r as for a ·c', in a typical italic font.

Sometimes the italic correction is not desirable, because other factors
take up the visual slack. The standard rule of thumb is to usc \/ just before
switching from slanted or italic to roman or bold, unless the neA-t character is a
period or comma. For example, type

{\it italics\/} for {\it emphasis}.

Old manuals of style say that the punctuation after a word should be in the same
font as that word; but an italic semicolon often looks wrong, so this convention
is changing. VVhcn an italicized word occurs just before a semicolon, the author
recommends typing ·{\it word\/};'.

• EXERCISE 4.2
E'J:plain how to typeset a roman word in the midst of an italicized sentence.

Every letter of every fOnt has an italic correction 1 which you can bring to life
by typing \/. The correction is usually 11ero in unslanted styles1 but there are

exceptions: To typeset a bold T in quotes 1 you should say a bold '{\bf f\/}' 1 lest
you get a bold T.

6<-,~• EXERCISE 4.3
Y Y Define a control sequence \ic such that :\ic c) puts the italic correction of
character c into TE-X)s register \dimenO.

~~ The primitive control sequence \nullfont stands for a font that has no char~
Y Y acters. This fOnt is always present 1 in case you haven)t specified any others.

* Well ... 1 hardly ever.

Dieter
I
italic correction
punct oat ion
null font

Chapter 4: Fonts of Twc

Fonts vary in size as well as in shape. For example, the font you arc
now reading is called a :'H)-point" font, because certain features of its design arc
10 points apart, when measured in printers' units. (VVc will study the point
system later: for now, it should suffice to point out that the parentheses around
this sentence arc exactly 10 points tall------and the em-dash is just 10 points wide.)
The :'dangerous bend" sections of this manual arc set in 9-point type, the foot-
notes in 8-point, subscripts in 7-point or 6-point, sub-subscripts in 5-point.

Each font used in a TEX manuscript is associated with a control se-
quence: for example, the H)-point font in this paragraph is called \ tenrm, and
the corresponding 9-point font is called \ninerm. The slanted fonts that match
\tenrm and \ninerm arc called \tensl and \ninesl. These control sequences
arc not built into TEX, nor arc they the actual names of the fonts: TEX users arc
just supposed to make up convenient names, whenever new fonts arc introduced
into a manuscript. Such control sequences arc used to change typefaces.

VVhcn fonts of different sizes arc used simultaneously, TEX will line the
letters up according to their :'baselines." For example, if you type

\tenrm smaller \ninerm and smaller
\eightrm and smaller \sevenrm and smaller
\sixrm and smaller \fiverm and smaller \tenrm

the result is Sinallcr and smaller and mnaller and ;;maller and smallnr "nd snH,Jl€r. Of course
this is something that authors and readers aren't accustomed to, because printers
couldn't do such things with traditional lead t:)1)CS. Perhaps poets who wish
to speak in " still sm,dl ,-oic€ will cause future books to make usc of frequent font
variations, but nowadays it's only an occasional font freak (lih th€ "uthor of this m"nu"l)

who likes such experiments. One should not get too carried away by the prospect
of font switching unless there is good reason.

An alert reader might well be confused at this point because we started
out this chapter by saying that ·\rm' is the command that switches to roman
type, but later on we said that ·\tenrm' is the way to do it. The truth is that
both ways work. But it has become customary to set things up so that \rm means
:•switch to roman type in the current size" while \ tenrm means :•switch to roman
type in the H)-point size." In plain TEX format, nothing but H)-point fonts arc
provided, so \rm will always get you \ tenrm: but in more complicated formats the
meaning of \rm will change in different parts of the manuscript. For example, in
the format used by the author to typeset this manual, there's a control sequence
·\tenpoint' that causes \rm to mean \tenrm, \sl to mean \tensl, and so on,
while · \ninepoint' changes the definitions so that \rm means \ninerm, etc.
There's another control sequence used to introduce the quotations at the end of
each chapter: when the quotations arc t:n)(:d, \rm and \sl temporarily stand for
8-point unslanted sans-serif type and 8-f)oint slanted sans-serif tyoe, respectively.
This device of constantly redefining the abbreviations \rm and \sl, behind the
scenes, frees the t:n)ist from the need to remember what size or style of type is
currently being used.

15

point;;
dangerou;; bend
;;ub;;cript;;
tenrm
ninerm
ten;; I
nine;; I
ba,-;dine
ten point
ninepoint

16 Chapter 4: Fonts of Twc

• EXERCISE 4.4
VVhy do you think the author chose the names ·\tenpoint' and ·\tenrm', etc.,
instead of ·\10point' and ·\10rm' '!

• EXERCISE 4.5
Suppose that you have t:yl)ed a manuscript using slanted type for emphasis 1

but your editor suddenly tells you to change all the slanted to italic. \Vhat)s an easy
way to do this?

Each font has an external name that identifies it with respect to all other fOnts
in a particular library. For example1 the fOnt in this sentence is called :cmr9) 1

which is an abbreviation for :'Computer Modern Roman 9 point.l' In order to prepare
TE-X fOr using this f0nt 1 the command

\font\ninerm=cmr9

appears in Appendix E. In general you say :\font\cs=(external fOnt nmne}) to load
the information about a particular fOnt into T£X)s memory; afterwards the control
sequence \cs \Viii select that font for t:yl)esetting. Plain TE-X makes only sixteen fOnts
available initially (see Appendix Band Appendix F)) but you can use \font to access
anything that exists in your system)s font library.

It is often possible to use a font at several different sit~es) by magnifying or
shrinking the character images. Each fOnt has a so~called design sit~e) which

reflects the sit~e it normally has by default; for example) the design sit~e of cmr9 is
9 points. But on many systems there is also a range of sit~es at which you can use
a particular font) by scaling its dimensions up or down. To load a scaled font into
TE-X)s memory) you simply say :\font\cs=(external font name} at (desired sit~e}). For
example1 the command

\font\magnifiedfiverm=cmr5 at 10pt

brings in 5~point Computer Modern Roman at hvice its normal sit~e. (Caution: BefOre
using this :at) feature 1 you should check to make sure that your t:yl)esetter supports
the font at the sit~e in question; T£X \Viii accept any (desired sit~e} that is positive and
less than 2048 points 1 but the final output \Viii not be right unless the scaled font really
is available on your printing device.)

w-hat)s the difference between cmr5 at 10pt and the normal 1(}-point f0nt 1

cmr10? Plenty; a well~designed font \Viii be dra\V1l differently at different point
sit~es 1 and the letters will often have different relative heights and widths 1 in order to
enhance readability.

Ten point t:n)e is different from magnified five-point type.

It is usually best to scale fonts only slightly \Vith respect to their design sit~e 1 unless
the final product is going to be photographically reduced after TE-X has finished \Vith
it 1 or unless you are trying for an unusual effect.

Another way to mab111i(y a font is to specifY a scale factor that is relative to
the desibfil sit~e. For example1 the command

\font\magnifiedfiverm=cmr5 scaled 2000

Computer J'viodern
em font;;
font
de;;ign ;;ize
al
magnilication
reduct ion

Chapter 4: Fonts of Twc

is another way to bring in the font cmr5 at double sit~e. The scale factor is specified
as an integer that represents a magnification ratio times 1000. Thus 1 a scale factor of
1200 specifies mab111ification by 1.21 etc.

• EXERCISE 4.6
State two ways to load font cmr10 into TE-X)s memory at half its normal sit~e.

At many computer centers it has proved convenient to supply fonts at magni~
fications that grow in geometric ratios-something like well~tempered tuning

on a piano. The idea is to have all fonts available at their true sit~e as well as at
mab111ifications 1.2 and 1.44 (which is 1.2 x 1.2); perhaps also at magnification 1.728
(= 1.2 x 1.2 x 1.2) and even higher. Then you can magnify an entire document by 1.2
or 1.44 and still stay within the set of available fonts. Plain T£X provides the abbre--
viations \magstepO for a scale factor of 10001 \magstep1 fOr a scaled factor of 12001

\magstep2 fOr 14401 and so on up to \magstep5. You say1 for example1

\font\bigtenrm=cmr10 scaled\magstep2

to load font cmr10 at 1.2 x 1.2 times its normal sit~e.

:'This is cmr10 at normal size (\magstepO)."

''This is cmr10 scaled once by 1.2 (\magstep1)."
"This is cmr10 scaled twice by 1.2 (\magstep2)."

(Notice that a little mab111ification goes a long way.) There)s also \magstephalf 1 which
mab111ifies by Jl.21 i.e. 1 halfway between steps 0 and L

Chapter 10 explains how to apply magnification to an entire document 1 over
and above any mab111ification that has been specified when fOnts are loaded.

For example1 if you have loaded a font that is scaled by \magstep1 and if you also
specify \magnification=\magstep2 1 the actual fOnt used for printing \Viii be scaled by
\magstep3. Similarly1 if you load a font scaled by \magstephalf and if you also say
\magnification=\magstephalf 1 the printed results \Viii be scaled by \magstepL

Tyoe faces-like oeoole's faces-have distinctive features
indicating asoects of character.

- MARSHALL LEE, Bookmaking (1965)

This was the Noblest Roman of them all.
- WILLIAM SHAKESPEARE, The Tragedie of Julius Ccesar (1599)

17

cmr5
piano
mag;;tep
mag;;tephalf
magnilication
LEE
SHAKESPEAHE

page18) I

Grouping

Chapter ,5: GrrJ'uping

Every once in a while it is necessary to treat part of a manuscript as a unit, so you
need to indicate somehow where that part begins and where it ends. For this
purpose T&X gives special interpretation to two :•grouping characters," which
(like the escape character) arc treated differently from the normal symbols that
you type. VVc assume in this manual that { and } arc the grouping characters,
since they arc the ones used in plain TEX.

VVc saw examples of grouping in the previous chapter, where it was men-
tioned that font changes inside a group do not affect the fonts in force outside.
The same principle applies to almost anything else that is defined inside a group,
as we will sec later: for example, if you define a control sequence within some
group, that definition will disappear when the group ends. In this way you
can conveniently instruct TEX to do something unusual, by changing its normal
conventions temporarily inside of a group: since the changes arc invisible from
outside the group, there is no need to worry about messing up the rest of a
manuscript by forgetting to restore the normal conventions when the unusual
construction has been finished. Computer scientists have a name for this aspect
of grouping, because it's an important aspect of programming languages in gen-
eral: they call it :'block structure," and definitions that arc in force only within
a group arc said to be :'local" to that group.

You might want to usc grouping even when you don't care about block
structure, just to have better control over spacing. For example, let's consider
once more the control sequence \TeX that produces the logo ·TEX' in this manual:
VVc observed in Chapter 3 that a blank space after this control sequence will be
gobbled up unless one types ·\TeX\ ',yet it is a mistake to say ·\TeXV when the
following character is not a blank space. VVdl, in <-:rll cases it would be correct to
specify the simple group

{\TeX}

whether or not the following character is a space, because the } stops TEX from
absorbing an optional space into \TeX. This might come in handy when you're
using a text editor (e.g., when replacing all occurrences of a particular word by
a control sequence). Another thing you could do is type

\TeX{}

using an empt;y group for the same purpose: The ·{F here is a group of no
characters, so it produces no output, but it docs have the effect of stopping TEX
from skipping blanks.

• EXERCISE 5.1
Sometimes you run into a rare word like ·shdffuP that looks better as ·shdffuP
without the ·ff' ligature. How can you fool TEX into thinking that there arcn 't
two consecutive Ps in such a word?

• EXERCISE 5.2
Explain how to get three blank spaces in a row without using :\u).

19

grouping character;;
curly brace;;, ;;ee brace;;
block ;;t ruct ore
local
'1\:X
;;pace
empty group
!bran: rbrace
ligature
control ;;pace

20 Chapter ,5: GrrJ'uping

But T&X also uses grouping for another, quite different, purpose, namely
to determine how much of your teA-t is to be governed by certain control se-
quences. For example, if you want to center something on a line you can type

\centerline{This information should be centered.}

using the control sequence \centerline defined in plain TEX format.
Grouping is used in quite a few of T&X's more intricate instructions:

and it's possible to have groups within groups within groups, as you can sec by
glancing at Appendix B. Complex grouping is generally unnecessary, however,
in ordinary manuscripts, so you needn't worry about it. Just don't forget to
finish each group that you've started, because a lost ·F might cause trouble.

Here's an example of two groups, one nested inside the other:

\centerline{This information should be {\it centered}.}

As you might expect, T&X will produce a centered line that also contains italics:

This information should be centered.

But let's look at the example more closely: ·\centerline' appears outside the
curly braces, while ·\it' appears inside. VVhy arc the two cases different? And
how can a beginner learn to remember which is which? Answer: \centerline
is a control sequence that applies only to the very next thing that follows, so
you want to put braces around the text that is to be centered (unless that text
consists of a single s:ymbol or control sequence). For example, to center the T&X
logo on a line, it would suffice to type ·\centerline\TeX', but to center the
phrase ·TEX has groups' you need braces: ·\centerline{\TeX\ has groups}'.
On the other hand, \it is a control sequence that simply means :'change the
current font": it acts without looking ahead, so it affects ever;ything that follows,
at least potentially. The braces surround \it in order to confine the font change
to a local region.

In other words, the two sets of braces in this example actually have
different functions: One serves to treat several words of the teA-t as if they were
a single object, while the other provides local block structure.

• EXERCISE 5.3
VVhat do you think happens if you type the following:

\centerline{This information should be {centered}.}
\centerline So should this.

• EXERCISE 5.4
And how about this one'!

\centerline{This information should be \it centered.}

• EXERCISE 5.5
Define a control sequence \ital so that a user could type :\ital{text})

stead of :{\it text\/}). Discuss the pros and cons of \ital versus \it.
in~

centerline
ne;;twl

Chapter ,5: GrrJ'uping

~~ Subsequent chapters describe many primitive operations of TE-X for which
Y Y the locality of brrouping is important. For example1 if one of TE-X)s internal
parameters is changed \Vithin a group 1 the previous contents of that parameter \Viii
be restored when the group ends. Sometimes1 however 1 it)s desirable to make a def~
inition that transcends its current group. This effect can be obtained by prefixing
:\global) to the definition. For example1 TE-X keeps the current page number in a
rebrister called \count0 1 and the routine that outputs a page wants to increase the page
number. Output routines are alway-s protected by enclosing them in groups 1 so that
they do not inadvertently mess up the rest of T£X; but the change to \countO would
disappear if it were kept local to the output group. The command

\global\advance\countO by 1

solves the problem; it increases \countO and makes this value stick around at the end
of the output routine. In general 1 \global makes the immediately follmving definition
pertain to all existing groups 1 not just to the innermost one.

6<,~• EXERCISE 5.6
Y Y If you think you understand local and global definitions 1 here)s a little test to
make sure: Suppose \c stands for :\count1=) 1 \g stands fOr :\global \count1=) 1 and \s
stands for :\showthe\count1). \Vhat values will be shown?

{\c1\s\g2{\s\c3\s\g4\s\c5\s}\s\c6\s}\s

Another way to obtain block structure with T£X is to use the primitives
\begingroup and \endgroup. These control sequences make it easy to be--

gin a group \Vithin one control sequence and end it \Vithin another. The text that T£X
actually executes 1 after control sequences have been expanded 1 must have properly
nested groups 1 i.e. 1 groups that don)t overlap. For example1

{ \begingroup } \endgroup

is not legitimate.

6<,~•EXERCISE 5.7
Y Y Define control sequences \beginthe{block name} and \endthe{block name}
that provide a :'namecr' block structure. In other words 1

\beginthe{beguine}\beginthe{waltz}\endthe{waltz}\endthe{beguine}

should be permissible1 but not

\beginthe{beguine}\beginthe{waltz}\endthe{beguine}\endthe{waltz}.

I have had recourse to varieties of tyoe,
and to braces.

-JAMES MUIRHEAD, The Institutes of Galus (1880)

An encounter grouo is a gathering, for a few hours or a few days,
of twelve or eighteen oersonable, resoonsible, certifiably normal

and temoorarily smelly oeoole.
- JANE HOWARD, Please Touch (1970)

21

global
page mlmber
Output routine;;
ad'<ann:
begin group
end group
ne;;twl group;;
J'viCIHHEAI)
HO\VAHD

page 22) /

Running
TEX

Chapter 6: R'urming TFJX

The best way to learn how to usc TEX is to usc it. Thus, it's high time for you
to sit down at a computer terminal and interact with the T&X system, trying
things out to sec what happens. Here arc some small but complete examples
suggested for your first encounter.

Caution: This chapter is rather a long one. VVhy don't you stop reading
now, and come back fresh tomorrow?

OK, let's suppose that you're rested and excited about having a trial run
of TEX. Step-by-step instructions for using it appear in this chapter. First do
this: Go to the lab where the graphic output device is, since you will be wanting
to sec the output that you get------it won't really be satisfactory to run TEX from
a remote location, where you can't hold the generated documents in your own
hands. Then log in: and start TEX. (You may have to ask somebody how to
do this on your local computer. l; sually the operating system prompts you for
a command and you t:n)c ·TeX' or ·run tex' or something like that.)

VVhcn you're s-uccessful, TEX will welcome you with a message such as

This is TeX, Version 3.14 (preloaded format=plain 89.7.15)

**
The "**'is TEX's way of asking you for an input file name.

I\ ow type ·\relax' (including the backslash), and {return) (or whatever
is used to mean :•end-of-line" on your terminal). TEX is all geared up for action,
ready to read a long manuscript: but you're saying that it's all right to take
things easy, since this is going to be a real simple run. In fact, \relax is a
control sequence that means :'do nothing."

The machine will t:n)c another asterisk at you. This time type something
like ·Hello?' and wait for another asterisk. Finally type ·\end', and stand back
to sec what happens.

TEX should respond with · [1]' (meaning that it has finished page 1 of
your output): then the program will halt, probably with some indication that
it has created a file called ·texput. dvi'. (TEX uses the name texput for its
output when you haven't specified any better name in your first line of input:
and dvi stands for :'device independent/' since texput. dvi is capable of being
printed on almost any kind of typographic output device.)

I\ ow you're going to need some help again from your friendly local com-
puter hackers. They will tell you how to produce hardcopy from texput. dvi.
And when you sec the hardcopy------Oh, glorious day!------you will sec a magnificent
·Hello?' and the page number ·p at the bottom. Congratulations on your first
masterpiece of fine printing.

The point is, you understand now how to get something through the
whole cycle. It only remains to do the same thing with a somewhat longer
document. So our next experiment will be to work from a file instead of typing
the input online.

23

Bunning the program
" relax
return
a,-;terh;k
end
[1]
texput
<hi
de'< ice independent

24 Chapter 6: R'urming TF;X

l; sc your favorite teA-t editor to create a file called story. tex that con-
tains the following 18 lines of text (no more, no less):

\brule
2 \vskip 1in
a \centerline{\bf A SHORT STORY}
4 \vskip 6pt
5 \centerline{\sl by A. U. Thor}
o \vskip .5cm
7 Once upon a time, in a distant
8 galaxy called \ 11 0\ 11 o\c c,
g there lived a computer

10 named R. ~ J. Drofnats.
11

12 Mr.~Drofnats---or ((R. J.,'' as
1a he preferred to be called---
14 was happiest when he was at work
15 typesetting beautiful documents.
1 o \ vskip 1in
17 \brule
18 \vfill\eject

(Don't type the numbers at the left of these lines, of course: they arc present only
for reference.) This example is a bit long, and more than a bit silly: but it's no
trick for a good typist like you and it will give you some worthwhile experience,
so do it. For your own good. And think about what you're typing, as you go:
the example introduces a few important features of T&X that you can learn as
you're making the file.

Here is a brief explanation of what you have just typed: Lines 1 and 17
put a horizontal rule (a thin line) across the page. Lines 2 and 16 skip past one
inch of space: ·\vskip' means :•vertical skip," and this extra space will separate
the horizontal rules from the rest of the copy. Lines 3 and 5 produce the title and
the author nam(\ centered, in boldface and in slanted type. Lines 4 and 6 put
eA--tra white space between those lines and their s-uccessors. (VVe shall discuss
units of measure like ·6pt' and ·. 5cm' in Chapter 10.)

The main bulk of the story appears on lines 7---15, and it consists of
two paragraphs. The fact that line 11 is blank informs T&X that line 10 is the
end of the first paragraph: and the ·\ vskip' on line 16 implies that the second
paragraph ends on line 15, because vertical skips don't appear in paragraphs.
Incidentally, this example seems to be quite full of T&X commands: but it is
atypical in that respect, because it is so short and because it is supposed to
be teaching things. :0.-'Iessy constructions like \ vskip and \centerline can be
eAl)ected at the very beginning of a manuscript, unless you're using a canned
forma(but they don't last long: most of the time you will find yourself typing
straight teA-t, with relatively few control sequences.

;;tory.tex
hrule
\-;;kip
leading, ;;ee '<;;kip
centerline
Thor

" l)rofnat;;
dill
eject
rule
paragraph;;
blank line
empty line

Chapter 6: R'urming TFJX

And now comes the good news, if you haven't used computer typesetting
before: You don't have to worry about where to break lines in a paragraph (i.e.,
where to stop at the right margin and to begin a new line), because T&X will
do that for you. Your manuscript file can contain long lines or short lines, or
both: it doesn't matter. This is especially helpful when you make changes, since
you don't have to retype anything except the words that changed. Ever;y time
;you begin fJ new line in ;your m<-:rrmscript file it is essenthdl;y the s<-:rme EtB t;yping
<'J sp<-:rce. VVhcn TEX has read an entire paragraph------in this case lines 7 to 11------it
will try to break up the text so that each line of output, except the last, contains
about the same amount of copy: and it will h:n)hcnatc words if necessary to keep
the spacing consistent, but only as a last resort.

Line 8 contains the strange concoction

and you already know that \ 11 stands for an umlaut accent. The \c stands for a
:•cedilla," so you will get {)Ot;;' as the name of that distant galaAJr.

The remaining teA-t is simply a review of the conventions that we dis-
cussed long ago for dashes and quotation marks, except that the · ~' signs in
lines 10 and 12 arc a new wrinkle. These arc called ties, because they tic words
together: i.e., T&X is supposed to treat .~, as a normal space but not to break
between lines there. A good typist will usc tics within muncs, as shown in our
example: further discussion of tics appears in Chapter 14.

Finally, line 18 tells T&X to '\ vfill', i,e,, to fill the rest of the page with
white space: and to ·\eject' the page, i.e., to send it to the output file.

l\ow you're ready for EAl)Crimcnt 2: Get T&X going again. This time
when the machine says"**' you should answer ·story', since that is the name
of the file where your input resides, (The file could also be called by its full
name ·story. tex', but T&X automatically supplies the suffix ·. tex' if no suffix
has been specified.)

You might wonder why the first prompt was"**', while the subsequent
ones arc ·*': the reason is simply that the first thing you type to T&X is slightly
different from the rest: If the first character of your response to "**' is not a
backslash, T&X automatically inserts ·\input'. Thus you can usually run T&X
by merely naming your input file. (Previous T&X systems required you to start
by typing ·\input story' instead of ·story', and you can still do that: but most
T&X users prefer to put all of their commands into a file instead of typing them
online, so T&X now spares them the nuisance of starting out with \input each
time.) Recall that in EAl)Crimcnt 1 you typed ·\relax': that started with a
backslash, so \input was not implied.

There)s actually another difference between :**) and :*): If the first character
after ** is an ampersand (:&)) 1 T£X \Viii replace its memory \Vith a precom-

puted format file before proceeding. Thus 1 for example 1 you can type :&plain \input
story' or even :&plain story' in response to :**) 1 if you are running some version of
T£X that might not have the plain fOrmat preloaded.

25

umlaut
cedilla
tie;;
tilde
dill
eject
lik name;;

' input
amper;;and
format lik
prdoadwl format;;

26 Chapter 6: R'urming TF;X

Incidentally1 many sy-stems allow you to invoke TE-X by typing a one--liner like
:tex story' instead of waiting for the :**); similarly1 :tex \relax) works for

Experiment 11 and :tex &plain story' loads the plain format before inputting the
story file. You might want to try this 1 to see if it works on your computer 1 or you
might ask somebody if there)s a similar shortcut.

As TEX begins to read your story file, it types ·(story. tex', possibly
with a version number for more precise identification, depending on your local
operating system. Then it t:)1)C8 · [1] ', meaning that page 1 is done: and ·r,
meaning that the file has been entirely input.

T&X will now prompt you with · *', because the file did not contain
·\end'. Enter \end into the computer now, and you should get a file story. dvi
containing a typeset version of Thor's story. As in Experiment 1, you can proceed
to convert story. dvi into hardcopy: go ahead and do that now. The t:n)csct
output won't be shown here, but you can sec the results by doing the experiment
personally. Please do so before reading OIL

• EXERCISE 6.1
Statistics show that only 7.43 of 10 people who read this manual actually t:n)c
the story. tex file as recommended, but that those people learn TEX best. So
why don't you join them?

• EXERCISE 6.2
Look closely at the output of EAl)Crimcnt 2, and compare it to story. tex: If you
followed the instructions carefully, you will notice a typographical error. VVhat
is it, and why did it sneak in?

VVith Experiment 2 under your belt, you know how to make a document
from a file. The remaining experiments in this chapter arc intended to help
you cope with the inevitable anomalies that you will run into later: we will
intentionally do things that will cause TEX to :•squeak."

But before going on, it's best to fix the error revealed by the previous
output (sec exercise 6.2): Line 13 of the story. tex file should be changed to

he preferred to be called---% error has been fixed!

The·%' sign here is a feature of plain TEX that we haven't discussed before: It ef-
fectively terminates a line of your input file, without introducing the blank space
that TEX ordinarily inserts when moving to the IlCA--t line of input. Furthermore,
TEX ignores everything that you type following a %, up to the end of that line
in the file: you can therefore put comments into your manuscript, knowing that
the comments arc for your eyes only.

Experiment 3 will be to make TEX work harder, by asking it to set
the story in narrower and narrower columns. Here's how: After starting the
program, type

\hsize=4in \input story

end
percent
comment;;

Chapter 6: R'urming TFJX

in response to the "**'· This means, :•set the story in a 4-inch column." :0.-'Ion:
precisely, \hsize is a primitive of T&X that specifics the horizontal size, i.e., the
width of each normal line in the output when a paragraph is being typeset: and
\input is a primitive that causes TEX to read the specified file. Thus, you arc
instructing the machine to change the normal setting of \hsize that was defined
by plain T&X, and then to process story. tex under this modification.

T&X should respond by typing something like · (story. tex [1])' as
before, followed by'*', C\ow you should type

\hsize=3in \input story

and, after TEX says ·(story.tex [2])' asking for more, type three more lines
\hsize=2.5in \input story
\hsize=2in \input story
\end

to complete this four-page CAl)Crimcnt.
Don't be alarmed when T&X screams ·overfull \hbox' several times

as it works at the 2-inch size: that's what was supposed to go wrong during
Experiment 3. There simply is no good way to break the given paragraphs into
lines that arc exactly two inches wide, without making the spaces between words
come out too large or too small. Plain T&X has been set up to ensure rather
strict tolerances on all of the lines it produces:

you don't get spaces between words narrower than this, and
you don't get spaces between words wider than this.

If there's no way to meet these restrictions, you get an overfull box. And with
the overfull box you also get (1) a warning message, printed on your terminal,
and (2) a big black bar inserted at the right of the offending box, in your output.
(Look at page 4 of the output from Experiment 3: the overfull boxes should stick
out like sore thumbs. On the other hand, pages 1---3 should be perfect.)

Of course you don't want overfull boxes in your output, so T&X provides
several ways to remove them: that will be the subject of our Experiment 4. But
first let's look more closely at the results of Experiment 3, since T&X reported
some potentially valuable information when it was forced to make those boxes
too full: you should learn how to read this data:

27

Overfull \hbox (0.98807pt too wide) in paragraph at lines 7--11
\tenrm tant galaxy called []o--?o--xc, there lived!
Overfull \hbox (0.4325pt too wide) in paragraph at lines 7--11
\tenrm a com-puter named R. J. Drof-nats. I
Overfull \hbox (5.32132pt too wide) in paragraph at lines 12--16
\tenrm he pre-ferred to be called---was hap- I

Each overfull box is correlated with its location in your input file (e.g., the first
two were generated when processing the paragraph on lines 7---11 of story. tex),
and you also learn by how much the copy sticks out (e.g., 0.98807 points).

h;;ize
input
o'<erfull box

28 Chapter 6: R'urming TF;X

l\oticc that TEX also shows the contents of the overfull boxes in ab-
breviated form. For example, the last one has the words ·he preferred to be
called------was hap-', set in font \tenrm (H)-point roman type): the first one has
a somewhat curious rendering of {)Oc;;', because the accents appear in strange
places within that font. In general, when you sec · []' in one of these messages,
it stands either for the paragraph indentation or for some sort of complex con-
struction: in this particular case it stands for an umlaut that has been raised up
to cover an ·O'.

• EXERCISE 6.3
Can you explain the: I) that appears after :lived) in that message?

6<,~• EXERCISE 6.4
Y Y \Vhy is there a space before the :I) in :Drof-nats. I)?

You don't have to take out pencil and paper in order to write down the
overfull box messages that you get before they disappear from view, since TEX
always writes a :•transcript" or :'log file" that records what happened during each
session. For example, you should now have a file called story .log containing
the transcript of EAl)Crimcnt 3, as well as a file called texput .log containing
the transcript of Experiment 1. (The transcript of EAl)Crimcnt 2 was probably
overwritten when you did number 3.) Take a look at story. log now: you will
sec that the overfull box messages arc accompanied not only by the abbreviated
box contents, but also by some strange-looking data about hboxcs and glue and
kerns and such things. This data gives a precise description of what's in that
overfull box: TEX wizards will find such listings important, if they arc called
upon to diagnose some mysterious error, and you too may want to understand
TEX 's internal code some day.

The abbreviated forms of overfull boxes show the hyphenations that
TEX tried before it resorted to overfilling. The hyphenation algorithm, which is
described in Appendix H, is excellent but not perfect: for example, you can sec
from the messages in story .log that TEX finds the hyphen in ·pre-ferred', and
it can even h:n)hcnatc ·Drof-nats'. Yet it discovers no hyphen in ·galaxy', and
every once in a while an overfull box problem can be cured simply by giving TEX
a hint about how to hyphenate some word more completely. (VVc will sec later
that there arc two ways to do this, either by inserting discretionary hyphens
each time as in ·gal\-axy', or by saying ·\hyphenation{gal-axy}' once at the
beginning of your manuscript.)

In the present example, h:n)hcnation is not a problem, since TEX found
and tried all the hyphens that could possibly have helped. The only way to get
rid of the overfull boxes is to change the tolerance, i.e., to allow wider spaces
between words. Indeed, the tolerance that plain TEX uses for wide lines is
completely inappropriate for 2-inch columns: such narrow columns simply can't
be achieved without loosening the constraints, unless you rewrite the copy to fit.

TEX assigns a numerical value called :'badness" to each line that it sets,
in order to assess the quality of the spacing. The exact rules for badness arc

II
tran;;cript
log lik
hyphenation
di;;cret ionary hyphen;;
badne;;;;

Chapter 6: R'urming TFJX

different for different fonts, and they will be discussed in Chapter 14: but here
is the way badness works for the roman font of plain T&X:

The badness of this line is 100,
The badness of this line is 12.
The badness of this line is 0.
The badness of this line is 12.
The badness of this line is 200,
The badness of this line is 1000,
The badness of this line is 5000,

(very tight)
(somewhat tight)
(perfect)
(somewhat loose)
(loose)
(bad)
(awful)

Plain TEX normally stipulates that no line's badness should exceed 200: but in
our case, the task would be impossible since

·tant galaxy called 6oc;;, there'
·he preferred to be called -----was

has badness 1521:
has badness 568.

So we turn now to Experiment 4, in which spacing variations that arc more
appropriate to narrow columns will be used.

Run TEX again, and begin this time by saying

\hsize=2in \tolerance=1600 \input story

so that lines with badness up to 1600 will be tolerated. Hurray! There arc no
overfull boxes this time. (But you do get a message about an underfuJJ box,
since TEX reports all boxes whose badness exceeds a certain threshold called
\hbadness: plain T&X sets \hbadness=1000,)]'\ow make T&X work still harder
by trying

\hsize=1.5in \input story

(thus leaving the tolerance at 1600 but making the column width still skimpier).
Alas, overfull boxes return: so try typing

\tolerance=10000 \input story

in order to sec what happens. TEX treats 10000 as if it were :'infinite" tolerance,
allowing arbitrarily wide space: thus, a tolerance of 10000 will never produce an
overfull box, unless something strange occurs like an unhyphcnatablc word that
is wider than the column itself.

The undcrfull box that TEX produces in the 1.5-inch case is really bad:
with such narrow limits, an occasional wide space is unavoidable. But try

\raggedright \input story

for a change. (This tells TEX not to worry about keeping the right margin
straight, and to keep the spacing uniform within each line.) Finally, type

\hsize=.75in \input story

followed by ·\end', to complete Experiment 4. This makes the columns almost
impossibly narrow.

29

tolerance
hbadne;;;;
underfull box
column width
mea,-; ore, ;;ee h;;ize
ragged right

30 Chapter 6: R'urming TF;X

The output from this experiment will give you some feeling for the problem
of breaking a paragraph into approximately equal lines. \Vhen the lines are

relatively wide1 TE-X will almost always find a good solution. But otherwise you \Viii
have to fibrure out some compromise1 and several options are possible. Suppose you want
to ensure that no lines have badness exceeding 500. Then you could set \tolerance to
some high number 1 and \hbadness=500; TE-X would not produce overfull boxes 1 but it
would warn you about the underfull ones. Or you could set \tolerance=500; then T£X
might produce overfull boxes. If you really want to take corrective action 1 the second
alternative is better 1 because you can look at an overfull box to see how much sticks
out; it becomes graphically dear what remedies are possible. On the other hand1 if you
don)t have time to fix bad spacing-if you just want to know how bad it is-then the
first alternative is better 1 although it may require more computer time.

• EXERCISE 6.5
\Vhen \raggedright has been specified1 badness reflects the amount of space

at the right marbrin 1 instead of the spacing between words. Devise an experiment by
which you can easily determine what badness TE-X assigns to each line1 when the story
is set ragged~right in 1.5~inch columns.

A parameter called \hfuzz allows you to ignore boxes that are only slightly
overfulL For example1 if you say \hfuzz=1pt 1 a box must stick out more than

one point before it is considered erroneous. Plain TE-X sets \hfuzz=O.ipt.

6<,~• EXERCISE 6.6
Y Y Inspection of the output from Experiment 41 especially page 31 shmvs that
with narrow columns it would be better to allow white space to appear before and
after a dash 1 whenever other spaces in the same line are being stretched. Define a
\dash macro that does this.

You were warned that this is a long chapter. But take heart: There's
only one more experiment to do, and then you will know enough about T&X to
run it fearlessly by yourself forever after. The only thing you arc still missing
is some information about how to cope with error messages------i.e., not just with
warnings about things like overfull boxes, but with cases where T&X actually
stops and asks you what to do next.

Error messages can be terrifying when you aren't prepared for them:
but they can be fun when you have the right attitude. Just remember that you
really haven't hurt the computer's feelings, and that nobody will hold the errors
against you. Then you'll find that running T&X might actually be a creative
CAl)Cricncc instead of something to dread.

The first step in Experiment 5 is to plant two intentional mistakes in
the story. tex file. Change line 3 to

\centerline{\bf A SHORT \ERROR STORY}

and change ·\vskip' to ·\vship' on line 2.
l\ow run T&X again: but instead of ·story' t:)1)C ·sorry'. The computer

should respond by saying that it can't find file sorry. tex, and it will ask you
to try again. Just hit {return) this time: you'll sec that you had better give the

breaking a paragraph
hfuzz
da,-;h

Chapter 6: R'urming TFJX

name of a real file. So type ·story' and wait for TEX to find one of the b:rux pEtB

in that file.
Ah yes, the machine will soon stop,* after typing something like this:
! Undefined control sequence.
1.2 \vship

1in
?

TEX begins its error messages with · ! ', and it shows what it was reading at the
time of the error by displaying two lines of context. The top line of the pair
(in this case ·\vship') shows what TEX has looked at so far, and where it came
from ("1.2', i.e., line number 2): the bottom line (in this case ·iin') shows what
TEX has yet to read.

The ·?' that appears after the context display means that T&X wants
advice about what to do next. If you've never seen an error message before, or
if you 'vc forgotten what sort of response is expected, you can type · ?' now (go
ahead and try it!): TEX will respond as follows:

Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,
I to insert something, E to edit your file,
1 or ... or 9 to ignore the next 1 to 9 tokens of input,
H for help, X to quit.

This is your menu of options. You may choose to continue in various ways:
1. Simply type {return). TEX will resume its processing, after attempting

to recover from the error as best it can.
2. Type ·s'. TEX will proceed without pausing for instructions if further

errors arise. Subsequent error messages will flash by on your terminal,
possibly faster than you can read them, and they will appear in your
log file where you can scrutinize them at your leisure. Thus, ·s' is sort
of like typing {return) to every message.

3. Type ·R'. This is like ·s' but even stronger, since it tells TEX not to stop
for any reason, not even if a file name can't be found.

4. Type ·Q'. This is like ·K but even more so, since it tells TEX not only to
proceed without stopping but also to suppress all further output to your
terminal. It is a fast, but somewhat reckless, way to proceed (intended
for running TEX with no operator in attendance).

5. Type ·r, followed by some text that you want to insert. TEX will read
this line of teA-t before encountering what it would ordinarily sec neA-t.
Lines inserted in this way arc not assumed to end with a blank space.

* Some im>1alla1iom> of'!)_,~ do no1 allo\v in1erac1ion. In ::>uch ca::>e::> all you can do i::>
look a1 1he error me::>::>age::> in your log file 1 \vhere 1hey \vill appear 1oge1her \vi1h 1he
''help~' infonna1ion.

31

in;;erting text online
online interaction, ;;ee interaction
interacting with '1\:X

32 Chapter 6: R'urming TF;X

6. Type a small number (less than 100). T&X will delete this many charac-
ters and control sequences from whatever it is about to read next, and
it will pause again to give you another chance to look things over.

7. Type ·w. This is what you should do now and whenever you arc faced
with an error message that you haven't seen for a while. TEX has two
messages built in for each perceived error: a formal one and an informal
one. The formal message is printed first (e.g., ·! Undefined control
sequence. '): the informal one is printed if you request more help by
typing ·w, and it also appears in your log file if you arc scrolling error
messages. The informal message tries to complement the formal one by
explaining what T&X thinks the trouble is, and often by suggesting a
strategy for recouping your losses.

8. Type ·x'. This stands for :•exit." It causes T&X to stop working on your
job, after putting the finishing touches on your log file and on any pages
that have already been output to your dvi file. The current (incomplete)
page will not be output.

9. Type ·E'. This is like ·x', but it also prepares the computer to edit the
file that T&X is currently reading, at the current position, so that you
can conveniently make a change before trying again.

After you type ·w (or ·h', which also works), you'll get a message that tries
to explain that the control sequence just read by T&X (i.e., \vship) has never
been assigned a meaning, and that you should either insert the correct control
sequence or you should go on as if the offending one had not appeared.

In this case, therefore, your best bet is to t:n)e

I\vskip

(and {return)), with no space after the ·r: this effectively replaces \vship by
\ vskip, (Do it,)

If you had simply t:n)(:d {return) instead of inserting anything, T&X
would have gone ahead and read ·iin', which it would have regarded as part of
a paragraph to be t:n)eset. Alternatively, you could have typed ·3': that would
have deleted ·iin' from T&X's input. Or you could have typed ·x' or ·E' in order
to correct the spelling error in your file. But it's usually best to try to detect
as many errors as you can, each time you run T&X, since that increases your
productivity while decreasing your computer bills. Chapter 27 explains more
about the art of steering T&X through troubled text.

•EXERCISE 6.7
\Vhat would have happened if you had typed :5) after the \vship error?

You can control the level of interaction by giving commands in your file as well
as online: The TE-X primitives \scrollmode) \nonstopmode) and \batchmode

correspond respectively to typing :g)) :R)) or :Q) in response to an error message) and
\errorstopmode puts you back into the normal level of interaction. (Such changes are
global) whether or not they appear inside a group.) Furthermore) many installations

deleting tolwn;;
hd p me;;;;age;;
;;croll mode
non;;topmode
batch mode
error;;topmode

Chapter 6: R'urming TFJX

have implemented a way to interrupt TE-X while it is running; such an interruption
causes the program to revert to \errorstopmode 1 after which it pauses and waits for
further instructions.

VVhat happens next in Experiment 5? TEX will hiccup on the other
bug that we planted in the file. This time, however, the error message is more
elaborate, since the context appears on six lines instead of two:

! Undefined control sequence.
<argument> \bf A SHORT \ERROR

STORY
\centerline #1->\line {\hss #1

\hss }
1.3 \centerline{\bf A SHORT \ERROR STORY}

?

You get multiline error messages like this when the error is detected while T&X is
processing some higher-level commands------in this case, while it is trying to carry
out \centerline, which is not a primitive operation (it is defined in plain T&X).
At firs(such error messages will appear to be complete nonsense to you, because
much of what you sec is low-level T&X code that you never wrote. But you can
overcome this hangup by getting a feeling for the way T&X operates.

First notice that the context information always appears in pairs of lines.
As before, the top line shows what TE;.X has just read (· \bf A SHORT \ERROR').
then comes what it is about to read (·STORY'). The next pair of lines shows the
context of the first two: it indicates what T&X was doing just before it began to
read the others. In this case, we sec that T&X has just read ·# 1 ', which is a special
code that tells the machine to :•read the first argument that is governed by the
current control sequence": i.e., :•now read the stuff that \centerline is supposed
to center on a line." The definition in Appendix B says that \centerline, when
applied to some text, is supposed to be carried out by sticking that text in place
of the '#1' in ·\line{\hss#1 \hss}'. So TE;.X is in the midst of this eJq,wsion of
\centerline, as well as being in the midst of the text that is to be centered.

The bottom line shows how far T&X has gotten until now in the story
file. (Actually the bottom line is blank in this example: what appears to be the
bottom line is really the first of two lines of context, and it indicates that T&X
has read everything including the ·Fin line 3 of the file.) Thus, the context in
this error message gives us a glimpse of how T&X went about its business. First,
it saw \centerline at the beginning of line 3. Then it looked at the definition
of \centerline and noticed that \centerline takes an :•argument/' i.e., that
\centerline applies to the neA-t character or control sequence or group that
follows. So TE;.X read on, and filed ·\bf A SHORT \ERROR STORY' away as the
argument to \centerline. Then it began to read the expansion, as defined in
Appendix B. VVhcn it reached the #1, it began to read the argument it had saved.
And when it reached \ERROR, it complained about an undefined control sequence.

33

interrupt
argument
centerline

34 Chapter 6: R'urming TF;X

• EXERCISE 6.8
\Vhy didn)t TE-X complain about \ERROR being undefined when

first encountered 1 i.e. 1 before reading :STORY}) on line 3?
\ERROR was

VVhcn you get a multiline error message like this, the best clues about
the source of the trouble arc usually on the bottom line (since that is what
you typed) and on the top line (since that is what triggered the error message).
Somewhere in there you can usually spot the problem.

VVhcrc should you go from here? If you t:n)c ·w now, you'll just get the
same help message about undefined control sequences that you saw before. If you
respond by t:n)ing {return), T&X will go on and finish the run, producing output
virtually identical to that in Experiment 2. In other words, the conventional
responses won't teach you anything new. So type ·E' now: this terminates the
run and prepares the way for you to fix the erroneous file. (On some systems,
TEX will actually start up the standard text editor, and you'll be positioned at
the right place to delete ·\ERROR'. On other systems, TEX will simply tell you to
edit line 3 of file story. tex.)

VVhen you edit story. tex again, you'll notice that line 2 still contains
\vship: the fact that you told TEX to insert \vskip doesn't mean that your file
has changed in any way. In general, you should correct all errors in the input
file that were spotted by TEX during a run: the log file provides a handy way to
remember what those errors were.

VVell, this has indeed been a long chapter, so let's summarize what has
been accomplished. By doing the five eAl)eriments you have learned at first
hand (1) how to get a job printed via TEX: (2) how to make a file that contains
a complete TEX manuscript: (3) how to change the plain TEX format to achieve
columns with different widths: and (4) how to avoid panic when TEX issues
stern warnings.

So you could now stop reading this book and go on to print a bunch
of documents. It is better, however, to continue bearing with the author (after
perhaps taking another rest), since you're just at the threshold of being able
to do a lot more. And you ought to read Chapter 7 at least, because it warns
you about certain s:ymbols that you Inust not type unless you want TEX to do
something speciaL VVhile reading the remaining chapters it will, of course, be
best for you to continue making trial runs, using eAl)eriments of your own design.

~~ If you use TE-X format packages designed by others1 your error messages
Y Y may involve many inscrutable two~ line levels of macro context. By setting
\errorcontextlines=O at the beginning of your file 1 you can reduce the amount of
infOrmation that is reported; TE-X will show only the top and bottom pairs of context
lines together \Vith up to \errorcontextlines additional two~line items. (If anything
has thereby been omitted1 you)ll also see: ...).) Chances are good that you can
spot the source of an error even when most of a large context has been suppressed; if
not 1 you can say :I\errorcontextlines=100\oops) and try again. (That \Viii usually
give you an undefined control sequence error and plenty of context.) Plain TE-X sets
\errorcontextlines=5.

editing
errorcontext line;;

Chapter 6: R·urming TFJX 35

What we have to learn to do we learn by doing.
- ARISTOTLE, Ethica Nicomachea II (c. 325 B.C.)

He may run who reads.
HABAKKUK 2: 2 (c. 600 B.C.)

He that runs may read.
-WILLIAM COWPER, Tirocinium (1785)

AHISTOTLE
HABAKKCK
CO\VPEH

page ~Hi) I

How TEX Reads
What You Type

Chapter 7: How TFJX Reads What Yo'u Twe

VVc observed in the previous chapter that an input manuscript is expressed in
terms of :'lines," but that these lines of input arc essentially independent of the
lines of output that will appear on the finished pages. Thus you can stop typing
a line of input at any place that's convenient for you, as you prepare or edit a
file. A few other related rules have also been mentioned:

• A {return) is like a space.
• Two spaces in a row count as one space.
• A blank line denotes the end of a paragraph.

Strictly speaking, these rules arc contradictory: A blank line is obtained by
typing {return) twice in a row, and this is different from typing two spaces in a
row. Some day you might want to know the re<-:d rules. In this chapter and the
next, we shall study the very first stage in the transition from input to output.

In the first place, it's wise to have a precise idea of what your keyboard
sends to the machine. There arc 256 characters that TEX might encounter at
each step, in a file or in a line of teA-t typed directly on your terminal. These
256 characters arc classified into 16 categories numbered 0 to 15:

Categor,ij
()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

lvfeaning

Escape character
Beginning of group
End of group
Math shift
Alignment tab
End of line
Parameter
Superscript
Subscript
Ignored character
Space
Letter
Other character
Active character
Comment character
Invalid character

(\ in this manual)
({ in this manual)
(} in this manual)
($ in this manual)
(& in this manual)
({return) in this manual)
(# in this manual)
(- in this manual)
(_ in this manual)
((null) in this manual)
(u in this manual)
(A, , , , , Z and a, , , , , z)
(none of the above or below)
(~ in this manual)
(% in this manual)
((delete) in this manual)

It's not necessary for you to learn these code numbers: the point is only that
TEX responds to 16 different types of characters. At first this manual led you to
believe that there were just two types------the escape character and the others---
and then you were told about two more types, the grouping symbols { and } .
In Chapter 6 you learned two more: ~ and %. l\ow you know that there arc
really 16. This is the whole truth of the matter: no more t:)1)CS remain to be
revealed. The category code for any character can be changed at any time, but
it is usually wise to stick to a particular scheme.

37

e;;cape character
begin-group character
end-group character
math mode character
alignment tab
parameter
;;uper;;cript
;;ub;;cript
ignorwl character
;;pace
letter
other character
act i '<e character
comment character
in'<alid character
category code;;, table
re;;er'<wl character
;;pedal character table
null
delete

38 Chapter 7: How TFJX Reads What Yo'u Twe

The main thing to bear in mind is that each TEX format reserves certain
characters for its own special purposes. For example, when you arc using plain
TEX format (Appendix B), you need to know that the ten characters

\ { } $ & # - - % -
cannot be used in the ordinary way when you arc t:n)ing: each of them will cause
TEX to do something special, as explained elsewhere in this book. If you really
need these symbols as part of your manuscript, plain T&X makes it possible for
you to type

\$for $, \%for%, \&for&, \#for#, _for

the _ symbol is useful for cornpo·und_identifiers in computer programs. In math-
ematics formulas you can usc\{ and\} for {and}, while \backslash produces
a reverse slash: for example,

'$\{a \backslash b\}$' yields '{a\b}',
Furthermore\- produces a circumflex accent (e.g.,·\ -e' yields·("): and\~ yields
a tilde accent (e.g., ·\ ~n' yields ·fi').

• EXERCISE 7.1
VVhat horrible errors appear in the following sentence?

Procter & Gamble's stock climbed to $2, a 10% gain.

• EXERCISE 7.2
Can you imagine why the designer of plain T&X decided not to make ·\ V the
control sequence for reverse slashes?

\Vhen TE-X reads a line of text from a file 1 or a line of text that you entered
directly on your terminal 1 it converts that text into a list of :'tokens.l' A

token is either (a) a single character \Vith an attached category code1 or (b) a control
sequence. For example1 if the normal conventions of plain T£X are in force 1 the text
:{\hskip 36 pt}) is converted into a list of eight tokens:

{J lhskipl 3J2 612 uJO Pl J t1 J }z

The subscripts here are the category codes1 as listed earlier: 1 fOr :'beginning of brroup/'
12 for :'other character/' and so OIL The lhskipl doesn)t get a subscript 1 because it
represents a control sequence token instead of a character token. Notice that the space
after \hskip does not get into the token list 1 because it follows a control word.

It is important to understand the idea of token lists 1 if you want to gain a
thorough understanding of TE-X 1 and it is convenient to learn the concept by

thinking of T£X as if it were a living organism. The individual lines of input in your
files are seen only by TE-X)s and :'mouthl'; but after that text has been gobbled
up 1 it is sent to T£X)s :'stomachl' in the form of a token list 1 and the digestive processes
that do the actual typesetting are based entirely on tokens. As far as the stomach is
concerned1 the input flmvs in as a stream of tokens 1 somewhat as if your TE-X manuscript
had been typed all on one extremely long line.

;; pedal character;;
bacbla,-;h
left brace
right brace
dollar ;;ign
amper;;and
ha,-;h mark
hat
underline
percent
tilde
;;ingle-character control ;;equence;
identilier;;
computer program;;
bacbla,-;h
f(O'<er,;e ;;la,-;h
Procter
Gamble
bacbla,-;h
tolwn;;
control word

Chapter 7: How TFJX Reads What Yo'u Twe

You should remember two chief things about TE-X)s tokens: (1) A control
sequence is considered to be a single object that is no longer composed of a

sequence of sy-mbols. TherefOre long control sequence names are no harder fOr TE-X to
deal \Vith than short ones 1 after they have been replaced by tokens. Furthermore1 spaces
are not ignored after control sequences inside a token list; the ignore--space rule applies
only in an input file 1 during the time that strings of characters are being tokenit~ed.
(2) Once a category code has been attached to a character token 1 the attachment is
permanent. For example1 if character :c were suddenly declared to be of category 12
instead of category 11 the characters :{ 1) already inside token lists of T£X would still
remain of category 1; only newly made lists would contain :{Jz) tokens. In other words 1

individual characters receive a fixed interpretation as soon as they have been read from
a file 1 based on the category they have at the time of reading. Control sequences
are different 1 since they can change their interpretation at any time. T£-X)s digestive
processes always know exactly what a character token signifies1 because the category
code appears in the token itself; but when the digestive processes encounter a control
sequence token 1 they must look up the current definition of that control sequence in
order to figure out what it means.

6<,~•EXERCISE 7.3
Y Y Some of the category codes 0 to 15 will never appear as subscripts in character
tokens 1 because they disappear in T£X)s mouth. For example1 characters of category 0
(escapes) never get to be tokens. \Vhich categories can actually reach T£-X)s stomach?

~~ There)s a probrram called INITEX that is used to install T£..X 1 starting from
Y Y scratch; INITEX is like T£-X except that it can do even more things. It can
compress hyphenation patterns into special tables that facilitate rapid h:yl)henation 1 and
it can produce format files like :plain. fmt) from :plain. tex). But INITEX needs extra
space to carry out such tasks 1 so it generally has less memory available for typesetting
than you would expect to find in a production version of T£-X.

~~ \Vhen INITEX begins1 it knows nothing but T£-X)s primitives. All 256 charac~
Y Y ters are initially of category 121 except that (return} has category 51 (space}
has category 101 {null} has category 91 (delete} has category 15 1 the 52 letters A ... Z and
a ... z have category 11 1 % and\ have the respective categories 14 and 0. It follows that
INITEX is initially incapable of carrying out some of T£X)s primitives that depend on
grouping; you can)t use \def or \hbox until there are characters of categories 1 and 2.
The format in Appendix B begins \Vith \cat code commands to provide characters of
the necessary categories; e.g. 1

\catcode'\{=1

assigns category 1 to the { symboL The \cat code operation is like many other primi~
tives of T£-X that we shall study later; by modifying internal quantities like the category
codes1 you can adapt T£X to a \Vide variety of applications.

6<,~•EXERCISE 7.4
Y Y Suppose that the commands

\catcode'\<=1 \catcode'\>=2

appear near the beginning of a group that begins \Vith :{); these specifications instruct
T£X to treat < and > as group delimiters. According to T£X)s rules of locality1 the

39

I!\:ITEX
hyphenation
format
return
;;pace
null
delete
bacbla,-;h
percent
cat code

40 Chapter 7: How TFJX Reads What Yo'u Twe

characters < and > \Viii revert to their previous categories when the brroup ends. But
should the brroup end \Vith } or \Vith >?

~~ Alt!1~ugh cont~ol seq~enc~ .a~e ~reated as sin~le -~bj:~ts 1 T~X does ~rovide
Y Y a way to break them mto hsts of character tokens. If you \Vnte \str~ng\cs 1
where \cs is any control sequence1 you get the list of characters for that control se--
quence)s name. For example1 \string\TeX produces four tokens: \ 121 T121 e 121 X12 •

Each character in this token list automatically gets category code 12 C'otherl') 1 in~

eluding the backslash that \string inserts to represent an escape character. However 1

category 10 \Viii be assigned to the character :u; (blank space) if a space character
somehow sneaJ .. -s into the name of a control sequence.

~~ Cm~ver~ely1 you can go from a list of: character tokens to a con~rol s.equence by
Y Y saymg ·\csname(tokens} \endcsname·. The tokens that appear m tins construe~
tion between \csname and \endcsname may include other control sequences1 as long as
those control sequences ultimately expand into characters instead of TE-X primitives; the
final characters can be of any category1 not necessarily letters. For example1 :\csname
TeX\endcsname) is essentially the same as :\TeX); but :\csname\TeX\endcsname) is il~

legal 1 because \TeX expands into tokens containing the \kern primitive. Furthermore1

:\csname\string\TeX\endcsname) \Viii produce the unusual control sequence :\ \TeX) 1

i.e. 1 the token I\TeXI 1 which you can)t ordinarily \Vrite.

6<,~•EXERCISE 7.5
Y Y Experiment \Vith TEX to see what \string does when it is fOllowed by an
active character like -. (Active characters behave like control sequences1 but they are
not prefixed by an escape.) \Vhat is an easy way to conduct such experiments online?
\Vhat control sequence could you put after \string to obtain the single character
token \12?

6<,~•EXERCISE 7.6
Y Y \Vhat tokens does :\expandafter\string\csname a\string\ b\endcsname)
produce? (There are three spaces befOre the b. Chapter 20 explains \expandafter.)

6<,~•EXERCISE 7.7
Y Y \Vhen \csname is used to define a control sequence for the first time1 that
control sequence is made equivalent to \relax until it is redefined. Use this fact to
design a macro \ifundefined#1 such that 1 fOr example1

\ifundefined{TeX}(truc tcxt)\else(falsc tcxt)\fi

expands to the (true text} if \TeX hasn)t previously been defined 1 or if \TeX has been
\let equal to \relax; it should expand to the (false text} othenvise.

~~ In the examples so far 1 \string has converted control sequences into lists of
Y Y tokens that begin \Vith \ 12 . But this backslash token isn)t really hardwired into
TE-X; there)s a parameter called \escapechar that specifies what character should be
used when control sequences are output as text. The value of \escapechar is normally
TE-X)s internal code for backslash1 but it can be changed if another convention is desired.

~~ TEX has .two oth.er token~producing operations similar. to the ~string ~om~
Y Y mand. If you \Vnte \number{number} 1 you get the denmal eqmvalent of the
{number}; and if you \Vrite \romannumeral{number} 1 you get the number expressed in

group
;;tring
bacbla,-;h
;;pace
c;;name
endc;;name
kern
act i '<e character
ex pam! after
ifumldined
e;;capechar
number
romannumeral

Chapter 7: How TFJX Reads What Yo'u Twe

lowercase roman numeraJs. For example1 :\romannumeral24) produces :xxiv) 1 a list of
four tokens each having category 12. The \number operation is redundant when it is
applied to an explicit constant (e.g. 1 :\number24) produces :24)); but it does suppress
leading 11eros1 and it can also be used with numbers that are in TE-X)s internal registers
or parameters. For example1 :\number-0015) produces :-15); and if register \countS
holds the value 316 1 then :\number\count5) produces :316).

~~ The hvin operations \uppercase{(token list}} and \lowercase{(token list}}
Y Y go through a briven token list and convert all of the character tokens to their
:'uppercasd' or :'lowercasd' equivalents. Here)s how: Each of the 256 possible charac~
ters has two associated values called the \uccode and the \lccode; these values are
changeable just as a \cat code is. Conversion to uppercase means that a character
is replaced by its \uccode value1 unless the \uccode value is 11ero (when no change
is made). Conversion to lowercase is similar 1 using the \lccode. The category codes
aren)t changed. \Vhen INITEX begins 1 all \uccode and \lccode values are 11ero except
that the letters a to z and A to Z have \uccode values A to Z and \lccode values a to z.

~~ T£X performs the \uppercase and \lowercase transfOrmations in its stomach 1

Y Y but the \string and \number and \romannumeral and \csname operations are
carried out en route to the stomach (like macro expansion) 1 as explained in Chapter 20.

6<,~•EXERCISE 7.8
Y Y \Vhat token list results from :\uppercase{a\lowercase{bC} }) ?

6<,~•EXERCISE 7.9
Y Y TE-X has an internal integer parameter called \year that is set equal to the cur~
rent year number at the beginning of every job. Explain how to use \year 1 together \Vith
\romannumeral and \uppercase 1 to print a cop:ytight notice like :© MCMLXXX\T
for all jobs run in 1986.

6<,~•EXERCISE 7.10
Y Y Define a control sequence \appendroman \Vith three parameters such that
\appendroman#1#2#3 defines control sequence #1 to expand to a control sequence whose
name is the name of control sequence #2 followed by the value of the positive integer
#3 expressed in roman numerals. For example1 suppose \count20 equals 30; then
:\appendroman\a\TeX{\count20}) should have the same effect as :\def\a{\TeXxxx}).

Some bookes are to bee tasted,
others to bee swallowed,

and some few to bee chewed and disgested.
- FRANCIS BACON, Essayes (1597)

'Tis the good reader that makes the good book.
RALPH WALDO EMERSON, Society & Solitude (1870)

41

roman numeral;;
upperca;;e
lowerca;;e
uccode
kcode
I!\:ITEX
letter;;
year
tricky macro;;
BACO!\:
EJ'viEHSO!\:

page 42) I

The Characters
You Type

Chapter 8: The Characters Yo'u Twc

A lot of different keyboards arc used with TEX, but few keyboards can produce
256 different symbols. Furthermore, as we have seen, some of the characters that
you CErn type on your keyboard arc reserved for special purposes like escaping
and grouping. Yet when we studied fonts it was pointed out that there arc 256
characters per font. So how can you refer to the characters that aren't on your
keyboard, or that have been pre-empted for formatting?

One answer is to usc control sequences. For example, the plain format
of Appendix B, which defines % to be a special kind of symbol so that you can
usc it for comments, defines the control sequence \% to mean a percent sign.

To get access to any character whatsoever, you can t:n)c

\char(number)

where {number) is any number from 0 to 255 (optionally followed by a space):
you will get the corresponding character from the current font. That's how
Appendix B handles\%: it defines·\%' to be an abbreviation for ·\char37', since
37 is the character code for a percent sign.

The codes that T&X uses internally to represent characters arc based on
:'ASCII/' the American Standard Code for Information Interchange. Appendix C
gives full details of this code, which assigns numbers to certain control functions
as well as to ordinary letters and punctuation marks. For example, {space) = 32
and {return) = 13. There arc 94 standard visible s:ymbols, and they have been
assigned code numbers from 33 to 126, inclusive.

It turns out that ·b' is character number 98 in ASCII. So you can t:n)csct
the word bubble in a strange way by putting

\char98 u\char98\char98 le

into your manuscript, if the b-kcy on your typewriter is broken. (An optional
space is ignored after constants like ·gg'. Of course you need the \ c, h, a, and r
keys to type ·\char', so let's hope that they arc always working.)

TE-X always uses the internal character code of Appendix C for the standard
ASCII characters1 regardless of what external coding scheme actually appears

in the files being read. Thus 1 b is 98 inside of T£X even when your computer normally
deals \Vith EBCDIC or some other nOih:\.SCII scheme; the TE-X software has been set
up to convert text files to internal code1 and to convert back to the external code when
writing text files. Device-independent (dvi) output files use TE-X)s internal code. In
this way1 T£X is able to give identical results on all computers.

Character code tables like those in Appendix C often give the code numbers in
octal notation 1 i.e. 1 the radix-8 number system 1 in which the digits are 01 11 21

81 41 51 61 and 7. * Sometimes hexadecimal notation is also used 1 in which case the clibrits
are 01 11 21 31 41 51 61 71 81 91 A1 B1 C1 D1 E1 and F. For example1 the octal code fOr :b; is

* The au1hor of 1hi::> manual like::> 10 u::>e i1alic digi1::> for oc1al number::>1 and 1ype-
\vri1er 1ype for hexadecimal numbem1 in order 10 provide a 1ypographic clue 10 1he
underlying radix \vhenever poo::>ible.

43

keyboard
terminal keyboard
percent ;;ign
ASCII
intemal character code;;
character code;;
;;pace
return
char
EBCDIC
<hi
octal notation
hexaded mal not at ion

44 Chapter 8: The Characters Yo'u Twc

Lf21 and its hexadecimal code is 62. A {number} in TE-X)s lailbtuage can begin with a ' 1

in which case it is regarded as octal 1 or \Vith a 11
1 when it is regarded as hexadecimaL

Thus 1 \char'142 and \char 11 62 are equivalent to \char98. The lebritimate character
codes in octal notation run from '0 to '811; in hexadecimal 1 they run from "0 to "FF.

But T£X actually provides another kind of {number} that makes it unnecessaxy
for you to h·11ow ASCII at all! The token '1 2 (left quote) 1 when fOllowed by

any character token or by any control sequence token whose name is a single character 1

stands for TE-X)s internal code fOr the character in question. For example1 \char'b and
\char'\b are also equivalent to \char98. If you look in Appendix B to see how\% is
defined1 you)II notice that the definition is

\def\%{\char'\%}

instead of \char37 as claimed above.

• EXERCISE 8.1
\Vhat would be wrong \Vith \def\%{\char'%}?

The preface to this manual points out that the author tells little white lies
from time to time. \Veil) if you actually check Appendix B you)ll find that

\chardef\%='\%

is the true definition of \%. Since fOrmat designers often want to associate a spe--
cial character \Vith a special control sequence name) T£X provides the construction
:\chardef{control sequence}=(number}) for numbers between 0 and 2551 as an efficient
alternative to :\def (control sequence}{\ char{ number}}).

Although you can usc \char to access any character in the current font,
you can't usc it in the middle of a control sequence. For example, if you t:n)c

\\char98

TEX reads this as the control sequence \\ followed by c, h, a, etc., not as the
control sequence \b.

You will hardly ever need to usc \char when typing a manuscript, since
the characters you want will probably be available as predefined control se-
quences: \char is primarily intended for the designers of book formats like those
in the appendices. But some day you may require a special symbol, and you
may have to hunt through a font catalog until you find it. Once you find it,
you can usc it by simply selecting the appropriate font and then specifying the
character number with \char. For example, the :'dangerous bend" sign used in
this manual appears as character number 127 of font manfnt, and that font is
selected by the control sequence \manual. The macros in Appendix E therefore
display dangerous bends by saying ·{\manual \char127F.

VVc have observed that the ASCII character set includes only 94 printable
symbols: but TEX works internally with 256 different character codes, from 0
to 255, each of which is assigned to one of the sixteen categories described in
Chapter 7. If your keyboard has additional symbols, or if it docsn 't have the
standard 94, the people who installed your local TEX system can tell you the

number
apo;;trophe
doubkquote
left quote
re'<er;;e apo;;t rophe
chardef
def
;;pedal ;;ymbol
dangerou;; bend
manfnt
manual

Chapter 8: The Characters Yo'u Twc

corTcspondcncc between what you t:n)c and the character number that TEX
receive::>. Some people arc fortunate enough to have keys marked ·of=' and ·~' and
·~': it is possible to install T&X so that it will recognize these handy symbols
and make the typing of mathematics more pleasant. But if you do not have such
keys, you can get by with the control sequences \ne, \le, and \ge.

TE-X has a standard way to refer to the invisible characters of ASCII: Code 0
can be typed as the sequence of three characters ,..,..@ 1 code 1 can be t:yl)ed

''A, and so on up to code 31, which is •• _ (sec Appendix C), If the character follmving
,..,.. has an internal code between 64 and 1271 T£X subtracts 64 from the code; if the
code is between 0 and 63 1 TE-X adds 64. Hence code 127 can be typed ,..,..? 1 and
the dangerous bend sibfil can be obtained by saying {\manual,..,..?}. However 1 you must
change the category code of character 127 before using it 1 since this character ordinarily
has category 15 (invalid); say1 e.g. 1 \catcode'\,..,..?=12. The,..,.. notation is different from
\char 1 because ,..,.. combinations are like single characters; for example1 it would not
be permissible to say \catcode'\char1271 but,..,.. symbols can even be used as letters
within control words.

One of the overfull box messages in Chapter 6 illustrates the fact that T£X
sometimes uses the funny ,..,.. convention in its output: The umlaut character

in that example appears as ,..,..? 1 and the cedilla appears as ,..,..X 1 because ·) and:,)
occur in positions '111 and '80 of the \tenrm font.

There)s also a special convention in which ,..,.. is followed by ttvo :'lowercase
hexadecimal digits/' 0-9 or a-f. \Vith this convention1 all 256 characters are

obtainable in a uniform way1 from ,..,..00 to ,..,..ff. Character 127 is ,..,..7f.

Most of the ,..,.. codes are unimportant except in unusual applications. But
,..,..M is particularly noteworthy because it is code 131 the ASCII (return} that

TE-X normally places at the right end of every line of your input file. By changing the
category of ,..,..M you can obtain useful special effects1 as we shall see later.

The control code ,..,..I is also of potential interest 1 since it)s the ASCII (tab}.
Plain T£X makes (tab} act like a blank space.

People who install TE-X systems for use \Vith nOih:\.merican alphabets can
make TE-X conform to any desired standard. For example1 suppose you have a

Norwegian keyboard containing the letter <£1 which comes in as code 241 (say). Your lo~
cal format package should define \cat code' <£=11; then you could have control sequences
like \s<£rtrykk. Your TE-X input files could be made readable by American installa~
tions of T£X that don)t have your keyboard1 by substituting ,..,..f1 for character 241.
(For example1 the stated control sequence would appear as \s,..,..f1rtrykk in the file;
your American friends should also be provided with the format that you used 1 \Vith
its \catcode',..,..f1=11.) Of course you should also arrange your fonts so that TE-X)s
character 241 \Viii print as re; and you should change TE-X)s h:yl)henation algorithm so
that it \Viii do correct Norwegian hyphenation. The main point is that such changes are
not extremely difficult; nothing in the desibfil of TE-X limits it to the American alphabet.
Fine printing is obtained by fine tuning to the language or languages being used.

~~ European languages can also b~ accou_nnod~ted e~"ectivel~ with only a limited
Y Y character set. For example1 let·s consuler Norwebfian agam 1 but suppose that

45

ne
k
ge
not-equal
]e;;;;-or-eq ual
greater-or-equal
in'<alid
double hat
hat hat
tenrm
return
hat hat J'vi
tab
!'\orwegian key board
Scandina'<ian letter;;
foreign language;;
keyboard;;, non-ASCII

46 Chapter 8: The Characters Yo'u Twc

you want to use a keyboard \Vithout an<£ character. You can arrange the fOnt metric file
so that TE-X \Vill interpret ae 1 of, aa1 AE 1 0/, and AA as ligatures that produce <:B 1 0 1 li1

iE 1 0 1 and 1 1 respectively; and you could put the characters il and 1 into positions 128
and 129 of the font. By setting \cat code' /=11 you would be able to use the ligature
o/ in control sequences like :\ho/yre). T£X)s hyphenation method is not confused by
ligatures; so you could use this scheme to operate essentially as suggested before1 but
with two key-strokes occasionally replacing one. (Your typists would have to watch
out for the occasional times when the adjacent characters aa1 oe1 and o/ should not be
treated as ligatures; also1 :\/' would be a control word1 not a control symboL)

~~ The rest of this chapter is devoted to T£X)s reading rules 1 which define the
Y Y conversion from text to tokens. For example1 the fact that TE-X ignores spaces
after control words is a consequence of the rules below 1 which imply among other things
that spaces after control words never become space tokens. The rules are intended to
work the way you would expect them to1 so you may not \Vish to bother reading them;
but when you are counnunicating with a computer 1 it is nice to understand what the
machine thinks it is doing 1 and here)s your chance.

~~ The input to TE-Xis a sequence of :'lines.l' \Vhenever TE-Xis reading a line of
Y Y text from a file 1 or a line of text that you entered directly on your terminal 1

the computer)s reading apparatus is in one of three so--called states:

StateN
State M
StateS

Bebrinning a new line;
Middle of a line;
Shipping blanks.

At the beginning of every line it)s in stateN; but most of the time it)s in state Af 1

and after a control word or a space it)s in state S. Incidentally1 :'statesl' are different
from the :'modest' that we \Viii be studying later; the current state refCrs to T£X)s
eyes and mouth as they take in characters of new text 1 but the current mode refers
to the condition of T£X)s gastro--intestinal tract. Most of the things that T£X does
when it converts characters to tokens are independent of the current state1 but there
are diffCrences when spaces or end~of~line characters are detected (categories 10 and 5).

~~ T~X c~eletes .any (spac~} ~haracters (number 32) that occur at the right .end
Y Y of an mput hne. Then 1t mserts a (return} character (number 13) at the nght
end of the line1 except that it places nothing additional at the end of a line that you
inserted \Vith :I; during error recovery. Note that (return} is considered to be an actual
character that is part of the line; you can obtain special effCcts by ch<Ulbring its catcode.

~~ If TE-X sees an escape char~cter (catego~y 0) in mw state1 it scans the ~mtire
Y Y control sequence nmne as follows. (a) If there are no more characters m the
line1 the name is empty (like \csname\endcsname). Othenvise (b) if the next character
is not of category 11 (letter) 1 the name consists of that single symboL Othenvise (c) the
nmne consists of all letters bebrinning \Vith the current one aiHl ending just before the
first nonletter 1 or at the end of the line. This name becomes a control sequence token.
TE-X goes into stateS in case (c) 1 or in case (b) \Vith respect to a character of category 10
(space); othenvise TE-X goes into state Af.

If TE-X sees a superscript character (category 7) in any state1 aiHl if that charac~
ter is followed by mwther identical character 1 aiHl if those two equal characters

font met ric lile
control word
control ;;ymbol
line;;
;;tate;;
mode;;
tolwn;;
;;pace
return
error reco'<ery
control ;;equence
null control ;;equence
c;;name endc;;name

Chapter 8: The Characters Yo'u Twc

are fOllowed by a character of code c < 128 1 then they are deleted and 64 is added to
or subtracted from the code c. (Thus 1 ,..,..A is replaced by a single character whose
code is 11 etc. 1 as explained earlier.) However 1 if the two superscript characters are im~
mediately fOllowed by two of the lowercase hexadecimal clibrits 0123456789abcdef 1 the
four~character sequence is replaced by a single character having the specified hexadec~
imal code. The replacement is carried out also if such a trio or quartet of characters is
encountered during steps (b) or (c) of the control~sequence--name scanning procedure
described above. After the replacement is made1 TE-X bebrins again as if the new char~
acter had been present all the time. If a superscript character is not the first of such a
trio or quartet 1 it is handled by the follmving rule.

~~ If T£X sees a character of categories 11 21 31 41 61 81 11 1 12 1 or 13 1 or a character
Y Y of category 7 that is not the first of a special sequence as just described 1 it
converts the character to a token by attaching the category code1 and goes into state Af.
This is the normal case; almost every nonblank character is handled by this rule.

~~ If TE-X sees an end~of-line character (category 5) 1 it thrmvs away any other
Y Y information that might remain on the current line. Then if TE-Xis in state N
(new line) 1 the end~of~line character is converted to the control sequence token :I Pari)
(end of paragraph); if TE-Xis in state Af (mid~line) 1 the end~of~line character is con~
verted to a token fOr character 32 Cu)) of category 10 (space); and if T£X is in stateS
(skipping blanks) 1 the end~of~line character is simply dropped.

If TE-X sees a character to be ignored (category 9) 1 it simply bypasses that
character as if it weren)t there 1 and remains in the same state.

If T£X sees a character of category 10 (space) 1 the action depends on the
current state. If TE-Xis in stateN or S 1 the character is simply passed by1 and

TE-X remains in the same state. Othenvise TE-Xis in state Af; the character is converted
to a token of category 10 whose character code is 32 1 and T£X enters state S. The
character code in a space token is alway-s 32.

If TE-X sees a counnent character (category 14) 1 it throws away that character
and any other information that might remain on the current line.

Finally1 if TE-X sees an invalid character (category 15) 1 it b:yl)asses that char~
acter 1 prints an error message 1 and remains in the same state.

If T£X has nothing more to read on the current line1 it goes to the next line
and enters state N. However 1 if \endinput has been specified for a file being

\input 1 or if an \input file has ended1 TE-X returns to whatever it was reading when
the \input command was originally given. (Further details of \input and \endinput
are discussed in Chapter 20.)

6<,~• EXERCISE 8.2
Y Y Test your understanding of T£X)s reading rules by answering the follmving
quickie questions: (a) \Vhat is the difference between categories 5 and 14? (b) \Vhat is
the difference between categories 3 and 4? (c) \Vhat is the difference between categories
11 and 12? (d) Are spaces ibfilOred aller active characters? (e) \Vhen a line ends \Vith a
counnent character like %1 are spaces ignored at the beginning of the next line? (f) Can
an ignored character appear in the midst of a control sequence name?

47

par
;;pace
end input
input

48 Chapter 8: The Characters Yo'u Twc

6<,~• EXERCISE 8.3
Y Y Look again at the error message that appears on page 31. \Vhen TE-X reported
that \vship was an undefined control sequence1 it printed two lines of context 1 shmving
that it was in the midst of reading line 2 of the story file. At the time of that error
message1 what state was T£X in? \Vhat character was it about to read next?

6<,~• EXERCISE 8.4
Y Y Given the category codes of plain TE-X f0rmat 1 what tokens are produced from
the input line: $x,..2$- \TeX ,..,..62,..,..6)?

6<,~• EXERCISE 8.5
Y Y Consider an input file that contains exactly three lines; the first line say-s :Hi!) 1

while the other two lines are completely blank \Vhat tokens are produced when T£X
reads this file 1 using the category codes of plain TE-X fOrmat?

6<,~• EXERCISE 8.6
Y Y Assume that the category codes of plain T£X are in force 1 except that the char~
acters ,..,..A 1 ,..,..B 1 ,..,..C 1 ,..,..M belong respectively to categories 01 71 101 and 1 L \Vhat tokens
are produced from the (rather ridiculous) input line ;,..,..B,..,..BM,..,..A,..,..B,..,..C,..,..M,..,..@\Mu)?
(Remember that this line is fOllowed by (return} 1 which is ,..,..M; and recall that ,..,..@

denotes the {null} character1 which has category 9 when INITEX begins.)

~~ The spec.ial character inserted at tl~e m~d of each line needn)t be (retu~n}; TE-X
Y Y actually mserts the current value of an mteger parameter called \endl~nechar 1

which normally equals 13 but it can be changed like any other parameter. If the value
of \endlinechar is negative or brreater than 255 1 no character is appended 1 and the
effect is as if every line ends \Vith% (i.e. 1 with a counnent character).

~~ Since it is possible to change the category codes1 T£X might actually use
Y Y several different categories for the same character on a single line. For example1

Appendices D and E contain several way-s to coerce TE-X to process text :'verbatim/'
so that the author could prepare this manual \Vithout brreat difficulty. (Try to imagine
t:yl)esetting a TE-X manual; bach-slashes and other special characters need to switch back
and forth between their normal categories and category 12!) Some care is needed to
get the timing right 1 but you can make TE-X behave in a variety of different ways by
judiciously changing the categories. On the other hand1 it is best not to play \Vith the
category codes very often 1 because you must remember that characters never change
their categories once they have become tokens. For example1 when the arguments to a
macro are first scanned1 they are placed into a token list 1 so their categories are fixed
once and for all at that time. The author has intentionally kept the category codes
numeric instead of mnemonic 1 in order to discourage people from making extensive use
of \cat code changes except in unusual circumstances.

6<,~•EXERCISE 8.7
Y Y Appendix B defines \lq and \rq to be abbreviations fOr ' and ' (single left
and right quotes 1 respectively). Explain why the definitions

\chardef\lq=96 \chardef\rq=39

would not be as good.

null
return
endlinechar
'<erbatim
lq
cq

Chapter 8: The Characters Yo'u Twc 49

for life's not a oaragraoh

And death i think is no oarenthesis.
- e. e. cummings, since feeling is first (1926)

This coded character set is to facilitate
the general interchange of information

among information orocessing systems,
communication systems, and

associated equioment.
An 8-bit set was considered

but the need for more than 128 codes
in general aoolications was not yet evident.

- ASA SUBCOMMITTEE X3.2, American Standard
Code for Information Interchange (1963)

cumming;;
ASCII

page 50) I

TEX's Roman Fonts

Chapter .9: TFJX 's Roman Fonts

VVhcn you're typing a manuscript for T&X, you need to know what symbols
arc available. The plain TEX format of Appendix B is based on the Computer
:0.-'Iodcrn fonts, which provide the characters needed to typeset a wide variety
of documents. It's time now to discuss what a person can do with plain TEX
when typing straight teA-t. VVc'vc already touched on some of the slightly subtle
things------for example, dashes and quotation marks were considered in Chapter 2,
and certain kinds of accents appeared in the examples of Chapters 3 and 6. The
purpose of this chapter is to give a more systematic sumnu;~,ry of the possibilities,
by putting all the facts together.

Let's begin with the rules for the normal roman font (\rm or \tenrm):
plain T&X will usc this font for everything unless you specify otherwise. :0.-'Iost of
the ordinary symbols that you need arc readily available and you can t:n)c them
in the ordinary way: There's nothing special about

the letters A to Z and a to z
the digits 0 to 9
common punctuation marks . , !?()[)''-•/.,@

except that T&X recognizes certain combinations as ligatures:

ff yields ff:
fi yields fi:
fl yields ft:

ff i yields ffi:
ffl yields ffi:
-- yields

'' yields ":
'' yields":
---yields

! (yields i:
? (yields;,.

You can also t:n)c + and =, to get the corresponding symbols + and =: but it's
much better to usc such characters only in math mode, i.e., enclosed between
two $ signs, since that tells T&X to insert the proper spacing for mathemat-
ics. :0.-'Iath mode is explained later: for now, it's just a good idea to remember
that formulas and teA-t should be segregated. A non-mathematical hyphen and
a non-mathematical slash should be specified by typing · -' and · F outside of
mathematics mode, but subtraction and division should be specified by typing
·-'and · F between $ signs.

The previous paragraph covers 80 of the 94 visible characters of standard
ASCII: so your keyboard probably contains at least 14 more symbols, and you
should learn to watch out for the remaining ones, since they arc special. Four of
these arc prcbnptcd by plain T&X: if your manuscript requires the symbols

$ # % &

you should remember to t:n)c them as

\$ \# \% \&

respectively. Plain T&X also reserves the six symbols

\ { }

but you probably don't mind losing these, since they don't appear in normal
copy. Braces and backslashes arc available via control sequences in math mode.

51

letter,;
digit;;
punct oat ion
ligature;;
Spani;;h ligat ore;;
Colon
Semicolon
Exdamat ion point
Shriek, ;;ee exclamation point
Que;;t ion mark
I)arenthe;;e;;
Bracket;;
Apo;;trophe
He'<er;;e apo;;t rophe
Hamza, ;;ee apo;;trophe
Ain, ;;ee re'<erM: apo;;trophe
Hyphen
Da,-;h
A;;teri;;k
At ;;ign
Virgule, ;;ee ;;la,-;h
Solido;;, ;;ee ;;la,-;h
Shilling ;;ign, ;;ee ;;la,-;h
Sla,-;h
Period
Full ;;top, ;;ee period
Comma
Plu;; ;;ign
Equal;; ;;ign
dollar ;;ign
;;harp ;;ign, ;;ee ha,-;h mark
number ;;ign, ;;ee ha,-;h mark
ha,-;h mark
percent ;;ign
amper;;and
bacbla,-;h
brace;;
curly brace;;, ;;ee brace;;
hat, ;;ee circum/lex
circum/lex
underline
tilde

52 Chapter .9: TFJX's Roman Fonts

There arc four remaining special characters in the standard ASCII set:

" < >
Again, you don't really want them when you're t:n)csctting text. (Double-quote
marks should be replaced either by ((or by ' ' : vertical lines and relation signs
arc needed only in math mode.)

Scholarly publications in English often refer to other languages, so plain
TEX makes it possible to t:n)csct the most commonly used accents:

Twe to get
\'o 0 (grave accent)
\'o 6 (acute accent)
\-o 6 (circumflex or "hat")
\uo ii (umlaut or dieresis)
\-o 0 (tilde or :•squiggle")
\=o 6 (macron or :'bar")
\.o 6 (dot accent)
\u 0 0 (breve accent)
\v 0 6 (luicek or "check")
\H 0 0 (long Hungarian umlaut)
\t 00 00 (tic-after accent)

VVithin the font, such accents arc designed to appear at the right height for the
letter ·Q': but you can usc them over any letter, and TEX will raise an accent that
is supposed to be taller. l\oticc that spaces arc needed in the last four cases, to
separate the control sequences from the letters that follow. You could, however,
type ·\H{oF in order to avoid putting a space in the midst of a word.

Plain TEX also provides three accents that go underneath:

Twe to get
\c 0 Q (cedilla accent)
\d 0 9 (dot-under accent)
\b 0 9 (bar-under accent)

And there arc a few special letters:

Twe
\oe,\OE
\ae, \AE
\aa,\AA
\o,\0
\1,\L
\ss

to get
oc.<E
tt', JE
;1,A_
0.0
I.L
£

(French ligature 0 E)
(Latin and Scandinavian ligature AE)
(Scandinavian A-with-circle)
(Scandinavian 0-with-slash)
(Polish supprcssed-L)
(German :•cs-zct" or sharp S)

The \rm font contains also the dotlcss letters ·1' and 'J', which you can obtain by
typing ·\i' and ·\j'. These arc needed because ·i' and T should lose their dots

double-quote mark
'<ertical line, ;;ee norm
norm ;;ymbol
le;;;; than ;;ign
greater than ;;ign
accent;;

acute accent
e;;c hat
circum/lex accent
hat accent

umlaut accent
diere;;i;;
e;;c tilde
tilde accent
;;quiggle accent

macron accent
bar accent

dot accent

' hM:ek accent
check accent

" bre'<e accent
H
Hungarian umlaut
j

tie-after accent
embdli;;hwl letter;;, ;;ee accent;;

" cwlilla accent
d
dot-under accent
emphatic;;, ;;ee dot-under
b
bar-under accent
Scandina'<ian letter;;
;;harpS
e;;-zet
German
Poli;;h
?\orwegian
Dani;;h
Swwli;;h
kdandk
;;uppre;;;;w!-1,
diphthong;;, ;;ee >P, o::;
dot le;;;; letter,;

Chapter .9: TFJX 's Roman Fonts

when they gain an accent. For example, the right way to obtain ·nlintu>' is to
type ·m\=\i n\u us' or ·m\={\i}n\u{u}s'.

This completes our sumnu;~,ry of the \rm font. Exactly the same conven-
tions apply to \bf, \sl, and \it, so you don't have to do things differently when
you're using a different typeface. For example, \bf\ 11 o yields 0 and \it\& yields
€1. Isn't that nice?

However 1 \tt is slightly different. You \Viii be glad to h·11ow that ff 1 fi 1 and so
on are not treated as ligatures when you)re using typewriter type; nor do you

get ligatures from dashes and quote marks. That)s fine 1 because ordinary dashes and
ordinary doubl<Hj_uotes are appropriate when you)re trying to imitate a typ<nvriter.
Most of the accents are available too. But \H1 \. 1 \1 1 and \L cannot be used-the
t:yl)e\vriter font contains other symbols in their place. Indeed1 you are suddenly allowed
to t:yl)e 11

1 I 1 <1 and>; see Appendix F. All of the letters 1 spaces1 and other symbols in
\tt have the same width.

• EXERCISE 9.1
VVhat's the non-naive way to type ·naive''!

• EXERCISE 9.2
List some English words that contain accented letters.

• EXERCISE 9.3
How would you type ·JEsop's CEuvTcs en fraw;;ais' '!

• EXERCISE 9.4
Explain what to type in order to get this sentence: Comment;-:rrii Ac<-Jdemi;-p
scienthrrum imperhdis petropolit<-:rWX' is now Ak;-:rdemiii:r N;-:ruk SSSR 1 Dokhrd;y.

• EXERCISE 9.5
And how would you specify the names Erncsto Cesaro, P::il ErdOs, Oystcin Ore,
Stanislaw Swicrczkowski, Sergei ~Jr'cv, :0.-lul.uunmad ibn :0.-Hlstl al-Khwtlrizmi?

• EXERCISE 9.6
Devise a way to typeset Pal ErdOs in t:yl)e\vriter type.

The following symbols come out looking exactly the same whether you
arc using \rm, \sl, \bf, \it, or \ tt:

Twe to get
\dag
\ddag
\S
\P

t (dagger or obelisk)
t (double dagger or dicsis)
§ (section number sign)
, (paragraph sign or pilcrow)

(They appear in just one style because plain TEX gets them from the math
symbols font. Lots of other symbols arc needed for mathematics: we shall study
them later. Sec Appendix B for a few more non-math symbols.)

53

typewriter type
doubkquote
'<Crt icaJ Ji ne
]e;;;; than ;;ign
greater than ;;ign
Ce;;Aro
Erd(i;;
Ore
Swiercz ..
Iur'e'<
ai-Khw&rizml
dagger
dou bk dagger
obdi;;k
obdu;;, ;;ee obdi;;k
die;;i;;
;;ection number ;;ign
paragraph ;;ign
pi !crow, ;;ee paragraph ;;ign

54 Chapter .9: TFJX's Roman Fonts

• EXERCISE 9. 7
In plain TEX's italic font, the ·$' sign comes out as · £ '. This gives you a way
to refer to pounds sterling, but you might want an italic dollar sign. Can you
think of a way to typeset a reference to the book E·urope on $1/5.00 a day'!

~~ Appendix B shmvs that plain T£X handles most of the accents by using T£X)s
Y Y \accent primitive. For example1 \ '#1 is equivalent to {\accent19 #1} 1 where
#1 is the argument being accented. The general rule is that \accent{number} puts an
accent over the next character; the {number} tells where that accent appears in the
current fOnt. The accent is assumed to be properly positioned for a character whose
height equals the x~height of the current fOnt; taller or shorter characters cause the
accent to be raised or lowered 1 taking due account of the slantedness of the fOnts of
accenter and accentee. The \Vidth of the final construction is the \Vidth of the character
being accented 1 regardless of the \Vidth of the accent. Mode~ independent commands like
font changes may appear between the accent number and the character to be accented 1

but grouping operations must not intervene. If it turns out that no suitable character
is present 1 the accent \Viii appear by itself as if you had said \char{ number} instead of
\accent{number}. For example1 \' {} produces '.

6<,~• EXERCISE 9.8
Y Y \Vhy do you think plain TE-X defines \'#1 to be :{\accent19 #1}) instead of
simply letting \' be an abbreviation for :\accent19) ? (\Vhy the extra braces1 and
why the argument #1 ?)

~~ It)s i~nport,ant .to remm~1ber that tl~es~ conventi?I~S ~e ha~'e disc~ssed_for ac~
Y Y cents and speCial letters are not bmlt mto TE-X 1tself1 they belong only to the
plain T£X f0rmat 1 which uses the Computer Modern fOnts. Quite different conventions
will be appropriate when other fonts are involved; format designers should provide rules
for how to obtain accents and special characters in their particular systems. Plain TE-X
works well enough when accents are infrequent1 but the conventions of this chapter
are by no means recommended fOr large~scale applications of TE-X to other languages.
For example1 a well~designed T£X fOnt fOr French might well treat accents as liga~

tures 1 so that one could e'crire de cette manie're nai 11 ve en franc/ais \Vithout
backslashes. (See the remarks about Norwegian in Chapter 8.)

dollar ;;ign
Brit i;;h pound ;;ign
pound ;;terling
;;terling
accent
x-height
French
foreign language;;

Chapter .9: TFJX 's Roman Fonts 55

Let's doo't after the high Roman fashion.
- WILLIAM SHAKESPEARE, The Tragedie of Anthony and Cleooatra (1606)

English is a straightforward, frank, honest, ooen-hearted, no-nonsense language,
which has little truck with such devilish devious devices as accents;

indeed U.S. editors and orinters are often thrown into a dither
when a foreign word insinuates itself into the language.

However there is one word on which Americans seem to have closed ranks,
orinting it confidently, courageously, and almost invariably

comolete with accent-the cheese oresented to us as MUnster.
Unfortunately, Munster doesn't take an accent.

- WAVERLEY ROOT, in the International Herald Tribune (1982)

SHAKESPEAHE
J'viun;;ter
HOOT

page 50) I

Dimensions

Chapter 10: Dimensions

Sometimes you want to tell TEX how big to make a space, or how wide to make
a line. For example, the short story of Chapter 6 used the instruction ·\vskip
. 5cm' to skip vertically by half a centimeter, and we also said ·\hsize=4in' to
specify a horizontal size of 4 inches. It's time now to consider the various ways
such dimensions can be communicated to TEX.

:'Points" and :'picas" arc the traditional units of measure for printers
and compositors in English-speaking countries, so TEX understands points and
picas. TEX also understands inches and metric units, as well as the continental
European versions of points and picas. Each unit of measure is given a two-letter
abbreviation, as follows:

pt point (baselines in this manual arc 12 pt apart)
pc pica (1pc = 12pt)
in inch (1 in= 72.27pt)
bp big point (72 bp = 1 in)
em centimeter (2.54 em = 1 in)
mm millimeter (10mm = 1 em)
dd didot point (115 7 dd = 1238 pt)
cc cicero (1 cc = 12 dd)
sp scaled point (65536 sp = 1 pt)

The output of TEX is firmly grounded in the metric system, using the conversion
factors shown here as exact ratios.

• EXERCISE 10.1
How many points arc there in 254 centimeters?

or

VVhcn you want to CAl)rcss some physical dimension to TEX, type it as

{optional sign){numbcr)(unit of measure)

{optional sign){digit string). {digit string){unit of measure)

where an {optional sign) is either a ·+' or a ·-' or nothing at all, and where a
{digit string) consists of zero or more consecutive decimal digits. The · . ' can
also be a ·, '. For example, here arc six typical dimensions:

3 in
-.013837in
O.mm

29 pc
+ 42,1 dd
123456789sp

A plus sign is redundant, but some people occasionally like CA--tra redundancy
once in a while. Blank spaces arc optional before the signs and the numbers and
the units of measure, and you can also put an optional space after the dimension:
but you should not put spaces within the digits of a number or between the letters
of the unit of measure.

• EXERCISE 10.2
Arrange those six :•typical dimensions" into order, from smallest to largest.

57

dimen;;ion;;
Point;;
pica,-;
unit;; of mea,-; ore, table
pl
point
j)('

pica
in
inch
bp
big point
em
centimeter
mm
millimeter
dd
didot point
Didot, F. A.

cicero
;;p
;;calwl point
optional ;;ign
digit ;;tring

58 Chapter 10: Dimensions

• EXERCISE 10.3
Two of the following three dimensions are legitimate according to TE-X)s rules.

\Vhich two are they? \Vhat do they mean? \Vhy is the other one incorrect?
'. 77pt
11 Ccc
-.sp

The following :•rulers" have been t:n)csct by T&X so that you can get
some idea of how different units compare to each other. If no distortion has been
introduced during the camera work and printing processes that have taken place
after TEX did its work, these rulers arc highly accurate.

4in

300 pt

• EXERCISE 10.4
(To be worked after you know about boxes and glue and have read Chapter 21.)

Explain how to typeset such a lOCin ruler 1 using T£X.

TE-X represents all dimensions internally as an integer multiple of the tiny
units called sp. Since the wavelenbrth of visible light is approximately 100sp 1

rounding errors of a fCw sp make no diffCrence to the eye. However 1 T£X does all
of its arithmetic very carefully so that identical results \Viii be obtained on diffCrent
computers. DiffCrent implementations of T£X \Viii produce the same line break-s and
the same page breaks when presented with the same document 1 because the integer
arithmetic \Viii be the same.

The units have been defined here so that precise conversion to sp is efficient
on a \Vide variety of machines. In order to achieve this 1 T£-X)s :'pf' has been

made slightly larger than the official printer)s point 1 which was defined to equal exactly
.013837in by the American T:yl)efOunders Association in 1886 [d. National Bureau of
Standards Circular 570 (1956)]. In fact 1 one classical point is exactly .99999999pt1 so
the :'errorl' is essentially one part in 10(-1. This is more than two orders of magnitude
less than the amount by which the inch itself changed during 19591 when it shrank to
2.54cm from its former value of (1/0.3937) em; so there is no point in worrying about
the diffCrence. The new definition 72.27pt = 1 in is not only better fOr cakulation1 it is
also easier to remember.

T£X will not deal with dimensions whose absolute value is 2ao sp or more. In
other words 1 the maximum legal dimension is slightly less than 16384 pt. This

is a distance of about 18.892 feet (5.7583 meters) 1 so it won)t cramp your style.

ruler
machine-in de pend ence
rounding
maximum legal dimen;;ion

Chapter 10: Dimensions

In a language manual like this it is convenient to usc :•angle brackets"
in abbreviations for various constructions like {number) and {optional sign) and
{digit string). Henceforth we shall usc the term {dimcn) to stand for a legitimate
TEX dimension. For example,

\hsize=(dimcn)

will be the general way to define the column width that TEX is supposed to usc.
The idea is that {dimcn) can be replaced by any quantity like ·4in' that satisfies
TEX 's grammatical rules for dimensions: abbreviations in angle brackets make it
easy to state such laws of grammar.

VVhcn a dimension is zero, you have to specify a unit of measure even
though the unit is irrelevant. Don't just say ·o': say ·Opt' or ·Oin' or something.

The H)-point size of t:n)c that you arc now reading is normal in text-
books, but you probably will often find yourself wanting a larger font. Plain TEX
makes it easy to do this by providing magnified output. If you say

\magnification=1200

at the beginning of your manuscript, everything will be enlarged by 20%: i.e., it
will come out at 1.2 times the normal size. Similarly, · \magnif ication=2000'
doubles everything: this actually quadruples the area of each letter, since heights
and widths arc both doubled. To magnify a document by the factor j, you say
\magnification={numbcr), where the {number) is 1000 times f. This instruc-
tion must be given before the first page of output has been completed. You
cannot apply two different magnifications to the same document.

:0.-'Iagnification has obvious advantages: You'll have less eyestrain when
you 'rc proofreading: you can easily make transparencies for lectures: and you
can photo-reduce magnified output, in order to minimize the deficiencies of a
low-resolution printer. Conversely, you might even want ·\magnification=500'
in order to create a pocket-size version of some book. But there's a slight catch:
You can't usc magnification unless your printing device happens to have the
fonts that you need at the magnification you desire. In other words, you need
to find out what sizes arc available before you can magnify. :0.-'Iost installations
of TEX make it possible to print all the fonts of plain TEX if you magnify by
\magstepO, 1, 2, 3, and perhaps 4 or even 5 (sec Chapter 4): but the usc of large
fonts can be expensive because a lot of system memory space is often required
to store the shapes.

• EXERCISE 10.5
Try printing the short story of Chapter 6 at 1.2, 1.44, and 1. 728 times the normal
size. VVhat should you type to get TEX to do this?

\Vhen you say \magnification=20001 an operation like :\vskip.5cm) \Viii ac-
tually skip 1.0 nn of space in the final document. If you want to specifY a

dimension in terms of the final sit~e 1 T£X allows you to say :true) just befOre pt 1 pc 1 in1

59

angle bracket;;
dimen
magnified output
magnilication
eye;;train
proofreading
t ran;;parende;;
;;!ide;;
low-re;;olution printer
pocket-;;ize
;;quint print
mag;;tep
true

60 Chapter 10: Dimensions

bp 1 cm1 mm1 dd1 cc 1 and sp. This umnab111ifies the units 1 so that the subsequent magni~
fication \Viii cancel out. For example 1 :\vskip.5truecm) is equivalent to :\vskip.25cm)
if you have previously said :\magnification=2000). Plain TE-X uses this fCature in the
\magnification command itself: Appendix B includes the instruction

\hsize = 6.5 true in

just after a new mab111ification has taken effect. This adjusts the line width so that the
material on each page will be 6 ~ inches \Vide when it is finally printed1 regardless of the
mab111ification factor. There \Viii be an inch of margin at both left and right 1 assuming
that the paper is 8 ~ inches \Vide.

If you use no :true) dimensions 1 TE-X)s internal computations are not affected
by the presence or absence of mab111ification; line breaks and page break-s \Viii

be the same1 and the dvi file \Viii change in only two places. TE-X simply tells the
printing routine that you want a certain magnification 1 and the printing routine \Viii
do the actual enlargement when it reads the dvi file.

• EXERCISE 10.6
Chapter 4 mentions that fOnts of different mab111ifications can be used in the

same job1 by loading them :at) different sit~es. Explain what fOnts will be used when
you give the commands

\magnification=\magstep1
\font\first=cmr10 scaled\magstep1
\font\second=cmr10 at 12truept

Magnification is actually governed by TEX)s \mag primitive1 which is an integer
parameter that should be positive and at most 32768. The value of \mag is

examined in three cases: (1) just befOre the first page is shipped to the dvi file; (2) when
computing a true dimension; (3) when the dvi file is being dosed. Alternatively1 some
implementations of TEX produce non~dvi output; they examine \mag in case (2) and
also when shipping out each page. Since each document has only one magnification 1

the value of \mag must not change after it has first been examined.

TE-X also recogni11es two units of measure that are relative rather than absolute;
i.e. 1 they depend on the current context:

em is the width of a :'quacr' in the current fOnt;
ex is the :'x~heighf' of the current font.

Each font defines its O\V1l em and ex values. In olden days 1 an :'eml' was the \Vidth
of an :::vp 1 but this is no longer true; ems are simply arbitrary units that come with a
font 1 and so are exes. The Computer Modern fonts have the property that an euHlash
is one em \Vide1 each of the digits 0 to 9 is half an em \Vide1 and lowercase :x; is one ex
high; but these are not hard~ and~ fast rules for all fOnts. The \rm fOnt (cmr10) of plain
TE-X haslem = lOpt and lex~ 4.3pt; the \bf font (cmbx10) haslem = 11.5pt and
lex~ 4.44pt; and the \tt font (cmtt10) haslem = 10.5pt and lex~ 4.3pt. All of
these are :'lO~poinf' f0nts 1 yet they have different em and ex values. It is generally best
to use em for horit~ontal measurements and ex fOr vertical measurements that depend
on the current font.

<hi
al
magniliwl font;;
;;calwl
mag
em
quad
ex
x-height
digit;;
cmrlO
cmbxlO
cmtt 10

Chapter 10: Dimensions

A {dimen} can also refer to TE-X)s internal registers or parameters. \Ve shall
discuss rebristers later) and a complete definition of everything that a {dimen}

can be will be given in Chapter 24. For now it will suffice to give some hints about
what is to come: :\hsize) stands for the current horimntal line sit~e 1 and :. 5\hsize)
is half that amount; :2\wd3) denotes twice the width of register \box3; :-\dimen100) is
the negative of register \dimen100.

~~ Notic~ that th? unit nmnes in dimensions :rre not preceded by bad.-slashes. The
Y Y same IS true of other so~called keywords of the T£X language. Keywords can be
given in uppercase letters or in a mixture of upper and lower case; e.g. 1 :Pt) is equivalent
to :pt). The category codes of these letters are irrelevm1t; you may1 for example1 be
using a p of category 12 (other) that was generated by expanding :\the\hsize) as
explained in Chapter 20. TE-X gives a special interpretation to keywords only when
they appear in certain very restricted contexts. For exmnple1 :pt) is a key-word only
when it appears after a number in a {dimen}; :at) is a key-word only when it appears
after the external name of a font in a \font declaration. Here is a complete list of
TE-X)s keywords 1 in case you are wondering about the full set: at 1 bp 1 by 1 cc 1 cm1 dd1

depth1 em1 ex 1 fil 1 height 1 in1 1 1 minus 1 mm1 mu1 pc 1 plus 1 pt 1 scaled1 sp 1 spread1 to 1

true1 width. (See Appendix I for references to the contexts in which each of these is
recognit~ed as a key-word.)

The methods that have hitherto been taken
to discover the measure of the Roman foot,

will, uoon examination, be found so unsatisfactory, that
it is no wonder the learned are not yet agreed on that ooint.

9 London inches are equal to 8,447 Paris inches.
-MATTHEW RAPER, in Philosoohical Transactions (1760)

Without the letter U,
units would be nits.

SESAME STREET (1970)

61

dimen
keyword;;
re;;er'<wl word;;
HAPEH
SESAJ'viE STHEET
Children';; 'I\;Je.,i;;ion \Vorbhop

page 02) I

Boxes

Chapter 11: BoJ:cs

TEX makes complicated pages by starting with simple individual characters and
putting them together in larger units, and putting these together in still larger
units, and so OIL Conceptually, it's a big paste-up job. The T&Xnical terms used
to describe such page construction arc boxes and glue.

Boxes in TEX arc two-dimensional things with a rectangular shape, hav-
ing three associated measurements called height, width, and depth. Here is a
picture of a t:n)ical box, showing its so-called reference point and baseline:

r
Reference poin1---+t--'-3 "~"'~·_li_n~e---l her'

dep1h

• <;------ \Vid1h -----1-

FrOIIl T&X's viewpoint, a single character from a font is a box: it's one of the
simplest kinds of boxes. The font designer has decided what the height, width,
and depth of the character arc, and what the symbol will look like when it is in
the box: T&X uses these dimensions to paste boxes together, and ultimately to
determine the locations of the reference points for all characters on a page. In
plain T&X's \rm font (cmr10), for example, the letter ·h' has a height of 6.9444
points, a width of 5.5555 points, and a depth of zero: the letter ·g' has a height
of 4.3055 points, a width of 5 points, and a depth of 1.9444 points. Only certain
special characters like parentheses have height plus depth actually equal to 10
points, although cmr10 is said to be a :'H)-point" font. You needn't bother to
learn these measurements yourself, but it's good to be aware of the fact that TEX
deals with such information: then you can better understand what the computer
docs to your manuscript.

The character shape need not fit inside the boundaries of its box. For
example, some characters that arc used to build up larger math s:ymbols like
matrix brackets intentionally protrude a little bit, so that they overlap properly
with the rest of the symbol. Slanted letters frequently extend a little to the right
of the box, as if the box were skewed right at the top and left at the bottom,
keeping its baseline fixed. For example, compare the letter ·g' in the cmr10 and
cmsl10 fonts (\rm and \sl):

(A figun; will r-,., ins€rt€d h€r€, too h"d F"' c"n't S€€ it now.
It shows two g's, "s d"im€d.)

In both cases TEX thinks that the box is 5 points wide, so both letters get exactly
the same treatment. TEX doesn't have any idea where the ink will go------only the
output device knows this. But the slanted letters will be spaced properly in spite
of T&X's lack of knowledge, because the baselines will match up.

63

boxe;;
glue
height
width
depth
reference point
ba,-;dine
cmrlO
cm;;IJO

64 Chapter 11: BoJ:cs

Actually the font designer also tells T&X one other thing, the so-called
it;-:dic correction: A number is specified for each character, telling roughly how
far that character CA-t ends to the right of its box boundary, plus a little to spare.
For example, the italic correction for ·g' in cmr10 is 0.1389pt, while in cmsl10
it is 0.8565 pt. Chapter 4 points out that this correction is added to the normal
width if you t:n)c ·\F just after the character. You should remember to usc \/
when shifting from a slanted font to an unslantcd one, especially in cases like

the so-called {\sl italic correction\/}:

since no space intervenes here to compensate for the loss of slant.
T&X also deals with another simple kind of box, which might be called

a :'black box," namely, a rectangle like ·1' that is to be entirely filled with ink
at printing time. You can specify any height, width, and depth you like for such
boxes------but they had better not have too much area, or the printer might get
upset. (Printers generally prefer white space to black space.)

l; sually these black boxes arc made very skinny, so that they appear as
horizontal lines or vertical lines. Printers traditionally call such lines :'horizontal
rules" and :•vertical rules," so the terms T&X uses to stand for black boxes arc
\hrule and \ vrule. Even when the box is square, as in · • ', you must call it
either an \hrule or a \ vrule. VVc shall discuss the usc of rule boxes in greater
detail later. (Sec Chapter 21.)

Everything on a page that has been t:n)csct by T&X is made up of simple
character boxes or rule boxes, pasted together in combination. T&X pastes boxes
together in two ways, either lwrizont<-:rll;y or vertic<-:rll;y. VVhcn T&X builds a
horizontal list of boxes, it lines them up so that their reference points appear
in the same horizontal row: therefore the baselines of adjacent characters will
match up as they should. Similarly, when T&X builds a vertical list of boxes, it
lines them up so that their reference points appear in the same vertical column.

Let's take a look at what T&X docs behind the scenes, by comparing
the computer's methods with what you would do if you were setting metal t:n)c
by hand. In the time-tested traditional method, you choose the letters that
you need out of a t:n)c case------the uppercase letters arc in the upper case------and
you put them into a :•composing stick." VVhcn a line is complete, you adjust
the spacing and transfer the result to the :'chase," where it joins the other rows
of type. Eventually you lock the type up tightly by adjusting CA--tcrnal wedges
called :•quoins." This isn't much different from what T&X docs, except that
different words arc used: when T&X locks up a line, it creates what is called an
:'hbox" (horizontal box), because the components of the line arc pieced together
horizontally. You can give an instruction like

\hbox{A line of type.}

m a T&X manuscript: this tells the computer to take boxes for the appropriate
letters in the current font and to lock them up in an hbox. As far as T&X is

italic correction
I
black box
horizontal rule;;
'<ertical rule;;
hrule
'<rule
rule boxe;;
horizontal li;;t
'<ertical li;;t
upper ca,-;e
compo;;ing ;;tick
hbox
horizontal box

Chapter 11: BoJ:cs 65

concerned, the letter ·A' is a box · D' and the letter ·p is a box · o
given instruction causes TEX to form the hbox

So the

p IIEii dl tti:Pd
representing ·A line of type.' The hboxcs for individual lines of type arc eventu-
ally joined together by putting them into a :'vbox" (vertical box). For example,
you can say

\vbox{\hbox{Two lines}\hbox{of type.}}

and T&X will convert this into

i.e., Two lines
of type.

The principal difference between TEX 's method and the old way is that metal
types arc generally cast so that each character has the same height and depth:
this makes it easy to line them up by hand. T&X's types have variable height
and depth, because the computer has no trouble lining characters up by their
baselines, and because the extra information about height and depth helps in
the positioning of accents and mathematical symbols.

Another important difference between T&X setting and hand setting is, of
course, that T&X will choose line divisions automatically: you don't have to insert
\hbox and \ vbox instructions unless you want to retain complete control over
where each letter goes. On the other hand, if you do usc \hbox and \ vbox, you
can make T&X do almost everything that Ben Franklin could do in his printer's
shop. You're only giving up the ability to make the letters come out charmingly
crooked or badly inked: for such effects you need to make a new font. (And
of course you lose the tactile and olfactory sensations, and the thrill of doing
everything by yourself. T&X will never completely replace the good old ways.)

A page of text like the one you're reading is itself a box, in T&X's view:
It is a largish box made from a vertical list of smaller boxes representing the lines
of text. Each line of teA-t, in turn, is a box made from a horizontal list of boxes
representing the individual characters. In more complicated situations, involving
mathematical formulas and/or complex tables, you can have boxes within boxes
within boxes ... to any level. But even these complicated situations arise from
horizontal or vertical lists of boxes pasted together in a simple way: all that you
and T&X have to worry about is one list of boxes at a time. In fact, when you're
typing straight text, you don't have to think about boxes at all, since T&X will
automatically take responsibility for assembling the character boxes into words
and the words into lines and the lines into pages. You need to be aware of the
box concept only when you want to do something out of the ordinary, e.g., when
you want to center a heading.

boxes.

From the standpoint of TE-X)s digestive processes) a manuscript comes in as a
sequence of tokens) and the tokens are to be transformed into a sequence of

Each token of input is essentially an instruction or a piece of an instruction; for

'<box
'<Crt ical box
hbox
'<box
Franklin

66 Chapter 11: BoJ:cs

example1 the token :A1 1) normally meailS1 :'put a character box fOr the letter A at the
end of the current hbox 1 using the current fonf'; the token : lvskip I) normally meailS 1

:'skip vertically in the current vbox by the {dimen} specified in the fOllmving tokens.l'

The height 1 \Vidth 1 or depth of a box might be negative1 in which case it is a
:'shadow boxl' that is somewhat hard to draw. T£X doesn)t balk at negative

dimensions; it just does arithmetic as usuaL For example1 the combined \Vidth of two
adjacent boxes is the sum of their \Vidths 1 whether or not the widths are positive. A
font desibfilCr can declare a character)s \Vidth to be negative1 in which case the character
acts like a backspace. (Lailbtuages that read from right to left could be handled in this
way1 but only to a limited extent 1 since T£X)s line~ breaking algorithm is based on the
assumption that words don)t have negative widths.)

T£X can raise or lower the individual boxes in a horit~ontal list; such adjust~
ments take care of mathematical subscripts and superscripts1 as well as the

heights of accents and a few other things. For example1 here is a way to make a box
that contains the T£X logo1 putting it into T£X)s internal rebrister \boxO:

\setbox0=\hbox{T\kern-.1667em\lower.Sex\hbox{E}\kern-.12Sem X}

Here :\kern-.1667em) means to insert blank space of -.1667 ems in the current f0nt 1

i.e. 1 to back up a bit; and :\lower. Sex) means that the box \hbox{E} is to be lowered
by half of the current x~height 1 thus offsetting that box \Vith respect to the others.
Instead of :\lower. Sex) one could also say :\raise-. Sex). Chapters 12 and 21 discuss
the details of how to construct boxes fOr special effects; our goal in the present chapter
is merely to get a taste of the possibilities.

TE-X will exhibit the contents of any box register 1 if you ask it to. For example1

if you type :\showboxO) after setting \boxO to the T£X logo as above 1 your log
file \Viii contain the follmving mumbo jumbo:

\hbox(6.83331+2.15277)x18.6108
.\tenrm T
. \kern -1.66702
.\hbox(6.83331+0.0)x6.80557, shifted 2.15277
.. \tenrm E
. \kern -1. 2S
.\tenrm X

The first line means that \boxO is an hbox whose height 1 depth 1 and \Vidth are re--
spectively 6.83331 pt 1 2.15277 pt 1 and 18.6108 pt. Subsequent lines beginning \Vith :.)
indicate that they are inside of a box. The first thing in this particular box is the
letter T in fOnt \tenrm; then comes a kern. The next item is an hbox that contains
only the letter E; this box has the height 1 depth 1 and \Vidth of an E1 and it has been
shifted dmv11ward by 2.15277 pt (thereby accounting for the depth of the larger box).

• EXERCISE 11.1
\Vhy are there two dots in the : .. \tenrm E) line here?

Such display-s of box contents \Viii be discussed further in Chapters 12 and 17.
They are used primarily for diagnostic purposes1 when you are trying to figure

out exactly what T£X thinks it)s doing. The main reason for bringing them up in the

;;hadow box
negati'<e dimen;;ion;;
back;; pace
Hebrew
Arabic
;;etbox
kern
lower
rai;;e
box regi;;t er
;;how box
log lik
'1\:X logo
diagno;;tk format
intemal box-and-glue repre;;entat
box di;;play;;

Chapter 11: BoJ:cs

present chapter is simply to provide a glimpse of how TE-X represents boxes in its
guts. A computer program doesn)t really move boxes around; it fiddles \Vith lists of
representations of boxes.

acters:

• EXERCISE 11.2
By running TE-X 1 fibrure out how it actually handles italic corrections to char~

How are the corrections represented inside a box?

• EXERCISE 11.3
The :'oppositd' of TE-X)s logo-namely1 TEX-is produced by

\setbox1=\hbox{T\kern+.1667em\raise.5ex\hbox{E}\kern+.125em X}

\Vhat would \showbox1 show now? (Try to guess 1 without running the machine.)

• EXERCISE 11.4
\Vhy do you think the author of TE-X didn)t make boxes more s:yunnetrical

between horimntal and vertical 1 by allmving refCrence points to be inside the boundary
instead of insisting that the reference point must appear at the left edge of each box?

6<,~• EXERCISE 11.5
Y Y Construct a \demo box macro fOr use in writing manuals like this 1 so that an
author can \Vrite :\demobox{Tough exercise.}) in order to typeset :1 LJ E')·

6<,~• EXERCISE 11.6
YY Construct a \frac macro such that :\fraci/2) :yields :Jfz).

I have several boxes in my memory
in which I will keeo them all very safe,
there shall not a one of them be lost.

IZAAK WALTON, The Compleat Angler (1653)

How very little does the amateur, dwelling at home at ease,
comorehend the labours and oerils of the author.

- R. L. STEVENSON and L. OSBOURNE, The Wrong Box (1889)

67

\VALTO!\:
STEVE!\:SO!\:
OSBOCH!\:E

page 08) I

Glue

Chapter 12: Gl'uc

But there's more to the story than just boxes: There's also some magic mortar
called glue that TEX uses to paste boxes together. For example, there is a little
space between the lines of text in this manual: it has been calculated so that
the baselines of consecutive lines within a paragraph arc exactly 12 points apart.
And there is space between words too: such space is not an :•empty" box, it
is part of the glue between boxes. This glue can stretch or shrink so that the
right-hand margin of each page comes out looking straight.

VVhcn T&X makes a large box from a horizontal or vertical list of smaller
boxes, there often is glue between the smaller boxes. Glue has three attributes,
namely its natural sp<-:rce, its ability to stretch, and its ability to shrink.

In order to understand how this works, consider the following example
of four boxes in a horizontal list separated by three globs of glue:

\Vid1h 5 \Vid1h :J

B g Q
::>pa<:e 9 ::>pa<:e 9

::>1re1ch :J ::>1re1ch G
::>hri nk l ::>hri nk 2

\Vid1h 52

\Vid1h 8

apace 12'"0
::>1re1ch 0
::>hrink 0

The first glue dement has 9 units of space, 3 of stretch, and 1 of shrink: the next
one also has 9 units of space, but 6 units of stretch and 2 of shrink: the last one
has 12 units of space, but it is unable to stretch or to shrink, so it will remain
12 units of space no matter what.

The total width of boxes and glue in this example, considering only the
space components of the glue, is 5 + 9 + 6 + 9 + 3 + 12 + 8 = 52 units. This
is called the n;-:rtund width of the horizontal list: it's the preferred way to paste
the boxes together. Suppose, however, that T&X is told to make the horizontal
list into a box that is 58 units wide: then the glue has to stretch by 6 units.
Well, there arc 3 + 6 + 0 = 9 units of stretchability present, so TE;.X multiplies
each unit of stretchability by 6/9 in order to obtain the CA-tra 6 units needed.
The first glob of glue becomes 9 + (6/9) x 3 = 11 units wide, the next becomes
9 + (6/9) x 6 = 13 units wide, the last remains 12 units wide, and we obtain the
desired box looking like this:

12+0""0
\Vid1h 58

On the other hand, if T&X is supposed to make a box 51 units wide from
the given list, it is necessary for the glue to shrink by a total of one unit. There
arc three units of shrinkttbility present, so the first glob of glue would shrink by
1/3 and the second by 2/3,

69

glue
leading, ;;ee ba,-;dine;;kip
;;kipping ;;pace, ;;ee glue
;;tretch
;;hrink
nat ural width

70 Chapter 12: Gl'uc

The process of determining glue thickness when a box is being made
from a horizontal or vertical list is called setting the glue. Once glue has been
set, it becomes rigid: it won't stretch or shrink any more, and the resulting box
is essentially indecomposable.

Glue will never shrink more than its stated shrinkttbility. For example,
the first glob of glue in our illustration will never be allowed to become narrower
than 8 units wide, and TEX will never shrink the given horizontal list to make
its total width less than 49 units. But glue is allowed to stretch arbitrarily far,
whenever it has a positive stretch component.

• EXERCISE 12.1
How wide would the glue globs be if the horizontal list in the illustration were
to be made 100 units wide?

Once you understand TEX 's concept of glue, you may well decide that
it was misnamed: real glue doesn't stretch or shrink in such ways, nor docs it
contribute much space between boxes that it welds together. Another word like
:•spring" would be much closer to the essential idea, since springs have a nat-
ural width, and since different springs compress and CAlnmd at different rates
under tension. But whenever the author has suggested changing TEX's termi-
nology, numerous people have said that they like the word :'glue" in spite of its
inappropriateness: so the original name has stuck.

T£X is somewhat reluctant to stretch glue more than the stated stretchability;
therefore you can decide how big to make each aspect of the glue by using the

follmving rules: (a) The natural glue space should be the amount of space that look-s
best. (b) The glue stretch should be the maximum amount of space that can be
added to the natural spacing befOre the layout begins to look bad. (c) The glue shrink
should be the maximum amount of space that can be subtracted from the natural
spacing befOre the layout begins to look bad.

In most cases the designer of a book layout will have specified all the
kinds of glue that arc to be used, so a typist will not need to decide how big
any glue attributes should be. For example, users of the plain TEX format of
Appendix B can type ·\smallskip' when they want a little CA--tra space between
paragraphs: a \small skip turns out to be 3 pt worth of vertical glue that can
stretch or shrink by an additional 1 pt. Here is a \small skip:

Instead of sprinkling various amounts of glue throughout a manuscript, CAl)rcss-
ing each of them explicitly in terms of points, you will find it much better
to explain your intentions more clearly by t:n)ing something like ·\smallskip'
when you want abnormal spacing. The definition of \smallskip can readily
be changed later, in case you want such spaces to be smaller or larger. Plain
TEX also provides you with ·\medskip', which is worth two smallskips, and
·\bigskip', which is worth two mcdskips.

A plain TE-X \medskip appears before and after each :'dangerous bemr' section
of this manual 1 so you have already seen numerous examples of such spacing

;;etting the glue
;;pring;;
;;pace between paragraph;;
;;malbkip
mwl;;kip
big;;kip
dangerou;; bend

Chapter 12: Gl'uc

befOre you knew what it was called. Vertical glue is created by \Vriting :\vskip(glue}) 1

where (glue} is any glue specification. The usual way to specify (glue} to TE-X is

{dimen} plus{dimen} minus{dimen}

where the :plus{dimen}) and :minus{dimen}) are optional and assumed to be 11ero if not
present; :plus) introduces the amount of stretchability1 :minus) introduces the amount
of shrinkability. For example1 Appendix B defines \medskip to be an abbreviation for
:\vskip6pt plus2pt minus2pt). The normal~space component of glue must always be
given as an explicit {dimen}1 even when it is 11ero.

Horimntal glue is created in the same way1 but \Vith \hskip instead of \vskip.
For example 1 plain TE-X defines \enskip as an abbreviation fOr the command

:\hskip.5em\relax); this skips horimntally by one :'en/' i.e. 1 by exactly half of an em
in the current font. There is no stretching or shrinking in an \enskip. The control
sequence \relax after :. 5em) prevents TE-X from thinking that a keyword is present 1 in
case the text following \enskip just happens to begin \Vith :plus) or :minus).

One of the interesting things that happens when glue stretches and
shrinks at different rates is that there might be glue with infinite stretchabil-
ity. For example, consider again the four boxes we had at the beginning of this
chapter, with the same glue as before except that the glue in the middle can
stretch infinitely far. l\ow the total stretchability is infinite: and when the line
has to grow, all of the additional space is put into the middle glue. If, for ex-
ample, a box of width 58 is desired, the middle glue expands from 9 to 15 units,
and the other spacing remains unchanged.

If such infinitely stretchable glue is placed at the left of a row of boxes,
the effect is to place them :•flush right/' i.e., to move them over to the rightmost
boundary of the constructed box. And if you take two globs of infinitely stretch-
able glue, putting one at the left and one at the right, the effect is to center the
list of boxes within a larger box. This in fact is how the \centerline instruction
works in plain TEX: It places infinite glue at both ends, then makes a box whose
width is the current value of \hsize.

The short story example of Chapter 6 used infinite glue not only for
centering, but also in the \vfill instruction at the end: ·\vfill' essentially
means :'skip vertically by zero, but with infinite stretchability." In other words,
\ vfill fills up the rest of the current page with blank space.

T£X actually recogni11es several kinds of infinity1 some of which are :'more
infinitd' than others. You can say both \vfil and \vfill; the second is

stronger than the first. In other words 1 if no other infinite stretchability is present 1

\vfil \Viii expand to fill the remaining space; but if both \vfil and \vfill are present
simultaneously) the \vfill effectively prevents \vfil from stretching. You can think
of it as if \vfil has one mile of stretchability) while \vfill has a trillion miles.

Besides \vfil and \vfill 1 TE-X has \hfil and \hfill 1 fOr stretching indefi-
nitely in the horimntal direction. You can also say \hss or \vss 1 in order to

get glue that is infinitely shrinkable as well as infinitely stretchable. (The name :\hss)
stands for :'horimntal stretch or shrinkl'; :\vss) is its vertical counterpart.) Finally1 the

71

glue
dimen
plu;;
minu;;
h;;kip
\-;;kip
en;; kip
en
relax
keyword
inlinite
right ju;;tilication
centering
llu;;h right
centerline
dill
dil
hlil
hlill
h;;;;
\-;;;;

72 Chapter 12: Gl'uc

primitives \hfilneg and \vfilneg will cancel the stretchability of \hfil and \vfil;
we shall discuss applications of these curious glues later.

Here are some examples of \hfil 1 using the \line macro of plain TE-X 1 which
creates an hbox whose \Vidth is the current \hsize:

\line{This text will be flush left.\hfil}
\line{\hfil This text will be flush right.}
\line{\hfil This text will be centered.\hfil}
\line{Some text flush left\hfil and some flush right.}
\line{Alpha\hfil centered between Alpha and Omega\hfil Omega}
\line{Five\hfil words\hfil equally\hfil spaced\hfil out.}

• EXERCISE 12.2
Describe the result of
\line{\hfil\hfil What happens now?\hfil}
\line{\hfill\hfil and now?\hfil}

6<,~• EXERCISE 12.3
Y Y How do the following three macros behave differently?

\def\centerlinea#1{\line{\hfil#1\hfil}}
\def\center1ineb#1{\1ine{\hfi11#1\hfi11}}
\def\centerlinec#1{\line{\hss#1\hss}}

In order to specify such infinities 1 you are allowed to use the special units :fil) 1

:fill) 1 and :filll) in the {dimen} parts of a stretchability or shrinkability
component. For example 1 \vfil 1 \vfill 1 \vss 1 and \vfilneg are essentially equivalent
to the glue specifications

\vskip Opt plus 1fil
\vskip Opt plus 1fill
\vskip Opt plus 1fil minus 1fil
\vskip Opt plus -1fil

respectively. It)s usually best to stick to the first order infinity (fil) as much as you can 1

resorting to second order (fill) only when you really need something extremely infinite.
Then the ultimate order (filii) is always available as a last resort in emergencies. (TE-X
does not provide a :\vfilll) primitive1 since the use of this highest infinity is not
encouraged.) You can use fractional multiples of infinity like :3.25fil) 1 as long as
you stick to fCwer than 16384 fil units. T£X actually does its calculations with integer
multiples of 2~ 1

ti fil (or fill or filii); so 0. 000007filll turns out to be indistinbruishable
from Opt 1 but 0.00001filll is infinitely greater than 16383.99999fill.

I\ ow here's something important for all T&Xnical typists to know: Plain
T&X puts e>.i:ra space at the end of a sentence: furthermore, it automatically
increases the stretchability (and decreases the shrinkttbility) after punctuation
marks. The reason is that it's usually better to put more space after punctua-
tion than between two ordinary words, when spreading a line out to reach the
desired margins. Consider, for example, the following sentences from a classic
kindergarten pre-primer:

((Oh, oh!'' cried Baby Sally. Dick and Jane laughed.

hlilneg
dilneg
line
ll u;;h left
Iii
/ill
Iiiii
'<Iiiii

punct oat ion
Dick and Jane

Chapter 12: Gl'uc

If T&X sets this at its natural width, all the spaces will be the sam(\ except after
the quote and after ·Baby Sally.':

:'Oh, oh!" cried Baby Sally. Dick and Jane laughed.

But if the line needs to be expanded by 5 points, 10 points, 15 points, or more,
T&X will set it as

:'Oh, oh!" cried Baby Sally. Dick and Jane laughed.
:'Oh, oh!" cried Baby Sally. Dick and Jane laughed.
:'Oh, oh!" cried Baby Sally. Dick and Jane laughed.
:'Oh, oh!" cried Baby Sally. Dick and Jane laughed.

The glue after the comma stretches at 1.25 times the rate of the glue between
adjacent words: the glue after the period and after the ! ' ' stretches at 3 times
the rate. There is no glue between adjacent letters, so individual words will
always look the same. If TEX had to shrink this line to its minimum width, the
result would be

:'Oh, oh!" cried Baby Sally. Dick and Jane laughed.

The glue after a comma shrinks only 80 percent as much as ordinary inter-word
glue, and after a period or exclamation point or question mark it shrinks by only
one third as much.

This all makes for nice-looking output, but it unfortunately adds a bit
of a burden to your job as a typist, because T&X's rule for determining the end of
a sentence doesn-'t <-:dw<-:r;ys work. The problem is that a period sometimes comes
in the middle of a sentence ... like when it is used (as here) to make an :'ellipsis"
of three dots,

:0.-'Iorcovcr, if you try to specify · ... ' by t:n)ing three periods in a row,
you get · .. -----the dots arc too close together. One way to handle this is to go
into m<-:rtlwrw:r-tics mode, using the \ldots control sequence defined in plain T&X
format. For example, if you type

Hmmm \ldots I wonder why?

the result is ·Hmmm . I wonder why?'. This works because math formulas arc
exempt from the normal teA-t spacing rules. Chapter 18 has more to say about
\ldots and related topics.

Abbreviations present problems too. For example, the short story in
Chapter 6 referred to ·:Vh. Drofnats': T&X rnust be told somehow that the period
after · :0.-h.' or · :0.-'Irs.' or · :0.-'Is.' or ·Prof.' or ·Dr.' or · Rt. Hon. ', etc., docsn 't count
as a sentence-ending full stop.

VVc avoided that embarrassment in Chapter 6 by t:n)ing ·Mr. ~Drofnats':
the :'tic" mark ~ tells plain T&X to insert a normal space, and to refrain from
breaking between lines at that space. Another way to get T&X to put out a
normal space is to type ·\u' (control space): e.g., ·Mr.\ Drofnats' would be
almost the same as ·Mr. ~Drofnats', except that a line might end after the ·:Vh.'.

73

comma
period
exdamat ion point
que;;tion mark
dlip;;i;;
three doh, ;;ee dlip;;i;;
dot dot dot, ;;ee dlip;;i;;
!dot;;
Abbre.,-iation;;
l)rofnat;;
full ;;top
tie
tilde
control ;;pace

7 4 Chapter 12: Gl'uc

The tic mark is best for abbreviations within a name, and after several
other common abbreviations like ·Fig.' and ·cf.' and ·vs.' and ·rcsp. ': you will
find that it's easy to train yourself to type ·cf. ~Fig. ~5'. In fact, it's usually
wise to type ~ (instead of a space) just after a common abbreviation that occurs
in the middle of a sentence. :0.-'Ianuals of style will tell you that the abbreviations
·e.g.' and ·i.e.' should always be followed by commas, never by spaces, so those
particular cases shouldn't need any special treatment.

The only remaining abbreviations that arise with significant frequency
occur in bibliographic references: control spaces arc appropriate here. If, for
example, you arc t:n)ing a manuscript that refers to ·Proc. Amcr. :0.-'Iath. Soc.',
you should say

Proc.\ Amer.\ Math.\ Soc.

Granted that this input looks a bit ugly, it makes the output look right. It's one
of the things we occasionally Inust do when dealing with a computer that tries
to be smart.

• EXERCISE 12.4
Explain how to type the following sentence: :':0.-'Ir. & :0.-'Irs. l;scr were married by
Rev. Drofnats, who preached on :0.-'Iatt. 19: 3---9."

• EXERCISE 12.5
Put the following bibliographic reference into plain T&X language: Donald E.
Knuth, "Mathematical typography," Bull. Amer. Mclth. Soc. 1 (1979), 337 372,

On the other hand, if you don't care about such refinements of spacing
you can tell plain T&X to make all spaces the same, regardless of punctuation
marks, by simply t:n)ing · \frenchspacing' at the beginning of your manuscript.
French spacing looks like this:

:'Oh, oh!" cried Baby Sally. Dick and Jane laughed.

You can also shift back and forth between the two styles, either by saying
· \nonfrenchspacing' to establish sophisticated spacing, or by making your usc
of \frenchspacing local to some group. For example, you might want to usc
French spacing only when typing the bibliography of some document.

TE-X doesn)t consider a period or question mark or exclamation point to be
the end of a sentence if the preceding character is an uppercase letter) since

TE-X assumes that such uppercase letters are most likely somebody)s initials. Thus) for
example) the :v is unnecessary after the :I.) in :Dr. -Livingstone-!.\ Presume); that
particular period is not assumed to be a full stop.

• EXERCISE 12.6
\Vhat can you do to make TE-X reCObfilit~e the ends of sentences that do end \Vith

uppercase letters (e.g. 1 : ••• launched by NASA.) or :Did IT or: ... see Appendix A.))?

control ;;jHtce;;
interword ;;pacing
C;;er
l)rofnat;;
Knuth
french;;pacing
nonfrench;;pacing
;;ophi;;tkatwl ;;pacing
I)re;;ume

Chapter 12: Gl·uc

You can see the glue that TE-X puts between words by looking at the contents
of hboxes in the internal diagnostic fOrmat that we discussed briefly in Chap~

ter 11. For example1 Baby Sally)s exclamation begins as follo\\'8 1 after TE-X has digested
it and put it into a box 1 assuming \nonfrenchspacing:

.\tenrm \ (ligature '')

.\tenrm 0

.\tenrm h

.\tenrm

.\glue 3.33333 plus 2.08331 minus 0.88889

.\tenrm o

.\tenrm h

.\tenrm

. \tenrm 11 (ligature '')

.\glue 4.44444 plus 4.99997 minus 0.37036

.\tenrm c

.\tenrm r

.\tenrm i

.\tenrm e

.\tenrm d

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm B

. \tenrm a

.\tenrm b

.\kern-0.27779

.\tenrm y

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm S

. \tenrm a

.\tenrm 1

.\tenrm 1

.\tenrm y

.\kern-0.83334

.\tenrm .

. \glue 4.44444 plus 4.99997 minus 0.37036

The normal interword glue in font \tenrm is 3.33333 pt 1 plus 1.66666 pt of stretchability1

minus 1.11111 pt ofshrinkability. Notice that the interword \glue in this list stretches
more1 and shrink-s less 1 after the punctuation marks; and the natural space is in fact
larger at the end of each sentence. This example also shows several other things that
TE-X does while it processes the sample line of text: It converts '' and '' into single
characters1 i.e. 1 ligatures; and it inserts small kerns in two places to improve the spacing.
A \kern is similar to glue1 but it is not the same1 because kerns cannot stretch or shrink;
furthermore 1 TE-X will never break a line at a kern 1 unless that kern is immediately
followed by glue.

~~ You may be wonderi:1g what TE-X)s rules for i1.1terw?rd glue~real:y are1 exac~ly.
Y Y For example1 how dul TE-X remember the effect of Baby Sally·s exclamation
point 1 when quotation mark-s intervened before the next space? The details are slightly

75

diagno;;tic format
internal box-and-glue repre;;entat
interword glue
ligature;;
kern;;
kern

76 Chapter 12: Gl'uc

tricky1 but not incomprehensible. \Vhen TE-X is processing a horimntal list of boxes
and glue1 it keeps track of a positive integer called the current :'space factor.l' The
space factor is normally 10001 which means that the interword glue should not be
modified. If the space factor f is different from 10001 the interword glue is computed
as follows: Take the normal space glue for the current f0nt 1 and add the extra space
if f 2: 2000. (Each font specifies a normal space 1 normal stretch1 normal shrink 1

and extra space; for example1 these quantities are 3.33333pt1 L66666pt 1 Llllllpt1

and 1.11111 pt 1 respectively1 in cmr10. \Ve)ll discuss such font parameters in greater
detail later.) Then the stretch component is multiplied by f /1000 1 while the shrink
component is multiplied by 1000/f.

~~ However 1 TE-X has two parameters \spaceskip and \xspaceskip that allow
Y Y you to override the normal spacing of the current font. If f 2: 2000 and if
\xspaceskip is non11ero 1 the \xspaceskip glue is used for an interword space. Other~
wise if \spaceskip is non11ero 1 the \spaceskip glue is used 1 with stretch and shrink
components multiplied by f/1000 and 1000/f. For example1 the \raggedright macro
of plain T£X uses \spaceskip and \xspaceskip to suppress all stretching and shrinking
of interword spaces.

~~ The s~ace f:ctor f is 1000 at the beginning of a. horimntal list 1 and it is set to
Y Y 1000 JUSt after a non~character box or a math formula has been put onto the
current horimntal list. You can say :\spacefactor=(number}) to assibfil any particular
value to the space factor; but ordinarily1 f gets set to a number other than 1000 only
when a simple character box goes on the list. Each character has a space factor code1

and when a character whose space factor code is y enters the current list the normal
procedure is simply to assibfil y as the new space factor. However 1 if y is 11ero1 f is not
changed; and if f < 1000 < y 1 the space factor is set to 1000. (In other words 1 f
doesn)tjump from a value less than 1000 to a value greater than 1000 in a single step.)
The maximum space factor is 32767 (which is much higher than anybody would ever
want to use).

~~ \~-hen INITEX creates a brand new TE-X 1 al.l ~haracters. h~ve a space factor coc~e
Y Y of 10001 except that the uppercase letters ·k through ·z· have code 999. (Tins
slight difference is what makes punctuation act differently after an uppercase letter; do
you see why?) Plain T£X redefines a few of these codes using the \sf code primitive1

which is similar to \cat code (see Appendix B); for example 1 the instructions

\sfcode')=O \sfcode' .=3000

make right parentheses :'transparenf' to the space factor 1 while tripling the stretcha~
bility after periods. The \frenchspacing operation resets \sf code'. to 1000.

~~ \Vhen ligatures are formed 1 or when a special character is specified via \char 1

Y Y the space factor code is computed from the individual characters that gener~
ated the ligature. For example1 plain TE-X sets the space factor code for single--right~
quote to 11ero1 so that the effects of punctuation will be propagated. Two adjacent
characters '' combine to form a ligature that is in character position '042; but the
space factor code of this double~right~quote ligature is never examined by T£X 1 so plain
TE-X does not assign any value to \sfcode'042.

6<,~• EXERCISE 12.7
Y Y \Vhat are the space factors after each token of the Dick~and~.Tane example?

;;pace factor
cmrlO
fontdimen
;;pace;; kip
x;;pace;;kip
interword ;;pace
ragged right
;;pacefactor
;;pace factor code
I!\:ITEX
;;fcode
char

Chapter 12: Gl'uc

Here)s the way TE-X goes about setting the glue when an hbox is being \Vrapped
up: The natural \Vidth 1 X 1 of the box contents is determined by adding up the

widths of the boxes and kerns inside 1 together \Vith the natural \Vidths of all the glue
inside. Furthermore the total amount of glue stretchability and shrinkability in the
box is computed; let)s say that there)s a total of JJo + 11 1 fil + 112 fill+ JJa filii available
for stretching and z0 + z1 fil + z2 fill+ za filii available fOr shrinking. Now the natural
width xis compared to the desired width tv. If x = tt: 1 all glue gets its natural \Vidth.
Othenvise the glue \Viii be modified1 by computing a :'glue set ratid' r and a :'glue set
orderl' i in the fOllmving way: (a) If x < tt: 1 T£X attempts to stretch the contents of
the box; the glue order is the highest subscript i such that JJi is nont~ero1 and the glue
ratio is r =(tv- x)/JJ;. (If JJo = 11 1 = 112 = JJa = 01 there)s no stretchability; both i
and r are set to 11ero.) (b) If x > tv 1 T£X attempts to shrink the contents of the box
in a similar way; the glue order is the highest subscript i such that z; 1:- 01 and the
glue ratio is normally r = (x -11.:)jz;. However 1 r is set to 1.0 in the case i = 0 and
x - 1L' > zo 1 because the maximum shrinkability must not be exceeded. (c) Finally1

every glob of glue in the horimntal list being boxed is modified. Suppose the glue has
natural \Vidth n 1 stretchability JJ 1 and shrinkability Z 1 where 11 is a jth order infinity
and z is a kth order infinity. Then if x < 1L' (stretching) 1 this glue takes the new \Vidth
n + TJJ if j = i; it keeps its natural \Vidth n if j 1:- i. If x > 1L' (shrinking) 1 this glue
takes the new "'ridth n- rz if k = i; it keeps its natural width n if k 1:- i. Notice that
stretching or shrinking occurs only when the glue has the highest order of infinity that
doesn)t cancel out.

T£X will construct an hbox that has a given \Vidth 1L' if you issue the command
:\hbox to {dimen}{(contents of box}}) 1 where 1L' is the value of the {dimen}.

For example1 the \line macro discussed earlier in this chapter is simply an abbreviation
for :\hbox to\hsize). TE-X also allo\\'S you to specify the exact amount of stretching
or shrinking; the command :\hbox spread{dimen}{(contents of box}}) creates a box
whose width 1L' is a given amount more than the natural width of the contents. For
example1 one of the boxes displayed earlier in this chapter was generated by

\hbox spread 5pt{''Oh. oh!'' ... laughed.}

In the simplest case1 when you just want a box to have its natural width 1 you don)t
have to write :\hbox spread Opt); you can simply say :\hbox{(contents of box}}).

The baseline of a constructed hbox is the common baseline of the boxes inside.
(More precisely1 it)s the common baseline that they would share if they weren)t

raised or lowered.) The height and depth of a constructed hbox are determined by the
maximum distances by which the interior boxes reach above and below the baseline1

respectively. The result of \hbox never has negative height or negative depth 1 but the
width can be negative.

• EXERCISE 12.8
Assume that \box1 is 1 pt high 1 1 pt deep 1 and 1 pt wide;

2 pt deep 1 and 2 pt wide. A third box is fOrmed by saying
\box2 is 2 pt high 1

\setbox3=\hbox to3pt{\hfil\lower3pt\box1\hskip-3pt plus3fil\box2}

\Vhat are the height 1 depth 1 and width of \box3? Describe the position of the reference
points of boxes 1 and 2 with respect to the reference point of box 3.

77

;;etting the glue
glue ;;et ratio
glue ;;et order
line

'" hbox
;;pread
ba,-;dine
;;etbox

78 Chapter 12: Gl'uc

The process of setting glue for vboxes is similar to that for hboxes; but befOre
we study the \vbox operation1 we need to discuss how TE-X stacks boxes up

vertically so that their baselines tend to be a fixed distance apart. The boxes in a
horit~ontallist often touch each other1 but it)s usually \Vrong to do this in a vertical list;
imabrine how ft\vful a page would look if its lines of type were brought closer together
whenever they didn)t contain tall letters 1 or whenever they didn)t contain any letters
that descended below the baseline.

TE-X)s solution to this problem involves three primitives called \baselineskip1

\lineskip1 and \lineskiplimit. A format desibfilCr chooses values of these
three quantities by \Vriting

\baselineskip=(glue}
\lineskip=(gluc)
\lineskiplimi t=(dimen}

and the interpretation is essentially this: \Vhenever a box is added to a verticallist 1 TE-X
inserts :'interline glud' intended to make the distance between the baseline of the new
box and the baseline of the previous box exactly equal to the value of \baselineskip.
But if the interline glue calculated by this rule would cause the top edge of the new
box to be closer than \lineskiplimit to the bottom edge of the previous box 1 then
\lineskip is used as the interline glue. In other words 1 the distance between adjacent
baselines will be the \baselineskip setting1 unless that would bring the boxes too
dose together; the \lineskip glue \Viii separate adjacent boxes in the latter case.

The rules for interline glue in the previous paragraph are carried out \Vithout
regard to other hinds of glue that might be present; all vertical spacing due

to explicit appearances of \vskip and \kern acts independently of the interline glue.
Thus 1 for example1 a \smallskip between two lines always makes their baselines further
apart than usual 1 by the amount of a \smallskip; it does not affect the decision about
whether \lineskip glue is used between those lines.

For example1 let)s suppose that \baselineskip=12pt plus 2pt 1 \lineskip=
3pt minus 1pt 1 and \lineskiplimit=2pt. (These values aren)t particularly

useful; they have simply been chosen to illustrate the rules.) Suppose further that a
box whose depth is 3 pt was most recently added to the current vertical list; we are
about to add a new box whose height is h. If h = 5 pt1 the interline glue \Viii be
4pt plus 2pt1 since this \Viii make the baselines 12pt plus 2pt apart when we add h
and the previous depth to the interline glue. But if h = 8 pt1 the interline glue \Viii
be 3 pt minus 1 pt1 since \lineskip will be chosen in order to keep from violating the
given \lineskiplimit when stretching and shrinking are ignored.

\Vhen you are t:yl)esetting a document that spans several pages 1 it)s generally
best to define the \baselineskip so that it cannot stretch or shrink1 because

this will brive more uniformity to the pages. A small variation in the distance between
baselines-say only half a point-can make a substantial difference in the appearance
of the type1 since it significantly affects the proportion of white to black. On the
other hand 1 if you are preparing a one--page document 1 you might want to give the
baselineskip some stretchability) so that TE-X will help you fit the copy on the page.

•EXERCISE 12.9
\Vhat settings of \baselineskip1 \lineskip1 and \lineskiplimit \Viii cause

ba,-;dine;;kip
line;;kip
line;;kiplimit
interline glue
;;malbkip

Chapter 12: Gl·uc

the interline glue to be a :'continuomt function of the next box height (i.e. 1 the interline
glue will never change a lot when the box height changes only a little)?

A study of T£X)s internal box~<md~glue representation should help to firm
up some of these ideas. Here is an excerpt from the vertical list that TE-X

constructed when it was typesetting this very paragraph:

\glue 6.0 plus 2.0 minus 2.0
\glue(\parskip) 0.0 plus 1.0
\glue(\baselineskip) 1.25
\hbox(7.5+1.93748)x312.0, glue set 0.80154, shifted 36.0 []
\penalty 10000
\glue(\baselineskip) 2.81252
\hbox(6.25+1.93748)x312.0, glue set 0.5816, shifted 36.0 []
\penalty 50
\glue(\baselineskip) 2.81252
\hbox(6.25+1.75)x348.0, glue set 116.70227fil []
\penalty 10000
\glue(\abovedisplayskip) 6.0 plus 3.0 minus 1.0
\glue(\lineskip) 1.0
\hbox(149.25+0.74998)x348.0 []

The first \glue in this example is the \medskip that precedes each dangerous~bend
paragraph. Then comes the \parskip glue 1 which is automatically supplied befOre
the first line of a new paragraph. Then comes some interline glue of 1.25 pt; it was
calculated to make a total of 11pt when the height of the next box (7.5pt) and the
depth of the previous box were added. (The previous box is not shmv11-it)s the
bottom line of exercise 12.9-but we can deduce that its depth was 2.25pt.) The
\hbox that fOllo\\'S is the first line of this paragraph; it has been shifted right 36 pt
because of hanging indentation. The glue set ratio fOr this hbox is 0.80154; i.e.) the
glue inside is stretched by 80.154% of its stretchability. (In the case of shrinking)
the ratio fOllowing :glue set) would have been preceded by :_); hence we know that
stretching is involved here.) TE-X has put:[]) at the end of each hbox line to indicate
that there)s something in the box that isn)t shown. (The box contents would have
been displayed completely1 if \showboxdepth had been set higher.) The \penalty
indications are used to discourage bad breaks between pages 1 as we will see later. The
third hbox has a glue ratio of 116.702271 which applies to first~order~infinite stretching
(i.e. 1 fil); this results from an \hfil that was implicitly inserted just before the displayed
material 1 to fill up the third line of the parabrraph. Finally the big hbox whose height
is 149.25 pt causes \lineskip to be the interline glue. This large box contains the
individual lines of typewriter type that are displayed; they have been packaged into a
single box so that they cannot be split between pages. Careful study of this example
will teach you a lot about T£X)s inner workings.

Exception: No interline glue is inserted before or after a rule box. You can
also inhibit interline glue by saying \nointerlineskip between boxes.

TE-X)s implementation of interline glue involves another primitive quantity
called \prevdepth1 which usually contains the depth of the most recent box

on the current vertical list. However 1 \prevdepth is set to the sentinel value -1000pt

79

internal box-and-glue repre;;entat
mwl;;kip
par;; kip
hanging indentation
glue ;;et
;;howboxdepth
penalty
nointerline;;kip
pre'<depth

80 Chapter 12: Gl'uc

at the bebrinning of a vertical list 1 or just after a rule box; this serves to suppress the
next interline glue. The user can change the value of \prevdepth at any time when
building a vertical list; thus 1 for example1 the \nointerlineskip macro of Appendix B
simply expands to :\prevdepth=-1000pt).

~~ Here are the exact rules by which ~E-X .calculates the interline g:ue between
Y Y boxes: Assume that a new box of hmght h (not a rule box) IS about to
be appended to the bottom of the current vertical list 1 and let \prevdepth = p 1

\lineskiplimit = [1 \baselineskip = (b plus 11 minus z). If p :::; -1000pt1 no in~
terline glue is added. Othenvise if b- p-h 2: [1 the interline glue :(b- p-h) plus 11
minus z) will be appended just above the new box. Otherwise the \lineskip glue \Viii
be appended. Finally1 \prevdepth is set to the depth of the new box.

6<,~• EXERCISE 12.10
Y Y Mr. B. L User had an application in which he wanted to put a number of
boxes together in a vertical list 1 \Vith no space between them. He didn)t want to say
\nointerlineskip after each box; so he decided to set \baselineskip1 \lineskip1 and
\lineskiplimit all equal to Opt. Did this work?

The vertical analog of \hbox is \vbox 1 and TE-X \Viii obey the commands :\vbox
to{dimen}) and :\vbox spread{dimen}) in about the way you would expect 1

by analogy with the horimntal case. However 1 there)s a slight complication because
boxes have both height and depth in the vertical direction 1 while they have only \Vidth
in the horimntal direction. The dimension in a \ vbox command refers to the final
height of the vbox 1 so that 1 fOr example1 :\vbox to 50pt{ ... }) produces a box that
is 50 pt high; this is appropriate because everything that can stretch or shrink inside a
vbox appears in the part that contributes to the height 1 while the depth is unaffected
by glue setting.

The depth of a constructed \vbox is best thought of as the depth of the bottom
box inside. Thus 1 a vbox is conceptually built by taking a bunch of boxes and

arranging them so that their reference points are lined up vertically; then the reference
point of the lowest box is taken as the refCrence point of the whole1 and the glue is set
so that the final height has some desired value.

However 1 this description of vboxes glosses over some technicalities that come
up when you consider unusual cases. For example1 TE-X allows you to shift

boxes in a vertical list to the right or to the left by saying :\moveright{dimen}(box})
or :\moveleft{dimen}(box}); this is like the ability to \raise or \lower boxes in a
horit~ontal list 1 and it implies that the reference points inside a vbox need not alway-s
lie in a vertical line. Furthermore1 it is necessary to btuard against boxes that have
too much depth 1 lest they extend too far into the bottom margin of a page; and later
chapters \Viii point out that vertical lists can contain other things like penalties and
marh-s 1 in addition to boxes and glue.

~~ There:·ore1 the actual rules f~~r the deptl.1 of ~ constru.cted .vbox are somewh~t
Y Y TE-XmcaL Here they are: (:dven a verbcal hst that IS bemg wrapped up v1a
\vbox 1 the problem is to determine its natural depth. (1) If the vertical list contains no
boxes 1 the depth is 11ero. (2) If there)s at least one box1 but if the final box is followed
by kerning or glue1 possibly \Vith intervening penalties or other things 1 the depth is 11ero.
(3) If there)s at least one box 1 and if the final box is not followed by kerning or glue1

C;;er
'<box
depth of box
height of box
mo'<eright
mo'<deft
rai;;e
lower

Chapter 12: Gl'uc

the depth is the depth of that box. (4) However 1 if the depth computed by rules (1) 1

(2) 1 or (3) exceeds \boxmaxdepth1 the depth \Viii be the current value of \boxmaxdepth.
(Plain TE-X sets \boxmaxdepth to the largest possible dimension; therefore rule (4)
won)t apply unless you specifY a smaller value. \Vhen rule (4) does decrease the depth 1

T£X adds the excess depth to the box)s natural height 1 essentially moving the reference
point dmv11 until the depth has been reduced to the stated maximum.)

The glue is set in a vbox just as in an hbox1 by determining a glue set ratio
and a glue set order 1 based on the difference between the natural height x and

the desired height 1L' 1 and based on the amounts of stretchability and shrinkability that
happen to be present.

account.

The width of a computed \vbox is the maximum distance by which an enclosed
box extends to the right of the refCrence point 1 taking possible shifting into
This width is always nonnegative.

• EXERCISE 12.11
Assume that \box1 is 1 pt high 1 1 pt deep 1 and 1 pt wide; \box2 is 2 pt high 1

2 pt deep 1 and 2 pt wide; the baselineskip1 lineship 1 and lineshiplimit are all 11ero; and
the \boxmaxdepth is very large. A third box is formed by saying

\setbox3=\vbox to3pt{\moveright3pt\box1\vskip-3pt plus3fil\box2}

\Vhat are the height 1 depth 1 and width of \box3? Describe the position of the reference
points of boxes 1 and 2 with respect to the reference point of box 3.

6<,~• EXERCISE 12.12
Y Y Under the assumptions of the previous exercise1 but \Vith \baselineskip=9pt
minus3fil 1 describe \box4 aller

\setbox4=\vbox to4pt{\vss\box1\moveleft4pt\box2\vss}

6<,~• EXERCISE 12.13
Y Y Solve the previous problem but with \boxmaxdepth=-4pt.

\Ve have observed that \vbox combines a bunch of boxes into a larger box that
has the same baseline as the bottom box inside. TE-X has another operation

called \vtop 1 which gives you a box like \vbox but \Vith the same baseline as the top
box inside. For example1

produces

\hbox{Here are \vtop{\hbox{two lines}\hbox{of text.}}}

Here are two lines
of text,

You can say :\vtop to{dimen}) and :\vtop spread{dimen}) just as with \vbox 1

but you should realit~e what such a construction means. TE-X implements \vtop
as follows: (1) First a vertical box is fOrmed as if \vtop had been \vbox 1 using all of
the rules for \vbox as given above. (2) The final height x is defined to be 11ero unless
the very first item inside the new vbox is a box; in the latter case1 x is the height of
that box, (3) Let h and d be the height and depth of the vbox in step (!), T&X
completes the \vtop by moving the reference point up or dmv11 1 if necessary1 so that
the box has height x and depth h + d- x.

81

boxmaxdepth
glue ;;et ratio
glue ;;et order
'<top

82 Chapter 12: Gl'uc

6<,~• EXERCISE 12.14
Y Y Describe the empty boxes that you get from :\vbox to{dimen}{}) and :\vtop
to{dimen}{}). \Vhat are their heights 1 depths 1 and \Vidths?

6<,~• EXERCISE 12.15
Y Y Define a macro \nullbox#1#2#3 that produces a box whose height 1 depth 1 and
width are briven by the three parameters. The box should contain nothing that \Viii
show up in print.

The \vbox operation tends to produce boxes \Vith large height and small depth 1

while \vtop tends to produce small height and large depth. If you)re trying
to make a vertical list out of big vboxes 1 however 1 you may not be satisfied \Vith either
\vbox or \vtop; you might well \Vish that a box had two reference points simultaneously1

one for the top and one for the bottom. If such a dual~reference~point scheme were in
use1 one could define interline glue based on the distance between the lower reference
point of one box and the upper refCrence point of its successor in a vertical list. But
alas 1 TE-X gives you only one reference point per box.

There)s a way out of this dilemma1 using an important idea called a :'strut.l'
Plain TE-X defines \strut to be an invisible box of \Vidth 11ero that extends

just enough above and below the baseline so that you would need no interline glue at
all if every line contained a strut. (Baselines are 12 pt apart in plain TE-X; it turns
out that \strut is a vertical rule1 8.5pt high and 3.5pt deep and Opt \Vide.) If you
contrive to put a strut on the top line and another on the bottom line1 inside your large
vboxes 1 then it)s possible to obtain the correct spacing in a larger assembly by simply
letting the boxes butt together. For example1 the \footnote macro in Appendix B
puts struts at the bebrinning and end of every f0otnote1 so that the spacing \Viii be right
when several footnotes occur together at the bottom of some page.

If you understand boxes and glue 1 you)re ready to learn the \rlap and \llap
macros of plain TE-X; these names are abbreviations for :'right overlapl' and

:'left overlap.l' Saying :\rlap{(something}}) is like t:yl)esetting (something} and then
backing up as if you hadn)t t:yl)eset anything. More precisely1 :\rlap{(something}})
creates a box of width 11ero1 with :(something}) appearing just at the right of that
box (but not taking up any space). The \llap macro is similar 1 but it does the
backspacing first; in other words 1 :\llap{(something}}) creates a box of width 11ero1

with :(something}) extending just to the left of that box. Using t:yl)C\vriter t:yl)C 1 for
example1 you can t:yl)eset :,p by saying either :\rlap/=) or :/\llap=). It)s possible to
put text into the left marbrin using \llap1 or into the right margin using \rlap1 because
TE-X does not insist that the contents of a box must be strictly confined \Vithin that
box)s boundaries.

The interesting thing about \rlap and \llap is that they can be done so
simply \Vith infinite glue. One way to define \rlap would be

\def\r1ap#1{{\setbox0=\hbox{#1}\copy0\kern-\Yd0}}

but there)s no need to do such a lengthy computation. The actual definition in Appen~
dix B is much more elegant 1 namely1

\def\r1ap#1{\hbox to Opt{#1\hss}}

;;trot
;;trot
footnote
litting boxe;; together
rlap
llap
o'<erlap
back;; pacing
marginal note;;

Chapter 12: Gl'uc

and it)s worth pondering why this works. Suppose1 for example1 that you)re doing
\rlap{g} where the letter :g' is 5pt \Vide. Since \rlap makes an hbox of \Vidth Opt1

the glue represented by \hss must shrink by 5 pt. \Vell 1 that glue has 0 pt as its natural
width 1 but it has infinite shrinkability1 so it can easily shrink to -5 pt; and :\hskip-5pt)
is exactly what \rlap wants in this case.

• EXERCISE 12.16
Guess the definition of \llap1 without peeking at Appendices A or B.

• EXERCISE 12.17
(This is a sequel to exercise 12.2 1 but it)s trickier.) Describe the result of

\line{\hfil A puzzle.\hfilneg}

There was things which he stretched,
but mainly he told the truth.

MARK TWAIN, Huckleberry Finn (1884)

Every shaoe exists only because of the soace around it.
Hence there is a 'right' oosition for every shaoe in every situation.

If we succeed in finding that oosition, we have done our job.
- JAN TSCHICHOLD, Typographische Gestaltung (1935)

83

h;;;;
T\VAI!\:
Clemen;;
'I'SCHICHOI,l)

page 84) I

Modes

Chapter 1,1: Modes

Just as people get into different moods, TEX gets into different :•modes." (Except
that TEX is more predictable than people.) There arc six modes:

• Vertical mode. [Building the main vertical list, from which the pages of
output arc derived.]

• Internal vertical mode. [Building a vertical list for a vbox.]
• Horizontal mode. [Building a horizontal list for a paragraph.]
• Restricted horizontal mode. [Building a horizontal list for an hbox.]
• :0.-'Iath mode. [Building a mathematical formula to be placed in a hori-

zontal list.]
• Display math mode. [Building a mathematical formula to be placed on

a line by itself, temporarily interrupting the current paragraph.]

In simple situations, you don't need to be aware of what mode TEXis in, because
the computer just docs the right thing. But when you get an error message
that says·! You can't do such-and-such in restricted horizontal mode',
a knowledge of modes helps to explain why TEX thinks you goofed.

Basically TEX is in one of the vertical modes when it is preparing a list
of boxes and glue that will be placed vertically above and below one another on
the page: it's in one of the horizontal modes when it is preparing a list of boxes
and glue that will be strung out horizontally next to each other with baselines
aligned: and it's in one of the math modes when it is reading a formula.

A play-by-play account of a typical TEX job should make the mode idea
clear: At the beginning, TEX is in vertical mode, ready to construct pages. If
you specify glue or a box when TEX is in vertical mode, the glue or the box
gets placed on the current page below what has already been specified. For
example, the \vskip instructions in the sample run we discussed in Chapter 6
contributed vertical glue to the page: and the \hrule instructions contributed
horizontal rules at the top and bottom of the story. The \centerline commands
also produced boxes that were included in the main vertical list: but those boxes
required a bit more work than the rule boxes: TEX was in vertical mode when
it encountered ·\centerline{\bf A SHORT STORYF, and it went temporarily
into restricted horizontal mode while processing the words ·A SHORT STORY':
then the digestive process returned to vertical mode, after setting the glue in
the \centerline box.

Continuing with the example of Chapter 6, TEX switched into horizontal
mode as soon as it read the ·Q' of ·once upon a time'. Horizontal mode is the
mode for making paragraphs. The entire paragraph (lines 7 to 11 of the story
file) was input in horizontal mode: then the text was divided into output lines of
the appropriate width, those lines were put in boxes and appended to the page
(with appropriate interline glue between them), and TEX was back in vertical
mode. The ·w on line 12 started up horizontal mode again.

VVhcn TEX is in vertical mode or internal vertical mode, the first token of
a new paragraph changes the mode to horizontal for the duration of a paragraph.

85

mode;;
Veri kal mode
Internal '<ertical mode
Horizontal mode
He;;trktwl horizontal mode
1\-iath mode
Di;;play math mode
\-;;kip
hrule
centerline
paragraph;;

86 Chapter 1,1: Modes

In other words, things that do not have a vertical orientation cause the mode to
switch automatically from vertical to horizontal. This occurs when you t:n)c any
character, or \char or \accent or \hskip or \u or \vrule or math shift ($):
TEX inserts the current paragraph indentation and rereads the horizontal token
as if it had occurred in horizontal mode.

You can also tell TE-X explicitly to go into horimntal mode1 instead of relying
on such implicit mode--s\vitching1 by saying :\indent) or :\noindent). For

example1 if line 7 of the story file in Chapter 6 had bebrun

\indent Once upon a time •...

the same output would have been obtained1 because :\indent) would have instructed
TE-X to begin the parabrraph. And if that line had begun \Vith

\noindent Once upon a time •...

the first paragraph of the story would not have been indented. The \no indent com~
mand simply tells TE-X to enter horimntal mode if the current mode is vertical or
internal vertical; \indent is similar 1 but it also creates an empty box whose \Vidth is
the current value of \parindent 1 and it puts this empty box into the current horimntal
list. Plain TE-X sets \parindent=20pt. If you say \indent\indent 1 you get double
indentation; if you say \noindent\noindent 1 the second \no indent does nothing.

• EXERCISE 13.1
If you say :\hbox{ ... }) in horimntal mode1 TE-X will construct the specified

box and it \Viii contribute the result to the current parabrraph. Similarly1 if you say
:\hbox{ ... }) in vertical mode1 TE-X \Viii construct a box and contribute it to the current
page. \Vhat can you do if you want to begin a parabrraph with an \hbox?

VVhcn handling simple manuscripts, T&X spends almost all of its time in
horizontal mode (making paragraphs), with brief excursions into vertical mode
(between paragraphs). A paragraph is completed when you t:n)c \par or when
your manuscript has a blank line, since a blank line is converted to \par by
the reading rules of Chapter 8. A paragraph also ends when you t:n)c certain
things that arc incompatible with horizontal mode. For example, the command
·\vskip 1in' on line 16 of Chapter 6's story file was enough to terminate the
paragraph about · ... beautiful documents.': no \par was necessary, since
\ vskip introduced vertical glue that couldn't belong to the paragraph.

If a begin-math token($) appears in horizontal mode, T&X plunges into
math mode and processes the formula up until the closing·$', then appends the
text of this formula to the current paragraph and returns to horizontal mode.
Thus, in the :•I wonder why?" example of Chapter 12, TEX went into math mode
temporarily while processing \ldots, treating the dots as a formula.

However, if two consecutive begin-math tokens appear in a paragraph
($$), T&X interrupts the paragraph where it is, contributes the paragraph-so-far
to the enclosing vertical list, then processes a math formula in display math
mode, then contributes this formula to the enclosing list, then returns to hori-
zontal mode for more of the paragraph. (The formula to be displayed should

char
accent
h;;kip
control ;;pace
'<rule
indentation
indent
noindent
par indent
hbox
par

Chapter 1,1: Modes

end with·$$'.) For example, suppose you type

the number $$\pi \approx 3.1415926536$$ is important.

TEX goes into display math mode between the $$'s, and the output you get
states that the number

1["'3.1415926536

is important.

T&X ignores blank spaces and blank lines (or \par commands) when it's
in vertical or internal vertical mode, so you need not worry that such things
might change the mode or affect a printed document. A control space (\u) will,
however, be regarded as the beginning of a paragraph: the paragraph will start
with a blank space after the indentation.

At the end of a TEX manuscript it's usually best to finish everything
off by typing ·\bye', which is plain T&X's abbreviation for ·\vfill\eject\end'.
The ·\vfill' gets TEX into vertical mode and inserts enough space to fill up the
last page: ·\eject' outputs that last page: and ·\end' sends the computer into
its endgame routine.

TE-X gets into internal vertical mode when you ask it to construct something
from a vertical list of boxes (using \vbox or \vtop or \vcenter or \valign

or \vadjust or \insert). It gets into restricted horit~ontal mode when you ask it to
construct something from a horimntal list of boxes (using \hbox or \halign). Box
construction is discussed in Chapters 12 and 21. \Ve will see later that there is very
little difference between internal vertical mode and ordinary vertical mode 1 and very
little difference between restricted horimntal mode and ordinary horit~ontal mode; but
they aren)t quite identical 1 because they have different goals.

\Vhenever TE-X look-s at a token of input to decide what should be done next 1

the current mode has a potential influence on what that token means. For
example1 \kern specifies vertical spacing in vertical mode 1 but it specifies horimntal
spacing in horimntal mode; a math shift character like :$; causes entry to math mode
from horimntal mode1 but it causes exit from math mode when it occurs in math mode;
two consecutive math shifts ($$)appearing in horimntal mode will initiate display math
mode1 but in restricted horit~ontal mode they simply denote an empty math formula.
T£X uses the fact that some operations are inappropriate in certain modes to help you
recover from errors that might have crept into your manuscript. Chapters 24 to 26
explain exactly what happens to every possible token in every possible mode.

TE-X often interrupts its work in one mode to do some task in another mode 1

after which the oribrinal mode is resumed again. For example1 you can say
:\hboxC in any mode; when TE-X digests this 1 it suspends whatever else it was doing
and enters restricted horimntal mode. The matching :}; \Viii eventually cause the hbox
to be completed1 whereupon the postponed task will be taken up anew. In this sense
TE-X can be in many modes simultaneously) but only the innermost mode influences the
calculations at any time; the other modes have been pushed out of T£X)s consciousness.

87

pi
par
control ;;pace
bye
endgame
kern

88 Chapter 1,1: Modes

One way to become familiar \Vith TE-X)s modes is to consider the follmving
curious test file called modes. tex 1 which exercises all the modes at once:

\tracingcommands=1
2 \hbox{
" $
4 \vbox{
5 \noindent$$
0 x\showlists
7 $$}$}\bye

The first line of modes. tex tells TE-X to log every command it receives; TE-X \Viii produce
diagnostic data whenever \tracingcommands is positive. Indeed1 if you run TE-X on
modes. tex you \Viii get a modes .log file that includes the following information:

{vertical mode: \hbox}
{restricted horizontal mode: blank space}
{math shift character $}
{math mode: blank space}
{\vbox}
{internal vertical mode: blank space}
{\no indent}
{horizontal mode: math shift character $}
{display math mode: blank space}
{the letter x}

The meaning is that TE-X first saw an \hbox token in vertical mode; this caused it to
go ahead and read the :c behind the scenes. Then T£X entered restricted horimntal
mode1 and saw the blank space token that resulted from the end of line 2 in the
file. Then it saw a math shift character token (still in restricted horit~ontal mode) 1

which caused a shift to math mode; another blank space came through. Then \vbox
inaubrurated internal vertical mode1 and \no indent instituted horimntal mode \Vithin
that; two subsequent $ signs led to display math mode. (Only the first $ was shmv11
by \tracingcommands 1 because that one caused TE-X to look alwad fOr another.)

The next thing in modes .log aller the output above is :{\showlists}). This
is another handy diagnostic command that you can use to find out things that

TE-X ordinarily keeps to itself; it causes TE-X to display the lists that are being worked
on 1 in the current mode and in all enclosing modes where the work has been suspended:

display math mode entered at line 5
\mathord
. \fam1 x
internal vertical mode entered at line 4
prevdepth ignored
math mode entered at line 3
restricted horizontal mode entered at line 2
\glue 3.33333 plus 1.66666 minus 1.11111
spacefactor 1000
vertical mode entered at line 0
prevdepth ignored

tradngcommamb
mode;;.tex
;;howli;;t;;

Chapter 1,1: Modes

In this case the lists represent five levels of activity1 all present at the end of line 6 of
modes. tex. The current mode is shmv11 first 1 namely1 display math mode 1 which began
on line 5. The current math list contains one :'mathonr' object 1 consisting of the
letter x in family 1. (Have patience and you \Viii understand what that me<UlS 1 when
you learn about T£X)s math formulas.) Outside of display math mode comes internal
vertical mode1 to which TE-X \Viii return when the paragraph containing the displayed
formula is complete. The vertical list on that level is empty; :prevdepth ignored)
means that \prevdepth has a value :::; -1000 pt1 so that the next interline glue will be
omitted (d. Chapter 12). The math mode outside of this internal vertical mode has
an empty list 1 likewise1 but the restricted horimntal mode enclosing the math mode
contains some glue. Finally1 we see the main vertical mode that encloses everything;
this mode was :entered at line 0) 1 i.e. 1 before the file modes. tex was input; nothing
has been contributed so far to the vertical list on this outermost leveL

• EXERCISE 13.2
\Vhy is there glue in one of these lists but not in the others?

• EXERCISE 13.3
After this output of \showlists 1 the modes .log file contains further output

from \tracingcommands. In fact 1 the next two lines of that file are

{math shift character $}
{horizontal mode: end-group character }}

because the :$$) on line 7 finishes the displayed formula1 and this resumes horimntal
mode for the paragraph that was interrupted. \Vhat do you think are the next three
lines of modes .log?

• EXERCISE 13.4
Suppose TE-X has generated a document without ever leaving vertical mode.

\Vhat can you say about that document?

6<,~• EXERCISE 13.5
Y Y Some of TE-X)s modes cannot immediately enclose other modes; for example1

display math mode is never directly enclosed by horit~ontal mode1 even though displays
occur within paragraphs1 because an interrupted paragraph~so~far of horimntal mode is
alway-s completed and removed from TE-X)s memory befOre the processing of a displayed
formula begins. Give a complete characterit~ation of all pairs of consecutive modes that
can occur in the output of \showlists.

Every mode of life has its conveniences.
-SAMUEL JOHNSON, The Idler (1758)

[Hindu musicians] have eighty~four modes,
of which thirty~six are in general use,

and each of which, it aooears, has a oeculiar exoression,
and the oower of moving some {)articular sentiment or affection.
- MOUNTSTUART ELPHINSTONE, History of India (1841)

89

mathord
pre'<dept h ignored
JOH!\:SO!\:
ELPHI!\:STO!\:E

page 90) I

How TEX Breaks
Paragraphs into lines

Chapter 14: How TFJX Breaks Paragraphs into Lines

One of a typesetting system's chief duties is to take a long sequence of words
and to break it up into individual lines of the appropriate size. For example,
every paragraph of this manual has been broken into lines that arc 29 picas wide,
but the author didn't have to worry about such details when he composed the
manuscript. T&X chooses breakpoints in an interesting way that considers each
paragraph in its entirety: the closing words of a paragraph can actually influence
the appearance of the first line. As a result, the spacing between words is as
uniform as possible, and the computer is able to reduce the number of times that
words Inust be h:n)hcnatcd or formulas must be split between lines.

The CAl)Crimcnts of Chapter 6 have already illustrated the general ideas:
VVc discussed the notion of :'badness," and we ran into :•overfull" and :•undcrfull"
boxes in difficult situations. VVc also observed that different settings of TEX's
\tolerance parameter will produce different effects: a higher tolerance means
that wider spaces arc acceptable.

TEX will find the absolutely best way to typeset any given paragraph,
according to its ideas of minimum badness. But such :'badness" doesn't account
for everything, and if you rely entirely on an automatic scheme you will occasion-
ally encounter line breaks that arc not really the best on psychological grounds:
this is inevitable, because computers don't understand things the way people do
(at least not yet). Therefore you'll sometimes want to tell the machine that
certain places arc not good breakpoints. Conversely, you will sometimes want
to force a break at a particular spot. TEX provides a convenient way to avoid
psychologically bad breaks, so that you will be able to obtain results of the finest
quality by simply giving a few hints to the machine.

:'Tics" ------denoted by .~, in plain TEX------an: the key to s-uccessful line
breaking. Once you learn how to insert them, you will have graduated from
the ranks of ordinary TEXnical typists to the select group of Distinguished
TEXnicians. And it's really not difficult to train yourself to insert occasional
tics, almost without thinking, as you type a manuscript.

VVhcn you type~ it's the same as t:n)ing a space, except that TEX won't
break a line at this space. Furthermore, you shouldn't leave any blanks next to
the ~, since they will count as additional spaces. If you put ~ at the very end
of a line in your input file, you'll get a wider space than you want, because the
{return) that follows the ~ produces an extra space.

VVc have already observed in Chapter 12 that it's generally a good idea
to t:n)c ~ after an abbreviation that docs not come at the end of a sentence. Tics
also belong in several other places:

• In references to named parts of a document:

Chapter~12

Appendix~ A
Figure~3

Theorem~1.2

Table~\hbox{B~8}

Lemmas 5 and~6

(l\o ~appears after ·Lemmas' in the final example, since there's no harm in having
·5 and 6' at the beginning of a line. The usc of \hbox is explained below.)

91

H&J, ;;ee hyphenation, line break
ju;;tilication, ;;ee ;;etting glue, liiH
quad left, ;;ee llu;;h left
quad right, ;;ee llu;;h right
quad middle, ;;ee :break
tolerance
Tie;;
auxiliary ;;pace, ;;ee tie
tilde
line break;;, a'<oiding
break;;, a'<oiding bad

92 Chapter 14: How TF;X Breaks Paragraphs into Lines

• Between a person's forenames and between multiple surnames:

Donald~E. Knuth
Bartel~Leendert van~der~Waerden

Luis~I. Trabb~Pardo

Charles~XII

l\otc that it is sometimes better to h:n)hcnatc a name than to break it be-
tween words: e.g., ·Don-' and ·aid E. Knuth' is more tolerable than ·Donald'
and ·E. Knuth'. The previous rule can be regarded as a special case of this one,
since we may think of ·Chapter 12' as a compound name: another example is
·register~X'. Sometimes a name is so long that we dare not tic it all together,
lest there be no way to break the line:

Charles Louis Xavier~ Joseph de~la Vall\'ee~Poussin.

• Between math s:ymbols in apposition with nouns:

dimension~d

string~s of
width~w

length~1

function~$f(x)$

However, the last example should be compared with

string~s of length l~or more.

• Between symbols in series:

1,~2, or~3

a,~b, and~c.

1,~2, \dots,~n.

• VVhcn a s:ymbol is a tightly bound object of a preposition:

orx
from 0 to~1
increase z by~1
in common with~m.

The rule docs not, however, apply to compound objects:

• VVhcn mathematical phrases arc rendered in words:

equals~n

mod~2

less than~ϵ
modulo~$p~e$

Compare ·is~15' with ·is 15~times the height'.

(given~X)

for all large~n

• VVhcn cases arc being enumerated within a paragraph:

(b)~Show that $f(x)$ is (1)~continuous; (2)~bounded.

It would be nice to boil all of these rules down to one or two simple principles,
and it would be even nicer if the rules could be automated so that keyboarding

Knuth
Trabb Pardo
'<an der \Vaerden
Chark;; XII
VaiiBe Pou;;;;in
enumerate<! ca,-;e;; within a parag1

Chapter 14: How TFJX Breaks Paragraphs into Lines

could be done without them: but subtle semantic considerations seem to be
involved. Therefore it's best to usc your own judgment with respect to tics. The
computer needs your help.

A tic keeps TEX from breaking at a space, but sometimes you want to
prevent the machine from breaking at a h:n)hcn or a dash. This can be done
by using \hbox, because T&X will not split up the contents of a box: boxes arc
indecomposable units, once they have been constructed. VVc have already il-
lustrated this principle in the ·Table~\hbox{B-8F example considered earlier.
Another example occurs when you arc typing the page numbers in a bibliographic
reference: It doesn't look good to put ·22.' on a line by itself, so you can t:n)c
·\hbox{13--22}.' to prohibit breaking ·13 22.' On the other hand, T&X doesn't
often choose line breaks at hyphens, so you needn't bother to insert \hbox com-
mands unless you need to correct a bad break that TEX has already made on a
previous run.

• EXERCISE 14.1
Here arc some phrases culled from previous chapters of this manual. How do
you think the author t:n)(:d them?

(cf. Chapter 12).
Chapters 12 and 21.
line 16 of Chapter 6's story
lines 7 to 11
lines 2, 3, 4, and 5.
(2) a big black bar
All 256 characters arc initially of category 12.
letter x in family 1.
the factor f, where n is 1000 times f.

• EXERCISE 14.2
How would you type the phrase ·for all n greater than no' '!

• EXERCISE 14.3
And how would you t:n)c ·exercise 4.3.2---15' '!

• EXERCISE 14.4
Why is it better to type ·Chapter-12' than to t}1Je ·\hbox{Chapter 12}''!

• EXERCISE 14.5
T£X will sometimes break a math formula after an equals sibfiL How can you

stop the computer from breaking the formula :x = 0)?

6<-,~• EXERCISE 14.6
Y Y Explain how you could instruct TE-X not to make any breaks after explicit
hyphens and dashes. (This is useful in lengthy bibliobrraphies.)

Sometimes you want to permit a line break after a "/' just as if it were
a h:n)hcn. For this purpose plain TEX allows you to say ·\slash': for example,
·input\slash output' produces ·input/output' with an optional break.

93

hyphen
da,-;h
hbox
bibliographic reference
bibliographie;;
;;la,-;h

94 Chapter 14: How TF;X Breaks Paragraphs into Lines

If you want to force TEX to break between lines at a certain point in the
middle of a paragraph, just say ·\break'. However, that might cause the line to
be really spaced out.
If you want T&X to fill up the right-hand part of a line with blank space just
before a forced line break,
without indenting the next line, say ·\hfil\break'.

You may have several consecutive lines of input for which you want the output
to appear line--for-line in the same way. One solution is to type :\par) at the

end of each input line; but that)s somewhat of a nuisance1 so plain TE-X provides the
abbreviation :\obeylines) 1 which causes each end-of-line in the input to be like \par.
After you say \obeylines you will get one line of output per line of input 1 unless an
input line ends with :%; or unless it is so long that it must be broken. For example1 you
probably want to use \obeylines if you are typesetting a poem. Be sure to enclose
\obeylines in a group 1 unless you want this :'poetry model' to continue to the end of
your document.

{\obeylines\smallskip
Roses are red,
\quad Violets are blue;
Rhymes can be typeset
\quad With boxes and glue.
\smallskip}

• EXERCISE 14.7
Explain the uses of \quad in this poem.

had been replaced by :\indent) in both places?
\Vhat would have happened if :\quad)

Roughly speaking, T&X breaks paragraphs into lines in the following
way: Breakpoints arc inserted between words or after h:n)hcns so as to produce
lines whose badncsscs do not exceed the current \tolerance. If there's no way
to insert such breakpoints, an overfull box is set. Otherwise the breakpoints arc
chosen so that the paragraph is mathematically optimal, i.e., best possible, in
the sense that it has no more :'demerits" than you could obtain by any other
sequence of breakpoints. Demerits arc based on the badncsscs of individual lines
and on the existence of such things as consecutive lines that end with hyphens,
or tight lines that occur neA-t to loose ones.

But the informal description of line breaking in the previous paragraph is
an oversimplification of what really happens. The remainder of this chapter

explains the details precisely1 for people who want to apply TE-X in nonstandard way-s.
T£X)s line~breahing algorithm has proved to be general enough to handle a surprising
variety of different applications; this 1 in fact 1 is probably the most interesting aspect
of the whole T£X system. However 1 every paragraph from now on until the end of the
chapter is prefaced by at least one dangerous bend sign 1 so you may want to learn the
follmving material in easy stages instead of all at once.

Before the lines have been broken 1 a paragraph inside of TE-X is actually a
horizontallist1 i.e. 1 a sequence of items that TE-X has gathered while in hori~

110ntal mode. \Ve have been saying informally that a horit~ontal list consists of boxes

line break;;, forcing
break;;, forcing good
break
underfull
obey line;;
poem
quad
indent
tolerance
o'<erfull box
demerit;;
horizontal li;;t

Chapter 14: How TFJX Breaks Paragraphs into Lines 95

and glue; the truth is that boxes and glue aren)t the whole story. Each item in a
horit~ontal list is one of the follmving t:Yl)CS of things:

• a box (a character or ligature or rule or hbox or vbox);
• a discretionary break (to be explained momentarily);
• a :'whatsif' (something special to be explained later);
• vertical material (from \mark or \vadjust or \insert);
• a glob of glue (or \leaders 1 as we \Viii see later);
• a kern (something like glue that doesn)t stretch or shrink);
• a penalty (representing the undesirability of breaking here);
• :'ma.th~onl' (beginning a fOrmula) or :'math~off' (ending a fOrmula).

The last four types (glue1 kern 1 penalty1 and math items) are called discardable1 since
they may change or disappear at a line break; the first four types are called non~
discardable1 since they always remain intact. Many of the things that can appear in
horit~ontal lists have not been touched on yet in this manual 1 but it isn)t necessary to
understand them in order to understand line breaking. Sooner or later you)II learn how
each of the gismos listed above can infiltrate a horimntal list; and if you want to get
a thorough understanding of T£X)s internal processes 1 you can alway-s use \showlists
with various features of the lailbtuage1 in order to see exactly what TE-X is doing.

A discretionary break consists of three sequences of characters called the pre-
break1 post-break1 and no-break texts. The idea is that if a line break occurs

here1 the pre--break text will appear at the end of the current line and the post~break
text will occur at the beginning of the next line; but if no break occurs 1 the no--break
text \Viii appear in the current line. Users can specify discretionary breaks in complete
generality by \Vriting

\discretionary{ (pre~ break text)}{ (post~ break text)}{ (n<r break text)}

where the three texts consist entirely of characters 1 boxes 1 and kerns. For example1 TE-X
Call hyphenate the word :difficult) between the fs 1 even though this requires breaking
the :ffi; ligature into :f~) followed by an :fi; ligature1 if the horit~ontallist contains

di\discretionary{f-}{fi}{ffi}cult.

Fortunately you need not type such a mess yourself; T£X)s hyphenation algorithm
work-s behind the scenes1 taking ligatures apart and putting them into discretionary
break-s when necessary.

The most common case of a discretionary break is a simple discretionary
h:yl)hen

\discretionary{-}{}{}

for which TE-X accepts the abbreviation:\-). The next most common case is

\discretionary{}{}{}

(an :'empty discretionaryl') 1 which TE-X automatically inserts after :_; and aller every
ligature that ends \Vith :_;. In the case of plain T£X 1 empty discretionaries are therefOre
inserted after h:yl)hens and dashes. (Each font has an associated \hyphenchar 1 which
we can assume for simplicity is equal to:_;.)

dh;cret ionary break
break, dh;cretionary
whahit
mark
'<adju;;t
in;;ert
glue
leader,;
kern
penalty
math-on
math-olf
di;;cardabk
;;howli;;t;;
pre-break text
po;;t-break text
no-break text
di;;cret ionary
ligature;;

empty di;;cretionary
hyphen;;
da,-;he;;
hyphenchar

96 Chapter 14: How TF;X Breaks Paragraphs into Lines

\Vhen TE-X hyphenates words 1 it simply inserts discretionary breaks into the
horimntal list. For example 1 the words :discretionary hyphens) are trans~

formed into the equivalent of

dis\-cre\-tionary hy\-phens

if h:yl)henation becomes necessary. But T£X doesn)t apply its h:yl)henation algorithm
to any word that already contains a discretionary break; therefore you can use explicit
discretionaries to override T£X)s automatic method 1 in an emergency.

• EXERCISE 14.8
Some compound words in German text change their spelling when they are

split between lines. For example1 :backen) becomes :bak~ken) and :Bettuch) becomes
:Bett~tuch). How can you instruct TE-X to produce this effect?

In order to save time1 TE-X tries first to break a paragraph into lines \Vithout
inserting any discretionary h:yl)hens. This first pass \Viii succeed if a sequence

of breakpoints is fOund fOr which none of the resulting lines has a badness exceeding
the current value of \pretolerance. If the first pass fails 1 the method of Appendix H
is used to h:yl)henate each word of the parabrraph by inserting discretionary breaks
into the horimntal list 1 and a second attempt is made using \tolerance instead of
\pretolerance. \Vhen the lines are fairly \Vide 1 as they are in this manual 1 experiments
show that the first pass succeeds more than 90% of the time1 and that fewer than 2 words
per paragraph need to be subjected to the hyphenation algorithm 1 on the average.
But when the lines are very narrow the first pass usually fails rather quickly. Plain
T£X sets \pretolerance=100 and \tolerance=200 as the default values. If you make
\pretolerance=10000 1 the first pass will essentially always succeed1 so hyphenations
will not be tried (and the spacing may be terrible); on the other hand if you make
\pretolerance=-1 1 T£-X \Viii omit the first pass and \Viii try to h:yl)henate immediately.

Line breaks can occur only in certain places \Vithin a horimntal list. Roughly
speaking 1 they occur between words and after hyphens 1 but in actuality they

are permitted in the following five cases:
a) at glue1 provided that this glue is immediately preceded by a nOIHliscardable

item 1 and that it is not part of a math fOrmula (i.e. 1 not between math~on and
math~off). A break :'at gluel' occurs at the left edge of the glue space.

b) at a kern 1 provided that this kern is immediately followed by glue 1 and that it
is not part of a math formula.

c) at a math~off that is immediately fOllowed by glue.
d) at a penalty (which might have been inserted automatically in a formula).
e) at a discretionary break.

Notice that if two globs of glue occur next to each other1 the second one \Viii never be
selected as a breakpoint1 since it is preceded by glue (which is discardable).

Each potential breahl)oint has an associated :'penalty/' which represents the
:'aesthetic cosf' of breaking at that place. In cases (a) 1 (b) 1 (c) 1 the penalty is

11ero; in case (d) an explicit penalty has been specified; and in case (e) the penalty is the
current value of \hyphenpenal ty if the pre~ break text is nonempty1 or the current value
of \exhyphenpenal ty if the pre--break text is empty. Plain T£-X sets \hyphenpenal ty=50
and \exhyphenpenalty=50.

hyphenate;;
German
pretokrance
tolerance
hyphen penalty
exhyphenpenalty

Chapter 14: How TFJX Breaks Paragraphs into Lines

For example1 if you say :\penalty 100) at some point in a paragraph 1 that
position will be a legitimate place to break between lines 1 but a penalty of 100

will be charged. If you say :\penalty-100) you are telling TE-X that this is a rather
good place to break1 because a negative penalty is really a :'bonmt; a line that ends
with a bonus might even have :'lneritft (negative demerits).

Any penalty that is 10000 or more is considered to be so large that TE-X \Viii
never break there. At the other extreme1 any penalty that is -10000 or less

is considered to be so small that TE-X \Viii always break there. The \no break macro of
plain TE-Xis simply an abbreviation for :\penalty10000) 1 because this prohibits a line
break A tie in plain T£X is equivalent to :\nobreak\u); there \Viii be no break at the
glue represented by \u in this case1 because glue is never a legal breah:point when it is
preceded by a discardable item like a penalty.

•EXERCISE 14.9
Guess how the \break macro is defined in plain TE-X.

•EXERCISE 14.10
\Vhat happens if you say \nobreak\break or \break\nobreak?

\Vhen a line break actually does occur1 TE-X removes all discardable items that
follow the break 1 until coming to something nOIHliscardable 1 or until coming

to another chosen breakpoint. For example1 a sequence of glue and penalty items \Viii
vanish as a unit 1 if no boxes intervene 1 unless the optimum breakpoint sequence includes
one or more of the penalties. Math~on and math~off items act essentially as kerns that
contribute the spacing specified by \mathsurround; such spacing \Viii disappear into the
line break if a formula comes at the very end or the very beginning of a line1 because
of the way the rules have been formulated above.

~~ T~1e badn~s ~f ~ l!ne is an int~g~: that is. approx.im.ately 100 ~iu:es_the cub_e
Y Y of the rabo by wInch the glue msule the hne must stretch or shrmk to make
an hbox of the required sit~e. For example1 if the line has a total shrinkability of
10 points 1 and if the glue is being compressed by a total of 9 points 1 the badness is
computed to be 73 (since 100 x (9/10)a = 72.9); similarly1 a line that stretches by
hvice its total stretchability has a badness of 800. But if the badness obtained by
this method turns out to be more than 100001 the value 10000 is used. (See the
discussion of :'glue set ratid' r and :'glue set orderl' i in Chapter 12; if i 1:- 01 there is
infinite stretchability or shrinkability1 so the badness is 11ero1 otherwise the badness is
approximately min(lOOra 1 10000).) Overfull boxes are considered to be infinitely bad;
they are avoided whenever possible.

~~ A line whose badness is 13 or more has a glue set ratio exceeding 50%. \Ve
Y Y call such a line tight if its glue had to shrink 1 loose if its glue had to stretch 1

and very loose if it had to stretch so much that the badness is 100 or more. But if the
badness is 12 or less we say that the line is decent. Two adjacent lines are said to be
visually incompatible if their classifications are not adjacent 1 i.e. 1 if a tight line is next
to a loose or very loose line1 or if a decent line is next to a very loose one.

~~ TE-X r.~t~ each ~ot~I~~ial sec~uCI.lCe of break~~ints by t~talling_ up. de~rwrits ~.hat
Y Y are assessed to mdn ulual hnes. The goal IS to choose breakpomts that yield
the fCwest total demerits. Suppose that a line has badness b1 and suppose that the

97

penalty
bono;;
inlinite penalty
no break
break
math;;urround
badne;;;;
glue ;;et ratio
glue ;;et order
inlinite badne;;;;
tight
loo;;e
'<cry loo;;e
decent
demerit;;

98 Chapter 14: How TF;X Breaks Paragraphs into Lines

penalty p is associated \Vith the breakpoint at the end of this line. As stated above 1

TE-X \Viii not even consider such a line if p 2: 100001 or if b exceeds the current tolerance
or pretolerance. Othenvise the demerits of such a line are defined by the fOrmula

{
(l+b)2 +r/,

d= (l+b)'-r/,
(l+b) 2

,

if 0 <; p < 10000;
if -1(}000 < p < 0;
if p <; -10000.

Here lis the current value of \linepenalty1 a parameter that can be increased if you
want T£X to try harder to keep all parabrraphs to the minimum number of lines; plain
TE-X sets \linepenalty=10. For example1 a line with badness 20 ending at glue \Viii
have (10 + 20) 2 = 900 demerits 1 if l = 101 since there)s no penalty for a break at glue.
Minimit~ing the total demerits of a parabrraph is roughly the same as minimit~ing the sum
of the squares of the badnesses and penalties; this usually means that the maximum
badness of any individual line is also minimit~ed 1 over all sequences of breakpoints.

6<,~• EXERCISE 14.11
Y Y The formula for demerits has a strange discontinuity: It seems more reasonable
at first to defined= (I+ b) 2 -100002 , in the caBe p <; -10000. Can you account for
this apparent discrepancy?

~~ Additional demerits are assessed based on pairs of adjacent lines. If two con~
Y Y secutive lines are visually incompatible1 in the sense explained a minute ago1

the current value of \adjdemeri ts is added to d. If two consecutive lines end with dis~
cretionary breaks1 the \doublehyphendemeri ts are added. And if the second~last line of
the entire paragraph ends with a discretionary1 the \finalhyphendemerits are added.
Plain TE-X sets up the values \adjdemerits=10000 1 \doublehyphendemerits=10000 1

and \finalhyphendemerits=5000. Demerits are in units of :'badness squared/' so the
demerit~oriented parameters need to be rather large if they are to have much effect;
but tolerances and penalties are given in the same units as badness.

~~ If you set \tracingparagraphs=1 1 your log file will contain a summary of
Y Y T£X)s line--breaking calculations1 so you can watch the tradeoff's that occur
when parameters like \linepenalty and \hyphenpenalty and \adjdemerits are twid~
died. The line--break data look-s pretty scary at first 1 but you can learn to read it \Vith a
little practice; this 1 in fact 1 is the best way to get a solid understanding of line breaking.
Here is the trace that results from the second paragraph of the story file in Chapter 61

when \hsize=2. Sin and \tolerance=1000:

[]\tenrm Mr. Drofnats---or ''R. J .• '' as he pre-
@\discretionary via @@0 b=O p=50 d=2600
@@1: line 1.2- t=2600 -> @@0
ferred to be called---was hap-pi-est when
@ via @@1 b=131 p=O d=29881
@@2: line 2.0 t=32481 -> @@1
he
@ via @@1 b=25 p=O d=1225
@@3: line 2.3 t=3825 -> @@1
was at work type-set-ting beau-ti-ful doc-
@\discretionary via @@2 b=1 p=50 d=12621
@\discretionary via @@3 b=291 p=50 d=103101

linepenalty
adjdemerit;;
dou bkhy phendemerit;;
linalhy phendemerit;;
t radngparagraph;;

Chapter 14: How TFJX Breaks Paragraphs into Lines 99

@@4: line 3.2- t=45102 -> @@2
u-
@\discretionary via @@3 b=44 p=50 d=15416
@@5: line 3.1- t=19241 -> @@3
ments.
@\par via @@4 b=O p=-10000 d=5100
@\par via @@5 b=O p=-10000 d=5100
@@6: line 4.2- t=24341 -> @@5

Lines that bebrin \Vith :@@) represent H:t4<>ible breakpoints1 i.e. 1 breakpoints that can
be reached \Vithout any badness exceeding the tolerance. Feasible breakpoints are
numbered consecutively1 starting \Vith @@1; the beginning of the paragraph is considered
to be fCasible too1 and it is number @@0. Lines that bebrin with :@; but not :@@) are
candidate ways to reach the feasible breakpoint that fOllo\\'B; TE-X \Viii select only the
best candidate1 when there is a choice. Lines that do not begin with :@; indicate how
far TE-X has gotten in the paragraph. Thus 1 for example 1 we find :@@2: line 2. 0
t=32481 -> @@1) after: ... hap-pi-est when) and before :he)) so we know that fCasible
breah:point @@2 occurs at the space between the words when and he. The notation :line
2. 0) means that this feasible break comes at the end of line 2) and that this line \Viii
be very loose. (The suffixes . 0) .1) . 2) . 3 stand respectively for very loose) loose)
decent) and tight.) A h:yl)hen is suffixed to the line number if that line ends with a
discretionary break) or if it is the final line of the parabrraph; for example) :line 1. 2-)
is a decent line that was hyphenated. The notation :t=32481) means that the total
demerits from the beginning of the paragraph to @@2 are 32481) and :_> @@1) means
that the best way to get to @@2 is to come from @@1. On the preceding line of trace data
we see the calculations for a t:yl)eset line to this point from @@1: the badness is 131)
the penalty is 0) hence there are 29881 demerits. Similarly) breakpoint @@3 presents
an alternative fOr the second line of the parabrraph) obtained by breaking between :he)
and :was); this one makes the second line tight) and it has only 3825 demerits when
the demerits of line 1 are added) so it appears that @@3 \Viii work much better than
@@2. However) the next fCasible breahl)oint (@@4) occurs after :doc-)) and the line from
@@2 to @@4 has only 12621 demerits) while the line from @@3 to @@4 has a whopping
103101; therefore the best way to get from @@0 to @@4 is via @@2. If we regard demerits
as distances) T£X is finding the :'shortest pathsl' from @@0 to each fCasible breahl)oint
(using a variant of a well~knmv11 algorithm for shortest paths in an acyclic brraph).
Finally the end of the paragraph comes at breahl)oint @@6) and the shortest path from
@@0 to @@6 represents the best sequence of breakpoints. Following the arrows back
from @@6) we deduce that the best breaks in this particular paragraph go through @@5)
@@3) and @@1.

6<,~• EXERCISE 14.12
Y Y Explain why there are 29881 demerits from @@1 to @@2) and 12621 demerits
from @@2 to @@4.

points)

If :b=*) appears in such trace data) it means that an infeasible breakpoint had
to be chosen because there was no feasible way to keep total demerits smalL

\Ve still haven)t discussed the special trick that allo\\'S the final line of a para~
graph to be shorter than the others . .Just befOre TE-X begins to choose break~

it does two important things: (1) If the final item of the current horimntal

ahign at;;ign
fea,-;ible breakpoint;;
;;horte;;t path;;

'

100 Chapter 14: How TF;X Breaks Paragraphs into Lines

list is glue1 that glue is discarded. (The reason is that a blank space often gets into a
token list just before \par or just befOre $$ 1 and this blank space should not be part
of the parabrraph.) (2) Three more items are put at the end of the current horimntal
list: \penalty10000 (which prohibits a line break); \hskip\parfillskip (which adds
:'finishing glud' to the parabrraph); and \penalty-10000 (which fOrces the final break).
Plain TE-X sets \parfillskip=Opt plus1fil 1 so that the last line of each paragraph \Viii
be filled \Vith white space if necessary; but other settings of \parfillskip are appro~
priate in special applications. For example1 the present paragraph ends flush \Vith the
right margin 1 because it was typeset with \parfillskip=Opt; the author didn)t have to
re\vrite any of the text in order to make this possible) since a long paragraph generally
allo\\'S so much flexibility that a line break can be forced at almost any point. You
can have some fun playing with paragraphs) because the algorithm fOr line breaking
occasionally appears to be clairvoyant. .Just write paragraphs that are long enough.

• EXERCISE 14.13
Ben User decided to say :\hfilneg\par) at the end of a parabrraph 1 intending

that the negative stretchability of \hfilneg would cancel with the \parfillskip of
plain T£X. \Vhy didn)t his bright idea work?

• EXERCISE 14.14
How can you set \parfillskip so that the last line of a parabrraph has exactly

as much white space at the right as the first line has indentation at the left?

6<,~• EXERCISE 14.15
Y Y Since TE-X reads an entire paragraph befOre it makes any decisions about
line breah-s1 the computer)s memory capacity might be exceeded if you are typesetting
the works of some philosopher or modernistic novelist who writes 200~line paragraphs.
Suggest a way to cope with such authors.

T£X has two parameters called \leftskip and \rightskip that specify glue
to be inserted at the left and right of every line in a paragraph; this glue is

taken into account when badnesses and demerits are computed. Plain T£X normally
keeps \leftskip and \rightskip 11ero1 but it has a :\narrower) macro that increases
both of their values by the current \parindent. You may want to use \narrower when
quoting lengthy passages from a book.

{\narrower\smallskip\noindent
This paragraph will have narrower lines than
the surrounding paragraphs do, because it
uses the ''narrower'' feature of plain \TeX.
The former margins will be restored after
this group ends.\smallskip}

(Try it.) The second :\smallskip) in this example ends the paragraph. It)s important
to end the paragraph before ending the brroup 1 for otherwise the effect of \narrower
will disappear before TE-X begins to choose line breaks.

• EXERCISE 14.16
\Vhen an entire paragraph is typeset in italic or slanted t:yl)e 1 it sometimes

appears to be offset on the page with respect to other paragraphs. Explain how you
could use \leftskip and \rightskip to shift all lines of a parabrraph left by 1 pt.

un;;kip
par
lini;;hing glue
parlilbkip
C;;er
hlilneg
paragraph, ending
capacity exceedwl
Joyce, Jame;;
philo;;opher
kft;;kip
right;;kip
narrower
par indent
quoting
;;malbkip
it ali('
;;!anted

Chapter 14: How TFJX Breaks Paragraphs into Lines

• EXERCISE 14.17
The \centerline1 \leftline1 \rightline1 and \line macros of plain TE-X

don)t take \leftskip and \rightskip into account. How could you make them do so?

~~ If yo~ sus~ed tl"Hl.t ~ragge~i~ht setting is accompl,ished by s?~ne ap~ro~riate
Y Y mampulabon of \r~ghtsk~p 1 you are correct. But some care IS necessary. For
example1 a person can set \rightskip=Opt plus1fil 1 and every line will be filled
with space at the right. But this isn)t a particularly good way to make ragged~ right
maxbrins1 because the infinite stretchability will assibfil 11ero badness to lines that are
very short. To do a decent job of ragged~ right setting1 the trick is to set \rightskip
so that it \Viii stretch enough to make line breaks possible 1 yet not too much 1 because
short lines should be considered bad. Furthermore the spaces between words should
be fixed so that they do not stretch or shrink (See the definition of \raggedright in
Appendix B.) It would also be possible to allow a little variability in the interword
glue 1 so that the right margin would not be quite so ragged but the parabrraphs would
still have an informal appearance.

TE-X looks at the parameters that affect line breaking only when it is breaking
lines. For example1 you shouldn)t try to change the \hyphenpenalty in the

middle of a paragraph1 if you want TE-X to penalit~e the hyphens in one word more than
it does in another word. The relevant values of \hyphenpenalty 1 \rightskip1 \hsize 1

and so on 1 are the ones that are current at the end of the paragraph. On the other
hand1 the \Vidth of indentation that you get implicitly at the beginning of a parabrraph
or when you say :\indent) is determined by the value of \parindent at the time the
indentation is contributed to the current horimntal list 1 not by its value at the end
of the paragraph. Similarly1 penalties that are inserted into math fOrmulas within a
paragraph are based on the values of \binoppenalty and \relpenalty that are current
at the end of each particular fOrmula. Appendix D contains an example that shmvs how
to have both ragged~ right and ragged~ left margins within a single parabrraph 1 \Vithout
using \leftskip or \rightskip.

It)s possible to control the length of lines in a much more general way1 if
simple changes to \leftskip and \rightskip aren)t flexible enough for your

purposes. For example1 a semicircular hole has been cut out of the present

proportion"! h€tW€€n

101

centerline
left line
right line
line
ragged right
hyphen penalty
indent
par indent
binoppenalty
rdpenalty
hole
Galiko
circle
par;;hape
illu;;tration;;, litting copy around
Pa,-;cal
triangle

paragraph1 in order to make room for a circular illustration that con~
tains some of Galileo)s immortal words about circles; all of the line
break-s in this paragraph and in the circular quotation were fOund two r€guhu "nd simil"r

by TE-X)s line~breahing algorithm. You can specifY an essentially
arbitrary paragraph shape by saying \parshape={number} 1 where
the {number} is a positive integer n 1 followed by 2n {dimen} spec~
ifications. In general1 :\parshape=n i 1 l 1 i 2 [z ... in ln) specifies
a paragraph whose first n lines \Viii have lengths [1 1 [21 ln 1

respectively1 and they \Viii be indented from the left margin by the
respective amounts i 1 1 i21 ••• 1 in. If the parabrraph has fewer than

gons of which on€ "'"'"'mm;c~C
it "nd th€ oth€r is isop€rim€tric

with it. ln "ddition, th€ "r"'" of th€
eire!€ is l€ss th"n th"t of "nJ- circum-
scrih€d polj-gon "nd gr€"t€r th"n th"t
of "nJ- isop€rim€tric polj-gon. And fur-
th€r, of th€s€ circumscrih€d polj-gons,
th€ on€ th"t h"s th€ gr€"t€r num-
h€r of sid€s h"s" snH,Jl€r "r"'" th"n
th€ on€ th"t h"s" l€ss€r numh€r,

hut, on th€ oth€r h"nd, th€ iso-
p€rim€tric polj-gon t h"t h"s

th€ gr€"t€r numh€r of
sid€s is th€ l"rg€r.

rG"liJ.,o, 1 (iJ~] n lines 1 the additional specifications \Viii be ignored; if it has more
than n lines 1 the specifications for line n \Viii be repeated ad infinitum.
You can cancel the effect of a previously specified \par shape by saying :\parshape=O).

6<,~• EXERCISE 14.18
Y Y T:yl)eset the follmving Pascalian quotation in the shape of an isosceles triangle:

102 Chapter 14: How TF;X Breaks Paragraphs into Lines

;,I turn 1 in the follmving treatises 1 to various uses of those triangles whose generator
is unity. But I leave out many more than I include; it is extraordinary how fertile in
properties this triangle is. Everyone can try his hamV'

You probably won)t need unusual parshapes very often. But there)s a special
case that occurs rather frequently1 so TE-X provides a special abbreviation

for it in terms of two parameters called \hangindent and \hangafter. The command
:\hangindent=(dimen}) specifies a so~called hanging indentation 1 and the counnand
:\hangafter=(number}) specifies the duration of that indentation. Let x and Jt be the
respective values of \hangindent and \hangafter 1 and let h be the value of \hsize;
then if n 2: 01 hanging indentation will occur on lines n+ 11 n+ 21 ••• of the paragraph 1

but if n < 0 it will occur on lines 11 21 ••• 1 lnl. Hanging indentation means that lines \Viii
be of \Vidth h -lxl instead of their normal \Vidth h; if x 2: 01 the lines will be indented
at the left margin 1 othenvise they will be indented at the right margin. For example1

the :'dangerous bemr' paragraphs of this manual have a hanging indentation of 3 picas
that lasts for two lines; they were set \Vith \hangindent=3pc and \hangafter=-2.

Plain TE-X uses hanging indentation in its :\item) macro 1 which produces a
parabrraph in which every line has the same indentation as a normal \indent.

Furthermore1 \item takes a parameter that is placed into the position of the indentation
on the first line. Another macro called :\itemitem) does the same thing but \Vith double
indentation. For example1 suppose you type

\item{1.} This is the first of several cases that are being
enumerated, with hanging indentation applied to entire paragraphs.
\itemitem{a)} This is the first subcase.
\itemitem{b)} And this is the second subcase. Notice
that subcases have twice as much hanging indentation.
\item{2.} The second case is similar.

Then you get the follmving output:

1. This is the first of several cases that are being enumerated1 \Vith hanging
indentation applied to entire paragraphs.

a) This is the first subcase.
b) And this is the second subcase. Notice that subcases have hvice as

much hanging indentation.
2. The second case is similar.

(Indentations in plain T£X are not actually as dramatic as those displayed here; Appen~
dix B say-s :\parindent=20pt) 1 but this manual has been set \Vith \parindent=36pt.)
It is customary to put \medskip before and after a brroup of itemit~ed parabrraphs1 and
to say \no indent before any dosing remark-s that apply to all of the cases. Blank lines
are not needed before \item or \itemitem1 since those macros begin with \par.

• EXERCISE 14.19
Suppose one of the enumerated cases continues for two or more paragraphs.

How can you use \item to get hanging indentation on the subsequent paragraphs?

• EXERCISE 14.20
Explain how to make a :'bulletecr' item that say-s :•; instead of :1.).

hangindent
hangafter
hanging indentation
h;;ize
item
it emit em
mwl;;kip
enumerate<! ca,-;e;; in ;;eparate par
bullet

Chapter 14: How TFJX Breaks Paragraphs into Lines

6<,~• EXERCISE 14.21
Y Y The :\item) macro doesn)t alter the right~hand margin. How could you indent
at both sides?

6<,~• EXERCISE 14.22
Y Y Explain how you could specify a hailbring indentation of -2 ems (i.e. 1 the lines
should project into the left margin) 1 after the first two lines of a paragraph.

If \parshape and hanging indentation have both been specified1 \parshape
takes precedence and \hangindent is ibfilOred. You get the normal parabrraph

shape 1 in which every line width is \hsize 1 when \parshape=0 1 \hangindent=Opt 1 and
\hangafter=L T£X automatically restores these normal values at the end of every
paragraph1 and (by local definitions) whenever it enters internal vertical mode. For
example1 hanging indentation that might be present outside of a \vbox construction
won)t occur inside that vbox) unless you ask fOr it inside.

6<,~• EXERCISE 14.23
Y Y Suppose you want to leave room at the right margin fOr a rect<Ulbtular illus~
tration that takes up 15 lines) aiHl you expect that three paragraphs will go by befOre
you have typeset enough text to get past that illustration. Suggest a good way to do
this without trial and error) given the fact that TE-X resets hanging indentation.

~~ If c:is~~ay~.d eq~ations occu~ ,in a _par~~aph that h~ a non~tm~dard shape) TE-X
Y Y always assumes that the d1splay takes up exactly three hnes. For example) a
paragraph that has four lines of text) then a display) then two more lines of text) is
considered to be 4 + 3 + 2 = 9 lines long; the displayed equation \Viii be indented and
centered using the paragraph shape information appropriate to line 6.

~~ T~~ has .an internal integer variable called \prevgraf that records the nm~1ber
Y Y of hnes m the most recent paragraph that has been completed or partially
completed. You cm1 use \prevgraf in the context of a {number}) and you cm1 set
\prevgraf to any desired nonnegative value if you want to make T£X think that it is in
some particular part of the current parabrraph shape. For exmnple) let)s consider again
a paragraph that contains four lines plus a display plus two more lines. \Vhen T£X
starts the paragraph) it sets \prevgraf=O; when it starts the display) \prevgraf \Viii
be 4; when it finishes the display) \prevgraf will be 7; and when it ends the paragraph)
\prevgraf will be 9. If the display is actually one line taller thm1 usual) you could set
\prevgraf=8 at the beginning of the two final lines; then TE-X \Viii think that a lO~line
paragraph is being made. The value of \prevgraf affects line breaking only when T£X
is dealing with nonstandard \parshape or \hangindent.

6<,~• EXERCISE 14.24
Y Y Solve exercise 14.23 using \prevgraf.

~~ You are probably convinced by now that TE-X)s line--breaking algorithm has
Y Y plenty of bells and whistles) perhaps even too many. But there)s one more
feature) called :'looseness!'; some day you might find yourself needing it 1 when you are
fine--tuning the pages of a book If you set \looseness=1 1 T£X \Viii try to make the
current paragraph one line longer thm1 its optimum length 1 provided that there is a
way to choose such breakpoints \Vithout exceeding the tolerance you have specified for
the badnesses of individual lines. Similarly1 if you set \looseness=2 1 T£X will try to

103

'<box
paragraph ;;hape re;;et
hanging indentation re;;et
di;;playwl equation;;
pre'<graf

104 Chapter 14: How TF;X Breaks Paragraphs into Lines

make the paragraph two lines longer; and \looseness=-1 causes an attempt to make
it shorter. The general idea is that TE-X first finds breakpoints as usual; then if the
optimum breakpoints produce n lines 1 and if the current \looseness is [1 TE-X \Viii
choose the final breakpoints so as to make the final number of lines as dose as possible
to n+l \Vithout exceeding the current tolerance. Furthermore1 the final breaJ.:points \Viii
have fewest total demerits 1 considering all way-s to achieve the same number of lines.

~~ For example1 you can set \looseness=1 if you want to avoid a lonely :'dub
Y Y linel' or :'"vidow linel' on some page that does not have sufficiently flexible glue1

or if you want the total number of lines in some two--column document to come out
to be an even number. It)s usually best to choose a paragraph that is already pretty
:'full/' i.e. 1 one whose last line doesn)t have much white space 1 since such paragraphs
can generally be loosened without much harm. You might also want to insert a tie
between the last two words of that paragraph1 so that the loosened version will not
end with only one :'"vidow wonr' on the line; this tie \Viii cover your tracks 1 so that
people will find it hard to detect the fact that you have tampered with the spacing.
On the other hand 1 TE-X can take almost any sufficiently long paragraph and stretch it
a bit 1 without substantial harm; the present parabrraph is 1 in fact 1 one line looser than
its optimum length.

~~ TE-X resets the looseness to 11ero at the same time as it resets \hangindent 1

Y Y \hangafter 1 and \parshape.

6<,~• EXERCISE 14.25
Y Y Explain what T£X \Viii do if you set \looseness=-1000 .

.Just befOre switching to horimntal mode to begin scanning a parabrraph 1 T£X
inserts the glue specified by \parskip into the vertical list that will contain

the paragraph 1 unless that vertical list is empty so far. For example1 :\parskip=3pt)
will cause 3 points of extra space to be placed between paragraphs. Plain TE-X sets
\parskip=Opt plusipt; this gives a little stretchability) but no extra space.

After line breaking is complete1 T£X appends the lines to the current vertical
list that encloses the current paragraph1 inserting interline glue as explained in

Chapter 12; this interline glue \Viii depend on the values of \baselineskip1 \lineskip1

and \lineskiplimit that are currently in force. TE-X \Viii also insert penalties into the
vertical list 1 just before each glob of interline glue1 in order to help control page breaks
that might have to be made later. For example1 a special penalty \Viii be assessed for
breaking a page between the first two lines of a parabrraph 1 or just before the last line1

so that :'duV' or :'"vidowl' lines that are detached from the rest of a paragraph will not
appear all alone on a page unless the alternative is worse.

Here)s how interline penalties are calculated: TE-X has just chosen the break~
points fOr some paragraph1 or for some partial parabrraph that precedes a

displayed equation; and n lines have been formed. The penalty between lines j and
j + 11 given a value of j in the range 1 :::; j < n 1 is the value of \interlinepenalty
plus additional charges made in special cases: The \clubpenalty is added if j = 11

i.e. 1 just aller the first line; then the \displaywido-wpenalty or the \wido-wpenalty is
added if j = n- 11 i.e. 1 just befOre the last line1 depending on whether or not the
current lines immediately precede a display; and finally the \brokenpenalty is added 1

if the jth line ended at a discretionary break. (Plain T£X sets \clubpenalty=150 1

loo;;ene;;;;
dub line
widow line
tie
widow word
orphan, ;;ee widow word
par;; kip
ba,-;dine;;kip
line;;kip
line;;kiplimit
interline glue
interlinepenalty
dubpenalty
di;;play widowpenalty
widowpenalty
broken penalty

Chapter 14: How TFJX Breaks Paragraphs into Lines

\wido-wpenalty=150 1 \displaywido-wpenalty=50 1 and \brokenpenalty=100; the value
of \interlinepenalty is normally t~Cr0 1 but it is increased to 100 within f0otnotes 1 so
that long footnotes will tend not to be broken between pages.)

• EXERCISE 14.26
Consider a five--line paragraph in which the second and fOurth lines end \Vith

hyphens. \Vhat penalties does plain TE-X put between the lines?

• EXERCISE 14.27
\Vhat penalty goes between the lines of a two~line paragraph?

If you say \vadjust{(verticallist}} \Vithin a parabrraph 1 TE-X \Viii insert the
specified internal vertical list into the vertical list that encloses the paragraph1

immediately after whatever line contained the position of the \vadjust. For example1

you can say :\vadjust{\kernipt}) to increase the amount of space between lines of a
paragraph if those lines would othenvise come out too dose together. (The author
did it in the previous line) just to illustrate what happens.) Also) if you want to
make sure that a page break \Viii occur immediately after a certain line) you can say
:\vadjust{\eject}) any-where in that line.

~~ Late: chapters. discus~ \insert and \mark coun~1a~1tls that are relevant to
Y Y TE-'<>s page bmlder. If such commands appear \V1thm a paragraph1 they are
removed from whatever horit~ontal lines contain them and placed into the enclosing
verticallist 1 together \Vith other vertical material from \vadjust commands that might
be present. In the final vertical list 1 each horimntal line of text is an hbox that is
immediately preceded by interline glue and immediately fOllowed by vertical material
that has :'migrated ouf' from that line (with left to right order preserved1 if there are
several instances of vertical material); then comes the interline penalty1 if it is nont~ero.
Inserted vertical material does not influence the interline glue.

6<,~• EXERCISE 14.28
Y Y Design a \marginal star macro that can be used anywhere in a paragraph. It
should use \vadjust to place an asterisk in the marbrin just to the left of the line where
\marginalstar occurs.

~~ \Vhen TE-X enters horit~ontal mode 1 it will interrupt its normal scanning to read
Y Y tokens that were predefined by the command \everypar={(token list}}. For
example1 suppose you have said :\everypar={A}). If you type :B) in vertical mode 1 TE-X
will shift to horimntal mode (after contributing \parskip glue to the current page) 1

and a horit~ontal list will be initiated by inserting an empty box of width \parindent.
Then TE-X \Viii read :AB) 1 since it reads the \everypar tokens before getting back to the
:B) that triggered the new paragraph. Of course1 this is not a very useful illustration of
\everypar; but if you let your imagination run you will think of better applications.

6<,~• EXERCISE 14.29
Y Y Use \everypar to define an \insert bullets macro: All parabrraphs in a biTOup
of the fOrm :{\insertbullets ... \par}) should have a bullet symbol :•) as part of
their indentation.

~~ A paragraph of 11ero lines is formed if you say :\noindent\par). If \everypar
Y Y is null 1 such a paragraph contributes nothing except \parskip glue to the
current vertical list.

105

footnote;;
'<adju;;t
eject
migrate
interline glue
marginal note;;
horizontal mode
e'<erypar
par;; kip
par indent
bulktwlli;;t;;

106 Chapter 14: How TF;X Breaks Paragraphs into Lines

6<,~• EXERCISE 14.30
Y Y Guess what happens if you say :\no indent$$... $$ \par).

~~ Exper,ienc~ .:las s,ho~'ll_th~t ~~~)s line--br.eahing algori~l.nn can b.e h:rnessed
Y Y to a surpnsmg \fl.Tiety of tasks. Here 1 for example 1 IS an apphcabon that
indicates one of the possibilities: Articles that are published in .:V1atlu:matical Reviervs
are generally sibfilCd \Vith the reviewer)s name and address 1 and this information is
tyl)eset flush right 1 i.e. 1 at the right~hand maxbrin. If there is sufficient space to put
such a name and address at the right of the final line of the paragraph1 the publishers
can save space1 and at the same time the results look better because there are no
strange gaps on the page.

This is a case where the name and address fit in nicely
\Vith the review. A .. Revietver (Ann Arbor 1 Mich.)

But sometimes an extra line must be added.
:'\. Bourbaki (Paris)

Let)s suppose that a space of at least two ems should separate the reviewer)s name
from the text of the review1 if they occur on the same line. \Ve would like to design a
macro so that the examples shmv11 above could be t:yl)ed as follo\\'S in an input file:

with the review. \signed A. Reviewer (Ann Arbor. Mich.)
an extra line must be added. \signed N. Bourbaki (Paris)

Here is one way to solve the problem:

\def\signed #1 (#2){{\unskip\nobreak\hfil\penalty50
\hskip2em\hbox{}\nobreak\hfil\sl#1\/ \rm(#2)
\parfillskip=Opt \finalhyphendemerits=O \par}}

If a line break occurs at the \penalty50 1 the \hskip2em will disappear and the empty
\hbox will occur at the beginning of a line 1 followed by \hfil glue. This yields two lines
whose badness is 11ero; the first of these lines is assessed a penalty of 50. But if no line
break occurs at the \penal ty50 1 there will be glue of 2 em plus 2 fil between the review
and the name; this yields one line of badness 11ero. TEX will try both alternatives 1

to see which leads to the fCwest total demerits. The one--line solution will usually be
preferred if it is feasible.

6<,~• EXERCISE 14.31
Y Y Explain what would happen if :\hbox{}) were left out of the \signed macro.

6<,~• EXERCISE 14.32
Y Y \Vhy does the \signed macro say :\finalhyphendemerits=O)?

6<,~• EXERCISE 14.33
Y Y In one of the parabrraphs earlier in this chapter 1 the author used \break to force
a line break in a specific place; as a result 1 the third line of that particular paragraph was
really spaced out.
Explain why all the extra space went into the third line 1 instead of being distributed
impartially among the first three lines.

J'viat hemat kal He'<·h:w;;
llu;;h right
He'<iewer
Bourbaki
;;ignwl
linalhy phendemerit;;
break

Chapter 14: How TFJX Breaks Paragraphs into Lines

~~ If you want to avoid overfull boxes at all costs \Vithout trying to fix them m<um~
Y Y ally1 you might be tempted to set tolerance=10000; this allmvs arbitrarily bad
lines to be acceptable in tough situations. But infinite tolerance is a bad idea1 because
TE-X doesn)t distinguish between terribly bad and preposterously horrible lines. Indeed1

a tolerance of 10000 encourages T£X to concentrate all the badness in one place1 making
one truly unsightly line instead of two moderately bad ones1 because a single ;,\\Tite~

off' produces fewest total demerits according to the rules. There)s a much better way
to get the desired effect: TE-X has a par<uneter called \emergencystretch that is added
to the assumed stretchability of every line when badness and demerits are computed1

in cases where overfull boxes are othenvise unavoidable. If \emergencystretch is posi~
tive 1 TE-X will make a third pass over a paragraph befOre choosing the line breaks 1 when
the first passes did not find a way to satisfy the \pretolerance and \tolerance. The
effect of \emergencystretch is to scale dmv11 the badnesses so that large infinities are
distinguishable from smaller ones. By setting \emergencystretch high enough (based
on \hsize) you can be sure that the \tolerance is never exceeded; hence overfull boxes
will never occur unless the line--breaking task is truly impossible.

6<,~• EXERCISE 14.34
Y Y Devise a \raggedcenter macro (analogous to \raggedright) that partitions
the words of a parabrraph into as few as possible lines of approximately equal sit~e and
centers each individual line. Hyphenation should be avoided if possible.

When the author objects to [a hyohenationj
he should be asked to add or cancel or substitute

a word or words that will orevent the breakage.

Authors who insist on even soacing always,
with sightly divisions always,

do not clearly understand the rigidity of tyoes.

- T. L. DE VINNE, Correct Comoosition (1901)

In reorinting his own works, whenever {William Morris]
found a line that justified awkwardly, he altered the wording

solely for the sake of making it look well in orint.

When a oroof has been sent me with two or three
lines so widely soaced as to make a grey band across the oage,

I have often rewritten the oassage so as to fill uo the lines better;
but I am sorry to say that my object has generally been so little

understood that the comoositor has sooilt all the rest
of the oaragraoh instead of mending his former bad work.
- GEORGE BERNARD SHAW, in The Dolphin (1940)

107

emergency;;tretch
pretokrance
tolerance
raggwkent er
ragged right
DE VI!\:!\:E
J'viorri;;
SHA\V

>age 108) I

How TEX Makes
lines into Pages

Chapter 1/5: How TF;X Makes Lines into Pages

TEX attempts to choose desirable places to divide your document into individual
pages, and its technique for doing this usually works pretty well. But the problem
of page make-up is considerably more difficult than the problem of line breaking
that we considered in the previous chapter, because pages often have much less
flexibility than lines do. If the vertical glue on a page has little or no ability to
stretch or to shrink, TEX usually has no choice about where to start a new page:
conversely, if there is too much variability in the glue, the result will look bad
because different pages will be too irregular. Therefore if you arc fussy about
the appearance of pages, you can expect to do some rewriting of the manuscript
until you achieve an appropriate balance, or you might need to fiddle with the
\looseness as described in Chapter 14: no automated system will be able to do
this as well as you.

:0.-'Iathcmatical papers that contain a lot of displayed equations have an
advantage in this regard, because the glue that surrounds a display tends to
be quite flexible. T&X also gets valuable room to maneuver when you have
occasion to usc \small skip or \medskip or \bigskip spacing between certain
paragraphs. For example, consider a page that contains a dozen or so exercises,
and suppose that there is 3 pt of additional space between exercises, where this
space can stretch to 4 pt or shrink to 2 pt. Then there is a chance to squeeze
an extra line on the page, or to open up the page by removing one line, in
order to avoid splitting an exercise between pages. Similarly, it is possible to usc
flexible glue in special publications like membership rosters or company telephone
directories, so that individual entries need not be split between columns or pages,
yet every column appears to be the same height.

For ordinary purposes you will probably find that T&X 's automatic
method of page breaking is satisfactory. And when it occasionally gives un-
pleasant results, you can force the machine to break at your favorite place by
typing ·\eject'. But be careful: \eject will cause T&X to stretch the page
out, if necessary, so that the top and bottom baselines agree with those on other
pages. If you want to eject a short page, filling it with blank space at the bottom,
type ·\vfill\eject' instead.

If you say :\eject) in the middle of a parabrraph) the paragraph \Viii end
first) as if you t:yl)ed :\par\eject). But Chapter 14 mentions that you can say

:\vadjust{\eject}) in mid-paragraph) if you want to force a page break after whatever
line contains your current position when the full parabrraph is eventually broken up into
lines; the rest of the paragraph \Viii go on the fOllowing page.

To prevent a page break) you can say :\nobreak) in vertical mode) just as
\no break in horimntal mode prevents breaks between lines. For example) it

is wise to say \no break between the title of a subsection and the first line of text in that
subsection. But \no break does not cancel the effect of other commands like \eject
that tell T£X to break; it only inhibits a break at glue that immediately follo\\'S. You
should become familiar with TE-X)s rules fOr line breaks and page break-s if you want to
maintain fine control over everything. The remainder of this chapter is devoted to the
intimate details of page breaking.

109

page make-up
loo;;ene;;;;
;;malbkip
mwl;;kip
big;;kip
eject
'<adju;;t
no break

110 Chapter 1/5: How TF;X Makes Lines into Pages

TE-X breaJ.-s lists of lines into pages by computing badness ratings and penal~
ties 1 more or less as it does when breaking paragraphs into lines. But pages

are made up one at a time and removed from TE-X)s memory; there is no looking ahead
to see how one page break \Viii affect the next one. In other words 1 TE-X uses a special
method to find the optimum breakpoints for the lines in an entire paragraph1 but it
doesn)t attempt to find the optimum breaJ.:points for the pages in an entire document.
The computer doesn)t have enough higlH;peed memory capacity to remember the con~
tents of several pages 1 so TE-X simply chooses each page break as best it can 1 by a
process of :'locar' rather than :'globar' optimit~a.tion.

Let)s look now at the details of T£X)s page--making process. Ever:yi;hing you
contribute to the pages of your document is placed on the main vertical list)

which is the sequence of items that TEX has accumulated while in vertical mode. Each
item in a vertical list is one of the fOllmving types of things:

• a box (an hbox or vbox or rule);
• a :'whatsif' (something special to be explained later);
• a mark (another thing that \Viii be explained later);
• an insertion (yet another thing that we \Viii get to);
• a glob of glue (or \leaders 1 as we \Viii see later);
• a kern (something like glue that doesn)t stretch or shrink);
• a penalty (representing the undesirability of breaking here).

The last three t:yl)es (glue1 kern 1 and penalty items) are called discardable1 for the
same reason that we called them discardable in horit~ontal lists. You might want to
compare these specifications \Vith the analogous rules fOr the horimntal case1 found
in Chapter 14; it turns out that vertical lists are just like horit~ontal ones except that
character boxes 1 discretionary breaks 1 \vadjust items 1 and math shifts cannot appear
in vertical lists. Chapter 12 exhibits a typical vertical list in TE-X)s internal box~and~glue
representation.

Page breaks can occur only at certain places \Vithin a vertical list. The per~
missible breakpoints are exactly the same as in the horimntal case1 namely

a) at glue1 provided that this glue is immediately preceded by a nOIHliscardable
item (i.e. 1 by a box 1 whatsit 1 mark 1 or insertion);

b) at a kern 1 provided that this kern is immediately followed by glue;

c) at a penalty (which might have been inserted automatically in a parabrraph).

Interline glue is usually inserted automatically between the boxes of a vertical list 1 as
explained in Chapter 12 1 so there is usually a valid breahl)oint between boxes.

As in horit~ontal lists 1 each potential breakpoint has an associated penalty1

which is high for undesirable breakpoints and negative fOr desirable ones. The
penalty is 11ero at glue and kern breaks1 so it is nont~ero only at explicit penalty breaks.
If you say :\penalty-100) between two parabrraphs1 you are indicating that TE-X should
try to break here because the penalty is negative; a bonus of 100 points for breaking at
this place \Viii essentially cancel up to 100 units of badness that might be necessary to
achieve such a break. A penalty of 10000 or more is so large that it inhibits breaking;
a penalty of -10000 or less is so small that it fOrces breaking.

main '<Crt kal I i;;t
'<ertkal li;;t
whahit
mark
in;;ertion
glue
leader,;
kern
penalty
di;;cardabk
'<adju;;t
penalty

Chapter 1/5: How TF;X Makes Lines into Pages

Plain TE-X provides several control sequences that help to control page breaks.
For example1 \smallbreak1 \medbreak1 and \bigbreak specifY increasingly

desirable places to break 1 having respective penalties of -501 -1001 and -200; further~
more1 they \Viii insert a \smallskip 1 \medskip 1 or \bigskip of space 1 respectively1 if a
break is not taken. However 1 \smallbreak1 \medbreak1 and \bigbreak do not increase
existing glue unnecessaxily; for example1 if you say \small break just after a displayed
equation1 you won)t get a \smallskip of space in addition to the glue that already
follo\\'B a display. Therefore these counnands can conveniently be used before and after
the statements of theorems 1 in a fOrmat for mathematical papers. In the present manual
the author has used a macro that puts \medbreak before and after every dangerous~
bend parabrraph; \medbreak\medbreak is equivalent to a single \medbreak1 so you don)t
see two medskips when one such parabrraph ends and another one begins.

The \goodbreak macro is an abbreviation for :\par\penalty-500). This is a
good thing to insert in your manuscript when proofreading1 if you are "'rilling

to stretch some page a little bit extra in order to improve the following one. Later on
if you make another change so that this \goodbreak command does not appear near
the bottom of a page1 it \Viii have no effect; thus it is not as drastic as \eject.

The most interesting macro that plain T£X provides for page make--up is called
\filbreak. It means 1 roughly1 :'Break the page here and fill the bottom \Vith

blank space1 unless there is room for more copy that is itself followed by \filbreak.l'
Thus if you put \filbreak at the end of every paragraph 1 and if your paragraphs aren)t
too long1 every page break \Viii occur between parabrraphs 1 and T£X will fit as many
paragraphs as possible on each page. The precise meaning of \filbreak is

\vfil\penalty-200\vfilneg

according to Appendix B; and this simple combination of T£-X)s primitives produces
the desired result: If a break is taken at the \penalty-200 1 the preceding \vfil \Viii
fill the bottom of the page \Vith blank space1 and the \vfilneg \Viii be discarded after
the break; but if no break is taken at the penalty1 the \vfil and \vfilneg \Viii cancel
each other and have no effect.

Plain T£X also provides a \raggedbottom commaml1 which is a vertical analog
of \raggedright: It tells TE-X to permit a small amount of variability in the

bottom margins on different pages 1 in order to make the other spacing uniform.

~~ \Ve saw in Chapter 14 that breah:points for paragraphs are chosen by comput~
Y Y ing :'demeritsl' for each line and summing them over all lines. The situation
for pages is simpler because each page is considered separately. TE-X figures the :'cosf'
of a page break by using the fOllmving fOrmula:

b+p+q,
{

p,

c = ~~)000'

if b < oo and p <; -10000 and q < 10000;
if b < 10000 and -10000 < p < 1()000 and q < 10000;
if b = 10000 and -10000 < p < 1()000 and q < 10000;
if (b = oo or q 2: 10000) and p < 1()000.

Here b is the badness of the page that would be fOrmed if a break were chosen here;
pis the penalty associated \Vith the current breakpoint; and q is :\insertpenalties) 1

the sum of all penalties fOr split insertions on the page1 as explained below. Vertical
badness is computed by the same rules as horimntal badness; it is an integer between
0 and 100001 indusive1 except when the box is overfull 1 when it is oo (infinity).

111

;;mall break
mwlbreak
bigbreak
;;malbkip
mwl;;kip
big;;kip
theorem;;
good break
Iii break
dilneg
ragged bottom
ragged right
co;;t
badne;;;;
in;;ert penalt ie;;
inlinite badne;;;;

112 Chapter 1/5: How TF;X Makes Lines into Pages

~~ \Vhen :~page is cou~ple:;ed1, it ,is r~m~ved fr01~1 ~h~ 1~1ain v~rticallist <Ul~l passec~
Y Y to an output routme1 as we w1ll see later1 so Its boxes and glue C\entually
disappear from TE-X)s memory. The remainder of the main vertical list exists in two
parts: First comes the :'current page/' which contains all the material that TE-X has
considered so far as a candidate for the next page to be broken off; then there are
:'recent contributions/' i.e. 1 items that \Viii be moved to the current page as soon as
T£X finds it convenient to do so. If you say \showlists 1 T£X will display the contents
of the current page and the recent contributions1 if any1 on your log file. (The example
in Chapter 13 doesn)t show any such lists because they were both empty in that case.
Chapter 24 explains more about TE-X)s timing.)

~~ \Vhenever T£X is moving an item from the top of the :'recent contributions!' to
Y Y the bottom of the :'current page/' it discards a discardable item (glue 1 kern 1 or
penalty) if the current page does not contain any boxes. This is how glue disappears at
a page break. Othenvise if a discardable item is a legitimate breakpoint1 TE-X calculates
the cost c of breaking at this point 1 using the formula that we have just discussed. If the
resulting cis less than or equal to the smallest cost seen so far on the current page1 TE-X
remembers the current breah:point as the best so far. And if c = oo or if p:::; -100001

TE-X seit~es the initiative and break-s the page at the best remembered breakpoint. Any
material on the current page follmving that best break-point is moved back onto the
list of recent contributions1 where it \Viii be considered again; thus the :'current pagel'
ty-pically gets more than one page)s worth of material befOre the breakpoint is chosen.

~~ This ~~ocedur~ u.1ay s~CI~l my:terio~s. u_ntil you .see it in .action. F~rtunately~
Y Y there IS a cmnement way to watch 1t1 :you can set \trac~ngpages-1 1 thereby
instructing TE-X to put its page--cost calculations into your log file. For example1 here is
what appeared on the log file when the author used \tracingpages=1 at the beginning
of the present chapter:

%% goal height=528.0. max depth=2.2
% t=10.0 g=528.0 b=10000 p=150 c=100000#
% t=22.0 g=528.0 b=10000 p=O c=100000#
% t=34.0 g=528.0 b=10000 p=O c=100000#

(25 similar lines are being omitted here)
% t=346.0 plus 2.0 g=528.0 b=10000 p=O c=100000#
% t=358.0 plus 2.0 g=528.0 b=10000 p=150 c=100000#
% t=370.02223 plus 2.0 g=528.0 b=10000 p=-100 c=100000#
% t=398.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=O c=100000#
% t=409.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=O c=100000#
% t=420.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=150 c=100000#
% t=431. 0 plus 5.0 minus 2.0 g=528.0 b=10000 p=-100 c=100000#
% t=459.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=O c=100000#
% t=470.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=O c=100000#
% t=481. 0 plus 8.0 minus 4.0 g=528.0 b=10000 p=O c=100000#
% t=492.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=O c=100000#
% t=503.0 plus 8.0 minus 4.0 g=528.0 b=3049 p=O c=3049#
% t=514.0 plus 8.0 minus 4.0 g=528.0 b=533 p=150 c=683#
% t=525.0 plus 8.0 minus 4.0 g=528.0 b=5 p=-100 c=-95#
% t=553.0 plus 11.0 minus 6.0 g=528.0 b=• p=O C""*

output routine
current page
recent contribution;;
;;howli;;t;;
di;;cardabk item
tradngpage;;

Chapter 1/5: How TF;X Makes Lines into Pages

This trace output is admittedly not :'user~friendlyl' in appearance 1 but after all it comes
from deep inside TE-X)s bowels where things have been reduced to numeric calculations.
You can learn to read it with a little practice1 but you won)t need to do so very often
unless you need to plunge into page~breahing for special applications. Here)s what it
means: The first line1 which starts \Vith :%%) 1 is written when the first box or insertion
enters the current page list; it shmvs the :'goal heighf' and the :'max depthl' that \Viii
be used for that page (namely1 the current values of \vsize and \maxdepth). In the
present manual we have \vsize=44pc and \maxdepth=2. 2pt; dimensions in the log file
are always displayed in points. The subsequent lines 1 which start with a single :%; 1 are
written whenever a legal breakpoint is being moved from the list of recent contributions
to the current page list. Every% line shows t 1 which is the total height so far if a page
break were to occur1 and y 1 which is the goal height; in this example y stays fixed at
528 pt1 but y would have decreased if insertions such as fOotnotes had occurred on the
page. The values oft are steadily increasing from 10 to 22 to 341 etc.; baselines are
12pt apart at the top of the page and 11pt apart at the bottom (where material is
set in nine--point type). \Ve are essentially seeing one % line per hbox of text being
placed on the current page. However 1 the % lines are generated by the penalty or glue
items that follow the hboxes 1 not by the boxes themselves. Each % line shows also the
badness b1 the penalty p 1 and the cost c associated with a breakpoint; if this cost is the
best so far 1 it is marked with a :#; sign 1 meaning that :'this breakpoint \Viii be used for
the current page if nothing better comes along.l' Notice that the first 40 or so breaks
all have b = 100001 since they are so bad that TE-X considers them indistinguishable; in
such cases c = 1000001 so TE-X simply accumulates material until the page is full enough
to have b < 10000. A penalty of 150 reflects the \clubpenalty or the \wido-wpenalty
that was inserted as described in Chapter 14. The three lines that say p=-100 are
the breakpoints between :'dangerous bemr' parabrraphs; these came from \medbreak
counnands. The notation b=* and c=* on the final line means that b and c are infinite;
the total height of 553 pt cannot be reduced to 528 pt by shrinking the available glue.
TherefOre the page is ejected at the best previous place1 which turns out to be a pretty
good break: b=5 and p=-100 yield a net cost of -95.

6<,~• EXERCISE 15.1
Y Y Suppose the paragraph at the bottom of the example page had been one line
shorter; what page break would have been chosen?

6<,~• EXERCISE 15.2
Y Y The last two ;,% linesl' of this example show the natural height of t jumping
by 28 pt1 from 525.0 to 553.0. Explain why there was such a big jump.

~~ The \maxdepth parameter tells TE-X to raise the bottom box on the page if
Y Y that box has too much depth 1 so that the depth of the constructed page \Viii
not exceed a specified value. (See the discussion of \boxmaxdepth in Chapter 12.) In
our example \maxdepth=2. 2pt 1 and the influence of this parameter can be seen in the
line that say-s :% t=370. 02223). Ordinarily t would have been 370.0 at that breah:point;
but the hbox preceding it was unusual because it contained the letter j in \tt 1 and
a 10~point typewriter~style j descends 2.22223 pt below the baseline. TherefOre T£X
figured badness as if the hbox were .02223 pt higher and only 2.2 pt deep.

~~ N?tice that the first ;,% lind' of our e~am:t:,le say~ t=10. 0; this is a consequence
Y Y of another parameter1 called \topsk~p. (.lue disappears at a page break 1 but

113

percent percent
goal height
max depth
'<;;ize
max depth
percent
;;harp
dubpenalty
widowpenalty
mwlbreak

'
max depth
boxmaxdepth
jj

top;;kip

114 Chapter 1/5: How TF;X Makes Lines into Pages

it is desirable to produce pages whose top and bottom baselines occur in predetermined
positions1 whenever possible; therefOre TE-X inserts special glue just befOre the first box
on each page. This special glue is equal to \topskip 1 except that the natural space
has been decreased by the height of the first box1 or it has been set to 11ero in lieu
of a negative value. For example1 if \topskip=20pt plus2pt 1 and if the first box on
the current page is 13 pt tall 1 TE-X inserts :\vskip7pt plus2pt) just above that box.
Furthermore1 if the first box is more than 20pt tall 1 :\vskipOpt plus2pt) is inserted.
But this example is atypical 1 since the \topskip glue usually has no stretchability or
shrinkability; plain T£X sets \topskip=10pt.

6<,~• EXERCISE 15.3
Y Y Assume that \vsize=528pt 1 \maxdepth=2. 2pt 1 \topskip=10pt 1 and that no
\insert commands are being used. T£X will make pages that are 528 pt high 1 and the
follmving two statements \Viii normally be true: (a) The baseline of the topmost box
on the page \Viii be 10pt from the top 1 i.e. 1 518 pt above the baseline of the page itself.
(b) The baseline of the bottommost box on the page \Viii coincide \Vith the baseline of
the page itself. Explain under what circumstances (a) and (b) \Viii faiL

~~ Since \v~ize 1 \maxdepth1 am~ .'topski~ ar~ parameters1 you can change them.
Y Y at any tune; what happens 1f you do! Well 1 TE-X salts away the values of
\vsize and \maxdepth when it prints the :'%% line/' i.e. 1 when the first box or insertion
occurs on the current page; subsequent changes to those two parameters have no effect
until the next current page is started. On the other hand 1 T£X looks at \topskip only
when the first box is being contributed to the current page. If insertions occur befOre
the first box1 the \topskip glue before that box is considered to be a valid breah:point;
this is the only case in which a completed page might not contain a box.

~~ You can l?ok at the t a~Hl y values t.hat ar~ used in p~ge break~ng by referring
YY to the {dunen} values ·\pagetotal· and ·\pagegoal· 1 respectively. You can
even change them (but let)s hope that you know what you are doing). For example1

the command \pagegoal=500pt overrides the previously saved value of \vsize. Be--
sides \pagetotal 1 which represents the accumulated natural height 1 TE-X maintains the
quantities \pagestretch1 \pagefilstretch1 \pagefillstretch1 \pagefilllstretch1

\pageshrink1 and \pagedepth. \Vhen the current page contains no boxes 1 \pagetotal
and its relatives are 11ero and \pagegoal is 16383.99998 pt (TEX)s largest {dimen});
changing their values has no effect at such times. The integer q in the formula for page
costs is also available fOr inspection and change; it is called \insertpenalties.

~~ Page. breakin.g '!i~'ers. f~om .line b~eaking in. one sma~l res~~~t that deserv~s
Y Y menbon here. If you say \eJect\eJect 1 the second \eJect IS lbfilOred1 because
it is equivalent to \penalty-10000 and penalties are discarded after a page break. But if
you say \break\break in a paragraph1 the second \break causes an empty line1 because
penalties are discarded aller a break in a parabrraph only if they do not belong to the
final sequence of breakpoints. This technicality is unimportant in practice1 because
\break\break isn)t a good way to make an empty line; that line \Viii usually be an
underfull hbox1 since it has only the \leftskip and \rightskip glue in it. Similarly1

:\eject\eject) would not be a good way to make an empty page1 even if T£X were to
change its rules somehow so that an \eject would never be ibfilOred. The best way to
eject an empty page is to say :\eject\line{}\vfil \eject) 1 and the best way to create
an empty line is :\break\hbox{}\hfil\break). Both of these avoid underfull boxes.

pagetotal
pagegoal
page;;t retch
pagdi bt retch
pagdill;;tretch
pagdillbtretch
page;;hrink
pagwlepth
in;;ert penalt ie;;
break
empty page
empty line

Chapter 1/5: How TF;X Makes Lines into Pages

You are probably wondering how page numbers and such things get attached
to pages. The answer is that TE-X allows you to do further processing after

each page break has been chosen; a special :'output routinel' goes into action befOre
pages actually receive their final form. Chapter 23 explains how to construct output
routines and how to modify the output routine of plain T£X.

Every once in a while 1 TE-X \Viii produce a really awful~looking page and you
\Viii wonder what happened. For example1 you might get just one parabrraph

and a lot of white space1 when some of the text on the follmving page would easily fit
into the white space. The reason for such apparently anomalous behavior is almost
alway-s that no good page break is possible; even the alternative that look-s better to
you is quite terrible as far as TE-Xis concerned! TE-X does not distinguish between two
choices that both have 10000 units of badness or more 1 even though some bad breaks
do look much worse than others. The solution in such cases is to insert \eject or
\vfill \eject in some acceptable spot1 or to revise the manuscript. If this problem
arises frequently1 however 1 you probably are using a format that sets overly strict
limitations on page fOrmat; try looking at the output of \tracingpages and modifying
some of TE-X)s parameters1 until you have better luck.

The remainder of this chapter is about insertions: things like footnotes and
illustrations1 and how they interact with page breaks. Before we discuss the

primitive operations by which TE-X deals \Vith insertions1 we will take a look at the
facilities that plain TE-X provides at a higher leveL

Illustrations can be inserted in several ways using plain TE-X. The simplest of
these is called a :'floating topinserf'; you say

\topinsert(vertical mode material}\endinsert

and T£X will attempt to put the vertical mode material at the top of the current page.
If there)s no room for such an insertion on one page1 TE-X will insert it at the top of
the next page. The (vertical mode material} can contain embedded paragraphs that
temporarily interrupt vertical mode in the usual way; for example:

\topinsert \vskip 2in
\hsize=3in \raggedright
\noindent{\bf Figure 3.} This is the caption to the
third illustration of my paper. I have left two inches
of space above the caption so that there will be room
to introduce special artwork. \endinsert

The caption in this example will be set ragged~ right in a 3~inch column at the left of
the page. Plain T£X automatically adds a :'bigskipl' below each topinsert; this \Viii
separate the caption from the text. The effects of \hsize=3in and \raggedright do
not extend past the \endinsert 1 since grouping is implied.

• EXERCISE 15.4
Modify this example so that the caption is moved over next to the right marbrin 1

instead of appearing at the left.

Similarly1 if you say :\pageinsert (vertical mode material} \endinsert) 1 the
vertical mode material will be justified to the sit~e of a full page (\\'ithout a

bigskip below it); the result \\'ill appear on the follo\\'ing page.

115

illu;;tration;;
lloating topin;;erl
topin;;ert
endin;;ert
caption
ragged-right
big;;kip
grouping
pagein;;erl

116 Chapter 1/5: How TF;X Makes Lines into Pages

There)s also :\midinsert (vertical mode material} \endinsert) 1 which tries
first to insert the material in place1 wherever you happen to be 1 in the middle

of the current page. If there is enough room 1 you get the effect of

\bigskip\vbox{(vertical mode material}}\bigbreak

othenvise the \midinsert is effectively converted to a \topinsert. There is a slight
probability that \midinsert \Viii not find the best placement1 because TE-Xis sometimes
processing text ahead of the current page. You may want to say :\goodbreak) just
befOre \midinsert.

You should use the counnands \topinsert 1 \pageinsert 1 \midinsert in ver~
tical mode (i.e. 1 between parabrraphs) 1 not inside of boxes or other insertions.

If you have two or more \topinsert or \pageinsert counnands in quick sue~
cession 1 TE-X may need to carry them over to several subsequent pages; but

they will retain their relative order when they are carried over. For example1 suppose
you have pages that are nine inches tall 1 and suppose you have already specified 4 inches
of text for some page1 say page 25. Then suppose you make seven topinserts in a row 1 of
respective sit~es 11 21 31 91 31 21 1 inches; the 9~inch one is actually a \pageinsert. \Vhat
happens? \Vell 1 the first and second \Viii appear at the top of page 25 1 followed by the
4 inches of copy you have already typed; that copy will immediately be followed by two
more inches that you t:yl)e after the seven inserts. The third topinsert \Viii appear at
the top of page 26 1 followed by six more inches of text; the fourth will fill page 27; and
the remaining three will appear at the top of page 28.

• EXERCISE 15.5
\Vhat would happen in the example just discussed if the final 1~inch insertion

were a \midinsert instead of a \topinsert?

At the end of a paper 1 you probably want to make sure that no insertions
are lost; and at the end of a chapter 1 you probably want to make sure that

no insertions float into the following chapter. Plain T£X \Viii flush out all remain~
ing insertions 1 with blank space filling the bottom of incomplete pages 1 if you say
:\vfill \supereject).

Besides illustrations that are inserted at the top of a page1 plain TE-X \Viii also
insert footnotes at the bottom of a page. The \footnote macro is provided

for use within paragraphs;* for example1 the footnote in the present sentence was t:yl)ed
in the follmving way:

... paragraphs;\footnote*{Like this.} for example •...

There are two parameters to a \footnote; first comes the reference mark1 which \Viii
appear both in the paragraph** and in the footnote itself1 and then comes the text of
the footnote. 40 The latter text may be several paragraphs long1 and it may contain

* Like 1hi::>.
** The au1hor 1yped 'paragraph\footnote{**HThe author ... }'here.
40 And 'footnote. \footnote{$-{45}$}{And ... }'here. The foo1no1e::> in 1hi::> manual

appear in ::>maller 1ype1 and 1hey are ::>e1 \vi1h hanging inden1a1ion; fmihennore a
mnalbkip occum be1,veen foo1no1e::> on 1he ::>ame page. Bu1 in plain '!) .. ;X 1 foo1no1e::>

midin;;ert
big;;kip
bigbreak
good break
;;upereject
footnote;;
footnote
reference mark

Chapter 1/5: How TF;X Makes Lines into Pages

displayed equations and such things 1 but it should not involve other insertions. TE-X
will ensure that each footnote occurs at the bottom of the same page as its refCrence. t
A long footnote will be split 1 if necessary1 and continued at the bottom of the follmving
page1 as you can see in the somewhat contrived example that appears here. Authors
who are interested in good exposition should avoid footnotes whenever possible1 since
footnotes tend to be distrading.:j:

The \footnote macro should be used only in parabrraphs or hboxes that are
contributed to TE-X)s main vertical list; insertions will be lost if they occur

inside of boxes that are inside of boxes. Thus 1 for example1 you should not try to put
a \footnote into a subfOrmula of a math fOrmula. But it)s OK to use footnotes \Vithin
\centerline) e.g.)

\centerline{A paper by A. U. Thor%
\footnote*{Supported by NSF.}}

or even on the outer level of a table entry inside an \halign.

~~ Topinserts. wo:k fine by ~hemselves) and footn~tes wor~ fine ?Y themselves)
Y Y but comphcabons can anse when you try to unx them m dev1ous ways. For
example) if a \pageinsert floats to the page that fOllo\\'S a long footnote that had
to be broken) both of the held~over insertions may try to force themselves onto the
same page) and an overfull vbox may result. Furthermore) insertions cannot appear
within insertions) so you can)t use \footnote within a \topinsert. If you really need
a footnote in some caption) there)s a \vfootnote macro that can be used in vertical
mode. To use it) you put a reference mark like :*) in the caption 1 and then you say
:\vfootnote*{The footnote}) somewhere on the page where you btuess that the caption
will finally falL In such complex circumstances you might want to rethink whether or
not you are really using the most appropriate format for the exposition of your ideas.

~~ C~1ap~er 24 expl~ins the ~xact rul~ about migrati~n of ver~ical~.mode mat.erial
Y Y (hke footnotes) from honmntal hsts to the endosmg verbcal hst. Inserbons 1

marh-s 1 and the results of \vadjust all migrate in the same fashion.

Now let)s study the primitives of T£X that are used to construct macros like
\topinsert and \footnote. \Ve are about to enter behind the scenes into a

sublanguage of T£X that permits users to do complex manipulations with boxes and
glue. Our discussion will be in two parts: First we shall consider TE-X)s :'registers/'
with which a user can do arithmetic related to typesetting; and then we shall discuss
the insertion items that can appear in horit~ontal and vertical lists. Our discussion
of the first topic (registers) will be marked with single dangerous~bend signs 1 since
registers are of general use in advanced applications of T£X 1 whether or not they relate
to insertions. But the second topic will be marked with double dangerous~ bend signs 1

since insertions are rather esoteric.

are 1ype::>e1 \vi1h 1he normal ::>i"'e of 1ype 1 \vi1h \textindent u::>ed for 1he reference
mark1 and \Vi1hou1 exira mnalbkip::>. The \textindent macro i::> like \item1 bu1 i1
omi1::> hanging inden1a1ion.
Prin1em oJ'ten u::>e 1he ::>ymbol::> \dag (t) 1 \ddag (:!:); \S (§) 1 and \P (~) a::> reference
marks; oome1ime::> aloo \I (il). You can ::>ay1 e.g. 1 '\footnote\dag{ ... }'.

+ Ye1 Gibbon'::> Decline ~md 1-'i:Jl! \vould no1 have been 1he ::>ame \vi1hou1 foo1no1e::>.

117

text indent
item
dag
ddag
s
p
Veri
Gibbon
centerline
Thor
halign
'<footnote
migration
'<adju;;t
regi;;ter;;
arithmetic

118 Chapter 1/5: How TF;X Makes Lines into Pages

TE-X has 256 rebristers called \countO to \count255 1 each capable of containing
integers between -2147483647 and +2147483647 1 inclusive; i.e. 1 the magni~

tudes should be less than i 11
• TE-X also has 256 registers called \dimenO to \dimen255 1

each capable of containing a {dimen} (see Chapter 10). There are another 256 registers
called \skipO to \skip255 1 each containing (glue} (see Chapter 12); and \muskipO to
\muskip255 1 each containing {muglue} (see Chapter 18). You can assibfil new values to
these registers by saying

\count{number} = {number}
\dimen{number} = {dimen}
\skip(numbcr) = (glue)
\muskip{number} = {muglue}

and then you can add or subtract values of the same type by saying

\advance\count{number} by {number}
\advance\dimen{number} by {dimen}
\advance\skip{number} by (glue}
\advance\muskip{number} by {muglue}

For example1 :\dimen8=\hsize \advance\dimen8 by 1in) sets rebrister \dimen8 to an
inch more than the current value of the normal line sit~e.

If infinite glue components are added1 lower order infinities disappear. For
example1 after the two commands
\skip2 = Opt plus 2fill minus 3fill
\advance\skip2 by 4pt plus 1fil minus 2filll

the value of \skip2 \Viii be 4 pt plus 2 fill minus 2 filii.

Multiplication and division are possible too 1 but only by integers. For example1

:\multiply\dimen4 by 3) triples the value of \dimen4 1 and :\divide\skipS
by 2) cuts in half all three components of the glue that is currently rebristered in \skipS.
You shouldn)t divide by 11ero1 nor should you multiply by numbers that \Viii make the
results exceed the register capacities. Division of a positive integer by a positive integer
discards the remainder 1 and the sign of the result changes if you change the sign of
either operand. For example1 14 divided by 3 :yields 4; -14 divided by 3 yields -4;
-14 divided by -3 yields 4. Dimension values are integer multiples of sp (scaled points).

You can use any \count register in the context of a {number}1 any \dimen
register in the context of a {dimen} 1 any \skip register in the context of (glue} 1

and any \muskip register in the context of {muglue}. For example1 :\hskip\skip1) puts
horit~ontal glue into a list 1 using the value of \ski pi; and if \countS is 201 the command
:\advance\dimen20 by\dimen\countS) is equivalent to :\multiply\dimen20 by 2).

A \dimen register can be used also in the context of a {number}1 and a \skip
register can be used as a {dimen} or a {number}. TE-X converts (glue} to

{dimen} by omitting the stretch and shrink components1 and it converts {dimen} to
{number} by assuming units of sp (scaled points). For example1 if \ski pi holds the
value 1pt plus 2pt1 then :\dimen1=\skip1) sets \dimen1 equal to 1pt; and the com~
mands :\count2=\dimen1) or :\count2=\skip1) \Viii set \count2 equal to 65536. These
rules also apply to TE-X)s internal parameters; fOr example1 :\dimen2=\baselineskip)
will set \dimen2 to the natural space component of the current baselineship glue.

count
number
dimen
dimen
;;kip
glue
mu;;kip
muglue
ad'<ann:
multiply
di.,-ide
;;p
number
dimen
glue
muglue

Chapter 1/5: How TF;X Makes Lines into Pages

• EXERCISE 15.6
Test your knowledge of TE-X)s registers by stating the results of each of the

follmving commands when they are perfOrmed in sequence:
\count1=50 \dimen2=\count1pt \divide\count1 by 8
\skip2=-10pt plus\countifil minus\dimen2
\multiply\skip2 by-\count1 \divide\skip2 by \dimen2 \count6=\skip2
\skip1=.5\dimen2 plus\skip2 minus\count\countifill
\multiply\skip2 by\skip1 \advance\skip1 by-\skip2

• EXERCISE 15.7
\Vhat is in \skipS after the following three commands have acted?
\skip5=0pt plus 1pt
\advance\skip5 by \skip4 \advance\skip5 by -\skip4

• EXERCISE 15.8
(For mathematicians.) Explain how to round \dimen2 to the nearest multiple

of \dimen3 1 assuming that \dimen3 is nont~ero.

The registers obey TE-X)s group structure. For example1 changes to \count3
inside { ... } \Viii not affect the value of \count3 outside. Therefore T£X

effectively has more than 256 registers of each type. If you want the effect of a register
command to transcend its brroup 1 you must say \global when you change the value.

•EXERCISE 15.9
\Vhat is in \count1 after the following sequence of commands?
\count1=5 {\count1=2 \global\advance\count1by\count1

\advance\count1by\count1}

The first ten \count registers 1 \countO through \count9 1 are reserved for a
special purpose: TE-X displays these ten counts on your terminal whenever

outputting a page1 and it transmits them to the output file as an identification of that
page. The counts are separated by decimal points on your terminal 1 \Vith trailing :. 0)
patterns suppressed. Thus 1 for example1 if \count0=5 and \count2=7 when a page is
being shipped out to the dvi file 1 and if the other count registers are 11ero1 TE-X \Viii
t:yl)e :[5.0.7]'. Plain T£X uses \countO for the page number 1 and it keeps \count1
through \count9 equal to 11ero; that is why you see just : [1]) when page 1 is being
output. In more complex applications the page numbers can have further structure;
ten counts are shipped out so that there will be plenty of identification.

It)s usually desirable to have symbolic names for registers. TE-X provides a
\countdef command (similar to \chardef 1 d. Chapter 8) 1 which makes it

easy to do this: You just say

\countdef\chapno=28

and \chapno is hencefOrth an abbreviation for \count28. Similar commands \dimendef 1

\skipdef 1 and \muskipdef are available for the other t:yl)es of numeric registers. After
a control sequence has been defined by \countdef 1 it can be used in T£X commands
exactly as if it were an integer parameter like \tolerance. Similarly1 \dimendef ef~
fectively creates a new dimension parameter 1 \ski pdef effectively creates a new glue
parameter1 and \muskipdef effectively creates a new muglue parameter.

119

round
group ;;tructure
global
<hi
[1]
countdef
dimendef
;;kipdef
mu;;kipdef
parameter

120 Chapter 1/5: How TF;X Makes Lines into Pages

Besides the numerical registers 1 TE-X also has 256 box registers called \boxO to
\box255. A box rebrister gets a value when you say \setbox{number}=(box};

for example1 :\setbox3=\hbox{A}) sets \box3 to an hbox that contains the single let~
ter A. Several other examples of \set box have already appeared in Chapter 12. Chap~
ter 10 points out that :2\wd3) is a {dimen} that represents twice the width of \box3;
similarly1 \ht{number} and \dp{number} can be used to refCr to the height and depth
of a briven box register.

Box registers are local to brroups just as arithmetic registers are. But there)s a
big difference between box rebristers and all the rest: \Vhen you use a \box 1 it

loses its value. For example1 the construction :\raise2pt\box3) in a horit~ontallist not
only puts the contents of \box3 into the list after raising it by 2 pt1 it also makes \box3
void. T£X does this for efficiency1 since it is desirable to avoid copying the contents
of potentially large boxes. If you want to use a box register \Vithout \Viping out its
contents 1 just say :\copy' instead of :\box); for example 1 :\raise2pt\copy3).

Another way to use a box register is to extract the inside of an hbox by saying
:\unhbox). This annihilates the contents of the register 1 like :\box) does 1 and

it also removes one level of boxing. For example1 the commands
\setbox3=\hbox{A} \setbox3=\hbox{\box3 B}
\setbox4=\hbox{A} \setbox4=\hbox{\unhbox4 B}

put \hbox{\hbox{A}B} into \box3 and \hbox{AB} into \box4. Similarly1 \unvbox un~
wraps a vbox. If you want to construct a large box by accretion (e.g. 1 a table of
contents) 1 it is best to use \unhbox or \unvbox as in the \setbox4 example; othenvise
you use more of T£-X)s memory space1 and you might even obtain boxes inside boxes
nested to such a deep level that hardware or software limits are exceeded.

The operations \unhcopy and \unvcopy are related to \unhbox and \unvbox
as \copy is to \box. (But their names are admittedly peculiar.)

An unboxing operation :'unsetsl' any glue that was set at the box)s outer leveL
For example1 consider the sequence of commands

\setbox5=\hbox{A \hbox{B C}} \setbox6=\hbox to 1.05\Yd5{\unhcopy5}

This makes \box6 five percent \Vider than \box5; the glue between A and \hbox{B C}
stretches to make the difference1 but the glue inside the inner hbox does not change.

A box rebrister is either :'voicr' or it contains an hbox or a vbox. There is a
difference between a void register and one that contains an empty box whose

height 1 \Vidth 1 and depth are 11ero; fOr example1 if \box3 is void 1 you can say \unhbox3
or \unvbox3 or \unhcopy3 or \unvcopy3 1 but if \box3 is equal to \hbox{} you can say
only \unhbox3 or \unhcopy3. If you say :\global\setbox3=(box}) 1 register \box3 \Viii
become :'globally voicr' when it is subsequently used or unboxed.

• EXERCISE 15.10
\Vhat is in rebrister \box5 after the follmving commands?

\setbox5=\hbox{A} \setbox5=\hbox{\copy5\unhbox5\box5\unhcopy5}

• EXERCISE 15.11
And what)s in \box3 after :{\global \setbox3=\hbox{A}\setbox3=\hbox{} }) ?

box
;;etbox
box

"' dp
wd
copy
unhbox
un'<box
table of content;;
unhcopy
Un'<copy
'<oid
grouping with box regi;;ter,;

Chapter 1/5: How TF;X Makes Lines into Pages 121

If you are unsure about how TE-X operates on its registers 1 you can experiment
online by using certain :\show) commands. For example1

\showthe\count1 \showthe\dimen2 \showthe\skip3

will display the contents of \count1 1 \dimen2 1 and \skip3; and :\showbox4) will dis~
play the contents of \box4. Box contents \Viii appear only in the log file 1 unless you
say :\tracingonline=1). Plain T£X provides a macro :\tracingall) that turns on
every possible mode of interaction1 including \tracingonline. The author used these
features to check the answers to several of the exercises above.

Large applications of TE-X make use of different sets of macros \Vritten by
different groups of people. Chaos would reign if a register like \count100 1 say1

were being used simultaneously fOr different purposes in different macros. TherefOre
plain TE-X provides an allocation facility; cooperation \Viii replace confusion if each
macro \\Titer uses these conventions. The idea is to say1 e.g. 1 :\newcount) when you
want to dedicate a \count register to a special purpose. For example1 the author
designed a macro called :\exercise) to format the exercises in this manual 1 and one of
the features of \exercise is that it computes the number of the current exercise. The
format macros in Appendix E reserve a \count register for this purpose by saying

\newcount\exno

and then the command :\exno=O) is used at the beginning of each chapter. Similarly1

:\advance\exno by1) is used whenever a new exercise comes along1 and :\the\exno)
is used to t:yl)eset the current exercise number. The \newcount operation assigns a
unique count register to its argument \exno 1 and it defines \exno with a \countdef
command. All of the other format macros are \\Titten without the knowledge of exactly
which \count register actually corresponds to \exno.

Besides \newcount 1 plain T£X provides \newdimen1 \newskip 1 \newmuskip 1

and \newbox; there also are \newtoks 1 \newread1 \newwrite 1 \newfam1 and
\newinsert 1 for features we haven)t discussed yet. Appendices B and E contain sev~
eral examples of the proper use of allocation. In the cases of \newbox 1 \newread1

etc. 1 the allocated number is defined by \chardef. For example1 if the command
:\newbox\abstract) is used to define a box rebrister that will contain an abstract 1

and if the \newbox operation decides to allocate \box45 for this purpose1 then it
defines the meaning of \abstract by saying :\chardef\abstract=45). T£X allows
\chardef)d quantities to be used as integers 1 so that you can say \box\abstract and
\copy\abstract 1 etc. (There is no \boxdef command.)

• EXERCISE 15.12
Design a \note macro that produces fOotnotes numbered sequentially.

example1
1 it should produce the fOotnotes here2 if you type

example,\note{First note.} it should produce
the footnotes here\note{Second note.} if

(Use \newcount to allocate a \count register for the fOotnotes.)

1 Fim1 no1e.
2 Second no1 e.

For

;;how box
;;howthe
tradngall
tradngonline
allocation
macro writer
newcount
countdef
newdimen
new;; kip
newmu;;kip
new box
newtok;;
new read
newwrite
newfam
newin;;ert
chardef

122 Chapter 1/5: How TF;X Makes Lines into Pages

Sometimes1 however 1 you want to use a register just fOr temporary storage1

and you h·11ow that it won)t conflict with anybody else)s macros. Registers
\count255 1 \dimen255 1 \skip255 1 and \muskip255 are traditionally kept available for
such purposes. Furthermore1 plain TE-X reserves \dimenO to \dimen9 1 \skipO to \skip9 1

\muskipO to \muskip9 1 and \boxO to \box9 for :'scratchworkl'; these registers are never
allocated by the \new ... operations. \Ve have seen that \countO through \count9 are
special 1 and \box255 also turns out to be special; so those rebristers should be avoided
unless you know what you are doing.

~~ Of course any register can be used for short~term purposes inside a brroup
Y Y (including \countO to \count9 and \box255 1 and including rebristers that have
been allocated for other purposes) 1 since register changes are local to brroups. However 1

you should be sure that TE-X \Viii not output any pages befOre the brroup has ended1

because output routines might othenvise be invoked at unfortunate times. TE-Xis liable
to invoke an output routine whenever it tries to move something from the list of recent
contributions to the current page1 because it might discover a page break \Vith c = oo
then. Here is a list of the times when that can happen: (a) At the beginning or end of a
paragraph1 provided that this paragraph is being contributed to the main vertical list.
(b) At the bebrinning or end of a displayed equation \Vithin such a paragraph. (c) After
completing an \halign in vertical mode. (d) After contributing a box or penalty or
insertion to the main vertical list. (e) After an \output routine has ended.

~~ Now that we are armed \Vith the knowledge of TE-X)s flexible rebristers 1 we
Y Y can plunge into the details of insertions. There are 255 classes of insertions 1

\insertO to \insert2541 and they are tied to other rebristers of the same number.
For example1 \insert100 is connected \Vith \count100 1 \dimen100 1 \skip100 1 and
\box100. Therefore plain TE-X provides an allocation function for insertions as it does
for rebristers; Appendix B includes the command

\newinsert\footins

which defines \foot ins as the number for footnote insertions. Other commands that
deal \Vith footnotes refer to \count\footins 1 \dimen\footins 1 and so OIL The macros
for floating topinserts are similarly prefaced by :\newinsert\topins) 1 which defines
\topins as the number of their class. Each class of insertions is independent1 but TE-X
preserves the order of insertions within a class. It turns out that \foot ins is class 2541

and \topins is class 253 1 but the macros do not use such numbers directly.

For our purposes let)s consider a particular class of insertions called class n;
we \Viii then be dealing with TE-X)s primitive command

\insert Jt{(vertical mode material}}

which puts an insertion item into a horimntal or vertical list. For this class of insertions

\box n is where the material appears when a page is output;
\count n is the magnification factor for page breaking;
\dimen n is the maximum insertion si11e per page;
\skip n is the extra space to allocate on a page.

For example1 material inserted \Vith \insert100 will eventually appear in \box100.

group;;
output routine;;, when in'<olwd
page builder, when exerd;;wl
newin;;ert
in;;ert

Chapter 1/5: How TF;X Makes Lines into Pages

~~ Let the natural height plus depth of \insert n be x; then \count n is 1000
Y Y times the factor by which x affects the page goaL For example1 plain TE-X sets
\count\footins=1000 1 since there is a one--to~one relationship: A lO~point footnote
effectively makes a page 10 pt shorter. But if we have an application where footnotes
appear in double columns 1 a count value of 500 would be appropriate. One of the
insertion classes in Appendix E makes maxbrinal notes fOr proofreading purposes; in
that case the count value is 11ero. No actual magnification is done; \count n is simply
a number used for bookkeeping1 when estimating the costs of various page breaks.

~~ The .first fOotn?te on a page requi~es extra space1 since we want. to separate
Y Y the footnotes from the text 1 and smce we want to output a honmntal rule.
Plain TE-X sets :\skip\footins=\bigskipamount); this means that a bigskip of extra
space is assumed to be added by the output routine to any page that contains at least
one insertion of class \foot ins.

~~ ~ometimes it is desira~le to_put ~ m~ximum liu~itation on the s.~~~.e of.i~1sertion~;
Y Y for example1 people usually don t want an enbre page to cons1st of footnotes.
Plain T£X sets \dimen\footins=8in; this means that \box\footins is not supposed
to accumulate more than 8 inches of fOotnotes fOr any one page.

~~ You might want to review the page~breaking algorithm explained at the be--
Y Y ginning of this chapter 1 befOre reading further. On the other hand1 maybe you
don)t really want to read the rest of this chapter at all 1 ever.

~~ Here now is the algorithm that TE-X performs when an \insert n is moved
Y Y from the :'recent contributions!' to the :'current page.l' (Remember that such
a move does not mean that the insertion will actually take place; the current page \Viii
be backed up later 1 to the break-point of least cost 1 and only the insertions preceding
that break-point \Viii actually be performed.) Let y and t be the current \pagegoal
and \pagetotal; let q be the \insertpenalties accumulated for the current page;
and let d and z be the current \pagedepth and \pageshrink. (The value of d is at
most \maxdepth; this value has not yet been incorporated into t.) Finally1 let x be
the natural height plus depth of the \insert n that we are moving to the current page;
and let f be the corresponding mab111ification factor 1 i.e. 1 \countn divided by 1000.

Step 1. If there is no previous \insert non the current page1 decrease y by hf + tt: 1

where h is the current height plus depth of \box n 1 and where 1L' is the natural space
component of \skipn; also include the stretch and shrink components of \skipn in
the totals fOr the current page (in particular1 this affects z).

Step 2. If a previous \insert non the current page has been split 1 add the parameter
called \floatingpenalty to q 1 and omit Steps 3 and 4.

Step 3. Test if the current insertion will fit on the page \Vithout splitting. This means
that it \Viii not make the height plus depth of \box n surpass \dimen n 1 when it is
added to \box n together with all previous \insert n amounts on the current page;
furthermore 1 it means that either x f :::; 0 or t + d + x f- z :::; y. If both tests are passed1

subtract xf from y and omit Step 4.

Step 4. (The current insertion \Viii be split 1 at least tentatively; but the split will not
actually take place if the least~cost page turns out to have occurred earlier than the
present insertion.) First compute the largest amount v such that a height plus depth

123

big;;kipamount
pagegoal
pagetotal
in;;ert penalt ie;;
pagwlepth
page;;hrink
max depth
lloatingpenalty

124 Chapter 1/5: How TF;X Makes Lines into Pages

of v will not make the total insertions into \box n bigger than \dimen n 1 and such that
t + d + v f :::; y. (Notice that z is omitted from the latter formula 1 but the available
shrinkability was considered in Step 3 when we tried to avoid splitting.) Then find the
least~cost way to split the bebrinning of the vertical list of the insertion so as to obtain a
box of height v. (Use an algorithm just like page--breahing1 but \Vithout the complexity
of insertion; an additional :\penal ty-10000) item is assumed to be present at the end of
the vertical list 1 to ensure that a legal breakpoint exists.) Let n be the natural height
plus depth of that least~cost box1 and let r be the penalty associated \Vith the optimum
breaJ.:point. Decrease y by nf 1 and increase q by r. (If \tracingpages=1 1 the log file
should now get a cryptic message that says:% splitn to v.n For example1

% split254 to 180.2,175.3 p=100

means that the algorithm has tried to split an \insert254 to 180.2 pt; the best split is
actually 175.3pt tall 1 and the penalty for breaking there is 100.)

~~ This algorithm is ruhnit:ed.ly complicated: but. no simpl~r :nec.hanis~n sem~1s
Y Y to do nearly as much. Nobce that penalties of -10000 msule mserbons \V1ll
make certain splits very attractive in Step 41 so the user can provide hints about
where to break1 in difficult situations. The algorithm provides a variety of different
behaviors: Floating insertions can be accommodated as a special case of split insertions 1

by making each floating topinsert start \Vith a small penalty1 and by having 11ero as the
associated \floatingpenalty; non~ floating insertions like fOotnotes are accommodated
by associating larger penalties with split insertions (see Appendix B).

~~ The splitting operation mentioned in Step 4 is also available as a primitive:
Y Y :\vsplit{number} to{dimen}) produces a vbox obtained by splitting off a
specified amount of material from a box register. For example1

\setbox200=\vsplit100 to 50pt

sets \box200 to a vbox whose height is 50pt; it goes through the vertical list inside
\box100 (which should be a vbox) and finds the least~cost break assuming a goal height
of 50 pt1 considering badnesses and penalties just as in the case of page~ breaking (but
with q = 0). The algorithm uses \splitmaxdepth insterul of \maxdepth to govern
the maximum depth of boxes. Then it prunes the top of \box100 by removing every~
thing up to and including any discardable items that immediately follow the optimum
break-point; and it uses \splittopskip to insert new glue before the first box inside
\box100 1 just as \topskip glue appears at the top of a page. However 1 if the optimum
break-point occurs at the end of the vertical list inside \box100-a :\penalty-10000)
item is assumed to be present there-or if all items after the optimum breakpoint are
discarded 1 \box100 \Viii be void after the \vsplit. And if \box100 was void before the
\vsplit 1 both \box100 and \box200 \Viii be void allerwards.

~~ You)d better not change \box n 1 \count n 1 \dimen n 1 or \skip n while TE-X is
Y Y contributing insertions to the current page 1 since T£X)s algorithm assumes that
those quantities are static. But you can change \floatingpenalty1 \splittopskip1

and \splitmaxdepth; T£X \Viii use the values that were current just inside the dosing
right brace of :\insert n{ ... }) when it splits and floats insertions. For example1 Ap~

pendix Buses \floatingpenalty=20000 in footnote insertions1 to discourage footnotes
that split befOre others can start 1 but \floatingpenalty=O in floating topinserts. Ap~

;;plit in;;ertion penalty
percent ;;plit
'<;;plit
;;plitmaxdepth
max depth
di;;cardabk
;;plittop;;kip
top;;kip
lloatingpenalty

Chapter 1/5: How TF;X Makes Lines into Pages

pendix B also uses special values of \splittopskip and \splitmaxdepth1 together \Vith
struts1 so that split footnotes will be typeset \Vith the same spacing as unsplit ones.

~~ The \footnote macro puts an \insert into the horit~ontallist of a paragraph.
Y Y After the paragraph has been broken into lines 1 this insertion \Viii move out
into the vertical list just after the line that contained it (see Chapter 14). Since there
is no legal breakpoint between that box (i.e. 1 that line) and the insertion 1 T£X \Viii put
the insertion onto the page that contains the line that contains the insertion.

6<,~• EXERCISE 15.13
Y Y Study the page--breaking algorithm carefully. Is it possible that a footnote
might not appear on the same page as its refCrence?

~~ \Vhen the best page break is finally chosen1 TE-X removes everything after
Y Y the chosen breakpoint from the bottom of the :'current page/' and puts it
all back at the top of the :'recent contributions.!' The chosen breah:point itself is
placed at the very top of the recent contributions. If it is a penalty item1 the value
of the penalty is recorded in \outputpenal ty and the penalty in the contribution list
is changed to 10000; othenvise \outputpenalty is set to 10000. The insertions that
remain on the current page are of three kinds: For each class n there are unsplit
insertions 1 fOllowed possibly by a single split insertion 1 followed possibly by others. If
\holdinginserts > 01 all insertions remain in place (so that they might be contributed
again); othenvise they are all removed from the current page list as follows: The unsplit
insertions are appended to \box 1t1 with no interline glue between them. (Struts should
be used 1 as in the \vfootnote macro of Appendix B.) If a split insertion is present 1 it
is effectively \vsplit to the sit~e that was computed previously in Step 4; the top part
is treated as an unsplit insertion 1 and the remainder (if any) is converted to an insertion
as if it had not been split. This remainder 1 followed by any other floating insertions of
the same class1 is held over in a separate place. (They will show up on the :'current
pagd' if \showlists is used while an \output routine is active; the total number of
such insertions appears in \insertpenalties during an \output routine.) Finally1 the
remaining items befOre the best break on the current page are put together in a \vbox
of height y 1 where y was the \pagegoal at the time of the break1 using the saved value
of \maxdepth; this box becomes \box255. Now the user)s \output routine enters TE-X)s
scanner (see Chapter 23); its duty is to assemble the final pages based on the contents of
\box255 and any insertion boxes that it hilO\VB about. The output routine will probably
unbox those boxes1 so that their glue can be reset; the glue in insertion boxes usually
cooperates nicely \Vith the glue on the rest of the page1 when it is given a chance. After
the \output routine is finished 1 held~over insertion items are placed first on the list of
recent contributions1 followed by the vertical list constructed by \output 1 followed by
the recent contributions bebrinning \Vith the page break (Deep breath.) You got that?

Since it is imoossible to foresee how [footnotes] will haooen to come out
in the make~uo, it is imoracticable to number them from 1 uo on each oage.

The best way is to number them consecutively throughout an article
or by chaoters in a book.

UNIVERSITY OF CHICAGO PRESS, Manual of Style (1910)

Don't use footnotes in your books, Don.
- JILL KNUTH (1962)

125

;;truh
output penalty
holdingin;;ert;;
Strub

output
in;;ert penalt ie;;
max depth
output
box255
hdd-o'<er in;;ertion
CHICAGO
K?\C'I'H

>age 120) I

Typing
Math Formulas

Chapter 16: 'J'ijping Math Forrrrulas

TEX is designed to handle complex mathematical expressions in such a way that
most of them arc easy to input. The basic idea is that a complicated formula
is composed of less complicated formulas put together in a simple way: the less
complicated formulas arc, in turn, made up of simple combinations of formulas
that arc even less complicated: and so OIL Stating this another way, if you know
how to type simple formulas and how to combine formulas into larger ones, you
will be able to handle virtually any formula at alL So let's start with simple ones
and work our way up.

The simplest formula is a single letter, like·;,:', or a single number, like
·2'. In order to put these into a T&X text, you type ·x' and ·2', respectively.
l\oticc that all mathematical formulas arc enclosed in special math brackets: we
arc using $ as the math bracket in this manual, in accord with the plain TEX
format defined in Appendix B, because mathematics is supposedly expensive.

VVhcn you type ·x' the ·;,:' comes out in italics, but when you t:n)c
·2' the ·2' comes out in roman t:n)c. In general, all characters on your key-
board have a special interpretation in math formulas, according to the normal
conventions of mathematics printing: Letters now denote italic letters, while
digits and punctuation denote roman digits and punctuation: a hyphen (-) now
denotes a minus sign (-), which is almost the same as an em-dash but not quite
(sec Chapter 2). The first $that you t:n)c puts you into :•math mode" and the
second takes you out (sec Chapter 13). So if you forget one $or t:n)c one $too
many, TEX will probably become thoroughly confused and you will probably get
some sort of error message.

Formulas that have been typeset by a printer who is unaccustomed to
mathematics usually look quite strange to a mathematician, because a novice
printer usually gets the spacing all wrong. In order to alleviate this problem, TEX
docs most of its own spacing in math formulas: and it ignores any spaces that you
yourself put between $'s. For example, if you type ·$ x$' and ·$ 2 $', they will
mean the same thing as ·x' and ·2'. You can type ·$(x + y)/(x - y)$' or
·$(x+y) I (x-y)$', but both will result in·(J:+y;)/(J: y;)', a formula in which
there is a bit of CA--tra space surrounding the + and signs but none around
the / sign. Thus, you do not have to memorize the complicated rules of math
spacing, and you arc free to usc blank spaces in any way you like. Of course,
spaces arc still used in the normal way to mark the end of control sequences,
as CAl)laincd in Chapter 3. In most circumstances TEX's spacing will be what a
mathematician is accustomed to: but we will sec in Chapter 18 that there arc
control sequences by which you can override TEX's spacing rules if you want to.

One of the things mathematicians like to do is make their formulas look
like Greek to the uninitiated. In plain TEX language you can type ·$$\alpha,
\beta, \gamma, \delta;$$' and you will get the first four Greek letters

Ct, f', 6:

furthermore there arc uppercase Greek letters like ·P, which you can get by
typing ·Γ'. Don't fed intimidated if you aren't already familiar with

127

mathematical expre;;;;ion;;
formula,-;
it ali('
roman
minu;; ;;ign
math mode
dollar;;ign
;;pace;;
Greek
alpha
beta
gamma
delta
Gamma

128 Chapter 16: 'J'ijping Math Forrrrulas

Greek letters: they will be easy to learn if you need them. The only difficulty
is that some symbols that look nearly the same must be carefully distinguished.
For example, the Greek letters \nu (v) and \kappa (K) should not be confused
with the italic letters v and"' the Greek \phi (6) is different from the slashed
zero called \emptyset (0). A lowercase epsilon (c) is quite different from the
symbol used to denote membership in a set (E): t:n)c ·ϵ' for f and
·\in' for E. Some of the lowercase Greek letters have variant forms in plain
T&X's math italic fonts: ·$(\phi,\theta,\epsilon,\rho)$' yields ·(dJ,B,c,p)'
while ·$ (\varphi, \ vartheta, \varepsilon, \ varrho) $'yields ·(<p, &, £,g)'.

Besides Greek letters, there arc a lot of funny symbols like ·~' (which
you get by t:n)ing ·\approx') and ·r-t' (which you get by typing ·\mapsto').
A complete list of these control sequences and the characters they correspond to
appears in Appendix F. Such control sequences arc allowed only in math mode,
i.e., between $'s, because the corresponding symbols appear in the math fonts.

• EXERCISE 16.1
VVhat should you type to get the formula ·~'/ + v E f' '!

• EXERCISE 16.2
Look at Appendix F to discover the control sequences for ·:::;', ·~', and
(These arc probably the three most commonly used math symbols that arc not
present on your keyboard.) VVhat docs plain TEX call them?

I\ ow let's sec how the more complex formulas get built up from simple
ones. In the first place, you can get superscripts (up high) and subscripts (down low)

by using ·-' and · _', as shown in the following examples:

Inp-ut Outp-ut
$x-2$;r;2

x_2 ;r;2

$2-x$ 2'
$x-2y-2$:r:2u2

$x - 2y - 2$:r:2u2

x_2y_2 ;r;2:t/2

$_2F_3$,Fa

l\oticc that - and _ apply only to the next single character. If you want several
things to be superscripted or subscripted, just enclose them in braces:

$x-{2y}$;r;21f

$2-{2-x}$ 2'"
$2-{2-{2-x}}$ 2''.
y_{x_2} U.r").
y_{x-2} :t/.r"2

nu
lmppa
phi
empty;;et
ep;;ilon
in
phi
theta
rho
'<arphi
'<artheta
'<arrho
'<arep;;ilon
funny ;;ymbob
approx
;;pedal ;;ymbol;; for math
map;;to
math ;;ymbob
;;uper;;cript;;
;;ub;;cript;;
indke;;, ;;ee ;;ub;;cript;;
;;uperior;;, ;;ee ;;uper;;cript;;
inferior;;, ;;ee ;;ub;;cript;;

Chapter 16: 'J'ijping Math Forrrrulas

The braces in these examples have been used to specify :•subfonnulas/' i.e.,
simpler parts of a larger formula. TEX makes a box for each subfonnula, and
treats that box as if it were a single s:ymbol. Braces also serve their usual purpose
of grouping, as discussed in Chapter 5.

It is illegal to t:n)c ·x-y-z' or ·x_y _z': T&X will complain of a :'double
superscript" or :'double subscript." You must type ·x-{y-zF or ·x-{yzF or
·x_ {y _zF or ·x_ {yzF in order to make your intention clear.

A superscript or subscript following a character applies to that character
only: but when following a subfonnula it applies to that whole subfonnula, and
it will be raised or lowered accordingly. For example,

$((x-2)-3)-4$
${({(x-2)}-3)}-4$

((J:')"l"
((J:')"l 4

In the first formula the ·-3' and ·-4' arc superscripts on the right parentheses,
i.e., on the ·r characters that immediately precede them, but in the second
formula they arc superscripts on the subformulas that arc enclosed in braces.
The first alternative is preferable, because it is much easier to type and it is just
as easy to read.

A subscript or superscript fOllmving nothing (as in the :_2F_3) example on
the preceding page1 where the :_2) follows nothing) is taken to mean a sub~

script or superscript of an empty subformula. Such notations are (fortunately) rare in
mathematics; but if you do encounter them it is better to make your intention dear by
shmving the empty subformula explicitly \Vith braces. In other words 1 the best way to
get :2P1) in a formula is to t:yl)e :{}_2F_3) or :{_2}F_3) or :{_2F_3}).

• EXERCISE 16.3
\Vhat difference1 if any1 is there between the output of :$x + _2F _3$) and the

output of '$x + {} _2F _3$' '?

• EXERCISE 16.4
Describe the differences between the outputs of :${x,..y},..z$) and :$x,..{y,..z}$).

You can have simultaneous
specify them in any order:

$x-2_3$
x_3-2
$x-{31415}_{92}+\pi$

$x_{y-a_b}-{z_c-d}$

subscripts and superscripts, and you can

;,;~

;,;~
;,;J~415 + 7[

l\oticc that simultaneous sueerscripts arc positioned over each other. However, a
subscript will be :•tucked in" slightly when it follows certain letters: for example,
·$P _2-2$' produces ·P:j'. If for some reason you want the left edges of both
subscript and superscript to be aligned, you can fool TEX by inserting a null
subformula: ·$P{} _2-2$' produces ·p~·.

129

;;ubformula,-;
right parent he;;e;;

130 Chapter 16: 'J'ijping Math Forrrrulas

The control sequence \prime stands for the s:ymbol · f, which is used
mostly in superscripts. In fact, ·f is so big as it stands that you would never
want to usc it except in a subscript or superscript, where it occurs in a smaller
size. Here arc some typical examples:

Irwut
$y_1-\prime$
$y_2-{\prime\prime}$
$y_3-{\prime\prime\prime}$

OutP'ut

u;
u~~

"' :th

Since single and double primes occur rather frequently, plain TEX provides a
convenient abbreviation: You can simply type ' instead of -\prime, and ' '
instead of -{\prime\prime}, and so OIL

$f' [g(x))g' (x)$
$y_1'+y_2' '$
$y' _i+y' '_2$
$y'' '_3+g' -2$

• EXERCISE 16.5

f' [g(J:)]g' (J:)
u; +u~
u; +u~
ut +g12

\Vhy do you think TE-X treats \prime as a large symbol that appears only in
superscripts1 instead of making it a smaller symbol that has already been shifted up
into the superscript position?

• EXERCISE 16.6
Mathematicians sometimes use :'tensor notationl' in which subscripts and su~

perscripts are staggered1 as in : R;j k t). Explain how to achieve such an effect.

Another way to get complex formulas from simple ones is to usc the con-
trol sequences \sqrt, \underline, or \over line. Like - and _,these operations
apply to the character or subfonnula that follows them:

$\sqrt2$
$\sqrt{x+2}$
$\underline4$
$\overline{x+y}$
$\overline x+\overline y$
$x-{\underline n}$
$x-{\overline{m+n}}$
$\sqrt{x-3+\sqrt\alpha}$

v'2
v" + 2
::!
J: + 11
x+y
;r;li

;r;m+n

You can also get cube roots · V' and similar things by using \root:

$\root 3 \of 2$
$\root n \of {x-n+y-n}$
$\root n+1 \of a$

ij2
y~J3;n~+-;~t!"n

"+va

prime
ten;;or notation
;;qrt
underline
o'<erline
;;urd;;, ;;ee ;;qrt
'<inculum, ;;ee o'<erline
root

Chapter 16: 'J'ijping Math Forrrrulas

The \sqrt and \underline and \over line operations are able to place lines
above or below subformulas of any sit~e or shape; the bar lines change their sit~e

and position 1 so that they are long enough to cover the subformula1 and high enough
or low enough not to bump into it. For example1 consider :\overline 1) (7) versus
:\over line m) (m): the first has a shorter bar line 1 and this line has been raised higher
than the bar in the second. Similarly1 the bar in :\underline y' (11) is lower than
the bar in :\underline x) (£);and square root signs appear in a variety of positions
based on the height and depth of what is being \sqrt)d: ..j(i + -v'J + ..fii. TE-X knows
the height 1 depth 1 and width of every letter and every subf0rmula1 because it considers
them to be boxes 1 as explained in Chapter 1 L If you have a formula in which there
is only one \sqrt 1 or only one \over line or \underline 1 the normal positioning rules
work fine; but sometimes you want to have uniformity between different members of a
complex fOrmula. For example1 you might want to t:yl)eset :,;;; + ,jd + VJ;) 1 putting
all square roots in the same vertical position. There)s an easy way to do this 1 using the
control sequence \mathstrut as follo\\'S:

$\sqrt{\mathstrut a}+\sqrt{\mathstrut d}+\sqrt{\mathstrut y}$.

A \mathstrut is an invisible box whose width is 11ero; its height and depth are the
height and depth of a parenthesis T. Therefore subformulas that contain \mathstrut
will always have the same height and depth 1 unless they involve more complicated
constructions like subscripts and superscripts. Chapter 18 discusses more powerful
operations called \smash and \phantom by which you can obtain complete control over
the positioning of roots and similar signs.

• EXERCISE 16.7
Test your understanding of what you have read so far in this chapter by explain-
ing what should be t:n)(:d to get the following formulas. (Be sure to check your
answer with Appendix A to confirm that you're right.)

10'" (n + 1)2
'W + z

• EXERCISE 16.8
VVhat mistake did B. C. Dull discover after he typed the following?

If$ x = y$, then x is equal to $y.$

• EXERCISE 16.9
Explain how to type the following sentence:

Deleting an dement from an n-tuplc leaves an (n 1)-tuplc.

• EXERCISE 16.10
List all the italic letters that descend below the baseline. (These arc the letters
for which \underline will lower its bar line.)

VVc have discussed the fact that the characters you type have special
meanings in math mode, but the examples so far arc incomplete: they don't
reveal all the power that is at your fingertips just after you press the·$' key. It's
time now to go back to basics: Let us make a systematic survey of what each
character docs, when it is used in a formula.

131

math;;trut
;;ma,-;h
phantom
Dull

132 Chapter 16: 'J'ijping Math Forrrrulas

The 52 letters (A to Z and a to z) denote italic symbols (A to Z and
a to z), which a mathematician would call :•variables." T&X just calls them
:•ordinary s:ymbols," because they make up the bulk of math formulas. There
arc two variants of lowercase Lin plain TEX, namely ·r (which you get by simply
typing ·1') and ·r (which you get by typing ·\ell'). Although mathematicians
commonly write something that looks like · r in their manuscripts, they do so
only to distinguish it from the numeral ·1 '. This distinguishability problem is
not present in printed mathematics, since an italic ·r is quite different from a ·P:
therefore it is traditional to usc ·r unless ·r has been specifically requested.

Plain TEX also treats the 18 characters

0 1 2 3 4 5 6 7 8 9 ! ? I I (© u

as ordinary symbols: i.e., it doesn't insert any CA--tra space when these symbols
occur neA-t to each other or neA-t to letters. l; nlikc the letters, these 18 characters
remain in roman type when they appear in formulas. There's nothing special for
you to remember about them, except that the vertical line · I' has special uses
that we shall discuss later. Furthermore, you should be careful to distinguish
between ·oh' and ·zero': The italic letter 0 is almost never used in formulas
unless it appears just before a left parenthesis, as in ·O(n}': and the numeral 0 is
almost never used just before a left parenthesis unless it is preceded by another
digit, as in ·lO(n 1}'. VVatch for left parentheses and you'll be OK. (Lowercase
D's also tend to appear only before left parentheses: type ·x_O' instead of ·x_o',
since the formula ·;r:0 ' is generally more correct than ·;r: 0 '.)

The three characters+, -,and* arc called :'binary operations," because
they operate on two parts of a formula. For example, + is a plus sign, which is
used for the sum of two numbers: - is a minus sign. The asterisk (*) is rarer in
mathematics, but it also behaves as a binary operation. Here arc some exam-
ples of how T&X typesets binary operations when they appear next to ordinary
symbols:

Irwut OutP'ut
$x+y-z$;r; + 11 z
$x+y•z$;r; +u * z
ny/z ;r; * 11/z

l\oticc that - and * produce quite different math symbols from what you get in
normal text: The h:n)hcn (-) becomes a minus sign (-), and the raised aster-
isk (*) drops down to a lower level (*).

TE-X does not treat I as a binary operation1 even though a slash stands for
division (which qualifies as a binary operation on mathematical grounds). The

reason is that printers traditionally put extra space around the symbols + 1 - 1 and *1

but not around f. If TE-X were to typeset I as a binary operation 1 the formula :112)
would come out :1 J 2) 1 which is \\TOng; so T£X considers I to be an ordinary sy-mboL

'<ariabk;;
ordinary ;;y mbob
dl
digit;;
numeral;;
'<Crt icaJ Ji ne
big-0 notation
binary operation;;
plu;; ;;ign
minu;; ;;ign
a,-;teri;;k
;;tar, ;;ee a,-;teri;;k
hyphen
;;la,-;h

Chapter 16: 'J'ijping Math Forrrrulas 133

Appendix F lists many more binary operations1 fOr which you t:yl)e control
sequences instead of single characters. Here are some examples:

$x\times y\cdot z$
$x\circ y\bullet z$
$x\cup y\cap z$
$x\sqcup y\sqcap z$
$x\vee y\wedge z$
$x\pm y\mp z$

XXJj·Z

XOJJ•z
xUynz
xUynz
xVyl\z
x±y=t=z

It is important to distinguish x (\times) from X (X) and from x (x); to distinbruish U
(\cup) from U (U) and from n (u); to distinguish V (\vee) from Y (V) and from v (v);
to distinguish o (\eire) from 0 (0) and from o (o). The sy-mbols V) and :N can also
be called \lor and \land1 since they frequently stand for binary operations that are
called :'logical orl' and :'lobrical aiHJ.l'

Incidentally1 binary operations are treated as ordinary sy-mbols if they don)t
occur between two quantities that they can operate OIL For example1 no extra

space is inserted next to the + 1 and * in cases like the following:

$x=+1$
$3.142-$
$(D•)$

x= +l
3.142-
(D*)

Consider also the follmving examples1 which show that binary operations can be used
as ordinary symbols in superscripts and subscripts:

$K_n·+,K_n--$
$z••_{ij}$
$g~\circ \mapsto g~\bullet$
$f-•(x) \cap f_•(y)$

• EXERCISE 16.11
How would you obtain the formulas

Yo r-t ,r/
f'(x) n f.(y)

Plain TEX treats the four characters=,<,>, and : as :'relations" because
they express a relationship between two quantities. For example, ·;,; < u' means
that ;,; is less than u. Such relationships have a rather different meaning from
binary operations like +, and the s:ymbols arc t:n)csct somewhat differently:

$x=y>z$;,; = 11 > z
$x:=y$;,; := 11
$x\le y\ne z$;,; 5c 11 "' z
$x\sim y\simeq z$;,; "":tJ::::z
$x\equiv y\not\equiv z$;,; 11 t z
$x\subset y\subseteq z$;,; c 11 ~ z

(The last several examples show some of the many other relational symbols that
plain TEX makes available via control sequences: sec Appendix F.)

time;;
cup

dr('
cdot
bullet
cap
;;qcup
;;qcap
wedge
cro;;;;, ;;ee dagger, time;;
pm
mp
lor
land
logical or
logical and
relation;;
k
ne
;;imeq
colon
equal;;
k;;;;than
great crt han
colonequab
equi'<
not
;;ub;;et
;;ub;;eteq
;;im
hook;;, ;;ee ;;ub;;et, ;;up;;et
wiggle, ;;ee ;;im

134 Chapter 16: 'J'ijping Math Forrrrulas

The two characters ·,' (comma) and ·;' (semicolon) arc treated as
punctuation marks in formulas: this means that TEX puts a little CA--tra space
after them, but not before them.

$f(x,y;z)$

It isn't customary to put extra space after a ·.' (period) in math formulas, so
TEX treats a period as an ordinary s:ymbol. If you want the · : ' character to be
treated as a punctuation mark instead of as a relation, just call it \colon:

$f:A\to B$
$f\colon A\to B$

f:A-tB
f:A -t B

If you want to usc a comma as an ordinary s:ymbol (e.g., when it appears in a
large number), just put it in braces: TEX treats anything in braces as an ordinary
symbol. For instance,

$12,345x$
$12{,}345x$

• EXERCISE 16.12

(wrong)
(right)

\Vhat)s an easy way to get a raised dot in a decimal constant (e.g. 1 :3·1416))?

So far we have considered letters, other ordinary symbols, binary oper-
ations, relations, and punctuation marks: hence we have covered almost every
key on the typewriter. There arc just a few more: The characters · C and · [' arc
called :•openings," while . r and ·]) arc called :'closings": these act pretty much
like ordinary symbols, but they help T&X to decide when a binary operation is
not really being used in a binary way. Then there is the character ' , which we
know is used as an abbreviation for \prime superscripts. Finally, we know that
plain T&X reserves the other ten characters:

\ $ % # & ~ { } ~ ~

These arc not usable for symbols in math mode unless their \catcode values
arc changed (sec Chapter 7). Although { and } specify grouping, the control
sequences · \ f and · \F can be used to get · {' as an opening and · }' as a closing.

~~ All of these math mode interpr~tati~ns ~1Te easily,..., changea?Ie1 since ea~h char-
Y Y acter has a \mathcode 1 as explamed m Chapter 1 r; none of the conventions are
permanently built into TE-X. However 1 most of them are so standard that it is usually
unwise to make many changes1 except perhaps in the interpretations of ' 1

11
1 and @.

The special characters- and _that designate superscripts and subscripts
should not be used except in formulas. Similarly, the names of math symbols
like \alpha and \approx, and the control sequences for math operations like
\over line, Inust not invade ordinary text. T&X uses these facts to detect missing
dollar signs in your input, before such mistakes cause too much trouble. For
example, suppose you were to type

The smallest $n such that $2~n>1000$ is~10.

comma
;;emkolon
punctuation mark;; in formula,-;
period
colon

'" lparen
!bracket
opening;;
rparen
fence;;. ;;ee opening. clo;;ing. ddin
rbradwt
clo;;ing;;
cat code
I bran:
rbrace
mathcode
at ;;ign
left quote
doubkquote
circum/lex
under bar
mi;;;;ing dollar ;;ign;;

Chapter 16: 'J'ijping Math Forrrrulas

TEX doesn't know that you forgot a ·$' after the first ·n', because it doesn't
understand English: so it finds a :•formula" between the first two $ signs:

The smallest ns'uchthat

after which it thinks that ·2' is part of the text. But then the - reveals an
inconsistency: TEX will automatically insert a $ before the -, and you will get
an error message. In this way the computer has gotten back into synch, and the
rest of the document can be t:n)csct as if nothing had happened.

Conversely1 a blank line or \par is not permitted in math mode. This brives
TE-X another way to recover from a missing $; such errors \Viii be confined to

the paragraph in which they occur.

If for some reason you cannot use ,.. and _ for superscripts and subscripts1

because you have an unusual keyboard or because you need ,.. for French
accents or something1 plain TE-X lets you t:yl)e \sp and \sb instead. For example1

:$x\sp2$) is another way to get :x2). On the other hand1 some people are lucky enough
to have keyboards that contain additional symbols besides those of standard ASCII.
\Vhen such symbols are available1 T£X can be set up to make math typing a bit more
pleasant. For example1 at the author)s installation there are keys labeled t and + that
produce visible symbols (these make superscripts and subscripts look much nicer on
the screen); there are keys fOr the relations ~ 1 ~ 1 and of= (these save time); and there are
about two dot~en more keys that occasionally come in handy. (See Appendix C.)

Mathematicians are fond of using accents over letters 1 because this is often
an effective way to indicate relationships between mathematical objects1 and

because it brreatly extends the number of available symbols without increasing the
number of necessary fonts. Chapter 9 discusses the use of accents in ordinary text 1 but
mathematical accents are somewhat different 1 because spacing is not the same; TE-X
uses special conventions fOr accents in f0rmulas 1 so that the two sorts of accents will not
be confused \Vith each other. The follmving math accents are provided by plain TE-X:

$\hat a$ a
$\check a$ a
$\tilde a$ a
$\acute a$ a
$\grave a$ a
$\dot a$ a
$\ddot a$ Q,

$\breve a$ a
$\bar a$ a
$\vee a$ a

The first nine of these are called \,.. 1 \v 1 \- 1 \' 1 \ ' 1 \. 1 \
11

1 \u1 and respectively1

when they appear in text; \vee is an accent that appears only in formulas. TE-X \Viii
complain if you try to use \,.. or \v 1 etc. 1 in f0rmulas 1 or if you try to use \hat or
\check1 etc. 1 in ordinary text.

135

par
;;p
;;b
character ;;et
uparrow
down arrow
kq
geq
neq
accent;;
hat
check
tilde
acute
gra'<e
dot
ddot
bre'<e
bar
'<(0('

136 Chapter 16: 'J'ijping Math Forrrrulas

It)s usually a good idea to define special control sequences for accented letters
that you need frequently. For example1 you can put

\def\Ahat{{\hat A}}
\def\chat{{\hat c}}
\def\scheck{{\check s}}
\def\xtilde{{\tilde x}}
\def\zbar{{\bar z}}

at the bebrinning of a manuscript that uses the sy-mbols A1 C1 li1 i 1 and Z more than 1

say1 five times. This saves you a lot of keystrokes 1 and it makes the manuscript easier
to read. Chapter 20 explains how to define control sequences.

\Vhen the letters i and j are accented in math formulas 1 dotless symbols t

and J should be used under the accents. These sy-mbols are called \imath and
\jmath in plain T£X. Thus 1 for example1 a paper that uses :i; and T ought to bebrin
with the fOllmving definitions:

\def\ihat{{\hat\imath}}
\def\jhat{{\hat\jmath}}

~ You can put accents on top of accents 1 making sy-mbols like A that might cause
Y a mathematician to squeal \Vith ecstasy. However 1 it takes a bit of finesse to
get the upper accent into a position that looks right 1 because the designer of a fOnt
for mathematics usually tells T£X to position math accents in special ways fOr special
letters. Plain TE-X provides a control sequence called \skew that makes it fairly easy to
shift superaccents into their proper place. For example1 :\skew6\hat\Ahat) was used
to produce the symbol above. The number :6; in this example was chosen by trial and
error; :5; seems to put the upper accent a bit too far left 1 while :7; makes it a bit too
far right 1 at least in the author)s opinion. The idea is to fiddle \Vith the amount of skew
until you find what pleases you best.

It)s possible 1 in fact 1 to put math accents on any subf0rmula1 not just on
single characters or accented characters. But there)s usually not much point

in doing S0 1 because TE-X just centers the accent over the whole subformula. For
example1 :$\hat{I+M}$) yields :1 +AI'. In particular 1 a \bar accent always stays the
same sit~e; it)s not like \overline1 which grmvs \Vith the formula under it. Some people
prefer the longer line from \over line even when it applies to only a single letter; for
example1 :$\bar z+\overline z$) produces :z + Z) 1 and you can take your pick when
you define \zbar. However 1 plain TE-X does provide two accents that grow; they are
called \widehat and \widetilde:

$\widehat x,\widetilde x$
$\Yidehat{xy},\Yidetilde{xy}$
$\widehat{xyz}.\widetilde{xyz}$

X,X
J::t},J::t}
- -~d-

J:uz,J:uz

The third example here shows the maximum sit~e available.

• EXERCISE 16.13
This has been another long chapter: but cheer up, you have lea~ned a lot! Prove
it by explaining what to t:n)e in order to get the formulas e~.r~, D ""p<t AI + l,

def
dotk;;;;
imath
jmath
accent;; on top of accent;;
;;lww
o'<erline
widehat
widetilde

Chapter 16: 'J'ijping Math Forrrrulas

and {j E (H701
1 r. (In the last example, assume that a control sequence \ghat

has already been defined, so that \ghat produces the accented letter {j.)

Producing Greek letters is as easy as r..
You just tyoe . . . as easy as π.

- LESLIE LAMPORT, The @TEX Document Preoaration System (1983)

TEX has no regard for the glories of the Greek tongue-
as far as it is concerned, Greek letters are just additional weird symbols,

and they are allowed only in math mode.
In a oinch you can get the outout nx by tyoing $\tau\epsilon\chi$,

but if you're actually setting Greek text, you will be using
a different version of TEX, designed for a keyboard with Greek letters on it,

and you shouldn't even be reading this manual,
which is undoubtedly all English to you.

- MICHAEL SPIVAK, The Joy of TEX (1982)

137

Greek
I,AJ'vil)OH'I'
IftiJ.~X
SPIVAK

>age JaH) I

More about Math

Chapter 17: More abo'ut Math 139

Another thing mathematicians like to do is make fractions------and they like to
build symbols up on top of each other in a variety of different ways:

1
2

and n + 1
3

and and
n=l

You can get these four formulas as displayed equations by typing ·$$1\over2$$'
and '$$n+1 \over3$$' and '$$n+1 \choose3$$' and '$$\sum_ {n=1Y3 Z_n-2$$':
we shall study the simple rules for such constructions in this chapter.

First let's look at fractions, which usc the ·\over' notation. The control
sequence \over applies to everything in the formula unless you usc braces to
enclose it in a specific subformula: in the latter case, \over applies to everything
in that subfonnula.

Irwut

$$x+y-2\over k+1$$

$${x+y-2\over k}+1$$

$$x+{y-2\over k}+1$$

$$x+{y-2\over k+1}$$

$$x+y-{2\over k+1}$$

OutP'ut

J: + yJ'
k+1

J: + ,,,
--"-+1

k
'IJ'2

J:+k+1
'IJ'2 J:+-'-k+1

You aren't allowed to usc \over twice in the same subformula: instead of typing
something like ·a \over b \over 2', you Inust specify what goes over what:

a
$${a\over b}\over 2$$]i_

2

$$a\over{b\over 2}$$

l; nfortunatdy, both of these alternatives look pretty awful. :0.-'Iathematicians
tend to :•overuse" \over when they first begin to typeset their own work on a
system like TEX. A good t:n)ist or copy editor will convert fractions to a :'slashed
form/' whenever a built-up construction would be too small or too crowded. For
example, the last two cases should be treated as follows:

a/b
2

$$a/b \over 2$$

$$a \over b/2$$ a
b/2

Conversion to slashed form takes a little bit of mathematical knowhow, since
parentheses sometimes need to be inserted in order to preserve the meaning of

;;om
dwo;;e
fraction;;
O'<Cr
;;tadwd fraction;;, ;;ee o'<er
;;la,-;hwl form
parenthe;;e;;

140 Chapter 17: More abo'ut Math

the formula. Besides substituting ·r for ·\over', the two parts of the fraction
should be put in parentheses unless they arc single symbols: for example, % be-
comes simply a/b, but "!1 becomes (a+ 1)/b, and ~~; becomes (a+ 1)/(b + 1),
Furthermore, the entire fraction should generally be enclosed in parentheses if
it appears next to something else: for example, %J.: becomes (a/b)J:. If you arc
a t:n)ist without mathematical training, it's best to ask the author of the manu-
script for help, in doubtful cases: you might also tactfully suggest that unsightly
fractions be avoided altogether in future manuscripts.

• EXERCISE 17.1
VVhat's a better way to render the formula;,; + u k-!1 '!

• EXERCISE 17.2
Convert · t~11 ;,;' to slashed form.

• EXERCISE 17.3
What surprise did B, L, 1;ser get when he typed '$$x = (y-2\over k+i) $$' '!

• EXERCISE 17.4
How can you make ·7&¢'? (Assume that the control sequence \cents yields ·f.)

The examples above show that letters and other s:ymbols sometimes get
smaller when they appear in fractions, just as they get smaller when they arc
used as exponents. It's about time that we studied T&X's method for choosing
the sizes of things. T&X actually has eight different styles in which it can treat
fonnulas, namely

display style
text style
script style
scriptscript style

(for formulas displayed on lines by themselves)
(for formulas embedded in the teA-t)
(for formulas used as superscripts or subscripts)
(for second-order superscripts or subscripts)

and four other :•cramped" styles that arc almost the same except that exponents
aren't raised quite so much. For brevity we shall refer to the eight styles as

D, D', T, T', 5, 5', SS, SS',
where D is display style, D 1 is cramped display style, T is teA-t style, etc. T&X
also uses three different sizes of t:n)c for mathematics: they arc called text size,
script size, and scriptscript size.

The normal way to t:n)csct a formula with T&X is to enclose it in dollar
signs$... $: this yields the formula in teA-t style (styleT). Or you can enclose it in
double dollar signs$$... $$: this displays the formula in display style (style D).
The subfonnulas of a formula might, of course, be in different styles. Once you
know the style, you can determine the size of type that T&X will usc:

If a letter is in style
D,D',T,T'
5,5'
SS,SS'

then it will be set in
teA-t size
script size
scriptscript size

(like this)
(like thh;)

(lik€ this)

C;;er
money
cent;;
;;tyle;;
di;;play ;;ty k
text ;;tyk
;;cript ;;tyle
;;criphcript ;;tyk
crampwl
;;ize;; of type for mathematic;;
text ;;ize
;;cript ;;ize
;;criphcript ;;ize

Chapter 17: More abo'ut Math

There is no :• SSS" style or :•scriptscriptscript" size: such tiny s:ymbols would
be even less readable than the scriptscript ones. Therefore TEX stays with
scriptscript size as the minimum:

In a formula
of style
D,T
DI.TI
S,SS
S',SS'

the superscript
style is
s
S'
ss
SS'

and the subscript
style is
S'
S'
SS'
SS'

For example, if x-{a_b} is to be typeset in style D, then a_b will be set in
styleS, and bin style SS1: the result is ·;,;ah'.

So far we haven't seen any difference between styles D and T. Actually
there is a slight difference in the positioning of CAl)Oncnts, although script size
is used in each case: You get ;r:2 in D style and :r? in T style and ;,:2 in D 1 or
T 1 style------do you sec the difference? But there is a big distinction between D
style and T style when it comes to fractions:

In a formula
n\over ,B of style
D
D'
T
T'
S,SS
S',SS'

the style of the
numerator ct is
T
T'
s
S'
ss
SS'

and the style of the
denominator ,8 is
T'
T'
S'
S'
SS'
SS'

Thus if you type . $1 \over2$' (in a teA-t) you get &) namely style s over style 5 1
:

but if you t}1Je '$$1 \over2$$' you get

1
2

(a displayed formula), which is styleT over style T 1
•

\Vhile we)re at it) we might as well finish the style rules: \underline does
not change the style. Math accents) and the operations \sqrt and \over line)

change uncramped styles to their cramped counterparts; fOr example) D changes to D')
but D' stays as it was.

•EXERCISE 17.5
State the style and sit~e of each part of the formula Vi?) assuming that the

formula itself is in style D.

Suppose you don't like the style that TEX selects by its automatic style
rules. Then you can specify the style you want by typing \displaystyle or
\text style or \scriptstyle or \scriptscriptstyle: the style that you se-
lect will apply until the end of the formula or subfonnula, or until you select

141

numerator
denominator
underline
1\-iat h accent;;
;;qrt
o'<erline
di;;play;;tyle
texhtyle
;;cript;;tyk
;;cript;;cript;;tyk

142 Chapter 17: More abo'ut Math

another style. For example, ·$$n+\scriptstyle n+\scriptscriptstyle n.$$'
produces the display

This is a rather silly example, but it docs show that the plus signs get smaller
too, as the style changes. T&X puts no space around + signs in script styles.

Here's a more useful example of style changes: Sometimes you need to
typeset a :•continued fraction" made up of many other fractions, all of which arc
supposed to be in display style:

1
oo + --------=---

1
0] + ----1:--

o,+---
1

aa +-
04

In order to get this effect, the idea is to t:n)c

$$a_0+{1\over\displaystyle a_1+
{\strut 1\over\displaystyle a_2+

{\strut 1\over\displaystyle a_3+
{\strut 1\over a_4}}}}$$

(The control sequence \strut has been used to make the denominators taller:
this is a refinement that will be discussed in Chapter 18. Our concern now is with
the style commands.) VVithout the appearances of \strut and \displaystyle
in this fonnula, the result would be completely different:

1
ao + --;-+==c::;:= 0-] + 1 1

a::l+ ''3+_1_
''4

These examples show that the numerator and denominator of a fraction are
generally centered \Vith respect to each other. If you prefer to have the nu~

merator or denominator appear flush left 1 put :\hfill) aller it; or if you prefer flush
right 1 put :\hfill) at the left. For example1 if the first three appearances of :1\over)
in the previous example are replaced by :1 \hfill \over) 1 you get the display

I ao + "---------
I

Q,j +--c----
1

az+---

(a format for continued fractions that many authors prefCr). This works because \hfill
stretches at a faster rate than the glue that is actually used internally by TE-X when it
centers the numerators and denominators.

continue<! fraction
;;trot
ll u;;h left
hlill
llu;;h right

Chapter 17: More abo'ut Math

T&X has another operation ·\atop', which is like \over except that it
leaves out the fraction line:

;,;

11 + 2
$$x\atop y+2$$

The plain TEX format in Appendix B also defines ·\choose', which is like \atop
but it encloses the result in parentheses:

$$n\choose k$$

It is called \choose because it's a common notation for the so-called binomial
coefficient that tells how many ways there arc to choose k things out of n things.

You can't mix \over and \atop and \choose with each other. For
example, ·$$n \choose k \over 2$$' is illegal: you Inust usc grouping, to get
either '$${n\choose k}\over2$$' or '$$n\choose{k\over2}$$', i,e,,

(~)
2

or (n) k '
2

The latter formula, incidentally, would look better as '$$n\choose k/2$$' or
'$$n \choose{1 \over2}k$$', yielding

or

• EXERCISE 17.6

(n) lk '
2

As alternatives to (~) , discuss how you could obtain the two displays

(~)
and

2

• EXERCISE 17.7
Explain how to specify the displayed formula

(p2)"'1l~' _1 __ ~1-
1 J: 1 J: 2 '

T£X has a generalit~ed version of \over and \atop in which you specify the
exact thid..IlCSS of the line rule by typing :\above{dimen}). For example1

$$\displaystyle{a\over b}\aboveipt\displaystyle{c\over d}$$

will produce a compound fraction \Vith a heavier (1 pt thick) rule as its main bar:
0

b
c
d

This sort of thing occurs primarily in textbooks on elementary mathematics.

143

atop
dwo;;e
binomial coelfkient
abo'<e
compound fraction

144 Chapter 17: More abo'ut Math

:0.-'Iathcmaticians often usc the sign L to stand for :•::nnmnation" and the
sign J to stand for :'integration." If you 'rc a typist but not a mathematician,
all you need to remember is that \sum stands for L and \int for J: these
abbreviations appear in Appendix F together with all the other s:ymbols, in case
you forget. Symbols like L and J (and a few others like U and [1 and .f' and @,
all listed in Appendix F) arc called hrrge openttors, and you t:n)c them just as
you type ordinary symbols or letters. The difference is that TEX will choose a
hrrger large operator in display style than it will in text style. For example,

$\sum x_n$

$$\sum x_n$$

yields

yields

(T style)

(D style),

A displayed \sum usually occurs with :'limits," i.e., with subfonnulas
that arc to appear above and below it. You type limits just as if they were
superscripts and subscripts: for example, if you want

m

I:
n=l

you type either '$$\sum_ {n=1Ym$$' or '$$\sum-m_ {n=i}$$', According to the
normal conventions of mathematical typesetting, TEX will change this to · :z=;:~ 1 '

(i.e., without limits) if it occurs in text style rather than in display style.
Integrations arc slightly different from summations, in that the super-

scripts and subscripts arc not set as limits even in display style:

$\int_{-\infty}-{+\infty}$ yields (T style)

$$\int_{-\infty}-{+\infty}$$ yields (D style),

Some printers prefer to set limits above and below J signs; this takes more
space on the page1 but it gives a better appearance if the subformulas are

complex1 because it keeps them out of the way of the rest of the formula. Similarly1

limits are occasionally desirable in text style or script style; but some printers prefCr
not to set limits on displayed L signs. You can change TE-X)s convention by simply
t:yl)ing :\limits) or :\nolimits) immediately after the large operator. For example1

$$\int\limits_O-{\pi\over2}$$ yields

$$\sum\nolimits_{n=1}-m$$ yields

]
(]

"'m
L-n=l

If you say :\nolimits\limits) (presumably because some macro like \int
specifies \nolimits 1 but you do want them) 1 the last word takes precedence.

There)s also a command :\displaylimits) that can be used to restore TE-X)s normal
conventions; i.e. 1 the limits will be displayed only in styles D and D'.

;;ummation
integration
;;om
int
large operator,;
collecti'<e ;;ign;;, ;;ee large operato
;;igma ;;ign;;, ;;ee ;;um
limit;;
limit;;
nolimit;;
di;;playlimit;;

Chapter 17: More abo'ut Math 145

Sometimes you need to put two or more rows of limits under a large operator;
you can do this \Vith :\atop). For example1 if you want the displayed formula

the correct way to type it is

L P(i,j)
O<i<m
o<{<n

$$\sum_{\scriptstyleO\le i\le m\atop\scriptstyleO<j<n}P(i,j)$$

(perhaps \Vith a few more spaces to make it look nicer in the manuscript file). The
instruction :\scriptstyle) was necessary here 1 hvico--otherwise the lines :o:::; i:::; m)
and :o < j < n) would have been in scriptscript sit~e 1 which is too smalL This is another
instance of a rare case where TE-X)s automatic style rules need to be overruled.

• EXERCISE 17.8
P q r

How would you type the displayed formula L L L a;jbjkCJ,:i '>
i=l j=l k=l

•EXERCISE 17.9
And how would you handle L a;jbjkCki ?

J<i<p
J:Sj:Sq
J~k~r

Since mathematical formulas can get horribly large, T&X has to have
some way to make ever-larger symbols. For example, if you type

$$\sqrt{1+\sqrt{1+\sqrt{1+
\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}}}$$

the result shows a variety of available square-root signs:

1+

The three largest signs here arc all essentially the sam(\ except for a vertical
segment · I ' that gets repeated as often as necessary to reach the desired size:
but the smaller signs arc distinct characters found in T&X's math fonts.

A similar thing happens with parentheses and other so-called :'delimiter"
symbols. For example, here arc some of the different sizes of parentheses and
braces that plain T&X might usc in formulas:

The three largest pairs in each case arc made with repeatable extensions, so they
can become as large as necessary.

atop
;;cript;;tyk
;;quare-root ;;ign;;
delimiter
fence;;, ;;ee delimiter;;
parenthe;;e;;
brace;;
piece;; of ;;ymbob

146 Chapter 17: More abo'ut Math

Delimiters arc important to mathematicians, because they provide good
visual clues to the underlying structure of complex CAl)rcssions: they delimit the
boundaries of individual subfonnulas. Here is a list of the 22 basic delimiters
provided by plain T&X:

Irwut
(
)
[or \lbrack
) or \rbrack
\ { or \lbrace
\} or \rbrace
\lfloor
\rfloor
\lceil
\rceil
\langle
\rangle
I
\backs lash
I or \vert
\I or \Vert
\uparrow
\Upa=ow
\downarrow
\Downarrow
\updownarrow
\Updownarrow

Delimiter
left parenthesis: (
right parenthesis:)
left bracket: [
right bracket:]
left curly brace: {
right curly brace: }
left floor bracket: l
right floor bracket: J
left ceiling bracket: r
right ceiling bracket: 1
left angle bracket: {
right angle bracket:)
slash: /
reverse slash: \
vertical bar: I
double vertical bar: II
upward arrow: t
double upward arrow: lr
downward arrow: .J_
double downward arrow: .lJ
up-and-down arrow: t
double up-and-down arrow: :{t

In some cases, there arc two ways to get the same delimiter: for example, you
can specify a left bracket by typing either·[' or ·\lbrack'. The latter alternative
has been provided because the symbol . r is not readily available on all computer
keyboards. Remember, however, that you should never try to specify a left brace
or right brace simply by typing ·f or "}': the { and } symbols arc reserved for
grouping. The right way is to type ·\for ·\For ·\lbrace' or ·\rbrace'.

In order to get a slightly larger version of any of these symbols, just
precede them by ·\bigl' (for opening delimiters) or ·\bigr' (for closing ones).
This makes it easier to read formulas that contain delimiters inside delimiters:

Irwut
$\bigl(x-s(x)\bigr)\bigl(y-s(y)\bigr)$
$\bigl[x-s[x)\bigr)\bigl[y-s[y)\bigr)$
$\bigll lxl+lyl \bigrl$
$\bigl\lfloor\sqrt A\bigr\rfloor$

OutP'ut

(J: s(J:))(11
[" s[J:l] [11
II' I+ l11ll
l v'AJ

s(11l)
s[11l]

lbrack
rbrack
I bran:
rbrace
1/loor
rlloor
!ceil
rceil
Jangle
rangle
bacbla,-;h
'<Crt
Vert
uparrow
Cparrow
down arrow
l)ownarrow
updownarrow
Cpdownarrow
bent bar;;, ;;ee Jangle, rangle
curly brace;;, ;;ee I bran:, rbrace
left bracket
right bracket
left brace
right brace
I
big!
bigr

Chapter 17: More abo·ut Math

The \big delimiters arc just enough bigger than ordinary ones so that the dif-
ference can be perceived, yet small enough to be used in the teA-t of a paragraph.
Here arc all 22 of them, in the ordinary size and in the \big size:

0 [J {} lJ flO I\ Ill H·.J-.I.ft~
0 []{ HHl 0 I\ Ill Tlr lJJ.H

You can also type \Bigl and \Bigr to get larger symbols suitable for displays:

0 [J 0 lHl 0 I\ Ill n U U
These arc 50% taller than their \big counterparts. Displayed formulas most
often usc delimiters that arc even taller (twice the size of \big): such delimiters
arc constructed by \biggl and \biggr, and they look like this:

o [J o u r1 o /\111 nun
Finally, there arc \Biggl and \Biggr versions, 2.5 times as tall as the \bigl
and \bigr delimiters:

o [J {} lJ rl \) 1\ 1111 ~ 1 n r n
• EXERCISE 17.10

(
'J' 'J') Guess how to t}l'e the formula ')' " + ')' " I'P(J: + ·iy;) I' = 0, in display style,

(;,:"' (U"-
using \bigg delimiters for the large parentheses. (The symbols (J and r.p that
appear here arc called \partial and \varphi.)

•EXERCISE 17.11
In practice1 \big and \bigg delimiters are used much more often than \Big

and \Bigg ones. \Vhy do you think this is true?

A \bigl or \Bigl or \biggl or \Biggl delimiter is an opening 1 like a left
parenthesis; a \bigr or \Bigr or \biggr or \Biggr delimiter is a dosing 1 like

a right parenthesis. Plain TE-X also provides \bigm and \Bigm and \biggm and \Biggm
delimiters 1 for use in the middle of formulas; such a delimiter plays the rOle of a relation 1

like an equals sign 1 so TE-X puts a bit of space on either side of it.

$\big1(x\in A(n)\bigmlx\in B(n)\bigr)$
$\bigcup_n X_n\bigm\1\bigcap_n Y_n$

(J: E A(n) I J: E B(n))

Un Xn II nn }-~,
You can also say just \big or \Big or \bigg or \Bigg; this produces a delimiter that
acts as an ordinary variable. It is used primarily with slashes and backslashes1 as in
the follmving example.

$${a+1\over b}\bigg/{c+1\over d}$$

•EXERCISE 17.12
What's the professional way to type (J: + j(J:)) I (J: j(J:)) '? (Look closely.)

147

Big!
Bigr
biggl
biggr
Biggl
Biggr
partial
'<arphi
opening
do;;ing
bigm
Bigm
biggm
Biggm
relation
bigcup
bigcap
'<erticalline
in
big
Big
bigg
Bigg

148 Chapter 17: More abo'ut Math

T&X has a built-in mechanism that figures out how tall a pair of delim-
iters needs to be, in order to enclose a given subfonnula: so you can usc this
method, instead of deciding whether a delimiter should be \big or \bigg or
whatever. All you do is say

\left(dclim1) (subformula) \right(dclim,)

and TEX will typeset the subfonnula, putting the specified delimiters at the left
and the right. The size of the delimiters will be just big enough to cover the
subformula. For example, in the display

(1)" $$1+\left(i\overi-x-2\right)-3$$ 1 + --
1 "'

TEX has chosen \biggl (and \biggr), because smaller delimiters would be too
small for this particular fraction. A simple formula like ·$\left(x\right)$'
yields just ·(;r:)': thus, \left and \right sometimes choose delimiters that arc
smaller than \bigl and \bigr.

VVhcncvcr you usc \left and \right they Inust pair up with each other,
just as braces do in groups. You can't have \left in one formula and \right in
another, nor arc you allowed to t:n)c things like ·\left (... { ... \right) ... F
or ·\left (... \begingroup ... \right) ... \endgroup'. This restriction makes
sense, because TEX needs to typeset the subfonnula that appears between \left
and \right before it can decide how big to make the delimiters. But it is
worth explicit mention here, because you do not have to match parentheses and
brackets, etc., when you arc not using \left and \right: TEX will not complain
if you input a formula like '$[0, 1)$' or even '$)($'or just '$)$', (And it's a
good thing TEX doesn't, for such unbalanced formulas occur surprisingly often
in mathematics papers.) Even when you do usc \left and \right, TEX doesn't
look closely at the particular delimiters that you happen to choose: thus, you
can t:n)c strange things like ·\left)' and/or ·\rightC if you know what you're
doing. Or even if you don't.

The \over operation in the example displayed above docs not involve
the ·1 +' at the beginning of the formula: this happens because \left and \right
have the function of grouping, in addition to their function of delimiter-making.
Any definitions that you happen to make between \left and \right will be
local, as if braces had appeared around the enclosed subfonnula.

• EXERCISE 17.13
1; se \left and \right to typeset the following display (with \phi for dJ):

, n ldJ(k)J
r.(nJ = L kl

k='2

At this point you arc probably wondering why you should bother learn-
ing about \bigl and \bigr and their relatives, when \left and \right arc
there to calculate sizes for you automatically. VVell, it's true that \left and
\right arc quite handy, but there arc at least three situations in which you

left
right
parenthe;;e;;
bracket;;
crotchet;;, ;;ee bracket;;
grouping
phi

Chapter 17: More abo'ut Math

will want to usc your own wisdom when selecting the proper delimiter size:
(1) Sometimes \left and \right choose a smaller delimiter than you want. For
example, we used \bigl and \bigr to produce II" I + l11ll in one of the previous
illustrations: \left and \right don't make things any bigger than necessary,
so '$\left I \left I x\right 1+\left ly\right !\right I$' yields only , II" I + l11ll',
(2) Sometimes \left and \right choose a larger delimiter than you want. This
happens most frequently when they enclose a large operator in a display: for
example, compare the following two formulas:

$$\left(\sum_{k=1}-n A_k \right)$$

$$\biggl(\sum_{k=1}-n A_k \biggr)$$

(EAk)
(tAk)

k=l

The rules of \left and \right cause them to enclose the \sum together with
its limits, but in special cases like this it looks better to let the limits hang out
a bit: \bigg delimiters arc better here. (3) Sometimes you need to break a huge
displayed formula into two or more separate lines, and you want to make sure
that its opening and closing delimiters have the same size: but you can't usc
\left on the first line and \right on the last, since \left and \right must
occur in pairs. The solution is to usc \Biggl (say) on the first line and \Biggr
on the last.

Of course1 one of the advantages of \left and \right is that they can make
arbitrarily large delimiters-much bigger than \biggggg! The slashes and

angle brackets do have a maximum sit~e 1 however; if you ask fOr really big versions of
those symbols you will get the largest ones available.

• EXERCISE 17.14
Prove that you have mastered delimiters: Coerce T&X into producing the formula

r.(n) = ,~,l CE l(m/k)/fm/k lJ) -l J
If you type :.) after \left or \right 1 instead of specifying one of the basic
delimiters 1 you get a so~called null delimiter (which is blank). \Vhy on earth

would anybody want that 1 you may ask. \Vell 1 you sometimes need to produce formulas
that contain only one large delimiter. For example1 the display

lxl = {x,
-X;

ifx?:O
ifx<O

has a ; f but no ; r. It can be produced by a construction of the form

$$lxl=\left\{ ... \right.$$

Chapter 18 explains how to fill in the : ...) to finish this construction; let)s just notice
for now that the :\right.) makes it possible to have an invisible right delimiter to go
with the visible left brace.

149

;;om
limit;;
null delimiter

150 Chapter 17: More abo'ut Math

~~ A null delimiter isn)t compl:t~ly void; it is a:r1 CI~Ipty box whose width is. a !E-X
Y Y parameter called \nulldel~m~terspace. We w1ll see later that null delumters
are inserted next to fractions. Plain TE-X sets \nulldelimiterspace=1.2pt.

You can type ·<' or ·>' as convenient abbreviations for \langle and
\rangle, when TEXis looking for a delimiter. For example, ·\bigl<' is equiv-
alent to '\bigl\langle', and '\right>' is equivalent to '\right\rangle', Of
course ·<' and ·>' ordinarily produce the less-than and greater-than relations
· < > ', which arc quite different from angle brackets · {) '.

Plain T£X also makes available a few more delimiters 1 which were not listed
in the basic set of 22 because they are sort of speciaL The control sequences

\arrowvert 1 \Arrowvert 1 and \bracevert produce delimiters made from the repeatable
parts of the vertical arrmvs 1 double vertical arrmvs 1 and large braces 1 respectively1

without the arrowheads or the curly parts of the braces. They produce results similar
to \vert or \Vert 1 but they are surrounded by more white space and they have a
different weight. You can also use \lgroup and \rgroup 1 which are constructed from
braces \Vithout the middle parts; and \lmoustache and \rmoustache 1 which give you
the top and bottom halves of large braces. For example1 here are the \Big and \bigg
versions of \vert 1 \Vert 1 and these seven special delimiters:

I II I II I () f \
I IIIli···() fl

Notice that \lgroup and \rgroup are rather like bold parentheses1 \Vith sharper bends
at the corners; this makes them attractive for certain large displays. But you can~
not use them exactly like parentheses1 because they are available only in large sit~es
(\Big or more).

~~ ~u~:tion: \Vhat h~ppens if a sub~cript o: superscript fO.llo:"'S a .la:ge del~m~
Y Y Iter. Answer: That·s a good quesbon. After a \left delumter 1 It IS the first
subscript or superscript of the enclosed subf0rmula1 so it is effectively preceded by{}.
After a \right delimiter 1 it is a subscript or superscript of the entire \left ... \right
subformula. And after a \bigl or \bigr or \bigm or \big delimiter 1 it applies only to
that particular delimiter. Thus 1 :\bigl(_2) work-s quite differently from :\left(_2).

If you look closely at the examples of math typesetting in this chapter 1 you
\Viii notice that large parentheses and brackets are symmetric with respect to

an invisible horimntal line that runs a little bit above the baseline; when a delimiter
gets larger 1 its height and depth both grow by the same amount. This horit~ontal line
is called the axis of the formula; fOr example1 a fOrmula in the text of the present
paragraph would have an axis at this level: The bar line in every fraction is
centered on the a..xis 1 regardless of the sit~e of the numerator or denominator.

Sometimes it is necessary to create a special box that should be centered
vertically with respect to the axis. (For example1 the :lxl = { ...) example

above was done with such a box.) TE-X provides a simple way to do this: You just say

\vcenter{(vertical mode material}}

nullddimiter;;pace
Jangle
rangk
k;;;;-than
greater-than
angle bracket;;
arrow'<ert
Arrow'<erl
brace'<ert
'<Crt
Vert
I group
rgroup
lmou;;tache
rmou;;tache
mou;;tache;;
;;ub;;cript
;;uper;;cript
ba,-;dine
axi;;

Chapter 17: More abo'ut Math

and the vertical mode material \Viii be packed into a box just as if \vcenter had been
\vbox. Then the box \Viii be raised or lowered until its top edge is as far above the axis
as the bottom edge is below.

~~ The concept of :'axisl' is meaningful fOr TE-X only in math formulas1 not in
Y Y ordinary text; therefore T£X allmvs you to use \vcenter only in math mode.
If you really need to center something vertically in horimntal mode1 the solution is
to say :$\vcenter{ ... }$). (Incidentally1 the constructions :\vcenter to{dimen}) and
:\vcenter spread{dimen}) are legal too1 in math mode; vertical glue is always set by
the rules fOr \vbox in Chapter 12. But \vcenter by itself is usually sufficient.)

Any box can be put into a formula by simply saying \hbox or \vbox or \vtop
or \box or \copy in the normal way1 even when you are in math mode. Fur~

thermore you can use \raise or \lower 1 as if you were in horimntal mode1 and you
can insert vertical rules \Vith \vrule. Such constructions1 like \vcenter 1 produce boxes
that can be used like ordinary symbols in math fOrmulas.

~~ Sometimes you need to make up your own s:y-mbols 1 when you run across
Y Y something unusual that doesn)t occur in the fOnts. If the new symbol occurs
only in one place1 you can use \hbox or \vcenter or something to insert exactly what
you want; but if you are defining a macro fOr general use1 you may want to use different
constructions in different styles. TE-X has a special fCature called \mathchoice that
comes to the rescue in such situations: You write

\mathcho ice{ (math)} { (math)} { (math)} { (math)}

where each {math} specifies a subformula. TE-X will choose the first subformula in style
D or D' 1 the second in style T or T' 1 the third in style S or S' 1 the fourth in style SS
or SS'. (TE-X actually typesets all four subformulas 1 before it chooses the final one 1

because the actual style is not always known at the time a \mathchoice is encountered;
for example1 when you type :\over) you often change the style of everything that has
occurred earlier in the fOrmula. Therefore \mathchoice is somewhat expensive in terms
of time and space1 and you should use it only when you)re willing to pay the price.)

6<,~•EXERCISE 17.15
Y Y Guess what output is produced by the follmving commands:

\def\puzz1e{{\mathchoice{D}{T}{S}{SS}}}
$$\puzz1e{\puzz1e\over\puzz1e'{\puzz1e'\puzz1e}}$$

6<,~•EXERCISE 17.16
Y Y Devise a :\square) macro that produces a : o) for use in math fOrmulas. The
box should be symmetrical with respect to the axis 1 and its inside dimensions should
be 3 pt in display and text styles 1 2.1 pt in script styles 1 and 1.5 pt in scriptscript styles.
The rules should be 0.4pt thick in display and text styles1 0.3pt thick otherwise.

~~ Plain TE-X has a macro called \mathpalette that is useful for \mathchoice
Y Y constructions; :\mathpalette\a{xyz}) expands to the fOur~ pronged array of
choices :\mathchoice {\a \displaystyle {xyz}} ... {\a \scriptscriptstyle {xyz}}).
Thus the first arbrument to \mathpalette is a control sequence whose first argument is
a style selection. Appendix B contains several examples that show how \mathpalette
can be applied. (See in particular the definitions of \phantom1 \root 1 and \smash; the
conbrruence sign \cong (S=:) is also constructed from =and""' using \mathpalette.)

151

'<center
'<box
hbox
'<top
box
copy
rai;;e
lower
'<rule
mathdwke
;;quare
mathpaktte
congruence ;;ign
cong
con;;tructing new math ;;ymbol;;
math ;;ymbob, con;;truction of

152 Chapter 17: More abo'ut Math

At the beginning of this chapter we discussed the commands \over 1 \atop 1

\choose 1 and \above. These are special cases of TE-X)s :'generalit~ed fradionl'
feature 1 which includes also the three primitives

\overwithdelims{delimJ }(delimz}
\atopwi thdel ims (de lim 1 } (delim 2 }

\abovewi thdel ims (de lim 1 } (delimz} (dimen}

The third of these is the most general 1 as it encompasses all of the other generalit~ed
fractions: \overwithdelims uses a fraction bar whose thid..IlCSS is the default for the
current sit~e 1 and \atopwithdelims uses an invisible fraction bar whose thid..IlCSS is 11ero1
while \abovewithdelims uses a bar whose thickness is specified explicitly. T£X places
the immediately preceding subfOrmula (the numerator) over the immediately follmving
subformula (the denominator) 1 separated by a bar line of the desired thid..11ess; then it
puts (delim1} at the left and (delim2} at the right. For example1 :\choose) is equivalent
to :\atopwithdelimsO). If you define \legendre to be :\overwithdelims0) 1 you
can t:yl)eset the Legendre symbol:(%)) by saying :{a\legendre b}). The sit~e of the
surrounding delimiters depends only on the style1 not on the sit~e of the fractions; larger
delimiters are used in styles D and D' (see Appendix G). The simple commands \over 1

\atop 1 and \above are equivalent to the corresponding :withdelims) commands when
the delimiters are null; fOr example1 :\over) is an abbreviation fOr :\overwi thdelims ..) .

6<,~•EXERCISE 17.17
Y Y Define a control sequence \euler so that the Eulerian number (Z) will be
produced when you t:yl)e :{n\euler k}) in a fOrmula.

~~ -~ppendix G expl~ins exactly how T~X co~nputes th~ d~ired sit~e of .delimiters
Y Y for \left and \r~ght. The general 1dea IS that delumters are vertically cen~
tered \Vith respect to the axis; hence1 if we want to cover a subfOrmula between \left
and \right that extends 111 units above the axis and 112 units below1 we need to make
a delimiter whose height plus depth is at least 11 units 1 where 11 = 2max(11J 1 JJ2). It is
usually best not to cover the formula completely1 however 1 but just to come dose; so
T£X allo\\'S you to specifY two parameters1 the \delimiterfactor f (an integer) and
the \delimitershortfall J (a dimension). The minimum delimiter si11e is taken to be
at least JJ , f /WOO, and at least JJ - J, Appendix B sets f = 901 and J = 5 pt, Thus,
if 11 = 30pt1 the plain TE-X format causes the delimiter to be more than 27pt tall; if
11 = 100 pt1 the corresponding delimiter will be at least 95 pt talL

So far we have been discussing the rules fOr t:yl)ing math formulas 1 but we
haven)t said much about how TE-X actually goes about converting its input into

lists of boxes and glue. Almost all of the control sequences that have been mentioned in
Chapters 16 and 17 are :'high lever' fCatures of the plain TE-X format; they are not built
into T£X itself. Appendix B defines those control sequences in terms of more primitive
commands that TE-X actually deals with. For example1 :\choose) is an abbreviation
for :\atopwithdelimsO); Appendix B not only introduces \choose 1 it also tells TE-X
where to find the delimiters (and) in various sit~es. The plain TE-X fOrmat defines all
of the special characters like \alpha and \mapsto 1 all of the special accents like \tilde
and \widehat 1 all of the large operators like \sum and \int 1 and all of the delimiters
like \lfloor and \vert. Any of these things can be redefined1 in order to adapt TE-X
to other mathematical styles and/or to other fOnts.

generalized fraction
o'<erwithddim;;
fraction
atopwithddim;;
abo'<ewit hddim;;
numerator
denominator
dwo;;e
I,egendre ;;ymbol

atop
abo'<e
Eulerian number
axi;;
ddimiterfactor
ddimiter;;hortfall

Chapter 17: More abo'ut Math

The remainder of this chapter discusses the low~level commands that TE-X
actually obeys behind the scenes. Every paragraph on the next fCw pages is

marked \Vith double dangerous bends1 so you should ship to Chapter 18 unless you are
a glutton for TE-Xnicalities.

~~ A~l ~haracters that a:e typeset ~n math mo~e belong t? one of. siX::~en ffuni!ies
Y Y of fonts1 numbered mternally from 0 to 1;). Each of these faunhes comnsts
of three fOnts: one for text sit~e 1 one for script sit~e 1 and one for scriptscriptsit~e. The
commands \textfont 1 \scriptfont 1 and \scriptscriptfont are used to specify the
members of each family. For example1 family 0 in the plain TE-X format is used for
roman letters 1 and Appendix B contains the instructions

\textfontO=\tenrm
\scriptfontO=\sevenrm
\scriptscriptfontO=\fiverm

to set up this family: The 10~point roman font (\tenrm) is used for normal symbols1

7~point roman (\sevenrm) is used fOr subscripts 1 and 5~point roman (\fiverm) is used
for sub~subscripts. Since there are up to 256 characters per f0nt 1 and 3 fOnts per family1

and 16 families 1 TE-X can access up to 12 1288 characters in any one formula (4096 in each
of the three sit~es). Imagine that.

~~ A definition like \textfont(family number}=(font identifier} is local to the
Y Y group that contains it 1 so you can easily change family membership from one
set of conventions to another and back again. Furthermore you can put any font into
any family; for example1 the command

\scriptscriptfontO=\scriptfontO

makes sub~subscripts in family 0 the same sit~e as the subscripts currently are. TE-X
doesn)t check to see if the families are sensibly organit~ed; it just fOllo\\'S instructions.
(However 1 fonts cannot be used in families 2 and 3 unless they contain a certain number
of special parameters1 as we shall see later.) Incidentally1 T£X uses \nullfont 1 which
contains no characters1 for each family member that has not been defined.

~~ During the time that a math fOrmula is being read 1 TE-X remembers each
Y Y symbol as being :'character position so--and~so in family number such~and~
such/' but it does not take note of what fonts are actually in the families until reaching
the end of the formula. Thus 1 if you have loaded a font called \Helvetica that contains
Swiss~style numerals 1 and if you say something like

$\textfontO=\tenrm 9 \textfontO=\Helvetica 9$

you will get two 9)s in font \Helvetica1 assuming that TE-X has been set up to take 9)s
from family 0. The reason is that \textfontO is \Helvetica at the end of the formula 1

and that)s when it counts. On the other hand1 if you say

$\textfontO=\tenrm 9 \hbox{$9\textfontO=\Helvetica$}$

the first 9 will be from \tenrm and the second from \Helvetica1 because the formula
in the hbox will be typeset before it is incorporated into the surrounding formula.

6<,~•EXERCISE 17.18
Y Y If you say :${\textfontO=\Helvetica 9}$) 1 what font will be used for the 9?

153

familie;;
text font
;;cript font
;;cri pt ;;cri pt font
family 0
tenrm
;;e'<enrm
li'<erm
null font

154 Chapter 17: More abo'ut Math

~~ Ever! math cha~acter~ is ~riven an ic!m1~ifying code number b.e~ween 0 and 409~ 1
Y Y obtamed by addmg 2;)6 tunes the faunly number to the pOSibon number. Tins
is easily expressed in hexadecimal notation 1 using one hexadecimal dibrit fOr the family
and two for the character; fOr example1 "24A stands for character "4A in family 2. Each
character is also assigned to one of eight dasses 1 numbered 0 to 71 as follo\\'8:

C"loss Meoning Exomple C"loss Meoning Exomple
() Ordinary I 4 Opening (
I Large operator \sum 5 Closing)
2 Binary operation + 6 Punctuation
3 Relation 7 Y ariable family X

Classes 0 to 6 tell what :'part of speechl' the character belongs to 1 in ma.th~printing
language; class 7 is a special case discussed below. The class number is multiplied by
4096 and added to the character number 1 and this is the same as making it the leading
dibrit of a four~dibrit hexadecimal number. For example1 Appendix B defines \sum to
be the math character "1350 1 meaning that it is a large operator (class 1) found in
position "50 of family 3.

6<,~•EXERCISE 17.19
Y Y The \oplus and \bullet symbols and •) are binary operations that appear
in positions 8 and 15 (decimal) of family 21 when the fonts of plain T£X are being used.
Guess what their math character codes are. (This is too easy.)

~~ Class 7 is a special case that allows math symbols to change families. It
Y Y behaves exactly like class 01 except that the specified family is replaced by the
current value of an integer parameter called \fam1 provided that \fam is a legal family
number (i.e. 1 if it lies between 0 and 15). TE-X automatically sets \fam=-1 whenever
math mode is entered; therefOre class 7 and class 0 are equivalent unless \fam has been
given a new value. Plain TE-X changes \fam to 0 when the user types :\rm); this makes
it convenient to get roman letters in formulas 1 as we \Viii see in Chapter 181 since
letters belong to class 7. (The control sequence \rm is an abbreviation for :\fam=O
\tenrm); thus 1 \rm causes \fam to become 11ero1 and it makes \tenrm the :'current
font.l' In horit~ontal mode1 the \fam value is irrelevant and the current fOnt governs the
t:yl)esetting of letters; but in math mode1 the current font is irrelevant and the \fam
value governs the letters. The current font affects math mode only if \u is used or if
dimensions are briven in ex or em units; it also has an effect if an \hbox appears inside
a f0rmula1 since the contents of an hbox are typeset in horimntal mode.)

~~ ~he interp:,et,atiOI~. of cl,1aracters in. u,1ath mode is defin~d by a table of 256
Y Y mathcode \ alues 1 these table entnes can be changed by the \mathcode com~
mand1 just as the category codes are changed by \catcode (see Chapter 7). Each
mathcode specifies class 1 family1 and character position 1 as described above. For exam~
ple1 Appendix B contains the commands

\mathcode'<= 11 313C
\mathcode' *"" 11 2203

which cause TE-X to treat the character :<;in math mode as a relation (class 3) found
in position "3C of family 11 and to treat an asterisk :*; as a binary operation found in
position 3 of family 2. The initial value of \mathcode'b is "7162; thus 1 b is character

math character
hexaded mal not at ion
da,-;;;e;; of math character;;, table
math code;;
table of.
large operator
binary operation
relation
opening
do;;ing
punct oat ion
'<ariable family
oplu;;
bullet
fam
rm
current font
control ;;pace
ex
em
mathcode
cat code
le;;;; than
a,-;teri;;k

Chapter 17: More abo'ut Math

"62 in family 1 (italics) 1 and its family \Viii vary \Vith \fam. (INITEX starts out \Vith
\mathcode x = x fOr all characters x that are neither letters nor digits. The ten clibrits
have \mathcode x = x+ "7000; the 52 letters have \mathcode x = x+ "7100.) TE-X look-s
at the mathcode only when it is typesetting a character whose catcode is 11 (letter) or
12 (other) 1 or when it encounters a character that is given explicitly as \char{number}.

~~ A \mathcode ~~~ also have the special :'alue "8000 1 w.hich causes t.he :haracter
Y Y to behave as 1f 1t has catcode 13 (acbve). Appendix B uses tins feature to
make ' expand to ,.. {\prime} in a slightly tricky way. The mathcode of ' does not
interfere with the use of ' in octal constants.

~~ The mathcode table allows you to refCr indirectly to any character in any
Y Y family1 \Vith the touch of a single key. You can also specify a math character
code directly1 by typing \mathchar 1 which is analogous to \char. For example1 the
command :\mathchar11 1ABC) specifies a character of class 1 1 family 10 ("A) 1 and position
"BC. A hundred or so definitions like

\def\sum{\mathchar 11 1350 }

would therefore suffice to define the special sy-mbols of plain TE-X. But there is a better
way: TE-X has a primitive command \mathchardef 1 which relates to \mathchar just as
\chardef does to \char. Appendix B has a hundred or so definitions like

\mathchardef\sum= 11 1350

to define the special symbols. A \mathchar must be between 0 and 32767 ("7FFF).

~~ A.character of class 1 1 i:e. 1 a lar?e ?perator like \sum1 \Viii be vertically centered
Y Y \V1th respect to the axis when It IS t:yl)eset. Thus 1 the large operators can be
used with diffCrent sit~es of type. This vertical adjustment is not made for symbols of
the other classes.

~~ T£X .as~ociates class~ with subfOrmulas as well as."vith .indiv~,~~~ d~aracter~.
Y Y Thus 1 for example1 you can treat a complex construction as If It were a bi~
nary operation or a relation 1 etc. 1 if you want to. The commands \mathord1 \mathop 1

\mathbin1 \mathrel 1 \mathopen1 \mathclose 1 and \mathpunct are used fOr this pur~
pose; each of them is followed either by a single character or by a subformula in
braces. For example1 \mathopen\mathchar 11 1234 is equivalent to \mathchar 11 4234 1 be--
cause \mathopen fOrces class 4 (opening). In the formula :$G\mathbin:H$) 1 the colon
is treated as a binary operation. And Appendix B constructs large opening symbols
by defining \bigl#1 to be an abbreviation for

\mathopen{\hbox{$\left#1 ... \right.$}}

There)s also an eighth dassification 1 \mathinner 1 which is not normally used fOr in~

dividual symbols; fractions and \left ... \right constructions are treated as :'innerl'
subformulas1 which means that they \Viii be surrounded by additional space in cer~
tain circumstances. All other subfOrmulas are generally treated as ordinary symbols1

whether they are formed by \over line or \hbox or \vcenter or by simply being en~
dosed in braces. Thus 1 \mathord isn)t really a necessary part of the TE-X language;
instead of typing :$1\mathord,234$) you can get the same effCct from :$1{.}234$).

155

family 1
char
apo;;trophe
prime
acti'<e math character
octal
mathchar
char
mat hchardef
chardef
large operator
mathord
mat hop
math bin
mathrd
mathopen
mathdo;;e
mathpunct
colon
big!
mathinner
left
right

156 Chapter 17: More abo'ut Math

6<,~• EXERCISE 17.20
Y Y Commands like \mathchardef\alpha= 11 010B are used in Appendix B to define
the lowercase Greek letters. Suppose that you want to extend plain TE-X by putting
boldface math italic letters in family 91 analogous to the normal math italic letters
in family L (Such fonts aren)t available in stripped dmv11 versions of T£X 1 but let)s
assume that they exist.) Assume that the control sequence \bmit has been defined as
an abbreviation for :\fam=9); hence :{\bmit b}) will brive a boldface math italic b. \Vhat
change to the definition of \alpha will make {\bmit\alpha} produce a boldface alpha?

~~ Delimiters are specified in a similar but more complicated way. Each character
Y Y has not only a \cat code and a \mathcode but also a \delcode 1 which is either
negative (fOr characters that should not act as delimiters) or less than "1000000. In
other words 1 nonnegative dekodes consist of six hexadecimal digits. The first three
clibrits specifY a :'smalr' variant of the delimiter 1 and the last three specify a :'largd'
variant. For example1 the command

\delcode'x= 11 123456

means that if the letter x is used as a delimiter 1 its small variant is found in position
"23 of family 11 and its large variant is found in position "56 of family 4. If the
small or large variant is given as 000 1 however (position 0 of family 0) 1 that variant is
ignored. TE-X look-s at the dekode when a character fOllo\\'B \left or \right 1 or when
a character fOllo\\'B one of the withdelims commands; a negative dekode leads to an
error message 1 but otherwise T£X finds a suitable delimiter by first trying the small
variant and then the large. (Appendix G discusses this process in more detaiL) For
example1 Appendix B contains the commands

\del code' (= 11 028300 \del code' .=0

which specify that the small variant of a left parenthesis is found in position "28 of
family 01 and that the large variant is in position 0 of family 3; also1 a period has
no variants 1 hence :\left.) will produce a null delimiter. There actually are several
different left parenthesis symbols in family 3; the smallest is in position 01 and the others
are linked together by infOrmation that comes with the font. All dekodes are -1 until
they are changed by a \del code command.

6<,~• EXERCISE 17.21
Y Y Appendix B defines \del code'< so that there is a shorthand notation for angle
brackets. \Vhy do you think Appendix B doesn)t go further and define \del code'{?

~~ A delimiter can also be ~iven directly1 as :~delimiter{numbe:}). In Y:is case
Y Y the number can be as lngh as 1.e. 1 seven hexadecunal digits; the
leading digit specifies a class 1 from 0 to 71 as in a \mathchar. For example 1 Appendix B
contains the definition

\def\langle{\delimiter11 426830A }

and this means that \langle is an opening (class 4) whose small variant is "268 and
whose large variant is "30A. \Vhen \delimiter appears after \left or \right 1 the
class digit is ignored; but when \delimiter occurs in other contexts 1 i.e. 1 when T£X
isn)t looking fOr a delimiter 1 the three rightmost digits are dropped and the remaining
four digits act as a \mathchar. For example1 the expression :$\langle x$) is treated
as if it were :$\mathchar11 4268 x$).

Greek
boldface math it ali('
l)elimiter,;
del code
family 0
left
right
withdelim;;
null delimiter
angle bracket;;
delimiter
Jangle

Chapter 17: More abo'ut Math

6<,~• EXERCISE 17.22
Y Y \Vhat goes \Vrong if you type :\bigl \delimiter 11 426830A)?

~~ Granted that these numeric conventions for \mathchar and \delimiter are not
Y Y beautiful 1 they sure do pack a lot of infOrmation into a small space. That)s why
TE-X uses them for low~level definitions inside formats. Two other low~ level primitives
also deserve to be mentioned: \radical and \mathaccent. Plain TE-X makes square
root signs and math accents available by giving the commands

\def\sqrt{\radical 11 270370 }
\def\widehat{\mathaccent 11 362 }

and several more like them. The idea is that \radical is followed by a delimiter
code and \mathaccent is followed by a math character code1 so that T£X hilO\VB the
family and character positions fOr the symbols used in radical and accent constructions.
Appendix G gives precise information about the positioning of these characters. By
changing the definitions 1 TE-X could easily be extended so that it would typeset a variety
of different radical signs and a variety of different accent sibfilS 1 if such symbols were
available in the fOnts.

~~ Plain TE-X uses family 1 fOr math italic letters 1 family 2 for ordinary math
Y Y symbols1 and family 3 fOr large sy-mbols. TE-X insists that the fonts in fami~
lies 2 and 3 have special \fontdimen parameters1 which govern mathematical spacing
according to the rules in Appendix G; the cmsy and cmex symbol fOnts have these
parameters1 so their assignment to families 2 and 3 is almost mandatory. (There is 1

however 1 a way to modifY the parameters of any font 1 using the \fontdimen command.)
INITEX initialit~es the mathcodes of all letters A to Z and a to z so that they are symbols
of class 7 and family 1; that)s why it is natural to use family 1 fOr math italics. Sim~
ilarly1 the digits 0 to 9 are class 7 and family 0. None of the other families is treated
in any special way by T£X. Thus 1 for example 1 plain T£X puts text italic in family 41

slanted roman in family 51 bold roman in family 61 and t:yl)e\\Titer t:yl)e in family 71 but
any of these numbers could be switched around. There is a macro \newfam1 analogous
to \newbox 1 that will assign symbolic names to families that aren)t already used.

~~ \Vhen T£X is in horimntal mode1 it is making a horit~ontal list; in vertical
Y Y mode 1 it is making a vertical list. Therefore it should come as no great surprise
that T£X is making a math list when it is in math mode. The contents of horimntal
lists were explained in Chapter 141 and the contents of vertical lists were explained in
Chapter 15; it)s time now to describe what math lists are made of. Each item in a
math list is one of the following types of things:

• an atom (to be explained momentarily);
• horimntal material (a rule or discretionary or penalty or :'whatsif');
• vertical material (from \mark or \insert or \vadjust);
• a glob of glue (from \hskip or \mskip or \nonscript);
• a kern (from \kern or \mkern);
• a style change (from \displaystyle1 \textstyle1 etc.);
• a generalit~ed fraction (from \above 1 \over 1 etc.);
• a boundary (from \left or \right);
• a four~ way choice (from \mathchoice).

157

radical
mathaccent
;;quare root ;;ign;;
;;urd ;;ign;;, ;;ee radical
family 1
family 2
family a
math font;;
fontdimen
cm;;y
cmex
;;ymbol font;;
fontdimen
I!\:ITEX
letter,;
newfam
math li;;t
math mode
atom
glue
kern
;;tyle change
generalized fraction
boundary
choke
mathdwke

158 Chapter 17: More abo'ut Math

The most important items are called atoms1 and they have three parts: a
nucleus1 a superscript1 and a subscript. For example1 if you t:yl)e

(x_i+y)~{\overline{n+1}}

in math mode1 you get a math list consisting of five atoms: C x; 1 + 1 JJ1 and)n+J.
The nuclei of these atoms are C X 1 + 1 JJ1 and); the subscripts are empty except for
the second atom 1 which has subscript i; the superscripts are empty except fOr the last
atom 1 whose superscript is n + 1. This superscript is itself a math list consisting of one
atom 1 whose nucleus is n + 1; and that nucleus is a math list consisting of three atoms.

~~ !here ar~ thirteen ki1~c~s. of atoms 1 each of which :night acf: differently i.n a
Y Y formula; for example1 ·C IS an Open atom because It comes from an opemng.
Here is a complete list of the different kinds:

Ord
Op
Bin
Rei
Open
Close
Punct
Inner
Over

is an ordinary atom like :x);
is a large operator atom like ::z=);
is a binary operation atom like '+';
is a relation atom like : =) ;

is an opening atom like :();
is a dosing atom like :)) ;
is a punctuation atom like :
is an inner atom like : ~) ;
is an overline atom like :;c) ;

Under is an underline atom like :£);
Ace is an accented atom like :x);
Rad is a radical atom like :..f2);
\'cent is a vbox to be centered1 produced by \vcenter.

An atom)s nudeus 1 superscript 1 and subscript are called its fielci<>1 and there
are fOur possibilities fOr each of these fields; a field can be

• empty;
• a math symbol (specified by family and position number);
• a box; or
• a math list.

For example1 the Close atom)n+J considered above has an empty subscript field; its
nucleus is the symbol :)) 1 which is character "28 of family 0 if the conventions of plain
T£X are in force; and its superscript field is the math list n + 1. The latter math list
consists of an Over atom whose nucleus is the math list n + 1; and that math list 1 in
turn 1 consists of three atoms of types Ord1 Bin 1 Ord.

~~ You can see TE-X)s view of a math list by t:yl)ing \showlists in math mode.
Y Y For example1 after:$ (x_i+y) ,..{\overline{n+i} }\showlists) your log file gets
the follmving curious data:

\mathopen
. \famO (
\mathord
. \fam1 x
_ \fam1 i

nudeu;;
;;uper;;cript
;;ub;;cript
atomic type;;, table
lidd;;
;;howli;;t;;
internal li;;t format

\mathbin
. \famO +
\mathord
. \fam1 y
\mathclose
. \famO)
,..\over line
,...\mathord
,.. .. \fam1 n
,.. . \mathbin
• .. \famO +
,...\mathord
• .. \famO 1

Chapter 17: More abo·ut Math

In our previous experiences \Vith \showlists we observed that there can be boxes \Vithin
boxes 1 and that each line in the log file is prefixed by dots to indicate its position in
the hierarchy. Math lists have a slightly more complex structure; therefore a dot is
used to denote the nucleus of an atom 1 a;,..; is used for the superscript field 1 and a:_;
is used fOr the subscript field. Empty fields are not shown. Thus 1 for example 1 the Ord
atom x; is represented here by three lines :\mathord) 1 :. \fam1 x) 1 and :_ \fam1 i).

~~ Certai~1 kinds of a.toms. car:y additional infOrma~ion besides tl~eir. n~d?us 1
Y Y subscnpt1 and superscnpt fields: An Op atom will be marked ·\l~m~ts~ or
:\nolimits) if the normal \displaylimits convention has been overridden; a Rad
atom contains a delimiter field to specify what radical sign is to be used; and an Ace
atom contains the family and character codes of the accent sy-mboL

~~ \Vhen ~ou s~y \hbox{ ... } in. math mode 1~~n ~)rd atom is placed on the current
Y Y math hst 1 \VIth the hbox as Its nucleus. Sumlarly1 \vcenter{ ... } produces a
Y cent atom whose nucleus is a box. But in most cases the nucleus of an atom \Viii be
either a symbol or a math list. You can experiment \Vith \showlists to discover how
other things like fractions and mathchoices are represented internally.

~~ Chapter 26 contains com~lete details of h~w I~I~th lists are con~tructed. As
Y Y soon as math mode ends (1.e. 1 when the closmg ·$~ occurs) 1 T£X dismantles the
current math list and converts it into a horimntal list. The rules for this conversion are
spelled out in Appendix G. You can see :'before and allerl' representations of such math
t:yl)esetting by ending a formula \Vith :\showlists$\showlists); the first \showlists
will display the math list 1 and the second \Viii show the (possibly complex) horimntal
list that is manufactured from it.

The learning time is short. A few minutes gives the general flavor, and
tyoing a oage or two of a oaoer generally uncovers most of the misconceotions.

- KERNIGHAN and CHERRY, A System for Tyoesetting Mathematics (1975)

Within a few hours (a few days at most)
a tyoist with no math or tyoesetting exoerience

can be taught to inout even the most como/ex equations.
PETER J. BOEHM, Software and Hardware Considerations for a

Technical Tyoesetting System (1976)

159

limit;;
nolimit;;
di;;playlimit;;
hbox
'<center
KEH!\:IGHA!\:
CHEHHV
BOEHJ'vi

>age 100) I

Fine Points of
Mathematics Typing

Chapter 18: Fine Points of Mathematics Twing

VVc have discussed most of the facilities needed to construct math formulas, but
there arc several more things a good mathematical typist will want to watch for.
After you have typed a dozen or so formulas using the basic ideas of Chapters
16 and 17, you will find that it's easy to visualize the final appearance of a
mathematical expression as you t:n)c it. And once you have gotten to that level,
there's only a little bit more to learn before you arc producing formulas as beau-
tiful as any the world has ever seen: tastefully applied touches of TEXniquc will
add a professional polish that works wonders for the appearance and readability
of the books and papers that you type. This chapter talks about such tricks,
and it also fills in a few gaps by mentioning some aspects of math that didn't fit
comfortably into Chapters 16 and 17.

1. P·unct·uation. VVhcn a formula is followed by a period, comma, semicolon,
colon, question mark, exclamation point, etc., put the punctuation <-Jfter the $,
when the formula is in the teA-t: but put the punctuation before the $$when the
formula is displayed. For example,

If $x<O$, we have shown that $$y=f(x).$$

TEX 's spacing rules within paragraphs work best when the punctuation marks
arc not considered to be part of the formulas.

Similarly, don't ever t:n)c anything like

for $x = a, b$, or c.

It should be

for $x = a$, b, or c.

(Better yet, usc a tic: ·or~c'.) The reason is that TEX will t:n)csct expression
·$x =a, b$' as a single formula, so it will put a :'thin space" between the comma
and the b. This space will not be the same as the space that TEX puts after
the comma flfter the b, since spaces between words arc always bigger than thin
spaces. Such unequal spacing looks bad, but when you t:n)c things right the
spacing will look good.

Another reason for not typing ·$x = a, b$' is that it inhibits the pos-
sibilities for breaking lines in a paragraph: TEX will never break at the space
between the comma and the b because breaks after comnu1s in formulas arc usu-
ally wrong. For example, in the equation ·$x = f(a, b)$' we certainly don't
want to put ·;,; = f(a,' on one line and ·b)' on the next.

Thus, when t:n)ing formulas in the text of a paragraph, keep the math
properly segregated: Don't take operators like and = outside of the $'s, and
keep comnms inside the formula if they arc truly part of the formula. But if a
comma or period or other punctuation mark belongs linguistically to the sentence
rather than to the formula, leave it outside the $'s.

• EXERCISE 18.1
Ty1JC this: R(n, t) = O(tni'). as t-; ()+.

161

period
comma
;;emkolon
colon
qoe;;tion mark
exdamat ion point
ponct oat ion
ponct oat ion mark;;
tie
thin ;;pace

162 Chapter 18: Fine Points of Mathematics 'J'ijping

Some mathematical styles insert a bit of extra space around formulas to sep~
arate them from the text. For example1 when copy is being produced on an

ordinary typewriter that doesn)t have italic letters 1 the best technical typists have tra~
ditionally put an extra blank space before and after each formula1 because this provides
a useful visual distinction. You might find it helpful to think of each $ as a sy-mbol that
has the potential of adding a little space to the printed output; then the rule about
excluding sentence punctuation from fOrmulas may be easier to remember.

~~ TE-X does 1 • in fact 1 inser~ additional space before <md. aft~r each .fOrmula; the
Y Y amount of such space IS called \mathsurround1 winch IS a {dunen}~valued
parameter. For example1 if you set \mathsurround=1pt 1 each fOrmula \Viii effectively
be 2 points wider (1 pt at each side):

For x = a 1 b 1 or c. (\mathsurround=ipt)
For x = a 1 b1 or c. (\mathsurround=Opt)

This extra space \Viii disappear into the left or right marbrin if the formula occurs at
the bebrinning or end of a line. The value of \mathsurround that is in fOrce when TE-X
reads the dosing $ of a fOrmula is used at both left and right of that fOrmula. Plain
TE-X takes \mathsurround=Opt 1 so you won)t see any extra space unless you are using
some other format 1 or unless you change \mathsurround yourself.

2. Non-italic letters in forrrrulas. The names of algebraic variables arc usually
italic or Greek letters, but common mathematical functions like ·log' arc always
set in roman type. The best way to deal with such constructions is to make
usc of the following 32 control sequences (all of which arc defined in plain TEX
forma(sec Appendix B):

\arccos \cos \esc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \lg \ln \Pr \sup
\arctan \cot \det \hom \lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

These control sequences lead to roman t:n)c with appropriate spacing:

Irwut
$\sin2\theta=2\sin\theta\cos\theta$
$0(n\log n\log\log n)$
$\Pr(X>x)=\exp(-x/\mu)$
$$\max_{1\le n\le m}\log_2P_n$$

$$\lim_{x\toO}{\sin x\over x}=1$$

OutP'ut
sin 20 = 2 sin B cos B
O(n log n log log n)
Pr(X > J:) = cxp(-J:/t<l
max log2 Pn

1:5,n:5,m

I
. sin;,;

1 un -- =
J-0-0 ;,;

The last two formulas, which arc displays, show that some of the special control
sequences arc treated by TEX as :'large operators" with limits just like :L: The
subscript on \max is not treated like the subscript on \log. Subscripts and
superscripts will become limits when they arc attached to \det, \gcd, \inf,
\lim, \liminf, \limsup, \max, \min, \Pr, and \sup, in display style.

;;pace
math;;urround
roman type
arc co;;
co;;
eM·
exp
lwr
lim;; up
min
;;inh
an:;;in
co;;h
deg
gcd
lg
In
p,
;;up
arctan
cot
det
hom
lim
log
;;ec
tan
arg
coth
dim
inf
liminf
max
;;in
tanh
mu

Chapter 18: Fine Points of Mathematics Twing

• EXERCISE 18.2
Express the following display in plain TEX language, using ·\nu' for ·v':

If you need roman type fOr some mathematical function or operator that isn)t
included in plain TE-X)s list of 321 it is easy to define a new control sequence by

mimicking the definitions in Appendix B. Or1 if you need roman t:yl)C just fOr a :'one
shof' use1 it is even easier to get what you want by S\vitching to \rm type1 as follo\\'8:

$\sqrt{{\rm Var}(X)}$
$x_{\rm max}-x_{\rm min}$
${\rm LL}(k)\RightarroY{\rm LR}(k)$
$\exp(x+{\rm constant})$
$x~3+{\rm lower\ order\ terms}$

X max- X min

LL(k) =;. LR(k)
exp(x +constant)
xa + lower order terms

Notice the uses of :\u) in the last case; without them 1 the result would have been
:xa + lowerorderterms) 1 because ordinary blank spaces are ignored in math mode.

You can also use \hbox instead of \rm to get roman letters into fOrmulas. For
example1 four of the last five formulas can be generated by

$\sqrt{\hbox{Var}(X)}$
$\hbox{LL}(k)\RightarroY\hbox{LR}(k)$
$\exp(x+\hbox{constant})$
$x~3+\hbox{lower order terms}$

,/Var(X)
LL(k) =;. LR(k)
ex:p(x +constant)
xa + lower order terms

In this case :\u) isn)t necessary1 because the material in an \hbox is processed in horimn~
tal mode 1 when spaces are significant. But such uses of \hbox have two disadvantages:
(1) The contents of the box \Viii be typeset in the same sit~e 1 whether or not the box
occurs as a subscript; fOr example1 :$x_ {\hbox{max} }$) yields :xma..x). (2) The fOnt
that)s used inside \hbox \Viii be the :'current font/' so it might not be roman. For ex~
ample1 if you are t:yl)esetting the statement of some theorem that is in slanted t:yl)e 1 and
if that theorem refCrs to :$\sqrt{\hbox{Var} (X)}$) 1 you \Viii get the unintended result
\/Viotr(X)). In order to make sure that an \hbox uses roman t:yl)e 1 you need to specify
\rm1 e.g. 1 :$\sqrt{\hbox{\rm Var}(X)}$); and then the \hbox serves no purpose. \Ve
will see later 1 however 1 that \hbox can be very useful in displayed formulas.

6<,~• EXERCISE 18.3
YY \Vhen the displayed formula :$$\lim_{n\to\infty}x_n {\rm\ exists} \iff
\limsup_{n\to\infty}x_n = \liminf_{n\to\infty}x_n.$$) is typeset \Vith the stan~
dard macros of plain T£X 1 you get

lim Xn exists ¢=:} limsupxn = liminfxn.
n-oo n-oo n-oo

But some people prefer a diffCrent notation: Explain how you could change the defini~
tions of \limsup and \liminf so that the display would be

lim x n exists ¢=:} lim x n = lim x n.
n-oo n-oo n-oo

163

nu
rm
control ;;pace
;;pace;;
hbox
current font
lim;; up
liminf

164 Chapter 18: Fine Points of Mathematics 'J'ijping

The word :mod) is also generally set in roman type1 when it occurs in formulas;
but this word needs more care1 because it is used in two different ways that

require two different treatments. Plain TE-X provides two different control sequences1

\bmod and \pmod1 for the two cases: \bmod is to be used when :mod) is a binary operation
(i.e. 1 when it occurs between two quantities 1 like a plus sign usually does) 1 and \pmod
is to be used when :mod) occurs parenthetically at the end of a formula. For example1

$\gcd(m,n)=\gcd(n,m\bmod n)$
$x\equiv y+1\pmod{m'2}$

gcd(m 1 n) = gcd(n 1 m mod n)
x = 11 + 1 (mod m 2

)

The :b; in :\bmod) stands for :'binaxyl'; the :p; in :\pmod) stands for :'parenthesit~ed.l'

Notice that \pmod inserts its own parentheses; the quantity that appears after :mod) in
the parentheses should be enclosed in braces1 if it isn)t a single sy-mboL

• EXERCISE 18.4
\Vhat did poor B. L User get when he typed :$x\equiv0 (\pmod y,..n)$)?

· n Lnfpj nmodp • EXERCISE 18.5 () () ()
Explamhowtoproduce k = Lkfpj kmodp (mod p).

The same mechanism that works fOr roman type in fOrmulas can be used to
get other styles of type as welL For example1 \bf yields boldface:

$\bf a+b=\Phi_m$ a+h=<Pm

Notice that whole fOrmula didn)t become emboldened in this example; the :+) and
:=) stayed the same. Plain TE-X sets things up so that commands like \rm and \bf
will affect only the uppercase letters A to Z1 the lowercase letters a to z 1 the clibrits
0 to 91 the uppercase Greek letters \Gamma to \Omega1 and math accents like \hat and
\tilde. Incidentally1 no braces were used in this example1 because $)s have the effect
of grouping; \bf changes the current font 1 but the change is local 1 so it does not affect
the font that was current outside the formula.

~~ The bold fonts available in plain TE-X are :'bold roman/' rather than :'bold
Y Y italic/' because the latter are rarely needed. However 1 T£X could readily be
set up to make use of bold math italics1 if desired (see Exercise 17.20). A more extensive
set of math fonts would also include script 1 Fraktur 1 and :'blackboard bolcr' styles; plain
TE-X doesn)t have these 1 but other formats like .f\A.;tS~ TE-X do.

Besides \rm and \bf 1 you can say \cal in formulas to get uppercase letters in
a :'callibrraphid' style. For example1 :$\cal A$) produces :,;p and :$\cal Z$)

produces :z). But beware: This work-s only \Vith the letters A to Z; you)ll get weird
results if you apply \cal to lowercase or Greek letters.

There)s also \mit 1 which stands for :'math italic.l' This affects uppercase
Greek, so that you get (F, £1, fi, c!, 3, II, E, Y, .P, >P, Q) instead of (1, ... , !2).

\Vhen \mit is in effect 1 the ordinary letters A to Z and a to z are not changed; they
are set in italics as usual 1 because they ordinarily come from the math italic fOnt.
Conversely1 uppercase Greek letters and math accents are unaffected by \rm1 because
they ordinarily come from the roman font. Math accents should not be used when the
\mit family has been selected1 because the math italic font contains no accents.

bnwd
pmod
binary operation
C;;er
bf
boldface
accent;;
hat
tilde
;;cript
Fraktur
blackboard bold
AJ'viS-'1\:X
German black letter;;
cal
calligraphic
mit
math italic
up perca,-;e Greek

Chapter 18: Fine Points of Mathematics Twing

• EXERCISE 18.6
T:yl)e the formula XTJ\1x = 0 ¢=:} x = 0 1 using as few keystrokes as possible.

(The first :o; is roman 1 the second is bold. The superscript :T; is roman.)

• EXERCISE 18.7
Fi;,'Urc out how to typeset 'S £:; E ¢=;. S E S'.

Plain T£X also allmvs you to type \it 1 \sl 1 or \tt 1 if you want text italic 1

slanted1 or typewriter letters to occur in a math formula. However 1 these fOnts
are available only in text sit~e 1 so you should not try to use them in subscripts.

If you)re paying attention 1 you probably wonder why both \mit and \it are
provided; the answer is that \mit is :'math italid' (which is normally best for

formulas) 1 and \it is :'text italid' (which is normally best for running text).

$This\ is\ math\ italic.$
{\it This is text italic.}

This is math italic.
This is text itolic.

The math italic letters are a little \Vider 1 and the spacing is different; this works better
in most formulas 1 but it fails spectacularly when you try to type certain italic words
like :different) using math mode C$different$)). A \Vide :r is usually desirable
in formulas 1 but it is undesirable in text. TherefOre \Vise typists use \it in a math
formula that is supposed to contain an actual italic word. Such cases almost never
occur in classical mathematics 1 but they are common when computer programs are
being t:yl)eset 1 since programmers often use multi~ letter :'identifiers!':

$\it last:=first$ lost :=first
$\it x_coord(point_2)$ x _coord (poinL2)

The first of these examples shmvs that T£X recogni11es the ligature :fi; when text italic
occurs in a math formula; the other example illustrates the use of short underlines to
break up identifier names. \Vhen the author typeset this manual 1 he used :$\it SS$)
to refer to style SS 1 since :SS) makes the S)s too far apart: SS.

• EXERCISE 18.8
\Vhat plain T£X commands \Viii produce the following display?

n
available+ L max(full('i), rcscrucd(·i)) = capacity.

i=l

6<,~• EXERCISE 18.9
Y Y How would you go about t:yl)esetting the follmving computer probrram 1 using
the macros of plain TE-X?

for j := 2 step 1 until n do
begin rm,urn := A[j]; k := j - I; A[O] := rm,urn;
while A[k] > occum do

begin A[k +I]:= A[k]; k := k -I;
end;

A[k +I]:= occurn;
end.

165

boldface number;; in math
il
;;I
jj

computer program;;
identilier;;
ligature
underline;;
control-underline

166 Chapter 18: Fine Points of Mathematics 'J'ijping

/J. Spacing between forrrrulas. Displays often contain more than one formula: for
example, an equation is frequently accompanied by a side condition:

n ::> 2.

In such cases you need to tell T&X how much space to put after the comma,
because TEX's normal spacing conventions would bunch things together: without
special precautions you would get

Fn = Fn~l + Fn~'2, n ~ 2.

The traditional hot-metal technology for printing has led to some in-
grained standards for situations like this, based on what printers call a :•quad"
of space. Since these standards seem to work well in practice, T&X makes it easy
for you to continue the tradition: VVhcn you type ·\quad' in plain T&X forma(
you get a printer's quad of space in the horizontal direction. Similarly, ·\qquad'
gives you a double quad (twice as much): this is the normal spacing for situations
like the Fn example above. Thus, the recommended procedure is to t:n)c

$$ F_n = F_{n-1} + F_{n-2}, \qquad n \ge 2. $$

It is perhaps worth reiterating that T&X ignores all the spaces in math mode
(except, of course, the space after ·\qquad', which is needed to distinguish be-
tween ·\qquad n' and ·\qquadn'): so the same result would be obtained if you
were to leave out all but one space:

$$F_n=F_{n-1}+F_{n-2},\qquad n\ge2.$$

VVhcncvcr you want spacing that differs from the normal conventions, you must
specify it explicitly by using control sequences such as \quad and \qquad.

A quad used to be a square piece of blank t:yl)e 1 1 em \Vide and 1 em tall-
approximately the sit~e of a capital M1 as explained in Chapter 10. This

tradition has not been fully retained: The control sequence \quad in plain TE-Xis simply
an abbreviation fOr :\hskip 1em\relax) 1 so T£X)s quad has width but no height.

You can use \quad in text as well as in fOrmulas; for example1 Chapter 14
illustrates how \quad applies to poetry. \Vhen \quad appears in a formula it

stands fOr one em in the current text font 1 independent of the current math sit~e or
style or family. Thus 1 for example 1 \quad is just as \Vide in a subscript as it is on the
main line of a formula.

Sometimes a careless author will put two formulas neA-t to each other in
the text of a paragraph. For example, you might find a sentence like this:

The Fibonacci numbers satisfy Fn = Fn~l + Fn~'2, n ~ 2.

Everybody who teaches proper mathematical style is agreed that formulas ought
to be separated by words, not just by commas: the author of that sentence
should at least have said ·for n ~ 2', not simply ·n ~ 2'. But alas, such lapses
arc commonplace, and many prominent mathematicians arc hopelessly addicted

Di;;play;;
;;ide comlition
quad
quad
qquad
em
Fibonacci
mathematical
;;tyle

Chapter 18: Fine Points of Mathematics Twing

to clusters of formulas. If we arc not allowed to change their writing style, we can
at least insert extra space where they neglected to insert an appropriate word.
An additional intcrword space generally works well in such cases: for example,
the sentence above was t:n)csct thus:

... $F_n=F_{n-1}+F_{n-2}$, \ $n\ge2$.}$$

The ·\u' here gives a visual separation that partly compensates for the bad style.

• EXERCISE 18.10
Put the following paragraph into T&X form, treating punctuation and spacing
carefully: also insert tics to prevent bad line breaks.

Let H be a Hilbert space, C a closed bounded convex subset of H,
T a noncxpansivc self map of C. Suppose that as n ~ x:>, an,k ~ 0
for each k, and l'n = :L~0 (an,k+l -an,k)+ ~ 0. Then for each;,; inC,
An;r: = L~o an,kTk;r: converges weakly to a fixed point ofT.

4. Spacing within forrrrulas. Chapter 16 says that T&X docs automatic spacing of
math formulas so that they look right, and this is almost true. But occasionally
you Inust give T&X some help. The number of possible math formulas is vast,
and T&X's spacing rules arc rather simple, so it is natural that exceptions should
arise. Of course, it is desirable to have fine units of spacing for this purpose,
instead of the big chunks that arise from \u, \quad and \qquad.

The basic dements of space that T&X puts into formulas arc called thin
sp<-:rces, medium sp<-:rces, and thick sp<-:rces. In order to get a feeling for these units,
let's take a look at the Fn example again: Thick spaces occur just before and
after the = sign, and also before and after the ~: medium spaces occur just
before and after the +sign. Thin spaces arc slightly smaller, but noticeable: it's
a thin space that makes the difference between ·loglog' and ·log log'. The normal
space between words of a paragraph is approximately equal to two thin spaces.

T&X inserts thin spaces, medium spaces, and thick spaces into fonnulas
automatically, but you can add your own spacing whenever you want to, by using
the control sequences

\, thin space (normally 1/6 of a quad):
\> medium space (normally 2/9 of a quad):
\; thick space (normally 5/18 of a quad):
\! negative thin space (normally 1/6 of a quad).

In most cases you can rely on TEX's spacing while you arc typing a manuscript,
and you'll want to insert or delete space with these four control sequences only
in rare circumstances after you sec what comes out.

~~ \~-e. observed a minut.e ago that \quad spacin.g do~ I~~t change with .the style
Y Y of formula1 nor does It depend on the math font faunhes that are bemg used.
But thin spaces1 medium spaces1 and thick spaces do get bigger and smaller as the sit~e
of type gets bigger and smaller; this is because they are defined in terms of {muglue} 1

167

control ;;pace
tie;;
;;pacing
thin ;;pace;;
mwlium ;;pace;;
thick ;;pace;;

;,
muglue

168 Chapter 18: Fine Points of Mathematics 'J'ijping

a special brand of glue intended for math spacing. You specify {muglue} just as if it
were ordinary glue 1 except that the units are given in terms of :mu) (math units) instead
of pt or em or something else. For example1 Appendix B contains the definitions

\thinmuskip = 3mu
\medmuskip = 4mu plus 2mu minus 4mu
\thickmuskip = 5mu plus 5mu

and this defines the thin 1 medium 1 and thick spaces that T£X inserts into formulas.
According to these specifications1 thin spaces in plain TE-X do not stretch or shrink;
medium spaces can stretch a little1 and they can shrink to 11ero; thick spaces can stretch
a lot 1 but they never shrink

~~ There are 18 mu to an em 1 where the em is taken from family 2 (the math
Y Y symbols family). In other words 1 \textfont 2 defines the em value fOr mu
in display and text styles; \scriptfont 2 defines the em for script sit~e material; and
\scriptscriptfont 2 defines it for scriptscript sit~e.

~~ You can insert math glue into any fOrmula just by giving the command
Y Y :\mskip{muglue}). For example 1 :\mskip 9mu plus 2mu) inserts one half em of
space1 in the current sit~e 1 together with some stretchability. Appendix B defines :\.)
to be an abbreviation fOr :\mskip\thinmuskip). Similarly1 you can use the command
:\mkern) when there is no stretching or shrinking; :\mkern18mu) gives one em of hori~
110ntal space in the current sit~e. T£X insists that \mskip and \mkern be used only \Vith
mu; conversely1 \hskip and \kern (which are also allowed in formulas) must never brive
units in mu.

Formulas involving calculus look best when an extra thin space appears
before dJ: or du or dwhatever: but TEX doesn't do this automatically. Therefore
a well-trained t:n)ist will remember to insert·\,' in examples like the following:

Irwut
$\int_O-\infty f(x)\,dx$
$y\,dx-x\,dy$
$dx\,dy=r\,dr\,d\theta$
$x\,dy/dx$

OutP'ut

f•OC f(• L ·0 3:)(4<;

11 rb: " rfy
rb: rfy = r rfr dB
J: dy;/ tb:

l\otice that no ·\,' was desirable after the ·r in the last example. Similarly,
there's no need for · \,' in cases like

$$\int_1-x{dt\over t}$$!X dt
1 t

since the dt appears all by itself in the numerator of a fraction: this detaches it
visually from the rest of the formula.

• EXERCISE 18.11
Explain how to handle the display

/,

oc t ·ib ·
---e'"1 dt = e"0 E, (ali)

0 t2 +b2 ·· '
a,b > 0.

Hl()

thinmu;;kip
mwlmu;;kip
thkkmu;;kip
text font
;;cript font
;;cri pt ;;cri pt font
m;;kip
mlwrn
h;;kip
kern
cakulu;;
dx

Chapter 18: Fine Points of Mathematics Twing 169

\Vhen physical units appear in a f0rmula 1 they should be set in roman type
and separated from the preceding material by a thin space:

$55\rm\,mi/hr$
$g=9.8\rm\,m/sec'2$
$\rm1\,m1=1.000028\,cc$

• EXERCISE 18.12

55 mi/hr
y = 9.8 mjsec2

I ml = 1.000028 cc

T:yl)eset the fOllmving display1 assuming that :\hbar) generates :ft):

ft = 1.0545 x 10~ 27 erg sec.

Thin spaces should also be inserted after exclamation points (which stand for
the :'factoriar' operation in a f0rmula) 1 if the next character is a letter or a

number or an opening delimiter:

$(2n)!/\big1(n!\,(n+1)!\bigr)$ (2n) 1/(n1 (n + 1)1)

$${52!\over13!\,13!\,26!}$$ 52!
13113126 1

Besides these cases, you will occasionally encounter formulas in which
the s:ymbols arc bunched up too tightly, or where too much white space appears,
because of certain unlucky combinations of shapes. It's usually impossible to
anticipate optical glitches like this until you sec the first proofs of what you
have typed: then you get to usc your judgment about how to add finishing
touches that provide CA-tra beauty, clarity, and finesse. A tastefully applied · \,'
or ·\!' will open things up or close things together so that the reader won't be
distracted from the mathematical significance of the formula. Square root signs
and multiple integrals arc often candidates for such fine tuning. Here arc some
examples of situations to look out for:

$\sqrt2\,x$
$\sqrt{\,\log x}$
$0\bigl(i/\sqrt n\,\bigr)$
$[\,0,1)$
$\log n\,(\log\log n)'2$
$x'2\!/2$
$n/\!\log n$
$\Gamma_{\!2}+\Delta'{\!2}$
$R_i{}'j{}_{\!kl}$
$\int_O'x\!\int_O'y dF(u,v)$

$$\int\!\!\!\int_D dx\,dy$$

J2J:
Jlog;,:
o(1/vnl
[0, 1)
log n (log log n)2

J:'/2
n/logn
r, + t::.'
R;jkt

J;~J;~ dF(u, u)

J !, rb:dy;

In each of these formulas the omission of \, or \ ! would lead to somewhat less
satisfactory results.

unit;;
hbar
exdamat ion point;;
factorial
Square root
multiple integral;;
Gamma
Delta
intint

170 Chapter 18: Fine Points of Mathematics 'J'ijping

~~ ?v~ost of thes~ e~amples where thiiH;pace corredim~s ar.e des~rable arise because
Y Y of chance comndences. For example1 the superscnpt m $x 2/2$ leaves a hole
befOre the slash (x 2 /2); a negative thin space helps to fill that hole. The positive
thin space in $\sqrt{\. \log x}$ compensates fOr the fact that :log x) begins with a
tall 1 unslanted letter; and so OIL But two of the examples involve corrections that were
necessary because TE-X doesn)t really hi1ow a great deal about mathematics: (1) In the
formula $\log n(\log\log n) ,..2$ 1 T£X inserts no thin space before the left parenthesis1

because there are similar formulas like $\log n(x)$ where no such space is desired.
(2) In the formula $n/\log n$ 1 T£X automatically inserts an unwanted thin space
befOre \log1 since the slash is treated as an ordinary symbol1 and since a thin space is
usually desirable between an ordinary symbol and an operator like \log.

~~ In fact 1 T£X)s rules for spacing in fOrmulas are fairly simple. A formula is con~
Y Y verted to a math list as described at the end of Chapter 171 and the math list
consists chiefly of :'atomsl' of eight basic types: Ord (ordinary) 1 Op (large operator) 1

Bin (binary operation) 1 Rei (relation) 1 Open (opening) 1 Close (dosing) 1 Punct (punc~
tuation) 1 and Inner (a delimited subformula). Other hinds of atoms 1 which arise from
commands like \over line or \mathaccent or \vcenter 1 etc. 1 are all treated as type Ord;
fractions are treated as type Inner. The following table is used to determine the spacing
between pairs of adjacent atoms:

Right otom
Ord Op Bin Rei Open Close Punct Inner

Left
otom

Ord
Op
Bin
Rei
Open
Close
Punct
Inner

0
1

(2)
(3)
0
0

(1)
(1)

1
1

(2)
(3)
0
1

(1)
1

(2) (3)

* (3)

* *
* 0

* 0
(2) (3)

* (1)
(2) (3)

0 0 0 (1)
0 0 0 (1)

(2) * * (2)
(3) 0 0 (3)
0 0 0 0
0 0 0 (1)

(1) (1) (1) (1)
(1) 0 (1) (1)

Here 01 11 21 and 3 stand fOr no space1 thin space1 medium space1 and thick space1

respectively; the table entry is parenthesit~ed if the space is to be inserted only in
display and text styles1 not in script and scriptscript styles. For example1 many of the
entries in the Rei row and the Rei column are : (3)); this means that thick spaces are
normally inserted befOre and aller relational sy-mbols like :=; 1 but not in subscripts.
Some of the entries in the table are :*;; such cases never arise1 because Bin atoms must
be preceded and followed by atoms compatible \Vith the nature of binary operations.
Appendix G contains precise details about how math lists are converted to horimntal
lists; this conversion is done whenever T£X is about to leave math mode1 and the
inter~atomic spacing is inserted at that time.

~~ For example1 the displayed formula specification

$$x+y=\max\{x,y\}+\min\{x,y\}$$

will be transfOrmed into the sequence of atoms

[lJ E!J i!l B liiTIIlll ~ [lJ c l!l Ill E!J !lliiil ~ [lJ o i!l Ill

atom;;
Ord
ordinary
Op
large operator
Bin
binary operation
Hd
relation
Open
opening
Clo;;e
do;;ing
Punct
punct oat ion
Inner
o'<erline
mathaccent
'<center
fraction;;
;;pacing table
math ;;pacing table

Chapter 18: Fine Points of Mathematics Twing 171

of respective types Ord1 Bin1 Ord1 Rel 1 Op 1 Open 1 Ord1 Pund 1 Ord1 Close1 Bin1 Op 1

Open 1 Ord1 Pund 1 Ord1 and Close. Inserting spaces according to the table gives

Ord \> Bin\> Ord \; Rei\; Op Open Ord Punct \, Ord Close\>
Bin\> Op Open Ord Punct \, Ord Close

and the resulting fOrmula is

i.e. 1

x + JJ = max{x, JJ} + min{x, JJ}
This example doesn)t involve subscripts or superscripts; but subscripts and superscripts
merely get attached to atoms \Vithout changing the atomic type.

6<,~• EXERCISE 18.13
Y Y Use the table to determine what spacing TE-X will insert between the atoms
of the fOrmula :$f (x.y) <x,..2+y,..2$).

~~ The plain T£X macros \bigl 1 \bigr 1 \bigm1 and \big all produce identical
delimiters; the only difference between them is that they may lead to different

spacing1 because they make the delimiter into different types of atoms: \bigl produces
an Open atom 1 \bigr a Close1 \bigm a Rel 1 and \big an Ord. On the other hand1 when
a subformula appears between \left and \right 1 it is typeset by itself and placed into
an Inner atom. Therefore it is possible that a subformula enclosed by \left and \right
will be surrounded by more space than there would be if that subformula were enclosed
by \bigl and \bigr. For example 1 Ord followed by Inner (from \left) gets a thin
space1 but Ord followed by Open (from \bigl) does not. The rules in Chapter 17
imply that the construction :\mathinner{\bigl ({(subformula}}\bigr)}) \Vithin any
formula produces a result exactly equivalent to :\left((subformula}\right)) 1 when
the (subformula} doesn)t end with Punct1 except that the delimiters are forced to be
of the \big sit~e regardless of the height and depth of the subfOrmula.

T£X)s spacing rules sometimes fail when :I) and :\I) appear in a formula 1

because I and II are treated as ordinary symbols instead of as delimiters. For
example1 consider the fOrmulas

$1-xl=l+xl$
$\1eftl-x\rightl=\1eftl+x\rightl$
$\lfloor-x\rfloor=-\lceil+x\rceil$

1-xl = l+xl
1-xl = l+xl
L-xJ=-r+xl

In the first case the spacing is wrong because TE-X thinks that the plus sibfil is computing
the sum of :1; and :x;. The use of \left and \right in the second example puts T£X
on the right track. The third example shows that no such corrections are needed \Vith
other delimiters 1 because T£X hilO\VB whether they are openings or closings.

6<,~• EXERCISE 18.14
Y Y Some perverse mathematicians use brackets bad.:wards 1 to denote :'open in~
tervals.l' Explain how to type the follmving bit~arre formula: T[x T[.

6<,~• EXERCISE 18.15
Y Y Study Appendix G and determine what spacing will be used in the formula
:$x++1$). \Vhich of the plus signs \Viii be regarded as a binary operation?

big!
bigr
bigm
big
left
right
mathinner
delimiter;;
'<erticalline
'<erticalline
bracket;;
open intenab
binary operation

172 Chapter 18: Fine Points of Mathematics 'J'ijping

,J. Ellipses (:'three dots"). :0.-'Iathcmatical copy looks much nicer if you arc careful
about how groups of three dots arc t:n)(:d in formulas and teA-t. Although it looks
fine to type · ... ' on a typewriter that has fixed spacing, the result looks too
crowded when you're using a printer's fonts: ·$x ... y$' results in ·J.: .. .;t/, and
such close spacing is undesirable except in subscripts or superscripts.

An ellipsis can be indicated by two different kinds of dots, one higher
than the other: the best mathematical traditions distinguish between these two
possibilities. It is generally correct to produce formulas like

and

but wrong to produce formulas like

and

The plain TEX format of Appendix B allows you to solve the :'three dots" problem
very simply, and everyone will be envious of the beautiful formulas that you
produce. The idea is simply to t:n)c \ldots when you want three low dots (...),
and \cdots when you want three vertically centered dots (· · ·).

In general, it is best to usc \cdots between + and and x signs, and
also between = signs or :::; signs or C signs or other similar relations. Low dots
arc used between commas, and when things arc j-uA-taposcd with no signs between
them at alL For example:

$x_1+\cdots+x_n$
$x_1=\cdots=x_n=O$
$A_1\times\cdots\times A_n$
$f(x_1,\ldots,x_n)$
$x_1x_2\ldots x_n$
$(1-x)(1-x-2)\ldots(1-x-n)$
$n(n-1)\ldots(1)$

• EXERCISE 18.16

;r;l + · · · +;r:n
;r;l

A, X
· · · = J:n = 0

j(J:J ' ... ,J:n)
;r;l ;r;2 .. . J:n
(1 J:)(1 "'). .. (1
n(n 1). .. (1)

;r;n)

T:)1)C the formulas ·;r;l +;r:l ;r:2 + · · · +;r:l ;r:2 ... ;r:n' and ·(;r:l, ... , ;r:n) · (:tJJ, .. . , Un) =
;r;l:t/1 +· +JnlJn [Hint: A single raised dot is called ·\cdot'.]

But there's an important special case in which \ldots and \cdots don't
give the correct spacing, namely when they appear at the very end of a fonnula,
or when they appear just before a closing delimiter like ·) '. In such situations
an extra thin space is needed. For example, consider sentences like this:

Prove that (1 J:)- 1 = 1 +J: +J:' +.
Clearly a; < b; for 'i = 1, 2, ... , n.
The coefficients (':fJ, c1 , ••• , en arc positive.

To get the first sentence, the author t:n)(:d

Prove that $(1-x)-{-1}=1+x+x-2+\cdots\,$.

dlip;;e;;
three doh
!dot;;
cdot;;
comma,-;
cdot
thin ;;pace

Chapter 18: Fine Points of Mathematics Twing

VVithout the ·\,'the period would have come too close to the \cdots. Similarly,
the second sentence was t:n)(:d thus:

Clearly $a_i<b_i$ for $i=1$,-2, $\ldots\,$,-n.

l\oticc the usc of tics, which prevent bad line breaks as explained in Chapter 14.
Such ellipses arc CA--trcmdy common in some forms of mathematical writing, so
plain TEX allows you to say just ·\dots' as an abbreviation for ·$\ldots\, $'in
the text of a paragraph. The third sentence can therefore be t:n)(:d

The coefficients c_O,~c_1, \dots,~c_n are positive.

• EXERCISE 18.17
B. C. Dull tried to take a shortcut by t:n)ing the second example this way:

Clearly $a_i<b_i$ for-$i=1, 2, \ldots, n$.

VVhat's so bad about that?

• EXERCISE 18.18
How do you think the author typed the footnote in Chapter 4 of this book?

6. Line breaking. VVhcn you have formulas in a paragraph, T&X may have to
break them between lines. This is a necessary evil, something like the h:n)hcn-
ation of words: we want to avoid it unless the alternative is worse.

A formula will be broken only after a relation symbol like = or < or ~,
or after a binary operation symbol like + or or x, where the relation or binary
operation is on the :•outer level" of the formula (i.e., not enclosed in { ... }and
not part of an ·\over' construction). For example, if you t:n)c

in mid-paragraph, there's a chance that T&X will break after either of the =signs
(it prefers this) or after the - or+ or - (in an emergency). But there won't be
a break after the comma in any case------commas after which breaks arc desirable
shouldn't appear between $'s.

If you don't want to permit breaking in this example except after the
= signs, you could t:n)c

$f(x,y) = {x-2-y-2} = {(x+y)(x-y)}$

because these additional braces :•freeze" the subfonnulas, putting them into un-
brcakttblc boxes in which the glue has been set to its natural width. But it isn't
necessary to bother worrying about such things unless T&X actually docs break
a formula badly, since the chances of this arc pretty slim.

A :'discretionary multiplication signl' is allowed in formulas: If you type
:$(x+y)*(x-y)$)) TE-X will treat the* something like the way it treats\-;

namely) a line break \Viii be allowed at that place) \Vith the hyphenation penalty. How-
ever) instead of inserting a hyphen) T£X \Viii insert a x sign in text sit~e.

173

tie;;
dot;;
Dull
footnote
line breaking in math
breaking formula,-; between line;;
;;ubformula,-;
di;;cretionary multiplication ;;ign

'

174 Chapter 18: Fine Points of Mathematics 'J'ijping

If you do want to permit a break at some point in the outer level of a formula1

you can say \allowbreak. For example1 if the formula

$(x_1,\ldots,x_m,\allowbreak y_1,\ldots.y_n)$

appears in the text of a paragraph1 T£X \Viii allow it to be broken into the two pieces
;(XJ 1 ••• 1 Xm 1 ; and ;]jJ 1 ••• 1 JJn);.

The penalty fOr breaking after a Rei atom is called \relpenalty1 and the
penalty for breaking after a Bin atom is called \binoppenalty. Plain TE-X sets

\relpenalty=500 and \binoppenalty=700. You can change the penalty for breaking
in any particular case by t:yl)ing :\penalty(number}) immediately after the atom in
question; then the number you have specified will be used instead of the ordinary
penalty. For example1 you can prohibit breaking in the fOrmula :x = 0) by typing
:$x=\nobreak0$) 1 since \nobreak is an abbreviation for :\penalty10000).

~~•EXERCISE 18.19
Y Y Is there any difference between the results of :$x=\nobreak0$) and :${x=O}$)?

6<,~• EXERCISE 18.20
Y Y How could you prohibit all breaks in f0rmulas 1 by making only a fCw changes
to the macros of plain TE-X?

7. Braces. A variety of different notations have sprung up involving the symbols
· {' and ·} ': plain TEX includes several control sequences that help you cope with
formulas involving such things.

In simple situations, braces arc used to indicate a set of objects: for
example,·{ a, b, c}' stands for the set of three objects a, b, and c. There's nothing
special about typesetting such formulas, except that you Inust remember to usc
\ { and \} for the braces:

$\{a,b,c\}$
$\{1,2,\ldots,n\}$
$\{\rm red,white,blue\}$

{ "· b, c}
{1,2, ... ,n}
{red, white, blue}

A slightly more complex case arises when a set is indicated by giving a generic
dement followed by a specific condition: for example, · { ;,; I ;,; > 5 } ' stands for
the set of all objects ;,; that arc greater than 5. In such situations the control
sequence \mid should be used for the vertical bar, and thin spaces should be
inserted inside the braces:

$\{\,x\mid x>5\,\}$
$\{\,x:x>5\,\}$

{"1">5}
{J::J: > 5}

(Some authors prefer to usc a colon instead of ·I', as in the second example here.)
VVhcn the delimiters get larger, as in

allow break
rdpenalty
binoppenalty
penalty
no break
brace;;
left brace
right brace
;;et
left brace
right brace
mid
'<Crt ical bar
colon

Chapter 18: Fine Points of Mathematics Twing

they should be called \bigl, \bigm, and \bigr: for example, the formula just
given would be typed

\bigl\{\,\bigl(x,f(x)\bigr)\bigmlx\in D\,\bigr\}

and formulas that involve still larger delimiters would usc \Big or \bigg or even
\Bigg, as explained in Chapter 17.

• EXERCISE 18.21
How would you typeset the formula {""I h(J:) E {-1,0,+1} r

• EXERCISE 18.22
Sometimes the condition that defines a set is given as a fairly long English

description 1 not as a formula; for example1 consider :{pIp and p + 2 are prime}'. An
hbox would do the job:

$\{\,p\mid\hbox{$p$ and $p+2$ are prime}\,\}$

but a long formula like this is troublesome in a paragraph1 since an hbox cannot be
broken between lines 1 and since the glue inside the \hbox does not vary \Vith the
interword glue in the line that contains it. Explain how the given formula could be
t:yl)eset \Vith line breaks allowed. [Hint: Go back and forth between math mode and
horit~ontal mode.]

Displayed formulas often involve another sort of brace, to indicate a
choice between various alternatives, as in the construction

if J: ::> 0:
otherwise.

You can typeset it with the control sequence \cases:

$$lxl=\cases{x,&if $x\ge0$;\cr
-x,&otherwise.\cr}$$

Look closely at this example and notice that it uses the character &, which we
said in Chapter 7 was reserved for special purposes. Here for the first time in
this manual we have an example of why & is so special: Each of the cases has
two parts, and the & separates those parts. To the left of the & is a math formula
that is implicitly enclosed in $... $: to the right of the & is ordinary teA-t, which
is not implicitly enclosed in $... $. For example, the ·-x,' in the second line
will be t:)1)CSCt in math mode, but the ·otherwise' will be typeset in horizontal
mode. Blank spaces after the & arc ignored. There can be any number of cases,
but there usually arc at least two. Each case should be followed by \cr. l\oticc
that the \cases construction t:n)cscts its own · {': there is no corresponding "}'.

• EXERCISE 18.23 { 1/3 if 0 <:: J: <:: 1:
Ty1Jeset the display j(J:) = 2/3 if 3-;:"-;: 4:

0 elsewhere.

175

big!
bigm
bigr
Big
bigg
Bigg
mode
;;elect ion, ;;ee ca,-;e;;
alternati'<e;;, ;;ee ca,-;e;;
choke;;, ;;ee ca,-;e;;
ca,-;e;;
amper;;and
cr

176 Chapter 18: Fine Points of Mathematics 'J'ijping

You can insert :\noalign{(vertical mode material}}) just after any \cr \Vithin
\cases 1 as explained in Chapter 22 1 because \cases is an application of the

general alignment constructions considered in that chapter. For example1 the command
:\noalign{\vskip2pt}) can be used to put a little extra space between two of the cases.

Horimntal braces \Viii be set over or under parts of a displayed fOrmula if you
use the control sequences \overbrace or \underbrace. Such constructions are

considered to be large operators like \sum1 so you can put limits above them or below
them by specifying superscripts or subscripts 1 as in the follmving examples:

$$\overbrace{x+\cdots+x}~{k\rm\;times}$$

$$\underbrace{x+y+z}_{>\,0}.$$

k timns
,..-'--..
x+···+x

x+y+z. --.,...--
>0

8. A:fatrices. l\ow comes the fun part. :0.-'Iathcmaticians in many different disci-
plines like to construct rectangular arrays of formulas that have been arranged
in rows and columns: such an array is called a m<-:rtrix. Plain TEX provides a
\matrix control sequence that makes it convenient to deal with the most com-
mon t:)1)C8 of matrices.

For example, suppose that you want to specify the display

.4=

All you do is type

(

J: ,\
()

()

1
,\

()

$$A=\left(\matrix{x-\lambda&1&0\cr
O&x-\lambda&1\cr
O&O&x-\lambda\cr}\right).$$

This is very much like the \cases construction we looked at earlier: each row of
the matrix is followed by \cr, and·&' signs arc used between the individual entries
of each row. l\oticc, however, that you arc supposed to put your own \left and
\right delimiters around the matrix: this makes \matrix different from \cases,
which inserts a big ·f automatically. The reason is that \cases always involves
a left brace, but different delimiters arc used in different matrix constructions.
On the other hand, parentheses arc used more often than other delimiters, so
you can write \pmatrix if you want plain TEX to fill in the parentheses for you:
the example above then reduces to

$$A=\pmatrix{x-\lambda& ... &x-\lambda\cr}.$$

• EXERCISE 18.24
T:yl)eset the display (" d

b
e (~ ~)

w z
using \lgroup and \rgroup. !)

noalign
Horizontal brace;;
o'<erbrace
underbrace
array
matrix
matrix
lambda
pmatrix
I group
rgroup

Chapter 18: Fine Points of Mathematics Twing

The individual entries of a matrix are normally centered in columns. Each
column is made as \Vide as necessary to accommodate the entries it contains1

and there)s a quad of space between columns. If you want to put something flush
right in its column 1 precede it by \hfill; if you want to put something flush left in its
column 1 follow it by \hfill.

Each entry of a matrix is treated separately from the others1 and it is t:yl)eset
as a math formula in text style. Thus 1 for example1 if you say \rm in one entry1

it does not affect the others. Don)t try to say :{\rm x&y}).

:0.-'Iatriccs often appear in the form of generic patterns that usc ellipses
(i.e., dots) to indicate rows or columns that arc left out. You can typeset such
matrices by putting the ellipses into rows and/or columns of their own. Plain
TEX provides \vdots (vertical dots) and \ddots (diagonal dots) as companions
to \ldots for constructions like this. For example, the generic matrix

C'
(.1,12 "'" l (.1,21 (.1,22 a2n

4=

ar~11 am2 ar~1n
is easily specified:

$$A=\pmatrix{a_{11}&a_{12}&\ldots&a_{1n}\cr
a_{21}&a_{22}&\ldots&a_{2n}\cr
\vdots&\vdots&\ddots&\vdots\cr
a_{m1}&a_{m2}&\ldots&a_{mn}\cr}$$

• EXERCISE 18.25
How can you get TEX to produce the column vector (

111)
llk

Sometimes a matrix is bordered at the top and left by fOrmulas that brive
labels to the rows and columns. Plain TE-X provides a special macro called

\bordermatrix for this situation. For example 1 the display

c
c (! Af = I
C' ()

is obtained when you type

$$M=\bordermatrix{&C&I&C'\cr

I
()

1 b

C'

()) ()

1 a

C&1&0&0\cr I&b&1-b&O\cr C'&O&a&1-a\cr}$$

The first row brives the upper labels 1 which appear above the big left and right paren~
theses; the first column gives the left labels 1 which are t:yl)eset flush left 1 just befOre
the matrix itself. The first column in the first row is normally blank. Notice that
\bordermatrix inserts its O\V1l parentheses1 like \pmatrix does.

177

quad
llu;;h right
hlill
ll u;;h left
dlip;;e;;
'<doh
ddot;;
!dot;;
generic matrix
column Hoctor
'<ector
border matrix

178 Chapter 18: Fine Points of Mathematics 'J'ijping

It)s usually inadvisable to put matrices into the text of a parabrraph 1 be--
cause they are so big that they are better displayed. But occasionally you

may want to specify a small matrix like ul :) 1 which you can t:yl)CSCt for example as
:$1\.1 \chooseO\ ,1$). Similarly1 the small matrix (~ 1~ ~) can be typeset as

$\bigl({a\atop l}{b\atop m}{c\atop n}\bigr)$

The \matrix macro does not produce small arrays of this sort.

.9. Vertical spacing. If you want to tidy up an unusual fonnula, you know already
how to move things farther apart or closer together, by using positive or negative
thin spaces. But such spaces affect only the horizontal dimension: what if you
want something to be moved higher or lower? That's an advanced topic.

Appendix B provides a few macros that can be used to fOol TE-X into thinking
that certain fOrmulas are larger or smaller than they really are; such trid.-s can

be used to move other parts of the formula up or down or left or right. For example1 we
have already discussed the use of \mathstrut in Chapter 16 and \strut in Chapter 17;
these invisible boxes caused T£X to put square root signs and the denominators of
continued fractions into different positions than usuaL

If you say :}) in any formula1 T£X \Viii do all of its
spacing as if you had said simply :{(subformula}}) 1 but the subfOrmula itself

will be invisible. Thus 1 for example1 :2) takes up just as much space as
:02) in the current style1 but only the 2 \Viii actually appear on the page. If you want
to leave blank space for a new symbol that has exactly the same sit~e as :L 1 but if you
are forced to put that sy-mbol in by hand for some reason 1 :\mathop{\phantom\sum})
will leave exactly the right amount of blank space. (The :\mathop) here makes this
phantom behave like \sum1 i.e. 1 as a large operator.)

Even more useful than \phantom is \vphantom1 which makes an invisible box
whose height and depth are the same as those of the corresponding \phantom1

but the width is 11ero. Thus 1 \vphantom makes a vertical strut that can increase a
formula)s effective height or depth. Plain TE-X defines \mathstrut to be an abbreviation
for :\vphantomC. There)s also \hphantom1 which has the \Vidth of a \phantom1 but its
height and depth are 11ero.

Plain T£X also provides :\smash{{subformula}}) 1 a macro that yields the same
result as :{(subformula}}) but makes the height and depth 11ero. By using

both \smash and \vphantom you can typeset any subfOrmula and give it any desired
nonnegative height and depth. For example1

\mathop{\smash\limsup\vphantom\liminf}

produces a large operator that say-s :lim sup) 1 but its height and depth are those of
\liminf (i.e. 1 the depth is 11ero).

~~·EXERCISE 18.26
If you want to underline some text 1 you could use a macro like

\def\nndertext#1{$\nnderline{\hbox{#1}}$}

to do the job. But this doesn)t alway-s work right. Discuss better alternatives.

dwo;;e
matrix, ;;mall
atop
math;;trut
;;trot
phantom
new ;;ymbol
mat hop
'<phantom
;;trot
hphantom
;;ma,-;h
liminf
lim;; up
underlined text

Chapter 18: Fine Points of Mathematics Twing

~~ You can also use \raise and \lower to adjust the vertical positions of boxes
Y Y in formulas. For example1 the fOrmula :$2,..{\raiseipt\hbox{$\scriptstyle
n$}}$) \Viii have its superscript none point higher than usual (2n instead of 2n). Note
that it was necessary to say \scriptstyle in this example1 since the contents of an
\hbox will normally be in text style even when that hbox appears in a superscript 1 and
since \raise can be used only in connection \Vith a box. This method of positioning
is not used extremely often 1 but it is sometimes helpful if the \root macro doesn)t put
its axbrument in a suitable place. For example 1

\root \raise(dim en} \hbox {$\scripts cri ptstyle{ argument}$} \of ...

will move the axbrument up by a given amount.

~~ Instead of changing the sit~es of subformulas1 or using \raise1 you can also
Y Y control vertical spacing by changing the parameters that T£X uses when it is
converting math lists to horimntal lists. These parameters are described in Appen~
dix G; you need to be careful when changing them 1 because such changes are global
(i.e. 1 not local to groups). Here is an example of how such a change might be made:
Suppose that you are designing a format for chemical typesetting1 and that you expect
to be setting a lot of formulas like :Fe;i2 Crz04)· You may not like the fact that the
subscript in Fe;i2 is lower than the subscript in Cr2 ; and you don)t want to force users
to type monstrosities like

$\rm Fe_2'{+2}Cr_2'{\vphantom{+2}}0_4'{\vphantom{+2}}$

just to get the formula Fe;i2 Cr2 0 4 \Vith all subscripts at the same leveL \Vell1 all
you need to do is set :\fontdimen16\tensy=2. 7pt) and :\fontdimen17\tensy=2. 7pt) 1

assuming that \tensy is your main sy-mbol fOnt (\textfont2); this lowers all normal
subscripts to a position 2.7pt below the baseline1 which is enough to make room fOr a
possible superscript that contains a plus sign. Similarly1 you can adjust the positioning
of superscripts by changing \fontdimen14 \tensy. There are parameters for the position
of the axis line 1 the positions of numerator and denominator in a generalit~ed fraction 1

the spacing above and below limits1 the default rule thickness1 and so OIL Appendix G
gives precise details.

10. Special feat·ures for math hackers. TEX has a few more primitive operations
for math mode that haven't been mentioned yet. They arc occasionally useful if
you arc designing special formats.

~~ If a glue or kern specification is immediately preceded by :\nonscript) 1 T£-X
Y Y \Viii not use that glue or kern in script or scriptscript styles. Thus 1 for example1

the sequence '\nonscript\;' produces exactly the amount of space specified by '(3)'
in the spacing table for mathematics that appeared earlier in this chapter.

~~ \Vhenever T£-X has scanned a $ and is about to read a math formula that
Y Y appears in text 1 it \Viii first read another list of tokens that has been predefined
by the command \everymath={(token list}}. (This is analogous to \everypar 1 which
was described in Chapter 14.) Similarly1 you can say \everydisplay={(token list}} to
predefine a list of tokens for T£-X to readjust after it has scanned an opening $$ 1 i.e. 1 just
befOre reading a formula that is to be displayed. \Vith \everymath and \everydisplay 1

you can set up special conventions that you \Vish to apply to all formulas.

179

rai;;e
lower
;;cript;;tyk
hbox
root
global
chemical type;;etting
fontdimen
ten;;y
;;ub;;cript;;
;;uper;;cript;;
axi;; line
numerator
denominator
fraction
limit;;
rule thkkne;;;;
non;;cript
e'<erymath
eH:rydi;;pJay

180 Chapter 18: Fine Points of Mathematics 'J'ijping

11. S·ummar,IJ. VVc have discussed more different kinds of formulas in this chapter
than you will usually find in any one book of mathematics. If you have faithfully
done the exercises so far, you can face almost any formula with confidence.

But here are a few more exercises1 to help you review what you have learned.
Each of the follmving :'challenge formulart illustrates one or more of the prin~

ciples already discussed in this chapter. The author confesses that he is trying to trip
you up on several of these. Nevertheless 1 if you try each one befOre looking at the
answer 1 and if you)re alert fOr traps 1 you should find that these formulas provide a
good way to consolidate and complete your hlwwledge.

• EXERCISE 18.27
Challenge number 1: Explain how to t:yl)e the phrase :nth root) 1 where :nth;

is treated as a mathematical fOrmula \Vith a superscript in roman t:yl)e.

~
~
~
~
~
~
~
~

• EXERCISE 18.28
Challenge number 2: g~J TS = dg(;,.~,, ... , "'nl =A.

• EXERCISE 18.29
Challenge number 3:

• EXERCISE 18.30
Challenge number 4:

• EXERCISE 18.31
Challenge number 5:

• EXERCISE 18.32
Challenge number 6:

Pr(111 = n lm + n = 3).

• EXERCISE 18.33
Challenge number 7: I().,) = .JJn g(J:, y;)ei>.h(x,y) rlJ: rfy.

• EXERCISE 18.34
Challenge number 8:

• EXERCISE 18.35
Challenge number 9: Here)s a display.

{
C'(X' t m
P 2 (X2

2 m

• EXERCISE 18.36

P,W~,) 252

P,W~,) 252

Challenge number 10: And another.

• EXERCISE 18.37
Challenge number 11: And another .

(m odd)
(m even)

(mod N).

. !;! (t; ".ikZk) = ~ zn (ko,k~.):O aok0 "Jk, · · ·) ·

ko+k1+·,=n

degree;;

Chapter 18: Fine Points of Mathematics Twing 181

• EXERCISE 18.38
Challenge number 12: And 1

• EXERCISE 18.39

+ n2 + na) ... (n1
na

Challenge number 13: Yet another display.

• EXERCISE 18.40
Challenge number 14: And another.

:L f(p) = ! f(t) dr.(t).
p prime f> 1

• EXERCISE 18.41
Challenge number 15: Still another.

• EXERCISE 18.42

k a';; l b';;
,--"--.. ,.-"-..

{a, a. b •... , b }.

+n2 + · · · +nm)·
'flm

Challenge number 16: Put a \smallskip between the rmvs of matrices in the
compound matrix

(c~ () b)
d (c !))

g " Gn
• EXERCISE 18.43

Challenge number 17: Make the columns flush left here.

c:o C:] 02 C:n

C:] 02 c:a C:n+l

dct 02 c:a C:.t C:n+'2 > 0.

C:n C:n+l C:n+'2 C:2n

6<-,~• EXERCISE 18.44
Y Y Challenge number 18: The main problem here is to prime the L·

;;malbkip
compound matrix
ll u;;h left
;;um prime
=def

182 Chapter 18: Fine Points of Mathematics 'J'ijping

6<,~• EXERCISE 18.45
Y Y Challenge number 19: You may be ready now fOr this display.

2 tt k 2'' ' }k
6<,~• EXERCISE 18.46
Y Y Challenge number 20: And finally1 when you have polished off all the other
examples1 here)s the ultimate test. Explain how to obtain the commutative diagram

()

l
() ___, Oc c c ___, () ,.

lo l"
() ___, Oc ___, Tt*On R 1 f,Ov(-D) ___, ()

R 1 f,(Ov(-iM))

l
()

using \matrix. (Many of the entries are blank.)

12. lVords of advice. The number of different notations is enormous and still
growing, so you will probably continue to find new challenges as you continue to
type mathematical papers. It's a good idea to keep a personal notebook in which
you record all of the non-obvious formulas that you have handled s-uccessfully,
showing both the final output and what you t:n)(:d to get it. Then you 'II be able
to refer back to those solutions when you discover that you need to do something
similar, a few months later.

If you're a mathematician who types your own papers, you have now
learned how to get enormously complex formulas into print, and you can do so
without going through an intermediary who may somehow distort their meaning.
But please, don't get too carried away by your newfound talent: the fact that you
arc able to typeset your formulas with T&X doesn't necessarily mean that you
have found the best notation for cominunicating with the readers of your work.
Some notations will be unfortunate even when they arc beautifully formatted.

commutati'<e diagram
matrix
author, type;;etting by

Chapter 18: Fine Points of Mathematics Twing 183

Mathematicians are like Frenchmen:
whenever you say something to them, they translate it into their own language,

and at once it is something entirely different.
GOETHE, Maxims and Reflex ions (1829)

The best notation is no notation;
whenever it is f)ossible to avoid the use of a comolicated alohabetic aooaratus,

avoid it.
A good attitude to the oreoaration of written mathematical exoosition

is to oretend that it is sooken.
Pretend that you are exolaining the subject to a friend
on a long walk in the woods, with no oaoer available;

fall back on symbolism only when it is really necessary.
- PAUL HALMOS, How to Write Mathematics (1970)

GOETHE
HALJ'viOS

>age 184) I

Displayed Equations

Chapter 1.9: Displayed Eq'uations

By now you know how to type mathematical formulas so that T&X will handle
them with supreme elegance: your knowledge of math t:n)ing is nearly complete.
But there is one more part to the story, and the purpose of this chapter is to
present the happy ending. VVc have discussed how to deal with individual fonnu-
las: but displays often involve a whole bunch of different formulas, or different
pieces of a huge formula, and it's a bit of a problem to lay them out so that they
line up properly with each other. Fortunately, large displays generally fall into
a few simple patterns.

1. One-line displays. Before plunging into the general question of display layout,
let's recapitulate what we have already covered. If you t:n)c ·$${formula)$$',
TEX will display the formula in flamboyant display style, centering it on a line
by itself. VVc have also noted in Chapter 18 that it's possible to display two
short formulas at once, by typing ·$${fonnula1) \qquad{fonnula2)$$': this reduces
the two-formula problem to a one-formula problem. You get the two formulas
separated by two quads of space, the whole being centered on a line.

Displayed equations often involve ordinary text. Chapter 18 explains
how to get roman t:n)c into formulas without leaving math mode, but the best
way to get text into a display is to put it into an \hbox. There needn't even be
any math at all: to t:n)csct

Displayed Text

you can simply say ·$$\hbox{Displayed Text}$$'. But here's a more interesting
example:

if and only if

Formulas and text were combined in this case by t:n)ing

$$X_n=X_k \qquad\hbox{if and only if}\qquad
Y_n=Y_k \quad\hbox{and}\quad Z_n=Z_k.$$

l\oticc that \qquad appears around ·if and only if', but a single \quad surrounds
·and': this helps to indicate that the }-' and Z parts of the display arc related
more closely to each other than to the X part.

Consider now the display

for all n ::> 0,

Can you figure out how to t:n)c this? One solution is

$$Y_n=X_n\bmod p \quad\hbox{and}\quad Z_n=X_n\bmod q
\qquad\hbox{for all }n\geO.$$

l\oticc that a space has been left after ·all' in the hbox here, since spaces
disappear when they arc out in formula-land. But there's a simpler and more
logical way to proceed, once you get used to TEX's idea of modes: You can t:n)c

... \qquad\hbox{for all $n\ge0$.}$$

185

dh;play;;
dollardollar
qquad
hbox
quad

186 Chapter 1.9: Displayed Eq'uations

VVow -----that's math mode inside of horizontal mode inside of display math mode.
But in this way your manuscript mirrors what you arc trying to accomplish,
while the previous solution (with the space after ·all') looks somewhat forced.

• EXERCISE 19.1
T:n)csct the following four displays (one at a time):

()(;

Lanzn
n=O

converges if

llu,ll = 1, 'Ui · 'llj = ()

The confl·uent image of { ~nci%~e }
a fan

ts { ~~; ~~ or a circle } ,
a fan or an arc

• EXERCISE 19.2
Sometimes display style is too brrandiose1 when the formula being displayed is

I
JJ = 2x

or something equally simple. One day B. L User tried to remedy this by typing it as
:$$y={\scriptstyle1 \over\scriptstyle2}x$$) 1 but the resulting formula

JJ=

wasn)t at all what he had in mind. \Vhat)s the right way to get simply :11 = 1x) when
you don)t want big fractions in displays?

• EXERCISE 19.3
\Vhat difference1 if any1 is there between the result of typing :$$(formula}$$)

and the result of typing '$$\hbox{$(formula)$}$$' '?

• EXERCISE 19.4
You may have noticed that most of the displays in this manual are not cen~

tered; displayed material is usually aligned at the left with the paragraph indentation 1

as part of the book design 1 because this is an unusual book. Explain how you could
t:yl)eset a fOrmula like

I I I 1-- +--- +,, = ln2
2 3 4

that is off.-center in this way.

If you've had previous eAl)erience typing mathematical papers, you prob-
ably have been thinking, :'VVhat about equation numbers? VVhen is this book
going to talk about them?" Ah yes, now is the time to discuss those sneaky little
labels that appear off to the side of displays. If you type

$$(formula) \eqno(formula)$$

Delta
Veri
C;;er
one half
lj'2 un;;la,-;hwl form
fraction;; in di;;play;;
di;;play;;, non-centered
equation number;;

Chapter 1.9: Displayed Eq'uations 187

TEX will display the first formula and it will also put an equation number (the
second formula) at the right-hand margin. For example,

$$x-2-y-2 = (x+y)(x-y).\eqno(15)$$

will produce this:
(15)

You can also get equation numbers at the left-hand margin, with \leqno. For
example,

(x+y)(x-y).\leqno(16)$$

will produce this:

(16)

l\oticc that you always give the equation number second, even when it is going
to appear at the left. Everything from the \eqno or \leqno command to the $$
that ends the display is the equation number. Thus, you 'rc not allowed to have
two equation numbers in the same display: but there's a way to get around that
restriction, as we'll sec later.

Nowadays people are using right-hand equation numbers more and more1 be--
cause a display most often comes at the end of a sentence or clause1 and the

right~hand convention keeps the number from intruding into the clause. Furthermore1

it)s often possible to save space when a displayed equation follo\\'S a short text line1

since less space is needed above the display; such savings are not possible with \leqno 1

because there)s no room fOr overlap. For example1 there is less space above display (15)
than there is above (16) in our illustrations of \eqno and \leqno 1 although the formulas
and text are otherwise identicaL

If you look closely at (15) and (16) above1 you can see that the displayed
formulas have been centered without regard to the presence of the equation

numbers. But when a formula is large1 TE-X makes sure that it does not interfere with
its number; the equation number may even be placed on a line by itself.

• EXERCISE 19.5
How would you produce the following display?

ll,, (1

• EXERCISE 19.6
Equation numbers are math f0rmulas 1 typeset in text style.

get an equation number like :(3-1)) (with an CIHlash)?

(16')

So how can you

6<,~• EXERCISE 19.7
YY B. L User tried typing :\eqno(*)) and :\eqno(**)) 1 and he was pleased to
discover that this produced the equation numbers :(*)) and :(**)) . [He had been a bit
worried that they would come out :(*)) and :(**)) instead.] But then a few months
later he tried :\eqno(***)) and got a surprise. \Vhat was it?

eqno
kqno
en-da,-;h
C;;er

188 Chapter 1.9: Displayed Eq'uations

~~ Some~here in. this mm1:taJ there. ought to be a descr~ption of exactly h?w
Y Y TE-X d1splays formulas; LC. 1 how 1t centers them1 how 1t places the equabon
numbers 1 how it inserts extra space above and below 1 and so OIL \Vell 1 now is the time
for those rules to be stated. They are somewhat complex1 because they interact \Vith
things like \parshape 1 and because they involve several parameters that haven)t been
discussed yet. The purpose of the rules is to explain exactly what sorts of boxes 1 glue1

and penalties are placed onto the current vertical list when a display occurs.

~~ If a display occurs ~fter 1 say1 fOur lines of a p~agraph 1 TE-X)s int~rnal re~ister
Y Y called \prevgraf \Vlll be equal to 4 when the d1splay starts. The display will be
assumed to take three lines 1 so \prevgraf \Viii become 7 when the parabrraph is resumed
at the end of the display (unless you have changed \prevgraf in the meantime). TE-X
assigns special values to three {dimen} parameters immediately after the opening$$ is
sensed: \displaywidth and \displayindent are set to the line \Vidth z and the shift
amount 8 fOr line number \prevgraf+2 1 based on the current parabrraph shape or hang~
ing indentation. (Usually \displaywidth is the same as \hsize1 and \displayindent
is 11ero1 but the parabrraph shape can vary as described in Chapter 14.) Furthermore1

\predisplaysize is set to the effective \Vidth p of the line preceding the display1 as
follo\\'S: If there was no previous line (e.g. 1 if the$$ was preceded by \no indent or by
the dosing $$of another display) 1 pis set to -16383.99999 pt (i.e. 1 to the smallest legal
dimension 1 - \maxdimen). Otherwise TE-X look-s inside the hbox that was formed by the
previous line1 and sets p to the position of the right edge of the rightmost box inside
that hbox1 plus the indentation by which the enclosing hbox has been moved right 1 plus
two ems in the current font. However 1 if this value of p depends on the fact that glue in
that hbox was stretching or shrinking-for example 1 if the \parfillskip glue is finite 1

so that the material preceding it has not been set at its natural width-then pis set to
\maxdimen. (This doesn)t happen often 1 but it keeps TE-X machine independent 1 since
p never depends on quantities that may be rounded differently on different computers.)
Notice that \displaywidth and \displayindent are not affected by \leftskip and
\rightskip1 but \predisplaysize is. The values of \displaywidth1 \displayindent 1

and \predisplaysize will be used by TE-X after the displayed formula has been read 1

as explained below; your program can examine them and/or change them 1 if you want
the t:yl)esetting to be done differently.

~~ -~fter ~ disylay has been read 1 ~EX c?nverts it f~om"' a math list ~o a horimnt~.
Y Y hst h m display style1 as explamed m Appendix(.. An equabon number 1 If
present 1 is processed in text style and put into an hbox a with its natural width. Now
the fussy processing begins: Let Z 1 8 1 and p be the current values of \displaywidth1

\displayindent 1 and \predisplaysize. Let q and e be 11ero if there is no equation
number; otherwise let e be the width of the equation number 1 and let q be equal to
e plus one quad in the symbols font (i.e. 1 in \textfont2). Let 1L'o be the natural width
of the displayed formula h. If 1L'o + q :::; Z 1 list h is packaged in an hbox b having its
natural width 1L'o. But if 1L'o + q > z (i.e. 1 if the display is too wide to fit at its natural
width) 1 T£X performs the following :'squee11e routinel': If e 1:- 0 and if there is enough
shrinkability in the displayed fOrmula h to reduce its width to z - q 1 then list h is
packaged in an hbox b of width z- q. Otherwise e is set to 11ero1 and list h is packaged
in a (possibly overfull) hbox b of width min(1L'o 1 z).
~~ (Continuation.) TE-X tries now to center the display without regard to the
Y Y equation number. But if such centering would make it too dose to that number

'<ertical li;;t
pre'<graf
di;;play width
di;;play indent
h;;ize
prw!i;;play;;ize
noindent
maxdimen
parlilbkip
text font
;;queeze routine

Chapter 1.9: Displayed Eq'uations

(where :'too dosd' means that the space between them is less than the \Vidth e) 1 the
equation is either centered in the remaining space or placed as far from the equation
number as possible. The latter alternative is chosen only if the first item on list h is
glue 1 since TE-X assumes that such glue was placed there in order to control the spacing
precisely. But let)s state the rules more fOrmally: Let 1L' be the \Vidth of box b. T£X
computes a displacement d 1 to be used later when positioning box b1 by first setting
d = ~(z -tv). If e > 0 and if d < 2e1 then dis reset to ~(z -1L'- e) or to 11ero1 where
11ero is chosen if list h begins \Vith a glue item.

~~ ~C~nti.nuation.) TE-:C is no~ re~c~y to ~ut thing~ onto the current ~'er.ticall~s~ 1
Y Y JUSt after the matenal pre\IOusly constructed for the parabrraph~so~far. Fust
comes a penalty item1 whose cost is an integer parameter called \predisplaypenal ty.
Then comes glue. If d + 8 :::; p 1 or if there was a left equation number (\leqno) 1

TE-X sets y" and Yb to glue items specified by the parameters \abovedisplayskip and
\belowdisplayskip 1 respectively; othenvise y" and Yb become glue items correspond~
ing to \abovedisplayshortskip and \belowdisplayshortskip. [Translation: If the
predisplaysit~e is short enough so that it doesn)t overlap the displayed formula 1 the glue
above and below the display \Viii be :'shorf' by comparison \Vith the glue that is used
when there is an overlap.] If e = 0 and if there is an \leqno 1 the equation number is
appended as an hbox by itself1 shifted right 8 and preceded by interline glue as usual;
an infinite penalty is also appended1 to prevent a page break between this number and
the display. Othenvise a glue item y" is placed on the vertical list.

~~ (Cont!nuation.) Now ~omes ~he dis~layed ~quation itself. I:· e #- 01 the
Y Y equabon number box a IS combmed \VIth the formula box b as follows: Let k
be a kern of \Vidth z - 1L' - e - d. In the \eqno case1 box b is replaced by an hbox
containing (b 1 k 1 a); in the \leqno case1 box b is replaced by an hbox containing (a 1 k 1 b) 1

and d is set to 11ero. In all cases 1 box b is then appended to the vertical list 1 shifted
right by 8 + d.

~~ (Cont~nuation.) T~1e final t~k is to append the glue or .t.he equationi~Ul~I~er
Y Y that follo\\'S the display. If there was an \eqno and If e = 01 an mfimte
penalty is placed on the vertical list 1 followed by the equation number box a shifted
right by 8 + z minus its width 1 followed by a penalty item whose cost is the value
of \postdisplaypenal ty. Otherwise a penalty item for the \postdisplaypenal ty is
appended first 1 followed by a glue item for Yb as specified above. T£X now adds 3 to
\prevgraf and returns to horimntal mode1 ready to resume the paragraph.

~~ One consequence of these rules is that you can force an equation number to
Y Y appear on a line by itself by making its width 11ero1 i.e. 1 by saying either
'\eqno\llap{$(formula)$}' or '\leqno\rlap{$(formula)$}', This makes e = 0, and the
condition e = 0 controls T£X)s positioning logic 1 as explained in the rules just given.

~~ Plain T£X sets \predisplaypenalty=100001 because fine printers tradition~
Y Y ally shun displayed formulas at the very top of a page. You can change
\predisplaypenal ty and \postdisplaypenal ty if you want to encourage or discourage
page breaks just before or just after a display. For example1 :$$\postdisplaypenal ty=
-10000(formula}$$) will fOrce a page break 1 putting the formula at the bottom line. It
is better to force a page break this way than to say \eject right aller $$... $$; such
an eject (which follo\\'S the \belowdisplayskip glue below the display) causes the page
to be short 1 because it leaves unwanted glue at the bottom.

189

penalty
prwlh;play penalty
abo'<wli;;play;;kip
bdowdi;;play;;kip
abo'<wl i;; play;;hort ;;kip
bdowd i;; play;;hort ;;kip
po;;tdi;;playpenalty
llap
rlap
page break
eject

190 Chapter 1.9: Displayed Eq'uations

6<,~• EXERCISE 19.8
Y Y Read the rules carefully and deduce the final position of :x = 1i in the formula

$$\quad x=y \hskip10000pt minus 1fil \eqno(5)$$

assuming that there is no hanging indentation. Also consider \leqno instead of \eqno.

~~ TE-X also allmvs :'alignment displays/' which are not processed in math mode
Y Y because they contain no fOrmulas at the outer leveL An alibfimiCnt display is
created by counnands of the general fOrm

$$ (assib111ments} \hal ign { (alignment}} (assignments}$$

where the (assignments} are optional things like parameter changes that do not produce
any math lists. In such displa:y-s 1 the \halign is processed exactly as if it had appeared
in vertical mode 1 and it \Viii construct a vertical list v as usual 1 except that each row
of the alibfimiCnt \Viii be shifted right by the \displayindent. After the alignment and
the dosing assignments have been processed1 TE-X \Viii put a \predisplaypenalty item
and some \abovedisplayskip glue on the main verticallist 1 followed by V 1 fOllowed by
a \postdisplaypenalty item and \belowdisplayskip glue. Thus 1 alignment displays
are essentially like ordinary alibfimiCnts 1 except that they can interrupt paragraphs;
furthermore 1 they are embedded in glue and penalties just like other display-s. The
\displaywidth and \predisplaysize do not affect the result 1 although you could use
those parameters in your \halign. An entire alibfimiCnt display is considered to be only
three lines long 1 as far as \prevgraf is concerned.

2. A:!·ulti-line displays. OK, the usc of displayed formulas is very nice. But when
you try typing a lot of manuscripts you will run into some displays that don't
fit the simple pattern of a one-line formula with or without an equation num-
ber. Plain T&X provides special control sequences that will cover most of the
remaining cases.

:0.-lulti-linc displays usually consist of several equations that should be
lined up by their ·=' signs, as in

X 1 + · · · + Xr = m,
Y, + ··· + }~ = n.

The recommended procedure for such a display is to usc \eqalign, which works
with special markers & and \cr that we have already encountered in connection
with \cases and \matrix in Chapter 18. Here's how to t:)1)C this particular one:

$$\eqalign{X_1+\cdots+X_p&=m,\cr
Y_1+\cdots+Y_q&=n.\cr}$$

There can be any number of equations in an \eqalign: the general pattern is

\eqalign{(left-hand side,)&(right-hand side,) \cr
(left-hand side2)&(right-hand side2) \cr

(left-hand siden)&(right-hand siden) \cr}

alignment di;;play;;
di;;play indent
prw!i;;play penalty
abo'<wli;;play;;kip
po;;tdi;;playpenalty
bdowdi;;play;;kip
di;;play width
prw!i;;play;;ize
halign
pre'<graf
eqalign
amper;;and
cr

Chapter 1.9: Displayed Eq'uations

where each {right-hand side) starts with the symbol on which you want alignment
to occur. For example, every right-hand side often begins with an = sign. The
equations will be typeset in display style.

• EXERCISE 19.9
In practice, the left-hand sides of aligned formulas arc often blank, and the
alignment is often done with respect to other symbols as well as =. For example,
the following display is t:n)ical: sec if you can guess how the author t:n)(:d it:

T(n) <:: T(2flgnl) <:: c(3flgnl 2flgnl)

< 3c·3lgn

= 3cn1ga.

The result of \eqalign is a vertically centered box. This makes it easy
to get a formula like

{
n=f(z)}
,B=f(z2

)

1 = f(z")

You simply usc \eqalign twice in the same line:

$$\left\{
\eqalign{\alpha&=f(z)\cr \beta&=f(z-2)\cr \gamma&=f(z-3)\cr}
\right\}\qquad\left\{
\eqalign{x&=\alpha-2-\beta\cr y&=2\gamma\cr}\right\}.$$

• EXERCISE 19.10
Try your hand at the numbered two-line display

P(:,;) = ao + a1J: + a2J;'2 + · · · + anJ:n,

P(-J:) = ao a1J: + a2J:2 · · · + (-lY'anJ:n.
(30)

[Hint: l;se the fact that \eqalign produces a vertically centered box: the equa-
tion number ·(30)' is supposed to appear halfway between the two lines.]

• EXERCISE 19.11
VVhat happens if you forget the & in one equation of an \eqalign?

Multi-line formulas sometimes fit together in odd wa:ys 1 and you)II find that
every once in a while you \Viii want to move certain lines farther apart or

closer together. If you type :\noalign{\vskip(glue}}) after any \cr 1 TE-X \Viii insert
the given amount of extra glue just after that particular line. For example1

\noalign{\vskip3pt}

will put 3 pt of additional space between lines. You can also change the amount of
space before the first line1 in the same way.

191

noalign
\-;;kip

192 Chapter 1.9: Displayed Eq'uations

The next level of complexity occurs when you have several aligned equa-
tions with several equation numbers. Or perhaps some of the lines arc numbered
and others arc not:

"11 + 1P'
2

11
(4)
(5)

For this situation plain T&X provides \eqalignno: you usc it like \eqalign, but
on each line that you want an equation number you add ·&{equation number)'
just before the \cr. The example above was generated by

$$\eqalignno{(x+y)(x-y)&=x-2-xy+yx-y-2\cr
&=x-2-y-2;&(4)\cr

(x+y)-2&=x-2+2xy+y-2.&(5)\cr}$$

l\oticc that the second & is omitted unless there's an equation number.
And there's also \leqalignno, which puts equation numbers at the left.

In this case it is appropriate to move the ·(4}' to the beginning of its equation:

(4) "11 + 1P'
= ;,;'2 u'2:

(5) (J: + 11)2 = "2 + 2J:11 + 11'.

2
11

Although the equation numbers appear at the left, you arc still supposed to input
them at the right, just as you do with \leqno: in other words, you should t:n)c
·$$\leqalignno{(x+y)(x-y)& ... &(4)\cr ... }$$'to get the previous display.

Caution: \eqalignno and \leqalignno both center the set of equations
without regard to the widths of the equation numbers. If the equations or their
numbers get too wide, they might overlap, yet no error message will be given.

• EXERCISE 19.12
T:n)csct the following display:

(9)
(10)

• EXERCISE 19.13

gcd('u, v) = gcd(v, 'u):
gcd('u, v) = gcd(-'u, v).

And here's another one to try, just to keep in practice:

riJ:) 2 = foe foe .. ~tx-+u
~0(; ~()(;

riJ: d11

= [~ l,oe r rfr dB

= --- dB 2~ (~r~oe) 1, 2 r~o
= 7[. (11)

eqalignno
kqalignno
gcd
int

Chapter 1.9: Displayed Eq'uations

Although \eqalign and \eqalignno look nearly the same1 there)s really a
fundamental distinction between them: \eqalign makes a single1 vertically

centered box1 which is no wider than it needs to be; but \eqalignno generates a set of
lines that have the full display \Vidth (reaching all the way to both maxbrins). Thus 1 for
example1 you can use \eqalign several times in a display1 but \eqalignno can appear
only once. If you try to use \eqno in conjunction with \eqalign1 you get a decent
result 1 but if you try to use \eqno in connection \Vith \eqalignno you)ll get some sort
of weird error message(s).

~~ The definitions in Appendix B reveal why \eqalign and \eqalignno be--
Y Y have differently: \eqalign is an abbreviation fOr \vcenter{\halign{ ... } } 1

while \eqalignno is an abbreviation for \halign to\displaywidth{ ... }; thus the
\eqalignno macro generates an :'alignment display.l'

~~ This difference between \eqalign and \eqalignno has two interesting con~
Y Y sequences. (1) It)s impossible to break an \eqalign between pages 1 but an
\eqalignno can be broken. In fact 1 you can f(>rce a page break after a particular line if
you insert :\noalign{\break}) after the \cr for that line. You can prohibit all breaks
in an \eqalignno if you set \interdisplaylinepenalty=10000; or you can enclose the
whole works in a \vbox:

$$\vbox{\eqa1ignno{ ... }}$$

(2) You can also insert a line of text between two equations1 without losing the alib111~
ment. For example1 consider the two displays

and
x=y+z

2 2 =JJ +z,

These were actually generated as a single display by t:yl)ing

$$\eqalignno{x&=y+z\cr
\noa1ign{\hbox{and}}
x'2&=y'2+z'2.\cr}$$

TherefOre the fact that their= signs line up is not just a lucky coincidence. Sometimes
you will want to adjust the spacing above or below such a line of inserted text 1 by
putting a \vskip or two inside of the \noalign{ ... }. Incidentally1 this example also
shmvs that it is possible to use \eqalignno \Vithout giving any equation numbers.

6<,~•EXERCISE 19.14
Y Y \Vhat happens if \eqalign is substituted for \eqalignno in this last example?

6<,~•EXERCISE 19.15
Y Y Our friend Ben User got into trouble again when he tried to move an equation
number up higher than its usual position1 by t:yl)ing this:

$$\eqa1ignno{ ... &\raise6pt\hbox{(5)}\cr}$$

\Vhat was his oversight 1 and what could he have done instead?

193

eqno
'<center
halign
alignment di;;play
page break
noalign
break
int erd i;; play I inepenalty
'<box
C;;er
rai;;e

194 Chapter 1.9: Displayed Eq'uations

For other t:Yl)CS of displa:y-s 1 plain TE-X provides \displaylines 1 which lets you
display any number of formulas in any way you want 1 \Vithout any alignment.

The general form is

$$\displaylines{ {displayed formula1 }\cr
{displayed formula2 }\cr

{displayed formulan}\cr}$$

Each formula will be centered1 because \displaylines puts \hfil at the left and the
right of each line; you can override this centering to get things flush left or flush right
by inserting \hfill 1 which takes precedence over \hfil.

• EXERCISE 19.16
Use \displaylines to typeset the three--line display

x=:x;

if x = 11 then 11 = x;

if x = 11 and 11 = z then x = z.

(I)
(2)
(3)

If you look closely at the multi~ line displays in this chapter1 you)ll see that the
baselines are farther apart than they are in normal text; mathematics publish~

ers generally do this in order to make the displays easier to read. In accordance \Vith
this tradition 1 \eqalign and its relatives automatically increase the \baselineskip.
If you are making a multi~ line display \Vith TE-X)s primitive \halign commaml1 instead
of using one of the plain T£X macros 1 you might want to make this same baseline ad~
justment1 and you can do it easily by saying :$$\openup1 \jot \halign{ ... }$$). The
\openup macro increases \lineskip and \lineskiplimit as well as \baselineskip.
If you say :\openup2\jot) 1 the lines are spread apart 2 extra units 1 where plain TE-X
opens things up in units of 3 pt. Since $$... $$ acts as a group 1 the effect of \openup
will disappear when the display is finished. Any {dimen} can follow \openup 1 but it)s
customary to express the amount symbolically in terms of a \jot instead of using
absolute units; then your manuscript can be used \Vith a variety of different fOrmats.

~~ Plain TE-X)s \displaylines 1 \eqalignno 1 and \leqalignno macros bebrin \Vith
Y Y :\openup1 \jot). If you don)t want the lines to be opened up 1 you can cancel
this by saying 1 e.g. 1 :$$\openup-1 \jot \eqalignno{ ... }$$) 1 because \openup has a
cumulative effect.

~~ Suppose that you have decided to make a homegrO\V1l display having the gen~
Y Y eral fOrm :$$\openup1 \jot \halign{ ... }$$); and fOr convenience1 let)s sup~
pose that the normal conventions of plain TE-X are in force 1 so that \jot=3pt and
\baselineskip=12pt. Then the \openup macro changes the baselineskip distance to
15 pt. It fOllo\\'S that the baseline of the text line that immediately precedes the display
will be 15 pt above the topmost baseline of the display1 plus the \abovedisplayskip.
But when the paragraph resumes 1 its next baseline will be only 12 pt below the bot~
tom baseline of the display1 plus the \belowdisplayskip 1 because the \baselineskip
parameter will have reverted to its normal value. The \eqalignno and \displaylines
macros say :\noalign{\vskip-d}) before their first lines 1 where d is the net amount
of opening~up 1 in order to compensate fOr this difference.

dh;playline;;
hlil
hlill
ba,-;dine;;kip
halign
open up
line;;kip
line;;kiplimit
group
jot
generic coding
di;;playline;;
eqalignno
kqalignno
abo'<wli;;play;;kip
bdowdi;;play;;kip

Chapter 1.9: Displayed Eq'uations 195

/J. Long forrrrulas. Our discussion of mathematics typing is almost complete: we break long dh;playwl formula.-;

need to deal with just one more problem: VVhat should be done when a formula
is so long that it doesn't fit on a single line?

For example, suppose that you encounter the equation

u(2"4 -1, 2'15 , 1) = -3+(2"4 -1)/2'15 +2'15/ (2"4 -1)+ 7/2"5 (2"4 -1)-u(2'15 , 2"4 -1, 1),

You'll have to break it up somehow: TEX has done its best to squeeze everything
together by shrinking the spaces neA-t to the + and signs to zero, but still the
line has come out overfull.

Let's try to break that equation just before the ·+T. One common way
to do this is to type

$$\eqalign{\sigma(2-{34}-1,2-{35},1)
&=-3+(2-{34}-1)/2-{35}+2-{35}\!/(2-{34}-1)\cr
&\qquad+7/2-{35}(2-{34}-1)-\sigma(2-{35},2-{34}-1,1).\cr}$$

which yields

u(2"4 1,2'15 ,1)=-3+(2"4 1)/2'15 +2'15/(2"4 1)
+ 7/2"5 (2"4 1) u(2'15 , 2"4 1, 1).

The idea is to treat a long one-line formula as a two-line formula, using \qquad
on the second line so that the second part of the formula appears well to the
right of the = sign on the first line.

• EXERCISE 19.17
Explain how to deal with the following display.

J:n'UJ + · · · + J:n+f~l 'Ut = J:n'UJ + (aJ:n + c)'u'2 + ·
+ (a1 ~ 1 J:n + c(a1 ~ 2 + · · · + 1))u,

=(u, +au,+···+a1 ~ 1 u,)J:n+h(u,, ... ,utl. (47)

It)s quite an art to decide how to break long displayed formulas into several
lines; TE-X never attempts to break them) because no set of rules is really

adequate. The author of a mathematical manuscript is generally the best judge of
what to do) since break positions depend on subtle factors of mathematical exposition.
For example) it is often desirable to emphasit~e some of the s:yunnetry or other structure
that underlies a fOrmula) and such things require a solid understanding of exactly what
is going on in that formula.

Nevertheless) it is possible to state a few rules of thumb about how to deal
\Vith long formulas in displays) since there are some principles that the best

mathematical typesetters tend to follow:
a) Although formulas \Vithin a paragraph alway-s break after binary operations

and relations) displayed fOrmulas alway-s break befbre binary operations and relations.
Thus) we didn)t end the first line of our a(...) example with : (2""{34}-1)+); we ended
it \Vith :(2""{34}-1)) and began the second line with:+).

196 Chapter 1.9: Displayed Eq'uations

b) \Vhen an equation is broken before a binary operation1 the second line should
start at least two quads to the right of where the innermost subformula containing that
binary operation bebrins on the first line. For example1 if you \Vish to break

$$\sum_ {O<k<n} \left ((formula,)+(formula2) \right)$$

at the plus sign between (f0rmula1 } and (f0rmula2 } 1 it is almost mandatory to have the
plus sign on the second line appear somewhat to the right of the large left parenthesis
that corresponds to :\left ().

In the example just considered1 special care is needed to break the fOrmula into
two lines 1 because \left and \right delimiters cannot be used in isolation;

you can)t have only \left in one line of a formula and only \right in the second.
Furthermore1 you)ll want the two delimiters to be of the same sit~e 1 even though they
occur in different lines. The best solution is usually to choose the delimiter sit~e yourself;
for example1 you could type

$$\eqalign{\sum_ {O<k<n} \biggl (&(formula,)\cr
&\qquad{}+(formulaz) \biggr) \cr }$$

if \bigg delimiters are best. Notice that the & markers don)t occur at = sibfilS in this
example1 they just mark a point of alignment.

There)s another way to break long formulas 1 sometimes called the trvo-line
form. The idea is to put the first part of the formula almost flush left 1 and to

put the second part almost flush right 1 where :'almost flushl' means :'one quad away.l'
Thus 1 the two~ line form of the long a(...) equation considered earlier is

o-(i" -I, i", I)= -3 + (i"- 1)/2'" + i"j(i" -I)
+ 7 ji"(i"- I)- o-(i", i"- I, I),

It isn)t difficult to get this two--line effect \Vith \displaylines:

$$\displaylines{\quad\sigma(2'{34}-1,2'{35},1)
=-3+(2'{34}-1)/2'{35}+2'{35}\!/(2'{34}-1)\hfill\cr

\hfill{}+7/2'{35}(2'{34}-1)-\sigma(2'{35},2'{34}-1,1).\quad\cr}$$

An extra :{}; was t:yl)ed on the second line here so that TE-X would h·11ow that the :+;

is a binary operation. The two~line form is especially recommended for equations that
have a long left> hand side; in that case the break generally comes just before the= sign.

• EXERCISE 19.18
T:yl)eset the fOllmving display:

I
(x- x l),, (x- Xn)'

6<,~•EXERCISE 19.19
Y Y If it is necessary to typeset a huge fraction like

q t n(n+l) (ea q 2) 00 (eqj a; q2)oo (caqj e; q 2)oo (cq2 fae; q 2)oo
(e; q)oo (cqj e; q)oo

(27)

left
right
bigg
two-line
ll u;;h left
llu;;h right
di;;playline;;
fraction, huge

Chapter 1.9: Displayed Eq'uations

in a single narrow column 1 you might have to break up the numerator and resort to

' ' +ll 2 2 q""'" (eo.;q)oo(eqja;q)oo
(caqf e; q2)oo (cq2/ ae; q2) 00

(e; q)oo(cqje; q)oo

How would you specify the latter fraction to TE-X?

When a formula is too long for the oage-width
and has to be broken into successive lines

(and we are now, of course, soeaking of disolayed formulae),
it should be broken, if f)ossible, at the end of a natural 'ohrase';

if, for examole, it is a much-bracketed formula,
it should be broken at the end of one of the major brackets

and not at an inner symbol.
This natural ohrasing (as in music or soeech)

makes for intelligibility between writer and reader
and should not be left to the comoositor.

An author, when he finds himself writing a longish formula,
should indicate a convenient DOint of fracture in case of need.

- CHAUNDY, BARRETT, and BATEY, The Printing of Mathematics (1954)

Some authors use disDiay with discretion,
some run even extremely long, comDiicated equations into the text,

while others tend to disDiay every equation in the DaDer.
The tendency to overdisDiay is Drobably more Dredominant

than the tendency to underdisDiay;
for this reason it is DOSsible for the CODY editor to shorten

(and even imDrove) DaDers by running disDiayed material into text.
On the other hand, there are occasions when the CODY editor needs

to suggest the disDiay of comDiicated exDressions that have been run into text,
Darticularly when it would involve a bad break at the end of a text line.

- ELLEN SWANSON, Mathematics into Type (1971)

197

CHAC?\l)V
BAHHE'IT
BATEY
S\VA?\SO?\

>age 198) I

Definitions
(also called Macros)

Chapter 20: Definitions (also called Macros}

You can often save time typing math formulas by letting control sequences stand
for constructions that occur frequently in a particular manuscript. For example,
if some document uses the vector ·(;r:l, ... ,J:nJ' a lot, you can type

\def\xvec{(x_1,\ldots,x_n)}

and \xvec will henceforth be an abbreviation for · (x_1, \ldots ,x_n) '. Complex
displays like

L (f(J:J: · · · : J:n) + g(J:J: · · ·, J:,,))
(J'J, .. ,.r,)-;£(0, .. ,0)

can then be t:n)(:d simply as

$$\sum_{\xvec\ne(O,\ldots,O)} \bigl(f\xvec+g\xvec\bigr)$$

instead of in a tedious long form. By defining a control sequence like \xvec, you
not only cut down on the number of keystrokes that you need to make, you also
reduce your chances of introducing typographical errors and inconsistencies.

Of course, you usually won't be making a definition just to speed up
the typing of one isolated formula: that doesn't gain anything, because time
goes by when you 'rc deciding whether or not to make a definition, and when
you 'rc t:n)ing the definition itself. The real payoff comes when some cluster of
symbols is used dozens of times throughout a manuscript. A wise t:n)ist will look
through a document before typing anything, thereby getting a feeling for what
sorts of problems will arise and what sorts of definitions will be helpful. For
example, Chapter 16 recommends that the control sequence \Ahat be defined at
the beginning of any manuscript that makes frequent usc of the s:ymbol A:.

Abbreviations like \xvec turn out to be useful in many applications of
computers, and they have come to be known as m<-:rcros because they arc so
powerful: one little macro can represent an enormous amount of material, so it
has a sort of macroscopic effect. System programs like TEX that arc designed
to deal with macro definitions arc said to exp<-:rnd the user's macros: for ex-
ample, \xvec CAlnmds into (x_1, \ldots ,x_n), and \ldots in turn is a macro
that CAlnmds into \mathinner{\ldotp\ldotp\ldotp}. Thus, \xvec is actually
an abbreviation for· (x_1, \mathinner{\ldotp\ldotp\ldotp} ,x_n) '. (The ex-
pansion stops here, because \mathinner is a primitive control sequence of TEX,
and because \ldotp has been defined with \mathchardef: thus \mathinner and
\ldotp arc not macros.)

TEX users generally build up their own personal library of macros for
things that they want to do in different documents. For example, it is common
to have a file called macros. tex that contains definitions of your favorite spe-
cial control sequences, perhaps together with commands that load your favorite
special fonts, etc. If you begin a document with the command

\input macros

then TEX will read all those definitions, saving you all the trouble of retyping
them. Of course, TEX's memory is limited, and it takes time to read a file, so

199

control ;;equence;;
ddining a control ;;equence
abbre'< iat ion;;, ;;ee macro;;
macro;;
!dot;;
mathinner
mat hchardef
library of macro;;
input

200 Chapter 20: Definitions (also called Macros)

you shouldn't put thousands of definitions into macros. tex. A large collection
of macro definitions (e.g., the set of definitions in Appendix B) is called a fornu:rt
(e.g., :'plain T&X format"): T&X has a special way to input a format at high
speed, assuming that the format doesn't change very often.

The \xvec and \Ahat examples apply to math formulas, but you can
make good usc of macro definitions even when you aren't doing any math at all.
For example, if you arc using TEX for business corTcspondcncc, you can have a
\yours macro that stands for ·Sincerely yours, A. l;. Thor'. If you often write
form letters you can have macros that generate entire sentences or paragraphs
or groups of paragraphs. The Internal Revenue Service could, for example, make
usc of the following two macros:

\def\badcheck{A penalty has been added because your
check to us was not honored by your bank.\par}

\def\cheater{A penalty of 50\% of the underpaid tax
has been added for fraud.\par}

Simple macro definitions, like these, start with ·\de£': then comes the control
sequence m;~,m(\ e.g., ·\badcheck': and then comes the replacement text enclosed
in ·{'and ·F. The braces do not represent grouping in this case: they simply
show the extent of the replacement text in the definition. You could, of course,
define a macro that includes actual braces in its replacement text, as long as
those braces match each other properly. For example, ·\def\xbold{ {\bf x} F
makes \xbold an abbreviation for ·{\bf xF.

• EXERCISE 20.1
VVritc a \punishment macro that prints 100 lines containing the message ·I must
not talk in class.' [Hint: First write a macro \mustnt that prints the message
once: then write a macro \five that prints it five times.]

• EXERCISE 20.2
\Vhat is the expansion of \puzzle 1 briven the following definitions?

\def\a{\b}
\def\b{A\def\a{B\def\a{C\def\a{\b}}}}
\def\puzzle{\a\a\a\a\a}

As soon as you get the hang of simple macros like those illustrated above 1

you will probably begin to think1 :'Boy1 wouldn)t it be nice if I could have a
macro in which some of the text in the expansion is changeable? rd like to be able
to stick different things into the middle of that text.l' \Vell 1 T£X has good news for
you: Control sequences can be defined in terms of parameters1 and you can supply
arguments that will be substituted fOr the parameters.

For example1 let)s consider \xvec again. Suppose that you not only refer
to :(x 11 ••• 1 xn)) 1 but you also maim frequent use of :(JJ11 ••• 1 JJn)) and other

similar things. Then you might want to type

\def\roY#1{(#1_1,\ldots,#1_n)}

format
bu;;ine;;;; corn:;;pondence
Thor
form letter;;
Internal He'<enue Ser'<ke
brace;;
grouping
parameter;;
argument;;

Chapter 20: Definitions (also called Macros}

after which \row x \Viii produce :(XJ 1 ••• 1 Xn)) and \row ywillproduce :(JJJ 1 ••• 1 JJn)).
The sy-mbol #1 stands for the first parameter to the macro1 and when you say :\row x)
the x is a so--called argument that will be inserted in place of the #1)s in the replace--
ment text. In this case the argument consists of a single letter 1 x. You can also say
\row\alpha1 in which case the argument will be the control sequence \alpha1 and the
result \Viii be :(o: 1 1 ... 1 <tn)). If you want the axbrument to contain more than one sy-mbol
or control sequence1 you can simply enclose it in braces; fOr example1 \row{x'} yields
(x~ 1 ••• 1 x~). The argument in this case is x' (\\'ithout the braces). Incidentally1 if you
say \row{ {x '} }1 you get (x' 11 ••• 1 x' n); the reason is that only one pair of braces is
stripped off when the argument is collected1 and (x' 1 1 ••• 1 x' n) is what you get from
({x'}_1. \ldots.{x'}_n) in math mode1 according to the rules of Chapter 16.

• EXERCISE 20.3
Continuing this example1 what is the result of $\row{\bf x}$?

The notation :#1) suggests that there might be an opportunity to have more
than one parameter1 and indeed there is. You can \Vrite 1 fOr example1

\def\roY#1#2{(#1_1,\ldots,#1_#2)}

after which :\row xn) would be the proper protocol fOr :(x 1 1 ... 1Xn)). There can be as
many as nine parameters1 #1 to #9 1 and when you use them you must number them in
order. For example1 you can)t use #5 in a definition unless the previous parameter
in that definition was called #4. (This restriction applies only to the initial statement
of parameters1 befOre the replacement text starts; the stated parameters can be used
any number of times 1 in any order 1 in the replacement text itself.)

A control sequence has only one definition at a time1 so the second definition
of \row would supersede the first one if both had appeared in the same doc~

ument. \Vhenever TEX encounters a macro that it wants to expand 1 it uses the most
recent definition. However 1 definitions are local to the group that contains them; old
definitions will be restored in the usual way when a group ends.

Caution: \Vhen you define a macro with simple parameters1 as in these exam~
ples1 you must be careful not to put blank spaces before the :c that begins the

replacement text. For example1 :\def\row #1 #2 { ... }) \Viii not brive the same result
as :\def\row#1#2{ ... }) 1 because the spaces after #1 and #2 tell TEX to look for argu~
ments that are followed by spaces. (Arguments can be :'delimitecr' in a fairly general
way1 as explained below.) But the space aller \row is optional1 as usual 1 because TEX
alway-s disregards spaces after control words. After you have said :\def\row#1#2{ ... }) 1

you are allowed to put spaces between the arguments (e.g. 1 :\row x n)) 1 because TEX
doesn)t use single spaces as undelimited arguments.

The fOllmving exercise is particularly recommended for people who want to
learn to write TE-X macros. Even if you have gotten into the dangerous habit

of skimming other exercises1 you should try your hand at this one.

• EXERCISE 20.4
Extending exercise 20.1 1 write a :'generalit~ed punishmenf' macro that has two

parameters1 so that \punishment{run}{the halls} will produce 100 parabrraphs that
say :I must not run in the halls.)

201

;;harp;;ign
alpha
brace;;
apo;;trophe
local
group

202 Chapter 20: Definitions (also called Macros)

TE-X also allows you to define macros whose parameters are delimited in quite
a general way; you needn)t alway-s enclose arguments in braces. For example1

\def\cs #1. #2\par{ ... }

defines a control sequence \cs \Vith two parameters1 and its two arguments \Viii be
determined as follo\\'8: #1 \Viii consist of all tokens between \cs and the next subsequent
appearance of: ·u) (period and space); #2 will consist of all tokens between that: ·u)
and the next \par token. (The \par might be given explicitly1 or it might be generated
by a blank line as explained in Chapter 8.) For example1 when TE-X expands

\cs You owe \$5.00. Pay it.\par

the first argument is :You owe \$5. 00) and the second is :Pay it.). The period in
:\$5. 00) doesn)t stop #1 1 in this example1 because TE-X keeps going until finding a
period that is followed immediately by a space.

Furthermore1 an arbrument \Viii not stop when its delimiter is enclosed in
braces1 because that would produce unbalanced braces. For example1 in

\def\cs #1.#2\par{ ... }

the first argument is now delimited by a single period1 so #1 would be :You owe \$5)
and the #2 would be :oo. Pay it.) if \cs were invoked as above. But

\cs You oYe {\$5.00}. Pay it.\par

satisfactorily hides the first period1 making it part of argument #1 1 which becomes
'You oYe {\$5.00}•.

~~ If you are designing a fOrmat fOr mathematical papers1 you will probably
Y Y want to include a macro fOr the statement of theorems 1 definitions 1 leunnas 1

corollaries1 and such things. For example1 you might want to typeset a statement like

Theorem 1. TEX li<l<> a p<Yrverful macro capability.

from the input

\proclaim Theorem 1. \TeX\ has a powerful macro capability.\par

In fact 1 plain TE-X includes a \proclaim macro that does just that; its definition is
\def\proclaim #1. #2\par{\medbreak

\noindent{\bf#1.\enspace}{\sl#2}\par\medbreak}

so the arbruments are delimited exactly as in our first \cs example. The replacement
text here uses \medbreak to separate the proclaimed parabrraph from what precedes
and follows; the title of the proclamation is set in bold face type1 while the text itself is
set slanted. (The actual definition of \proclaim in Appendix B is not quite the same
as this; the final \medbreak has been modified so that a break between pages \Viii be
discouraged immediately follmving the statement of a theorem. Hence a short theorem
will tend to appear at the top of a page rather than at the bottom.)

~~ By making changes to the \proclaim macro 1 you can change the fOrmat of
Y Y all the proclamations in your paper 1 \Vithout changing the text of the paper
itself. For example1 you could produce something like

THEOREM 1: 7EX hos tJ, powerful mocro copobility.

par
theorem;;
proclaim
entuldation;;, ;;ee proclaim
en;; pace

Chapter 20: Definitions (also called Macros}

by making simple alterations to the replacement text of \proclaim1 assuming that you
have a :'caps and small capft fOnt. TE-X is intended to support higher~ level languages
for composition in which all of the control sequences that a user actually t:Yl)CS are
macros rather than TE-X primitives. The ideal is to be able to describe important
classes of documents in terms of their components1 \Vithout mentioning actual fOnts or
point sit~es or details of spacing; a single style--independent document can then be set
in many different styles.

Now that we have seen a number of examples1 let)s look at the precise rules
that govern TE-X macros. Definitions have the general form

\def (control sequence} (parameter text}{ (replacement text}}

where the (parameter text} contains no braces1 and where all occurrences of { and }
in the (replacement text} are properly nested. Furthermore the #symbol has a special
significance: In the (parameter text} 1 the first appearance of# must be fOllowed by 11

the next by 2 1 and so on; up to nine #)s are allowed. In the (replacement text} each #
must be followed by a dibrit that appeared aller #in the (parameter text} 1 or else the#
should be followed by another #. The latter case stands fOr a single # token when the
macro is expanded; the former case stands for insertion of the corresponding argument.

For example1 let)s consider a :'randoml' definition that doesn)t do anything
useful except that it does exhibit TE-X)s rules. The definition

\def\cs AB#1#2C$#3\$ {#3{ab#1}#1 c##\x #2}

says that the control sequence \cs is to have a parameter text consisting of nine tokens

ulO

(assuming the category codes of plain T£X) 1 and a replacement text of twelve tokens

#31 {1 1 a11 1 b11 1 #1 1 }z 1 #1 1 ul0 1 Cll 1 #ti 1 [!] 1 #2.

Henceforth when TE-X reads the control sequence \cs it \Viii expect that the next two
tokens \Viii be A1 1 and B1 1 (otherwise you \Viii get the error message :Use of \cs doesn't
match its definition)); then comes argument #1 1 followed by argument #2 1 then C1 11
then $a 1 then argument #31 then \$ 1 and finally a space token. It is customary to use the
word :'argumenf' to mean the string of tokens that gets substituted fOr a parameter;
parameters appear in a definition 1 and arguments appear when that definition is used.
(For the purposes of these rules 1 we are extending Chapter Ts definition of token:
In addition to control sequences and (character code1 category code) pairs 1 TE-X also
recogni11es :'parameter tokens/' denoted here by #1 to #9. Parameter tokens can appear
only in token lists for macros.)

~~ How does T£X determine where an argument stops1 you ask. Answer: There
Y Y are two cases. A delimited p<:trameter is fOllowed in the (parameter text}
by one or more non~ parameter tokens 1 befOre reaching the end of the parameter text
or the next parameter token; in this case the corresponding argument is the shortest
(possibly empty) sequence of tokens \Vith properly nested { ... } groups that is followed
in the input by this particular list of non~parameter tokens. (Category codes and
character codes must both match 1 and control sequence names must be the same.) An
undelimited parameter is followed immediately in the (parameter text} by a parameter

203

cap;; and ;;mall cap;;
higher-k'<d language;; for compo;
;;tyle-independent document
format-independent document
generic coding
brace;;
category code;;
tolwn
parameter tolwn;;
ddimitwl parameter
unddimitwl parameter

204 Chapter 20: Definitions (also called Macros)

token 1 or it occurs at the very end of the parameter text; in this case the corresponding
argument is the next non blank token 1 unless that token is :c 1 when the argument \Viii
be the entire { ... } group that fOllo\\'8. In both cases1 if the argument found in this
way has the form :{(nested tokens}}) 1 where {nested tokens} stands for any sequence of
tokens that is properly nested \Vith respect to braces1 the outermost braces enclosing
the argument are removed and the {nested tokens} will remain. For example1 let)s
continue \Vith \cs as defined above and suppose that the subsequent text contains

\cs AB {\Look}C${And\$ }{look}\$ 5.

Arbrument #1 \Viii be the token ILookl 1 since #1 is an undelimited parameter (it is
followed immediately by #2 in the definition); in this case T£X ignores the blank space
after B1 and strips the braces off of {\Look}. Argument #2 will be empty1 since C$
follo\\'S immediately. And argument #3 will be the thirteen tokens corresponding to
the text {And\$u}{look} 1 because #3 is to be followed by :\$u) 1 and because the first
occurrence of :\$u) is within braces. Even though arbrument #3 begins with a left brace
and ends with a right brace1 the braces are not removed1 since that would leave the
unnested tokens :And\$ }{look). The net effect then 1 after substituting arguments for
parameters in the replacement text 1 will be that T£X will next read the token list

{And\$ }{look}{ab\Look}\Lookuc#\x5.

The space u here will be part of the resulting token list 1 even though it fOllo\\'S the
control word \Look1 because spaces are removed after control word tokens only when
T£-X first converts input lines to token lists as described in Chapter 8.

6<,~• EXERCISE 20.5
Y Y The example definition of \cs includes a ## in its replacement text 1 but the
way ## is actually used in that example is rather pointless. Give an example of a
definition where ## serves a useful purpose.

~~ A special extension i~ , allo~ed to th~e r~.l~s: If ~he v~r! las: cha~acter of
Y Y the (parameter text} IS # 1 so that tins # IS umned1ately followed by C T£-X
will behave as if the { had been inserted at the right end of both the parameter text
and the replacement text. For example 1 if you say :\def\a#1#{\hbox to #1}) 1 the
subsequent text :\a3pt{x}) will expand to :\hbox to 3pt{x}) 1 because the argument
of \a is delimited by a left brace.

~~ To~e~1~ that precec:e the ~rst ~arameter tok~n in th~ .(par~meter t~xt} of a
Y Y defimbon are reqmred to follow the control sequence1 m effect 1 they become
part of the control sequence name. For example1 the author might have said

\def\TeX/{ ... }

instead of defining \TeX without the slash. Then it would be necessary to tyl)e \TeX/
each time the T£-X logo is desired1 but the new definition would have the advantage that
spaces are not ignored aller :\TeX/'. You can use this idea to define macros that are
intended to be used in sentences1 so that users don)t have to worry about the possible
disappearance of spaces.

6<,~• EXERCISE 20.6
Y Y Define a control sequence \a such that \a{ ... } expands to \b{ ... }1 and such
that T£X gives an error message if \a is not immediately followed by a left brace.

;;pace;;
control word
;;harp ;;harp
dimen;;ion;; a,-; argument;;
'1\:X
;;pace;;

Chapter 20: Definitions (also called Macros}

~~ Compl~cated_ ma~r~s ha:'e a habit o:· behavi1:g diff'e~~ntly ~om what, you. ex~
Y Y ped1 when you first define them 1 C\Cn though TE-X s rules are not espeCially
complicated. If you have trouble understanding why some \def doesn)t work the way
you think it should1 help is available: You can set \tracingmacros=1 1 whereupon TE-X
will \Vrite something in your log file whenever it expands a macro 1 and whenever it
has read a macro argument. For example 1 if \tracingmacros is positive when TE-X
processes the \cs example above1 it will put the fOllowing four lines into the log:

\cs AB#1#2C$#3\$ ->#3{ab#1}#1 c##\x #2
#1<-\Look
#2<-
#3<-{And\$ }{look}

In all of the rules stated above 1 :c and :}; and :#; stand for any characters
whose category codes are respectively 11 21 and 6 in the token list when T£X

reads the macro definition; there)s nothing sacred about the particular symbols that
plain T£X uses to denote grouping and parameters. You can even make use of several
different characters with these category codes) all at the same time.

\def\! !1#2! [{!#]#! !2}

\Vhat token list \Viii result when:\! x{[y]] [z}) is expanded?

~~ In pra~tice1 :ve all m~~e mista~es. And one of Y.w most coum~on typographic
Y Y errors IS to forget a ·}· 1 or to msert an extra ·{' 1 somewhere m an argument
to a macro. If T£-X were to follow the rules blindly in such a case 1 it would have to
keep absorbing more and more tokens in hopes of finding the end of the argument. But
a mistyped argument is unending1 like so many arguments in real life (sigh); so T£-X
would have to go on until the end of the file 1 or (more likely) until tokens completely fill
the computer)s memory. In either case 1 a single typobrraphical error would have ruined
the run 1 and the user would be forced to start over. TherefOre T£-X has another rule 1

intended to confine such errors to the parabrraph in which they occur: The token '\par 1

is not allurved to occur as part of an argument1 unless you explicitly tell T£-X that \par
is OK. \Vhenever T£X is about to include \par as part of an argument 1 it \Viii abort
the current macro expansion and report that a :'runaway argumenf' has been found.

~~ If you actually want a control sequence to allow arguments \Vith \par tokens 1

Y Y you can define it to be a :'long7
' macro by saying :\long) just before :\def).

For example1 the \bold macro defined by

\long\def\bold#1{{\bf#1}}

is capable of setting several paragraphs in boldface type. (However 1 such a macro is
not an especially good way to typeset bold text. It would be better to say1 e.g. 1

\def\beginbold{\begingroup\bf}
\def\endbold{\endgroup}

because this doesn)t fill T£X)s memory with a long argument.)

205

tradngmacro;;
debugging macro;;
category code;;
par
runaway
long

206 Chapter 20: Definitions (also called Macros)

~~ The \par~fOrbidding m~chm~ism doesn)t catch all cm:ceivable missing~brace
Y Y errors 1 however; you unght forget the } at the end of a \def 1 and the same
problem would arise. In this case it)s harder to confine the error 1 because \par is a useful
thing in replacement texts; we wouldn)t want to fOrbid \par there 1 so TE-X has another
mechanism: \Vhen a macro definition is preceded by :\outer) 1 the corresponding control
sequence will not be allowed to appear in any place where tokens are being absorbed
at high speed. An \outer macro cannot appear in an axbrument (not even when \par is
allowed) 1 nor can it appear in the parameter text or the replacement text of a definition 1

nor in the preamble to an alignment 1 nor in conditional text that is being shipped over.
If an \outer macro does show up in such places1 TE-X stops what it is doing and reports
either a :'runawayl' situation or an :'incompletd' conditional. The end of an input file
is also considered to be \outer in this sense; fOr example1 a file shouldn)t end in the
middle of a definition. If you are designing a fOrmat for others to use 1 you can help them
detect errors before too much harm is done 1 by using \outer with all control sequences
that should appear only at :'quiet timesl' \Vithin a document. For example1 Appendix B
defines \proclaim to be \outer 1 since a user shouldn)t be stating a theorem as part of
a definition or argument or preamble.

~~ \Ve have now seen that \def can be preceded by \long or \outer 1 and it
Y Y can also be preceded by \global if the definition is supposed to transcend
its group. These three prefixes can be applied to \def in any order 1 and they can
even appear more than once. TE-X also has a \gdef primitive that is equivalent to
\global\def. Thus 1 fOr example1

\long\outer\global\long\def

means the same thing as :\outer\long\gdef).

So far in this manual we have encountered several ways to assign a meaning
to a control sequence. For example1

\font\cs=(external fOnt name}
\ chardef\ cs=(number}
\countdef\cs={number}
\def\cs ... { ... }

makes \cs a fOnt identifier;
makes \cs a character code;
makes \cs a \count register;
makes \cs a macro.

It)s time now to reveal another important command of this type:

\let\cs=(tokcn) gives \cs the token)s current meaning.

If the (token} is another control sequence1 \cs \Viii acquire the same significance as
that control sequence. For example1 if you say :\let\a=\def) 1 you could then say
:\a\b ... { ... })to define a macro \b 1 because \a would behave like TE-X)s primitive
\def command. If you say

\let\a=\b \let\b=\c \let\c=\a

you have interchanged the fOrmer meanings of \b and \c. And if you say
\outer\def\a#1.{#1:}
\let\b=\a

the effect is exactly the same as :\outer\def\b#1. {#1:} \let\a=\b).

outer
forbidden control ;;equence
preamble
comlitional text
incomplete
end of an input lile
proclaim
global
gdef
let

Chapter 20: Definitions (also called Macros}

~~ If the (token} in a \let is a single character-i.e. 1 if it is a (character code1

Y Y category code) pair-then the control sequence \Viii behave to a certain extent
like that character; but there are some differences. For example1 after :\let\zero=O)
you can)t use \zero in a numerical constant1 because TE-X requires the tokens in a
numerical constant to be digits 1 after macro expansion; \zero is not a macro 1 so it
doesn)t expand. However 1 such uses of \let have their value 1 as we will see later.

6<,~• EXERCISE 20.8
Y Y Is there a sib111ificant difference between :\let\a=\b) and :\def\a{\b})?

6<,~• EXERCISE 20.9
Y Y Experiment \Vith TE-X to discover the answers to the follmving questions: (a) If
the control sequence \par has been redefined (e.g. 1 :\def\par{\endgroup\par}))) is
\par still forbidden to appear in an arbrument? (b) If you say \let\xpar=\par) is
\xpar also fOrbidden in an argument?

~~ TE-X a~so all?~s the cm~truc~ion :\fu~urelet:cs(~oken 1 }~toke:~2 }) 1 wh_ich has
Y Y the effect of \let\cs - (token2}(token1 }(token2 } • The Idea IS that you can
say1 for example1 :\futurelet\a\b) at the end of the replacement text of a macro;
T£X \Viii set \a to the token that follo\\'B the macro 1 after which \b will be expanded.
The control sequence \b can continue the processing1 and it can examine \a to see
what)s coming up next.

The next thing a person wants 1 after getting used to macros with parameters1

is the ability to write macros that change their behavior depending on current
conditions. T£X provides a variety of primitive commands for this purpose. The general
form of such :'conditional texf' is

\if(condition)(truc tcxt)\else(falsc tcxt)\fi

where the (true text} is skipped unless the (condition} is true 1 and the (false text}
is shipped unless the (condition} is false. If the (false text} is empty1 you can omit
the \else. The :\if{condition}) part of this construction begins with a control sequence
whose first two letters are :if); for example1

\ifodd\countO \rightpage \else\leftpage \fi

specifies a condition that is true when TE-X)s integer register \countO is odd. Since TE-X
generally keeps the current page number in \count0 1 the macro \rightpage will be
expanded in this example if the page number is odd1 while \leftpage will be expanded
if the page number is even. Conditional commands always end with a final :\fi).

Conditionals are primarily intended for experienced T£X users 1 who want to
define high~level macros; therefore the remaining parabrraphs in this chapter

are headed by :'double dangerous bends.l' Do not feel guilty about skipping right to
Chapter 21; in other words 1 imagine that the manual says :\ifexperienced) right here 1

and that there is a matching :\fi) at the end of the present chapter.

~~ Before we discuss T£X)s repert?ire of ~if ... counn~nds 1 let)s look at another
Y Y example1 so that the general Ideas will be dear. Suppose that the \count
register \balance holds an amount that somebody has paid in excess of his or her
income tax; this amount is given in pennies 1 and it might be positive1 negative1 or 11ero.

207

par
futurdet
looking ahead
comlitional text
ebe
ifodd
count
page mlmber
li

208 Chapter 20: Definitions (also called Macros)

Our immediate goal \Viii be to write a TE-X macro that generates a suitable statement
for the Internal Revenue Service to include as part of a letter to that person 1 based on
the amount of the balance. The statement \Viii be quite different fOr positive balances
than for negative ones1 so we can exploit TE-X)s ability to act conditionally:

\def\statement{\ifnum\balance=O \fullypaid
\else\ifnum\balance>O \overpaid

\else\underpaid
\fi

\fi}

Here \ifnum is a conditional command that compares two numbers; the \statement
macro reduces to \fullypaid if the balance is 11ero1 and so OIL

It is vastly important to notice the spaces after the O)s in this construction.
If the example had said

... =0\fullypaid ...

then TE-X would have begun to expand :\fullypaid) before it knew the value of the
constant 01 because \fullypaid might start with a 1 or something that would change
the number. (After all 1 :01) is a perfectly acceptable {number} 1 in TE-X)s eyes.) In this
particular case the program would still have worked1 because we \Viii see in a moment
that \fullypaid bebrins \Vith the letter Y; thus 1 the only problem caused by the missing
space would be that TE-X would go slower1 since it would have to skip over the whole
expansion of \fullypaid instead of just skipping \fullypaid as a single1 unexpanded
token. But in other situations a missing space like this might cause T£X to expand
macros when you don)t want any expansion1 and such anomalies can cause subtle and
confusing errors. For best results 1 ahvays put a blank space after a nuuwric constant;
this blank space tells TE-X that the constant is complete1 and such a space will never :'get
throughl' to the output. In fact 1 when you don)t have a blank space after a constant 1

T£X actually has to do more work 1 because each constant continues until a nOIHligit
has been read; if this nOIHligit is not a space1 TE-X takes the token you did have and
backs it up 1 ready to be read again. (On the other hand1 the author often omits the
space when a constant is immediately followed by some other character 1 because extra
spaces do look funny in the file; aesthetics are more important than efficiency.)

6<,~• EXERCISE 20.10
Y Y Continuing the IRS example1 assume that \fullypaid and \underpaid are
defined as follows:

\def\fullypaid{Your taxes are fully paid---thank you.}
\def\underpaid{{\countO=-\balance

\ifnum\count0<100
You owe \dollaramount. but you need not pay it. because
our policy is to disregard amounts less than \$1.00.

\else Please remit \dollaramount\ within ten days.
or additional interest charges will be due.\fi}}

\Vrite a macro \overpaid to go \Vith these1 assuming that \dollaramount is a macro
that generates the contents of \countO in dollars and cents. Your macro should say
that a check \Viii be mailed under separate cover 1 unless the amount is less than 81.001

in which case the person must specifically request a check.

Internal He'<enue Ser'<ke
ifnum
;;pace after a con;;tant

Chapter 20: Definitions (also called Macros}

6<,~• EXERCISE 20.11
Y Y \Vrite a \dollaramount macro1 to complete the Internal Revenue \statement.

Now let)s make a complete survey of TE-X)s conditional commands. Some of
them involve features that have not yet been introduced in this manuaL

• \ifnum{number 1 }(relation}{number2 } (compare two integers)
The (relation} must be either :< 12) or := 12) or :> 12). The two integer numbers are
compared to each other in the usual way1 and the result is true or false accordingly.

• \ifdim(dimen1 }(relation}{dimenz} (compare two dimensions)
This is like \ifnum1 but it compares two {dimen} values. For example1 to test whether
the value of \hsize exceeds 100pt1 you can say :\ifdim\hsize>100pt).

• \ifodd{number} (test for odd integer)
The condition is true if the {number} is odd1 false if it is even.

• \ifvmode (test for vertical mode)
True if TE-Xis in vertical mode or internal vertical mode (see Chapter 13).

• \ifhmode (test for horit~ontal mode)
True if TE-Xis in horimntal mode or restricted horimntal mode (see Chapter 13).

• \ifmmode (test for math mode)
True if TE-Xis in math mode or display math mode (see Chapter 13).

• \if inner (test for an internal mode)
True if TE-Xis in internal vertical mode 1 or restricted horimntal mode1 or (nondisplay)
math mode (see Chapter 13).

• \if{token 1 }(token2 } (test if character codes agree)
T&X \Viii expand macros follov.'ing \if until two uncxpandablc tokens arc found. If
either token is a control sequence1 T£X considers it to have character code 256 and
category code 16 1 unless the current equivalent of that control sequence has been \let
equal to a nOIHtdive character token. In this way1 each token specifies a (charac~
ter code 1 category code) pair. The condition is true if the character codes are equal 1

independent of the category codes. For example1 after \def\a{*} and \let\b=* and
\def\c{/}, the tests '\if•\a' and '\if\a\b' v.'ill be true, but '\if\a\c' v.'ill be false.
Also '\if\a\par' v.'ill be false, but '\if\par\let' will be true.

• \ifcat(token 1 }(token2 } (test if category codes agree)
This is just like \if 1 but it tests the category codes 1 not the character codes. Active
characters have category 13 1 but you have to say :\noexpand{active character}) in order
to suppress expansion when you are looking at such characters \Vith \if or \if cat. For
example1 aller

\catcode'[=13 \catcode']=13 \def[{*}

the tests :\ifcat\noexpand[\noexpand]) and :\if cat[*) will be true1 but the test
:\ifcat\noexpand[*) will be false.

209

ifnum
relation
ifdim
ifodd
if'<mode
ifl1mode
ifmmode
ilinner
if
ifcat
category code;;
Acti'<e character,;
noexpaml

210 Chapter 20: Definitions (also called Macros}

• \ifx(tokcn,)(tokcnz) (test iftokcns agree)
In this case1 TE-X does not expand control sequences when it look-s at the two tokens.
The condition is true if (a) the two tokens are not macros 1 and they both represent the
same (character code1 category code) pair or the same TE-X primitive or the same \font
or \chardef or \countdef 1 etc.; or if (b) the two tokens are macros 1 and they both
have the same status \Vith respect to \long and \outer 1 and they both have the same
parameters and :'top lever' expansion. For example1 after :\def\a{\c} \def\b{\d}
\def\c{\e} \def\d{\e} \def\e{A}', an \ifx test will find \c and \d equal, but not
\a and \b 1 nor \d and \e 1 nor any other combinations of \a1 \b 1 \c 1 \d1 \e.

ifx
font
chardef
countdef
long
outer
if.,oid
ifl1box
if'< box
ifeof
open in
ift rue
ilfal;;e

• \ifvoid{number} 1 \ifhbox{number} 1 \ifvbox{number} (test a box register) ifca.-;e

The {number} should be between 0 and 255. The condition is true if that \box is void
or contains an hbox or a vbox1 respectively (see Chapter 15).

• \ifeof{number} (test for end of file)
The {number} should be between 0 and 15. The condition is true unless the corre--
sponding input stream is open and not fully read. (See the command \openin below.)

• \iftrue1 \iffalse (alway-s true or always false)
These conditions have a predetermined outcome. But they turn out to be useful in
spite of this 1 as explained below.

Finally1 there)s one more conditional construction1 which is somewhat different
from the rest because it is capable of making a many~ way branch:

• \ifcase{number}(text for case 0}\or(text for case 1}\or · · ·
\or(text for case n}\else(text for all other cases}\fi

Here there are n + 1 cases separated by n \or)s 1 where n can be any nonnegative
number. The {number} selects the text that will be used. Once again the \else part is
optional1 if you don)t want to specify any text for cases when the {number} is negative
or brreater than Jt.

6<,~• EXERCISE 20.12
Y Y Design a \category macro that prints a character)s current category code
symbolically1 given a one--character control sequence for that character. For example1 if
the category codes of plain TE-X are in force 1 :\category\ V should expand to :escape) 1

and :\category\a) should expand to :letter).

6<,~• EXERCISE 20.13
Y Y Test yourself on the fOllmving questions to see if you understand certain bor~
derline situations: After the definitions :\def\a{} \def\b{**} \def\c{True}) 1 which
of the follov.'ing arc true? (a) '\if\a\b'; (b) '\ifcat\a\b'; (c) '\ifx\a\b'; (d) '\if\c';
(c) '\ifcat\c'; (f) '\ifx\ifx\ifx'. (g) '\if\ifx\a\b\c\e1se\if\a\b\c\fi\fi'.

~~ Notice tl_1at all ~f the cont~ol seq~ences. ~·or c~ndi~ionals begi1.1 \Vith \~f: .. 1

Y Y and they all have a matchmg \fL Tins convention-that \~f ... paus up
with \fi-makes it easier to see the nesting of conditionals \Vithin your program. The
nesting of \if ... \fi is independent of the nesting of { ... }; thus 1 you can begin or end
a group in the middle of a conditional1 and you can begin or end a conditional in the
middle of a group. Extensive experience \Vith macros has shown that such independence
is important in applications; but it can also lead to confusion if you aren)t carefuL

"' ebe
ne;;ting
group

Chapter 20: Definitions (also called Macros}

~~ It)s sometimes desirable to pass. informatio:1 fr?m one macro to another1 ~nd
Y Y there are several way-s to do tins: by passmg 1t as an argument1 by puttmg
it into a register 1 or by defining a control sequence that contains the infOrmation.
For example 1 the macros \hphantom1 \vphantom1 and \phantom in Appendix B are
quite similar 1 so the author wanted to do most of the work in another macro \phant
that would be common to all three. Somehow \phant was to be told what kind of
phantom was desired. The first approach was to define control sequences \hph and
\vph something like this:

\def\hphantom{\ph YN} \def\vphantom{\ph NY} \def
\def\ph#1#2{\def\hph{#1}\def\vph{#2}\phant}

after which \phant could test :\if Y\hph) and :\if Y\vph). This worked 1 but there were
various way-s to make it more efficient; fOr example1 :\def\hph{#1}) could be replaced
by :\let\hph=#1) 1 avoiding macro expansion. An even better idea then suggested itself:

\def\yes{\ifOO} \def\no{\if01}
\def\hphantom{\ph\yes\no} ... \def
\def\ph#1#2{\let\ifhph=#1\let\ifvph=#2\phant}

after which \phant could test :\ifhph) and :\ifvph). (This construction was tried
befOre \iftrue and \iffalse were part of the TE-X language.) The idea worked fine 1

so the author started to use \yes and \no in a variety of other situations. But then
one day a complex conditional failed1 because it contained an \ifhph~like test inside
another conditional:

\if ... \ifhph ... \fi ... \else \fi

Do you see the problem that developed? \Vhen the (true text} of the outermost con~
ditional was executed 1 everything worked fine 1 because \ifhph was either \yes or \no
and it expanded into either \ifOO or \ifOL But when the (true text} was skipped1 the
\ifhph was not expanded 1 so the first \fi was mistakenly paired \Vith the first \if;
everything soon went hay\vire. That)s when \iftrue and \iffalse were put into the
language1 in place of \yes and \no; now \ifhph is either \iftrue or \iffalse1 so T£X
will match it properly with a dosing \fi 1 whether or not it is being shipped over.

~~ T? fac~lita~e _\if co:1stru;tions1 plainT£: has a :ne.wif mac:o1 s~d~ that
Y Y after you say \new~f\~fabc three control sequences \V1II be defined. \~fabc
(for testing the S\vitch) 1 \abctrue (for making the S\vitch true) 1 and \abcfalse (for
making it false). The \phantom problem is now solved in Appendix B by \Vriting

\newif\ifhph \newif\ifvph
\def\hphantom{\hphtrue\vphfalse\phant}

and with similar definitions of \vphantom and \phantom. There is no longer any need
for a \ph macro; again \phant tests \ifhph and \ifvph. Appendix E contains other
examples of conditionals created by \newif. New conditionals are initially false.

~~ Caution: Don)t say anything like :\let\ifabc=\iftrue) in conditional text.
Y Y If T£X skips over this counnaml1 it \Viii think that both \if abc and \iftrue
require a matching \fi 1 since the \let is not being executed! Keep such commands
buried inside macros 1 so that TE-X \Viii see the :\if ...) only when it is not skipping
over the text that it is reading.

211

communication between macro;;
phantom
Knuth
ift rue
ilfal;;e
new if

212 Chapter 20: Definitions (also called Macros}

~~ TE-X has 256 :'token list registent called \toksO through \toks255 1 so that
Y Y token lists can easily be shuffled around \Vithout passing them through TE-X)s
reading apparatus. There)s also a \toksdef instruction so that 1 e.g. 1

\toksdef\catch=22

makes \catch equivalent to \toks22. Plain TE-X provides a \newtoks macro that
allocates a new token list rebrister; it is analogous to \newcount. Token list registers
behave like the token list parameters \everypar 1 \everyhbox 1 \output 1 \errhelp 1 etc.
To assibfil a new value to a token list parameter or register 1 you say either

(token variable)={(replacement text)}
or (token variable}=(token variable}

where (token variable} means either a token list parameter or a control sequence defined
by \toksdef or \newtoks 1 or an explicit register designation :\toks{number}).

~~ Everyone who makes extensive use of a powerful macro facility encounters
Y Y situations when the macros do surprising things. \Ve have already mentioned
the possibility of setting \tracingmacros=1 1 in order to see when T£X expands macros
and what arguments it finds. There)s also another helpful way to watch what TE-X is
doing: If you set \tracingcommands=1 1 TE-X \Viii show every command that it executes 1

as we saw in Chapter 13. Furthermore1 if you set \tracingcommands=2 1 T£X \Viii show
all conditional commands and their outcomes1 as well as the unconditional commands
that are actually perfOrmed or expanded. This diabfilOStic information goes into your log
file. You can also see it on your terminal 1 if you say \tracingonline=L (Incidentally1

if you make \tracingcommands greater than 21 you get the same information as when
it equals 2.) Similarly1 \tracingmacros=2 \Viii trace \output 1 \everypar 1 etc.

~~ One way to. um~erstand. the occ~ional strangeness of macro operation is to
Y Y use the tracmg features JUSt descnbed1 so that you can watch what TE-X does
in slow motion. Another way is to learn the rules fOr how macros are expanded; we
shall now discuss those rules.

~~ !E~)s mastic.ation .p~o~ess·c·o~1verts y~.u~ ii~pu: ~o .a lo~1g tok~I~ lis~ 1 as .~xpl~!ned Y Y m Chapter 81 and Its chgestne processes work stnctly on tins token hst. \\hen
T£X encounters a control sequence in the token list 1 it looks up the current meaning 1

and in certain cases it \Viii expand that token into a sequence of other tokens befOre
continuing to read. The expansion process applies to macros and to certain other
special primitives like \number and \if that we shall consider momentarily. Sometimes1

however 1 the expansion is not carried out; for example 1 when TE-Xis taking care of a
\def 1 the (control sequence} 1 the (parameter text} 1 and the (replacement text} of that
\def are not subject to expansion. Similarly1 the two tokens after \ifx are never
expanded. A complete list of occasions when tokens are not expanded appears later in
this chapter; you can use it for refCrence in an emergency.

Now let)s consider the control sequences that are expanded whenever expan~
sion has not been inhibited. Such control sequences fall into several classes:

• Macros. \Vhen a macro is expanded 1 T£X first determines its arguments (if
any) 1 as explained earlier in this chapter. Each argument is a token list; the tokens
are not expanded when they are being accepted as arguments. Then TE-X replaces the
macro and its arguments by the replacement text.

token li;;t regi;;ter;;
tob
tobdef
newtok;;
t olwn I i;;t parameter,;
token '<ariabk
tradngcommamb
tradngonline
tradngmacro;;
ex pan;; ion

Chapter 20: Definitions (also called Macros}

• Conditionals. \Vhen an \if ... is expanded1 TE-X reads ahead as far as nee~
essary to determine whether the condition is true or false; and if false 1 it skips ahead
(keeping track of \if ... \fi nesting) until finding the \else1 \or 1 or \fi that ends
the skipped text. Similarly1 when \else1 \or 1 or \fi is expanded1 TE-X reads to the
end of any text that ought to be skipped. The :'expaJlSionl' of a conditional is empty.
(Conditionals always reduce the number of tokens that are seen by later stages of the
digestive process 1 while macros usually increase the number of tokens.)

• \number{number}. \Vhen T£X expands \number 1 it reads the {number} that
follo\\'B (expanding tokens as it goes); the final expansion consists of the decimal rep~
resentation of that number 1 preceded by:_; if negative.

• \romannumeral{number}. This is like \number 1 but the expansion consists of
lowercase roman numerals. For example1 :\romannumeral 1984) produces :mcmlxxxiv).
The expansion is empty if the number is 11ero or negative.

• \string(token}. TE-X first reads the (token} \Vithout expansion. If a control
sequence token appears 1 its \string expansion consists of the control sequence name
(including \escapechar as an escape character1 if the control sequence isn)t simply an
active character). Othenvise the (token} is a character token 1 and its character code is
retained as the expanded result.

• \jobname. The expansion is the name that T£X has chosen for this job. For
example1 if TE-Xis putting its output on files paper .dvi and paper .log1 then \jobname
expands to :paper).

• \fontname{font}. The expansion is the external file name corresponding to the
given font; e.g. 1 :\fontname\tenrm) might expand to :cmr10) (five tokens). If the font is
not being used at its desibfil sit~e 1 the :'at sit~el' also appears in the expansion. A (fOnt}
is either an identifier defined by \font; or \textfont{number} 1 \scriptfont{number} 1

or \scriptscriptfont{number}; or \font 1 which denotes the current font.

• \meaning(token}. TE-X expands this to the sequence of characters that would
be displayed on your terminal by the commands :\let\test=(token} \show\ test).
For example1 :\meaning A) usually expands to :the letter A); :\meaning\A) aller
:\def\A#1B{\C}) expands to :macro:#1B->\C).

• \csname ... \endcsname. \Vhen T£X expands \csname it reads to the matching
\endcsname 1 expanding tokens as it goes; only character tokens should remain aller this
expansion has taken place. Then the :'expansion!' of the entire \csname ... \endcsname
text \Viii be a single control sequence token 1 defined to be like \relax if its meaning is
currently undefined.

• \expandafter(token}. TE-X first reads the token that comes immediately aller
\expandafter 1 \Vithout expanding it; let)s call this token t. Then T£X reads the token
that comes aller t (and possibly more tokens 1 if that token has an argument) 1 replacing
it by its expansion. Finally T£X puts t back in front of that expansion.

• \noexpand{token}. The expansion is the token itself; but that token is inter~
preted as if its meaning were :\relax) if it is a control sequence that would ordinarily
be expanded by TE-X)s expansion rules.

• \topmark1 \firstmark1 \botmark1 \splitfirstmark1 and \splitbotmark. The
expansion is the token list in the corresponding :'markl' register (see Chapter 23).

213

number
decimal repre;;entation
romannumeral
;;tring
e;;capechar
job name
<hi
fontname
at ;;ize
font
font
meaning
c;;name
endc;;name
ex pam! after
noexpaml
topmark
lir,;tmark
bot mark
;;plitlir;;tmark
;;plitbotmark
mark

214 Chapter 20: Definitions (also called Macros)

• \input(file name}. The expansion is null; but TE-X prepares to read from the
specified file before looking at any more tokens from its current source.

• \endinput. The expansion is nulL The next time TE-X gets to the end of an
\input line1 it will stop reading from the file containing that line.

• \the{internal quantity}. The expansion is a list of tokens representing the
current value of one of TE-X)s variables 1 as explained below. For example1 :\the\skip5)
might expand into :5.0pt plus 2.0fil) (17 tokens).

The powerful \the operation has many subcases1 so we shall discuss them one
at a time. A variety of internal numeric quantities can be brought up front:

• \the{parameter} 1 where (parameter} is the name of one of TE-X)s integer pa~
rameters (e.g. 1 \the\wido-wpenalty) 1 dimension parameters (e.g. 1 \the\parindent) 1

glue parameters (e.g. 1 \the\leftskip) 1 or muglue parameters (e.g. 1 \the\thinmuskip).
• \the{register} 1 where (rebrister} is the name of one of TE-X)s integer registers

(e.g. 1 \the\count 0) 1 dimension registers (e.g. 1 \the\dimen169) 1 glue rebristers (e.g. 1

\the\skip255) 1 or muglue registers (e.g. 1 \the\muskip\count2).
• \the{codename}(S~bit number} 1 where (codename} stands for either \catcode 1

\mathcode 1 \lccode 1 \uccode 1 \sfcode 1 or \del code. For example 1 \the\mathcode' I
produces the current (integer) math code value fOr a slash.

• \the{special register} 1 where (special rebrister} is one of the integer quantities
\prevgraf 1 \deadcycles 1 \insertpenalties 1 \inputlineno 1 \badness 1 or \parshape
(denoting only the number of lines of \par shape); or one of the dimensions \pagetotal 1

\pagegoal 1 \pagestretch1 \pagefilstretch1 \pagefillstretch1 \pagefilllstretch1

\pageshrink1 \pagedepth. In horimntal modes you can also refer to a special integer 1

\the\spacefactor; in vertical modes there)s a special dimension 1 \the\prevdepth.
• \the\fontdimen(parameter number}(font}. This produces a dimension; for

example1 parameter 6 of a font is its :'eml' value 1 so :\the\fontdimen6\tenrm) yields
'10.0pt' (six tokens).

• \the \hyphenchar{font} 1 \the \skewchar{fOnt}. These produce the correspond~
ing integer values defined for the specified fOnt.

• \the\lastpenalty1 \the\lastkern1 \the\lastskip. These yield the amount
of penalty1 kerning 1 glue1 or muglue in the final item on the current list 1 provided that
the item is a penalty1 kern 1 or glue1 respectively; otherwise they :yield :o; or :O.Opt).

• \the{ defined character} 1 where (defined character} is a control sequence that
has been given an integer value \Vith \chardef or \mathchardef; the result is that
integer value 1 in decimal notation.

~~ In all of the cases listed so far 1 \the produces a result that is a sequence of
Y Y ASCII character tokens. Category code 12 (:'otherl') is assigned to each token 1

except that character code 32 gets category 10 C'spacel'). The same rule is used to
assign category codes to the tokens produced by \number 1 \romannumeral 1 \string1

\meaning1 \jobname 1 and \fontname.

There also are cases in which \the produces non~character tokens 1 either a
font identifier like \tenrm1 or an arbitrary token list:

• \the{font} produces a font identifier that selects the specified font. For exam~
ple1 :\the\font) is a control sequence corresponding to the current fOnt.

input
end input
the
integer parameter;;
dimen;;ion parameter;;
glue parameter;;
muglue parameter,;
regi;;ter;;
cat code
mathcode
kcode
uccode
;;fcode
ddcode
pre'<graf
dead(:y(:le;;
in;;ert penalt ie;;
inputliiH:no
badne;;;;
par;;hape
pagetotal
pagegoal
page;;t retch
pagdi bt retch
pagdill;;tretch
pagdillbtretch
page;;hrink
pagwlepth
fontdimen
em
hyphenchar
;;lwwchar
la,-;t penalty
la,-;t kem
la,-;t;;kip
chardef
mat hchardef
ASCII
category code;;
number
romannumeral
;;tring
meaning
job name
fontname

Chapter 20: Definitions (also called Macros}

• \the{ token variable} produces a copy of the token list that is the current value
of the variable. For example 1 you can expand :\the\everypar) and :\the\toks5).

~~ T£X)s. prim.itive command :~showthe) \Viii disp:a~ .on your termii~<tl e:xactly
Y Y what ·\the· would produce m an expanded defimbon; the expamnon IS pre--
ceded by:>) and fOllowed by a period. For example1 :\showthe\parindent) \Viii display

> 20.0pt.

if the plain TE-X parabrraph indentation is being used.

~~ Here now is the promised list of all cases when expandable tokens are not ex~
Y Y panded. Some of the situations involve primitives that haven)t been discussed
yet 1 but we)ll get to them eventually. Expansion is suppressed at the follmving times:

• \Vhen tokens are being deleted during error recovery (see Chapter 6).
• \Vhen tokens are being skipped because conditional text is being ibfilOred.
• \Vhen TE-X is reading the arguments of a macro.
• \Vhen TE-X is reading a control sequence to be defined by \let 1 \futurelet 1

\def 1 \gdef 1 \edef 1 \xdef 1 \chardef 1 \mathchardef 1 \countdef 1 \dimendef 1

\skipdef 1 \muskipdef 1 \toksdef 1 \read1 and \font.

• \Vhen TE-X is reading argument tokens for \expandafter 1 \noexpand1 \string1

\meaning1 \let 1 \futurelet 1 \ifx1 \show1 \afterassignment 1 \aftergroup.

• \Vhen T£X is absorbing the parameter text of a \def 1 \gdef 1 \edef 1 or \xdef.

• \Vhen T£X is absorbing the replacement text of a \def or \gdef or \read;
or the text of a token variable like \everypar or \toksO; or the token list
for \uppercase or \lowercase or \write. (The token list fOr \write \Viii be
expanded later 1 when it is actually output to a file.)

• \Vhen TE-X is reading the preamble of an alibfimiCnt 1 except after a token for
the primitive command \span or when reading the (glue} after \tabskip.

• .Just after a $a token that begins math mode1 to see if another $a fOllo\\'S.
• .Just after a ' 1 2 token that begins an alphabetic constant.

Sometimes you will find yourself wanting to define new macros whose replace--
ment text has been expanded1 based on current conditions1 instead of simply

copying the replacement text verbatim. TE-X provides the \edef (expanded definition)
command for this purpose1 and also \xdef (which is equivalent to \global\edef). The
general format is the same as for \def and \gdef 1 but TE-X blindly expands the tokens
of the replacement text according to the expansion rules above. For example1 consider

\def\double#1{#1#1}
\edef\a{\double{xy}} \edef\a{\double\a}

Here the first \edef is equivalent to :\def\a{xyxy}) and the second is equivalent to
:\def\a{xyxyxyxy}). All of the other kinds of expansion will take place too1 including
conditionals; fOr example1

\edef\b#1#2{\ifmmode#1\else#2\fi}

gives a result equivalent to :\def\b#1#2{#1}) if TE-X is in math mode at the time of
the \edef 1 otherwise the result is equivalent to :\def\b#1#2{#2}).

215

;;howthe
error recoH:ry
let
futurdet
def
gdef
wkf
xdef
chardef
mat hchardef
countdef
dimendef
;;kipdef
mu;;kipdef
tobdef
read
font
ex pam! after
noexpaml
;;tring
meaning
let
futurdet
ifx
;;how
aftera,-;;;ignment
aftergroup
read
token '<ariable
e'<erypar
tob
up pen:a,-;e
lowen:a,-;e
write
tab;; kip
alphabetic con;;tant
wkf
xdef

216 Chapter 20: Definitions (aka Macros}

~~ Expanded definitions that are made with \edef or \xdef continue to expand
Y Y tokens until only unexpandable tokens remain 1 except that token lists pro~
duced by :\the) are not expanded further. Furthermore a token fOllmving :\noexpand)
will not be expanded1 since its ability to expand has been nullified. These two opera~
tions can be used to control what gets expanded and what doesn)t.

~~ Suppose1 for example1 that you want to define \a to be equal to \b (expanded)
Y Y followed by \c (not expanded) followed by \d (expanded) 1 assuming that \b
and \d are simple macros without parameters. There are two easy ways to do it:

\edef\a{\b\noexpand\c\d}
\toksO={\c} \edef\a{\b\the\toksO \d}

And it)s even possible to achieve the same effect without using either \no expand or \the;
a reader who wants to learn more about TE-X)s expansion mechanism is encouraged to
try the next three exercises.

6<,~• EXERCISE 20.14
Y Y Fibrure out a way to define \a as in the previous paragraph) without using
T£X)s primitives :\noexpand) and :\the).

6<,~• EXERCISE 20.15
Y Y Continuing the example of expansion avoidance 1 suppose that you want to
expand \b completely until only unexpandable tokens are left 1 but you don)t want
to expand \c at all 1 and you want to expand \d only one leveL For example 1 aller
\def\b{\c\c} and \def\c{•} and \def\d{\b\c} the goal would be to get the eflcct of
\def\a{**\c\b\c}. How can such a partial expansion be achieved 1 using \the?

6<,~• EXERCISE 20.16
Y Y Solve the previous exercise \Vithout \the or \noexpand. (This is difficult.)

~~ TE-X)s primitive commands \mark{ ... }1 \message{ ... }1 \errmessage{ ... }1

Y Y \special{ ... }1 and \Yrite{number}{ ... } all expand the token lists in braces
almost exactly as \edef and \xdef do. However 1 a macro parameter character like #
should not be duplicated in such commands; you need to say ## \Vithin an \edef 1 but
only # within a \mark. The \Yrite command is somewhat special 1 because its token
list is first read \Vithout expansion; expansion occurs later 1 when the tokens are actually
being written to a file.

6<,~• EXERCISE 20.17
Y Y Compare the fOllmving two definitions:

\def\a{\iftrue{\e1se}\fi}
\edef\b{\iftrue{\e1se}\fi}

\Vhich of them yields an unmatched left brace? (This is tricky.)

~~ !E-X h~. the ability ~o read individu~ lin~s of text fr~u~ ~P to 16 ~les at once1

Y Y m adchbon to the files that are bemg \~nput. To unbate readmg such an
auxiliary file 1 you should say

\openin{number}=(file name}

where the {number} is between 0 and 15. (Plain TE-X allocates input stream numbers
0 through 15 \Vith the \neYread comm<UH11 which is analogous to \newbox.) In most

the
noexpaml
expan;;ion, a'<oiding
the
mark
me;;;;age
errme;;;;age
;;pedal
write
unmatched left brace
open in
new read

Chapter 20: Definitions (also called Macros}

installations of TE-X 1 the extension :. tex) will be appended to the file wune 1 as \Vith
\input 1 if no extension is given explicitly. If the file cannot be f0und 1 TE-X \Viii brive no
error message; it \Viii simply consider that the input stream is not open 1 and you can
test this condition \Vith \ifeof. \Vhen you)re done \Vith a file 1 you can say

\closein{number}

and the file associated \Vith that input stream number \Viii be dosed1 i.e. 1 returned to
its initial condition 1 if such a file was open. To get input from an open file 1 you say

\read(number }to (control sequence}

and the control sequence is defined to be a parameterless macro whose replacement
text is the contents of the next line read from the designated file. This line is converted
to a token list 1 using the procedure of Chapter 81 based on the current category codes.
Additional lines are read 1 if necessary1 until an equal number of left and right braces
has been fOund. An empty line is implicitly appended to the end of a file that is being
\read. If the {number} is not between 0 and 15 1 or if no such file is open 1 or if the
file has ended1 input \Viii be from the terminal; TE-X \Viii prompt the user unless the
{number} is negative. The macro definition \Viii be local unless you say \global \read.

~~ F~r example1 it)s easy to have dial~gs \Vit.h the user 1 by using \rea~ together
Y Y \V1th the \message command (winch \\Tites an expanded token hst on the
terminal and in the log file):

\message{Please type your name:}
\read16 to\myname
\message{Hello. \myname!}

The \read command in this case will print :\myname=) and it will wait fOr a response;
the response will be echoed on the log file. The :\myname=) would have been omitted if
:\read16) had been :\read-1).

6<,~• EXERCISE 20.18
Y Y The \myname example just briven doesn)t work quite right 1 because the (return}
at the end of the line gets translated into a space. Figure out how to fix that glitch.

6<,~• EXERCISE 20.19
Y Y Continuing the previous example1 define a macro \MYNAME that contains the
letters of \myname all in uppercase letters. For example 1 if \myname expands to Arthur 1

\MYNAME should expand to ARTHUR. Assume that \myname contains only letters and
spaces in its expansion.

~~ Appendices B1 D 1 and E contain numerous examples of how to make macros
Y Y do useful things. Let)s dose this chapter by presenting a fCw examples that
show how TE-X can actually be used as a primitive programming language1 if you want
to achieve special effCcts1 and if you don)t care very much about computer costs.

~~ Plain.T~~ contains~ \looy ... \repe)at ~onstruction 11 which w~r.ks like t~1is:.
Y Y You say \loop o: \~f ... ,3 \repeat 1 where o: and ,3 are any sequences of
commmHis1 and where \if ... is any conditional test (without a matching \fi). TE-X
will first do o:; then if the condition is true1 TE-X will do f/ aiHl repeat the whole process
again starting with o:. If the condition ever turns out to be false 1 the loop will stop.

217

.tex
input
ifeof
do;;ein
read

'" empty line at end of lik
dialog;; with the uM:r
me;;;;age
upperca,-;e letter;;
programming
loop

218 Chapter 20: Definitions (also called Macros)

For example1 here is a program that carries out a little dialog in which TE-X waits for
the user to type :Yes) or :No):

\def\yes{Yes } \def\no{No } \newif\ifgarbage
\loop\message{Are you happy? }

\read-1 to\answer
\ifx\answer\yes\garbagefalse % the answer is Yes

\else\ifx\answer\no\garbagefalse % the answer is No
\else\garbagetrue\fi\fi % the answer is garbage

\ifgarbage\message{(Please type Yes or No.)}
\repeat

6<,~• EXERCISE 20.20
Y Y Use the \loop ... \repeat mechanism to construct a general \punishment
macro that repeats any given parabrraph any briven number of times. For example1

\punishment{! must not talk in class.}{100}

should produce the results desired in exercise 20.1.

~~ The first,...tl~irty~ prime I~uu~ber~ ax: 21 31 51 71 11 1 13 1 171 191 23 1 29 1 31 1 371

41, 43, 41, i>3, i>9, 61, 61, d, 13, 19, 83, 89 97, 101, 103, 107, 1()9, and 113.
You may not find this fact very startling; but you may be surprised to learn that the
previous sentence was t:yl)eset by saying

The first thirty prime numbers are \primes{30}.

T£X did all of the calculation by expanding the \primes macro 1 so the author is pretty
sure that the list of prime numbers briven above is quite free of typographic errors. Here
is the set of macros that did it:

\newif\ifprime \newif\ifunknown % boolean variables
\newcount\n \newcount\p \newcount\d \newcount\a % integer variables
\def\primes#1{2.-3% assume that #1 is at least 3

\n=#1 \advance\n by-2 % n more to go
\p=5 % odd primes starting with p
\loop\ifnum\n>O \printifprime\advance\p by2 \repeat}

\def\printp{. % we will invoke \printp if p is prime
\ifnum\n=1 and-\fi % 'and' precedes the last value
\number\p \advance\n by -1 }

\def\printifprime{\testprimality \ifprime\printp\fi}
\def\testprimality{{\d=3 \global\primetrue

\loop\trialdivision \ifunknown\advance\d by2 \repeat}}
\def\trialdivision{\a=\p \divide\a by\d

\ifnum\a>\d \unknowntrue\else\unknownfalse\fi
\multiply\a by\d
\ifnum\a=\p \global\primefalse\unknownfalse\fi}

The computation is fairly straightforward; except that it involves a loop inside a loop;
therefore \testprimality introduces an extra set of braces1 to keep the inner loop
control from interfering with the outer loop. The braces make it necessary to say
:\global) when \ifprime is being set true or false. T£X spent more time constructing

repeating command;;, ;;ee :loop
prime mlmber;;
new if
newcount
multiply
di.,-ide
ad'<ann:
newcount
global

Chapter 20: Definitions (also called Macros} 219

that sentence than it usually spends on an entire page; the \trialdivision macro was
expanded 132 times.

~~ The \loop macro that does all these wonderful things is actually quite simple.
Y Y It puts the code that)s supposed to be repeated into a control sequence called
\body 1 and then another control sequence iterates until the condition is false:

\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body\let\next=\iterate\else\let\next=\relax\fi\next}

The expansion of \iterate ends \Vith the expansion of \next; therefore TE-Xis able
to remove \iterate from its memory before invoking \next 1 and the memory does not
fill up during a long loop. Computer scientists call this :'tail recursion.!'

~~ The \hex macro below 1 which converts count rebrister \n to hexadecimal no--
Y Y tation 1 illustrates a recursive control structure in which many copies of \hex
can be active simultaneously. Recursion works better than simple \loop iteration in
this application because the hexadecimal digits are discovered from right to left 1 while
they must be output from left to right. (The number in \n should be 2: 0.)

\def\hex{{\countO=\n \divide\n by16
\ifnum\n>O \hex\fi \count2=\n \multiply\count2 by-16
\advance\countO by\count2 \hexdigit}}

\def\hexdigit{\ifnum\count0<10 \number\countO
\else\advance\countO by-10 \advance\countO by'A \char\countO \fi}

Our final example is a macro that computes the number of nonblank tokens
in its argument; for example1 :\length{argument}) expands to :8;. This illus~

trates yet another aspect of macro technique.

\def\length#1{{\count0=0 \getlength#1\end \number\countO}}
\def\getlength#1{\ifx#1\end \let\next=\relax

\else\advance\countO by1 \let\next=\getlength\fi \next}

By this time [37 A. D.] the influence of Macro had become suoreme.
- TACITUS, Annals (c. 120 A.D.)

I hate definitions.
- BENJAMIN DISRAELI, Vivian Grey (1826)

tail recur,;ion
hexaded mal not at ion
Hecur;;ion
iteration
J'viacro
TACITCS
DISHAELI

>age 220) I

Making Boxes

Chapter 21: Making BoJ:cs

In Chapters 11 and 12 we discussed the principles of boxes and glue, and by
now we have seen many applications of those concepts. You can get by in most
cases with the boxes that TEX manufactures automatically with its paragraph
builder, its page builder, and its math formula processor: but if you want to do
nonstandard things, you have the option of making boxes by yourself. For exam-
ple, Chapter 14 points out that you can keep something from being hyphenated
or split between lines if you enclose it in an \hbox: Chapter 19 points out that
\hbox allows you to get ordinary text into a displayed equation.

The purpose of the present chapter is to nail down whatever details about
boxes haven)t been covered yet. Fortunately1 there isn)t much more to discuss;

we have already mentioned most of the rules 1 so this chapter is fairly short. In fact 1

the previous chapters have dealt with almost everything except the rules about rules.

To make a rule box (i.e. 1 a solid black rectangle) 1 you type :\hrule) in vertical
mode or :\vrule) in horimntal mode 1 followed by any or all of the specifications

:width{dimen}) 1 :height{dimen}) 1 :depth{dimen}) 1 in any order. For example1 if

\vrule height4pt width3pt depth2pt

appears in the middle of a paragraph1 T£X will t:yl)eset the black box : 1). If you specify
a dimension twice1 the second specification overrules the first. If you leave a dimension
unspecified 1 you get the follmving by default:

\hrule \vrule
\Vidth * 0.4 pt
height 0.4 pt *
depth 0.0 pt *

Here :*; means that the actual dimension depends on the context; the rule \Viii extend
to the boundary of the smallest box or alibfimiCnt that encloses it.

For example1 the author t:yl)ed :\hrule) just before typing this paragraph 1

and you can see what happened: A horit~ontal rule 1 0.4pt thick1 was extended
across the page 1 because the vertical box that encloses it turned out to be just that
wide. (In fact 1 the vertical box that encloses it is the page itself.) Another example
appears immediately after this paragraph1 where you can see the result of

\hrule width5cm heightipt \vskipipt \hrule width6cm

T£-X does not put interline glue between rule boxes and their neighbors in a vertical
list 1 so these two rules are exactly 1 pt apart.

• EXERCISE 21.1
B. L User didn)t want one of his horit~ontal rules to touch the left margin 1 so

he put it in a box and moved it right 1 like this:

\moveright 1in \vbox{\hrule width3in}

But he found that this produced more space above and below the rule than when he
had simply said :\hrule width 4in) \Vith no \vbox. \Vhy did T£-X insert more space1

and what should he have done to avoid it?

221

hbox
'<box
rule box
black rectangle
hrule
'<rule
width
height
depth
interline glue
C;;er
mo'<eright

222 Chapter 21: Making BoJ:cs

If you specifY all three dimensions of a rule 1 there)s no essential difference
between \hrule and \vrule1 since both will produce exactly the same black

box. But you must call it an \hrule if you want to put it in a vertical list 1 and you
must call it a \vrule if you want to put it in a horimntal list 1 regardless of whether it
actually looks like a horimntal rule or a vertical rule or neither. If you say \vrule in
vertical mode1 TE-X starts a new paragraph; if you say \hrule in horit~ontal mode1 TE-X
stops the current parabrraph and returns to vertical mode.

The dimensions of a rule can be negative; fOr example1 here)s a rule whose
height is 3 pt and whose depth is -2 pt:) . However 1 a rule

is invisible unless its height plus depth is positive and its width is positive. A rule
whose \Vidth is negative cannot be seen 1 but it acts like a backspace when it appears
in a horimntal list.

• EXERCISE 21.2
Explain how the author probably obtained the rule : --------) in the

previous paragraph. [Hint: It)s one inch long.]

~~ Now let)s summarit~e all ~f: t~le.way~ ~here are to specify. box~. explicitly t~
Y Y TE-X. (1) A character by Itself makes a character box1 m honmntal mode 1

this character is taken from the current font. (2) The commands \hrule and \vrule
make rule boxes 1 as just explained. (3) Otherwise you can make hboxes and vboxes 1

which fall under the generic term (box}. A (box} has one of the fOllmving seven fOrms:

\hbox(box specification} { (horimntal material}}
\vbox(box specification} {(vertical material}}
\vtop(box specification} {(vertical material}}
\box(register number}
\copy(register number}
\vsplit(register number}to{dimen}
\last box

(sec Chapter 12)
(sec Chapter 12)
(sec Chapter 12)
(sec Chapter 15)
(sec Chapter 15)
(sec Chapter 15)
(sec Chapter 21)

Here a (box specification} is either :to{dimen}) or :spread{dimen}) or empty; this gov~
erns the setting of glue in the horimntal or vertical lists inside the box1 as explained
in Chapter 12. A (register number} is between 0 and 255; aller you say \box 1 that
rebrister becomes void1 but after \copy the register is unchanged1 as explained in Chap~
ter 15. The \vsplit operation is also explained in Chapter 15. In math modes an
additional type of box is available: \vcenter{box specification}{(vertical material}}
(sec Chapter 17).

~~ The bottom line of the table above refers to \lastbox1 a primitive operation
Y Y that hasn)t been mentioned before. If the last item on the current horimntal
list or vertical list is an hbox or vbox1 it is removed from the list and it becomes the
\lastbox; othenvise \lastbox is void. This operation is allowed in internal vertical
mode1 horit~ontal mode1 and restricted horit~ontal mode1 but you cannot use it to take a
box from the current page in vertical mode. In math modes 1 \last box is always void.
At the beginning of a paragraph1 :{\setboxO=\lastbox}) removes the indentation box.

leaders 1

The operation \unskip is something like \lastbox1 except that it applies to
glue instead of to boxes. If the last thing on the current list is a glue item (or
as explained below) 1 it is removed. You can)t remove glue from the current

back;; pace
box
hbox
.,box
.,top
box
copy
.,;;plit
la,-;t box
box ;;pedlication

'" ;;pread
H:enter
la,-;t box
internal Hortical mode
indent at ion box
un;;kip
leader,;

Chapter 21: Making BoJ:cs

page by using \unskip in vertical mode 1 but you can say :\vskip-\lastskip) 1 which
has almost the same effect.

~~ Chapters 24 to 26 present summaries of all TE-X)s operations in all modes 1

Y Y and when those smmnaTies mention a :(box}) they mean one of the seven
possibilities just listed. For example1 you can say :\setbox(register number}=(box}) in
any mode 1 and you can say :\moveright{dimen}(box}) in vertical modes. But you can)t
say :\setbox(register number}=C) or :\moveright{dimen} \hrule); if you try either of
these1 T£X will complain that a (box} was supposed to be present. Characters and
rules are so special 1 they aren)t regarded as (box}es.

6<,~• EXERCISE 21.3
Y Y Define a control sequence \boxit so that :\boxit{(box}}) yields the briven box
surrounded by 3 points of space and by ruled lines on all four sides.

For example1 the sentence you are now reading was typeset as part of
the displayed forumla $$\boxit{\boxit{\box4} }$$ 1 where box 4 was
created by t:yl)ing :\setbox4=\vbox{\hsize 23pc \no indent \strut
For example. the sentence you are now reading ... \strut}).

Let)s look also at what can go inside a box. An hbox contains a horimntal
list; a vbox contains a vertical list. Both kinds of lists are made up primarily

of things like boxes 1 glue 1 kerns 1 and penalties1 as we have seen in Chapters 14 and 15.
But you can also include some special things that we haven)t discussed yet 1 namely
:'leadersl' and :'whatsits.l' Our goal in the rest of this chapter \Viii be to study how to
make use of such exotic items.

The dots you see before your eyes here · · · · · · · · · · · · · are called leaders
because they lead your eyes across the page; such things are often used in

indexes or tables of contents. The general idea is to repeat a box as many times as
necessary to fill up some given space. TE-X treats leaders as a special case of glue;
no1 wait 1 it)s the other way around: T£X treats glue as a special case of leaders.
Ordinary glue fills space with nothing 1 while leaders fill space \Vith any desired thing.
In horit~ontal mode you can say

\leaders(box or rulc)\hskip(gluc)

and the effect will be the same as if you had said just :\hskip(glue}) 1 except that the
space \Viii be occupied by copies of the specified (box or rule}. The glue stretches or
shrinks in the usual way. For example1

\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
\line{Alpha\leaderfill Omega}
\line{The Beginning\leaderfill The Ending}

will produce the follmving two lines:

Alpha
The Beginning

Omega
The Ending

Here :\hbox to 1em{\hss. \hss}) specifies a box one em wide1 with a period in its
center; the control sequence \leaderfill then causes this box to be replicated when

223

la,-;t;;kip
leader,;
leader,;

224 Chapter 21: Making BoJ:cs

filling space in the \line box. (Plain TE-X)s \line macro makes an hbox whose \Vidth
is the \hsize.)

Notice that the dots in the two example lines appear exactly above each other.
This is not a coincidence; it)s a consequence of the fact that the \leaders

operation acts something like a \Vindow that lets you see part of an infinite row of
boxes. If the words :Alpha) and :omega) are replaced by longer words 1 the number of
dots might be different but the ones that you see will be in the same places as befOre.
The infinitely replicated boxes are lined up so that they touch each other 1 and so that 1

if you could see them all 1 one of them would have the same refCrence point as the
smallest enclosing box. Thus 1 \leaders \Viii put a box flush \Vith the left edge of an
enclosing box1 if you start the leaders there; but you won)t get a box flush right unless
the \Vidth of the enclosing box is exactly divisible by the \Vidth of the repeated box.
If the repeated box has \Vidth 1L' 1 and if the space to be filled is at least 21L' 1 then you
will always see at least one copy of the box; but if the space is less than 21L' the box
may not appear 1 because boxes in the infinite row are typeset only when their entire
width falls into the available space.

~~ W~hen lead:rs are is?lated from each othe~ 1 yo~ might ~lOt want them to b.e
Y Y ahbfilCd as JUSt descnbed 1 so TE-X also provules for nonaligned leaders. In tins
case a box of width 1L' will be copied q times when the space to be filled is at least Q1L'

and less than (q + 1)1L'; furthermore 1 the results \Viii be centered in the available space.
There are two kinds of nonalib111ed leaders in TE-X 1 namely \cleaders (centered leaders)
and \xleaders (expanded leaders). Centered leaders pack the boxes tightly next to
each other leaving equal amounts of blank space at the left and right; expanded leaders
distribute the extra space equally between the q + 1 positions adjacent to the q boxes.
For example1 let)s suppose that a 10pt~\\'ide box is being used in leaders that are
supposed to fill 56 pt of space. Five copies of the box will be used; \cleaders \\'ill
produce 3 pt of space1 then the five boxes 1 then another 3 pt of space. But \xleaders
will produce 1 pt of space1 then the first box1 then another 1 pt of space1 then the second
box 1 ••• 1 then the fifth box 1 and 1 pt of space.

6<,~• EXERCISE 21.4
Y Y Suppose that a lOpt~wide box is to fill 38 pt of space starting 91 pt from the
left of its enclosing box. How many copies of the box \\'ill be produced by \leaders 1

\cleaders 1 and \xleaders? \Vhere \\'ill the boxes be positioned1 relative to the left
edge of the enclosing box1 in each of the three cases?

6<,~• EXERCISE 21.5
Y Y Assuming that the :.) in the \leaderfill macro on the previous page is only
0.2em \\'ide 1 there is 0.4em of blank space at both sides of the one--em box. TherefOre
the \leaders construction will leave between 0.4 em and 1.4 em of blank space between
the periods and the text at either end. Redefine \leaderfill so that the amount of
blank space at either end will be between 0.1 em and 1.1 em 1 but the leaders on adjacent
lines \\'ill still be alibfilCd \\'ith each other.

Instead of giving a (box} in the leaders construction1 you can give a (rule} 1

which means either \hrule or \vrule 1 followed by optional height 1 width1

and depth specifications as usuaL The rule will then be made as \\'ide as the corre--
sponding (glue}. This is a case where \hrule makes sense in horimntal mode1 because

line
dot;;
nonalignwl leader,;
deader,;
xkader;;
height
width
depth

Chapter 21: Making BoJ:cs

it gives a horimntal rule in text. For example1 if the \leaderfill macro in our earlier
illustration is changed to

\def\leaderfill{ \leaders\hrule\hfill\ }

then the results look like this:
Alpha------------------------------- Omega
The Beginning The Ending

\Vhen a rule is used instead of a box 1 it fills the space completely1 so there)s no difference
between \leaders 1 \cleaders 1 and \xleaders.

6<,~• EXERCISE 21.6
Y Y \Vhat does \leaders\vrule\hfill produce?

~~ Leaders work in vertical mode as well as in horimntal mode. In this case
Y Y vertical glue (e.g. 1 \vskip(glue} or \vfill) is used instead of horimntal glue1

and \leaders produces boxes that are aligned so that the top of each repeated box
has the same vertical position as the top of the smallest enclosing box 1 plus a multiple
of the height~plus~depth of the repeated box. No interlineship glue is placed between
boxes in vertical leaders; the boxes are just stacked right on top of each other.

~~ If you specify horimntal leaders \Vith a box whose \Vidth isn)t positive 1 or if
Y Y you specify vertical leaders \Vith a box whose height~plus~depth isn)t positive1

TE-X silently ibfilOres the leaders and produces ordinary glue instead.

6<,~• EXERCISE 21.7
Y Y Explain how you can end a paragraph \Vith a rule that is at least lOpt long
and extends all the way to the right margin 1 like this: _____________ _

~~ Horimntalleaders differ slightly from .hori~ontal glue1 .because they have height
Y Y and depth when T£X calculates the Slt~e of the endosmg box (even though the
number of replications might be 11ero). Similarly1 vertical leaders have width.

6<,~• EXERCISE 21.8
Y Y Demonstrate how to produce the follmving :TEXture)

by using vertical leaders inside of horimntal leaders. (The T£X logo has been put into
a rectangular box1 and copies of this box have been packed together tightly.)

6<,~•EXERCISE 21.9
Y Y Use vertical leaders to solve exercise 20.1.

The \overbrace and \underbrace macros of plain TE-X are constructed by
combining characters with rules. Font cmex10 contains fOur symbols..._,......,. ..;1

each of which has depth 11ero and height equal to the thickness of a rule that joins them
properly. Therefore it)s easy to define \upbracefill and \dolmbracefill macros so
that you can obtain 1 e.g. 1

225

horizontal rule in text
'1\:X logo
o'<erbrace
underbrace
cmexlO
up brace/ill
downbracdill
brace;;

226 Chapter 21: Making BoJ:cs

by saying :\hbox to 100pt{\dolmbracefill}\hbox to 50pt{\upbracefill}) inver~
tical mode. Details of those macro definitions appear in Appendix B.

~~ T~w definition of \overr~g~tarrow in Ap~endix B ~s more compl.ex tha:1 th~t
Y Y of \overbrace1 because 1t mvolves a box mstead of a rule. The fonts of plam
TE-X are designed so that sy-mbols like +- and -+ can be extended \Vith minus signs;
similarly1 ¢= and .:::::} can be extended \Vith equals signs. However 1 you can)t simply put
the characters next to each other 1 because that leaves gaps and it is
necessary to backspace a little between characters. An additional complication arises
because the extension line in a long arrow might need to be some non~integer number
of minus signs long. To solve this problem1 the \rightarrowfill macro in Appendix B
uses \cleaders \Vith a repeatable box consisting of the middle 10 units of a minus sign 1

where one unit is -h<, em. The leaders are preceded and followed by - and -+; there)s
enough bad.-spacing to compensate for up to 5 units of extra space1 fore and aft 1 that
\cleaders might leave blank. In this way a macro is obtained such that

\hbox to 100pt{\rightarrowfill}
yields : _________ -+

Now we know all about leaders. \Vhat about whatsits? \Vell 1 whatsits have
been provided as a general mechanism by which important special printing

applications can be handled as extensions to TE-X. It)s possible for sy-stem wit~anls to
modifY the TE-X program 1 \Vithout changing too much of the code1 so that new features
can be accommodated at high speed instead of encoding them in macros. The author
hopes that such extensions will not be made very often1 because he doesn)t want incom~
patible pseudo~ T£X systems to proliferate; yet he realit~es that certain special books
deserve a special treatment. \Vhatsits make it possible to incorporate new things into
boxes \Vithout bending the existing conventions too much. But they make applications
less portable from one machine to another.

~~ Two) kinds ~f what~.its ~redefined as par~ of all T£X ii~l~~mnm_1t~tions .. They
Y Y aren t really extensiOns to TE-X1 but they are coded as If they were1 so that
they provide a model of how other extensions could be made. The first of these is con~
nected \Vith output to text files 1 and it involves the TE-X primitive commands \openout 1

\closeout 1 \Yrite 1 and \immediate. The second is connected \Vith special instructions
that can be transmitted to printing devices 1 via TE-X)s \special command.

~~ The ability to write text files that can later be input by other programs (indud~
Y Y ing TE-X) makes it possible to take care of tables of contents 1 indexes 1 and many
other things. You can say :\openout(number}=(file name}) and :\closeout(number})
by analogy \Vith the \openin and \closein commands of Chapter 20; the {number}
must be between 0 and 15. The filename is usually extended \Vith :. tex) if it has no
extension. There is a \Yrite command that \Vrites one line to a file 1 analogous to the
\read command that reads one line; you say

\write(numbcr){(tokcn list)}

and the material goes out to the file that corresponds to the given stream number.
If the {number} is negative or brreater than 15 1 or if the specified stream has no file
open for output1 the output goes to the user)s log file 1 and to the terminal unless the

o'<errightarrow
minu;; ;;ign;;
arrow;;
equal;; ;;ign;;
rightarrowlill
what;;it;;
exten;;ion;; to 'IJ.yX
openout
do;;eout
write
immwliate
;;pedal
.tex
log lik
terminal

Chapter 21: Making BoJ:cs

number is negative. Plain TE-X has a \neWYrite command that allocates output stream
numbers from 0 to 15. Output streams are completely independent of input streams.

~~ However 1 the output actually takes place in a delayed fashion; the \openout 1

Y Y \closeout 1 and \Yrite commands that you give are not performed when T£X
sees them. Instead1 TE-X puts these commands into whatsit items 1 and places them
into the current horit~ontal or vertical or math list that is being built. No actual
output \Viii occur until this whatsit is eventually shipped out to the dvi file 1 as part
of a larger box. The reason for this delay is that \Yrite is often used to make an
index or table of contents1 and the exact page on which a particular item \Viii appear
is generally unhll0\V1l when the \Yrite instruction occurs in mid~paragraph. T£X is
usually working ahead 1 reading an entire paragraph befOre breaking it into lines 1 and
accumulating more than enough lines to fill a page befOre deciding what goes on the
page1 as explained in Chapters 14 and 15. Therefore a deferred writing mechanism is
the only safe way to ensure the validity of page number references.

~~ The (token list} of a \Yrite command is first stored in a whatsit \Vithout per~
Y Y forming any macro expansion; the macro expansion takes place later 1 when
T£-X is in the middle of a \shipout operation. For example1 suppose that some para~
graph in your document contains the text

... For \Yrite\inx{example: \the\countO}example. suppose ...

Then the horimntal list for the paragraph \Viii have a whatsit just before the word
:example) 1 and just after the interword space fOllowing :For). This whatsit item con~
tains the unexpanded token list :example: \the\countO). It sits dormant while the
paragraph is being broken into lines and put on the current page. Let)s suppose that
this word :example) (or some hyphenated initial part ofit 1 like :ex-)) is shipped out on
page 256. Then T£-X \Viii write the line

example: 256

on output stream \inx 1 because the :\the\countO) \Viii be expanded at that time.
Of course1 \Yrite commands are usually generated by macros; they are rarely t:yl)ed
explicitly in mid~ paragraph.

~~ T£-X defers \openou~ and \clos:out commands by puf:ting them into whatsits
Y Y too; thus 1 the relative order of output commands \V1ll be preserved1 unless
boxes are shipped out in some other order due to insertions or such things.

~~ Sometimes you don)t want T£X to defer a \Yrite or \openout or \closeout.
Y Y You could say1 e.g. 1 :\shipout\hbox{\Yrite ... }) 1 but that would put an un~
wanted empty page in your dvi file. So T£X has another feature that gets around this
problem: If you type :\immediate) just befOre \Yrite or \openout or \closeout 1 the
operation \Viii be performed immediately1 and no whatsit \Viii be made. For example1

\immediate\Yrite16{Goodbye}

prints :Goodbye) on your terminal. w-ithout the \immediate 1 you wouldn)t see the
:Goodbye) until the current list was output. (In fact 1 you might never see it; or you
may see it more than once1 if the current list goes into a box that was copied.) An
:\immediate\Yrite16) differs from \message in that \Yrite prints the text on a line

227

newwrite
;;hi pout
immwliate
me;;;;age

228 Chapter 21: Making BoJ:cs

by itself; the results of several \message commands might appear on the same line1

separated by spaces.

~~ T~w (token ~list} ~fa \Yrite ~ught ~o be rather short 1 sin~e it mak:S on:. line
Y Y of output. Some unplementabons of TE-X are unable to \Vnte long hnes; 1f you
want to \Vrite a lot of stuff1 just give several \Yrite counnands. Alternatively1 you can
set TE-X)s \newlinechar parameter to the ASCII code number of some character that
you want to stand for :'bebrin a new lind'; then TE-X \Viii begin a new line whenever it
would ordinarily output that character to a file. For example1 one way to output two
lines to the terminal in a single \Yrite command is to say

\newlinechar='\~~J

\immediate\write16{Two~~Jlines.}

Each \Yrite command produces output in the form that T£X always uses to dis~
play token lists symbolically: Characters represent themselves (except that you get
duplicated characters like ##for macro parameter characters); unexpandable control
sequence tokens produce their names 1 preceded by the \escapechar and followed by
a space (unless the name is an active character or a control sequence formed from a
single nonletter).

TE-X ignores \Yrite 1 \openout 1 and \closeout whatsits that appear \Vithin
boxes governed by leaders. If you are upset about this 1 you shouldn)t be.

Since the (token list} of a deferred \Yrite is expanded at a fairly random time
(when \shipout occurs) 1 you should be careful about what control sequences

it is allowed to contain. The techniques of Chapter 20 for controlling macro expansion
often come in handy \Vith respect to \Yrite.

6<,~•EXERCISE 21.10
Y Y Suppose that you want to \Yrite a token list that involves a macro \chapno 1

containing the current chapter number 1 as well as :\the\countO) which refers to the
current page. You want \chapno to be expanded immediately1 because it might change
befOre the token list is written; but you want \the\countO to be expanded at the time
of \shipout. How can you manage this?

~~ Now let)s wrap up our study of boxes by considering one more feature. The
Y Y command :\special{(token list}}) can be given in any mode. Like \Yrite1

it puts its token list into a whatsit; and like \message 1 it expands the token list im~
mediately. This token list \Viii be output to the dvi file \Vith the other typesetting
commands that TE-X produces. Therefore it is implicitly associated with a particular
position on the page1 namely the reference point that would have been present if a box
of height 1 depth 1 and \Vidth 11ero had appeared in place of the whatsit. The (token list}
in a \special command should consist of a key-word fOllowed if necessary by a space
and appropriate arguments. For example1

\special{halftone pic1}

might mean that a picture on file pic1 should be inserted on the current page1 \Vith
its reference point at the current position. TE-X doesn)t look at the token list to see
if it makes any sense; the list is simply copied to the output. However 1 you should
be careful not to make the list too long1 or you might overflow T£X)s string memory.

newlinechar
token li;;t;; ;;ymbolkally
ha,-;h
e;;capechar
leader,;
;;pedal
picture
halftone;;

Chapter 21: Making BoJ:cs

The \special command enables you to make use of special equipment that might be
available to you 1 e.g. 1 for printing books in glorious TE-Xnicolor.

~~ Software programs that convert dvi files to printed or displayed output should
Y Y be able to fail gracefully when they don)t reCObfilit~e your special keywords.
Thus 1 \special operations should never do anything that changes the current position.
\Vhenever you use \special 1 you are taking a chance that your output file \Viii not be
printable on all output devices 1 because all \special functions are extensions to TE-X.
However 1 the author anticipates that certain standards fOr common graphic operations
will emerge in the TE-X user community1 after careful experiments have been made by
different groups of people; then there \Viii be a chance for some uniformity in the use
of \special extensions.

TE-X will report the badness of glue setting in a box if you ask for the numeric
quantity \badness after making a box. For example1 you might say
\setboxO=\line{\trialtexta}
\ifnum\badness>250 \setboxO=\line{\trialtextb}\fi

The badness is between 0 and 10000 unless the box is overfull 1 when \badness=1000000.

If age or weaknes doe orohibyte bloudletting,
you must use boxing.

PHILIP BARROUGH, The Methode of Phis/eke (1583)

The only thing that never looks right is a rule.
There is not in existence a oage with a rule on it
that cannot be instantly and obviously imoroved

by taking the rule out.
GEORGE BERNARD SHAW, in The Dolphin (1940)

229

color
badne;;;;
BAHHOCGH
SHA\V

>age 2~l0) I

Alignment

Chapter 22: Alignment

Printers charge CA--tra when you ask them to typeset tables, and they do so for
good reason: Each table tends to have its own peculiarities, so it's necessary
to give some thought to each one, and to fiddle with alternative approaches
until finding something that looks good and communicates welL However, you
needn't be too frightened of doing tables with T&X, since plain TEX has a :•tab"
feature that handles simple situations pretty much like you would do them on a
typewriter. Furthermore, T&X has a powerful alignment mechanism that makes
it possible to cope with CA--trcmdy complex tabular arrangements. Simple cases
of these alignment operations will suffice for the vast majority of applications.

Let's consider tabbing first. If you say ·\settabs n \columns', plain
TEX makes it easy to produce lines that arc divided into n equal-size columns.
Each line is specified by typing

\+(text,)&(tc>.i:,)& · · · \cr

where {tcxt1) will start flush with the left margin, {tcA--t2) will start at the left of
the second column, and so OIL l\oticc that ·\+'starts the line. The final column
is followed by ·\cr', which old-timers will recognize as an abbreviation for the
:•carriage return" operation on t:n)(:writcrs that had carriages. For example,
consider the following specification:

\settabs 4 \columns
\+&&Text that starts in the third column\cr
\+&Text that starts in the second column\cr
\+\it Text that starts in the first column, and&&&

the fourth, and&beyond!\cr

After ·\settabs4\columns' each\+ line is divided into quarters, so the result is

:Text that starts in the third column
:Text that starts in the second column

231

table;;
alignment
tabbing
;;ettab;;
column;;
column;;
+
cr
carriage retum
amper;;and

:re;d that starts in ihe first col·umn, and the fourth, and hcyond!

This example merits careful study because it illustrates several things.
(1) The ·&' is like the TAB key on many t:n)(:writcrs: it tells TEX to advance
to the next tab position, where there's a tab at the right edge of each column.
In this example, TEX has set up four tabs, indicated by the dashed lines: a
dashed line is also shown at the left margin, although there isn't really a tab
there. (2) But ·&' isn't exactly like a mechanical t:n)(:writcr TAB, because it first
backs up to the beginning of the current column before advancing to the neA-t.
In this way you can always tell what column you're tabbing to, by counting
the number of &'s: that's handy, because variable-width type otherwise makes
it difficult to know whether you 'vc passed a tab position or not. Thus, on the
last line of our example, three &'s were typed in order to get to column 4, even
though the teA-t had already extended into column 2 and perhaps into column 3.
(3) You can say ·\cr' before you have specified a complete set of columns, if the
remaining columns arc blank. (4) The &'s arc different from tabs in another way,

232 Chapter 22: Alignment

too: T&X ignores spaces after ·&', hence you can conveniently finish a column
by t:n)ing ·&' at the end of a line in your input file, without worrying that an
CA--tra blank space will be introduced there. (The second-last line of the example
ends with ·&', and there is an implicit blank space following that s:ymbol: if TEX
hadn't ignored that space, the words ·the fourth' wouldn't have started exactly
at the beginning of the fourth column.) Incidentally, plain TEX also ignores
spaces after ·\+', so that the first column is treated like the others. (5) The
·\it' in the last line of the example causes only the first column to be italicized,
even though no braces were used to confine the range of italics, because TEX
implicitly inserts braces around each individual entry of an alignment.

Once you have issued a \settabs commaml1 the tabs remain set until you
reset them 1 even though you go ahead and t:yl)e ordinary paragraphs as usuaL

But if you enclose \settabs in{ ... }1 the tabs defined inside a group don)t affect the
tabs outside; :\global \settabs) is not permitted.

Tabbed lines usually are used between parabrraphs 1 in the same places where
you would type \line or \centerline to get lines \Vith a special format. But

it)s also useful to put\+ lines inside a \vbox; this makes it convenient to specify displays
that contain aligned materiaL For example1 if you type

$$\vbox{\settabs 3 \columns
\+This is&a strange&example\cr
\+of displayed&three-column&format.\cr}$$

you get the follmving display:
This is
of displayed

a strange
three--column

example
format.

In this case the first column doesn)t appear flush left 1 because TE-X centers a box that
is being displayed. Columns that end \Vith \cr in a\+ line are put into a box \Vith
their natural \Vidth; so the first and second columns here are one--third of the \hsize1

but the third column is only as \Vide as the word :example). \Ve have used $$ in this
construction even though no mathematics is involved1 because $$ does other useful
things; for example 1 it centers the box 1 and it inserts space above and below.

People don't always want tabs to be equally spaced, so there's another
way to set them, by typing ·\+{sample linc)\cr' immediately after ·\settabs'.
In this case tabs arc placed at the positions of the &'s in the sample line, and
the sample line itself docs not appear in the output. For example,

\settabs\+\indent&Horizontal lists\quad&\cr % sample line
\+&Horizontal lists&Chapter 14\cr
\+&Vertical lists&Chapter 15\cr
\+&Math lists&Chapter 17\cr

causes TEX to t:n)csct the following three lines of material:

Horizontal lists
Vertical lists
Math lists

Chapter 14
Chapter 15
Chapter 17

;;pace;;
il
brace;;
global
line
centerline
di;;play;;
dollardollar
;;ample line

Chapter 22: Alignment

The \settabs command in this example makes column 1 as wide as a paragraph
indentation: and column 2 is as wide as ·Horizontal lists' plus one quad of space.
Only two tabs arc set in this case, because only two &'s appear in the sample
line. (A sample line might as well end with &, because the teA-t following the
last tab isn't used for anything.)

The first line of a table can't always be used as a sample line, because it
won't necessarily give the correct tab positions. In a large table you have to look
ahead and figure out the biggest entry in each column: the sample line is then
constructed by t:n)ing the widest first column, the widest second column, etc.,
omitting the last column. Be sure to include some CA--tra space between columns
in the sample line, so that the columns won't touch each other.

• EXERCISE 22.1
Explain how to typeset the following table [from Beck, Bertholle, and Child,
MCJ.stering the Art of French Cooking (C\ew York: Knopf, 1961)]:

Weight
8 lbs.
9 lbs.
9'/2 lbs.
10'/2 lbs.

SeriYings
6
7 to 8
8 to 9
9 to 10

Appro'J:imate Cooking Time*
1 hour and 50 to 55 minutes
About 2 hours
2 hours and 10 to 15 minutes
2 hours and 15 to 20 minutes

* For a stuffed goose, add 20 to 40 minutes to the times given.

If you want to put something flush right in its column 1 just t:yl)e :\hfill)
before it; and be sure to t:yl)e :&; after it 1 so that T£X \Viii be sure to move the

infOrmation all the way until it touches the next tab. Similarly1 if you want to center
something in its column 1 type :\hfill) before it and :\hfill&) aller it. For example1

\settabs 2 \columns
\+\hfill This material is set flush right&

\hfill This material is centered\hfill&\cr
\+\hfill in the first half of the line.&

\hfill in the second half of the line.\hfill&\cr

produces the following little table:

This material is set flush right
in the first half of the line.

This material is centered
in the second half of the line.

The \+ macro in Appendix B work-s by putting the (text} for each column
that)s fOllowed by & into an hbox as follows:

\hbox to (column width){(tcxt)\hss}

The \hss means that the text is normally flush left 1 and that it can extend to the right
of its box. Since \hfill is :'more infinitd' than \hss in its ability to stretch1 it has the
effect ofright~justifying or centering as stated above. Note that \hfill doesn)t shrink1

but \hss does; if the text doesn)t fit in its column1 it \Viii stick out at the right. You
could cancel the shrinkability of \hss by adding \hf ilneg; then an oversi11e text would
produce an overfull box. You could also center some text by putting :\hss) befOre it and

233

indention, ;;ee indentation
quad
Beck, Simone
Bertholle, I,oui;;ette
Child, Julia
llu;;h right
hlill
center
h;;;;
hlilneg

234 Chapter 22: Alignment

just :&) after it; in that case the text would be allowed to extend to the left and right of
its column. The last column of a\+ line (i.e. 1 the column entry that is fOllowed by \cr)
is treated differently: The (text} is simply put into an hbox \Vith its natural width.

Computer programs present difficulties of a different kind 1 since some people
like to adopt a style in which the tab positions change from line to line. For

example1 consider the fOllmving probrr<un frabfinent:
if n < r then n := n + 1

else begin prinLtotols; n := 0;
end;

while p > 0 do
begin q := link(p); free_node(p); p := q;
end;

Special tabs have been set up so that :then) and :else) appear one above the other1

and so do :begin) and :end). It)s possible to achieve this by setting up a new sample
line whenever a new tab position is needed; but that)s a tedious job) so plain T£X
makes it a little simpler. \Vhenever you t:yl)e & to the right of all existing tabs) the
effect is to set a new tab there) in such a way that the column just completed \Viii have
its natural \Vidth. Furthermore) there)s an operation :\cleartabs) that resets all tab
positions to the right of the current column. Therefore the computer program above
can be T£Xified as fOllo\\'S:

$$\vbox{\+\bf if $n<r$ \cleartabs&\bf then $n:=n+1$\cr
\+&\bf else &{\bf begin} ${\it print_totals}$; $n:=O$;\cr
\+&&{\bf end};\cr
(The remaining part is left as an exercise}}$$

• EXERCISE 22.2
Complete the example computer program by specifying three more \ + lines.

Although \ + lines can be used in vertical boxes 1 you must never use \ + inside
of another \ + line. The \ + macro is intended fOr simple applications only.

The\+ and \settabs macros of Appendix B keep track of tabs by maintaining
register \box\tabs as a box full of empty boxes whose widths are the column

widths in reverse order. Thus you can examine the tabs that are currently set 1 by
saying :\showbox\tabs); this puts the column widths into your log file 1 from right to
left. For example1 after :\settabs\+\hskip100pt&\hskip200pt&\cr\showbox\tabs) 1

T£X will show the lines
\hbox(O.O+O.O)x300.0
.\hbox(O.O+O.O)x200.0
.\hbox(O.O+O.O)x100.0

6<,~• EXERCISE 22.3
Y Y Study the \ + macro in Appendix B and figure out how to change it so that
tabs work as they do on a mechanical t:yl)ewriter (i.e. 1 so that :&) always moves to
the next tab that lies strictly to the right of the current position). Assume that
the user doesn)t bad.-space past previous tab positions; for example1 if the input is
:\+&&\hskip-2em&x\cr) 1 do not bother to put :x) in the first or second column 1 just
put it at the bebrinning of the third column. (This exercise is a bit difficult.)

Computer program;;
deartab;;
tab;;
;;how box

Chapter 22: Alignment

TE-X has another important way to make tables 1 using an operation called
\halign C'horimntal alignmenf'). In this case the table format is based on

the notion of a template1 not on tabbing; the idea is to specify a separate environment
for the text in each column. Individual entries are inserted into their templates 1 and
presto1 the table is complete.

For example1 let)s go back to the HorimntaljYerticaljMath list example that
appeared earlier in this chapter; we can specify it with \halign instead of

with tabs. The new specification is

\halign{\indent#\hfil&\quad#\hfil\cr
Horizontal lists&Chapter 14\cr
Vertical lists&Chapter 15\cr
Math lists&Chapter 17\cr}

and it produces exactly the same result as the old one. This example deserves careful
study1 because \halign is really quite simple once you get the hang of it. The first
line contains the preamble to the alibfimiCnt 1 which is something like the sample line
used to set tabs for \ +. In this case the preamble contains two templates 1 namely
:\indent#\hfil) for the first column and :\quad#\hfil) for the second. Each template
contains exactly one appearance of:#; 1 and it means :'stick the text of each column entry
in this place.l' Thus 1 the first column of the line that follo\\'S the preamble becomes

\indent Horizontal lists\hfil

when :Horizontal lists) is stuffed into its template; and the second column 1 similarly1

becomes :\quad Chapter 14 \hfil). The question is 1 why \hfil? Ah 1 now we get to the
interesting point of the whole thing: TE-X reads an entire \halign{ ... } specification
into its memory before typesetting anything 1 and it keeps track of the maximum width
of each column1 assuming that each column is set without stretching or shrinking the
glue. Then it goes back and puts every entry into a box 1 setting the glue so that each
box has the maximum column width. That)s where the \hfil comes in; it stretches to
fill up the extra space in narrower entries.

• EXERCISE 22.4
\Vhat table would have resulted if the template for the first column in this

example had been :\indent\hfil#) instead of :\indent#\hfil)?

Before reading further 1 please make sure that you understand the idea of tem~
plates in the example just presented. There are several important differences

between \halign and\+: (1) \halign calculates the maximum column widths auto~
matically; you don)t have to guess what the longest entries will be1 as you do when
you set tabs with a sample line. (2) Each \halign does its own calculation of column
widths; you have to do something special if you want two different \halign operations
to produce identical alignments. By contrast 1 the\+ operation remembers tab positions
until they are specifically reset; any number of paragraphs and even \halign operations
can intervene between \+)s 1 without affecting the tabs. (3) Because \halign reads an
entire table in order to determine the maximum column widths 1 it is unsuitable for
huge tables that fill several pages of a book. By contrast 1 the\+ operation deals with
one line at a time1 so it places no special demands on TE-X)s memory. (However 1 if
you have a huge table1 you should probably define your own special~purpose macro

235

halign
template
preamble
;;harp
halign compared to tabbing

236 Chapter 22: Alignment

for each line instead of relying on the general\+ operation.) (4) \halign takes less
computer time than \+ does 1 because \halign is a built~in command of TE-X 1 while
\+ is a macro that has been coded in terms of \halign and various other primitive
operations. (5) Templates are much more versatile than tabs 1 and they can save you a
lot of typing. For example1 the Horit~ontaljYerticaljMath list table could be specified
more briefly by noticing that there)s common information in the columns:

\halign{\indent# lists\hfil&\quad Chapter #\cr
Horizontal&14\cr Vertical&15\cr Math&17\cr}

You could even save two more keystrokes by noting that the chapter numbers all start
with :1;! (Caution: It takes more time to think of optimit~a.tions like this than to type
things in a straightfOrward way; do it only if you)re bored and need something amusing
to keep up your interest.) (6) On the other hand) templates are no substitute for tabs
when the tab positions are continually varying) as in the computer program example.

Let)s do a more interesting table) to get more experience \Vith \halign. Here
is another example based on the BeckjBerthollejChild book cited earlier:

A.merican French A.ge Weight C'ooking
C'hicken C'onn ection (months) (lbs.) .:V1etlw(i'>

Squab Poussin 2 "!' to I Broil) Grill) Roast
Broiler Poulet Nouveou 2 to 3 1'/zto 2'/z Broil) Grill) Roast

Fryer Poulet Reine 3 to 5 2 to 3 Fry) Saute) Roast
Roaster Poulorde 5'/z to 9 Over 3 Roast) Poach) Fricassee

Fowl Poule de l'AnrH<e 10 to 12 Over 3 Stew) Fricassee
Rooster ()oq Over 12 Over 3 Soup stock) Forcemeat

Note that) except for the title lines) the first column is set right~justified in boldface
t:yl)e; the middle columns are centered; the second column is centered and in italics;
the final column is left~justified. \Ve would like to be able to type the rmvs of the table
as simply as possible; hence) for example) it would be nice to be able to specify the
bottom row by t:yl)ing only

Rooster&Coq&Over 12&0ver 3&Soup stock. Forcemeat\cr

without worrying about type styles) centering) and so OIL This not only cuts down on
keystrokes) it also reduces the chances for making t:yl)ographical errors. Therefore the
template for the first column should be :\hfil \bf#); fOr the second column it should be
:\hfil \it#\hfil) to get the text centered and italicit~ed; and so on. \Ve also need to al~
low fOr space between the columns1 say one quad. VoilM Lo typogrophie est sur lo toble:

\halign{\hfil\bf#&\quad\hfil\it#\hfil&\quad\hfil#\hfil&
\quad\hfil#\hfil&\quad#\hfil\cr

(the title lines)
Squab&Poussin&2&\frac3/4 to 1&Broil. Grill. Roast\cr
... Forcemeat\cr}

As with the \ + operation1 spaces are ignored after &1 in the preamble as well as in the
individual rmvs of the table. Thus 1 it is convenient to end a long row \Vith :&) when
the row takes up more than one line in your input file.

Beck
Bertholle
Child

Chapter 22: Alignment

• EXERCISE 22.5
How was the :Fowl' line typed? (This is too easy.)

The only remaining problem in this example is to specifY the title lines 1 which
have a different fOrmat from the others. In this case the style is different only

because the typeface is slanted1 so there)s no special difficulty; we just type
\sl American&\sl French&\sl Age&\sl Weight&\sl Cooking\cr
\sl Chicken&\sl Connection&\sl(months)&\sl(lbs.)&\sl Methods\cr

It is necessary to say :\sl) each time1 because each individual entry of a table is
implicitly enclosed in braces.

The author used :\openup2pt) to increase the distance between baselines in
the poultry table; a discriminating reader \Viii notice that there)s also a bit of

extra space between the title line and the other lines. This extra space was inserted by
t:yl)ing :\noalign{\smallskip}) just after the title line. In general 1 you can say

\noalign{(vertical mode material}}

just after any \cr in an \halign; T£X \Viii simply copy the vertical mode material 1

without subjecting it to alibfimiCnt 1 and it \Viii appear in place when the \halign is
finished. You can use \noalign to insert extra space 1 as here1 or to insert penalties
that affect page breaking1 or even to insert lines of text (see Chapter 19). Definitions
inside the braces of \noalign{ ... } are local to that group.

The \halign command also makes it possible for you to adjust the spacing
between columns so that a table \Viii fill a specified area. You don)t have to

decide that the inter~column space is a quad; you can let TE-X make the decisions 1

based on how wide the columns come out1 because TE-X puts :'tabskip glud' between
columns. This tabskip glue is usually 11ero1 but you can set it to any value you like by
saying :\tabskip=(glue}). For example1 let)s do the poultry table again 1 but \Vith the
beginning of the specification changed as follows:

\tabskip=iem plus2em minus.5em
\halign to\hsize{\hfil\bf#&\hfil\it#\hfil&\hfil#\hfil&

\hfil#\hfil&#\hfil\cr

The main body of the table is unchanged1 but the \quad spaces have been removed
from the preamble1 and a nont~ero \tabskip has been specified instead. Furthermore
:\halign) has been changed to :\halign to\hsize); this means that each line of the
table will be put into a box whose \Vidth is the current value of \hsize 1 i.e. 1 the
horit~ontal line \Vidth usually used in paragraphs. The resulting table looks like this:

A.meriuw French A.ge l\leight C'ooking
C'hicken C'onnection (months) (lbs.) .:V1etlw(i'>

Squab Poussin 2 "!' to I Broil 1 Grill 1 Roast
Broiler Poulet Nouveou 2 to 3 1'/zto 2'/z Broil 1 Grill 1 Roast

Fryer Poulet Reine 3 to 5 2 to 3 Fry1 SautC1 Roast
Roaster Poulorde 5'/z to 9 Over 3 Roast 1 Poach 1 Fricassee

Fowl Poule de l'AnrH<e 10 to 12 Over 3 Stew1 Fricassee
Rooster ()oq Over 12 Over 3 Soup stock 1 Forcemeat

237

open up
poultry
noalign
inter-column ;;pace
tab;;kip glue
tab;; kip
h;;ize

238 Chapter 22: Alignment

In general 1 TE-X puts tabskip glue before the first column 1 after the last column 1

and between the columns of an alignment. You can specify the final <LlibfilCd
si11e by saying :\halign to{dimen}) or :\halign spread{dimen}) 1 just as you can say
:\hbox to{dimen}) and :\hbox spread{dimen}). This specification governs the setting
of the tabskip glue; but it does not affect the setting of the glue within column entries.
(Those entries have already been packaged into boxes having the maximum natural
width for their columns1 as described earlier.)

~~ Therefore :\halign to \hsize) will do nothing if the tabskip glue has no
Y Y stretchability or shrinkability1 except that it \Viii cause T£X to report an
underfull or overfull box. An overfull box occurs if the tabskip glue can)t shrink to
meet the briven specification; in this case you get a warning on the terminal and in your
log file) but there is no :'overfull rulel' to mark the oversi11e table on the printed output.
The warning message shows a :'prototype rowl' (see Chapter 27).

The poultry example just given used the same tabskip glue everywhere1 but
you can vary it by resetting \tabskip within the preamble. The tabskip glue

that is in force when TE-X reads the :c following \halign will be used before the first
column; the tabskip glue that is in force when T£X reads the :&) after the first template
will be used between the first and second columns; and so OIL The tabship glue that
is in force when T£X reads the \cr after the last template will be used after the last
column. For example1 in

\tabskip=3pt
\halign{\hfil#\tabskip=4pt& #\hfil&

\hbox to 10em{\hss\tabskip=5pt # \hss}\cr ... }

the preamble specifies aligned lines that \Viii consist of the following seven parts:

tabskip glue 3 pt;
first column1 with template :\hfil#);
tabskip glue 4 pt;
second column1 with template :#\hfil);
tabskip glue 4 pt;
third column1 \Vith template :\hbox to 10em{\hss# \hss});
tabskip glue 5 pt.

T£X copies the templates \Vithout interpreting them except to remove any
\tabskip glue specifications. More precisely1 the tokens of the preamble are

passed directly to the templates \Vithout macro expansion; T£X looks only for :\cr)
commaiHis1 :&) 1 :#) 1 :\span) 1 and :\tabskip). The (glue} following :\tabskip) is scmmed
in the usual way (\Vith macro ex:pm1sion) 1 and the corresponding tokens are not in~
eluded in the current template. Notice that 1 in the example above1 the space aller
:5pt) also disappeared. The fact that \tabskip=5pt occurred inside ail extra level of
braces did not make the definition local 1 since TE-X didn)t :'sed' those braces; similarly1

if \tabskip had been preceded by :\global) 1 TE-X wouldn)t have made a global defini~
tion 1 it would just have put :\global) into the template. All assignments to \tabskip
within the preamble are local to the \halign (unless \globaldefs is positive) 1 so the
value of \tabskip \Viii be 3 pt again when this particular \halign is completed.

~~ ~Vhe~,l :\~pan) app~ars ~n a premnble1, it causes the next token to be expanded1

Y Y 1.e. 1 ex~spaiHled 1 before T£X reacls OIL

'" ;;pread
underfull
o'<erfull
o'<erfull rule
prototype row
tab;; kip
globaldef;;
;;pan

Chapter 22: Alignment

• EXERCISE 22.6
Design a preamble for the fOllmving table:

Engl<wd P. Philips 1560-1628 :'\etherlan(i'> .T. P. Sweelinck 1562-1621
.). Bull d563-1628 P. Cornet d570-1633

Germany H. L Hassler 1562-1612 Italy G. Frescobaldi 1583-1643
M. Prretorius 1571-1621 Spain F. Correa de Arauxo d576-1654

France .T. T itelout~e 1563-1633 Portugal M. R. Coelho c1555-c1635

The tabship glue should be 11ero at the left and right of each line; it should be 1 em
plus 2 em in the center; and it should be .5 em plus .5 em before the nmnes 1 0 em plus
.5 em before the dates. Assume that the lines of the table \Viii be specified by1 e.g. 1

France&J. Titelouze&1563--1633&
Portugal&M. R. Coelho&\\1555--\\1635\cr

where'\\' has been predefined by '\def\\{{\it c\/}}'.

6<,~• EXERCISE 22.7
Y Y Design a preamble so that the table

rydw i =I am ydw i =am I roeddwn i = I was
roeddet ti = thou wast
roedd e = he was

rwyt ti = thou art
mae e =he is

wyt ti = art thou
ydy e =is he

mae hi = she is
rydyn ni = we are
rydych chi = you are
rnaen nhw = they are

ydy hi = is she roedd hi = she was
roedden ni = we were
roeddech chi = you were
roedden nhw = they were

ydyn ni = are we
ydych chi = are you
ydyn nhw = are they

can be specified by typing lines like

mae hi=she is&ydy hi=is she&roedd hi=she was\cr

6<,~• EXERCISE 22.8
Y Y The line breaks in the second
column of the table at the right were
chosen by TE-X so that the second col~
umn was exactly 16 ems wide. Fur~

thermore 1 the author specified one of
the rows of the table by t:yl)ing

\\393&Plato's {\sl Apology\/};
Xenophon's
{\sl Memorabilia\/};

Aristophanes'
{\sl Ecclesiazus\ae\/}\cr

Can you guess what preamble was used
in the alibfimiCnt? [The data comes
from \Viii Durant)s The Lif(; of Greece
(Simon & Schuster, 1939).]

B.C.
397: \Var between Syracuse and Carthage
396: Aristippus of Cyrene and Antisthe--

nes of Athens (philosophers)
395: Athens rebuilds the Long \Valls
394: Battles of Coronea and Cnidus

c393: Plato)s A.pology; Xenophon)s .:V1emo-
rabilia; Aristophanes) Ecclesiazusm

391-87: Dionysius subjugates south Italy
391: Isocrates opens his school
390: Evagoras Helleni11es C:yl)rus
387: :'King's Peacd'; Plato visits Archy~

tas of Taras (mathematician) and
Dionysius I

386: Plato fOunds the Academy
383: Spartans occupy Cadmeia at Thebes
380: Isocrates) Panegyricus

239

organi;;t;;
Comet, I\:eter
Philip;;, Peter
Swedinck, Jan I)ieter;;zoon
Bull, John
Titdouze, Jehan
Ha;;;;kr, Han;; Leo
I)mAoriu;; [Schulthei;;;;], J'viichad
Fre;;cobaldi, Girolamo
Coelho, 1\·ianud Hodrigue;;
Correa de Arauxo, Frand;;co
\Vebh conjugation
Durant
Ari;;tippu;; of Cyrene
Anti;;theiH:;; of A then;;
Plato
Xenophon
Ari;;tophane;;
Diony;;iu;; I of Syracu;;e
bocrate;;
E.,.agora;; of Salami;;
Archyta;; of Tara;;

240 Chapter 22: Alignment

Sometimes a template \Viii apply perfCctly to all but one or two of the entries
in a column. For example1 in the exercise just given 1 the colons in the first

column of the alibfimiCnt were supplied by the template :\hfil#:u); but the very first
entry in that column 1 :B.C.) 1 did not have a colon. TE-X allmvs you to escape from the
stated template in the fOllmving way: If the very first token of an alignment entry is
:\omit) (after macro expansion) 1 then the template of the preamble is omitted; the
trivial template :#; is used instead. For example1 :B.C.) was put into the table above
by t:yl)ing :\omit\hfil\sevenrm B.C.) immediately after the preamble. You can use
\omit in any column1 but it must come first; othenvise T£X \Viii insert the template
that was defined in the preamble.

~~ If you think about what TE-X has to do when it)s processing \halign) you)ll
Y Y realit~e that the timing of certain actions is criticaL Macros are not expanded
when the preamble is being read) except as described earlier; but once the \cr at the
end of the preamble has been sensed) T£X must look ahead to see if the next token is
\noalign or \omit) and macros are expanded until the next non~space token is found.
If the token doesn)t turn out to be \noalign or \omit) it is put back to be read again)
and T£X begins to read the template (still expanding macros). The template has two
parts) called the n and v parts) where n precedes the :#) and v fOllo\\'S it. \Vhen TE-X
has finished the n part 1 its reading mechanism goes back to the token that was neither
\noalign nor \omit 1 and continues to read the entry until getting to the & or \cr that
ends the entry; then the v part of the template is read. A special internal operation
called \endtemplate is alway-s placed at the end of the v part; this causes TE-X to put
the entry into an :'unset boxl' whose glue will be set later when the final column width
is known. Then TE-Xis ready for another entry; it looks ahead for \omit (and also for
\noalign1 aller \cr) and the process continues in the same way.

~~ One c~nsequence of. the p:ocess just. desc.ribed is th~t it may be dangero~s
Y Y to bebfln an entry of an alignment with \~f ... 1 or with any macro that will
expand into a replacement text whose first token is \if ... ; the reason is that the
condition will be evaluated before the template has been read. (TE-X is still looking
to see whether an \omit will occur 1 when the \if is being expanded.) For example 1 if
\strut has been defined to be an abbreviation for

\ifmmode{text for math modes}\else(text for nonmath modes}\fi

and if \strut appears as the first token in some alignment entry1 then T£X will expand
it into the (text for nonmath modes} even though the template might be :$#$) 1 because
TE-X will not yet be in math mode when it is looking fOr a possible \omit. Chaos will
probably ensue. Therefore the replacement text for \strut in Appendix B is actually

\relax\ifmmode ...

and :\relax) has also been put into all other macros that might suffer from such timing
problems. Sometimes you do want T£X to expand a conditional befOre a template is
inserted 1 but careful macro desibfllCrs watch out fOr cases where this could cause trouble.

\Vhen you)re typesetting numerical tables 1 it)s common practice to line up the
decimal points in a column. For example1 if two numbers like :0.2010) and

:297.1' both appear in the same column1 you)re supposed to produce : 29 i:7° 10
). This

result isn)t especially pleasing to the eye1 but that)s what people do 1 so you might

omit
endtemplate
un;;et box
com! it ional;;
;;trot
ifmmode
numerical table;;
ded mal point;;

Chapter 22: Alignment

have to confOrm to the practice. One way to handle this is to treat the column as two
columns1 somewhat as \eqalign treats one formula as two formulas; the:.; can be
placed at the beginning of the second half~column. But the author usually prefers to
use another 1 less sophisticated method1 which takes advantage of the fact that the clibrits
01 11 ••• 1 9 have the same width in most fonts: You can choose a character that)s not
used elsewhere in the table 1 say :?; 1 and change it to an active character that produces
a blank space exactly equal to the \Vidth of a dibriL Then it)s usually no chore to put
such nulls into the table entries so that each column can be regarded as either centered
or right~justified or left~justified. For example1 :??0. 2010) and :297.1 ???) have the
same \Vidth 1 so their decimal points \Viii line up easily. Here is one way to set up :?)
for this purpose:

\newdimen\digitwidth
\setboxO=\hbox{\rmO}
\digitwidth=\wdO
\catcode'?=\active
\def?{\kern\digitwidth}

The last two definitions should be local to some brroup 1 e.g. 1 inside a \vbox 1 so that :?)
will resume its normal behavior when the table is finished.

Let)s look now at some applications to mathematics. Suppose first that you
want to typeset the small table

n = 0 I 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20
9(n) = I 2 4 3 6 7 8 16 18 25 32 11 64 31 128 10 256 5 512 28 1024 .

as a displayed equation. A brute force approach using \eqalign or \atop is cumbersome
because 9(n) and n don)t always have the same number of digits. It would be much
nicer to t:yl)e

$$\vbox{\halign{ (preamble) \cr
n\phantom)&0&1&2&3& ... &20&\dots\cr
{\cal G}(n)&1&2&4&3& ... &1024&\dots\cr}}$$

for some (preamble}. On the other hand1 the (preamble} is sure to be long1 since
this table has 23 columns; so it look-s as though \settabs and\+ will be easier. T£X
has a handy feature that helps a lot in cases like this: Preambles often have a periodic
structure1 and if you put an extra:&) just before one of the templates 1 T£-X \Viii consider
the preamble to be an infinite sequence that begins again at the marked template when
the \cr is reached. For example1

and

The tabskip glue follmving each template is copied with that template. The preamble
will grow as long as needed 1 based on the number of columns actually used by the
subsequent alignment entries. TherefOre all it takes is

$\hfil#$ =&&\ \hfil#\hfil\cr

to make a suitable (preamble} for the 9(n) problem.

241

act i '<e character
group
acti'<e
dh;play
periodk preamble;;
cyclic preamble;;
amper;;and amper,;and
amper;;and

242 Chapter 22: Alignment

Now suppose that the task is to typeset three pairs of displayed formulas 1 \Vith
all of the = signs lined up:

1-'; = V; - QiVj 1 X;= X;- q;Xj;

Xj = Xj;

U;=n; 1 fori/:-j;

Uj = 1fj + q;n;.
(23)

It)s not easy to do this \Vith three \eqalign)s 1 because the L \Vith a subscript :i 1:- i
makes the right~hand pair of formulas bigger than the others; the baselines won)t agree
unless :'phantmmt are put into the other two \eqalign)s (see Chapter 19). Instead of
using \eqalign1 which is defined in Appendix B to be a macro that uses \halign1 let)s
try to use \halign directly. The natural way to approach this display is to type

$$\vcenter{\openup1 \jot \halign{ (preamble} \cr
(first linc)\cr (second linc)\cr}}\eqno (23)$$

because the \vcenter puts the lines into a box that is properly centered \Vith respect
to the equation number :(23)); the \openup macro puts a bit of extra space between
the lines 1 as mentioned in Chapter 19.

~~ OK 1 now let)s figure out how to type the (first line} and (second line}. The
Y Y usual convention is to put :&) before the symbols that we want to line up 1 so
the obvious solution is to type

V_i&=v_i-q_iv_j.&X_i&=x_i-q_ix_j.&
U_i&=u_i,\qquad\hbox{for $i\ne j$};\cr

V_j&=v_j,&X_j&=x_j,&
U_j&=u_j+\sum_{i\ne j}q_iu_i.\cr

Thus the alibfimiCnt has six columns. \Ve could take common elements into the preamble
(e.g. 1 :v_) and :=v_)) 1 but that would be too error~prone and too tricky.

~~ The remaining problem is to construct a preamble to support those lines. To
Y Y the left of the = signs we want the column to be filled at the left; to the right
of the = signs we want it to be filled at the right. There)s a slight complication because
we are breaking a math formula into two separate pieces1 yet we want the result to
have the same spacing as if it were one formula. Since we)re putting the :&) just befOre
a relation 1 the solution is to insert :{}) at the beginning of the right~hand formula; TE-X
will put the proper space before the equals sibfil in :${}= ... $) 1 but it puts no space
befOre the equals sign in:$= ... $). Therefore the desired (preamble} is

$\hfil#$&${}#\hfil$&
\qquad$\hfil#$&${}#\hfil$&
\qquad$\hfil#$&${}#\hfil$

The third and fourth columns are like the first and second1 except for the \qquad that
separates the equations; the fifth and sixth columns are like the third and fOurth. Once
again we can use the handy :&&) shortcut to reduce the preamble to

$\hfil#$&&${}#\hfil$&\qquad$\hfil#$

\Vith a little practice you)II find that it becomes easy to compose preambles as you are
t:yl)ing a manuscript that needs them. However 1 most manuscripts don)t need them 1 so
it may be a while befOre you acquire even a little practice in this regard.

eqalign
phantom;;
jot
'<center
open up
!bran: rbrace
amper;;and amper,;and

6<,~• EXERCISE 22.9
Y Y Explain how to produce the following display:

Hhr+ 3x+3y+l8z=l,
6tv-17x - 5z = 2.

Chapter 22: Alignment

(9)
(10)

~~ The next level of complexity ~ccurs when some entries of ~ tabl~ span t~o
Y Y or more columns. TE-X provules two way-s to handle tins. Fust therws
\hidewidth1 which plain TE-X defines to be equivalent to

\hskip-1000pt plus Ifill

In other words 1 \hidewidth has an extremely negative :'natural width/' but it \Viii
stretch \Vithout limit. If you put \hidewidth at the right of some entry in an alignment 1

the effect is to ignore the \Vidth of this entry and to let it stick out to the right of its
box. (Think about it; this entry won)t be the \Videst one 1 when \halign figures the
column \Vidth.) Similarly1 if you put \hidewidth at the left of an entry1 it \Viii stick
out to the left; and you can put \hidewidth at both left and right 1 as we)ll see later.

~~ Tl~e ~C:~nd ,w~y to handle :ab:e ~ntries ~~~a; ~pan ~o:umn~ is to use the ~~p)~
Y Y prumtne1 winch can be used mstead of & m any hne of the table. (\\e \e
already seen that \span means :'expamr' in preambles; but outside of preambles its
use is completely different.) \Vhen :\span) appears in place of :&; 1 the material befOre
and after the \span is processed in the ordinary way1 but afterward it is placed into a
single box instead of two boxes. The \Vidth of this combination box is the sum of the
individual column \Vidths plus the \Vidth of the tabship glue between them; therefOre
the spanning box \Viii line up with non~spanning boxes in other rows.

~~ For example1 suppose that there are three columns 1 \Vith. the respective tem~
Y Y plates 1fJ #v1 & nz #vz & na #va; suppose that the column \V1dths are 1L'J 1 1L'z 1 1L'a;
suppose that yo 1 ,f}J 1 yz 1 ya are the tabskip glue \Vidths after the glue has been set; and
suppose that the line

a 1\span a 2 \span aa\cr

has appeared in the alignment. Then the material for :n1a 1v1n 2 a 2v2 naaava) (i.e. 1 the
result :1fJ a1 VJ) of column 1 followed by the results of columns 2 and 3) will be placed
into an hbox of width 1L' 1 + y1 + 1L'2 + y2 + 1L'a· That hbox \Viii be preceded by glue of
width yo and it \Viii be followed by glue of width ya 1 in the larger hbox that contains
the entire aligned line.

You can use \omit in conjunction with \span. For example1 if we continue
\Vith the notation of the previous parabrraph 1 the line

\omit a1 \spanaz \span\omit aa \cr

would put the material for :antzazvzaa) into the hbox just considered.

~~ It)s fairly common to span several columns and to omit all their templates 1

Y Y so plain T£X provides a \multispan macro that spans a given number of
columns. For example1 :\multispan3) expands into :\omit\span\omit\span\omit). If
the number of spanned columns is brreater than 91 you must put it in braces 1 e.g. 1

'\multispan{13}'.

243

;;panned column;; in table;;
hidewidth
;;pan
omit
multi;; pan

244 Chapter 22: Alignment

The preceding paragraphs are rather abstrad 1 so let)s look at an example that
shows what \span actually does. Suppose you type
$$\tabskip=3em
\vbox{\halign{&\hrulefill#\hrulefill\cr

first&second&third\cr
first-and-second\span\omit&\cr
&second-and-third\span\omit\cr
first-second-third\span\omit\span\omit\cr}}$$

The preamble specifies arbitrarily many templates equal to :\hrulefill#\hrulefill);
the \hrulefill macro is like \hfill except that the blank space is filled \Vith a hor~
it~ontal rule. Therefore you can see the filling in the resulting alignment 1 which shmvs
the spanned columns:

first second third
_first~and~secomL

_fl&Ond~and~thinL

___first ~second~ thinL__

The rules stop where the tabskip glue separates columns. You don)t see rules in the
first line1 since the entries in that line were the \Videst in their columns. However 1 if
the tabskip glue had been 1 em instead of 3 em 1 the table would have looked like this:

first ____second_ third
first~and~second __
__ second~and~third

first~second~thinL

6<,~• EXERCISE 22.10
Y Y Consider the following table1 which is called w-alter)s worksheet:

1 Adjusted gross income. 841000
2 Zero bracket amount for

a single individual. 821300
3 Earned income. L500
4 Subtract line 3 from line 2 . 800
5 Add lines 1 and 4. Enter here

and on Form 10401 line 35. 84,800

Define a preamble so that the follmving specification \Viii produce \Valter)s worksheet.

\halign{ (preamble) \cr
1&Adjusted gross income\dotfill\span\omit\span&\$4,000\cr
2&Zero bracket amount for&\cr

&a single individual\dotfill\span\omit&\$2,300\cr
3&Earned income\dotfill\span\omit&\underbar{ 1,500}\cr
4&Subtract line 3 from line 2\dotfill

\span\omit\span&\underbar{ 800}\cr
5&Add lines 1 and 4. Enter here\span\omit\span\cr
&and on Form 1040. line 35\dotfill\span\omit\span&\$4,800\cr}

(The macro \dotfill is like \hrulefill but it fills \Vith dots; the macro \underbar
puts its arbrument into an hbox and underlines it.)

hruldill
\Valter';; worbheet
ms
Green, \Valt er
dot/ill
under bar

Chapter 22: Alignment 245

~~ Notice the :'earlyl' appearance of \cr in line 2 of the previous exercise. You
Y Y needn)t have the same number of columns in every line of an alignment; :\cr)
means that there are no more columns in the current line.

6<,~•EXERCISE 22.11 (Ull

Y Y Explain how to typeset the generic matrix ~:2•1 ••

amJ

The presence of spanned columns adds a complication to TE-X)s rules for caku~
lating column widths; instead of simply choosing the maximum natural \Vidth

of the column entries1 it)s also necessary to make sure that the sum of certain \Vidths
is big enough to accommodate spanned entries. So here is what T£X actually does:
First 1 if any pair of adjacent columns is alway-s spanned as a unit (i.e. 1 if there)s a \span
between them whenever either one is used) 1 these two columns are effectively merged
into one and the tabskip glue between them is set to 11ero. This reduces the problem to
the case that every tab position actually occurs at a boundary. Let there be n columns
remaining after such reductions 1 and fOr 1 :::; i :::; j :::; n let 1L'ij be the maximum nat~
ural width of all entries that span columns i through j 1 inclusive; if there are no such
spanned entries 1 let 1L'ij = -oo. (The merging of dependent columns guarantees that 1

for each j 1 there exists i:::; j such that 1L'ij > -oo.) Let tk be the natural \Vidth of the
tabskip glue between columns k and k + 11 for 1 :::; k < n. Now the final \Vidth 1L'j of
column j is determined by the fOrmula

for j =I, 2, ... ,n(inthisordcr). ltfollov.-sthatrr;j <;rr;+t;+···+tj~l +rrj,forall
i :::; j 1 as desired. After the widths 1L'j are determined1 the tabskip amounts may have
to stretch or shrink; if they shrink1 1L' ij might turn out to be more than the final \Vidth
of a box that spans columns i through j 1 hence the glue in such a box might shrink.

~~ Tl~ese formulas usually work fine 1 but sometimes they produce undesirable
Y Y effects. For example1 suppose that n = 31 1L'J 1 = 1L'zz = 1L'aa = 101 1L'Jz =
1L'za = -oo 1 and 1L' 1a = 100; in other words 1 the columns by themselves are quite
narrow 1 but there)s a big wide entry that)s supposed to span all three columns. In this
case TE-X)s formula makes 1L'J = 1L'z = 10 but 1L'a = 80- t 1 - tz 1 so all the excess \Vidth
is allocated to the third column. If that)s not what you want 1 the remedy is to use
\hidewidth1 or to increase the natural \Vidth of the tabskip glue between columns.

~~ !he next level ~f complexi~y that occurs in tables is the appearance of hor~
Y Y 1110ntal and verbcal ruled hnes. People who know how to make ruled tables
are generally knO\V1l as T£X Masters. Are you ready?

~~ If you approach vertical rules in the wrong manner 1 they can be difficult; but
Y Y there is a decent way to get them into tables \Vithout shedding too many tears.
The first step is to say :\offinterlineskip) 1 which means that there \Viii be no blank
space between lines; TE-X cannot be allowed to insert interline glue in its normal clever
way1 because each line is supposed to contain a \vrule that abuts another \vrule in the
neighboring lines above and/or below. \Ve \Viii put a strut into every line 1 by including
one in the preamble; then each line will have the proper height and depth 1 and there
will be no need fOr interline glue. T£X puts every column entry of an alignment into

cr
generk matrix
hidewidth
ruled table;;
'1\:X J'via,-;ter;;
olfinterline;;kip
interline glue
'<rule
'<rule

246 Chapter 22: Alignment

an hbox whose height and depth are set equal to the height and depth of the entire
line; therefore \vrule commands \Viii extend to the top and bottom of the lines even
when their height and/or depth are not specified.

~~ A :'columnl' should be allocated to every vertical rule 1 and such a column can
Y Y be assigned the template :\vrule#). Then you obtain a vertical rule by simply
leaving the column entries blank1 in the normal lines of the alibfimiCnt; or you can say
:\omit) if you want to omit the rule in some line; or you can say :height 10pt) if you
want a nonstandard height; and so OIL

Here is a small table that illustrates the points just made. [The data appeared
in an article by A. H. \Vesting 1 BioScience 31 (1981) 1 523-524.]

\vbox{\offinterlineskip
\hrule
\halign{&\vrule#&

\strut\quad\hfil#\quad\cr
height2pt&\omit&&\omit&\cr
&Year\hfil&&World Population&\cr
height2pt&\omit&&\omit&\cr
\noalign{\hrule}
height2pt&\omit&&\omit&\cr
&8000\BC&&5,000,000&\cr
&50\AD&&200,000,000&\cr
&1650\AD&&500,000,000&\cr
&1850\AD&&1,000,000,000&\cr
&1945\AD&&2,300,000,000&\cr
&1980\AD&&4,400,000,000&\cr
height2pt&\omit&&\omit&\cr}
\hrule}

Year \Vorld Population

8000 B.C. 5 '000' 000
50 A.D. 200' 000' 000

1650 A.D. 500' 000' 000
1850 A.D. I '000' 000' 000
1945 A.D. 2' 3 00' 000' 000
1980 A.D. 4, 4 00' 000' 000

In this example the first 1 third1 and fifth columns are reserved fOr vertical rules. Hori~
110ntal rules are obtained by saying :\hrule) outside the \halign or :\noalign{\hrule})
inside it 1 because the \halign appears in a vbox whose width is the full table \Vidth.
The horit~ontal rules could also have been specified by saying :\multispan5\hrulefill)
inside the \halign1 since that would produce a rule that spans all five columns.

~~ The only other nonobvious thing about this table is the inclusion of several
Y Y lines that say :height2pt&\omit&&\omit&\cr); can you see what they do? The
\omit instructions mean that there)s no numerical information1 and they also suppress
the \strut from the line; the :height2pt) makes the first \vrule 2 pt high 1 and the
other two rules will follow suit. Thus 1 the effect is to extend the vertical rules by two
points1 where they touch the horit~ontal rules. This is a little touch that improves the
appearance of boxed tables; look for it as a mark of quality.

6<,~• EXERCISE 22.12
Y Y Explain why the lines of this table say :&\cr) instead of just :\cr).

~~ Another way to get vertical rules into tables is to typeset \Vithout them 1 then
Y Y back up (using negative glue) and insert them.

\Ve;;ting
hrule
noalign
multi;; pan
;;trot

Chapter 22: Alignment

~~ Here. is <Ul?ther table} this .one has bec:OI~IC ~ dassic 1 ever since Micha-<;.l Lesk
Y Y pubhshed 1t as one of the first examples m Ins report on a program to format
tables [Bell Laboratories Computing Science Technical Report 49 (1976)]. It illustrates
several typical problems that arise in connection \Vith boxed infOrmation. In order to
demonstrate T£X)s ability to adapt a table to different circumstances1 tabship glue is
used here to adjust the column \Vidths; the table appears hvice 1 once generated by
:\halign to125pt) and once by :\halign to200pt) 1 \Vith nothing else changed.

AT&T Common Stock AT&T Common Stock
Year Price Dividend Year Price Dividend
1971 41-54 S2.60 1971 41-54

2 41-54 2.70 2 41-54
3 46-55 2.87 3 46-55
4 40-53 3.24 4 40-53
5 45-52 3.40 5 45-52
6 51-59 .95* 6 51-59

* (first quarter only) * (first quarter only)

The following specification did the job:

\vbox{\tabskip=Opt \offinterlineskip
\def\tablerule{\noalign{\hrule}}
\halign to{dimen}{\strut#& \vrule#\tabskip=iem plus2em&

\hfil#& \vrule#& \hfil#\hfil& \vrule#&
\hfil#& \vrule#\tabskip=Opt\cr\tablerule

&&\multispan5\hfil AT\&T Common Stock\hfil&\cr\tablerule
&&\omit\hidewidth Year\hidewidth&&

\omit\hidewidth Price\hidewidth&&
\omit\hidewidth Dividend\hidewidth&\cr\tablerule

&&1971&&41--54&&\$2.60&\cr\tablerule
&& 2&&41--54&&2.70&\cr\tablerule
&& 3&&46--55&&2.87&\cr\tablerule
&& 4&&40--53&&3.24&\cr\tablerule
&& 5&&45--52&&3.40&\cr\tablerule

S2.60
2.70
2.87
3.24
3.40
.95*

&& 6&&51--59&&.95\rlap*&\cr\tablerule \noalign{\smallskip}
&\multispan7* (first quarter only)\hfil\cr}}

Points of interest are: (1) The first column contains a strut; othenvise it would have
been necessary to put a strut on the lines that say :AT&T and :(first quarter only)))
since those lines omit the templates of all other columns that might have a built~in
strut. (2) :\hidewidth) is used in the title line so that the width of columns will be
affected only by the \Vidth of the numeric data. (3) :\rlap) is used so that the asterisk
doesn)t affect the alignment of the numbers. (4) If the tabskip specification had been
:Oem plus3em) instead of :1em plus2em)) the alibfimiCnt wouldn)t have come out right)
because :AT&T Common Stock would have been wider than the natural \Vidth of
everything it spanned; the excess \Vidth would all have gone into the :Dividend) column.

6<,~• EXERCISE 22.13
Y Y Explain how to add 2pt more space above and below :AT&T Common Stock).

247

Le;;k
AT&T
hidewidth
rlap

248 Chapter 22: Alignment

6<,~• EXERCISE 22.14
Y Y T:yl)eset the fOllmving chart 1 making it exactly 36em wide:

.T. H. BOhning1 1838
M . .T. H. BOhning1 1882

M. D. BlaBe, 1840
L M. Bohning1 1912

E. F. Ehlert, 1845
P. A. M. Ehlert, 1884

C. L \Vischmeyer 1 1850

~~ If you)re having trouble debugbring an alignment 1 it sometimes helps to put
Y Y :\ddt) at the beginning and end of the templates in your preamble. This
is an undefined control sequence that causes T£X to stop 1 displaying the rest of the
template. \Vhen TE-X stops1 you can use \showlists and other counnands to see what
the machine think-s it)s doing. If T£X doesn)t stop1 you know that it never reached that
part of the template.

~~ It)s possible to have alignments within alibfilments. Therefore when TE-X sees a
Y Y :&; or :\span) or :\cr) 1 it needs some way to decide which alignment is involved.
The rule is that an entry ends when :&) or :\span) or :\cr) occurs at the same level of
braces that was current when the entry began; i.e. 1 there must be an equal number of
left and right braces in every entry. For example1 in the line

\matrix{1&1\cr 0&1\cr}&\matrix{O&i\cr 0&0\cr}\cr

T£X \Viii not resume the template for the first column when it is scanning the argument
to \matrix 1 because the &)sand \cr)s in that arbrument are enclosed in braces. Similarly1

&)s and \cr)s in the preamble do not denote the end of a template unless the resulting
template would have an equal number of left and right braces.

~~ You have to be careful \Vith the use of & and \span and \cr 1 because these
Y Y tokens are intercepted by TE-X)s scanner even when it is not expanding macros.
For example1 if you say :\let\x=\span) in the midst of an alignment entry1 TE-X \Viii
think that the :\span) ends the entry1 so \x \Viii become equal to the first token fol~
lowing the :#) in the template. You can hide this \span by putting it in braces; e.g. 1

:{\global\let\x=\span}). (And Appendix D explains how to avoid \global here.)

~~ Sou~etim~ p~p~e f~rge: the \c~ on th:, last lin~ ~f ~n alignment. This can
Y Y cause mystenous effects 1 because TE-X IS not dau\oyant. For example 1 con~
sider the fOIImving apparently simple case:

\halign{\centerline{#}\cr
A centered line.\cr
And another?}

(Notice the missing \cr.) A curious thing happens here when T£X processes the
erroneous line1 so please pay attention. The template begins \Vith :\centerline{' 1

so T£X starts to scan the argument to \centerline. Since there)s no :\cr) after the
question mark1 the :}) after the question mark is treated as the end of the argument
to \centerline1 not as the end of the \halign. TE-X isn)t going to be able to finish
the alignment unless the subsequent text has the fOrm : ... { ... \cr). Indeed 1 an entry

family tree
Bohning [Knuth], Loui;;e J'viarie
Ehlerl [Bohning], Pauline Anna~
Bi.ihning, J'viartin John Henry
\Vi;;chmeyer [Ehlert], Clara Loui~
Ehlerl, Ern;;t Fred
Bla,-;e [Bi.ihning], J'viaria Dorothea
Bi.ihning, Job;;t Heinrich
debugging
ddt
brace;;
;;pan
cr
amper;;and

Chapter 22: Alignment

like :a}b{c) is legitimate with respect to the template :\centerline{#}) 1 since it yields
:\centerline{a}b{c}); TE-Xis correct when it brives no error message in this case. But
the computer)s idea of the current situation is different from the user)s 1 so a put~tding
error message \Viii probably occur a fCw lines later.

~~ To hel~ ~~'oid such situatiOI~S 1 tl1~re)s a. pri1~1itiv~ c?mm<u:d \c_r:r th~t acts
Y Y exactly hke \cr except that It does nothmg when It umnediately follo\\'B a \cr
or a \noalign{ ... }. Thus 1 when you \Vrite a macro like \matrix 1 you can safely insert
\crcr at the end of the user)s argument; this will cover up an error if the user fOrgot
the final \cr 1 and it \Viii cause no harm if the final \cr was present.

Are you tired of typing \cr? You can get plain T£X to insert an automatic
\cr at the end of each input line in the fOllowing way:

\begingroup \let\par=\cr \obeylines %
\halign{ (preamble)

(first line of alibfimiCnt}

(last line of alignment}
}\endgroup

This works because \obeylines makes the ASCII (return} into an active character that
uses the current meaning of \par 1 and plain TE-X puts (return} at the end of an input
line (see Chapter 8). If you don)t want a \cr at the end of a certain line1 just type
:%; and the corresponding \cr \Viii be :'commented out.l' (This special mode doesn)t
work \Vith \+ lines 1 since\+ is a macro whose argument is delimited by the token :\cr) 1

not simply by a token that has the same meaning as \cr. But you can redefine\+ to
overcome this hurdle1 if you want to. For example1 define a macro \alternateplus
that is just like\+ except that its argument is delimited by the active character ,..,..M;
then include the command :\let\+=\alternateplus) as part of \obeylines.)

The control sequence \valign is analogous to \halign1 but rmvs and columns
change rOles. In this case \cr marks the bottom of a column 1 and the alibfilCd

columns are vboxes that are put together in horit~ontal mode. The individual entries
of each column are vboxed \Vith depth 11ero (i.e. 1 as if \boxmaxdepth were 11ero1 as
explained in Chapter 12); the entry heights for each row of a \valign are maximit~ed
in the same fashion as the entry widths for each column of an \halign are maximit~ed.
The \noalign operation can now be used to insert horimntal mode material between
columns; the \span operation now spans rows. People usually work with T£X at least a
year before they find their first application fOr \valign; and then it)s usually a one~row
:\valign{\vfil#\vfil \cr ... }). But the general mechanism is there if you need it.

If sixteen oennies are arranged in the form of a square
there will be the same number of oennies in every row, every column,

and each of the two long diagonals.
Can you do the same with twenty oennies?

HENRY ERNEST DUDENEY, The Best Coin Problems (1909)

It was she who controlled the whole of the Fifth Column.
- AGATHA CHRISTIE, N or M7 (1941)

249

crcr
cr, a'<oiding
begin group
obey line;;
return
par
percent
+
ddimitwl argument;;
'<align
boxmaxdepth
noalign
;;pan
;;panned row;; in table;;
DCDE!\:EV
CHHISTIE

>age 250) I

Output Routines

Chapter 2,1: OutP'ut Ro'utincs

VVc investigated TEX's page-building technique in Chapter 15, where we dis-
cussed the basic two-stage strategy that is used: TEX gathers material until it
has accumulated more than will fit on a page: then it spews out one page of data,
based on what it thinks is the best breakpoint between pages: then it returns
to gather material for the neA-t page in the same way. Page numbers, headings,
and similar things arc attached after each page has been ejected, by a special
sequence of TEX commands called the current output routine.

Plain TEX has an output routine that takes care of ordinary jobs. It han-
dles the simple things that most manuscripts require, and it also copes with more
complicated things like the insertions made with \footnote and \ topinsert,
as described in the dangerous bends of Chapter 15. VVc shall begin the present
chapter by discussing how to make simple changes to the behavior of plain TEX's
output routine: then we shall turn to the details of how to define output routines
that do more complex tasks.

If you run TEX without modifying the plain TEX format, you get pages
that arc numbered at the bottom: and each page will be approAimatdy 8& inches
wide and 11 inches tall, including l-inch margins at all four sides. This format
is suitable for prcprints of technical papers, but you might well want to change
it, especially if you arc not using TEX to make a prcprint of a technical paper.

For example, we saw in the experiments of Chapter 6 that the width
of the material on a page can be changed by giving a different value to the
horizontal line size, \hsize. Plain TEX format says ·\hsize=6. 5in', in order to
obtain 8.5-inch pages with l-inch margins: you can change \hsize to whatever
you want. Similarly, you can control the vertical size of a page by changing
\ vsize. Plain TEX sets \vsize=8. 9in (not 9in, since \ vsize doesn't include
the space for page numbers at the bottom of each page): if you say ·\vsize=4in'
you will get shorter pages, with only 4 inches of copy per sheet. It's best not to
monkey with \hsize and \vsize except at the very beginning of a job, or after
you have ejected all pages from TEX's memory.

If you want your output to be positioned differently when it is ultimately
printed, you can offset it by giving nonzero values to \hoff set and \voffset.
For example,

\hoffset=.5in \ voff set=1. 5in

will move the output half an inch to the right of its normal position, and 1.5
inches down. You should be careful not to offset the output so much that it
falls off the edge of the physical medium on which it is being printed, unless you
know that such out-of-bounds activity won't cause trouble.

TEX is often used to typeset announcements, brochures, or other docu-
ments for which page numbers arc inappropriate. If you say

\nopagenumbers

at the beginning of your manuscript, plain TEX will refrain from inserting num-
bers at the bottom of each page.

251

output routine
footnote
topin;;ert
plain 'IJ.-,;..X format
page format, modifying
h;;ize

holf;;et
'<olf;;et
brochure;;
page number;;

252 Chapter 2,1: OutP'ut Ro'utincs

In fact 1 \nopagenumbers is a special case of a much more general mechanism
by which you can control headings and fOotings. The plain TE-X output rou~

tine puts out a special line of text called the headline at the top of each page1 and
another special line of text called the f(>otline at the bottom. The headline is normally
blank1 and the footline is normally a centered page number 1 but you can specifY any
headline and fOotline that you want by redefining the control sequences \headline and
\footline. For example1

\headline={\hrulefill}

will put a horit~ontal rule at the top of every page. The basic idea is that plain T£X puts
:\line{\the\headline}) at the top and :\line{\the\footline}) at the bottom1 \Vith
blank lines separating these extra lines from the other materiaL (Recall that \line
is an abbreviation for :\hbox to\hsize); hence the headline and footline are put into
boxes as \Vide as the normal lines on the page itself.) The normal value of \headline
is :\hfil) 1 so that no heading is visible. The \nopagenumbers macro described earlier
is simply an abbreviation for :\footline={\hfil}).

The normal value of \footline is :\hss\tenrm\folio\hss); this centers the
page number on a line 1 using font \tenrm1 because \folio is a control sequence

that produces the number of the current page in text form.

The page number appears in TE-X)s internal rebrister \count0 1 as explained in
Chapter 15 1 and plain TE-X makes \pageno an abbreviation for \countO. Thus

you can say :\pageno=100) if you want the next page of your output to be number 100.
The \folio macro converts negative page numbers to roman numerals; if your manu~
script begins with :\pageno=-1) 1 the pages \Viii be numbered i1 ii 1 iii 1 iv 1 V 1 etc. In fact 1

Appendix B defines \folio to be an abbreviation for

\ifnum\pageno<O \romannumeral-\pageno \else\number\pageno \fi

It is important to include the name of each fOnt explicitly whenever you are
defining a headline or footline 1 because an output routine in T£X can come

into action at somewhat unpredictable times. For example1 suppose that \footline
had been set to :\hss\folio\hss) 1 \Vithout specifying \tenrm; then the page number
would be typeset in whatever font happens to be current when TE-X decides to output a
page. Mysterious effects can occur in such cases1 because TE-Xis t:yl)ically in the midst
of page 101 when it is outputting page 100.

•EXERCISE 23.1
Explain how to put CIHlashes around the page numbers in a plain

For example1 : - 4 -) should appear at the bottom of page 4.

Here is an example of a headline in which the page numbers appear at the top.
Furthermore1 odd~ numbered and evmHmmbered pages are treated differently:

\nopagenumbers % suppress footlines
\headline={\ifodd\pageno\rightheadline \else\leftheadline\fi}
\def\rightheadline{\tenrm\hfil RIGHT RUNNING HEAD\hfil\folio}
\def\leftheadline{\tenrm\folio\hfil LEFT RUNNING HEAD\hfil}
\voffset=2\baselineskip

nopagenumber;;
headline
foot line
headline
foot line
hruldill
line
tenrm
folio
pageno
co untO
roman numeral;;
romannumeral
number
en-da,-;he;;

Chapter 2.1: OutP'ut Ro'utincs

English~lailbtuage books traditionally have odd~numbered pages on the right and even~
numbered pages on the left. Text that appears as a headline on several pages is often
called a :'running heacV' \Vhen you use headlines 1 it is generally wise to set \voffset
to the equivalent of two lines of text 1 as shmv11 in this example 1 so that there \Viii still
be a margin of one inch at the top of your output pages.

• EXERCISE 23.2
Suppose that you)re using TE-X to t:yl)eset your rCsum61 which is several pages

long. Explain how to define \headline so that the first page is headed by :RESUJ\1E) 1

centered in boldface type1 while each subsequent page has a headline like this:

RCsumC of A. U. Thor Page 2

If you don)t change the \vsize1 all of the headlines and footlines will occur
in the same place regardless of the contents of the page between them. Thus 1

for example1 if you are using \raggedbottom as explained in Chapter 151 so that pages
do not alway-s contain the same amount of text 1 the raggedness \Viii occur above the
footline; the fOotline won)t move up. If you do change \vsize1 the footline position
will change correspondingly) while the headline will stay put.

~~ The rest of this chapter is intended fOr people who want an output format
Y Y that is substantially different from what plain T£X provides. Double dangerous
bends are used in all of the subsequent paragraphs1 because you should be familiar \Vith
the rest of T£-X befOre you plunge into these final mysteries of the language. Chapter 22
taught you how to be a T£-X Master 1 i.e. 1 a person who can produce complicated tables
using \halign and \valign; the following material \Viii take you all the way to the rank
of Grandmaster 1 i.e. 1 a person who can design output routines. \Vhen you are ready
for this rank1 you \Viii be pleased to discover that-like alignments-output routines
are not really so mysterious as they may seem at first.

~~ Let)s bebrin by recapping some of the rules at the end of Chapter 15. T£-X
Y Y periodically chooses to output a page of information1 by breaking its main
vertical list at what it thinks is the best place1 and at such times it enters internal
vertical mode and bebrins to read the commands in the current \output routine. \Vhen
the output routine begins1 \box255 contains the page that T£X has completed; the
output routine is supposed to do something \Vith this vbox. \Vhen the output routine
ends 1 the list of items that it has constructed in internal vertical mode is placed just
befOre the material that fOllmvs the page break. In this way T£-X)s page~break decisions
can effectively be changed: Some or all of the material on the broken~off page can be
removed and carried forward to the next page.

~~ The current \output routine is defined as a tok~n list. parameter 1 just like
Y Y \everypar or \errhelp1 except that T£-X automatically mserts a begm~brroup
symbol :c at the beginning and an end~group symbol :}; at the end. These brrouping
characters help to keep the output routine from interfering \Vith what T£-X was doing
when the page break was chosen; for example1 an output routine often changes the
\baselineskip when it puts a headline or footline on a page1 and the extra braces
keep this change locaL If no \output routine has been specified1 or if the user has
said :\output={}) 1 T£-X supplies its O\V1l routine 1 which is essentially equivalent to
:\output={\shipout\box255}); this outputs the page \Vithout any headline or f0otline1

and \Vithout changing the page number.

253

odd-numberwl page;;
e'<en-numberwl page;;
running head
'<olf;;et
r(:;;um(:
Thor
ragged bottom
'<;;ize
Grandma,-;ter
box255
output
e'<erypar
errhdp
grouping character;;
ba,-;dine;;kip
brace;;
default output routine
;;hi pout

254 Chapter 2,1: OutP'ut Ro'utincs

~~ TE-X)s primitive command \shipout(box} is what actually causes output. It
Y Y sends the contents of the box to the dvi file 1 which is TE-X)s main output file;
after TE-X has finished1 the dvi file \Viii contain a compact device~ independent encoding
of instructions that specify exactly what should be printed. \Vhen a box is shipped out1

T£X displays the values of \countO through \count9 on your terminal 1 as explained
in Chapter 15; these ten counters are also recorded in the dvi file 1 where they can be
used to identify the page. All of the \openout 1 \closeout 1 and \Yrite commands that
appear inside of the (box} are performed in their natural order as that box is being
shipped out. Since a \Yrite command expands macros 1 as explained in Chapter 21 1

TE-X)s scanning mechanism might detect sy-ntax errors while a \shipout is in progress.
If \tracingoutput is nont~ero at the time of a \shipout 1 the contents of the (box}
being shipped are written into your log file in symbolic fOrm. You can say \shipout
anywhere 1 not only in an output routine.

~~ The delayed aspect of \Yrite imp~ses a notewor~h~ restriction: !tis ne~essary
Y Y to be sure that all macros that unght appear \V1thm the text of a \Yr~te are
properly defined when a \shipout command is given. For example1 the plain T£X fOr~
mat in Appendix B temporarily makes spaces active and says :\global \letu=\space);
the reason is that \obeyspaces might be in force during a \Yrite counnaml1 so a defi~
nition for u as an active character should exist during the next \shipout 1 even though
TE-X might no longer be making spaces active at that time.

~~ Chapter 15 point~ out t!1~t TE-X gives spe~ial val~es to certain intern~l regisf:ers
Y Y and parameters1 m add1bon to \box255 1 JUSt before the output routme begms.
Insertions are put into their O\V1l vboxes 1 and \insertpenalties is set equal to the total
number of holdover insertions; furthermore the \outputpenal ty parameter is set to the
value of the penalty at the current breah:point. An output routine can be made to do
special things when these quantities have special values. For example1 the output
routine of plain T£X recogni11es a \supereject (which ejects all held~over insertions)
by the fact that \supereject causes \outputpenalty to be -200001 and by using
\insertpenalties to decide if any insertions are being held over.

~~ The default output routine 1 :\shipout\box255) 1 illustrates one extreme in
Y Y which nothing is put into the vertical list that is carried over to the next page.
The other extreme is

\output={\unvbox255 \penalty\outputpenalty}

which ships nothing out and puts everything back onto the main vertical list. (The
command :\unvbox255) takes the completed page out of its box 1 and the command
:\penal ty\outputpenal ty' reinserts the penalty at the chosen breakpoint.) This
makes a seamless join between the completed page and the subsequent material 1 be--
cause TE-X has still not discarded glue and penalties at the breakpoint when it invokes
an \output routine; hence T£X \Viii go back and reconsider the page break. If the
\vsize hasn)t changed1 and if all insertions have been held in place1 the same page
break \Viii be fOund; but it \Viii be found much faster than before 1 because the vertical
list has already been constructed-the paragraphing doesn)t need to be done again. Of
course1 an output routine like this makes TE-X spin its wheels endlessly1 so it is of no
use except as an example of an extreme case.

<hi
co untO
openout
do;;eout
write
tradngoutput
;;pace
obey;;pace;;
;;pace;; acti'<e
in;;ert penalt ie;;
output penalty
;;upereject
un'<box

Chapter 2,1: OutP'ut Ro'utincs

~~ To prevent such looping1 your output routine should alway-s make progress
Y Y of some sort whenever it comes into play. If you make a mistake1 TE-X may
be able to help you diagnose the error 1 because a special loop~ detection mechanism
has been built in: There is an internal integer variable called \deadcycles 1 which
is cleared to 11ero after every \shipout and increased by 1 just before every \output.
Thus 1 \deadcycles keeps track of how many times an output routine has been initiated
since the most recent \shipout 1 unless you change the value of \deadcycles yourself.
There)s also an integer parameter called \maxdeadcycles 1 which plain TE-X sets to 25.
If \deadcycles is greater than or equal to \maxdeadcycles when your output routine
is about to be started (i.e. 1 when \deadcycles is about to be increased) 1 TE-X issues an
error message and perfOrms the default output routine instead of yours.

~~ \Vhen your output routine is finished 1 \box255 should be void. In other words 1

Y Y you must do something with the information in that box; it should either be
shipped out or put into some other place. Similarly1 \box255 should be void when TE-X
is getting ready to fill it \Vith a new page of material 1 just befOre starting an output
routine. If \box255 is nonvoid at either of those times 1 TE-X will complain that you are
misusing this special register 1 and the rebrister contents \Viii be destroyed.

~~ But let)s not talk forever about borderline cas~ <Ul~l sp~cial par~neter~; let)s
Y Y look at some real examples. The output routme of plam TE-X 1 found m Ap~
pendix B1 is set up by saying :\output={\plainoutput}) 1 where \plainoutput is ail

abbreviation for

\shipout\vbox{\makeheadline
\page body
\makefootline}

\advancepageno
\ifnum\outputpenalty>-20000 \else\dosupereject\fi

Let us consider this :'programl' one line at a time:

1) The \makeheadline macro constructs a vbox of height aiHl depth 11ero in such
a way that the headline is properly positioned above the rest of the page. Its actual
code is

\vbox to Opt{\vskip-22.5pt
\line{\vbox to8.5pt{}\the\headline}\vss}

\nointerlineskip

The magic constm1t -22.5pt is equal to (topskip- height of strut- 2(baselineship)) 1

i.e. 1 lOpt- 8.5pt- 24pt; this places the reference point of the headline exactly 24pt
above the reference point of the top line on the page1 unless the headline or the top
line are excessively large.

2) The \pagebody macro is an abbreviation for

\vbox to\vsize{\boxmaxdepth=\maxdepth \pagecontents}

The value of \boxmaxdepth is set to \maxdepth so that the vbox will be constructed
under the assumptions that T£X)s page builder has used to set up \box255.

255

dead(:y(:le;;
default output routine
box255
plainoutput
malwheadline
headline
nointerline;;kip
;;trot
\-;;;;
line
page body
boxmaxdepth
max depth

256 Chapter 2,1: OutP'ut Ro'utincs

3) The \pagecontents macro produces a vertical list for everything that belongs
on the main body of the page1 namely the contents of \box255 together with illustra~
tions (inserted at the top) and fOotnotes (inserted at the bottom):

\ifvoid\topins \else\unvbox\topins\fi
\dimen0=\dp255 \nnvbox255
\ifvoid\footins\else % footnote info is present

\vskip\skip\footins
\footnoterule
\unvbox\footins\fi

\ifraggedbottom \kern-\dimenO \vfil \fi

Here \topins and \foot ins are the insertion class numbers for the two kinds of inser~
tions used in plain TE-X; if more classes of insertions are added 1 \pagecontents should
be changed accordingly. Notice that the boxes are unboxed so that the glue coming
from insertions can help out the glue on the main page. The \footnoterule macro in
Appendix B places a dividing line between the page and its footnotes; it makes a net
contribution of 0 pt to the height of the vertical list. Ragged~bottom setting is achieved
by inserting infinite glue1 which overpowers the stretchability of \topskip.

4) The \makefootline macro puts \footline into its proper position:

\baselineskip=24pt
\line{\the\footline}

5) The \advancepageno macro normally advances \pageno by + 1; but if \pageno
is negative (for roman numerals) 1 the advance is by - L The new value of \pageno \Viii
be appropriate for the next time the output routine is called into action.

\ifnum\pageno<O \global\advance\pageno by-1
\else \global\advance\pageno by 1 \fi

6) Finally1 the \dosupereject macro is designed to dear out any insertions that
have been held over 1 whether they are illustrations or fOotnotes or both:

\ifnum\insertpenalties>O
\line{} \kern-\topskip \nobreak
\vfill\supereject\fi

The mysterious negative \kern here cancels out the natural space of the \topskip
glue that goes above the empty \line; that empty line box prevents the \vfill from
disappearing into a page break The vertical list that results from \dosupereject is
placed on TE-X)s list of things to put out next 1 just after the straggling insertions have
been reconsidered as explained in Chapter 15. Hence another super~eject will occur 1

and the process will continue until no insertions remain.

6<,~• EXERCISE 23.3
Y Y Explain how to change the output routine of plain TE-X so that it \Viii produce
hvice as many pages. The material that would ordinarily go on pages 11 21 31 etc. 1 should
go onto pages 11 31 51 ••• ; and the evmHmmbered pages should be entirely blank except
for the headline and footline. (Imabrine that photographs \Viii be mounted on those
blank pages later.)

pagecont ent;;
topin;;
footnote
topin;;
foot in;;
in;;ertion;;
footnoterule
Haggwl-bottom ;;etting
dil
inlinite glue
top;;kip
malwfoot line
foot line
ad'<ann:pageno
pageno
global
ad'<ann:
do;; u pereject
in;;ert penalt ie;;
;;upereject
kern
top;;kip
dill

Chapter 2,1: OutP'ut Ro'utincs

~~ Suppose now ~~~at d~uble~column for~nat is desire.cl More precisely1 l~t)s a~~
Y Y tempt to mod1fy plam TE-X so that 1t sets type m columns whose w1dth IS

\hsize=3.2in. Each actual page of output should contain two such columns separated
by 0.1 in of space; thus the text area of each page \Viii still be 6.5 inches wide. The
headlines and footlines should span both columns1 but the columns themselves should
contain independent insertions as if they were the facing pages of a book In other
words 1 each column should contain its O\V1l footnotes and its own illustrations; we do
not have to change the \pagebody macro.

In order to solve this problem 1 let us first introduce a new dimension register
called \fullhsize that represents the \Vidth of an entire page.
\newdimen\fullhsize
\fullhsize=6.5in \hsize=3.2in
\def\fullline{\hbox to\fullhsize}

The \makeheadline and \makefootline macros should be modified so that they use
:\fullline) instead of :\line).

~~ The new output routine \Viii make use of a control sequence \lr that is set
Y Y to either :v or :R)) according as the next column belongs at the left or at the
right of the next page. \Vhen a left column has been completed) the output routine
simply saves it in a box register; when a right column has been completed) the routine
outputs both columns and increases the page number.

\let\lr=L \newbox\leftcolumn
\output={\if L\lr

\global\setbox\leftcolumn=\columnbox \global\let\lr=R
\else \doubleformat \global\let\lr=L\fi
\ifnum\outputpenalty>-20000 \else\dosupereject\fi}

\def\doubleformat{\shipout\vbox{\makeheadline
\fullline{\box\leftcolumn\hfil\columnbox}
\makefootline}

\advancepageno}
\def\columnbox{\leftline{\pagebody}}

The \columnbox macro uses \leftline in order to ensure that it produces a box whose
width is \hsize. The width of \box255 is usually) but not alway-s) equal to \hsize at
the bebrinning of an output routine; any other \Vidth would louse up the fOrmat.

\Vhen double--column setting ends) there)s a 50~ 50 chance that the final column
has fallen at the left) so it \Viii not yet have been output. The code
\supereject
\if R\lr \null\vfill\eject\fi

supplies an empty right~hand column in this case) ensuring that all of the accumulated
material will be printed. It)s possible to do fancier column balancing on the last page)
but the details are tricky if footnotes and other insertions need to be accommodated
as welL Appendix E includes the macros that were used to balance the columns at the
end of the index in Appendix I) and to start two~column fOrmat in mid~page.

6<,~• EXERCISE 23.4
Y Y How should the example above be modified if you want three--column output?

257

double-column
h;;ize
page body
two-column format
multkolumn format
fullh;;ize
malwheadline
malwfoot line
fullline
line
ad'<ann:pageno
three-column output

258 Chapter 2,1: OutP'ut Ro'utincs

~~ Since TE-X)s output routine lags behind its page~construction activity1 you can
Y Y get erroneous results if you change the \headline or the \footline in an
uncontrolled way. For example1 suppose that you are t:yl)esetting a book 1 and that the
format you are using allmvs chapters to start in the middle of a page; then it would
be a mistake to change the running headline at the moment you bebrin a new chapter 1

since the next actual page of output might not yet include anything from the new
chapter. Consider also the task of t:yl)esetting a dictionary or a membership roster; a
well~desibfilCd refCrence book display-s the current range of entries at the top of each
page or pair of pages 1 so that it is easy for readers to thumb through the book when they
are searching for isolated words or names. But TE-X)s as:ynchronous output mechanism
makes it difficult) if not impossible) to determine just what range of entries is actually
present on a page.

~~ Therefore TE-X provides a way to put :'marksl' into a list; these mark-s infOrm
Y Y the output routine about the range of information on each page. The general
idea is that you can say

\mark{(mark text)}

in the midst of the information you are typesetting 1 where the {mark text} is a token
list that is expanded as in the commands \edef 1 \message 1 etc. TE-X puts an internal
representation of the mark text into the list it is building; then later on 1 when a
completed page is packed into \box255 1 TE-X allo\\'S the output routine to refer to the
first and last mark texts on that page.

~~ The best way to think of this is probably to imagine that TE-X generates an
Y Y arbitrarily long vertical list of boxes 1 glue1 and other items such as penalties
and mark-s. Somehow that long vertical list gets divided up into pages 1 and the pages
are made available to the output routine1 one at a time. \Vhenever a page is put in
\box255 1 TE-X sets up the value of three quantities that act essentially like macros:

• \botmark is the mark text most recently encountered on the page that was
just boxed;

• \firstmark is the mark text that was first encountered on the page that was
just boxed;

• \topmark has the value that \botmark had just befOre the current page was
boxed.

BefOre the first page1 all three of these are null 1 i.e. 1 they expand to nothing. \Vhen
there is no mark on a page1 all three are equal to the previous \botmark.

~~ For example1 suppose that ~our manuscript includes exactly four mark~ 1 and
Y Y that the pages are broken m such a way that \mark{o:} happens to fall on
page 21 \mark{/:i'} and \mark{~;} on page 41 and \mark{J} on page 5. Then

On page \topmark is \firstmark is \botmark is
I null null null
2 null " " 3 " " "
4 " fl ~I

5 ~I J J
6 J J J

rtllllling headline
mark;;
mark
bot mark
lir,;tmark
topmark

Chapter 2,1: OutP'ut Ro'utincs

~~ \Vhen you use a \mark command in vertical mode1 TE-X puts a mark into the
Y Y main vertical list. \Vhen you use a \mark command in horit~ontal mode1 TE-X
treats it as vertical mode material like \vadjust and \insert; i.e. 1 after the parabrraph
has been broken into lines 1 each mark \Viii go into the main vertical list just after the
box for the line where that mark oribrinally appeared. If you use \mark in restricted
horit~ontal mode1 the mark may migrate out to the enclosing vertical list in the same
way that \insert and \vadjust items do (see Chapter 24); but a mark that is locked
too deeply inside a box \Viii not mibrra.te1 so it will never appear as a \firstmark or
\botmark. Similarly1 a \mark that occurs in internal vertical mode goes into a vbox 1

and it is not accessible in the main vertical list.

~~ Chapter 15 discusses the \vsplit commaml1 which allows you to break up
Y Y vertical lists by yourself. This operation sometimes provides a useful alterna~
tive to T£X)s ordinary page--building mechanism. For example1 if you simply want to
t:yl)eset some material in two columns of equal height 1 you can put that material into
a vbox 1 then \vsplit the box into two pieces; no output routine is needed at alL The
\vsplit operation sets up the values of two macro~ like quantities that were not men~
tioned in Chapter 15: \splitfirstmark and \splitbotmark expand to the mark texts
of the first and last marks that appear in the vertical list that was split off by the most
recent \vsplit command. Both quantities are null if there were no such marks. The
values of \topmark1 \firstmark1 \botmark1 \splitfirstmark1 and \splitbotmark are
global; i.e. 1 they are not affected by T£-X)s brrouping mechanism.

~~ Most dictionaries use the equivalent of \firstmark and \botmark to give guide
Y Y words at the top of each pair of facing pages. For example1 if the definition of
the word :type) starts on page 1387 and continues onto page 1388 1 the guide word on
page 1387 (a right~hand page) \Viii be :type); but the guide word at the top of page 1388
(a left> hand page) will be the next word in the dictionary (e.g. 1 :typecast)) even though
the top of page 1388 is about :type).

~~ The .dictionary ~d~eme works fine f?r dicti.on~ies 1 since a r~~ler should sta~t
Y Y readmg each dictionary entry at Its begmmng. But a different scheme IS
appropriate fOr a technical book like the author)s A.rt of C"omputer Progr<umning1

where Section 1.2.8 (for example) starts in the middle of page 78 1 but the top of
page 78 contains exercises 19-24 of Section 1.2. 7. The headline at the top of page 78
refCrs to :1.2.7' 1 because that \Viii help somebody who is searching for exercise 1.2.7-22.
Notice that the dictionary convention would put :1.2.8) at the top of page 78 1 but that
would be appropriate only if Section 1.2.8 had begun exactly at the top of that page.

Continuing this example from The A.rt of C"omputer Progr<umning1 let)s sup~
pose that the T£-X manuscript fOr Section 1.2.8 begins \Vith a macro call like

\beginsection 1.2.8. Fibonacci Numbers.

How should \beginsection be defined? Here is one attempt:

\def\beginsection #1. #2.
{\sectionbreak
\leftline{\sectionfont #1. #2}
\mark{#1}
\nobreak\smallskip\noindent}

259

'<adju;;t
in;;ert
migrate
'<;;plit
;;plitlir;;tmark
;;plitbotmark
grouping
guide word;;
Art of Computer Programming
Knuth

260 Chapter 2,1: OutP'ut Ro'utincs

The \sectionbreak macro should encourage TE-X either to break the page at the current
position 1 or to leave a goodly amount of blank space; e.g. 1 \sectionbreak might be an
abbreviation for :\penalty-200 \vskip18pt plus4pt minus6pt). The \beginsection
macro ends with counnands that suppress indentation of the first parabrraph in the
section. But the thing that concerns us with respect to output routines is the \mark
command that follo\\'B \leftline. In the example we have been considering1 the begin~
ning of Section 1.2.8 would insert :\mark{1. 2. 8}) into the main vertical list just after
the box containing the title of that section.

~~ Is such a \mark adequate? Unf0rtunately1 no 1 not even if we assume for sim~
Y Y plicity that at most one section begins on each page. The page that contains
the bebrinning of Section 1.2.8 \Viii then have \topmark=1. 2. 7 and \firstmark=1. 2. 8 1

regardless of whether or not the section starts at the very top of the page. \Vhat we
want in this application is a cross between \topmark and \firstmark: something that
will reflect the mark text that represents the state of affairs just after the first line of
the page. And T£X doesn)t provide that.

~~ !he s~lution is to eu~it the \mark just befOr.e the \sectionbreak1 instead of
Y Y JUSt after the \leftl~ne. Then \topmark w1ll alway-s reflect the truth about
the section that is current at the top line. (Think about it.)

~~ However 1 the format for The A.rt of C"omputer Programming is more complex
Y Y than this. On left~hand pages1 the section number in the headline is sup~
posed to reflect the situation at the top of the page1 as we have just discussed1 but on
right~hand pages it is supposed to refCr to the bottom of the page. Our solution to
the previous problem made \topmark correct fOr the top1 but it can make \botmark
incorrect at the bottom. In order to satisfy both requirements1 it is necessary to pack
more infOrmation into the marks. Here)s one way to solve the problem:

\def\beginsection #1. #2.
{\mark{\currentsection \noexpand\else #1}
\sectionbreak
\leftline{\sectionfont #1. #2}
\mark{#1\noexpand\else #1} \def\currentsection{#1}
\nobreak\smallskip\noindent}

\def\currentsection{} % the current section number

The idea is to introduce two marks1 one just before the section break and one just after
the section has begun. Furthermore each mark has two parts; the mark just before the
potential break between Sections 1.2.7 and 1.2.8 is :1.2. 7\else 1.2.8) 1 while the one
just after that potential break is :1.2. 8\else 1. 2. 8). It fOllmvs that the section number
corresponding to the bottom of a page is the left component of \botmark; the section
number corresponding to the top of a page is the right component of \topmark. The
\rightheadline macro can make use of :\iftrue\botmark\fi) to read the left compo--
nent1 and the \leftheadline macro can say :\expandafter\iffalse\topmark\fi) to
read the right component.

6<,~• EXERCISE 23.5
Y Y B. C. Dull used a construction very much like the one above1 but he put the
second \mark just before the \leftline instead of just after it. \Vhat went \\TOng?

ift rue
ex pam! after
ilfal;;e
Dull

Chapter 2.1: OutP'ut Ro'utincs

6<,~• EXERCISE 23.6
YY The marks in the previous construction have the fOrm :<x\elsef/' 1 where o:
and f/ are two independent pieces of information. The :\else) makes it possible to
select either o: or f/ by means of \iftrue and \iffalse. Generalit~e this idea: Suppose
that you have an application in which maxh-s are supposed to carry five independent
pieces of information 1 and that each mark has the form :o:0 \oro: 1 \or o:2 \oro:a \or <t4).

Explain how to select any one of the five o:)s from such a mark

~~ Let)s conclude our discussion of output routines by considering an application
Y Y to indexes 1 such as the index to this manual that appears in Appendix L The
most complicated entries in such an index will look something like this:

Main entry1 41 61 8-101 12 1 14-161

18-22, 24-28, 30.
first subsidiary entry1 1-31 61 10-11 1

15, 21, 24, 28.
second subsidiary entry1 11 31 6-7 1

I~ 15, 21, 25, 28, 31.

Main entries and subsidiary entries are typeset ragged~right 1 \Vith two ems of hanging
indentation after the first line; subsidiary entries are indented one em on the first line.
Our goal \Viii be to typeset such material from input that looks like this:

\beginindex

Main entry. 4. 6. 8--10. 12. 14--16. 18--22. 24--28. 30.
\sub first subsidiary entry. 1--3. 6. 10--11. 15. 21. 24. 28.
\sub second subsidiary entry. 1. 3. 6--7. 10. 15. 21. 25. %

28, 31.

\endindex

where : ...) stands for other entries. Each line of input normally specifies one main
entry or one subsidiary entry; if an entry is so long that it doesn)t fit on a single input
line1 :u%) is t:yl)ed at the end of the line so that it merges \Vith the follmving one.

~~ The interestin~ thing about this index probleu: is that. it is desir~ble. to set.
Y Y up a system of mark-s so that the output routme can msert specHJ hnes of
text when an entry has been broken between columns or pages. For example1 if a page
break occurs between any of the six lines of typeset output shmv11 above1 the output
routine should emit the special line

Main entry (continued):

and if a page break occurs within a subsidiary entry1 an additional special line

subsidiary entry (continued):

should also appear. The solution below produces marks so that \botmark will be null if
a break occurs between main entries; it \Viii be :Main entry' if a break occurs after lines
11 21 or 4 of the six example output lines; it \Viii be :Main entry\sub first subsidiary
entry' if a break occurs after line 3 (within the first subsidiary entry); and it \Viii be
:Main entry\sub second subsidiary entry' if a break occurs after line 5.

261

ift rue
ilfal;;e
index mark;;
index example
ragged-right

262 Chapter 2,1: OutP'ut Ro'utincs

~~ The reader may \Vish to try solving this problem before looking at the solution1

Y Y because it \Viii then be easier to appreciate the subtler issues that are involved.
(Go ahead: Try to define a macro \beginindex that does the ragged~ right setting and
produces the specified maxh-s. Turn back to the previous page to study the problem
carefully1 befOre peeking at the answer.)

\def\beginindex{\begingroup
\parindent=iem \maxdepth=\maxdimen
\def\par{\endgraf \futurelet\next\inxentry}
\obeylines \everypar={\hangindent 2\parindent}
\exhyphenpenalty=10000 \raggedright}

\def\inxentry{\ifx\next\sub \let\next=\subentry
\else\ifx\next\endindex \let\next=\vfill
\else\let\next=\mainentry \fi\fi \next}

\def\endindex{\mark{}\break\endgroup}
\let\sub=\indent \newtoks\maintoks \newtoks\subtoks
\def\mainentry#1,{\mark{}\noindent

\maintoks={#1}\mark{\the\maintoks}#1,}
\def\subentry\sub#1,{\mark{\the\maintoks}\indent

\subtoks={#1}\mark{\the\maintoks\sub\the\subtoks}#1,}

Even if you have read this solution 1 you probably want an explanation of what it does 1

because it uses :'TEXticsl' that have not appeared before in this manuaL
1) The \beginindex macro uses \begingroup to keep other changes local; thus 1

it won)t be necessary to restore \parindent and \maxdepth1 etc. 1 to their former values
when the index is finished. The \maxdepth parameter is set to \maxdimen1 which is
essentially infinite1 so that \box255 \Viii have the true depth of the last box that it
contains; we \Viii use this fact below. (It is sate to disable \maxdepth in this way1 since
the entries in an index can be assumed to have reasonably small depth.) Notice that
\obeylines is used 1 so that \par \Viii effCctively be inserted at the end of every line of
input. The meaning of \par is changed so that it does more than usual: First it does
\endgraf 1 which is TE-X)s ordinary \par operation; then it sets \next to the first token
of the next line1 aller which the macro \inxentry \Viii be expanded.

2) \Vhen \inxentry comes into play it looks at \next to decide what to do.
There are three cases: If \next is :\sub) 1 the line will be treated as a subsidiary entry;
if \next is :\endindex) 1 the next commands executed \Viii be :\vfill\mark{}\break
\endgroup); othenvise the line will be treated as a main entry.

3) The text of a main entry is put into parameter #1 of \mainentry; this param~
eter is delimited by a comma. The first thing that \mainentry does is :\mark{}) 1 which
dears the mark in case of a break between entries. Then comes :\noindent) 1 which
causes T£X to go into horimntal mode and to emit \parskip glue. (The \parskip
glue \Viii be a legal breakpoint between lines; it \Viii later be followed by interline glue1

when the first line of the main entry has been typeset by T£X)s parabrraphing routine.)
Then another \mark is put into the paragraph itself; this one contains the text of the
main entry1 and a \toks register called \maintoks is used to inhibit expansion of the
mark text. \Vhen the paragraph is completed and broken into lines 1 this particular
mark will immediately follow the box for the paragraph)s first line1 so it will be the
\botmark if a page break occurs anywhere within the paragraph.

e'<erypar
futurdet
exhyphenpenalty
ragged right
hangindent
begin group
par indent
max depth
maxdimen
obey line;;
par
endgraf
noindent
par;; kip
tob
maintok;;
inhibit expan;;ion

Chapter 2,1: OutP'ut Ro'utincs

4) A similar construction is used for \subentry 1 but the mark is more compli~
cated. The \maintoks register \Viii still contain the main entry. The text for the
subsidiary entry is added using another token list register 1 \subtoks. Since \sub has
been defined to equal \indent 1 it \Viii not be expanded in this \mark.

~~ The macros just defined \Viii typeset m~tries that contain the nec~sary ma:ks;
Y Y now we must construct an output routme that uses these marks m the desued
way1 to insert new lines that say :(continued)) as mentioned above. Again 1 the reader
is advised to try solving this problem before looking at the following solution.

\output={\dimen0=\dp255 \normaloutput
\expandafter\inxcheck\botmark\sub\end}

\def\inxcheck#1\sub#2\end{\def\next{#1}%
\ifx\next\empty % do nothing if \botmark is null
\else\noindent #1\continued% 'Main entry (continued):'

\def\next{#2}%
\ifx\next\empty % nothing more if \botmark has no \sub
\else\let\sub=\continued \indent #2\fi
\advance\dimenO by-\prevdepth \kern\dimenO \fi}

\def\continued{ ({\it continued}\thinspace):\endgraf}

This coding is a bit more subtle than usuaL It assumes that \normaloutput takes care
of shipping out \box255 (possibly putting it into multicolumn format) and advanc~
ing the page number; then comes new stuff1 which is performed by \inxcheck. The
\inxcheck macro is invoked in an interesting way that allows \botmark to be separated
into its components. If \botmark is null 1 argument #1 to \inxcheck will be null; hence
\next will be found equivalent to \empty. (Plain TE-X says :\def\empty{}) in order to
accommodate situations like this.) If \botmark doesn)t contain the token \sub 1 argu~

ment #1 \Viii be the contents of \botmark while #2 will be nulL Othenvise1 if \botmark
has the form o:\sub f/ 1 arbrument #1 will be o: and #2 \Viii be :/:i'\sub).

~~ If \botmark isn)t null 1 the \inxcheck macro produces one or more lines of text
Y Y that \Viii be contributed to TE-X)s main vertical list at the position of the page
break And here)s where the most subtle point arises: There \Viii be interline glue at
the page break1 computed on the basis of the depth of the box that preceded the break.
That depth is known to the output routine1 since it)s the depth of \box255. (The value
of \maxdepth was made infinite fOr precisely this reason.) Therefore the \inxcheck
macro can insert a \kern to compensate for the difference in depth between the old
box and the one that \Viii be inserted before the interline glue that has already been
computed. w-ithout this \kern1 the spacing would be wrong. The reader should study
this example carefully1 to understand the reasoning behind the \kern counnaml1 befOre
designing an output routine that inserts new boxes between random lines of output.

6<,~• EXERCISE 23.7
Y Y Modify this construction so that continuation lines are inserted only in the
left columns of even~ numbered pages1 assuming two~column fOrmat.

6<,~• EXERCISE 23.8
Y Y True or false: The \inxcheck macro in this example contributes at most two
lines of output to the main vertical list.

263

indent
macro argument;;
empty
interline glue
max depth
kern

264 Chapter 2,1: OutP'ut Ro'utincs

~~ \Vhen TE-X sees an \end cmmnaml1 it terminates the job only if the main
Y Y vertical list has been entirely output and if \deadcycles=O. Otherwise it
inserts the equivalent of

\line{} \vfill \penalty-'10000000000

into the main vertical list 1 and prepares to read the :\end) token again. This has the
effect of invoking the output routine repeatedly until everything has been shipped out.
In particular 1 the last column of two~column format will not be lost.

~~ I: is yoss~~le ~o devi~e o~tput ro~tines that alway~ leave _a resic~ue on th~ main
Y Y \Crbcal hst 1 yet they ne\er allow \deadcycles to mcrease. In such a case TE-X
will never come to an end! An output routine can recognit~e that it is being invoked by
TE-X)s endgame1 because of the highly negative \outputpenalty caused by the special
\penalty-' 10000000000. At such times the output routine should modify its behavior 1

if necessary1 so that a happy ending \Viii ensue.

end
dead(:y(:le;;
penalty-'] 0000000000

Chapter 2,1: OutP'ut Ro'utincs 265

I think you will like them,
when you shall see them on a beautiful quarto oage,

where a neat rivulet of text
shall meander through a meadow of margin.

'Fore Gad they will be the most elegant things of their kind!

-RICHARD BRINSLEY SHERIDAN, The School for Scandal (1777)

The influence of technical changes uoon out outs
through variation in the general investment level {j

is so small that actually it could have been neglected.
- WASSIL Y W. LEONTIEF, The Structure of American Economy, 1919~ 1929 (1941)

SHEHIDA!\:
LEO!\:TIEF

>age 200) I

Summary of
Vertical

Mode

Chapter 24: S'urnrnary of Vertical Mode

The whole T&X language has been presented in the previous chapters: we have fi-
nally reached the end of our journey into previously uncharted territory. Hurray!
Victory! l\ow it is time to take a more systematic look at what we have encoun-
tered: to consider the facts in an orderly nu;~,nncr, rather than to mix them up
with informal examples and applications as we have been doing. A child learns
to speak a language before learning formal rules of grannnar, but the rules of
grammar come in handy later on when the child reaches adulthood. The purpose
of this chapter------and of the two chapters that follow------is to present a precise and
concise sumnu;~,ry of the language that TEX understands, so that mature users
will be able to cominunicate as effectively as possible with the machine.

VVe will be concerned in these chapters solely with TEX 's primitive oper-
ations, rather than with the higher-level features of plain TEX format that most
people deal with. Therefore novice users should put off reading Chapters 24---26
until they fed a need to know what goes on inside the computer. Appendix B
contains a summary of plain TEX, together with a ready-reference guide to the
things that most people want to know about TEX usage. The best way to get an
overview of TEX from a high level is to turn to the opening pages of Appendix B.

Our purpose here1 however 1 is to survey the low-level parts of TE-X on which
higher-level superstructures have been built 1 in order to provide a detailed reference
for people who do need to know the details. The remainder of this chapter is set in
small t:yl)e 1 like that of the present paragraph 1 since it is analogous to material that is
marked :'doubly dangerous!' in other chapters. Instead of using dangerous bend signs
repeatedly1 let us simply agree that Chapters 24-26 are dangerous by definition.

TE-X actually has a fCw fCatures that didn)t seem to be worth mentioning in
previous chapters1 so they \Viii be introduced here as part of our complete survey. If
there is any disagreement between something that was said previously and something
that \Viii be said below 1 the facts in the present chapter and its successors should be
regarded as better approximations to the truth.

\Ve shall study T£X)s digestive processes 1 i.e. 1 what T£X does \Vith the lists
of tokens that arrive in its :'stomach.l' Chapter 7 has described the process by which
input files are converted to lists of tokens in T£X)s :'mouth/' and Chapter 20 explained
how expandable tokens are converted to unexpandable ones in TE-X)s :'gullef' by a
process similar to regurgitation. \Vhen unexpandable tokens finally reach T£X)s gastro-
intestinal tract 1 the real activity of typesetting begins 1 and that is what we are going
to survey in these summary chapters.

Each token that arrives in TE-X)s tummy is considered to be a cmmn<wd that
the computer will obey. For example1 the letter :v is a command to typeset an :u
in the current font; :\par) tells T£X to finish a paragraph. T£X is always in one of
six modes 1 as described in Chapter 13 1 and a command sometimes means diffCrent
things in diffCrent modes. The present chapter is about vertical mode (and internal
vertical mode1 which is almost the same): \Ve shall discuss TE-X)s response to every
primitive commmH11 when that commmHl occurs in vertical mode. Chapters 25 and 26
characteri11e horit~ontal mode and math mode in a similar way1 but those chapters are
shorter thm1 this one because many commands have the smne behavior in all modes;
the rules fOr such commands will not be repeated thrice1 they will appear only once.

267

'<ertical mode
primiti'<e
truth
anatomy of '1\:X
command

268 Chapter 24: Summary of Vertical Mode

Some counnands have arguments. In other words 1 one or more of the tokens
that follow a command might be used to modify that commaiHl's behavior 1 and those
tokens are not considered to be commands themselves. For example1 when TE-X pro~
cesses the sequence of tokens that corresponds to :\dimen2=2. 5pt) 1 it considers only
the first token :\dimen) to be a command; the next tokens are swept up as part of the
operation1 because TE-X needs to know what \dimen register is to be set equal to what
{dimen} value.

\Ve shall define T£X)s parts of speech by using a modified fOrm of the gram~
matical notation that was introduced about 1960 by .John Bad..11s and Peter Naur for
the definition of computer languages. Quantities in angle brackets will either be ex~
plained in words or they \Viii be defined by syntax rules that show exactly how they
are formed from other quantities. For example1

{unit of measure} --t (optional spaces}(internal unit}
I (optional true)(physical unit)

defines a {unit of measure} to be either an occurrence of (optional spaces} followed by
an (internal unit} 1 or (optional true} fOllowed by (physical unit}. The symbol --t
in a sy-ntax rule means :'is defined to be/' and: I) means :'or.l'

Sometimes a syntax rule is recursive1 in the sense that the right~hand side of
the definition involves the quantity being defined. For example1 the rule

(optional spaces) -+ (empty) I (space tokcn)(optional spaces)

defines the grammatical quantity called (optional spaces} to be either (empty}1 or a
(space token} followed by (optional spaces}. The quantity (empty} stands for :'noth~

ing/' i.e. 1 for no tokens at all; hence the syntax rule just given is a formalit~ed way of
saying that (optional spaces} stands for a sequence of 11ero or more spaces.

The alternatives on the right~hand side of a syntax rule need not consist
entirely of quantities in angle brackets. Explicit tokens can be used as welL For
example1 the rule

(plus or minus} --t +1zl-12

says that (plus or minus} stands fOr a character token that is either a plus sign or
a minus sign1 with category code 12.

\Ve shall use a special convention for keywords 1 since the actual syntax of a
keyword is somewhat technical. Letters in t:yl)e\\Titer type like : pt) will stand for

(optional spaccs)(p or P)(t or T),

where (p or P} denotes any non~active character token fOr either p or P (independent
of the category code) 1 and where (torT} is similar.

\Vhen a control sequence like :\dimen) is used in the syntax rules below1 it
stands for any token whose current meaning is the same as the meaning that \dimen
had when TE-X started up. Other tokens can be given this same meaning1 using \let
or \futurelet 1 and the meaning of the control sequence \dimen itself may be redefined
by the user 1 but the syntax rules take no note of this; they just use :\dimen) as a
way of referring to a particular primitive command of T£X. (This notation is to be
distinguished from : ldimen I) 1 which stands fOr the control sequence token whose actual
name is dimen; see Chapter 7.)

argument;;
Backu;;
!'\aur
angle bracket;;
;;yntax rule;;
unit of mea,-;ure
recur;;i '<e
optional ;;pace;;
empty
plu;; or minu;;
character tolwn
keyword;;
pl
boxed word;;

Chapter 24: S'urnrnary of Vertical Mode

Control sequences sometimes masquerade as characters1 if their meaning has
been assigned by \let or \futurelet. For example1 Appendix B say-s

\let\bgroup={ \let\egroup=}

and these commands make \bgroup and \egroup act somewhat like left and right curly
braces. Such control sequences are called :'implicit charactent; they are interpreted in
the same way as characters1 when TE-X acts on them as cmmn<UHis 1 but not always when
they appear in axbruments to commands. For example1 the command :\let\plus=+)
does not make \plus an acceptable substitute for the character token :+ 12) in the
syntax rule for (plus or minus} given above1 nor does the command :\let\p=p) make
\p acceptable as part of the keyword pt. \Vhen TE-X)s syntax allows both explicit and
implicit characters1 the rules below \Viii be careful to say S0 1 explicitly.

The quantity (space token} 1 which was used in the sy-ntax of (optional spaces}
above1 stands for an explicit or implicit space. In other words 1 it denotes either a
character token of category 101 or a control sequence or active character whose current
meaning has been made equal to such a token by \let or \futurelet.

It will be convenient to use the symbols :c 1 :}; 1 and :$; to stand for any
explicit or implicit character tokens of the respective categories 11 21 and 31 whether or
not the actual character codes are braces or dollar sibfilS. Thus 1 fOr example1 plain T£X)s
\bgroup is an example of a :c 1 and so are the tokens :{J) and : (J); but :{Jz) is not.

The last few paragraphs can be suunnarit~ed by saying that the alternatives
on the right~hand sides of TE-X)s fOrmal syntax rules are made from one or more of the
follmving things: (1) syntactic quantities like (optional spaces}; (2) explicit character
tokens like +12 ; (3) keywords like pt; (4) control sequence names like \dimen; or (5) the
special symbols C }1 $.

Let us begin our study of T£X)s syntax by discussing the precise meanings of
quantities like {number} 1 {dimen}1 and (glue} that occur frequently as arguments to
counnands. The most important of these is {number}1 which specifies an integer value.
Here)s exactly what a {number} is:

{number} --t (optional signs}(unsigned number}
(optional signs} --t (optional spaces}

I (optional signs}(plus or minus}(optional spaces}
{unsibfilCd number} --t {normal integer} I (coerced integer}
{normal integer} --t (internal integer}

I (integer constant}(one optional space}
I 'Jz(octal constant}(one optional space}
1 11 Jz(hexadecimal constant}(one optional space}
I 'Jz(character token}(one optional space}

(integer constant} --t {digit} I {digit}(integer constant}
(octal constant) -+ (octal di;,~t) I (octal di;,~t)(octal constant)
(hexadecimal constant} --t (hex digit} I (hex digit}(hexadecimal constant}
(octal di;,~t)-+ o,2 11,2 I 2,2 I 3,2 14,2 I s,2 I 6,2 I 7,2
(digit) -+ (octal digit) I 8,2 I 9,2
(hex digit)-+ (digit) I A,, I B,, I c,, I D,, IE,, IF,,

I Al2 I Bl2 I c,2 I Dl2 I El2 I Fl2
(one optional space) -+ (space token) I (empty)
(coerced integer} --t (internal dimen} I (internal glue}

269

bgroup
egroup
curly
brace;;
implicit character,;
pl
;;pace tolwn
pl
number
optional ;;ign;;
un;;ignwl number
normal integer
integer con;;tant
octal con;;tant
hexaded mal con;;t ant
octal digit
digit
hex digit
one optional ;;pace
coerced integer

270 Chapter 24: Summary of Vertical Mode

The value of a {number} is the value of the corresponding {unsigned number} 1 times -1
for every minus sign in the (optional signs}. An alphabetic constant denotes the char~
acter code in a (character token}; TE-X does not expand this token 1 which should either
be a (character code1 category code) pair 1 or an active character 1 or a control se--
quence whose name consists of a single character. (See Chapter 20 fOr a complete
list of all situations in which TE-X does not expand tokens.) An (integer constant}
must not be immediately followed by a {digit}; in other words 1 if several digits appear
consecutively1 they are all considered to be part of the same (integer constant}. A
similar remark applies to the quantities (octal constant} and (hexadecimal constant}.
The quantity (one optional space} is (empty} only if it has to be; i.e. 1 TE-X looks for
(one optional space} by reading a token and backing up if a (space token} wasn)t there.

6<,~• EXERCISE 24.1
Y Y Can you think of a reason why you might want :A 12) to be a (hex digit} even
though the letter A has category 11? (Don)t worry if your answer is :'no.l')

The definition of {number} is now complete except for the three quantities
called (internal integer} 1 (internal dimen} 1 and (internal glue} 1 which \Viii be explained
later; they represent things like parameters and rebristers. For example1 \count1
and \tolerance and \hyphenchar\tenrm are internal integers; \dimen10 and \hsize
and \fontdimen6\tenrm are internal dimensions; \skip100 and \baselineskip and
\lastskip are internal glue values. An internal dimension can be :'coercecr' to be an
integer by assuming units of scaled points. For example1 if \hsize=100pt and if \hsize
is used in the context of a {number}1 it denotes the integer value 6553600. Similarly1 an
internal glue value can be coerced to be an integer by first coercing it to be a dimension
(omitting the stretchability and shrinkability) 1 then coercing that dimension.

Let)s turn now to the sy-ntax fOr {dimen} 1 and fOr {mudimen} its cousin:

{dimen} --t (optional signs}(unsigned dimen}
{unsigned dimen} --t {normal dimen} I (coerced dimen}
(coerced dimen} --t (internal glue}
{normal dimen} --t (internal dimen} I (factor}{unit of measure}
(factor} --t {normal integer} I (decimal constant}
(decimal constant} --t . 12 I • 12

I (di;,~t)(dccimal constant)
I (decimal constant)(digit)

{unit of measure} --t (optional spaces}(internal unit}
I (optional true}(physical unit}(one optional space}

(internal unit} --t em (one optional space} I ex (one optional space}
I (internal integer} I (internal dimen} I (internal glue}

(optional true} --t true I (empty}
(physical unit) -+ pt I pc I in I bp I em I mm I dd I cc I sp
{mudimen} --t (optional signs}(unsigned mudimen}
{unsigned mudimen} --t {normal mudimen} I (coerced mudimen}
(coerced mudimen} --t (internal muglue}
{normal mudimen} --t (factor}(mu unit}
{mu unit} --t (optional spaces}(internal muglue} I mu (one optional space}

\Vhen :true) is present1 the factor is multiplied by 1000 and divided by the \mag
parameter. Physical units are defined in Chapter 10; mu is explained in Chapter 18.

alphabetic con;;tant
character tolwn
one optional ;;pace
coerce ;dimeni, to ;munberi,
coerce ;gluei, to ;dimeni,
dimen
un;;ignwl dimen
coerced dimen
normal dimen
factor
decimal con;;tant
unit of mea,-;ure
intemal unit
em
ex
optional true
true
phy;;kal unit
pl
j)('
in
bp
em
mm
dd
(:('

;;p
mudimen
un;;ignwl mudimen
coerced mudimen
normal mudimen
mu unit
mu
mag

Chapter 24: S'urnrnary of Vertical Mode

Encouraged by our success in mastering the precise syntax of the quantities
{number}1 {dimen} 1 and {mudimen}1 let)s tackle (glue} and {muglue}:

(glue} --t (optional signs}(internal glue}
I (dimen)(stretch)(shrink)

(stretch) -+ plus (dimen) I plus (fil dimen) I (optional spaces)
(shrink} --t minus {dimen} I minus (fil dimen} I (optional spaces}
(fil dimen) -+ (optional si;,ms)(factor)(fil unit)(optional spaces)
(fil unit) -+ fil I (fil unit) 1
{muglue} --t (optional signs}(internal muglue}

I {mudimen}{mustretch}(mushrink}
{mustretch} --t plus {mudimen} I plus (fil dimen} I (optional spaces}
{mushrink} --t minus {mudimen} I minus (fil dimen} I (optional spaces}

TE-X makes a large number of internal quantities accessible so that a format
designer can influence TE-X)s behavior. Here is a list of all these quantities 1 except for
the parameters (which \Viii be listed later).

(internal integer} --t (integer parameter} I (special integer} I \lastpenalty
I (countdef token) I \count(8~bit number) I (codename)(8~bit number)
I (chardef token) I (mathchardef token) I \parshape I \inputlineno
I \hyphenchar(font) I \skeYchar(font) I \badness

(special integer} --t \spacefactor I \prevgraf
I \deadcycles I \insertpenalties

(codename} --t \catcode I \mathcode
I \lccode I \uccode I \sfcode I \delcode

(font) -+ (fontdef token) I \font I (family member)
(family member} --t (font range}{4~bit number}
(font range} --t \textfont I \scriptfont I \scriptscriptfont
(internal dimen} --t {dimen parameter} I (special dimen} I \lastkern

I {dimendef token} I \dimen{S~bit number}
I (box dimension}{S~bit number} I \fontdimen{number}(font}

(special dimen} --t \prevdepth I \pagegoal I \pagetotal
I \pagestretch I \pagefilstretch I \pagefillstretch
I \pagefilllstretch I \pageshrink I \pagedepth

(box dimension) -+ \ht I \Yd I \dp
(internal glue} --t (glue parameter} I \lastskip

I (skipdef token) I \skip(8~bit number)
(internal muglue} --t {muglue parameter} I \lastskip

I (mushipdef token) I \muskip(8~bit number)

A (countdef token} is a control sequence token in which the control sequence)s current
meaning has been defined by \countdef; the other quantities {dimendef token}) etc.)
are defined similarly. A (fontdef token} refers to a definition by \font) or it can be
the predefined font identifier called \nullfont. \Vhen a (countdef token} is used as an
internal integer) it denotes the value of the corresponding \count register) and similar
statements hold for {dimendef token}) (skipdef token}) {muskipdef token}. \Vhen a
(chardef token} or {mathchardef token} is used as an internal integer) it denotes the
value in the \chardef or \mathchardef itself. An {8~bit number} is a {number} whose
value is between 0 and 2(-1- 1 = 255; a {4~bit number} is similar.

271

glue
;;tretch
plu;;
plu;;
;;hrink
minu;;
minu;;
Iii dimen
Iii unit
Iii
I
muglue
mu;;tretch
plu;;
plu;;
mu;;hrink
minu;;
minu;;
intemal integer
la,-;t penalty
count
par;;hape
inputliiH:no
hyphenchar
;;lwwchar
badne;;;;
;; pedal integer
;;pacefactor
pre'<graf
dead(:y(:le;;
in;;ert penalt ie;;
codename
cat code
mathcode
kcode
uccode
;;fcode
ddcode
font
font
family member
font range
text font
;;cript font
;;cri pt ;;cri pt font
intemal dimen
la,-;t kem
dimen
fontdimen
;;pedal dimen
preHkpth
pagegoal
pagetotal
page;;t retch
pagdi bt retch
pagdill;;tretch
pagdillbtretch
page;;hrink
pagwlepth
box dimen;;ion

"' wd
dp
intemal glue
la,-;t;;kip
;;kip
intemal muglue
la,-;t;;kip
mu;;kip
countdef tolwn
countdef
dimendeftolwn
;;kipdef tolwn

272 Chapter 24: Summary of Vertical Mode

TE-X allmvs \spacefactor to be an internal integer only in horimntal modes;
\prevdepth can be an internal dimension only in vertical modes; \lastskip can be
(internal muglue} only in math mode when the current math list ends with a muglue
item; and \lastskip cannot be (internal glue} in such a case. \Vhen \parshape is used
as an internal integer 1 it denotes only the number of controlled lines 1 not their sit~es or
indentations. The seven special dimensions \pagetotal 1 \pagestretch1 and so on are
all 11ero when the current page contains no boxes1 and \pagegoal is \maxdimen at such
times (see Chapter 15).

From the sy-ntax rules just given 1 it)s possible to deduce exactly what hap~
pens to spaces when they are in the vicinity of numerical quantities: T£X allo\\'B
a {number} or {dimen} to be preceded by arbitrarily many spaces1 and to be fol~
lowed by at most one space; however 1 there is no optional space after a {number}
or {dimen} that ends with an unexpandable control sequence. For example1 if T£-X
sees :\space\space24\space\space) when it is looking fOr a {number} 1 it gobbles up
the first three spaces1 but the fourth one survives; similarly1 one space remains when
:24pt\space\space) and :\dimen24\space\space) and :\pagegoal\space) are treated
as {dimen} values.

6<,~• EXERCISE 24.2
Y Y Is :24\space\space pt) a legal {dimen}?

6<,~• EXERCISE 24.3
Y Y Is there any difference between :+\baselineskip) 1 :_ -\baselineskip) 1 and
:1\baselineskip) 1 when T£-X reads them as (glue}?

6<,~• EXERCISE 24.4
Y Y \Vhat (glue} results from 11 DD DDPLUS2 .5 \spacefactor\space1 assuming the
conventions of plain T£..X 1 when \spacefactor equals 1000?

Let)s turn now to T£X)s parameters1 which the previous chapters have in~
troduced one at a time; it will be convenient to assemble them all together. An
(integer parameter} is one of the following tokens:

\pretolerance (badness tolerance before h:yl)henation)
\tolerance (badness tolerance after h:yl)henation)
\hbadness (badness above which bad hboxes will be shown)
\vbadness (badness above which bad vboxes will be shown)
\linepenalty (amount added to badness of every line in a paragraph)
\hyphenpenalty (penalty for line break after discretionary hyphen)
\exhyphenpenalty (penalty for line break aller explicit hyphen)
\binoppenalty (penalty for line break after binary operation)
\relpenalty (penalty for line break after math relation)
\clubpenalty (penalty for creating a dub line at bottom of page)
\wido-wpenalty (penalty for creating a widow line at top of page)
\displaywido-wpenal ty (ditto 1 before a display)
\brokenpenalty (penalty for page break after a h:yl)henated line)
\predisplaypenalty (penalty fOr page break just before a display)
\postdisplaypenalty (penalty fOr page break just after a display)
\interlinepenalty (additional penalty fOr page break between lines)
\floatingpenalty (penalty for insertions that are split)

;;pace;;
parameter;;
integer parameter
pretokrance
tolerance
hbadne;;;;
'<hadne;;;;
linepenalty
hyphen penalty
exhyphenpenalty
binoppenalty
rdpenalty
dubpenalty
widowpenalty
di;;play widowpenalty
broken penalty
prw!i;;play penalty
po;;tdi;;playpenalty
interlinepenalty
lloatingpenalty

Chapter 24: S'urnrnary of Vertical Mode

\outputpenal ty (penalty at the current page break)
\doublehyphendemeri ts (demerits for consecutive broken lines)
\finalhyphendemerits (demerits for a penultimate broken line)
\adjdemeri ts (demerits for adjacent incompatible lines)
\looseness (change to the number of lines in a paragraph)
\pausing (positive if pausing after each line is read from a file)
\holdinginserts (positive if insertions remain dormant in output box)
\tracingonline (positive if shmving diagnostic info on the terminal)
\tracingmacros (positive if shmving macros as they are expanded)
\tracingstats (positive if shmving statistics about memory usage)
\tracingparagraphs (positive if showing line~break calculations)
\tracingpages (positive if shmving page~break calculations)
\tracingoutput (positive if shmving boxes that are shipped out)
\tracinglostchars (positive if showing characters not in the font)
\tracingcommands (positive if showing commands before they are executed)
\tracingrestores (positive if showing deassignments when groups end)
\language (the current set of hyphenation rules)
\uchyph (positive if hyphenating words bebrinning \Vith capital letters)
\lefthyphenmin (smallest fragment at beginning of hyphenated word)
\righthyphenmin (smallest fragment at end of hyphenated word)
\globaldefs (nont~ero if overriding \global specifications)
\defaulthyphenchar (\hyphenchar value when a font is loaded)
\defaultskewchar (\skewchar value when a fOnt is loaded)
\escapechar (escape character in the output of control sequence tokens)
\endlinechar (character placed at the right end of an input line)
\newlinechar (character that starts a new output line)
\maxdeadcycles (upper bound on \deadcycles)
\hangafter (hailbring indentation chm1ges after this many lines)
\fam (the current fmnily number)
\mag (magnification ratio1 times 1000)
\delimiterfactor (ratio for variable delimiters 1 times 1000)
\time (current time of day in minutes since midnight)
\day (current day of the month)
\month (current month of the year)
\year (current year of our Lord)
\showboxbreadth (maximum items per level when boxes are shmv11)
\showboxdepth (maximum level when boxes are shmv11)
\errorcontextlines (maximum extra context shown when errors occur)

The first few of these parameters have values in units of :'badnessl' and :'penalties!'
that affect line breaking aiHl page breaking. Then come demerit~oriented parmneters;
demerits are essentially given in units of :'badness squared1l' so those parameters tend to
have larger values. By contrast 1 the next few parmneters (\looseness 1 \pausing1 etc.)
generally have quite small values (either -1 or 0 or 1 or 2). Miscellaneous parmneters
complete the set. T£X computes the date aiHl time when it bebrins ajob 1 if the operating
system provides such infOrmation; but afterwards the dock does not keep ticking: The
user can change \time just like any ordinary parameter. Chapter 10 points out that
\mag must not be changed aller T£X is committed to a particular magnification.

273

output penalty
dou bkhy phendemerit;;
linalhy phendemerit;;
adjdemerit;;
loo;;ene;;;;
pau;;ing
holdingin;;ert;;
tradngonline
tradngmacro;;
tradng;;tat;;
t radngparagraph;;
tradngpage;;
tradngoutput
tradnglo;;tchar;;
tradngcommamb
tradngre;;tore;;
language
uchyph
kfthyphenmin
righthyphenmin
globaldef;;
default hy phenchar
hyphenchar
default;;lwwchar
;;lwwchar
e;;capechar
endlinechar
newlinechar
Jnaxdead(:y(:le;;
hangafter
fam
mag
ddimiterfactor
time
day
month
year
;;howboxbreadt h
;;howboxdepth
errorcontext line;;

274 Chapter 24: Summary of Vertical Mode

A {dimen parameter} is one of the following:

\hfuzz (maximum overrun before overfull hbox messages occur)
\vfuzz (maximum overrun before overfull vbox messages occur)
\overfullrule (\Vidth of rules appended to overfull boxes)
\emergencystretch (reduces badnesses on final pass of line--breaking)
\hsize (line width in horimntal mode)
\vsize (page height in vertical mode)
\maxdepth (maximum depth of boxes on main pages)
\splitmaxdepth (maximum depth of boxes on split pages)
\boxmaxdepth (maximum depth of boxes on explicit pages)
\lineskiplimit (threshold where \baselineskip changes to \lineskip)
\delimitershortfall (maximum space not covered by a delimiter)
\nulldelimiterspace (\\'idth of a null delimiter)
\scriptspace (extra space after subscript or superscript)
\mathsurround (kerning before and after math in text)
\predisplaysize (length of text preceding a display)
\displaywidth (length of line for displayed equation)
\displayindent (indentation of line for displayed equation)
\parindent (width of \indent)
\hangindent (amount of hanging indentation)
\hoffset (horimntal offset in \shipout)
\voffset (vertical offset in \shipout)

And the possibilities for (glue parameter} are:

\baselineskip (desired glue between baselines)
\lineskip (interline glue if \baselineskip isn)t feasible)
\parskip (extra glue just above paragraphs)
\abovedisplayskip (extra glue just above displays)
\abovedisplayshortskip (ditto) following short lines)
\belowdisplayskip (extra glue just below displays)
\belowdisplayshortskip (ditto) following short lines)
\leftskip (glue at left of justified lines)
\rightskip (glue at right of justified lines)
\topskip (glue at top of main pages)
\splittopskip (glue at top of split pages)
\tabskip (glue between alibfilCd entries)
\spaceskip (glue between words) if nont~ero)
\xspaceskip (glue between sentences) if nont~ero)
\parfillskip (additional \rightskip at end of paragraphs)

Finally) there are three permissible {muglue parameter} tokens:

\thinmuskip (thin space in math fOrmulas)
\medmuskip (medium space in math fOrmulas)
\thickmuskip (thick space in math fOrmulas)

All of these quantities are explained in more detail somewhere else in this book) and
you can use Appendix I to find out where.

dimen parameter
hfuzz
., fuzz
o'<erfullruk
emergency;;tretch
h;;ize
'<;;ize
max depth
;;plitmaxdepth
boxmaxdepth
line;;kiplimit
ddimiter;;hortfall
nullddimiter;;pace
;;cript;;pace
math;;urround
prw!i;;play;;ize
di;;play width
di;;play indent
par indent
hangindent
holf;;et
'<olf;;et
glue parameter
ba,-;dine;;kip
line;;kip
par;; kip
abo'<wli;;play;;kip
abo'<wl i;; play;;hort ;;kip
bdowdi;;play;;kip
bdowd i;; play;;hort ;;kip
kft;;kip
right;;kip
top;;kip
;;plittop;;kip
tab;; kip
;;pace;; kip
x;;pace;;kip
parlilbkip
muglue parameter
thinmu;;kip
mwlmu;;kip
thkkmu;;kip

Chapter 24: S'urnrnary of Vertical Mode

TE-X also has parameters that are token lists. Such parameters do not enter
into the definitions of {number} and such things 1 but we might as well list them now
so that our tabulation of parameters is complete. A (token parameter} is any of:

\output (the user)s output routine)
\everypar (tokens to insert when a parabrraph begins)
\everymath (tokens to insert when math in text begins)
\everydisplay (tokens to insert when display math begins)
\everyhbox (tokens to insert when an hbox begins)
\everyvbox (tokens to insert when a vbox begins)
\every job (tokens to insert when the job bebrins)
\everycr (tokens to insert after every \cr or nonredundant \crcr)
\errhelp (tokens that supplement an \errmessage)

That makes a total of 103 parameters of all five kinds.

6<,~• EXERCISE 24.5
YY Explain how \every job can be nOIHmll when a job bebrins.

It)s time now to return to our original goal) namely to study the commands
that are obeyed by TEX)s digestive organs. Many commands are carried out in the same
way regardless of the current mode. The most important commands of this type are
called <l<>sigmnents) since they assign new values to the meaning of control sequences or
to TE-X)s internal quantities. For example) :\def\a{a}) and :\parshape=1 5pt 100pt)
and :\advance\count20 by-1) and :\font\ff = cmff at 20pt) are all assignments 1

and they all have the same effect in all modes. Assignment commands often include
an = sign1 but in all cases this sign is optional; you can leave it out if you don)t mind
the fact that the resulting TE-X code might not look quite like an assignment.

(assignment} --t {nOIHnacro assignment} I {macro assignment}
{nOIHnacro assignment} --t (simple assignment}

I \global{nOIHnacro assignment}
{macro assignment} --t (definition} I (prefix}(macro assignment}
(prefix) -+ \global I \long I \outer
(equals) -+ (optional spaces) I (optional spaces) = l2

This syntax shmvs that every assignment can be prefixed by \global 1 but only macro--
definition assignments are allowed to be prefixed by \long or \outer. Incidentally1 if the
\globaldefs parameter is positive at the time of the assignment 1 a prefix of \global is
automatically implied; but if \globaldefs is negative at the time of the assignment 1 a
prefix of \global is ignored. If \globaldefs is 11ero (which it usually is) 1 the appearance
or nonappearance of \global determines whether or not a global assignment is made.

(definition} --t (def}(control sequence}(definition text}
(def) -+ \def I \gdef I \edef I \xdef
(definition text) -+ (parameter text)(left bracc)(balanccd text)(right brace)

Here (control sequence} denotes a token that is either a control sequence or an active
character; (left brace} and (right brace} are explicit character tokens whose category
codes are respectively of types 1 and 2. The (parameter text} contains no (left brace}
or (right brace} tokens 1 and it obeys the rules of Chapter 20. All occurrences of

275

tolwn parameter
output
e'<erypar
e'<erymath
e'<erydi;;play
e'<eryhbox
eH:ry'<bOX
e'<eryjob

cr
crcr
errhdp
a,-;;;ignment;;

equal;; ;;ign
a,-;;;ignment
non-macro a,-;;;ignment
global
macro a,-;;;ignment
prdix
long
outer
equal;;
globaldef;;
ddinition
def
def
gdef
wkf
xdef
ddinition text
control ;;equence
left brace
right brace
parameter text

276 Chapter 24: Summary of Vertical Mode

(left brace} and (right brace} tokens \Vithin the (balanced text} must be properly nested
like parentheses. A \gdef command is equivalent to \global\def 1 and \xdef is equiv~
alent to \global\edef. TE-X reads the (control sequence} and (parameter text} tokens
and the opening (left brace} \Vithout expanding them; it expands the {balanced text}
(right brace} tokens only in the case of \edef and \xdef.

Several commands that we \Viii study below have a syntax somewhat like that
of a definition 1 but the (parameter text} is replaced by an arbitrary sequence of spaces
and :\relax) commaiHis1 and the (left brace} token can be implicit:

(filler) -+ (optional spaces) I (filler)\relax(optional spaces)
(general text) -+ (filler){(balanccd text)(right brace)

The main purpose of a (general text} is to specify the {balanced text} inside.
Many different kinds of assignments are possible1 but they fall into compara~

tively fCw patterns1 as indicated by the follmving syntax rules:

(simple assignment} --t (variable assignment} I (arithmetic}
I (code assignment} I (let assignment} I (shorthand definition}
I (fontdef token} I (family assignment} I (shape assignment}
I \read{ number} to (optional spaces}(control sequence}
I \setbox(8~bit number)(equals)(filler)(box)
I \font(control sequencc)(equals)(file name)(at clause)
I (global assignment}

(variable assibfimiCnt} --t (integer variable}(equals}(number}
I {dimen variable}(equals}(dimen}
I (glue variable)(equals)(glue)
I (muglue variable)(equals)(muglue)
I (token variable)(equals)(general text)
I (token variable)(equals)(filler)(token variable)

(arithmetic} --t \advance{integer variable}(optional by}(number}
I \advance{dimen variable}(optional by}(dimen}
I \advance(glue variable)(optional by)(glue)
I \advance{muglue variable}(optional by}(muglue}
I \multiply{numeric variable}(optional by}(number}
I \divide{numeric variable}(optional by}(number}

(optional by) -+ by I (optional spaces)
(integer variable} --t (integer parameter} I (countdef token}

I \count(8~bit number)
{dimen variable} --t {dimen parameter} I {dimendef token}

I \dimen{S~bit number}
(glue variable) -+ (glue parameter) I (shipdef token)

I \skip(8~bit number)
{muglue variable} --t {muglue parameter} I {muskipdef token}

I \muskip(8~bit number)
(token variable) -+ (token parameter) I (toksdef token)

I \toks(8~bit number)
{numeric variable} --t (integer variable} I {dimen variable}

I (glue variable) I (muglue variable)

balanced text
Iiller
relax
general text
;;impk a,-;;;ignment
read

'" ;;etbox
font
'<ariabk a,-;;;ignment
arithmetic
ad'<ann:
multiply
di.,-ide
optional by
by
integer '<ariabk
count
dimen '<ariabk
dimen
glue '<ariabk
;;kip
muglue '<ariable
mu;;kip
token '<ariabk
tob
numeric '<ariabk

Chapter 24: S'urnrnary of Vertical Mode

(code assibfilment} --t (code name}(S~bit number}(equals}(number}
(let assibfilment} --t \futurelet(control sequence}(token}(token}

I \let(control sequence}(equals}(one optional space}(token}
(shorthand definition} --t \chardef{control sequence}(equals}(S~bit number}

I \mathchardef{control sequence}(equals}(15~bit number}
I (rebristerdef}(control sequence}(equals}(S~bit number}

(registerdef} --t \countdef I \dimendef I \skipdef I \muskipdef I \toksdef
(family assibfilment} --t (family member}(equals}(font}
(shape assibfilment} --t \parshape(equals}(number}(shape dimensions}

The {number} at the end of a (code assignment} must not be negative 1 except in the
case that a \del code is being assibfilCd. Furthermore1 that {number} should be at most
15 fOr \cat code, 32768 for \mathcode, 255 for \lccode or \uccode, 32767 fOr \sf code,
and 224 - 1 for \del code. In a (sha~e assignment} for which th~ {number} is n 1 th~
(shape dimensions} are (empty} if n :::; 01 otherwise they consist of 2n consecutive
occurrences of {dimen}. TE-X does not expand tokens when it scans the arguments of
\let and \futurelet.

6<,~• EXERCISE 24.6
Y Y \Ve discussed the distinction between explicit and implicit character tokens
earlier in this chapter. Explain how you can make the control sequence \cs into an
implicit space1 using (a) \futurelet 1 (b) \let.

All of the assignments mentioned so far \Viii obey TE-X)s grouping structure;
i.e. 1 the changed quantities will be restored to their former values when the current
group ends 1 unless the change was global. The remaining assibfimiCnts are different 1

since they affect TE-X)s global font tables or h:yl)henation tables 1 or they affect certain
control variables of such an intimate nature that grouping would be inappropriate. In
all of the following cases1 the presence or absence of \global as a prefix has no effect.

(global assignment} --t (font assignment}
I (hyphenation assignment}
I {box sit~e assibfimiCnt}
I (interaction mode assibfimiCnt}
I (intimate assibfimiCnt}

(font assignment} --t \fontdimen{number}(fOnt}(equals}(dimen}
I \hyphenchar(font) (equals) (number)
I \skeYchar(font) (equals) (number)

(at clause} --t at {dim en} I scaled {number} I (optional spaces}
(h:yl)henation assignment} --t \hyphenation(general text}

I \patterns(general text}
(box sit~e assignment} --t (box dimension}{S~bit number}(equals}(dimen}
(interaction mode assignment} --t \errorstopmode I \scrollmode

I \nonstopmode I \batchmode
(intimate assignment} --t (special integer}(equals}(number}

I (special dimen}(equals}(dimen}

\Vhen a \fontdimen value is assibfilCd1 the {number} must be positive and not greater
than the number of parameters in the fOnt)s metric infOrmation file 1 unless that fOnt
infOrmation has just been loaded into T£X)s memory; in the latter case1 you are allowed

277

code a,-;;;ignment
let a,-;;;ignment
futurdet
let
;;horthand ddinition
chardef
mat hchardef
regi;;t erdef
countdef
dimendef
;;kipdef
mu;;kipdef
tobdef
family a,-;;;ignment
;;hape a,-;;;ignment
par;;hape
;;hape dimen;;ion;;
implicit character token;;
global parameter;;
global a,-;;;ignment
font a,-;;;ignment
fontdimen
hyphenchar
;;lwwchar
at dau;;e
al
;;calwl
hyphenation a,-;;;ignment
hyphenation
pattern;;
box ;;ize a,-;;;ignment
interaction mode a,-;;;ignment
error;;topmode
;;croll mode
non;;topmode
batch mode
intimate a,-;;;ignment

278 Chapter 24: Summary of Vertical Mode

to increase the number of parameters (see Appendix F). The (special integer} and
(special dimen} quantities were listed above when we discussed internal integers and
dimensions. \Vhen \prevgraf is set to a {number}1 the number must not be negative.

The syntax for (file name} is not standard in TE-X 1 because different operating
systems have different conventions. You should ask your local system wit~ards for
details on just how they have decided to implement file wunes. However 1 the follmving
principles should hold universally: A (file name} should consist of (optional spaces}
followed by explicit character tokens (after expansion). A sequence of six or fewer
ordinary letters and/or clibrits fOllowed by a space should be a file name that work-s in
essentially the same way on all installations of TE-X. Uppercase letters are not considered
equivalent to their lowercase counterparts in file names; fOr example1 if you refer to fOnts
cmr10 and CMR10 1 T£X \Viii not notice any similarity between them 1 although it might
input the same font metric file for both fonts.

T£X takes precautions so that constructions like :\chardef\cs=10\cs) and
:\font\cs=name\cs) won)t expand the second \cs until the assibfimiCnts are done.

Our discussion of assignments is complete except that the \set box assignment
involves a quantity called (box} that has not yet been defined. Here is its syntax:

(box) -+ \box(8~bit number) I \copy(8~bit number)
I \last box I \vsplit{S~bit number}to {dimen}
I \hbox(box specification}{(horimntal mode material}}
I \vbox(box specification}{(vertical mode material}}
I \vtop(box specification}{(vertical mode material}}

(box specification) -+ to (dimen)(filler)
I spread (dimen)(filler) I (filler)

The \last box operation is not permitted in math modes 1 nor is it allowed in vertical
mode when the main vertical list has been entirely contributed to the current page.
But it is allowed in horit~ontal modes and in internal vertical mode; in such modes it
refCrs to (and removes) the last item of the current list 1 provided that the last item is
an hbox or vbox.

The three last alternatives fOr a (box} present us \Vith a new situation: The
(horit~ontal mode material} in an \hbox and the (vertical mode material} in a \vbox
can)t simply be swallowed up in one command like an {8~bit number} or a {dimen};
thousands of commands may have to be executed befOre that box is constructed and
befOre the \set box command can be completed.

Here)s what really happens: A command like

\setbox{number}=\hbox to{dimen}{(horit~ontal mode material}}

causes TE-X to evaluate the {number} and the {dimen} 1 and to put those values on
a :'stackl' for sal"e keeping. Then TE-X reads the :c (which stands for an explicit or
implicit begin~brroup character 1 as explained earlier) 1 and this initiates a new level of
grouping. At this point TE-X enters restricted horimntal mode and proceeds to execute
commands in that mode. An arbitrarily complex box can now be constructed; the fact
that this box is eventually destined for a \setbox command has no effCct on TE-X)s
behavior while the box is being built. Eventually1 when the matching :}; appears 1

TE-X restores values that were changed by assibfimiCnts in the group just ended; then
it packages the hbox (using the sit~e that was saved on the stack) 1 and completes the
\set box comm<UH11 returning to the mode it was in at the time of the \set box.

lik name
box
box
copy
la,-;t box
'<;;plit

'" hbox
'<box
'<top
box ;;pedlication

'" ;;pread
horizontal mode material
'<ertical mode material

Chapter 24: S'urnrnary of Vertical Mode

Let us now consider other commands that 1 like assignments 1 are obeyed in
basically the same way regardless of TE-X)s current mode.

• \relax. This is an easy one: T£X does nothing.
• }. This one is harder 1 because it depends on the current group. TE-X should

now be working on a group that began \Vith {; and it knows why it started that
group. So it does the appropriate finishing actions 1 undoes the effects of non~global
assignments 1 and leaves the brroup. At this point T£X might leave its current mode and
return to a mode that was previously in effect.

• \begingroup. \Vhen TE-X sees this commaml1 it enters a brroup that must be
terminated by \endgroup 1 not by}. The mode doesn)t change.

• \endgroup. TE-X should currently be processing a brroup that began \Vith
\begingroup. Quantities that were changed by non~global assignments in that brroup
are restored to their former values. TE-X leaves the bfTOUp 1 but stays in the same mode.

• \show (token} 1 \showbox {8~bit number} 1 \showlists 1 \showthe{internal
quantity}. These commands are intended to help you figure out what T£X think-s it
is doing. The tokens fOllmving \showthe should be anything that can follow \the1 as
explained in Chapter 20.

6<,~• EXERCISE 24.7
Y Y Review the rules for what can follow \the in Chapter 201 and construct a
formal sy-ntax that defines (internal quantity} in a way that fits \Vith the other syntax
rules we have been discussing.

• \shipout(box}. After the (box} is fOrmed-possibly by constructing it explic~
itly and changing modes during the construction 1 as explained fOr \hbox earlier-its
contents are sent to the dvi file (see Chapter 23).

• \ignorespaces (optional spaces}. T£X reads (and expands) tokens 1 doing
nothing until reaching one that is not a (space token}.

• \afterassignment(token}. The (token} is saved in a special place; it will be
inserted back into the input just aller the next assignment command has been per~
formed. An assignment need not follow immediately; if another \afterassignment is
perfOrmed before the next assignment 1 the second one overrides the first. If the next
assignment is a \setbox 1 and if the assigned (box} is \hbox or \vbox or \vtop 1 the
(token} \Viii be inserted just after the { in the box construction1 not after the}; it \Viii
also come just before any tokens inserted by \everyhbox or \everyvbox.

• \aftergroup(token}. The (token} is saved on TE-X)s stack; it \Viii be inserted
back into the input just after the current brroup has been completed and its local
assignments have been undone. If several \aftergroup commands occur in the same
group 1 the corresponding commands will be scanned in the same order; for example1

:{\aftergroup\a\aftergroup\b}) yields :\a\b).
• \uppercase(general text} 1 \lowercase(general text}. The {balanced text} in

the general text is converted to uppercase form or to lowercase form using the \uccode
or \lccode table1 as explained in Chapter 7; no expansion is done. Then TE-X \Viii read
that (balanced text} again.

• \message(general text} 1 \errmessage(general text}. The balanced text (\\'ith
expansion) is written on the user)s terminal 1 using the format of error messages in the

279

relax
begin group
end group
;;how
;;how box
;;howli;;t;;
;;howthe
intemal quantity
;;hi pout
<hi
ignore;; pace;;
aftera,-;;;ignment
e'<eryhbox
CHOf}"'<bOX
aftergroup
up pen:a,-;e
lowen:a,-;e
me;;;;age
errme;;;;age

280 Chapter 24: Summary of Vertical Mode

case of \errmessage. In the latter case the \errhelp tokens \Viii be shmv11 if they are
nonempty and if the user asks for help.

• \openin{4~bit number} (equals} (filename} 1 \closein{4~bit number}. These
commands open or dose the specified input stream 1 for use in \read assib111ments as
explained in Chapter 20.

• \immediate \openout(4~bit number}(equals}(filename} 1 \immediate \closeout
{4~bit number}. The specified output stream is opened or dosed1 fOr use in \Yrite
commaiHis1 as explained in Chapter 21.

• \immediate\Yrite{number}(general text}. The balanced text is \Vritten on
the file that corresponds to the specified stream number 1 provided that such a file
is open. Othenvise it is \Vritten on the user)s terminal and on the log file. (See
Chapter 21; the terminal is omitted if the {number} is negative.)

That completes the list of mode--independent counnands 1 i.e. 1 the counnands
that do not directly affect the lists that TE-Xis building. \Vhen TE-Xis in vertical mode
or internal vertical mode1 it is constructing a vertical list; when TE-X is in horimntal
mode or restricted horimntal mode1 it is constructing a horimntal list; when T£X is
in math mode or display math mode1 it is constructing-bruess what-a math list. In
each of these cases we can speak of the :'current lisf'; and there are some commands
that operate in essentially the same way1 regardless of the mode 1 except that they deal
with different sorts of lists:

• \openout{4~bit number}(equals}(filename} 1 \closeout{4~bit number} 1 \Yrite
{number}(general text}. These commands are recorded into a :'whatsif' item 1 which
is appended to the current list. The command \Viii be performed later 1 during any
\shipout that applies to this list 1 unless the list is part of a box inside leaders.

• \special(general text}. The balanced text is expanded and put into a :'what~
sif' item 1 which is appended to the current list. The text \Viii eventually appear in the
dvi file as an instruction to subsequent software (see Chapter 21).

• \penalty(number}. A penalty item carrying the specified number is appended
to the current list. In vertical mode1 TE-X also exercises the page builder (see below).

• \kern{dimen} 1 \mkern{mudimen}. A kern item carrying the specified dimen~
sion is appended to the current list. In vertical modes this denotes a vertical space;
othenvise it denotes a horimntal space. An \mkern is allowed only in math modes.

• \unpenalty 1 \unkern1 \unskip. If the last item on the current list is respec~
tively of type penalty1 kern 1 or glue (possibly including leaders) 1 that item is removed
from the list. However 1 like \lastbox 1 these commands are not permitted in vertical
mode if the main vertical list~so~far has been entirely contributed to the current page1

since T£X never removes items from the current page.
• \mark{general text}. The balanced text is expanded and put into a mark item 1

which is appended to the current list. The text may eventually become the replacement
text for \topmark1 \firstmark1 \botmark1 \splitfirstmark1 and/or \splitbotmark1

if this mark item ever gets into a vertical list. (Mark items can appear in horimntal
lists and math lists 1 but they have no effect until they :'mibrratd' out of their list. The
migration process is discussed below and in Chapter 25.)

• \insert{S~bit number}(filler}{(vertical mode material}}; the {8~bit number}
must not be 255. The :c causes T£X to enter internal vertical mode and a new

errhdp
open in
do;;ein
immwliate
openout
do;;eout
write
leader,;
;;pedal
<hi
penalty
kern
mlwrn
on penalty
on kern
un;;kip
leader,;
mark
topmark
lir,;tmark
bot mark
;;plitlir;;tmark
;;plitbotmark
migration proce;;;;
in;;ert

Chapter 24: S'urnrnary of Vertical Mode

level of brrouping. \Vhen the matching :}) is sensed1 the vertical list is put into an
insertion item that is appended to the current list using the values of \splittopskip1

\splitmaxdepth1 and \floatingpenalty that were current in the group just ended.
(See Chapter 15.) This insertion item leads ultimately to a page insertion only if it
appears in T£X)s main vertical list 1 so it \Viii have to :'mibrra.td' there if it starts out in
a horit~ontallist or a math list. TE-X also exercises the page builder (see below) 1 after
an \insert has been appended in vertical mode.

• \vadjust(filler}{(vertical mode material}}. This is similar to \insert; the
constructed vertical list goes into an adjustment item that is appended to the current
list. However 1 \vadjust is not allowed in vertical modes. \Vhen an adjustment item
migrates from a horit~ontal list to a vertical list 1 the vertical list inside the adjustment
item is :'mnvrappecr' and put directly into the enclosing list.

* * *
Almost everything we have discussed so far in this chapter could equally well have
appeared in a chapter entitled :'Summary of Horimntal Modd' or a chapter entitled
:'Summary of Math Mode/' because T£X treats all of the commands considered so far
in essentially the same way regardless of the current mode. Chapters 25 and 26 are
going to be a lot shorter than the present one1 since it \Viii be unnecessary to repeat
all of the mode~ independent rules.

But now we come to commands that are mode--dependent; we shall conclude
this chapter by discussing what T£-X does \Vith the remaining counnands1 when in
vertical mode or internal vertical mode.

One of the things characteristic of vertical mode is the page--building operation
described in Chapter 15. T£X periodically takes material that has been put on the
main vertical list and moves it from the :'contribution lisf' to the :'current page.l' At
such times the output routine might be invoked. \Ve shall say that T£X exercises the
page builder whenever it tries to empty the current contribution list. The concept of
contribution list exists only in the outermost vertical mode 1 so nothing happens when
T£X exercises the page builder in internal vertical mode.

Another thing characteristic of vertical modes is the interline glue that is
inserted befOre boxes 1 based on the values of \prevdepth and \baselineskip and
\lineskip and \lineskiplimit as explained in Chapter 12. If a command changes
\prevdepth1 that fact is specifically mentioned below. The \prevdepth is initially set
to -1000pt1 a special value that inhibits interline glue1 whenever T£-X begins to fOrm
a vertical list 1 except in the case of \halign and \noalign when the interline glue
conventions of the outer list continue inside the inner one.

• \vskip(glue} 1 \vfil 1 \vfill 1 \vss 1 \vfilneg. A glue item is appended to the
current vertical list.

• (leaders}(box or rule}(vertical skip}. Here (vertical skip} refers to one of the
five glue--appending commands just mentioned. The formal syntax fOr (leaders} and for
(box or rule} is

(leaders} --t \leaders I \cleaders I \xleaders
(box or rule) -+ (box) I (vertical rule) I (horimntal rule)
(vertical rule} --t \vrule{rule specification}
(horimntal rule} --t \hrule{rule specification}

281

;;plittop;;kip
;;plitmaxdepth
lloatingpenalty
migrate
'<adju;;t
page builder
interline glue
ba,-;dine;;kip
line;;kip
line;;kiplimit
preHkpth
\-;;kip
dil
dill
\-;;;;
dilneg
'<ertical ;;kip
leader,;
box or rule
'<ertical rule
horizontal rule

282 Chapter 24: Summary of Vertical Mode

(rule specification} --t (optional spaces} I (rule dimension}{rule specification}
(rule dimension} --t width {dimen} I height {dimen} I depth {dimen}

A glue item that produces leaders is appended to the current list.
• (space token}. Spaces have no effect in vertical modes.
• (box}. The box is constructed1 and if the result is void nothing happens.

Othenvise the current vertical list receives (1) interline glue1 fOllowed by (2) the new
box 1 followed by (3) vertical material that migrates out of the new box (if the (box}
was an \hbox command). Then \prevdepth is set to the new box)s depth 1 and TE-X
exercises the page builder.

• \moveleft{dimen}(box} 1 \moveright{dimen}(box}. This acts exactly like an
ordinary (box} commmH11 but the new box that is appended to the vertical list is also
shifted left or right by the specified amount.

• \unvbox{S~bit number} 1 \unvcopy(S~bit number}. If the specified box register
is void1 nothing happens. Otherwise that register must contain a vbox. The vertical
list inside that box is appended to the current vertical list 1 without changing it in any
way. The value of \prevdepth is not affected. The box register becomes void aller
\unvbox 1 but it remains unchanged by \unvcopy.

• (horimntal rule}. The specified rule is appended to the current list. Then
\prevdepth is set to -1000 pt; this will prohibit interline glue when the next box is
appended to the list.

• \halign{box specification}{(alibfimiCnt material}}. The {alignment material}
consists of a preamble followed by 11ero or more lines to be aligned; see Chapter 22.
T£X enters a new level of grouping 1 represented by the :c and:}; 1 within which changes
to \tabskip \Viii be confined. The alibfimiCnt material can also contain optional occur~
rences of :\noalign{filler}{(vertical mode material}}) between lines; this adds another
level of grouping. T£-X operates in internal vertical mode while it work-s on the ma~
terial in \noalign biTOups and when it appends lines of the alignment; the resulting
internal vertical list will be appended to the enclosing vertical list aller the alignment
is completed1 and the page builder will be exercised. The value of \prevdepth at the
time of the \halign is used at the beginning of the internal vertical list 1 and the fi~
nal value of \prevdepth is carried to the enclosing vertical list when the alignment is
completed1 so that the interline glue is calculated properly at the beginning and end of
the alibfimiCnt. T£-X also enters an additional level of grouping when it work-s on each
individual entry of the alignment 1 during which time it acts in restricted horimntal
mode; the individual entries \Viii be hboxed as part of the final alignment 1 and their
vertical material \Viii migrate to the enclosing vertical list. The commands \noalign1

\omit 1 \span1 \cr 1 \crcr 1 and & (where & denotes an explicit or implicit character of
category 4) are intercepted by the alibfimiCnt process 1 enroute to T£-X)s stomach1 so
they \Viii not appear as commands in the stomach unless T£X has lost track of what
alignment they belong to.

• \indent. The \parskip glue is appended to the current list 1 unless T£X is in
internal vertical mode and the current list is empty. Then T£-X enters unrestricted
horit~ontal mode1 starting the horimntal list \Vith an empty hbox whose \Vidth is
\parindent. The \everypar tokens are inserted into T£-X)s input. The page builder
is exercised. \Vhen the paragraph is eventually completed1 horimntal mode \Viii come
to an end as described in Chapter 25.

rule ;;pedlication
rule dimen;;ion
width
height
depth
leader,;
;;pace tolwn
box
migrate;;
hbox
pre'<depth
mo'<deft
mo'<eright
un'<box
Un'<copy
rule
halign
alignment material
tab;; kip
noalign
migrate
omit
;;pan
cr
crcr
indent
par;; kip
par indent
e'<erypar

Chapter 24: S'urnrnary of Vertical Mode

• \no indent. This is exactly like \indent 1 except that TE-X starts out in hori~
110ntal mode with an empty list instead of \Vith an indentation.

• \par. The primitive \par command has no effect when T£X is in vertical
mode1 except that the page builder is exercised in case something is present on the
contribution list 1 and the parabrraph shape parameters are cleared.

• {. A character token of category 11 or a control sequence like \bgroup that
has been \let equal to such a character token 1 causes TE-X to start a new level of
grouping. \Vhen such a group ends-\vith :};-TE-X \Viii undo the effects of non~global
assignments without leaving whatever mode it is in at that time.

• Some commands are incompatible \Vith vertical mode because they are intrin~
sically horimntal. \Vhen the fOllmving counnands appear in vertical modes they cause
T£X to begin a new paragraph:

(horimntal counnand) -+ (letter) I (otherchar) I \char I (chardef token)
I \noboundary I \unhbox I \unhcopy I \valign I \vrule
I \hskip I \hfil I \hfill I \hss I \hfilneg
I \accent I \discretionary I \- I \u I $

Here (letter} and (otherchar} stand fOr explicit or implicit character tokens of categories
11 and 12. If any of these tokens occurs as a command in vertical mode or internal
vertical mode1 TE-X automatically performs an \indent command as explained above.
This leads into horimntal mode with the \everypar tokens in the input 1 after which
T£X \Viii see the (horit~ontal command} again.

• \end. This command is not allowed in internal vertical mode. In rebrular
vertical mode it terminates TE-X if the main vertical list is empty and \deadcycles=O.
Othenvise T£X backs up the \end command so that it can be read again; then it
exercises the page builder1 after appending a box/glue/penalty combination that \Viii
force the output routine to act. (See the end of Chapter 23.)

• \dump. (Allowed only in INITEX 1 not in production versions of TE-X.) This
command is treated exactly like \end1 but it must not appear inside a brroup. It
outputs a format file that can be loaded into TE-X)s memory at comparatively high
speed to restore the current status.

• None of the above: If any other primitive command of T£X occurs in vertical
mode1 an error message will be given 1 and TE-X will try to recover in a reasonable way.
For example 1 if a superscript or subscript symbol appears 1 or if any other inherently
mathematical command is given 1 TE-X \Viii try to insert a:$; (which \Viii start a para~
graph and enter math mode). On the other hand if a totally misplaced token like
\endcsname or \omit or \eqno or# appears in vertical mode1 TE-X will simply ignore it 1

after reporting the error. You might enjoy trying to type some really stupid input 1 just
to see what happens. (Say :\tracingall) first 1 as explained in Chapter 27 1 in order
to get maximum information.)

The first and most striking feature is the Verticality of comoosition,
as oooosed to the Horizontality of all anterior structural modes.

- COCKBURN MUIR, Pagan or Christian? (1860)

Sometimes when I have finished a book I give a summary of the whole of it.
- ROBERT WILLIAM DALE, Nine Lectures on Preaching (1878)

283

noindent
par
grouping
new paragraph
horizontal command
char
noboundary
unhbox
unhcopy
'<align
'<rule
h;;kip
hlil
hlill
h;;;;
hlilneg
accent
di;;cret ionary

end
dead(:y(:le;;=O
dump
I!\:ITEX
endc;;name
J'viCIH
DALE

>age 284) I

Summary of
Horizontal Mode

Chapter 2,5: Summary of Horizontal Mode

Continuing the survey that was begun in Chapter 24, let us investigate exactly
what T&X's digestive processes can do, when T&X is building lists in horizontal
mode or in restricted horizontal mode.

* * *
Three asterisks 1 just like those that appear here 1 can be fOund near the end of Chap~
ter 24. Ever:yi;hing preceding the three asterisk-s in that chapter applies to horimntal
mode as well as to vertical mode 1 so we need not repeat all those rules. In particular1

Chapter 24 explains assignment comm<UH1S 1 and it tells how kerns 1 penalties1 marks 1

insertions 1 adjustments 1 and :'wha.tsitft are put into horimntal lists. Our present goal
is to consider the commands that have an intrinsically horit~ontal flavor 1 in the sense
that they behave differently in horimntal mode than they do in vertical or math modes.

One of the things characteristic of horimntal mode is the :'space factor 1l' which
modifies the \Vidth of spaces as described in Chapter 12. If a command changes the
value of \spacefactor1 that fact is specifically noted here. The space factor is initially
set to 10001 when TE-X begins to fOrm a horit~ontal list 1 except in the case of \valign
and \noalign when the space factor of the outer list continues inside the inner one.

• \hskip(glue} 1 \hfil 1 \hfill 1 \hss 1 \hfilneg. A glue item is appended to the
current horit~ontal list.

• (leaders}(box or rule}(horimntal skip}. Here (horimntal skip} refers to one of
the five glue--appending counnands just mentioned; the formal syntax for (leaders} and
for (box or rule} is briven in Chapter 24. A glue item that produces leaders is appended.

• (space token}. Spaces append glue to the current list; the exact amount of
glue depends on \spacefactor1 the current font 1 and the \spaceskip and \xspaceskip
parameters1 as described in Chapter 12.

• \u. A control~space command appends glue to the current list 1 using the same
amount that a (space token} inserts when the space factor is 1000.

• (box}. The box is constructed1 and if the result is void nothing happens. Oth~
envise the new box is appended to the current list 1 and the space factor is set to 1000.

• \raise{dimen}(box} 1 \lower{dimen}(box}. This acts exactly like an ordinary
(box} counnaml1 but the new box that is appended to the horit~ontal list is also shifted
up or dmv11 by the specified amount.

• \unhbox{S~bit number} 1 \unhcopy(S~bit number}. If the specified box register
is void 1 nothing happens. Othenvise that register must contain an hbox. The horimntal
list inside that box is appended to the current horimntal list 1 \Vithout changing it in
any way. The value of \spacefactor is not affected. The box register becomes void
after \unhbox 1 but it remains unchanged by \unhcopy.

• (vertical rule}. The specified rule is appended to the current list 1 and the
\spacefactor is set to 1000.

• \valign{box specification}{(alignment material}}. The {alignment material}
consists of a preamble followed by 11ero or more columns to be aligned; see Chap~
ter 22. TE-X enters a new level of grouping 1 represented by the :c and:}; 1 within which
changes to \tabskip \Viii be confined. The alignment material can also contain op~
tional occurrences of :\noalign{filler}{(horimntal mode material}}) between columns;
this adds another level of brrouping. TE-X operates in restricted horit~ontal mode while
it works on the material in \noalign groups and when it appends columns of the

285

horizontal mode
;;pace factor
;;pacefactor
h;;kip
hlil
hlill
h;;;;
hlilneg
horizontal ;;kip
leader,;
;;pace tolwn
control ;;pace
box
rai;;e
lower
unhbox
unhcopy
rule
'<align
alignment material
tab;; kip
noalign

286 Chapter 2,5: Summary of Horizontal Mode

alignment; the resulting internal horit~ontal list \Viii be appended to the enclosing hor~
it~ontal list after the alibfimiCnt is completed. The value of \spacefactor at the time
of the \valign is used at the bebrinning of the internal horit~ontal list 1 and the final
value of \spacefactor is carried to the enclosing horimntal list when the alignment
is completed. The space factor is set to 1000 after each column; hence it affects the
results only in \noalign groups. TE-X also enters an additional level of brrouping when
it work-s on each individual entry of the alignment 1 during which time it acts in internal
vertical mode; the individual entries \Viii be vboxed as part of the final alignment.

• \indent. An empty box of \Vidth \parindent is appended to the current list 1

and the space factor is set to 1000.
• \no indent. This command has no effect in horimntal modes.
• \par. The primitive \par counnaml1 also called \endgraf in plain TE-X 1 does

nothing in restricted horit~ontal mode. But it terminates horimntal mode: The current
list is finished off by doing \unskip \penalty10000 \hskip\parfillskip1 then it is
broken into lines as explained in Chapter 141 and TE-X returns to the enclosing vertical or
internal vertical mode. The lines of the paragraph are appended to the enclosing vertical
list 1 interspersed \Vith interline glue and interline penalties1 and with the mibrration of
vertical material that was in the horimntal list. Then T£X exercises the page builder.

• {. A character token of category 11 or a control sequence like \bgroup that
has been \let equal to such a character token 1 causes TE-X to start a new level of
grouping. \Vhen such a group ends-\vith :};-TE-X \Viii undo the effects of non~global
assignments without leaving whatever mode it is in at that time.

• Some commands are incompatible with horimntal mode because they are in~
trinsically verticaL \Vhen the follmving commands appear in unrestricted horimntal
mode1 they cause TE-X to conclude the current paragraph:

(vertical command} --t \unvbox I \unvcopy I \halign I \hrule
I \vskip I \vfil I \vfill I \vss I \vfilneg I \end I \dump

The appearance of a (vertical command} in restricted horimntal mode is forbidden 1 but
in regular horimntal mode it causes T£X to insert the token I par I into the input; aller
reading and expanding this I par I token 1 TE-X will see the (vertical command} token
again. (The current meaning of the control sequence \par \Viii be used; I Pari might
no longer stand fOr TE-X)s \par primitive.)

• (letter), (otherchar), \char(8~bit number), (chardef token), \no boundary. The
most common commands of all are the character commands that tell T£X to append a
character to the current horit~ontallist 1 using the current fOnt. If two or more commands
of this type occur in succession 1 T£X processes them all as a unit 1 converting to ligatures
and/or inserting kerns as directed by the font information. (Ligatures and kerns may be
influenced by invisible :'boundaryl' characters at the left and right 1 unless \no boundary
appears.) Each character command adjusts \spacefactor1 using the \sf code table as
described in Chapter 12. In unrestricted horimntal mode 1 a :\discretionary{}{}{})
item is appended after a character whose code is the \hyphenchar of its font 1 or aller
a ligature fOrmed from a sequence that ends \Vith such a character.

• \accent{S~bit number}(optional assignments}. Here (optional assignments}
stands for 11ero or more (assignment} counnands. If the assignments are not followed
by a (character} 1 where (character} stands fOr any of the commands just discussed in

indent
par indent
noindent
par
endgraf
un;;kip
penaltylOOOO
parlilbkip
migration
grouping
paragraph end, implied
'<ertical command
un'<box
Un'<copy
halign
hrule
\-;;kip
dil
dill
\-;;;;
dilneg
end
dump
par
char
noboundary
;;pacefactor
;;fcode
hyphenchar
di;;cret ionary
accent
optional a,-;;;ignment;;

Chapter 2,5: Summary of Horizontal Mode

the previous parabrraph 1 TE-X treats \accent as if it were \char 1 except that the space
factor is set to 1000. Otherwise the character that follo\\'B the assignment is accented by
the character that corresponds to the {8~bit number}. (The purpose of the intervening
assignments is to allow the accenter and accentee to be in different fonts.) If the accent
must be moved up or dmv11 1 it is put into an hbox that is raised or lowered. Then the
accent is effectively superposed on the character by means of kerns 1 in such a way that
the width of the accent does not influence the \Vidth of the resulting horimntal list.
Finally1 TE-X sets \spacefactor=1000.

• \I. If the last item on the current list is a character or ligature1 an explicit
kern for its italic correction is appended.

• \discretionary(general text}(general text}(general text}. The three general
texts are processed in restricted horit~ontal mode. They should contain only fixed~width
things; hence they aren)t really very general in this case. More precisely) the horimntal
list fOrmed by each discretionary general text must consist only of characters) ligatures)
kerns) boxes) and rules; there should be no glue or penalty items) etc. This command
appends a discretionary item to the current list; see Chapter 14 fOr the meaning of a
discretionary item. The space factor is not changed.

• \-. This :'discretionary hyphenl' command is defined in Appendix H.
• \setlanguage{number}. See the conclusion of Appendix H.
• $. A :'math shiff' character causes TE-X to enter math mode or display math

mode in the following way: T£X looks at the following token \Vithout expanding it. If
that token is a $ and if TE-X is currently in unrestricted horimntal mode1 then TE-X
break-s the current paragraph into lines as explained above (unless the current list is
empty) 1 returns to the enclosing vertical mode or internal vertical mode1 calculates
values like \prevgraf and \displaywidth and \predisplaysize1 enters a new level of
grouping1 inserts the \everydisplay tokens into the input 1 exercises the page builder 1

processes :(math mode material}$$) in display math mode 1 puts the display into the
enclosing vertical list as explained in Chapter 19 (letting vertical material migrate) 1

exercises the page builder again 1 increases \prevgraf by 31 and resumes horimntal
mode again 1 \Vith an empty list and \Vith the space factor equal to 1000. (You got
that?) Otherwise TE-X puts the looked~at token back into the input 1 enters a new level
of grouping1 inserts the \everymath tokens 1 and processes :(math mode material}$); the
math mode material is converted to a horit~ontal list and appended to the current list 1

surrounded by :'math~onl' and :'math~off' items1 and the space factor is set to 1000.
One consequence of these rules is that :$$) in restricted horit~ontal mode simply yields
an empty math formula.

• None of the above: If any other primitive command of T£X occurs in horimntal
mode1 an error message will be briven 1 and TE-X will try to recover in a reasonable way.
For example1 if a superscript or subscript symbol appears 1 or if any other inherently
mathematical command is briven 1 TE-X \Viii try to insert a :$)just before the offending
token; this \Viii enter math mode.

Otherwise. You may reduce all Verticals into Horizontals.
-JOSEPH MOXON, A Tutor to Astronomie and Geograohie (1659)

! You can't use '\moveleft' in horizontal mode.
- TEX (1982)

287

I
italic correction
di;;cret ionary

;;etlanguage
math ;;hift
migrate
J'viOXO!\:

>age 288) I

Summary of
Math Mode

Chapter 26: Summary of Math Mode

To conclude the survey that was begun in Chapter 24, let us investigate exactly
what TEX 's digestive processes can do when T&X is building lists in math mode
or in display math mode.

* * *
Three asterisks 1 just like those that appear here 1 can be fOund near the end of Chap~
ter 24. Ever:yi;hing preceding the three asterisk-s in that chapter applies to math mode as
well as to vertical mode1 so we need not repeat all those rules. In particular 1 Chapter 24
explains assignment commaiHis1 and it tells how kerns1 penalties1 marks1 insertions1 ad~
justments1 and :'wha.tsitft are put into math lists. Our present goal is to consider the
commands that have an intrinsically mathematical flavor 1 in the sense that they behave
differently in math mode than they do in vertical or horit~ontal modes.

Math lists are somewhat different from T£X)s other lists because they contain
three--pronged :'atomsl' (see Chapter 17). Atoms come in thirteen flavors: Ord1 Op 1

Bin 1 Rel 1 Open 1 Close1 Punct1 Inner 1 Over1 Under 1 Acc 1 Rad 1 and \'cent. Each atom
contains three :'fieldrt called its nucleus 1 superscript 1 and subscript; and each field is
either empty or is filled \Vith a math s:y-mbol 1 a box 1 or a subsidiary math list. Math
symbols1 in turn 1 have two components: a family number and a position number.

It)s convenient to introduce a fCw more rules of syntax1 in order to specify
what goes into a math list:

(character) -+ (letter) I (otherchar) I \char(8~bit number) I (chardef token)
{math character} --t \mathchar{15~bit number} I {mathchardef token}

I \delimiter{27~bit number}
{math symbol} --t (character} I {math character}
(math field) -+ (math symbol) I (filler){(math mode material)}
(delim) -+ (filler)\delimiter(27~bit number)

I (filler)(letter) I (filler)(otherchar)

\Ve have already seen the concept of (character} in Chapter 25. Indeed 1 characters
are TE-X)s staple fOod: The vast majority of all commands that reach TE-X)s digestive
processes in horimntal mode are instances of the (character} command1 which specifies
a number between 0 and 255 that causes TE-X to typeset the corresponding character
in the current font. \Vhen TE-X is in math mode or display math mode 1 a (character}
command takes on added sib111ificance: It specifies a number between 0 and 32767 =
210 -1. This is done by replacing the character number by its \mathcode value. If the
\mathcode value turns out to be 32768 = "80001 however 1 the (character} is replaced
by an active character token having the original character code (0 to 255); TE-X forgets
the original (character} and expands this active character according to the rules of
Chapter 20.

A {math character} defines a 15~bit number either by specifYing it directly
with \mathchar or in a previous \mathchardef 1 or by specifying a 27~bit \delimiter
value; in the latter case1 the least sib111ificant 12 bits are discarded.

It follo\\'S that every {math symbol} 1 as defined by the syntax above 1 specifies
a 15~bit number 1 i.e. 1 a number between 0 and 32767. Such a number can be repre--
sented in the form 4096c + 256f + a 1 where 0 :::; c < 81 0 :::; f < 161 and 0 :::; a < 256.
If c = 71 TE-X changes c to 0; and in this case if the current value of \fam is between
0 and 15 1 T£X also replaces f by \fam. This procedure yields 1 in all cases 1 a class

289

math mode
atom;;
lidd;;
nudeu;;
;;uper;;cript
;;ub;;cript
character
char
math character
mathchar
math ;;ymbol
math lidd
ddim
delimiter
mathcode
act i '<e character
mathchar
mat hchardef
fam

290 Chapter 26: Summary of Math Mode

number c between 0 and 61 a family number f between 0 and 15 1 and a position num~
ber a between 0 and 255. (TE-X initialit~es the value of \fam by implicitly putting the
assignment :\fam=-1) at the very beginning of \everymath and \everydisplay. Thus 1

the substitution of \fam fOr f \Viii occur only if the user has explicitly changed \fam
within the formula.)

A {math field} is used to specify the nudeus 1 superscript 1 or subscript of an
atom. \Vhen a {math field} is a {math symbol}1 the f and a numbers of that sym~
bol go into the atomic field. Othenvise the {math field} begins with a :c 1 which
causes TE-X to enter a new level of grouping and to begin a new math list; the en~
suing {math mode material} is terminated by a :}; 1 at which point the group ends and
the resulting math list goes into the atomic field. If the math list turns out to be simply
a single Ord atom \Vithout subscripts or superscripts1 or an Ace whose nucleus is an
Ord1 the enclosing braces are effectively removed.

A (delim} is used to define both a :'small character!' a in family f and a :'large
character!' bin family .f); where 0 :::; a;b :::; 255 and 0 :::; r y :::; 15; these character
codes are used to construct variable--sit~e delimiters 1 as explained in Appendix G. If the
(delim} is given explicitly in terms of a 27~bit number 1 the desired codes are obtained
by interpreting that number as c · 224 + f · 220 + a · 212 + y · 2(-1 + b1 ignoring the value
of c. Othenvise the delimiter is specified as a (letter} or (otherchar} token 1 and the
24~bit \del code value of that character is interpreted as f · 220 +a· 212 + y · 2(-1 +b.

Now let)s study the individual commands as TE-X obeys them in math mode 1

considering first the ones that have analogs in vertical and/or horit~ontal mode:
• \hskip(glue} 1 \hfil 1 \hfill 1 \hss 1 \hfilneg1 \mskip{muglue}. A glue item

is appended to the current math list.
• (leaders}(box or rule}(mathematical ship}. Here {mathematical ship} refCrs to

one of the six glue--appending commands just mentioned; the formal syntax for (leaders}
and for (box or rule} is given in Chapter 24. A glue item that produces leaders is
appended to the current list.

• \nonscript. A special glue item of \Vidth 11ero is appended; it \Viii have
the effect of cancelling the follmving item on the list 1 if that item is glue and if the
\nonscript is eventually typeset in :'script styld' or in :'scriptscript style.l'

• \no boundary. This command is redundant and therefore has no effect; bound~
ary ligatures are automatically disabled in math modes.

• (space token}. Spaces have no effect in math modes.
• \u. A control~space command appends glue to the current list 1 using the same

amount that a (space token} inserts in horimntal mode when the space factor is 1000.
• (box}. The box is constructed1 and if the result is void nothing happens.

Othenvise a new Ord atom is appended to the current math list 1 and the box becomes
its nucleus.

• \raise{dimen}(box} 1 \lower{dimen}(box}. This acts exactly like an ordinary
(box} commaml1 but the new box that is put into the nucleus is also shifted up or dmv11
by the specified amount.

• \vcenter{box specification}{(vertical mode material}}. A vbox is formed as
if :\vcenter) had been :\vbox). Then a new \'cent atom is appended to the current
math list 1 and the box becomes its nucleus.

delimiter;;
ddcode
h;;kip
hlil
hlill
h;;;;
hlilneg
m;;kip
mathematical ;;kip
leader,;
non;;cript
noboundary
;;pace tolwn
control ;;pace
box
rai;;e
lower
'<center
Vcent

Chapter 26: Summary of Math Mode

• (vertical rule}. A rule is appended to the current list (not as an atom).
• \halign{box specification}{(alibfimiCnt material}}. This command is allowed

only in display math mode1 and only when the current math list is empty. The alib111~
ment is carried out exactly as if it were done in the enclosing vertical mode (see Chap~
ter 24) 1 except that the lines are shifted right by the \displayindent. The dosing
:}; may be followed by optional (assignment} commaiHis1 after which :$$) must con~
dude the display. TE-X will insert the \abovedisplayskip and \belowdisplayskip glue
befOre and after the result of the alibfimiCnt.

• \indent. An empty box of \Vidth \parindent is appended to the current list 1

as the nucleus of a new Ord atom.
• \no indent. This command has no effect in math modes.
• {(math mode material}}. A character token of category 11 or a control se--

quence like \bgroup that has been \let equal to such a character token 1 causes TE-X
to start a new level of grouping and also to begin work on a new math list. \Vhen such
a brroup ends-\vith :};-TE-X uses the resulting math list as the nucleus of a new Ord
atom that is appended to the current list. If the resulting math list is a single Ace
atom 1 however (i.e. 1 an accented quantity) 1 that atom itself is appended.

• {math sy-mbol}. (This is the most common command in math mode; see the
syntax near the beginning of this chapter.) A math symbol determines three values 1

c1 f 1 and a 1 as explained earlier. T£X appends an atom to the current list 1 where the
atom is of type Ord1 Op 1 Bin1 Rel 1 Open1 Close1 or Punct1 according as the value of c is
01 11 21 31 41 51 or 6. The nucleus of this atom is the math symbol defined by f and a.

• {math atom}(math field}. A {math atom} command is any of the follmving:

\mathord I \mathop I \mathbin I \mathrel I \mathopen
I \mathclose I \mathpunct I \mathinner I \underline I \overline

TE-X processes the {math field} 1 then appends a new atom of the specified type to the
current list; the nucleus of this atom contains the specified field.

• \mathaccent{15~bit number}(math field}. TE-X converts the {15~bit number}
into c1 f 1 and a as it does \Vith any \mathchar. Then it processes the {math field} and
appends a new Ace atom to the current list. The nucleus of this atom contains the
specified field; the accent character in this atom contains (a 1 f).

• \radical{27~bit number}(math field}. TE-X converts the {27~bit number} into
a 1 f 1 b1 andy as it does \Vith any \delimiter. Then it processes the {math field} and
appends a new Rad atom to the current list. The nucleus of this atom contains the
specified field; the delimiter field in this atom contains (a 1 f) and (b1 y).

• (superscript}(math field}. A (superscript} command is an explicit or implicit
character token of category 7. If the current list does not end \Vith an atom 1 a new Ord
atom with all fields empty is appended; thus the current list \Viii end \Vith an atom 1

in all cases. The superscript field of this atom should be empty; it is made nonempty
by changing it to the result of the specified {math field}.

• (subscript}(math field}. A (subscript} command is an explicit or implicit char~
acter token of category 8. It acts just like a (superscript} commaml1 except 1 of course1

that it affects the subscript field instead of the superscript field.

291

rule
halign
di;;play indent
abo'<wli;;play;;kip
bdowdi;;play;;kip
indent
par indent
noindent
grouping
math atom
mathaccent
radical
;;uper;;cript
;;ub;;cript

292 Chapter 26: Summary of Math Mode

• \displaylimits 1 \limits 1 \nolimits. These counnands are allowed only if
the current list ends with an Op atom. They modify a special field in that Op atom 1

specifying what conventions should be used \Vith respect to limits. The normal value
of that field is \displaylimits.

• \I. A kern of width 11ero is appended to the current list. (This \Viii have the
effect of adding the italic correction to the previous character 1 if the italic correction
wouldn)t normally have been added.)

• \discretionary(general text}(general text}(general text}. This command is
treated just as in horimntal mode (see Chapter 25) 1 but the third (general text} must
produce an empty list.

• \- Tins command IS usualh equivalent to :\discretionary{-}{}{}); the
is therefore interpreted as a h:yl)hen) not as a minus sign. (See Appendix H.)

• \mathchoice(general text}(general text}(general text}(general text}. The four
general texts are each treated as subformulas (i.e.) like the second alternative in the
definition of {math field}). The fOur math lists defined in this way are recorded in a
:'choice iteml' that is appended to the current list.

• \displaystyle1 \textstyle1 \scriptstyle1 \scriptscriptstyle. A style--
change item that corresponds to the specified style is appended to the current list.

• \left{delim}(math mode material}\right{delim}. T£X begins a new brroup 1

and processes the {math mode material} by starting out \Vith a new math list that
begins \Vith a left boundary item containing the first delimiter. This group must be
terminated by :\right) 1 at which time the internal math list is completed with a right
boundary item containing the second delimiter. Then T£X appends an Inner atom to
the current list; the nucleus of this atom contains the internal math list.

• (generalit~ed fraction command}. This command takes one of six forms:

\over I \atop I \above{dimen}
I \overwi thdel ims (delim} (delim}
I \atopwi thdel ims (delim} (delim}
I \abovewi thdel ims (delim} (delim} (dim en}

(See Chapter 17.) \Vhen T£X sees a (generalit~ed fraction command} it takes the entire
current list and puts it into the numerator field of a generalit~ed fraction item. The
denominator field of this new item is temporarily empty; the left and right delimiter
fields are set equal to the specified delimiter codes. T£X saves this generalit~ed fraction
item in a special place associated \Vith the current level of math mode processing.
(There should be no other generalit~ed fraction item in that special place1 because
constructions like :a\over b\over c) are illegaL) Then T£-X makes the current list
empty and continues to process commands in math mode. Later on 1 when the current
level of math mode is completed (either by coming to a :$) or a :}) or a \right 1

depending on the nature of the current brroup) 1 the current list \Viii be moved into the
denominator field of the generalit~ed fraction item that was saved; then that item 1 all by
itself1 will take the place of the entire list. However 1 in the special case that the current
list began \Vith \left and will end \Vith \right 1 the boundary items \Viii be extracted
from the numerator and denominator of the generalit~ed fraction 1 and the final list \Viii
consist of three items: left boundary1 generalit~ed fraction 1 right boundary. (If you

dh;playlimit;;
limit;;
nolimit;;
I
di;;cret ionary

hyphen
mathdwke
di;;play;;tyle
texhtyle
;;cript;;tyk
;;cript;;cript;;tyk
left
right
O'<Cf
atop
abo'<e
o'<erwithddim;;
atopwithddim;;
abo'<ewit hddim;;

Chapter 26: Summary of Math Mode

want to watch the process by which math lists are built 1 you might find it helpful to
t:yl)e :\showlists) while TE-Xis processing the denominator of a generalit~ed fraction.)

• (eqno}(math mode material}$. Here (eqno} stands fOr either \eqno or \leqno;
these commands are allowed only in display math mode. Upon reading (eqno} 1 T£X
enters a new level of grouping 1 inserts the \everymath tokens 1 and enters nOIHlisplay
math mode to put the {math mode material} into a math list. \Vhen that math list is
completed1 TE-X converts it to a horimntal list and puts the result into a box that \Viii
be used as the equation number of the current display. The dosing $ token will be put
back into the input 1 where it \Viii terminate the display.

• $. If T£X is in display math mode1 it reads one more token 1 which must also
be $. In either case1 the math~shift command terminates the current level of math
mode processing and ends the current group 1 which should have begun with either $
or (eqno}. Once the math list is finished 1 it is converted into a horimntal list as
explained in Appendix G.

• None of the above: If any other primitive command of TE-X occurs in math
mode1 an error message will be briven 1 and T£X will try to recover in a reasonable way.
For example 1 if a \par command appears 1 or if any other inherently nOIHnathematical
command is briven 1 TE-X \Viii try to insert a :$;just befOre the offending token; this \Viii
lead out of math mode. On the other hand if a totally misplaced token like \endcsname
or \omit or # appears in math mode1 TE-X \Viii simply ignore it 1 after reporting the error.
You might enjoy trying to type some really stupid input 1 just to see what happens. (Say
:\tracingall) first 1 as explained in Chapter 27 1 in order to get maximum infOrmation.)

6<,~• EXERCISE 26.1
Y Y Powers of ten: The whole TE-X language has now been suunnarit~ed completely.
To demonstrate how much you know 1 name all of the ways you can think of in which
the numbers](), 100, 1()00, 10000, and 100000 have special significance to TJ;.X.

6<,~• EXERCISE 26.2
Y Y Powers of two: Name all of the ways you can think of in which the numbers
81 16 1 321 64 1 128 1 256 1 have special significance to T£X.

Mathematics is known in the trade as difficult, or penalty, copy
because it is slower, more difficult, and more exoensive to set in tyoe
than any other kind of CODY normally occurring in books and journals.

UNIVERSITY OF CHICAGO PRESS, A Manual of Style (1969)

The tale of Math is a como/ex one,
and it resists both a simole olot summary

and a concise statement of its meaning.
PATRICK K. FORD, The Mabinogi (1977)

293

;;howlh;t;;
eqno
eqno
kqno
e'<erymath
Power,; of ten
Derek, Bo
Power,; of two
CHICAGO
FOHD

>age 294) I

Recovery from
Errors

Chapter 27: Recover:IJ from Errors

OK, everything you need to know about T&X has been explained------unless you
happen to be fallible. If you don't plan to make any errors, don't bother to read
this chapter. Otherwise you might find it helpful to make usc of some of the
ways that T&X tries to pinpoint bugs in your manuscript.

In the trial runs you did when reading Chapter 6, you learned the general
form of error messages, and you also learned the various ways in which you can
respond to T&X's complaints. VVith practice, you will be able to correct most
errors :•online," as soon as T&X has detected them, by inserting and deleting a
few things. The right way to go about this is to be in a mellow mood when
you approach T&X, and to regard the error messages that you get as amusing
puzzles------ :'VVhy did the machine do that?" ------rather than as personal insults.

T&X knows how to issue more than a hundred different sorts of error
messages, and you probably never will encounter all of them, because some
types of mistakes arc very hard to make. VVc discussed the :•undefined control
sequence" error in Chapter 6: let's take a look at a few of the others now.

If you misspell the name of some unit of measure------for example, if you
type ·\hsize=4im' instead of ·\hsize=4in'------you'll get an error message that
looks something like this:

! Illegal unit of measure (pt inserted).
<to be read again>

i
<to be read again>

m
<*> \hsize=4im

\input story
?

T&X needs to sec a legal unit before it can proceed: so in this case it has implicitly
inserted ·pt' at the current place in the input, and it has set \hsize=4pt.

VVhat's the best way to recover from such an error? VVell, you should
always type ·w or ·h' to sec the help message, if you aren't sure what the error
message means. Then you can look at the lines of context and sec that TEX
will read ·i' and then ·m' and then · \input story ' if you simply hit {return)
and carry OIL l;nfortunately, this easy solution isn't very good, because the ·i'
and ·m' will be typeset as part of the text of a new paragraph. A much more
graceful recovery is possible in this case, by first typing ·2'. This tells TEX to
discard the next two tokens that it reads: and after TEX has done so, it will stop
again in order to give you a chance to look over the new situation. Here is what
you will sec:

<recently read> m

<*> \hsize=4im
\input story

?

295

error me;;;;age;;
Illegal unit
reCOHOr

296 Chapter 27: Rccovcr,ij from Errors

Good: the ·i' and ·m' arc read and gone. But if you hit {return) now, TEX will
·\input story' and try to t:)1)C8Ct the story. tex file with \hsize=4pt: that
won't be an especially exciting CAl)Crimcnt, because it will simply produce dozens
of overfull boxes, one for every syllable of the story. Once again there's a better
way: You can insert the command that you had originally intended, by typing

I\hsize=4in

now. This instructs TEX to change \hsize to the correct value, after which it
will \input story and you'll be on your way.

• EXERCISE 27.1
Ben l; scr typed · 8', not ·2', in response to the error message just considered: his
idea was to delete ·i', ·m', ·\input', and the five letters of ·story'. But TEX's
response was

<*> \hsize=4im \input stor
y

Explain what happened.

T&X usually tries to recover from errors either by ignoring a command
that it doesn't understand, or by inserting something that will keep it happy. For
example, we saw in Chapter 6 that T&X ignores an undefined control sequence:
and we just observed that T&X inserts ·pt' when it needs a physical unit of
measure. Here's another example where T&X puts something in:

! Missing $ inserted.
<inserted text>

$
<to be read again>

1.11 the fact that 32768=2-

? H
{15} wasn't interesting

I've inserted a begin-math/end-math symbol since I think
you left one out. Proceed, with fingers crossed.

(The user has forgotten to enclose a formula in $ signs, and T&X has tried to
recover by inserting one.) In this case the {inserted teA-t) is explicitly shown,
and it has not yet been read: by contrast, our previous example illustrated a
case where T&X had already internalized the ·pt' that it had inserted. Thus the
user has a chance here to remove the inserted ·$' before T&X really sees it.

VVhat should be done'! The error in this example occurred before T&X
noticed anything wrong: the characters ·32768=2' have already been typeset in
horizontal mode. There's no way to go back and caned the past, so the lack of
proper spacing around the · =' cannot be fixed. Our goal of error recovery in this
case is therefore not to produce perfect output: we want rather to proceed in some

C;;er
help me;;;;age
J'vii;;;;ing

Chapter 27: Recover:IJ from Errors

way so that T&X will pass by the present error and detect subsequent ones. If we
were simply to hit {return) now, our aim would not be achieved, because T&X
would typeset the ensuing text as a math formula: ·15 wa.Yn 1t'interest'ing.
another error would be detected when the paragraph is found to end before any
closing ·$' has appeared. On the other hand, there's a more elaborate way to
recover, namely to type ·6' and then ·r$-{15}$': this deletes ·$-{15}' and inserts
a correct partial formula. But that's more complicated than necessary. The best
solution in this case is to type just ·2' and then go on: T&X will typeset the
incorrect equation ·32768=215', but the important thing is that you will be able
to check out the rest of the document as if this error hadn't occurred.

• EXERCISE 27.2
Here)s a case in which a backslash was inadvertently omitted:
! Missing control sequence inserted.
<inserted text>

\inaccessible
<to be read again>

m
1.10 \def m

acro{replacement}

TE-X needs to see a control sequence after :\def)) so it has inserted one that \Viii allow
the processing to continue. (This control sequence is shmv11 as :\inaccessible)) but
it has no relation to any control sequence that you can actually specify in an error~ free
manuscript.) If you simply hit (return} at this point) TE-X \Viii define the inaccessible
control sequence) but that won)t do you much good; later references to \macro \Viii be
undefined. Explain how to recover from this error so that the effect will be the same
as if line 10 of the input file had said :\def\macro{replacement}).

• EXERCISE 27.3
\Vhen you use the :I) option to respond to an error message) the rules of

Chapter 8 imply that TEX removes all spaces from the right~hand end of the line.
Explain how you can use the :I) option to insert a space) in spite of this fact.

Some of the toughest errors to deal with arc those in which you make
a mistake on line 20 (say), but TEX cannot tell that anything is amiss until it
reaches line 25 or so. For example, if you forget a ·F that completes the argu-
ment to some macro, TEX won't notice any problem until reaching the end of
the neA-t paragraph. In such cases you probably have lost the whole paragraph:
but TEX will usually be able to get straightened out in time to do the subse-
quent paragraphs as if nothing had happened. A :•runaway argument" will be
displayed, and by looking at the beginning of that teA-t you should be able to
figure out where the missing · F belongs.

It's wise to remember that the first error in your document may well
spawn spurious :•errors" later on, because anomalous commands can inflict seri-
ous injury on TEX's ability to cope with the subsequent material. But most of
the time you will find that a single run through the machine will locate all of
the places in which your input conflicts with T&X 's rules.

297

inacce;;;;ibk
;;pace
runaway argument

298 Chapter 27: Rccovcr,ij from Errors

VVhcn your error is due to misunderstanding rather than mistyping, the
situation is even more serious: TEX 's error messages will probably not be very
helpful, even if you ask T&X for help. If you have unknowingly redefined an
important control sequence------for example, if you have said ·\def\box{ ... F------all
sorts of strange disasters might occur. Computers aren't clairvoyant, and TEX
can only explain what looks wrong from its own viewpoint: such an explanation
is bound to be mysterious unless you can understand the machine's attitude.
The solution to this problem is, of course, to seck human counsel and advice: or,
as a last resort, to read the instructions in Chapters 2, 3, ... , 26.

• EXERCISE 27.4
.T. H. Quick (a student) once defined the follmving set of macros:

\newcount\serialnumber
\def\firstnumber{\serialnumber=O }
\def\nextnumber{\advance \serialnumber by 1

\number\serialnumber)\nobreak\hskip.2em }

Thus he could type1 for example1

\firstnumber
\nextnumber xx. \nextnumber yy. and \nextnumber zz

and T£X would typeset :1) xx 1 2) yy1 and 3) 1111). \Vell 1 this worked fine 1 and he showed
the macros to his buddies. But several months later he received a frantic phone call;
one of his friends had just encountered a really weird error message:

! Missing number. treated as zero.
<to be read again>

c
1.107 \nextnumber minusc

?
ule chances of error

Explain what happened1 and advise Quick what to do.

Sooner or later------hopefully sooner------you'll get TEX to process your whole
file without stopping once to complain. But maybe the output still won't be right:
the mere fact that TEX didn't stop doesn't mean that you can avoid proofreading.
At this stage it's usually easy to sec how to fix typographic errors by correcting
the input. Errors of layout can be overcome by using methods we have discussed
before: Overfull boxes can be cured as described in Chapter 6: bad breaks can
be avoided by using tics or \hbox commands as discussed in Chapter 14: math
formulas can be improved by applying the principles of Chapters 16---19.

But your output may contain seemingly inexplicable errors. For exam-
ple, if you have specified a font at some magnification that is not supported by
your printing software, TEX will not know that there is any problem, but the
program that converts your dvi file to hardcopy might not tell you that it has
substituted an :•approximate" font for the real one: the resultant spacing may
look quite horrible.

Quick
weird error

Chapter 27: Recovery from Errors 299

If you can't find out what went wrong, try the old trick of simplifying
your program: Remove all the things that do work, until you obtain the shortest
possible input file that fails in the same way as the originaL The shorter the file,
the easier it will be for you or somebody else to pinpoint the problem.

Perhaps you'll wonder why TEX didn't put a blank space in some posi-
tion where you think you typed a space. Remember that TEX ignores spaces that
follow control words, when it reads your file. (TEX also ignores a space after a
{number) or a (unit of measure) that appears as an argument to a primitive com-
mand: but if you arc using properly designed macros, such rules will not concern
you, because you will probably not be using primitive commands directly.)

~~ On the other hand1 if you are desibfiling macros 1 the task of troubleshooting
Y Y can be a lot more complicated. For example1 you may discover that TE-X has
emitted three blank spaces when it processed some long sequence of complicated code1

consisting of several dot~en commands. How can you find out where those spaces crept
in? The answer is to set :\tracingcommands=1) 1 as mentioned in Chapter 13. This
tells T£X to put an entry in your log file whenever it begins to execute a primitive
command; you)ll be able to see when the command is :blank space).

Most implementations of TE-X allow you to interrupt the probrram in some way.
This makes it possible to diagnose the causes of infinite loops. TE-X switches to

\errorstopmode when interrupted; hence you have a chance to insert commands into
the input: You can abort the run 1 or you can \show or change the current contents of
control sequences1 registers 1 etc. You can also get a feeling fOr where TE-Xis spending
most of its time1 if you happen to be using an inefficient macro1 since random interrupts
will tend to occur in whatever place TE-X visits most often.

Sometimes an error is so bad that T£X is forced to quit prematurely. For
example1 if you are running in \batchmode or \nonstopmode 1 TE-X makes an

:'emergency stopl' if it needs input from the terminal; this happens when a necessary
file cannot be opened1 or when no \end command was found in the input document.
Here are some of the messages you might get just before TE-X gives up the ghost:

Fatal format file error; I'm stymied.
This means that the preloaded format you have specified cannot be used1 because it
was prepared for a different version of T£X.

That makes 100 errors; please try again.
T£X has scrolled past 100 errors since the last paragraph ended1 so it)s probably in
an endless loop.

Interwoven alignment preambles are not allowed.
If you have been so devious as to get this message 1 you will understand it 1 and you \Viii
deserve no sy-mpathy.

I can't go on meeting you like this.
A previous error has gotten TE-X out of whack. Fix it and try again.

This can't happen.
Something is \\TOng with the T£X you are using. Complain fiercely.

;;pace;;
tradngcommamb
interrupt
inlinite loop;;
error;;topmode
;;how
batch mode
non;;topmode
emergency ;;top
end
Fatal format lik error
loop
inlinite loop
Interwo'<en alignment preamble;;
I can't go on
Thi;; can't happen

300 Chapter 27: Rccovcr,ij from Errors

There)s also a dreadful message that TE-X issues only \Vith brreat reluctance.
But it can happen:

TeX capacity exceeded, sorry.

This 1 alas 1 means that you have tried to stretch TE-X too far. The message \Viii tell
you what part of T£X)s memory has become overloaded; one of the fOllmving fourteen
things will be mentioned:

number of strings (names of control sequences and files)
pool size (the characters in such names)
main memory size (boxes 1 glue1 breakpoints 1 token lists 1 characters1 etc.)
hash size (control sequence names)
font memory (font metric data)
exception dictionary (hyphenation exceptions)
input stack size (simultaneous input sources)
semantic nest size (unfinished lists being constructed)
parameter stack size (macro parameters)
buffer size (characters in lines being read from files)
save size (values to restore at brroup ends)
text input levels (\input files and error insertions)
grouping levels (unfinished biTOups)
pattern memory (hyphenation pattern data)

The current amount of memory available will also be shmv11.

If you have a job that doesn)t overflow TE-X)s capacity) yet you want to see
just how closely you have approached the limits) just set \tracingstats to

a positive value befOre the end of your job. The log file \Viii then conclude \Vith a
report on your actual usage of the first eleven things named above (i.e.) the number of
strings) ...) the save sit~e)) in that order. Furthermore) if you set \tracingstats equal
to 2 or more) T£X will show its current memory usage whenever it does a \shipout
command. Such statistics are broken into two parts; :490&5950) means 1 for example1

that 490 words are being used for :'largd' things like boxes 1 glue1 and breah:points 1

while 5950 words are being used fOr :'smalr' things like tokens and characters.

\Vhat can be done if T£X)s capacity is exceeded? All of the above--listed
components of the capacity can be increased1 provided that your computer

is large enough; in fact 1 the space necessary to increase one component can usually
be obtained by decreasing some other component1 without increasing the total sit~e of
TE-X. If you have an especially important application 1 you may be able to convince
your local system people to provide you \Vith a special T£X whose capacities have been
hand~ tailored to your needs. But before taking such a drastic step 1 be sure that you are
using T£X properly. If you have specified a gigantic parabrraph or a gigantic alignment
that spans more than one page1 you should change your approach 1 because TE-X has to
read all the way to the end before it can complete the line~breahing or the alignment
calculations; this consumes huge amounts of memory space. If you have built up an
enormous macro library1 you should remember that TE-X has to remember all of the
replacement texts that you define; therefore if memory space is in short supply1 you
should load only the macros that you need. (See Appendices B and D1 for ideas on
how to make macros more compact.)

'1\:X capacity exceeded
tradng;;tat;;
;;tack po;;it ion;;
;;hi pout

Chapter 27: Recovery from Errors 301

Some erroneous TE-X programs \Viii overflow any finite memory capacity. For
example1 after :\def\recurse{ (\recurse) }) 1 the use of \recurse \Viii imme~

diately bomb out:
! TeX capacity exceeded, sorry [input stack size=80].
\recurse ->(\recurse

\recurse ->(\recurse

The same sort of error \Viii obviously occur no matter how much you increase TE-X)s
input stack sit~e.

~~ The special case of :'save sizel' capacity exceeded is one of the most trou~
Y Y blesome errors to correct 1 especially if you run into the error only on long
jobs. T£X generally uses up two words of save sit~e whenever it performs a non~global
assignment to some quantity whose previous value was not assigned at the same level
of brrouping. \Vhen macros are written properly1 there \Viii rarely be a need for more
than 100 or so things on the :'save stackl'; but it)s possible to make save stack usage
grow \Vithout limit if you make both local and global assignments to the same variable.
You can figure out what TE-X puts on the save stack by setting \tracingrestores=1;
then your log file \Viii record information about whatever is removed from the stack at
the end of a group. For example1 let \a stand fOr the command :\advance\day by 1);
let \g stand fOr :\global\advance\day by 1); and consider the fOllmving commands:

\day=1 {\a\g\a\g\a}

The first \a sets \day=2 and remembers the old value \day=1 by putting it on the
save stack. The first \g sets \day=3 1 globally; nothing needs to go on the save stack
at the time of a global assibfimiCnt. The next \a sets \day=4 and remembers the
old value \day=3 on the save stack Then \g sets \day=5; then \a sets \day=6 and
remembers \day=5. Finally the :}; causes TE-X to go back through the save stack; if
\tracingrestores=1 at this point 1 the log file \Viii get the follmving data:

{restoring \day=5}
{retaining \day=5}
{retaining \day=5}

Explanation: The \day parameter is first restored to its global value 5. Since this
value is global 1 it will be retained 1 so the other saved values (\day=3 and \day=1) are
essentially ignored. Moral: If you find TE-X retaining a lot of values 1 you have a set of
macros that could cause the save stack to overflow in large enough jobs. To prevent
this 1 it)s usually wise to be consistent in your assibfimiCnts to each variable that you
use; the assignments should either be global always or local always.

~~ TE-X provides several other hinds of tracing in addition to \tracingstats and
Y Y \tracingrestores: \Ve have already discussed \tracingcommands in Chapters
13 and 20 1 \tracingparagraphs in Chapter 141 \tracingpages in Chapter 15 1 and
\tracingmacros in Chapter 20. There is also \tracinglostchars 1 which (if positive)
causes TE-X to record each time a character has been dropped because it does not
appear in the current font; and \tracingoutput 1 which (if positive) causes T£X to

recur;;ion
;;a'<e ;;ize
grouping
;;a'<e ;;tack
global a,-;;;ignment;;
tradngre;;tore;;
right brace
tradnglo;;tchar;;
tradngoutput

302 Chapter 27: Rccovcr,ij from Errors

display in symbolic form the contents of every box that is being shipped out to the
dvi file. The latter allmvs you to see if things have been typeset properly1 if you)re
trying to decide whether some anomaly was caused by TE-X or by some other software
that acts on TE-X)s output.

\Vhen TE-X display-s a box as part of diagnostic output1 the amount of data
is controlled by two parameters called \showboxbreadth and \showboxdepth.

The first of these1 which plain TE-X sets equal to 51 tells the maximum number of items
shmv11 per level; the second1 which plain T£X sets to 31 tells the deepest leveL For
example1 a small box whose full contents are

\hbox(4.30554+1.94444)x21.0, glue set 0.5
.\hbox(4.30554+1.94444)x5.0
.. \tenrm g
.\glue 5.0 plus 2.0
.\tenrm ! (ligature---)

will be abbreviated as follows when \showboxbreadth=1 and \showboxdepth=1:

\hbox(4.30554+1.94444)x21.0, glue set 0.5
.\hbox(4.30554+1.94444)x5.0 []
.etc.

And if you set \showboxdepth=0 1 you get only the top level:

\hbox(4.30554+1.94444)x21.0, glue set 0.5 []

(Notice how:[]) and :etc.) indicate that the data has been truncated.)

A nonempty hbox is considered :'overfulr' if its glue cannot shrink to achieve
the specified sit~e 1 provided that \hbadness is less than 100 or that the excess

width (after shrinking by the maximum amount) is more than \hfuzz. It is :'tighf' if
its glue shrinks and the badness exceeds \hbadness; it is :'loosd' if its glue stretches
and the badness exceeds \hbadness but is not greater than 100; it is :'underfulr' if
its glue stretches and the badness is brreater than \hbadness and greater than 100.
Similar remarks apply to nonempty vboxes. TE-X prints a warning message and displays
the offending box 1 whenever such anomalies are discovered. Empty boxes are never
considered to be anomalous.

~~ \Vhen an alignment is :'overfulr' or :'tighf' or :'loosel' or :'underfull/' you don)t
Y Y get a warning message for every aligned line; you get only one message 1 and
TE-X displays a prototype ro-rv (or 1 with \valign1 a prototype column). For example1

suppose you say :\tabskip=Opt plus10pt \halign to200pt{&#\hfil \cr ... \cr}) 1 and
suppose that the aligned material turns out to make two columns of \Vidths 50 pt and
60 pt1 respectively. Then you get the follmving message:

Underfull \hbox (badness 2698) in alignment at lines 11--18
[] []

\hbox(O.O+O.O)x200.0, glue set 3.0
.\glue(\tabskip) 0.0 plus 10.0
.\uusetbox(O.O+O.O)x50.0
.\glue(\tabskip) 0.0 plus 10.0
.\uusetbox(O.O+O.O)x60.0
.\glue(\tabskip) 0.0 plus 10.0

<hi
;;hi pout
;;howboxbreadt h
;;howboxdepth
intemal box format
;;ymbolk box format
ligature
em-da,-;h
II
etc.
o'<erfull
glue
hbadne;;;;
hfuzz
tight
badne;;;;
loo;;e
underfull
alignment
prototype row
'<align
halign

Chapter 27: Recover:IJ from Errors

The :'unset boxesl' in a prototype row show the individual column widths. In this case
the tabskip glue has to stretch 3.0 times its stretchability) in order to reach the 200 pt
goal 1 so the box is underfulL (According to the formula in Chapter 141 the badness
of this situation is 2700; TE-X actually uses a similar but more efficient formula1 so it
computes a badness of 2698.) Every line of the alibfimiCnt will be underfull 1 but only
the prototype row will be displayed in a warning message. :'Overfull rulesl' are never
appended to the lines of overfull alignments.

~~ The \tracing ... commands put all of their output into your log file 1 unless
Y Y the \tracingonline parameter is positive; in the latter case1 all diagnostic
infOrmation goes to the terminal as well as to the log file. Plain T£X has a \tracingall
macro that turns on the maximum amount of tracing of all kinds. It not only sets up
\tracingcommands 1 \tracingrestores 1 \tracingparagraphs 1 and so on 1 it also sets
\tracingonline=1 1 and it sets \showboxbreadth and \showboxdepth to extremely high
values 1 so that the entire contents of all boxes \Viii be displayed.

~~ Some proc~uction ':ersions of TE-X have ~een streamlined for s~eed. These im~
Y Y plementabons don·t look at the values of the parameters \trac~ngparagraphs 1
\tracingpages 1 \tracingstats 1 and \tracingrestores 1 because TE-X runs faster when
it doesn)t have to maintain statistics or keep tabs on whether tracing is required. If
you want all of TE-X)s diagnostic tools 1 you should be sure to use the right version.

~~ If you set \pausing=1 1 TE-X \Viii give you a chance to edit each line of input
Y Y as it is read from the file. In this way you can make temporary patches (e.g. 1

you can insert \show ... commands) while you)re troubleshooting; \Vithout changing
the actual contents of the file 1 and you can keep T£X running at human speed.

Final hint: VVhcn working on a long manuscript, it's best to prepare only
a few pages at a time. Set up a :•galley" file and a :'book" file, and enter your
text on the galley file. (Put control information that sets up your basic format
at the beginning of this file: an example of galley. tex appears in Appendix E.)
After the galleys come out looking right, you can append them to the book file:
then you can run the book file through TEX occasionally, in order to sec how the
pages really fit together. For example, when the author prepared this manual,
he did one chapter at a time, and the longer chapters were split into subchaptcrs.

6<,~• EXERCISE 27.5
Y Y Final exercise: Find all of the lies in this manual 1 and all of the jokes.

Final exhortation: Go FORTH now and create m<-:tsterpieces of the publishing Errt!

Who can understand his errors?
- Psalm 19:12 (c. 1000 B.C.)

It is one thing, to shew a Man that he is in an Error,
and another, to out him in oossession of Truth.

- JOHN LOCKE, An Essay Concerning Humane Understanding (1690)

303

talx;kip glue
0'<erfull rule;;
tradngonline
tradngall
;;howboxbreadt h
;;howboxdepth
pau;;ing
galley
book
lie;;
joke;;
Biblical
LOCKE

>age ~l04) I

Answers to
All the

Exercises

AppendiJ: A: Answers to All the EJ:ercises

The preface to this manual points out the wisdom of trying to figure out each
exercise before you look up the answer here. But these answers arc intended to
be read, since they occasionally provide additional information that you arc best
equipped to understand when you have just worked on a problem.

1.1. A TE-Xnician (underpaid); sometimes also called a TE-Xacker.

2.1. Alice said, ''I always use an en-dash instead of a
specifying page numbers like '480--491' in a bibliography.''
answer to this question ends \Vith '480-491' in a bibliography. 11

)

2.2. You get euHlash and h:yl)hen (-) 1 which looks ft\vfuL

hyphen when
(The wrong

2.3. fluffier firefly fisticuffs 1 flagstaff fireproofing 1 chiffchaff and riffraff.

2.4. ''\thinspace'; and either'{}'' or{'}'' or something similar. Reason:
There)s usually less space preceding a single left quote than there is preceding a double
left quote. (Left and right are opposites.)

2.5. Eliminating \thinspace would mean that a user need not learn the term;
but it is not advisable to minimi11e terminology by :'overloading!' math mode \Vith
tricky constructions. For example1 a user who wishes to take advantage of TE-X)s
\mathsurround fCature would be thwarted by nOIHnathematical uses of dollar signs.
(Incidentally1 neither \thinspace nor \. are built into TE-X; both are defined in terms
of more primitive features 1 in Appendix B.)

3.1. \I 1 \exercise1 and \\. (The last of these is of type 21 i.e. 1 a control s:y-mbol 1

since the second bad.-slash is not a letter; the first backslash keeps the second one from
starting its O\V1l control sequence.)

3.2. math\'ematique and centim\ 'etre.

3.3. According to the index1 \u is primitive but \(return} isn)t. The command
:\def\,..,..M{\ }) in Appendix B is what actually defines \(return} 1 since a return is repre--
sentable as ,..,..M. Asking T£X to \show\,..,..M produces the response:> \,..,..M=macro: ->\u.).

3.4. There are 256 of length 2; most of these are undefined when TE-X begins.
(TEX allows any character to be an escape1 but it does not distinbruish between control
sequences that start \Vith diffCrent escape characters.) If we assume that there are 52
letters1 there are exactly 522 possible control sequences of length 3 (one for each pair
of letters 1 from AA to zz). But Chapter 7 explains how to use \cat code to change any
character into a :'letterl'; therefore it)s possible to use any of 256 2 potential control
sequences of length 3.

4.1. Ulrich Dieter. {\sl Journal f\ 11 ur die reine und angewandte
Mathematik\/ \bf201} (1959), 37--70.

It)s convenient to use a single brroup fOr both \sl and \bf here. The:\/' is a refinement
that you might not understand until you read the rest of Chapter 4.

4.2. {\it Explain ... typeset a\/ {\rm roman} word ... sentence.} Note
the position of the italic correction in this case.

4.3. \def\ic#1{\setbox0=\hbox{#1\/}\dimen0=\Yd0
\setbox0=\hbox{#1}\advance\dimen0 by -\wdO}.

305

thin;;pace
math;;urround

cat code
letter

306 AppcndiJ: A: Answers to All the EJ:ercises

4.4. Control word names are made of letters 1 not clibrits.

4.5. Say \def\sl{\it} at the beginning1 and delete other definitions of \sl that
might be present in your format file (e.g. 1 there might be one inside a \tenpoint macro).

4.6. \font\squinttenrm=cmr10 at 5pt
\font\squinttenrm=cmr10 scaled 500

5.1. {shelf}ful or shelf{}ful 1 etc.; or even shelf\/ful 1 which yields a shelfful
instead of a shelffuL In fact 1 the latter idea-to insert an italic correction-is prefer~
able because TE-X \Viii reinsert the ff ligature by itself after hyphenating shelf{}ful.
(Appendix H points out that ligatures are put into a hyphenated word that contains no
:'explicit kerns/' and an italic correction is an explicit kern.) But the italic correction
may be too much (especially in an italic font); shelf{\kernOpt}ful is often best.

5.2. :u{u}u) or :uGuGu) 1 etc. Plain TE-X also has a \space macro1 so you can type
\space\space\space. (These aren)t strictly equivalent to :\u\u\u) 1 since they adjust
the spaces by the current :'space factor/' as explained later.)

5.3. In the first case1 you get the same result as if the innermost braces had not
appeared at all 1 because you haven)t used the brrouping to change fonts or to control
spacing or an:yi;hing. TE-X doesn)t mind if you want to waste your time making brroups
for no particular reason. But in the second case1 the necessary braces were forgotten.
You get the letter :s) centered on a line by itself1 followed by a parabrraph that begins
with :o should this.) on the next line.

5.4. You get the same result as if another pair of braces were present around :\it
centered) 1 except that the period is t:yl)eset from the italic font. (Both periods look
about the same.) The \it font \Viii not remain in fOrce after the \centerline1 but
this is something of a coincidence: TE-X uses the braces to determine what text is to
be centered 1 but then it removes the braces. The \centerline operation 1 as defined in
Appendix B1 puts the resulting braceless text inside another group; and that)s why \it
disappears after \centerline. (If you don)t understand this 1 just don)t risk leaving
out braces in tricky situations1 and you)ll be OK.)

5.5. \def\ital#1{{\it#1\/}}. Pro: Users might find this easier to learn 1 because
it works more like \centerline and they don)t have to remember to make the italic
correction. Con: To avoid the italic correction just before a commo or period1 users
should probably be taught another control sequence; for example1 \Vith

\def\nocorr{\kernOpt }

a user could type :\ital{comma} or \ital{period\nocorr}.). The alternative of
putting a period or comma in italics 1 to avoid the italic correction1 doesn)t look as
good. A long sequence of italics would be inefficient for TE-X 1 since the entire text for
the argument to \ital must be read into memory only to be scanned again.

5.6. {1 {2 3 4 5} 4 6} 4.

5.7. \def\beginthe#1{\begingroup\def\blockname{#1}}
\def\endthe#1{\def\test{#1}%

\ifx\test\blockname\endgroup
\else\errmessage{You should have said

\string\endthe{\blockname}}\fi}

italic correction
I
hyphenating
explicit kem;;
kern
;;pace
;;pace factor

AppendiJ: A: Answers to All the EJ:ercises

6.1. Lat~iness and/or obstinacy.

6.2. There)s an unwanted space after :called-) 1 because (as the book says) TE-X
treats the end of a line as if it were a blank space. That blank space is usually what
you want 1 except when a line ends \Vith a h:yl)hen or a dash; so you should \VATCH OCT
for lines that end \Vith h:yl)hens or dashes.

6.3. It represents the heavy bar that shmvs up in your output. (This bar wouldn)t
be present if \overfullrule had been set to Opt 1 nor is it present in an underfull box.)

6.4. This is the \parfillskip space that ends the paragraph. In plain TE-X the
parfillship is 11ero when the last line of the paragraph is full; hence no space actually
appears befOre the rule in the output of Experiment 3. But all hships show up as spaces
in an overfull box message 1 even if they)re 11ero.

6.5. Run T£X \Vith \hsize=1. Sin \tolerance=10000 \raggedright \hbadness=-1
and then \input story. T£-X \Viii report the badness of all lines (except the final lines
of paragraphs1 where fill glue makes the badness 11ero).

6.6. \def\extraspace{\nobreak \hskip Opt plus .15em\relax}
\def\dash{\unskip\extraspace---\extraspace}

(If you try this \Vith the story at 2~inch and L5~inch sit~es 1 you will notice a substantial
improvement. The \unskip allo\\'S people to leave a space before typing \dash. T£-X
will try to h:yl)henate before \dash1 but not befOre d. Appendix H. The \relax
at the end of \extraspace is a precaution in case the next word is :minus).)

6.7. T£X would have deleted five tokens: 11 i 1 n 1 u1 \centerline. (The space was
at the end of line 21 the \centerline at the beginning of line 3.)

6.8. A control sequence like \centerline might well define a control sequence
like \ERROR before telling T£X to look at #1. Therefore T£X doesn)t interpret control
sequences when it scans an argument.

7.1. Three forbidden characters were used. One should t:yl)e

Procter\& Gamble's ... \$2. a 10\% gain.

(Also the facts are wrong.)

7.2. Reverse slashes (backslashes) are fairly uncommon in fOrmulas or text 1 and\\
is very easy to t:yl)e; it was therefore felt best not to reserve \\ for such limited use.
Typists can define\\ to be whatever they want (including \backslash).

7.3. 11 21 31 41 61 71 81 101 11 1 12 1 13. Active characters (type 13) are somewhat
special; they behave like control sequences in most cases (e.g. 1 when you say :\let\x=-)
or :\ifx\x-)) 1 but they behave like character tokens when they appear in the token list
of \uppercase or \lowercase 1 and when unexpanded after \if or \if cat.

7 .4. It ends with either > or } or any character of category 2; then the effects of all
\cat code definitions within the brroup are wiped out1 except those that were \global.
T£-X doesn)t have any built~in knowledge about how to pair up particular kinds of
grouping characters. New category codes take effect as soon as a \cat code assignment
has been digested. For example1

{\catcode'\>=2 >

307

o'<erfullruk
parlilbkip
relax
Acti'<e character,;
let
ifx
upperca,-;e
lowen:a,-;e
if
ifcat
global

308 AppcndiJ: A: Answers to All the EJ:ercises

is a complete group. But \Vithout the space after :2) it would not be complete1 since TE-X
would have read the :>; and converted it to a token before knowing what category code
was being specified; TE-X alway-s reads the token follmving a constant before evaluating
that constant.

7.5. If you t:yl)C :\message{\string-}) and :\message{\string\ -}; 1 TE-X responds
with:-; and :\-) 1 respectively. To get \ 12 from \string you therefore need to make
backslash an active character. One way to do this is

{\catcode'/=0 \catcode'\\=13 /message{/string\}}

(The :'null control sequencd' that you get when there are no tokens between \csname
and \endcsname is not a solution to this exercise1 because \string converts it to
:\csname\endcsname). There is) however) another solution: If TE-X)s \escapechar
parameter-which will be explained in one of the next dangerous bends-is negative
or brreater than 255) then :\string\\) works.)

7.6. \12 a12 \12 u10 b12·

7.7. \def\ifundefined#1{\expandafter\ifx\csname#1\endcsname\relax}
Note that a control sequence like this must be used with care; it cannot be included in
conditional text 1 because the \ifx will not be seen when \ifundefined isn)t expanded.

7.8. First \uppercase produces :A\lowercase{BC}); then you get :Abc).

7.9. :\copyright\ \uppercase\expandafter{\romannumeral\year}). (This is
admittedly tricky; the :\expandafter) expands the token after the :c 1 not the token
after the group.)

7.10. (\Ve assume that parameter #2 is not simply an active character1 and that
\escapechar is between 0 and 255.)

\def\gobble#1{} % remove one token
\def\appendroman#1#2#3{\edef#1{\csname

\expandafter\gobble\string#2\romannumeral#3\endcsname}}

8.1. The %would be treated as a counnent character1 because its category code
is 14; thus 1 no% token or} token would get through to the gullet of TE-X where numbers
are treated. \Vhen a character is of category 01 51 91 141 or 151 the extra \ must be
used; and the \ doesn)t hurt 1 so you can alway-s use it to be safe.

8.2. (a) Both characters terminate the current line; but a character of category 5
might be converted into u1o or a !Pari token 1 while a character of category 14 never
produces a token. (b) They produce character tokens stamped \Vith different category
numbers. For example1 $a is not the same token as $4 1 so T£X)s digestive processes
will treat them differently. (c) Same as (b) 1 plus the fact that control sequence names
treat letters differently. (d) No. (e) Yes; characters of category 10 are ignored at the
beginning of every line1 since every line starts in stateN. (f) No.

8.3. TE-X had just read the control sequence \vship 1 so it was in state S 1 and it
was just ready to read the space befOre :1in). Afterwards it ignored that space1 since it
was in state S; but if you had typed I\obeyspaces in response to that error message1

you would have seen the space. Incidentally1 when TE-X prints the context of an error
message1 the bottom pair of lines comes from a text file 1 but the other pairs of lines

con;;tant
me;;;;age
null control ;;equence
e;;capechar
com! it ional
ex pam! after
e;;capechar
context of an error me;;;;age

AppendiJ: A: Answers to All the EJ:ercises 309

are portions of token lists that TE-Xis reading (unless they bebrin with :<*>) 1 when they
represent text inserted during error recovery).

8.4. $a XJJ ,..7 212 $a -Ja uJo ITeXI b12 v12 uJo. The final space comes from the
(return} placed at the end of the line. Code ,..,..6 yields v only when not fOllowed by 0-9
or a-f. The initial space is ignored1 because state N governs the beginning of the line.

8.5. H11 i11 !JzuJolpariiParl. The:u;comesfromthe(return}attheendofthe
first line; the second and third lines each contribute a I par 1.

8.6. The two ,..,..B)s are not reCObfilit~ed as consecutive superscript characters1 since
the first ,..,..B is converted to code 2 which doesn)t equal the follmving character ,.. . Hence
the result is seven tokens: ,..,..B7 ,..,..B7 M1 1 I ,..,..B I u1o ,..,..M 1 1 IM,..,..MI. The last of these is a
control word whose name has two letters. The (space} after \M is deleted befOre TE-X
inserts the (return} token.

8.7. Both alternatives work fine in text; in particular1 they combine as in \lq\lq
to form ligatures. But the definition in Appendix B works also in connection \Vith
constants; e.g. 1 \char\lq\% and \char\rq140 are valid. (Incidentally1 the construction
\let\lq=' would not work with constants1 since the quotes in a {number} must come
from character tokens of category 12; after \let\lq=' the control sequence token \lq
will not expand into a character token 1 nor is it a character token!)

9.2. Beloved protCgC; rOle coOrdinator; soufflCs 1 crCpes 1 piltCs 1 etc.

9.3. \AE sop's \OE uvres en fran\c cais.

9.4. {\sl Commentarii Academi\ae\ scientiarum imperialis
petropolitan\ae\/} is now {\sl Akademi\t\i a Nauk SSSR. Doklady}.

9.5. Ernesto Ces\ 'aro. P\'al Erd\H os. \0 ystein Ore. Stanis\1 aw \'Swier%
czkowski. Serge\u\i\ \t Iur'ev. Mu\d hammad ibn M\,..us\,..a al-Khw\,..arizm\,..\i.

9.6. The proper umlaut is \H1 which isn)t available in \tt 1 so it)s necessary to
borrow the accent from another font. For example1 {\tt P\' al Erd{\bf\H{\tt o} }s}
uses a bold accent 1 which is suitably dark.

9.7. {\it Europe on {\sl\$}15.00 a day\/}

9.8. The extra braces keep font changes locaL An arbrument makes the use of \'
more consistent \Vith the use of other accents like \d1 which are manufactured from
other characters \Vithout using the \accent primitive.

10.1. Exactly 7227 pt.

10.2. -.013837in1 O.mm 1 +42.1 dd1 3in 1 29pc 1 123456789sp. (The lines of text in
this manual are 29 picas \Vide.)

10.3. The first is not allowed1 since octal notation cannot be used \Vith a decimal
point. The second is 1 however 1 legal 1 since a {number} can be hexadecimal according
to the rule mentioned in Chapter 8; it means 12 CC 1 which is 144 dd ~ 154.08124 pt.
The third is also accepted1 since a {digit string} can be empty; it is a complicated way
to say Osp.

error recoH:ry
number
let
implicit character

310 AppcndiJ: A: Answers to All the EJ:ercises

10.4. \def\tick#1{\vrule height Opt depth #1pt}
\def\\{\hbox to 1cm{\hfil\tick4\hfil\tick8}}
\vbox{\hrule\hbox{\tick8\\\\\\\\\\\\\\\\\\\\}}

(You might also try putting tid.-s at every millimeter 1 in order to see how good your
system is; some output devices can)t handle 101 rules all at once.)

10.5. For example 1 say :\magnification=\magstep1 \input story \end) to get
mab111ification 1200; \magstep2 and \magstep3 are 1440 and 1728. Three separate runs
are needed 1 since there can be at most one mab111ification per job. The output may look
funny if the fOnts don)t exist at the stated mab111ifications.

10.6. Magnification is by a factor of 1.2. Since font \first is cmr10 at 12 pt1 it \Viii
be cmr10 at 14.4pt after magnification; font \second will be cmr10 at 12pt. (TEX
changes :12truept) into :10pt) 1 and the final output mab111ifies it back to 12pt.)

11.1. This E is inside a box that)s inside a box.

11.2. The idea is to construct a box and to look inside. For example)

\setboxO=\hbox{\sl g\/} \shoYboxO

reveals that\/ is implemented by placing a kern after the character. Further experiment
shmvs that this kern is inserted even when the italic correction is 11ero.

11.3. The height) depth) and \Vidth of the enclosing box should be just large enough
to enclose all of the contents) so the result is:

\hbox(8.98608+0.0)x24.44484
.\tenrm T
. \kern 1. 66702
.\hbox(6.83331+0.0)x6.80557, shifted -2.15277
.. \tenrm E
. \kern 1. 25
.\tenrm X

(You probably predicted a height of 8.9861; TE-X)s internal calculations are in sp) not
pt/100000) so the rounding in the fifth decimal place is not readily predictable.)

11.4. No applications of such symmetrical boxes to English~l<Ulbtuage printing were
apparent; it seemed pointless to carry extra generality as useless baggage that would
rarely if ever be used) merely fOr the sake of s:yunnetry. In other words) the author
wore a computer science cap instead of a mathematicim1)s mm1tle on the day that TE-X)s
boxes were born. Time will tell whether or not this was a fundamental error!

11.5. The follmving solution is based on a general \makeblankbox macro that prints
the edges of a box using rules of given thickness outside aiHl inside that box; the box
dimensions are those of \boxO.

\def\dolist{\afterassignment\dodolist\let\next= }
\def\dodolist{\ifx\next\endlist \let\next\relax

\else \\\let\next\dolist \fi
\next}

\def\endlist{\endlist}

AppendiJ: A: Answers to All the EJ:ercises

\def\hidehrule#1#2{\kern-#1%
\hrule height#1 depth#2 \kern-#2 }

\def\hidevrule#1#2{\kern-#1{\dimen0=#1
\advance\dimenO by#2\vrule width\dimenO}\kern-#2 }

\def\makeblankbox#1#2{\hbox{\loYer\dp0\vbox{\hidehrule{#1}{#2}%
\kern-#1 % overlap the rules at the corners
\hbox to \Yd0{\hidevrule{#1}{#2}%

\raise\htO\vbox to #1{}% set the vrule height
\lower\dpO\vtop to #1{}% set the vrule depth
\hfil\hidevrule{#2}{#1}}%

\kern-#1\hidehrule{#2}{#1}}}}
\def\maketypebox{\makeblankbox{Opt}{1pt}}
\def\makelightbox{\makeblankbox{.2pt}{.2pt}}
\def\\{\expandafter\if\space\next\
\else \setboxO=\hbox{\next}\maketypebox\fi}

\def\demobox#1{\setbox0=\hbox{\dolist#1\endlist}%
\copyO\kern-\wdO\makelightbox}

11.6. \def\frac#i/#2{\leavevmode\kern.iem
\raise.5ex\hbox{\the\scriptfont0 #1}\kern-.iem
/\kern-.15em\lower.25ex\hbox{\the\scriptfont0 #2}}

12.1. 9 + 16 units 1 9 + 32 units 1 12 + 0 units. (But TE-X would consider so much
stretching to be :'infinitely bacV')

12.2. :\Vhat happens nowT is placed in a line of width \hsize1 \Vith hvice as much
space at the left as at the right; :and nowT is put flush right on the following line.

12.3. The first two give an :'overfull boxl' if the argument doesn)t fit on a line;
the third allows the argument to stick out into the marbrins instead. (Plain T£X)s
\centerline is \centerlinec; the stickout effect shmvs up in the narrow~column ex~
periment of Chapter 6.) If the argument contains no infinite glue1 \center linea and
\centerlineb produce the same effect; but \centerlineb will center an argument that
contains :fip glue.

12.4. Mr.-\& Mrs. -user were married by Rev. -orofnats. who preached on
Matt. -19\thinspace: \thinspace3--9. (Such thin spaces are traditional fOr Biblical
refCrences to chapter and verse 1 but you weren)t really expected to h·11ow that. Plain
T£X defines \thinspace to be a kern 1 not glue; hence no break between lines \Viii occur
at a thinspace.)

12.5. Donald-E.\ Knuth. ''Mathematical typography.'' {\sl Bull.\ Amer.\
Math.\ Soc.\ \bf1} (1979), 337--372. (But the '\' after 'E.• isn't necessary.
because of a rule you will learn if you venture around the next dangerous bend.)

12.6. There are several ways; perhaps the easiest are to type :\hbox{NASA}.) or
:NASA\null.) (The \null macro is an abbreviation for :\hbox{}).)

12.7. 1()00. except: 999 after B.s. D. and J; 1250 after the counna; 3000 after the
exclamation point 1 the double--right~quote 1 and the periods. If a period had come right
after the B (i.e. 1 if the text had said :B. Sally') 1 the space factor after that period
would have been 1()00. not 3000.

311

centerline
Biblical reference;;
thin;;pace
null

312 AppcndiJ: A: Answers to All the EJ:ercises

12.8. \box3 is 2pt high 1 4pt deep 1 3pt \Vide. Starting at the reference point of
\box3 1 go right .75pt and down 3pt to reach the reference point of \box1; or go right
1 pt to reach the reference point of \box2.

12.9. The stretch and shrink components of \baselineskip and \lineskip should
be equal 1 and the \lineskiplimit should equal the normal \lineskip spacing 1 to
guarantee continuity.

12.10. Yes it did 1 but only because none of his boxes had a negative height or depth.
He would have been safer if he had set \baselineskip=-1000pt 1 \lineskip=Opt 1 and
\lineskiplimit=16383pt. (Plain T£X)s \offinterlineskip macro does this.)

12.11. The interline glue \Viii be 11ero1 and the natural height is 1 + 1 - 3 + 2 = 1 pt
(because the depth of \box2 isn)t included in the natural height); so the glue \Viii
ultimately become \vskip-1pt when it)s set. Thus) \box3 is 3 pt high) 2 pt deep) 4 pt
wide. Its refCrence point coincides \Vith that of \box2; to get to the refCrence point of
\box1 you go up 2 pt and right 3 pt.

12.12. The interline glue \Viii be 6pt minus 3fil; the final depth \Viii be 11ero) since
\box2 is followed by glue; the natural height is 12 pt; and the shrinkability is 5 fiL So
\box4 \Viii be 4pt high) Opt deep) 1 pt wide) and it \Viii contain five items: \vskip
-1.6pt) \box1) \vskip1.2pt) \moveleft4pt\box2) \vskip-1.6pt. Starting at the ref~
erence point of \box4) you get to the reference point of \box1 by going up 4.6 pt) or
to the reference point of \box2 by going up .4pt and left 4pt. (For example) you go
up 4pt to get to the upper left corner of \box4; then dmv11 -1.6 pt) i.e.) up 1.6 pt) to
get to the upper left corner of \box1; then dmv11 1 pt to reach its refCrence point. This
problem is dearly academic) since it)s rather ridiculous to include infinite shrinkability
in the baselineskip.)

12.13. Now \box4 will be 4pt high) -4pt deep) 1 pt wide) and it will contain \vskip
-2.4pt) \box1) \vskip-1.2pt) \moveleft4pt\box2) \vskip-2.4pt. From the baseline
of \box4) go up exactly 5.4 pt to reach the baseline of \box1) or exactly 3.6 pt to reach
the baseline of \box2.

12.14. \vbox to x{} produces height x; \vtop to x{} produces depth x; the other
dimensions are 11ero. (This holds even when xis negative.)

12.15. There are several possibilities:

\def\nullbox#1#2#3{\vbox to#1{\vss\hrule height-#2depth#2width#3}}

work-s because the rule \Viii be of 11ero thickness. Less tricky is

\def\nullbox#1#2#3{\vbox to#1{\vss\vtop to#2{\vss\hbox to#3{}}}}

Both of these are valid \Vith negative height and/or depth) but they do not produce
negative \Vidth. If the \Vidth might be negative) but not the height or depth) you can
use) e.g.) \def\nullbox#1#2#3{\hbox to#3{\hss\raise#1 \null \lower#2\null} }. It)s
impossible for \hbox to construct a box whose height or depth is negative; it)s impossible
for \vbox or \vtop to construct a box whose width is negative.

However) there)s actually a trivial solution to the general problem) based on
features that \Viii be discussed later:

\def\nullbox#1#2#3{\setbox0=\null
\ht0=#1 \dp0=#2 \Yd0=#3 \boxO }

olfinterline;;kip

AppendiJ: A: Answers to All the EJ:ercises

12.16. \def\11ap#1{\hbox to Opt{\hss#1}}

12.17. You get :A) at the extreme left and :put~;.de.) at the extreme right 1 because the
space between words has the only stretchability that is finite; the infinite stretchability
cancels out. (In this case1 TE-X)s rule about infinite glue differs from what you would
get in the limit if the value of 1 fil were finite but getting larger and larger. The true
limiting behavior would stretch the text :A put~;.de.) in the same way1 but it would also
move that text infinitely far away beyond the right edge of the page.)

13.1. Simply saying \hbox{ ... } won)t work 1 since that box \Viii just continue the
previous vertical list \Vithout S\vitching modes. You need to start the paragraph explic~
itly1 and the straightforward way to do that is to say \indent\hbox{ ... }. But suppose
you want to define a macro that expands to an hbox 1 where this macro is to be used in
the midst of a paragraph as well as at the beginning; then you don)t want to force users
to type \indent before calling your macro at the bebrinning of a paragraph1 nor do you
want to say \indent in the macro itself (since that might insert unwanted indenta~
tions). One solution to this more general problem is to say :\u\unskip\hbox{ ... }) 1

since \u makes the mode horimntal while \unskip removes the unwanted space. Plain
T£X provides a \leavevmode macro 1 which solves this problem in what is probably
the most efficient way: \leavevmode is an abbreviation fOr :\unhbox\voidbox) 1 where
\voidbox is a permanently empty box register.

13.2. The output of \tracingcommands shows that fOur blank space tokens were
digested; these originated at the ends of lines 21 31 41 and 5. Only the first had any
effect 1 since blank spaces are ignored in math formulas and in vertical modes.

13.3. The end-group character finishes the paragraph and the \vbox 1 and \bye
stands for :\vfill ...) 1 so the next three commands are

{math mode: math shift character $}
{restricted horizontal mode: end-group character }}
{vertical mode: \vfill}

13.4. It contains only mixtures of vertical glue and horimntal rules whose reference
points appear at the left of the page; there)s no text.

13.5. Vertical mode can occur only as the outermost mode; horimntal mode and
display math mode can occur only when immediately enclosed by vertical or internal
vertical mode; ordinary math mode cannot be immediately enclosed by vertical or
internal vertical mode; all other cases are possible.

14.1. (cf.-Chapter-12).
Chapters 12 and-21.
line-16 of Chapter-6's {\tt story}
lines 7 to-11
lines 2,-3. 4. and-5.
(2)-a big black bar
All 256-characters are initially of category-12.
letter-{\tt x} in family-1.
the factor-f. where n-is 1000-times-f.

14.2. :for all n-greater than-n_O) avoids distracting breaks.

313

inlinite glue
un;;kip
Jea'<C'<HlOdC

314 AppcndiJ: A: Answers to All the EJ:ercises

14.3. :exercise \hbox{4.3.2--15}) guarantees that there is no break after the en~
dash. But this precaution is rarely necessary1 so :exercise 4.3.2--15) is an acceptable
answer. No- is needed; :4.3.2-15) is so long that it causes no offense at the beginning
of a line.

14.4. The space you get from - \Viii stretch or shrink \Vith the other spaces in the
same line1 but the space inside an hbox has a fixed \Vidth since that glue has already
been set once and for alL Furthermore the first alternative permits the word Chap~
ter to be hyphenated.

14.5. :\hbox{$x=O$}) is unbreakable 1 and we \Viii see later that :${x=O}$) cannot be
broken. Both of these solutions set the glue surrounding the equals sign to some fixed
value1 but such glue normally wants to stretch; furthermore 1 the \hbox solution might
include undesirable blank space at the beginning or end of a line1 if \mathsurround is
nont~ero. A third solution :$x=\nobreak0$) avoids both defects.

14.6. \exhyphenpenalty=10000 prohibits all such breaks1 according to the rules
found later in this chapter. Similarly1 \hyphenpenal ty=10000 prevents break-s aller
implicit (discretionary) hyphens.

14.7. The second and fOurth lines are indented by an additional :'quacr' of space1

i.e. 1 by one extra em in the current t:yl)e style. (The control sequence \quad does an
\hskip; when TE-X is in vertical mode 1 \hskip begins a new paragraph and puts glue
after the indentation.) If \indent had been used instead1 those lines wouldn)t have
been indented any more than the first and third1 because \indent is implicit at the
bebrinning of every paragraph. Double indentation on the second and fOurth lines could
have been achieved by :\indent\indent).

14.8. ba\ck en and Be\ttt uch1 where the macros \ck and \ttt are defined by

\def\ck{\discretionary{k-}{k}{ck}}
\def\ttt{tt\discretionary{-}{t}{}}

The English word :eighteen) might deserve similar treatment. TE-X)s hyphenation al~
gorithm \Viii not make such spelling changes automatically.

14.9. \def\break{\pena1ty-10000 }

14.10. You get a forced break as if \no break were not present 1 because \break cannot
be cancelled by another penalty. In general if you have two penalties in a row 1 their
combined effect is the same as a single penalty whose value is the minimum of the two
original values 1 unless both of those values fOrce breaks. (You get two break-s from
\break\break; the second one creates an empty line.)

14.11. Breaks are forced when p:::; -100001 so there)s no point in subtracting a large
constant whose effect on the total demerits is known a priori1 especially when that
might cause arithmetic overflow.

14.12. (10 + 131)2 + 02 + 1()000 = 29881 and (I()+ 1)2 + 502 + 1()000 = 12621. In
both cases the \adjdemeri ts were added because the lines were visually incompati~
ble (decent 1 then very loose 1 then decent); plain TE-X)s values for \linepenalty and
\adjdemeri ts were used.

en-da,-;h
hyphenate
math;;urround
h;;kip
adjdemerit;;
linepenalty

AppendiJ: A: Answers to All the EJ:ercises 315

14.13. Because TE-X discards a glue item that occurs just befOre \par. Ben should
have said1 e.g. 1 :\hfilneg\ \par).

14.14 . .Just say \parfillskip=\parindent. Of course 1 TE-X \Viii not be able to find
appropriate line breaks unless each parabrraph is sufficiently long or sufficiently lucky;
but \Vith an appropriate text 1 your output \Viii be immaculately symmetricaL

14.15. Assuming that the author is deceased and/or set in his or her wa:y-s 1 the remedy
is to insert :{\parfillskip=Opt\par\parskip=Opt\noindent}) in random places1 after
each 50 lines or so of text. (Every space between words is usually a fCasible breaJ.:point1

when you get sufficiently far from the beginning of a paragraph.)

14.16. {\1eftskip=-1pt \rightskip=1pt (text) \par}

(This applies to a full parabrraph; if you want to correct only isolated lines 1 you have
to do it by hand.)

14.17. :\def\line#1{\hbox to\hsize{\hskip\leftskip#1 \hskip\rightskip} }) is
the only change needed. (Incidentally1 displayed equations don)t take account of
\leftskip and \rightskip either; it)s more difficult to change that 1 because so many
variations are possible.)

14.18. The author)s best solution is based on a variable \dimen rebrister \x:
\setbox1=\hbox{I}
\setbox0=\vbox{\parshape=11 -0\xO\x -1\x2\x -2\x4\x -3\x6\x

-4\x8\x -5\x10\x -6\x12\x -7\x14\x -8\x16\x -9\x18\x -10\x20\x
\ifdim \x>2em \rightskip=-\wd1
\else \frenchspacing \rightskip=-\wd1 plusipt minusipt
\leftskip=Opt plus 1pt minusipt \fi

\parfillskip=Opt \tolerance=1000 \noindent I turn •... hand.}
\centerline{\hbox to \wd1{\box0\hss}}

Satisfactory results are obtained with font cmr10 when \x is set to 8.9pt1 13.4pt1

18.1pt1 22.6pt 1 32.6pt1 and 47.2pt 1 yielding triangles that are respectively 11 1 91 81 71

61 and 5 lines talL

14.19. \item{} at the bebrinning of each paragraph that wants hm1bring indentation.

14.20. \item{$\bu11et$}

14.21. Either chm1ge \hsize or \rightskip. The trick is to change it back again at
the end of a paragraph. Here)s one way1 without grouping:

\let\endgraf=\par \edef\restorehsize{\hsize=\the\hsize}
\def\par{\endgraf \restorehsize \let\par=\endgraf}
\advance\hsize by-\parindent

14.22. \dimenO=\hsize \advance\dimenO by 2em
\parshape=3 Opt\hsize Opt\hsize -2em\dimen0

14.23. The three paragraphs can be combined into a single paragraph1 if you use
:\hfil\vadjust{\vskip\parskip}\break\indent) instead of :\par) after the first two.
Then of course you say1 e.g. 1 \hangindent=-50pt \hangafter=-15. (The smne idea
cm1 be applied in connection \Vith \looseness 1 if you wm1t T£X to make one of three

di;;playwl equation;;

316 AppcndiJ: A: Answers to All the EJ:ercises

paragraphs looser but if you don)t want to choose which one it will be. However 1 long
paragraphs fill TE-X)s memory; please use restraint.) See also the next exercise.

14.24. Use \hangcarryover between paragraphs1 defined as foll0\\'8:

\def\hangcarryover{\edef\next{\hangafter=\the\hangafter
\hangindent=\the\hangindent}

\par\next
\edef\next{\prevgraf=\the\prevgraf}
\indent\next}

14.25. It will set the current parabrraph in the minimum number of lines that can be
achieved \Vithout violating the tolerance; and1 given that number of lines 1 it \Viii break
them optimally. (However 1 nont~ero looseness makes TE-X work harder 1 so this is not
recommended if you don)t want to pay for the extra computation. You can achieve
almost the same result much more efficiently by setting \linepenalty=1001 say.)

14.26. 1501 1001 01 250. (\Vhen the total penalty is 11ero1 as between lines 3 and 4 in
this case 1 no penalty is actually inserted.)

14.27. \interlinepenalty plus \clubpenalty plus \wido-wpenalty (and also plus
\brokenpenalty 1 if the first line ends with a discretionary break).

14.28. The tricky part is to avoid :'opening upl' the parabrraph by adding anything
to its height; yet this star is to be contributed after a line having an unknown depth 1

because the depth of the line depends on details of line breaking that aren)t hil0\V1l until
afterwards. The follmving solution uses \strut 1 and assumes that the line containing
the marginal star does not have depth exceeding \dp\strutbox1 the depth of a \strut.

\def\strutdepth{\dp\strutbox}
\def\marginalstar{\strut\vadjust{\kern-\strutdepth\specialstar}}

Here \specialstar is a box of height 11ero and depth \strutdepth1 and it puts an
asterisk in the left margin:

\def\specialstar{\vtop to \strutdepth{
\baselineskip\strutdepth
\vss\llap{• }\null}}

14.29. \def\insertbullets{\everypar={\llap{\bullet\enspace}}}
(A similar device can be used to insert hanging indentation1 and/or to number the
paragraphs automatically.)

14.30. First comes \par skip glue (but you might not see it on the current page if you
say \showlists 1 since glue disappears at the top of each page). Then comes the result
of \everypar 1 but let)s assume that \everypar doesn)t add an:yi;hing to the horimntal
list 1 so that you get an empty horimntal list; then there)s no partial parabrraph befOre
the display. The displayed equation follo\\'S the normal rules (it occupies lines 1-3 of
the paragraph 1 and uses the indentation and length of line 21 if there)s a nonstandard
shape). Nothing follows the display1 since a blank space is ignored after a dosing:$$).

Incidentally1 the behavior is different if you start a paragraph with :$$)instead
of with \noindent$$ 1 since TE-X inserts a paragraph indentation that will appear on a
line by itself (with \leftskip and \parfillskip and \rightskip glue).

linepenalty
;;trot
dp
;;trot
di;;play at beginning of paragrapl

AppendiJ: A: Answers to All the EJ:ercises

14.31. A break at \penalty50 would cancel \hskip2em\nobreak\hfil 1 so the next
line would be forced to start \Vith the reviewer)s name flush left. (But \vadjust{}
would actually be better than \hbox{}; it uses TE-X more efficiently.)

14.32. Othenvise the line--breaking algorithm might prefer two final lines to one final
line1 simply in order to move a h:yl)hen from the second~ last line up to the third~last line
where it doesn)t cause demerits. This in fact caused some surprises when the \signed
macro was being tested; \tracingparagraphs=1 was used to diagnose the problem.

14.33. Distributing the extra space evenly would lead to three lines of the maximum
badness (10000). It)s better to have just one bad line instead of three1 since TE-X doesn)t
distinguish debrrees of badness when lines are really ft\vfuL In this particular case the
\tolerance was 200) so T£X didn)t try any line breaks that would stretch the first two
lines; but even if the tolerance had been raised to 10000) the optimum setting would
have had only one underfull line. If you really want to spread the space evenly you can
do so by using \spaceskip to increase the amount of stretchability between words.

14.34. \def\raggedcenter{\leftskip=Opt plus4em \rightskip=\leftskip
\parfillskip=Opt \spaceskip=.3333em \xspaceskip=.5em
\pretolerance=9999 \tolerance=9999 \parindent=Opt
\hyphenpenalty=9999 \exhyphenpenalty=9999 }

15.1. The last three page~break calculations would have been
% t=503.0 plus 8.0 minus 4.0 g=528.0 b=3049 p=150 c=3199#
% t=514.0 plus 8.0 minus 4.0 g=528.0 b=533 p=-100 c=433#
% t=542.0 plus 11.0 minus 6.0 g=528.0 b=* p=O c=*

so the break would have occurred at the same place. The badness would have been 533)
but the page would still have looked tolerable. (On the other hand if that parabrraph
had been two lines shorter instead of one) the first two lines of the next :'dangerous
bemr' paragraph would have appeared on that page; the natural height t = 531 pt
would have been able to shrink to y = 528 pt because the three :'medskipsl' on the page
would have had a total shrinkability of 6 pt. This would certainly have been preferable
to a stretched~out page whose badness was 3049; but the author might have seen it and
written another sentence or two 1 so that the paragraph would not have been broken
up. After all 1 this manual is supposed to be an example of good practice.)

15.2. The next legal break after the beginning of a dangerous bend parabrraph occurs
28pt later 1 because there is Gpt additional space for a \medskip 1 followed by two lines
of 11 pt each. TE-X does not allow breaking between those two lines; the \clubpenalty
is set briefly to 10000 in Appendix E 1 since the dangerous bend symbol is two lines talL

15.3. A page always contains at least one box 1 if there are no insertions 1 since the
legal breakpoints are discarded othenvise. Statement (a) fails if the height of the
topmost box exceeds 10pt. Statement (b) fails if the depth of the bottommost box
exceeds 2.2 pt1 or if some glue or kern comes between the bottommost box and the
page break (unless that glue or kern exactly cancels the depth of the box).

15.4. \topinsert\vskip2in\rightline{\vbox{\hsize ... artwork.}}\endinsert
does the job. But it)s slightly more efficient to avoid \rightline by changing \leftskip
as follO\\'S: :\leftskip=\hsize \advance\leftskip by-3in). Then TE-X doesn)t have
to read the text of the caption twice.

317

'<adju;;t
tolerance
;;pace;; kip
dubpenalty
right line
kft;;kip

318 AppcndiJ: A: Answers to All the EJ:ercises

15.5. It would appear on page 25 1 since it does fit there. A \midinsert \Viii jump
ahead of other insertions only if it is not carried over to another page; fOr example1

if the second 3~inch insertion were a \midinsert 1 it would not appear on page 26 1

because it is converted to a \topinsert as soon as the \midinsert macro notices that
the insertion is too big for page 25.

15.6. Set \count1 to 501 then \dimen2 to 50pt1 then \count1 to 61 then \skip2
to -lOpt plus Gfil minus 50pt1 then \skip2 to 60pt plus -36fil minus -300pt1 then
\skip2 to 1 sp minus -6 sp 1 then \count6 to 11 then \ski pi to 25 pt plus 1 sp mi~
nus 1 fill 1 then \skip2 to 25 pt minus -150 pt1 then \ski pi to Opt plus 1 sp minus 1 filL

15.7. If \skip4 has infinite stretchability1 \skipS \Viii be 11ero; otherwise it will be
0 pt plus I pt.

15.8. \advance\dimen2 by0.5\dimen3 \divide\dimen2 by\dimen3
\multiply\dimen2 by\dimen3

15.9. \count1 takes the values 51 then 2 (the old 5 is saved) 1 then 4 (which is made
global) 1 then 8 (and 4 is saved); finally the value 4 is restored 1 and that is the answer.
(For further remarks 1 see the discussion of \tracingrestores in Chapter 27.)

15.10. \hbox{\hbox{A}A}. After :\unhbox5) 1 \box5 is void; \unhcopy5 yields nothing.

15.11. \hbox{A}. But after '{\g1oba1\setbox3=\hbox{A}\setbox3=\box3}', \box3
will be void.

15.12. \newcount\notenumber
\def\clearnotenumber{\notenumber=O\relax}
\def\note{\advance\notenumber by 1

\footnote{$~{\the\notenumber}$}}

15.13. Yes 1 in severe circumstances. (1) If there is no other legal breakpoint 1 TE-X
will take a break whose cost is oo. (2) If \vadjust{\eject} occurs on the same line
as a footnote 1 befOre that footnote 1 the reference will be fOrcibly detached. (3) Other
\vadjust commands on that line could also interpose breah:points befOre the insertion.

16.1. $\gamma+\nu\in\Gamma$.

16.2. \le1 \ge 1 and \ne. (These are short for :'less~or~equal/' :'greater~or~er1ual/'

and :'not~equal.l') You can also use the names \leq1 \geq1 and \neq. (The fourth most
common sy-mbol is 1 perhaps 1 :oo; 1 which stands for :'infinityl' and is called :\infty'.)

16.3. In the former 1 the :_2) applies to the plus sign (x +2 F:1); but in the latter1 it
applies to an empty subfOrmula (x + zP1).

16.4. The results are :x!Jz; and); the z in the first alternative is the same sit~e as
the JJ 1 but in the second it is smaller. Furthermore1 the 11 and z in the first case aren)t
quite at the same height. (Good typists never even think of the first construction1

because mathematicians never want it.)

16.5. The second alternative doesn)t work properly when there)s a subscript at the
same time as a prime. Furthermore1 some mathematicians use \prime also in the
subscript position; they write1 for example1 F 1 (1L' 1 z) = fJF(1L' 1 z)jfJz and Fi(1L' 1 z) =
iJF(rr, z)jiJrr.

k
ge
llC
kq
geq
neq
inlinity
infty

AppendiJ: A: Answers to All the EJ:ercises

16.6. $R_i{}'{jk}{}_1$.

16.7. 10,..{10}; 2,..{n+1}; (n+1),..2; \sqrt{1-x,..2}; \overline{w+\overline z};
p_1'{e_1}; a_{b_{c_{d_e}}}; \root3\of{h' '_n(\a1pha x)}. (Of course, you should
enclose these formulas in dollar signs so that TE-X will process them in math mode.
Superscripts and subscripts can be briven in either order; for example1 h' '_n and h_n' '
both work the same. You should not leave out any of the braces shown here; for
example1 :$10,..10$) would yield :10 1 0). But it doesn)t hurt to insert additional braces
around letters or numbers 1 as in :({n}+{1}),..{2}). The indicated blank spaces are
necessary unless you use extra braces; othenvise TE-X will complain about undefined
control sequences \overlinez and \alphax.)

16.8. He got :Ifx = 11 .. .) because he fOrgot to leave a space after :If); spaces dis~
appear between dollar sibfilS. He should also have ended the sentence \Vith :y.);
punctuation that belongs to a sentence should not be included in a formula1 as we \Viii
see in Chapter 18. (But you aren)t expected to know that yet.)

16.9. Deleting an element from an n-tuple leaves an $(n-1)$-tuple.

16.10. Q 1 i,y 1 j,p1 Q1 JJ. (The analogous Greek letters are {1 1 ~1 1 (1 rf 1 J-t 1 f: 1 p 1 1> 1 ;.p 1 X 1 1/J.)

16.11. $z'{•2}$ and $h_•' (z)$.

16.12. $3{\cdot}1416$. (One of the earlier examples in this chapter showed that
\cdot is a binary operation; putting it in braces makes it act like an ordinary sy-mboL)

If you have lots of constants like this 1 for example in a table1 there)s a way to
make ordinary periods act like \cdot symbols: .Just define \mathcode'. to be 11 0201 1

assuming that the fonts of plain TE-X are being used. However 1 this could be dangerous 1

since ordinary periods are used frequently in displayed equations; the \mathcode change
should be confined to places where every period is to be a \cdot.

16.13. $e'{ -x'2}$, $D\sim p'\a1pha M+l$, and $\ghat\in(H'{\pi_1'{ -1}}) '$. (If
you are reading the dangerous bend sections1 you know that the recommended way to
define \ghat is '\def\ghat{{\hat g}}'.)

17.1. x + y2/(k+l) ($x+y'{2/(k+1)}$).

17.2. ((a+ 1)/(b+ l))x ($((a+1)/(b+1))x$).

17.3. He got the displayed formula

X = (JJ2
k +I)

because he forgot that an unconfined \over applies to everything. (He should probably
have typed :$$x=\left(y,..2\over k+i\right)$$) 1 using ideas that \Viii be presented
later in this chapter; this not only makes the parentheses larger 1 it keeps the :x =)out
of the fraction 1 because \left and \right introduce subfOrmulas.)

17.4. :$7{1\over2}\cents$) or :7$1\over2$\cents). (Incidentally1 the definition
used here was \def\cents{\hbox{\rm\rlap/c} }.)

17.5. StyleD' is used fOr the subformula p~' 1 hence styleS' is used for the super~
script e' and the subscript 21 and style SS' is used for the supersuperscript prime. The
square root sign and the p appear in text sit~e; the 2 and the e appear in script sit~e;
and the t is in scriptscript sit~e.

319

;;pace;;
Greek
italic letter,; with de;;cender;;
de;;cender,;
cdot
mathcode
rlap
cent;;

320 AppcndiJ: A: Answers to All the EJ:ercises

17.6. $${1\over2Hn\choose k}$$; $$\disp1aysty1e{n\choose k}\over2$$. All
of these braces are necessary.

17.7. $${p \choose 2} x'2 y'{p-2} - {1 \over 1-x}{1 \over 1-x'2}.$$

17.8. $$\sum_{i=1}'p\sum_{j=1}'q\sum_{k=1}'ra_{ij}b_{jk}c_{ki}$$.

17.9. $$\sum_{{\scriptsty1e 1\1e i\1e p \atop \scriptsty1e 1\1e j\1e q}
\atop \scriptsty1e 1\1e k\1e r} a_{ij} b_{jk} c_{ki}$$.

17.10. $\disp1aysty1e\bigg1({\partia1'2\over\partia1 x'2}+
{\partia1'2\over\partia1 y'2}\biggr)\big11\varphi(x+iy)\bigrl'2=0$.

17.11. Formulas that are more than one line tall are usually two lines tall 1 not 1~ or
2 ~ lines talL

17.12. $\bigl(x+f(x)\bigr) \big/ \bigl(x-f(x)\bigr)$. (Notice especially the
:\big/'; an ordinary slash would look too small between the \big parentheses.

17.13. $$\pi(n)=\sum_{k=2}'n\1eft\1f1oor\phi(k)\over k-1\right\rf1oor.$$

17.14. $$\pi(n)=\sum_{m=2}'n\1eft\1f1oor\bigg1(\sum_{k=1}'{m-1}\big1
\1f1oor(m/k)\big/\1cei1 m/k\rcei1\bigr\rf1oor\biggr)'{-1}\right\rf1oor.$$

17.15. A displayed formula equivalent to $${D}{{T}\over{TY{{SY{SS}}}$$.

17.16. \def\sqr#1#2{{\vcenter{\vbox{\hru1e height.#2pt
\hbox{\vrule width.#2pt height#ipt \kern#ipt

\vrule width.#2pt}
\hru1e height.#2pt}}}}

\def\square{\mathchoice\sqr34\sqr34\sqr{2.1}3\sqr{1.5}3}

17.17. \def\euler{\atopwithdelims<> }.

17.18. The \textfontO that was current at the beginning of the formula will be
used1 because this redefinition is local to the braces. (It would be a different story if
:\global \textfont) had appeared instead; that would have changed the meaning of
\textfontO at all levels.)

17.19. 11 2208 and 11 220F.

17.20. \mathchardef\alpha= 11 710B. Incidentally1 {\rm\alpha} \Viii then give a spu~
rious result 1 because character position "OB of roman fonts does not contain an alpha;
you should warn your users about what characters they are allowed to type under the
influence of special conventions like \rm.

17.21. If \del code' { were set to some nonnegative delimiter code 1 you would get no
error message when you \\TOte something like :\left{'. This would be bad because
strange effects would happen when certain subfOrmulas were briven as arguments to
macros 1 or when they appeared in alignments. But it has an even worse defCct 1 because
a user who gets away with :\left{' is likely to try also :\biglC 1 which fails miserably.

17.22. Since \bigl is defined as a macro with one parameter1 it gets just :\delimiter)
as the argument. You have to \\Tite :\bigl{\delimiter11 426830A}) to make this work.
On the other hand 1 \left will balk if the following character is a left brace. TherefOre
it)s best to have control sequence names for all delimiters.

;;la,-;h
global
rm

AppendiJ: A: Answers to All the EJ:ercises

18.1. $R(n,t)=O(t'{n/2})$, as $t\to0'+$. (N.B.: '0(', not '0('.)

18.2. $$p_1(n)=\lim_{m\to\infty}\sum_{\nu=O}'\infty
\bigl(1-\cos'{2m}(\nu!'n\pi/n)\bigr).$$

[Mathematicians may enjoy interpreting this formula; d. G. H. Hardy1 _;\Jessenger of
:vfat/mnatics 35 (1906), 145-146.]

18.3. \def\limsup{\mathop{\overline{\rm lim}}}
\def\liminf{\mathop{\underline{\rm lim}}}

[Notice that the limits :n -+ oo) appear at different levels 1 in both of the displa:y-s 1

because :sup) and the underbar descend below the baseline. It is possible to unify the
limit positions by using phantoms 1 as explained later in this chapter. For example 1

\def\limsup{\mathop{\vphantom{\underline{}}\overline{\rm lim}}}

would give lower limits in the same position as \liminf.]

18.4. x = 0((mod y)"). He should have typed '$x\equiv0\pmod{y'n}$'.

18.5. $${n\choose k}\equiv{\lfloor n/p\rfloor\choose
\!floor k/p\rfloor}{n\bmod p\choose k\bmod p}\pmod p.$$

18.6. $\bf\bar x'{\rm T}Mx={\rmO}\iff x=O$. (If you typed a space between
\rm and 01 you wasted a keystroke; but don)t feel guilty about it.)

18.7. $S\subseteq{\mit\Sigma}\iff S\in{\cal S}$. In this case the braces are
redundant and could be eliminated; but you shouldn)t try to do everything with fewest
ke:y-strokes 1 or you)ll outsmart yourself some day.

18.8. $${\it available}+\sum_{i=1}'n\max\bigl({\it full}(i),
{\it reserved}(i)\bigr)={\it capacity}.$$

[If \it had been used throughout the formula 1 the subscript i and superscript n would
have caused error messages saying :\scriptfont 4 is undefined) 1 since plain TE-X
makes \it available only in text sit~e.]

18.9. {\obeylines \sfcode';=3000
{\bf for $j:=2$ step 1 until n do}
\quad {\bf begin} ${\it accum}:=A[j]$; $k:=j-1$; $A[O]:=\it accum$;
\quad {\bf Yhile $A[k]>\it accum$ do}
\qquad {\bf begin} $A[k+1]:=A[k]$; $k:=k-1$;
\qquad {\bf end};
\quad $A[k+1]:=\it accum$;
\quad {\bf end}.\par}

[This is something like the :'poetryl' example in Chapter 141 but much more difficult.
Some manuals of style say that punctuation should inherit the font of the preceding
character 1 so that three hinds of semicolons should be typeset; e.g. 1 these experts
recommend :k := j -1; A[O] := occum; end;). The author heartily disagrees.]

18.10. Let H-be a Hilbert space. \ C-a closed bounded convex subset
of-H. \ T-a nonexpansive self map of-C. Suppose that as $n\to\infty$.
\ $a_ {n,k}\toO$ for each-k, and $\gamma_n=\sum_ {k=OY\infty(a_ {n,k+1}-

321

Hardy
phantom;;
;;cript font
;;fcode
punct oat ion

322 AppcndiJ: A: Answers to All the EJ:ercises

a_ {n,k}) '+\toO$. Then for each x'in'C, \ $A_nx=\sum_ {k=OY\infty
a_{n,k}T~kx$ converges weakly to a fixed point of-T.

[If any mathematicians are reading this 1 they might either appreciate or re--
sent the follmving attempt to edit the briven paragraph into a more acceptable style:
:'Let C be a dosed 1 bounded1 convex subset of a Hilbert space H 1 and let T be a non~
expansive self map of C. Suppose that as n -+ oo 1 we have an,k -+ 0 for each k 1

and ~In = L~=O(an,k+J - an,k)+ -+ 0. Then for each X in c) the infinite sum
Anx = L~=0 an,kTkx converges weakly to a fixed point of T.l']

18.11. $$\int_O'\infty{t-ib\over t'2+b'2}e'{iat}\,dt=
e'{ab}E_1(ab),\qquad a,b>O.$$

18.12. $$\hbar=1.0545\times10'{-27}\rm\,erg\,sec.$$

18.13. There are ten atoms (the first is f and last is J/); their t:Yl)CS 1 and the inter~
atomic spacing1 are respectively

Ord Open Ord Punct \, Ord Close\; Rei\; Ord \> Bin\> Or d.

18.14. $\left]-\infty, T\right [\times\left]-\infty, T\right [$. (Or one could
say \mathopen and \mathclose instead of \left and \right; then TE-X would not
choose the sit~e of the delimiters 1 nor would it consider the subfOrmulas to be of type
Inner.) Open intervals are more dearly expressed in print by using parentheses instead
of reversed brackets; fOr example 1 compare T) x (-oo1 T)) to the briven formula.

18.15. The first+ \Viii become a Bin atom 1 the second an Ord; hence the result is X 1

medium space1 + 1 medium space1 + 1 no space1 1.

18.16. $x_1+x_1x_2+\cdots+x_1x_2\ldots x_n$ and
$(x_1,\ldots,x_n)\cdot(y_1,\ldots.y_n)=x_1y_1+\cdots+x_ny_n$.

18.17. The commas belong to the sentence1 not to the formula; his decision to put
them into math mode meant that TE-X didn)t put large enough spaces aller them. Also1

his formula :i = 11 21 ••• 1 n) allo\\'B no break-s between lines 1 except aller the = 1 so he)s
risking overfull box problems. But suppose the sentence had been more terse:

Clearlya.;<b; (i=l,2, ... ,n).

Then his idea would be basically correct:

Clearly $a_i<b_i$ \ ($i=1,2,\ldots,n$).

18.18 never\footnote*{Well \dots. hardly ever.} have.

18.19. Neither fOrmula will be broken between lines 1 but the thick spaces in the
second formula will be set to their natural width while the thick spaces in the first
formula will retain their stretchability.

18.20. Set \relpenalty=10000 and \binoppenalty=10000. And you also need to
change the definitions of \bmod and \pmod1 which insert their own penalties.

18.21. $\bigl\{\,x'3\bigmlh(x)\in\{-1,0,+1\}\,\bigr\}$.

mathopen
mathdo;;e
rdpenalty
binoppenalty
bnwd
pmod

AppendiJ: A: Answers to All the EJ:ercises

18.22. $\{\.p\mid p$-and $p+2$ are prime$\. \}$ 1 assuming that \mathsurround
is t~ero. The more difficult alternative :$\{\.p\mid p\ {\rm and}\ p+2\rm\ are\
prime\.\}$) is not a solution 1 because line breaJ.-s do not occur at \u (or at glue of any
kind) \Vithin math formulas. Of course it may be best to display a formula like this 1

instead of breaking it between lines.

18.23. $$f(x)=\cases{1/3&if $0\1e x\1e1$;\cr 2/3&if $3\1e x\1e4$;\cr
O&elsewhere.\cr}$$

18.24. $$\1eft\1group\matrix{a&b&c\cr d&e&f\cr}\right\rgroup
\left\lgroup\matrix{u&x\cr v&y\cr w&z\cr}\right\rgroup$$.

18.25. \pmatrix{y_1\cr \vdots\cr y_k\cr}.

18.26. \def\undertext #1{$\underline{\smash{\hbox {#1}} }$} \Viii underline the
words and cross through the descenders; or you could insert \vphantom{y} befOre
the \hbox 1 thereby lowering all of the underlines to a position below all descenders.
Neither of these gives exactly what is wanted. (See also \underbar in Appendix B.)
Underlining is actually not very common in fine t:yl)ography1 since font changes usually
work just as well or better 1 when you want to emphasit~e something. If you really want
underlined text 1 it)s best to have a special font in which all the letters are underlined.

18.27. $n,..{\rm th}$ root. (Incidentally1 it is also acceptable to type :nth) 1

getting :nth) 1 in such situations; the fact that the n is in italics distinguishes it from
the suffix. T:yl)ed manuscripts generally render this with a hyphen 1 but :Jkth) is frmv11ed
on nowadays when an italic n is available.)

18.28. ${\bf S'{\rm-1}TS=dg}(\omega_1, \1dots, \omega_n) =\bf\Lambda$. (Did
you notice the difference between \omega (:..v) and w (tv)?)

18.29. $\Pr(\,m=n\mid m+n=3\,)$. (Analogous to a set.)

18.30. $\sin18'\circ={1\over4}(\sqrt5-1)$.

18.31. $k=1.38\times10'{-16}\rm\,erg/'\circ K$.

18.32. $\bar\Phi\subset NL_1'•/N=\bar L_1'•
\subseteq\cdots\subseteq NL_n,..*/N=\bar L_n,..*$.

18.33. $I(\1ambda)=\int\!\!\int_Dg(x,y)e'{i\1ambda h(x,y)}\,dx\,dy$.
(Although three \!)s work out best between consecutive integral signs in displays 1 the
text style seems to want only two.)

18.34. $\int_0'1\!\cdots\int_0'1f(x_1,\1dots,x_n)\,dx_1\1dots\,dx_n$.

18.35. $$x_{2m}\equiv\cases{Q(X_m'2-P_2W_m'2)-2S'2&(m odd)\cr
\noalign{\vskip2pt} % spread the lines apart a little
P_2'2(X_m'2-P_2W_m'2)-2S'2&(m even)\cr}\pmod N.$$

18.36. $$(1+x_1z+x_1,..2z,..2+\cdots\.)\ldots(1+x_nz+x_n,..2z,..2+\cdots\.)
={1 \over(1-x_1z) \1dots (1-x_nz)}. $$ (Notice the uses of \, .)

323

math;;urround
;;pace
under bar
nth
omega
p,
dr('
double integral
integral, multiple

324 AppcndiJ: A: Answers to All the EJ:ercises

18.37. $$\prod_{j\ge0}\bigg1(\sum_{k\ge0}a_{jk}z'k\biggr)
=\sum_{n\ge0}z'n\,\Bigg1(\sum_

{\scriptstyle k_O.k_1,\ldots\ge0\atop
\scriptstyle k_O+k_1+\cdots=n}

a_{Ok_O}a_{1k_1}\1dots\,\Biggr).$$
Some people would prefer to have the latter parentheses larger; but \left and \right
come out a bit too large in this case. It)s not difficult to define \bigggl and \bigggr
macros 1 analogous to the definitions of \biggl and \biggr in Appendix B.

18.38. $${(n_1+n_2+\cdots+n_m)!\over n_1!\,n_2!\ldots n_m!}
={n_1+n_2\choose n_2}{n_1+n_2+n_3\choose n_3}

\ldots{n_1+n_2+\cdots+n_m\choose n_m}.$$

18.39. $$\def\\#1#2{(1-q'{#1_#2+n})} %to save typing
\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N}

=\prod_{n=O}'R{\\a1\\a2\1dots\\aM\over\\b1\\b2\1dots\\bN}.$$

18.40. $$\sum_{p\rm\;prime}f(p)=\int_{t>1}f(t)\,d\pi(t).$$

18.41. $$\{\underbrace{\overbrace{\mathstrut a. \ldots,a}
~{k\;a\mathchar''\rm s}.

\overbrace{\mathstrut b,\ldots,b}
~{1\;b\mathchar''\rm s}}_{k+l\rm\;elements}\}.$$

Notice how apostrophes (instead of primes) were obtained.

18.42. $$\pmatrix{\pmatrix{a&b\cr c&d\cr}&
\pmatrix{e&f\cr g&h\cr}\cr

\noalign{\smallskip}
0&\pmatrix{i&j\cr k&1\cr}\cr}.$$

18.43. $$\det\1eftl\,\matrix{
c_O&c_1\hfi11&c_2\hfi11&\1dots&c_n\hfi11\cr
c_1&c_2\hfi11&c_3\hfi11&\1dots&c_{n+1}\hfi11\cr
c_2&c_3\hfi11&c_4\hfi11&\1dots&c_{n+2}\hfi11\cr
\,\vdots\hfi11&\,\vdots\hfi11&

\,\vdots\hfi11&&\,\vdots\hfi11\cr
c_n&c_{n+1}\hfi11&c_{n+2}\hfi11&\1dots&c_{2n}\hfi11\cr
}\righti>O.$$

18.44. $$\mathop{{\sum}'}_{x\in A}f(x)\mathre1{\mathop='{\rm def}}
\sum_{\scriptstyle x\in A\atop\scriptstyle x\neO}f(x).$$

This work-s because {\sum} is type Ord (so its superscript is not set above) 1 but
\mathop{{\sum}'} is type Op (so its subscript is set below). The limits are centered
on L'1 however 1 not on :z=. If you don)t like that 1 the remedy is more difficult; one
solution is to use \sumprime_ {x\in A} where \sumprime is defined as follO\\'S:

\def\sumprime_#1{\setbox0=\hbox{$\scriptstyle{#1}$}
\setbox2=\hbox{$\disp1aysty1e{\sum}$}
\setbox4=\hbox{${}'\mathsurround=Opt$}
\dimen0=.5\wd0 \advance\dimenO by-.5\wd2
\ifdim\dimenO>Opt

bigggl
bigggr
atopwithddim;;
apo;;trophe;;
mat hop
;;om prime

AppendiJ: A: Answers to All the EJ:ercises

\ifdim\dimen0>\wd4 \kern\wd4 \else\kern\dimenO\fi\fi
\mathop{{\sum}'}_{\kern-\Yd4 #1}}

18.45. $$2\uparrow\uparrow k\mathrel{\mathop=~{\rm def}}
2-{2-{2-{\cdot-{\cdot-{\cdot•2}}}}}

\vbox{\hbox{$\Big\}\scriptstyle k$}\kernOpt}.$$

18.46. If you have to do a lot of commutative diagrams 1 you \Viii want to define some
macros like those in the first fCw lines of this solution. The \matrix macro resets
the baselines to \normalbaselines 1 because other counnands like \openup might have
changed them 1 so we redefine \normal baselines in this solution. Some of the things
shmv11 here haven)t been explained yet 1 but Chapter 22 \Viii reveal alL

$$\def\normalbaselines{\baselineskip20pt
\lineskip3pt \lineskiplimit3pt }

\def\mapright#1{\smash{
\mathop{\longrightarrow}\limits~{#1}}}

\def\mapdown#1{\Big\downarrow
\rlap{$\vcenter{\hbox{$\scriptstyle#1$}}$}}

\matrix{&&&&&&O\cr
&&&&&&\mapdoYn{}\cr
0&\mapright{}&{\cal O}_C&\mapright\iota&

\cal E&\mapright\rho&\cal L&\mapright{}&O\cr
&&\Big\Vert&&\mapdown\phi&&\mapdown\psi\cr
0&\mapright{}&{\cal O}_C&\mapright{}&

\pi_•{\cal O}_D&\mapright\delta&
R-1f_•{\cal O}_V(-D)&\mapright{}&O\cr

&&&&&&\mapdown{\theta_i\otimes\gamma~{-1}}\cr

&&&&&&\hideYidth R•1f_•\bigl({\cal Q}
_V(-iM)\bigr)\otimes\gamma·{-1}\hideYidth\cr

&&&&&&\mapdoYn{}\cr
&&&&&&0\cr}$$

19.1. $$\sum_{n=O}~\infty a_nz~n\qquad\hbox{converges if}\qquad
lzi<\Bigl(\limsup_{n\to\infty}\root n\!\of{la_ni}\,\Bigr)•{-1}.$$

$${f(x+\Delta x)-f(x)\over\Delta x}\to f'(x)
\qquad\hbox{as $\Delta x\toO$.}$$

$$\lu_i\1=1,\qquad u_i\cdot u_j=O\quad\hbox{if $i\ne j$.}$$

$$\it\hbox{The confluent image of}\quad\left\{
\matrix{\hbox{an arc}\hfill\cr\hbox{a circle}\hfill\cr

\hbox{a fan}\hfill\cr}
\right\}\quad\hbox{is}\quad\left\{
\matrix{\hbox{an arc}\hfill\cr

\hbox{an arc or a circle}\hfill\cr
\hbox{a fan or an arc}\hfill\cr}\right\}.$$

The first example includes \! and \. to give slightly refined spacing; but the point of
the problem was to illustrate the hbox 1 not to fuss over such extra details. The last
example can be done much more simply using the ideas of Chapter 22 1 if you don)t

325

matrix
normalba,-;dine;;
hidewidth
root

326 AppcndiJ: A: Answers to All the EJ:ercises

mind descending to the level of TE-X primitives; fOr example1 the first matrix could be
replaced by

\,\vcenter{\halign{#\hfil\cr an arc\cr a circle\cr a fan\cr}}\.

and the second is similar.

19.2. $$\textstyle y={1 \over2}x$$. (S\\'itching to text style is especially common
in multiline formulas. For example1 you will probably find occasions to use \textstyle
on both sides of the &)s \Vithin an \eqalign.)

19.3. The latter formula \Viii be in text style1 not display style. And even if you do
t:yl)e :$$\hbox{$\displaystyle{(formula} }$}$$) 1 the results are not quite the same1 as
we will see later: T£X \Viii compress the glue in :$$(fOrmula}$$) if the formula is too
wide to fit on a line at its natural width 1 but the glue inside \hbox{ ... } is frot~en at
its natural \Vidth. The \hbox version also invokes \everymath.

19.4. One solution is to put the formula in an hbox that occupies a full line:
$$\leftline{\indent$\displaystyle

1-{1\over2}+{1\over3}-{1\over4}+\cdots=\1n2$}$$

But this takes a bit of typing. If you make the definitions
\def\1eftdisp1ay#1$${\1eft1ine{\indent$\disp1aysty1e{#1}$}$$}
\everydisplay{\leftdisplay}

you can type :$$(formula}$$) as usual 1 and the fOrmatting \Viii be inserted automat~
ically. (This doesn)t work with equation numbers; Appendix D illustrates how to
handle them as welL)

19.5. $$\prod_{k\ge0}{1\over(1-q-kz)}=
\sum_{n\ge0}z-n\bigg/\!\!\prod_{1\1e k\1e n}(1-q-k).\eqno(16')$$

19.6. \eqno\hbox{(3--1)}.

19.7. \Vhen you type an asterisk in math mode1 plain TE-X considers * to be a
binary operation. In the cases : (*)) and : (**)) 1 the binary operations are converted to
t:yl)e Ord1 because they don)t appear in a binary context; but the middle asterisk in
:(***))remains of t:yl)e Bin. So the result was:(***)). To avoid the extra medium
spaces 1 you can t:yl)e :\eqno (*{*}*)); or you can change \mathcode' *1 if you never use
* as a binary operation.

19.8. Assuming that \hsize is less than 10000pt1 the natural \Vidth of this equation
will be too large to fit on a line; also 1 \quad specifies glue at the left. Therefore :x = 1i
will appear exactly 1 em from the left 1 and :(5)) will appear flush right. (The \Vidths
will satisfY 1L' = z- q 1 d = 01 k = q- e = 18mu.) In the case of \leqno 1 :(5)) \Viii
appear flush left 1 fOllowed by one quad of space in \textfont2 1 followed by one quad
of space in the current text font 1 followed by :x = 11).

19.9. (Note in particular that the final :.) comes bef(>re the final :\cr) .)

$$\eqa1ign{T(n)\1e T(2-{\1cei1\1g n\rcei1})
&\1e c(3-{\1cei1\1g n\rcei1}-2-{\1cei1\1g n\rcei1})\cr
&<3c\cdot3-{\1g n}\cr
&=3c\,n-{\1g3}.\cr}$$

halign
texhtyle
eqalign
a,-;terh;k
mathcode
di;;play;;, non-centerwl

AppendiJ: A: Answers to All the EJ:ercises

19.10. $$\eqalign{P(x)&=a_O+a_1x+a_2x~2+\cdots+a_nx~n.\cr
P(-x)&=a_O-a_1x+a_2x~2-\cdots+(-1)~na_nx~n.\cr}\eqno(30)$$

19.11. Both sides of that equation are considered to be on the left 1 so you get results
that look like this:

{

<> = f(z) }
. 2

.
{' = f(z) ·

~~ = f(z')

19.12. $$\1eqa1ignno{\gcd(u,v)&=\gcd(v,u);&(9)\cr
\gcd(u,v)&=\gcd(~u,v).&(10)\cr}$$

19.13. $$\eqa1ignno{\bigg1(\int_{~\infty}'\infty e'{~x'2}\,dx\biggr)'2
&=\int_{~\infty}'\infty\int_{~\infty}'\infty

e'{~(x'2+y'2)}\,dx\,dy\cr

&=\int_0'{2\pi}\int_O'\infty e'{~r'2}r\,dr\,d\theta\cr
&=\int_0'{2\pi}\bigg1(~{e'{~r'2}\over2}

\biggl_{r=O}'{r=\infty}\,\biggr)\,d\theta\cr
&=\pi.&(11)\cr}$$

19.14. You get the displayed box

x=y+z
and

=J/+z2
•

Reason: The :and) occurs at the left of the \eqalign box 1 not at the left of the whole
display1 and the \eqalign box is centered as usuaL

19.15. By raising the equation number 1 he increased the line height 1 so T£X put extra
space between that line and the previous line when it calculated the inter·line glue. If
he had said :\smash{\raise ... }) 1 he wouldn)t have had that problem.

19.16. $$\disp1ay1ines{\hfi11 x\equiv x;\hfi11\11ap{(1)}\cr
\hfi11\hbox{if}\quad x\equiv y\quad\hbox{then}\quad

y\equiv x;\hfi11\11ap{(2)}\cr
\hfi11\hbox{if}\quad x\equiv y\quad\hbox{and}\quad

y\equiv z\quad\hbox{then}\quad
x\equiv z.\hfi11\11ap{(3)}\cr}$$

There)s also a trickier solution) which begins \Vith

$$\disp1ay1ines{x\equiv x;\hfi1\11ap{(1)}\hfi1neg\cr

19.17. $$\eqalignno{x_nu_1+\cdots+x_{n+t-1}u_t
&=x_nu_1+(ax_n+c)u_2+\cdots\cr
&\qquad+\big1(a'{t~1}x_n+c(a'{t~2}+\cdots+1)\bigr)u_t\cr

&=(u_1+au_2+\cdots+a~{t-1}u_t)x_n+h(u_1,\ldots,u_t).

\quad&(47)\cr}$$
You weren)t expected to insert the :\quad) on the last line; such refinements usually
can)t be anticipated until you see the first proofu. But \Vithout that \quad the :(47))
would occur half a quad closer to the fOrmula.

327

bigg
;;ma,-;h

328 AppcndiJ: A: Answers to All the EJ:ercises

19.18. $$\disp1ay1ines{\quad\sum_{1\1e j\1e n}{1\over
(x_j-x_1)\1dots(x_j-x_{j-1})(x-x_j)(x_j-x_{j+1})
\1dots(x_j-x_n)}\hfi11\cr

\hfi11={1\over(x-x_1)\1dots(x-x_n)}.\quad(27)\cr}$$

19.19. $$\def\\#1;{(#1;q-2)_\infty} %to save typing
\disp1aysty1e{q-{{1\over2}n(n+1)}\\ea;\\eq/a;\qquad\atop

\hfi11\\caq/e;\\cq-2\!/ae;}
\over(e;q)_\infty(cq/e;q)_\infty$$

20.1. \def\mustnt{I must not talk in class.\par}
\def\five{\mustnt\mustnt\mustnt\mustnt\mustnt}
\def\twenty{\five\five\five\five}
\def\punishment{\twenty\twenty\twenty\twenty\twenty}

Solutions to more complicated problems of this type are discussed later.

20.2. ABCAB. (The first \a expands into A\def\a{B ... }; this redefines \a1 so the
second \a expands into B ... 1 etc.) At least 1 that)s what happens if \puzzle is en~
countered when T£X is building a list. But if \puzzle is expanded in an \edef or
\message or something like that 1 we will see later that the interior \def counnands are
not perfOrmed while the expansion is taking place1 and the control sequences follmving
\def are expanded; so the result is an infinite string

A\def A\def A\def A\def A\def A\def A\def A\def A ...

which causes TE-X to abort because the probrram)s input stack is finite. This example
points out that a control sequence (e.g.) \b) need not be defined when it appears in the
replacement text of a definition. The example also shmvs that TE-X doesn)t expand a
macro until it needs to.

20.3. (x1) ...)xn)· Note that the subscripts are bold here) because the expansion
(\bf x_1. \ldots. \bf x_n) doesn)t :'turn off' \bf. To prevent this 1 one should \Vrite
\row{{\bf x}}; or (better) 1 \row\xbold1 in conjunction \Vith \def\xbold{{\bf x}}.

20.4. The catch is that the parameters have to percolate dmv11 to the \mustnt macro 1

if you extend the previous answer:

\def\mustnt#1#2{I must not #1 in #2.\par}
\def\five#1#2{\mustnt{#1}{#2} ... \mustnt{#1}{#2}}
\def\tYenty#1#2{\five{#1}{#2} ... \five{#1}{#2}}
\def\punishment#1#2{\tYenty{#1}{#2} ... \tYenty{#1}{#2}}

\Vhen you pass parameters from one macro to another in this way1 you need to enclose
them in braces as shown. But actually this particular solution punishes TE-X much
more than it needs to 1 because it takes a lot of time to copy the parameters and read
them again and again. There)s a much more efficient way to do the job1 by defining
control sequences:

\def\mustnt{I must not \doit\ in \thatplace.\par}
\def\punishment#1#2{\def\doit{#1}\def\thatp1ace{#2}%

\twenty\twenty\twenty\twenty\twenty}

wkf
me;;;;age
bf

AppendiJ: A: Answers to All the EJ:ercises

and by defining \five and \twenty without parameters as before. You can also delve
more deeply into TE-Xnicalities1 constructing solutions that are more efficient yet; TE-X
work-s even faster when macros counnunicate \Vith each other via boxes. For example1

\def\mustnt{\copyO }
\def\punishment#1#2{\setbox0=

\vbox{\strut I must not #1 in #2.\strut}%
\twenty\twenty\twenty\twenty\twenty}

sets 100 identical parabrraphs at high speed1 because T£X has to process the parabrraph
and break it into lines only once. It)s much faster to copy a box than to build it up from
scratch. (The struts in this example keep the interbaseline distances correct between
boxed paragraphs 1 as explained in Chapter 12. Two struts are used1 fOr if the message
takes more than one line there \Viii be a strut at both top and bottom. If it were known
that each sentence \Viii occupy only a single line1 no struts would be needed1 because
interline glue is added as usual when a box created by \copy is appended to the current
vertical list.)

20.5. The ## feature is indispensable when the replacement text of a definition
contains other definitions. For example1 consider

\def\a#1{\def\b##1{##1#1}}

after which :\a!) will expand to :\def\b#1{#1!}). \Ve \Viii see later that## is also
important for alignments; see1 for example1 the definition of \matrix in Appendix B.

20.6. \def\a#{\b}.

20.7. Let)s go slowly on this one1 so that the answer \Viii give enough backbrround
to answer all similar questions. The (parameter text} of the definition consists of
the three tokens #1 1 #2 1 [J; the (replacement text} consists of the six tokens {J 1 #t; 1
] 21 !t11 #2 1 [1. (\Vhen two tokens of category 6 occur in the replacement text1 the
character code of the second one survives; the character code of a category~6 character
is otherwise irrelevant. Thus1 :\def\! #1! 2# [{##] ! ! #2]) would produce an essentially
identical definition.) \Vhen expanding the given token list1 argument #1 is x1 11 since
it is undelimited. Argument #2 is delimited by [1 1 which is different from {1 1 so it is
set provisionally to { [y]]; but the outer :'bracesl' are stripped off1 so #2 reduces to the
three tokens [J 1 y1 1 1] z. The result of the expansion is therefOre

{J #ti]z !t; [J YJJ]z [J ZJJ h.

Incidentally1 if you display this \Vith \tracingmacros=11 TE-X say-s
\! !1#2[->{##]! !#2[
#1<-x
#2<- [y]

Category codes are not shmv111 but a character of category 6 always appears hvice in
succession. A parameter token in the replacement text uses the character code of the
final parameter in the parameter text.

20.8. Yes indeed. In the first case1 \a receives the meaning of \b that is current at
the time of the \let. In the second case1 \a becomes a macro that will expand into the
token \b whenever \a is used1 so it has the meaning of \b that is current at the time
of use. You need \let1 if you want to interchange the meanings of \a and \b.

329

boxe;;
dfident macro;;
communication between macro;;
copy a box
;;truh
tradngmacro;;
token li;;t;;, a,-; di;;playwl by '1\:X

330 AppcndiJ: A: Answers to All the EJ:ercises

20.9. (a) Yes. (b) No; any other control sequence can appear (except those declared
as \outer macros).
20.10. \def\overpaid{{\countO=\balance

You have overpaid your tax by \dollaramount.
\ifnum\count0<100 It is our policy to refund

such a small amount only if you ask for it.
\else A check for this amount is being mailed

under separate cover.\fi}}

20.11. The tricky part is to get the 11ero in an amount like :$2. 01).
\def\dollaramount{\count2=\count0 \divide\count2 by100

\$\number\count2.%
\multiply\count2 by-100 \advance\count2 by\countO
\ifnum \count2<10 0\fi
\number\count2 }

20.12. \def\category#1{\ifcase\catcode'#1
escape\or begingroup\or endgroup\or math\or
align\or endline\or parameter\or superscript\or
subscript\or ignored\or space\or letter\or
otherchar\or active\or comment\or invalid\fi}

20.13. (a, b) True. (c,d) False. (c,f) True. In caBc (c), the (true text) starts v;ith
·ue~. (g) The \ifx is false and the inner \if is true; so the outer \if becomes :\if
True ...) 1 which is false. (Interestingly1 TE-X hilO\VB that the outer \if is false even
befOre it has looked at the \fi)s that dose the \ifx and the inner \if.)

20.14. One idea is to say

\1et\save=\c \1et\c=O \edef\a{\b\c\d} \1et\c=\save

because control sequences equivalent to characters are not expandable. However 1 this
doesn)t expand occurrences of \c that might be present in the expansions of \band \d.
Another way1 which is free of this defect 1 is

\edef\next#1#2{\def#1{\b#2\d}} \next\a\c

(and it)s worth a dose look!).

20.15. \toksO={\c} \toks2=\expandafter{\d}
\edef\a{\b\the\toksO \the\toks2 }

(Notice that \expandafter expands the token after the left brace here.)

20.16. The fOllmving shouldn)t be taken too seriously1 but it does work:
{\setbox0=\vbox{\ha1ign{#{\c\span\d}\cr

\1et\next=O\edef\next#1{\gdef\next{\b#1}}\next\cr}}}
\let\a=\next

20.17. Neither one 1 although \a \Viii behave like an unmatched left brace when it is
expanded. The definition of \b is not complete1 because it expands to :\def\b{ {});
TE-X will continue to read ahead1 looking for another right brace 1 possibly discovering a
runaway definition! It)s impossible to define a macro that has unmatched braces. But
you can say \let\a={; Appendix D discusses several other brace tricks.

ex pam! after
;;pan
brace trick;;

AppendiJ: A: Answers to All the EJ:ercises

20.18. One way is to redefine \catcode'\,..,..M=9 (ibfilOred) just before the \read1 so
that the (return} \Viii be ignored. Another solution is to redefine \endlinechar=-1 1

so that no character is put at the end of the line. Or you could try to be tricky by
stripping off the space with macro expansion as follo\\'8:

\def\stripspace#1 \next{#1}
\edef\myname{\expandafter\stripspace\myname\next}

The latter solution doesn)t work if the user types :%; at the end of his or her wune 1 or
if the name contains control sequences.

20.19. Here are two solutions:

\def\next#1\endname{\uppercase{\def\MYNAME{#1}}}
\expandafter\next\myname\endname
\edef\next{\def\noexpand\MYNAME{\myname}}
\uppercase\expandafter{\next}

20.20. (Here)s a solution that also numbers the lines1 so that the number of repetitions
is easily verifiable. The only tricky part about this answer is the use of \endgraf 1 which
is a substitute for \par because \loop is not a \long macro.)

\newcount\n
\def\punishment#1#2{\n=O

\loop\ifnum\n<#2 \advance\n by1
\item{\number\n.}#1\endgraf\repeat}

21.1. The interline ship is added for vboxes 1 but not fOr rules; he forgot to say
\nointerlineskip1 befOre and after the \moveright construction.

21.2. \vrule height3pt depth-2pt widthiin. Notice that it was necessary to call
it a \vrule since it appeared in horimntal mode.

21.3. \def\boxit#1{\vbox{\hrule\hbox{\vrule\kern3pt
\vbox{\kern3pt#1\kern3pt}\kern3pt\vrule}\hrule}}

(The resulting box does not have the baseline of the original one; you have to work a
little bit harder to get that.)

21.4. \leaders: two boxes starting at 100pt1 llOpt.
\cleaders: three boxes starting at 95 pt 1 105 pt 1 115 pt.
\xleaders: three boxes starting at 93pt1 105pt1 117pt.

21.5. \def\leaderfill{\kern-0.3em\leaders\hbox to 1em{\hss.\hss}%
\hskip0.6em plusifill \kern-0.3em }

21.6. Since no height or depth specification fOllows the \vrule1 the height and
depth are :*;; i.e. 1 the rule extends to the smallest enclosing box. This usually makes
a heavy black band1 which is too horrible to demonstrate here. However 1 it does work
in the \downbracefill macro of Appendix B; and \leaders\vrule\vfill works fine
in vertical mode.

331

endlinechar
endgraf
long
nointerline;;kip
downbracdill

332 AppcndiJ: A: Answers to All the EJ:ercises

21.7. For example1 say

\null\nobreak\leaders\hrule\hskip10pt plusifilll\ \par

The :\u) provides extra glue that is \Viped out by the implied \unskip at the end of
every parabrraph (see Chapter 14) 1 and the :\null \no break) makes sure that the leaders
do not disappear at a line break; :filll) overtakes the \parfillskip glue.

21.8. $$\hbox to 2.5in{\cleaders
\vbox to .5in{\cleaders\hbox{\TeX}\vfil}\hfil}$$

21.9. \Ve assume that a strut is 12 pt tall 1 and that 50 lines fit on a page:
\setboxO=\hbox{\strut I must not talk in class.}
\null\cleaders\copy0\vskip600pt\vfill\eject % 50 times on page 1;
\null\cleaders\box0\vskip600pt\bye % 50 more on page 2.

The \null keeps glue (and leaders) from disappearing at the top of the page.

21.10. {\let\the=O\edef\next{\write\cont{(tokcn list)}}\next} \Viii expand cv~
er:yi;hing but \the when the \Yrite command is given.

22.1. Notice the uses of :\smallskip) here to separate the table heading and fOoting
from the table itself; such refinements are often worthwhile.

\settabs\+\indent&10\frac1/2 lbs.\qquad&\it Servings\qquad&\cr
\+&\negthinspace\it Weight&\it Servings&

{\it Approximate Cooking Time\/}*\cr
\smallskip
\+&8 lbs.&6&1 hour and 50 to 55 minutes\cr
\+&9 lbs.&7 to 8&About 2 hours\cr
\+&9\fraci/2 lbs.&8 to 9&2 hours and 10 to 15 minutes\cr
\+&10\fraci/2 lbs.&9 to 10&2 hours and 15 to 20 minutes\cr
\smallskip
\+&* For a stuffed goose.

add 20 to 40 minutes to the times given.\cr

The title line specifies :\it) three times 1 because each entry between tabs is treated
as a brroup by TE-X; you would get error messages galore if you tried to say something
like :\+&{\it Weight&Servings& ... }\cr). The :\negthinspace) in the title line is a
small backspace that compensates fOr the slant in an italic lV; the author inserted this
somewhat unusual correction after seeing how the table looked \Vithout it 1 on the first
proofu. (You weren)t supposed to think of this 1 but it has to be mentioned.) See
exercise 11.6 for the :\frac) macro; it)s better to say: 1/z) than :~) 1 in a cookbook.

Another way to treat this table would be to display it in a vbox1 instead of
including a first column whose sole purpose is to specifY indentation.

22.2. In such programs it seems best to type \cleartabs just before &1 whenever
it is desirable to reset the old tabs. Multiletter identifiers look best when set in text
italics with \it 1 as explained in Chapter 18. Thus 1 the follmving is recommended:

\+\bf Yhile $p>O$ do\cr
\+\quad\cleartabs&{\bf begin} $q:={\it link}(p)$;

${\it free_node}(p)$; $p:=q$;\cr
\+&{\bf end};\cr

Iiiii
parlilbkip
null
negt hi n;; pace
il

AppendiJ: A: Answers to All the EJ:ercises

22.3. Here we retain the idea that & inserts a new tab 1 when there are no tabs to the
right of the current position. Only one of the macros that are used to process \ + lines
needs to be changed; but (unfortunately) it)s the most complex one:

\def\t@bb@x{\if@cr\egroup % now \boxO holds the column
\else\hss\egroup \dimen@=O\p@

\dimen@ii=\wdO \advance\dimen@ii byisp
\loop\ifdim \dimen@<\dimen@ii

\global\setbox\tabsyet=\hbox{\unhbox\tabsyet
\global\setbox1=\lastbox}%

\ifvoid1 \advance\dimen@ii by-\dimen@
\advance\dimen@ii by-1sp \global\setbox1

=\hbox to\dimen@ii{}\dimen@ii=-1pt\fi
\advance\dimen@ by\wd1 \global\setbox\tabsdone

=\hbox{\box1\unhbox\tabsdone}\repeat
\setboxO=\hbox to\dimen@{\unhboxO}\fi

\boxO}

22.4. Horimntal lists
Vertical lists

Math lists

Chapter 14
Chapter 15
Chapter 17 (i.e. 1 the first column would be right~justified)

22.5. Fowl&Poule de l'Ann\'ee&10 to 12&0ver 3&Stew. Fricassee\cr

22.6. $$\halign to\hsize{\sl#\hfil\tabskip=.5em plus.5em&
#\hfil\tabskip=Opt plus.5em&
\hfil#\tabskip=iem plus2em&

\sl#\hfil\tabskip=.5em plus.5em&
#\hfil\tabskip=Opt plus.5em&
\hfil#\tabskip=Opt\cr ... }$$

22.7. The trick is to define a new macro for the preamble:
$$\def\Yelshverb#1={{\bf#1} = }
\halign to\hsize{\welshverb#\hfil\tabskip=iem plusiem&

\welshverb#\hfil&\welshverb#\hfil\tabskip=Opt\cr ... }$$

22.8. \hfil#: &\vtop{\parindent=Opt\hsize=16em
\hangindent.5em\strut#\strut}\cr

\Vith such narrow measure and such long words 1 the \tolerance should probably also
have been increased to 1 say1 1000 inside the \vtop; lud..ily it turned out that a higher
tolerance wasn)t needed.

:'\ote: The stated preamble solves the problem and demonstrates that TE-X)s
line--breaking capability can be used \Vithin tables. But this particular table is not
really a good example of the use of \halign1 because TE-X could t:yl)eset it directly1

using \everypar in an appropriate manner to set up the hanging indentation 1 and using
\par instead of \cr. For example1 one could say

\hsize20em \parindentOpt \clubpenalty10000 \widowpenalty10000
\def\history#1&{\hangindent4.5em

\hbox to4em{\hss#1: }\ignorespaces}
\everypar={\history} \def\\{\leavevmode{\it c\/}}

333

tolerance
'<top
;;trot
e'<erypar

334 AppcndiJ: A: Answers to All the EJ:ercises

which spares TE-X all the work of \halign but yields essentially the same result.

22.9. The equation is divided into separate parts fOr terms and plus/minus signs 1

and tabskip glue is used to center it:

$$\openup1\jot \tabskip=Opt plusifil
\halign to\displaywidth{\tabskip=Opt

$\hfi1#$&$\hfi1{}#{}$&
$\hfi1#$&$\hfi1{}#{}$&
$\hfi1#$&$\hfi1{}#{}$&
$\hfi1#$&${}#\hfi1$\tabskip=Opt p1us1fi1&
\11ap{#}\tabskip=Opt\cr

10Y&+&3x&+&3y&+&18z&=1,&(9)\cr
6Y&-&17x&&&-&5z&=2.&(10)\cr}$$

22.10. \hfi1# &#\hfi1&\quad#&\ \hfi1#&\ \hfi1#\cr

22.11. \pmatrix{a_{11}&a_{12}&\1dots&a_{1n}\cr
a_{21}&a_{22}&\1dots&a_{2n}\cr
\multispan4\dotfill\cr
a_{m1}&a_{m2}&\1dots&a_{mn}\cr}

22.12. :\cr) would have omitted the final column 1 which is a vertical rule.

22.13. One way is to include two lines just befOre and after the title line1 saying
:\omit&height2pt&\multispan5&\cr). Another way is to put \bigstrut into some
column of the title line1 fOr some appropriate invisible box \bigstrut of \Vidth 11ero.
Either way makes the table look better.

22.14. The trick is to have :'emptyl' columns at the extreme left and right; then the
\hrulefill)s are able to span the tabskip glue.

$$\vbox{\tabskip=Opt \offinterlineskip
\halign to 36em{\tabskip=Opt plus1em#&

#\hfi1&#&#\hfi1&#&#\hfi1&#\tabskip=Opt\cr
&&&&&\strut J. H. B\ 11 ohning. 1838&\cr
&&&&\multispan3\hrulefill\cr
&&&\strut M. J. H. B\ 11 ohning. 1882&\vrule\cr
&&\multispan3\hrulefill\cr
&&\vrule&&\vrule&\strut M. D. Blase. 1840&\cr
&&\vrule&&\multispan3\hrulefill\cr
&\strut L. M. Bohning. 1912&\vrule\cr
\multispan3\hrulefill\cr
&&\vrule&&&\strut E. F. Ehlert. 1845&\cr
&&\vrule&&\multispan3\hrulefill\cr
&&\vrule&\strut P. A. M. Ehlert. 1884&\vrule\cr
&&\multispan3\hrulefill\cr
&&&&\vrule&\strut C. L. Wischmeyer. 1850&\cr
&&&&\mu1tispan3\hru1efi11\cr}}$$

22.oo. (Solution to Dudeney)s problem.) Let \one and \two be macros that produce
a vertical list denoting one and two pennies1 respectively. The problem can be solved

Jea'<C'<HlOdC

AppendiJ: A: Answers to All the EJ:ercises 335

with \valign as follows:

\valign{\vfil#&\vfil#&\vfil#&\vfil#\cr
\two&\one&\one&\one\cr
\one&\one&\two&\one\cr
\one&\one&\one&\two\cr
\one&\two&\one&\one\cr}

Since \valign transposes rows and columns 1 the result is

23.1. \footline={\hss\tenrm-- \folio\ --\hss}

Qooo
OOOQ
oQoo
ooQo

23.2. \headline={\ifnum\pageno=1 \hss\tenbf R\'ESUM\'E\hss
\else\tenrm R\'esum\'e of A. U. Thor \dotfill\ Page \folio\fi}

(You should also say \nopagenumbers and \voffset=2\baselineskip.)

23.3. \output={\plainoutput\blankpageoutput}
\def\blankpageoutput{\shipout\vbox{\makeheadline

\vbox to\vsize{}\makefootline}\advancepageno}

23.4. Set \hsize=2 .1in1 allocate :\newbox\midcolumn) 1 and use the fOllmving code:
\output={\if L\lr

\global\setbox\leftcolumn=\columnbox \global\let\lr=M
\else\if M\lr

\global\setbox\midcolumn=\columnbox \global\let\lr=R
\else \tripleformat \global\let\lr=L\fi\fi
\ifnum\outputpenalty>-20000 \else\dosupereject\fi}

\def\tripleformat{\shipout\vbox{\makeheadline
\fullline{\box\leftcolumn\hfil\box\midcolumn\hfil\columnbox}
\makefootline}

\advancepageno}

At the end1 \supereject and say :\if L\lr \else\null\vfill\eject\fi) twice.

23.5. He forgot that interline glue is inserted automatically before the \leftline;
this permits a legal breakpoint between the \mark and the \leftline box1 according
to the rules of page breaking in Chapter 15. One cure would be to say \no break just
after the \mark; but it)s usually best to put mark-s and insertions just after boxes.

23.6. Say1 for example1 \ifcase2\expandafter\relax\botmark\fi to read part o:2

of \botmark. Another solution puts the five components into five parameters of a
macro 1 analogous to the method used by \inxcheck later in this chapter; but the
\if case approach is usually more efficient1 because it lets T£X pass over the unselected
components at high speed.

23.7. \output={\dimen0=\dp255 \normaloutput
\ifodd\pageno\else\if L\lr

\expandafter\inxcheck\botmark\sub\end\fi\fi}
In this case the \normaloutput macro should be the two~column output routine that
was described earlier in this chapter1 bebrinning \Vith :\if L\lr) and ending \Vith
:\let\lr=L\fi). (There is no need to test fOr \supereject.)

'<align
interline glue
no break
in;;ertion;;

336 AppcndiJ: A: Answers to All the EJ:ercises

23.8. False. If the text of the main and/or subsidiary entry is lengthy1 a continuation
line may actually become two or more lines. (Incidentally1 hailbring indentation \Viii
then occur 1 because the \everypar command-which was set up outside the \output
routino-is effective inside.) The \vsize must be large enough to accommodate all
continuation lines plus at least one more line of index material 1 or else infinite looping
will occur.

24.1. If \cs has been defined by \chardef or \mathchardef 1 TE-X uses hexadecimal
notation when it expands \meaning\cs 1 and it assigns category 12 to each dibrit of
the expansion. You might have an application in which you want the last part of the
expansion to be treated as a {number}. (This is admittedly an obscure reason.)

24.2. Yes; any number of spaces can precede any keyword.

24.3. The first two have the same meaning; but the third coerces \baselineskip to
a {dimen} by suppressing the stretchability and shrinkability that might be present.

24.4. The natural width is 221 dd (which TE-X rounds to 15497423 sp and displays
as 236.47191pt). The stretchability is 2500sp 1 since an internal integer is coerced to a
dimension when it appears as an (internal unit}. The shrinkability is 11ero. Notice that
the final \space is swallowed up as part of the optional spaces of the (shrink} part in
the syntax for (glue}. (If PLUS had been MINUS 1 the final \space would not have been
part of this (glue)')

24.5. If it was nOIHmll when a \dump operation occurred. Here)s a nontrivial exam~
ple1 which sets up \batchmode and puts \end at the end of the input file:

\everyjob={\batchmode\input\jobname\end}

24.6. (a) \def\\#1\\{}\futurelet\cs\\u\\. (b) \def\\{\let\cs= }\\u. (There
are many other solutions.)

24.7. (internal quantity} --t (internal integer} I (internal dimen}
I (internal glue} I (internal muglue} I (internal nonnumeric}

(internal nonnumeric} --t (token variable} I (fOnt}

26.1. Radix 10 notation is used for numeric constants and fOr the output of numeric
data. The first 10 \count rebristers are displayed at each \shipout 1 and their values
are recorded on the dvi file at such times. A box whose glue has stretched or shrunk to
its stated stretchability or shrinkability has badness 100; this badness value separates
:'loosd' boxes from loosd' or :'underfulr' ones. T£X \Viii scroll up to 100 errors in a
single parabrraph before giving up (see Chapter 27). The normal values of \spacefactor
and \mag are 1000. A \prevdepth value of -1000 pt suppresses interline glue. The
badness rating of a box is at most 100001 except that the \badness of an overfull box
is 1000000. INITEX initialit~es \tolerance to 100001 thereby making all line breaks
feasible. Penalties of 10000 or more prohibit breaks; penalties of -10000 or less make
break-s mandatory. The cost of a page break is 1000001 if the badness is 10000 and if
the associated penalties are less than 10000 in magnitude (see Chapter 15).

26.2. T£X allo\\'S constants to be expressed in radix 8 (octal) or radix 16 (hexadeci~
mal) notation 1 and it uses hexadecimal notation to display \char and \mathchar codes.
There are 16 families for math f0nts 1 16 input streams for \read1 16 output streams for
\Yrite. A \catcode value must be less than 16. The notation ,..,..? 1 ,..,..@ 1 ,..,..A specifies

chardef
mat hchardef
hexaded mal not at ion
meaning
coerce ;munberi, to ;dimeni,
;;pace;;
dump
job name
batch mode
end

AppendiJ: A: Answers to All the EJ:ercises

characters whose codes differ by 64 from the codes of ? 1 @1 A; this convention applies
only to characters \Vith ASCII codes less than 128. There are 256 possible characters1

hence 256 entries in each of the \catcode 1 \mathcode 1 \lccode 1 \uccode 1 \sfcode 1 and
\delcode tables. All \lccode 1 \uccode 1 and \char values must be less than 256. A
font has at most 256 characters. There are 256 \box registers 1 256 \count registers 1

256 \dimen registers 1 256 \skip rebristers 1 256 \muskip rebristers 1 256 \toks registers 1

256 hyphenation tables. The :'at sit~d' of a fOnt must be less than 2048 pt1 i.e. 1 211 pt.
Math delimiters are encoded by multiplying the math code of the :'small characterl'
by 212 • The mab111itude of a {dim en} value must be less than 16384 pt1 i.e. 1 214 pt; simi~
larly1 the (factor} in a (fil dimen} must be less than 214

• A \mathchar or \spacefactor
or \sf code value must be less than 2H'; a \mathcode or \mag value must be less than
or equal to 210

1 and 210 denotes an :'activd' math character. There are 21 ti sp per pt.
A \del code value must be less than 224

; a \delimiter1 less than 227
. The \end com~

mand sometimes contributes a penalty of -2ao to the current page. A {dimen} must be
less than i 10 sp in absolute value; a {number} must be less than i 11 in absolute value.

27.1. Heforgottocountthespace; TE-Xdeleted :i; 1 :m; 1 :u; 1 :\input) 1 and four letters.
(But all is not lost; he can t:yl)e :1; or :2; 1 then (return} 1 and aller being prompted by
:*; he can enter a new line of input.)

27.2. First delete the unwanted tokens 1 then insert what you want: T:yl)e :6; and
then :I\macro). (Incidentally1 there)s a sneaky way to get at the \inaccessible control
sequence by typing

I\garbage{}\let\accessible=

in response to an error message like this. The author desibfilCd TE-X in such a way that
you can)t destroy anything by playing such nasty tricks.)

27.3. :Iu%) does the trick 1 if% is a counnent character.

27.4. The :minus) of :minuscule) was treated as part of the \hskip command in
\nextnumber. Quick should put :\relax) at the end of his macro. (The keywords 11

plus 1 minus 1 width1 depth1 or height might just happen to occur in text when TE-X is
reading a glue specification or a rule specification; desibfiWrs of general~ purpose macros
should guard against this. If you get a :Missing number) error and you can)t guess
why TE-Xis looking for a number 1 plant the instruction :\tracingcommands=1) shortly
befOre the error point; your log file \Viii show what command T£X is working OIL)

27 .5. If this exercise isn)t just a joke1 the title of this appendix is a lie.

If you can't solve a oroblem,
you can always look uo the answer.

But {)lease, try first to solve it by yourself;
then you'll learn more and you'll/earn faster.

DONALD E. KNUTH, The TEXbook (1983)

How answer you for your selues?
- WILLIAM SHAKESPEARE, Much Adoe About Nothing (1598)

337

Knuth
comment character
minu;;
keyword;;
I
plu;;
width
depth
height
J'vii;;;;ing number
K?\C'I'H
SHAKESPEAHE

Basic
Control

Sequences

AppcndiJ: B: Basic Control Scq·ucnccs 339

Let's begin this appendix with a chart that summarizes plain TEX's conventions. ;;ummary of plain '1\:X

Characters that arc reserved for special purposes: \ { } $ & # % -
\rm roman, {\sl slanted}, {\bf boldface}, {\it italic\/} type

roinan,

'' ,,

\'a
a

\1
I

" -- ---

\'e \-o
c 6

\L \dag
L t

shrnted,

?' ! '
2,

\uu \=y
ii }r

\ddag
t

\$ \#
$ #

\-n
Il

\S
§

\&
&

\.p
jJ

\P
~

boldface. italic t}l'"

\% \ae \AE \oe \DE \aa \AA \ss
% (_(' JE "" (E a A £

\u\i \v s \H\j \t\i u \b k \c c
I 8 J fil " <;

{\it\$
£

\&}
€1

\copyright
©

\o \0
0 0

\d h
h

\dots

Line break controls: \break \no break \allowbreak \hbox{unbreakable}
dis\-cre\-tion\-ary hy\-phens virgule\slash breakpoint

Brcakttblc horizontal spaces:
\u normal intcrword space
\enskip this much
\quad this much
\qquad this much
\hskip {arbitrary dimcn)

Vertical spaces: \smallskip =

l; nbrcakttblc horizontal spaces:
~ normal intcrword space
\enspace this much
\ thinspace this much
\negthinspace thianuch
\kern {arbitrary dimcn)

\medskip = \bigskip

Page break controls: \eject \superej ect \no break
Vertical spaces and good breakpoints: \small break

\goodbreak
\medbreak

\filbreak
\bigbreak

\settabs 4 \columns
\+Here's an example&of\hfill some &tabbing:&\hrulefill&\cr
Here's an example of some tabbing:

\hrulefill \dotfill
\leftarrowfill t-------- \rightarrowfill --------t

\upbracefill ~--~,.----~ \downbracefill r---~'---~
:0.-'Ion: general alignments usc \halign, \valign, \omit, \span, and \multi span.

Examples of the principal conventions for teA-t layout appear on the neA-t page.

+
tabbing
accent;;

340 AppcndiJ: B: Basic Control Scq'ucnccs

% This test file generates the output shown on the opposite page.
%It's a bit complex because it tries to illustrate lots of stuff.
% TeX ignores commentary (like this) that follows a (%' sign.

% First the standard output style is changed slightly:
\hsize=29pc % The lines in this book are 29 picas wide.
\vsize=42pc% The page body is 42 picas (not counting footlines).
\footline={\tenrm Footline\quad\dotfill\quad Page \folio}
\pageno=1009% This is the starting page number (don't ask why).
% See Chapter 23 for the way to make other page format changes via
% \hoffset, \voffset, \nopagenumbers, \headline, or \raggedbottom.

\topglue 1in% This makes an inch of blank space (1in=2.54cm).
\centerline{\bf A Bold, Centered Title}
\smallskip % This puts a little extra space after the title line.
\rightline{\it avec un sous-titre \(ala fran\c caise}
% Now we use \beginsection to introduce part 1 of the document.
\beginsection 1. Plain \TeX nology % The next line must be blank!

The first paragraph of a new section is not indented.
\TeX\ recognizes the end of a paragraph when it comes to a blank
line in your manuscript file. % or to a (\par': see below.

Subsequent paragraphs {\it are\/} indented.\footnote*{The amount
of indentation can be changed by changing a parameter called

{\tt\char(\\parindent}. Turn the page for a summary of \TeX's most
important parameters.} (See?) The computer breaks a paragraph's
text into lines in an interesting way---see reference~[1]---and h%

yphenates words automatically when necessary.

\midinsert % This begins inserted material, e.g., a figure.
\narrower\narrower% This brings the margins in (see Chapter 14).
\noindent \llap{((}If there hadn't been room for this material on
the present page, it would have been inserted on the next one.''
\endinsert % This ends the insertion and the effect of \narrower.

\proclaim Theorem T. The typesetting of $math$ is discussed in
Chapters 16--19, and math symbols are summarized in Appendix~F.

\beginsection 2. Bibliography\par % (\par' acts like a blank line.
\frenchspacing% (Chapter 12 recommends this for bibliographies.)
\item{[1)} D.~E. Knuth and M.~F. Plass, ''Breaking paragraphs
into lines,'' {\sl Softw. pract. exp. \bf11} (1981), 1119~~1184.

\bye % This is the way the file ends, not with a \bang but a \bye.

h;;ize
'<;;ize
foot line
pageno
topglue
centerline
;;malbkip
right line
begin;;ect ion
blank line
'1\:X
par
footnote
jj

char
percent
midin;;ert
noindent
llap
proclaim
french;;padng
item
Pia,-;;;
Knuth
bye

AppcndiJ: B: Basic Control Scq'ucnccs 341

A Bold, Centered Title
U'UCC 'Urt SO'US-titrc iJ [a fraru;aise

1. Plain 'IE:;Xnology
The first paragraph of a new section is not indented. TEX recognizes the end of
a paragraph when it comes to a blank line in your manuscript file.

Subsequent paragraphs arc indented.* (Sec?) The computer breaks a para-
graph's text into lines in an interesting way------sec reference [1]------and hyphenates
words automatically when necessary.

:•If there hadn't been room for this material on the present
page, it would have been inserted on the neA-t one."

Theorem T. The t;ypesetting of math is discussed in Clnrpters 16 -191 Ernd m<-:rth
s;ymlJols Erre summ<-:rrized in Appendix F.

2. Bibliography
[1] D. E. Knuth and :0.-t F. Plass, :'Breaking paragraphs into lines," Softw.

pmct. exp. 11 (1981), 1119 1184,

* The amount of indentation can be changed by changing a parameter called
\parindent. Turn the page for a sumnu;~,ry of T&X's most important parameters.

Footline Page 1009

342 AppcndiJ: B: Basic Control Scq'ucnccs

The preceding example illustrates most of the basic things that you can
do directly with plain T&X, but it docs not provide an exhaustive list. Thus,
it uses \centerline and \rightline, but not \leftline or \line: it uses
\mid insert, but not \top insert or \pageinsert: it uses \smallskip, but not
\medskip or \bigskip: it uses \llap but not \rlap, \item but not \itemitem,
\top glue but not \hglue. It docs not illustrate \raggedright setting of para-
graphs: it docs not usc \obey lines or \obeyspaces to shut off T&X's automatic
formatting. All such control sequences arc explained later in this appendix, and
further information can be found by looking them up in the index. The main
purpose of the example is to serve as a reminder of the repertoire of possibilities.

:0.-'Iost of the control sequences used in the example arc defined by macros
of plain T&X format, but three of them arc primitive, i.e., built in: ·\par' (end of
paragraph), ·\noindent' (beginning of non-indented paragraph), and ·\F (italic
correction). The example also assigns values to two of T&X's primitive param-
eters, namely \hsize and \ vsize. T&X has scores of parameters, all of which
arc listed in Chapter 24, but only a few of them arc of special concern to the
majority of T&X users. Here arc examples of how you might want to give new
values to the most important parameters other than \hsize and \vsize:

\ tolerance=500 (TbX will tolerate lines whose badness is rated 500 or less,)
\looseness=1 (The neA-t paragraph will be one line longer than usual.)
\parindent=4mm (Paragraphs will be indented by four millimeters.)
\hoffset=1. 5in (All output will be shifted right by one and a half inches.)
\voffset=24pt (All output will be shifted down by 24 points,)
\baselineskip=11pt plus.1pt (Baselines will be llpt apart, or a bit more.)
\parskip=3pt plus1pt minus. 5pt (Extra space will precede each paragraph.)

Plain T&X uses \parindent also to control the amount of indentation provided
by \item, \itemitem, and \narrower.

The remainder of this appendix is devoted to the details of the plain T£X
format 1 which is a set of macros that come \Vith normal implementations of

T£X. These macros serve three basic purposes: (1) They make T£X usable1 because
TE-X)s primitive capabilities operate at a very low leveL A :'virginl' TE-X s:ystem that
has no macros is like a newborn baby that has an immense amount to learn about the
real world; but it is capable of learning fast. (2) The plain T£X macros provide a basis
for more elaborate and powerful formats tailored to individual tastes and applications.
You can do a lot with plain T£X 1 but pretty soon you)ll want to do even more. (3) The
macros also serve to illustrate how additional fOrmats can be desibfilCd.

Somewhere in your computer system you should be able to find a file called
plain. tex that contains exactly what has been preloaded into the running TE-X system
that you use. Our purpose in the rest of this appendix will be to discuss the contents
of plain.tex. However 1 we \Viii not include a verbatim description 1 because some
parts of that file are too boring1 and because the actual macros have been :'optimit~ecr'
with respect to memory space and running time. Unoptimit~ed versions of the macros
are easier fOr humans to understand 1 so we shall deal \Vith those; plain. tex contains
equivalent constructions that work better on a machine.

obey line;;
obey;;JHtce;;
a,-; i;;, ;;ee obey line;;, obey;; pace;;
primiti'<e
parameter;;
tolerance
loo;;ene;;;;
par indent
holf;;et
'<olf;;et
ba,-;dine;;kip
par;; kip
item
it emit em
narrower
plain.tex
optimizwl
elfkiency

AppcndiJ: B: Basic Control Scq'ucnccs

So here)s the plan for the rest of Appendix B: \Ve shall go through the con~
tents of plain. tex 1 interspersing an edited transcription of that file with comments
about noteworthy details. \Vhen we come to macros whose usage has not yet been
explained-for example1 somehow \vglue and \beginsection never made it into Chap~
ters 1 through 27-we shall consider them from a user)s vim.vpoint; but most of the
time we shall be addressing the issues from the standpoint of a macro designer.

1. The code tobles. A fOrmat)s first duty is to establish \cat code values. This is nee~
essary because1 fOr example1 a \def command can)t be used until there are characters
like {and} of categories 1 and 2. The INITEX program (which reads plain.tex so
that TE-X can be initialit~ed) bebrins \Vithout knmving any grouping characters; hence
plain. tex starts out as follows:

% This is the plain TeX format that's described in The TeXbook.
% N.B.: A version number is defined at the very end of this file;
% please change that number whenever the file is modified!
% And don't modify the file under any circumstances.

\catcode'\{=1 % left brace is begin-group character
\catcode'\}=2 % right brace is end-group character
\catcode'\$=3 % dollar sign is math shift
\catcode'\&=4 % ampersand is alignment tab
\catcode'\#=6 % hash mark is macro parameter character
\catcode'\~=7 \catcode'\~~K=7 % circumflex and uparrow for superscripts
\catcode'_=8 \catcode'\~~A=8 % underline and downarrow for subscripts
\catcode'\~~I=10 % ASCII tab is treated as a blank space
\chardef\active=13 \catcode'\-=\active %tilde is active
\catcode'\~~L=\active \outer\def~~L{\par} % ASCII form-feed is \outer\par
\message{Preloading the plain format: codes,}

These instructions set up the nonstandard characters ~~K and ~~A for superscripts and
subscripts 1 in addition to ~ and _1 so that people \Vith extended character sets can
use t and J. as recommended in Appendix C. Furthermore ~~I (ASCII (tab}) is given
category 10 (space); and ~~L (ASCII (fOrmfCed}) becomes an active character that
will detect runaway-s on files that have been divided into :'file pagesl' by (formfeed}
characters. The control sequence \active is defined to yield the constant 13; this is
the one category code that seems to deserve a symbolic name 1 in view of its frequent
use in constructing special~ purpose macros.

\Vhen INITEX begins 1 category 12 (other) has been assigned to all 256 possible
characters 1 except that the 52 letters A ... Z and a ... z are category 11 (letter) 1 and a
few other assignments equivalent to the follmving have been made:

\cat code '\ \ =0
\catcode'\~~@=9

\catcode'\ =10
\catcode'\~~M=5

\catcode '\% =14
\catcode'\~~?=15

Thus :vis already an escape character 1 :u; is a space 1 and:%; is available fOr counnents
on the first line of the file; ASCII {null} is ignored1 ASCII (return} is an end~of-line
character1 and ASCII (delete} is invalid.

The \message command shmv11 above prints a progress report on the terminal
when plain.tex is being input by INITEX. Later on comes :\message{registers,})

343

cat code
I!\:ITEX
;;uper;;cript;;
;;ub;;cript;;
uparrow char
downarrow char
ASCII
tab
lik page;;
form feed
acti'<e
bacbla,-;h
;;pace
null
return
delete
me;;;;age

344 AppcndiJ: B: Basic Control Scq'ucnccs

and several other messages 1 but we won)t mention them specifically. The terminal \Viii
eventually display something like this when initialit~a.tion is complete:

** plain
(plain.tex Preloading the plain format: codes. registers.
parameters. fonts. more fonts. macros. math definitions.
output routines. hyphenation (hyphen.tex))
* \dump
Beginning to dump on file plain.fmt

followed by a variety of statistics about what fOnts were loaded1 etc. If you want to
make a new fOrmat super. tex that adds more features to plain. tex 1 it)s best not
to make a new file containing all the plain stuff1 or even to \input plain; just type
:&plain super) in response to INITEX)s ** prompt1 to input plain. fmt at high speed.

After the opening \message 1 plain. tex goes on to define a control sequence
\dospecials that lists all the characters whose catcodes should probably be changed
to 12 (other) when copying things verbatim:

\def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&%
\do\#\do\'\do\''K\do_\do\''A\do\%\do\'}

(Appendix E illustrates how to usc \dospecials,) The ASCII codes for (null), (tab),
(linefeed} 1 (fOrmfCed} 1 (return} 1 and (delete} have not been included in the list.

At this point plain. tex completes its initialit~ation of category codes by set~
ting \cat code' \@=11 1 thereby making the character :@; behave temporarily like a letter.
The command \catcode'\@=12 \Viii appear later 1 hence at~sign characters \Viii act just
like ordinary punctuation marks when T£X is running. The idea is to make it easy
for plain T£-X to have private control sequences that cannot be redefined by ordinary
users; all such control sequences will have at least one :@; in their names.

The next job is to set up the \mathcode table:

\mathcode'\,..,..@= 11 2201 \mathcode' \ ,..,.. A= 11 3223 \mathcode'\,..,..B= 11 010B
\mathcode'\,..,..C= 11 010C \mathcode'\,..,..D= 11 225E \mathcode'\,..,..E= 11 023A
\mathcode'\,..,..F= 11 3232 \mathcode'\,..,..G= 11 0119 \mathcode'\,..,..H= 11 0115
\mathcode'\,..,..I= 11 010D \mathcode'\,..,..J= 11 010E \mathcode' \ ,..,..K= 11 3222
\mathcode' \ ,..,..1= 11 2206 \mathcode'\,..,..M= 11 2208 \mathcode'\,..,..N= 11 0231
\mathcode'\,..,..0= 11 0140 \mathcode' \ ,..,..P= 11 321A \mathcode'\,..,..Q= 11 321B
\mathcode' \ ,..,..R= 11 225C \mathcode'\,..,..S= 11 225B \mathcode'\,..,..!= 11 0238
\mathcode'\,..,..U= 11 0239 \mathcode' \ ,..,..V= 11 220A \mathcode' \ ,..,..W= 11 3224
\mathcode' \ ,..,..X= 11 3220 \mathcode' \ ,..,..Y= 11 3221 \mathcode'\,..,..2= 11 8000
\mathcode'\,..,.. [= 11 2205 \mathcode' \ ,..,..\= 11 3214 \mathcode'\,..,..] =11 3215
\mathcode'\,._,..,..= 11 3211 \mathcode'\,..,.. _= 11 225F \mathcode' \ ,..,..?= 11 1273
\mathcode' \ ""

11 8000 \mathcode'\! =11 5021 \mathcode'\'= 11 8000
\mathcode'\(= 11 4028 \mathcode' \) =11 5029 \mathcode' *= 11 2203
\mathcode'\+= 11 202B \mathcode'\.= 11 613B \mathcode' \ -= 11 2200
\mathcode'\.= 11 013A \mathcode'\/= 11 0130 \mathcode'\:= 11 303A
\mathcode'\;= 11 603B \mathcode'\<= 11 313C \mathcode'\== 11 303D
\mathcode'\>= 11 313E \mathcode'\?= 11 503F \mathcode' \ [=11 405B
\mathcode'\\= 11 026E \mathcode' \] =11 505D \mathcode'_= 11 8000
\mathcode' \ { =11 4266 \mathcode'\!= 11 026A \mathcode' \}= 11 5267

"
amper;;and
fmt
do;; pedal;;
at-;;ign character;;
pri'<ate control ;;equence;;
mathcode

AppcndiJ: B: Basic Control Scq'ucnccs

A math code is relevant only when the corresponding category code is 11 or 12; therefOre
many of these codes will rarely be looked at. For example1 the math code for ,..,..M
specifies the character \oplus 1 but it)s hard to imagine a user who would want ,..,..M
(ASCII (return}) to produce an sign in the middle of a math f0rmula 1 since plain
T£X appends ,..,..M to the end of every line of input. The math codes have been set up
here1 however 1 to be entirely consistent \Vith the extended character set presented in
Appendix C and the Computer Modern fonts described in Appendix F. INITEX has
done the rest of the work 1 as far as mathcodes are concerned: It has set \mathcode x =
x + "7000 fOr each of the ten digits x = '0 to '9; \mathcode x = x + "7100 fOr each of
the 52 letters; and \mathcode x = x fOr all other values of x.

There)s no need to change the \uccode and \lccode tables. INITEX has made
\uccode'X='X) \uccode'x='X) \lccode'X='x) \lccode'x='x) and it has made similar
assignments for all other letters. The codes are 11ero for all nonletters. These tables are
used by T£X)s \uppercase and \lowercase operations) and the hyphenation algorithm
also looks at \lccode (see Appendix H). Changes should be made only in format
packages that set T£X up for languages with more than 26 letters (see Chapter 8).

Next comes the \sf code table) which INITEX has initialit~ed entirely to 1000)
except that \sfcode'X=999 for each of the 26 uppercase letters. Some characters are
made :'transparenf' by setting

\sfcode'\)=0 \sfcode'\'=0 \sfcode'\]=0 % won't change the space factor

and the \nonfrenchspacing macro \Viii be used later to change the sfcodes of special
punctuation marks. (Chapter 12 explains what an \sf code does.)

The last code table is called \delcode 1 and again it)s necessary to change only
a few values. INITEX has made all delimiter codes equal to -1 1 which means that no
characters are reCObfilit~ed as delimiters in formulas. But there)s an exception: The value
\delcode'\.=0 has been prespecified1 so that:.) stands fOr a :'null delimiter.!' (See
Chapter 17.) Plain format sets up the follmving nine values 1 based on the delimiters
available in Computer Modern:

\delcode'\(= 11 028300
\delcode'\[= 11 05B302
\delcode'\<= 11 26830A

\delcode'\/= 11 02F30E
\delcode'\!= 11 26A30C
\delcode'\\= 11 26E30F

\delcode'\)= 11 029301
\delcode'\]= 11 050303
\delcode'\>= 11 26930B

It)s important to note that \delcode'\{ and \del code'\} have been left equal to -1.
If those codes were set to certain values 1 a user would be able to t:yl)e 1 e.g. 1 :\big{'
to get a big left brace; but it would be a big mistake. The reason is that braces are
used fOr grouping 1 when supplying arguments to macros; all sorts of strange things can
happen if you try to use them both as math delimiters and brroup delimiters.

At this point the plain. tex file contains several definitions

\chardef\@ne=1 \chardef\tw@=2 \chardef\thr@@=3 \chardef\sixt@@n=16
\chardef\@cclv=255 \mathchardef\@cclvi=256
\mathchardef\@m=1000 \mathchardef\@M=10000 \mathchardef\@MM=20000

which allow :'privatd' control sequences \@ne 1 \tw@ 1 etc. 1 to be used as abbreviations
for commonly used constants 11 21 ••• ; this convention makes T£X run a little faster 1

and it means that the macros \Viii consume slightly less memory space. The usage
of these abbreviations will not 1 however 1 be shown below unless necessary; we shall
pretend that :1u) appears instead of \@ne 1 :10000u) instead of \@M1 and so on 1 since

345

return
uccode
kcode
upperca,-;e
;;fcode
ddcode
period
null delimiter
left brace
right brace
brace;;
@ne
optimization
elfkiency

346 AppcndiJ: B: Basic Control Scq'ucnccs

that makes the programs more readable. (Notice that the long form of \@ne is :1u)
including a space1 because TE-X looks fOr and removes a space follmving a constant.)

2. Alloc(tiion of registers. The second major part of the plain. tex file provides a
foundation on which sy-stems of independently developed macros can coexist peacefully
without interfering in their usage of rebristers. The idea is that macro \\Titers should
abide by the follmving ground rules: (1) Registers numbered 0 to 9 are always free for
temporary :'scratchl' use1 but their values are alway-s assumed to be clobbered whenever
any other macro might get into controL (This applies to registers like \dimen0 1 \toks0 1

\skip1 1 \box3 1 etc.; but T£X has already reserved \countO through \count9 for page
number identification.) (2) The registers \count255 1 \dimen255 1 and \skip255 are
freely available in the same way. (3) All assignments to the scratch registers whose
numbers are 11 31 51 7 1 and 9 should be \global; all assibfimiCnts to the other scratch
registers (01 21 4 1 61 8 1 255) should be non~ \global. (This prevents the phenomenon of
:'save stack buildupl' discussed in Chapter 27.) (4) Furthermore1 it)s possible to use any
register in a brroup 1 if you ensure that TE-X)s grouping mechanism will restore the register
when you)re done with the group 1 and if you are certain that other macros will not
make global assignments to that register when you need it. (5) But when a register is
used by several macros 1 or over long spans of time 1 it should be allocated by \newcount 1

\newdimen1 \newbox 1 etc. (6) Similar remark-s apply to input/output streams used by
\read and \write 1 to math families used by \fam1 to sets of h:yl)henation rules used by
\language 1 and to insertions (which require \box 1 \count 1 \dimen1 and \skip registers
all having the same number).

Some handy abbreviations are introduced at this point so that the macros
below \Viii have easy access to scratch registers:

\countdef\count@=255 \toksdef\toks@=O
\dimendef\dimen@=O \dimendef\dimen@i=1

\skipdef\skip@=O
\dimendef\dimen@ii=2

Here now are the macros that provide allocation fOr quantities of more per~
manent value. These macros use registers \count10 through \count20 to hold the
numbers that were allocated most recently; fOr example1 if \newdimen has just reserved
\dimen15 1 the value of \count11 \Viii be 15. However 1 the rest of the world is not
supposed to :'knowl' that \count11 has anything to do \Vith \dimen registers. There)s
a special counter called \allocationnumber that \Viii be equal to the most recently al~
located number 1 aller every \newcount 1 \newdimen1 ••• 1 \newinsert operation; macro
packages are supposed to refer to \allocationnumber if they want to find out what
number was allocated. The inside story of how allocation is actually perfOrmed should
be irrelevant when the allocation macros are used at a higher level; you mustn)t assume
that plain. tex really does allocation in any particular way.

\count10=22 % this counter allocates \count registers 23, 24, 25,
\count11=9 % this counter allocates \dimen registers 10, 11, 12,
\count12=9 % this counter allocates \skip registers 10, 11, 12, ...
\count13=9 % this counter allocates \muskip registers 10, 11, 12, ...
\count14=9 % this counter allocates \box registers 10, 11, 12, ...
\count15=9 % this counter allocates \toks registers 10, 11, 12,
\count16=-1 % this counter allocates input streams 0, 1, 2, ...
\count17=-1 % this counter allocates output streams 0, 1, 2, ...
\count18=3 % this counter allocates math families 4. 5, 6, ...

regh;ter;;
macro con'<ention;;
;;cratch
global
;;a'<e ;;tack buildup
inputjoutput ;;tream;;
read
write
familie;;
fam
language
box
count
dimen
;;kip
allocation number

AppcndiJ: B: Basic Control Scq'ucnccs

\count19=0 %this counter allocates language codes 1. 2. 3 •...
\count20=255% this counter allocates insertions 254. 253. 252 • ...
\countdef\insc@unt=20 % nickname for the insertion counter
\countdef\allocationnumber=21 % the most recent allocation
\countdef\m@ne=22 \m@ne=-1 % a handy constant
\def\wlog{\immediate\write-1} % this will write on log file (only)
\outer\def\newcount{\alloc@O\count\countdef\insc@unt}
\outer\def\newdimen{\alloc@1\dimen\dimendef\insc@unt}
\outer\def\newskip{\alloc@2\skip\skipdef\insc@unt}
\outer\def\newmuskip{\alloc@3\muskip\muskipdef\@cclvi}
\outer\def\newbox{\alloc@4\box\chardef\insc@unt}
\let\newtoks=\relax % this allows plain.tex to be read in twice
\outer\def\newhelp#1#2{\newtoks#1#1=\expandafter{\csname#2\endcsname}}
\outer\def\newtoks{\alloc@5\toks\toksdef\@cclvi}
\outer\def\newread{\alloc@6\read\chardef\sixt@@n}
\outer\def\newwrite{\alloc@7\write\chardef\sixt@@n}
\outer\def\newfam{\alloc@8\fam\chardef\sixt@@n}
\outer\def\newlanguage{\alloc@9\language\chardef\@cclvi}
\def\alloc@#1#2#3#4#5{\global\advance\count1#1 by 1

\ch@ck#1#4#2% make sure there's still room
\allocationnumber=\count1#1 \global#3#5=\allocationnumber
\wlog{\string#5=\string#2\the\allocationnumber}}

\outer\def\newinsert#1{\global\advance\insc@unt by-1
\ch@ckO\insc@unt\count \ch@ck1\insc@unt\dimen
\ch@ck2\insc@unt\skip \ch@ck4\insc@unt\box
\allocationnumber=\insc@unt
\global\chardef#1=\allocationnumber
\wlog{\string#1=\string\insert\the\allocationnumber}}

\def\ch@ck#1#2#3{\ifnum\count1#1<#2%
\else\errmessage{No room for a new #3}\fi}

The :\alloc@) macro does most of the work of allocation. It puts a message like
:\maxdimen=\dimen10) into the log file after \newdimen has allocated a place for the
\dimen register that \Viii be called \maxdimen; such information might be useful when
difficult macros are being debugged.

A \newhelp macro has been provided to aid in creating home--made help texts:
You can say1 e.g. 1 \newhelp\helpout{This is a help message.} 1 and then brive the
command :\errhelp=\helpout) just before issuing an \errmessage. This method of
creating help texts makes efficient use of TE-X)s memory1 because it puts the text into
a control sequence name where it doesn)t take up space that is needed fOr tokens.

The plain file now goes ahead and allocates registers fOr important constants:

\newdimen\maxdimen \maxdimen=16383.99999pt
\newskip\hideskip \hideskip=-1000pt plusifill
\newskip\centering \centering=Opt plus 1000pt minus 1000pt
\newdimen\p@ \p@=ipt % this saves macro space and time
\newdimen\z@ \z@=Opt \newskip\z@skip \z@skip=Opt plusOpt minusOpt
\newbox\voidb@x % permanently void box register

347

m@ne
wlog
neWCOUilt
newdimen
new;; kip
newmu;;kip
new box
newtok;;
new read
newwrite
newfam
newlanguage
newin;;ert
!'\o room
debuggwl
newhdp
errhdp
errme;;;;age
memory

348 AppcndiJ: B: Basic Control Scq'ucnccs

The control sequence \maxdimen stands fOr the largest permissible {dimen}. Alignment
macros that appear below will make use of special glue values called \hideskip and
\centering. :'\.B.: These three constants must not be duwged under any circum-
stances; you should either ignore them completely or just use them and enjoy them.
In fact 1 the next fOur constant registers (\p@ 1 \z@ 1 \z@skip 1 and \voidb@x) have been
given private names so that they are untouchable. The control sequence \p@ is used
several dot~en times as an abbreviation for :pt) 1 and \z@ is used quite often to stand for
either :Opt) or :o); the use of such abbreviations saves almost 10% of the space needed
to store the tokens in plain T£X)s macros. But we shall stick to the unabbreviated fOrms
below1 so that the macros are more readable.

A different sort of allocation comes next:
\outer\def\newif#1{\count@=\escapechar \escapechar=-1

\expandafter\expandafter\expandafter
\edef\@if#1{true}{\let\noexpand#1=\noexpand\iftrue}%

\expandafter\expandafter\expandafter
\edef\@if#1{false}{\let\noexpand#1=\noexpand\iffalse}%

\@if#1{false}\escapechar=\count@} % the condition starts out false
\def\@if#1#2{\csname\expandafter\if@\string#1#2\endcsname}
{\uccode'1='i \uccode'2='f \uppercase{\gdef\if@12{}}} % 'if' is required

For example1 the command \newif\ifalpha creates a trio of control sequences called
\alphatrue1 \alphafalse1 and \ifalpha (see Chapter 20).

if. Porometers. INITEX sets almost all of the numeric rebristers and parameters equal
to 11ero; it makes all of the token registers and parameters empty; and it makes all of
the box registers void. But there are a few exceptions: \mag is set initially to 10001

\tolerance to 100001 \maxdeadcycles to 25 1 \hangafter to 11 \escapechar to '\ \
and \endlinechar to '\,..,..M. Plain T£X assigns new parameter values as follows:

\pretolerance=100 \tolerance=200
\linepenalty=10 \hyphenpenalty=50
\binoppenalty=700 \relpenalty=500

\hbadness=1000 \vbadness=1000
\exhyphenpenalty=50

\clubpenalty=150 \widowpenalty=150 \displaywidowpenalty=50
\brokenpenalty=100 \predisplaypenalty=10000
\doublehyphendemerits=10000 \finalhyphendemerits=5000 \adjdemerits=10000
\tracinglostchars=1 \uchyph=1 \delimiterfactor=901
\defaulthyphenchar='\- \defaultskewchar=-1 \newlinechar=-1
\showboxbreadth=5 \showboxdepth=3 \errorcontextlines=5
\hfuzz=0.1pt \vfuzz=0.1pt \overfullrule=5pt
\hsize=6.5in \vsize=8.9in \parindent=20pt
\maxdepth=4pt \splitmaxdepth=\maxdimen \boxmaxdepth=\maxdimen
\delimitershortfall=5pt \nulldelimiterspace=1.2pt \scriptspace=0.5pt
\parskip=Opt plus 1pt
\abovedisplayskip=12pt plus 3pt minus 9pt
\abovedisplayshortskip=Opt plus 3pt
\belowdisplayskip=12pt plus 3pt minus 9pt
\belowdisplayshortskip=7pt plus 3pt minus 4pt
\topskip=10pt \splittopskip=10pt
\parfillskip=Opt plus 1fil

maxdimen
hide;;kip
centering
p@
z@
z@;;kip
'<oidb@x
optimization
;;tring
e;;capechar
upperca,-;e
ift rue
ilfal;;e
ex pam! after
wkf
noexpaml
c;;name
parameter;;, default '<aloe;;
default '<aloe;; of parameter;;
mag
tolerance
Jnaxdead(:y(:le;;
hangafter
e;;capechar
endlinechar
pretolerance
tolerance
hbadne;;;;
'<hadne;;;;
linepenalty
hyphen penalty
exhyphenpenalty
binoppenalty
rdpenalty
dubpenalty
widowpenalty
di;;play widowpenalty
broken penalty
prw!i;;play penalty
dou blehy phendemerit;;
linalhy phendemerit;;
adjdemerit;;
tradnglo;;tchar;;
uchyph
ddimiterfactor
default hy phenchar
default;;lwwchar
newlinechar
;;howboxbreadt h
;;howboxdepth
errorcontext line;;
hfuzz
., fuzz
o'<erfullrule
h;;ize
'<;;ize
par indent
max depth
;;plitmaxdepth
boxmaxdepth
ddimiter;;hortfall
nullddimiter;;pace
;;cript;;pace
par;; kip
abo'<wli;;play;;kip
abo'<wl i;; play;;hort ;;kip
bdowdi;;play;;kip
bdowd i;; play;;hort ;;kip
top;;kip
;;plittop;;kip
parlilbkip

\thinmuskip=3mu
\medmuskip=4mu plus 2mu minus 4mu
\thickmuskip=5mu plus 5mu

AppcndiJ: B: Basic Control Scq'ucnccs

(Some parameters are set by TE-X itself as it runs 1 so it is inappropriate to ini~
tialit~e them: \time 1 \day 1 \month1 and \year are established at the beginning of a job;
\outputpenalty is given a value when an \output routine is invoked; \predisplaysize1

\displaywidth1 and \displayindent get values just before a display is processed; and
the values \looseness=0 1 \hangindent=Opt 1 \hangafter=1 1 \parshape=O are assibfilCd
at the end of a paragraph and when TE-X enters internal vertical mode.)

The parameters \baselineskip1 \lineskip1 and \lineskiplimit have not
been initialit~ed here 1 but a macro called \normalbaselines is defined below; this
macro sets \baselineskip=\normalbaselineskip1 \lineskip=\normallineskip1 and
\lineskiplimit=\normallineskiplimit. An indirect approach like this has been used
so that several different type sit~es may be handled1 as illustrated in Appendix E. Plain
TE-X deals exclusively \Vith lOpt type1 but it supports extension to other styles.

Some :'pseudo parameters!' come next. These quantities behave just like in~
ternal parameters of TE-X 1 and users are free to change them in the same way1 but they
are part of the plain TE-X format rather than primitives of the language.

\newskip\smallskipamount % the amount of a \smallskip
\smallskipamount=3pt plusipt minusipt

\newskip\medskipamount % the amount of a \medskip
\medskipamount=6pt plus2pt minus2pt

\newskip\bigskipamount % the amount of a \bigskip
\bigskipamount=12pt plus4pt minus4pt

\newskip\normalbaselineskip % normal value of \baselineskip
\normalbaselineskip=12pt

\newskip\normallineskip % normal value of \lineskip
\normallineskip=ipt

\newdimen\normallineskiplimit % normal value of \lineskiplimit
\normallineskiplimit=Opt

\newdimen\jot % unit of measure for opening up displays
\jot=3pt

\newcount\interdisplaylinepenalty % interline penalty in \displaylines
\interdisplaylinepenalty=100

\newcount\interfootnotelinepenalty % interline penalty in footnotes
\interfootnotelinepenalty=100

4. Font informotion. Now plain. tex brings in the data that TE-X needs to know about
how to t:yl)eset lots of characters in lots of different fonts. First the \magstep macros
are defined1 to support font scaling:

\def\magstephalf{1095 }
\def\magstep#1{\ifcase#1 1000\or

1200\or 1440\or 1728\or 2074\or 2488\fi\relax}

(Incidentally1 \magstep doesn)t use \multiply to compute values 1 since it is supposed to
expand to a {number} enroute to TE-X)s :'stomachl'; \multiply wouldn)t work 1 because
it is an assignment commaml1 performed only in the stomach.)

349

thinmu;;kip
mwlmu;;kip
thkkmu;;kip
time
day
month
year
output penalty
prw!i;;play;;ize
di;;play width
di;;play indent
loo;;ene;;;;
hangindent
hangafter
par;;hape
ba,-;dine;;kip
line;;kip
line;;kiplimit
normalba,-;dine;;
p;;eudo parameter;;
parameter;;, p;;eudo
;;mall;;kipamount
mwl;;kipamount
big;;kipamount
normal ba,-;dine;;ki p
normalline;;kip
normalline;;kiplimit
jot
int erd i;; play I inepenalty
int erfoot not dinepenalty
mag;;tep
mag;;tephalf
multiply
number
anatomy

350 AppcndiJ: B: Basic Control Scq'ucnccs

One of the main things that distinbruishes one format from another is the fact
that each fOrmat brives TE-X the necessary hlwwledge about a certain family of typefaces.
In this case the Computer Modern t:Yl)CS described in Appendix F are taken as a basis 1

although there is a provision for incorporating other styles.

\font\tenrm=cmr10
\font\sevenrm=cmr7

\font\teni=cmmi10
\font\seveni=cmmi7

\font\tensy=cmsy10
\font\sevensy=cmsy7

\font\tenex=cmex10

\font\tenbf=cmbx10
\font\sevenbf=cmbx7

\font\tensl=cmsl10
\font\tentt=cmtt10
\font\tenit=cmti10
\font\preloaded=cmss10
\font\preloaded=cmssi10

\font\preloaded=cmr9
\font\preloaded=cmr6

\font\preloaded=cmmi9
\font\preloaded=cmmi6

\font\preloaded=cmsy9
\font\preloaded=cmsy6

\font\preloaded=cmbx9
\font\preloaded=cmbx6

\font\preloaded=cmsl9
\font\preloaded=cmtt9
\font\preloaded=cmti9
\font\preloaded=cmssq8
\font\preloaded=cmssqi8

\font\preloaded=cmr7 scaled \magstep4 % for titles
\font\preloaded=cmtt10 scaled \magstep2
\font\preloaded=cmssbx10 scaled \magstep2

\font\preloaded=cmr8
\font\fiverm=cmr5

\font\preloaded=cmmi8
\font\fivei=cmmi5

\font\preloaded=cmsy8
\font\fivesy=cmsy5

\font\preloaded=cmbx8
\font\fivebf=cmbx5

\font\preloaded=cmsl8
\font\preloaded=cmtt8
\font\preloaded=cmti8

% Additional \preloaded fonts can be specified here.
% (And those that were \preloaded above can be eliminated.)
\let\preloaded=\undefined % preloaded fonts must be declared anew later.

Notice that most of the fOnts have been called \preloaded; but the control sequence
\preloaded is made undefined at the very end1 so those fOnts cannot be used directly.
There are two reasons for this strange approach: First 1 it is desirable to keep the total
number of fonts of plain T£X relatively small 1 because plain T£X is a sort of standard
format; it shouldn)t cost much fOr someone to acquire all the fonts of plain TE-X in
addition to those he really wants. Second1 it is desirable on many computer systems to
preload the infOrmation fOr most of the fOnts that people \Viii actually be using1 since
this saves a lot of machine time. The \preloaded font information goes into T£X)s
memory1 where it \Viii come alive instantly if the user defines the corresponding \font
again. For example1 the book format in Appendix E say-s :\font\ninerm=cmr9); aller
that assibfimiCnt has been obeyed1 the control sequence \ninerm will identify the cmr9
font 1 whose information does not have to be loaded again.

The exact number and nature of fOnts that are preloaded is unimportant; the
only important thing needed for standardit~ation between machines is that sixteen basic
fonts (cmr10 1 cmr7 1 cmti10) should actually be loaded. The plain.tex files used
on different machines can be expected to differ \Videly \Vith respect to preloaded fonts 1

since the choice of how many fonts to preload and the selection of the most important
fonts depends on local conditions. For example1 at the author)s university it is useful
to preload a fOnt that contains the Stanford seal 1 but that particular fOnt is not very
popular at Berkeley.

Computer J'viodern
tenrm
prdoadwl

AppcndiJ: B: Basic Control Scq'ucnccs

Most of these fonts have the default values of \hyphenchar and \skewchar 1

namely '- and -1; but the math italic and math symbol fonts have special \skewchar
values 1 which are defined next:

\skewchar\teni='177 \skewchar\seveni='177 \skewchar\fivei='177
\skewchar\tensy='60 \skewchar\sevensy='60 \skewchar\fivesy='60

Once the fonts are loaded1 they are also brrouped into families fOr use in math
setting1 and shorthand names like \rm and \it are defined:

\textfontO=\tenrm \scriptfontO=\sevenrm \scriptscriptfontO=\fiverm
\def\rm{\famO \tenrm}
\textfont1=\teni \scriptfont1=\seveni \scriptscriptfont1=\fivei
\def\mit{\fam1 } \def\oldstyle{\fam1 \teni}
\textfont2=\tensy \scriptfont2=\sevensy \scriptscriptfont2=\fivesy
\def\cal{\fam2 }
\textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex
\newfam\itfam \def\it{\fam\itfam\tenit} \textfont\itfam=\tenit
\newfam\slfam \def\sl{\fam\slfam\tensl} \textfont\slfam=\tensl
\newfam\bffam \def\bf{\fam\bffam\tenbf} \textfont\bffam=\tenbf

\scriptfont\bffam=\sevenbf \scriptscriptfont\bffam=\fivebf
\newfam\ttfam \def\tt{\fam\ttfam\tentt} \textfont\ttfam=\tentt

5. Mocros for text. The fifth part of plain. tex introduces macros that do basic fOr~
matting unrelated to mathematics. First come some macros that were promised above:

\def\frenchspacing{\sfcode'\.=1000 \sfcode'\?=1000 \sfcode'\!=1000
\sfcode'\:=1000 \sfcode'\;=1000 \sfcode'\.=1000 }

\def\nonfrenchspacing{\sfcode'\.=3000 \sfcode'\?=3000 \sfcode'\!=3000
\sfcode'\:=2000 \sfcode'\;=1500 \sfcode'\.=1250 }

\def\normalbaselines{\lineskip=\normallineskip
\baselineskip=\normalbaselineskip \lineskiplimit=\normallineskiplimit}

The next macros are simple but vitaL First \(tab} and \(return} are defined
so that they expand to \(space}; this helps to prevent confusion1 since all three cases
look identical when displayed on most computer terminals. Then the macros \lq1

\rq1 \lbrack1 and \rbrack are defined 1 for people who have difficulty typing quota~
tion mark-s and/or brackets. The control sequences \endgraf and \endline are made
equivalent to T£X)s primitive \par and \cr operations1 since it is often useful to rede--
fine the meanings of \par and \cr themselves. Then come the definitions of \space
(a blank space) 1 \empty (a list of no tokens) 1 and \null (an empty hbox). Finally1

\bgroup and \egroup are made to provide :'implicif' biTOuping characters that turn
out to be especially useful in macro definitions. (See Chapters 24-26 and Appendix D
for infOrmation about implicit characters.)

\def\''I{\ } \def\''M{\ }
\def\lq{'} \def\rq{'} \def\lbrack{[} \def\rbrack{]}
\let\endgraf=\par \let\endline=\cr
\def\space{ } \def\empty{} \def\null{\hbox{}}
\let\bgroup={ \let\egroup=}

351

hyphenchar
;;lwwchar
rm
il
;;cri pt ;;cri pt font
text font
;;cript font
mit
okbtyk
cal
;;I
bf
newfam

french;;padng
;;fcode
nonfrench;;padng
normalba,-;dine;;
control tab
control ret urn
control ;;pace
lq
<q
lbrack
rbrack
endgraf
end line
par
cr
;;pace
empty
null
bgroup
egroup
implicit character,;

352 AppcndiJ: B: Basic Control Scq'ucnccs

Something a bit tricky comes up now in the definitions of \obeyspaces and
\obeylines 1 since TE-Xis only :'half obedienf' while these definitions are half finished:

\def\obeyspaces{\catcode'\ =\active}
{\obeyspaces\global\let =\space}
{\catcode'\~~M=\active % these lines must end with '%'
\gdef\obeylines{\catcode'\~~M=\active \let~~M=\par}%

\global\let~~M=\par} % this is in case ~~M appears in a \write

The \obeylines macro say-s :\let,..,..M=\par) instead of :\def,..,..M{\par}) because the
\let technique allows constructions such as :\let\par=\cr \obeylines \halign{ ... })
in which \cr)s need not be briven within the alibfimiCnt.

The \loop ... \repeat macro provides for iterative operations as illustrated at
the end of Chapter 20. In this macro and several others1 the control sequence :\next)
is briven a temporary value that is not going to be needed later; thus 1 \next acts like a
:'scratch control sequence.l'

\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body \let\next=\iterate \else\let\next=\relax\fi \next}
\let\repeat=\fi %this makes \loop ... \if ... \repeat skippable

Spacing is the next concern. The macros \enskip 1 \quad1 and \qquad provide
spaces that are legitimate breakpoints \Vithin a parabrraph; \enspace 1 \thinspace 1

and \negthinspace produce space that cannot cause a break (although the space \Viii
disappear if it occurs just next to certain kinds of breaks). All six of these spaces
are relative to the current fOnt. You can get horit~ontal space that never disappears
by saying :\hglue(glue}); this space is able to stretch or shrink. Similarly1 there)s a
vertical analog 1 :\vglue(glue}). The \nointerlineskip macro suppresses interline glue
that would ordinarily be inserted befOre the next box in vertical mode; this is a :'one
shof' macro 1 but \offinterlineskip is more drastic-it sets things up so that future
interline glue \Viii be present 1 but 11ero. There also are macros fOr potentially breakable
vertical spaces: \smallskip 1 \medskip 1 and \bigskip.

\def\enskip{\hskip.5em\relax}
\def\quad{\hskipiem\relax}
\def\thinspace{\kern .16667em}

\def\enspace{\kern.5em }
\def\qquad{\hskip2em\relax}
\def\negthinspace{\kern-.16667em}

\def\hglue{\afterassignment\hgl@\skip@=}
\def\hgl@{\leavevmode \count@=\spacefactor \vrule widthOpt

\nobreak\hskip\skip@ \spacefactor=\count@}
\def\vglue{\afterassignment\vgl@\skip@=}
\def\vgl@{\par \dimen@=\prevdepth \hrule heightOpt

\nobreak\vskip\skip@ \prevdepth=\dimen@}
\def\topglue{\nointerlineskip \vglue-\topskip \vglue} % for top of page
\def\nointerlineskip{\prevdepth=-1000pt }
\def\offinterlineskip{\baselineskip=-1000pt

\lineskip=Opt \lineskiplimit=\maxdimen}
\def\smallskip{\vskip\smallskipamount}
\def\medskip{\vskip\medskipamount}
\def\bigskip{\vskip\bigskipamount}

obey;;JHtce;;
obey line;;
halign
cr
loop
repeat
next
;;cratch control ;;equence
en;; kip
quad
qquad
en;; pace
thin;;pace
negt hi n;; pace
hglue
'<glue
nointerline;;kip
olfinterline;;kip
interline glue
;;malbkip
mwl;;kip
big;;kip
topglue
aftera,-;;;ignment

AppcndiJ: B: Basic Control Scq'ucnccs

Speaking of breaJ.:points1 the follmving macros introduce penalty markers that
make breaking less 1 or more1 desirable. The \break1 \nobreak1 and \allowbreak
macros are intended fOr use in any mode; the - (tie) and \slash (h:n:dwn~like)))
macros are intended for horimntal mode. The others are intended only for vertical
mode1 i.e. 1 between paragraphs 1 so they bebrin with \par.

\def\break{\penalty-10000 } \def\nobreak{\penalty10000 }
\def\alloYbreak{\penaltyO }
\def-{\penalty10000\ }
\def\slash{/\penalty\exhyphenpenalty}
\def\filbreak{\par\vfil\penalty-200\vfilneg}
\def\goodbreak{\par\penalty-500 }
\def\eject{\par\penalty-10000 }
\def\supereject{\par\penalty-20000 }
\def\removelastskip{\ifdim\lastskip=Opt \else\vskip-\lastskip\fi}
\def\smallbreak{\par \ifdim\lastskip<\smallskipamount

\removelastskip \penalty-50 \smallskip \fi}
\def\medbreak{\par \ifdim\lastskip<\medskipamount

\removelastskip \penalty-100 \medskip \fi}
\def\bigbreak{\par \ifdim\lastskip<\bigskipamount

\removelastskip \penalty-200 \bigskip \fi}

Boxes are next: \line1 \leftline1 \rightline1 and \centerline produce
boxes of the full line width 1 while \llap and \rlap make boxes whose effective \Vidth
is 11ero. The \underbar macro puts its argument into an hbox \Vith a straight line at a
fixed distance under it.
\def\line{\hbox to\hsize}
\def\leftline#1{\line{#1\hss}} \def\rightline#1{\line{\hss#1}}
\def\centerline#1{\line{\hss#1\hss}}
\def\llap#1{\hbox to Opt{\hss#1}} \def\rlap#1{\hbox to Opt{#1\hss}}
\def\m@th{\mathsurround=Opt }
\def\underbar#1{$\setbox0=\hbox{#1} \dpO=Opt

\m@th \underline{\boxO}$}

(Notice that \underbar uses math mode to do its job1 although the operation is essen~
tially nOIHnathematical in nature. A few of the other macros below use math mode
in similar way-s; thus 1 TE-X)s mathematical abilities prove to be useful even when no
mathematical typesetting is actually being done. A special control sequence \m@th is
used to :'turn off' \mathsurround when such constructions are being performed.)

A \strut is implemented here as a rule of \Vidth 11ero1 since this takes minimum
space and time in applications where numerous struts are present.

\newbox\strutbox
\setbox\strutbox=\hbox{\vrule height8.5pt depth3.5pt widthOpt}
\def\strut{\relax\ifmmode\copy\strutbox\else\unhcopy\strutbox\fi}

The :\relax) in this macro and in others below is necessary in case \strut appears
first in an alignment entry1 because TE-Xis in a somewhat unpredictable mode at such
times (see Chapter 22).

353

penalty
break
no break
allow break
;;la,-;h
Iii break
good break
eject
;;upereject
f(OHlO'<da,-;t;;kip
;;mall break
mwlbreak
bigbreak
line
left line
right line
centerline
llap
rlap
under bar
m@th
math;;urround
;;trot
relax

354 AppcndiJ: B: Basic Control Scq'ucnccs

The \ialign macro provides fOr alignments when it is necessary to be sure
that \tabskip is initially 11ero. The \hidewidth macro can be used essentially as \hfill
in alibfimiCnt entries that are permitted to :'stick ouf' of their column. There)s also
\multispan1 which permits alignment entries to span one or more columns.

\def\ialign{\everycr={}\tabskip=Opt \halign} % initialized \halign
\def\hideYidth{\hskip\hideskip}
\newcount\mscount
\def\multispan#1{\omit \mscount=#1 \loop\ifnum\mscount>1 \sp@n\repeat}
\def\sp@n{\span\omit \advance\mscount by -1 }

Now we get to the :'tabbingl' macros 1 which are more complicated than any~
thing else in plain T£X. They keep track of the tab positions by maintaining boxes
full of empty boxes having the specified \Vidths. (The best way to understand these
macros is probably to watch them in action on simple examples1 using \tracingall.)

\newif\ifus@ \newif\if@cr
\newbox\tabs \newbox\tabsyet \newbox\tabsdone
\def\cleartabs{\global\setbox\tabsyet=\null \setbox\tabs=\null}
\def\settabs{\setbox\tabs=\null \futurelet\next\sett@b}
\let\+=\relax % in case this file is being read in twice
\def\sett@b{\ifx\next\+ \let\next=\relax % turn off \outerness

\def\next{\afterassignment\s@tt@b\let\next}%
\else\let\next=\s@tcols\fi\next}

\def\s@tt@b{\let\next=\relax \us@false\m@ketabbox}
\outer\def\+{\tabalign} \def\tabalign{\us@true \m@ketabbox}
\def\s@tcols#1\columns{\count@=#1 \dimen@=\hsize

\loop \ifnum\count@>O \@nother \repeat}
\def\@nother{\dimen@ii=\dimen@ \divide\dimen@ii by\count@

\setbox\tabs=\hbox{\hbox to\dimen@ii{}\unhbox\tabs}%
\advance\dimen@ by-\dimen@ii \advance\count@ by -1 }

\def\m@ketabbox{\begingroup
\global\setbox\tabsyet=\copy\tabs \global\setbox\tabsdone=\null
\def\cr{\@crtrue\crcr\egroup\egroup

\ifus@ \unvboxO \lastbox\fi \endgroup
\setbox\tabs=\hbox{\unhbox\tabsyet\unhbox\tabsdone}}%

\setboxO=\vbox\bgroup\@crfalse \ialign\bgroup&\t@bbox##\t@bb@x\crcr}
\def\t@bbox{\setboxO=\hbox\bgroup}
\def\t@bb@x{\if@cr\egroup % now \boxO holds the column

\else\hss\egroup \global\setbox\tabsyet=\hbox{\unhbox\tabsyet
\global\setbox1=\lastbox}% now \box1 holds its size

\ifvoid1 \global\setbox1=\hbox to\wdO{}%
\else\setboxO=\hbox to\wd1{\unhbox0}\fi
\global\setbox\tabsdone=\hbox{\box1\unhbox\tabsdone}\fi

\boxO}

The macro \+ has been declared :\outer) here1 so that TE-X \Viii be better able to
detect runaway arguments and definitions (see Chapter 20). A non~\outer version 1

ialign
alignment;;
tab;; kip
hidewidth
multi;; pan
tabbing
deartab;;
;;ettab;;
+
la,-;t box
unhbox
outer

AppcndiJ: B: Basic Control Scq'ucnccs

called \tabalign1 has also been provided in case it is necessary to use \+ in some
:'innerl' place. You can use \tabalign just like \+1 except after \settabs.

• Paragraph shapes of a limited but important kind are provided by \item1

\itemitem1 and \narrower. There are also two macros that haven)t been mentioned
befOre: (1) \hang causes hailbring indentation by the normal amount of \parindent 1

after the first line; thus 1 the entire paragraph \Viii be indented by the same amount
(unless it began \Vith \no indent). (2) \textindent{stuff} is like \indent 1 but it puts
the :stuff) into the indentation 1 flush right except for an en space; it also removes spaces
that might follow the right brace in :{stuff}). For example1 the present parabrraph
was typeset by the counnands :\textindent{\bullet} Paragraph shapes the
opening :p) occurs at the normal position for a paragraph)s first letter.

\def\hang{\hangindent\parindent}
\def\item{\par\hang\textindent}
\def\itemitem{\par\indent \hangindent2\parindent \textindent}
\def\textindent#1{\indent\llap{#1\enspace}\ignorespaces}
\def\narrower{\advance\leftskip by\parindent

\advance\rightskip by\parindent}

The \beginsection macro is intended to mark the beginning of a new major
subdivision in a document; to use it 1 you say :\beginsection(section title}) fOllowed by
a blank line (or \par). The macro first emits glue and penalties1 designed to start a new
page if the present page is nearly full; then it makes a \bigskip and puts the section
title flush left on a line by itself1 in boldface type. The section title is also displayed on
the terminaL After a \smallskip 1 with page break prohibited1 a \no indent command
is given; this suppresses indentation in the next parabrraph 1 i.e. 1 in the first parabrraph
of the new section. (However 1 the next :'paragraph!' \Viii be empty if vertical mode
material immediately follows the \beginsection command.)

\outer\def\beginsection#1\par{\vskip0pt plus.3\vsize\penalty-250
\vskipOpt plus-.3\vsize\bigskip\vskip\parskip
\message{#1}\leftline{\bf#1}\nobreak\smallskip\noindent}

Special statements in a mathematical paper are often called theorems 1 lemmas 1

definitions 1 a..xioms 1 postulates 1 remarh-s 1 corollaries1 algorithms 1 facts 1 conjectures1 or
some such things 1 and they generally are given special t:yl)ographic treatment. The
\proclaim macro 1 which was illustrated earlier in this appendix and also in Chapter 201

puts the title of the proclamation in boldface1 then sets the rest of the paragraph in
slanted t:yl)e. The paragraph is followed by something similar to \medbreak1 except
that the amount of penalty is different so that page breaks are discouraged:

\outer\def\proclaim #1. #2\par{\medbreak
\noindent{\bf#1.\enspace}{\sl#2\par}%
\ifdim\lastskip<\medskipamount \removelastskip\penalty55\medskip\fi}

Ragged~right setting is initiated by restricting the spaces between words to
have a fixed \Vidth 1 and by putting variable space at the right of each line. You should
not call \raggedright until your text font has already been specified; it is assumed that
the ragged~ right material \Viii not be in a variety of different sit~es. (If this assumption
is not valid 1 a different approach should be used: \fontdimen parameters 3 and 4 of the
fonts you \Viii be using should be set to 11ero1 by saying1 e.g. 1 :\fontdimen3\tenrm=Opt).

355

tabalign
;;ettab;;
item
it emit em
narrower
hang
par indent
noindent
text indent
indent
bullet
ignore;; pace;;
begin;;ect ion
big;;kip
;;malbkip
noindent
me;;;;age
theorem;;
proclaim
mwlbreak
Haggwl-right ;;etting
ragged right
fontdimen

356 AppcndiJ: B: Basic Control Scq'ucnccs

These parameters specify the stretchability and shrinkability of interword spaces.) A
special macro \ttraggedright should be used fOr ragged~right setting in typ<nvriter
t:yl)C 1 since the spaces between words are generally bigger in that style. (Spaces are
already unstretchable and unshrinkable in font cmtt.)

\def\raggedright{\rightskip=Opt plus2em
\spaceskip=.3333em \xspaceskip=.5em\relax}

\def\ttraggedright{\tt\rightskip=Opt plus2em\relax}

Now we come to special symbols and accents 1 which depend primarily on the
characters available in the Computer Modern fonts. Different constructions \Viii be
necessary if other styles of type are used. \Vhen a symbol is built up by forming a box 1

the \leavevmode macro is called first; this starts a new parabrraph 1 if TE-Xis in vertical
mode1 but does nothing if T£X is in horit~ontal mode or math mode.

\chardef\%='\% \chardef\&='\& \chardef\#='\# \chardef\$='\$
\chardef\ss= 11 19
\chardef\ae= 11 1A \chardef\oe= 11 1B \chardef\o= 11 1C
\chardef\AE= 11 1D \chardef\OE= 11 1E \chardef\0= 11 1F
\chardef\i= 11 10 \chardef\j= 11 11 % dotless letters
\def\aa{\accent'27a} \def\l{\char'401}
\def\leavevmode{\unhbox\voidb@x} % begins a paragraph. if necessary
\def_{\leavevmode \kern.06em \vbox{\hrule width0.3em}}
\def\L{\leavevmode\setboxO=\hbox{L}\hbox to\wd0{\hss\char'40L}}
\def\AA{\leavevmode\setboxO=\hbox{h}\dimen@=\htO \advance\dimen@ by-1ex

\rlap{\raise.67\dimen@\hbox{\char'27}}A}
\def\mathhexbox#1#2#3{\leavevmode

\hbox{$\m@th \mathchar"#1#2#3$}}
\def\dag{\mathhexbox279} \def\ddag{\mathhexbox27A}
\def\S{\mathhexbox278} \def\P{\mathhexbox27B}
\def\oalign#1{\leavevmode\vtop{\baselineskip0pt \lineskip.25ex

\ialign{##\crcr#1\crcr}}} % put characters over each other
\def\ooalign{\lineskiplimit-\maxdimen \oalign}
\def\d#1{\oalign{#1\crcr\hideYidth.\hideYidth}}
\def\b#1{\oalign{#1\crcr\hideYidth

\vbox to.2ex{\hbox{\char'26}\vss}\hidewidth}}
\def\c#1{\setbox0=\hbox{#1}\ifdim\ht0=1ex \accent'30 #1%

\else{\ooalign{\hidewidth\char'30\hidewidth\crcr\unhbox0}}\fi}
\def\copyright{{\ooalign

{\hfil\raise.07ex\hbox{c}\hfil\crcr\mathhexbox20D}}}
\def\dots{\relax\ifmmode\ldots\else$\m@th \ldots\,$\fi}
\def\TeX{T\kern-.1667em \lower.5ex\hbox{E}\kern-.125em X}

\def\ '#1{{\accent 11 12 #1}} \def\'#1{{\accent 11 13 #1}}
\def\v#1{ {\accent"14 #1}} \def\u#1{ {\accent" 15 #1}}
\def\=#1{ {\accent"16 #1}} \def\'#1{ {\accent"5E #1}}
\def\.#1{{\accent"SF #1}} \def\H#1{{\accent"7D #1}}
\def\-#1{{\accent 11 7E #1}} \def\ 11 #1{{\accent 11 7F #1}}
\def\t#1 { {\edef\next{\the \font} \the \textfont1 \accent 11 7F\next#1}}

interword ;;jHtce;;
;;pace;; kip
x;;pace;;kip
ttraggedright
typewriter type
Jea'<e'<HlOde
control percent
control amper;;and
control ha,-;h
control dollar
;;;;
ae

AE
OE
0

aa
I
control underline
L
AA
mathhexbox
dag
ddag
s
I'
oalign
ooalign
d
b

' copyright
dot;;
'1\:X

" e;;c hat

H
e;;c tilde

AppcndiJ: B: Basic Control Scq·ucnccs 357

At this point three alternative control~s:yuibol accents are defined1 suitable for
keyboards with extended character sets (d. Appendix C):

\let\''_ =\v \let\''S=\u \let\''D=\'

Various ways to fill space with leaders are provided next.

\def\hrulefill{\leaders\hrule\hfill}
\def\dotfill{\cleaders\hbox{$\m@th \mkern1.5mu . \mkern1.5mu$}\hfill}
\def\rightarrowfill{$\m@th \mathord- \mkern-6mu

\cleaders\hbox{$\mkern-2mu \mathord- \mkern-2mu$}\hfill
\mkern-6mu \mathord\rightarrow$}

\def\leftarrowfill{$\m@th \mathord\leftarrow \mkern-6mu
\cleaders\hbox{$\mkern-2mu \mathord- \mkern-2mu$}\hfill
\mkern-6mu \mathord-$}

\mathchardef\ braceld= 11 37 A \mathchardef\ bracerd= 11 37B
\mathchardef\bracelu= 11 37C \mathchardef\braceru= 11 37D
\def\upbracefill{$\m@th

\bracelu\leaders\vrule\hfill\bracerd
\braceld\leaders\vrule\hfill\braceru$}

\def\downbracefill{$\m@th
\braceld\leaders\vrule\hfill\braceru
\bracelu\leaders\vrule\hfill\bracerd$}

The \upbracefill and \downbracefill macros have restricted usage: they must ap~
pear all by themselves in an hbox or an alignment entry1 except for horit~ontal spacing.

Finally1 the fifth section of plain. tex doses by defining \bye:

\outer\def\bye{\par\vfill\supereject\end} % the recommended way to stop

6. Mocros for moth. The sixth section of plain. texis the longest; but it \Viii suffice to
give only excerpts here1 because most of it is simply a tedious listing of special sy-mbols
together with their font locations 1 and the same information appears in Appendix F.

Some rudimentary things come first: The control sequences \sp and \sb are
provided fOr people who can)t easily type ,.. and_; there are fOur control symbols that
provide spacing corrections; a :'discretionary times sibfill' *is defined; and then there)s
an interesting set of macros that convert f' ' ' into f,.. {\prime \prime \prime}:

\let\sp=,.. \let\sb=_ {\catcode'_=\active \global\let_=_}
\def\,{\mskip\thinmuskip} \def\!{\mskip-\thinmuskip}
\def\>{\mskip\medmuskip} \def\;{\mskip\thickmuskip}
\def*{\discretionary{\thinspace\the\textfont2\char2}{}{}}
{\catcode'\,..,..Z=\active \gdef,..,..Z{\not=}} % ,..,..Z is like \ne in math

{\catcode'\'=\active \gdef'{,..\bgroup\prim@s}}
\def\prim@s{\prime\futurelet\next\pr@m@s}
\def\pr@m@s{\ifx'\next\let\nxt\pr@@@s \else\ifx,..\next\let\nxt\pr@@@t

\else\let\nxt\egroup\fi\fi \nxt}
\def\pr@@@s#1{\prim@s} \def\pr@@@t#1#2{#2\egroup}

accent;;
leader,;
hruldill
dot/ill
rightarrowlill
left arrow/ill
up brace/ill
downbracdill
bye
outer
;;p
;;b
di;;cretionary time;; ;;ign
'

358 AppcndiJ: B: Basic Control Scq'ucnccs

The next job is to define Greek letters and other symbols of type Ord. Up~
percase Greek letters are assibfilCd hexadecimal codes of the form "7xxx 1 so that they
will change families when \fam changes. Three dots : · · ·) are used here and below to
indicate that additional symbols 1 having similar definitions 1 are listed in Appendix F.

\mathchardef\alpha= 11 010B \mathchardef\omega= 11 0121
\mathchardef\Gamma= 11 7000 \mathchardef\Omega= 11 700A
\mathchardef\aleph= 11 0240 \mathchardef\spadesui t= 11 027F
\def\hbar{{\mathchar'26\mkern-9muh}}
\def\snrd{ {\mathchar" 1270}}
\def\angle{{\vbox{\ialign{$\m@th\scriptstyle##$\crcr

\not\mathrel{\mkern14mu}\crcr \noalign{\nointerlineskip}
\mkern2.5mu\leaders\hrule height.34pt\hfill\mkern2.5mu\crcr}}}}

Large operators are assigned hexadecimal codes of the form "ixxx:

\mathchardef\small int= 11 1273
\mathchardef\sum= 11 1350
\mathchardef\ intop= 11 1352
\mathchardef\o intop= 11 1348

\mathchardef \ bigupl us= 11 1355
\def\int{\intop\nolimits}
\def\oint{\ointop\nolimits}

Intebrral signs get special treatment so that their limits won)t be set above and below.
Binary operations are next; nothing exciting here.

\mathchardef\pm= 11 2206 \mathchardef\amalg= 11 2271

Relations are also fairly straightfOrward) except for the ones that are con~
structed from other characters. The \mapstochar is a character :I) of \Vidth 11ero that
is quite useless by itself1 but it combines \Vith right arrmvs to make \mapsto :1-t) and
\longmapsto :1---t). Similarly1 \not is a relation character of \Vidth 11ero that puts
a slash over the character that fOllo\\'S. \Vhen two relations are adjacent in a math
formula1 TE-X puts no space between them.

\mathchardef\leq= 11 3214 \mathchardef \perp= 11 323F
\def\joinrel{\mathrel{\mkern-3mu}}
\def\relbar{\mathrel{\smash-}} \def\Relbar{\mathrel=}
\def\longrightarrow{\relbar\joinrel\rightarrow}
\def\Longrightarrow{\Relbar\joinrel\Rightarrow}
\def\longleftarrow{\leftarrow\joinrel\relbar}
\def\Longleftarrow{\Leftarrow\joinrel\Relbar}
\def\longleftrightarrow{\leftarrow\joinrel\rightarrow}
\def\Longleftrightarrow{\Leftarrow\joinrel\Rightarrow}
\mathchardef\mapsto char= 11 322F \def\mapsto {\mapsto char \right arrow}
\def\longmapsto{\mapstochar\longrightarrow}
\mathchardef\lhook= 11 312C \def\hookrightarrow{\lhook\joinrel\rightarrow}
\mathchardef\rhook= 11 312D \def\hookleftarrow{\leftarrow\j o inrel \r hook}
\def\neq{\not=} \def\models{\mathrel!\joinrel=}
\def\bowtie{\mathrel\triangleright\joinrel\mathrel\triangleleft}

After defining characters \ldotp and \cdotp that act as math punctuation1

it is easy to define \ldots and \cdots macros that give the proper spacing in most

Greek letter;;
Ord
fam
alpha
Gamma
aleph
hbar
;;urd
angle
;;om
int
map;;tochar
map;;to
longmap;;to
not
joinrd
rdbar
Hdbar
longrightarrow
I,ongrightarrow
I on gleft arrow
I,ongleftarrow
longleft right arrow
I,ongleft rightarrow
hookrightarrow
hook left arrow
neq
model;;
bowtie
ldotp
cdotp
!dot;;
cdot;;

AppcndiJ: B: Basic Control Scq·ucnccs

circumstances. Vertical and diagonal dots (\vdots and \ddots) are also provided here:

\mathchardef\ldotp= 11 613A \mathchardef\ cdotp= 11 6201 \mathchardef\ col on= 11 603A
\def\ldots{\mathinner{\ldotp\ldotp\ldotp}}
\def\cdots{\mathinner{\cdotp\cdotp\cdotp}}
\def\vdots{\vbox{\baselineskip=4pt \lineskiplimit=Opt

\kern6pt \hbox{.}\hbox{.}\hbox{.}}}
\def\ddots{\mathinner{\mkern1mu\raise7pt\vbox{\kern7pt\hbox{.}}\mkern2mu

\raise4pt\hbox{.}\mkern2mu\raise1pt\hbox{.}\mkern1mu}}

Most of the math accents are handled entirely by the \mathaccent primitive1

but a fCw of the variable--\vidth ones are constructed the hard way:

\def\acute{\mathaccent 11 7013 } \def\ddot{\mathaccent 11 707F }
\def\widetilde{\mathaccent 11 0365 } \def\widehat{\mathaccent 11 0362 }
\def\overrightarrow#1{\vbox{\ialign{##\crcr

\rightarrowfill\crcr\noalign{\kern-1pt\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}}

\def\overleftarrow#1{\vbox{\ialign{##\crcr
\leftarrowfill\crcr\noalign{\kern-1pt\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}}

\def\overbrace#1{\mathop{\vbox{\ialign{##\crcr\noalign{\kern3pt}
\downbracefill\crcr\noalign{\kern3pt\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}}\limits}

\def\underbrace#1{\mathop{\vtop{\ialign{##\crcr
$\hfil\displaystyle{#1}\hfil$\crcr\noalign{\kern3pt\nointerlineskip}
\upbracefill\crcr\noalign{\kern3pt}}}}\limits}

\def\skeY#1#2#3{{#2{#3\mkern#1mu}\mkern-#1mu}{}}

Now we come to 24 delimiters that can change their sit~e:

\def\langle{\delimiter11 426830A }
\def\lbrace{\delimiter11 4266308 }
\def\lceil{\delimiter11 4264306 }
\def\lfloor{\delimiter11 4262304 }
\def\lgroup{\delimi ter 11 400033A }
\def\lmoustache{\del imi ter 11 4000340 }
\def\uparrow{\delimiter 11 3222378 }
\def\downarrow{\delimiter 11 3223379 }
\def\updownarrow{\delimiter 11 326C33F
\def\Updownarrow{\delimiter 11 326D377
\def\vert{\delimiter11 026A30C }
\def\backslash{\delimiter 11 026E30F }

\def\rangle{\delimiter11 526930B }
\def\rbrace{\delimiter11 5267309 }
\def\rceil {\delimi ter 11 5265307 }
\def\rfloor{\delimi ter 11 5263305 }
\def\rgroup{\delimi ter 11 500033B }
\def\rmoustache{\delimi ter 11 5000341 }
\def\Uparrow{\delimiter 11 322A37E }
\def\Downarrow{\delimi ter 11 322B37F }

} \def\arrowvert{\delimiter 11 033COOO }
} \def\Arrowvert{\delimiter 11 033DOOO }

\def\Vert{\delimiter 11 026B30D }
\def\bracevert{\delimiter11 033EOOO }

The :\big ... \Bigg) macros produce specific sit~es:

\def\bigl{\mathopen\big} \def\bigm{\mathrel\big} \def\bigr{\mathclose\big}
\def\Bigl{\mathopen\Big} \def\Bigm{\mathrel\Big} \def\Bigr{\mathclose\Big}
\def\biggl{\mathopen\bigg} \def\Biggl{\mathopen\Bigg}
\def\biggm{\mathrel\bigg} \def\Biggm{\mathrel\Bigg}
\def\biggr{\mathclose\bigg} \def\Biggr{\mathclose\Bigg}

359

'<doh
ddot;;
mathaccent
widetilde
widehat
o'<errightarrow
o'<erkftarrow
o'<erbrace
limit;;
underbrace
;;lww
delimiter
big
Bigg
Big
bigg

360 AppcndiJ: B: Basic Control Scq·ucnccs

\def\big#1{{\hbox{$\left#1\vbox to 8.5pt{}\right.\n@space$}}}
\def\Big#1{{\hbox{$\left#1\vbox to 11.5pt{}\right.\n@space$}}}
\def\bigg#1{{\hbox{$\left#1\vbox to 14.5pt{}\right.\n@space$}}}
\def\Bigg#1{{\hbox{$\left#1\vbox to 17.5pt{}\right.\n@space$}}}
\def\n@space{\nulldelimiterspace=Opt \m@th}

There are a few other simple abbreviations related to delimiters:

\def\choose{\atopwithdelims()}
\def\brack{\atopwithdelims[]}
\def\brace{\atopwithdelims\{\}}
\def\sqrt{\radical 11 270370 }

And now we come to something more interesting. The \mathpalette opera~
tion constructs a formula in all four styles; it is applied here in the implementation of
\phantom1 \smash1 \root 1 and other operations.

\def\mathpalette#1#2{\mathchoice{#1\displaystyle{#2}}
{#1\textstyle{#2}}{#1\scriptstyle{#2}}{#1\scriptscriptstyle{#2}}}

\newbox\rootbox
\def\root#1\of{\setbox\rootbox=

\hbox{$\m@th \scriptscriptstyle{#1}$}
\mathpalette\r@@t}

\def\r@@t#1#2{\setbox0=\hbox{$\m@th #1\sqrt{#2}$}
\dimen@=\htO \advance\dimen@ by-\dpO
\mkern5mu \raise.6\dimen@\copy\rootbox \mkern-10mu \boxO}

\newif\ifv@ \newif\ifh@
\def\vphantom{\v@true\h@false\ph@nt}
\def\hphantom{\v@false\h@true\ph@nt}
\def
\def\ph@nt{\ifmmode\def\next{\mathpalette\mathph@nt}%

\else\let\next=\makeph@nt\fi \next}
\def\makeph@nt#1{\setbox0=\hbox{#1}\finph@nt}
\def\mathph@nt#1#2{\setbox0=\hbox{$\m@th#1{#2}$}\finph@nt}
\def\finph@nt{\setbox2=\null \ifv@ \ht2=\ht0 \dp2=\dp0 \fi

\ifh@ \Yd2=\Yd0 \fi \box2 }
\def\mathstrut{\vphantom(}
\def\smash{\relax % \relax. in case this comes first in \halign

\ifmmode\def\next{\mathpalette\mathsm@sh}\else\let\next\makesm@sh
\fi \next}

\def\makesm@sh#1{\setbox0=\hbox{#1}\finsm@sh}
\def\mathsm@sh#1#2{\setbox0=\hbox{$\m@th#1{#2}$}\finsm@sh}
\def\finsm@sh{\htO=Opt \dpO=Opt \boxO }
\def\cong{\mathrel{\mathpalette\@vereq\sim}} % \sim over =
\def\@vereq#1#2{\lower.5pt\vbox{\baselineskip0pt \lineskip-.5pt

\ialign{$\m@th#1\hfil##\hfil$\crcr#2\crcr=\crcr}}}
\def\notin{\mathrel{\mathpalette\c@ncel\in}}
\def\c@ncel#1#2{\ooalign{$\hfil#1\mkern1mu/\hfil$\crcr$#1#2$}}
\def\rightleftharpoons{\mathrel{\mathpalette\rlh@{}}}

dwo;;e
brack
brace
;;qrt
mathpaktte
phantom
;;ma,-;h
root
'<phantom
hphantom
cong
not in
right left harpoon;;

AppcndiJ: B: Basic Control Scq'ucnccs

\def\rlh@#1{\vcenter{\hbox{\ooalign{\raise2pt
\hbox{$#1\rightharpoonup$}\crcr $#1\leftharpoondoon$}}}}

\def\buildrel#1\over#2{\mathrel{\mathop{\kern0pt #2}\limits'{#1}}}
\def\doteq{\buildrel\textstyle.\over=}

These definitions illustrate how other built~up symbol combinations could be defined
to work in all fOur styles.

Alternate names are defined now:

\let\ne=\neq
\let\{=\lbrace

\let\le=\leq
\let\1=\Vert

\let\to=\rightarrow \let\gets=\leftarrow
\let\land=\wedge \let\lor=\vee
\def\iff{\;\LongleftrightarroY\;}

\let\ge=\geq
\let\}=\rbrace
\let\olffis=\ni
\let\lnot=\neg

The 32 common functions whose names generally appear in roman letters are
listed in Chapter 18. Only a few of the definitions need to be shmv11 here:

\def\arccos{\mathop{\rm arccos}\nolimits}
\def\tanh{\mathop{\rm tanh}\nolimits}

\def\det{\mathop{\rm det}} \def\sup{\mathop{\rm sup}}
\def\liminf{\mathop{\rm lim\,inf}} \def\limsup{\mathop{\rm lim\,sup}}
\def\bmod{\mskip-\medmuskip \mkern5mu

\mathbin{\rm mod} \penalty900 \mkern5mu \mskip-\medmuskip}
\def\pmod#1{\alloYbreak \mkern18mu ({\rm mod}\,\,#1)}

The definition of \matrix goes to some pains to ensure that two n~rowed
matrices will have the same height and the same depth 1 unless at least one of their
rows is unusually big. The definition of \bordermatrix is even more complicated1 but
it seems to work reasonably well; it uses a constant \p@renwd that represents the \Vidth
of a big extensible left parenthesis.

\def\matrix#1{\null\,\vcenter{\normalbaselines\m@th
\ialign{\hfil$##$\hfil&&\quad\hfil$##$\hfil\crcr

\mathstrut\crcr\noalign{\kern-\baselineskip}
#1\crcr\mathstrut\crcr\noalign{\kern-\baselineskip}}}\.}

\newdimen\p@renwd \setboxO=\hbox{\tenex B} \p@renwd=\wdO
\def\bordermatrix#1{\begingroup \m@th

\setbox0=\vbox{\def\cr{\crcr\noalign{\kern2pt\global\let\cr=\endline}}
\ialign{$##$\hfil\kern2pt\kern\p@renYd&\thinspace\hfil$##$\hfil

&&\quad\hfil$##$\hfil\crcr
\omit\strut\hfil\crcr\noalign{\kern-\baselineskip}
#1\crcr\omit\strut\cr}}

\setbox2=\vbox{\unvcopy0 \global\setbox1=\lastbox}
\setbox2=\hbox{\unhbox1 \unskip \global\setbox1=\lastbox}
\setbox2=\hbox{$\kern\wd1\kern-\p@renwd \left(\kern-\wd1

\global\setbox1=\vbox{\box1\kern2pt}
\vcenter{\kern-\ht1 \unvboxO \kern-\baselineskip} \,\right)$}

\null\;\vbox{\kern\ht1\box2}\endgroup}

361

buildrd
doteq
ne
k
ge
CM' '<Crt
CM' !bran:
CM' rbrace

'" get;;
own;;
land
lor
I not
ilf
arc co;;
co;;
CM'
exp
lwr
lim;; up
min
;;inh
an:;;in
co;;h
deg
gcd
lg
In
p,
;;up
arctan
cot
det
hom
lim
log
;;(0('

tan
arg
coth
dim
inf
liminf
max
;;in
tanh
mat hop
nolimit;;
mat hop
nolimit;;
bnwd
math bin
pmod
matrix
border matrix
p@renwd
'<center

362 AppcndiJ: B: Basic Control Scq·ucnccs

The next macros are much simpler:

\def\cases#1{\left\{\.\vcenter{\normalbaselines\m@th
\ialign{$##\hfil$&\quad##\hfil\crcr#1\crcr}}\right.}

\def\pmatrix#1{\left(\matrix{#1} \right)}

Finally there are macros for displayed equations:

\def\openup{\afterassignment\@penup\dimen@=}
\def\@penup{\advance\lineskip\dimen@

\advance\baselineskip\dimen@ \advance\lineskiplimit\dimen@}
\def\eqalign#1{\null\,\vcenter{\openup1\jot \m@th

\ialign{\strut\hfil$\displaystyle{##}$&$\displaystyle{{}##}$\hfil
\crcr#1\crcr}}\,}

\newif\ifdt@p
\def\displ@y{\global\dt@ptrue \openup1\jot \m@th

\everycr{\noalign{\ifdt@p \global\dt@pfalse
\vskip-\lineskiplimit \vskip\normallineskiplimit
\else \penalty\interdisplaylinepenalty \fi}}}

\def\@lign{\tabskip=Opt\everycr={}} % restore inside \displ@y
\def\displaylines#1{\displ@y

\halign{\hbox to\displayYidth{$\hfil\@lign\displaystyle##\hfil$}\crcr
#1\crcr}}

\def\eqalignno#1{\displ@y \tabskip=\centering
\halign to\displayYidth{\hfil$\@lign\displaystyle{##}$\tabskip=Opt

&$\@lign\displaystyle{{}##}$\hfil\tabskip=\centering
&\llap{$\@lign##$}\tabskip=Opt\crcr
#1\crcr}}

\def\leqalignno#1{\displ@y \tabskip=\centering
\halign to\displayYidth{\hfil$\@lign\displaystyle{##}$\tabskip=Opt

&$\@lign\displaystyle{{}##}$\hfil\tabskip=\centering
&\kern-\displaywidth\rlap{$\@lign##$}\tabskip=\displaywidth\crcr
#1\crcr}}

The value of \lineskiplimit is assumed to be \normallineskiplimit plus the ac~
cumulated amount of :'opening up.l' Thus 1 the \vskip instructions in \displ@y \Viii
compensate for the fact that the first baseline of an alignment is separated by an
opened~ up baselineship from the last line preceding the display.

1. Mocros for output. The plain. tex file also contains the output routine described in
Chapters 15 and 23. First there are simple facilities related to page numbers 1 headings 1

and footings:

\countdef\pageno=O \pageno=1 % first page is number 1
\newtoks\headline \headline={\hfil} % headline is normally blank
\newtoks\footline \footline={\hss\tenrm\folio\hss}

% footline is normally a centered page number in font \tenrm
\def\folio{\ifnum\pageno<O \romannumeral-\pageno \else\number\pageno \fi}
\def\nopagenumbers{\footline={\hfil}} % blank out the footline
\def\advancepageno{\ifnum\pageno<O \global\advance\pageno by -1

\else\global\advance\pageno by 1 \fi} % increase !pageno!

ca,-;e;;
pmatrix
open up
eqalign
e'<erycr
int erd i;; play I inepenalty
di;;playline;;
eqalignno
centering
kqalignno
pageno
headline
foot line
folio
nopagenumber;;
ad'<ann:pageno

AppcndiJ: B: Basic Control Scq'ucnccs

\newif\ifr@ggedbottom
\def\raggedbottom{\topskip10pt plus60pt \r@ggedbottomtrue}
\def\normalbottom{\topskip10pt \r@ggedbottomfalse} % undoes \raggedbottom

The \footnote macro has a few subtle features that can best be appreciated
by someone who reads Chapter 15 very carefully. It also uses some \bgroup and
\futurelet and \aftergroup trickery1 so that the footnote text does not need to be a
parameter to \vfootnote:

\newinsert\footins
\def\footnote#1{\let\@sf=\empty % parameter #2 (the text) is read later

\ifhmode\edef\@sf{\spacefactor=\the\spacefactor}\/\fi
#1\@sf\vfootnote{#i}}

\def\vfootnote#1{\insert\footins\bgroup
\interlinepenalty=\interfootnotelinepenalty
\splittopskip=\ht\strutbox % top baseline for broken footnotes
\splitmaxdepth=\dp\strutbox \floatingpenalty=20000
\leftskip=Opt \rightskip=Opt \spaceskip=Opt \xspaceskip=Opt
\textindent{#1}\footstrut\futurelet\next\fo@t}

\def\fo@t{\ifcat\bgroup\noexpand\next \let\next\f@@t
\else\let\next\f@t\fi \next}

\def\f@@t{\bgroup\aftergroup\@foot\let\next}
\def\f@t#1{#1\@foot}
\def\@foot{\strut\egroup}
\def\footstrut{\vbox to\splittopskip{}}
\skip\footins=\bigskipamount % space added when footnote is present
\count\footins=1000 % footnote magnification factor (1 to 1)
\dimen\footins=8in % maximum footnotes per page

Floating insertions are handled by doing an \insert whose vertical list consists
of a penalty item followed by a single box:

\newinsert\topins \newif\ifp@ge \newif\if@mid
\def\topinsert{\@midfalse\p@gefalse\@ins}
\def\midinsert{\@midtrue\@ins}
\def\pageinsert{\@midfalse\p@getrue\@ins}
\skip\topins=Opt % no space added when a topinsert is present
\count\topins=1000 % magnification factor (1 to 1)
\dimen\topins=\maxdimen % no limit per page
\def\@ins{\par\begingroup\setboxO=\vbox\bgroup} % start a \vbox
\def\endinsert{\egroup % finish the \vbox

\if@mid \dimen@=\htO \advance\dimen@ by\dp\z@ \advance\dimen@ by12\p@
\advance\dimen@ by\pagetotal \advance\dimen@ by-\pageshrink
\ifdim\dimen@>\pagegoal \@midfalse\p@gefalse\fi\fi

\if@mid \bigskip \boxO \bigbreak
\else\insert\topins{\penalty100 % floating insertion

\splittopskip=Opt \splitmaxdepth=\maxdimen \floatingpenalty=O
\ifp@ge \dimen@=\dpO

\vbox to\vsize{\unvboxO \kern-\dimen@} % depth is zero
\else \boxO \nobreak\bigskip\fi}\fi\endgroup}

363

ragged bottom
normal bottom
footnote
bgroup
futurdet
aftergroup
parameter
newin;;ert
'<footnote
Floating in;;ertion;;
in;;ert
topin;;ert
midin;;ert
pagein;;ert
;;plittop;;kip
;;plitmaxdepth
lloatingpenalty

364 AppcndiJ: B: Basic Control Scq'ucnccs

Most of the \output routine appears in Chapter 23; it is briven here in full:

\output={\plainoutput}
\def\plainoutput{\shipout\vbox{\makeheadline\pagebody\makefootline}%

\advancepageno
\ifnum\outputpenalty>-20000 \else\dosupereject\fi}

\def\pagebody{\vbox to\vsize{\boxmaxdepth=\maxdepth \pagecontents}}
\def\makeheadline{\vbox to Opt{\vskip-22.5pt

\line{\vbox to8.5pt{}\the\headline}\vss}\nointerlineskip}
\def\makefootline{\baselineskip=24pt \line{\the\footline}}
\def\dosupereject{\ifnum\insertpenalties>O % something is being held over

\line{}\kern-\topskip\nobreak\vfill\supereject\fi}
\def\pagecontents{\ifvoid\topins\else\unvbox\topins\fi

\dimen@=\dp255 \unvbox255
\ifvoid\footins\else % footnote info is present

\vskip\skip\footins \footnoterule \unvbox\footins\fi
\ifr@ggedbottom \kern-\dimen@ \vfil \fi}

\def\footnoterule{\kern-3pt
\hrule width 2truein \kern 2.6pt} % the \hrule is .4pt high

8. Hyphenotion owl everything else. The last part of plain. tex reads the hyphenation
patterns and exceptions found on file hyphen. tex (see Appendix H); then it defines a
few miscellaneous macros 1 sets up \rm type1 and that)s all!

\lefthyphenmin=2 \righthyphenmin=3 % disallow x- or -xx breaks
\input hyphen % the hyphenation patterns and exceptions
\def\magnification{\afterassignment\m@g\count@}
\def\m@g{\mag=\count@

\hsize6.5truein\vsize8.9truein\dimen\footins8truein}
\def\tracingall{\tracingonline=1 \tracingcommands=2 \tracingstats=2

\tracingpages=1 \tracingoutput=1 \tracinglostchars=1
\tracingmacros=2 \tracingparagraphs=1 \tracingrestores=1
\showboxbreadth=\maxdimen \showboxdepth=\maxdimen \errorstopmode}

\def\showhyphens#1{\setbox0=\vbox{\parfillskip0pt \hsize=\maxdimen \tenrm
\pretolerance=-1 \tolerance=-1 \hbadness=O \showboxdepth=O \ #1}}

\normalbaselines\rm % select roman font
\nonfrenchspacing % punctuation affects the spacing
\catcode'@=12 % at signs are no longer letters
\def\fmtname{plain}\def\fmtversion{3.0} % identifies the current format

The fOrmat name and version number are recorded in control sequences1 in order to
help the people who might have to explain why something doesn)t work. Macro files
like plain. tex should not be changed in any way1 except \Vith respect to preloaded
fonts 1 unless the changes are authorit~ed by the author of the macros.

output
plainoutput
page body
malwheadline
malwfoot line
do;; u pereject
pagecont ent;;
footnoterule
hyphen.tex
rm
kfthyphenmin
righthyphenmin
magnilication
aftera;;;;ignment
tradngall
;;howhyphen;;
fmtname

AppcndiJ: B: Basic Control Scq·ucnccs 365

The oumose of a orogramming system is to make a comouter easy to use.
To do this, it furnishes languages and various facilities

that are in fact orograms invoked and controlled by language features.
But these facilities are bought at a orice:

the external descriotion of a orogramming system is ten to twenty times
as large as the external descriotion of the com outer system itself

The user finds it far easier to soecify any oarticular function,
but there are far more to choose from,

and far more ootions and formats to remember.
- FREDERICK P. BROOKS, JR., The Mythical Man Month (1975)

When someone says, "I want a orogramming language
in which I need only say what I wish done,"

give him a lollif)OfJ.
- ALAN PERLIS, Eo/grams on Programming (1982)

BHOOKS
PEHLIS

>age aoo) I

Character
Codes

AppcndiJ: C: Character Codes

Different computers tend to have different way-s of representing the characters in files of
text 1 but TE-X brives the same results on all machines 1 because it converts ever:yi;hing to
a standard internal code when it reads a file. TE-X also converts back from its internal
representation to the appropriate external code1 when it \\Titre a file of text; therefOre
most users need not be aware of the fact that the codes have actually S\vitched back
and forth inside the machine.

The purpose of this appendix is to define T£X)s internal code1 which has the
same characteristics on all implementations of TE-X. The existence of such a code is
important 1 because it makes T£X constructions :'portable.l' For example 1 T£X allmvs
alphabetic constants like 'b to be used as numbers; the fact that 'b always denotes
the integer 98 means that we can \Vrite machine--independent macros that decide1 for
instance1 whether a given character is a dibrit between 0 and 9. Furthermore the internal
code of TE-X also survives in its dvi output files 1 which can be printed by software that
knows nothing about where the dvi data originated; essentially the same output \Viii
be obtained from all implementations of TE-X 1 regardless of the host computer1 because
the dvi data is expressed in a machine--independent code.

T£X)s internal code is based on the American Standard Code fOr Information
Interchange) known popularly as \:\.SCIV' There are 128 codes1 numbered 0 to 127;
we conventionally express the numbers in octal notation 1 from '000 to '111 1 or in
hexadecimal notation 1 from "00 to "7F. Thus 1 the value of 'b is normally called 'Lf-2 or
"62 1 not 98. In the ASCII scheme1 codes '000 through '040 and code '111 are assigned
to special functions; fOr example1 code '001 is called BEL 1 and it means :'Ring the belLl'
The other 94 codes are assigned to visible sy-mbols. Here is a chart that shows ASCII
codes in such a way that octal and hexadecimal equivalents can easily be read off:

'0 'J '2 'if '4 'C ,) '6 '7

'OOx NUL SOH STX ETX EDT ENQ ACK BEL
"Ox

'Olx BS HT LF VT FF CR so SI
'02x DLE DC1 DC2 DC3 DC4 NAK SYN ETB

"ix
'O:Jx CAN EM SUB ESC FS GS RS us
'04x SP ! " # $ % & '

()
"2x

'05x * + ' - I
'06x 0 1 2 3 4 5 6 7
'01x 8 9 : ;

"3x
< = > ?

'lOx @ A B c D E F G
"4x

'11x H I J K L M N 0
'12x p Q R s T u v w

[\ l - "5x
'1ifx X y z -
'14x ' a b c d e f g

"6x
'15x h i j k l m n 0

'16x p q r s t u v w
"7x

'J1x X y z { I } - DEL
"8 "9 "A "B "C "D "E "F

367

code;;
alphabetic con;;tant;;
<hi
ASCII

368 AppcndiJ: C: Character Codes

Ever since ASCII was established in the early 1960s1 people have had dif~
ferent ideas about what to do \Vith positions '000-'081 and '111 1 because most of
the functions assibfilCd to those codes are appropriate only for special purposes like file
transmission 1 not for applications to printing or to interactive computing. It turned out
that manufacturers soon started producing line printers that were capable of generating
128 characters1 33 of which were tailored to the special needs of particular customers;
part of the advantage of a standard code was therefore lost. On the other hand1 the
remaining 95 codes (including '40=SP 1 a blank space) have become \Videly adopted 1

and they are now implanted \Vithin most of today)s computer terminals. \Vhen an
ASCII keyboard is available 1 you can specify each of the 128 codes to TE-X in terms of
the 95 standard characters1 as fOllo\\'S:

'0 'J '2 'if '4 'C ,) '6 '7

'OOx --@ --A --B --c --n --E --F --G
"Ox

'Olx --H --r --J --K --L --M --N --a
'02x --p --Q --R --s --r --u --v --w

--- -- "ix
'O:Jx --x --y --z -- [--\ --) -
'04x ! " # $ % & ' u "2x
'05x () * + ' - I
'06x 0 1 2 3 4 5 6 7

"3x
'01x 8 9 : ; < = > ?
'lOx @ A B c D E F G

"4x
'Jlx H I J K L M N 0
'J2x p Q R s T u v w

[\ l - "5x
'Jifx X y z -
'Lfx ' a b c d e f g

"6x
'J5x h i j k l m n 0

'16x p q r s t u v w

{ I } - "7x
'J1x X y z --?

"8 "9 "A "B "C "D "E "F

(Here ;,..,..) doesn)t necessarily mean two circumflex characters; it means two identical
characters whose current \catcode is 7. In such cases T£X simply adds or subtracts
'1 00 from the internal code of the character that immediately follo\\'S. For example1

* can also be typed as ,.. ,.. j; j can also be typed as ,.. ,.. *.)
An extended ASCII code intended for text editing and interactive computing

was developed at several universities about 1965 1 and for many years there have been
terminals in use at Stanford1 MIT 1 Carnegie--Mellon1 and elsewhere that have 120 or 121
symbols1 not just 95. Aficionados of these keyboards (like the author of this book) are
loath to give up their extra characters; it seems that such people make heavy use of
about 5 of the extra 25 1 and occasional use of the other 20 1 although different people
have different groups of five. For example1 the author developed TE-X on a keyboard
that includes the symbols <-1 J. 1 o/= 1 ~ 1 and ~ 1 and he finds that this makes it much more

uparrow uparrow

AppcndiJ: C: Character Codes

pleasant to type class notes 1 technical papers 1 and computer probrr<uns of the hind he
likes to \Vrite; his lobrician friends make heavy use of the V and 3 keys; and so OIL It
is recounnended that TE-X implementations on systems with large character sets be
consistent with the fOllmving codes:

'0 'J '2 'if '4 'C ,) '6 '7

'OOx • a f3 A ' E 1f
"Ox

'Olx A 1 6 t ± e ro a
'02x c) n u v 3 ® !:;

"ix
'O:Jx * <> ~ ~ - v
'04x ! " # $ % & ' "2x
'05x () * + ' - I
'06x 0 1 2 3 4 5 6 7

"3x
'01x 8 9 : ; < = > ?
'lOx @ A B c D E F G

"4x
'Jlx H I J K L M N 0
'J2x p Q R s T u v w

[\ l - "5x
'Jifx X y z -
'Lfx ' a b c d e f g

"6x
'J5x h i j k l m n 0

'16x p q r s t u v w

{ I } - "7x
'J1x X y z f

"8 "9 "A "B "C "D "E "F

Of course1 desibfiWrs of TE-X macro packages that are intended to be \Videly used should
stick to the standard ASCII characters.

Incidentally1 the ASCII character,.. that appears in position '186 is sometimes
called a :'caret/' but dictionaries of English tell us that a caret is a larger symbol1 more
like character '004 in the extended set above. The correct name for ,.. is :'circumflex/'
but this is quite a mouthful 1 so a shorter name like :'haf' is prefCrable. It seems
desirable to preserve the traditional distinction between caret and hat.

The extended code shmv11 above was developed at MIT; it is similar to1 but
slightly better than 1 the code implemented at StanfOrd. Seven of the codes are con~
ventionally assibfilCd to the standard ASCII control functions NUL ((null}) 1 HT ((tab}) 1

LF ((linefccd)), FF ((formfeed)), CR ((return)), ESC ((escape)), and DEL ((delete)), and
they appear in the standard ASCII positions; hence the corresponding seven charac~
ters · 1 {; ± e <> f do not actually appear on the keyboard. These seven :'hiddenl'
characters show up only on certain output devices.

Modern keyboards allow 256 codes to be input 1 not just 128; so TE-X represents
characters internally as numbers in the range 0-255 (i.e. 1 '000-'811 1 or "00-"FF).
Implementations of TE-X diffCr in which characters they \Viii accept in input files and
which they \Viii transmit to output files; these subsets can be specified independently. A
completely permissive version of T£X allo\\'S full 256~character input and output; other

369

caret
circum/lex
hat
null
tab
linefewl
form feed
return
e;;cape
delete

370 AppcndiJ: C: Character Codes

versions might ibfilOre all but the visible characters of ASCII; still other versions might
distinguish the tab character (code '011) from a space on input 1 but might output each
tab as a sequence of three characters ,..,..L

Many people1 unfortunately1 have the opposite problem: Instead of the 95 stan~
dard characters and some others1 they have fCwer than 95 sy-mbols actually available.
\Vhat can be done in such cases? \Vell 1 it)s possible to use TE-X with fewer symbols 1

by invoking more control sequences; fOr example1 plain T£X defines \lq1 \rq1 \lbrack1

\rbrack1 \sp 1 and \sb 1 so that you need not type ' 1 ' 1 [,] 1 ,.. 1 and _1 respectively.
A person who implements T£X on computer sy-stems that do not have 95 ex~

ternally representable symbols should adhere to the fOllmving guidelines: (a) Stay as
dose as possible to the ASCII conventions. (b) Make sure that codes '041- '046 1

'060-'011 1 '141-'146 1 and '160-'111 are present and that each unrepresentable in~
ternal code < '200 leads to a representable code when '100 is added or subtracted;
then all 256 codes can be input and output. (c) Cooperate \Vith everyone else who
shares the same constraints1 so that you all adopt the same policy. (See Appendix .T
for infOrmation about the T£X Users Group.)

Very fCw conventions about character codes are harchvired into TE-X: AI~

most ever:yi;hing can be changed by a format package that changes parameters like
\escapechar and sets up the \catcode 1 \mathcode 1 \uccode 1 \lccode 1 \sfcode 1 and
\del code tables. Thus a TE-X manuscript that has been written in Denmark1 say1 can
be run in Calif0rnia1 and vice versa1 even though quite diffCrent conventions might be
used in diffCrent countries. The only character codes that TE-X actually :'knowsl' are
these: (1) INITEX initialit~es the code tables as described in Appendix B; the same
initialit~ation is done by all implementations of TE-X. (2) TE-X uses the character codes
u+- .• ' ' 11 <=>0123456789ABCDEF in its syntax rules (Chapters 20 1 241 and Appendix H) 1

and it uses most of the uppercase and lowercase letters in its keywords pt 1 to 1 plus 1

etc. These same codes and keywords are used in all implementations of T£X. For
example1 when TE-X is implemented fOr Cyrillic keyboards 1 the letter :n; should be as~
signed to code '160 and :T; to code '164 1 so that :nT) still means :pt); or else control
sequences should be defined so that what TE-X sees is equivalent to the keywords it
needs. (3) The operations \number 1 \romannumeral 1 \the1 and \meaning can generate
letters 1 clibrits 1 spaces 1 decimal points 1 minus signs 1 double quotes 1 colons 1 and :>; signs;
these same codes are generated in all implementations of TE-X. (4) The \hyphenation
and \pattern commands described in Appendix H give special interpretation to the
ten digits and to the characters :.) and :_;. (5) The codes fOr the fOur characters
$. { } are inserted when T£X recovers from certain errors 1 and braces are inserted
around an \output routine; appropriate catcodes are attached to these tokens 1 so it
doesn)t matter if these symbols have their plain T£X meanings or not. (6) There is
a special convention for representing characters 0-255 in the hexadecimal forms ,..,..00-
,..,..ff1 explained in Chapter 8. This convention is always acceptable as input1 when ,..
is any character of catcode 7. Text output is produced with this convention only when
representing characters of code 2: 128 that a TE-X installer has chosen not to output
directly.

lq
cq
lbrack
rbrack
;;p
;;b
l)enmark
keyword;;
Cyrillk
Hu;;;;ian
output

AppcndiJ: C: Character Codes 3 71

Code sets obtained by modifying the standard as shown above
or by other reolacements are nonstandard.

- ASA SUBCOMMITTEE X3.2, American Standard
Code for Information Interchange (1963)

Both the Stanford and DEC uses of the ASCII control characters
are in violation of the USA Standard Code,

but no Federal Marshal is likely to come running out
and arrest oeoole who tyoe control- T to their comouters.

- BRIAN REID, SCRIBE Introductory User's Manual (1978)

ASCII
HElD

Dirty Tricks

AppcndiJ: D: Dirty Tricks

TEX was designed to do the ordinary tasks of typesetting: to make paragraphs
and pages. But the underlying mechanisms that facilitate ordinary typesetting---
e.g., boxes, glue, penalties, and macros------arc extremely versatile: hence people
have discovered sneaky ways to coerce TEX into doing tricks quite different from
what its author originally had in mind. Such clever constructions arc not gen-
erally regarded as examples of :'high T&X": but many of them have turned out
to be useful and instructive, worthy of being known (at least by a few wizards).
The purpose of this appendix is to introduce crafty and/or courageous readers
to the nether world of TEXarcana.

Please don)t read this material until you)ve
had plenty of experience \Vith plain TE-X.

After you have read and understood the secrets below) you)ll h·11ow all sorts of devious
combinations of T£X counnands) and you \Viii often be tempted to \Vrite inscrutable
macros. Always remember) however) that there)s usually a simpler and better way to
do something than the first way that pops into your head. You may not have to resort
to any subterfuge at all) since TE-Xis able to do lots of things in a straightforward way.
Try fOr simple solutions first.

1. Mocro rruulness. If you need to \Vrite complicated macros) you)II need to be familiar
with the fine points in Chapter 20. T£X)s control sequences are divided into two main
categories) :'expandable!' and :'unexpandablel'; the fOrmer category includes all macros
and \if ... \fi tests 1 as well as special operations like \the and \input 1 while the lat~
ter category includes the primitive commands listed in Chapter 24. The expansion of
expandable tokens takes place in T£X)s :'mouth/' but primitive commands (including
assignments) are done in TE-X)s :'stomach.l' One important consequence of this struc~
ture is that it is impossible to redefine a control sequence or to advance a rebrister while
TE-Xis expanding the token list of1 say1 a \message or \Yrite command; assignment
operations are done only when T£X is building a vertical or horit~ontal or math list.

For example1 it)s possible to put \n asterisks into a paragraph 1 by saying
simply :{\loop\ifnum\n>O *\advance\n-1 \repeat}). But it)s much more difficult to
define a control sequence \asts to consist of exactly \n consecutive asterisks. If \n
were known to be at most 51 say1 it would be possible to write

since T£X handles \ifcase in its mouth. But for general \n it would be impossible
to use a construction like :\edef\asts{\loop\ifnum\n>O *\advance\n-1 \repeat}) 1

since \n doesn)t change during an \edef. A more elaborate probrram is needed; e.g. 1

{\xdef\asts{}
\loop\ifnum\n>O \xdef\asts{\asts*}\advance\n-1 \repeat}

And here)s another solution (which is faster 1 because token list registers can be ex~
panded more quickly than macros 1 using \the):

\newcount\m \newtoks\t \m=\n \t={}
\loop \ifnum\m>O \t=\expandafter{\the\t *} \advance\m-1 \repeat
\edef\asts{\the\t}

373

macro;;
mouth
;;tomach
loop
wkf
token li;;t regi;;ter;;
the

374 Appcndi1: D: Dirty Tricks

However 1 both of these solutions have a running time proportional to the
square of \n. There)s a much quicker way to do the job:

\begingroup\aftergroup\edef\aftergroup\asts\aftergroup{
\loop \ifnum\n>O \aftergroup*\advance\n-1 \repeat
\aftergroup}\endgroup

Get it? The \aftergroup commands cause a whole list of other tokens to be saved up
for after the brroup! This method has only one flaw 1 namely that it takes up \n cells of
space on T£X)s input stack and \n more on T£X)s save stack; hence a special version
of TE-X may be required when \n is larger than 150 or so.

(Incidentally1 there)s a completely different way to put \n asterisks into a
paragraph1 namely to say :\setboxO=\hbox{*}\cleaders\copyO\hskip\n\wdO). This
may seem to be the fastest solution of all; but actually it is not so fast 1 when all things
are considered1 since it generates fOur bytes of dvi output per asterisk 1 compared to
only one byte per asterisk in the other methods. Input/output time takes longer than
computation time 1 both in TE-X itself and in the later stages of the printing process.)

The problem just solved may seem like a rather special application; after all 1

who needs a control sequence that contains a variable number of asterisks? But the
same principles apply in other similar cases 1 e.g. 1 when you want to construct a variable--
length \parshape specification. Similarly1 many of the :'toy problemsl' solved below
are meant to illustrate paradigms that can be used in real~ lifO situations.

The precise rules for expansion are explained in Chapter 20; and the best way
to get familiar \Vith TE-X)s expansion mechanism is to watch it in action 1 looking at the
log file when \tracingmacros=2 and \tracingcommands=2. One of the important ways
to change the normal order of expansion is to use \expandafter; the construction

\expandafter\a\b

causes \b to be expanded first 1 then \a. And since \expandafter is itself expandable 1

the construction

\expandafter\expandafter\expandafter\a\expandafter\b\c

causes \c to be expanded first 1 then \b 1 then \a. (The next step 1

\expandafter\expandafter\expandafter\expandafter
\expandafter\expandafter\expandafter\a
\expandafter\expandafter\expandafter\b\expandafter\c\d

is probably too lengthy to be of any use.)
It)s possible to make good use of \expandafter\a\b even when \a isn)t ex~

pandable. For example1 the token list assignment :\t=\expandafter{\the\t *})in the
example on the previous page was able to invade territory where expansion is normally
suppressed1 by expanding aller a left brace. Similarly1

\t=\expandafter{\expandafter*\the\t}

would have worked; and

\uppercase\expandafter{\romannumeral\n}

yields the value of register \n in uppercase roman numerals.

aftergroup
input ;;tack
;;m-e ;;tack
deader,;
copy
<hi
par;;hape
ex pam! after
upperca,-;e
uppen:a,-;e roman numeral;;
roman numeral;;, uppen:a,-;e

AppcndiJ: D: Dirty Tricks

Here)s a more interesting example: Recall that \fontdimen1 is the amount of
:'slant per poinf' of a font; hence 1 for example1 :\the\fontdimen1\tenit) expands to
:0.25pt) 1 where the characters :pt) are of category 12. After the macro definitions

{\catcode'p=12 \catcode't=12 \gdef\\#1pt{#1}}
\let\getfactor=\\
\def\kslant#1{\kern\expandafter\getfactor\the\fontdimen1#1\ht0}

one can \Vrite1 e.g. 1 :\kslant\tenit) and this will expand to :\kern0.25\ht0). If the
boundary of \boxO is considered to be slanted by 0.25 horimntal units per vertical unit 1

this kern measures the horimntal distance by which the top edge of the box is skewed
with respect to an edge at the baseline. All of the computation of \kslant is done in
T£X)s mouth; thus 1 the mouth can do some rather complicated things even though it
cannot assign new values. (Incidentally1 an indirect method was used here to define
the control sequence \getfactor when the character t had category 12 1 since control
words normally consist only of letters. The alternative construction

{\catcode'p=12 \catcode't=12
\csname expandafter\endcsname\gdef
\csname getfactor\endcsname#1pt{#1}}

would also have worked1 since \csname and \endcsname don)t contain :p; or :t; !)
The mechanism by which T£X determines the arguments of a macro can be

applied in unexpected ways. Suppose1 fOr example1 that \t is a token list register that
contains some text; we wish to determine if at least one asterisk (*lz) appears in that
text. Here)s one way to do it:

\newif\ifresult % for the result of a computed test
\def\atest#1{\expandafter\a\the#1*\atest\a}
\long\def\a#1*#2#3\a{\ifx\atest#2\resultfalse\else\resulttrue\fi}

Now after :\atest\t) 1 the control sequence \ifresult \Viii be \iftrue or \iffalse1

depending on whether or not \t contains an asterisk. (Do you see why?) And here)s
a slightly more elegant way to do the same thing1 using \futurelet to look ahead:

\def\btest#1{\expandafter\b\the#1•\bb}
\long\def\b#1•{\futurelet\next\bb}
\long\def\bb#1\bb{\ifx\bb\next\resultfalse\else\resulttrue\fi}

In both cases the solution work-s if \t contains control sequence tokens as well as
character tokens 1 provided that the special control sequences \atest 1 \a1 and \bb
don)t appear. Notice1 however 1 that an asterisk is :'hiddenl' if it appears \Vithin a
group { ... }; the test is limited to asterisks at nesting level 11ero. A token list register
is always balanced \Vith respect to grouping 1 so there is no danger of the test leading
to error messages concerning missing braces or extra braces.

\Ve can apply the ideas in the preceding paragraph to solve a problem related
to generalit~ed math formatting: The goal is to set T£-X up so that the respective
constructions : $$ o: $$) 1 : $$ o: \eqno f/ $$) 1 and : $$ o: \leqno f/ $$) \Viii cause a macro
$$\generaldisplay$$ to be invoked1 \Vith \eq defined to be o:; furthermore 1 the test
\ifeqno should be true when an equation number f/ is present 1 and \ifleqno should
be true in the case of \leqno. \Vhen f/ is present 1 it should be stored in \eqn. Here

375

fontdimen
;;lant
the
get factor
c;;name
endc;;name
argument;;
long
new if
futurdet
group
di;;play;;, non-centerwl
dollar dollar
eqno
kqno
communication between macro;;

376 Appcndi1: D: Dirty Tricks

o: and f/ are arbitrary balanced token lists that don)t contain either \eqno or \leqno
at nesting level 11ero. The following macros do the required maneuvers:

\newif\ifeqno \newif\ifleqno \everydisplay{\displaysetup}
\def\displaysetup#1$${\displaytest#1\eqno\eqno\displaytest}
\def\displaytest#1\eqno#2\eqno#3\displaytest{%

\if!#3!\ldisplaytest#1\leqno\leqno\ldisplaytest
\else\eqnotrue\leqnofalse\def\eqn{#2}\def\eq{#1}\fi
\generaldisplay$$}

\def\ldisplaytest#1\leqno#2\leqno#3\ldisplaytest{\def\eq{#1}%
\if!#3!\eqnofalse\else\eqnotrue\leqnotrue\def\eqn{#2}\fi}

An examination of the three cases $$ o: $$ 1 $$ o: \eqno /:i' $$ 1 $$ o: \leqno /:i' $$ shmvs that
the correct actions \Viii ensue. Parameter #3 in the tests :\if! #3!) will be either empty
or \eqno or \leqno; thus 1 the condition \Viii be false (and the second:!) will be skipped)
unless #3 is empty.

Returning to the problem of *)S in \t 1 suppose that it)s necessary to consider
*)S at all levels of nesting. Then a slower routine must be used:

\def\ctest#1{\resultfalse\expandafter\c\the#1\ctest}
\def\c{\afterassignment\cc\let\next= }
\def\cc{\ifx\next\ctest \let\next\relax

\else\ifx\next*\resulttrue\fi\let\next\c\fi \next}

Here \afterassignment has been used to retain control after a non~ future \let; the
:=) ensures that exactly one token is swallowed per use of \c. This routine could
be modified in an obvious way to count the total number of *)S and/or tokens in \t.
Notice the :\let\next) instructions in \cc; it should be dear why the alternative

\def\cc{\ifx\next\ctest\else\ifx\next*\resulttrue\fi\c\fi}

would not work. (The latter \c would alway-s swallow a :\fi).)
Space tokens are sometimes anomalous 1 so they deserve special care. The

follmving macro \futurenonspacelet behaves essentially like \futurelet except that
it discards any implicit or explicit space tokens that intervene befOre a nonspace is
scanned:

\def\futurenonspacelet#1{\def\cs{#1}%
\afterassignment\stepone\let\nexttoken= }

\def\\{\let\stoken= } \\ %now \stoken is a space token
\def\stepone{\expandafter\futurelet\cs\steptwo}
\def\steptwo{\expandafter\ifx\cs\stoken\let\next=\stepthree

\else\let\next=\nexttoken\fi \next}
\def\stepthree{\afterassignment\stepone\let\next= }

An operation like \futurenonspacelet is useful 1 fOr example1 when implementing
macros that have a variable number of arguments.

Notice that :\def\stepthree#1{\stepone}) would not work here1 because
of TE-X)s rule that a uJo token is bypassed if it would othenvise be treated as an
undelimited arbrument. Because of this rule it is difficult to distinbruish explicit space
tokens from implicit ones. The situation is surprisingly complex 1 because it)s possible

aftera,-;;;ignment
let
equal;;
Space token;;
fut urenon;;pacdet
unddimitwl
argument

AppcndiJ: D: Dirty Tricks

to use \uppercase to create :'funny spacd' tokens like *JO; for example1 the counnands

\uccode' ='* \uppercase{\uppercase{\def\fspace{ }\let\ftoken= } }

make \fspace a macro that expands to a funny space1 and they make \ftoken an
implicit funny space. (The tests \if\fspace* 1 \if\ftoken* 1 \ifcat\fspace\stoken1

and \ifcat\ftoken\stoken will all be true1 assuming that * has category 12; but if*
has category 101 \if\fspace* will be false 1 because T£X normalit~es all newly created
space tokens to uJo 1 as explained in Chapter 8.) Since the various forms of space
tokens are almost identical in behavior 1 there)s no point in dwelling on the details. t

The argument to \Yrite is expanded when a \shipout occurs 1 but sometimes
expansion isn)t desired. Here)s a macro (suggested by Todd Allen) that suppresses all
expansion) by inserting \noexpand before each control sequence or active character.
The macro assumes that - is an active character) and that the tokens being \Vritten do
not include implicit spaces or braces. Funny spaces are changed to ordinary ones.

\long\def\unexpandedwrite#1#2{\def\finwrite{\write#1}%
{\aftergroup\finwrite\aftergroup{\sanitize#2\endsanity}}}

\def\sanitize{\futurelet\next\sanswitch}
\def\sanswitch{\ifx\next\endsanity

\else\ifcat\noexpand\next\stoken\aftergroup\space\let\next=\eat
\else\ifcat\noexpand\next\bgroup\aftergroup{\let\next=\eat
\else\ifcat\noexpand\next\egroup\aftergroup}\let\next=\eat
\else\let\next=\copytoken\fi\fi\fi\fi \next}

\def\eat{\afterassignment\sanitize \let\next= }
\long\def\copytoken#1{\ifcat\noexpand#1\relax\aftergroup\noexpand

\else\ifcat\noexpand#1\noexpand-\aftergroup\noexpand\fi\fi
\aftergroup#1\sanitize}

\def\endsanity\endsanity{}

As befOre) the heavy use of \aftergroup in \unexpandedwrite means that parameter
#2 should not include more than about 150 tokens.

The follo,ving li11le program i::> for '!) .. ;X exege1e::> \vho in::>i::>1 on learning 1he \vhole
::>1ory: fv1acro \stest decide::> \vhe1her or no1 1he fim1 1oken of a given 1oken li::>1
regi::>1er i::> a (::>pa<:e 1oken) M defined in Chap1er 24. !foo) 1he macro decide::> \vhe1her
or no1 1 he 1oken i::> ''funny/' i.e.) \vhe1 her or no1 1 he charac1er code i::> differen1 from an
ASCI! (::>pace); 1he macro abo decide::> \vhe1her a ::>pa<:e 1oken i::> explici1 or implici1.

\newif\ifspace \newif\iffunny \newif\ifexplicit
\def\stest#1{\expandafter\s\the#1! \stest}
\def\s{\funnyfalse \global\explicitfalse \futurelet\next\ss}
\def\ss{\ifcat\noexpand\next\stoken \spacetrue

\ifx\next\stoken \let\next=\sss \else\let\next=\ssss \fi
\else \let\next=\sssss \fi \next}

\long\def\sss#1 #2\stest{\def\next{#i}%
\ifx\next\empty \global\explicittrue \fi}

\long\def\ssss#1#2\stest{\funnytrue {\uccode 1 #1= 1
-

\uppercase{\ifcat\noexpand#1}\noexpand-% active funny space
\else \escapechar=\if*#1 1 ?\else 1 *\fi

\if#1\string#1\global\explicittrue\fi \fi}}
\long\def\sssss#1\stest{\spacefalse}

377

upperca,-;e
funny ;;pace
uccode
if
ifcat
noexpaml
e;;capechar
;;tring
write
Allen
noexpaml
act i '<e character
aftergroup

378 Appcndi1: D: Dirty Tricks

2. List mocros. The next several macros we shall discuss can be used to maintain lists
of infOrmation in the form

\\{(item,)}\ \{(item2)} ... \ \{(itmnn)}

where each (item} is a balanced list of tokens. A parameter less control sequence whose
replacement text has this form may be called a list macro. The empty list macro has
n = 0 and it is called \empty.

It)s easy to add new items at either end of a list macro 1 and to concatenate
list macros 1 for example as follows:

\toksdef\ta=O \toksdef\tb=2 % token list registers for temp use
\long\def\leftappenditem#1\to#2{\ta={\\{#1}}\tb=\expandafter{#2}%

\edef#2{\the\ta\the\tb}}
\long\def\rightappenditem#1\to#2{\ta={\\{#1}}\tb=\expandafter{#2}%

\edef#2{\the\tb\the\ta}}
\def\concatenate#1=#2{\ta=\expandafter{#2}\tb=\expandafter{#3}%

\edef#1{\the\ta\the\tb}}

Conversely1 the left item of a list can be removed and placed in a control sequence by
the \lop macro defined in the follmving curious way:

\def\lop#1\to#2{\expandafter\lopoff#1\lopoff#1#2}
\long\def\lopoff\\#1#2\lopoff#3#4{\def#4{#1}\def#3{#2}}

For example1 if \1 expands to the list :\\{a\b}\\{c}\\{{d}})1 the macro invocation
\lop\1\to\z makes \1 expand to '\\{c}\\{{d}}' and \z expand to 'a\b'. The \lop
operation should be used only when \1 is nonempty1 othenvise an error will occur; to
test if \1 is empty1 one simply says :\ifx\1 \empty'.

The programming details of the \lop macro indicate why individual items have
been enclosed in { ... } brroups. A simpler hind of list 1 in which grouping is omitted
and an extra \\ appears at the end1 suffices for many purposes; one could define 1 for
instance1

\long\def\lopoff\\#1\\#2\lopoff#3#4{\def#4{#1}\def#3{\\#2}}

and the results would be almost the same as befOre. In this case an empty list macro
expands to :\\). However 1 the new \lop resulting from this new \lopoff macro also
removes a pair of braces1 if the leftmost item happens to be a group; extra braces are
included in our general scheme to prevent such anomalies.

So far the examples we)ve considered haven)t revealed why the \\)s appear in
the general scheme; it appears that grouping by itself should be enough. But in fact 1

the \\ separators are enormously useful 1 because we can define \\ to be any desired
one~argument macro 1 and then we can execute the list! For example1 here)s a way to
count the number of items:

\def\cardinality#1\to#2{#2=0 \long\def\\##1{\advance#2 by1 }#1}

(Parameter #2 is supposed to be the name of a count register.) And here)s a way to
take a list macro and center all its items on individual lines \Vithin a \vbox:

\def\centerlist#1{\def\\##1{\relax##1\cr}%
\vbox{\halign{\hfil##\hfil\cr#1}}}

bacbla,-;h bacbla,-;h
li;;t macro
empty
tobdef
long
group;;
ha,-;h ha,-;h

AppcndiJ: D: Dirty Tricks

A particular item can be selected by its position number from the left:

\def\select#1\of#2\to#3{\def#3{\outofrange}%
\long\def\\##1{\advance#1-1 \ifnum#1=0 \def#3{##1}\fi}#2}

(Here #1 is a count rebrister 1 #2 is a list macro1 and #3 is a control sequence.) And so
on; hundreds of other applications can be imagined. t

TE-X does all of the preceding operations efficiently1 in the sense that the
running time will be proportional to the length of the list macro involved. It)s natural
to ask if the rightmost item can be removed \Vith equal efficiency1 since the final item
of a list is somewhat hard to isolate. There is apparently no way to delete the nth
item of an Jkitem list in order n steps1 maintaining complete generality1 unless the
\aftergroup trick (by which we created a macro that expands to n asterisks) is used;
and the \aftergroup trick is somewhat unattractive in the list application 1 because
the list might be quite long.:j: However 1 if we restrict list items to unexpandable tokens 1

it turns out to be possible to remove the rightmost item quite efficiently:

\def\deleterightmost#1{\edef#1{\expandafter\xyzzy#1\xyzzy}}
\long\def\xyzzy\\#1#2{\ifx#2\xyzzy\yzzyx

\else\noexpand\\{#1}\fi\xyzzy#2}
\long\def\yzzyx#1\xyzzy\xyzzy{\fi}

Careful study of this example shmvs that TE-X)s mouth is capable of doing recursive
operations1 given sufficiently tricky macros.

The contents of a \count rebrister can easily be converted to decimal and stored
in a control sequence; for example 1 if \n is a register 1 :\edef\csn{\the\n}) puts its value
into \csn. Conversely1 a value from \csn can be put back into \n by saying simply
:\n=\csn). There)s usually no point in doing this transformation just to minimi11e the
usage of \count rebristers 1 since TE-X has 256 of them; but a decimal representation
like the expansion of \csn can be stored in a list macro 1 and that might be useful in
some applications. Incidentally1 there)s a neat way to test if such a control~sequence-
number is 11ero: :\ifO\csn{true text}\else{false text}\fi) works because extra dibrits
of a nont~ero number will be ignored \Vith the (true text}.

A technique something like list macros can be used to maintain unordered sets
of control sequences. In this case it)s convenient to leave off the braces; for example1

\def\1{\\\alpha\\\beta\\\gamma}

defines a :'set macrd' \1 that represents the control sequences { \alpha1 \beta1 \gamma}.
A straightforward construction tests whether a briven control sequence is in the set:

\def\ismember#1\of#2{\resultfalse\def\given{#1}%
\def\\##1{\def\next{##1}\ifx\next\given\resulttrue\fi}#2}

And an efficient but not~s<rstraightforward construction removes all occurrences of

The concep1 of a li::>1 macro i::> ::>1rongly rela1ed 10 1he concep1 of a li::>1 procedure in
a programming language; ::>ee CommunicHtions of the AC.\1 7 (l9G4) 1 280.

+ The in1ere::>1ed reader may enjoy con::>1ruc1ing a macro 1ha1 remove::> 1he k1h i1em of an
n-i1em li::>1 macro \1 in O(nlogn) ::>1ep::> 1 given k and \1 1 \Vi1hou1 u::>ing \aftergroup.

379

aftergroup
xyzzy
mouth
recur;;i '<C
count
if
;;et macro

380 Appcndi1: D: Dirty Tricks

control sequences that are \ifx~equivalent to a given control sequence:
\def\remequivalent#1\from#2{\let\given=#1%

\ifx#2\empty\else\edef#2{\expandafter\plugh#2\plugh}\fi}
\def\plugh\\#1#2{\ifx#i\given\else\noexpand\\\noexpand#i\fi

\ifx#2\plugh\hgulp\fi\plugh#2}
\def\hgulp\fi\plugh\plugh{\fi}

if. Verbotim listing. Plain TE-X includes a macro called \dospecials that is essentially
a set macro 1 representing the set of all characters that have a special category code.
(The control sequence \do plays the rOle of\\ in the discussion above.) Therefore it)s
easy to change all of the special characters to category 12 (other):

\def\uncatcodespecials{\def\do##1{\catcode'##1=12 }\dospecials}

This works even when the set of special characters has been changed1 provided that
\dospecials has been updated to represent the current set.

The operation \uncatcodespecials just defined is important 1 of course 1 when
TE-X)s automatic features need to be temporarily disabled. Let)s suppose that we want
to create a listing of some computer file 1 reproducing the characters and the spacing
exactly as they appear in the file. To make the problem more interesting1 let)s also print
line numbers in front of each line1 as in the listing of story. tex on page 24. To make
the problem simpler1 let)s assume that the file contains only standard ASCII printing
characters: no tab mark-s or fOrm fCeds or such things. Our goal is to devise a \listing
macro such that 1 e.g. 1 :\listing{story}) \Viii insert a listing of the story. tex file into
a manuscript 1 after which TE-X)s normal conventions will be restored. The listing should
be in \tt type. A macro of the follmving form meets the desired specifications:

\def\listing#1{\par\begingroup\setupverbatim\input#1 \endgroup}

Notice that the \endgroup command here \Viii nicely :'turn off' all the weird things that
\setupverbatim turns OIL Notice also that the commands :\input#1 \endgroup) \Viii
not be listed verbatim 1 even though they fOllow \setupverbatim1 since they entered
TE-X)s reading mechanism when the \listing macro was expanded (i.e. 1 befOre the
verbatim business was actually set up).

But what should \setupverbatim do? \Vell 1 it ought to include \obeylines 1

since this automatically inserts a \par at the end of each line that is input; it ought
to include \uncatcodespecials 1 so that special characters print as themselves; and it
ought to include \obeyspaces 1 so that each space counts. But we need to look carefully
at each of these things to see exactly what they do: (1) Plain TE-X)s \obeylines macro
changes the \catcode of ,..,..M to \active1 and then it say-s :\let,..,..M=\par). Since ,..,..M
is placed at the end of each line1 this effCctively ends each line \Vith \par; however 1

\obeylines doesn)t say :\def,..,..M{\par}) 1 so we must make any desired changes to
\par before invoking \obeylines. (2) The \uncatcodespecials operation changes a
space to category 12; but the \tt font has the character :u; in the (space} position1 so we
don)t really want u12 . (3) The \obeyspaces macro in Appendix B merely changes the
(space} character to category 13; active character uJa has been defined to be the same
as \space 1 a macro that expands to u10 • This is usually what is desired; for example1

it means that spaces in constructions like :\hbox to 10 pt { ... }) won)t cause any
trouble. But in our application it has an undesirable eff'ect 1 because it produces spaces
that are aff'ected by the space factor. To defCat this feature1 it)s necessary either to

Verbatim
do;; pedal;;
do
jj

end group
;;etup'<erbatim
obey line;;
par
uncatcode;;pedal;;
obey;;pace;;
cat code
act i '<e character
;;pace
;;pace factor

AppcndiJ: D: Dirty Tricks

say \frenchspacing or to redefine uJa to be the same as \u. The latter alternative is
better 1 because the former will discard spaces at the bebrinning of each line.

The \setupverbatim macro should also take care of putting a line number
into the position of the paragraph indentation. \Ve can take care of this by introducing
a counter variable and using \everypar 1 as follows:

\newcount\lineno % the number of file lines listed
\def\setupverbatim{\tt \lineno=O

\obeylines \uncatcodespecials \obeyspaces
\everypar{\advance\lineno by1 \llap{\sevenrm\the\lineno\ \ }}}

{\obeyspaces\global\let =\ } % let active space = control space

In theory1 this seems like it ought to work; but in practice1 it fails in two way-s. One
rather obvious failuro--at least 1 it becomes obvious when the macro is tested-is that
all the empty lines of the file are omitted. The reason is that the \par command at the
end of an empty line doesn)t start up a new paragraph1 because it occurs in vertical
mode. The other failure is not as obvious 1 because it occurs much less often: The \tt
fonts contain ligatures for Spanish punctuation 1 so the sequences ? ' and ! ' will be
printed as l.. and i respectively. Both of these defects can be cured by inserting

\def\par{\leavevmode\endgraf} \catcode'\'=\active

befOre \obeylines in the \setupverbatim macro1 and by defining ' 1a as follows:

{\catcode'\'=\active \gdef'{\relax\lq}}

A similar scheme could be used to produce verbatim listings in other fonts; but more
characters would have to be made active1 in order to break ligatures and to compensate
for ASCII characters that aren)t present.

Instead of listing a file verbatim 1 you might want to define a \verbatim macro
such that :\verbatim{$this$ is {\it!}}) yields :$this$ is {\it!}). It)s somewhat
dangerous to change category codes 1 because T£X stamps the category on each char~
acter when that character is first read from a file. Thus 1 if \verbatim were defined by
a construction of the fOrm \long\def\verbatim#1{(something}} 1 argument #1 would
already be converted to a list of tokens when (something} starts; \cat code changes
would not affect the argument. The alternative is to change category codes befOre
scanning the argument to \verbatim:

\def\verbatim{\begingroup\tt\uncatcodespecials
\obeyspaces\doverbatim}

\newcount\balance
{\catcode'<=1 \catcode'>=2 \catcode'\{=12 \catcode'\}=12

\gdef\doverbatim{<\balance=1\verbatimloop>
\gdef\verbatimloop#1<\def\next<#1\verbatimloop>%

\if#1{\advance\balance by1
\else\if#1}\advance\balance by-1
\ifnum\balance=O\let\next=\endgroup\fi\fi\fi\next>>

This works; but it)s slow1 and it allows verbatim setting only of text that has balanced
braces. It would not be suitable for t:yl)esetting the examples in a book like The
TEXbook. (Appendix E contains the verbatim macros that were actually used.) Note
also that if this \verbatim{ ... } macro appears in the argument to another macro like

381

french;;padng
control ;;pace
e'<erypar
llap
ligature;;
category code;;

382 Appcndi1: D: Dirty Tricks

\centerline1 it \Viii fail because the category codes can no longer be changed. The
\footnote macro in Appendix B is careful to avoid scanning its argument prematurely;
it uses \bgroup and \egroup in a somewhat tricky way1 so that category code changes
are permitted inside plain TE-X fOotnotes.

On the other hand1 there is a fairly fast way to convert a token list to an
almost~verbatim transcript:

\long\def\verbatim#1{\def\next{#1}%
{\tt\frenchspacing\expandafter\strip\meaning\next}}

\def\strip#1>{}

Tokens are stripped off in this construction since1 fOr example1 \meaning\next might
be :macro:->$this$ is {\it !}). Notice that a space will be inserted after the
control word \it 1 but no space might actually have occurred there in the argument to
\verbatim; such infOrmation has been irretrievably lost.

One of the problems \Vith verbatim mode is that it)s hard to stop; if we
turn off all of T£X)s normal control capabilities) we end up :'painting ourselves into
a cornerl' and reaching a point of no return. The \listing macro was able to solve
this problem because the end of a file brings an old token list back to lifO. Another
solution would be to specifY a certain number of lines 1 after which verbatim mode
should end. Othenvise it)s necessary to put some constraint on the text 1 i.e. 1 to make
certain texts unprintable in verbatim mode. For example1 here)s an approach that
t:yl)esets everything between \beginverbatim and \endverbatim1 assuming only that
the control sequence \endverbatim does not need to be set:

\def\beginverbatim{\par\begingroup\setupverbatim\doverbatim}
{\catcode'\!=0 \catcode'\\=12 % ! is temporary escape character

!obeylines!gdef!doverbatim~~M#1\endverbatim{#1!endgroup}}

This construction assumes that \beginverbatim appears at the end of a line in the
manuscript file. Argument #1 \Viii be read entirely into T£X)s memory before anything
happens 1 so the total amount of verbatim material had better not be too voluminous.
Incidentally1 it isn)t necessary to say that this macro is \long1 because the \par)s
inserted by \obeylines are really ~~ws.

Another approach is to keep one character untouchable. For example1 it)s
possible to define things so that :\verbatim{char}(text}(char}) will typeset the (text}
verbatim 1 where the (text} is not supposed to contain any occurrences of the repeated
delimiter (char}:

\def\verbatim{\begingroup\setupverbatim\doverbatim}
\def\doverbatim#1{\def\next##1#1{##1\endgroup}\next}

4. Selective lotuHng of mocros. Some interesting problems arise when a computer sys~
tem acquires a large library of macro files. For example1 suppose that a file macs. tex
contains the lines

\let\italcorr=\/
\def\/{\unskip\italcorr}

because somebody thought it would be nice to allow an optional space befOre T£X)s
primitive\/ command. That)s fine 1 except if macs. texis input hvice; fOr example 1 two
other macro files might both say \input macs. \Vhen those lines are processed the sec~
ond time1 \italcorr \Viii be \let equal to a macro that expands to :\unskip\italcorr) 1

footnote
bgroup
egroup
meaning
long
obey line;;

input

AppcndiJ: D: Dirty Tricks

and you can guess what will happen: TE-X will get into an infinite loop 1 stoppable only
by interrupting the program manually.

Fortunately there)s an easy way to prevent this problem 1 by placing a suitable
interlock near the beginning of every macro file that might introduce such anomalies:

\ifx\macsisloaded\relax\endinput\else\let\macsisloaded=\relax\fi

Then \macsisloaded \Viii be undefined at the time of the first \ifx1 but the file \Viii
not be read hvice. A different control sequence should1 of course1 be used fOr each file.

Another difficulty with large sets of macros is that they take up space. It
would be nice to preload every macro that every TE-X user has ever dreamed up; but
there might not be enough room 1 because TE-X)s memory capacity is finite. You might
find it necessary to hold back and to load only the macros that are really needed.

How much memory space does a macro require? \Veil) there are four hinds
of memory involved: token memory) name memory) string memory) and character
memory. (If any of these becomes too full) it \Viii be necessary to increase what T£X
calls the macro memory sit~e) the hash sit~e) the number of strings) and/or the pool sit~e)
respectively; see Chapter 27.) The token memory is most important; a macro takes
one cell of token memory fOr each token in its definition) including the :c and the :}) .
For example1 the comparatively short definition

\def\example#1\tyo{\four}

takes five tokens: #1 1 ltwol 1 { 1 1 lfourl 1 and }z. Each control sequence also takes up
one cell of name memory1 one cell of string memory1 and as many cells of character
memory as there are characters in the name (seven in the case of \example). Character
memory is comparatively cheap; four characters 1 or in some cases five 1 \Viii fit in the
same number of bits as a single cell of token memory1 inside the machine. TherefOre
you don)t save much by choosing short macro names.

TE-X will tell you how dose you come to exceeding its current memory capacity
if you say \tracingstats=L For example 1 one of the runs that the author made while
testing galley proofs of this appendix reported the follmving statistics:

Here is how much of TeX's memory you used:
209 strings out of 1685
1659 string characters out of 17636
27618 words of memory out of 52821
1172 multiletter control sequences out of 2500

Consequently there was plenty of room for more macros: 52821 - 27618 = 25203
unused cells of main memory1 2500-1172 = 1328 of name memory1 1685-209 = 1476
of string memory1 and 17636 - 1659 = 15977 of character memory. But a fairly large
TE-X was being used1 and only the macros of Appendices B and E were loaded; in other
circumstances it might have been necessary to conserve space.

One obvious way to keep from loading too many macros is to keep the macro
files short and to \input only the ones that you need. But short files can be a nuisance;
sometimes there)s a better way. For example1 let)s suppose that a file contains five
optional classes of macros called A1 B1 C1 D1 E1 and that a t:yl)ical user \Viii probably
want only at most two or three of these five; let)s desibfil a \load macro so that 1 for
example1 :\load{macs}{AC}) \Viii load file macs. tex including options A and C but not

383

interrupt
recur;;ion, inlinite
;;pace
elfkiency
tradng;;tat;;

384 Appcndi1: D: Dirty Tricks

options B1 D1 or E. The following \load macro converts its second axbrument into a
set macro called \options:

\def\load#1#2{\let\options=\empty \addoptions#2\end \input#1 }
\def\addoptions#1{\ifx#1\end \let\next=\relax

\else\let\\=\relax\edef\options{\options\\#1}%
\let\next=\addoptions \fi \next}

Inside the file macs. tex 1 a portion of code that should be loaded only under option B1

say1 can be enclosed by :\ifoption B ... \fi) 1 where \ifoption is defined thus:
\def\ifoption#1{\def\\##1{\if##1#1\resulttrue\fi}%

\resultfalse \options \ifresult}

(This is a simple application of ideas presented earlier in this appendix.)
However 1 the \ifoption ... \fi scheme isn)t very robust 1 because it requires

all of the macros in the optional part to be well nested \Vith respect to \if ... and \fi;
a macro like \ifoption itself couldn)t easily be defined in such a place! There)s a better
scheme that also runs faster) based on category code changes. This idea (due to Max
Dia~~) requires that the leftmost nonblank character on each line be either :v or :c;
it)s usually easy to arrange this. Furthermore1 one other symbol 1 say - 1 is reserved.
Then the text material that is to be loaded only under option B is preceded by the line
:\beginoption B) and followed by a line that says :-endoptionalcode). The \catcode
for -is set to 14 (comment character) 1 hence the -endoptionalcode line will have no
effect if code is not being shipped. The \beginoption macro works like this:

\def\beginoption#1{\ifoption#1\else\begingroup\swapcategories\fi}
\def\swapcategories{\catcode'\\=14 \catcode'\{=14 \catcode'\-=0 }
\let\endoptionalcode=\endgroup
\catcode'\ -=14

Once the categories have been swapped 1 all lines will be skipped at high speed until the
control sequence -endoptionalcode is encountered; then everything will be restored
to its former state. Under this scheme1 material that should be loaded only under
both options B and D can be prefaced by both :\beginoption B) and :\beginoption D);
material that should be loaded under either option B or option D (or both) can be
prefaced by

\beginoption B
-oroption D

if we define \oroption#1 to be an abbreviation for :\ifoption#1\endgroup\fi).
Another hind of selective loading is sometimes appropriate1 based on whether

or not a particular control sequence is defined. In this scheme1 if the control sequence
is undefined1 it should remain undefined and it should take up no space whatever in
TE-X)s memory. There)s a slick way to do this 1 namely to say

\ifx\cs\undefined ... \fi

(assuming that \undefined has never been defined). TE-X does not put undefined
control sequences into its internal tables if they follow \ifx or if they are encountered
while skipping conditional text. You can use this idea1 for example1 to prepare a
bibliobrraphy for a paper 1 by reading a suitably arranged bibliography file; only the
entries that correspond to defined control sequences will be loaded.

category code
Diaz
cat code
unddined
ifx
comlitional text

AppcndiJ: D: Dirty Tricks

5. Broce hocks. Several of TE-X)s operations depend on grouping1 and you)ll want to
know exactly what this means if you try to do certain tricky things. For example1 plain
TE-X)s control sequences \bgroup and \egroup are :'implicit bracesl' because they have
been defined by

\let\bgroup={ \let\egroup=}

This means that you can include them in the replacement texts of definitions \Vithout
worrying about how they nest; fOr example1 the macros

\def\beginbox{\setboxO=\hbox\bgroup}
\def\endbox{\egroup\copyO }

allow you to make a box between \beginbox and \endbox; the behavior is almost the
same as

\def\beginbox#1\endbox{\setbox0=\hbox{#1}\copy0 }

but different in three important ways: (1) The first alternative allmvs category codes
to change inside the box. (2) The first alternative is faster 1 because it doesn)t need
to scan the box contents both as an argument and as a sequence of actual commands.
(3) The first alternative takes less memory space1 because no argument needs to be
stored. Thus 1 the first alternative is usually superior.

For the purposes of this discussion we shall assume that only :c has category 1
and that only:}; has category 21 although any characters can actually be used as brroup
delimiters. Group nesting is crucial during two of TE-X)s main activities: (a) when TE-X
is scanning a (balanced text} 1 e.g. 1 when TE-X is forming the replacement text of a
macro 1 a parameter1 or a token list variable; (b) when TE-X must determine whether
the token & or \span or \cr or \crcr is the end of an entry within an alignment.

TE-X)s mouth has two internal counting mechanisms to deal \Vith nesting: The
:'master counterl' goes up by 1 for each { 1 scanned by T£X1 and dmv11 by 1 for each h;
the :'balance counterl' is similar 1 but it is affected only by explicit { 1 and h tokens
that are actually contributed to a token list that is being formed. The master counter
decreases by 1 when TE-X evaluates the alphabetic constant 'C and it increases by 1
when TE-X evaluates '} 1 hence the net change is 11ero when such constants are evaluated.
As a consequence of these rules 1 certain constructions produce the follmving effects:

Input
{

\bgroup
\iffalse{\fi
\ifnumO='{\fi

Moster counter chonge
exporuled unexponded

I I
() ()

I
()

I
I

Bohmce counter chonge
exponded unexporuled

I I
() ()

0 I
0 I

The last two cases produce no begin~brroup tokens when expanded1 but they do affect
the master counter as shmv11. Thus 1 for example1

\def\eegroup{\ifnumO='{\fi}}

makes \eegroup behave rather like \egroup 1 but the expansion of \eegroup also de--
creases the master counter.

Alignment processing uses only the master counter 1 not the balance counter.
An alignment entry ends \Vith the first & or \span or \cr or \crcr that appears when

385

grouping
bgroup
egroup
implicit brace;;
brace;;
balanced text
;;pan
amper;;and
cr
crcr
alignment
alphabetic con;;tant

386 Appcndi1: D: Dirty Tricks

the master counter has the value that was present in the counter at the beginning of
the entry. Thus 1 for example1 the curious construction

\halign{\show\par#\relax\cr
\global\let\par=\cr
{\global\let\par=\cr}\cr
\par}

causes T£X to perform three \show instructions 1 in which the respective values of \par
shmv11 are \par 1 \relax1 and \cr. Similarly1 each template in the preamble to an
alignment ends \Vith the first & or \cr or \crcr that appears at the master counter
level that was in effect at the beginning of the entry; hence & and \cr and \crcr tokens
can appear \Vithin a template of an alibfimiCnt 1 if they are hidden by braces (e.g. 1 if
they appear in a definition).

These facts allow us to draw two somewhat surprising conclusions: (1) If an
alignment entry has the form : o: \iffalse{\fi /:i' \iffalse}\fi ~;)) it)s possible for f/
to include & and \cr tokens that aren)t local to a group.* (2) The construction

{\span\iffalse}\fi

appearing in a preamble contributes :c to the template without any net change to the
master counter; thus) it)s very much like \bgroup) except that it produces {1 explicitly.
If you understand (1) and (2)) you)ll abrree that the present appendix deserves its name.

6. Box rrumeuvers. Let)s turn now from sy-ntax to semantics) i.e.) from TE-X)s mouth to
its gastro~intestinal tract. Sometimes an odd symbol is needed in boldface t:yl)e) but it)s
available only in a normal weight. In such cases you can sometimes get by with :'poor
man)s bold/' obtained by overprinting the normal weight symbol \Vith slight offsets.
The follmving macro t:yl)esets its argument three times in three slightly different places)
equidistant from each other; but the result takes up just as much space as if \pmb had
been simply \hbox:

\def\pmb#1{\setbox0=\hbox{#1}%
\kern-.025em\copy0\kern-\wd0
\kern.05em\copy0\kern-\wd0
\kern-.025em\raise.0433em\box0 }

For example) :\pmb{∞}) yields :oo). The results are somewhat fuzzy) and they
certainly are no match fOr the real thing if it)s available; but poor man)s bold is better
than nothing) and once in a while you can get away with it.

\Vhen you put something into a box register) you don)t need to put the con~
tents of that register into your document. Thus) you can \Vrite macros that do experi~
ments behind the scenes) trying different possibilities befOre making a commitment to a
particular decision. For example) suppose you are typesetting a text in two languages)
and you would like to choose the column \Vidths so that the same number of lines is
obtained in both cases. For example) the fOllmving texts balance perfectly when the

* The 1oken li::>1 0: ::>hould no1 be emp1y) ho,vever) becau::>e '!) .. ;X expand::> 1he fim1 1oken
of an alignmen1 en1ry before looking a1 1he 1empla1e) in order 10 ::>ee if 1he en1ry
begin::> \vi1h \noalign or \omit. The ma::>1er coun1er value 1ha1 i::> con::>idered 10 be
pre::>en1 a11he beginning of an en1ry i::> 1he value in 1he coun1er ju::>1 af1er 1he ''u parf'
of 1he 1empla1e ha::> been en1irely read.

ilfal;;e
Box maneu'<er;;
poor man';; bold

AppcndiJ: D: Dirty Tricks

first column is 157.1875 pt \Vide and the second column is 166.8125 pt wide; but the
second column would be one line longer than the first if they were both 162 pt wide:

A. The crea1ive p<:ui i::> really more in-
1ere::>1ing 1han 1he deduc1ive p<:ui. ln-
::>1ead of concen1nt1ing jm>1 on finding
good amnvem 10 que::>1iom> 1 ih:> more
impo1ian1 10 learn ho\v 10 find good
que::>1iom>!

B. You've go1 oome1hing 1here. I \Vi::>h our
1eachem \vould give u::> problem::> like 1

''Find ::>ome1hing in1ere::>1ing abou1 x/'
im>1ead of ''Prove x.~'

A. Exac1ly. Bu1 1eachem are ::>0 com>er-
va1ive1 1hey'd be afraid of ocaring off
1he ''grind~' 1ype of ::>1uden1::> \vho obe-
dien1ly and mechanically do all 1he
home,vork. Be::>ide::>. 1hey \vouldn'1 like
1he exira \vork of iradi~1g 1he amnvem
10 nondirec1ed que::>1iom>.
The 1radi1ional \vay i::> 10 pu1 off all
crea1ive a::>pec1::> un1il 1he la::>1 pa1i
of gradua1e ochool. For ::>even1een or
more yeam1 a ::>1uden1 i::> 1augh1 exam::>-
man::>hip1 1hen mvldenly aJ'ter pM::>ing
enough exam::> in gradua1e ochool he'::>
1old 10 do ::>ome1hing original.

A. La pa1ie crea1iva e::> mucho mejor que la
deduc1iva. En ve"' de concen1rar-::>e en bu::>-
car buenM re::>pue::>1a::> a cier1M cue::>1ione::>
e::> mils impo1ian1e aprender a proponer-::>e
buenM pregun1 M.

B. fv1e parece una buena ocurrencia. fv1e
gu::>1arla que loo profeoore::> proptmieran
problema::> del e::>1ilo de «Encuen1ren algo
in1ere::>an1e oobre X)) en ve"' de «Demue::>1re
que x ...)).

A. Exac1amen1e. Pero lo::> profeoore::> oon
1an con::>ervadore::> que 1emerfan e::>pan-
1ar al 1ipo de e::>1udian1e iiapioonadora))
que hace lo que le proponen para ca::>a1
obedien1emen1e y de forma mec<\nica.
Adem<\::>1 no creo' que le::> gu::>1a-::>e el 1ra-
bajo adicional de calificar re::>pue::>1M a
pregun1 a::> abie1i a::>.
La forma 1radicional e::> dejar la pa1ie
crea1iva para lo::> CUJW::> al1o::>. Duran1e
dieci::>ie1e af'to::> o m<\::> -::>e en::>efia al e::>1 u-
dian1e a aprobar1 luego de golpe 1 cerca de
la graduaci0n1 ::>e le pide que haga algo
original.

Some implementations of T£X display the output as you are running 1 so that
you can choose column widths interactively until a suitable balance is obtained. It)s
fun to play \Vith such s:ystems1 but it)s also possible to ask T£X to compute the column
widths automatically. The fOllmving code tries up to ten times to find a solution in
which the natural heights of the two columns are different by less than a briven value 1

\delheight. The macros \firstcol and \secondcol are supposed to generate the
columns1 and the sum of column \Vidths is supposed to be \doublewidth.

\newdimen\doublewidth \newdimen\delheight \newif\iffail \newcount\n
\newdimen\trialwidth \newdimen\lowwidth \newdimen\highwidth
\def\balancetwocols{\lowwidth=10em % lower bound on \trialwidth

\highwidth=\doublewidth \advance\highwidth-10em % upper bound
{\n=1 \hbadness=10000 \hfuzz=\maxdimen % disable warnings

\loop \maketrial \testfailure \iffail \preparenewtrial \repeat}
\maketrial} % now under/overfull boxes will be shown

\def\maketrial{\trialwidth=.5\lowwidth \advance\trialwidth by.5\highwidth
\setboxO=\vbox{\hsize=\trialwidth \firstcol}
\setbox2=\vbox{\hsize=\doublewidth\advance\hsize-\trialwidth\secondcol}}

\def\testfailure{\dimenO=\htO \advance\dimen0-\ht2
\ifnum\dimenO<O \dimenO=-\dimenO \fi
\ifdim\dimenO>\delheight \ifnum\n=10 \failfalse\else\failtrue\fi
\else\failfalse\fi}

\def\preparenewtrial{\ifdim\ht0>\ht2 \global\lowwidth=\trialwidth
\else\global\highwidth=\trialwidth\fi \advance\n by1 }

387

Alice
Bill

388 Appcndi1: D: Dirty Tricks

Neither column \Viii be less than 10 ems \Vide. This code does a :'binary search/'
assuming that a column \Viii not increase in height when it is made wider. If no
solution is fOund in 10 trials 1 there probably is no way to obtain the desired balance1

because a tiny increase in the \Vidth of the taller column will make it shorter than
the other one. The values of \hbadness and \hfuzz are made infinite during the trial
settings1 because warning messages that relate to unused boxes are irrelevant; after a
solution is found 1 it is computed again 1 so that any relevant warnings \Viii be issued.

\Vhen a box has been put into a box register 1 you can change its height 1 \Vidth 1

or depth by assigning a new value to the \ht 1 \wd1 or \dp. Such assignments don)t
change anything inside the box; in particular) they don)t affect the setting of the glue.

But changes to a box)s dimensions can be confusing if you don)t understand
exactly how T£X deals \Vith boxes in lists. The rules are stated in Chapter 12) but it
may be helpful to restate them here in a different way. Given a box and the location of
its reference point) T£X assibfilS locations to interior boxes as follo\\'S: (1) If the box is
an hbox) TE-X starts at the reference point and walks through the horimntallist inside.
\Vhen the list contains a box) T£X puts the reference point of the enclosed box at the
current position) and moves right by the width of that box. \Vhen the list contains
glue or kerning) etc.) TE-X moves right by the appropriate amount. (2) If the box is a
vbox) TE-X starts at the upper left corner (i.e.) TE-X first moves up from the reference
point) by the height of the box) and walk-s through the vertical list inside. \Vhen the
list contains a box) T£X puts the upper left corner of that box at the current position;
i.e.) TE-X moves down by the height of that box) then puts the box)s refCrence point at
the current position) then moves down by the depth of the box. \Vhen the list contains
glue or kerning) etc.) TE-X moves down by the appropriate amount.

As a consequence of these rules) we can work out what happens when the
dimensions of a box are changed. Let \delta be a {dimen} register) and let \hand \hh
specify horimntal lists that don)t depend on \boxO. Consider the following macro:

\newdimen\temp \newdimen\delta
\def\tYohboxes#1{\setbox1=\hbox{\h \copyO \hh}

\temp=#10 \advance\temp by \delta #10=\temp
\setbox2=\hbox{\h \copyO \hh}}

For example) \twohboxes\wd makes two hboxes) \box1 and \box2) that are identical
except that the width of \boxO has been increased by J in \box2. \Vhat diffCrence
does this make? There are several cases) depending on whether #1 is \wd) \ht) or \dp)
and depending on whether \boxO is an hbox or a vbox. ()ose 1) \twohboxes\wd: The
material from \hh is moved right by J in \box2) compared to its position in \boxL Also
\wd2 is J more than \wdL ()ose 2) \twohboxes\ht: If \boxO is an hbox) everything
remains in the same position; but if \boxO is a vbox) everything in \copyO moves up
by J. Also \ht2 may diffCr from \htL ()ose if) \twohboxes\dp: Everything remains
in the same position) but \dp2 may diffCr from \dpL

Similarly) we can work out the changes when box dimensions are changed for
boxes within vertical lists. In this case we shall ibfilOre the influence of interline glue by
defining \twovboxes as fOllo\\'S:

\def\twovboxes#1{
\setbox1=\vbox{\v\nointerlineskip\copy0\nointerlineskip\vv}
\temp=#10 \advance\temp by \delta #10=\temp
\setbox2=\vbox{\v\nointerlineskip\copy0\nointerlineskip\vv}}

binary ;;eardl
hbadne;;;;
hfuzz

AppcndiJ: D: Dirty Tricks

\Vhat is the difference between \box1 and \box2 now? ()ose 11 \twovboxes\wd:
Everything remains in the same position 1 but \wd2 may differ from \wdL ()ose 21

\twovboxes\ht: If \boxO is an hbox 1 everything in \v moves up by J in \box2 1 com~

pared to the corresponding positions in \box1 1 if we make the reference points of the
two boxes identical; but if \boxO is a vbox1 ever:yi;hing in it moves up by 61 together
with the material in \v. Also1 \ht2 is J more than \htL ()ose 81 \twovboxes\dp: If
\vv is empty1 \dp2 is J more than \dp1 1 and nothing else changes. Othenvise everything
in \v and in \copyO moves up by 61 and \ht2 is J more than \htL

TE-X is desibfilCd to put boxes together either horit~ontally or vertically1 not
diagonally. But that)s not a serious limitation 1 because the use of negative spacing
makes it possible to put things anywhere on a page. For
example1 the seven points in the diabrram at the right of this
paragraph were typeset by saying simply • (0,(-1)

\hbox{\unit=\baselineskip
\point 0 0
\point 0 8
\point 0 -8
\point -1 -2.5
\point 4 7
\point 4 2
\point 1 1. 5
}

The \point macro makes a box of \Vidth 11ero; hence the
individual \point specifications can be given in any order 1

and there)s no restriction on the coordinates:
\newdimen\unit
\def\point#1 #2 {\rlap{\kern#1\nnit

\raise#2\unit\hbox{$
\scriptstyle\bullet\;(#1,#2)$}}}

• (J 'J.G)

• (0,0)

1,~2.0)

• (4,7)

• (4,2)

If the \point specifications are not enclosed in an \hbox-i.e. 1 if they occur in vertical
mode--a similar construction can be used. In this case \point should create a box
whose height and depth are 11ero:

\def\point#1 #2 {\vbox toOpt{\kern-#2\unit
\hbox{\kern#1\nnit$\scriptstyle\bullet\;(#1,#2)$}\vss}

\nointerlineskip}

(The \nointerlineskip is necessary to prevent interline glue from messing things up.)
If you enjoy fooling around making pictures1 instead of typesetting ordinary

text 1 TE-X will be a source of endless frustration/amusement fOr you 1 because almost
an:yi;hing is possible if you have suitable fonts. For example1 suppose you have a fOnt
\qc that contains four quarter circles:

b=.) c = \.. d = r
Each of these characters has the same height 1 the same \Vidth 1 and the same depth; the
width and the height~plus~depth are equal to the diameter of the corresponding full
circle. Furthermore1 the refCrence point of each character is in a somewhat peculiar

389

C r;;a J'viajor
point;; with arbitrary coordinate;;
coonlinate;;
kern
hbox
nointerline;;kip
quarter circle;;

390 AppcndiJ: D: Dirty Tricks

place: Each quarter arc has a horit~ontal endpoint such that the lower edge of the curve
is at the baseline1 and a vertical endpoint such that the left edge is directly above
or below the reference point. This convention makes it possible to guarantee perfect
alignment between these characters and rules that meet them at the endpoints; the
thickness of such rules should be \fontdimen8\qc.

Given those characters1 it)s possible to devise macros \path1 \L 1 \R1 \S 1 and \T
such that \path{{any string of \L's 1 \R)s 1 \S)s 1 and \T)s}} produces a path that starts
traveling East 1 but it turns left for each \L 1 right for each \R1 goes straight for each \S 1

and turns backward for each \T. Thus, for example, \path{\L\T\S\T\R\L\T\S\T\R}
yields :H; 1 and you can also get the fOllmving effects:

\path{\L\R\S\R\S\R\S\S\R\R}

\path{\R\R\R\R\T\S\S\L\L\L\L\1\S\S} ~

\def\X{\L\T\L\L\T\L\L\T} \path{\X\X\X\X} ~
Furthermore1 there are operations \B and \W that make the path black (visible) and
white (invisible) 1 respectively:

\path{\R\R\S
\W\S\S\S\R\R
\B\R\R\S\R\S\R\S\S\S\R\S\S\S\S\3\R\S\R
\W\R\R\R\S\L\S
\B\L\S\S\S\S}

(It may be necessary to put kerns before and after the path 1 since the box produced
by \path may not be as \Vide as the actual path itself.)

The \path macros work differently from \point 1 since the boxes need not have
11ero width in this application:

\catcode'\ =9 \endlinechar=-1 % ignore all spaces (temporarily)
\newcount\dir \newdimen\y \newdimen\w
\newif\ifvisible \let\B=\visibletrue \let\W=\visiblefalse
\newbox\NE \newbox\NW \newbox\SE \newbox\SW \newbox\NS \newbox\EW
\setbox\SW=\hbox{\qc a} \setbox\NW=\hbox{\qc b}
\setbox\NE=\hbox{\qc c} \setbox\SE=\hbox{\qc d}
\w=\wd\SW \dimen0=\fontdimen8\qc
\setbox\EW=\hbox{\kern-\dp\SW \vrule height\dimenO Yidth\Yd\SW} \Yd\EW=\y
\setbox\NS=\hbox{\vrule height\ht\SW depth\dp\SW Yidth\dimenO} \Yd\NS=\y
\def\L{\ifcase\dir \dy+\NW \or\dx-\SW \or\dy-\SE \or\dx+\NE\dd-4\fi \dd+1}
\def\S{\ifcase\dir \dx+\EW \or \dy+\NS \or \dx-\EW \or \dy-\NS \fi}
\def\R{\ifcase\dir \dy-\SW\dd+4 \or\dx+\SE \or\dy+\NE \or\dx-\NW\fi \dd-1}
\def\T{\ifcase\dir\kern-\Y\dd+2\or\ey-\dd+2\or\kern\Y\dd-2\or\ey+\dd-2\fi}

fontdimen
turtle command;;
path
cat code
endlinechar
ifca,-;e

AppcndiJ: D: Dirty Tricks

\edef\dd#1#2{\global\advance\dir#1#2\space}
\def\dx#1#2{\ifvisible\raise\y\copy#2 \if#i-\kern-2\w\fi\else\kern#i\w\fi}
\def\dy#1#2{\ifvisible\raise\y\copy#2 \kern-\w \fi \global\advance\y#1\w}
\def\ey#1{\global\advance\y#1\Y}
\def\path#1{\hbox{\B \dir=O \y=Opt #1}}
\catcode'\ =10 \endlinechar='\~~M % resume normal spacing conventions

\newcount\n % the current order in the \dragon and \nogard macros
\def\dragon{\ifnum\n>O{\advance\n-1 \dragon\L\nogard}\fi}
\def\nogard{\ifnum\n>O{\advance\n-1 \dragon\R\nogard}\fi}

(The last three lines are not part of the \path macros 1 but they can be used as an
interesting test case. To get the famous :'dragon curvet' of order 91 all you have to say
is '\path{\dir=3 \n=9 \dragon}'.)

Let)s turn now to another box~oriented problem. The \listing macro dis~
cussed earlier in this appendix was restricted to listing files that contain only visible
ASCII characters. Sometimes it)s desirable to deal with ASCII (tab} mark-s too 1 where
a (tab} is equivalent to 1 or 2 or · · · or 8 spaces (whatever is necessary to make the
current line length a multiple of 8). How can this be done?

\Ve shall assume that files can contain a special sy-mbol that T£X will input
as character number 91 the ASCII (tab} code; some implementations can)t actually do
this. If a file contains the three symbols ,..,..I 1 plain T£-X will normally input them as a
single character 1 number 9; but in a verbatim listing of the file we naturally want such
symbols to print as themselves 1 i.e. 1 as ,..,..L

The following construction redefines \setupverbatim so that the previous
\listing macro will work with (tab} characters. The idea is to keep the line--so--far
in an hbox 1 which can be :'measurecr' in order to find out how many characters have
appeared since the bebrinning of the line or since the most recent (tab}.

\def\setupverbatim{\tt \lineno=O
\def\par{\leavevmode\egroup\boxO\endgraf}
\obeylines \uncatcodespecials \obeyspaces
\catcode'\'=\active \catcode'\,..,..I=\active
\everypar{\advance\lineno by1

\llap{\sevenrm\the\lineno\ \ }\startbox}}
\newdimen\w \setboxO=\hbox{\tt\space} \w=8\wd0 % tab amount
\def\startbox{\setboxO=\hbox\bgroup}
{\catcode'\,..,..I=\active

\gdef,..,..I{\leavevmode\egroup
\dimenO=\wdO % the width so far. or since the previous tab
\divide\dimenO by\w
\multiply\dimenO by\w % compute previous multiple of \w
\advance\dimenO by\w % advance to next multiple of \w
\wdO=\dimenO \boxO \startbox}}

(The new things in \setupverbatim are the :\egroup\boxO) in the redefinition of \par;
the :\catcode'\,..,..I=\active); and the :\startbox) in \everypar.) The \settabs
and \ + macros of Appendix B provide another example of how tab operations can be
simulated by boxing and unboxing.

391

endlinechar
dragon cone
recur;;ion
li;;ting
tab
di.,-ide
multiply

392 Appcndi1: D: Dirty Tricks

Chapter 22 explains how to put vertical rules in tables by considering the rules
to be separate columns. There)s also another way1 provided that the rules extend all
the way from the top of the table to the bottom. For example1

\beginvrulealign
\tabskip=10pt
\halign{&\strut#\hfil\cr
These& after\cr
vertical& the\cr
rules& alignment\cr
were& was\cr
inserted& completed!\cr}
\endvrulealign

yields

These
vertical
rules
were
inserted

after
the
alignment
was
completed!

The magic macros in this case examine the bottom row of the alignment 1 which consists
of alternating tabskip glue and boxes; each item of tabskip glue in that bottom row
will be bisected by a vertical rule. Here)s how:

\def\beginvrulealign{\setboxO=\vbox\bgroup}
\def\endvrulealign{\egroup % now \boxO holds the entire alignment

\setbox0=\vbox{\setbox2=\hbox{\vrule height\htO depth\dpO widthOpt}
\unvboxO \setboxO=\lastbox % now \boxO is the bottom row
\nointerlineskip \copyO % put it back
\global\setbox1=\hbox{} % initialize box that will contain rules
\setbox4=\hbox{\unhbox0 % now open up the bottom row

\loop \skipO=\lastskip \unskip % remove tabskip glue
\advance\skipO by-.4pt % rules are .4pt wide
\divide\skipO by 2
\global\setbox1=\hbox{\hskip\skip0\vrule\hskip\skip0

\uuhbox2\uuhbox1}%
\setbox2=\lastbox % remove alignment entry
\ifhbox2 \setbox2=\hbox{\kern\wd2}\repeat}}%

\hbox{\rlap{\box0}\box1}} % superimpose the alignment on the rules

This method works \Vith all alibfimiCnts created by \halign{ ... }. For alignments
created by1 say1 \halign to100pt{ ... } 1 the method works only if the bottom row of
the alignment contains all of the columns1 and only if :\box1) is replaced by :\hbox
to100pt{\unhbox1}) at the end of \endvrulealign.

1. Porogroph rrumeuvers. Chapter 14 promised that Appendix D would present an ex~
ample where ragged right and ragged left setting occur in the same paragraph. The
follmving interesting example was suggested by the :'Key Indexl' in .:V1atlwmatical Re-
viervs1 where the entries consist of a possibly long title followed by dot leaders followed
by a possibly long list of review numbers. If the title doesn)t fit on one line1 it should
be set ragged right 1 with hanging indentation on all lines aller the first; if the references
don)t all fit on one line 1 they should be set ragged left. For example 1 given the input

ACM Symposium on Theory of Computing. Eighth Annual (Hershey. %
Pa .• 1976)\:1879. 4813. 5414. 6918. 6936. 6937. 6946. 6951. %
6970, 7619, 9605, 10148, 11676, 11687, 11692, 11710, 13869

rule;; in table;;
alignment
tab;;kip glue
un'<box
la,-;t;;kip
un;;kip
la,-;t box
halign
ragged right
ragged left
Key Index
1\·iat hemat kal He'<-iew;;
index macro;;
leader,;

AppcndiJ: D: Dirty Tricks

the follmving three types of output are desired 1 depending on the column width:

ACfv1 Sympo::>ium on
Theory of Compu1ing 1

Eigh1 h Annual
(Hen:>hey1 Pa. 1 l97G)

18791 48D 1 5414 1

G9l8 1 G9:JG1 G9:l7 1 G94G 1

G95l 1 G9701 7Gl9 1 9G05 1

101481 l!G7G 1 l!G87 1

l IG921 117101 D8G9

ACfv1 Sympo::>ium on Theory of
Compu1ing 1 Eigh1h Annual
(Hen:>hey1 Pa. 1 l97G)

18791 48l:l 1 5414 1 G9l8 1 G9:JG 1 G9:l71

G94G1 G95l 1 G9701 7Gl9 1 9G051 101481

l!G7G 1 l IG871 llG92 1 117101 D8G9

ACfv1 Sympo::>ium on Theory of Compu1ing 1 Eigh1h Annual
(Hen:>hey1 Pa. 1 l97G) 18791 48D 1 5414 1 G9l8 1 G9:JG1 G9:l71 G94G 1

G95L G970, 7Gl9, 9G05, 10148, l!G"/G, l!G87, l !G92, 11710, D8G9

Notice that the dot leaders are treated in three different ways 1 depending on which
work-s out best: They may occur at the left of the first line after the title1 or they
may appear at the end of the last line of the title (in which case they stop well be--
fore the right marbrin) 1 or they may occur in the middle of a line. Furthermore1 the
ragged~ right lines are supposed to end at least 0.5 em from the right margin. Our goal
is to achieve all this as a special case of TE-X)s general paragraphing method. The sim~
ple approach of Appendix B won)t work 1 because \raggedright is achieved there by
adjusting \rightskip; T£X uses the same \rightskip value in all lines of a paragraph.

The solution to this problem requires an understanding of the line--breaking
algorithm; it depends on how demerits are cakulated1 and on how items are removed
at the breakpoints1 so the reader should review Chapter 14 until those concepts are
firmly understood. Basically1 we need to specifY a sequence of box/glue/penalty items
for the spaces in the title portion1 another sequence fOr the spaces in the reference
portion1 and another sequence for the dot leaders. In the title portion of each index
entry1 interword spaces can be represented by the sequence

\penalty10000 \hskip.5em plus3em \penaltyO
\hskip-.17em plus-3em minus.11em

Thus 1 there is a stretchability of 3 em if a line break occurs at the \penal tyO; othenvise
the net interword space \Viii be .33 em 1 shrinkable to .22 em. This gives ragged right
marbrins. The interword spaces in the reference portion are designed to produce ragged
left margins and to minimi11e the number of lines devoted to refCrences:

\penalty1000 \hskip.33em plus-3em minus.11em
\vadjust{}\penalty10000 \hskipOpt plus3em

The \vadjust{} does nothing 1 but it doesn)t disappear at a line break Thus 1 if a break
occurs at the \penalty1000 1 the fOllmving line \Viii begin \Vith stretchability 3em; but
if no break occurs 1 the net space will be .33em minus .llmn. Finally1 the transition
between title and references can be specified by

\penalty10000 \hskip.5em plus3em \penalty600
\hskip-.17em plus-3em minus.11em
\vadjust{}\penalty10000
\leaders\copy\dbox\hskip3.3\wd\dbox plusifil minus.3\wd\dbox
\kern3em \penalty600 \hskip-2.67em plus-3em minus.11em
\vadjust{}\penalty10000 \hskipOpt plus3em

393

right;;kip
line-breaking
'<adju;;t

394 AppcndiJ: D: Dirty Tricks

(Quite a mouthfuL) This long sequence of penalty and glue items begins rather like
the interword spaces in the first part 1 and it ends rather like the interword spaces in
the last part. It has two permissible breaJ.:points1 namely at the :\penal ty600) items.
The first breakpoint causes the leaders to appear at the beginning of a line; the second
causes them to appear at the end1 but 3 ems away. The leader \Vidth \Viii alway-s be
at least three times the \Vidth of \dbox 1 so at least two copies of \dbox \Viii alway-s
appear. Here is the actual T£X code that can be used to set up the desired behavior:

\hyphenpenalty10000 \exhyphenpenalty10000 \pretolerance10000 % no hyphens
\newbox\dbox \setbox\dbox=\hbox to .4em{\hss.\hss} %dot box for leaders
\newskip\rrskipb \rrskipb=.5em plus3em % ragged right space before break
\newskip\rrskipa \rrskipa=-.17em plus-3em minus.11em% ditto. after
\newskip\rlskipa \rlskipa=Opt plus3em % ragged left space after break
\newskip\rlskipb \rlskipb=.33em plus-3em minus .11em% ditto. before
\newskip\lskip \lskip=3.3\wd\dbox plusifil minus.3\wd\dbox % for leaders
\newskip\lskipa \lskipa=-2.67em plus-3em minus.11em% after leaders
\mathchardef\rlpen=1000 \mathchardef\leadpen=600 % constants used
\def\rrspace{\nobreak\hskip\rrskipb\penaltyO\hskip\rrskipa}
\def\rlspace{\penalty\rlpen\hskip\rlskipb\vadjust{}\nobreak\hskip\rlskipa}
\uccode'-=' \uppercase{

\def\:{\nobreak\hskip\rrskipb \penalty\leadpen \hskip\rrskipa
\vadjust{}\nobreak\leaders\copy\dbox\hskip\lskip
\kern3em \penalty\leadpen \hskip\lskipa
\vadjust{}\nobreak\hskip\rlskipa \let-=\rlspace}

\everypar{\hangindent=1.5em \hangafter=1 \let-=\rrspace}}
\uccode'-=0 \parindent=Opt \parfillskip=Opt \obeyspaces

Putting the interword glue into \skip registers saves a great deal of time and memory
space when TE-X work-s \Vith such paragraphs; :\hskip(explicit glue}) occupies six cells
of T£X)s box memory1 but :\hskip(skip register}) occupies only two. Notice the tricky
use of \uppercase here to convert - 1a into u1a; :'randoml' active characters can be
obtained in a similar way.

Let)s turn now to a much simpler problem: hanging punctuation.

''Wha1 i::> hanging punc1ua1ion?)' Mked Alice 1

\vi1h a put\tded frO\VJL '\Vell 1 y'kno\v1 ac1ually1 •

an::>\vered Bill 1 'I'd ra1her demon::>1ra1e i11han
explain i1. · ''0h1 no\v I ::>ee. CommM 1 period::>1

and quo1e::> are allo,ved 10 ::>1ick ou1 in1o 1he

margin::>1 if 1hey occur nex1 10 a line break.)'
'Yeah 1 I gue::>::>. · ''Really! Bu1 \vhy do all your
remark::> have ::>ingle quo1e::> 1 \vhile mine are
double?)' 'I haven'1 1he foggie::>1; i1'::> \veinL
A::>k 1 he au1 hor of 1 hi::> cra"'y book.·

Each comma in Alice and Bill)s demonstration paragraph was represented inside of T£X
by the sequence of three items :. \kern-\commahang\kern\commahang) 1 and there were
similar replacements fOr periods and fOr dosing quotes; opening quotes were represented
by the longer sequence

\kern\qquotehang\vadjust{}\kern-\qquotehang''\allowhyphens

where \allowhyphens allo\\'S the following word to be hyphenated. This construction
work-s because kerns disappear into line break-s in the proper way; the relevant rules
from Chapter 14 are: (1) A line break can occur at a kern that is immediately followed
by glue. (2) Consecutive glue1 kern 1 and penalty items disappear at a break.

pretokrance
new box
new;; kip
mat hchardef
no break
par indent
parlilbkip
obey;;pace;;
box memory
elfkiency
upperca,-;e
acti'<e ;;pace;;
act i '<e character;;
hanging punctuation
kern
allowhy ph en;;
hyphenate
line break;;

AppcndiJ: D: Dirty Tricks

To set TE-X up fOr hanging punctuation1 you can say

\newdimen\commahang \setboxO=\hbox{.} \commahang=\wdO
\newdimen\periodhang \setboxO=\hbox{.} \periodhang=\wdO
\newdimen\quotehang \setboxO=\hbox{'} \quotehang=\wdO
\newdimen\qquotehang \setboxO=\hbox{''} \qquotehang=\wdO
\newskip\zzz \def\allowhyphens{\nobreak\hskip\zzz}
\def\lqq{''} \def\rqq{''} \def\pnt{.}
\def\comma{.\kern-\commahang\kern\commahang}
\def\period{.\kern-\periodhang\kern\periodhang}
\def\rquote{'\kern-\quotehang\kern\quotehang}
\def\lquote{\ifhmode\kern\quotehang\vadjust{}\else\leavevmode\fi

\kern-\quotehang'\allowhyphens}
\catcode'.=\active \let.=\comma \catcode'.=\active \let.=\period
\catcode''=\active \def'{\futurelet\next\rqtest}
\catcode''=\active \def'{\futurelet\next\lqtest}
\def\rqtest{\ifx\next'\let\next=\rquotes\else\let\next=\rquote\fi\next}
\def\lqtest{\ifx\next'\let\next=\lquotes\else\let\next=\lquote\fi\next}
\def\rquotes'{\rqq\kern-\qquotehang\kern\qquotehang}
\def\lquotes'{\ifhmode\kern\qquotehang\vadjust{}\else\leavevmode\fi

\kern-\qquotehang\lqq\allowhyphens}

Notice that the macros need to do their O\V1l checking for ligatures1 and they also take
appropriate actions when a paragraph begins with an opening quote. Since \kern
does not affect the space factor 1 hanging punctuation doesn)t affect TE-X)s spacing
conventions \Vithin a line. Partially hanging punctuation can be obtained by decreasing
the amounts of \commahang1 etc. The macros \pnt 1 \lq1 and \rq should be used
in constants; for example1 a dimension of 6.5 in must be \Vritten :6\pnt5in) when
hm1bring punctuation is in effect 1 and :\catcode\lq.=12) makes commas inactive again.
A special font \Vith t~ero~width \hyphenchar should be used fOr :'hanging h:yl)henation.l'

And now for our next trick 1 let)s consider an application to short footnotes.
The footnotes at the bottom of this page 1 ,z,a, 4 ,G,ti,l ,(-1,\l,JO look funny

1
because most of

them are quite short. \Vhen a document has lots of footnotes 1 and when most of them
take up only a small part of a line1 the output routine ought to reformat them in some
more appropriate way.

1 Fim1 foo1no1e.
2 Second foo1no1e. (Every once in a \vhile a long foo1no1e migh1 occur1 jm>1 10 make

1hing::> difficul1.)
a Third foo1no1e.
4 Fomih foo1no1e.
° FiJ'th foo1no1e. (Thi::> i::> incredibly boring 1 bu1 i1'::>ju::>1 an example.)
ti Ano1her.

And ano1 her.
(-1 Ho hum.
9 Ump1een1h foo1no1e.

10 Oodle::> of 1hem.

395

;;pace factor
pnt
lq
cq
hyphenchar
footnote;;, ;;hoM

396 Appcndi1: D: Dirty Tricks

For example1 one approach would be to typeset the footnotes in narrow
columns and to put1 say1 three columns of footnotes at the bottom of each page. The
ten example fOotnotes might then look like this:

1 Fim1 foo1no1e.
2 Second foo1no1e. (Every

once in a \vhile a long
foo1no1e migh1 occur1

jm>1 10 make 1hing::>
difficul1.)

a Third foo1no1e.
4 Fomih foo1no1e.
G FiJ'th foo1no1e. (Thi::> i::>

incredibly boring 1 bu1 ih>
jm>1 an example.)

In this case1 the fOotnotes could be generated by

ti Ano1her.
And ano1 her.

('; Ho hum.
9 Ump1een1h foo1no1e.

10 Oodle::> of 1hem.

\insert\footins{\eightpoint \hsize=9pc \parindent=ipc
\leftskip=Opt \raggedright \pretolerance=10000
\hyphenpenalty=10000 \exhyphenpenalty=10000
\interlinepenalty=\interfootnotelinepenalty
\floatingpenalty=20000
\splittopskip=\ht\strutbox \splitmaxdepth=\dp\strutbox
\item{$'{\the\footno}$}\strut(tcxt of footnotc)\strut
\par\allowbreak}

and \count\footins would be set to 333 so that each fOotnote line would be considered
to occupy about one third of a line on the page. The output routine would then see a
\box\footins that looks like this:

\vbox(142.0+2.0)x108.0
.\hbox(7.0+2.0)x108.0, glue set 42.23425fil []
. \penalty 0
.\hbox(7.0+2.0)x108.0, glue set 0.29266 []
. \penalty 250
.\glue(\baselineskip) 1.44444
.\hbox(5.55556+1.55556)x96.0, glue set 0.8693, shifted 12.0 []
. \penalty 100
.\glue(\baselineskip) 1.88889
.\hbox(5.55556+1.55556)x96.0, glue set 0.92438, shifted 12.0 []

.\hbox(7.0+2.0)x108.0, glue set 18.56308fil []

. \penalty 0

.\hbox(7.0+2.0)x108.0, glue set 36.92476fil []

. \penalty 0

The individual footnotes each end \Vith :\penalty 0); footnotes that take up more than
one line have larger penalties between the lines) and interline glue appears there too.

How should the output routine break such a box up into three roughly equal
pieces? Notice that the contents of the box are completely rigid) i.e) there is no glue
that can stretch or shrink. Furthermore) we can assume that the contents of the box are
rebrular) i.e.) that the inter~ baseline distances are all the same. In such circumstances
a fairly simple balancing routine can be used to trisect the box.

Let)s consider a more general problem: Suppose that a rigid vbox is given)
n lines tall) where adjacent baselines are b units apart. Suppose also that the top

ragged right
;;trot
allow break
balancing

AppcndiJ: D: Dirty Tricks

baseline is h units from the top of the vbox1 where 0 < h < b. (In our footnote
example1 b = 9pt and h = 7pt; in the standard settings of plain TE-X 1 b = 12 pt and
h = I Opt. \Ve might as well work the problem for general band h.) It fOllo\\'B that
the height of the vbox is H = h + b(n - I) = lm + h -b.

If n lines are to be distributed evenly into k columns1 the first column should
contain fn/kllines. (This denotes the smallest integer greater than or equal to njk.)
For example1 our application to footnotes has n = 16 and k = 31 hence the first column
should contain 6 lines. After forming the first column1 we have reduced the problem
to n = 10 and k = 21 so two 5~line columns \Viii complete the operation. (Notice that
it is better to divide 16 into 6 + 5 + 5 instead of 6 + 6 + 4.) Once we have found the
first column 1 it)s always possible to reduce the k~column problem to a (k -1)~column
problem 1 so we need only concentrate on finding the first column.

Let m = fn/kl The height of the briven box is lm + h- b1 and the height of
the first column should be lnn + h- b; hence we want to do a \vsplit to that height.
However 1 it isn)t necessary to calculate lnn + h - b exactly1 since a bit of arithmetic
proves that

bm+h-b lm+h-b < k +h < b(m+l)+h-b.

TherefOre it suffices to \vsplit to height H' = Hjk + h; under the assumptions of
rigidity1 and assuming that a valid break is possible after each line 1 \vsplit to H' \Viii
split after the maximum number of lines that yield a box of height :::; H'. (\Ve have
observed that m lines produce a box of height < H' while m + 1 lines produce a box
of height > H'.) The follmving TE-X code does this:

\newcount\k \newdimen\h % registers used by the \rigidbalance routine
\def\rigidbalance#1#2 #3 {\setbox0=\box#1 \k=#2 \h=#3

\line{\splittopskip=\h \vbadness=10000 \hfilneg
\valign{##\vfil\cr\dosplits}}}

\def\dosplits{\ifnum\k>O \noalign{\hfil}\splitoff
\global\advance\k-1\cr\dosplits\fi}

\def\splitoff{\dimenO=\htO
\divide\dimenO by\k \advance\dimenO by\h
\vsplitO to \dimenO }

This code is interesting on a number of counts. First 1 notice that the calculation does
not depend on b1 only on h and the height of the given box; hence \rigidbalance has
three parameters: a box register number 1 the number of columns k 1 and the top baseline
height h. The routine splits the briven vbox into k nearly equal pieces and justifies the
result in a \line. The value of \splittopskip is set to h so that subsequent vboxes
will satisfY the ground rules of the original vbox 1 as the problem is reduced from k
to k- L Each column \Viii be preceded by \hfil 1 hence \hfilneg is used to cancel the
\hfil before the first column. A \valign is used to align all of the columns at the top.
Notice that the preamble to this \valign is quite simple; and the body of the \valign
is generated by a recursive macro \dosplits that produces the k columns. The value
of \vbadness is set to 10000 because each \vsplit operation \Viii produce an underfull
vbox whose badness is 10000.

397

'<;;plit
di.,-ide
;;plittop;;kip
hlil
hlilneg
'<align
recur;;i '<C macro
'<hadne;;;;
underfull

398 Appcndi1: D: Dirty Tricks

In our application to footnotes 1 the \output routine can refOrmat the contents
of \box\footins by saying 1 for example1

\rigidbalance\footins 3 7pt
\setbox\footins=\lastbox

since \last box will be the result of \rigidbalance.
This solution to the problem of short fOotnotes might result in dub lines or

widow lines 1 since the balancing routine we have described simply trisects the total
number of lines. For example1 if the tenth fOotnote of our example had not been
present1 the fifteen remaining lines would have been split 5 + 5 + 5; the second column
would have been headed by the lonely word :difficul1.)' 1 and the third column would have
started \Vith :jm>1 an example.)'. The rigid balancing procedure could be replaced by one
that allo\\'B ragged~bottom columns1 but there)s also another approach: The entire set
of footnotes could be combined into a single parabrraph1 with generous spacing between
the individual items. For example1 the ten footnotes we have been considering might
appear as follo\\'8:
1 Fim1 foo1no1e. 2 Second foo1no1e. (Every once in a \vhile a long foo1no1e migh1 occur1 jm>1
10 make 1hing::> difficul1.) aThinl foo1no1e. 4 Fomih foo1no1e. °FiJ'th foo1no1e. (Thi::>
i::> incredibly boring1 bu1 i1'::> ju::>1 an example.) tiAno1her. lAnd ano1her. (';Ho hum.
9 Ump1een1h foo1no1e. 10 0odle::> of 1hem.

It would be possible to take the contents of \box\footins shown previously
and to refOrmat ever:yi;hing into a parabrraph 1 but such an operation would be needlessly
complicated. If footnotes are to be parabrraphed by the output routine 1 it)s better simply
to prepare them in unjustified hboxes. Each of these hboxes will be unboxed later 1 so
we are free to play with their heights 1 widths 1 and depths. It)s convenient to set the
depth to 11ero and the height to an estimate of how much a particular fOotnote will
contribute to the final paragraph. For example1 if a footnote takes up exactly half of
the \hsize 1 and if the final fOotnote is going to be set with \baselineskip=10pt 1 then
the height of the footnote hbox should be set to 5 pt. By letting \count\footins=1000 1

we) II have a pretty good estimate of the sit~e of the final footnote paragraph. In other
words 1 the following insertion scheme is suggested:

\insert\footins{\floatingpenalty=20000
\eightpoint \setboxO=\hbox{%

$'{\the \footno}$(tcxt of footnote) \penal ty-10\hskip \footglue}
\dpO=Opt \htO=\fudgefactor\YdO \boxO}

The penalty of -10 tends to favor line breaks between footnotes; \footglue is the
amount of glue between fOotnotes in the final fOotnote paragraph; and \fudgefactor
is the ratio of \baselineskip to \hsize in that paragraph. The author defined the
necessary quantities as follo\\'B in his experiments:

\eightpoint \newskip\footglue \footglue=1.5em plus.3em minus.3em
\newdimen\footnotebaselineskip \footnotebaselineskip=10pt
\dimenO=\footnotebaselineskip \multiply\dimenO by 1024
\divide \dimenO by \hsize \multiply\dimenO by 64
\xdef\fudgefactor{\expandafter\getfactor\the\dimenO }

(The computation of \fudgefactor uses the fact that 1 pt = 1024 x 64 sp1 and it
assumes that the \footnotebaselineskip is less than 16pt.)

la,-;t box
dub line;;
widow line;;
ragged-bottom
multiply
di.,-ide
;;p

AppcndiJ: D: Dirty Tricks 399

Inside the output routine 1 \box\footins will now be a vbox of hboxes 1 and
the height of this vbox will be an estimate of the height of the final paragraph. For
example1 our ten footnotes produce

\vbox(34.48158+0.0)x386.4221
. \hbox(2.00175+0.0)x70.68285 []
.\hbox(10.94359+0.0)x386.4221 []
.\hbox(2.09749+0.0)x74.06345 []
.\hbox(2.2077+0.0)x77.95517 []
.\hbox(7.6296+0.0)x269.40376 []
.\hbox(1.40851+0.0)x49.73532 []
. \hbox(1.87659+0.0)x66.26334 []
.\hbox(1.38826+0.0)x49.02003 []
.\hbox(2.67213+0.0)x94.35402 []
.\hbox(2.25597+0.0)x79.65926 []

and the height of 34.48158 pt corresponds to an estimate of about three and a half
lines. (TE-X)s page builder has also added \skip\footins when estimating the total
contribution due to fOotnotes.)

The reformatting of \box\footins takes place in three stages. First the vbox
of hboxes is changed to an hbox of hboxes 1 so that we obtain 1 e.g. 1

\hbox(10.94359+0.0)x1217.5593
. \hbox(2.00175+0.0)x70.68285 []

.\hbox(2.25597+0.0)x79.65926 []

(the same contents as before1 but strung in a horimntal row instead of a vertical
column). Then the inner hboxes are unboxed1 and we obtain

\hbox(6.68999+2.0)x1217.5593
. \mathon
.\hbox(3.86665+0.0)x4.16661, shifted -2.82333 []
. \mathoff
. \eightrm F
.etc.

Finally the outer hbox is unboxed1 and the horimntal list inside it is converted into a
paragraph. Here is the actual TE-X code:

\def\makefootnoteparagraph{\unvbox\footins \makehboxofhboxes
\setboxO=\hbox{\unhboxO \removehboxes}
\baselineskip=\footnotebaselineskip\noindent\unhboxO\par}

\def\makehboxofhboxes{\setboxO=\hbox{}
\loop\setbox2=\lastbox \ifhbox2 \setbox0=\hbox{\box2\unhbox0}\repeat}

\def\removehboxes{\setboxO=\lastbox
\ifhboxO{\removehboxes}\unhboxO \fi}

The \removehboxes operation is especially noteworthy1 because it uses TE-X)s save
stack to hold all of the hboxes before unboxing them. Each level of recursion in this
routine uses one cell of input stack space and three cells of save stack space; thus 1

unhbox
un'<box
;;aH: ;;tack

400 Appcndi1: D: Dirty Tricks

it is generally safe to do more than 100 fOotnotes \Vithout exceeding TE-X)s capacity.
The \makehboxofhboxes routine is not as efficient; TE-X doesn)t allow a vbox to be
unboxed in horimntal mode. or vice versa. hence the trick of \removehboxes cannot be
used. This means that the r~nning time i~ proportional to n 2

1 if there are n footnotes 1

because the time to make or unmake a box is proportional to the number of items in
the top~ level list inside. However 1 the constant of proportionality is small 1 so there is
no need to resort to a more complicated scheme that would be asymptotically faster.
Indeed1 the \last box operation itself has a running time approximately equal to a+1nb1

where m is the number of items on the list preceding the box that is removed; hence
\removehboxes has a running time of order n 2 as welL But the constant b is so small
that fOr practical purposes it)s possible to think of \last box as almost instantaneous.
Note) however) that it would be a mistake to b:yl)ass the \removehboxes operation by
saying :\setbox0=\hbox{\unhbox2\unhbox0}) in \makehboxofhboxes; that would make
the top~ level list inside \boxO too long for efficient unboxing.

8. C"ommunic(tiion with output routines. It would be possible to write an entire book
about TE-X output routines; but the present appendix is already too long 1 so it \Viii
suffice to mention only one or two sneaky tricks that a person might not readily think of.
(Appendix E brives some less sneaky examples.)

Sometimes an output routine needs to know why it was invoked1 so there)s
a problem of counnunicating information from the rest of the probrrauL TE-X provides
general \mark operations1 but marks don)t always yield the right sorts of dues. Then
there)s \outputpenal ty 1 which can be tested to see what penalty occurred at a break~
point; any penalty of -100001 -10001 1 -10002 1 or less 1 forces the output routine to
act 1 hence different penalty values can be used to pass different messages. (\Vhen
the output routine puts material back on the list of contributions1 it need not restore
the penalty at the breakpoint.) If output has been fOrced by a highly negative value
of \outputpenalty1 the output routine can use \vbox{\unvcopy255} to discover how
full the page--so~far actually is. Underfull and overfull boxes are not reported when
\box255 is packaged for use by the output routine1 so there)s no harm in ejecting a
page prematurely if you want to pass a signaL (Set \holdinginserts positive to pass
a signal when the contents of \box255 \Viii be sent back through the page builder again 1

if any insertions are present.)
Perhaps the dirtiest trick of all is to counnunicate \Vith the output routine via

the depth of \box255. For example1 suppose that you want to know whether or not
the current page ends with the last line of a paragraph. If each paragraph ends \Vith
:\specialstrut) 1 where \specialstrut is like \strut but 1 sp deeper 1 then \dp255 \Viii
have a recognit~able value if a page ends simultaneously \Vith a paragraph. (Of course1

\maxdepth must be suitably large; plain TE-X takes \maxdepth=4pt 1 while struts are
normally 3.5pt deep 1 so there)s no problem.) A distance of 1000sp is invisible to the
naked eye1 so a variety of messages can be passed in this way.

If the value of \vsize is very small 1 T£X will construct paragraphs as usual
but it \Viii send them to the output routine one line at a time. In this way the output
routine could attach marbrinal notes 1 etc. 1 based on what occurs in the line. Paragraphs
that have been rebuilt in this way can also be sent back from the output routine to the
page builder; normal page breaks \Viii then be f0und 1 if \vsize has been restored.

An output routine can also \Vrite notes on a file 1 based on what occurs in a
manuscript. A two~pass system can be devised where T£X simply gathers information

elfkiency
output penalty
holdingin;;ert;;
;;trot
max depth
'<;;ize

AppcndiJ: D: Dirty Tricks

during the first pass; the actual t:yl)esetting can be done during the second pass 1 using
\read to recover information that was \Vritten during the first.

.9. Syntox checking. Suppose you want to run a manuscript through TE-X just to check
for errors 1 \Vithout getting any output. Is there a way to make TE-X run significantly
faster while doing this? Yes; here)s how: (1) Say :\font\dummy=dummy); your system
should include a file dummy. tfm that defines a font \Vith no characters (but \Vith enough
\fontdimen parameters to qualify as a math symbol font). (2) Set all the font identifiers
you are using equal to \dummy. For example1 \let\tenrm=\dummy 1 \let\tenbf=\dummy 1

\textfont0=\dummy 1 etc. (3) Say :\dummy' to select the dummy font (since plain
T£X may have selected the real \tenrm). (4) Set \tracinglostchars=01 so that T£X
won)t complain when characters aren)t present in the dummy fOnt. (5) Set

\output={\setbox0=\box255\deadcycles=O}

so that nothing \Viii be shipped out1 yet TE-X \Viii not think that your output routine
is flaky. (6) Say \newtoks\output 1 so that no other output routine will be defined.
(7) Say \frenchspacing so that TE-X \Viii not have to do space factor calculations.
(8) Say \hbadness=10000 so that underfull boxes will not be reported. (9) And if you
want to disable \Yrite counnands 1 use the fOllmving trick due to Frank Yellin:

\let\immediate=\relax \def\Yrite#1#{{\afterassignment}\toks0=}

These changes usually make TE-X run more than fOur times as fast.

Wolfe, who had moved around the desk and into his chair,
out UfJ a oalm at him: "Please, Mr. Hombert.

I think it is always advisable to take a short-cut when it is feasible."
- REX STOUT, The Rubber Band (1936)

"My dear Watson, try a little analysis yourself,"
said he, with a touch of imoatience.

"You know my methods. Af)f)ly them,
and it will be instructive to comoare results."

CONAN DOYLE, The Sign of the Four (1890)

401

dummy
tradnglo;;tchar;;
dead(:y(:le;;
newtok;;
french;;padng
hbadne;;;;
Vdlin
aftera;;;;ignment
\Volfe
Hombert, Humbert
STOtT
\VatMHl
Holme;;
DOYLE

>age 402) I

Example Formats

AppcndiJ: E: EJ:arnplc Formats

Although the plain TEX format of Appendix B is oriented to technical reports,
it can readily be adapted to quite different applications. Examples of three such
adaptations arc provided in this appendix: (1) a format for business letters:
(2) a format for concert programs: (3) the format used to typeset this book.

Let's consider business letters first. Suppose that you want TEX to for-
mat your corTcspondcncc, and that you have n letters to send. If your computer
system contains a file letterformat. tex like the one described later in this
appendix, it's easy to do the job by applying TEX to a file that looks like this:

{optional magnification)
\input letterformat
(business letter1)

(business lettern)
\end

Here each of the n business letters has the form

(letterhead)
\address
{one or more lines of address)
\body
{one or more paragraphs of text)
\closing
{one or more lines for salutation and signature)
{optional annotations)
(optional postscripts)
\endletter
\makelabel % omit this if you don't want an address label

The {letterhead) at the beginning of this construction is usually a control se-
quence like \rjdletterhead for letters by R. J. D.: each letter writer can have
a personalized letterhead that is stored with the letter£ ormat macros. The
{optional annotations) at the end arc any number of one-line notes preceded by
·\annotations': the {optional postscripts) arc any number of paragraphs pre-
ceded by ·\ps'. VVhcn TEXis processing the \address and the \closing and the
optional \annotations, it produces output line-for-line just as the lines appear
in the input file: but when TEX is processing the \body of the letter and the
optional \ps, it chooses line breaks and justifies lines as it normally docs when
typesetting paragraphs in books.

A complete example, together with the resulting output, appears on
the neA-t two pages. This example starts with ·\magnification=\magstepi'
because the letter is rather short. :0.-'Iagnification is usually omitted if the letters
arc long-winded: ·\magnification=\magstephalf' is appropriate when they arc
medium-size. The same magnification applies to all n letters, so you must run
TEX more than once if you want more than one magnification.

403

bu;;ine;;;; letter;;
corre;;pondence
mail
ktterformat .tex
input
end
add no;;;;
body
do;;ing
end letter
makdabd
annotation;;
p;;
magnilication
mag;;tep
mag;;tephalf

404 AppcndiJ: E: EJ:arnplc Formats

\magnification=\magstep1
\input letterformat

\rjdletterhead % (see the output on the next page)

\address
Prof.~Brian~K. Reid
Department of Electrical Engineering
Stanford University
Stanford, CA 94305

\body
Dear Prof.~Reid:

I understand that you
Alka-Seltzer tablets.

are having difficulties with
Since there are 25~pills

per bottle, while the manufacturer's directions
recommend ((plop,~plop, fizz,~fizz,'' my colleagues
tell me that you have accumulated a substantial
number of bottles in which there is one tablet
left. % (See the 1978 SCRIBE User Manual, page 90.)

At present I am engaged in research on the potential
applications of isolated analgesics. If you would
be so kind as to donate your Alka-Seltzer collection
to our project, I would be more than happy to send
you preprints of any progress reports that we may
publish concerning this critical problem.

\closing
Sincerely,
R. J. Drofnats
Professor

\annotations
RJD/dek
cc: {\sl The \TeX book}

\ps
P. S. \ If you like, I will check into the
possibility that your donation and the meals that
you have been eating might be tax-deductible, in
connection with our research.
\endletter
\makelabel

Heid
Alka-Sdtzer
tie;;
Scribe
l)rofnat;;
ms

AppcndiJ: E: EJ:arnplc Formats 405

lOut put page goe;; here, red ucwl 50%.)

(Label and ;;tamp go here, reduced 50%.)

406 AppcndiJ: E: EJ:arnplc Formats

If the letter is more than one page long, the addressee, date, and page
number will appear at the top of subsequent pages. For example, the previous
letter comes out as follows, if additional paragraphs arc added to the text:

(Fir;;t page, reduced to 28.a%.) (Second page, reduced to 28.a%.)

The macro package letterformat. tex that produces this fOrmat bebrins \Vith
a simple macro that expands to the current date.

\def\today{\ifcase\month\or
January\or February\or March\or April\or May\or June\or
July\or August\or September\or October\or November\or December\fi
\space\number\day. \number\year}

Then comes the specification of page layout 1 which is :'raggecr' at the bottom.
A rather large \interlinepenalty is used so that page breaks \Viii tend to occur
between paragraphs.

\raggedbottom
\interlinepenalty=1000
\hsize=6.25truein
\voffset=24pt
\advance\vsize by-\voffset
\parindent=Opt
\parskip=Opt
\nopagenumbers
\headline={\ifnum\pageno>1

\tenrm To \addressee\hfil\today\hfil Page \folio
\else\hfil \fi}

date
today
ifca,-;e
month

"' ;;pace
number
day
year
interlinepenalty
ragged bottom
h;;ize
'<olf;;et
'<;;ize
par indent
par;; kip
nopagenumber;;
headline
pageno
folio

AppcndiJ: E: EJ:arnplc Formats

The contents of a letter are typeset either in :'line modd' (obeying lines)
or in :'paragraph modd' (producing parabrraphs in block style). Control sequences
\beginlinemode and \beginparmode are defined to initiate these modes; and another
control sequence1 \endmode 1 is defined and redefined so that the current mode \Viii
terminate properly:

\def\beginlinemode{\endmode
\begingroup\obeylines\def\endmode{\par\endgroup}}

\def\beginparmode{\endmode
\begingroup\parskip=\medskipamount \def\endmode{\par\endgroup}}

\let\endmode=\par
\def\endletter{\endmode\vfill\supereject}

One of the chief characteristics of this particular business letter format is a
parameter called \longindentation1 which is used to indent the dosing material 1 the
date 1 and certain aspects of the letterhead. The \address macro creates a box that
will be used both in the letter and in the label on the envelope. If individual lines
of the address exceed \longindentation1 they are broken 1 and hanging indentation is
used fOr any material that must be carried over.

\newdimen\longindentation \longindentation=4truein
\newbox\theaddress
\def\address{\beginlinemode\getaddress}
{\obeylines\gdef\getaddress #1

#2
{#1\gdef\addressee{#2}%

\global\setbox\theaddress=\vbox\bgroup\raggedright%
\hsize=\longindentation \everypar{\hangindent2em}#2
\def\endmode{\egroup\endgroup \copy\theaddress \bigskip}}}

(Parameter #2 to \getaddress \Viii be the contents of the line fOllmving \address 1 i.e. 1

the name of the addressee.)
The dosing macros are careful not to allow a page break any-where between

the end of the \body and the beginning of a \ps.

\def\body{\beginparmode}
\def\closing{\beginlinemode\getclosing}
{\obeylines\gdef\getclosing #1

#2
{#1\nobreak\bigskip \leftskip=\longindentation #2

\nobreak\bigskip\bigskip\bigskip % space for signature
\def
{\endgraf\nobreak}}}

\def\annotations{\beginlinemode\def\par{\endgraf\nobreak}\obeylines\par}
\def\ps{\beginparmode\nobreak

\interlinepenalty5000\def\par{\endgraf\penalty5000}}

The remaining portion of letterformat. tex deals \Vith letterheads and labels 1

which of course will be different fOr different organit~ations. The follmving macros were
used to generate the examples in this appendix; they can be modified in more--or~less
obvious ways to produce suitable letterheads of other kinds. Special fonts are generally

407

block ;;tyk
begin group
obey line;;
end group
;;upereject
longindentat ion
add no;;;;
true
gdef
bgroup
ragged right
e'<erypar
hangindent
copy
big;;kip
parameter;;, ddimitwl
body
p;;
no break
kft;;kip
endgraf
letterhead;;

408 AppcndiJ: E: EJ:amplc Formats

needed1 and they should be loaded at :true) sit~es so that they are not affected by true
mab111ification. One tiny refinement worth noting here is the \up macro 1 which raises
brackets so that they look better in a telephone number.

\def\up#1{\leavevmode \raise.16ex\hbox{#1}}
\font\smallheadfont=cmr8 at 8truept
\font\largeheadfont=cmdunh10 at 14.4truept
\font\logofont=manfnt at 14.4truept

\def\rjdletterhead{
\def\sendingaddress{R. J. DROFNATS, F.T.U.G.\par

PROFESSOR OF FARM ECOLOGY\par
TEX.RJD @ SU-SCORE.ARPA\par
\up[415\up]\thinspace 497-4975\par}

\def\returnaddress{R. J. Drofnats. Dept.-of Farm Ecology\par
The University of St.-Anford\par
P. 0. Box 1009, Raga Alto, CA 94321 USA}

\letterhead}

\def\letterhead{\pageno=1 \def\addressee{} \univletterhead
{\leftskip=\longindentation

{\baselineskip9truept\smallheadfont\sendingaddress}
\bigskip\bigskip\rm\today\bigskip}}

\def\univletterhead{\vglue-\voffset
\hbox{\hbox to\longindentation{\raise4truemm\hbox{\logofont

\kern2truept X\kern-1.667truept
\lower2truept\hbox{X}\kern-1.667truept X}\hfil

\largeheadfont The University of St.-Anford\hfil}%
\kern-\longindentation
\vbox{\smallheadfont\baselineskip9truept

\leftskip=\longindentation BOX 1009\par RAGA ALTO, CA 94321}}
\vskip2truept\hrule\vskip4truept }

\def\makelabel{\endletter\hbox{\vrule
\vbox{\hrule \kern6truept

\hbox{\kern6truept\vbox to 2truein{\hsize=\longindentation
\smallheadfont\baselineskip9truept\returnaddress
\vfill\moveright 2truein\copy\theaddress\vfill}%

\kern6truept}\kern6truept\hrule}\vrule}
\pageno=O\vfill\eject}

Our second example is a format for concert programs1 to be used in connection
with orchestra performances1 recitals 1 and the like. \Ve shall assume that the entire
program fits on a single page1 and that the copy is to be 4 inches \Vide. Comparatively
large t:yl)e (12pt) \Viii normally be used1 but there is a provision fOr lOpt and even
8pt type in case the probrram includes pieces with a lot of subparts (e.g. 1 Bach)s Mass
in B minor 1 or Beethoven)s Diabelli Variations). To select the type sit~e 1 a user says
\bigtype 1 \medtype 1 or \smalltype 1 respectively. These macros for sit~e switching are
comparatively simple because concert probrrams don)t require any mathematics; hence

up
bracket;;
telephone mlmber
Jea'<e'<HlOde
rai;;e
al
'1\:X C;;er,; Group
at;;ign
makdabd
concert program;;
mu;;k
program;;, for mu;;k
;;ize;; of type
Bach
BeethoH:n
l)iabdli
type ;;ize
bigtype
mwltype
;;mall type
;;ize ;;witching

AppcndiJ: E: EJ:arnplc Formats

the math fonts don)t need to be changed. On the other hand 1 the format does take
sharp and flat signs from the :'math italid' font 1 which it calls :\mus):

\font\twelverm=cmr12
\font\twelvebf=cmbx12
\font\twelveit=cmti12
\font\twelvesl=cmsl12
\font\twelvemus=cmmi12
\font\eightrm=cmr8
\font\eightbf=cmbx8
\font\eightit=cmti8
\font\eightsl=cmsl8
\font\eightmus=cmmi8
\def\bigtype{\let\rm=\twelverm \let\bf=\twelvebf

\let\it=\twelveit \let\sl=\twelvesl \let\mus=\twelvemus
\baselineskip=14pt minus 1pt
\rm}

\def\medtype{\let\rm=\tenrm \let\bf=\tenbf
\let\it=\tenit \let\sl=\tensl \let\mus=\teni
\baselineskip=12pt minus 1pt
\rm}

\def\smalltype{\let\rm=\eightrm \let\bf=\eightbf
\let\it=\eightit \let\sl=\eightsl \let\mus=\eightmus
\baselineskip=9.5pt minus .75pt
\rm}

\hsize=4in
\nopagenumbers
\bigtype

Notice the shrinkability in the \baselineskip settings. This would be undesirable in a
book format 1 because different spacing between lines on different pages would look bad;
but in a one--page document it helps squeet~e the copy to fit the page1 in an emergency.
(There)s no need for stretchability in the baselineskip here1 because a \vfill \Viii be
used at the bottom of the page.)

Musical programs have a specialit~ed vocabulary1 and it is desirable to define
a few control sequences for things that plain T£X doesn)t make as convenient as they
could be for this particular application:
\def\(#1){{\rm(}#i\/{\rm)}}
\def\sharp{\raise.4ex\hbox{\mus\char11 5D}}
\def\flat{\raise.2ex\hbox{\mus\char11 5B}}
\let\.=\thinspace

The \ (macro produces roman parentheses in the midst of italicit~ed text; the \sharp
and \flat macros produce musical signs in the current type sit~e. The \. macro makes
it easy to specify the thin space that is used in constructions like :K. 550) and :op. 59).
(Plain T£X has already defined \. and \sharp and \flat in a different way; but those

definitions apply only to math formulas 1 so they aren)t relevant in this application.)
Before discussing the rest of the music macros 1 let)s take a look at a complete

example. The next two pages show the input and output fOr a typical concert probrrauL

409

math italk
rm
bf
il
;;I
;;hrinkability
ba,-;dine;;kip
;;pacing between line;;
leading
;;tretchability
thin;;pace
(
parenthe;;e;;
italicized text
;;harp
Hat

thin ;;pace
Ki.khd
J'viozart
D .. orAk

410 AppcndiJ: E: EJ:arnplc Formats

\input concert

\tsaologo
\medskip
\centerline{Friday. November 19. 1982. 8:00p.m.}
\bigskip
\centerline{\bf PROGRAM}
\medskip

\composition{Variations on a Theme by Tchaikovsky}
\composer{Anton S. Arensky (1861--1906)}
\smallskip
{\medtype
\movements{Tema: Moderato\cr

}

Var.-I: Un poco pi\'u mosso&Var.-v: Andante\cr
Var.-II: Allegro non troppo&Var.-VI: Allegro con spirito\cr
Var.-III: Andantino tranquillo&Var.-VII: Andante con moto\cr
Var.-IV: Vivace&Coda: Moderato\cr}

\bigskip

\composition{Concerto for Horn and Hardart. S.\.27}
\composer{P. D. Q. Bach (1807--1742)?}
\smallskip
\movements{Allegro con brillo\cr

Tema con variazione \(su una tema differente)\cr
Menuetto con panna e zucchero\cr}

\medskip
\soloists{Ben Lee User. horn\cr

Peter Schickele. hardart\cr}

\bigskip
\centerline{INTERMISSION}
\bigskip

\composition{Symphony No.\,3 in E\flat\ Major\cr
Op. \,55. ''The Eroica' '\cr}

\composer{Ludwig van Beethoven (1770--1827)}
\smallskip
\movements{Allegro con brio\cr

Marcia funebre: Adagio assai\cr
Scherzo: Allegro vivace\cr
Finale: Allegro molto\cr}

\bigskip
\smalltype \noindent
Members of the audience are kindly requested to turn off the
alarms on their digital watches. and to cough only between movements.

\bye

Tchailw.,;;ky, ;;ee ChaT..
Anon;; kiT
Bach, PDQ
C;;er
Schidwk
BeethoH:n

AppcndiJ: E: EJ:arnplc Formats

THE ST. ANFORD ORCHESTRA
R. J. Drofnats, Conductor

Ftiday, :\fovember 19, 1982, 8:00p.m.

PROGRAM

Variations on a Theme by Tchaikovsky
Anton S. Arensky (1861-1906)

Tern a: M odcrato
Var. I: Un poco pi·U moss a
Var. II: Allegro non troppo
Var. III: Andantino tranq·uillo
Var. IV: ll<ivace

Var. V: Andante
Var. VI: Allegro con spirito
Var. VII: Andante con mota
C ada: M odcrato

Concerto for Horn and Hardart, S. 27
P. D. Q. Bach (1807-1742)?

Allegro con brillo
Tern a. con va.ria.zione (8V ww tern a. d'(fferente)
}cferwetto con panna. e zvcchero

Ben Lee User, horn
Peter Schickele, hardart

I:\fTERl\USSIO:\f

Symphony No.3 in E~ Major
Op. 55, "The Eroica"

Ludwig van Beethoven (1770-1827)
Allegro con brio
}cfa.rria. funebre: Adagio a.88ait
Scherzo: Allegro vivace
Yirw.le: Allegro rnolto

fv1ember::> of 1 he audience are kindly reque::>1ed 10 1 urn off 1 he al8Tm::> on 1 heir
digi1al \va1che::>1 and 10 cough only be1,veen movemen1::>.

411

l)rofnat;;

412 AppcndiJ: E: EJ:arnplc Formats

Most of the macros in concert. tex have already been defined. Plain TE-X
takes care of things like \centerline and \bigskip 1 so only \composition1 \composer 1

\movements 1 and \soloists remain to be specified:

\def\composition#1{\halign{\bf\quad##\hfil\cr
\kern-1em#1\crcr}} % use \cr's if more than one line

\def\composer#1{\rightline{\bf#1}}
\def\movements#1{\halign{\quad\it##\hfil&&\qquad\it##\hfil\cr#1\crcr}}
\def\soloists#1{\centerline{\bf\vbox{\halign{##\hfil\cr#1\crcr}}}}

The \composition macro is set up to put the title of the composition on two or
more lines 1 if needed1 but a single line usually suffices. Notice that \crcr has been
used so that the final \cr in the argument to \composition is not needed. Similarly1

\movements might be used to produce only a single line1 and \soloists might be used
when there is only one soloist.

There)s also a \tsaologo macro. It applies only to one particular orchestra1

but the definition is somewhat interesting nonetheless:

\def\tsaologo{\vbox{\bigtype\bf
\line{\hrulefill}
\kern-.5\baselineskip
\line{\hrulefill\hrulefill}
\kern-.5\baselineskip
\line{\hrulefill\hbox{ THE ST.\,ANFORD ORCHESTRA }\hrulefill}
\kern-.5\baselineskip
\line{\hrulefill\hrulefill}
\kern-.5\baselineskip
\line{\hrulefill\hbox{ R. J. Drofnats. Conductor }\hrulefill}
}}

The author has extended these macros to a more elaborate format that in~
dudes special features for listing the members of the orchestra and for program notes 1

etc.; in this way it becomes fairly easy to typeset little booklets fOr concert patrons.
Such extensions need not be discussed further in this appendix1 because they don)t
illustrate any essentially new ideas.

Notice that the \composition and \movements and \soloists macros do
not include any special provision fOr vertical spacing; the user is supposed to insert
\smallskip 1 \medskip 1 and \bigskip as desired. This was done deliberately1 because
different concert probrrams seem to demand different spacing; no automatic scheme
actually works very well in practice1 since musical literature is so varied.

Let)s turn now to the design of a format for an entire book1 using this book
itself as an example. How did the author prepare the computer file that generated The
TgYbook? \Ve have already seen several hundred pages of output produced from that
file; our goal in the remainder of this appendix will be to examine the input that was
used behind the scenes.

In the first place1 the author prepared sample pages and showed them to the
publisher)s book designer. (The importance of this step cannot be overemphasit~ed.
There is a danger that authors-who are now able to t:yl)eset their O\V1l books \Vith
T£X-\vill attempt to do their O\V1l designs 1 without professional help. Book design is

crcr
cr
line
hruldill
phantom
Knuth
;;pacing
;;malbkip
mwl;;kip
big;;kip
;;ample page;;
author, type;;etting by
Book de;;ign

AppcndiJ: E: EJ:arnplc Formats

an art that requires considerable creativity1 skill 1 experience1 and taste; it is one of the
most important services that a publisher traditionally provides to an author.)

Sample pages that are used as the basis of a desibfil should show each of the
elements in the book. In this case the elements included chapter titles 1 illustrations1

subchapter headings 1 footnotes 1 displayed formulas 1 typewriter type1 dangerous bends 1

exercises1 answers 1 quotations 1 tables 1 numbered lists 1 bulleted lists 1 etc.; the author
also expressed a desire fOr generous margins 1 so that readers could make marginal notes.

The designer 1 Herb Caswell 1 faced a difficult problem of bringing all those
disparate elements into a consistent framework He decided to achieve this by using a
uniform indentation of 3 picas for normal paragraph openings as well as for dangerous
bends; and to establish this element of the design by using it also for all the displayed
material 1 instead of centering the displays.

He decided to put the page numbers in bold t:yl)e 1 out in the marbrins (where
there was plenty of room 1 thank-s to the author)s request for white space); and he
decided to use italic t:yl)e \Vith caps and lower case for the running headlines 1 so that
the pages would have a somewhat informal flavor.

He chose lO~point type (on a 12~point base) for the main text 1 and 9~point
t:yl)e (on an 11 ~point base) fOr the dangerous bends; the typeface was predetermined.
He chose an \hsize of 29 picas and a \vsize of 44 picas. He decided to brive subhead~
ings like :~EXERCISE 13.8) in boldface caps before the statement of each exercise.
He specified the amount of vertical space before and after such things as exercises1

dangerous~bend paragraphs1 and displayed equations. He decided to devote an entire
left~hand page to each chapter illustration. And so on; each decision influenced the
others1 so that the final book would appear to be as coherent and attractive as possible
under the circumstances. After the main portion of the book was designed1 he worked
out a format fOr the front matter (i.e. 1 the pages that precede page 1); he arranged to
have the same amount of :'sinkagd' (white space) at the top of each page there 1 so that
the opening pages of the book would look unified and :'open.l'

The author hasn)t actually followed the designer)s specifications in every de--
taiL For example1 nothing about stretching or shrinking of vertical spaces appeared in
the design specs; the author introduced the notion of flexible glue on his O\V1l initiative1

based on his observations of cut~and~paste operations often used in page makeup. If
this book has any beauties1 they should be ascribed to Herb Caswell; if it has any
blemishes1 they should be ascribed to Don Knuth 1 who \\TOte the fOrmatting macros
that we are now about to discuss.

The computer file manual. tex that generated The TgYbook begins with a
copyright notice 1 and then it says :\input manmac). The auxiliary file manmac. tex con~
tains the fOrmatting macros 1 and it begins by loading 9~point 1 8~point 1 and G~point fonts:

\font\ninerm=cmr9
\font\ninei=cmmi9
\font\ninesy=cmsy9
\font\ninebf=cmbx9
\font\ninett=cmtt9
\font\nineit=cmti9
\font\ninesl=cmsl9

\font\eightrm=cmr8
\font\eighti=cmmi8
\font\eightsy=cmsy8
\font\eightbf=cmbx8
\font\eighttt=cmtt8
\font\eightit=cmti8
\font\eightsl=cmsl8

\font\sixrm=cmr6
\font\sixi=cmmi6
\font\sixsy=cmsy6
\font\sixbf=cmbx6

(These fonts had been \preloaded in Appendix B; now they)re officially loaded.)

413

Ca.-; well
pica,-;
h;;ize
'<;;ize
front matter
;;inkage
manmac.tex
prdoadwl

414 AppcndiJ: E: EJ:amplc Formats

The fOnts intended for math formulas need to have a nonstandard \skewchar.
The typ<nvriter fonts are briven \hyphenchar=-1 so that h:yl)henation is inhibited when
control sequence names and keywords appear in the text of a paragraph.

\skewchar\ninei='177
\skewchar\ninesy='60
\hyphenchar\ninett=-1

\skewchar\eighti='177
\skewchar\eightsy='60
\hyphenchar\eighttt=-1

\skewchar\sixi='177
\skewchar\sixsy='60
\hyphenchar\tentt=-1

A fCw more fonts are needed fOr special purposes:

\font\tentex=cmtex10
\font\inchhigh=cminch
\font\titlefont=cmssdc10 at 40pt
\font\eightss=cmssq8
\font\eightssi=cmssqi8
\font\tenu=cmu10
\font\manual=manfnt

% TeX character set as in Appendix C
% inch-high caps for chapter openings
% titles in chapter openings
% quotations in chapter closings
% ditto. slanted
% unslanted text italic
% METAFONT logo and special symbols

\font\magnifiedfiverm=cmr5 at 10pt % to demonstrate magnification

Now we come to the sit~e--S\vitching macros 1 which are much more elaborate
than they were in the previous example because mathematics needs to be supported in
three different sit~es. The format also provides for a pseudo :'small capsl' (\sc); a true
caps~aml~small~caps fOnt was not really necessary in the few cases that \sc was used.
A dimension variable \ttglue is set equal to the desired spacing fOr the typm.vriter~like
text that occasionally appears in paragraphs; the \ tt fonts have fixed spacing1 which
doesn)t mix well \Vith variable spacing1 hence the macros below use \ttglue between
words in appropriate places.

\catcode'@=11 % we will access private macros of plain TeX (carefully)
\newskip\ttglue
\def\tenpoint{\def\rm{\famO\tenrm}% switch to 10-point type

\textfontO=\tenrm \scriptfontO=\sevenrm \scriptscriptfontO=\fiverm
\textfont1=\teni \scriptfont1=\seveni \scriptscriptfont1=\fivei
\textfont2=\tensy \scriptfont2=\sevensy \scriptscriptfont2=\fivesy
\textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex
\textfont\itfam=\tenit \def\it{\fam\itfam\tenit}%
\textfont\slfam=\tensl
\textfont\ttfam=\tentt

\def\sl{\fam\slfam\tensl}%
\def\tt{\fam\ttfam\tentt}%

\textfont\bffam=\tenbf \scriptfont\bffam=\sevenbf
\scriptscriptfont\bffam=\fivebf \def\bf{\fam\bffam\tenbf}%

\tt \ttglue=.5em plus.25em minus.15em
\normalbaselineskip=12pt
\setbox\strutbox=\hbox{\vrule height8.5pt depth3.5pt widthOpt}%
\let\sc=\eightrm \let\big=\tenbig \normalbaselines\rm}

\def\ninepoint{\def\rm{\famO\ninerm}% switch to 9-point type
\textfontO=\ninerm \scriptfontO=\sixrm \scriptscriptfontO=\fiverm
\textfont1=\ninei \scriptfont1=\sixi \scriptscriptfont1=\fivei
\textfont2=\ninesy \scriptfont2=\sixsy \scriptscriptfont2=\fivesy
\textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex
\textfont\itfam=\nineit \def\it{\fam\itfam\nineit}%

;;lwwchar
hyphenchar
hyphenation
;;ize-;;witching
;;mall cap;;
ttglue
new;; kip
at;;ign
ten point
rm
fam
text font
;;cript font
;;cri pt ;;cri pt font
itfam
il
;;If am
;;I
ttfam
jj

blfam
bf
normalba,-;dine;;kip= 12pt
;;trutbox
;;('

big
ninepoint

AppcndiJ: E: EJ:arnplc Formats

\textfont\slfam=\ninesl \def\sl{\fam\slfam\ninesl}%
\textfont\ttfam=\ninett \def\tt{\fam\ttfam\ninett}%
\textfont\bffam=\ninebf \scriptfont\bffam=\sixbf
\scriptscriptfont\bffam=\fivebf \def\bf{\fam\bffam\ninebf}%

\tt \ttglue=.5em plus.25em minus.15em
\normalbaselineskip=11pt
\setbox\strutbox=\hbox{\vrule height8pt depth3pt widthOpt}%
\let\sc=\sevenrm \let\big=\ninebig \normalbaselines\rm}

\def\eightpoint{\def\rm{\famO\eightrm}% switch to 8-point type
\textfontO=\eightrm \scriptfontO=\sixrm \scriptscriptfontO=\fiverm
\textfont1=\eighti \scriptfont1=\sixi \scriptscriptfont1=\fivei
\textfont2=\eightsy \scriptfont2=\sixsy \scriptscriptfont2=\fivesy
\textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex
\textfont\itfam=\eightit \def\it{\fam\itfam\eightit}%
\textfont\slfam=\eightsl \def\sl{\fam\slfam\eightsl}%
\textfont\ttfam=\eighttt \def\tt{\fam\ttfam\eighttt}%
\textfont\bffam=\eightbf \scriptfont\bffam=\sixbf
\scriptscriptfont\bffam=\fivebf \def\bf{\fam\bffam\eightbf}%

\tt \ttglue=.5em plus.25em minus.15em
\normalbaselineskip=9pt
\setbox\strutbox=\hbox{\vrule height7pt depth2pt widthOpt}%
\let\sc=\sixrm \let\big=\eightbig \normalbaselines\rm}

\def\tenbig#1{{\hbox{$\left#1\vbox to8.5pt{}\right.\n@space$}}}
\def\ninebig#1{{\hbox{$\textfont0=\tenrm\textfont2=\tensy

\left#1\vbox to7.25pt{}\right.\n@space$}}}
\def\eightbig#1{{\hbox{$\textfont0=\ninerm\textfont2=\ninesy

\left#1\vbox to6.5pt{}\right.\n@space$}}}
\def\tenmath{\tenpoint\fam-1 } % for 10-point math in 9-point territory

Issues of page layout are dealt \Vith next. First 1 the basics:

\newdimen\pagewidth \newdimen\pageheight \newdimen\ruleht
\hsize=29pc \vsize=44pc \maxdepth=2.2pt \parindent=3pc
\pagewidth=\hsize \pageheight=\vsize \ruleht=.5pt
\abovedisplayskip=6pt plus 3pt minus 1pt
\belowdisplayskip=6pt plus 3pt minus 1pt
\abovedisplayshortskip=Opt plus 3pt
\belowdisplayshortskip=4pt plus 3pt

(The curious value of \maxdepth was chosen only to provide an example in Chapter 15;
there)s no deep reason behind it.)

\Vhen the author prepared this book1 he made notes about what things ought
to go into the index from each page. These notes were shown in small type on his
proofuheets1 like the words :marbrinal hacks) in the right margin of this page. The
manmac format uses an insertion class called \margin to handle such notes.

\newinsert\margin
\dimen\margin=\maxdimen % no limit on the number of marginal notes
\count\margin=O \skip\margin=Opt % marginal inserts take up no space

415

eight point
j)('
newdimen
h;;ize
'<;;ize
max depth
par indent
abo'<wli;;play;;kip
bdowdi;;play;;kip
abo'<wl i;; play;;hort ;;kip
bdowd i;; play;;hort ;;kip
marginal hack;;
mar-
ginal
hack;;
margin
newin;;ert

416 AppcndiJ: E: EJ:amplc Formats

The \footnote macro of plain TE-X needs to be changed because footnotes
are indented and set in 8~point type. Some simplifications have also been made1 since
footnotes are used so infrequently in this book.

\def\footnote#1{\edef\@sf{\spacefactor\the\spacefactor}#1\@sf
\insert\footins\bgroup\eightpoint
\interlinepenalty100 \let\par=\endgraf

\leftskip=Opt \rightskip=Opt
\splittopskip=10pt plus 1pt minus 1pt \floatingpenalty=20000
\smallskip\item{#1}\bgroup\strut\aftergroup\@foot\let\next}

\skip\footins=12pt plus 2pt minus 4pt % space added when footnote exists
\dimen\footins=30pc % maximum footnotes per page

The text of running headlines \Viii be kept in a control sequence called \rhead.
Some pages should not have headlines; the \titlepage macro suppresses the headline
on the next page that is output.

\newif\iftitle
\def\titlepage{\global\titletrue} % for pages without headlines
\def\rhead{} % \rhead contains the running headline
\def\leftheadline{\hbox to \pagewidth{%

\vbox to 10pt{}% strut to position the baseline
\llap{\tenbf\folio\kernipc}% folio to left of text
\tenit\rhead\hfil}} % running head flush left

\def\rightheadline{\hbox to \pagewidth{\vbox to 10pt{}%
\hfil\tenit\rhead\/% running head flush right
\rlap{\kernipc\tenbf\folio}}} % folio to right of text

Pages are shipped to the output by the \onepageout macro1 which attaches
headlines 1 marbrinal notes 1 and/or f0otnotes 1 as appropriate. Special registration marks
are t:yl)eset at the top of title pages1 so that the pages will line up properly on printing
plates that are made photographically from T£X)s :'camera~readyl' output. A small
page number is also printed next to the corner markings; such auxiliary information
will 1 of course 1 be erased before the pages are actually printed.

\def\onepageout#1{\shipout\vbox{ % here we define one page of output
\offinterlineskip % butt the boxes together
\vbox to 3pc{ % this part goes on top of the 44pc pages

\iftitle \global\titlefalse \setcornerrules
\else\ifodd\pageno\rightheadline\else\leftheadline\fi\fi \vfill}

\vbox to \pageheight{
\ifvoid\margin\else % marginal info is present
\rlap{\kern31pc\vbox to0pt{\kern4pt\box\margin \vss}}\fi

#1 % now insert the main information
\ifvoid\footins\else % footnote info is present
\vskip\skip\footins \kern-3pt
\hrule height\ruleht width\pagewidth \kern-\ruleht \kern3pt
\unvbox\footins\fi

\boxmaxdepth=\maxdepth}}
\advancepageno}

footnote
footnote;;
endgraf
item
rtllllling headline;;
new if
;;trot
llap
folio
kern
rlap
regi;;tration mark;;
camera alignment
olfinterline;;kip
ifodd
if.,oid
rlap
ad'<ann:pageno

AppcndiJ: E: EJ:arnplc Formats

\def\setcornerrules{\hbox to \pagewidth{% for camera alignment
\vrule width 1pc height\ruleht \hfil \vrule width 1pc}

\hbox to \pagewidth{\llap{\sevenrm(page \folio)\kernipc}%
\vrule heightipc width\ruleht depthOpt
\hfil \vrule width\ruleht depthOpt}}

\output{\onepageout{\unvbox255}}

A different output routine is needed for Appendix I (the index) 1 because most
of that appendix appears in two--column fOrmat. Instead of handling double columns
with an :\lr) S\vitch 1 as discussed in Chapter 23 1 manmac does the job \Vith \vsplit 1

after collecting more than enough material to fill a page. This approach makes it
comparatively easy to balance the columns on the last page of the index. A more
difficult approach would be necessary if the index contained insertions (e.g. 1 footnotes);
fortunately1 it doesn)t. Furthermore1 there is no need to use \mark as suggested in the
index example of Chapter 23 1 since the entries in Appendix I tend to be quite short.
The only real complication that manmac faces is the fact that Appendix I begins and
ends \Vith single--column fOrmat; partial pages need to be juggled carefully as the format
changes back and fOrth.

\newbox\partialpage
\def\begindoublecolumns{\begingroup

\output={\global\setbox\partialpage=\vbox{\unvbox255\bigskip}}\eject
\output={\doublecolumnout} \hsize=14pc \vsize=89pc}

\def\enddoublecolumns{\output={\balancecolumns}\eject
\endgroup \pagegoal=\vsize}

\def\doublecolumnout{\splittopskip=\topskip \splitmaxdepth=\maxdepth
\dimen@=44pc \advance\dimen@ by-\ht\partialpage
\setbox0=\vsplit255 to\dimen@ \setbox2=\vsplit255 to\dimen@
\onepageout\pagesofar \unvbox255 \penalty\outputpenalty}

\def\pagesofar{\unvbox\partialpage
\wdO=\hsize \wd2=\hsize \hbox to\pagewidth{\box0\hfil\box2}}

\def\balancecolumns{\setbox0=\vbox{\unvbox255} \dimen@=\htO
\advance\dimen@ by\topskip \advance\dimen@ by-\baselineskip
\divide\dimen@ by2 \splittopskip=\topskip
{\vbadness=10000 \loop \global\setbox3=\copy0

\global\setbox1=\vsplit3 to\dimen@
\ifdim\ht3>\dimen@ \global\advance\dimen@ byipt \repeat}

\setboxO=\vbox to\dimen@{\unvbox1} \setbox2=\vbox to\dimen@{\unvbox3}
\pagesofar}

The balancing act sets \vbadness infinite while it is searching fOr a suitable column
height 1 so that underfull vboxes won)t be reported unless the actual columns are bad
after balancing. The columns in Appendix I have a lot of stretchability) since there)s a
\par skip of Opt plus . 8pt between adjacent entries1 and since there is room for more
than 50 lines per column; therefore the manmac balancing routine tries to make both
the top and bottom baselines abrree at the end of the index. In applications where the
glue is not so flexible it would be more appropriate to let the right~hand column be a
little short; the best way to do this is probably to replace the command :\unvbox3) by
:\dimen2=\dp3 \unvbox3 \kern-\dimen2 \vfil).

417

llap
output
un'<box
output routine
two-column format
'<;;plit
balance the col tunn;;
mark
new box
h;;ize
'<;;ize
;;plitmaxdepth
output penalty
wd
di.,-ide
;;plittop;;kip
loop
ifdim

"' '<hadne;;;;
underfull
par;; kip
dp
dil

418 AppcndiJ: E: EJ:arnplc Formats

The next macros are concerned with chapter formatting. Each chapter in the
manuscript file starts out \Vith the macro \beginchapter; it ends \Vith \endchapter
and two quotations 1 followed by \eject. For example1 Chapter 15 was generated by
TE-X counnands that look like this in the file manual. tex:

\beginchapter Chapter 15. How \TeX\ Makes\\Lines into Pages

\TeX\ attempts to choose desirable places to divide your document into
(about 1100 lines of the manuscript are omitted here)

break. \ (Deep breath.) \You got that?

\endchapter

Since it is impossible to foresee how [footnotes] will happen to come out
in the make-up. it is impracticable to number them from 1 up on each page.
The best way is to number them consecutively throughout an article
or by chapters in a book.
\author UNIVERSITY OF CHICAGO PRESS, {\sl Manual of Style\/} (1910)

\bigskip

Don't use footnotes in your books. Don.
\author JILL KNUTH (1962)

\eject

The :\ \) in the title line specifies a line break to be used on the left~hand title page
that faces the beginning of the chapter. Most of the \beginchapter macro is devoted
to preparing that title page; the \TeX logo needs somewhat different spacing when it
is typeset in \titlefont 1 and the \inchhigh digits need to be brought closer together
in order to look right in a title.

\newcount\exno % for the number of exercises in the current chapter
\newcount\subsecno % for the number of subsections in the current chapter

\outer\def\beginchapter#1 #2#3. #4\par{\def\chapno{#2#3}
\global\exno=O \subsecno=O
\ifodd\pageno

\errmessage{You had too much text on that last page; I'm backing up}
\advance\pageno by-1 \fi

\def\\{ } % \\'s in the title will be treated as spaces
\message{#1 #2#3:} % show the chapter title on the terminal
\xdef\rhead{#1 #2#3: #4\unskip} % establish a new running headline
{\def\TeX{T\kern-.2em\lower.5ex\hbox{E}\kern-.06em X}

\def\ \{#3}
\ifx\empty\\ \rightline{\inchhigh #2\kern-.04em}
\else\rightline{\inchhigh #2\kern-.06em#3\kern-.04em}\fi
\vskip1.75pc \baselineskip=36pt \lineskiplimit=ipt \lineskip=12pt
\let\\=\cr% now the \\'s are line dividers
\halign{\line{\titlefont\hfil##}\\#4\unskip\\}
\titlepage\vfill\eject} % output the chapter title page

\tenpoint\noindent\ignorespaces} % the first paragraph is not indented

begin chapter
end chapter
quotation;;
epigraph;;
eject
CHICAGO
K?\C'I'H

newcount
outer
errme;;;;age
me;;;;age
xdef
ifx
cr

AppcndiJ: E: EJ:arnplc Formats

An extra page is ejected at the end of a chapter 1 if necessary1 so that the
dosing quotations \Viii occur on a right~hand page. (The logic for doing this is not
perfCct1 but it doesn)t need to be1 because it fails only when the chapter has to be
shortened or lengthened anyway; book preparation \Vith TE-X 1 as \Vith type1 encourages
interaction between humans and machines.) The lines of the quotations are set flush
right by using \obeylines together \Vith a stretchable \leftskip:

\outer\def\endchapter{\ifodd\pageno \else\vfill\eject\null\fi
\begingroup\bigskip\vfill % beginning of the quotes
\def\eject{\endgroup\eject} % ending of the quotes
\def\par{\ifhmode\/\endgraf\fi}\obeylines
\def\TeX{T\kern-.2em\lower.5ex\hbox{E}X}
\eightpoint \let\tt=\ninett \baselineskip=10pt \interlinepenalty=10000
\leftskip=Opt plus 40pc minus \parindent \parfillskip=Opt
\let\rm=\eightss \let\sl=\eightssi \everypar{\sl}}

\def\author#1(#2){\smallskip\noindent\rm--- #1\unskip\enspace(#2)}

\Ve come now to what goes on inside the chapters themselves. Dangerous and
doubly dangerous bends are specified by typing :\danger) or :\ddanger) just befOre a
paragraph that is supposed to display a warning symbol:

\def\dbend{ {\manual \char127}} % 11 dangerous bend11 sign
\def\d@nger{\medbreak\begingroup\clubpenalty=10000

\def\par{\endgraf\endgroup\medbreak} \noindent\hang\hangafter=-2
\hbox toOpt{\hskip-\hangindent\dbend\hfill}\ninepoint}

\outer\def\danger{\d@nger}
\def\dd@nger{\medbreak\begingroup\clubpenalty=10000

\def\par{\endgraf\endgroup\medbreak} \noindent\hang\hangafter=-2
\hbox to0pt{\hskip-\hangindent\dbend\kern1pt\dbend\hfill}\ninepoint}

\outer\def\ddanger{\dd@nger}
\def\enddanger{\endgraf\endgroup} % omits the \medbreak

(It)s necessary to type :\enddanger) at the end of a dangerous bend only in rare cases
that a medium space is not desired after the paragraph; e.g. 1 :\smallskip\item) might
be used to give an itemit~ed list within the scope of the dangerous bend sign.)

A fCw chapters and appendices of this book (e.g. 1 Chapter 18 and Appendix B)
are divided into numbered subsections. Such subsections are specified in the manuscript
by typing1 fOr example1

\subsection Allocation of registers.

Appendix A is subdivided in another way1 by paragraphs that have answer numbers:

\outer\def\subsection#1. {\medbreak\advance\subsecno by 1
\noindent{\it \the\subsecno.\enspace#1.\enspace}}

\def\ansno#1.#2:{\medbreak\noindent
\hbox to\parindent{\bf\hss#1.#2.\enspace}\ignorespaces}

\Ve \Viii see below that the manuscript doesn)t actually specify an \ansno directly; each
call of \ansno is generated automatically by the \answer macro.

Appendix H points out The TEXbook calls fOr three h:yl)henation exceptions:

\hyphenation{man-u-script man-u-scripts ap-pen-dix}

419

llu;;h right
obey line;;
kft;;kip
eject
end group
'1\:X
interlinepenalty
parlilbkip
rm
;;I
un;;kip
en;; pace
danger
ddanger
dangerou;; bend
begin group
dubpenalty
endgraf
end group
mwlbreak
noindent
hang
hangafter
ninepoint
outer
item
hyphenation

420 AppcndiJ: E: EJ:amplc Formats

A few macros in manmac provide special constructions that are occasionally
needed in paragraphs: \MF for :METAFONT) 1 \AmSTeX for :.f\A.;tS~TE-X) 1 \bull fOr :•) 1

\dn and \up fOr:+; and :y 1 \I and\] for :1; and :u;· To typeset

3pt of (stufl'), '105 = 69, "69 = 1()5, l"o"l
the manuscript say-s

$3\pt$ of \<stuff>, $\oct{105}=69$, $\hex{69}=105$, \cstok{YoY}

using the macros \pt 1 \< 1 \oct 1 \hex 1 and \cstok.

\def\MF{{\manual META}\-{\manual FONT}}
\def\AmSTeX{$\cal A\kern-,1667em\loYer,5ex\hbox{$\cal M$}\kern-,075em

S$-\TeX}
\def\bull{\vrule height .9ex width .8ex depth -.1ex}% square bullet
\def\SS{{\it SS}} % scriptscript style
\def\dn{\leavevmode\hbox{\tt\char'14}} % downward arrow
\def\up{\leavevmode\hbox{\tt\char'13}} % upward arrow
\def\1{\leavevmode\hbox{\tt\char'\!}} %vertical line
\def\]{\leavevmode\hbox{\tt\char'\ }} %visible space

\def\pt{\.{\rm pt}} % units of points. in math formulas
\def\<#1>{\leavevmode\hbox{\langle#1\/\rangle}} % syntactic quantity
\def\oct#1{\hbox{\rm\'{}\kern-.2em\it#1\/\kern.05em}} % octal constant
\def\hex#1{\hbox{\rm\H{}\tt#1}} % hexadecimal constant
\def\cstok#1{\leavevmode\thinspace\hbox{\vrule\vtop{\vbox{\hrule\kern1pt

\hbox{\vphantom{\tt/}\thinspace{\tt#1}\thinspace}}
\kern1pt\hrule}\vrule}\thinspace} % control sequence token

Displays in this book are usually indented rather than centered1 and they usu~
ally involve text rather than mathematics. The manmac format makes such displays
convenient by introducing two macros called \begindisplay and \enddisplay; there)s
also a pair of macros \begintt and \endtt for displays that are entirely in typm.vriter
t:yl)e. The latter displays are copied verbatim from the manuscript file 1 \Vithout inter~
preting symbols like \ or $ in any special way. For example1 part of the parabrraph
above was typed as follo\\'S:

... To typeset
\begindisplay
$3\pt$ of \<stuff>, $\oct{105}=69$, $\hex{69}=105$, \cstok{YoY}
\enddisplay
the manuscript says
\begintt
$3\pt$ of \<stuff>, $\oct{105}=69$, $\hex{69}=105$, \cstok{YoY}
\endtt
using the macros 1\ptl, 1\<l, 1\octl, 1\hexl, and 1\cstokl,

(The last line of this example illustrates the fact that verbatim t:yl)ewriter text can be
obtained within a paragraph by using vertical lines as brackets.) The \begindisplay
macro is actually more general than you might expect from this example; it allo\\'S

J'viETAFO!\:T
AmS'I\:X
bull
;;quare bullet
'<i;;ible ;;pace
the '<i;;ibk ;;pace ;;ymbol
lxix
octal con;;tant
hexaded mal con;;t ant
angle bracket;;
Jea'<e'<HlOde
'<rule
hrule
Di;;play;;
typewriter type
'<erbatim

AppcndiJ: E: EJ:arnplc Formats

multiline displays 1 \Vith \cr follmving each line1 and it also allmvs local definitions
(which apply only \Vithin the display) to be specified immediately after \begindisplay.

\outer\def\begindisplay{\obeylines\startdisplay}
{\obeylines\gdef\startdisplay#1

{\catcode'\''M=S$$#1\halign\bgroup\indent##\hfil&&\qquad##\hfil\cr}}
\outer\def\enddisplay{\crcr\egroup$$}
\chardef\other=12
\def\ttverbatim{\begingroup \catcode'\\=\other \catcode'\{=\other

\catcode'\}=\other \catcode'\$=\other \catcode'\&=\other
\catcode'\#=\other \catcode'\%=\other \catcode'\-=\other
\catcode'_=\other \catcode'\~=\other
\obeyspaces \obeylines \tt}

{\obeyspaces\gdef {\ }} % \obeyspaces now gives \ • not \space

\outer\def\begintt{$$\let\par=\endgraf \ttverbatim \parskip=Opt
\catcode'\1=0 \rightskip=-5pc \ttfinish}

{\catcode'\1=0 lcatcode'l\=\other% I is temporary escape character
lobeylines %end of line is active
lgdeflttfinish#1''M#2\endtt{#1lvbox{#2}lendgroup$$}}

\catcode'\1=\active
{\obeylines\gdefl{\ttverbatim\spaceskip=\ttglue\let~~M=\ \letl=\endgroup}}

These macros are more subtle than the others in this appendix 1 and they deserve
careful study because they illustrate how to disable TE-X)s normal formatting. The: I)
character is normally active (category 13) in manmac f0rmat 1 and its appearance causes
the \ttverbatim macro to make all of the other unusual characters into normal sy-mbols
(category 12). However 1 \Vithin the scope of \begintt ... \endtt a vertical line is an
escape character (category 0); this permits an escape out of verbatim mode.

The \begintt macro assumes that a comparatively small amount of text \Viii
be displayed; the verbatim lines are put into a vbox 1 so that they cannot be broken
between pages. A different approach has been used for most of the typewriter copy
in this appendix and in Appendix B: Material that is quoted from a format file is
delimited by \beginlines and \endlines 1 between which it is possible to give com~
mands like :\small break) to help with spacing and page breaking. The \beginlines
and \endlines macros also insert rules 1 fore and all:

\def\beginlines{\par\begingroup\nobreak\medskip\parindent=Opt
\hrule\kernipt\nobreak \obeylines \everypar{\strut}}

\def\endlines{\kernipt\hrule\endgroup\medbreak\noindent}

For example1 the previous three lines were typeset by the specification

\beginlines
1\def\beginlines{\par\begingroup\nobreak\medskip\parindent=Optl
\no break
I \hrule\kernipt\nobreak \obeylines \everypar{\strut}}l
1\def\endlines{\kernipt\hrule\endgroup\medbreak\noindent}l
\endlines

421

cr
bgroup
crcr
egroup
dollardollar
chardef
other
obey;;pace;;
right;;kip
cat code
acti'<e
e;;cape character
;;mall break
hrule
e'<erypar

422 AppcndiJ: E: EJ:arnplc Formats

A strut is placed in each line so that the rules \Viii be positioned properly. The manmac
format also has macros \beginmathdemo ... \endmathdemo that were used to produce ex~
amples of mathematics in Chapters 16-191 \beginsyntax ... \endsyntax for the formal
syntax in Chapters 24-26 1 \beginchart ... \endchart fOr the fOnt tables in Appendices
C and F 1 etc.; those macros are comparatively simple and they need not be shmv11 here.

Exercises are specified by an \exercise macro; fOr example1 the first exercise
in Chapter 1 was generated by the fOllmving lines in the manuscript:

\exercise After you have mastered the material in this book.
what will you be: A \TeX pert. or a \TeX nician?
\answer A \TeX nician (underpaid); sometimes also called
a \TeX acker.

Notice that the \answer is given immediately after each exercise; that makes it easy
to insert new exercises or to delete old ones 1 \Vithout keeping track of exercise num~
bers. Exercises that are dangerous or doubly dangerous are introduced by the macros
\dangerexercise and \ddangerexercise.

\outer\def\exercise{\medbreak \global\advance\exno by 1
\noindent\llap{\manual\char'170\rm\kern.15em}% triangle in margin
{\ninebf EXERCISE \bf\chapno.\the\exno}\par\nobreak\noindent}

\def\dexercise{\global\advance\exno by 1
\llap{\manual\char'170\rm\kern.15em}% triangle in indented space
{\eightbf EXERCISE \bf\chapno.\the\exno}\hfil\break}

\outer\def\dangerexercise{\d@nger \dexercise}
\outer\def\ddangerexercise{\dd@nger \dexercise}

(The last two lines use \d@nger and \dd@nger 1 which are non~ \outer equivalents of
\danger and \ddanger; such duplication is necessary because control sequences of type
\outer cannot appear \Vithin a \def.)

The \answer macro copies an answer into a file called answers. tex; then
Appendix A reads this file by saying :\immediate\closeout\ans \ninepoint \input
answers·. Each individual answer ends \Vith a blank line; thus 1 \par must be used
between the paragraphs of a long answer.

\newwrite\ans
\immediate\openout\ans=answers % file for answers to exercises
\outer\def\answer{\par\medbreak

\immediate\write\ans{}
\immediate\write\ans{\string\ansno\chapno.\the\exno:}
\copytoblankline}

\def\copytoblankline{\begingroup\setupcopy\copyans}
\def\setupcopy{\def\do##1{\catcode'##1=\other}\dospecials

\catcode'\1=\other \obeylines}
{\obeylines \gdef\copyans#1

{\def\next{#1}%
\ifx\next\empty\let\next=\endgroup %
\else\immediate\write\ans{\next} \let\next=\copyans\fi\next}}

;;trot
llap
outer
immwliate
do;;eout
input
newwrite
openout
write
the

AppcndiJ: E: EJ:arnplc Formats

Notice the use of \dospecials here1 to set up the verbatim copying. The \ttverbatim
macro could have invoked \dospecials in the same way; but \ttverbatim is used quite
frequently1 so it was streamlined fOr speed.

The remaining macros in manmac format are designed to help in producing
a good index. \Vhen a paragraph contains a word or group of words that deserve to
be indexed1 the manuscript indicates this by inserting,..{ ... }; for example1 the first
sentence of the present paragraph actually ends with :a good ,..{index}). This caused
an appropriate entry to be \Vritten onto a file index.tex when TE-X was typesetting
the page; it also put the word :index) into the marbrin of the proofsheets1 so that the
author could remember what had been marked for indexing without looking into the
manuscript file. Indexing with the,..{ ... } notation doesn)t change T£X)s behavior in
any essential way; thus) the word :index) appears in the text as well as in the index.

\neWYrite\inx
\immediate\openout\inx=index % file for index reminders
\def\marginstyle{\sevenrm % marginal notes are in 7-point type

\vrule height6pt depth2pt widthOpt } % a strut for \insert\margin

Sometimes it is desirable to index words that don)t actually appear on the
page; the notation,..,..{ ... } stands for a :'silenf' index entry1 and spaces are ignored
after the dosing :}) in such a case. For example1 Appendix I lists page 1 under :beauty) 1

even though page 1 contains only the word :beautifuF; the manuscript achieves this
by saying :beautiful ,..,..{beauty}). (The author fClt that it was important to index
:beauty) because he had already indexed :truth).)

It)s not difficult to make ,.. into an active character that produces such index
entries 1 while still retaining its use fOr superscripts in math formulas 1 because \ifmmode
can be used to test whether a control sequence is being used in math mode. However 1

manmac)s use of ,.. as an active character means that ,..,..M cannot be used to refer to a
(return} character. Fortunately the ,..,..M notation isn)t needed except when the format~
ting macros themselves are being defined.

The following macros set things up so that ,.. and,..,.. are respectively converted
to \silentfalse\xref and \silenttrue\xref 1 outside of math mode:

\newif\ifsilent
\def\specialhat{\ifmmode\def\next{,..}\else\let\next=\beginxref\fi\next}
\def\beginxref{\futurelet\next\beginxrefswitch}
\def\beginxrefswitch{\ifx\next\specialhat\let\next=\silentxref

\else\silentfalse\let\next=\xref\fi \next}
\catcode'\,..=\active \let ,..=\specialhat
\def\silentxref,..{\silenttrue\xref}

Entries in the index aren)t always words in roman type; they might require
special typesetting conventions. For example1 there are hundreds of items in Appen~
dix I that are preceded by a bach-slash and set in t:yl)e\\Titer type. The manmac fOr~

mat makes it easy to produce such entries by t:yl)ing 1 e.g. 1 ;,.. I \immediate I) instead
of ;,..{!\immediate!}). In this case the bach-slash is not written onto the index file 1

because it would interfCre with alphabetit~ation of the entries; a code number is \\Titten
out so that the bach-slash can be reinstated after the index has been sorted. The code
number also is used to put the entry in t:yl)e\\Titer type.

423

do;; pedal;;
'<erbat im copying
elfkiency
index
;;trot
newwrite
immwliate
openout
ifmmode
hat a,-; an act i '<C character
hat hat
new if
futurdet

424 AppcndiJ: E: EJ:arnplc Formats

The indexing macros of manmac produce entries of four kinds 1 which are as~
signed to codes 01 11 21 and 3. Code 0 applies when the axbrument is enclosed in braces1

e.g. 1 ;,..{word}); code 1 applies when the argument is enclosed in vertical lines and there)s
no bad.-slash1 e.g. 1 ;,.. I plus I); code 2 is similar but with a backslash 1 e.g. 1 ;,.. I \par I);
code 3 applies when the argument is enclosed in angle brackets1 e.g. 1 ;,..\<stuff>). The
four example entries in the previous sentence \Viii be \Vritten on file index. tex in the
form

word !0 123.
plus !1 123.
par !2 123.
stuff !3 123.

if they appear on page 123 of the book

\chardef\bslash='\\ % \bslash makes a backslash (in tt fonts)
\def\xref{\futurelet\next\xrefswitch} % branch on the next character
\def\xrefswitch{\begingroup\ifx\next!\aftergroup\vxref

\else\ifx\next\<\aftergroup\anglexref
\else\aftergroup\normalxref \fi\fi \endgroup}

\def\vxref!{\catcode'\\=\active \futurelet\next\vxrefswitch}
\def\vxrefswitch#i!{\catcode'\\=0

\ifx\next\empty\def\xreftype{2}%
\def\next{{\tt\bslash\text}}% code 2, 1\argl

\else\def\xreftype{1}\def\next{{\tt\text}}\fi % code 1, largl
\edef\text{#1}\makexref}

{\catcode'\!=0 \catcode'\\=\active !gdef\{}}
\def\anglexref\<#1>{\def\xreftype{3}\def\text{#1}%

\def\next{\<\text>}\makexref} % code 3. \<arg>
\def\normalxref#1{\def\xreftype{O}\def\text{#1}\let\next=\text\makexref}

Indexing is suppressed unless the proofmode S\vitch is set to true1 since mate--
rial is gathered for the index only during trial runs-not on the triumphant occasion
when the book is finally being printed.

\newif\ifproofmode
\proofmodetrue % this should be false when making camera-ready copy
\def\makexref{\ifproofmode\insert\margin{\hbox{\marginstyle\text}}%

\xdef\writeit{\write\inx{\text\space!\xreftype\space
\noexpand\number\pageno.}}\writeit

\else\ifhmode\kernOpt \fi\fi
\ifsilent\ignorespaces\else\next\fi}

(The \insert suppresses h:yl)henation when proofs are being checked; a \kernOpt is
therefore emitted to provide consistent behavior in the other case.)

The material that accumulates on file index. tex gives a good first approxi~
mation to an index 1 but it doesn)t contain enough information to do the whole job; a
topic often occurs on several pages 1 but only the first of those pages is typically listed
in the file. The author prefCrs not to generate indexes automatically; he likes to reread
his books as he check-s the cross~references 1 thereby having the opportunity to rethink
everything and to catch miscellaneous errors befOre it is too late. As a result 1 his books

cat code
xdef
write
noexpaml
number
ignore;; pace;;
in;;ert
hyphenation
kern
Knuth

AppcndiJ: E: EJ:arnplc Formats

tend to be delayed1 but the indexes tend to be pretty good. TherefOre he designed
the indexing scheme of manmac to provide only the dues needed to make a real index.
On the other hand1 it would be possible to extend the macros above and to obtain
a comprehensive sy-stem that generates an excellent index \Vith no subsequent human
intervention; see 1 fOr example1 \:\.n indexing facility for T£X' by Terry \Vinobrrad and
Bill Paxton, in TPGboat 1 (1980), Al-Al2.

The manmac macros have now been fully presented; we shall dose this appendix
by presenting one more example of their use. Chapter 27 mentions the desirability of
creating a long book in small parts 1 by using a :'galleyl' file. The author adopted that
strategy for The TEXbook 1 entering each chapter into a small file galley. tex that
looked like this:

\input manmac
\tenpoint
\pageno=800
\def\rhead{Experimental Pages for The \TeX book}
\def\chapno{ X}
{\catcode'\%=12 \immediate\write\ans{% Answers for galley proofs:}}

{new text being tested1 usually an entire chapter}

% that blank line will stop an unfinished \answer
\immediate\closeout\ans
\vfill \eject
\ninepoint \input answers % typeset the new answers. if any
\bye

It is much easier to use macros than to define them.

The use of macro libraries, in fact, mirrors almost exactly
the use of subroutine libraries for orogramming languages.

There are the same levels of soecialization,
from oublicly shared subroutines

to soecial subroutines within a single orogram,
and there is the same need for a orogrammer
with oarticular skills to define the subroutines.

- PETER BROWN, Macro Processors (1974)

The eoigraoh is among the most delightful of scholarly habits.
Donald Knuth's work on fundamental algorithms would be

just as imoortant if he hadn't begun with a quotation
from Betty Crocker, but not so enjoyable.

Part of the fun of an eoigraoh is turning a source to an unexoected use.
- MARY-CLAIRE VAN LEUNEN, A Handbook for Scholars (1978)

425

\Vinograd
Paxton
'I'CGboat
galley
BHO'vV!\:
epigraph
Knuth
Crocker
VA!' LEC!\:E!\:

>age 420) I

Font Tables

AppcndiJ: F: Font Tables

The purpose of this appendix is to summarize the chief characteristics of the
Computer :0.-'Iodcrn typefaces. TEX is able to typeset documents with any fonts,
having any arrangement of characters: the fonts and layouts to be described here
arc the particular ones that correspond to plain T&X format, i.e., to the macros
in Appendix B. (Complete information about the Computer :0.-'Iodcrn family,
including the METAFONT programs that draw the characters, can be found in
the author's book Computer J\:fodern T;ypeb:rces.)

The first pages of this appendix show what the fonts contain: the last
pages show what the s:ymbols arc called when they're used in math formulas.
(Sec Appendix B for the conventions that apply in non-mathematical text.)

There arc exactly 128 different characters in each of the Computer :0.-'Iod-
crn fonts, although T&X can work up to 256 characters per font. The teA-t fonts
arc laid out as shown in the table below, which illustrates font cmr10 (Computer
:0.-'Iodcrn Roman 10 point). Thus, for example, if you ask for \char'35 when
cmr10 is the current font, you get the s:ymbol JE. These text fonts include the
ligatures and accents described in Chapter 9: each symbol that happens to be
a visible ASCII character appears in its ASCII position. Some of the ASCII
symbols (namely 11 < > \ _ { I }) arc not included because they don't occur
in normal printer's fonts. If you mistakenly type 11

, you get ": and < outside of
math mode yields j ! Incidentally, the ten digits all have width 0. 5em.

Figure 1. TeA-t font layout, showing cmr10 (\rm, \textfontO).
~0 ~1 ~2 ~.1 ~4 ",J ~6 ~7

~001: r b. e A ~ II :E y
"Ox

~011: <I> lj) n ff fi ft ffi ffi
~02J: I J " "

"ix
~0.1J: £ (_(' "" 0 JE (E 0
~04J: ' I " # $ % &

"2x
"O,JJ: () * + - I
~06J: () 1 2 3 4 5 6 7

"3x
~07J: 8 9 : i - 2,

,,
-

~1 01: !£\! A B c D E F G
"4x

~111: H I J K L M " 0
~12J: p Q R s T 1; v w "5x
~1.1J: X y z [,, l "

~14J: a b c d c f g
"6x

"l,JJ: h I j k I m II 0

~16J: p q r 8 t u v w
" " ,. "7x

~171: X y z

"8 "9 "A "B "C "D "E "F

427

Computer J'viodern
J'viETAFO!\:T
char
cmrlO
ligature;;
accent;;
digit;;
rm

428 AppcndiJ: F: Font Tables

Plain T&X makes usc of sixteen basic fonts:

cmr10
cmr7
cmr5
cmbx10
cmbx7
cmbx5
cmsl10
cmti10
cmtt10
cmmi10
cmmi7
cmmi5
cmsy10
cmsy7
cmsy5
cmex10

(Computer Modern Roman 10 point)
(Computer Modern Roman 7 point)
(Computer Modern Roman 5 point)
(Computer Modern Bold Extended 10 point)
(Computer Modern Bold Extended 7 point)
(Computer Modern Bold Extended 5 point)
(Computer Modern Slanted Roman 10 point)
(Computer Modern Text Italic 10 point)
(Computer Modern Typewriter Type 10 point)
(Computer Modern Math Italic 10 point)
(Computer Modern Math Italic 7 point)
(Computer Modern Math Italic 5 point)
(Computer Modern Math Symbols 10 point)
(Computer Modern Math Symbols 7 point)
(Computer Modern Math Symbols 5 point)
(Computer Modern Math Extension 10 point)

text

special

The first eight of these all have essentially the same layout: but cmr5 needs no
ligatures, and many of the s:ymbols of cmti10 have different shapes. For example,
the ampersand becomes an ·E. T.', and the dollar changes to pound sterling:

Figure 2. TeA-t font layout, showing cmti10 (\it).

~0 ~1 ~2 ~,1 ~4 ",J ~6 ~7

~001: T L1 e A - II E y
"Ox

~011: p ']/ f) ff fi fl ffi ffl
~02J:

~ " " ' ' J "ix
~0,1J: fl tB (f! Yl lE (E 0
~04J: " ! " # £ % €1 '

"2x
"O,JJ: () * + " I '
~06J: 0 1 2 ,1 4 ,, 6 7

"3x
~07J: 8 .9 ' i = 8 ?
~1 01: t!} A B c D E F G

"4x
~111: H I J K L M N 0
~12J: p Q R s T u v w

"5x
~1,1J: X y z [,, J "

~14J: ' a b c d c f g
"6x

"l,JJ: h ' J k l m n 0

~16J: p q r " t 'U 'U 'W
"7x

~171: "' y z ff ' "

"8 "9 "A "B "C "D "E "F

amper;;and
E.T.
dollar
pound
;;terling
il

AppcndiJ: F: Font Tables

The t:n)(:writcr font cmtt10 is almost like the fonts for ordinary text, but it
includes all of the visible ASCII characters, in their correct positions. It also has
vertical arrows t and J., as well as an undirected single quote mark, 1

• Fourteen
of the 128 positions arc changed from the normal text layout conventions, namely
codes ~au ~017, ~040, ~042, ~074, ~076, ~1,14, ~1,17, and ~17,9 ~17/5. All of the
ligatures arc absent, except for the Spanish i and ;_,. (The characters for Spanish
ligatures appear in different positions, but that makes no difference to the user,
because each font tells TEX where to locate its own ligatures.) The Polish l, the
dOt accent, and the long Hungiirian umlaut have disappeared to make room for
new symbols. In a sense, positions '0/52 and "0/J/j also differ from the normal
text conventions: The asterisk is not up as high as usual, and the h:n)hcn is just
like a minus sign.

Each character in cmtt10 has the same width, namely 0. 5em: the spaces
between words also have this width, and they will not stretch or shrink. T&X puts
two spaces at the end of each sentence when you arc typesetting with a typewriter
font. (These spacing conventions can be changed by assigning nonzero values to
\spaceskip and \xspaceskip: or you can assign new values to the \fontdimen
parameters, which will be described shortly.)

Figure 3. Typewriter teA-t font layout, showing cmtt10 (\tt).

~0 ~1 ~2 ~.1 ~4 ",J ~6 ~7

~001: r ~ 8 A - 11 E r
"Ox

~011: 4 .. Q t .j. ' i " ~02J: l J
. ' - -

"ix
~0,1J:

; J3 "' ce ¢ JE (E 0
~04J: ! " # $ % & ' u "2x
"O,JJ: () * + ' - I
~06J: 0 1 2 3 4 5 6 7

"3x
~07J: 8 9 : ; < = > ?
~1 01: @ A B c D E F G

"4x
~111: H I J K L M N 0
~12J: p Q R s T u v w "5x
~1,1J: X y z [\ l - -
~14J: ' a b c d e f g "6x
"l,JJ: h i j k l m n 0

~16J: p q r s t u v w
- .. "7x

~171: X y z { I }

"8 "9 "A "B "C "D "E "F

429

typewriter font
cmtt 10
;;pace;; kip
x;;pace;;kip
jj

430 AppcndiJ: F: Font Tables

You can sec at a glance that the math italic font, cmmi10, is quite different from
text italic. It contains lowercase Greek letters as well as uppercase ones: this,
of course, is mathematicians' Greek, not a text font that would be suitable for
typesetting classical Greek literature. And if you look closely at the non-Greek
italic letters, you will find that their proportions and spacing have been changed
from cmti10 to make them work better in TEX's mathematics mode.

Some special unslantcd characters appear in positions "0/50 --- "077 and
~1,1,1 ~1,17, including "oldstylc numerals": ·$\mit1984$' and ·$\oldstyle1984$'
both yield ·1984'. Some of the characters arc intended to be combined with
others: for example, "0/54 forms the first part of the symbol ·y'. (Sec the
definition of \hookrightarrowin Appendix B.) This portion of the font doesn't
deserve the name math italic: it's really a resting place for characters that don't
fit anywhere else. (The author didn't want to leave any places unfilled, since
that would tempt people to create incompatible ways to fill them.)

Plain TEX takes its comma, period, and slash from cmmi10 in math
mode, so that appropriate kerning will be computed in certain formulas that
would otherwise be spaced poorly. For the correct positioning of math accents
with this font, you should set its \skewchar to "177.

Figure 4. :V'Iath italic font layout, showing cmmi10 (\mit, \textfont1).
~0 ~1 ~2 ~.1 ~4 ",J ~6 ~7

~001: r Ll f) A "' II E y
"Ox

~011: p tp {! Ct .B I J f

~02J: (1/ (} ' " ,\ II v
"ix

~0.1J: ~ 1[p (J T v dJ y
~04J: 'ljJ :;) £ & w g ' 'P "2x
"O,JJ: ~

~
~

~ ' ' ~ ~

~06J: () 1 2 3 4 5 6 7 "3x
~07J: 8 9 < I > *
~1 01: iJ A B c D E F G

"4x
~111: H I J K L Af j_v 0
~12J: p (! R s T u v w "5x
~1.1J: X y z ~ " ti ~ ~

"
~14J: e a b c d e f g "6x
"l,JJ: " 'I J k l m n ()

~16J: p q T s t 'U v 'lJ)
"7x

~171: ;,; 11 z 'I J SJ
~ "

"8 "9 "A "B "C "D "E "F

cmmilO
Greek
old;;tyk numeral;;
hookrightarrow
comma
period
;;la,-;h
;;lwwchar
mit

AppcndiJ: F: Font Tables

VVhcn TEX typesets mathematics it assumes that family 0 contains normal roman
fonts and that families 1, 2, and 3 contain math italic, math symbol, and math
CA.-tension fonts. The special characters in these fonts arc usually given symbolic
names by a \mathchardef instruction, which assigns a hexadecimal code to the
symbol. This code has four digits, where the first tells what kind of symbol is
involved, the second specifics the family, and the other two give the font position.
For example,

\mathchardef\ll="321C

says that \11 is character "1C of the math symbol font (family 2), and that it's
a :'relation" (class 3). A complete list of the symbolic names provided by the
plain TEX format appears later in this appendix.

Font cmsy10 is plain TEX's math symbol font, and it contains 128 sym-
bols laid out as shown below. Its \skew char should be set to '060 so that math
accents will be positioned properly over the calligraphic capital letters.

Figure 5. :0.-'Iath symbol font layout, showing cmsy10 (\cal, \textfont2).

~0 ~1 ~2 ~,1 ~4 ',J ~6 ~7

~001: X * 0 ± 'f
~011: :;;; 0

"Ox
:./) : ~) 0 •

~02J: X = c ::J < > -< >-- - - - - - "ix
~0,1J: ~ "' c ::J « » -< >-
~04J: <- _, t + B /' \, -- "2x
'O,JJ: <= =¢> 11- .(r ""' "" / 'X

~06J: I 00 E 3 !::, v I I
"3x

~07J: v 3 ~ 0 1R ~ T j_

~1 01: N A B c D c F g ,,
"4x

~111: 1i I :r K c A1 N 0
~12J: p Q n s T u v w "5x
~1,1J: X y z u n liJ 1\ v
~14J: f- -1 l J r l { } "6x
'l,JJ: I) I II t ~ \ I
~16J: v II '\7 I u n c ::J

"7x
~171: § t t ~ • 0 v •

"8 "9 "A "B "C "D "E "F

431

II
cm;;ylO
;;lwwchar
calligraphic capital letter;;
cal

432 AppcndiJ: F: Font Tables

The final font of plain TEXis cmex10, which includes large symbols and
pieces that can be used to build even larger ones. For example, arbitrarily large
left parentheses can be constructed by putting '060 at the top and '100 at the
bottom, and by using as many copies of '1 02 as necessary in the middle. Large
square root signs arc made from '164, "16/5, and "166: large left braces have four
component parts: ~070, ~072, ~074, ~076.

Figure 6. :0.-'Iath CA.-tension font layout, showing cmex10 (\textfont3).

~0 ~1 ~2 ~.1 ~4 ",J ~6 ~7

~001: () [l l J r l "Ox
~011: { } () I II I \
~02J: () () [l l J

r l { } () I \
"ix

~0.1J:

~04J: () [] l J r l "2x

"0/'h: { } () I \ I \
~06J: (' r l l J I I

~ ~
"3x

~07J: () ~ J ' I

~1 01: \) I I () u u
f

"4x
~111: f 0 0 EB EB 0 0
~12J: I: [l J u n l:l /\ v

I
"5x

~1.1J: I: IT u n l::J A v
~14J: u II ~ - - - ·~ -·

[l l J r l { }
"6x

"1/'h:

~16J: v v / J ~ I r II

"7x
~171: t + ,. ' ' ~ 11' v

"8 "9 "A "B "C "D "E "F

cmexlO
;;quare root ;;ign;;
J'viath exten;;ion font

AppcndiJ: F: Font Tables

VVhcn TEX :'loads" a font into its memory, it doesn't look at the actual shapes of
the characters: it only loads the font metric information (e.g., cmr10. tfm), which
includes the heights, widths, depths, and italic corrections, together with infor-
mation about ligatures and kerning. Furthermore, the metric information that
comes with a font like cmex 10 tells TEX that certain characters form a series: for
example, all of the left parentheses arc linked together in order of increasing size:
~000, ~020, ~022, and ~040, followed by the extensible left parenthesis, which
is '060 + ["102]n + "100. Similarly, the two summation signs ("120, "1/JO) and
the three \widehat accents (~142, ~14,1, ~144) arc linked together. Appendix G
CAl)lains how TEX goes about choosing particular sizes for math delimiters, math
operators, and math accents.

Each font also has at least seven \f ontdimen parameters, which have
the following significance and typical values (rounded to two decimal places):

:0.-'Icaning Value in cmr10 cmbx10 cmsl10 cmti10 cmtt10 cmmi10
1 slant per pt 0.00 pt O.OOpt 0.17 pt 0.25 pt 0.00 pt 0.25 pt
2 intcrword space 3.33pt 3.83pt 3.33pt 3.58pt 5.25pt 0.00 pt
3 intcrword stretch 1.67 pt 1.92pt 1.67 pt 1.53 pt 0.00 pt 0.00 pt
4 intcrword shrink 1.11 pt 1.28 pt 1.11 pt 1.02 pt 0.00 pt 0.00 pt
5 x-hcight 4.31 pt 4.44pt 4.31 pt 4.31 pt 4.31 pt 4.31 pt
6 quad width 10.00pt 11.50pt 10.00 pt 10.22pt 10.50 pt 10.00pt
7 extra space 1.11 pt 1.28 pt 1.11 pt 1.02 pt 5.25pt 0.00 pt

The slant parameter is used to position accents: the next three parameters define
intcrword spaces when text is being typeset: the next two define the font-oriented
dimensions 1ex and 1em: and the last is the additional amount that is added to
intcrword spaces at the end of sentences (i.e., when \spacefactoris 2000 or more
and \xspaceskip is zero). VVhcn a font is magnified (using ·at' or ·scaled'), all
of the parameters except the slant arc subject to magnification at the time the
font is loaded into T&X's memory.

l\oticc that cmmi10 has zero spacing. This is the mark of a font that is
intended only for mathematical t:n)csctting: the rules in Appendix G state that
the italic correction is added between adjacent characters from such fonts.

:0.-'Iath s:ymbol fonts (i.e., fonts in family 2) arc required to have at least
22 \f ontdimen parameters instead of the usual seven: similarly, math extension
fonts must have at least 13. The significance of these additional parameters is
CAl)laincd in Appendix G. If you want to increase the number of parameters past
the number that actually appear in a font's metric information file, you can assign
new values immediately after that font has been loaded. For example, if some
font \ff with seven parameters has just entered TEX's memory, the command
\fontdimen13\ff=5pt will set parameter number 13 to 5pt: the intervening
parameters, numbers 8---12, will be set to zero. You can even give more than
seven parameters to \nullfont, provided that you assign the values before any
actual fonts have been loaded.

433

font metric
;;ummation ;;ign;;
widehat
fontdimen
interword ;;pace
x-height
quad
;;lant
ex
em
;;pacefactor
x;;pace;;kip
magniliwl
al
;;calwl
math font;;
fontdimen
null font

434 AppcndiJ: F: Font Tables

I\ ow that the font layouts have all been displayed, it's time to consider
the names of the various mathematical s:ymbols. Plain TEX defines more than
200 control sequences by which you can refer to math s:ymbols without having to
find their numerical positions in the layouts. It's generally best to call a symbol
by its m1mc, for then you can easily adapt your manuscripts to other fonts, and
your manuscript will be much more readable.

The s:ymbols divide naturally into groups based on their mathematical
class (On!, Op, Bin, Rd, Open, Close, or Punct), so we shall follow that order
as we discuss them. l\.B.: l;nlcss otherwise stated, math symbols arc available
only in math modes. For example, if you say ·\alpha' in horizontal mode, TEX
will report an error and try to insert a $ sign.

1. Lowercase Greek letters.

Ct \alpha ' \iota g \varrho
,B \beta " \kappa (J \sigma
I \gamma ,\ \lambda ' \varsigma
J \delta I' \mu T \tau
f \epsilon v \nu v \upsilon
£ \varepsilon ~ \xi dJ \phi
(\zeta () 0 'P \varphi

'I \eta 1[\pi y \chi
(} \theta w \varpi 'ljJ \psi
t9 \vartheta p \rho :;) \omega

There's no \omicron, because it would look the same as o. l\oticc that the letter
\upsilon (v) is a bit wider than v (v): both of them should be distinguished
from \nu (v). Similarly, \varsigma (<;)should not be confused with \zeta((). It
turns out that \varsigma and \upsilon arc almost never used in math fonnulas:
they arc included in plain TEX primarily because they arc sometimes needed in
short Greek citations (cf. Appendix J).

2. Uppercase Greek letters.

r \Gamma ~ \Xi <I> \Phi
b. \Delta II \Pi lj) \Psi
e \Theta :E \Sigma n \Omega
A \Lambda y \Upsilon

The other Greek capitals appear in the roman alphabet (\Alpha {\rm A},
\Beta {\rm B}, etc.). It's conventional to usc unslantcd letters for uppercase
Greek, and slanted letters for lowercase Greek: but you can obtain (T, .::1, ... , fl)
by t}1Jing $ ({\mit \Gamma}, {\mit \Delta}, \ldots, {\mit \Omega})$.

/J. Calligraphic capitals. To get the letters A . .. Z that appear in Figure 5, t:n)c
${\cal A}\ldots{\cal Z}$. Several other alphabets arc also used with math-
ematics (notably Fraktur, script, and :'blackboard bold"): they don't come with
plain TEX, but more elaborate formats like .A_A .. 1S-TEX do provide them.

;;ymbob in math, table
alpha
iota
'<arrho
beta
lmppa
;;igma
gamma
lambda
'<ar;;igma
delta
mu
tau
ep;;ilon
nu
up;;ilon
'<arep;;ilon
xi
phi
zeta
'<arphi
eta
pi
chi
theta
'<arpi
p;;i
'<artheta
rho
omega
omicron
Gamma
Xi
Phi
Delta
Pi
P;;i
Theta
Sigma
Omega
I,ambda
Cp;;ilon
Alpha
Beta
mit
calligraphic letter;;
Fraktur
;;cript
blackboard bold

AppcndiJ: F: Font Tables 435

4- Miseellaneo·us symbols of type Ord.

N \aleph I \prime v \forall

" \hbar 0 \empty set 3 \exists
., \imath '\7 \nabla \neg
J \jmath v \surd ~ \flat
e \ell T \top \natural
SJ \wp ..L \bot ti \sharp
1R \Re II \I • \clubsuit
~ \Im L \angle 0 \diamondsuit
iJ \partial !::, \triangle v \heartsuit
00 \infty \ \backs lash • \spadesuit

The dotlcss letters \imath and \j math should be used when 'i and j arc accented:
for example, $\hat \imath$ yields ij. The \prime s:ymbol is intended for usc in
subscripts and superscripts, as explained in Chapter 16, so you usually sec it in
a smaller size. On the other hand, the \angle symbol has been built up from
other pieces: it docs not get smaller when it appears in a subscript or superscript.

,5. Digits. To get italic digits 012,14,5678.9, say {\it0123456789}: to get boldface
digits 0123456789, say {\bf0123456789}: to get oldstyle digits 0123456789, say
{\oldstyle0123456789}. These conventions work also outside of math mode.

6. ''Largen operators. The following symbols come in two sizes, for teA-t and
display styles:

I: L \sum nn \bigcap OQ\bigodot

[l IT \prod uu \bigcup 0 (g) \bigotimes

U II \coprod uu \bigsqcup EB EB \bigoplus

J I \int vv \bigvee l:J ~ \biguplus

f f \oint AA \bigwedge

It is important to distinguish these large Op s:ymbols from the similar but smaller
Bin symbols whose names arc the same except for a 'big' prefix. Large operators
usually occur at the beginning of a formula or subfonnula, and they usually arc
subscripted: binary operations usually occur between two symbols or subfonnu-
las, and they rarely arc subscripted. For example,

$\bigcup_{n=1}-m(x_n\cup y_n)$ yields Um (,
n=l J:n U Un)

The large operators \sum, \prod, \coprod, and \int should also be distin-
guished from smaller symbols called \Sigma (:E), \Pi (II), \amalg (II), and
\smallint (f), respectively: the \smallint operator is rarely used.

aleph
prime
for all
hbar
empty;;et
exi;;t;;
imath
nabla
neg
jmath
;;urd
Hat
dl
top
natural
wp
bot
;;harp
He
e;;c'<erl
dub;;uit
Im
angle
diamond;;uit
partial
triangle
heart;;uit
infty
back;;la,-;h
;;pade;;uit
\Veier;;tra,-;;;, ;;ee wp
dot le;;;; letter;;
accent
digit;;
;;om
bigcap
bigodot
prod
bigcup
bigotime;;
co prod
big;;qcup
bigoplu;;
int
big'<ee
biguplu;;
oint
bigwwlge
binary operation;;
;;mallint

436 AppcndiJ: F: Font Tables

7. Binar:IJ operations. Besides + and you can t:n)c

± \pm n \cap v \vee
'f \mp u \cup 1\ \wedge
\ \setminus liJ \uplus \oplus

\cdot n \sqcap \ominus
X \times u \sqcup \otimes

* \ast ~ \triangle left :./) \oslash

* \star ~ \triangleright : ~) \odot
0 \diamond I \wr t \dagger
0 \eire 0 \bigcirc t \ddagger
• \bullet !::, \bigtriangleup II \amalg

\div v \bigtriangledown

It's customary to say $G\backslashH$ to denote double cosets of G by H (G\H),
and $p\backslash n$ to mean that p divides n (p\n): but $X\setminus Y$
denotes the dements of set X minus those of set }-' (X\ "Y). Both operations
usc the same symbol, but \backs lash is t:)1)C Ord, while \setminus is t:)1)C Bin
(so T&X puts more space around it).

8. Relations. Besides <, >, and =, you can t:n)c

< \leq > \geq \equiv
-< \prec >- \succ \sim
-< \pre ceq >- \succeq \simeq
«\ll » \gg X \asymp
c \subset :J \supset "' \approx
c \subseteq :J \supseteq "' \cong
c \sqsubseteq ::J \sqsupseteq N \bowtie
E \in 3 \ni 'X \propto
f- \vdash -1 \dashv I= \models

\smile I \mid \doteq
\frown II \parallel ..L \perp

The symbols \mid and \parallel define relations that usc the same characters
as you get from I and \ I: TEX puts space around them when they arc relations.

.9. Negated relations. :0.-'Iany of the relations just listed can be negated or :•crossed
out" by prdh.ing them with \not, as follows:

f. \not< :f \not> op \not=
i \not\leq l \not\geq t \not\equiv
I< \not\prec 'f \not\succ f \not\sim
t: \not\preceq >t \not\succeq i \not\simeq
</. \not\subset 1J \not\supset ;!; \not \approx
!l \not\subseteq " \not \supseteq '/! \not\cong
r;z: \not \sqsubseteq ;zi \not\sqsupseteq f:. \not\asymp

pm
cap

mp
cup
wedge
;;etminu;;
uplu;;
oplu;;
cdot
;;qcap
ominu;;
time;;
;;qcup
otime;;
a,-;t
t riangleleft
o;;la,-;h
;;tar
t riangleright
odot
diamond
wr
dagger
eire
bigdrc
ddagger
bullet
bigtriangkup
amalg
di'<
bigtrianglwlown
kq
geq
equi'<
prec
;;()(T

approx
preceq
;;ucceq
propto
II
gg
a,-;ymp
;;ub;;et
;;up;;et
;;im
;;ub;;eteq
;;up;;eteq
;;imeq
;;q;;ub;;eteq
;;q;;up;;eteq
cong
in
ni
bowtie
Hla,-;h
da,-;h'<
model;;
;;mile
mid
doteq
frown
parallel
perp
not

AppcndiJ: F: Font Tables

The symbol \not is a relation character of width zero, so it will overlap a relation
that comes immediately after it. The positioning isn't always ideal, because some
relation symbols arc wider than others: for example, \not\in gives ·cj_', but it is
preferable to have a steeper cancellation, ·f. The latter symbol is available as a
special control sequence called \not in. The definition of \not in in Appendix B
indicates how similar symbols can be constructed.

10. Arrows. There's also another big class of relations, namely those that point:

<- \leftarrow t---- \longleftarrow t \uparrow
<= \Leftarrow ¢= \Longleftarrow 11- \Uparrow _, \rightarrow ~ \longrightarrow + \downarrow
=¢> \Rightarrow ==} \Longrighta=ow .!.' \Downarrow
B \leftrightarrow ~\longleftrightarrow t \updownarrow

""' \Leftrightarrow {:::::::::::> \Longleftrightarrow ~ \Updownarrow
H \maps to 1-4 \longmapsto /' \nearrow
<-' \hookleftarrow y \hookrightarrow \, \searrow
~ \leftharpoonup ~ \rightharpoonup / \swarrow
~ \leftharpoondown ~ \rightharpoondown "" \nwarrow
~ \rightleftharpoons ~

l; p and down arrows will grow larger, like delimiters (sec Chapter 17). To put
symbols over left and right arrows, plain TEX provides a \buildrel macro: You
type \buildrel{supcrscript)\over{relation), and the superscript is placed on
top of the relation just as limits arc placed over large operators. For example,

\buildrel \alpha\beta \over \longrightarrow

\buildrel \rm def \over =

(In this context, ·\over' docs not define a fraction.)

11. Openings. The following left delimiters arc available, besides ·C:
[\lbrack
{ \lbrace

l \lfloor
I \langle

r \lceil

You can also t:n)c simply · [' to get \lbrack. All of these will grow if you prefix
them by \bigl, \Bigl, \biggl, \Biggl, or \left. Chapter 17 also mentions
\lgroup and \lmoustache, which arc available in sizes greater than \big. If
you need more delimiters, the following combinations work reasonably well m
the normal text size:

[\lbrack\!\lbrack II \langle\! \langle (((\! (

12. Closings. The corresponding right delimiters arc present too:

] \rbrack
} \rbrace

J \rfloor
) \rangle

l \rceil

Everything that works for openings works also for closings, but reversed.

437

not in
arrow;;
left arrow
I on gleft arrow
uparrow
I,eftarrow
I,ongleftarrow
Cparrow
rightarrow
longrightarrow
down arrow
Hight arrow
I,ongrightarrow
l)ownarrow
left rightarrow
longleft right arrow
updownarrow
I,eftrightarrow
I,ongleft rightarrow
Cpdownarrow
map;;to
longmap;;to
near row
hook left arrow
hookrightarrow
;;earrow
left harpoon up
right harpoon up
;;warrow
left harpoondown
rightharpoondown
nwarrow
right left harpoon;;
buildrd
O'<er
left delimiter,;
lbrack
I bran:
Jangle
1/loor
!ceil
big!
Big!
biggl
Biggl
left
I group
lmou;;tache
rbrack
rbrace
rangle
rlloor
rceil

438 AppcndiJ: F: Font Tables

1/J. P·unct·uation. TEX puts a thin space after comnu1s and semicolons that ap-
pear in mathematical formulas, and it docs the same for a colon that is called
\colon. (Otherwise a colon is considered to be a relation, as in ·;,; := u' and
·a : b :: c: d', which you t:n)c by saying ·$x: =y$' and ·$a: b: : c: d$'.) Examples
of \colon arc

f:A -t B
L(a,b:c:J:,JJ:z)

$f\colon A\rightarrow B$
$L(a,b;c\colon x,y;z)$

Plain TEX also defines \ldotp and \cdotp to be ·.' and ·.' with the spacing of
comnu1s and semicolons. These symbols don't occur directly in formulas, but
they arc useful in the definition of \ldots and \cdots.

14. Alternate names. If you don't like plain TEX's name for some math s:ymbol---
for example, if there's another name that looks better or that you can remember
more easily------the remedy is simple: You just say, e.g., ·\let\cupcap=\asymp'.
Then you can t:)1)C ·f(n)\cupcap n' instead of ·f(n)\asymp n'.

Some symbols have alternate names that arc so commonly used that
plain TEX provides two or more equivalent control sequences:

op \ne or \neq (same as \not=)
< \le (same as \leq)
> \ge (same as \geq)
{ \{ (same as \lbrace)
} \} (same as \rbrace)
-t \to (same as \rightarrow)
<- \gets (same as \leftarrow)
3 \owns (same as \ni)
1\ \land (same as \wedge)
v \lor (same as \vee)

\lnot (same as \neg)
I \vert (same as I)
II \Vert (same as \I)

There's also \iff (=),which is just like \Longleftrighta=ow except that
it puts an extra thick space at each side.

1,5. Non-math symbols. Plain TEX makes four special s:ymbols available outside
of math mode, although the characters themselves arc actually typeset from the
math s:ymbols font:

§ \S
~ \P
t \dag
t \ddag

These control sequences do not act like ordinary math symbols: they don't change
their size when they appear in subscripts or superscripts, and you Inust say, e.g.,

colon
colon
ldotp
cdotp
!dot;;
cdot;;
ne
neq
k
ge

'" get;;
own;;
land
lor
I not
'<Crt
ilf

AppcndiJ: F: Font Tables

$x-{\P}$ instead of $x-\P$ when you usc them in formulas. However, the \dag
and \ddag s:ymbols arc available in math mode under the names \dagger and
\ddagger. It would be easy to define mathematical equivalents of \S and \P,
if these s:ymbols suddenly caught a mathematician's fancy.

Seek not for fresher founts afar,
Just droo your bucket where you are.

- SAM WALTER FOSS, Back Country Poems (1892)

No one comoositor will have all the signs and symbols available.
The number of soecial signs and symbols is almost limitless,

with new ones being introduced all the time.
- UNIVERSITY OF CHICAGO PRESS, Manual of Style (1969)

439

dag
ddag
dagger
ddagger
s
p
FOSS
CHICAGO

>age 440) I

Generating Boxes
from Formulas

Appendi'J: G: Generating Bo'J:es from Forrrrulas

People who define new math fonts and/or macros sometimes need to know exactly
how TE-X manipulates the constituents of formulas. The purpose of this appendix is to
explain the precise positioning rules by which TE-X converts a math list into a horimntal
list. (It is a good idea to review the introduction to math lists in Chapter 17 befOre
reading further; :'double dangerous bendrt are implied throughout this appendix.)

T£X relies on lots of parameters when it typesets f0rmulas 1 and you have the
option of changing any or all of them. But of course you \Viii want to know what each
parameter meailS 1 before you change it. Therefore each rule below is numbered 1 and a
table appears at the end to show which rules depend on which parameters.

The most important parameters appear in the sy-mbol fOnts (family 2) and
the extension fonts (family 3). TE-X \Viii not t:yl)eset a fOrmula unless \textfont2 1

\scriptfont2 1 aiHl \scriptscriptfont2 each contain at least 22 \fontdimen param~
eters. For brevity we shall call these parameters a 1 to a 221 where the paraineter is
taken from \textfont2 if the current style is display or text (D or D' or Tor T') 1 from
\scriptfont2 if the current style is S or S' 1 aiHl from \scriptscriptfont2 otherwise.
Similarly1 the three fonts in family 3 must each have at least 13 \fontdimen paraineters1

and we \Viii denote them by ej to eJa. The notation e\l; for exainple) stands for the
ninth parameter of \scriptfont31 if TE-X is t:yl)esetting something in \scriptstyle.

A math list is a sequence of items of the various kinds listed in Chapter 171

and T£X typesets a formula by converting a math list to a horit~ontal list. \Vhen such
t:yl)esetting begins1 TE-X has two other pieces of infOrmation in addition to the math list
itself. (a) The starting style tells what style should be used for the math list 1 unless
another style is specified by a style item. For exainple1 the starting style for a displayed
formula is D 1 but fOr ail equation in the text or ail equation number it is T; and fOr a
subformula it Cail be any one of the eight styles defined in Chapter 17. \Ve shall use C
to staiHl for the current style1 aiHl we shall say that the math list is being t:yl)eset in
style C. (b) The t:yl)esetting is done either \Vith or without penalties. Formulas in the
text of a paragraph are converted to horimntal lists in which additional penalty items
are inserted after binary operations and relations 1 in order to aid in line breaking. Such
penalties are not inserted in other cases1 because they would serve no useful function.

The eight styles are considered to beD > D' > T > T' > S > S' > SS > SS' 1

in decreasing order. Thus 1 C :S S meai1s that the current style is S 1 S' 1 SS 1 or SS'.
Style C' means the current style with a prime added if one isn)t there; for exainple1 we
have C' = T' if and only if C = T or C = T'. Style Ci is the superscript style for C;
this means style S if C is D or T 1 style S' if C is D' or T' 1 style SS if C is S or SS 1

and style SS' if Cis S' or SS'. Finally1 style C+ is the subscript style 1 which is (Ci)'.
Chapter 17 stated that the most importailt components of math lists are called

atoms 1 and that each atom has three fields called its nucleus 1 subscript 1 aild superscript.
\Ve frequently need to execute a subroutine called :'Set box x to the so~aiHl~so field in
style such~and~such.l' This means (a) if the specified field is empty1 x is set equal to a
null box; (b) if the field contains a symbol1 x is set to an hbox containing that symbol
in the appropriate sit~e 1 aiHl the italic correction for the character is included in the
width of the box; (c) if the field contains a math list or horimntal list 1 x is set to
an hbox containing the result of typesetting that list \Vith the specified starting style.
In case (c) 1 the glue is set \Vith no stretching or shrinking1 and an additional level of
hboxing is omitted if it turns out to be redundant.

Another subroutine sets box x to a specified variable delimiter 1 having a spec~
ified minimum height plus depth. This meailS that a search is conducted as follows:

441

math li;;t;;
;;ymbol font;;
exten;;ion font;;
text font
;;cript font
;;cri pt ;;cri pt font
fontdimen
;;tyle;;
italic correction
delimiter

442 AppcndiJ: G: Generating BoJ:cs from Forrrrulas

The delimiter is defined by two symbols1 a :'small characterl' a in family f and a :'large
characterl' b in family y. The search look-s first at character a in scriptscriptfOnt f 1 if
C:::; SS; then it looks at a in scriptfont j 1 if C:::; S; then it looks at a in textfont f. If
nothing suitable is found from a and f 1 the larger alternative b and y is examined in
the same way. Either (a1 f) or (b1 y) may be (0 1 0) 1 which means that the corresponding
part of the search is to be b:yl)assed. \Vhen looking at a character in a font 1 the search
stops immediately if that character has sufficient height plus depth 1 or if the character
is extensible; furthermore 1 if the character does not stop the search1 but if it has a
successor in the f0nt 1 the successor is looked at next. (See the META FONT manual
or the system documentation of tfm files for further infOrmation about successors and
extensible characters.) If the search runs all the way to completion \Vithout finding a
suitable character1 the one with greatest height plus depth is chosen. If no characters
at all were fOund (either because a = f = b = y = 0 or because the characters did not
exist in the fonts) 1 xis set to an empty box whose \Vidth is \nulldelimiterspace. If
an extensible character was found 1 x is set to a vbox containing enough pieces to build
up a character of sufficient sit~e; the height of this vbox is the height of the topmost
piece1 and the \Vidth is the \Vidth of the repeatable piece. Otherwise x is set to an
hbox containing the character that was found; the italic correction of the character is
included in the \Vidth of this box.

There)s also a subroutine that :'reboxesl' a given box to a given \Vidth. If the
box doesn)t already have the desired width 1 T£X unpackages it (unless it was a vbox) 1

then adds a kern for an italic correction if one was implied1 and inserts \hss glue at
both left and right; the resulting horit~ontal list is packaged into an hbox. This process
is used1 for example 1 to give a common \Vidth to the numerator and denominator of a
fraction; it centers whichever is smaller 1 unless infinite glue is present in addition to
the newly added \hss.

If xis a box 1 we shall use the abbreviations h(x) 1 d(x) 1 and 11.:(x) for its height 1

depth 1 and \Vidth 1 respectively.
Here now are the rules fOr t:yl)esetting a given math list in starting style C.

The process applies from left to right 1 translating each item in turn. Two passes are
made over the list; most of the work is done by the first pass 1 which compiles individual
translations of the math items. \Ve shall consider this part of the task first:

1. If the current item is a rule or discretionary or penalty or :'whatsif' or bound~
ary item1 simply leave it unchanged and move to the next item.

2. If the current item is glue or a kern 1 translate it as fOllo\\'S: If it is glue from
\nonscript 1 check if the immediately fOllowing item is glue or a kern; and if S0 1 remove
that item if C :::; S. Otherwise1 if the current item is from \mskip or \mkern1 convert
from mu to absolute units by multiplying each finite dimension by TI,at;. Then move on
to the next item.

3. If the current item is a style change1 set C to the specified style. Delete the
current item from the list and move on to the next.

4. If the current item is a four~way choice1 it contains four math lists fOr the four
main styles. Replace it by the math list that corresponds to the current style C 1 then
move to the first unprocessed item.

5. If the current item is a Bin atom 1 and if this was the first atom in the list 1 or
if the most recent previous atom was Bin1 Op 1 Rel 1 Open 1 or Punct 1 change the current
Bin to Ord and continue with Rule 14. Otherwise continue with Rule 17.

exten;;ibk
;;ucce;;;;or
J'viETAFO!\:T
nullddimiter;;pace
built-up character;;
h;;;;
non;;cript
m;;kip
mlwrn

Appendi'J: G: Generating Bo'J:es from Forrrrulas

6. If the current item is a Rei or Close or Punct atom 1 and if the most recent
previous atom was Bin1 change that previous Bin to Ord. Continue \Vith Rule 17.

7. If the current item is an Open or Inner atom 1 go directly to Rule 17.
8. If the current item is a Y cent atom (from \vcenter) 1 let its nucleus be a vbox

of height~plus~depth v. Change the height to ~v +a and the depth to ~v- a 1 where
a is the axis height 1 a 22 . Change this atom to type Ord and continue \Vith Rule 17.

9. If the current item is an Over atom (from \overline) 1 set box x to the nucleus
in style C'. Then replace the nucleus by a vbox containing kern e 1 hrule of height e 1

kern 3e 1 and box X 1 from top to bottOm 1 where e = f:('; is the default rule thickneSS.
(This puts a rule over the nucleus 1 with 3e clearance1 and \Vith e units of extra white
space assumed to be present above the rule.) Continue \Vith Rule 16.

10. If the current item is an Under atom (from \underline) 1 set box x to the
nucleus in style C. Then replace the nucleus by a vtop made from box x 1 kern 3e 1 and
hrule of height e 1 where e = f:('; is the default rule thid..11ess; and add e to the depth of
the box. (This puts a rule under the nucleus 1 with 3e clearance1 and with e units of
extra white space assumed to be present below the rule.) Continue \Vith Rule 16.

11. If the current item is a Rad atom (from \radical 1 e.g. 1 \sqrt) 1 set box x to
the nucleus in style C'. Let e = 1:(-;; and let ;.p = a::. if C > T 1 othenvise ;.p = e. Set
1jJ = e+ -!ri'PI; this is the minimum clearance that \Viii be allowed between box x and the
rule that \Viii go above it. Set box 11 to a variable delimiter for this radical atom 1 having
height plus depth h(x) + d(x) + 1jJ + e or more. Then set e +- h(y); this is the thickness
of the rule to be used in the radical construction. (Note that the fOnt desibfilCr specifies
the thid..11ess of the rule by making it the height of the radical character; the baseline of
thccharacter should be precisely at the bottom ofthe rule.) If d(y) > h(x)+d(x)
increase 1jJ by half of the excess; i.e. 1 set 1jJ +- HtJ + d(y)- h(x)- d(x)). Construct a
vbox COnSiSting of kern e; hrule of height e; kern and box X 1 from top to bottom.
The nucleus of the radical atom is now replaced by box 11 raised by h(x) + followed
by the new vbox. Continue \Vith Rule 16.

12. If the current item is an Ace atom (from \mathaccent) 1 just go to Rule 16
if the accent character doesn)t exist in the current sit~e. Otherwise set box x to the
nucleus in style C' 1 and set n to the \Vidth of this box. If the nucleus is not a single
character 1 let 8 = 0; othenvise set 8 to the kern amount fOr the nucleus followed by the
\skewchar of its font. If the accent character has a successor in its font whose \Vidth
is:::; n 1 change it to the successor and repeat this sentence. Now set J +- min(h(x) 1 X) 1

where x is \fontdimen5 (the x~height) in the accent fOnt. If the nucleus is a single
character 1 replace box x by a box containing the nucleus together \Vith the superscript
and subscript of the Ace atom 1 in style C 1 and make the sub/superscripts of the Ace
atom empty; also increase J by the difference between the new and old values of h(x).
Put the accent into a new box 11 1 including the italic correction. Let z be a vbox
consisting of: box 11 moved right 8 + H n -11.:(11)) 1 kern -6 1 and box x. If h(z) < h(x) 1

add a kern of h(x)- h(z) above box JJ and set h(z) +- h(x). Finally set rr(z) +-rr(x),
replace the nucleus of the Ace atom by box Z 1 and continue \Vith Rule 16.

13. If the current item is an Op atom 1 mark this atom as having limits if it has
been marked \Vith \limits 1 or if it has been marked \Vith \displaylimits and C > T.
If the nucleus is not a s:y1nbol 1 set J +- 0 and go to Rule 13a. Othenvise if C > T and
if the nucleus s:y1nbol has a successor in its font 1 move to the successor. (This is where

443

'<center
o'<erline
default rule thkkne;;;;
underline
radical
;;qrt
mathaccent
;;lwwchar
x-height
limit;;
di;;playlimit;;

444 AppcndiJ: G: Generating BoJ:cs from Forrrrulas

operators like L and J change to a larger sit~e in display styles.) Put the symbol into
a new box X 1 in the current sit~e 1 and set J to the italic correction for the character;
include J in the \Vidth of box x if and only if limits are to be set or there is no subscript.
Shift box x dmv11 by ~ (h(x) - d(x)) - a 1 where a = a 22 1 so that the operator character
is centered vertically on the axis; this shifted box becomes the nucleus of the Op atom.

13a. If limits are not to be typeset for this Op atom 1 go to Rule 17; otherwise the
limits are attached as follows: Set box x to the superscript field in style Ci; set box 11
to the nucleus field in style C; and set box z to the subscript field in style C+. Rebox
all three of these boxes to "'ridth ma..x(1L'(x)1 1L'(JJ)1 1L'(z)). If the superscript field was not
empty1 attach box x above box JJ1 separated by a kern ofsi11e ma..x(e91 e 11 -d(x)) 1 and
shift box X right by ~J j also put a kern of SiiiC e 1:'1 above box X. If the Subscript field was
not Cmpty1 attach box Z below box Jj 1 Separated by a kern Of SiiiC max(elO; e 12- ft(z))1
and shift box z left by ~J; also put a kern of SiiiC eJa below box z. The resulting vbox
becomes the nucleus of the current Op atom; move to the next item.

14. If the current item is an Ord atom1 go directly to Rule 17 unless all of the
follmving are true: The nucleus is a sy-mbol; the subscript and superscript are both
empty; the very next item in the math list is an atom of type Ord1 Op1 Bin1 Rel1 Open1
Close1 or Punct; and the nucleus of the next item is a symbol whose family is the same
as the family in the present Ord atom. In such cases the present symbol is marked as
a text symboL If the fOnt information shmvs a ligature between this symbol and the
follmving one1 using the specified family and the current sit~e 1 then insert the ligature
character and continue as specified by the fOnt; in this process1 two characters may
collapse into a single Ord text symbol1 and/or new Ord text characters may appear. If
the font information shmvs a kern between the current symbol and the next1 insert a
kern item fOllmving the current atom. As soon as an Ord atom has been fully processed
for ligatures and kerns1 go to Rule 17.

15. If the current item is a generalit~ed fraction (and it had better be1 because
that)s the only possibility left if Rules 1-14 don)t apply)1 let e be the thickness of
the bar line and let (.\1 p) be the left and right delimiters. If this fraction was gen~
crated by \over or \overwithdelims) then e = e(-1; if it was generated by \atop or
\atopwithdelims) e = 0; othenvise it was generated by \above or \abovewithdelims)
and a specific value of e was given at that time. The values of,\ and p are null unless
the fraction is :'with delims.l'

15a. Put the numerator into box x 1 using style T or T' if C is D or D' 1 othenvise
using style Cj. Put the denominator into box Z 1 using styleT' if C > T 1 othenvise using
C+. If rr(x) < rr(z), rcbox x to width rr(z); if rr(z) < rr(x), rcbox z to width rr(x).

15b. If C > T 1 set n +- a(-1 and v +- a1 1. Othenvise set n +- a9 or a1o1 according
as 0 /:- 0 Or 0 = 01 and set V +- a12· (The fraction \Vill be t:yl)CSCt with its numer~
ator shifted up by an amount n \Vith respect to the current baseline1 and \Vith the
denominator shifted down by V 1 unless the boxes are unusually large.)

15c. If e = 0 (\atop) 1 the numerator and denominator are combined as follows:
Set ;.p +- 7e(-l or 3e(-1 1 according as C >Tor C :S T; ;.pis the minimum clearance that
will be tolerated between numerator and denominator. Let 1jJ = (n-d(x))- (h(z) -v)
be the actual clearance that would be obtained with the current values of n and v; if
1jJ < ;.p1 add ~(;.p -tJ) to both nand v. Then construct a vbox of height h(x) +nand
depth d(z) + V 1 consisting of box x fOllowed by an appropriate kern followed by box z.

O'<Cf
o'<erwithddim;;
atop
atopwithddim;;
abo'<e
abo'<ewit hddim;;

AppendiJ: G: Generating BoJ:es from Forrrrulas 445

15d. If e 1:- 0 (\over) 1 the numerator and denominator are combined as follows: ;;criphpace
Set ;.p +- 30 or 01 according as C > Tor C :S T; ;.p is the minimum clearance that
will be tolerated between numerator or denominator and the bar line. Let a = azz
be the current axis height; the middle of the bar line \Viii be placed at this height. If
(n- d(x)) - (a+ ~e) < ;.p1 increase n by the difference between these quantities; and
if (a- ~e)- (h(z) -v) < ;.p 1 increase v by the difference. Finally construct a vbox of
height h(x) + n and depth d(z) + V 1 consisting of box x followed by a kern followed by
an hrule of height e fOllowed by another kern followed by box Z; where the kerns are
fibrured so that the bottom of the hrule occurs at a- ~e above the baseline.

15e. Enclose the vbox that was constructed in Rule 15c or 15d by delimiters whose
height plus depth is at least azo 1 if C > T 1 and at least az1 othenvise. Shift the delim~
iters up or dmv11 so that they are vertically centered \Vith respect to the axis. Replace
the generalit~ed fraction by an Inner atom whose nucleus is the resulting sequence of
three boxes (left delimiter 1 vbox 1 right delimiter).

Rules 1-15 account for the preliminary processing of math list items; but we still haven)t
specified how subscripts and superscripts are to be typeset. Therefore some of those
rules lead to the following post~process:

16. Change the current item to an Ord atom 1 and continue with Rule 17.
17. If the nucleus of the current item is a math list 1 replace it by a box obtained

by t:yl)esetting that list in the current style. Then if the nucleus is not simply a symbol 1

go on to Rule 18. Othenvise we are in the common case that a math symbol is to be
translated to its horimntal~list equivalent: Convert the symbol to a character box for
the specified family in the current sit~e. If the symbol was not marked by Rule 14 above
as a text symbol 1 or if \fontdimen parameter number 2 of its font is 11ero1 set J to the
italic correction; othenvise set J to 11ero. If J is nont~ero and if the subscript field of the
current atom is empty1 insert a kern of \Vidth J aller the character box 1 and set J to
11ero. Continue \Vith Rule 18.

18. (The remaining task for the current atom is to attach a possible subscript and
superscript.) If both subscript and superscript fields are empty1 move to the next item.
Othenvise continue \Vith the follmving subrules:

18a. If the translation of the nucleus is a character box 1 possibly fOllowed by a kern 1

set n and v equal to 11ero; othenvise set n +- h - q and v +- d + r 1 where h and d are
the height and depth of the translated nucleus 1 and where q and r are the values of
a 1 (.; and a 19 in the font corresponding to styles Ci and C+. (The quantities n and v
represent minimum amounts by which the superscript and subscript \Viii be shifted up
and down; these preliminary values of n and v may be increased later.)

18b. If the superscript field is empty (so that there is a subscript only) 1 set box x
to the subscript in style C+1 and add \scriptspace to 11.:(x). Append this box to the
translation of the current item 1 shifting it down by max(v 1 <THi; h(x)- ftlazd) 1 and move
to the next item. (The idea is to make sure that the subscript is shifted by at least v
and by at least a Hi; furthermore 1 the top of the subscript should not extend above ft of
the current x~height.)

18c. Set box x to the superscript field in style Ci1 and add \scriptspace to 11.:(x).
Then setn+-ma..x(n1 p 1 d(x)+ ~lazd) 1 wherep=a1a ifC =D1 p=an> ifC =C1

1 and
p = a 14 otherwise; this gives a tentative position for the superscript.

446 AppcndiJ: G: Generating BoJ:cs from Forrrrulas

18d. If the subscript field is empty (so that there is a superscript only) 1 append
box x to the translation of the current atom 1 shifting it up by ?J1 and move to the next
item. Otherwise (i.e. 1 both subscript and superscript are present) 1 set box 11 to the
subscript in style C+1 add \scriptspace to 1L'(JJ) 1 and set v +- max(v1 a 1 7).

18e. (The remaining task is to position a joint subscript/superscript combination.)
Let e = ~s be the default rule thickness. If (n- d(x))- (h(y) -v) 2: 4e, go to Rule 18f.
(This means that the white space between subscript and superscript is at least 40.)
Othenvise reset v so that (n- d(x))- (h(y) -v) = 4e. Let tJ = tla,l- (n- d(x)).
If 1jJ > 01 increase n by 1jJ and decrease v by 1jJ. (This means that the bottom of the
superscript will be at least as high above the baseline as -f, of the x~height.)

18f. Finally1 let J be 11ero unless it was set to a nont~ero value by Rules 13 or 17.
(This is the amount of horimntal displacement between subscript and superscript.)
Make a vbox of height h(x) +nand depth d(y) + V 1 consisting of box x shifted right
by 61 followed by an appropriate kern 1 followed by box 11· Append this vbox to the
translation of the current item and move to the next.

After the entire math list has been processed by Rules 1-181 TE-X looks at the last atom
(if there was one) 1 and changes its t:yl)e from Bin to Ord (if it was of type Bin). Then
the follmving rule is performed:

19. If the math list begins and ends \Vith boundary items 1 compute the maximum
height h and depth d of the boxes in the translation of the math list that was made on
the first pass 1 taking into account the fact that some boxes may be raised or lowered.
Let a= a22 be the axis height 1 and let J = max(h-a1 d+a) be the amount by which the
formula extends away from the axis. Replace the boundary items by delimiters whose
height plus depth is at least max(LJ/500Jf 2J -!) 1 where f is the \delimiterfactor
and lis the \delimitershortfall. Shift the delimiters up or dmv11 so that they are
vertically centered with respect to the axis. Change the left boundary item to an Open
atom and the right boundary item to a Close atom. (All of the calculations in this
step are done \Vith C equal to the starting style of the math list; style items in the
middle of the list do not affect the style of the right boundary item.)

20. Rules 1-19 convert the math list into a sequence of items in which the only
remaining atoms are of types Ord1 Op 1 Bin 1 Rel 1 Open 1 Close1 Pund1 and Inner. After
that conversion is complete1 a second pass is made through the entire list 1 replacing
all of the atoms by the boxes and kerns in their translations. Furthermore1 additional
inter~element spacing is inserted just befOre each atom except the first 1 based on the
t:yl)e of that atom and the preceding one. Inter~element spacing is defined by the three
parameters \thinmuskip 1 \medmuskip 1 and \thickmuskip; the mu units are converted
to absolute units as in Rule 2 above. Chapter 18 has a chart that defines the inter~
element spacing 1 some of which is \nonscript 1 i.e. 1 it is inserted only in styles > S.
The list might also contain style items 1 which are removed during the second pass; they
are used to change the current style just as in the the first pass 1 so that both passes
have the same value of C when they work on any particular atom.

21. Besides the inter~element spacing1 penalties are placed after the translation of
each atom of type Bin or Rel 1 if the math list was part of a paragraph. The penalty
after a Bin is \binoppenalty 1 and the penalty after a Rei is \relpenalty. However 1

the penalty is not inserted after the final item in the entire list 1 or if it has a numeric

ddimiterfactor
ddimiter;;hortfall
thinmu;;kip
mwlmu;;kip
thkkmu;;kip
non;;cript
binoppenalty
rdpenalty

Appendi'J: G: Generating Bo'J:es from Forrrrulas

value 2: 100001 or if the very next item in the list is already a penalty item 1 or after a
Rei atom that is immediately fOllowed by another Rei atom.

22. After all of the preceding actions have been perf0rmed1 the math list has
been totally converted to a horimntal list. If the result is being inserted into a larger
horit~ontal list 1 in horimntal mode or restricted horimntal mode1 it is enclosed by
:'math~onl' and :'math~off' items that each record the current value of \mathsurround.
Or if this list is a displayed f0rmula1 it is processed further as explained in Chapter 19.

Summary of parameter usage. Here is the promised index that refers to everything
affected by the mysterious parameters in the sy-mbol fonts. Careful study of the rules
allo\\'S you to get the best results by appropriately setting the parameters for new
fonts that you may wish to use in mathematical typesetting. Each font parameter has
an external name that is used in supporting software packages; fOr example1 <JJ4 is
generally referred to as :sup2) and 1:(-; as :defaulLrule_thickness). These external names
are indicated in the table.
Porometer Used in Porometer Used in

(Jz space 17 (JJ7 sub2 18d
a;:. x_height 11, 18b, 18c, 18c (J j ('; sup_clrop 18a
<l(i quad 2,20 (J j \) sub_clrop 18a
<J('; num1 15b <l2(l delim1 15e
(J9 num2 15b <l2J delim2 15e
(J j 0 num3 15b <l22 axis-height 8, 13, 15d, 19
(Jjj denom1 15b ~' default_rule_thickness 9, 10, 11, 15 1 15c1 18c
(J j 2 denom2 15b ~9 big-Op-spacing1 13a
a J a sup1 18c I:JO big_op_spacing2 13a
(J j 4 sup2 18c ~ll big-Op-spacing3 13a
(J j;:. sup3 18c I:J2 big_op_spacing4 13a
(J j (i sub1 18b f:n1 big_op_spacing5 13a

Besides the symbol and extension fOnts (families 2 and 3) 1 the rules above also refer
to parameters in other families: Rule 17 uses \fontdimen parameter 2 (space) to de--
termine whether to insert an italic correction between adjacent letters 1 and Rule 12
uses parameter 5 (x-height) to position an accent character. Several non~ fOnt parame--
ters also affect mathematical t:yl)esetting: dimension parameters \delimitershortfall
(Rule 19) 1 \nulldelimiterspace (in the construction of variable delimiters for Rules
11 1 15e1 19) 1 \mathsurround (Rule 22) 1 and \scriptspace (Rules 18bcd); integer pa~
rameters \delimiterfactor (Rule 19) 1 \binoppenalty (Rule 21) 1 and \relpenalty
(Rule 21); muglue parameters \thinmuskip 1 \medmuskip 1 and \thickmuskip (Rule 20).

Woe to the author who always wants to teach!
The secret of being a bore is to tell everything.

-VOLTAIRE, De Ia Nature de /'Homme (1737)

Very few Comoositors are fond of Algebra,
and rather chuse to be emoloyed uoon olain work.

PHILIP LUCKOMBE, The History and Art of Printing (1770)

447

math-on
math-olf
math;;urround
VOI/I'AIHE
I,CCKOJ'viBE

(page 448)

Hyphenation

Appendix: H: Hyphenation

It's better to break a word with a hyphen than to stretch interword spaces too
much. Therefore TEX tries to divide words into syllables when there's no good
alternative available.

But computers are notoriously bad at hyphenation. When the type-
setting of newspapers began to be fully automated, jokes about "the-rapists who
pre-ached on wee-knights" soon began to circulate.

It's not hard to understand why machines have behaved poorly at this
task, because hyphenation is quite a difficult problem. For example, the word
'record' is supposed to be broken as 'rec-ord' when it is a noun, but 're-cord'
when it is a verb. The word 'hyphenation' itself is somewhat exceptional: if
'hy-phen-a-tion' is compared to similar words like 'con-cat-e-na-tion', it's not
immediately clear why the 'n' should be attached to the 'e' in one case but not
the other. Examples like 'dem-on-stra-tion' vs. 'de-mon-stra-tive' show that the
alteration of two letters can actually affect hyphens that are nine positions away.

A good solution to the problem was discovered by Frank M. Liang dur-
ing 1980--1982, and TEX incorporates the new method. Liang's algorithm works
quickly and finds nearly all of the legitimate places to insert hyphens; yet it
makes few if any errors, and it takes up comparatively little space in the com-
puter. Moreover, the method is flexible enough to be adapted to any language,
and it can also be used to hyphenate words in two languages simultaneously.
Liang's Ph.D. thesis, published by Stanford University's Department of Com-
puter Science in 1983, explains how to take a dictionary of hyphenated words
and teach it to TEX: i.e., it explains how to compute tables by which TEX will be
able to reconstruct most of the hyphens in the given dictionary, without error.

TEX hyphenates a given word by first looking for it in an "exception
dictionary," which specifics the hyphen positions for words that deserve special
treatment. If the word isn't there, TEX looks for patterns in the word, and this
is the key idea underlying Liang's method. Here's how it works, using the word
'hyphenation' as an example, when TEX is operating with the English-oriented
patterns of plain TEX format: The given word is first extended by special markers
at either end; in this case we obtain

.hyphenation.

if '. ' denotes the special marker. The extended word has subwords

. h y p h e n a t i o n .

of length one,

.h hy yp ph he en na at ti io on n.

of length two,

.hy hyp yph phe hen ena nat ati tio ion on.

of length three, and so on. Each subword of length k is a pattern that defines
k + 1 small integer values relating to the desirability of hyphens in the positions

449

hyphenation
jokes
Liang
exception dictionary
patterns

450 AppcndiJ: H: Hyphenation

between and adjacent to its letters. VVc can show these values by attaching them
as subscripts: for example, ·0 h0 e 2n0 ' means that the values corresponding to the
subword ·hen' arc 0, 0, 2, and 0, where the 2 relates to h:n)hcns between the ·e'
and the ·n'. The intcrlcttcr values arc entirely zero for all subwords except those
that match an entry in T&X 's current :•pattern dictionary": and in this case, only
the subwords

ohoYaPoho ohoe2no ohoeonoa.t
ohoeon5aoto 1noao on2aoto 1toiooo 2iooo oo2no

occur as special patterns. T&X now computes the IIH1Aimum intcrlcttcr value
that occurs at each subword touching each intcrlcttcr position. For example,
between ·e' and ·n' there arc four relevant values in this case (2 from 0h0 e 2n0 ,

0 from ohoeonoa.t, 0 from ohoeon5aoto, and 1 from 1noao): the maximum of
these is 2. The result of all the maximizations is

.ohoYaPohoe2n5a4t2ioo2no.

l\ow comes the final step: A h:n)hcn is considered to be acceptable between
two letters if the associated intcrlcttcr value is odd. Thus, two potential break-
points have been found: ·hy-phen-ation'. Similarly, the word ·concatenation'
contains the patterns

and this yields ·ocoo2n1 coaotoe1 n2a1 t2 ioo2no ', i.e., ·con-cate-na-tion'.
Let's try a 34-lcttcr word: ·supercalifragilisticexpialidocious'

matches the plain TEX patterns

u1pe r1c 1ca al1i ag1i gil.t il1i il.tist is1ti st2i
s1tic 1exp xap piaa 2i1a i2al 2id 1do 1ci 2io 2us

(where subscripts that aren't shown arc zero), and this yields

.osouJpoeorJcoaolJioforoaogJiol.tioslt2iocJeoxap2iaaol2iJdoolc2ioo2uoso.

The resulting hyphens ·su-per- cal- if rag- ilis-tic-ex-pi -ali -do-cious'
agree with Random House's UrndJTidged Dictiornrr;y (which also shows a few
more: · su-per-cal-i -frag-i -lis-tic-ex-pi -al-i -do-cious').

Plain TEX loads exactly 4447 patterns into TEX's memory, beginning
with ·o. oaocoh.t' and ending with · .tZJ z2' and ·oz.tzoyo'. The intcrlcttcr values in
these patterns arc all between 0 and 5: a large odd value like the 5 in ·0 h5e0 10 o0 '

forces desirable h:n)hcn points in words like ·bach-e-lor' and ·ech-e-lon', while
a large even value like the 4 in ·0 h0 a0 c0h/ suppresses undesirable h:n)hcns in
words like ·tooth-aches'. Liang derived these patterns by preparing a special
version of lVehster-'s Pocket Dictiornrr;y (:0.-'Icrriam, 1966) that contains about
50,000 words including derived forms. Then he checked a preliminary set of
patterns obtained from this data against an up-to-date hyphenation dictionary of
about 115,000 words obtained from a publisher: errors found in this run led to the

pattern dictionary

AppcndiJ: H: Hyphenation

addition of about 1000 words like camp-fire, Af-ghan-i -stan, and bio-rhythm
to the pocket dictionary list. He weighted a few thousand common words more
heavily so that they would be more likely to be hyphenated: as a result, the
patterns of plain T&X guarantee complete hyphenation of the 700 or so most
common words of English, as well as common technical words like al-go-rithm.
These patterns find 89.3% of the h:n)hcns in Liang's dictionary as a whole, and
they insert no h:n)hcns that arc not present.

Patterns derived from the common words of a language tend to work
well on uncommon or newly coined words that arc not in the original dictionary.
For example, Liang's patterns find a correct subset of the hyphens in the word
that all of today's unabridged dictionaries agree is the longest in English, namely

pneu-monou1-tra-mi-cro-scop-ic-si1-i-co-vo1-canoco-nio-sis.

They even do fairly well on words from other languages that aren't too dis-
tant from English: for example, the pseudo-German utterances of :0.-'Iark Twain's
Connecticut }'fJnkee come out with only six or seven bad hyphens:

Con-stanti-nop-o-1i-tanis-cher-
dude1-sack-spfeifen-mach-ers-ge-se11schafft;

Ni-hi1is-ten-dy-na-mitthe-
aterkaestchensspren-gungsat-ten-taetsver-suchun-gen;

Transvaa1-trup-pen-tropen-trans-port-
tram-pe1th-iertreib-er-trau-ungsthrae-nen-tra-goedie;

Mekka-muse1-man-nen-massen-menchen-
mo-er-der-mohren-mut-ter-mar-mor-mon-u-menten-machen.

But when plain TEX is tried on the name of a famous VVdsh city,
Llan-fair-p-wll-gwyn-gyll-gogerych-

wyrn-drob-w1-1-1-1an-tysi1-i-o-gogogoch,

linguistic differences became quite evident, since the correct hyphens arc
Llan-fair-pwll-gwyn-gyll-go-ger-y-

chwyrn-dro-bw11-11an-ty-si1-i-o-go-go-goch.

Appropriate pattern values for other languages can be derived by applying
Liang's method to suitable dictionaries of hyphen points.

Dictionaries of English do not always agree on where syllable boundaries
occur. For example, the Americ<Jn Herit<-:rge Dictiornrr;y says ·in-de-pend-ent'
while lVelJster-'s says ·in-de-pen-dent'. Plain TEX generally follows VVcbstcr
except in a few cases where other authorities seem preferable.

[From here to the end of this appendix, TEX will be typesetting with

\hyphenpenalty=-1000 \pretolerance=-1 \tolerance=1000
\doublehyphendemerits=-100000 \finalhyphendemerits=-100000

so that hyphens will be inserted much more often than usual.]

451

German
Twain
\Vebh
Llanfair P. G.
l)ict ionarie;;
hyphen penalty
pretokrance
tolerance
dou bkhy phendemerit;;
linalhy phendemerit;;

452 AppcndiJ: H: Hyphenation

The fact that plain T&X finds only 90% of the permissible hy1Jhen
points in a large dictionary is, of course, no cause for alarm. VVhcn word fre-
quency is taken into account, the probability rises to well over 95%. Since
TEX 's line-breaking algorithm often succeeds in finding a way to break a para-
graph without needing hyphens at all, and since there's a good chance of find-
ing a different h:n)hcn point ncar to one that is missed by TEX's patterns, it is
clear that manual intervention to correct or insert h:n)hcnations in TEX output is
rarely needed, and that such refinements take a negligible amount of time com-
pared to the normal work of keyboarding and proofreading.

But you can always insert words into TEX 's exception dictionary, if
you find that the patterns arcn 't quite right for your application. For exam-
ple, this book was typeset with three exceptional words added: The format in Ap-
pendix E includes the command

\hyphenation{man-u-script man-u-scripts ap-pen-dix}

which tells TEX how to h:n)hcnatc the words ·manuscript', ·manuscripts', and
·appendix'. l\oticc that both singular and plural forms of ·manuscript' were en-
tercel, since the exception dictionary affects hyphenation only when a word agrees
completely with an exceptional entry. (Precise rules for the \hyphenation com-
mand arc discussed below.)

If you want to sec all of the hyphens that plain TEX will find in some ran-
dom text, you can say ·\showhyphens{{random tcxt)F and the results will ap-
pear on your terminal (and in the log file). For example,

*\showhyphens{random manuscript manuscripts appendix}
Underfull \hbox (badness 10000) detected at line 0
[] \tenrm ran-dom manuscript manuscripts ap-pendix

shows the h:n)hcn positions that would have been found in this book with-
out the addition of any \hyphenation exceptions. Somehow the word ·man-
uscript' slips through all of the ordinary patterns: the author added it as an ex-
ception for this particular job because he used it 80 times (not counting its ap-
pearances in this appendix).

The \showhyphens macro creates an hbox that is intentionally undcrfull,
so you should ignore the warning about ·badness 10000': this spurious message
comes out because TEX displays hyphens in compact form only when it is dis-
playing the contents of anomalous hboxcs. (TEX wizards may enjoy study-
ing the way \showhyphens is defined in Appendix B.)

If you want to add one or more words to the exception dictionary1 just
say \hyphenation{(words}} where (words} consists of one or more (word}

items separated by spaces. A (word} must consist entirely of letters and hy-
phens; more precisely1 a :'hyphenl' in this context is the token - 12 • A :'let-
terl' in this context is a character token whose category code is 11 or 121 or a con-
trol sequence defined by \chardef 1 or \char{8-bit number} 1 such that the correspond-
ing character has a nont~ero \lccode. T£X uses the \lccode to convert each let-

exception dictionary
hyphenation
;;howhyphen;;
hyphenation
underfull
hyphenation
chardef
char
kcode

AppcndiJ: H: Hyphenation

ter to :'lowercasd' fOrm; a word~to--be--h:yl)henated will match an entry in the excep~
tion dictionary if and only if both words have the same lowercase form after conver~
sion to lowercase.

TE-X \Viii hencefOrth insert discretionary hyphens in the specified positions1

whenever it attempts to hyphenate a word that matches an entry in the excep~
tion dictionary1 except that hyphens are never inserted after the very first letter or be--
fore the last or second~last letter of a word. You must insert your O\V1l discretionary hy~
phens if you want to allow them in such positions. A \hyphenation entry might con~
tain no hyphens at all; then TE-X \Viii insert no h:yl)hens in the word.

The exception dictionary is global; i.e. 1 exceptions do not disappear at the end
of a brroup. If you specify \hyphenation of the same word more than once1 its

most recently specified h:yl)hen positions are used.

~~ The excepti?n dictionary is. dynamic 1 ?ut the pattern dictionar.y is static: To
Y Y change TE-'<>s current set of h:yl)henabon patterns1 you must giVe an enbrely
new set 1 and TE-X will spend a little time putting them into a form that makes the hy~
phonation algorithm efficient. The command fOrmat is \patterns{(patterns}} 1 where
(patterns} is a sequence of (pattern} items separated by spaces. This command is avail~
able only in INITEX 1 not in production versions of TE-X 1 since the process of pattern com~
pression requires extra memory that can be put to better use in a production sys~
tem. INITEX massages the patterns and outputs a format file that production ver~
sions can load at high speed.

~~ A (patt.ern} in the \pat.tern~ list. has a more restricted form than a
Y Y (word} m the \hyphenat~on hst 1 smce patterns are supposed to be pre--
pared by experts who are paid well fOr their expertise. Each (pattern} con~

sists of one or more occurrences of {value}(letter} 1 followed by (value}. Here (value} is ei~
ther a digit (012 to 9Jz) or empty; an empty (value} stands for 11ero. For ex~
ample1 the pattern :0a 1b 0) can be represented as Oa1b0 or a1b0 or Oaib or sim~
ply aib. A (letter} is a character token of category 11 or 12 whose \lccode is
nont~ero. If you want to use a digit as a (letter} 1 you must precede it by a nonempty
{value}; fOr example1 if for some reason you want the pattern :1 a 0 12) you can ob~
tain it by t:yl)ing :1a012) 1 assuming that \lccode'1 is nont~ero. Exception: The char~
acter :.) is treated as if it were a (letter} of code 0 when it appears in a pat~
tern. Code 0 (which obviously cannot match a nont~ero \lccode) is used by TE-X to rep~
resent the left or right edge of a word when it is being h:yl)henated.

Plain TE-X inputs a file called hyphen. tex that sets up the pattern dictio~
nary and the initial exception dictionary. The file has the fOrm

\patterns{.ach4 .ad4der .afit .al3t zte4 4z1z2 z4zy}
\hyphenation{as-so-ciate as-so-ciates dec-li-na-tion oblig-a-tory

phil-an-thropic present presents project projects reci-procity
re-cog-ni-zance ref-or-ma-tion ret-ri-bu-tion ta-ble}

The first thirteen exceptions keep TE-X from inserting incorrect hyphens; for ex~

ample1 :pro-ject) and :pre-sent) are words like :re-cord) 1 that cannot be hy~
phonated \Vithout knowing the context. The other exception 1 :ta-ble) 1 is in~

eluded just to meet the claim that plain TE-X fully hyphenates the 700 or so most com~
mon words of English.

453

lowerca,-;e
group
pattem;;
I!\:ITEX
digit

454 AppcndiJ: H: Hyphenation

~~ But how does TE-X decide what sequences of letters are :'wordrt that should
Y Y be hyphenated? Let)s recall that TE-Xis working on a horit~ontallist that con~
tains boxes 1 glue 1 rules 1 ligatures 1 kerns 1 discretionaries 1 maxh-s 1 whatsits 1 etc. 1 in addi~
tion to simple characters; somehow it has to pick out things to h:yl)henate when it is un~
able to find suitable breakpoints \Vithout hyphenation. The presence of punctua~
tion maxh-s befOre and/or after a word should not make a word unreCObfilit~able or unhy~
phenatable; neither should the presence of ligatures and kerns within a word. On the
other hand1 it is desirable to do hyphenation quickly1 not spending too much time try~
ing to handle unusual situations that might be h:yl)henatable but hard to recog~
ni11e mechanically.

~~ TE-X l.Ooks for p~tentiall! hyphenata?le words by searching ahead from each
Y Y glue 1tem that IS not m a math formula. The search bypasses charac~
ters whose \lccode is 11ero1 or ligatures that bebrin \Vith such characters; it also by~
passes whatsits and implicit kern items 1 i.e. 1 kerns that were inserted by T£X it~

self because of information stored with the font. If the search finds a charac~

ter \Vith nont~ero \lccode 1 or if it finds a ligature that begins \Vith such a charac~
ter 1 that character is called the starting letter. But if any other type of item oc~
curs befOre a suitable starting letter is f0und 1 hyphenation is abandoned (until af~

ter the next glue item). Thus 1 a box or rule or mark 1 or a kern that was explicitly in~
serted by \kern or \/, must not intervene between glue and a hyphenatable word. If
the starting letter is not lowercase (i.e. 1 if it doesn)t equal its O\V1l \lccode) 1 h:yl)hen~

ation is abandoned unless \uchyph is positive.

~~ If a suitable starting letter is fo~nd: let it be in font .f: ~ H:yl)henation is aban~
Y Y doned unless the \hyphenchar of f 1s between 0 and 2;>;) 1 and unless a charac~
ter of that number exists in the fOnt. If this test is passed1 T£X continues to scan fOr~
ward until coming to something that)s not one of the follmving three :'admissi~

ble itemsl': (1) a character in font f whose \lccode is nont~ero; (2) a ligature formed en~
tirely from characters of type (1); (3) an implicit kern. The first inadmissible item ter~
minates this part of the process; the trial word consists of all the letters found in ad~
missible items. Notice that all of these letters are in font f.
~~ If a trial word [1 •• • ln has been found by this process1 hyphenation \Viii still
Y Y be abandoned unless n 2: ,\ + p 1 where ,\ = max(1 1 \lefthyphenmin) and
p = ma..x(1 1 \righthyphenmin). (Plain TE-X takes ,\ = 2 and p = 3.) Further~

more1 the items immediately follmving the trial word must consist of 11ero or more char~
acters 1 ligatures 1 and implicit kerns 1 followed immediately by either glue or an ex~
plicit kern or a penalty item or a whatsit or an item of vertical mode ma~
terial from \mark1 \insert 1 or \vadjust. Thus 1 a box or rule or math fOr~

mula or discretionary follmving too closely upon the trial word \Viii inhibit h:yl)hen~
ation. (Since T£X inserts empty discretionaries after explicit hyphens 1 these rules im~
ply that already~ hyphenated compound words \Viii not be further hyphenated by the al~
gorithm.)

~~ Trial words !1 .. . ln that pass all these tests are submitted to the hy~
Y Y phonation algorithm described earlier. Hyphens are not inserted befOre
!;., or after ln+J~p· If other hyphenation points are found 1 one or more discre--
tionary items are inserted in the word; ligatures and implicit kerns are reconsti~
tuted at the same time.

ligature;;
kern;;
implicit kem
kern
uchyph
hyphenchar
kfthyphenmin
righthyphenmin
mark
in;;ert
'<adju;;t
explicit hyphen;;

AppcndiJ: H: Hyphenation 455

~~ s.ince ligatures and kern~ are ~rea.te~l in quite a general m<umer) it)s p~s~
Y Y s1ble that one hyphenation pomt unght preclude another because the hg~
atures that occur with hyphenation might overlap the ligatures that occur with~
out h:yl)henation. This anomaly probably won)t occur in reaJ~lifC situations; there--
fore T£X)s interesting approach to the problem \Viii not be discussed here.

~~ A~c?rding to th.e .rules above 1 there)s an important dis~inct~~n between im~
Y Y phnt and exphnt kerns 1 because TE-X recomputes unphnt kerns when
it finds at least one hyphen point in a word. You can see the difference be--
tween these two t:Yl)CS of kerns when TE-X displays lists of items in its internal fOr~
mat 1 if you look closely: :\kern2. 0) denotes an implicit kern of 2 pt 1 and :\kern 2. 0) de--
notes an explicit kern of the same magnitude. The italic correction command \/ in~
serts an explicit kern.

~~ The control sequence \- is equivalent to \discretionary{\ char h}{}{} 1

Y Y where h is the \hyphenchar of the current f0nt 1 provided that h lies be--
tween 0 and 255. Othenvise \-is equivalent to \discretionary{}{}{}.

~~ So far we have assumed that TE-X hilO\VB only one style of hyphenation at a
Y Y time; but in fact TE-X can remember up to 256 distinct sets of rules 1 if you have
enough memory in your computer. An integer parameter called \language selects the
rules actually used; every \hyphenation and \patterns specification appends new rules
to those previously given for the current value of \language. (If \language is nega~
tive or greater than 255 1 TE-X acts as if \language = 0.) All \patterns for all Ian~
guages must be given before a paragraph is t:yl)eset 1 if INITEX is used fOr typesetting.

~~ T£X is able to work with several languages in the same parabrraph 1 be--
Y Y cause it operates as follo\\'S. At the beginning of a paragraph the :'cur~
rent languagd' is defined to be 0. \Vhenever a character is added to the cur~
rent paragraph (i.e. 1 in unrestricted horimntal mode) 1 the current language is com~
pared to \language; if they differ 1 the current language is reset and a whatsit node spec~
ifying the new current language is inserted before the character. Thus 1 if you say
:\def\french{\language1. .. }) and :mix {\french franc/ais} with English) 1 T£X
will put whatsits befOre the f and the w; hence it will use language 1 rules when hy~
phonating franc/ais 1 after which it will revert to language 0. You can insert the what~
sit yourself (even in restricted horit~ontal mode) by saying \setlanguage{number};
this changes the current language but it does not change \language. Each what~
sit records the current \lefthyphenmin and \righthyphenmin.

If all oroblems of hyohenation have not been solved,
at least some orogress has been made since that night,

when according to legend, an RCA Marketing Manager received
a ohone call from a disturbed customer. His 301 had just hyohenated "God."

- PAUL E. JUSTUS, There's More to Tyoesetting Than Setting Tyoe (1972)

The committee skeotically re~
commended more study for a bill
to require warning labels on rec~

ords with subliminal messages re~
corded backward.

- THE PENINSULA TIMES TRIBUNE (April 28, 1982)

internal format
italic correction

hyphenchar
language
hyphenation
pattern;;
;;etlanguage
French
JCSTCS
Tll'viES THIBt !\:E

>age 450) I

Index

AppcndiJ: I: IndcJ: 457

The author has tried to provide as complete an index as possible, so that people
will be able to find things that arc tucked away in obscure corners of this long
book. Therefore the index itself is rather long. A short sumnu;~,ry of the simpler
aspects of T&X appears at the beginning of Appendix B: a sumnu;~,ry of special
symbols appears at the end of Appendix F: a sumnu;~,ry of other special things
appears under ·tables' below.

Page numbers are underlined in the index when they represent the definition
or the main source of information about whatever is being indexed. (Underlined entries
are the most definitive1 but not necessarily the easiest fOr a beginner to understand.)
A page number is briven in italics (e.g. 1 : 128)) when that page contains an instructive
example of how the concept in question might be used. Sometimes both underlining
and italics are appropriate. \Vhen an index entry refers to a page containing a relevant
exercise1 the answer to that exercise (in Appendix A) might divulge further infOrmation;
an answer page is not indexed here unless it refers to a topic that isn)t included in the
statement of the relevant exercise.

Control sequence names that are preceded by an asterisk (*) in this index are
primitives of T£X; i.e. 1 they are built in. It may be dangerous to redefine them.

u (vi::>ible ::>pace) 1 ;}_ 1 4201 429;
see ~Jlso (::>pace) 1 ::>pace::>.

*\u (con1rol ::>pace) 1 81 101 191 7:11 'l4 1

8() .. 87; 154; !6:1; t6'l; 28:l; 285;
290; :J2:l; :l51; :18!.

(ha::>h mark) 1 :l8 1 51 1 I l:l1 200·M2021 20:11

204 205, 228, 235, 2:16 240.
\# (), 38, 51, 35().
1 20:J· 205 1 228 1 SMJ.MS621 :n8·M:n.9.
###) 88.
#{, 204, 401.
$(dollar ::>ign) 1 4 1 :l81 51 1 54 1 8() .. 88 1 .921 1271

f :14 .. , f :151 f 85·M f 861 2()91 28:J 1 287; 29:J.
\$ ($), 38, 51' 202, :10.'1, 35().
$$ 1 8() .. 89 1 1851 !86 .. UN1 2:121 287 1 29:l 1

S'l5·M:n6) 4 2 t.
% (percen1 ::>ign) 1 261 :l8 1 :l9 1 4:l 1 48 1 51 1 ll:l 1

124, 24.'1, :1:17, :140, 343.
\% (%), 38, 4344, 51, 35().
%%; 112 .. 11:l.
&: (ampemand) 1 :l8 1 51 1 t'l5·Mf'l'l1 U)(J.· UN1

2:1 I 24 8, 282, 38[> 38().
for preloaded fonna1::> 1 25 1 2G 1 :J44.

\& (&), 38, 51, 53, 35().
&&, 241 242, :161, 412.

(apo::>1rophe or righ1 quo1e) 1 :J .. 5 1 51 1 !:101

155; 201; :105; :J24; :J57; :J94<J95;
see ~Jlso oc1 al.

\' (acu1e accen1) 1 TM.91 52 ·5:l 1 :1051

:1:151 :J5G1 4 20.
("), :1 5, 24, 394<195.

(reveme apo::>1rophe or Jell quo1e) 1 :l·51 51 1

l:l2; l:l4; :105; :l91) :J94<J95;
see ~Jlso alphabe1ic con::>1an1.

\
1 (grave accen1) 1 81 52 .. 5:l 1 :1051 :J5G.

t t (,,); S·M5) 24; :J94<J95.
" (double quo1e or di11o mark) 1 52 1 5:l 1

I:J4; see ~Jlso hexadecimal.
\" (diere::>i::> or umlau1 accen1) 1 'l1 91 24 1

251 52 .. 5:l 1 55 1 :J5G.
((Jell paren1he::>i::>) 1 51 1 l:l4 1 !401

f 4 5·M f 50; :J45.
\(,409.
) (righ1 paren1he::>i::>) 1 51 1 D4 1 !401

f 4 5·M f 50; :J45.
[(Jell b,·acke1), 51, 134, 146 148,

!71, 408,4:17.
[]' 28, 7.'1, :102.
[1]' 23, ll]l.
] (righ1 bracke1) 1 51 1 D4 1 f46·Mf4'l1

!71, 345,408,4:17.
{(Jell brace) 1 fS·Mf4 1 UJ.M2f 1 :l8 1 51 1

2(}().M2021 20:J .. 204 1 205 .. 2061 21()1 2()91

275 .. 27G 1 28:l 1 28G1 291 1 :1:10.
\{ ({), 134, 146 147, 174 175, :l()l.
{} 1 t,91 54 1 821 951 114 1 !2.91 D01 1501

IG9 1 UN1 2421 25:l 1 2G2 1 :1051 :1!51

:n 81 :J51) :J9:J.
} (righ1 brace) 1 fS·Mf4 1 UJ.M2f 1 :l81 51 1

2(}().M2021 20:J .. 204 1 205· 2061 2()9 1

275 ·27G 1 279 1 :JOI 1 :1:10.
\} (}), 134, 146 147, 174 175, :l()l.

458 AppcndiJ: I: IndcJ:

+ (plm> ::>ign) 1 51 1 D2 1 2()8.
\+(begin 1abbed line) 1 2:1! ·2:141 249 1

:n91 :J54.
-(hyphen or mimm) 1 41 51 1 9:l1 951

f 27; l :l2; 2()8.
*\- (di::>cre1ionary hyphen) 1 95 1 28:l1

287; 292; 455.
-- 1 --- 1 see en-da::>h 1 em-da::>h.
± 1 see \pm.
=f 1 see \mp.
* (a::>1eri::>k) 1 2:l 1 25 1 51 1 99 1 l l:l1 l IG 1

1:12 1:1:1, 154, :126.
* (di::>cre1ionary X) 1 l"7:l1 :J57.
**; 2:l; 25; :J44.
I (KiaKh), 51, 1:12, 146 147, :120,430.

*\I (i1alic correc1ion) 1 14 1 64 1 287 1 2921

:106; :J82; 455.
I (ve1iical line) 1 521 5:l 1 l:l2 1 f46·Mf4'l1

I'll, 174, 438.
\I (il), 146 147, I'll, 3GI, 435,438.
\ (back::>lMh) 1 'l1 :l81 :l91 401 51 1 14() .. 1471

343, 4:16.
\\, 38,378,418.
< (le&:> 1han ::>ign) 1 52 1 5:l 1 !:1:11 1501 154 1 209.
~ 1 45 1 D51 :JG9; see ~Jlso \le.
=(equal::> ::>ign) 1 51 1 !:1:11 2091 22G 1 275 1 :nfJ.
\= (mi1l:TOn 8l::cen1) 1 52 1 5:11 :J5G.

181,4:17.
#1 45 1 D51 :JG9; see ~Jlso \ne.
> (grea1er 1han ::>ign) 1 521 5:l 1 !:1:11 1501 209.
\>(medium ::>pace) 1 W"/ 1 171 1 :J57.
~ 1 45 1 D51 :JG9; see ~Jlso \ge.
() 1 see angle bracke1::>.
, (comma) 1 51 1 72 .. -'1:11 !,'-f4 1 t6f .. !621

t'l2 .. -f'l4 1 :1.94 ·:1.951 4:JO.
\, (1hin ::>pace) 1 51 t6T--t'l:11 :J05 1 :J571

40.'14 tO.
(period) 1 51 1 72· 7:11 I:B-I:l4 1 1491 !6! 1

:J451 :1.94 ·--:1.951 4:JO.
::>pace af1er1 'lt!---75; "/G.

\. (do1 accen1) 1 52 1 :J5G.
••• 1 see \ldots 1 ellip::>e::>.
• • • 1 see \cdots 1 ellip::>e::>.
: 1 see \vdots 1 ellip::>e::>.

(::>emicolon) 1 51 1 !,'-f4 1 WI.
\; (1hick ::>pace) 1 W"/1 171 1 :J57.
: (colon) 1 51 1 tss .. t:-J4 1 t551 W1 1 t'l4 1 4:18.

l:l:l.
? (que::>1ion mark) 1 :l1 1 51 1 Tl1 WI.
l. (open que::>1ion) 1 51.
! (exclama1ion poin1); 51; 'l2; n) 75; !6,9.
i (open exclama1ion) 1 51.
\! (nega1ive 1hin ::>pace) 1 W"/ 1 !6.91 :J57.

_ (underw:ore) 1 :l81 51 1 !28·--!:101 D4.
_ (-), 38, 165, 35().
-(hal), 38, 51, 128 1:10, 134, 3G9, 42:1.
\- (circumflex accen1) 1 52 .. 5:l 1 :J5G.
--) 45 1 47 1 481 :W81 :J70 1 42:J.
--M (ASCII (re1urn)) 1 45 1 2491 :BI 1 :J4:l 1 :J451

:-J4 8; :152; :J80; :1,90---:1,9 f) 4 2 f) 42:J.
\- -M 1 81 :1051 :l51.
- (1ilde) 1 :l81 51 1 :J4:l 1 :J5:J; see ~Jlso 1ie::>.
\- (1ilde accen1) 1 521 :J5G1 :J87.
t.t. 1 D5 1 :J4:J1 :W8 1 429;

see ~Jlso \uparrow1 \downarrow.
@ (a1 ::>ign) 1 51 1 98 .. 99 1 l:l2 1 D4 1 :144 1

:164, 408, 414.
@@) 98 .. 99.
\@ne 1 :J45.

\aa (a) 1 :J5G.
\H (A), 35G.
abbrevia1ion::>1 'lS· 'l4 1 :-J40; see ~Jlso macroo.

*\above (general frac1ion) 1 !4:11 1521

292; 444 .. 445.
*\abovedisplayshortskip1 1891 274 1

:148) 4 !5.
*\abovedisplayskip1 1891 1901 1941 274 1

291; :-J48) 4!5.
*\abovewi thdelims 1 1521 2921 444 .. 445.
aboolu1e value 1 !461 !4.91 t'lf 1 t'/5.
Ace a1om 1 1581 2891 44:J.

*\accent (general accen1) 1 91 54 1 8G 1 28:l1 28().
accen1::> (" · e1c.) 1 71 52·--5:11 :1:1.91 :J5G 1

:J57) 427 .. 429.
a::> liga1 ure::>1 4G 1 54.
in ma1h 1 t:15·--fS'l1 141 1 W4 .. W51

:J59; 4:l5; 44:J.
on 1op of accen1::>1 DG.
1able 1 52 1 l:l5 1 :n9.

\active (ca1egory D) 1 24 f 1 :J4:l 1 :1.951 421.
ac1ive charac1er1 :J"/1 40 1 209 1 241 1 :J0"/ 1

:Jn) :J80<J81) :J94<J95.
ac1ive ma1h charac1er 1 1551 289.
ac1ive ::>pace::> 1 :J81 1 :J94 1 421.
\acute (ma1h accen1: ±) 1 l:l5 1 :J59.
acu1e accen1 (") 1 see \' 1 \acute.
\address 1 40:1·--404 1 407.

*\adjdemerits 1 98 1 2Tl1 :-Jt4 1 :-J48.
*\advance 1 2! 1 f !8·--f !.91 2!81 2561 27G 1 :155.
\advancepageno 1 25G 1 2571 :JG2 1 4 !6.
\ae (a~) 1 vii 1 171 4f> .. 4G1 52·--5:11 2:1.91 :J5G.
\AE (/h) 1 52·--5:11 :l5G.

*\afterassignment1 2151 2791 :1521

:164, :176, 401.
*\aftergroup1 215 1 2791 :16:11 :-J'l4 1 S'l'l1 :J"/9.
'ain 1 see reveme apo::>1rophe.

al-Kh\vi\rit\mi 1 abu Ja'far fv1ul;tammad
ibn fvHmi\ 1 53.

\aleph (N) 1 9 1 3581 435.
Alice 1 41 3871 394.
alignmen1 di~:>play~:> 1 1901 1931 291.
(alignmen1 ma1erial) 1 2821 285.
alignmen1~:> 1 2:Jl .. 249 1 282 1 :J02<W:l1 :J8f><l8G1

392; see ~Jlso 1abbing.
Alka-Sel1"'er1 404 .. 405.
all cap~:> 1 see \uppercase.
Allen 1 Todd Andre\v1 :n-7.
alloca1ion 1 121 1221 :J4G 1 347.
\allocationnumber 1 :J4G.
\allowbreak1 f'l4 1 3Sl1 :1,96.
\allowhyphens 1 :1.94 1 395.
\alpha (0:) 1 !271 20! 1 358 1 434.
\Alpha1 434.
alphabe1ic con~:>1an1~:> 1 44 ·461 2151 2G91

2701 3091 :JG7 1 385.
al1erna1ive~:> 1 see \cases.
\amalg (!!) 1 358 1 4:JG.
American fv1a1hema1ical Socie1y 1 ii 1 vii.
ampemand 1 25 1 381 51 1 175 .. t'l'l1 U)(J.· UJ61

2:1 I 24 8, 282, 344, 385 38(), 428.
A\--JS·.I),;X, 1()4, 420, 434.
ana1omy of '!) .. ;X 1 :J8<l91 4G 1 851 2G7 1 3491

:JTJ1 3791 3851 :J8G1 45G.
\angle (L), 358, 435.
angle bracke1~:> (()) 1 59 1 146 .. f4'l1 1501 2G8 1

4201 437; see ~Jlso \langle 1 \rangle.
ang~:>1 rom uni1 1 see \A.A.
\annotations 1 403 1 404 1 407.
an~:>\vem 1o 1he exerciHe~:> 1 305 <n7.
An1i~:>1hene~:> of A1hen~:> 1 239.
apoo1rophe 1 :J .. 5 1 51 1 !:101 1551 201 1 324;

see ~Jlso oc1 al.
\approx (;::::) 1 1281 4:JG.
Arabic 1 GG.
\arccos (arcco~:>) 1 IG2 1 :JG l.
Archy1M of TarM 1 239.
\arcsin (arc~:>in) 1 IG2 1 :JG l.
\arctan (arc1an) 1 lG21 :JGL
Aren~:>kil 1 Anion S1epanovich 1 410.
\arg (arg) 1 IG2 1 :JG l.
argumen1~:> 1 :n 1 200 .. 205 1 26:11 2G8 1 :-J'l5·M:-J80.
Ari~:>1ippu~:> of Cyrene 1 239.
Ari~:>1ophane~:> 1 239.
Ari~:>1o1le 1 35.
ari1hme1ic 1 117 .. 1191 see \advance 1

\multiply1 \divide.
(ari1hme1ic) 1 27G.
array~:> 1 t'l6·Mf'l81 see ma1rice~:>.
aJT0\VH1 f46·Mf4'l1 f821 2261 4:J7.

AppcndiJ: I: IndcJ: 459

\arrowvert (I)1 1501 359.
\Arrowvert (II)1 1501 359.
The Art of Computer Progwmming1

259 .. 2()0.
a~:> i~:> 1 see \obeylines 1 \obeyspaces 1

verba1im.
ASC!! 1 31 43 .. 45 1 49 1 214 1 3431 :JG71 371.
(a&:>ignmen1) 1 275.
a&:>ignmen1~:> 1 275 .. 2781 :JTJ.
\ast (*) 1 43().
a~:>1eri~:>k 1 23 1 251 51 1 991 1 D 1 1 1()1 t:-J2·Mf:-J:-J1

154; :126.
\asymp (':=::::) 1 4:JG.
at 1 1() .. 171 G01 2D1 2771 4081 4141 4:n.
(a1 clauH€) 1 277.
a1 aign, 51,9899, 132, 134, :144, :164,

408, 414.
AT&T 1 247.
a1om~:> 1 157 .. 1591 170 .. 171 1 289 .. 290 1 441·447.

1able of a1omic 1ype~:> 1 158.
*\atop1 !4:11 1451 1521 t'l81 2921 444.
*\atopwithdelims 1 !521 292 1 :124 1 :1601 444.
au1hor1 1ypeHe11ing by 1 1821 412· 413.
auxiliary ~:>pace~:> 1 see 1ie~:>.

axi~:> line 1 150 .. 1521 1791 443·447.

\b (bar-under accen1) 1 521 :J5G.
Bach 1 Johann Seba~:>1ian 1 408.
Bach 1 P. D. Q. 1 410 .. 411 1 481.
backsla~:>h 1 'l1 381 391 40 1 51 1 14() .. 1471

343, 4:16.
\backslash (\) 1 :181 f46·Mf4'l1 3591 435 1 4:16.
backspacing 1 661 82 .. 83 1 222 1 :-J.94 .. ·:-J.951 4 !8.
Backtm1 John Warner 1 2G8.
Bacon 1 !"''ranci~:> 1 viocoun1 S1. Alban~:> 1 41.
Bacon 1 Leonard 1 1.
bad breaks 1 avoiding1 27<W1 91 .. 94 1

17:J .. I74; 197.
badneKK, 28 :10, 97 99, lllll:l, 302.

*\badness 1 214 1 22,91 271.
(balanced 1ex1) 1 275 1 27G 1 385.
balancing column~:> 1 :J8G<J881 :1.96· :1.971 4 t'l.
\bar (ma1h accen1: X) 1 1351 t:-Jf/.
bar accen1 (-) 1 see \=1 \bar.
bar-under accen1 (_) 1 see \b.
Barre11 1 Percy Reginald 1 197.
Barrough 1 Philip 1 229.
baHeline 1 151 G:J 1 7"71 80 .. 81 1 150.

*\baselineskip (normal ver1ical di~:>1ance
behveen bMeline~:>) 1 'l8·M'l.91 80 1 104 1

194; 253; 256; 274; 281; 342; 349;
:-J5f·M:-J52; 40.9; 4 f4 .. -4 !5.

'\batdunode, 32, 277, 299, :1:16.
Ba1ey 1 Charle~:> 1 197.

460 AppcndiJ: I: IndcJ:

beau1y 1 l.
Beck, Simone, 233, 23().
Bee1hoven 1 Lud,vig van 1 408 1 410 .. 411.
Bee1on 1 Barbara Ann Neuluum Friend

Smi1h 1 48:J.
\beginchapter 1 418.

*\begingroup1 21 1 24.91 2621 279 1 :1801

407, 4 I .'I.
\beginsection 1 ,':f40·M,':f4 ! 1 :J55.

*\belowdisplayshortskip1 1891 274 1

:148) 4 !5.
*\belowdisplayskip1 1891 1901 194 1 274 1

291; ::f48) 4 !5.
Bemer 1 Robe1i William 1 see TEX 1 ASCII.
ben1 bam1 see angle bra<:keh>.
Ber1holle 1 Loui::>e11e 1 2:n1 2:JG.
\beta ([!), 127, 434.
\Beta 1 4:J4.
\bf (m>e boldface 1ype) 1 fS .. 14 1 ffJ4 .. -ffJ51

:128; :l5l; 40.9; 4f4 .. ·4f5.
\bffam1 :l5l 1 4f4 .. ·4f5.
\bgroup (implici1 {) 1 2G91 :l5l 1 :16:11

382, 385, 407, 421.
Bibby 1 Duane Robe1i 1 i.
Biblical reference::>1 :JO:l 1 Sf f.
bibliographie::>1 4 1 'l4 1 9:l1 ::140-M:N f.
\big (largi::>h delimi1er) 1 1471 171 1 :1201

:15.91 :wo) 4 t 4 ... 4 t 5.
\Big (be1,veen \big and \bigg) 1 1471

175; :15.9; :wo.
big-0 no1a1ion 1 l:l2 1 t6f·Mf621 !6,9.
big poin1 1 57 1 see bp.
\bigbreak1 Ill 1 llG1 :J5:l 1 :MS.
\bigcap (large n); 147; 4:J5.
\bigcirc (0)1 4:JG.
\bigcup (large U) 1 1471 4:J5.
\bigg (large delimi1er) 1 f4'l1 1751 l9G 1

:J27; :15.9; :wo.
\Bigg (larger 1han \bigg) 1 1471 1751

:15.9; :wo.
\bigggl 1 \bigggr 1 :J24.
\biggl (\bigg Jell delimi1er) 1 1471

f 4 ,9) :J59; 4:J7.
\Biggl (\Bigg Jell delimi1er) 1 1471

149; :J59; 4:J7.
\biggm (\bigg middle delimi1er) 1 1471 :J59.
\Biggm (\Bigg middle delimi1er) 1 1471 :J59.
\biggr (\bigg righ1 delimi1er) 1 1471

f 4 ,9) :J59.
\Biggr (\Bigg righ1 delimi1er) 1 1471

149; :J59.
\bigl (\big Jell delimi1er) 1 f46·Mf4'l1

149 .. 150; !55; 171; t'l5; :J59; 4:J7.

\Bigl (\Big lef1 delimi1er) 1 1471 :J59 1 4:J7.
\bigm (\big middle delimi1er) 1 1471

:J59; 171; !75.
\Bigm (\Big middle delimi1er) 1 1471 :J59.
\bigodot (large (~::) 1 4:J5.
\bigoplus (large EE:) 1 4:J5.
\bigotimes (large G:¢) 1 4:J5.
\bigr (\big righ1 delimi1er) 1 !46 .. f4'l1

149 .. 150; 171; t'l5; :J59.
\Bigr (\Big righ1 delimi1er) 1 1471 :J59.
\bigskip 1 70 1 1091 111 1 llf> .. l IG 1 :J521

:155; 401; 4 f0·M4 !2.
\bigskipamount 1 l2:l 1 :J49 1 :152· :15:11 :16:1.
\bigsqcup (large U) 1 4:Jf>.
\bigtriangledown (y)1 4:JG.
\bigtriangleup (6) 1 4:JG.
\bigtype 1 408 .. 409 1 411.
\biguplus (large ltl) 1 :J58 1 4:J5.
\bigvee (large V) 1 4:J5.
\bigwedge (large ;\) 1 4:J5.
Bill 1 :J871 :J94.
Bin a1om 1 1581 170 .. l 71 1 289 1 442 .. 444 1 44G.
binary opera1iom>1 t:12·Mf:1:11 154 .. 1551 164 1

l9G 1 :J58 1 4:l5 1 4:JG; see ~Jlso Bin a1on1.
binary ::>earch1 :J87 .. :J88.
binomial coefficien1 1 l4:l 1 see \choose.

*\binoppenalty1 101 1 174 1 2721 :J22 1 ,':f481 44().
black box 1 64 1 221 1 222.
blackboard bold (e.g. 1 [!{) 1 IG4 1 4:J4.
blank line in inpu1 file 1 24 1 :J"/ 1 47 1

:140:141,381.
blank t>pace 1 see t>pacet>.
BlMe B0hning 1 fv1aria Doro1hea 1 248.
block t>1ruc1ure 1 see grouping.
block t>1yle 1 40f> .. 407.
\bmit (boldface ma1h i1alic) 1 l5G.
\brood (mod) 1 !64 1 :J22 1 :JGL
\body, 41!:1 404, 407.
Boehm 1 Pe1er Jamet>1 !59.
B0hning1 Jobt>1 Heinrich 1 248.
B0hning1 f.%r1in John Henry 1 248.
Bohning Knu1h 1 Loui::>e Marie 1 248.
boldface 1 D 1 l5G 1 1()4 .. 1()51 :J8G.
book det>ign 1 4 12.
book prepara1ion 1 :JO:l1 425.
\bordermatrix1 l'l'l1 :WI.
\bot (l_), 435.

*\botmark1 2D1 258 1 259 .. 2()01 262·M26:11 280.
boundary i1em 1 1571 4421 44G.
Bourbaki 1 NicolM 1 lOG.
\bowtie (1><) 1 :J58 1 4:JG.
(box) 1 1201 222 1 278 1 282 1 285 1 290.

*\box (m>e box regi::>1er) 1 120·1221 151 1 222 1

278 1 34G 1 S54 1 S861 S87.
\box255 1 1251 253 .. 258.
(box dimen::>ion) 1 271 1 277.
box di::>play::> 1 GG1 7()1 791 !()8 ·1()91 ~W21 4'[)().
box memory1 :W0 1 394.
(box or rule) 1 281.
(box ::>it\e M::>ignmen1) 1 277.
(box ::>pecifica1ion) 1 222 1 278.
lboxedl con1rol ::>equence name::>1 38.
boxed ma1erial 1 22S1 420.
boxe::>; ():J .. ()7) 77 .. 83; 221 .. 229.

*\boxmaxdepth1 fil_1 l l:l 1 2491 2551 274 1 :-J48.
bp (big poin1) 1 57 1 270.
\brace (no1a1ion like {Z})1 :JGO.
\braceld 1 \bracelu 1 \bracerd 1 \braceru

(piece::> of horit\On1al brace::>) 1 S57.
bra<:e::>1 51 1 2!G 1 2G9 1 275 .. 27() 1 279 1 2831 28G 1

289 .. 291 1 :no) 345 1 :J8f)<J8G.
for argumen1::> 10 macro::>1 201 200·M2021

20:J 1 204 1 205·M2061 :J85<JS().
for grouping 1 t:-J·Mf4 1 UJ.M2f 1 232 1 2481 253.
horit\On1al 1 !761 225 .. 22()1 SS,9.
implici1 1 269 1 see \bgroup1 \egroup.
in ma1h formula::> 1 !45 .. ·!471 174 .. !76.

\bracevert (I)1 1501 359.
\brack (no1a1ion like [Z])1 :WO.
bra<:ke1::>1 51 1 134 1 f46·Mf481 171 1 4081 4:-J'l.
\break (force line or page break) 1 94 1

97 1 l0G1 114 1 1931 353.
breakpoin1::> 1 9G 1 97 ·1001 ll_Q_1 Ill 114 1 394.

avoiding bad 1 27 <W 1 91 .. 94 1 109 .. 111 1

l7:J .. l74; 197.
diocre1 ionary) .95· .96; l n) 287) 292; S57.
forcing good 1 94 1 1051 109 .. 111 1 114.
in di::>play::> 1 195 .. 197.
in formulM 1 l7:J .. l74 1 44() .. 447.

\breve (ma1h accen1: X) 1 D5.
breve accen1 (~) 1 see \u 1 \breve.
Bri1 i::>h pound ::>ign 1 54.
brochure::>1 25 l .

*\brokenpenalty1 104 1 10()1 272 1 :-J48.
Brook::>1 Frederick Phillip::> 1 Jr. :JG5.
Bro\vn 1 Pe1er John 1 425.
\buildrel 1 :JGl 1 4S7.
buil1-up (ex1en::>ible) chara<:1em 1 442.
buil1-up frac1ion::> 1 see \over.
\bull (•), 420.
Bull 1 John 1 239.
\bullet (•) 1 tSS1 1541 S551 4:JG.
bulle1ed li::>1::> 1 102 1 105.
btmine&:> corre::>pondence 1 200 1 403 ·408.
by 1 t !81 27G.

AppcndiJ: I: IndcJ: 461

\bye 1 87 .. 88 1 S401 357.
Byron 1 George Gordon No€1 Byron 1

baron 1 vii.

\c (cedilla accen1) 1 24 .. ·251 52 1 35G.
\cal (calligraphic cap::>) 1 lG4 1 351 1 431 1 434.
calcuhm 1 1()8 .. 1()91 180 .. 181.
camera alignmen1 1 41() .. 417.
\cap (n)1 1331 4:JG.
capaci1y of'!) .. }>\. 1 1001 300·301 1 383.
cap::> and ::>mall cap::> 1 203.
cap1 ion::>1 l 15.
care1 1 :JG9.
caron 1 see h<\-Cek.
carriage re1urn 1 231 1 see (re1urn) 1 \cr.
\cases ({:") 1 1751 :JG2.
Ca::>\vell 1 Herber1 Erne::>1 1 4 l:l.

*\catcode 1 S,91 D4 1 214 1 271 1 305 1 :-J4S1

:180 :182, :184, :1.'10 :!.'It, 421, 424.
ca1egory code::>1 :J7 .. 40 1 471 48 1 203 .. 2051

209 .. 210; 214; 381.
1able 1 37.

cc (cicero) 1 57 1 270.
\odot (·), !33, l'l2, 319, 43().
\cdotp1 358 1 359 1 438.
\cdots (· · ·) 1 !721 !761 t80·Mf8f 1 3591 438.
cedilla accen1 (.) 1 251 521 54 1 see \c.
ceiling bracke1::> (ll)1 14() .. 1471 see \lceil 1

\rceiL
cen1ering 1 71 1 2:B 1 2:JG.
\centering1 347 1 3481 :JG2.
\centerline (make a cen1ered line) 1 201 24 1

:n) 71 1 85 1 101 1 tt71 232 1 :Jll 1 :1401 :J5:J.
\cents (¢)1 !401 319.
Ce::>aro 1 Erne::>101 53.
Chalkov::>kil1 P€1r !l'ich1 410 .. 411.

*\char1 4S .. ·461 7G1 8G1 1551 283 1 28G1

289, :140, 427, 452.
(chara<:1er) 1 289.
charac1er code::> 1 4:J .. 4G 1 :JG7 <J"IO;

see ~Jlso ca1egory code::>.
(chara<:1er 1oken) 1 270.

*\chardef 1 44 1 121 1 !()() 1 2101 214 1 2!() 1 2721

277 1 TW 1 :14 S1 :14 51 452.
(chardef 1oken) 1 271 1 272.
Charle::> X!! of S\veden 1 92.
Chaundy 1 Theodore William 1 197.
\check (ma1h a<:cen1: X) 1 135.
check accen1 (-) 1 see \ v 1 \check.
chemical1ype:>e11ing 1 179.
Cherry 1 Lorinda Landgraf1 159.
\ohi (X), 1, 434.
Chicago 1 Univemi1y of1 Pre&:>1 1251

293,418,439.

462 AppcndiJ: I: IndcJ:

Child 1 Julia 1 2:n1 2:JG.
Children'::> Televi::>ion Workshop 1 ii.
choice 1 four-\vay 1 !57 1 292 1 442.
\choose (no1a1ion like (~)) 1 l:l9 1 l4:l1

1521 1781 :JGO.
Chri::>1 ie fv1 allo,van 1 Dame Aga1 ha fv1 ary

Clari&:>a (rv1iller) 1 249.
cicero 1 see cc.
\eire (o) 1 !:1:11 :12:11 4:JG.
circle::>1 see \circ 1 \bigcirc.
circular quo1a1ion 1 101.
circumflex 1 :JG9 1 see ha1.
circumflex accen1 C)1 52 1 :J5G 1 see\-.
cla&:>e::> of ma1h chantc1en:>1 1able 1 !54.

*\cleaders1 224 1 22f> .. 22G 1 :1571 :n4.
\cleartabs 1 2:14 1 :J54.
Clo::>e a1om 1 1581 170 .. 171 1 2891 44:J ·444 1 44G.

*\closein1 217 1 280.
*\closeout1 22() .. 2281 254 1 280 1 422.
\closing 1 40S·M404 1 407.
clo::>ing::>1 D4 1 1471 154 .. 1551 :J591 4:J7;

see ~Jlso Clo::>e a1om.
club line::>1 104 1 2721 :J98.

*\clubpenalty1 104 1 ll:l 1 272 1 317 1 ,'-f481 4L9.
\clubsuit (4)1 435.
em (cen1ime1er) 1 24 1 571 270.
cmbx fonh> 1 G0 1 3501 413 1 428 1 4:n.
cmex fonh> 1 1571 225 1 350 1 432 .. 4TL
cmmi fon1::> 1 350 .. 351 1 413 .. 414 1 430 1 4:n.
cmr fon1::> 1 1() .. 171 G0 1 G3 .. G4 1 7G1 350 1

4131 427 1 4:n.
cmsl fon1::>1 G:J .. ()4 1 :3501 4 \31 4281 4TJ.
cmsy fon1::> 1 1571 350<351 1 413 .. 414 1 431.
cmti fon1::> 1 3501 413 1 428 1 4:n.
cmtt fon1::> 1 G0 1 3501 413 .. 414 1 429 1 4:n.
(code a&:>ignmen1) 1 277.
(codename) 1 271.
code::> for charac1em1 43 ·4G 1 3G7· :no.
Coelho1 f.%nuel Rodrigue::> 1 239.
coerce (<limen) 10 (number) 1 270.
coerce (glue) 10 (dimen) 1 270.
coerce (number) 10 (dimen) 1 :J:W.
(coerced dimen) 1 270.
(coerced in1eger) 1 2G9.
(coerced mudimen) 1 270.
collec1ive ::>ign::>1 see large opera1om.
colon 1 51 1 tSS·Mf:14 1 !551 !Gl 1 !74 1 4:18.
\oolon ('), 1:14, 359, 4:18.
color1 229.
column vec1or1 177.
column \vid1 h 1 291 23 l 1 2571 :1871 4 17.
\columns 1 23 l 1 354.

comma 1 51 1 72 .. ·7:11 !,'-f4 1 t6f·Mf621 t72 .. ·f741

;1,94 ·M:1,95; 430.
command::> 1 2G7 .. 293.
commen1::> 1 2G1 47 1 :n-7 1 :-J40.
communica1ion behveen macro::>1 211 1

328<J29 1 375<l"IG1 407 .. 408.
commu1a1ive diagram 1 !82.
compo::>ing ::>1ick 1 ()4 .. G5.
compound frac1ion 1 14:1.
compound ma1rix 1 t8t,
Compu1er Modern fon1::> 1 IG 1 350 1 427 .. 438.
compu1er program::>1 38 1 IG51 2:14.
conce1i program::>1 408 .. 412.
condi1ionab1 20G .. 2081 2091 2101 211 1

240, :108, :184.
\cong (?:?:) 1 151 1 3G0 1 43G.
con::>1an1::>1 2G9 1 270 1 308.
con1 inued frac1 ion::>1 t 4 2.
(con1rol ::>equence) 1 275 1 277.
con1rol ::>equence::>1 7 .. !! 1 4G 1 1991 457.

mi&:>pelled 1 3 1 .. 32.
con1rol ::>pace (\u) 1 81 101 191 7:11 74 1 8G·87 1

154; !6:1; !67; 283; 285; 290; 351; :18!,
con1rol ::>ymbol::>1 7 ·81 4G .. 47.
con1rol \von1::> 1 7 .. 8 1 38 1 4G ·47 1 204.
coonlina1e::>1 389.
\coprod (large !!) 1 435.

*\copy (copy a box) 1 1201 151 1 2221 278 1

:12.'1, :174, :186, 407.
\copyright (©)1 ii 1 :1081 :B91 35G.
Corne1 1 Pee1er1 239.
Correa de Arauxo 1 Francioco 1 239.
corre::>pondence 1 200 1 403 .. 408.
\cos (CO::>) 1 1()21 3G l.
\cosh (cooh) 1 1()21 3Gl.
coo1 of a page break1 Ill 1131 124.
\cot (co1) 1 1()21 3Gl.
\coth (co1h) 1 1()21 3Gl.

*\count regi::>1em 1 118 .. 1221 207 .. 2081 271 1

27G 1 S46·MS471 :n.9.
\count0 1 _l_U!1 2071 252· 254 1 3G2.

*\countdef 1 1191 121 1 2101 215 1 271 1

277, :146 :147.
(coun1def 1oken) 1 271.
Co,vper 1 William 1 35.

*\cr (end of aligned rO\v) 1 t75·Mf771 U)(J.Mt,971

2:1f·M2:181 245 1 248 1 2"/5 1 2821 35! 1 352 1

385 38(), 412, 418, 421.
avoiding 1 249.

cramped ::>1yle::>1 140 .. 141 1 445.
*\crcr (force \cr) 1 2491 2751 2821 S6f·M:M21

385, 412, 421.
Crocker1 Be11y 1 425.

cro&:>1 see \dag (t)1 \times (X).
cro1cheh>1 see brackeh>.
\esc (coc) 1 IG2 1 3G l.

*\csname 1 40 .. 41 1 2D1 ::f481 :n5.
\csname\endcsname 1 4G 1 308.
cube roo1 1 tSO·MfSt.
Cumming::>1 Ed\vanl E::>1lin 1 49.
\oup (U), l:l:l, 43().
curly brace::> 1 see brace::>.
curren1 fon1 1 l:l1 20 1 154 1 IG31 213 .. 214.
curren1 page 1 1121 122 .. 1251 278 1 280.
cyclic preamble::>1 241 1 2421 2461 :16! 1 4 !2.
Cyrillic charac1er::>1 370.

\d (doHmder accen1) 1 52 .. 53 1 35G.
\dag (t), 53, 117, 35(), 438 439.
\dagger (t a::> binary opera1or) 1 43G 1 439.
Dale 1 Rober1 William 1 283.
\danger 1 419.
dangerou::> bend 1 > .. vi 1 51 151 44 .. 45 1 701 419.
Dani::>h charac1em 1 45 ·4G 1 52 ·53 1 370.
\dash 1 :m.
da::>he::>1 41 261 :101 51 1 931 95.
\dashv (.. ;) 1 43G.
da1e 1 1oday'::>1 40G.

*\day1 2Tl 1 3491 406.
dd (dido1 poin1) 1 57 1 2701 272.
\ddag (+)1 1171 35G 1 438 .. 439.
\ddagger (:!: M binary opera1or) 1 43G 1 439.
\ddot (ma1h accen1: i) 1 D51 359.
\ddots (· ..) 1 17"7 1 359.
\ddt (debugging aid) 1 248.
De Vinne 1 Theodore Lo\v1 107.

*\deadcycles 1 214 1 255 1 2G4 1 271 1 283 1 401.
debugging1 2051 248 1 298<J031 347.
decen1 l i ne::>1 97 1 99.
(decimal con::>1an1) 1 270.
decimal poin1::>1 57 1 134 1 240.
(del} 275.

*\def 1 44 1 13G 1 199 .. 208 1 215 1 275·2"/G.
defaul1 ou1 pu1 rou1 ine 1 253 .. 255.
defaul1 rule 1hickne::>::>1 443 .. 447.
defaul1 value::> of parame1em1 348· 349.

*\defaulthyphenchar1 2Tl1 ,':f48.
*\defaultskewchar1 2Tl 1 ,':f48.
defining a con1 rol ::>equence1 199 · 208.
(defini1 ion) 1 275.
(defini1ion 1ex1) 1 275.
\deg (deg) 1 IG21 3GL
degree::> (o) 1 !80.

*\delcode 1 15G 1 214 1 271 1 290 1 ,':f45.
(dele1e) (ASCII code 127), 37, 39,343, 3G9.
dele1ing 1oken::>1 321 215 1 2.95·M2.9'l.
(delim) 1 289 .. 290.

AppcndiJ: I: IndcJ: 463

delimi1ed argumen1::> and parame1em1

203 .. 205; 249; 26:1; S'l5·MS'l'l; 407.
*\delimiter1 15G 1 289 .. 290 1 :15,9.
*\delimiterfactor1 1521 2Tl 1 ,':f481 44G.
delimi1er::>1 145 .. 1501 15G .. I571 t'lf 1

290; 437; 442.
*\delimitershortfall1 1521 274 1 ,':f481 44G.
\delta (6), 127, 434.
\Delta (D.) 1 !6.91 !861 434.
demeri1::> 1 94 1 97 .. 99 1 2Tl 1 45!.
denomina1or1 141 1 1521 1791 444 ·445.
depth 1 221 1 224 1 282 1 :n7.
dep1h of a box) G3 .. G7; n) 80 ·82; 225.
Derek1 Bo1 293.
deocendem, G:l, II :l, 319, 323.
de::>ign ::>it\e 1 IG .. I"/1 213.
\det (de1) 1 IG2 1 3G l.
device-independen1 ou1 pu1 1 23;

see ~Jlso . dvi.
Diabelli 1 An1onio1 408.
diagno::>1ic form of li::>1::>1 GG 1 75 1 79 1

158M 159; 302; 455.
dialog::> \vi1h 1he tmer1 217 .. 218.
\diamond (<>) 1 43G.
diamond leadem1 viii.
\diamondsuit (0)1 435.
Dla"' de la Pel1a1 f-.%ximiliano An1onio

Temi::>1ocle::>1 384.
Dick and Jane 1 72 .. 74 1 "/G.
Dic1ionarie::>1 259 1 449 .. 453.
Dido1 1 l"''raJl(;oi::> Ambroi::>e 1 57.
dido1 poin1 1 57 1 see dd.
diere::>i::> C)1 521 53 1 35G 1 see \".
die::>i::> (+)1 see \ddag.
Die1er1 Ulrich 01101 14.
(digi1); 2G9.
(digi1 ::>1ring) 1 57.
digi1::> 1 51 1 D21 435 1 453.

\vid1h of1 G0 1 241 1 427.
\dim (dim) 1 IG21 3GL
(dimen) 1 59 1 Gl 1 71 1 1181 270 1 271.
(<limen parame1er) 1 271 1 274 1 2"/G.

*\dimen regi::>1em 1 118 .. 1221 271 1 27G1

:146 :147, :14.'1, :160, :16:1, :1.'15.
(<limen variable) 1 2"/G.

'\dimendef, 119, 215, 277, :146 :141.
(dimendef1oken) 1 271.
dimen::>ion::> 1 5"/ .. GI.

a::> argumen1::>1 204 1 3G2.
Diony::>iu::> I of Syracu::>e 1 239.
diph1hong::>, see \ae, \oe.
diocardable i1em::>1 95 1 110 .. 1121 124 1 :1.9:1.

*\discretionary1 9f> .. 9G1 283 1 28G 1 287 1 292.

464 AppcndiJ: I: IndcJ:

diocre1ionary hyphen::>1 281 9f> .. 9G1 45:l1 455.
diocre1 ionary mul1 j plica1 ion ::>igm>; l n) :J57.
di::>play ma1h mode 1 85 .. 89 1 289 .. 29:J.
di::>play ::>1yle 1 140 .. 1421 441 .. 447.

*\displayindent 1 1881 1901 274 1 291 1 :J49.
*\displaylimits 1 1441 1591 292 1 44:J.
\displaylines 1 194 1 U)fJ1 :JG2.
di::>play::>) 87) !OJ) t:1.9·Mf45) t66·Mf6'l)

l8f> .. l97; 2:12; 24 f; :ll5.
a1 beginning of paragraph 1 :J !G.
non-cen1ered 1 l8G 1 :J2G1 :J75<J7G 1 420 .. 421.
pooi1ioning of1 188 .. 190.

*\displaystyle 1 141 1421 292 1 :162.
*\displaywidowpenalty 1 104 1 272 1 348.
*\displaywidth1 1881 1901 274 1 :J49.

Dim·a-eli [Beacom>field] 1 Benjamin 1 earl 1 219.
di11o mark1 5:l1 441.
\div (~), 43().

*\divide 1 f f8 .. f !,91 2!8· 2!,91 27G 1 :1.9! 1

:1.91; :1.98; 4 f'l.
\do 1 :J44 1 :J80 1 42:J.
dollar ::>ign 1 41 :l81 51 1 54 1 8(:;-.. 881 .921 1271

f :14 .. , f :15; f 85 .. , f 86; 28:l; 287) 29:J.
Donnelley 1 Richard Robe1i 1 vii.
\dospecials 1 :J44 1 :J80 1 422 .. 42:J.
\dosupereject 1 25(:;- 1 :JG4.
\dot (ma1h accen1: X) 1 l:l5.
do1 accen1 C) 1 see\. 1 \dot.
doHmder accen1 (.) 1 see \d.
\doteq () 1 :JG-1 1 4:JG-.
\dotfill (.........) 1 244 1 :1:14 1 :1:151

:140 :14 I, 357.
do1le&:> le11em 1 52 .. 5:l 1 DG-1 4:J5.
\dots (.) 1 l"7:l 1 :J5G-; see ~Jlso ellip::>e::>.
double-column forma1 1 2571 :J8(:;-.. :J88 1 4 t'l.
double dagger 1 see \ddag 1 \ddagger.
double dangerou::>-bend ::>ign::> 1 vi 1 419.
double in1egral::>1 !6.91 !80.
double quo1e mark1 521 5:l1 D4;

see ~Jlso hexadecimal.
*\doublehyphendemeri ts 1 98 1 2Tl 1 :14 81 4 5 f.
\downarrow (~) 1 f46·Mf4'l1 !821 :J591 4:J7.
\Downarrow (J)-) 1 f46·Mf4'l1 :J59 1 4:J7.
\downbracefill (__...._j 1 225 .. 22G1

:n1) :J57.
Doyle 1 Sir Ar1hur Conan 1 401.

*\dp) 120; 271; :116; :J88<J89; 4f'l.
dragon curve 1 :J9l.
Drofna1::> 1 Revinu Ji1i::> 1 24 1 27 .. 281 7:J .. 74 1

404 .. 40G; 408; 41 0 .. 4 12.
Dudeney 1 Henry Erne::>1 1 2491 :n4.
Dull 1 Bru1u::> Cyclop::>1 l:ll 1 l"7:l 1 2GO.
\dummy1 401.

*\dump 1 28:l1 28G 1 :nG) :144·
Duran1 1 William Jame::> 1 2:J9.
.dvi 1 2:l 1 4:l1 G01 1191 2D 1 2281 254 1 279 1

280 1 :J02 1 :JG7 1 :J74.
Dvo"!'i\k1 An1onfn Leopold 1 409.
dx 1 !68.

EBCDIC, 43.
*\edef 1 2f5·M2f61 2751 :1281 ,':f481 S'lS-M:n4.
edi1ing 1 :l4 1 l:l9 1 197.
efficiency 1 :J29 1 :J:B1 :J42 1 :J45 1 :J471 :J8:l 1

384, 394, 400, 423.
\egroup (implici1 }) 1 2G9 1 :l5l 1 :16:11

382, 385, 407, 421.
Ehler1 1 Ern::>1 [-<'red 1 248.
Ehler1 Bohning 1 Pauline Anna f-.%rie 1 248.
\eightpoint 1 415 1 4!6.
\eject (force page break) 1 24 ·251 1051

109; 189; :J5:l; 4 !8; 4 !,9.
elbo\v::>1 see angle bracke1::>.
\ell (t), 132, 435.
ellip::>e::> (...) 1 Tl 1 172 .. 174 1 lhi-.. 1771

180 .. 182; 245.
Elphin::>1one 1 Moun1::>1 ua1i 1 89.

*\else 1 207 1 210 1 2D.
em1 G0 1 154 1 IGG1 214 1 270 1 :1521 414 1 4TL
em-dMh () 1 41 :J02.
em quad 1 see \quad.
embelli::>hed le11em 1 see accen1::>.
emergency ::>1op::> 1 299-<WO.

*\emergencystretch1 1071 274.
Emen:>On 1 Ralph Waldo 1 41.
empha1 ic::>1 see do1-under.
(emp1y) 1 2G8.
\empty1 26:11 :J5l 1 :n8.
emp1y di::>cre1ionary1 951 28G.
emp1y group 1 191 25:l 1 :J05.
emp1y line in inpu1 file 1 24 1 :l71 47 1

:140:141,381.
a1 end of file 1 217.

emp1y line in ou1pu1 1 1141 :JIG.
emp1y page 1 114.
\emptyset (~~) 1 1281 4:J5.
en-dMh () 1 41 1871 252 1 :ll4.
en quad 1 71 1 see \enspace.

*\end1 2:l 1 2G1 271 87 1 2G4 1 28:l 1 28G 1

299, :1:16, 41!:1.
end of an inpu1 file 1 20G 1 214 1 217.
end of file line 1 see (re1 urn) 1 \cr.
end of file page 1 see (fonnfeed).
end of paragraph 1 28G 1 see \par.
\endchapter 1 418 .. 4 19.

*\endcsname1 40 .. 41 1 2l:l 1 28:l 1 ::14 81 :n5.
endgame 1 87 1 2G4 1 28:J.

\endgraf 1 2621 28G 1 SSf 1 351 1 4071 4161 4L9.
*\endgroup1 21 1 24.91 2621 2791 S801 4071 4L9.
*\endinput1 47 1 214.
\endinsert 1 llf> .. l IG 1 :JG:J.
\endletter 1 4fX:I·M404 1 407.
\endline 1 351.

*\endlinechar1 481 2Tl 1 SSf 1 348 1 S.90·MS,9t,
\endtemplate 1 240.
\enskip 1 71 1 352.
\enspace 1 2021 352 1 4 !,9.
enument1ed ca::>e::> 1 in formula::> 1 175.

in ::>epara1e paragraph::>1 !021 ::140.
\vi1 hin a paragraph 1 92.

enuncia1ion::> 1 see \proclaim.
epigraph::>1 418 .. 419 1 425.
\epsilon (f) 1 11 1281 434.
\eqalign 1 U)(J.M !,9 f 1 1931 242 1 32G 1 :JG2.
\eqalignno 1 t,92 .. -t,9S1 194 1 :JG2.
(eqno) 1 293.

*\eqno 1 t86·Mt871 189 .. 191 1 1931 293 1 :J75<J7G.
(equal::>) 1 275 1 27G .. 277.
equal::> ::>ign 1 51 1 t SS1 2091 22G 1 275 1 :n6.
equa1ion numbem 1 l8G .. l9G.
\equiv () 1 tSS1 4:JG.
Erd00 1 PAl Paul) 1 53.

*\errhelp1 275 1 280 1 S41.
*\errmessage 1 21G 1 279 .. 280 1 S471 4 !8.
error me::>::>age::>1 :JO<B1 29f><Wl 1 :J08<J09.
error recovery 1 :H<l21 4G 1 2151 295<W:l 1 309.

*\errorcontextlines1 34 1 2Tl1 ,':f48.
*\errorstopmode 1 32 1 :n1 2771 299.

e::>-t\e1 (B) 1 see \ss.
(eocape) (ASCI I code 27) 1 :JG9.
eocape charac1er 1 71 37 1 421.

*\escapechar1 401 213 1 228 1 2Tl1 S081

348, :177.
\eta (~), 4:l4.
etc. 302.
Eulerian number::>1 !52.
EvagorM of Salami::> 1 239.
even-numbered page::>1 252 ·2531 4 !6.

*\everycr 1 27f> 1 ::162.
*\everydisplay1 1791 2751 287 1 S26.
*\everyhbox1 2751 279.
*\everyjob1 275.
*\everymath1 1791 275 1 287 1 293 1 32G.
*\everypar1 !051 2151 253 1 2621 275 1 2821

283, :1:1:1, :181, 407, 421.
*\everyvbox1 2751 279.
ex 1 G0 1 154 1 270 1 S561 4:n.
excep1ion dic1ionary 1 449 1 452 .. 453.
exclama1ion poin1; 51; 72; n) 75; !Gl; !6,9.
\exercise 1 !01 422.

AppcndiJ: I: IndcJ: 465

exerci::>e::>1 vii 1 l <W:J.
*\exhyphenpenalty1 9G 1 2621 272 1 S48.
\exists (3) 1 435.
\exp (exp) 1 !G21 :JG l.

*\expandafter1 401 2l:l1 2lf> 1 2601 ::1081

:1:10, :148, :174 :180.
expan::>ion of expandable 1oken::>1 2l2 .. 2!G 1

238 1 2G7 1 JTJ<J74.
avoiding 1 2!G1 2G2 .. 2G:l 1 377.

explici1 hyphen::>1 41 931 454.
explici1 kern::>1 401 280 1 :JOG1 454 ·455.
exponen1::> 1 see ::>uperocrip1::>.
ex1en::>ible chara<:1em 1 442.
ex1en::>ion fon1::> 1 1571 S5f 1 4:J2 .. 4:B 1 441 1 447.
ex1en::>ion::> 10 'I) .. ;X 1 22G 1 228 .. 229.
eye::>1rain 1 reducing 1 59.

fa<:e::>; n) 17;390.
(fac1or) 1 270.
fa<:1orial 1 !6.91 t8t,

*\fam1 154 .. 1591 2Tl 1 289 .. 290 1 34G<H7 1

S5f; 358; 4 f4 .. -4 !5.
familie::> 1 l5:J .. l59 1 289 .. 2901 34G1 431 1 442.
(family assignmen1) 1 277.
(family member) 1 271 1 277.
family 1ree 1 248.
family 0 (ma1h roman fon1::>) 1 l5:J .. l57 1 S5t,
family l (ma1h i1alic fon1::>) 1 155 .. 1571 S5L
family 2 (ma1h ::>ymbol fon1::>) 1 1571 S5! 1

431; 441; 447.
family :J (ma1h ex1en::>ion fon1::>) 1 1571

s5 t) 4:J2 .. 4:n) 44 1) 447.
Fatal format file error1 299.
fea::>ible breakpoin1::>1 991 315.
fence::> 1 see opening::> 1 clo::>ing::>1 delimi1em.
ff\ 1 see liga1 ure::>.

*\fi; 207; 2!0; 213.
Fibonacci 1 Leonardo 1 of Pi::>a1 IGG.
field::> of a1om::>1 158 .. 1591 289 .. 291.
fil; 72; 118 .. !19; 271; ::f48) S.94.
(fil dimen) 1 271.
(fil uni1) 1 271.
\filbreak 1 Ill 1 :m:L
(file name) 1 2!4 1 21G1 22G 1 277 1 278.
file name::>1 25 1 214 1 21() .. 2171 22G1 278.
file page::> 1 343.
file 1ype::>1 see .dvi1 • fmt 1 • tfm1 • tex 1

log file 1 1enninal.
fill; 72; 118 .. 119; 271) S47.
fill page \vi1h blank ::>pace 1 see \vfilL
(filler) 1 27G 1 2781 280 .. 282 1 289.
filll; 72; 118; 271) SS2.

*\finalhyphendemerits 1 98 1 !061 2Tl 1

::14 8; 4 5!,

466 AppcndiJ: I: IndcJ:

*\firstmark1 2D1 2581 259 .. 2()01 280.
\fiverm1 l5:l 1 :J50 1 :15! 1 414 ·4 !5.
\flat (o), 40.'1, 435.
fioa1ing im>eJiiom> 1 ll5 .. l!G 1 1251 :16:1.

*\floatingpenalty1 l2:J .. l25 1 272 1 281 1 :16:1.
floor brackeh> (LJ)1 14() .. 1471 see \lfloor 1

\rfloor.
fiu::>h lel't 1 72 1 1421 17"7 1 181 1 l9G.
fiu::>h righ1 1 71 ·721 l0G1 1421 17"7 1 l9G1

233, 419.
. fmt 1 :l9 1 :J44.
\fmtname and \fmtversion1 :JG4.
\folio (1ype::>e1 page number) 1 252 ·25:l 1

3()2, 406, 416.
(fon1) 1 2l:l 1 214 1 271 1 277.

*\font 1 1() .. 171 G0 1 210 1 2D1 214 .. 215 1

271 1 2"/G.
(fon1 a&:>ignmen1) 1 277.
fon1 me1 ric file::> 1 4G 1 4:n.
(fon1 range) 1 271.
(fon1def 1oken) 1 271.

*\fontdimen1 7G 1 1571 f"/.91 214 1 271 1 27"71

S55·MS561 :1751 :1.901 4:n) 441 1 447.
*\fontname1 2D 1 214.

fon1::> 1 l:J .. l7;
see ~Jlso Compu1er fv1odern fonh>.

\footins 1 25G 1 :JG:l 1 :J9G<l991 4 !6.
\footline 1 252 1 25G1 ::f40·M::14 !1 :JG2.
\footnote 1 82 1 IIG1 251 1 25G 1 :J401

:JG:l 1 :J82 1 41G.
\footnoterule 1 25G 1 :JG4.
foo1no1e::> 1 1051 tf6 .. ff'l1 121 1 1251

t'/:11 41() .. 417.
::>hOJi 1 :J95 .. 400.

\forall (\f) 1 4:J5.
forbidden con1rol ::>equence 1 20G.
Ford 1 Pa1rick Kildea 1 29:J.
foreign language::>1 4f> .. 4G1 52 ·54 1 :J"/01

:J87; 449; 451.
form le11er::>1 2001 207 .. 209.
forma1 file 1 25 .. 2G 1 :l9 1 28:l1 :J44.
forma1-independen1 documen1::> 1 1941 20:J.
forma1::> 1 II 1 :l9 1 2001 40:J .. 425 1 4:J4.
(fonnfeed) (ASCII code 12) 1 :J4:l1 :JG9.
formulM 1 127 .. 199.
Foo::>1 Sam Wal1er 1 4:J9.
frac1ion::> 1 G71 I:J9 .. 14:l 1 1521 1701 1791

18G1 :n2) 444 .. 445.
huge 1 19G.
::>la::>hed form 1 G7 1 I:J9 .. 1401 2:n 1 2:JG.

Frak1 ur1 IG4 1 4:J4.
Franklin 1 Benjamin 1 G5.
French 1 54 1 :J40<H 11 455.

\frenchspacing 1 74 1 ,':f401 :l51 1 :l81 1 401.
Fre::>cobaldi 1 Girolamo 1 2:J9.
fron1 ma11er 1 41:J.
\frown (~) 1 4:JG.
full ::>10p 1 see period.
\fullhsize 1 257.
\fullline 1 257.
funny ::>pace 1 :J77.

*\futurelet1 207 1 2151 2621 277 1 :16:11

:175 :177, 4 2:1.
\futurenonspacelet 1 :J7G .

Galilei 1 Galileo 1 101.
galley file 1 :JO:l 1 425.
Gamble 1 Jame::> 1 :J8.
\g-a (7), 127, 434.
\Gamma (I') 1 !271 !6.91 :J58 1 4:J4.
\gcd (gcd) 1 IG21 !,921 :JG l.

*\gdef 1 20G1 215 1 2751 :1521 401.
\ge (2:)1 91 45 1 t'l51 :l181 :JGI 1 4:J8.
(general1ex1) 1 27G1 277 1 2791 280 1 287 1 292.
generali"'ed frac1ion 1 1521 1571 2921 444··445.
generic coding 1 1941 20:J.
generic ma1 rix 1 1·77 1 245.
\geq ()>), 318, 43().
German 1 52 1 9G 1 451.
German black le11em 1 see Frak1 ur.
\getfactor1 :J"/5.
\gets (+----) 1 :JG I 1 4:J8.
\gg (;p), 43().
Gibbon 1 Ed,van1 1 117.

*\global 1 2 f 1 I 191 20G 1 2 f 81 2:l21 25G 1 275 1

:JOI 1 :J07 1 :J20 1 :J4G.
(global M::>ignmen1) 1 1791 277.

*\globaldefs 1 2:l8 1 2Tl1 275.
glue 1 G:l 1 ()9 .. 8:l1 951 1101 1571 222·225 1

:J02; 412.
above and belo\v di::>play::> 1 189 .. 1901 194.
a1 1op of page 1 II:J .. II4 1 124 1 25G.
behveen aligned column::>1 2:J7 .. 2:l9 1

247; :J92.
behveen line::>1 see in1erline glue.
behveen paragraph::> 1 79 1 104 .. 1051 2G2 1

282 1 :J42 1 40G 1 417.
behveen \von1::> 1 74 ·7G1 :J5G1 :J9:J<l94 1 4:n.

(glue) 1 71 1 1181 271.
\glue 1 751 791 :J02.
(glue parame1er) 1 271 1 274 1 27G.
glue set 1 791 :J02.
glue 1:>€1 order) 77; 79; 81; 97.
glue 1:>€1 ra1io) 77; 79; 81; 97.
(glue variable) 1 27G.
goal heigh1 1 112 .. 114 1 12:J .. I25.
Goe1he 1 Johann Wolfgang von 1 18:J.

\goodbreak 1 I I I 1 I IG 1 :J5:J.
GrandmM1er1 25:J.
\grave (ma1h accen1: X) 1 D5.
grave accen1 (') 1 see \ 1

1 \grave.
grea1er 1han or equal 1 see \ge.
grea1er 1han ::>ign 1 521 5:l1 tSS1 1501 209.
Greek1 127 .. 1281 D71 15G 1 :JI9 1 :J581 4:J0 1 4:J4.
Green 1 Wal1er1 244.
grouping1 D··l4 1 19 .. 21 1 119 .. 1201 1221

2001 201 1 241 1 2591 2791 28:l 1 28G1 291 1

:JO I 1 :J"/5 1 :J78 1 :J851 45:J.
charac1em for 1 :J9 ·40 1 S8f·MS82.
implici1 1 1151 1481 194 1 25:l 1 287 1 292 1 29:J.

guide \von1::>1 259.

\H (long Hungarian umlau1) 1 52 1 5S1

35(), 4 20.
H&J 1 see hyphena1ion 1 line breaking 1

::>e11ing glue.
h<\Cek accen1 C) 1 see \v 1 \check.
halJ'tone::>1 228.

*\halign1 1171 1901 19:l1 194 1 2:J5 .. 2491

282; 28()) 291) :J02; S26; :J52;
:16 I :162, :186, :1.'12.

compared 1o 1abbing1 2:J5.
H almo::>1 Paul Richard 1 18:J.
H amtm 1 see apoo1 rophe.
\hang 1 :J55 1 4 f ,9.

*\hangafter1 1021 IO:J .. \04 1 2Tl 1

:J48<H91 4 t,9.
*\hangindent 1 1021 2621 274 1 :J491 401.
hanging inden1a1ion 1 79 1 102 .. 10:J.
hanging punc1ua1ion 1 :J94<J95.
Hanly 1 Godfrey Harold 1 :J2l.
harpoon::>1 4:l7.
ha::>h mark 1 :l8 1 51 1 ll:l1 200·M2021 20S1

204 205, 228, 235, 2:16 240.
Ha&:>ler 1 Ham> Leo 1 2:J9.
ha1 1 :l8 1 51 1 f28 .. ·tS01 D4 1 :JG9 1 42S.
\hat (ma1h accen1: X) 1 tS5·MfS61 W4.
ha1 accen1 C)1 see\- 1 \hat 1 \widehat.

*\hbadness1 29 1 2721 :J021 ,':f481 S8TMS881 401.
\hbar ('ft,) 1 tf/,91 :J58 1 4:J5.
hbox (box \Vi1h horitwn1al li::>1 in::>ide) 1 G4.

*\hbox 1 G4 .. G7 1 77 1 8G 1 9:l 1 151 1 1591 IG:l 1

175; 179; 185 .. 18()) 221; 222; 278;
282, 388 389.

\headline 1 252 .. 25:l1 2551 :JG2 1 406.
\heartsuit ((J) 1 4:J5.
Hebre\v1 GG.
height 1 221 1 224 1 282 1 :n-7.
heigh1 of a box) ():J .. ()7) 77; 80 .. 82; 225.
help me&:>age::>1 :l2 1 2801 295 .. 29().
(hex digi1) 1 2()9.

AppcndiJ: I: IndcJ: 467

(hexadecimal con::>1an1) 1 2G9.
hexadecimal no1a1ion 1 4:l 1 44 1 451 47 .. 481

t54 1 219 1 :nG1 120.
*\hfil 1 71 .. 72) 194 1 2:J5 .. 2:J71 28:J 1 2851

290 1 :m-7.
*\hfill1 71 .. 72 1 1421 177) 1941 2:n)

28:l; 285; 290.
*\hfilneg1 72 1 1001 2:n 1 28:l1 285 1 290 1 :J97.
*\hfuzz1 :J0 1 274 1 :J02 1 ,':f481 S8TMS88.
\hglue 1 :J52.
\hideskip 1 :l471 :J48 1 :J54.
\hidewidth1 24:l 1 2451 247 1 :J25 1 :J54.
higher-level language::> for compo::>i1ion 1 20:J.
High1on 1 Albe1i H. 1 48 L
Hilber1 1 David 1 IG7.

*\hoffset 1 251 1 274 1 S42.
*\holdinginserts 1 1251 2Tl1 400.

Holme::>1 Thoma::> Sherlock Sco11 1 401.
\hom (hom) 1 1()21 :WI.
Homber1 1 Humbe1i 1 401.
Honey,vell lnfonna1ion Sy::>1em::> 1 l.
\hookleftarrow (+------") 1 :J58 1 4:J7.
\hookrightarrow ('------+) 1 :J58 1 4:l01 4:J7.
hook::>1 see \subset 1 \supset.
horit\On1al brace::>1 t'l61 225 .. 22()1 SS,9.
(horit\On1al command) 1 28:J.
horit\On1al li::>1::>1 ()4 1 94 .. 95.
horit\On1al mode 1 8f> .. 891 1051 28f> .. 287.
(horit\On1al mode ma1erial) 1 278.
(horit\On1al rule) 1 281.
horit\On1al rule::>1 24 1 ()4 1 221 .. 22() 1 24() 1 282.
(horit\On1al ::>kip) 1 285.
Hornochuch 1 HieronynHm1 48:J.
Ho,van1 1 Jane Temple 1 21.
\hphantom1 1781 211 1 :WO.

*\hrule1 24 1 G4 1 85 1 221 .. 225 1 2461 281 .. 282 1

28G 1 S5'l1 4 201 4 2 t,
\hrulefill () 1 244 1 2521 :J57 1 4 !2.

*\hsize1 26·M2'l1 601 1021 1881 2:l7 1 251 1

257, 274, :140 :14 t, :148, :187, 406,
407,413,415,417.

*\hskip1 -n) 8G 1 lG8 1 2831 285 1 290 1 St4.
*\hSS 1 71; 82·M8S1 2:J:l1 28:J 1 285 1 2901 442.
*\ht; 120; 271; :J88<J89; 417.

Hungarian umlau1 (") 1 see \H.
hyphen 1 41 51 1 9:l 1 95 1 D21 292.
hyphen. tex1 :JG4 1 45:J.
hyphena1 ion 1 281 :l91 9G 1 :JOG 1 :J 141 :J94 <l95 1

414; 424; 449 .. 455.
*\hyphenation1 2771 4 !,91 452 .. 45:l 1 455.
(hyphena1ion a&:>ignmen1) 1 277.

*\hyphenchar 1 95 1 214 1 271 1 2Tl 1 277 1 28() 1

:l51; :J95; 414) 454; 455.

468 AppcndiJ: I: IndcJ:

*\hyphenpenalty1 9G 1 101 1 272 1 ,':f481 45!.

\i (1) 1 52 .. ·5:11 :J5G.
I can't go on 1 299.
\ialign1 :J54.
I Bfv1 Corpora1 ion 1 vii.
iden1ifiem in progntm::> 1 :l8 1 IG5 1 2:-J4.

*\if1 2091 210 .. 211 1 :J071 :n-7 1 :n.9.
*\ifcase 1 2101 :-J4.91 :17:11 :1.901 406.
*\ifcat1 209 1 210 1 :J0"/ 1 S'l'l.
*\ifdim1 209 1 :15:11 :1871 4 f'l.
*\ifeof1 210 1 217.
\iff (-), lG3, 3Gl, 438.

*\iffalse 1 210 1 211 1 2fJ() .. 2fJf 1 ,':f481 :185-MS86.
*\ifhbox1 2101 :1,921 :1,9,9.
*\ifhmode 1 209 1 :16:1.
*\ifinner1 209.
'\ifmmode, 209, 215, 240, :15:1, :156, :160, 42:1.
*\ifnum1 2081 2091 2f8 .. -2t,9.
*\ifodd1 2071 2091 4 !61 4 f8 .. -4 !,9.
*\iftrue 1 2101 211 1 260·M26f 1 ,'-f48.
\ifundefined1 40.

*\ifvbox1 210.
*\ifvmode 1 209.
*\ifvoid1 2101 256.
*\ifx1 210 1 2151 :J07 1 :J84 1 :nu .. -:1771 4 t8.
ignored chantc1em 1 :J"/ 1 :J90.

*\ignorespaces 1 279 1 :1:1:11 :1551 424.
! Illegal unit 1 295.
illu::>tnttiom>1 ll5 .. l!G.

fi11ing copy around 1 101.
\Im (\'), 435.
\imath (1) 1 !:161 435.

*\inunediate 1 22(:;-.. 228 1 2801 4221 42:1.
implicit braC<:::> 1 2(:;-91 see \bgroup 1 \egroup.
implicit charactem1 2G-9 1 277 1 3091

351; :J"/G-··377.
implicit kern::>1 :JOG- 1 454 1 455.
in (inch) 1 24 1 57 1 270.
\in (E), 128, 147, 43().
\inaccessible 1 297.
inch 1 57 .. 58.
incomplete conditional::>1 20G.

*\indent 1 8G-1 94 1 101 1 2G-:l1 2821 28(:;- 1 29! 1 :155.
indentation 1 8(:;- 1 222 1 282.

hanging 1 79 1 102 .. 103.
indention 1 see indentation.
index<:::>1 2(:;-1 .. 2(:;-3 1 :J92<J941 42:J .. 425 1 481.
indice::> 1 see ::>ubocript::>.
\inf (inf) 1 1()21 :JG-1.
inferior::>1 see ::>ub::>cript::>.
infinite badn<:&:>1 971 1071 111 1 2291 317.
infinite glue 1 71 .. 72 1 118 .. 1191 25G 1 :JD

1
:n2.

infinite loop 1 2991 301 1 383.

infinite penal1y 1 97 1 lll 1 254 ·25(:;- 1

2()4) 28(:;-) 400.
\infty (oo) 1 91 3181 435.
inhibiting expan::>ion 1 21() 1 2(:;-2 .. 2(:;-3 1 :n-7.
INITEX1 391 41 1 -7G 1 15-71 283 1 :BG 1

:J4:J<H51 453.
Inner atom 1 1581 1701 289 1 4431 445 .. 44().

*\input1 71 91 25 .. ·271 471 1991 214 1 2171

:180, 382 383, 41!:1, 422.
input/output command::> 1 see \input 1 \read 1

\write 1 \message 1 \dump.
input/output ::>tream::> 1 34(:;- 1 see \openin,

\openout. -
input Ktack1 3001 3"74.

*\inputlineno, 214, 271.
*\insert 1 95 1 \22 .. 1-25 1 259 1 280 .. 281 1

:16:1; 41()) 424; 454.
inKeJiing text online 1 :Jl.
inKeJiion::>1 1101 115 .. 1171 122 .. 1251 25G- 1 :B5.

*\insertpenalties1 lll 1 114 1 l2:J .. l25 1

214; 254; 256; 271.
\int (large n) 144; t68·.-f6.9; t.92; 358; 435.
(integer con::>tant) 1 2(:;-9 .. 270.
(integer parameter) 1 271 1 272 .. 2Tl 1 2"/G-.
(integer variable) 1 2"/G-.
integral ::>ign::>1 see \int 1 \smallint.

mul1 i ple 1 t 6.91 t 80.
inter-column ::>pacing1 2:J7 .. 2:l9 1 247 1 392.
interacting \vith 'I) .. ;X 1 :H<H 1 217 .. 218 1

228; 295 .. 299.
(intera<:tion mode a&:>ignment) 1 277.
\interdisplaylinepenalty1 t.9:11 3491 :w2.
\interfootnotelinepenalty1 3491 :JG-3.
interline glue 1 78 .. 791 80 1 1041 1051 221 1 2451

2G-:J 1 281 .. 2821 :n51 3521 409.
*\interlinepenalty1 1041 272 1 :16:11 4061 4 !,9.
internal box-and-glue repr<:Kentation, G-G,

75; 79; 158 .. 159; 302; 455. - -
internal character code::>. 4:J .. 4G- 1 :JG-7<J"IO.
(internal dimen) 1 271. -
(internal glue) 1 271.
(internal integer) 1 2"71.
(internal muglue) 1 271.
(internal q uant it y) 1 279.
Internal Revenue Service 1 2001 208 .. 209 1

244; 404.
(internal unit) 1 270.
internal v<:Jiical mode 1 85 1 87 .. 89 1

222; 278 .. 283.
interrupt::>1 :n1 299 1 383.
intenvord ::>pacing1 74 .. "/G-1 :1561 :1.9:1· .. :1.94. 4:n.
Interwoven alignment preambles 1 299."
(intimate M::>ignment) 1 277.

invalid charac1em 1 :l71 45.
\iota (t) 1 S251 4:J4.
loocra1e::>1 2:J9.
\it (u::>e italic 1ype) 1 l:J .. 14 1 IG5 1 2:J1 .. 2:l2 1

SS2; :l51) 40.9; 4 f 4 .. ,4 f 5; 4 !,9) 428.
i1 alic correc1 ion::>1 t 41 64 1 2871 S061 44 I 1 455.
i1alic le11er::> \vi1h deocender::>1 :l19.
i1alic 1ype 1 I:J .. I4 1 1001 1271 409 1 428 1 4:JO.
\item1 t()2 .. -t()S1 1171 S40·M::f421 :J55 1 4161 419.
\itemitem1 !021 :J421 :J55.
i1era1ion 1 see \loop.
\itfam1 :l51 1 4f4·M4f5.
Ci1r'ev 1 Serger Pe1 rovich 1 5:J.

\j (J), 52, 35().
Jevon::>1 William S1anley1 5.
\jmath (J), 1:16, 435.

*\jobname 1 21:l 1 214 1 SSfJ.
Johnoon 1 Samuel 1 89.
\joinrel 1 :J58.
joke::> 1 vi 1 :JO:l1 449.
\jot, 1.'14, 242, 349, :162.
Joyce 1 Jame::> Augu::>1ine 1 100.
ju::>1ifica1ion1 see ::>e11ing glue 1 line breaking.
Ju::>1U::>1 Paul E. 1 455.

\kappa (K.), 128,434.
\ker (ker) 1 IG2 1 :JG l.

*\kern1 101 40 1 661 751 871 IG8. 256. 26S. 280.
S06; S8.9; S.94·MS.95; 4 !6; 424; 454 .. 455.

Kernighan 1 Brian Wibon 1 159.
kern::>1 41 GG 1 75 1 95 .. 97 1 1101 1571 IG8 1 280 1

28G1 :JOG 1 444 1 454-455.
Key lndex 1 :J92<J94.
keyboard::>1 :l 1 51 4:J .. 4G 1 :JG8 <l"IO.
key,von1::>1 Gl 1 71 1 2G8 1 :n-71 :no.
Knu1h 1 Donald Ervin 1 i1 ii 1 vii 1 74 1 92 1 211 1

2591 :n71 :J40<H 11 412 .. 41:J 1 424 .. 425.
Knu1h 1 Nancy Jill Ca1ier1 iii 1 1251 418.
K0chel 1 Ltvhvig 1 Ri11er von 1 409.

1 aJ'ter fil 1 271 1 :n7.
£ 1 see pound ::>1erling.
\1 (})1 52·M5S1 :J5().
\L (L); 52·M5S; :J5G.
\lambda (A), 176, 434.
\Lambda (c\), :12:1, 434.
Lamp01i 1 Le::>lie B. 1 l:J7.
\laod (''), 133, 3GI, 438.
\langle (() 1 f46·Mf4'l1 1501 15G 1 :J59 1 4:J7.

*\language (hyphena1ion me1hod) 1

2Tl1 :J4G 1 455.
large delimi1em1 145 .. 1501 442.
large opera1or::>1 f44·Mf45 1 154 · 1551 :J58 1

4:J5; see ~Jlso Op a1om.

AppcndiJ: I: IndcJ: 469

*\lastbox1 2221 278 1 S54 1 S.921 S.981 S,9,9.
*\lastkern1 214 1 271.
*\lastpenalty1 214 1 271.
*\lastskip1 214 1 22S1 271 1 S,92.
[~Y[) .. ;X 1 l:J7.
\lbraoe ({), 146 147, 359, 437.
\lbrack ([) 1 f46·Mf4'l1 :l51 1 :JG9 1 4:J7.

*\lccode 1 41 1 214 1 271 1 :J45 1 452 .. 454.
\loeil (r), 146 147, 359, 437.
\ldotp1 :J58 1 :J591 4:J8.
\ldots (, ••)) 'lS) f'l2·Mf'l4) 177) t80·Mf8f)

t,9,9-M20f; :J59; 4:J8.
\le (<:), 9, 45, 1:1:1, 162, 318, 3GI, 438.
leader::>1 222 1 22:J .. 22G1 2281 280 .. 282 1 285 1

290 1 SfJ'l1 S,92-MS,94.
(leadem) 1 281.

*\leaders 1 95 1 1101 22:l 1 224 1 225 1 S5'l1

S,92-MS,94 ·
leading 1 see \baselineskip1 \vskip.
\leavevmode 1 :JD1 SSS1 S561 4081 420.
Lee 1 fv1amhall 1 17.

*\left 1 f48·MffJ(}1 15(> .. 1571 f'lf 1 19()1 292 1 4:J7.
lef1 brace 1 fS·Mf4 1 UJ.M2f 1 :l81 51 1 200·M2021

20:J .. 204 1 205·M2061 21() 1 2()9 1 27f> .. 27G 1

283, 28(), 291' :1:10.
(Jell brace) 1 275.
lef1 bracke1 1 51 1 D4 1 f4fJ .. !481 171 1 4081 4S'l.
lef1 delimi1em1 see opening::>.
lef1-hand page::> 1 252 .. 25:l 1 4 !6.
lef1 paren1he::>i::>1 51 1 D4 1 !401 145 .. !501 :J45.
lef1 quo1e 1 :J .. 51 D2 1 l:l4 1 S051 :J94 <J95;

see ~Jlso alphabe1ic con::>1an1.
\leftarrow (+---) 1 22() 1 4:J7.
\Leftarrow (-¢::) 1 22() 1 4:J7.
\leftarrowfill () 1 :J57.
\leftharpoondown (,----) 1 4:J7.
\leftharpoonup (L_) 1 4:J7.

*\lefthyphenmin1 2Tl 1 :164 1 454 1 455.
\leftline 1 101 1 2571 25.9·M2601 S261 :J5:J.
\leftrightarrow (+-+)1 4:J7.
\Leftrightarrow (<7-) 1 4:J7.

*\leftskip1 1001 274 1 Sf'l1 4071 4 !,9.
Legendre ::>ymbol 1 152.
Leon1ief1 WM::>ily WM::>ily1 2()5.
\leq (<:), 318,358, 43().
\leqalignno 1 1921 1941 :JG2.

*\leqno1 !871 1891 29:l1 :J75<J7G.
Le::>k1 fv1ichael Ed,van1 1 247.
le::>::> 1han or equal 1 see \le.
le::>::> 1han ::>ign 1 521 5:l1 tSS1 1501 209.

*\let 1 20() .. 207 1 215 1 277 1 :J071 :J09 1 S521 :no.
(le1 a&:>ignmen1) 1 277.
letterformat. tex1 40:l1 40() .. 408.

470 AppcndiJ: I: IndcJ:

le11erhead::>1 407.
le11em1 7 .. 8 1 :l"/ 1 41 1 45 .. 4G 1 51 1 D21

!57; :J44; :J"/0.
\lfloor (l), 146 147, 359, 437.
\lg (lg), !()2, 3()1.
\lgroup 1 1501 t'l61 :J59 1 4:J7.
\lhook1 :J58.
Liang 1 [-<'ranklin f.·1ark 1 449.
library of m8l:T0::>1 1991 :J82 <J841 425.
lie::>1 vii 1 :JO:J.
liga1ure::>1 41 19 1 4G 1 51 1 54 1 751 951 IG5 1

28G1 :J02 1 :J8l 1 4271 444 1 454.
\lim (lim) 1 IG21 !6:11 :JGL
\liminf (liminf) 1 IG2 1 !631 !781 3Gl.

*\limits 1 144 1 1591 292 1 :15.91 443.
limih> above and belo\v opent1on:>1

144 .. 145; 149; 179.
\limsup (lim;mp) 1 IG2 1 !6:11 t'l81 3GL
Lincoln 1 Abraham 1 ll.
\line) 'l2; n) 101; 224; 232; 252;

255 .. ·257; 353; 4 !2.
line breaking 1 97 .. 1001 173 .. 174 1 392·3951

398 .. 400.
line breaks 1 avoiding bad 1 27<W1 91 ·94 1

[TJ .. l74; 197.
forcing good 1 94 1 114.

line rule::> 1 see \hrule 1 \vrule.
(linefeed) (ASCII code 10) 1 :JG9.

*\linepenalty1 981 272 1 :l14 1 :1!61 :-J48.
line::> of inpu1 1 24 1 4() .. 48 1 ,'-f40.

*\lineskip1 78 .. 80 1 104 1 1941 274 1 281 1

:J491 :15f·M:152.
*\lineskiplimit 1 78 .. 80 1 104 1 1941 274 1

281 1 :J49 1 :15f·M:1521 :162.
li::>1 macro::>1 :J78<JSO.
\listing1 :J80 1 :J9L
\11 («), 431, 43().
Llanfair P. G. 1 451.
\llap1 82 .. 8:l 1 !8.91 :140·M:-J4 ! 1 :J5:l 1 :1551

:181,416417, 422.
\lmoustache 1 1501 :J59 1 4:J7.
\ln (ln) 1 IG21 !861 :JGL
\lnot (~), 3Gl, 438.
local 1 19 .. 21 1 see grouping.
Locke 1 John 1 :JO:J.
\log (log) 1 IG2 1 !6,9 .. -f'/01 :JGL
log file 1 101 28 1 GG 1 22G1 :JO:l 1 :J47.
logical opera1om 1 see \land 1 \lor1 \lnot.
logo 1 11 81 412 1 see \TeX.

*\long1 205 .. 20G1 2101 275 1 TH 1 :1751 :1781 :182.
long formulM 1 19(> .. 197.
\longindentation 1 407.
\longleftarrow (+-----) 1 :J581 4:J7.

\Longleftarrow () 1 :J58 1 4:J7.
\longleftrightarrow (+-------+) 1 :J58 1 4:J7.
\Longleftrightarrow (~) 1 :J58 1 4:J7.
\longmapsto (1--------1-) 1 :J58 1 4:J7.
\longrightarrow (---+)1 :1251 :J581 4:J7.
\Longrightarrow () 1 :J58 1 4:J7.
looking ahead 1 207 1 :J7G<Jn.
\loop, 21721.'1, 352, :17:1 :174, :187, 417.
loo::>e line::>1 97 1 99 1 :J02.

*\looseness1 IO:J .. I04 1 1091 2Tl 1 ,'-f421 :J49.
\lor (V), 133, 3() l, 438.
lo\v-reoolu1ion prin1er1 59.

*\lower1 661 80 1 151 1 1791 285 1 290.
*\lowercase1 41 1 215 1 279 1 :J07 1 :J45.

lo,verca::>e le11em1 91 2G8 1 :J70 1 45:J.
\lq (') 1 51 481 :J51 1 :JG9 1 :1.95.
Luckombe 1 Philip 1 447.
lxix 1 420.

\m@ne 1 :J47.
\m@th 1 :J5:J.
machine-independence 1 58; see ~Jlso .dvi.
f-.%cro 1 Na~viu::> Se1ioriu::>1 219.
macro argumen1::> and parame1em 1

:n, 200 200, 249, 26:1, :162, :16:1,
:175 :180, 407.

(macro a&:>ignmen1) 1 275.
macro conven1ion::> 1 121 1 :J4G1 :JG4.
macron accen1 (-) 1 see \= 1 \bar.
macroo 1 199 .. 219 1 :JTJ .. 40L

10 ::>ave 1yping in ma1h 1 DG 1 199 .. 2001 :124.
*\mag 1 G0 1 270 1 2Tl 1 :J48.
\magnification 1 171 59 .. ()0 1 :JG4 1 40S·M404.
magnified ou1pu1 1 1() .. 171 59 .. ()0 1 40:l 1 4:n.
\magstep 1 171 59 .. ()01 :J49 1 40S·M404.
\magstephalf 1 171 :J491 40:J.
mail 1 40:J .. 408.
main veJiicalli::>1 1 851 1101 ill1 1251

25:J .. 254; 281.
\maintoks 1 2()2.
\makefootline 1 255 ·257 1 :JG4.
\makeheadline 1 255 1 257, :JG4
\makelabel 1 40:l 1 404 ·4051 408.
manfnt 1 44 1 408 1 414.
manmac. tex1 41 :J .. 425.
\manual 1 44 1 414 1 4 UJ.M420.
\mapsto (1----1-) 1 1281 :J58 1 4:J7.
\mapstochar (1) 1 :J58.
\margin 1 415 1 424.
marginal hack::> 1 82 1 1051 400 1 415 1 424.
margin::>1 see \hsize 1 \narrower.

*\mark1 951 1571 21() 1 258 .. 2G:l 1 280 1 417 1 454.
mark::>1 95 1 1101 1571 2D1 258 .. 2G:J.
markup command::> 1 see con1 rol ::>equence::>.

ma1h a<:<:enh>1 !:15 .. !:171 141 1 1()4 .. IG5 1

:J59; 4:l5; 44:J.
(ma1h a1om) 1 291.
(ma1h <:hara<:1er) 1 289.
ma1h <:hara<:1er <:ode::> 1 154 .. 157.
(ma1h field) 1 289.
ma1h fon1::> 1 1571 :15! 1 4:J0 .. 4:B 1 441 1 447.
ma1h formula::> 1 ho\v 10 1ype1 127 .. 197.
ma1h i1ali<: 1 1()4 .. IG5 1 409 1 4:l01 4TL
ma1h li::>1::> 1 157 .. 1591 441 .. 44().
ma1h mode 1 85 .. 89 1 1271 1571 289 .. 29:J.
ma1h ::>pa<:ing 1able1 170 .. 171.
(ma1h ::>ymbol) 1 289.
ma1h ::>ymbol::>1 127 .. 128.

<:On::>1 ru<:1 ion of1 !51 1 1781 :158·M:UJt.
1able of1 4:J4 .. 4:J8.

ma1h-off1 95 .. 97 1 287 1 447.
ma1h-on 1 951 971 287 1 447.

*\mathaccent 1 1571 1701 291 1 :15.91 44:J.
*\mathbin1 1551 291 1 :16!.
*\mathchar1 1551 289.
*\mathchardef1 1551 1991 214 1 215 1 2721

2771 289 1 TW 1 :J94.
(ma1h<:hanlef 1oken) 1 271.

*\mathchoice 1 151 1 1571 292.
*\mathclose 1 1551 291 1 :1221 :15,9.
*\mathcode1 l:l4 1 154 .. 1551 214 1 271 1 2891

319, 32(), :144·
ma1hema1i<:al expre::>::>ion::> 1 127 .. 197.
fv1a1hema1i<:al Revie\v::>1 l0G 1 :J92 .. :J94.
(ma1hema1i<:al ::>kip) 1 290.
ma1hema1i<:al ::>1yle 1 1()() .. 1()71 l82 .. l8:J.
\mathhexbox 1 :J5G.

*\mathinner1 1551 171 1 1991 291 1 :15,9.
*\mathop1 1551 1781 291 1 :124 .. -:1251 :16 f.
*\mathopen1 1551 291 1 :1221 :15,9.
*\mathord1 88 .. 89 1 1551 291.
\mathpalette 1 !51 1 :MO.

*\mathpunct 1 1551 291.
*\mathrel 1 1551 291 1 SMJ. :16!.
\mathstrut 1 l:ll 1 1781 :JGO.

*\mathsurround1 97 1 !621 274 1 :J05 1 :ll4 1

:J2:l; :15:1; 447.
ma1 ri<:e::>1 l"IG · 1781 181; see ~Jlso alignmen1::>.
\matrix 1 !76 .. t'l81 1821 :1251 :JGL
\max (max) 1 l()2 .. l():J 1 t'l0·Mf'lf 1 :JGL

*\maxdeadcycles 1 255 1 2Tl 1 :-J48.
*\maxdepth1 f f2·Mf 14 1 l2:J .. l25 1 2551 262 .. ·26:11

274; :-J48) 400; 4 !5.
\maxdimen1 58 1 1881 262 .. ·26:11 :J47 1 :J48.
maximum legal dimen::>ion 1 58.
maximum legal in1eger 1 118.

*\meaning1 2l:J .. 2l5 1 TW 1 :182.

AppcndiJ: I: IndcJ: 471

meMure 1 see \hsize.
\medbreak, l ll, ll:l, 353, :!55, 4 1.'1, 4 22.

*\medmuskip (medium ma1h ::>pa<:e) 1

1()7 .. IG8 1 274 1 :-J4.91 44G.
\medskip (medium exira ve1ii<:al ::>pa<:e) 1 701

79; 102; 109; l ll) :J52; 4 f(J.M4 f 2.
\medskipamount 1 :J49 1 :152· :15:11 :1551 401.
\medtype 1 408 .. 411.
member::>hip 1 see \in 1 \ni 1 \not in.
memory ::>pa<:e 1 1001 :JOO<Wl 1 :J421 :J45 1

:J47; :J8:l; :J84; :J94; 400.
*\message 1 21()1 2tTM2f81 227 .. 228 1 2791 :1081

:J281 ,'-f4:1·M:144 1 :1551 4 !8.
METAFONT 1 420 1 4271 442 1 48:l.
me1ri<: uni1::>1 57 .. ()0.
\mid (I), 174, 43().
\midinsert 1 llG 1 ,'-f4(J. :14 f 1 :JG:J.
migra1ion 1 1051 1171 259 1 280 .. 281 1

282 1 28G 1 287.
\min (min) 1 l()2 .. l():J 1 t'l0·Mf'lf 1 :JGL
minus 1 71 1 271 1 :n-7.
mimm ::>ign 1 41 51 1 !271 D21 22() 1 2()8.
! Missing oome1hing 1 29() .. 297 1 :n-7.
\mit (ma1h i1ali<: family) 1 IG4 1 :J5l 1 4:l0 1 4:14.

*\mkern1 IG8 1 280 1 442.
mm (millime1er) 1 57 1 270.
mod 1 t 64 1 :J22 1 :JG l.
\models (F)1 :J58 1 4:JG.
mode::>1 4G1 8f> .. 891 1751 2G7 ·29:J.
modes. tex 1 88 .. 89.
money 1 54 1 1401 208 .. ·20,9.

*\month1 2Tl 1 :J491 406.
f.·1orri::> 1 William 1 107.
mou::>1 a<:he::> 1 !50.
mou1h 1 see ana1omy of'!) .. ~.

*\moveleft 1 80 .. 81 1 2821 287.
*\moveright1 80 .. 81 1 22 f 1 282.
Moxon 1 Jo::>eph 1 287.
Mot\aJi 1 Johann Chry::>oo1om Wolfgang Go11-

lieb Theophilu::> Amadeu::>) 1 409.
\mp ('f), 1:1:1, 43().

*\mskip1 IG8 1 290 1 442.
mu (ma1h uni1) 1 IG8 1 270 1 442.
\mu (1<), 162, 434.
(mu uni1) 1 270.
(mudimen) 1 270.
(muglue) 1 1181 1()7 .. 1()81 271.
(muglue parame1er) 1 271 1 274 1 2"/G.
(muglue variable) 1 2"/G.
M uir1 Co<:kburn 1 28:J.
Muirhead 1 Jame::>1 21.
mul1i<:olumn forma1 1 2571 :J9G<l97 1 417.
mul1iple in1egral::>1 !6.91 !80.

472 AppcndiJ: I: IndcJ:

*\multiply1 f f8 .. -t !,91 2!81 27G 1 :J491 :1.9! 1 :1,98.
\multispan 1 24:l1 24() .. 247 1 :1:14 1 :J54.
fv1 un::>1er1 55.
(mu::>hrink) 1 271.
mtmic 1 408 .. 412.

*\muskip regi::>1en:>1 1181 IG8 1 271 1 2"/G.
*\muskipdef 1 1191 215 1 277.
(mu::>kipdef 1oken) 1 271.
(mm>1re1ch) 1 271.

\nabla (V) 1 4:J5.
name::> 1 Tl1 92.
\narrower1 1001 ,':f4(J. :14 ! 1 :J55.
Na1ional Science Founda1ion 1 vii.
\natural (:) 1 4:J5.
na1 ural \vid1 h 1 G9.
Naur1 Pe1er 1 2G8.
\ne (), 9, 45, 1:1:1, 318, 3GI, 438.
\nearrow (/) 1 4:J7.
\neg (~), 435.
nega1ed rela1iom> 1 4:JG -4:J7.
nega1ive dimen::>iom>1 GG1 222.
\negthinspace 1 :B21 :J52.
\neq (), 318, 358, 438.
ne::>1ing (i.e. 1 group::> im>ide group::>) 1

20 .. 21; 210; :J85.
ne\v ::>ymboh:>1 151 1 1781 :158 .. -:UJt.
\newbox 1 121 1 :J4G 1 :J47 1 :15:11 :1.94 1 411.
\newcount 1 121 1 2!81 :J4G 1 :J47 1 ,'-f4,91 418.
\newdimen1 121 1 :J4G1 :J47 1 ,'-f4,91 415.
\newfam1 121 1 1571 :J4G1 :J471 :15!.
\newhelp 1 :J4G 1 :J47.
\newif 1 211 1 2181 :J48 1 :154 1 :1751 4 tf/1 42:1.
\newinsert 1 121 1 1221 :J4G 1 :J47 1 :16:11 415.
\newlanguage 1 :J4G 1 :J47.

*\newlinechar1 228 1 2Tl 1 :-J48.
\newmuskip 1 121 1 :J4G 1 :J47.
\newread 1 121 1 21()1 :J4G 1 :J47.
\newskip 1 121 1 :J4G1 :J471 ,'-f4.91 :1.94 1 414.
\newtoks 1 121 1 2121 2621 :J4G 1 :J47 1 401.
\newwrite 1 121 1 2271 :J4G 1 :J47 1 422 .. ·42:1.
\next 1 :J52.
\ni (3), 43().
\ninepoint 1 151 414 4!.9.
\ninerm1 151 41:J.
\ninesl 1 151 41:J.
No room1 :J47.

*\noalign1 17G 1 191 1 !.9:11 2:l7 1 2461 2491

282; 285; 28().
*\nobonndary 1 28:l 1 28G 1 290.
\nobreak (inhibi1 line or page break) 1 971

1091 114) t.9S1 :n51 :J5:J 1 :1.94 1 401.
*\noexpand1 209 1 2D1 215 1 21() 1 ,'-f481 S'l'l1 424.

*\noindent 1 8G1 1881 262 .. ·26:11 28:l1 28G 1

291 1 :140·M,'-f4 I 1 :1551 4 !.9.
\nointerlineskip1 79 .. 80 1 2551 :BI 1

:J52; :18,9.
'\nolimits, 144, 159, 292, :158, :161.
(non-macro M::>ignmen1) 1 275.
nonaligned leadem1 224 .. 22().
\nonfrenchspacing 1 7 41 :l51.

*\nonscript1 1791 290 1 442 1 44().
*\nonstopmode 1 :l2 1 2771 299.
\nopagenumbers 1 251 .. 252 1 :JG2 1 4061 40.9.
norm ::>ymbol 1 see ab::>olu1e value 1

ve1iical line.
(normal dimen) 1 270.
(normal in1eger) 1 2()9.
(normal mudimen) 1 270.
\normalbaselines 1 :1251 :J491 :l51 1 414·415.
\normalbaselineskip1 :J49 1 4 14-M4 15.
\normalbottom1 :JG:J.
\normallineskip 1 :J49 1 :15!.
\normallineskiplimit 1 :J49 1 :151 1 :162.
Nonvegian charac1em 1 45 .. 4G 1 52 .. 5:l 1 :no.
\not (1:1:1, 358, 4:16 4:17.
\notin) 1 :W0 1 4:J7.
n1h 1 :J2:J.
\nu (v), 128, 16:1, 434.
nucleu::> 1 158 .. 1591 289 · 292 1 441 .. 44().
\null 1 :J II 1 :1:121 :J5l.
(null) (ASCII code 0) 1 :l7 1 :l9 1 48 1 :J4:l1 :w9.
null con1 rol ::>equence1 4G 1 :J08.
null delimi1er1 149 .. 1501 1521 15G1 :J45 1

:160, :162.
null ::>e1 1 see \emptyset.

*\nulldelimiterspace1 1501 274 1 ,'-f481 442.
*\nullfont 1 141 15:l 1 271 1 4:n.
(number) 1 44 1 1181 2()9 .. 270 1 272 1 :J09 1 :l49.

*\number 1 40 .. 41 1 2D1 214 1 2521 4061 424.
number ::>ign 1 see hMh mark.
numbered foo1no1e::> 1 121 1 125.
numeral::>1 see digi1::>1 roman numeral::>.
numera1or1 141 1 1521 1791 444 .. 445.
(numeric variable) 1 27G.
numerical 1 able::> 1 240 .. 241.
\nwarrow ('_) 1 4:J7.

0 venm::> 0 1 D2.
\o(0),35G.
\0 (0), 35().
\oalign 1 :J5G.
obeli::>k or obehm1 5:J.
\obeylines 1 .94 1 24.91 2621 :J42 1 :J52 1

:180 :182, 407, 4 I .'I.
\obeyspaces 1 254 1 :J081 :J42 1 :J52 1 :180·MS81 1

:1.'14, 421.

oblique 1 see ::>lan1ed.
(oc1al con::>1an1) 1 2G9.
(oc1al digi1) 1 2G9.
oc1al no1a1ion 1 43 1 44 1 1551 420.
odd-numbered page::>1 2()2 .. 2()~l 1 4 !6.
\odot ((,)), 43().
\oe (re) 1 521 35G.
\OE (CB) 1 52 1 5:11 35G.
Office of Naval Re::>earch 1 vii.
\offinterlineskip 1 245 .. 2471 312 1 352 1 4!6.
\oint (large ;f) 1 358 1 435.
\oldstyle 1 351.
old::>1yle numeral::>1 4301 435.
\omega (w) 1 3231 358 1 434.
\Omega (!l), 358, 434.
\omicron 1 434.
\ominus (E->) 1 43().

*\omit 1 240 1 243 .. 244 1 246-M2471 282.
one half1 141 1 l8G.
(one op1ional ::>pace) 1 2()9--270.
online in1erac1ion 1 see in1erac1ing \vi1h '!) .. ;X.
\ooalign 1 356.
Op a1om 1 158--1591 170--171 1 289 1 442--444.
Open a1om 1 1581 170--171 1 289 1 442--444 1 44G.
open in1erval::> 1 l 71.
openface 1 see blackboard bold.

*\openin1 21()--217 1 280.
opening::> 1 D4 1 1471 154--1551 3591 437;

see ~Jlso Open a1om.
*\openout 1 22()--2281 254 1 2801 4221 42:1.
\openup 1 194 1 237 1 2421 3G2.
\oplus () 1 9 1 154 1 43().
op1imi"'a1ion of macroo 1 342 1 3451 348.
(op1ional a&:>ignmen1::>) 1 28G.
(op1ional by) 1 2"/G.
(op1ional ::>ign) 1 57.
(op1ional ::>ign::>) 1 2G9.
(op1ional ::>pace::>) 1 2G81 2()9--271.
(op1ional true) 1 270.

*\or1 210 1 2D1 406.
Onl a1om 1 1581 170--171 1 289 1 3581 442-44().
ordinary symbols1 D'21 see Ord a1om.
Ore 1 Oy::>1ein 1 53.
organi::>1::>1 239.
organ::>1 38--39 1 4G 1 85 1 2G7 1 3Tl1 45G.
orphan 1 see ,vido\v \vonL
O::>bourne 1 Lloyd 1 G7.
\oslash () 1 43().
\other1 421.
o1her charac1er1 :n.
\otimes () 1 9 1 43().

*\outer1 20G 1 210 1 275 1 :154 1 :1571

418 4 1.'1, 422.

AppcndiJ: I: IndcJ: 473

*\output 1 1251 2531 254-M2571 2751 :M4 1

370; 4 !7.
ou1pu1 rou1ine::>1 21 1 1121 251--2()4 1 417.

\vhen invoked 1 1221 1251 281.
*\outputpenal ty 1 l '2() 1 254 -M2551 '2Tl 1

349, 400, 417.
*\over1 t:1,9-Mf4 ! 1 !481 1521 292 1 437 1 444-445.
Over a1om 1 1581 289 1 443.
\overbrace 1 !761 225 1 359.
overfull boxe::>1 27 <J0 1 94 1 229 1 238 1

302--303; 307; 400.
avoiding 1 107.

*\overfullrule1 274 1 307 1 :-J48.
overlap::> 1 82--83 1 38G.
\overleftarrow 1 359.

*\overline 1 t:10-M!Sf 1 !:161 141 1 1701 291 1 443.
overloading1 54 1 243.
\overrightarrow 1 22() 1 359.

*\overwithdelims 1 !521 2921 444--445.
\owns (3) 1 3G l 1 438.

\P (~)1 531 !171 35G 1 438--439.
\p@) 347; 348.
\p@renwd 1 3()1.
page break::> 1 avoiding bad 1 l09--lll 1

189; 193.
forcing good 1 109--lll; see ~Jlso \eject.

page builder 1 l 10-- 114 1 122-- 1251 281.
\vhen exerci:.>ed 1 1221 280--283 1 28()--287.

page fonna1 1 modi(ying 1 251--253.
page make-up 1 1091 see ou1pu1 rou1ine::>.
page number::>1 21 1 231 1191 207 1 251--253.
\pagebody 1 255--257 1 3()4.
\pagecontents 1 25G 1 3()4.

*\pagedepth1 ill1 1231 214 1 271.
*\pagefilllstretch1 ill1 214 1 271.
*\pagefillstretch1 ill1 214 1 271.
*\pagefilstretch1 ill1 214 1 271.
*\pagegoal 1 ill1 1231 214 1 271.
\pageinsert 1 1151 3G3.
\pageno 1 2521 2561 ,'-f401 3G2 1 406.

*\pageshrink1 ill1 1231 214 1 271.
*\pagestretch1 ll1_1 '214 1 '271.
*\pagetotal1 ill1 1231 214 1 271.
*\par1 47 1 8G--871 1001 D5 1 202 1 2491 2G2 1

283, 28(), :140,351, :180:181.
forbidden in argumen1::> 1 205 1 207.

paragraph 1 implied beginning of1 85 -8() 1 283.
implied end of1 24 1 8G 1 28G.
lM1 line of1 99--100.
::>hape parame1em re:.>e1 1 103.

paragraph ::>ign 1 53.
\parallel (il), 43().
(parame1er 1ex1) 1 2031 275.

474 AppcndiJ: I: IndcJ:

pantme1em1 see macro argumenh> and
pantme1em.

pantme1em1 numeric 1 1191 :J42;
see ~Jlso \fontdimen.

defaul1 value::>1 ~H8<H9.

1able 1 272 .. 274.
paren1he::>e::>1 51 1 1291 l:l4 1 !401 145 .. !501

:J45; 4:J7.
roman 1 in i1 alic 1ex1 1 409-.. 4 ll.

*\parfillskip1 1001 1881 274 1 28G 1 :J0"/1

st51 :n2) :148) :1.94) 4 t.9.
*\parindent 1 8G 1 1001 101 1021 1051 2621

27 41 282 1 28G 1 291 1 ::14 21 ::14 81 :1551

:1.94; 406; 4 !5.
*\parshape1 101 1021 214 1 271 1 277 1 28:l1

:1!5; :J49; :J"/4.
*\parskip1 79 1 104 .. 1051 2G21 274 1 282 1

:142, :148, :155, 406, 417.
\partial ({)) 1 f4'l1 4:J5.
PMcal 1 Blai::>e 1 101 .. 102.
\path 1 :J90<J9l.

*\patterns1 277 1 45:l 1 455.
pa11ern::> for hyphena1ion 1 449-.. 45:J.

*\pausing1 2"/:J 1 :JO:J.
Pax1on 1 William Hamil1on 1 425.
pc (pica) 1 57 1 270 1 4 !5.
penal1ie::>1 95··100 1 llO .. ll4 1 189.

infini1e, 97, Ill, 28G, 400.
nega1ively infini1e, 97, Ill 112, 114,

254 .. 25G, 2G4, 400.
*\penalty, 79, 97, llO .. lll, 174,280,:15:1.
\penalty-' 10000000000, 2()4.
percen1 ::>ign, 26, :J8, :J9, 4:J, 48, 51, ll:l,

124, 24.'1, :1:17, :140.
period, 51, 72 .. -'1:1, l:J:J .. l:J4, 149, !6!,

:J45, :1.94 .. ·:1.95, 4:JO.
::>pace af1er, 'lS·M'l5; "/G.

periodic preamble::>, 241 .. 242, 244,
246, :161, 412.

Perli::>, Alan J., :JG5.
\perp (1_), 358, 43().
\phantom, 131, 178,211, 3GO 412.
\phi (¢), 128, 148, 434.
\Phi (<!>), :12:1, 434.
Philip::>, Pe1er, 2:J9.
philooophem, 100, 2:J9.
(phy::>ical uni1), 270.
\pi ("), 9, 87, 1:17, 148 14.'1, 434.
\Pi (II), 9, :124, 434, 435.
piano, 17.
pica, 57, 4 n, see pc.
pic1 ure::>, 228 .. 229.
pieceK of KymboiK, 145, 432, 442.

pi lcro\v, see \P.
plain. tex, :J42 <JG4.
plain'!'[.. ~ forma1, 10-ll, :J4:J<W4.

munmary, TJ9<H2.
\plainoutput, 2()()1 ~J64.

Pla&:>, fv1 ichael l"''rederick, :J40<H l.
Pla1o, 1, 2:J9.
plus, 71,271, :n-7.
(plu::> or mimm), 2()8.
plu::> ::>ign, 51, !:l2, 2()8.
\pm (±), 1:1:1, 358, 43().
\pmatrix, l"IG, :12:1, :JG2.
\pmod (no1a1ion like (mod p)), 164, :J22, :JGL
\pnt, 395.
pocke1-::>i"'e, 59.
poem, 94.
poin1::> (prin1er::{ uni1::>), 15, 57 .. 58.
poin1::> \vi1h arbi1rary coordina1e::>, :J89.
Poli::>h charac1em, 52 .. 5:J.
POlya, GyOrgy George), 7.
poor man'::> bold, :J8G.

*\postdisplaypenal ty, 189 · 190, 272.
poul1ry, 2:J() .. 2:J7.
pound ::>ign, see hMh mark.
pound ::>1erling, 54, 428.
po,vem of 1en, 29:J.
pO\Ven:> Of 1 \V0 1 29:J.
\Pr (Pr), 1()2, :12:1, :JGL
preamble::>, 20G, 2:J5 .. 249.
\prec (-<), 4:JG.
\preceq (:5), 4:JG.

*\predisplaypenalty, 189 .. 190, 272, ,'-f48.
*\predisplaysize, 188, 190, 274, :J49.
(prefix), 275.
\preloaded, :J50, 4 n.
preloaded fonna1::>, 25 ·2G, :J9, 28:J, :J44.
Premune, Living::>1one Irving, 74.

*\pretolerance, 9G, 107, 272, St'l, :-J48,
:-J64, :1.94, 4 5 t.

pre11y-prin1ed program::>, IG5, 2:J4.
*\prevdepth, 79 .. 80, 89, 271, 281, 282.
prevdepth ignored, 88 .. 89.

*\prevgraf, !O:l, 188, 190, 214, 271.
\prime (1), !SO, 155, :J57, 4:J5.
prime numbem, 148 .. 149, 218.
primi1ive, 9 .. 11, 2G7, :J42, 457.
priva1e con1rol ::>equence::>, :J44, :JG4, 414.
\proclaim, 202 .. 20:J, 20G, :140-M:-J4 t, :J55.
Proc1er, William Alexander, :J8.
\prod (large !!), t80·Mf8t, 4:J5.
programming \Vi1h '!)0, 217 .. 219, :J87· :J88.
program::>, for compu1em, :J8, IG5, 2:J4.

for numic, 408 .. 412.

proofreading 1 591 :JO:J.
proper name::>1 -n1 92.
\propto (ex:) 1 4:JG.
pro1o1ype ro\v1 2:l8 1 :J02- :JO:J.
Pra~1oriu::> [Schuh hei&:>] 1 fv1 ichael 1 2:J9.
\ps, 403, 404, 407.
p::>eudo parame1er::>1 1191 :J49.
\psi ("4-') 1 :1251 4:J4.
\Psi (w), 434.
p::>ychologically bad breaks 1 ,9 t ---,9:1.
pt (prin1er'::> poin1) 1 24 1 57--58 1 2G8- 270.
Punc1 a1om 1 1581 170--171 1 289 1

442--44:l; 44G.
punc1ua1ion 1 141 51 1 72--7G 1 :J2l 1 :J94--:l95.

in formulM 1 D4 1 154--1551 !Gl 1 :J58--:l591

4:J8; see ~Jlso Punc1 a1om.

\qquad1 f 661 f 851 :J52.
quad 1 G01 WG-- IG8 1 17"7 1 4:n.
\quad, .'14, !()() lG7, 185, 2:12 2:1:1, 352.
quad lef1 1 see fitmh Jell.
quad middle 1 see \break.
quad righ1 1 see fitmh righ1.
quar1er circle::>1 :J89--:l9L
que::>1ion mark1 51 1 -n1 WI.
Quick1 Jona1han Hora1io 1 298.
quo1a1ion marks; s---5) 24; :J94 -:m5.
quo1a1ion::> 1 1001 418--419 1 425.
quo1e::> \vi1hin quo1e::>1 5.

[R1 see blackboard bold.
Rad a1om 1 1581 289 1 44:J.

*\radical 1 157--1591 291 1 44:J.
ragged bo11om margin::> 1 Ill 1 25:l1 25G 1 :J98.
ragged Jell margin::>1 :J92--:l94.
ragged righ1 margin::> 1 29<J0 1 101 1 2Gl-2G2 1

:J5f>--:l5G; :J92--:l94.
\raggedbottom1 Ill 1 25:l1 :JG:l 1 406.
\raggedcenter 1 107.
\raggedright 1 29-<J01 7G1 101 1 1071 ff51

2621 :J5G1 :1.961 401.
*\raise1 66 67, 80; !51; 179; f .9:1; 285;

290, 408.
\rangle ()), 146 147, !50; :J59; 4:J7.
Raper 1 fv1a11hew 1 Gl.
\rbrace (}) 1 !46---!471 :J591 4:J7.
\rbrack (]) 1 !46---!471 :l5l 1 :JG91 4:J7.
\roeil (l), 146 147, 359, 437.
\Re (!II), 435.

*\read1 215 1 217--218 1 27G 1 :J4G 1 401.
recen1 con1ribu1ion::>1 1121 1251 281.
recovery from error::>1 :m- :l41 29f><JO:J.
recur::>ion 1 219 1 2G81 :J0l 1 :J"/9 1 :J9l 1 :J97.

i nfini1 e 1 299 1 :JO l 1 :J8:J.

AppcndiJ: I: IndcJ: 475

reduc1 ion 1 l G.
reference marks1 l IG-- 117.
reference poin1 of a box 1 G:l--G4 1 7"71

80 82, 388 389.
(regi::>1enlef) 1 277.
regi::>1er::>1 117--1221 212 1 214 1 :J4G- :J48.
regi::>1 ra1 ion mark::>1 4 !G.
Reid 1 Brian Kei1h 1 :l71 1 404--40G.
Rel a1om 1 1581 170--171 1 289 1 442--444 1

44G--447.
(rela1ion) 1 209.
rela1ion::>1 tSS---t:/4 1 1471 !54 -155 1 :J58 1 4:JG 1

4:J7; see ~Jlso Rel a1om.
*\relax1 2:l 1 25 1 71 1 2401 27G 1 279 1 :1071 :15:1.
\relbar (-) 1 :J58.
\Relbar (), 358.

*\relpenalty1 101 1 1741 272 1 :J22 1 :!481 44G.
\removelastskip 1 :J5:J.
\repeat 1 2!7---2!,91 :J52.
repea1 ing command::> 1 see \loop.
re::>erved charac1er::>1 :l7--:l81 51--521 D4.
re::>erved \VOrd::>1 Gl 1 71 1 2G8 1 :n71 :J"/0.
re::>1ric1ed horitwn1al mode 1 851 87--89 1

285--287.
r€mun€ 1 25:J.
(re1 urn) (ASC[[code D) 1 2:l1 :l91 4:l 1 45 1 4G 1

48 1 249 1 :n1) :J4:J 1 :J45 1 :JG91 :Jso.
\(re1 urn) 1 81 :1051 :J5L
reveme apoo1rophe 1 :l--5 1 51 1 l:l2 1 D4 1 :J9l 1

:J94--:l95; see ~Jlso alphabe1ic con::>1an1.
reveme ::>la::>h 1 see back::>lMh.
Revie\ver 1 Ann Arbor 1 lOG.
\rfloor (J), 146 147, 359, 437.
\rgroup 1 1501 t'l61 :J59 1 4:J7.
\rho (p) 1 1281 :1251 4:J4.
\rhook1 :J58.

*\right1 !48---!501 155--1571 f'lf 1 l9G 1

292; 4:J7.
righ1 brace 1 t:l---!4 1 !,9---2! 1 :l81 51 1 200---2021

20:l--204 1 205---2061 2G9 1 275--27G1

279 1 :J0l 1 :1:10.
(righ1 brace) 1 275.
righ1 bracke1 1 51 1 l:l4 1 !46---!471 171 1

345, 408, 4:17.
righ1 delimi1er::>1 see opening::>.
righ1-hand page::>1 252--25:l 1 4 !6.
righ1 ju::>1ifica1ion1 71.
righ1 paren1he::>i::>1 51 1 l:l4 1 !401 !45-- !501

:J45.
righ1 quo1e 1 :l--5 1 51 1 !:101 1551 201 1 :1051

:J24 1 :J94--:l95; see ~Jlso oc1al.
\rightarrow (--+) 1 22G 1 4:J7.
\Rightarrow (::=>) 1 22G 1 4:J7.

476 AppcndiJ: I: IndcJ:

\rightarrowfill () 1 22()1 357.
\rightharpoondown (----,-) 1 437.
\rightharpoonup (----'-) 1 437.

*\righthyphenmin1 2Tl 1 :-J64 1 454 1 455.
\rightleftharpoons (~) 1 :JGO<Wl 1 43-1.
\rightline 1 101 1 Sf'l1 ,':f40-M::f4 ! 1 353.

*\rightskip1 100 .. 101 1 274 1 Sf'l1 :1561

393, 421.
\rlap, 82 83, 18.'1, 247, :11.'1, 353, :18.'1, 416.
\rm (m>e roman 1ype) 1 l:J .. l51 1541 !6:11 :1201

351 1 :M4 1 40.91 4f4 .. -4f51 4L91 427.
\rmoustache 1 1501 359.
roman le11em in ma1h 1 1()2 .. 1()4.
roman numerah:;1 10 .. 4 l 1 2521 256.

uppercMe 1 374.
roman paren1he::>e::> in i1alic 1ex1 1 409-4!1.
roman 1ype1 l:J .. l71 51 .. 55 1 1271

1()2 .. IG5 1 427.
*\romannumeral 1 40-41 1 2D 1 214 1 252.

Roo1 1 Waverley Le,vi::>1 55.
\root 1 [,'1(}-Mf,'l! 1 f"/,9

1
:1251 :J()0.

rounding 1 58 1 119.
\rq (·)1 51 481 351 1 :JG91 :1,95.
rule boxe::>1 24 1 G4 1 221 .. 2251 281·282 1

285; 291.
(rule dimem>ion) 1 282.
(rule ::>pecifica1ion) 1 282.
rule 1hickne::>::>1 1431 1791 221 1 447.
ruled 1 able::>1 245 .. 248 1 392.
rulem1 58.
runa\vay::> 1 20(> .. 20() 1 297.
running headline::>1 253 1 258 ·2G0 1 41().
running 1he program 1 23<J5.
Ru&:>ian charac1er::>1 :no.
\S (§), 53, 1!7, :l5G, 438 439.
Sally 1 Baby 1 72 .. 7().
::>ample line for 1abbing1 232 .. 234.
::>ample page::> for book de::>ign 1 412 ·4l:J.
save size1 300<Wl 1 374 1 399 ·400.
::>ave ::>1ack buildup 1 301 1 34G.
\sb1 1:3.51 :35-11 :JG9.
\sc (u::>e SMALL CAPS 1ype) 1 414 ·415.
scaled1 1() .. 171 G0 1 2771 :-J501 4:n.
::>caled poin1::>1 57 .. 581 270.
Scandinavian le11er::>1 45 .. 4G 1 52 ·5:L
Schickele 1 Prof. Pe1er1 41 0 .. 4 l l 1 481.
::>cra1ch con1rol ::>equence1 352.
::>cra1ch regi::>1em1 1221 34G.
Scribe 1 371 1 404.
::>crip1 le11em1 lG41 434.
::>Crip1 ::>it\€ 1 1401 1531 442.
::>crip1 ::>1yle 1 140 .. 1421 441 .. 447.

*\scriptfont 1 1531 1()81 213 1 271 1 321 1

351; 4f4 .. ·4f5; 441 .. 442.
::>crip1ocrip1 ::>it\e 1 1401 1451 1531 442.
::>crip1ocrip1 ::>1yle 1 140 .. 1421 441 .. 447.

*\scriptscriptfont 1 1531 IG8 1 2131 2"/1 1

351; 4f4 .. ·4f5; 441 .. 442.
*\scriptscriptstyle) 141 142; rm) 292.
*\scriptspace 1 274 1 348 1 445 .. 44().
*\scriptstyle) 141 .. 142; !45) rm) 292.
*\scrollmode 1 32 1 277.
\searrow ('\;) 1 437.
\sec (::>ec) 1 IG21 3Gl.
::>ec1 ion number ::>ign 1 see \S.
Selden1 John1 ll.
::>elec1ion1 see \cases.
::>emicolon1 51 1 t :-J4 1 lG l.
::>en1ence::>1 72 .. 7G.
Se::>ame S1 ree1 1 G l.
::>e1 macro 1 379.
::>e1 no1a1ion 1 f4'l1 174 .. t'l5.

*\setbox1 GG .. G7 1 77 1 81 1 1201 27G 1 :-J8fJ· .. :-J.92.
*\setlanguage 1 2871 455.
\setminus (\) 1 4:-JfJ.
\settabs 1 2:H··234 1 354 1 355.
::>e11ing 1he glue) 70; 77; 81; 388.
\setupverbatim1 380<J8l 1 391.
\sevenrm1 151 1531 350 1 351 1 4f4 .. 4f5.

*\sfcode 1 7G 1 2!4 1 271 1 28G 1 :-J2f 1 ,'-f451 :-J5t.
::>hado\v boxe::> 1 GG.
Shake::>peare 1 William 1 171 551 :n1.
(::>hape a&:>ignmen1) 1 277.
(::>hape dimen::>ion::>) 1 277.
\sharp (~) 1 40.91 435.
::>harp S (B) 1 see \ss.
::>harp ::>ign 1 see ha::>h mark.
Sha\v1 George Bernard 1 1071 229.
Sheridan 1 Richard Brin::>ley Bu1ler1 2G5.
::>hif1ed ou1 pu1 1 see \hoffset 1 \voffset.
::>hilling ::>ign 1 see ::>la::>h.

*\shipout 1 2271 253 .. 254 1 279 1 :W01 302.
::>hor1e::>1 pa1h::>1 99.
(::>hOJihand defini1ion) 1 2"/"/.

*\show 1 !01 215 1 2791 299.
*\showbox 1 6fJ· .. fJ'l1 121 1 234 1 279.
*\showboxbreadth1 2Tl 1 302 1 303 1 :14 8.
*\showboxdepth1 791 2Tl 1 302 1 3031 :14 8.
\showhyphens 1 3G4 1 452.

*\showlists1 88· .. 8.91 951 1121 1251 t 58 .. -t 5,1)1

279; 293.
*\showthe 1 121 1 215 1 279.
::>hriek1 see exclama1ion poin1.
(::>hrink) 1 271.
::>hrinkabili1y1 ()9 .. 71 1 751 409.

::>ide condi1 ion::>1 t 66·M t 671 t 85 .. t 86.
\sigma (ry) 1 t,95·Mt,961 4:J4.
\Sigma (L) 1 !651 4:l4 1 4:J5.
::>igma ::>ign::>1 see \sum.
\signed 1 lOG.
\sim (~), 1:1:1, 43().
\simeq (::::::) 1 tSS1 4:JG.
(::>imple a&:>ignmen1) 1 2"/G.
\sin (::>in) 1 IG21 :JGL
\sinh (::>inh) 1 IG21 :JGL
::>inkage 1 41 :J.
::>i"'e ::>\vi1ching 1 !51 4081 414 ·415.
::>it\e::> of 1ype for ma1hema1ic::>1 1401 l5:J.
\skew 1 tS61 :J59.

*\skewchar1 214 1 271 1 2Tl 1 277 1 S5f 1

414,430,431,443.
*\skip regi::>1em 1 118 .. 1221 271 1 27G 1 S46·MS4'l1

S4 ,9) S52; S6S; S.94.
'\skipdef, 119,215,277,:146:147.
(::>kipdef 1oken) 1 271.
::>kipping ::>pace 1 see glue.
\sl (u::>e shmted 1ype) 1 l:J .. l51 IG51 :J5l 1

40.9; 4 f4 .. -4 !5; 4 !,9.
::>lan1 of a fon1 1 :J"/5 1 4:n.
::>lan1ed 1ype 1 l:l 1 G:J .. ()4 1 100.
::>la::>h 1 51 1 tS21 14(:;-.. 1471 S201 4:JO.
\slash(/ \vi1h break allo,ved) 1 .9S1 :J5:J.
::>la::>hed form of frac1ion::> 1 l:J9 .. l40.
Slavic h<\Cek accen1 1 see \v.
\slfam1 :l5l 1 4f4 .. 4f5.
::>lide::> 1 59.
::>lur::>1 see \smile 1 \frown.
::>mall cap::>1 414.
\smallbreak 1 l ll 1 :J5:l 1 421.
\smallint (I)1 :J58 1 4:J5.
\smallskip 1 70 1 78 1 !001 1091 111 1 !8! 1

S40·M:N f; :J52; S55; 4 f(J.M4 !2.
\smallskipamount 1 :J49 1 S52· S5S.
\smalltype 1 408 .. 411.
\smash1 l:ll 1 1781 S2'l1 :WO.
\smile ('----") 1 4:JG.
::>olidtm1 see ::>lMh.
::>ophi::>1ica1ed ::>pacing1 74.
sp (ocaled poin1) 1 57 1 118 .. 1191 270 1 :J98 1 400.
\sp (::>uperw:rip1) 1 D51 :J571 :JG9.
(::>pace) (ASCI I code :J2) 1 :l9 1 4:l 1 4G 1 :J4:J.
\(::>pace) 1 see \u (near 1he beginning).
\space 1 254 1 272 1 S061 :l5l 1 :J80 1 406.
::>pace aJ'ter a con::>1an1 1 208 1 272.
::>pace fac1or 1 7G1 285 .. 287 1 :JOG 1 :J801 :J95.
(::>pace 1oken) 1 2G81 2G91 282 1 2851 290 1

:176 :177.
*\spacefactor1 7G1 271 1 2851 S6S1 4TL

AppcndiJ: I: IndcJ: 477

::>pace::>; :l; 5; 8 .. 9) 19; :n) 40; 47 .. 48; 127; 204;
2:J2 1 272 1 297 1 299 1 :Jl91 :nG.

a::> ac1ive charac1em 1 254 1 :J80<J8l.
*\spaceskip1 7G 1 274 1 Sf'l1 S561 429.
::>pacing 1 see glue.

in formula::> 1 IG2 1 1()7 .. 171.
\spadesuit (.) 1 :J58 1 4:J5.

*\span1 215 1 2:l8 1 24:l 1 244 1 245 1 2481

249, 282, :1:10, 385.
Spani::>h liga1ure::>1 51 1 :J8l 1 427.
::>panned column::> in 1able::>1 24:J ·245.
::>panned rO\VK in 1able::>1 249.

*\special 1 21()1 22G 1 228 .. 229 1 280.
::>pecial charac1er::>1 :J7<l8 1 4:l· 4G1 51 ·52 1

l:l4 1 :JG7<l"IL
(::>pecial dimen) 1 271 1 277.
(::>pecial in1eger) 1 271 1 277.
::>pecial ::>ymbob for ma1h 1 1281 4:J4 .. 4:J8.
Spivak1 fv1ichael David 1 D7.
% split 1 124.
::>pli1 im>eJiion penal1y 1 124.

*\splitbotmark1 2l:l 1 259 1 280.
*\splitfirstmark1 2D1 259 1 280.
*\splitmaxdepth1 124 1 274 1 281 1 ,':f481

:16:1, 417.
*\splittopskip1 124 1 274 1 281 1 ,':f481

:16:1, :1.'17, 417.
spread) 77) 222; 2:l8; 278.
::>pring::> 1 70.
\sqcap (n)1 tSS1 4:JG.
\sqcup (U) 1 tSS1 4:JG.
\sqrt 1 fS0·MfSf 1 f4 f 1 f45 1 15"/1 f6,9·Mf'/01

:JG0 1 44:J.
\sqsubseteq (c=)1 4:JG.
\sqsupseteq (;)) 1 4:JG.
\square (o) 1 151.
::>quare bracke1::> 1 see bracke1::>.
::>quare bulle1 (•) 1 420.
::>quare roo1 1 see \sqrt.
::>quee"'e rou1ine 1 188.
::>quiggle accen1 (-) 1 see \- 1 \tilde 1

\widetilde.
::>quin1 prin1 1 59.
\ss (B) 1 521 :J5G.
::>1ack pooi1ion::>1 :JOO <Wl 1 :J"/4 1 :J99 .. 400.
::>1acked frac1ion::> 1 see \over.
\star (*)1 4:JG; cf. a::>1eri::>k.
::>1a1e::>1 4G .. 48.
::>1erling 1 54 1 428.
S1evenoon 1 Rober1 Loui::> Balfour1 G7.
S1irling numbem 1 see \brace 1 \brack.
::>1omach 1 see ana1omy of'!) .. ~.
::>1opping '!) .. ;X 1 see \end.

478 AppcndiJ: I: IndcJ:

story. tex1 24 1 2G 1 :JO <J l.
S1ou1 1 Rex Todhun1er 1 401.
(::>1re1ch) 1 271.
::>1re1chabili1y1 ()9-.. 71 1 751 409.

*\string1 40 .. 41 1 2l:J .. 2l4 1 215 1 ,':f481 S'l'l.
\strut 1 82 1 !421 1781 240 1 246·M24'l1 :1!61

:12.'1, :1:1:1, 353, :1.'16, 400, 421.
\strutbox1 :1 f 61 :J5:l 1 :1.961 4 f 4 ... 4 f 5.
::>1ruh>1 821 1251 l:ll 1 1421 1781 24(> .. 247 1

2551 :J29 1 41 G1 4221 42:J.
::>1yle change i1em::>1 1571 442.
::>1yle-independen1 documen1::>1 194 1 20:J.
::>1yle::> of ma1h fonna11ing 1 140 .. 141 1 441 .. 447.
::>1yle::> of ma1h \vri1ing1 l()(:;-.. 1()71 l82 .. l8:J.
:mbfonnula::>1 1291 171 1 lTL
(;mbocrip1) 1 291.
:mbocriph>1 151 !28 .. ·!:1!1 !:1:11 1501 158 .. 1591

!6:1; 179; 289 .. 291; :J4:J.
\subset (C) 1 !:1:11 4:JG.
\subseteq (~) 1 !:1:11 4:JG.
\succ (;--) 1 4:JG.
\sue ceq (C) 1 4:JG.
\sum (large L) 1 !:1.91 144 .. 1451 148 .. ·!4.91

:J581 4:J2 .. 4:n) 435.
\sum' 1 181 1 :124 ... :-J25.
::>umm;:u·y of plain '!) .. ;X 1 :n9<H2.
::>umma1 ion 1 see \sum.
\sup (::>up) 1 IG2 1 3G l.
\supereject 1 I IG 1 254 1 25G1 257 1 353 1 401.
::>uperior::>1 see ::>uperw:rip1::>.
(::>upemcri p1) 1 291.
::>uperw:rip1::>1 t28 .. -t:-Jf 1 t:-J:-J1 1501 158 .. 1591

179; 289 .. 291; 343.
::>upprem:>ed-L 1 52 .. 53.
\supset (:J) 1 43().
\supseteq (~) 1 43().
\surd (y'), 358, 435.
::>urd ::>ign::> 1 see \radical 1 \sqrt.
S\van::>on 1 Ellen E::>1her1 197.
\swarrow (/) 1 437.
S\vedi::>h charac1em 1 52 ·53 1 370.
S\veelinck 1 Jan Pie1er::>t\OOn 1 239.
S,vierC!\kO\V::>ki 1 S1ani::>}a\v S}a,vomir1 5:L
S\vil't 1 Jona1han 1 5.
::>ymbol fon1::> 1 1571 :-J5t 1 431 1 4:B 1 441 1 447.
::>ymbolic box fonna1 1 GG1 75 1 79 1 158·1591

302; 455.
::>ymbob in ma1h 1 1able1 434 ·438.
::>yn1ax rule::>1 2()8 .. 2()9.
Sy::>1em Developmen1 Founda1ion 1 vii.
S"'eg01 G<\bor1 7.

\t (1ie-aJ'ter accen1) 1 52· 531 35G.
(1ab) (ASCI! code 9) 1 8 1 45 1 343 1 3G9 1 39!.
\(1ab) 1 81 351.
\ tabalign 1 354 1 355.
1abbing1 231 .. 234 1 :1:1.91 354.

compared 10 \halign 1 235.
1able::>1 see alignmen1::>1 1abbing.
1able::> of con1en1::>1 1201 22G.
1able::> of'!)_,~ 1rivia:

accen1::> (non-ma1h) 1 521 :n9.
a1omic 1ype::>1 158.
ca1egory code::>1 :n.
charac1er code::>1 3G7 <JG9.
defauh val ueK1 34:J<H51 348 <H9.
\fontdimen parame1em 1 4:B 1 447.
key,von1::>1 G I.
ma1h accen1::>1 D5.
ma1h clM::>e::> 1 154.
ma1h ::>pacing1 170 .. 171.
ma1h ::>ymbol::>1 434 .. 438.
parame1em1 272 .. 275.
uni1::> of meam1re 1 57.

\tabs 1 234 1 354.
'\tabskip, 215, 237 239, 244, 247, 274,

282; 285; :154.
1ab::>kip glue 1 237 .. 2391 245 1 302· 303 1 392.
Taci1tm 1 Publiu::> Corneliu::>1 219.
1 ag::>1 see equa1 ion numbem.
1ail recumion 1 219.
\tan (1an) 1 IG2 1 3Gl.
\tanh (1anh) 1 IG2 1 3Gl.
\tau (T) 1 11 434.
Tchaikov::>ky 1 see Chalkov::>kil.
1elephone number::>1 408.
1empla1e::>1 235 .. 23()1 240 .. 243.
\tenex1 350 1 :15! 1 :16! 1 4 14 .. 4 !5.
\tenpoint 1 151 414 1 4 !8.
\tenrm1 151 27 .. 28 1 45 1 1531 2521 :-J:-J51

350; :-J5f; 4 !4.
\tensl 1 151 350 1 :15! 1 414.
1enoor no1a1ion 1 !:101 !6,9.
\tensy1 f'l.91 350 1 :15! 1 414.
1enninal 1 inpu1 from 1 217 .. 218.

ou1pu11o 1 217 .. 2181 22() .. 228 1 279 .. 280.
TEX 1 I.
'!) .. ~1 bad pun::> on 1 I 1 I I 1 G3 1 1531 WI 1 2251

229 1 2G2 1 305 1 :140·--::14 ! 1 3TL
pronuncia1ion of1 I.

TeX1 I.
\TeX ('!)_,~) 1 8 .. 101 191 ()() .. ()71 204 1 225 1

:140 :14 t, 35(), 418, 419.
. tex 1 25 1 217 1 22().
TeX capacity exceeded1 :WO· 301.

'!)_,~ Grandma::>1em1 253.
'!) .. ;X U::>er::> Group 1 vii 1 4081 483.
'!) .. ;X781 vii.
texput 1 23.
1ex1 be1 \veen aligned di::>play::> 1 193.
1ex1 ::>it\e 1 1401 1531 442.
1ex1 ::>1yle 1 140 .. 1421 441 .. 447.

*\textfont1 1531 IG81 1881 2D1 271 1 351 1

4 f 4 .. ,4 f 5) 44 1 .. 442.
\textindent 1 1171 355.

*\textstyle 1 141 .. 1421 2921 S26.
. tfm (fon1 me1ric file::>) 1 401 1 4:B1 442.

*\the 1 214 .. 215 1 2t61 :ns) :1751 422.
1heoremK1 111 1 202 .. 2031 ,':f40·M,':f4 ! 1 355.
\theta (0) 1 1281 !621 S251 434.
\Theta (0)), 434.

*\thickmuskip (1hick ma1h ::>pace) 1 1()7 .. 1()81

27 4; S4 ,9) 44().
1hin ::>pace::>1 !Gl 1 l()7 .. 1Tl1 305 1 409.

*\thinmuskip (1hin ma1h ::>pace) 1 1()7 .. 1()81

27 4; S4 ,9) 44().
\thinspace 1 51 101 305 1 Sf ! 1 3521 409.
This can't happen 1 299.
Thor1 Ar1hur U1her1 24 1 1171 200 1 253.
1hree-column ou1pu1 1 2571 39() .. 398.
1hree do1::>1 see ellip::>e::>.
1ie-aJ'ter accen1 1 see \t.
1ie::> 1 251 7:J .. 74 1 91 .. 93 1 1041 t6t 1 IG7 1

17:1, 353, 404.
1igh1 line::>1 97 1 99 1 302.
1ilde1 38 1 51 1 ,9t-M,921 see 1ie::>.
\tilde (ma1h accen1: X) 1 D5 1 IG4.
1ilde accen1 C) 1 see \- 1 \tilde 1 \widetilde.

*\time 1 2Tl 1 349.
\times (X) 1 tSS1 43G.
Time::> Tribune 1 Peninm1la 1 455.
Ti1elou"'e 1 Jehan 1 239.
to 1 77 1 217 1 222 1 2381 27G1 278.
\to 1 t::f4 1 3Gl 1 438.
\today1 406.
1oken li::>1 parame1em and regi::>1em1

212; 215; 2"15; 3"/3.
1oken li::>1::>1 M di::>played by '!) .. ;X 1 228 1

329, 382.
(1oken parame1er) 1 275.
(1oken variable) 1 212 1 27G.
1oken::>1 38 .. 41 1 4() .. 48 1 203-207.

*\toks 1 212 1 2!51 2()2 1 27G.
*\toksdef 1 212 1 2151 277 1 S4'l1 :n8.
(1ok&lef 1oken) 1 271.

*\tolerance 1 2.9·MS01 91 1 94 1 9()1 1071 2721

:117, :1:1:1, :142, :148, :164, 451.
\top (), 435.

\topglue 1 ,':f401 352.
\topins 1 25G 1 3G31 :-J64.

AppcndiJ: I: IndcJ: 479

\ topinsert 1 115 .. l l ()1 251 1 3G3.
*\topmark1 2D1 258 1 259 .. 2()01 280.
*\topskip1 ill .. ll1_1 124 1 25G 1 2"14 1 S48.
Trabb Pardo 1 Lui::> !::>idoro1 92.
\tracingall 1 121 1 3031 3G4.

*\tracingcommands1 88 .. 89 1 212 1 2"/31 299.
*\tracinglostchars 1 2Tl 1 301 1 ,':f481 401.
*\tracingmacros 1 205 1 212 1 2Tl 1 S2,9.
*\tracingonline 1 121 1 2121 2Tl 1 303.
*\tracingoutput 1 254 1 2"/31 S0f·MS02 .
*\ tracingpages 1 t t 2-M t t 41 1241 2Tl 1 303.
*\tracingparagraphs 1 ,98 .. -,(),91 2Tl1 303.
*\ tracingrestores 1 2"/31 30 l 1 303.
*\tracingstats1 2Tl 1 300 1 303 1 S8S.
1 ran::>crip1 1 see log file.
1 ran::>parencie::>1 59.
\triangle (6) 1 435.
\triangleleft (<) 1 43().
\triangleright (1>) 1 43().
1riangular quo1a1ion 1 101 102.
1ricky macro::>1 41 1 2()! .. 2G3 1 354 1 3G0 1

3Gl 1 3"13 .. 401 1 421.
true 1 59 .. ()0 1 270 1 40TM408.
1ru1h1 vi 1 2()7.
T::>chichold 1 Jan 1 83.
\tt (u::>e typewriter 1ype) 1 131 53 1 l l:l 1 IG51

:140:141,351,:180:182,414 415, 429.
\ttfam1 351 1 4f4·M4f5.
\ttglue 1 414 .. 4!51 421.
\ttraggedright 1 35G.
TUGlxmt1 vii 1 425 1 483.
1ur1le command::>1 390 .. 391.
'!\vain 1 f-.%rk Clemen::> 1 Samuel

Langhorne) 1 83 1 451.
1 \VO-column fonna1 1 2571 38() .. 388 1 4 t'l.
1 \VO-line di::>play::>1 l9G.
1ype ::>i"'e ::>\vi1ching1 !51 408 1 414 .. 415.
1ypeface::>1 D 1 171 427.
1ype,vri1er 1ype1 131 53 1 IG51 35G 1

420 .. 421; 429.

\u (breve accen1) 1 52 .. 53 1 35G.
*\uccode 1 41 1 2!4 1 271 1 345 1 ,':f481 S'l'l1 S.94.
*\uchyph 1 2"13 1 ::f481 454.

umlau1 accen1 C) 1 see \" 1 \ddot.
unbreakable ::>pace::> 1 see 1 ie::>.
\uncatcodespecials 1 380.
\undefined1 384.
undelimi1ed parame1em1 203· 204 1 37G .. :Jn.
Under a1om 1 1581 2891 443.
\underbar 1 244 1 S2S1 353.
\underbrace 1 t'l61 22(> .. 22() 1 359.

480 AppcndiJ: I: IndcJ:

underfull box 1 291 94 1 2:l8 1 :J02· :JO:l 1

:J97; 400; 417; 452.
*\underline 1 tSO·MfSf 1 141 1 291 1 44:J.

underlined 1ex1 1 178; see ~Jlso \underbar.
underw:ore (1he charac1er '_') 1 :l8 1 51 1

!28 .. ·!:10; l:l4; !65.
*\unhbox 1 1201 28:l 1 285 1 :154 1 :1561 :16! 1 :1,9,9.
*\unhcopy 1 1201 28:l1 2851 :15:1.
(uni1 of meMure) 1 2G8 1 270.
unih> of mea;mre 1 57 .. () l 1 270.

in formulM 1 IG9.
1able 1 57.

*\unkern1 280.
unma1ched lef1 bra<:e 1 21G;

see ~Jlso runa,vay::>.
*\unpenalty1 280.

un::>e1 box 1 240 1 :J02<W:J.
(um>igned dimen) 1 270.
(um>igned mudimen) 1 270.
(um>igned number) 1 2()9.

*\unskip1 222 .. 22:l 1 280 1 28G1 :1!:11 :1.921

4184UI.
*\unvbox 1 1201 254 1 282 1 28G 1 :154 1 :16! 1

:16:11 :M4 1 :1.921 :1.9.91 4 t'l.
*\unvcopy 1 120 1 282 1 28G 1 :16!.
\up1 408.
\uparrow (t)1 f46·Mf4'l1 !821 :J59 1 4:J7.
\Uparrow (11)1 f46·Mf4'l1 :J59 1 4:J7.
\upbracefill (..._,.._....) 1 225 .. 22() 1 :J57.
\updownarrow (t)1 f46·Mf4'l1 :J59 1 4:J7.
\Updownarrow ({r)1 f46·Mf4'l1 :J59 1 4:J7.
\uplus (ltl) 1 4:JG.

*\uppercase 1 41 1 2151 217 1 279 1 :J071 :J45 1

:148, :174, :177, :1.'14.
upperca::>e le11em 1 9 1 G4 1 2G81 :no.

Greek 1 1271 IG4 1 4:J4.
roman numerah:> 1 :J74.

\upsilon (v) 1 4:l4 1 48:J.
\Upsilon (I) 1 4:J4.
lima f.%jor 1 :J89.
U::>er1 Ben Lee 1 74 1 801 1001 1401 IG4 1 18G 1

1871 19:l 1 221 1 29G1 410·411.

\v (check accen1) 1 52, :J5G.
*\vadjust 1 95 1 1051 1091 1101 1171 2591

281 1 St'l1 :J9:l 1 454.
*\valign1 249 1 28:l 1 285 .. 28() 1 :J02 1 SS51 S.9'l.
Val](~e Pou&:>in 1 Charle::> Loui::> Xavier

Jo::>eph de la 1 92.
van der Waenlen 1 Ba1iel Leender1 1 92.
van Leunen 1 Mary-Claire 1 425.
\varepsilon (:c.) 1 1281 4:J4.
(variable a&:>ignmen1) 1 27G.
variable family 1 154 1 289 1 S58· S5.9.

variable::> in formula::> 1 D2 1 :J581 4:J4 .. 4:J5;
see ~Jlso Ord a1om.

\varphi (9), 128, 147, 434.
\varpi (;o;), 434.
\varrho ((!) 1 1281 4:J4.
\varsigma (<;) 1 4:l4 1 48:J.
\vartheta (1l) 1 1281 4:J4.

*\vbadness 1 272 1 ,':f481 S.9'l1 4 f'l.
vbox (box \vi1h ve1iical li::>1 in::>ide) 1 G5.

*\vbox 1 G51 80 .. 821 IO:l 1 151 1 19:l1 222 1

278; :J88<J89.
Vcen1 a1om 1 1581 290 1 44:J.

*\vcenter1 150 .. 151 1 1591 1701 19:l1 222 1

242, 290, :161, 443.
\vdash (f··) 1 4:JG.
\vdots (:) 1 l'l'l1 :J59.
\vee (ma1h accen1: X) 1 D5;

see ~Jlso \overrightarrow.
vec1or::>1 17"71 199 .. 201; see ~Jlso \vee.
\vee (V) 1 tSS1 4:JG.
verba1im copying 1 422 .. 42:J.
verba1im li::>1ing 1 48 1 :J80<J82 1 :l91 1 420 .. 421.
\vert (I)1 f46·Mf4'l1 1501 :J59 1 4:J8; cf. \mid.
\Vert (il)1 1171 f46·Mf4'l1 1501 :J59 1 18G.
(ve1iical command) 1 28G.
ver1icalline (1he charac1er '1') 1 52 1 5:l 1 D21

146 147, I'll, 174, 438;
see ~Jlso ve1i ical rule::>.

ver1ical li::>1::>1 G4 1 llQ_.
ver1ical mode 1 85 .. 89 1 2()7 .. 28:J.
(ve1iical mode ma1erial) 1 278.
(ve1iical rule) 1 281.
ver1ical rule::>1 G4 1 151 1 221 .. 22() 1 285 1

291, 392.
(ve1iical ::>kip) 1 281.
very loo::>e line::> 1 971 99.

*\vfil 1 71 1 721 111 1 25()1 281 1 28() 1 417.
*\vfill1 24 1 25 1 71 1 72 1 25() .. 257 1 281 1 28().
\vfilll 1 72.

*\ vfilneg 1 72 1 I II 1 281 1 28().
\ vfootnote 1 1171 :JG:J.

*\vfuzz1 274 1 ,':f48.
\vglue 1 :J52 1 408.
vinculum 1 see \over line.
virgule 1 see ::>la::>h 1 51.
vi::>ible ::>pa<:e 1 ;}_ 1 4201 429.

*\voffset 1 251 1 252 .. 25:l 1 274 1 ,':f421 406.
void 1 1201 210.
\voidb@x 1 :J47 1 :J48.
Vol1aire 1 de Aroue1 1

l"''raJl(;oi::> Marie) 1 447.
\vphantom1 t'l8 .. -t'l.91 211 1 S2f 1 :WO.

AppcndiJ: I: IndcJ: 481

*\vrule1 G4 1 8G 1 151 1 221 .. 2221 224 1 245· 2471

281 .. 282; 28:l; S5'l; S.92; 420.
*\vsize1 I l:J .. 114 1 251 1 25:l 1 2551 274 1

:140 :14 I, :148, 400, 406, 413, 415, 417.
*\vskip1 24 1 71 1 851 191 1 281 1 28().
*\vsplit 1 1241 222 1 2591 278 1 S.9'l1 4 f'l.
*\vss 1 71 1 72 1 2551 281 1 28().
*\vtop1 81 .. 82 1 151 1 2221 278 1 SSS.

Wal1er'::> \VOrkshee1 1 244.
Wal1on 1 ltmak 1 G7.
Wa1oon 1 John Hami::>h 1 fv1.D. 1 401.

*\wd1 1201 271 1 :J88<J89 1 S.9f 1 411.
\wedge (;\) 1 tSS1 4:JG.
Weiem1rM::> p 1 see \wp.
\veinl error 1 298.
Webh 1 2:l91 451.
We::>1ing1 A1ihur Herbe1i 1 24G.
\vha1::>i1::>1 951 1101 1571 22() .. 229.
\widehat (ma1h accen1: tS61 :J59 1 4TL
\widetilde (ma1h accen1: x tS61 :J59.
\VidO\V line::>1 104 1 272 1 :J98.
\VidO\V \VOr<};:> 1 104.

*\widowpenalty1 104 1 I l:l1 272 1 :-J48.
width 1 221 1 224 1 282 1 :n-7.
\Vid1h Of a bOX 1 ():J .. ()71 "/7 1 80 .. 821 225.
\viggle 1 see \sim.
Winograd 1 Terry Allen 1 425.
Wiochmeye,· Ehle,·1, Cla.·a Louiae, 248.
withdelims 1 1521 15G.

\wlog 1 :J47.
Wolfe [Holme::>]; Nero1 401.
\wp (p), 435.
\wr (I), 43().
\vrea1h produc1 1 see \wr.

*\write1 215 1 21()1 22() .. 228 1 254 1 280 1

34(), :177, 422, 424.

X 1 see \times 1 *.
x-heigh1 1 54 1 G0 1 4:B 1 44:l1 445 .. 447.

*\xdef 1 2t5·M2t61 2751 :ns) 4 t81 424.
Xenophon 1 2:J9.
\xi ((), 434, 447.
\Xi (3), 434.

*\xleaders 1 224.
*\xspaceskip1 7G 1 274 1 Sf'l1 :l5G 1 429 1 4:n.
\xyzzy 1 :J79.

*\year1 41 1 2Tl 1 :J49 1 406.
Yellin 1 [-<'rank Na1han 1 401.

\z@1 :J47 1 :J48.
\z@skip 1 :J47 1 :J48.
\zeta ((), 434.

l/z1 G7 1 :n2.
1/21 in un::>la::>hed form 1 141 1 18G.
(4-bi1 number) 1 271.
(8-bi1 number) 1 271 1 27() .. 278.
(lfrbi1 number) 1 271 1 2771 289 1 291.
(27-bi1 number) 1 271 1 2891 291.

lmoortant works such as histories, biograohies,
scientific and technical text-books, etc., should contain indexes.

Indeed, such works are scarcely to be considered comolete without indexes.
An index is almost invariably olaced at the end of a volume

and is set in smaller tyoe than the text-matter.
Its subjects should be thoroughly alohabetized.

The comoiling of an index is interesting work, though
some authors are aot to find it tedious and delegate the work to others.

The oroofreader who undertakes it will find that it is solendid mental exercise
and brings out his latent editorial caoability.

- ALBERT H. HIGHTON, Practical Proofreading (1926)

lmoortant references are given in boldface.
Italicized numbers indicate fleeting references,

whereas numbers in oarentheses refer to
mere imolications or unwarranted extraoolations.

Asterisks are used to identify oarticularly distasteful oassages.
-PROF. PETER SCHICKELE, The Definitive Biograohy of P. D. Q. Bach (1976)

HIGHTO!\:
SCHICKEI,E
Bach

>age 482) I

Joining the
TEX Community

AppcndiJ: J: Joining the TF;X Cornrrrunity

This appendix is about grouping of another kind: TEX users from around the
world have banded together to form the T&X l;scn> Group (Tl;G), in order to
exchange information about common problems and solutions.

A newsletter/journal called TUGIJoclt has been published since 1980,
featuring articles about all aspects of TEX and METAFONT. Tl;G has a network
of :'site coordinators" who serve as focal points of communication for people with
the same computer configurations. Occasional short courses arc given in order
to provide concentrated training in special topics: videotapes of these courses arc
available for rental. :0.-'Icctings of the entire Tl; G membership arc held at least
once a year. You can buy TEX T -shirts at these meetings.

Information about membership in Tl;G and subscription to TUGlJo<-:rt
is available from

{\obeylines
\TeX\ Users Group
P,Q, Box 9506
Providence RI 02940\kern,05em-9506, USA,
}

Don't delay, write today! That number again is
T&X 1;sers Group
P.O. Box 9506
Providence RJ 02940-9506, \;SA.

[The orinter] should refuse to emoloy wandering men,
foreigners who, after having committed some grievous error,

can easily disaooear and return to their own country.
HIERONYMUS HORNSCHUCH, 'Op0oTV1rO"ffJO¢{cv; (1608)

An author writing an article for oublication in TUGboat
is encouraged to create it on a comouter file and submit it on magnetic taoe.

- BARBARA BEETON, \title How to Preoare a File\cr
For Publication in TUGboat\cr (1981)

483

J'viETAFO!\:T
HOH!'SCHCCH
up;;ilon
'<ar;;igma
BEETO!\:

	Cover
	Preface
	Contents
	I. The Name of the Game
	II. Book Printing vs. Ordinary Typing
	III. Controlling TeX
	IV. Fonts of Type
	V. Grouping
	VI. Running TeX
	VII. How TeX Reads What You Type
	VIII. The Characters You Type
	IX. TeX's Roman Fonts
	X. Dimensions
	XI. Boxes
	XII. Glue
	XIII. Modes
	XIV. How TeX Breaks Paragraphs into Lines
	XV. How TeX Makes Lines into Pages
	XVI. Typing Math Formulas
	XVII. More about Math
	XVIII. Fine Points of Mathematics Typing
	XIX. Displayed Equations
	XX. Definitions (also called Macros)
	XXI. Making Boxes
	XXII. Alignment
	XXIII. Output Routines
	XXIV. Summary of Vertical Mode
	XXV. Summary of Horizontal Mode
	XXVI. Summary of Math Mode
	XXVII. Recovery from Errors
	Appendix A: Answers to All the Exercises
	Appendix B: Basic Control Sequences
	Appendix C: Character Codes
	Appendix D: Dirty Tricks
	Appendix E: Example Formats
	Appendix F: Font Tables
	Appendix G: Generating Boxes from Formulas
	Appendix H: Hyphenation
	Appendix I: Index
	Appendix J: Joining the TeX Community

