THEC LY |_ _|

The TEXbook

The fine print in the upper right-hand

corner of each page is a draft of intended

index entries; it won’t appear in the real book.

Some index entries will be in typewriter type
and/or preceded by \ or enclosed in {...}, ete;

such typographic distinctions aren’t shown here.

An index entry often extends for several pages;

the actual scope will he doterminoed lator.

Please note things that should be indexed but aren’t.

{page i} |_ _|

Knuth, Daopald Hrein
E : : Bibby, Duane Robent

D O N A I_ D E . K N U T H Stanford Universily

Hlustrations by
DUANE BIBBY

A
vy

ADDISON-WESLEY
PUBLISHING COMPANY

Reading, Massachusetts
Menlo PPark, California

New York

Don Mills, Ontario
Wokingham, England
Amgterdam - Bonn

Sydney - Singapore - Tokyo
Madrid - San Juan

{page it}

B N

This manual describes TX Version 3.0. Some of the advanced features mentioned here are
absent from earlier vergions.

The quotation on page 81 is copyright @ 1970 by Sesame Street, Inc., and used by permission
of the Childrer’s Televigion Workshop.

TEX is a srademark of the American Mathematical Society.

METAFONT is a trademark of Addison-Wesley Publishing Company.

Library of Congress cataloging in publication data

Knuth, Donald Ervin, 1938~
The TeXbook.

(Computers & Typesetting : &)

Includes index.

1. TeX {Computer system). 2. Computerized
typesetting. 3. Mathematics printing. 1I. Title.
I1. Series: Knuth, Donald Ervin, 1938~
Computers & typesetting ; A.

Z253.4.T47K58 1986 6386.2'2544 85-30845
ISBY 0-201-13447-0
ISBN 0-201-13448-9 (soft)

Twentieth printing, revised, May 1991
Copyright € 1584, 1986 by the American Mathematical Society

This book is published jointly by the American Mathematical Society and Addison-Wesley
Publishing Company. Al rights reserved. No part of this publication may be reproduced,
stored in a retrieval systera, or trangmitted, in any form or by any means, electronic, me-
chanical, photocopying, recording, or otherwise, without the prior writlten permission of the
publishers. Printed in the United States of America.

ISBN 0-201-13448-9
TUVWXYZ-DO-97654321

Knuth, Daopald Hrein
copyright

(page iii) |_ _|

Knuth, Jill Carter

To i
For vour books and brochures

(page iv) |_

(page v}

B N

Preface

G ENTLE READER: This is a handbook about TEX, a new typesetting system
intended for the creation of heautiful books—and especially for books
that contain a lot of mathematics. DBy preparing a manuscript in TEX format,
vou will be telling a computer exactly how the manuscript is to be transformed
into pages whose typographic guality is comparable to that of the world’s finest
printers; yot you won't need to do much more work than would be involved if
vou wore simply typing the manuseript on an ordinary typewriter. In fact, your
total work will probably be significantly less, if you consider the time it ordinarily
takes to rovise a typewritten manuscript, since computer text filos are so ecasy
to change and to reprocess. {If such claims sound too good to be true, keep in
mind that they were made by TEX's designer, on a day when TgX happened to
be working, so the statoments may be hiased; but read on anyway.)
This manual is intended for people who have never used TgX hefore,
as well as for experienced TEX hackers. In other words, it’s supposed to be a
panacea that satisfies everybody, at the risk of sagistying nobody. Everything you
need to know about TEX is explained here somewhere, and so are a lot of things
that most users don’t care about. If you are preparing a simple manuscrint, you
won’t need to fearn much about TEX at all; on the other hand, some things that
go into the printing of technical hooks are mherently difficuit, and if you wish to
achieve more complex effects you will want to penetrate some of TEX's darker
corners. In oreer to make it possible for many types of users to read this manual
effectively, a special sign is used to designate material that is for wizards only:
When the symbol

appears at the beginning of a paragraph, it warns of a “dangerous bend” in
the train of thought; don’t read the paragraph unless you need to. Brave and
experienced drivers at the controls of TgX will gradually enter more and more
of these hazardous arcas, but for most applications the dotails won't mattor.
All that vou really ought to know, before reading on, is how to get a
file of text into your computer using a standard editing program. This manual
explains what that file ought to look like so that TEX will understand it, bt basic
computer usage is not explained here. Some provious experience with technical
typing will he quite helpful #f you plan to do heavily mathematical work with
TEX, although #t i3 not absolutely necessary. TEX will do most of the necessary

dangerons bend

vi

Preface

formatting of equations automatically; but users with more experience will be
able to obtain better results, since there are so many ways to deal with formulas.
Some of the paragraphs in this mamaal are so esoteric that they are rated

L

everything that was said ahout single dangerous-bend signs goes double for these.
You should probably have at least a month’s experience with TgX before you
attempt to fathom such doubly dangerous depths of the system; in fact, most
people will never need to know TEX in this much detail, even if they use it every
day. After all, it’s possible to drive a car without knowing how the engine works.
Yet the whole story is here in case you're curious. {About TEX. not cars.)

The reason for such different levels of complexity is that people change
as they grow accustomed to any powerful tool. When you first try to use TgX,
von'll finel that some parts of it are very easy, while other things will take some
gotting used to. A day or so later, after you have successfully typesct a fow
pages, you'll be a different person; the concepts that used to bother you will now
seem natural, and you’ll be able to picture the final result in your mind before it
comes out of the machine, But you’ll probably run into challenges of a different
kind. After another weck your perspective will change again, and youw'll grow in
vet another way: and so on. As years go by, you might become involved with
many difforent kinds of typesetting; and you'll find that your usage of TgX will
keep changing as your experience builds. That’s the way it 1s with any powerful
tool: There’s always more to fearn, and there are always better ways to do what
vow've done hefore. At every stage in the development youw'll want a slightly
different sort of manual. You may even want to write one vourself. By paying
attention to the dangerous bend signs in this book you’ll he better able to focus
on the level that interests you at a particular time.

Computer system manuals usually make dull reading, but take heari:
This one contains JOKES every once in a while, so you might actually enjoy
reading it. {Howoever, most of the jokes can only be appreciated properly if you
understand a technical point that is being made—so read carefully.)

Another noteworthy characteristic of this manual is that it doesn’t al-
ways tell the truth. When certain concepts of TEX are introduced informally,
general rules will be stated; afterwards you will find that the rules aren’ sirietly
true, Inm general, the later chapters contain more reliable information than the

JORKIES
truth

Preface

earlier ones do. The author feels that this technigue of deliberate lving will ac-
tually make it easter for you to learn the ideas. Once you understand a simple
but false rule, it will not be hard to supplement that rule with its exceptions.

In order to help you internalize what yvow're reading, EXERCISES arc
sprinkled through this manual. It is generally intended that every reader should
try every cxercise, oxcept for questions that appoar in the “dangerous hend”
areas. If you can’t solve a problem, you can always look up the answer. Bt
please, try first to soive it by yourself; then you'll learn more and you’ll learn
faster. Furthermore, if you think you do know the solution, you should turn to
Appendix A and check it out, just to make sure,

The TEX language described in this book s similar to the author’s first
attempt at a document formatting language, but the new system differs from
the old one in Hterally thousands of details. Both languages have been called
TgX; but henceforth the old language should be called TEXT78, and its use should
rapidly fade away. Let’s keep the name TEX for the language deseribed hore,
since it is so uch better, and since it is not going to change any more.

I wish to thank the hundreds of people who have helped me to formulate
this “definitive edition” of the TEX language, based on their experiences with
preliminary versions of the system. My work at Stanford has been generously
supported by the National Scicnce Foundation, the Office of Naval Research, the
1BM Corporation, and the System Development Foundation. T also wish to thank
the American Mathematical Society for its encouragement, for establishing the
TEX Users Group, and for publishing the TUGhoat newsletter (see Appendix J}.

Stanford, Califorma D E K.
June 1983

‘Tis pleasant, sure, to see one’s name in print;
A book's a book, although there's nothing in 't.

- BYRON, Engfish Bards and Scotch Reviewers {1809)

A question arose as to whether we were covering the fieid
that #t was intended we should il with this manual.

— RICHARD R. DONNELLEY, Proceedings, United Typotheta of America {1897)

vii

EXBERCISES

PeXTH

National Scisnes Foundation
Office of Naval Research

1BM Corporation

System Development Foundation
American Mathematical Society
TUGhoat

Knuth, Don

BYRON

DONNELLEY

ge vt} |_

O W N S O s W e =

[T T T L G S g e S e S
R R — =T -RE - T~ T, TR O J- R YR S

_

Contents

The Name of the Game

Book Printing versus Ordinary Typing
Controlling TEX .

Fonis of Type .

Grouping

Running TEX

How TgX Reads What You Type
The Characters You Type

TEX's Roman Fonts

Dimensions

Boxes

Glue .

Modes

How TgX Broaks Paragraphs into Lines
How TEX Makes Lines into Pages
Typing Math Formulas .

More aboui Math

Fine Points of Mathematics Typing
Displayed Equations

Definitions (also called Macros)
Making Boxes

Alignment

Output Routines

37

169
127
139
161
185
199
221
231
251

Contents of this manual, table

24
25
26

= o

o - = O =" H O G

Summary of Vertical Mode
Summary of Horizontal Mode .
Summary of Math Mode

Recovery from Errors

Appendices

Answers to All the Exercises
Basic Control Sequences
Character Codes

Dirty Tricks .

Example Formats

Font Tables .

Generating Boxes from Formulas
Hyphenation

Tndex

Joining the TEX Community

Contents

267
285
289
295

305
339
367
373
403
427
441
449
457
483

Ix

_

1

The Name of
the Game

Chapter 1: The Name of the Game 1

English words ke ‘technology’ stem from a Greek root beginning with the letters TeX {actoally TEX), meaning of
Tey ... and this same Greek word means arf as well as technology. Hence the :;‘;“U“
name TEX, which is an upperease form of rey. chi

Insiders pronounce the y of TEX as a Greek chi, not as an “x’, so that }zjg‘::“"
TEX rhymes with the word blecehhh, It’s the ‘ch’ sound in Scottish words like TEX
loch or German words like ach: it’s a Spanish *j” and a Russian ‘kh’. When you i;:’l':(i’r“;;{])i‘(’i’r:‘:1’i’i’ i
say it correctly to your computer, the terminal may become shightly moist. TeX
say it correctly to your computer, the te ! may become shightly moist FeX

- . . - . - - -] 7 SN
The purpose of this pronunciation exercise is to remind vou that TpX f;\(\i)({

is primarily eoncerned with high-quality technieal manuseripts: Its emphasis is
on art aned technology, as in the underlving Greek word. If you merely want to
produce a passably good document—something acceptable and basically read-
able but not really beautiful—a simpler system will usually suffice. With TpX
the goal is to produce the finest quality; this requires more attention to detail,
but you will not find it much harder to go the extra distance, and yow'll he ahle
to take special pride in the finished product.

On the other hand, it's important to notice another thing about TEX’s
name: The ‘E’ is out of kilter. This displaced ‘B’ is a reminder that TEX is about
typesetting, and it distinguishes TEX from other systern names. In fact, TEX
{pronounced fecks) is the admirable Text EXecutive processor developed by
Honeywell Information Systems. Since these two system names are pronounced
quite differently, they should also be spelled differently. The correct way to refer
to TEX in a computer file, or when using some other medium that doesn’t allow
lowering of the "E’, is to type “TeX’. Then there will be no confusion with similar
names, and people will be primed to pronounce everything property.

» EXERCISE 1.1
After you have mastered the material in this hook, what will you he: A TgXpert,
or a TpXnician?

They do certainly give
very strange and new-fangled names to diseases.

— PLATO, The Repubfic, Book 3 {c. 375 B.C.)

Technique! The very word Is fike the shrick
Of outraged Art. It is the idiot name
Given to effort by those who are foo weak,
Too weary, oF too dulf to play the game.

- LEQONARD BACON, Sophia Trenton {1920)

_

2

Book Printing
Versus

Ordinary Typing

Chapter 2: Book Printing versus Ordinary Typing

When you first started using a computer terminal, you probably had to adjust
to the difference between the digit ‘17 and the loworease letter ‘. When you
take the next step to the level of typography that is common in book publishing,
a fow more adjustments of the same kind need to be made; vour eyes and your
fingers need to learn to make a few more distinctions.

In the first place, there are two kinds of quotation marks in books,
but only one kind on the typewriter. Even your computer terminal, which has
more characters than an ordinary typewriter, probably has only a non-oriented
double-quote mark {*), because the standard ASCIT code for computers was not
invented with book publishing in mind. However, vour terminal probably does
have two flavors of single-quote marks, namely © and ?; the second of these is
useful also as an apostrophe. American keyhoards usually contain a left-cuote
character that shows up as something like ., and an apostrophe or right-guote
that looks like ' or -

To produce double-guote marks with TEX, you simply type two single-
quote marks of the appropriate kind. For example, to get the phrase

“T ynderstand.”
{inchiding the quotation marks} you should type
‘T understand.’’

to your computer,

A typewriter-like style of type will be used throughout this manual to
indicate TEX constructions that you might type on yvour terminal, so that the
symbols actually typed are readily distinguishable from the output TEX would
produce and from the comments in the manual itself. Here are the symbols to
be used in the examples:

ABRCDEFGHIJKLMNOPQRSTUVWIYZ
abcdefghi jklmnopgrstuvwayz
0123458729 # 3 kQu+—=, ;7!
GRS NE W ARAN Vil

If your computer terminal doesn’t happen to have all of these, don’t despair:
TEX can make do with the ones you have. An additional symbol

L

iz used to stand for a hlank space, in case it is important to emphasize that a
blank space is being typed; thus, what vou really type in the example above is

“ ‘I, understand.’’

Without such a symhbol you would have difficulty sceing the invisible parts of

certain constructions. But we won't he using ‘)" very often, hecause spaces arce
usually visible enough.

rpootation marks
ABTIL
apostrophe
blank space

Chapter 2: Book Printing versus Ordinary Typing

Book printing differs significantly from ordinary typing with respect to
dashes, hyphens, and minus signs. In good math books, these symbols are all
different; in fact there usually are at least four different symbols:

a hyphen (-);

an en-dash (-);
an em-dash (-—);
a mims sign (—),

Hyphens are used for compound words like ‘daughter-in-law’ and “X-rated’. En-
cdashes are used for number ranges like ‘pages 13-834°, and also in contexts like
‘exercise 1.2.6-52°. Em-dashes are used for punctuation in sentences—they are
what we often call simply dashes. And minus signs are wsed in formulas. A
conscientious user of TEX will be careful to distinguish these four usages, and
here 1s how to do it:

for a hyphen, type a hyphen {~);

for an en-dash, type two hyphens {~-);

for an em-dash, type three hyphens {==-);

for a minus sign, type a hyphen in mathematics mode {§~§).

{(Mathematics mode oceurs between dollar signs; it is discussed later, so0 you
needn’t worry about it now.)

» EXERCISE 2.1
Explain how to type the following sentence to TEX: Alice said, “1 always use an
en-dash instead of a hyphen when specitying page numbers like “480-491° in a
hibliography.”

» EXERCISE 2.2
What do you think happens when you type four hyphens in a row?

If you look closely at most well-printed books, you will find that cortain
combinations of letters are treated as a unit. For example, this is true of the
T and the 2 of “find’. Such combinations are called Hgafures, and professional
typesetters have traditionally been trained to watch for letter combinations such
as £f, fi, £1, £fi, and ££1. {The reason is that words like “find’ don’t look
very good in most styles of type unless a ligature is substituted for the letters
that clash. It's somewhat surprising how often the traditional ligatures appoear
in English; other combinations are important in other languages.)

» EXERCISE 2.3
Think of an English word that contains two Hgatures.

The good news is that vou do nof have to concern yourself with liga-
tures: TEX is perfectly capable of handling such things by itself, using the same
mechanism that converts ‘=" into . In fact, TEX will also look for combi-
nations of adjacent letters (ke ‘4" next to V') that ought to be moved closer
together for better appearance; this is called kerning.

dashes
hyphens
minos signs
En-dash
Em-gdash
bibliography
ligatores
kerning

Chapter 2: Book Printing versus Ordinary Typing

To summarize this chapter: When using TEX for straight copy, you type
the copy as on an ordinary typewriter, except that you noed to he carchul about
guotation marks, the number 1, and various kinds of hyphens/dashes. TEX will
automatically take care of other niceties like Hgatures and kerning.

@ {Are you sure you should be reading this paragraph? The “dangerous bend”

sign here is meant to warn vou about material that ought to be skipped on first
reading. And maybe also on second reading. The reader-beware paragraphs sometimes
refer to concepts that aren’t explained until later chapters.)

@ I your keyboard does not contain a lefi-guote symbol, you can type \lg,
followed by a space if the next character is a letter, or followed by a \ if the
next character is a space. Similarly, \rq vields a right-quote character. Is that clear?

\lg\lg,I understand. \rqirg\,

@ In case you need to type gquotes within quotes, for example a single guote

followed by a double guote, you can’t simply type ¢’ because TEX will
interpret this as 7’ {namely, double quote followed by single quote). If von have already
read Chapter 5, you might expect that the solution will be to use grouping—namely,
to type something like {*17*. Dut it turns out that this doesn’t produce the desired
result, because there is usually less space following a single right quote than there is
following a double right quote: What you get is 7, which is indeed a single quote
followed by a double gquote (if vou lock at it closely enough), but it looks almost
like three equally spaced single guotes. On the other hand, you certainly won’t want
to type ‘L7, because that space is much too large—it’s just as large as the space
between words—and TEX might even start a new line at such a space when making up
a paragraph! The solution is to type *\thinspace’’, which produces *” as desired.

g% » EXERCISE 2.4
OK, now you kuow how to produce 7 and °7; how do you get “° and *°7

@ » EXERCISE 2.5

Why do yvou think the anthor introduced the control sequence \thinspace to
solve the adjacent-quotes problem, instead of recommending the trickier construction
*$\,$7° {which also works}?

in modern Wit afl printed Trash, is
Set off with num’rous Breaks and Dashes—

- JONATHAN SWIFT, On Fostry: A Rapsody {1733)

Some compositors stiif object to work
in offices where type-composing machines are introduced.

- WILLIAM STANLEY JEVONS, Folitical Economy {1878)

dangerons bend

Iq

|

aquotes within quotes
thinspace

SWIFT
JEVONS

—

3

Controlling
TeX

Chapter 3: Controlling TgX

Your kevhoard has very few keys compared to the large number of symbols
that vou may want to specify. In order to make a limited kevhoard sufficiently
versatife, one of the characters that you can type is reserved for special use,
and it is called the escape character. Whenever you want to type something
that controls the format of your manuscript, or something that doesn’t use the
keyboard in the ordinary way, vou should type the escape character followed by
an indication of what you want to do.

Note: Some computer terminals have a key marked “ESC’, but that is not
vour escape character! It is a key that sends a special message to the operating
system, so don’t confuse it with what this manual calls “escape.”

TEX allows any character to be used for escapes, but the “hackslash”
character "\’ is usually adopted for this purpose. since backslashes are reasonably
convenient to type and they are rarely needed in ordinary text. Things work out
best when different TEX users do things consistently, so we shall cscape via
backslashes in all the examples of this manual.

Immediately after typing ** (i.e., iinmediately after an escape character)
vou type a coded command telling TEX what you have in mind. Such commands
are called controf sequences. For example, you might type

\input MS

which {as we will see later) causes TEX to begin reading a file called ‘'MS. tex’;
the string of characters *\input’ is a control sequence. Here’s another examplo:

Gecrge P\’olya and Gabor Szeg\'o.

TEX converts this to ‘George Polya and Gabor Szegd.” There are two control
sequences, V' and \", here; these control sequences have beeon used to place
accents over some of the letters,

Control sequences come in two flavors. The first kind, like \input, is
called a control word; it consists of an escape character followed by one or more
letters, followed by a space or by something besides a letter. {TEX has to know
where the control sequence ends, so you must put a space after a control word
if the next character is a letter. For example, if you type ‘\inputMs’, TgX will
naturally interpret this as a control word with seven letters.) In case you're
wondering what a “letter” is, the answer is that TpX normally regards the 52
svmbols A...Z and a...z as letters. The digits 0...9 are not considered to he
lettors, so they don’t appear in control sequences of the first kind.

A control sequence of the other kind, like \?, is called a control symbol;
it eonsists of the escape character followed by a single nonietter. In this ease you
don’t need a space to separate the control sequence from a letter that follows,
since control sequences of the second kind always have exactly one symbol after
the escape character,

» EXERCISE 3.1
What are the control sequences in ‘\I'm \exercise3d.I\N\!"7

escaps character

backslash

control geooences

markup commands, see control s
infrot

Polya

Szego

acute

winlaot

aceents

control word
letter

control symbol

v

Chapter 3: Controlling TgX

EXERCISE 3.2
We've seen that the input P\ elya yiclds ‘Polya’. Can you guess how the French
wores ‘mathématique’ and ‘centimétre’ should he specified?

When a space comes after a control word {an all-letter control sequence},
it is ignored by TEX; i.e., it is not considered to be a “real” space belonging to
the manuscript that is being typeset. But when a space comes after a control
symbol, it’s truly a space.

Now the question arises, what do you do if you actually want a space
to appear after a control word? We will see later that TEX treats two or more
consecutive spaces as a single space, so the answer is not going to be “type two
spaces.” The correct answer is to type “control space,” namely

\u

(the escape characier followed by a hlank space); TEX will treat this as a space
that is not to be ignored. Notice that control-space is a control sequence of the
secorl kind, i.e., a control symbol, since there is a single nonletter () following
the escape character. Two consecutive spaces are considered to be equivalent to
a single space, so further spaces immediately following \, will be ignored. But if
vou want to enter, say, three consecutive spaces into a manuseript you can type
ALY Incidentally, typists are ofien taught to put two spaces at the ends of
sentences; but we will see Iater that TEX has its own way to produce extra space
in such cases. Thus you needn’t be consistent in the number of spaces you type.
@ Nonprinting control characters ke {return} might follow an escape character,

and these lead to distinct control sequences according to the rules. TEX is
initially set up to treat \{return} and \{tab} the same as \y {control space}; these
special control sequences should probably not be redefined, because you can’t see the
difference between them when you look at them in a file.

Tt is wsually unnecessary for you to use “control space,” since control
seguences aren’t often needed at the ends of words. But here’s an example that
might shed some Hght on the matter: This manual itself has been typeset by
TEX, and one of the things that occurs fairly often is the tricky logo “TEX’, which
requires backspacing and lowering the E. There’s a speeial control word

\TeX

that produces the half-dozen or so instructions necessary to typeset ‘TEX’. When
4 phrase like "TEX ignores spaces after control words.” s desired, the manuseript
renders it as follows:

\TeX\ ignores spaces after centrol weords.
Notice the extra \ lollowing \TeX; this produces the control space that is neces-
sary because TEX ignores spaces after control words. Without this extra \, the
result would have been

TEXignores spaces after control words.

Brace

rekurng,

taby,

carriage-retorn, see jreturny,
logo

TeX

Chapter 3: Controlling TgX

On the other hand, vou can’t simply put \ after \TeX in all contexts. For
example, consider the phrase

the logo ‘\TeX’.

In this case an extra backslash doesn’t work at all: in fact, you get a curious
result if you type

the logo ‘\TeXi\’.

Can you guess what happens? Answer: The \7 is a control sequence denoting
an acute accent, as in our P\’ olya example above; the effect is thorefore to put
an accent over the next nonhlank character, which happens to be a period. In
other words, you get an accented period, and the result is

the logo "TEX:

Computers are good at following instructions, but not at reading your mind.
TEX understands about 900 control sequences as part of its built-in
voeabulary, and all of them are explained in this mamal somewhere. But you
needn’t worry about learning so many different things, because you won’t really
be needing very many of them unless you are faced with unusually complicated
copy. Furthermore, the ones you do need to learn actually fall into relatively
few categories, so they can be assimilated without great difficulty. For example,
many of the control sequences are simply the names of special characters used
in math formulas; you type \pi’ to get ‘7°, ‘\Pi’ to got ‘II', ‘\aleph’ to get ‘W,
Ninfty’ to got ‘oo’, N\l to get *<’, ‘\ge’ to got ‘27, \ne’ to got ‘£, ‘\eplus’ to

got Notimes’ to get ‘@, Appendix F contains several tables of such symbols.
@ There's no built-in relationship between uppercase and lowercase letters in
control sequence names. For example, ‘\pi’ and ‘\P1i’ and ‘\PD’ and ‘\pI’ are

four different control words,

The 908 or s0 control secuences that were just mentioned actually aren’t
the whole story, because it's easy to define more. For example, if you want to
substitute your own favorite names for math symbols, so that you can remember
them better, you're free to go right ahead and do it; Chapter 20 explains how.

About 300 of TEX's control sequences are called primitive; these are the
low-level atomic operations that are not decomposable into simpler functions.
All other control sequences are defined, ultimately, in terms of the primitive
ones. For example, \input is a primitive operation, but * and \" arc not; the
latter are defined in terms of an \accent primitive.

People hardly ever use TEX s primitive control sequences in their man-
uscripts, because the primitives are ... well ... so primitive. You have to type
a lot of instructions when you are trying to make TEX do low-level things; this
takes time and invites mistakes. It is generally betier to make use of higher-level
control sequences that state what functions are desived, instead of typing out
the way to achieve each function each time, The higher-level control sequences

i

Pi

aleph
infty

le

e

ne

oplos
othines
uppercase
lovwereas e
primitive
infrot

aceent

10

Chapter 3: Controlling TgX

need to be defined only once in terms of primitives. For example, \TeX is a con-
trol seguence that means “typeset the TEX logo™; * is a control sequence that
means “put an acute accent over the next character™; and hoth of these con-
trol sequences might require different combinations of primitives when the style
of type changes. If TEX’s logo were to change, the author would simply have
to change one definition, and the changes would appear automatically wherever
they were needed. By contrast, an enormous amount of work would be necessary
to change the logo if it were specified as a sequence of primitives cach time.

At a still higher lovel, there are control sequences that govern the overall
format of a document. For example, in the present hook the author typed
‘\exercise’ just hofore stating sach exercise; this \exercise command was
programmed to make TEX do all of the following things:

m compute the exercise mumber (e.g., ‘8.2° for the second excreise in Chap-
ter 3

m typeset “» EXERCISE 3.2° with the appropriate typefaces, on a line by
itself, and with the triangle sticking out in the loft marging

m leave a little extra space just before that Hne, or begin a new page at
that line if appropriate;

m prohibit beginning a new page just after that line;

m suppress indentation on the following line.

It is obviously advantageous to avoid typing all of these individual instructions
each time. And since the manual is entively deseribed in terms of high-level
control sequences, it could be printed in a radically different format simply by
changing a dozen or so definitions.

@ How can a person distinguish a TEX primitive from a control sequence that

has been defined at a higher level? There are two ways: (1) The index to this
mamial lists all of the control sequences that are discussed, and each primitive is marked
with an asterisk. (2} You can display the meaning of a control sequence while running
TeX. If vou type ‘\show\cs’ where \cs is any control sequence, TEX will respond
with its current meaning. For example, ‘\show\input’ resuits in > \input=\input.’,
because \input is primitive. On the other hand, “\show\thinspace’ yields

> \thinspace=macro:
->\kern .16667em .

This means that \thinspace has been defined ags an abbreviation for “\kern .16667em .
By typing ‘\show\kern’ you can verify that \kern is primitive. The results of \show
appear on your terminal and in the log file that you get after running TEX.

g% » EXERCISE 3.3
Which of the control sequences \y and \return} is primitive?

In the following chapters we shall frequently discuss “plain TEX” for-

mat, which is a set of about 600 basic control sequences that are defined in
Appendix B. These control sequences, together with the 300 or so primitives,

EREFCIse

sheoey

thinspace

kern

log file

plain TeX

basic control sequences

Chapter 3: Controlling TgX

are usually present when TEX begins to process a manmuseript; that is why TpX
claims to know roughly 900 control seqguences when it starts. We shall soe how
plain TEX can be used to create doeuments in a flexible format that meets many
people’s needs, using some typefaces that come with the TEX system. However,
vou should keep in mind that plain TEX is only one of countless formats that
can be designed on top of TEX's primitives; f you want some other format, it
will usually be possible to adapt TEX so that it will handie whatever you have in
mind. The best way to learn is probably to start with plain TEX and to change
its definitions, little by little, as you gain more experience.

@ Appendix E contains examples of formats that can be added to Appendix B

for special applications; for example, there is a set of definitions suitable for
business correspondence, A complete specification of the format used to typeset this
mamnal also appears in Appendix E. Thus, if your geal is to learn how to design TEX
formats, vou will probably want to study Appendix E while mastering Appendix B.
After vou have become skilled in the lore of control-sequence definition, vou will prob-
ably have developed some formats that other people will want to use: you should then
write a supplement to this manual, explaining vour style rules.

The main point of these remarks, as far as novice TEX users are con-
cerned, is that it is indecd possible to define nonstandard TEX control sequences.
When this manual says that something is part of “plain TEX,” it moeans that TpX
cdoesn’t insist on doing things exactly that way; a person could change the rules
by changing one or more of the definitions in Appendix B. But you can safely
rely on the control sequences of plain TEX until you hecome an experienced
TEXnical typist.

@@» EXERCISE 3.4
How many different control sequences of length 2 (incleding the escape char-
acter) are possible? How many of length 37

SyHables govern the world.
- JOHN SELDEN, Table Talk {1689)

i claim not to have controfled events,
but contess plainly that aevents have controlied me.

- ABRAHAM LINCOLN {1864)

11

formats
SELDEN
LINCOLN

Fonts
of Type

Chapter 4: Fonts of Type

Oceasionally you will want to change from one typeface to another, for exampie
if you wish to be bold or to emphasize something. TEX deals with sets of up
to 256 characters called “fonts™ of type, and control sequences are used to select
a particular font. For example, you could specify the last few words of the first
sentence above in the following way, using the plain TEX format of Appendix B:

to be \bf bold \rm or te \sl emphasize \rm something.

Plain TEX provides the following control sequences for changing fonts:
BEA T g i ging

Arm switches to the normal “roman” typeface: Roman

Ael switches to a slanted roman typeface: Slanted

\it switches to italic style: Ttalic

\tt switches to a typewriter-like face: Typewriter
\bf switches to an extended boldface style: Bald

At the beginning of a run you get roman type (\rm) unless you specify otherwise.

Notice that two of these faces have an “oblique” slope for emphasis:
Stanted type is essentially the same as roman, but the letters are shigitly skewed,
while the letters i italic type are drown in o different style. (You can perhaps
best appreciate the difference between the roman and italic styles by contemplat-
ing letters that ave in an unslonted italic face.) Typographic conventions arc
presently in a state of transition, because new technology has made it possible
to do things that used to be prohibitively expensive; people are wrestling with
the question of how much to use their new-found typographic freedom. Slanted
roman type was introduced in the 1930s, but it fizst became widely used as
an altornative to the conventional italic during the late 1970s. It can be bene-
ficial in mathematical texts, since slanted letters are distinguishable from the
italic letters in math formulas. The double use of italic type for two different
purposes—for example, when statements of theorems are italicized as well as the
names of variables in those theorems—has led to some confusion, which can now
be avoided with slanted type. People are not generally agroed about the relative
merits of slanted versus italic, but slanted type is rapidly becoming a favorite
for the titles of books and journals in bibliographies.

Special fonts are effective for emphasis, but not for sustained reading;
vour eyes would tive if long portions of this manual were entirely set in a hold
or slanted or italic face. Therefore roman type accounts for the bulk of most
typeset material. But it’s a nuisance to say ‘\rm’ cvory time you want to go
back to the roman style, so TEX provides an casier way to do it, using “curly
brace” symbols: You can switch fonts inside the special symbols { and }, without
affecting the fonts outside. For example, the displayed phrase at the heginning
of this chapter is usually rendered

te be {\bf beld} or to {\sl emphasize} scmething.

This is a special case of the general idea of “grouping” that we shall discuss in
the next chapter. It’s best to forget about the first way of changing fonts, and

13

typeface
haold

fonts

T

sl

it

tt

bf
typewriter type
facs

roman type
oblitue
Slanted type
italic type
corly brace
brace
grouping

14 Chapter 4: Fonts of Type

to use grouping instead: then your TEX manuscripts will ook more natural, and Digter
vou'll probably never® have to type “\rm'. - ;
: ; i italic correction

ponctuation

» EXERCISE 4.1 ol font
Explain how to type the bibliographic reference “Ulrich Dieter, Journal fiir die
reine imd angewandte Mathematik 201 (1959), 37-70." [Use groupng.]

We have glossed over an important aspect of quality in the preceding
discussion. Look, for example, at the #talicized and slanfed words in this sentence.
Since italic and slanted styles slope to the right, the s stick into the spaces that
separate these words from the roman type that follows: as a result, the spaces
appear to be too skimpy, although they are correct at the base of the letters.
To equalize the effective white space, TEX allows you to put the special control
sequence “\/° Just before switching back to unslanted letters. When you type

{\it italicized\/} and {\sl slanted\/} words

vou get italicized and slanted words that fook better. The *\ /" tells TEX to add an
“ftalic correction” to the previous letter, depending on that letter; this correction
is about four times as much for an *f7 as for a *¢’, m a typical talic font.

Sometimes the italic correction is not desirable, because other factors
take up the visual slack. The standard rule of thumb is to use \/ just beforo
switching from slanted or italic to roman or bold, unless the next character is a
period or comma. For example, type

{\it italics\/} for {\it emphasis}.

Old manuals of style say that the punctuation after a word should be in the same
font as that word; but an italic semicolon often looks wrong, so this convention
is changing. When an italicized word oceurs just before a semicolon, the author
recommends typing ‘“f\it word\/};’.

» EXERCISE 4.2
Explain how to typeset o roman word in the midst of an dtalicized sentence.

@ Every letter of every font has an italic correction, which yvou can bring to Life

by typing \/. The correction is usually zero in unslanted styles, but there are
exceptions: To tvpeset a bold £ in guotes, vou should say a bold ‘{\bf £\/}’, lest
yoar get a bold “F.

@@» EXERCISE 4.3
Define a control sequence \ic such that \ic ¢ puts the italic correction of
character ¢ into TEX's register \dimen0.

@ The primitive control sequence \mullfont stands for a font that has no char-
acters. This font is always present, in case you haven’t specified any others.

¥ Well ..., hardly ever.

Chapter 4: Fonts of Type

Fonts vary in size as well as in shape. For example, the font you are
now reacing is called a “10-point™ font, because cortain features of its design are
10 points apart, when measured in printers’ units. {We will study the point
system later; for now, it should suffice to point out that the parentheses around
this sentence are exactly 10 points tall-—and the em-dash is just 10 points wide.)
The “dangerous bend” sections of this mamual are set in 9-point type, the foot-
notes in 8-point, subscripts in 7-point or G-point, sub-subscripts in 5-point.

Fach font uwsed in a TEX manuscript is associated with a control se-
¢uence; for example, the 10-point font in this paragraph is called \tenrm, and
the corresponding 9-point font is called \ninerm. The slanted fonts that match
\tenrm and \ninerm are called \tensl and \ninesl. These control sequences
are not huilt into TEX, nor are they the actual names of the fonts; TRX usors are
Just supposed to make up convenient names, whenever new fonts are introduced
into a manuscript. Such control sequences are used to change typefaces.

When fonts of different sizes are used simultancously, TeX will line the
lettors up according to their “baselines.” For example, if you type

\tenrm smaller \ninerm and smaller
\eightrm and smaller \sevenrm and smaller
\gixrm and smaller \fiverm and smaller \tenrm

the result is smaller and smaller and smaller and smaller and snaller and smatier. OF COUTSE
this is something that authors and readers aren’t accustomed to, because printers
couldn’t do such things with traditional lead types. Perhaps poets who wish
to speak in o win e weiee Will canzse future books to make use of frequent font
rariations, but nowadays it’s only an oceasional font freak (e the suthor of this manual;
who likes such experiments. One should not get too carried away by the prospect
of font switching unless there is good reason.

An alert reader might well be confissed at this point hecause wo started
out this chapter by saying that “\rm’ is the command that switches to roman
type, but lator on we said that “\tenrm’ is the way to do it. The truth is that
both ways work. But it has become customary to set things up so that \rm means
“switch to roman type in the current size” while \tenrm means “switch to roman
type in the 10-point size.” In plain TEX format, nothing but 10-point fonts are
provided, so \rm will always get you \tenrm; but in more complicated formats the
meaning of \rm will change in different parts of the manuscript. For example, in
the format uscd by the anthor to typoeset this manual, there’s a control sequence
‘\tenpeint’ that causes \rm to mean \tenrm, \sl to mean \tensl, and so on,
while ‘\ninepeint’ changes the definitions so that \rm means \ninerm, ctc.
There’s another control sequence used to introduce the quotations at the end of
each chapter; when the quotations are typed, \rm and \sl temporarily stand for
8-point unslanted sans-serif type and 8-point sianted sans-serif type, respectively.
This device of constantly redefining the abbreviations \rm and \sl, behind the
seenes, frees the typist from the need to remember what size or style of type is
currently being used.

15

points
dangerons bend
subsoripts
tenrin

ninerm

tens)

ningsl

baseline
tenpoint
ningpoint

16

Chapter 4: Fonts of Type

» EXERCISE 4.4
Why do you think the author chose the names \tenpeint’ and ‘\tenrm’, cic.,
instead of ‘\10point’ and ‘\10rm’ ?

@ » EXERCISE 4.5

Suppose that you have typed a manuscript using slanted type for emphasis,
but vour editor suddenly tells you to change all the slanted to italic. What’s an eagy
way to do this?

@ Each font has an external name that ideatifies it with respect to all other fonts

in a particular lbrary. For example, the font in this sentence is called ‘cmr9’,
which is an abbreviation for “Computer Modern Roman 9 point.” In order to prepare
TEX for using this font, the command

\font\ninerm=cmr9

appears in Appendix E. In general vou say ‘\font\cs={external font name}’ to load
the information about a particular font nto TEX's memory; afterwards the control
sequence \cs will select that font for typesetting. Plain TEX makes only sixteen fonts
available initially {see Appendix B and Appendix F}, but vou can use \font to access
anything that exists in your system’s font lbrary.

@ It is often possible to use a font at several different sizes, by magnifying or

shrinking the character images. Each font has a so-called design size, which
reflects the size it normally has by defaundt; for example, the design size of cmr9 is
9 points. But on many systemns there is also a range of sizes at which you can use
a particular font, by scaling its dimensions up or down. To load a scaled font into
TEX’s memory, vout simply say ‘\font\cs={external font name} at {desired size}’. For
example, the command

\font\magnifiedfiverm=cmr5 at 10pt

brings in 5-point Computer Modern Roman at twice its normal sive. {Cantion: Before
using this ‘at’ feature, you should check to make sure that vour typesetter supports
the font at the size in question; TEX will accept any {desired size} that iz positive and
less than 2048 poiats, but the final output will not be right unless the scaled font really
is available on your printing device.)

@ What's the difference between cmrb at 10pt and the normal 10-point font,

cmr10? Plenty; o well-designed font will be drawm differently at different point,
sizes, and the letters will often have different relative heights and widths, in order to
enhance readability.

Ten point type is different from magnified five-point type.

It is usually best to scale fonts oniy shlghtly with respect to their design size, unless
the final product is going to be photographically reduced after TEX has finished with
it, or unless you are trying for an unusual effect.

@ Another way to magnify a font is to specify a scale factor that is relative to
the design sive. For example, the command

\font\magnifiedfiverm=cmr5 szcaled 2000

Computer Modern
cin fonts

fom

design size

at

magnification
reduction

Chapter 4: Fonts of Type

is another way to bring in the font cmr5 at double size. The scale factor is specified
as an integer that represents a magnification ratio times 1000, Thus, a scale factor of
1200 specifies magnification by 1.2, etc,

@ » EXERCISE 4.6
State two ways to load font cmrl10Q inte TEX's memory at half its normal size,

@ At many computer centers it has proved convenient to supply fonts at magni-

fications that grow in geometric ratios—something like well-tempered tuning
on a pilanc. The idea is to have all fonts available at their true size as well as at
magnifications 1.2 and 1.44 (which is 1.2 % 1.2}; perhaps also at magnification 1.728
{= 1.2 2 1.2 x 1.2) and even higher. Then vou can magnify an entire document by 1.2
or 1.44 and still stay within the set of available fonts. Plain TEX provides the abbre-
viations \magatep(for a scale factor of 1000, \magstepl for a scaled factor of 1200,
\magatep? for 1440, and so on up to \magatep5. You say, for example,

\font\bigtentm=cmr10) scaled\magstep?
to load font cmr10 at 1.2 x 1.2 times its normal size.
“This is cmr10 at normal size (\magstep0).”
“This is cmr10 scaled once by 1.2 {(\magstep1).”
“This is cmr10 scaled twice by 1.2 (\magstep2).”

{Notice that a little magnification goes a long way.) There’s also \magstephalf, which
magnifies by 1.2, ie, halfway between steps 0 and 1.

@ Chapter 10 explains how to apply magnification to an entire document, over
and above any magnification that has been specified when fonts are loaded.
For example, if vou have loaded a font that is scaled by \magstepl and if vou also
specify \magnification=\magatep?2, the actual font used for printing will be scaled by
\magstepd. Similarly, if you load a font scaled by \magstephalf and if yvou also say
\magnification=\magstephalf, the printed resuits will be scaled by \magstepl.

Type faces—Iiike people’s faces—have distinctive features
indicating aspects of character.

— MARSHALL LEE, Bookmaking {1965)

This was the Noblest Roman of them all.
- WILLIAM SHAKESFPEARE, The Tragedie of Julius Casar {1599)

17

CHrd

piano

magstep:
magstephalf
magnification
LER
SHAKESPEARE

-

5

Grouping

Chapter 5: Grouping

Every once in a while it is necessary to treat part of & manuscript as a unit, s0 you
need to indicate somchow where that part beging and where it ends. For this
purpose TEX gives special interpretation to two “grouping characters,” which
(like the escape character) are treated differently from the normal symbols that
vou type. We assume in this manual that { and } are the grouping charactoers,
since they are the ones used in plain TEX.

We saw examples of grouping in the previous chapter, where it was men-
tioned that font changes inside a group do not affect the fonts in force outside.
The same principle applies to almost anything else that is defined inside a group,
as we will see later; for example, if you define a control sequence within some
group, that definition will disappear when the group ends. In this way you
can conveniently instruct TEX to do something unusual, by changing its normal
conventions temporarily inside of a group; since the changes are invisible from
outside the group, there is no need to worry about messing up the rest of a
manuscript by forgetting to restore the normal conventions when the unusual
construection has heen finished. Computer sciontists have a name for this aspect
of grouping, hecause it’s an important aspect of programming languages in gen-
eral; they call it “block structure,” and definitions that are in foree only within
a group are said to be “local” to that group.

You might want to use grouping even when you don’t care about block
structure, just to have bhettor control over spacing. For example, let’s consider
once more the control sequence \TeX that produces the logo "TEX’ in this manual:
We observed in Chapter 8 that a blank space after this control sequence will be
gobbled up unless one types \TeX\ °, yet it is a mistake to say \TeX\’ when the
foliowing character is not a blank space. Well, in all cases it would be correct to
specify the simple group

{\TeX}

whether or not the following character is a space, because the } stops TEX from
ahsorhing an optional space into \TeX. This might come in handy whon you're
using a toxt cditor (e.g.. when replacing all occurrences of a particular word by
a control sequence). Another thing you could do s type

\TeX{}

using an empty group for the same purpose: The ‘{} here is a group of no
characters, so it produces no output, but it does have the effect of stopping TEX
trom skipping blanks.

» EXERCISE 5.1
Sometimes yvou run into a rare word like ‘shelfful® that looks better as ‘shelfful’
without the ‘i’ igature. How can you fool TEX into thinking that there aren’t
two consecutive {75 in such a word?
g.?} » EXERCISE 5.2
Explain how to get three blank spaces in a row without using "\

19

grouping characters
curly braces, see hraces
block stroctore

local

TeX

Space

empty group

Ihrace rhrace

ligature

control space

20

Chapter 3: Grouping

But TEX also uses grouping for another, quite different, purpose, namely
to determine how much of your text is to be governcd by certain control se-
guences. For example, if you want to center something on a line you can type

\centerline{This infcrmaticn should be centered.}

using the control sequence \centerline defined in plain TEX format.
Grouping is used in quite a few of TEX’s more intricate instructions;

and it’s possible to have groups within groups within groups, as vou ean see by

glancing at Appendix B. Complox grouping is generally unnecessary, however,

in ordinary manuseripts, 0 you needn’t worry about it. Just don’t forget to

finish cach group that you've started, because a lost *F might cause trouble.
Here's an example of two groups, one nested inside the other:

\centerline{This information should be {\it centered}.}
As you might expect, TEX will produce a centered line that also containg italics:
This information should be centered.

But let’s look at the example more closely: ‘\centerline’ appears outside the
curly braces, while ‘\it’ appears inside. Why are the two cases different? And
how can a beginner learn to remember which is which? Answer: \centerline
is a control sequence that applies only to the very next thing that follows, so
vou want to put braces around the text that is to be centered (unless that text
consists of a smgle symbol or contro! sequence). For example, to center the TEX
logo on a line, it would suffice to type \centerline\TeX’, hut to cemter the
phrase “TEX has groups’ you need hraces: ‘\centerline{\TeX\ has groups}.
On the other hand, \it is a control sequence that simply means “change the
eurrent font™; it acts without looking ahead, so it affects everything that follows,
at least poterntially. The braces surround \it in order to confine the font change
to a local region.

In other words, the two sets of braces in this example actually have
different functions: One serves to treat several words of the text as if they were
a single object, while the other provides local block structure.

» EXERCISE 5.3
What do you think happens if you type the following:

\centerline{This informaticn should be {centered}.}
\centerline So should this.

» EXERCISE 5.4
And how about this one?

\centerline{This information should be \it centered.}
@ » EXERCISE 5.5

Define a control sequence \ital so that a user could type \ital{text} in-
stead of "{\it text\/}’. Discuss the pros and cons of \ital versus \it.

centerling
negteed

Chapter 5: Grouping

@ Subsequent chapters describe many primitive operations of TEX for which

the locality of grouping is important. For example, i one of TEX's internal
paramneters is changed within a group, the previons contents of that parameter will
be restored when the group ends. Sometimes, however, it’s desirable to make a def-
inition that transcends its current gromp. This effect can be obtained by prefixing
‘\global’ to the definition. For example, TEX keeps the current page nmmber in a
register called \countd, and the routine that outputs a page wants to increase the page
muber, Output routines are always protected by enclosing them in groups, so that
they do not inadvertently mess up the rest of TgX; but the change to \countd wonld
disappear if it were kept local to the outout group. The command

\global\advance\count(by 1

solves the problem; it increases Ncount0 and makes this value stick around at the end
of the output routine. In general, \glebal makes the immediately following definition
pertain to all existing groups, not just to the innermost one.

@@» EXERCISE 5.6

If vou think you understand local and global definitions, here’s a, little test to

make sure: Suppose \c stands for ‘\countl=", \g stands for ‘\global\conntl=", and \s

stands for ‘\showthe\countl’. What values will be shown?
{\e1hsh\g2{ha\c3\a\gd\s\cB\at\s\c\e\a

@ Another way to obtain block structure with TpX is to use the primitives

\begingroup and \endgroup. These control sequences make it easy to be-
gin a group within one control sequence and end it within another. The text that TpX
actually executes, after control seguences have been expanded, must have properly
nested groups, e, groups that don’t overlap. For example,

{ \begingroup } \endgroup

is not legitimate.

@@» EXERCISE 5.7
Define control sequences \beginthe{biock name} and \endthe{block name}
that provide a *named” block structure. In other words,

\beginthe{begnine}\beginthe{waltz}\endthe{waltz}\endthe{begnine}
should be permissibie, but not

\beginthe{begnine}\beginthe{waltz}\endthe{beguine}\endthe{waltz}.

i have had recourse to varieties of type,
and to braces.

— JAMES MUIRHEAD, The Institutes of Gaius {1880)

An encounter group is a gathering, for a few hours or a Yew days,
of tweaive or eighteen personabile, responsibie, certifiably normai
and temporarily smeily people.

— JANE HOWARD, Pfease Touch {1970)

21

global

page nomber
Outpot rontines
advance
bhegingroop
endgroup
nested groups
MUIRHEAD
HOWARD

Running
TeX

Chapter 6: Running TgX

The best way to learn how to use TEX is to use it. Thus, it’s high time for you
to sit down at a computer terminal and interact with the TEX system, trying
things out to see what happens. Here are some small but complete examples
suggested for your first encounter.

Caution: This chapter is rather a long one. Why don’t vou stop reading
now, and come hack fresh tomorrow?

OK, let’s suppose that you're rested and excited about having a trial run
of TEX. Step-by-step instructions for using it appear in this chapter. First do
this: Go to the lab where the graphic output device is, since you will be wanting
to see the output that you get—it won't really boe satisfactory to run TEX from
a remote location, where you can’t hold the generated documents in your own
hands. Then log in; and start TEX. (You may have to ask somehody how to
do this on your ocal computer. Usually the operating system prompts yvou for
a command and you type ‘TeX’ or ‘run tex’ or something ke that.)

When vow're successtul, TgX will welcome vou with a message such as

This is TeX, Version 3.14 (preloaded format=plain £9.7.15)
KK

The “*«" is TEX's way of asking you for an input file name.

Now type \relax’ {including the backslash), and {return} {or whatever
is used to mean “end-of-ling” on your terminal). TEX is all geared up for action,
ready to read a long manuscript; but yow're saying that it’s all right to take
things sasy, since this is going to be a real simple run. In fact, \relax is a
control sequence that means “do nothing.”

The machine will type another asterisk at you. This time type something
like ‘Helle?’ and wait for another asterisk. Finally type \end’, and stand back
to see what happens.

TEX should respond with ‘[1]7 (meaning that it has finished page 1 of
your output); then the program will hait, probably with some indication that
it has created a file called texput.dvi’. {TEX uses the name texput for its
output when you haven’t specified any better name in your first line of input;
and dvi stands for “device independent,” since texput.dvi is capable of being
printed on almost any kind of typographic output device.)

Now you're going to need some help again from your friendly local com-
puter hackers. They will tell you how to produce hardcopy from texput.dvi.
And when you see the hardcopy—0Oh, glorious dayl—you will see a magnificent
‘Hello?’ and the page number ‘17 at the bottom. Congratulations on your first
masterpiece of fine printing,

The point i, you understand now how to get something through the
whole cycle. It only remains to do the same thing with a somewhat longer
documoent. So our next experiment will be to work from a file instead of typing
the input online.

23

Ruonning the program
ok

relast

retim

asterisk

end

(1]

texpot

dvi

device independent

24 Chapter 6: Running TgX

Use your favorite text editor to create a file called story.tex that con- story.tex
tains the following 18 lines of text {no more, no less): }::]‘{'j';
leading, see vskip
1 \hrule centerline
2 \vskip lin Thor
3 \centerline{\bf A SHORT STORY} .
4 \vekip 6pt Dirofnats
\ P P vHll
5 \centerline{\sl by A. . Thor} eject
6 \vskip .5cm rule
X . X paragraphs
7 Once upon a time, in a distant blank line
& galaxy called \"O\"c\c c, empty line

9 there lived a computer
1 named R.7J. Drofnats.

12 Mr. Drefnats-~~or ‘‘R. J.,’'’ as

13 he preferred to be called---

14 was happiest when he was at work
15 typesetting beautiful decuments.
16 \vskip lin

17 \hrule

18 Zwfill\eject

{Don’t type the mumbers at the left of these lines, of course; they are present only
for reference.) This example is a bit long, and more than a bit sitly; but it’s no
trick for a good typist like you and it will give you some worthwhile exporience,
so do it. For your own good. And think about what you're typing, as you go;
the example introduces a few mmportant features of TEX that you can learn as
vou're making the file.

Here is a brief explanation of what you have just typed: Lines 1 and 17
put a horizontal rule {a thin line) across the page. Lines 2 and 16 skip past one
inch of space; \vekip’ means “vertical skip,” and this extra space will separate
the horizontal rules from the rest of the copy. Lines 3 and 5 produce the title and
the author name, centered, in boldface and in slanted type. Lines 4 and 6 put
extra whitc space between those lines and their successors. (We shall discuss
units of measure like ‘6pt’ and . 5em’ in Chapter 10.)

The main bulk of the story appears on lines 7-15, and it consists of
two paragraphs. The fact that line 11 is blank informs TEX that line 10 is the
end of the first paragraph; and the \vskip’ on line 16 implies that the second
paragraph ends on line 15, because vertical skips don’t appear in paragraphs.
Incidentally, this example seems to be quite full of TEX commands; but it is
atypical in that respect, because it is so short and because it is supposed to
be teaching things. Messy constructions like \vskip and \centerline can be
expected at the very beginning of a manuscript, unless you're using a canned
format, but they dor't last long; most of the time you will find yourself typing
straight text, with relatively few control sequences.

Chapter 6: Running TgX

And now comes the good news, if you haven’t used computer typesetting
before: You don’t have to worry about whoere to break lines in a paragraph (ie.,
where to stop at the right margin and to hegin a new line), because TEX will
do that for you. Your manuscript file can contain long lines or short lines, or
both; it doesn’t matter. This iz especially helpful when vou make changes, since
vou don’t have to retype anything except the words that changed. Every time
you hegin a new line in your manuscript file it is essentially the same as typing
a space. When TEX has read an entire paragraph-—in this case lines 7 to 11-—it
will try to break up the text so that cach line of output, except the last, contains
ahout the same amount of copy: and it will hyphenate words if necessary to keep
the spacing consistent, but only as a last resort.

Line 8 contains the strange concoction

A0\ "o\c ¢

and you already know that * stands for an vmlaut accent. The \c stands for a
“cedilla,” so you will get *Od¢’ as the name of that distant galaxy.

The remaining text is simply a roview of the conventions that we dis-
cussed long ago for dashes and guotation marks, except that the *™7° signs in
lines 10 and 12 are a new wrinkle. These are called fies, because they tie words
together; f.e., TEX is supposed to treat *~° as a normal space but not to break
between lines there. A good typist will use ties within names, as shown in our
example; further discussion of tics appears in Chapter 14.

Finally, ine 18 tells TEX to ‘\vEill’, i.o., to fill the rest of the page with
white space; and to \eject’ the page, i.e., to sond it to the output file.

Now vou're ready for Experiment 2: Get TEX going again. This time
when the machine says “*** you should answer ‘story’, since that is the name
of the file where your input resides. (The file could also be called by its full
name ‘story.tex’, but TgX automatically supplics the suffix *. tex’ if no suffix
has heen specified.)

You might wonder why the first prompt was “*+°, while the subsequent
ones are *’; the reason is simply that the first thing you type to TEX is slightly
different from the rest: If the first character of your response to ‘xx° is not a
backslash, TEX auvtomatically inserts “\input’. Thus you can usually run TEX
by mercly naming your input file. {Previous TEX systems required you to start
by typing ‘\input story’ instead of ‘story’, and you can still do that; but most
TEX users prefer to put all of their commands into a file instead of typing them
online, s0 TEX now spares them the nuisance of starting out with \input each
time.) Recall that in Experiment 1 you typed \relax’; that started with a
backslash, 50 \input was not implied,

@ There’s actually another difference between “#+° and “»°; If the first character

after »+ i an ampersand {°%), TEX will replace its memory with a precom-
puted format file before proceeding. Thus, for example, vou can type ‘gplain \input
story’ or even ‘kplain story’ in response to ‘#%°, if you are running some version of
TgX that might not have the plain format preloaded.

25

i lant
cecdilla
ties

tilde

il

ajoct

file names
* %

*

inpuot
atnpersaid
format Hle
preloaded formats

26

Chapter 6: Running TgX

@ Incidentally, many systems allow yon to invoke TEX by typing a one-liner like

‘tex story’ instead of waiting for the ‘s« similarly, “tex \relax’ works for
Experiment 1, and tex &plain story’ loads the plain format before inputting the
story file. You might want to try this, to see if it works on your computer, or vou
might ask somebody if there's a similar shorteut.

As TpX hegins to read your story file, it types ‘(story.tex’, possibly
with a version number for more precise identification, depending on yvour loeal
operating system. Then it types "[1]°, meaning that page 1 is done; and *)7,
meaning that the file has been entirely input.

TEX will now prompt vou with ‘', beecause the file did not contain
‘\end’. Enter \end into the computer now, and you should get a file story.dvi
containing a typeset version of Thor’s story. As in Experiment 1, you can proceed
to convert story.dvi into hardcopy; go ahead and do that now. The typeset
output won't be shown here, but you can see the results by doing the experiment
personally. Please do so before reading on.

» EXERCISE 6.1
Statistics show that only 7.43 of 10 people who read this manual actually type
the story.tex file as recommended, but that those people learn TEX best. So
why don’t you join them?

» EXERCISE 6.2
Look elosely at the output of Experiment 2, and compare it to story.tex: If you
followed the instructions carefuily, you will notice a typographical error. What
is it, and why did it sneak in?

With Experiment 2 under your helt, you know how to make a document
from & file. The remaining experiments in this chapter are intended to help
vou cope with the inevitable anomalies that you will run into later; we will
intentionally do things that will cause TEX to “squeak.”

But hefore going omn, it’s best to fix the error revealed by the previous
output {see exercise 6.2): Line 13 of the story.tex file should be changed to

he preferred to be called~~~% error has been fixed!

The *%* sign here is a feature of plain TEX that we haven't discussed before: 1t ef-
fectively terminates a line of your input file, without introducing the blank space
that TRX ordinarily inserts when moving to the next line of input. Furthermore,
TEX ignores everything that vou type following a %, up to the end of that line
in the file; you can therefore put comments into your manuscript, knowing that
the comments are for your eyes only.

Experiment 8 will be to make TpX work harder, by asking it to set
the story in narrower and narrower columns. Here’s how: After starting the
program, typo

\hsize=4in \input story

ertuch
pereent
cominents

Chapter 6: Running TgX

in response to the x°, This means, “Set the story in a 4-inch column.” More
precisely, \hsize is a primitive of TEX that specifies the horizontal size, i.c., the
width of each normal line in the output when a paragraph is being typeset; and
\input is a primitive that causes TEX to read the specified file. Thus, you are
instructing the machine to change the normal setting of \h=ize that was defined
by plain TEX. and then to process story. tex under this modification.

TEX should respond by typing something like “(story.tex [1])° as
hefore, followed by “*°. Now you should type

\hsize=3in \input story
and, alter TEX says “(story.tex [2])7 asking for more, type three more lines
\hsize=2.5in \input story

\hsize=2in \input story
\end

to complete this four-page experiment.

Don’t be alarmed when TpX screams ‘Overfull \hbeox® several times
as it works at the Z-inch size; that’s what was supposed to go wrong during
Experiment 3. There simply is no good way to break the given paragraphs into
lines that are exactly two inches wide, without making the spaces between words
come out too large or too small. Plain TEX has been set up to ensure rather
strict tolerances on all of the lines it produces:

vou don’t get spaces between words narrower than this, and
vou don’t get spaces botween words wider than this.

If there’s no way to meet these restrictions, vou get an overfull box. And with
the overfull box you also get {1) a warning message, printed on your terminal,
and (2) a big black bar inserted at the right of the offending hox, in your output.
{Look at page 4 of the output from Experiment 3; the overfull hoxes should stick
out like sore thumbs. On the other hand. pages 1-8 should be perfoct.)

Of course you don’t want overfull boxes in your output, so TEX provides
several ways to remove them; that will be the subject of our Experiment 4. But
first let’s look more closely at the results of Experiment 8, since TEX reported
some potentially valuable information when it was forced to make those hoxes
too full; you should learn how to read this data:

27

Overfull \hbox (0.98807pt toc wide) in paragraph at lines 7--11

\tenrm tant galaxy called [J0""7c¢""Xc, there lived]

Overfull \hbox (0.4325pt toc wide) in paragraph at lines 7--11

\tenrm a com~puter named R. J. Drof-nats. |

Overfull \hbox (5.32132pt toc wide) in paragraph at lines 12--16

\tenrm he pre-ferred to be called---was hap-|
Each overfull box s correlated with its loeation in your input file {e.g., the first
two were generated when processing the paragraph on lines 7-11 of story.tex},
and you also learn by how much the copy sticks out (e.g., 0.98807 points).

hsize
input
averfoll hox

28

Chapter 6: Running TgX

Notice that TEX also shows the contents of the overfull hoxes in ab-
breviated form. For example, the last one has the words *he preferred to be
callod—was hap-", set in font \tenrm (10-point roman type); the first one has
a somewhat curious rendering of *08¢’, because the accents appear in strange
places within that font. In general, when you see "[17 in one of these messages,
it stands either for the paragraph indentation or for some sort of complex con-
struction: in this particular case it stands for an umlaut that has bheen raised up
to cover an ‘0.

@ » EXERCISE 6.3
Can you explain the °}’ that appears after “lived’ in that message?

@@» EXERCISE 6.4
Why is there a space before the °}’ in ‘Drof-nats. °7

You don't have to take out pencil and paper in order to write down the
overfull box messages that you get before they disappear from view, sinee TRX
always writes a “transcript” or “log file” that records what happened during each
session. For example, you should now have a file called stery. log containing
the transcript of Experiment 3, as well as a file called texput . log containing
the transeript of Experiment 1. (The transcript of Experiment 2 was probably
overwritten when you did number 3.3 Take a look at story. leg now; you will
see that the overfull box messages are accompanied not only by the abbreviated
box contents, but also by somo strange-looking data about hhoxes and glue and
kerns and such things. This data gives a precise description of what’s in that
overfull hox; TEX wizards will find such listings important, if they are called
upon to diagnose some mysterious error, and you too may want to understaned
TEXs internal code some day.

The abbreviated forms of overfull boxes show the hyphenations that
TEX tried before it resorted to overfilling. The hyphenation algorithm, which is
cdeseribed in Appendix H, is excellent but not perfect; for example, you can sec
from the messages in story. log that TEX finds the hyphen in ‘pre-ferred’, and
it ean even hyphenate ‘Drof-nats’. Yot it discovers no hyphen in ‘galaxy’. and
every once in a while an overfull box problem can be cured simply by giving TEX
a hint about how to hyphenate some word more completely, (We will see later
that there arc two ways to do this, cither by inserting discretionary hyphens
each time as in ‘gal\-axy’, or by saying \hyphenation{gal-axy)} once at the
beginning of your mamuscript.)

In the present example, hyphenation is not a problem, since TgX found
and tried all the hyphens that could possibly have helped. The only way to get
rid of the overfull boxes is to change the tolerance, i.e., to allow wider spaces
between words. Indeed, the tolerance that plain TEX uses for wide lines is
completely inappropriate for 2-inch columns: such narrow columns simply can’t
be achioved without loosening the constraints, unless you rewrite the copy to fit.

TEX assigns a numerical value called “badness™ to cach line that it sets,
in order to assess the quality of the spacing. The exact rules for badness are

i

transeript

log file

hyphenation
diseretionary hyphens
hadness

Chapter 6: Running TgX

different for different fonts, and they will be diseussed in Chapter 14; but here
is the way badness works for the roman font of plain TEX:

The badness of this line i3 100, {very tight)

The badness of this line is 12 {somewhat tight)
The badness of this line is 0. (perfoct)

The badness of this line is 12. (somewhat loose}
The badness of this hne is 200. (loose}

The badness of this fine is 1000 {bad)

The badness of this line iz 5000, {awiul)

Plain TEX normally stipulates that no line’s badness should exceed 200; but in
our case, the task would be impossible since

‘tant galaxy called Obg, there’ has badness 1521;
‘he preferred to be called—was’ has badness 568.

S0 we turn now to Exporiment 4, in which spacing variations that arc morc
appropriate to narrow columns will be used.
Run TEX again, and begin this time by saying

\hsize=2in \tolerance=1600 \input story

so that lines with badness up to 1600 will be tolerated. Hurray! There are no
overfull boxes this time. {But you do get a message about an underfull hox,
since TEX reports all boxes whose badness exceeds a certain threshold called
\hbadness; plain TpX sets \hbadness=1000.) Now make TEX work still harder
hy trying

\hsize=1.5in \input story

{(thus leaving the tolerance at 1600 but making the column width still skimpier}.
Alas, overfull boxes return; so try typing

\tclerance=10000 \input story
in order to see what happens. TEX treats 10000 as if it were “infinite” tolerancee,
allowing arbitrarily wide space; thus, a tolerance of 10000 will never produce an
overfull box, unless something strange oceurs like an unhyphenatable word that
is wider than the column itsclf,

The underfull box that TEX produces in the 1.5-inch case is really bad;
with such narrow Hmits, an occasional wide space is unavoidable. But try

\raggedright \input steory

for a change. (This tells TEX not to worry about keeping the right margin
straight, and 1o keep the spacing uniform within each line.) Finally, type

\hsize=.75in \input stery

followed by ‘\end’, to complete Experiment 4. This makes the columns almost
impossibly narrow,

29

tolerance
hbhadnes
underfoll hox
coluinn width
measure, see hyize
raggedright

30

Chapter 6: Running TgX

@ The output from this experiment will give you some feeling for the problem

of breaking a paragraph into approximately equal lines, When the lines are
relatively wide, TEX will almost always find a good solution. But otherwise you will
have to figure out sowme compromise, and several options are possible, Suppose you want
to ensure that no lines have badness exceeding 500. Then you could set \tolerance to
some high number, and \hbadnesa=500; TEX would not produce overfull boxes, but it
would warn you about the uadertall ones. Or vou could set \tolerance=500; then TEX
mmight produce overfull boxes. I you really want to take corrective action, the second
alternative is better, because you can look at an overfull box to see how much sticks
ot it becomes graphically clear what remedies are possible. On the other hand, if vou
don’t have thme to fix bad spacing—if you just want to koow how bad it is—then the
first alternative is better, although it may require more computer time.

@ » EXERCISE 6.5

When \raggedright has been specified, badness reflects the amount of space
at the right margin, instead of the spacing between words. Devise an experiment by
which you can easily determine what badness TEX assigns to each lne, when the story
is set ragged-right in 1.5-inch columns.

@ A parameter called \hfuzz allows vou to ignore boxes that are only shghtly
overfull. For example, #f you say \hfnzz=1pt, a box must stick out more than
oue point before it is considered erronecus. Plain TEX sets \hfuzz=0.1pt.

@@» EXERCISE 6.6

Ingpection of the cutput from Experiment 4, especially page 3, shows that
with narrow columms # wonld be better to allow white space to appear before and
after a dash, whenever other spaces in the same line are being stretched. Define a
\dazh macro that doses this.

You wore warned that this is a long chapter. But take heart: There's
only one more experiment. to do, and then you will know enough about TEX to
mun it fearlessly by yourself forever after. The only thing vou are still missing
is some information about how to cope with crror messages—i.c., not just with
warnings about things like overfull hoxes, but with cases where TEX actually
stops and asks you what to do next.

Error messages can he torrifying when you aren’t propared for thom;
but they can be fun when you have the right attitude. Just remember that you
really haven’t hurt the computer’s feclings. and that nobody will hold the errors
against you. Then you'll find that running TpX might actually be a creative
experience instead of something to dread.

The first step in Experiment 5 is to plant two intentional mistakes in
the story.tex file. Change line 3 to

‘centerline{\bf A SHORT \ERROR STORY}
and change “\vskip’ to ‘\vship’ on line 2.

Now run TEX again; but instead of ‘story’ type ‘serry’. The computer
should respond by saying that it can’t find file serry.tex, and it will ask you
to try again. Just hit {return} this time; you’ll see that you had better give the

bhreaking a paragraph
hfuzz

dash

ETTOT 'Il’l(‘,.‘i.‘ii:l,g(‘,.‘i

Chapter 6: Running TgX

name of a real file. So type ‘story’ and wait for TEX to find one of the faux pas
in that file.

Ah ves, the machine will soon stop.* after typing something like this:
! Undefined control sequence.
1.2 \vship
lin
7

TEX begins its error messages with *17, and it shows what it was reading at the
time of the error by displaying two lines of context. The top line of the pair
{in this case \vship’} shows what TEX has looked at so far, and where 1% came
from (*1.2°, i.e., Hne number 2); the bottom line (in this case ‘1in’) shows what
TEX has yet to read.

The ‘77 that appears after the context display means that TEX wants

acdvice about what to do next. If youw've never seen an ervor message before, or
if yow've forgotten what sort of response is expected, vou can type ‘7’ now {go
ahead and try it!); TEX will respond as follows:

Type <return> toc proceed, 5 teo scroll future error messages,
R to runm without stopping, [to run quietly,

I te insert something, E to edit your file,

1or ... or @ to ignore the next 1 to 9 tckens cof input,

H for help, X to quit.

This is your menu of options. You may choose to continue in various ways:

1.

Simply type {return). TgX will resume its processing, after attempting
to recover from the error as best it can.

. Type 8. TeX will proceed without pausing for instructions if further

errors arise. Subsequent error messages will flash by on vour terminal,
possibly faster than you can read them, and they will appear in your
log file where you can serutinize them at your feisure. Thus, ‘87 is sort
of like typing {return} to cvery message.

. Type ‘R’ This is like "5’ but even stronger, since it tells TEX not to stop

for any reason, not cven if a file name can’t he found.

. Type ‘Q°. This is like ‘R’ but even more so0, since it tells TEX not only to

proceed without stopping but also to suppress all further output to vour
terminal, It is a fast, but somewhat reckless, way to proceed (intended
for running TEX with no operator in attendance).

Type ‘T°, followed hy some text that you want to insert. TgX will read
this line of text before encountering what it would ordinarily sce next.
Lines inserted in this way are not assumed to end with a blank space.

Some installations of TEX do not allow interaction. In such cases all vou can do ig
lock at the error messages in vour log Rle, where they will appear together with the

-

“help” information.

31

]

inserting text online
anling interaction, see interaction

interacting with TeX

32

Chapter 6: Running TgX

6. Type a small member (less than 100}, TEX will delete this many charac-
ters and control seguences from whatever it is about to read next, and
it will pause again to give vou another chance to look things over.
7. Type "H’. This is what you should do now and whenever you are faced
with an error message that you haven't seen for a while. TEX has two
messages built in for each pereeived crror: a formal one and an informal
one. The formal message is printed first (e.g., ‘! Undefined control
sequence.’):; the informal one is printed if you regquest more holp by
typing ‘H', and it also appears in your log file if you are serolling crror
messages. The informal message tries to complement the formal one by
explaining what TEX thinks the trouble iz, and often by suggesting a
strategy for recouping your losses.
8. Type ‘X, This stands for “exit.” It canses TEX to stop working on your
joh, after puitting the finishing touches on your log file and on any pages
that have already heen output to your dvi file. The current (incomplete)
page will not be output.
9. Type ‘E’. This is like “X°, but it also prepares the computer to edit the
file that TEX is currently reading, at the current position, so thai you
ean conveniently make a change hefore trying again.
After you type ‘H' (or ‘n’, which also works), you'll get a message that tries
to explain that the contro! sequence just read by TEX {i.e., \vehip) has never
been assigned a meaning, and that you should either insert the correct control
secuence or you should go on as if the offending one had not appeared.

In this case, therefore, your best het i to type

I\vskip

{and {return}), with no space after the ‘I’; this effectively replaces \vship hy
wvskip., (Do it.)

If you had simply typed {return) instead of inserting anything, TEX
would have gone ahead and read “1in’, which it would have regarded as part of
a paragraph to be typeset. Alternatively, you could have typed ‘37; that would
have deleted “1in’ from TEX’s input. Or vou could have typed "X’ or ‘E’ in order
to correct the spelling error in your file. But #°s usually best to try to detect
as many errors as you ean, cach time you run TRX, since that inercases your
productivity while decreasing vour computer bills, Chapter 27 explaing more
about the art of steering TEX through troubled text,

@ » EXERCISE 6.7
What would have happened if you had typed °5° atter the \vship error?

@ You can control the level of interaction by giving commands in your file as well

as online: The TEX primitives \scrollmode, \nonstopmode, and \batchmode
correspond respectively to typing ‘'S, 'R’, or ‘Q in response to an error message, amd
\errorztopmode puts vou back into the normal level of interaction. {Such changes are
global, whether or not they appear inside a group.) Furthermore, many installations

deleting tokens
help messages
serollmode
nonstopmode
batchmaode
errorstopmode

Chapter 6: Running TgX

have implemented a way to interrupt TEX while it is running; such an interruption
canses the program to revert to \errorstopmode, after which it pauses and waits for
further instructions.

What happens next in Experiment 57 TgX will hiceup on the other
bug that we planted in the file. This time, however, the error message is more
elaborate, since the context appears on six lines instead of two:

! Undefined control sequence.

<argument> \bf A SHORT \ERROR

STORY

\centerline #1->\line {\hss #1

\hss }
1.3 \centerline{\bf A SHORT \ERROR STORY}

7

You get multiline ervor messages like this when the error is detected while TEX is
processing some higher-level commands-—in this case, while it is trying to carry
out \centerline, which is not a primitive operation (it is defined in plain TEX).
At first, such crror messages will appear to be complete nonsense to you, hecause
much of what you sce is low-level TEX code that you never wrote. But you can
overcome this hangup by getting a feeling for the way TEX operates.

First notice that the context information always appears in pairs of lines.
As hefore, the top line shows what TEX has just read (\bf A SHORT \ERROR’},
then comes what it is about to read (‘STORY’). The next pair of lines shows the
context of the first two; it indicates what TEX was doing just before it began to
read the others. In this case, we sce that TEX has just road ‘#1°, which is a special
code that tells the machine to “read the first argument that is governed by the
current, control sequence”; Le., “now read the stuff that \centerlineis supposed
to center on a line.” The definition in Appendix B says that \centerline, when
applied to some text, is supposed to be carried out by sticking that text in place
of the ‘#17 in ‘\line{\hss#1\hss}’. So TEX is in the midst of this expansion of
\centerline, as well as being in the midst of the text that is to be centered.

The hottom line shows how far TEX has gotten until now in the story
file. {Actually the hottom line is blank in this example; what appears to be the
bottom line is really the first of two lines of context, and it indicates that TEX
has read evervthing inchuding the } in line 3 of the file.) Thus, the context in
this error message gives us a glimpse of how TEX went about its business. First,
it saw \centerline at the beginning of line 3. Then it looked at the definition
of \centerline and noticed that \centerline takes an “argument.” ie., that
\centerline applies to the next character or control sequence or group that
foliows. So TgX read on, and filed \5f A SHORT \ERROR STORY’ away as the
argument to \centerline. Then it began to read the expansion, as defined in
Appendix B. When it reached the #1, it began to read the argument it had saved.
And when it reached \ERROR, it commplained about an undefined control sequence.

33

interrupt
arguiment
centerling

34

Chapter 6: Running TgX

g.?} » EXERCISE 6.8
Why dido’t TEX compiain about \ERROR being undefined when \ERROR was
first encountered, i.e., before reading ‘STORYY on line 37

When you get a multiline error message like this, the best clues about
the source of the trouble are usually on the bottom line {since that is what
you typed) and on the top line {smce that is what triggered the error message).
Somewhere in there vou can usually spot the problem.

Where should you go from here? If yvou type ‘H now, yvou'll just get the
same help message about wndefined control sequences that you saw before. If you
respond by typing {return), TEX will go on and finish the run, producing output
virtually identical to that in Experiment 2. In other words, the conventional
responses won't teach you anything new. So type ‘E’ now; this terminates the
run and prepares the way for you to fix the erroneous file. (On some systemns,
TEX will actually start up the standard text editor, and yow’ll be positioned at
the right place to delete \ERROR'. On other systems, TEX will simply tell you to
edit line § of file story.tex.)

When you edit story.tex again, you'll notice that line 2 still contains
\vship; the fact that you told TEX to insert \vskip doesn’t mean that your file
has changed in any way. In general, you should correct all errors in the input
file that were spotied by TEX during a mz; the log file provides a handy way o
remember what those errors were.

Well, this has indeed been a long chapter, so let’s summarize what has
been accomplished. By doing the five experiments you have learned at first
hand (1) how to got a job printed via TEX: (2) how to make a file that contains
a complete TEX mamscript; {3) how to change the plain TEX format to achieve
columns with different widths; and {4) how to avoid panic when TEX issues
stern warnings.

S0 vou could now stop reading this book and go on to print a bunch
of documents. It is better, however, to continue bearing with the author {after
perhaps taking another rest), since you're just at the threshold of being able
to do a lot more. And you ought to read Chaptor 7 at least, because it warns
vou about certain symbols that you must not type unless you want TEX to do
something special. While reading the remaining chapters it will, of course, be
hest for you to contimie making trial runs, using experiments of your own design.

@@ If vou use TEX format packages designed by others, your error messages
may involve many inscrutable two-line levels of macro context. By setting
\errorcontextlines=0 at the beginning of vour file, you can reduce the amount of
information that is reported; TEX will show only the top and bottom pairs of context
lines together with up to \errorcentextlines additional two-line items, {If anything
has thereby been owitted, vou'll also see *...°) Chances are good that von can
spot the source of an error even when most of a large context has been suppressed; if
not, you can say ‘I\errorcontextlines=100\oops’ and try again. (That will nsually
give you an undefined control sequence error and plenty of context.} Dlain TgX sets
\errorcontextlines=5,

editing
errorcontextlines

Chapter 6: Running TgX 35

ARISTOTLE
HABARKKUK
COWPER

What we have to learn to do we fearn by doing.
— ARISTOTLE, Ethica Nicomachea Il {c. 325 B.C.)

He may run who reads.

— HABAKKUK 2:2 {c. 600 B.C.)

He that runs may read.

- WILLIAM COWPER, Tirocinium {1785)

_

[

How TgX Reads
What You Type

Chapter 7. How TgX Reads What You Type

We observed in the previous chapter that an input manuseript is expressed in
terms of “lines,” but that these lines of input are essentially independent of the
lines of owtput that will appear on the finished pages. Thus you ean stop typing
a line of mput at any place that’s convenient for you, as you prepare or edit a
file. A few other related rules have also been mentioned:

m A {return} is like a space.

m Two spaces in a row count as one space.

m A blank line denotes the end of a paragraph.
Strictly speaking, these rules are contracdictory: A blank line is obtained by
typing {return) twice in a row, and this is different from typing two spaces in a
row. Some day you might want to know the real rules. In this chapter and the
next, we shall study the very first stage in the transition from input to output.

In the first place, it’s wise to have a precise idea of what your keyboard

sends to the machine. There are 256 characters that TEX might encounter at
each step, in a file or in a line of text typed directly on vour terminal. These
256 characters are classified into 16 categories numbered 0 to 15:

Category Meaning
4] Escape character {\ in this manual)
1 Beginning of group {{ in this manual)

{} inx this manual)
{# in this manual)
(& in this manual)
{return} in this mamal)
{# in this manual)

2 End of group
3 Math shifg

4 Alignment tah
5 End of line

6 Parameter
7
B

Superseript {~ in this manual)
Subseript {_ inn this manual)
9 Ignored character {{mull} in this manual)

10 Space {w in this manual)
11 Letter A,....Zanda, ..., z)
12 Other character {none of the above or below)

13 Active character {~ inn this manual)
14 Comment character {% in this manual)
15 Inwvalid character {{delete} in this manual)

Tt’s not necessary for yvou to learn these code numbers; the point is only that
TEX responds to 16 different types of characters. At first this manual led you to
believe that there were just two types—the escape character and the others—
and then vou were told about two more types, the grouping symbols { and }.
In Chapter 6 you learned two more: ~ and %. Now you know that there are
really 16. This is the whole truth of the matter; no more types remain to be
revealed. The category code for any character can be changed at any time, but
it is usually wise to stick to a particular scheme.

escape character
hegin-group character
end-group character
math mode character
alignment tab
parameter

superseript

subseript

ignored character
space

letter

other character

active character
comment character
invalid character
category codes, table
reserved character
special character table
null

celets

38

Chapter 7: How TgX Reads What You Type

The main thing to bear in mind is that each TEX format reserves certain
characters for its own special purposes. For example, when you are using plain
TEX format (Appendix B), you need to know that the ten characters

N rdes o %

cannot be used in the ordinary way when you are typing: each of them will cause
TEX to do something special, as explained elsewhere in this book. If you really
need these symbols as part of your manuscript, plain TEX makes it possible for
you to type

\§ for 5, \¥% for %, \& for &, \# for #, A\ Tor _;

the _ symboi is useful for compound identifiers in computer programs. In math-

ematics formulas you can use \{ and \} for { and }, while \backslash produces

a reverse slash; for example,
‘$\{a \backslash b\}¥’

Ha\b).

Furthermore \~ produces a civeumflex accent (.g., ‘\"e yields ‘8"); and \ ™ yiclds
a tilde accent {e.g., ‘\"n’ yields).

vields

» EXERCISE 7.1

What horrible errors appear in the following sentence?

Procter & Gamble’s stock climbed to $2, a 10% gain.

» EXERCISE 7.2

Can you imagme why the designer of plain TEX decided not to make * the
control sequence for reverse slashes?

@ When TEX reads a Hne of text from a file, or a line of text that vou entered

directly on vour terminal, it converts that text into a Hst of “tokens.” A
token is either {a} a single character with an attached category code, or (b} a control
sequence, For exaruple, if the normal conventions of plain TgX are in force, the text
‘{\hakip 36 pt}’ is converted into a list of eight tokens:

{ 3z 61z s Pir tin Fz

The subscripts here are the category codes, as listed earlier: 1 for “beginning of group,”
12 for “other character,” and so on. The doesn’t get a subscript, becauge it
represents a control sequence token instead of a character token. Notice that the space
after \hakip does not get into the token list, because it follows a control word.

@ It is fmportant to understand the idea of token lists, if vou want to gain a

thorough understanding of TEX, and it is convenient to learn the concent by
thinking of TEX ag if it were a living organism. The individual lines of input in your
files are seen only by TEX’s “eves” and “mouth”; but after that text has been gobbled
up, it is seat to TEX{'s “stomach” in the form of a token list, and the digestive processes
that do the actual typesetting are based entirely on tokens., As far as the stomach is
concerned, the brput Hows in ag a stream of tokens, somewhat as if vour TEX manuscript
had been typed all on one extremely long Hne,

special characters
hackslash

left brace

right bragce
dollar sign
ampersaid

hash mark

hat

nnderline

pereent

tilele
single-character control seqnence
identitiors
COMPOLEr Programs
hackslagh

reverse slash
Procter

Cramnble
hackslash

tokens

eosntrol word

Chapter 7. How TgX Reads What You Type

@ You should remember two chief things about TEX's tokens: {1} A control

sequence is considered to be a single object that is no longer composed of a
sequence of symbols, Therefore long control sequence names are no harder for TEX to
deal with than short ones, alter they have been replaced by tokens. Furthermore, spaces
are not ignored after control sequences inside o token list; the ignore-space rule applies
only in an input file, during the time that strings of characters are being tokenized.
{2} Once a category code has been attached to a character token, the attachment is
permanent. For example, if character " were suddenly declared to be of category 12
instead of category 1, the characters (i already inside token lists of TEX would still
rexzain of category 1 only newly made lists would contain {12 tokens. In other words,
individual characters receive a fixed interpretation as soon as they have been read from
a file, based on the category they have at the time of reading. Control sequences
are different, since they can change their interpretation at any time, TEXs digestive
processes always know exactly what a character token signifies, becanse the category
code appears in the token itself; but when the digestive processes encounter a control
sequence token, they nmst look up the current definition of that control sequence in
order to figure out what it means.

@@» EXERCISE 7.3

Some of the category codes 0 to 15 will never appear as subscripts in character
tokens, becanse they disappear in TEXs mouth. For example, characters of category 0
{escapes) never get to be tokens. Which categories can actually reach TEXs stomach?

@ There’s a program called INITEX that is used to install TEX, starting from

scratch; INITEX is Like TEX except that it can do even move things, It can
compress hyphenation patterns into special tables that facilitate rapid hyphenation, and
it can produce format files like ‘plain.fmt’ from ‘plain.tex’. BDut INITEX needs extra
space to carry out such tasks, so it generally hag less memory available for typesetting
than vou would expect to find in a production version of TEX.

@ When INITEX begins, it knows nothing but TEX s primitives. All 256 charac-

ters are initially of category 12, except that {return} has category 5, {space}
has category 10, {(oull) has category 9, {delete} has category 15, the 32 letters 4 .. . Z and
a...z have category 11, % and \ have the respective categories 14 and 0. It follows that
INITEX is initially incapabie of carrving out some of TEXs primitives that depend on
grouping; you can’t use \def or \hbox until there are characters of categories 1 and 2.
The format in Appendix B beging with \catcode commands to provide characters of
the necessary categories; e.g.,

\catcode ‘\{=1

assigns category 1 to the { symbol. The \catcode operation is like many other privai-
tives of TEX that we shall study later; by modifying internal quantities like the category
codes, yvou can adapt TEX to a wide variety of applications.

@@b EXERCISE 7.4
Suppose that the commands

\catcode\<=1 \catcode*\»=2

appear near the beginning of a group that begins with “{’; these specifications instruct
TeX to treat < and > as group delimiters. According to TEX's rules of locality, the

39

INITEX
hyphenation
format
retim

space

ol

celets
backslazh
percent
cateode

40

Chapter 7: How TgX Reads What You Type

characters < and > will revert to their previous categories when the group ends. Bat
shontld the group end with } or with > 7

@ Although control sequences are treated as single objects, TEX does provide

a way to break them into lists of character tokens: If you write \string\cs,
where \cs is any comtrol sequence, you get the list of characters for that control se-
gquence’s name. For example, \string\TeX produces four tokens: \iz, Tiz, eiz, X2
Each character in this token Lst awtomatically gets category code 12 (“other”), in-
cluding the backslash that \string inserts to represent an escape character. However,
category 10 will be assigned to the character ° {blank space) i a space character
somehow sneaks into the name of a control sequence.

@ Conversely, you can go from a list of character tokens to a control sequence by

saying ‘\csname{tokens}\endcsname’. The tokens that appear in this constrac-
tion between \csname and \endcsname may include other control sequences, as long as
those control sequences nltimately expand into characters instead of TEX primitives; the
final characters can be of any category, not necessarily letters. For example, “\csname
TeX\endcsname’ is essentially the same as ‘\TeX’; but ‘\csname\TeX\endczname’ iz ii-
legal, becanse \TeX expands into tokens contaiming the \kern primitive. Furthermore,
‘Nczname\string\TeX\endcename’ will produce the unusual control sequence “\\Tell’,
i.e., the token [\TeX|, which vou can’t ordinarily write.

@@» EXERCISE 7.5

Experiment with TEX to see what \string does when it is followed by an
active character like ~. [Active characters bekave like control sequences, but they are
not prefized by an escape.) What is an easy way to conduct such experiments online?
What control sequence could you put alter \string to obtain the single character
f,()k(}n \'gz?

@@» EXERCISE 7.6
What tokens does “\expandafter\stringh\csname a\string\ b\endcsname’
produce? {There are three spaces before the b. Chapter 20 explaing \expandafter.}

@@» EXERCISE 7.7

When \csname is used to define a control sequence for the first time, that
control sequence is made eguivalent to \relax until it is redefined. Use this fact to
design 4 macro \ifundefined#1 such thaf, for example,

\ifundefined{TeX}{frue text}\else{false text}\fi

expands to the {trae text} if \TeX hasn’t previcusly been defined, or if \TeX has been
\let equal to \relax; it should expand to the {false text)} otherwise.

@@ In the examples so far, \string has converted control sequences into lists of

tokens that begin with \;». But this backslash token isn’t really hardwired into
TEX; there’s a parameter called \escapechar that specifies what character should be
used when control sequences are output as text. The value of \escapechar is normally
TEX's internal code for backslash, but it can be changed if another convention is desired.

@ TEX has two other token-producing operations similar to the \string com-
mand. ¥ you write \number{number}, you get the decimal equivalent of the
{number}; and if you write \romanmumeral {number}, vou get the number expressed in

JLeg iy

string
hackslagh
space

CHENQAINE
endesnaime
kern

active character
expandafter
fundetined
escapechar
nober
rommantomeral

Chapter 7. How TgX Reads What You Type

lowercase roman mpmerals. For example, ‘\romanmumeral24’ produces ‘xxiv’, a list of
four tokens each having category 12, The \number operation is redundant when it is
applied to an explicit constant {e.g., \number24’ produces ‘24°}; but it does suppress
leading zeros, and it can also be used with numbers that are in TEX s internal registers
or parameters. For example, ‘\number-0015" produces ‘~15°; and if register \connth
holds the valae 316, then “\mumber\count5’ produces ‘316°.

@ The twin operations \uppercase{{token lst}} and \lowercase{{token list}}

go through a given token lst and convert all of the character tokens to their
“uppercage” or “lowercase” equivalents. Here’s how: Each of the 256 possible charac-
ters has two associated values called the \uccode aned the \lccode; these values are
changeable just as a \catcode is. Conversion to uppercase means that a character
is replaced by its \uccode value, unless the \uccode valuwe is zero {when no change
is made). Conversion to lowercage ig sinilar, using the \lccode. The category codes
aren’t changed. When INITEX begins, all \uccode and \lccede values are zero except
that the letters a to z and A to 2 have \uccode values A to Z and \lccode values a to z.

@ TEX performs the \uppercase and \lovercase transformations in its stomach,
but the \string and \number and \romannumeral and \csname operations are
carried oat en route to the stomach {Iike macro expansion), as explained in Chapter 20.

@@» EXERCISE 7.8
What token list results from ‘\nppercaze{a\lowercaze{bC}}’' ?

@@b EXERCISE 7.9

TEX has an internal integer parameter called \year that iz set equal to the cur-
rent, year number at the beginning of every job. Explain how to use \year, together with
\romanmuzeral and \uppercase, to print a copyright notice like ‘@ MUCMLXXXVT
for all jobs tun in 1986.

@@» EXERCISE 7.10

Define a control sequence \appendroman with three parameters such that
\appendroman#1#2#3 defines control sequence #1 to expand to a controf sequence whose
name is the name of control sequence #2 followed by the value of the positive integer
#3 expressed in roman mumerals, For example, suppose \count20 equals 36; then
‘\appendromania\TeX{\count20}’ should have the same effect as ‘\def\a{\TeXxxx}'.

Some bookes are to bee tasted,
others to bee swaliowed,
and some few to bee chewed and disgested.

— FRANCIS BACON, Essayes {1597)

‘Tis the good reader that makes the good book.
- RALFPH WALDO EMERSON, Society & Sofitude {1870)

41

rotnan gumerals
uppercase
Towerease
necode

lecode
INITEX
letters

year

tricky macros
BACON
EMBERSON

_

3

The Characters
You Type

Chapter 8: The Characters You Type

A lot of different keyboards are used with TEX, but few keyboards can produce
256 different symhols. Furthermore, as we have seen, some of the characters that
vou can type on vour kevboard are reserved for special purposes like escaping
and grouping. Yet when we studied fonts it was pointed out that there are 256
characters per font. So how can vou refer to the characters that aren’t on your
kevhoard, or that have been pre-empted for formatiing?

One answer is to use control sequences. For example, the plain format
of Appendix B, which defines % to be a special kind of symbol so that you can
use it for comments, defines the control sequence \} to mean a percent sign,

To get access to any character whatsoever, you can type

\char{number}

where {mumber) is any number from 0 to 255 (optionally followed by a space);
vou will get the corresponding character from the current font. That’s how
Appendix B handles \Y: it defines "\%’ to be an abbreviation for ‘\char37’, since
37 is the character codo for a percent sign.

The codes that TEX wses internally to represent characters are based on
“ASCIL” the American Standard Code for Information Interchange. Appendix C
gives full details of this code, which assigns mumbers to certain control functions
as well as to ordinary lettors and punctuation marks. For example, {space) = 32
and {return} = 13, There are 94 standard visible symbols, and they have been
assigned code mumbers from 33 to 126, inclusive.

Tt turns out that ‘b’ is character number 98 in ASCIL So you can typeset
the word bubble in a strange way by putting

\char98 ul\char®8\char98 le

into your manuscript, if the b-key on your typewriter is broken. {An optional
space is ignored after constants like “28°. Of course vou need the \, c, h, a, and r
keys to type \char’, so let’s hope that they are always working.)

@ TEX always uses the internal character code of Appendix C for the standard

ASCII characters, regardless of what external coding scheme actually appears
in the files being read. Thus, b is 98 inside of TEX even when vour computer normally
deals with EBCDIC or some other non-ASCI scheme; the TEX software has been set
up to convert text files to internal code, and to convert back to the external code when
writing text files. Device-independent (dvi) output files use TEX s internal code. In
this way, TEX is able to give identical results on all computers.

@ Character code tables like those in Appendix C often give the code maumbers in

octal notation, Le., the radix-8 mumber system, in which the digits are 0, 1, 2,
2, 4, 8, 0, and 7% Sometimes hexadecimal notation is also used, in which cage the digits
are 0, 1,2, 3, 4,5, 6,7,8,9, 4 B, C, D, E, and F. For example, the octal code for b is

* The author of this manual likes to use italic digits for octal numbers, and type-
writer type for hexadecimal mimbers, in order to provide a typographic clue to the
underlying radix whenever possible.

13

kevboard

terminal keyboard
percent sign

ASTIH

internal character codes
character codes
space

retim

char

EBCODIO

i

octal notation
hexadecimal notation

14

Chapter 8: The Charucters You Type

142, and its hexadecimal code is 62. A {namber) in TEX’s language can begin with a 7,
in which case it is regarded as octal, or with a ", when it is regarded as hexadecimal,
Thus, \char’142 and \char"62 are eqguivalent to \char98. The legitimate character
codes in octal notation ran from 0 to 777, in hexadecimzal, they run from "0 to "FF.

@ But TEX actually provides ancther kind of {number) that makes it unnecessary

for vou to know ASCIIL at alll The token ¢y {left quote), when followed by
any character token or by any control sequence token whose name is a single character,
stands for TEX s internal code for the character in gquestion. For example, \char‘b and
\char ‘\b are also equivalent to \char98. I you look in Appendix B to see how \Y is
defined, you'll notice that the definition is

\def\%{\char‘\%}
instead of \chara7 as claimed above.

@ » EXERCISE 8.1
What would be wrong with \def\}{\char ‘}}?

@@ The preface to this manual points out that the aunthor tells little white lies
from thue to time. Well, if vou actually check Appendix B you’ll find that

\chardef\¥%="\%

is the true definition of \i. Since format designers often want to associate a spe-
cial character with a special control sequence name, TEX provides the coastruction
‘\chardef{control sequencel={mumber)’ for numbers between 0 and 255, as an efficient
alternative to ‘\def{control sequence}{\char{number}}’.

Although you can use \char to access any character in the current font,
vou can’t use it in the middle of a control sequence. For example, if you type

\\char2s

TEX reads this as the control sequence \\ followed hy c, h, a, ete.. not as the
control sequience \b.

You will hardly ever need to use \char when typing a manuscript, since
the characters you want will probably be available as predefined control se-
gquences; \char is primarily intended for the designers of hook formats like those
in the appendices. But some day you may require a special symbol, and you
may have to hunt through a font catalog until you find it. Once you find it,
vou can use it by simply selecting the appropriate font and then specifying the
character mumber with \char. For example, the “dangerous bend” sign used in
this manual appears as character number 127 of font manfnt, and that font is
selected by the control sequence \manual. The macros in Appendix E therefore
display dangerous bends by saying “{\manual\char127}".

We have observed that the ASCII character set includes only 94 printable
symbols; but TpX works internally with 256 different character codes, from G
to 255, vach of which is assigned to one of the sixteen categories described in
Chapter 7. If your keyboard has additional symbols, or if it doesn’t have the
standard 94, the people who installed vour local TEX system can tell vou the

nuber
apostrophe
donblequote
left quote
reverse apostrophe
chardef

el

special symbol
dangercus bend
manfnt

manal

Chapter 8: The Characters You Type

correspondence hetween what you type and the character number that TpX
receives. Some people are fortunate cnough to have keys marked ‘4" and ‘< and
2% 1t i possible to install TEX so that it will recognize these handy symbols
and make the typing of mathematics more pleasant. But if you do not have such
keys, you can get by with the control sequences \ne, \le, and \ge.

@ TEX has a standard way to refer to the invisible characters of ASCIL Code ©

can be typed as the sequence of three characters “7@, code 1 can be typed
“*4, and s¢ on up to code 31, which is ~_ {see Appendix C). I the character following
"~ has an internal code between 64 and 127, TEX subtracts 64 from the code; i the
code is between 0 and 63, TEX adds 64. Hence code 127 can be typed =77, and
the dangerous beand sign can be obtained by saying {(\manmal™"7}. However, you must
change the category code of character 127 before using it, since this character ordinarily
has category 13 (invalid); say, e.g., \catcode‘\""?=12. The "~ notation is different from
\char, because ~~ combinations are like single characters; for example, it would not
be permissible to say \catcode *\char127, but "~ symbols can even be used ag letters
within control words.

@ One of the overfull box messages in Chapter 6 illustrates the fact that TgX

sometimes uses the funny *~ convention in its output: The umlant character
in that example appears as ~77, and the cedilin appears as ~~X, becanse 7’
ccour in positions 177 and ‘30 of the \tenrm font.

and *

-~

@ There's also a special convention in which ~~ is followed by two “lowercase
hexadecimal digits,” 0-9 or a—f. With this convention, all 256 characters are
abtainable in a uniform way, from ~700 to ~"ff. Character 127 is ""TE.

@ Most of the ™~ codes are unimportant except in unusual applications. But

~M is particalarly noteworthy becanse it is code 13, the ASCII {return} that
TEX normally places at the right end of every line of your input file. By changing the
category of "M vour can obtain useful special effects, as we shall see later,

@ The control code I is also of potential interest, since it’s the ASCII {tab}.
Plain TEX makes {tab} act like a blank space.

@@ FPeaple who install TeX systems for use with non-American alphabets can
make TEX conform to any desired standard. For example, suppose vou have a
Norwegian keyboard containing the letter =, which comes in as code 241 {say). Your lo-
cal format package should define \catcode ‘@=11; then vou conld have control sequences
like \s®rtrykk. Your TEX input files could be made readable by American installa-
tions of TEX that don’t have vour keyboard, by substituting ~"£1 for character 241.
{For example, the stated control sequence would appear as \s™"flrtrykk in the file;
yvour American friends should also be provided with the format that vou used, with
its \catcode® " "f1=11.} Of course you should also arrange vour fonts so that TEX s
character 241 will print as #; and vou should change TEX s hyphenation algorithm so
that it will do correct Norwegian hyphenation. The main point is that suck changes are
not extremely difficult; nothing in the design of TEX Hiits it to the American alphabet,
Fine printing is obtained by fine tuning to the language or languages being used.

@ European languages can also be accommodated effectively with only a Hiited
character set. For example, let’s consider Norwegian again, but suppose that

ne
ler

ge

not-eaaal
less-or-eaual
greater-or-eqaal
invalid

double hat

hat hat

tenrin

et

bhat hat M

tab

Norwegian keyhoard
Scandinavian letters
forgign langoages
kevboards, non-ASCH

46

Chapter 8: The Charucters You Type

o want to use a keyboard without an = character. You can arrange the font metric file
so that TEX will interpret ae, o/, aa, AE, 0/, and AA as lgatures that prodace 0, a, 4,
E, 0, and A, respectively; and vou could put the characters 4 and A into positions 128
and 129 of the font. Dy setting \catcode‘/=11 vou would be able to use the Hgature
o/ in comtrol sequences like “\ho/yre’. TEX’s hyphenation method is not confused by
ligatures; so you counld use this scheme to operate essentially as suggested before, but
with two keystrokes occasionally replacing one. (Your typists would have to watch
out for the occasional times when the adjacent characters aa, oe, and o/ should not be
treated as Hgatures; also, N/ would be a control word, not a control symbael.}

@ The rest of this chapter is devoted to TEX's reading rules, which define the

conversion from text to tokens. For example, the fact that TEX ignores spaces
after control words is a consequence of the ritles below, which haply among other things
that spaces after control words never become space tokens, The rules are intended to
work the way vou woulkd expect them to, so you may not wish to bother reading them;
but when you are communicating with a computer, it is nice to understand what the
machine thinks it is deing, and here’s your chance.

@ The input to TEX is a sequence of “Hnes.” Whenever TEX is reading a Hue of
text from a file, or a line of text that vou entered directly on vour terminal,
the computer’s reading apparatus is in one of three so-called states:

State N Beginning a new line;
State M Middle of a line;
State 5 Skipping blanks.

At the beginning of every line it’s in state N; but most of the thme it’s in state M,
and alter a control word or a space it’s in state S. Incidentally, “states” are different
from the “modes™ that we will be studying later; the current state refers to TXs
eves and mouth ags they take in characters of new text, but the curreat mode refers
to the condition of TEX's gastro-intestinal tract. Most of the things that TEX does
when it converts characters to tokens are independent of the current state, but there
are differences when spaces or end-of-line characters are detected {categories 10 and 5).

@ TEX deletes any {space} characters {number 32) that oceur at the right end

of an input line. Then it inserts a {return} character {nmmber 13} at the right
end of the line, except that it places nothing additionat at the end of a line that vou
ingerted with ‘I’ during error recovery. Note that {return;} is considered to be an actuat
character that is part of the Hne; yvou can obtain special effects by changing its catcode.

@ If TgX sees an escape character {(category () in any state, it scans the entire

control sequence name as follows. {a} If there are no more characters in the
line, the name is empty {like \csname\endcsname)}. Otherwizse {b) i the next character
is not of category 11 {letter), the name consists of that single symbol. Otherwise (¢} the
name consists of all letters beginning with the current one and ending just before the
first nonletter, or at the end of the lne. This name becomes a control sequence token,
TEX goes into state S in case {c), or in case {b) with respect to a character of category 16
{space); otherwizse TEX goes into state M.

@ If TEX sees a superscript character {category 7} in any state, and if that charac-
ter is followed by another identical character, and if those two equal characters

font metric Hle
control word
control symbol
Hines

states

medes

tokens

space

returm

EFTOT TROGVETY
control senoence
noll control sequence
CRTVATTE (!n{k:.‘i'nam(‘,

Chapter 8: The Characters You Type

are followed by a character of code ¢ < 128, then they are deleted and 64 iz added to
or subtracted from the code ¢, {Thus, 74 is replaced by a single character whose
code 8 1, etc., ag explained earlier.) However, if the two superscript characters are -
mediately followed by two of the lowercase hexadecimal digits 0123456789abcdef, the
four-character sequence is replaced by a single character having the specified hexadec-
imal code. The replacement is carried out also if such a trio or guartet of characters is
encountered during steps (b) or (¢} of the control-sequence-name scanning procedure
described above. After the replacement is made, TEX begins again asg if the new char-
acter had been present all the time. If a superscript character is not the first of such a
trio or quartet, it is handled by the following rule.

@ If TEX sees a character of categories 1, 2, 3, 4, 6, 8, 11, 12, or 13, or a character
of category 7 that is not the first, of a special sequence ag just described, it

converts the character to a token by attaching the category code, and goes into state AL

This is the normal case; almost every nonblank character is handled by this rule.

@ ¥ TEX sees an end-of-line character {category 3), it throws away any other

nformation that might remain on the current line. Then if TEX is in state N
(new line), the end-of-line character is converted to the control sequence token “[par|’
{end of paragraph); if TeX is in state M {(mid-line), the end-of-line character is con-
verted to a foken for character 32 (*L') of category 10 (space); and if TEX is in state S
{skipping blanks), the end-of-line character is simply dropped.

@@ I TEX sees a character to be ignored {category 9), it simply bypasses that
character as if it weren’t there, and remaing in the same state.

@ I¥ TEX sees a character of category 10 (space), the action depends on the

current state, ¥ TEX is in state NV or 5, the character 18 simiply passed by, and
TEX remains in the same state. Otherwise TEX is in state A, the character is converted
to a token of category 10 whose character code is 32, and TgX enters state 5. The
character code in a space token is always 32

@@ I TEX sees a comment character {category 14), it throws away that character
and any other information that might remain on the current line.

@@ Finally, if TEX sees an invalid character {category 15), it bypasses that char-
acter, prints an errov message, and remains in the same state,

@@ If TEX has nothing more to read on the current line, it goes to the next line
and enters state N. However, if \endinpnt hag been specified for a file being
\input, or if an \input file has ended, TEX returns to whatever it was reading when
the \input command was originally given. {Further details of \input and \endinput
are discussed in Chapter 20.)

@@» EXERCISE 8.2

Test your waderstanding of TEX's reading rules by answering the following
quickie gquestions: {a} What is the difference between categories b and 147 {b) What is
the difference between categories 3 and 47 {¢) What is the difference between categories
11 and 127 {d} Are spaces ignored alter active characters? {e) When a Hue ends with a
comment character like ¥, are spaces ignored at the beginning of the next line? {f) Can
an ignored character appear in the midst of a control sequence name?

47

prar
Sprace
endinput
infrot

48

Chapter 8: The Charucters You Type

@@» EXERCISE 8.3

Look again at the error message that appears on page 31, When TEX reported
that \vship was an undefined control sequence, it printed two lines of context, showing
that it was in the midst of reading line 2 of the story file. At the time of that error
message, what state was TEX in? What character was it about to read next?

@@» EXERCISE 8.4
Given the category codes of plain TEX format, what tokens are produced from
the input line © $x728" \Tel ~"62776'7

@@» EXERCISE 8.5

Consider an input file that contains exactly three lines; the first line says ‘Hi!,
while the other two Hnes are completely biank. What tokens are produced when TgX
reads this file, using the category codes of plain TEX format?

@@» EXERCISE 8.6

Assume that the category codes of plain TEX are in foree, except that the char-
acters "4, “7B, “°C, "M belong respectively to categories 0, 7, 10, and 11. What tokens
are produced from the {rather ridiculous) mput line “""B""BM "A""B~"C "M ~@\M,*?
{Remember that this line is followed by {return}, which is ~"¥; and recall that ~~@
denotes the {null} character, which has category 9 when INITEX begins.)

@@ The special character ingerted at the end of each line needn’t be {return}; TEX

actually inserts the current value of an integer parameter called \endlinechar,
which normally equals 13 but it can be changed like any other parameter. I the value
of \endlinechar is negative or greater than 253, no character is appended, and the
effect is as if every line ends with % {ie., with a comment character).

@ Since it is possible to change the category codes, TeX might actually use

several different categories for the same character on a single line. For example,
Appendices D and E contain several ways to coerce TEX to process text “verbatim,”
s that the author could prepare this manual without great difficulty. (Try to imagine
typesetting a TEX mannal; backslaghes and other special characters need to switch back
and forth between their normal categories and category 121} Some care is needed to
get the timing right, but you can make TEX behave in a variety of different ways by
judiciously changing the categories. On the other hand, it is best not to play with the
category codes very often, because you must remember that characters never change
their categories once they have become tokens. For example, when the arguments to a
macro are first scanned, they are placed into a token list, so their categories are fixed
once and for all at that time. The author has intentionally kept the category codes
mumeric instead of mpemonic, in order to discourage people from making extensive use
of \catcode changes except in unusual circumstances.

@@» EXERCISE 8.7
Appendix B defines \1q and \rq to be abbreviations for © and * (single left
and right quotes, respectively). Explain why the definitions

\chardef\1lg=96 \chardef\rg=39

would not be as good.

null

return
endlingchar
verhatim

I

r)

Chapter 8: The Characters You Type 49

COmmings
ABCIL

for lifa’s not a paragraph

And death | think Is no parenthesis.
— @. @. cummings, since feeling is first {1926)

This coded character set is to faciitate
the general interchange of information
among information processing systems,

communication systems, and

associated equipment.

... AR 8-bit set was considerad

but the need for more than 128 codes

in general appiications was not yet evident.

— ASA SUBCOMMITTEE X3.2, American Standard
Code for Information interchange {1963)

page 560}

_

9

TegX's Roman Fonts

Chapter 8: TgX’s Roman Fonts 51

When yvou're typing a manuscript for TgX, vou need to know what symbhols lotters
are available. The plain TEX format of Appendix B is hased on the Computer g‘iﬁ‘l‘{‘; aation
Modern fonts, which provide the characters needed to typeset a wide varicty ligatores
of documents. It’s time now to discuss what a person can do with plain TEX :(’,‘(’,"]‘:)’l"l""h ligatures
when typing straight text. We've already touched on some of the slightly subtie Semicolon
things—for example, dashes and guotation marks were considered in Chapter 2, Eaclamation point
- . . X Shriek, see exclamation point
and certain kinds of accents appeared in the examples of Chapters 3 and 6. The Question mark
. . - - ey eEe, o Yy v s g
purpose of this chapter is to give a more systematic summary of the possibilitios, h‘r‘:;{'::':“*
by putting all the facts together. Apostrophe
Let’s bogin with the rules for the normal roman font (A\rm or \tenrm); Revemse apostrophe
. R . . . X ; Hamza, see apostrophe
pi;ﬂn TE‘,\ will use this font for (‘;VL‘,I’}’t?EIEEg unless you SI)(‘;ley otherwise. Most of Ain, see reverse apostrophe
the ordinary symbols that you nieed are readily available and you can type them ig; i’}}]“‘“
in the ordinary way: There’s nothing special about Asterisk
At sign
the letters A to Z and ato z Virgale, see slash
L. Solidus, see slash
the (§1gltb‘ Cto9 Shilling sign, see slash
: S1as)
common punctuation marks : ; v 7 () [] f 7 -/ ., @ ;:;::6
; - Foll stop, see period
except that TEX recognizes certain combinations as ligatures: Clotmma
. . . - . Plus sign
£f vields fT; i yields fi; f0 0 yields ¥ Lovields Equals sign
.. dollar sign
fi yields fi: £11 yields il: ' yields 7¢ yields ;. sharp xiggn, so¢ hash mark
f1l yields ﬂ - yieids [E— yie%cis ,,,,,, : ;mn;}ber 5i]gn, see hash mark
IASD TNare
You can also type + and =, to get the corresponding symbols + and =; but it’s z:;;}z'r':;:g“
much better to use such characters only in math mode, ie., enclosed between backslash
. sone e . : ToX R . e ; braces
two $ signs, since that t.L‘Eib TEX to insert t.h?, proper spacing for mathemat- curly braces, see braces
ics. Math mode is explained later; for now, it’s just a good idea to remember hat, see circumtlen
A : sireirte
that formulas and text should be segrogated. A non-mathematical hyphen and et
a non-mathematical slash should be specified by typing =" and */7 outside of tilde

mathematics mode, but subtraction and division should be specified by typing
fm?aned /7 botween § signs,

The previous paragraph eovers 80 of the 94 visible characters of standared
ASCII s0 your keyhoard probably contains at least 14 more symbols, and you
should learn to watch out for the remaining ones, since they are special. Four of
these are prefmpted by plain TEX; if your manuseript requires the symboils

$ # % E
vou should remember to type them as
AC AT AV AN
respectively. Plain TEX also reserves the six symbols
A\ i } - - "
but vou probably don’t mind losing these, sinee they don’t appear in normal
copy. Braces and backslashes are available via control sequences in math mode.

52

Chapter 8: TeX’s Roman Fonts

There are four remaining special characters in the standard ASCII set:
H] l < >

Again, vou don’t really want them when you're typesetting text. {Double-quote
marks should be replaced either by ¢ or by ’/; vertical lines and relation signs
are needed only in math mode.)

Scholarly publications in English often refer to other languages, so plain
TEX makes it possible to typeset the most commonly used accents:

Type to get

Ao O {grave accent)

o o {acute accent)

\"o l {circumflex or “hat”)
Ao) {umlaut or dieresis)
\"o 4] {tilde or “squiggle”)
\=c O {macron or “har”)
\.o d {dot accent)

\u o 0 {breve accent)

oo G {hacek or “check™)
\H ¢ 4 {long Hungarian umlaut)
\t oo G0 {tie-after accent}

Within the font, such accents are designed to appear at the right height for the
letter ‘o’; but you can use them over any letter, and TgX will raise an accent that
is supposed to be taller. Notice that spaces are needed in the last four cases, to
separate the conirol sequences from the letters that follow. You could, however,
type \H{o} in order to avoid putting a space in the midst of a word.

Plain TEX also provides three accents that go underneath:

Type to get

\c o Q {eedilla accont)
\d o 0 {dot-under accent)
\b o 0 {bar-umder accent)

And there are a foew special lettors:

Type to get

\ce,\OE {French ligature OF)

\ae,\AE {Latin and Scandinavian ligature AE)
\aa,\Ah {Scandinavian A-with-¢ircle)

e, \0 {Scandinavian O-with-slash)

\1,\L {Polish supprossed-L)

\ss {German “es-zet” or sharp)

The \rm font contains also the dotless lotters 't and ‘), which you can obtain by
typing \i’ and ‘\j’. These are needed because '1* and °j should lose their dots

double-quote mark
vertical line, see norm
norm symbol

less than sign

greater than sign
aceents

.

grave aceent

acute accent

ese hat
cirenmber accent
hat accent

vinlant accent
dieresis

ese tilde

tilde accent
squiggle accent
masron aceent
bar accent

dot accent

43

hacek accent

check accent

0

])I‘{‘,'V{‘, aceent

H

Huongarian umlaot

1

tig-after accent
einbellished letters, see accents
[

cedilla aceent

d

dot-under accent
emphatics, see dot-under
b

bhar-under aceent
Scandinavian letters
sharp 3

ep-girt

Cleriman

Polish

Norwegian

Danish

Swedish

feelandic
suppressed-L
diphthongs, see @, o
dotless letters

i

i

Chapter 8: TgX’s Roman Fonts 53

when they gain an accent. For example, the right way to obtain ‘minis’ is to typewriter type
type ‘m\=\i n\u us’ or ‘m\={\i}n\u{u}s’. f:’;;}:(];?‘]':::

This completes our summary of the \rm font. Exactly the same conven- less than sign
tions apply to \bf, \sl, and \it, s0 you don’t have to do things differently when ?:‘;:;{f than sign
vou're using a different typeface. For example, \bf\ "o yields 0 and \it\& yields Lireiés
. Tsn’t that nice? g;_‘;cmz__

Tor'ev
@ However, \tt is slightly different. You will be glad to know that £, £i, and =0 al-Khewdarizmi

on are not treated as ligatures when you're using typewriter type; nor do you dagger
get Hpatures from dashes and quote marks, That’s fine, because ordinary dashes and :f;;:']lfl{k dageer
ardinary double-gquotes are appropriate when vouw're trying to imitate a typewriter. ohelus, see obelisk
Most of the accents are available too. DBut \H, \., \1, and \L caanot be used—the ‘?i“;"éé”ﬂl omber sien
typewriter font contains other symbols in their place. Indeed, vou are suddenly allowed ;,:m;mp;: ;,.;:;'] e
to type ", |, <, and >; see Appendix F. All of the letters, spaces, and other symbols in pilerow, see paragraph sign

\tt have the same width,

» EXERCISE 9.1
What’s the non-naive way to type naive’?

» EXERCISE 9.2
List some English words that contain accented lotters.

» EXERCISE 9.3
How would you type “Esop’s (Buvres en francais™?

» EXERCISE 9.4
Explain what to type in order to get this sentence: Commentarii Academix
scientiarum imperialis petropolitanse is now Akademiia Nauk SSSR, Dokiady.

» EXERCISE 9.5
And how would you specity the names Ernesto Cesaro, Pal Erdos, Oystein Ore,
Stanistaw Swicrezkowski, Sergof Tur’ov, Muhammad ibn Misi al-Khwirizmi?

g.?} » EXERCISE 9.6

Devise a way to typeset Pal Exdds in typewriter type.

The following symbols come out looking exactly the same whether you
are using \rm, \el, \bf, \it, or \tt:
Type to get

\dag T (dagger or obelisk)
\ddag I (double dagger or diesis)

AS § (section mumber sign)
\P § (paragraph sign or pilerow)

{(They appear in just one style because plain TgX gets them from the math
symbols font. Lots of other symbols are needed for mathematics: we shall study
them later. See Appendix B for a few more non-math symbois.)

54 Chapter 8: TgX’s Roman Fonts

» EXERCISE 9.7 dollar sign
Tn plain TEX’s italic font, the ‘8 sign comes out as ‘£ °. This gives you a way ﬁr’ ::j‘;g':;:’;;:’j'g“g“
to refer to pounds sterling, but you might want an italic dollar sign. Can you sterling
think of a way to typeset a reference to the book Furope on §15.00 a day? f;}j:’ém
Freneh

forgign langoages

@@ Appendix B shows that plain TgX handles most of the accents by using TEX s
\accent primitive. For example, *#1 is eguivalent to {\accent19 #1}, where
#1 is the argument being accented. The general rule is that \accent{number} puts an
accent, over the next character; the {mumber) tells where that accent appears in the
current font. The accent is assumed to be properly positioned for a character whose
keight equals the x-height of the current font; taller or shorter characters canse the
accent to be raised or lowered, taking due account of the slantedness of the fonts of
accenter and accentee. The width of the final constriction is the width of the character
being accented, regardiess of the width of the accent. Mode-independent commands like
font changes may appear between the accent number and the character to be accented,
but grouping operations must not intervene, If it turns out that no suitable character
is present, the accent will appear by itself as if you had satd \char{number} instead of
\accent{nmmber}. For example, * {} produces

@@» EXERCISE 9.8

Why do vou think plain TEX defines \’#1 to be ‘{\accent19 #1}’ instead of
simply letting * be an abbreviation for ‘\accent19 '? {Why the extra braces, and
why the argument #17)

@@ It’s important to remember that these conventions we have discussed for ac-

cents and special letters are not built intoe TEX itself; they belong only to the
plain TEX format, whick uses the Computer Modern fonts. Quite different conventions
will be appropriate when ather fonts are involved; format designers should provide rules
for how to obtain accents and special characters in their particular systems. Plain TEX
works well enough when accents are infrequent, but the conventions of this chapter
are by no means recommended for large-scale applications of TEX to other languages.
For example, a well-designed TgX font for Fremch might well treat accents ags Hga-
tures, so that one could e’crire de cette manie‘re nai've em framnc/ais without
backslashes. {See the remarks about Norwegian in Chapter 8.)

Chapter 8: TgX’s Roman Fonts B5b

SHARKESPEARE
Munster
ROOT

Leat's doo’t after the high Roman fashion.

— WILLIAM SHAKESPEARE, The Tragedie of Anthony and Cleopatra {1606)

English is a straightforward, frank, honest, open-hearted, no-nonsense fanguage,
which has littie truck with such devilish devious devices as accents;

indeed U.S5. editors and printers are often thrown into a dither

when a foreign word insinuates itself into the language.

However there is one word on which Americans seem to have closed ranks,
printing it confidently, courageousty, and almost invariabty

complete with accent—the cheese presented to us as Miinster.

Unfortunately, Munster doesn’t take an accent.
- WAVERLEY ROOT, in the interpational Herald Tribune {1982)

-

10

Dimensions

Chapter 10: Dimensions 5Y

Sometimes you want to tell TEX how big to make a space, or how wide to make dimensions
a line. For example, the short story of Chapter 6 used the instruction ‘\vskip f;‘:‘;:’
.5em’ to skip vertically by half a centimeter, and we also said ‘\hsize=4in’ to anits of measure, table
specify a horizontal size of 4 inches. It’s time now to consider the various ways ;;:,m .
such dimensions ¢an be communicated to TEX. pe
“Points” and “picas” are the traditional units of measure for printers ii“"‘
and compositors in English-speaking countries, so TEX understands points and inch
picas. TEX also understands inches and metric units, as well as the continental :;f)g point
European versions of points and picas. Each unit of measure is given a two-letter am
abbreviation, as follows: contimetor
pt point (baselines in this manual are 12pt apart) i llimeter

pc pica {1pc = 12pt) f)jfgl{:: 'p;gi'ni

in inch (lin = 72.27pt) o
bp big point {72hp = lin) ieero

cm centimeter (2.54 ¢m = lin) thaled point
mm millimeter (1¢mm = 1 ¢m) optional sign
dd didot point (1157 dd = 1238 pt} digit atring

cc cicero {1ee = 12dd)

sp scaled point (65536 sp = 1pt)

The output of TEX is firmly grounded in the metric system, using the conversion
factors shown here as exact ratios.
» EXERCISE 10.1
How many points are there in 254 centimeters?
When vou want to express some physical dimoension to TEX, type it as
{optional sign}{mimber) {unit of measure}
or
{optional sign}{digit string} . {digit string) {unit of measure)
where an {optional sign} is either a +" or a '~ or nothing at all, and where a
{digit string) consists of zero or more consccutive decimal digits. The .7 can
also be a *,”. For example, here are six typical dimensions:

3 in 29 pc
-.013837in + 42,1 dd
0.mm 123456782sp

A plus sign is redundant, but some people occasionally like extra redundancy
once in a while, Blank spaces are optional hefore the signs and the numbers and
the ynits of moeasure, and you can also put an optional space after the dimension;
but you should not put spaces within the digits of a number or hetween the letiers
of the unit of measure.

» EXERCISE 10.2
Arrange those six “typical dimensions” into order, from smallest to largest,

58

Chapter 10: Dimenstons

g.?} » EXERCISE 10.3
Two of the following three dimensions are legithnate according to TEXCs rules.
Which two are they? What do they mean? Why is the other one incorrect?
LTTpt
"Ccc

-, 8p

The following “rulers” have been typeset by TEX so that you can get
some idea of how different units compare to each other. If no distortion has been
introdueed during the camera work and printing processes that have taken place
after TEX did its work, these rulers are highly accurate.

\ T 1 1 1] \' | 4in
B —] : [T ' T 300 pt
EEEREE A ' [: ' ' | 300 dd
R R B T [10cm

g% » EXERCISE 10.4
{To be worked after you know about boxes and glue and have read Chapter 21.)
Explain how to typeset such a 10cm ruler, using TEX.

@ TEX represents all dimensions internally as an integer mmltiple of the tiny

units called sp. Since the wavelength of visible light is approximately 100sp,
rounding errors of a few sp make no difference to the eye. However, TEX does all
of its arithmetic very carefully so that identical results will be obtained on different
computers. Different implementations of TgX will produce the same line breaks and
the same page breaks when presented with the same dociment, hecause the integer
arithmetic will be the same.

@ The units have been defined here so that precise conversion to sp is efficient

on a wide variety of machines. In order to achieve this, TEX's “pt” has been
made slightly larger than the official printer’s point, which was defined to equal exactly
013837 in by the American Typefounders Association in 1886 [cf. National Burean of
Standards Cireular 570 {1956)]. In fact, one classical point is exactly 99999999 pt, so
the “error” iy essewtially one part in 105, This is more than two orders of magnitude
legs than the amount by which the inch itself changed during 1959, when it shrank to
2.54 cm from its former value of (1/0.3937) cm; so there is no point in worrying about
the difference. The new definition 72.27 pt = 1 in is not oaly better for calculation, it is
also eagier to remember.

@ TEX will not deal with dimensions whose absolute value is 2% sp or more. In
other words, the maximu legal dimension is slightly less than 16384 pt. This
is a distance of about 18.892 feet (5.7583 meters), so it won't cramp your style.

ruler
machine-independence
rounding
maximom legal dimension

Chapter 10: Dimensions

In a language mamual ke this it is convenient to use “angle brackets”
in abbreviations for various constructions like {number) and {optional sign} and
{digit string). Henceforth we shall use the term {dimen)} to stand for a legitimate
TEX dimension. For example,

\hsize={dimen}

will he the general way to define the column width that TEX is supposed to use.
The idea is that {dimen} can be replaced by any guantity like ‘4in’ that satisfies
TEX’s grammagical rules for dimensions; abbreviations in angle brackets make it
easy to state such laws of grammar.

When a dimension is zero, you have to specify a unit of measure even
though the unit is irrelevant. Don’t just say "0°; say ‘0pt’ or '0in’ or something.

The 10-point size of type that vou are now reading is normal in text-
hooks, but you probably will often find voursell wanting a larger fort. Plain TgX
makes it vasy to do this by providing magnified output. If vou say

\magnificatien=1200

at the heginning of your manuscript, cverything will be enlarged by 20%; ic., it
will come out at 1.2 times the normal size. Similarly, ‘\magnificatien=2000
doubles everything; this actually quadruples the area of cach letter, since heights
and widths are both doubled. To magnify a document by the factor f, you say
\magnificaticon={number}, where the {mumber} is 1000 times f. This instruc-
tion must be given before the first page of output has been completed. You
cannot apply two different magnifications to the same doeument.

Magnification has obvious advantages: Youw'll have less eyestrain when
vou're proofreading: you can easily make transparencies for lectures; and you
can photo-reduce magnified output, in order to minimize the deficiencies of a
low-resolution printer. Conversely, vou might even want \magnification=500
in order to create a pocket-size version of some book. But there’s a slight catch:
You can’t use magnification unfess your printing device happens to have the
fonts that you need at the magnification vou desire. In other words, you need
to find out what sizes are available before you can magnify. Most installations
of TEX make it possible to print ali the fonts of plain TEX if you magnify by
\magstep?, 1, 2, 3, and perhaps 4 or even 5 {see Chapter 4); but the use of large
fonts can be expensive hecause a lot of system memory space is often required
to store the shapes.

» EXERCISE 10.5
Try printing the short story of Chapter 6 at 1.2, 1.44, and 1.728 times the normal
size. What should you type to get TEX to do this?

@ When vou say \magnification=2000, an operation like ‘\vskip.5cm’ will ac-
tually skip 1.0cm of space in the final docwment. I vou want to specify a
dimension in terms of the final size, TEX allows vou to say “true’ just before pt, pe, in,

angle brackets
dimen

magnilied outpot
magnification
eyestrain
proofreading
transparencies
shides
low-resalution printer
pochet-size
souint print
magstep:

true

60

Chapter 10: Dimenstons

bp, cm, mm, dd, cc, and ap. This unmagnifies the units, so that the subzsequent magni-
fication will cancel out. For example, ‘\vakip.5truecm’ is eguivalent to ‘\vskip.25cm’
if vour have previously said ‘\magnification=2000". Plain TEX uses this feature in the
\magnification command itseif: Appendix B includes the instruction

\hsize = 6.5 trme in

Just after a new magnification has taken effect. This adjusts the line width so that the
material on each page will be 62 inches wide when it is finally printed, regardless of the
magnification factor. There will be an inck of margin at both left and right, assuming
that the paper is 81 inches wide.

@ If vou use no “true’ dimensions, TEX' s internal computations are not affected

by the presence or absence of magnification; Hine breaks and page breaks will
be the same, and the dvi file will change in only two places. TEX shuply tells the
printing routine that you want a certain magnification, and the printing routine will
do the actual enlargement when it reads the dvi file.

@ » EXERCISE 10.6

Chapter 4 mentions that foats of different magnifications can be used in the
same job, by loading them ‘at’ different sizes. Explain what fonts will be used when
yoar give the commands

\magnification=\magstepl
\font\firat=cmrl0 scaled\magzstepl
\font\second=cmri(at 12truept

@@ Magnification is actually governed by TEX’s \mag primitive, which is an integer

parameter that should be positive and at most 32768, The value of \mag is
examined in three cases: {1} just before the first page is shipped to the dvi file; (2) when
computing a true dimension; {3} when the dvi file is being closed. Alternatively, some
fmplementations of TEX produce non-dvi output; they examine \mag in case (2) and
also when shipping out each page. Since each document has only one magnification,
the valie of \mag must not change after it has first been examined,

@ TEX also recoguizes two units of meagsure that are relative rather than absolute;
i.e., they depend on the current context:

em is the width of o “quad” in the current font;
ex is the “x-height” of the current font.

Each font defines its own em and ex values. In olden days, an “emn” was the width
of an ‘M, but this is no longer trae; ems are shply arbitrary units that come with a
font, and so are exes, The Computer Modera fonts have the property that an em-dagh
is one em wide, each of the digits 0 to 9 is half an em wide, and lowercase %’ is one ex
high; but these are not hard-and-fast rules for all fonts. The \rm font {cmr10) of plain
TEX has 1em = 10pt and Tex = 4.3 pt; the \bf font {cmbx10} has lem = 11.5pt and
lex = 4.44pt; and the \tt font (cmtt10) has Lem = 10.5pt and Tex = 4.3pt. All of
these are “10-point” fonts, vet they have different em and ex values. It is generally best
to use em for horizontal weasurements and ex for vertical measurersents that depend
on the current font.

i

at
magnilied fonts
scaled
mﬁg

A

auad

ex
x-height
digits
cimrld)
cinba 19
cimntt 14

Chapter 10: Dimensions

@ A {dimen} can alzo refer to TEX’s internal registers or parameters. We shall

discuss registers Iater, and a complete definition of evervthing that a {dimen}
can be will be given in Chapter 24, For now it will suflice to give some hints about
what is to come: ‘\hsize’ stands for the current horizontal line size, and *.5\hsize’
is half that amount; “2\wd3 denotes twice the width of register \box3; *~\dimenl100’ is
the negative of register \dimen100.

@ Notice that the unit names in dimensions are not preceded by backsiashes, The

same s true of other so-called keywords of the TpX language. Keywords can be
given in uppercase letters or in a mixture of upper and lower case; e.g., ‘Pt is equivalent
to ‘pt’. The category codes of these letters are irrelevant; you may, for example, be
using a p of category 12 {other) that was generated by expanding ‘\the\haize’ as
explained in Chapter 20. TEX gives a special interpretation to keywords only when
they appear in certain very restricted contexts. For example, pt’ s a keyword oaly
when it appears after a mumber in a {dimen}; ‘at’ is a keyword only when it appears
after the external name of a font in a \font declaration. Here is a complete bst of
TEX’s keywords, in case vou are wondering about the fall set: at, bp, by, cc, cm, dd,
depth, em, ex, fil, height, in, 1, minus, mm, mu, pc, plus, pt, scaled, sp, spread, to,
trne, width. {See Appendix I for references to the contexts in which each of these is
recognized as a keyword.)

The methods that have hitherto been taken

to discover the measure of the Roman Toot,

will, upon examination, be found 5o unsatisfactory, that

it is no wonder the learned are not yet agreed on that point.

9 London inches are equal to 8,447 Paris inches.
- MATTHEW RAPER, in Philosophical Transactions {1760)

Without the letter U,
units would be nits.

— SESAME STREET (1970)

61

dimen

kevwords

reserved words

BAPER

SESAME STRERT

Children's Television Workshop

11

Boxes

Chapter 11: Bozes

TEX makes complicated pages by starting with simple individual characters and
putting them together in fargor units, and putting these together in still larger
units, ane so on. Conceptually, it’s a big paste-up joh. The TgXnical terms used
to describe such page construction are hoxes and ghe.

Boxes in TEX are two-dimensional things with a rectangular shape, hav-
ing three associated measurements called height, width, and depth. Here is a
picture of a typical box, showing its so-called reference point and baseline:

height

Bageline

Relerence point

depth
4

+— width —

From TEX's viewpoint, a single character from a font is a box; #t’s one of the
simplest kinds of boxes. The fort designer has decided what the height, width,
and depth of the charactor are, and what the symbol will look like when it s in
the box; TEX uses these dimensions to paste boxes together, and ultimately to
determine the locations of the reference points for all characters on a page. In
plain TEX’s \rm font {emr10), for example, the letter *h’ has a height of 6.9444
points, a width of 5.5555 points, and a depth of zero; the letter ‘g’ has a height
of 4.3055 points, a width of 5 points, and a depth of 1.9444 points. Only cortain
special characters like parentheses have height plus depth actually equal to 10
points, although cmr10 is said to be a “10-point™ font. You needn’t bother to
learn these measurements yourself, but #°s good to be aware of the fact that TEX
deals with such information; then you can better understand what the computer
does to your manuscript.

The character shape need not fit inside the boundaries of its box. For
example, some characters that are used to build up larger math symbols like
matrix brackets intentionally protrude a little bit, so that they overlap properly
with the rest of the symbol. Slanted letters frequently extend a Hitle to the right
of the hox, as if the box wore skewed right at the top and left at the bottom,
keeping its haseline fixed. For example, compare the letter “g’ in the cmr10 and
cmel10 fonts (\rm and \sl});

{A figure will be inserted here; too bad you can’t ses it now.
It shows two g's, as claimed.}

I both cases TEX thinks that the box is 5 points wide. so hoth letters get exactly

output device knows this. But the slanted letters will be spaced properly in spite
of TpX's lack of knowledge, because the baselines will match up.

63

hromens

ahis

height

width

depth
reference point
haseline

cmrif)

cinsllo

64

Chapter 11: Bozes

Actually the font designer also tells TEX one other thing, the so-called
itadic correction: A mumber is specified for cach eharacter, telling roughly how
far that character extends to the right of its box houndary, plus a hittle to sparc.
For example, the talic correction for ‘g’ in emr10 is 0.1389 pt, while in cmsl10
it is G.8565 pt. Chapter 4 points out that this correction is added to the normal
width if you type "\/° just after the character. You shouid remember to use \/
when shifting from a slanted font to an unslanted one, especially in cases like

the so-called {\sl italic correction\/}:

since no space intervenes here to compensate for the loss of slant.

TEX also deals with another simple kind of hox, which might be called
a “hlack box,” namely, a reetangie like ‘W’ that is to be entively filled with ink
at printing time. You can specify any height, width, and depth you like for such
hoxes—hbut they had hetter not have too much area, or the printer might get
upset., (Printers generally prefer white space to hlack space.)

Usually these black boxes are made very skinny, so that they appear as
horizontal lines or vertical lines. Printers traditionally call such lines “horizontal
rules” and “vertical rules,” so the terms TEX wses to stand for black boxes are
Ahrule and \vrule. Even when the box is square, as in "', you must call it
either an \hrule or a \vrule. We shall discuss the use of rule boxes in greater
detail later, (See Chapter 21.)

Everything on a page that has been typeset by TEX is made up of simple
character boxes or rule boxes, pasted together in combination. TEX pastes boxes
together in two ways, either horizontally or vertically, When TgX builds a
horizontal list of boxes, it lines them up so that their reference points appear
in the same horizontal row; therefore the baselines of adjacent characters will
match up as they should. Similarly, when TEX builds a vertical list of boxes, it
lines them up so that their reference points appear in the same vertical column.

Let’s take a look at what TEX does hehind the seenes, by comparing
the computer’s methods with what you would do if you were setting metal type
by hand. In the time-tested traditional method, you choose the lettors that
vou need ot of a type case—the uppercase letters are in the upper case—and
vou put them into a “composing stick.” When a line is complete, you adjust
the spacing and transfer the result to the “chase,” where it joins the other rows
of type. Eventually you lock the type up tightly by adjusting external wedges
called “quoins.” This 't much different from what TEX does, except that
different words are used; when TEX locks up a line, it creates what is called an
“hbox” (horizontal hox), hecause the components of the line are pieced together
horizontally. You can give an instruction like

\hbox{A line of type.}

in a TEX manuscript; this tells the eomputer to take hoxes for the appropriate
letters in the current font and to lock them up in an hbox. As far as TpX is

italic correction

/

Mlack box
horizontal Tules
vertical roles
hrule

vrile

rule hoxes
horizontal list
vertical list
upper case
composing stick
hbox
horizontal hox

Chapter 11: Bores 65

concerned, the letter “A’ is a box 'O’ and the letter ‘p’ is a box "O’. So the vhox
given instruction cavses TEX to form the hbox It ‘D‘f“' hox
vhox
| o ol O Franklin

representing ‘A line of type.” The hboxes for individual lines of type are eventu-
ally joined together by putting them into a “vhox” (vertical box). For example,
VOU CAn Say

\vbox{\hbox{Twe linesM\hbex{of type.}}

and TgX will convert this into

. Two lines
ie.,
' of type.

The principal difference hetween TEX's method and the old way is that metal
types are generally cast so that each character has the same height and depth;
this makes it easy to line them up by hand., TEX’s types have variable height
and depth, because the computer has no trouble lining characters up by their
baselines, and because the extra information about height and depth helps in
the positioning of accents and mathematical symbols.

Another important difference botween TEX setting and hand setting is, of
course, that TEX will choose line divisions automatically; you don’t have to insert
\hbox and \vbox instructions unless you want to retain complete control over
where each letter goes. On the other hand, if vou do use \hbox and \vbox, you
can make TEX do almost everything that Ben Franklin could do in his printer’s
shop. You're only giving up the ability to make the letters come out charmingly
crooked or badly inked; for such effects you need to make a new font. {And
of course you lose the tactile and olfactory sensations, and the thrill of doing
everything hy yourself. TgX will never completely replace the good old ways.)

A page of text Like the one vou're reading is itself a box, in TEX s view:
It is a largish box made from a vertical list of smaller hoxes representing the lines
of text. Fach line of text, in turn, is a box made from a horizontal list of boxes
representing the individual characters. In more complicated situations, involving
mathematical formulas and/or complex tables, you can have hoxes within hoxes
within boxes ... to any level. But even these complicated situations arise from
horizontal or vertical sts of boxes pasted together in a simple way: all that you
and TEX have to worry about is one list of boxes at a time. In fact, whoen you're
typing straight text, you don’t have to think about hoxes at all, since TEX will
antomatically take responsibility for assembling the character hoxes into words
and the words into lines and the lines into pages. You need to be aware of the
box concept only when you want to do something out of the ordinary, e.g., when
vou want to center a heading.

@ From the standpoint of TEXs digestive processes, a mapuscript comes in ag a
seguence of tokens, and the tokens are to be transformed into a sequence of
boxes. Each token of input is essentially an instruction or a piece of an instruction; for

66

Chapter 11: Bozes

example, the token ‘A" normally means, “put a character box for the letter A at the
end of the current hbox, using the current font”; the token " normally means,
“skip vertically in the current vbox by the {dimen} specified in the following tokens.”

@ The height, width, or depth of a box might be negative, in which cage it is a

“shadow box” that is semewhat hard to draw. TgX doesn’t balk at negative
dimensions; it just does arithmetic as usnal, For example, the combined width of two
adjacent boxes is the sum of their widths, whether or not the widths are positive. A
font designer can declare a character’s width to be negative, in which case the character
acts like o backspace. (Languages that read from right to left could be handled in this
way, but only to a hmited extent, since TpX’s line-breaking algorithm is bagsed on the
assumption that words don’t have negative widths.)

@ TEX can raise or lower the individual boxes in a horizontal list; such adjust-

ments take care of mathematical subscripts and superscripts, as well as the
heights of accents and a few other things. For example, here is a way to make a box
that contains the TEX logo, putting it into TEX's internal register \box0:

\zetboxO=\hbox{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125em X}

Here “\kern~.1667em’ means to insert blank space of — 1667 ewns in the current font,
i.e., to back up a bit; and ‘\lower.5ex’ means that the box \hbox{E} is to be lowered
by half of the current x-height, thus oflsetting that box with respect to the others.
Instead of \lower.5ex’ one could alse say ‘\raise-.bex’. Chapters 12 and 21 discuss
the details of how to construct boxes for special effects; our goal in the present chapter
is merely to get a taste of the possibilities,

@ TEX will exhibit the contents of any box register, i vou ask it to. For example,
if you type “\showbox(’ after setting \box0 to the TEX logo as above, your log
file will contain the following mumbo jumbo:

\hbox(6.83331+2.15277)x18.6108

Atenrm T

A\kern -1.86702

.A\hbox{6.83331+0.0)x6.80557, shifted 2.15277
..\tenrm E

Akern ~1.25

Atenrm X

The first line means that \boxC is an bhbox whose height, depth, and width are re-
spectively 6.83331 pt, 2.15277 pt, and 18.6108 pt. Subsequent lines beginning with .’
indicate that they are imside of a box. The first thing in this particular box is the
letter T in font \tenrm; then comes a kern. The next item is an hbox that contamns
only the letter E; this bhox has the height, depth, and width of an E, and it has been
shifted downward by 2.15277 pt (thereby accounting for the depth of the larger box).

@ » EXERCISE 11.1
Why are there two dots in the *. . \tenrm E’ line here?

@ Such displayvs of box contents will be discussed further in Chapters 12 and 17.
They are used prizmuarily for diagnostic purposes, when yvou are trying to figure
out exactly what TgX thinks it’s doing. The main reason for bringing them up in the

shadow bost
negative dimensions
hackspace
Hebrew

Arabic

sethox

kern

lower

rafse

hox register
showhor

log file

TeX logo
diagnostic format

internal borw-and-gloe representat

box displays

Chapter 11: Bozes

present chapter is simply to provide a glimpse of how TEX represents boxes in its
guts. A computer program doesa’t really move boxes around; it fiddles with lists of
representations of boxes,

@ » EXERCISE 11.2
By running TEX, figure out how it actually handles italic corrections to char-
acters: How are the corrections represented inside a box?

g?} » EXERCISE 11.3
The “opposite” of TEX’s logo—namely, TEX—is produced by

\setboxl=\hbox{T\kern+.1667em\raizse.5ex\hbox{E}\kern+.125em X}
What would \showboxl show now? {Try to guess, without running the machine.)

g% » EXERCISE 11.4

Why do vou think the author of TEX dida’t make boxes more symmetrical
hetween horizontal and vertical, by allowing reference points to be inside the bhoundary
instead of insisting that the reference point must appear at the left edge of each box?

@@» EXERCISE 11.5
Constrizet a \demobeox macro for use in writing manuals like this, so that an
anthor can write ‘\demobox{Tough exercisze.}’ in order to typeset ‘o] oo’

@@» EXERCISE 11.6
Constrioct a \frac macro such that ‘\frac1/2’ yields “1/5,

I have several boxes in my memory
in which | wilt keep them all very safe,
there shali not a one of them be fost.

— {ZAAK WALTQON, The Compleat Anglar {1653)

How very little does the amateur, dwelling at home at ease,
comprehend the fabours and perifs of the author.

- R. L. STEVENSON and L. OSBOURNE, The Wrong Box {1889)

67

WALTON
STEVENSON
QSBOURNE

hage B8)

12

Glue

Chapter 12: Glue

But there’s more to the story than just boxes: There’s also some magic mortar
called ghie that TEX uses to paste boxes together. For example, there is a little
space hetween the lines of text in this manual; it has been caleulated so that
the baselines of consecutive lnes within a paragraph are exactly 12 points apart.
And there is space between words too: such space is not an “empty” box, it
is part of the glue between hoxes. This glue can stretch or shrink so that the
right-hand margin of each page comes out looking straight.

When TEX makes a large box from a horizontal or vertical Hst of smaller
boxes, there often is ghie between the smaller boxes. Glue has three attributos,
namely its natural space, its ability to stretch, and its ability to shrink.

In order to understand how this works, consider the following example
of four boxes in a horizontal list separated by three globs of ghue:

width 5 width 3

width € width 8
gpace 9 space 9 space 12
stretch 3 stretch 6 stretch 0
shrink 1 shrink 2 shrink 0

width 52

The first glue element has 9 units of space, 3 of streteh, and 1 of shrink; the next
one also has 9 units of space, hut 6 units of stretch and 2 of shrink; the last one
has 12 units of space, hut it is unable to stretch or to shrink, so it will remain
12 units of space no matter what.

The total width of hoxes and ghie in this example, considering only the
space components of the ghie, is 5+ 9 +64+94 3+ 12 + 8 = 52 units. This
is called the natural width of the horizontal list; it's the preferred way to paste
the boxes together. Suppose, however, that TEX is told to make the horizontal
list into a bhox that is 58 units wide: then the ghwe has to stretch by 6 units.
Well, thore are 3 + 6 + 0 = 9 units of stretchability present, so TpX multiplics
each unit of stretchability by 6/9 in order to obtain the extra 6 units needed.
The first glob of ghie becomes 9 + (6/9) x 3 = 11 units wide, the next becomes
9+ {(6/9) x 6 = 13 units wide, the last remains 12 units wide, and we obtain the
desired hox looking like this:

width 58

On the other hand, if TEX is supposed to make a hox 51 units wide from
the given list, it is necessary for the glue to shrink by a total of one unit. There
are three units of shrinkability present, so the first glob of glue would shrink by
1/8 and the second by 2/8.

69

ahis

leading, see basehneskip
skipping space, see gloe
stretch

shrink

natoral width

70

Chapter 12: Glue

The process of determining glue thickness when a box is being made
from a horizontal or vertical list is called sefting the ghie. Once glie has been
set, it hecomes rigid; it won’t stretch or shrink any more, and the resulting hox
is essentially indecomposable.

Glue will nover shrink more than its stated shrinkability. For example,
the first glob of ghue in our illustration will never be allowed to hecome narrower
than 8 units wide, and TgX will never shrink the given horizontal list to make
its total width less than 49 units. But glue is allowed to strotch arbitrarily far,
whenever it has a positive stretch component,

» EXERCISE 12.1

How wide would the glue globs be if the horizontal list in the illustration wero
to be made 100 units wide?

Onee you understand TEXs conecept of glie, you may well decide that
it was misnamed: real glue doesn’t stretch or shrink in such ways, nor does it
contribute much space between boxes that it welds together. Another word like
“spring” would be much closer to the essential idea, since springs have a nat-
ural width, and since different springs compress and expand at different rates
under tension. But whenever the agthor has suggested changing TRX's termi-
nology, numerous people have said that they ke the word “glue” in spite of its
inappropriateness; so the original name has stuck.

@ TEX is somewhat reluctant to streteh glue more than the stated stretchability;

therefore your can decide how big to make each aspect of the ghie by using the
following rules: {a} The natural glre space should be the amoumt of space that looks
best. {b} The glue stretch should be the maximum amount of space that can be
added to the natural gpacing before the layout begins to look bad. {c) The gine shrink
showid be the maximum amount of space that can be subtracted #rom the natural
spacing before the layout begins to look bad.

In most cases the designer of a hook layout will have specified all the

kinds of glue that are to be used, so0 a typist will not need to decide how hig
any ghie attributes should be. For example, users of the plain TeX format of
Appendix B can type \emallskip’ when they want a little extra space hetween
paragraphs; a \smallskip turns out to he 3pt worth of vertical glue that can
streteh or shrink by an additional 1pt. Here i3 a \smallskip:
Tnstead of sprinkling various amounts of glue throughout a manuseript, express-
ing each of them explicitly in terms of points, you will find it much hetter
to explain your intentions more ¢learly by typing something like \smallskip’
when you want abnormal spacing. The definition of \smallskip can readily
be changed later, in case you want such spaces to be smaller or larger. Plain
TEX also provides you with ‘\medskip’, which is worth two smallskips, and
‘\bigskip’, which is worth two medskips.

@ A plain TEX \medskip appears before and after each “dangerous bend” section
of this manual, so you have already seen mrmerons examples of such spacing

setting the glue

prings

strace hetwesn paragraphs
smallskip

medskip

higskip

dangerons bend

Chapter 12: Glue

before vou knew what it was called. Vertical glue is created by writing “\vskip{glue}’,
where {glie} is any glue specification. The usaal way to specify {glne) to TgX is

{dimen} plus{dimen} minns{dimen}

where the ‘plus{dimen)’ and ‘mimms{dimen}’ are optional and assumed to be zero if not
present; ‘plus’ introduces the amount of stretchability, ‘minms’ introduces the amount
of shrinkability. For example, Appendix B defines \medskip to be an abbreviation for
‘\vskipfpt plus2pt minus2pt’. The normal-space component of glue must always be
given as an explicit {dimen), even when it is zerc.

{;22 Horizontal glue is created in the same way, but with \hskip instead of \vakip.

For example, plain TEX defines \enskip as an abbreviation for the command
‘Ahskip.5em\relax’; this skips horizontally by one “en,” ie., by exactly half of an em
in the current font. There is no stretching or shrinking in an \enskip. The control
sequence \relax after *.5em’ prevents TEX from thinking that a keyword is present, in
case the text following \enskip just happens to begin with ‘plug’ or ‘minnsg’.

One of the interesting things that happens when glue stretches and
shrinks at different rates is that there might be glue with infinite stretchabil-
ity. For example, consider again the four boxes woe had at the beginning of this
chapter, with the same ghie as before except that the glue in the middle can
streteh infinitely far. Now the total stretchability is infinite; and when the line
has to grow, all of the additional space is put into the middle glue. If, for ex-
ample, a box of width 58 is desired, the middie glue expands from 9 to 15 units,
and the other spacing remains unchanged.

If such infinitely stretchable glue is placed at the left of a row of hoxes,
the effect 1s to place them “fush right,” i.e., to move them over to the rightmost
boundary of the constructed box. And if you take two globs of infinitely strotch-
able ghue, putting one at the left and one at the right, the effcet is to center the
list of boxes within a larger box. This in fact is how the \centerline instruction
works in plain TgX: It places infinite ghic at both ends, then makes a box whoso
width s the current value of \heize.

The short story example of Chapter 6 used infinite glue not only for
centering, but also in the \vfill instruction at the end; \vfill® essentially
means “skip vertically by zero, but with mfinite stretchability.” In other words,
Awfill fills up the rest of the eurrent page with blank space.

@ TeX actually recognizes several kinds of infinity, some of which are “more

infinite” than others. You can say both \vfil and \vfill; the second is
stronger than the first. In other words, if no other infinite stretchability is present,
\viil will expand to fill the remaining space; but i both \viil and \vfill are present
simultanecusly, the \vfill effectively prevents \vfil from stretching. You can think
of it as #f \vfil has one mile of stretchability, while \viill hag a trillion miles.

@ Besides \vfil and \vfill, TgX has \hfil and \hfill, for stretching indefi-

nitely in the horizontal direction. You can also say \has or \vas, in order to
get glue that is infinitely shrinkable as well as infinitely stretchable. (The name ‘\hsg’
stands for “horizontal stretch or shrink”; ‘\vss’ is its vertical counterpart.} Finally, the

71

ahis
dimen
plos
minos
hskip
vskip
enskip

£5)

relax
kerywrord
intinite
right justitication
centering
Hush right
centerling
viill

viil

hiil

htill

hss

(2

72

Chapter 12: Glue

primitives \hfilneg and \viilneg will cancel the stretchability of \hfil and \viil;
we shall discuss applications of these curious glues later.

@ Here are some examples of \hfil, using the \line macro of plain TEX, which

creates an hbox whose width is the current \hsize:
\line{Thizs text will be fluzh left.\hfil}
\line{\hfil This text will be flush right.}
\line{\hfil This text will be centered.\hfil}
\line{Some text flush left\hfil and seme flush right.}
\line{Alpha\hfil centered between Alpha and Omega\hfil Omega}
\line{Five\hfil words\hfil egually\hfil szpaced\hfil out.}

g.?} » EXERCISE 12.2
Describe the result of
\line{\hfil\hfil What happens now?\hfil}
\line{\hfill\hfil and now?\hfil}

@@» EXERCISE 12.3
How do the following three macros behave differently?

\def\centerlinea#1{\line (\hfil#i\hfil}}
\def\centerlineb#1{\line{\hfill#1\hfill}}
\def\centerlinec#1{\line{\hss#1\has}}

@ In order to specify such infinities, vou are allowed to use the special units “£i1°,
“£i11°, and ‘filll’ in the {dimen} parts of a stretchability or shrinkability

component. For example, \vfil, \vfill, \vas, and \viilneg are essentially equivalent
to the glue specifications

\vskip Opt plus 1fil

\vskip Opt plus 1£ill

\vskip Opt plus 1£fil minmns 1fil

\vskip Opt plus ~1fil

respectively. It's nsnally best to stick to the first order infinity {fil} as much as you can,
resorting to second order (fill) only when vou really need something extremely infinite.
Then the ultimate order (filil) is always available as a lagt resort in emergencies. {TpX
does not provide a \vfilll’ primitive, since the use of this highest infinity is not
encouraged.) You can use fractional multiples of infinity like ‘3.25fi1’, as long as
yoa stick to fewer than 16384 fil units. TEX actually does its calenlations with integer
wltiples of 279 fil {or fill or filll); so 0.000007£1111 turns out to be indistinguishable
from Opt, but 0.00001£1111 is infinitely preater than 16383.999991i11.

Now here’s something important for all TpXanical typists to know: Plain
TEX puts extra space at the end of a sentence; furthermore, it automatically
increases the stretchahility (and decreases the shrinkability) after punctuation
marks. The reason is that it’s usually better to put more space after punectua-
tion than between two ordinary words, when spreading a line out to reach the
desired marging. Consider, for example, the following sentences from a classic
kindergarten pre-primer:

“‘Oh, oh!’’ cried Baby Sally. Dick and Jane laughed.

htilneg
vlilneg

line

Hush left

fil

fill

fim

vlilll
sentence
punetoation
Dick and Jane

Chapter 12: Glue

Tf TEX sets this at its natural width, all the spaces will be the same, except after
the gquote and after ‘Baby Sally.”

“Oh, ok!” cried Baby Sally. Dick and Jane laughed.

But if the line needs to be expanded by 5 points, 10 points, 15 points, or more,
TEX will set it as

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.
“Oh, oh? cried Baby Sally. Dick and Jane lavghed.
“Oh, oh!” cried Baby Sally. Dick and Jane laughed.
“Oh, oh!” eried Baby Sally. Dick and Jane laughed.

The glue after the comma stretches at 1.25 times the rate of the glue hetween
adjacent words; the glue after the period and after the 17 stretches at 3 times
the rate. There is no glue between adjacent letters, so individual words will
always look the same. If TEX had to shrink this line to its minimum width, the
result would he

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

The glhie after a comma shrinks only 80 percent as much as ordinary inter-word
ghie, and after a period or exclamation point or quostion mark it shrinks hy only
one third as much.

This all makes for nice-looking owtput, but it unfortunately adds a bit
of & burden to your job as a typist, because TEX s rule for determining the end of
a sentence doesn’t atways work. The problem is that a period sometimes comes
in the middle of a sentence . .. like when it is used (as here} to make an “cllipsis”
of three dots.

Moreover, if you try to specify *...° by typing three periods in a row,
vou get *...—the dots are too close together. One way to handle this is to go
into mathematics mode, using the \ldets control sequence defined in plain TEX
format. For example, if you type

Homm \ldete I wonder why?

the result is ‘Hmmm . .. I wonder why?’. This works because math formulas are
exempt from the normal text spacing rules. Chapter 18 has more to say about
\1ldots and related topics.

Abbreviations present problems too. For example, the short story in
Chapter 6 referred to ‘Mr. Drofmats’; TEX must be told somehow that the period
after "Mr.” or 'Mrs.” or "Ms.” or “Prof.” or ‘Dr.” or "Rt. Hon.’, eie., doess’t count
as a semtence-ending full stop.

We avoided that embarrassment in Chapter 6 by typing ‘Mr. "Drefnats’;
the “tie” mark 7 tells plain TEX to insert a normal space, and to refrain from
breaking between lines at that space. Another way to get TEX to put out a
normal space is to type ‘\y7 (comtrol space); e.g., ‘Mr.\ Drofnats’ would he
almost the same as “Mr. “Dreofnats’, except that a line might end after the “Mr.”.

73

COMMa
period

exclamation point
aquestion mark

ellipsis

three dots, see ellipsis
dot dot dot, see ellipsis
ldots

Abbreviations

Drofnats

full stop

tier

tilde

control space

74

Chapter 12: Glue

The tie mark is best for abbreviations within a name, and after several
other common abbreviations like ‘Fig.” and ‘ef.” and ‘vs.” and ‘resp.”; yvou will
find that it’s easy to train yourself to type ‘cf. Fig. 5. In fact, it's usually
wise to type ~ {instead of a space) just after a common abhreviation that occurs
in the middle of a sentence. Marnals of style will tell you that the abbreviations
‘e.g.” and “Le. should always be followed by commas, never by spaces, so those
particular cases shouldn’ need any special treatment,

The only remaining abbreviations that arise with significant frequency
oceur in bibliographic references; comtrol spaces are appropriate here. If, for
example, you are typing a manuscript that refors to ‘Proc. Amer. Math. Soc.’,
vou should say

Proc.\ Amer.\ Math.\ Scc.

Granted that this input looks a bit ugly, it makes the output fook right. It's one
of the things we occasionally must do when dealing with a computer that tries
to he smart,

» EXERCISE 12.4
Explain how to type the following sentence: “Mr, & Mis, User were married by
Rev, Drotnats, who preached on Matt, 19:3-9.7

» EXERCISE 12.5
Put the following bibliographic reference into plain TEX language: Donald E.
Kouth, “Mathematical typography,” Bull. Anier. Math. Soc. 1 (1979), 337-372,

On the other hand, if you don’t care about such refinements of spacing
vou can tell plain TEX to make all spaces the same, regardless of punctuation
marks, by simply typing \frenchspacing’ at the beginning of your manuscript.
French spacing looks like this:

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

You can also shift back and forth between the two styles, cither by saying
‘\nonfrenchspacing’ to establish sophisticated spacing, or by making your use
of \frenchspacing local to some group. For example, you might want to use
French spacing only when typing the hibliography of some document.

@ TEX doesu’t consider a period or guestion mark or exclamation point to be

the end of a sentence if the preceding character is an uppercase letter, since
TEX assumes that such uppercage letters are most lkely somebody’s initials, Thus, for
example, the '\’ is unnecessary atfter the ‘I, in ‘Dr. Livingstone™I.\ Presume’; that
particular period is not assmmed to be a full stop.

gé} » EXERCISE 12.6
What can vou do to make TEX recognize the ends of sentences that do end with
uppercage letters {e.g., *. .. launched by NASA or ‘Did I? or *. .. see Appendix A)7

control spaces
interword spacing
User

Drofiats

Knuth

frenchspacing
nonfrenchspacing
sophisticated spacing
Presuine

Chapter 12: Glue

@ You can see the glie that TEX puts between words by looking at the contents

of hboxes in the internal diagnostic format that we discussed briefly in Chap-
ter 11. For example, Baby Sally’s exclamation beging as follows, after TEX has digested
it and put it into a box, assuming \nonfrenchapacing:

Atenrm \ {ligatnre <}

Atenrm O

A\tenrm h

Ntentmo

.\glune 3.33333 plus 2.08331 mimms (.88889
Atenrm o

Atenrm h

Atenrm !

Atentm " {ligatnre *°)

Aglue 4.44444 plus 4.99997 mimms (.37036
Atenrm
Atenrm
Atenrm
Atenrm
Atenrm
A\glune 3.333233 plus 1.66666 mimms 1.11111
.\tentm B

Atenrm a

Atenrm b

Akern-0.27779

Atentm ¥

\glune 3.33333 plus 1.66666 mimms 1.11111
Atenrm
Atenrm
Atenrm
Atenrm
Atenrm
Akern~0.83334

Atenrm .

Aglue 4.44444 plus 4.99997 mimms (.37036

= o0 H H oo

R = R i |

The normal interword ghee in font \tenrm is 3.33333 ot, plus 1.66666 pt of stretchability,
minus 111111 pt of shrinkability. Notice that the interword \glue in this lst stretches
more, and shrinks less, after the punctuation marks; and the natural space iz in fact
larger at the end of each sentence. This example alse shows several other things that
TEX does while it processes the sample line of text: It converts *¢ and 7 into single
characters, Le., Hgatures; and it inserts small kerns in two places to improve the spacing.
A Akern is similar to glue, but it is not the same, because kerns cannot stretch or shrink;
furthermore, TEX will never break a line at a kern, unless that kern is hmmediately
followed by glue.

@ You may be wondering what TEX’s rules for interword glue really are, exactly.
For example, how did TpX remember the effect of Baby Sally's exclamation
point, when quotation marks intervened before the next space? The details are slightly

75

diagnostic forimat

internal box-and-gloe representat
interword gloe

ligatores

kerns

kern

76

Chapter 12: Glue

tricky, but not incomprehensible. When TEX is processing a horizontal Hst of boxes
and glue, it keeps track of a positive integer calied the current “space factor.” The
space factor is normally 1000, which means that the interword glue should not be
modified. If the space factor f is different from 1000, the interword glue s computed
as follows: Take the normal space glue for the current font, and add the extra space
if f > 2000. {Each font specifies a normal space, normal stretch, normal shrink,
and extra space; for example, these quantities are 3.33333 pt, 1660666 pt, 1.11111 pt,
and 1.11111 pt, respectively, in cmr10. We'll discuss such font parameters in greater
detail later.) Then the stretch component is multiplied by /1008, while the shrink
comrponent is multipled by 1000/f.

@ However, TEX has two parameters \spaceskip and \xspaceskip that allow

your to override the normal spacing of the current font. If f > 2000 and if
\xzpaceskip is nonvzero, the \xspaceskip glue is used for an interword space. Other-
wise if \spaceskip is nonvzero, the \spaceskip glue iz used, with stretch and shrink
components multiplied by §/1000 and 1000/ f. For example, the \raggedright macro
of plain TEX uses \spaceskip and \xapaceskip to suppress all stretching and shrinking
of interword spaces.

@@ The space factor f is 1000 at the beginning of a horizontal fist, and it s set to

1000 just after a non-character box or a math formula kas been put onto the
current horizontal list. You can say ‘\spacefactor={number}’ to assign any particular
value to the space factor; but ordinarily, f gets set to a number other than 1000 only
when a simple character box goes on the list. Eack character has a space factor code,
and when a character whose space factor code is g enters the current lst the normal
procedure is simply to assign g as the new space factor. However, if g is vero, f is not
changed; and if f < 1000 < g, the space factor is set to 1000, {In other words, f
doesn't jump from a value less than 1000 to a value greater than 1000 in a single step.)
The maximum space factor is 32767 (which is much higher than anvbody would ever
want to use).

{;22 When INITEX creates a brand new TEX, all characters have a space factor code

of 1006, except that the uppercase letters ‘4’ through “2° have code 999, {This
slight difference is what makes punctuation act differently after an uppercase letter; do

vou see why?) Dlain TEX redefines a few of these codes using the \sfcode primitive,
which is similar to \catcode {see Appendix B); for example, the instractions

\afcode®}=0 \sfcode . =3000

make right parentheses “transparent” to the space factor, while tripling the stretcha-
hility after pericds. The \frenchspacing operation resets \sfcode®. to 1000.

@@ When lgatures arve formed, or when a special character is specified via \char,

the space factor code is computed from the individual characters that gener-
ated the ligature. For exarmple, plain TEX sets the space factor code for single-right-
quote to zero, so that the effects of punctuation will be propagated. Two adjacent
characters 7? combine to form a Hgature that is in character position 742; but the
space factor code of this double-right-quote ligature is never examined by TgX, so plain
TEX does not assign any value to \sfcode’ 042,

@@» EXERCISE 12.7
What are the space factors after each token of the Dick-and-Jane example?

space factor
cimrld)
fontcdimen
spaceskip
xspaceskip
interword space
raggedright
spacefactor
space factor code
INITEX

sfeode

char

Chapter 12: Glue

@ Here's the way TEX goes about setting the glue when an hbox is being wrapped

up: The natural width, x, of the box contents is determined by adding wp the
widths of the boxes and keras inside, together with the natural widths of all the glue
inside. Furthermore the total amount of glue stretchability and shrinkability in the
box is computed; let’s say that there’s a total of yo + gy il + g2 fill + y4 filll available
for stretching and zo + 23 fil + z: fill + z5 £illl available for shrinking. Now the natural
width x is compared to the desired width w. If x = w, all glue gets its natural width.
Otherwise the glue will be modified, by computing a “glue set ratio” r and a “zglue set
order” 7 in the following way: {a) If & <, TEX attempts to stretch the contents of
the box; the gloe order is the highest subscript ¢ such that g is nonzere, and the glue
ratio ds r = {w — 2)fy:. (Hyo = 91 = y2 = yz = 0, there’s no stretchability; both ¢
and r are set to zera.} (b If & > w, TEX attempts to shrink the contents of the box
in a similar way; the ghlie order is the highest subscript ¢ such that z; # 0, and the
glue ratio is normally r = (— w)/z;. However, r is set to 1.0 in the case ¢ = 0 and
x —a > zg, becanse the maximumn shrinkability must not be exceeded. (¢} Finally,
every glob of glue in the horizontal st being boxed is modified. Suppose the glue hag
natural width u, stretchability ¢, and shrinkability z, where ¢ is a jth order infinity
and z ig a kth order infinity. Then if © < w (stretching), this glue takes the new width
w+ry i § = 4 it keeps its natural width o if 7 # ¢ If x > w {shrinking), this gle
takes the new width o —rz if k = 4; it keeps its natural width o i k # 4. Notice that
stretching or shrinking occurs only when the glue has the highest order of infinity that
doesn’t cancel ont.

@ TEX will construct an hbox that has a given width w if you issue the command

‘\hbox to {dimen}{{contents of box}}’, where w is the value of the {dimen).
For example, the \line macro discussed earlier in this chapter is siinply an abbreviation
for ‘\hbox to\hzize'. TEX alsc allows you to specify the exact amount of stretching
or shrinking; the command ‘\hbox spread{dimen}{{contents of box}}’ creates a box
whose width w is a given amount more than the natural width of the contents. For
example, one of the boxes displayed earlier in this chapter was generated by

\hbox spread 5pt{‘‘Oh, oh{’’ ... langhed.}

In the simplest case, when you just wamt a box to have its natural width, you don’t
have to write “\hbox spread Opt’; vou can simply say “\hbox{{contents of box}}’.

@ The bageline of a. constructed hboy is the common baseline of the boves ingide.

{More precisely, i#t's the comimon baseline that they would share i they weren’t
raised or lowered.) The height and depth of a constructed hbox are determined by the
maximm distances by which the interior boxes reach above and below the baseline,
respectively. The result of \hbox never has negative height or negative depth, but the
width can be negative.

g;% » EXERCISE 12.8
Agsume that \box1 is 1 pt high, 1 pt deep, and 1 pt wide; \box2 is 2 pt high,
2 pt deep, and 2pt wide. A third hox is formed by saying

\setbox3=\hbox tol3pt{\hfil\lower3pt\box1\hzskip-3pt plu=3fil\box2}

What are the height, depth, and width of \box3? Describe the position of the reference
points of boxes 1 and 2 with respect to the reference point of box 3.

77

setting the glue
aliue set ratio
ghoe st order
line

o

hbox

spread

baseline

sethox

78

Chapter 12: Glue

@ The process of setting glue for vhoxes is similar to that for hboxes; but before

we study the \vbox operation, we need to discuss how TEX stacks boxes up
vertically so that their bagelines tend to be a tived distance apart. The boxes in a
horizontal list often touch each other, but it’s usually wrong to do this in a vertical list;
mmagine kow awlal a page would lock #f is Hnes of type were brought closer together
whenever they dida’t contain tall letters, or whenever they didn’t contain any letters
that descended below the baseline.

@ TEX s solution to this problem involves three primitives called \baselineskip,
\lineskip, and \lineskiplimit. A format designer chooses values of these
three guantities by writing

\baselineskip={glue}
\lineskip={giue}
\lineskiplimit={dimen}

and the interpretation is essentially this: Whenever a box is added to a vertical lst, TEX
mgerts “interline glue” intended to make the distance between the bageline of the new
box and the bageline of the previous box exactly equal to the value of \baselinezkip.
But if the interline glue calculated by this rule would cause the top edge of the new
box to be closer than \lineskiplimit to the bottom edge of the previous box, then
\lineskip is used as the interline glue. In other words, the distance between adjacent
baselines will be the \baselineskip setting, unless that would bring the boxes too
cloge together; the \lineskip giue will separate adjacent boxes in the latter cage.

@ The rules for interline glue in the previous paragraph are carried out without

regard to other kinds of glee that might be present; all vertical spacing due
to explicit appearances of \vaskip and \kern acts independently of the interline ghe.
Thus, for example, a \smallskip between two lines always makes their baselines further
apart than usual, by the amount of a \amallskip; it does not aftect the decision about
whether \lineskip glue is used between those lines,

@ For example, let’s suppose that \baselineskip=12pt plus 2pt, \lineskip=

3pt minns 1pt, and \lineskiplimit=2pt. {These values aren’t particularly
useful; they have simply been chosen to illustrate the rules.) Suppose further that a
box whose depth is 3pt wag most recently added to the current vertical list; we are
about to add a new box whose height is A, I h = 5Hpt, the interline glue will be
4 pt plus 2 pt, since this will make the baselines 12 pt plugs 2 pt apart when we add h
and the previons depth to the interline glue. DBut if b = 8pt, the interline glue will
be 3 pt minus 1 pt, since \lineskip will be chosen in order to keep from violating the
given \lineskiplimit when stretching and shrinking are ignored.

@ When you are typesetting a docmmnent that spans several pages, it's generally
best to define the \baselineskip so that it cannot stretch or shrink, because
this will give more uniformity to the pages. A small variation in the distance between
baselines—say only half a point—ocan make a substantial difference in the appearance
of the type, since it significantly affects the proportion of white to black. On the
other hand, if you are preparing a one-page document, you wight want to give the
baselineskip some stretchability, so that TpX will help vou fit the copy on the page.

g.?} » EXERCISE 12.9
What settings of \bazelineskip, \lineskip, and \lineskiplimit wiil canse

haselineskip
Hineskip
Tineskiplimit
interline gloe
smallskip

Chapter 12: Glue

the interline glue to be a “continuons” function of the next box height {i.e., the interline
glue will never change a lot when the box height changes only a little)?

@ A study of TpX’s internal box-and-glue representation should help to firm
up sorme of these ideas. Here is an excerpt from the vertical list that TpX
comstructed when it was typesetting this very paragraph:

\glue 6.C plus 2.0 minms 2.0

\glue{\parskip) C.0 plusz 1.0

\glue{\bazelineckip} 1.25

\hbox(7.5+1.93748)x312.0, glue set 0.80154, shifted 36.0 []
\penalty 10000

\glue(\bazelineszkip} 2.81252

\hbox{6.25+1.93748)x312.0, glue set 3.5816, shifted 36.0 []
\penalty 50

\glue{\bazelinezkip} 2.81252

\hbox (6.25+1.75)x348.0, glue set 116.70227£il []

\penalty 10000

\glue(\abovedisplayskip} 6.C plus 3.0 minus 1.0
\glue{\lineskip) 1.C

\hbox (149.25+0.74998)x348.0 []

The first \glune in this example is the \medskip that precedes each dangerous-bend
paragraph. Then comes the \parskip glue, which is antomatically supplied before
the first Hine of a new paragraph. Then comes some interline glue of 1.25 pt; it was
caloulated to make a total of 11 pt when the height of the next box (7.5 pt) and the
depth of the previous box were added. {The previous box is not shown—it’s the
hottom line of exercise 12.9—Dbut we can deduce that its depth was 2.25pt.) The
\hbox that follows is the first line of this paragraph; it has been shifted right 36 pt
because of hanging indentation. The glue set ratio for this hbox is 0.80154; ie, the
glue inside is stretched by 80.154% of its stretchability. (In the case of shrinking,
the ratio following ‘glue set’ would have been preceded by - 7; hence we know that
stretching is invalved here) TEX has put “[17 at the end of each hbox line to indicate
that there’s something in the box that iso’t shown. (The box contents would have
heen displayed completely, if \showboxdepth had been set higher.) The \penalty
mdications are used to discourage bad breaks between pages, as we will see later. The
third hbox has a glue ratio of 116.70227, which applies to first-order-infinite stretching
(i.e., fil}; this results from an \hfil that was implicitly inserted just before the displayed
material, to fill up the third line of the paragraph. Finally the big hbox whose height
is 149.25 pt causes \lineskip to be the interline ghie. This large box containg the
individual lines of typewriter type that are displayed; they have been packaged into a
single box so that they cannot be split between pages. Careful study of this example
will teach you a lot about TEX’s inner workings.

@ Exception: No interline glue is inserted before or after a rule box. You can
also inhibit interline glue by saying \nointerlineskip between boxes.

@@ TEX’s fmplementation of interline glue involves another primitive gquantity
called \prevdepth, which usually contains the depth of the most recent box
on the current vertical list. However, \prevdepth is set to the seatinel value —1000 pt

79

internal box-and-gloe representat
medskip

parskip

hanging indentation

glue set

showbordepth

penalty

nointerlneskin

prevdepth

80

Chapter 12: Glue

at the beginning of a vertical list, or just alter a role box; this serves to suppress the
next interline glue. The user can change the value of \prevdepth at any time when
building a vertical list; thas, for example, the \nolnterlineskip macro of Appendix B
simply expands to ‘\prevdepth=-1000pt’.

@@ Here are the exact rules by which TEX caleulates the interline glue between
boxes: Assume that a new box of height A (not a rule box) is about to
be appended to the bottom of the current vertical hist, and let \prevdepth = p,
\lineskiplimit = /, \bazelineskip = (b plus y minus z}. ¥ p < —~1000pt, no in-
terline glue is added. Otherwise if b —p — h > I, the interline glue ‘(b — p — k) plus y
minus z° will be appended just above the new box. Otherwise the \lineskip glue will
be appended. Finally, \prevdepth is set to the depth of the new box.

@@b EXERCISE 12.10

Mr. B. L. User had an application in which he wanted to put a awmber of
boxes together in a vertical list, with no space between them. He dido’t want to say
\nointerlineskip after each box; so he decided to set \baselineskip, \lineskip, and
\lineskiplimit all equal to Opt. Did this work?

@ The vertical analog of \hbox is \vbox, and TEX will cbey the commands ‘\vbox

to{dimen) and ‘\vbox spread{dimen} in about the way yvou would expect,
by analogy with the horizontal case. However, there’s a slight complication because
boxes have both height and depth in the vertical direction, while they have only width
in the horizontal direction. The dimension in a \vbox command refers to the final
height of the vbox, so that, for example, “\vbox to 50pt{...} produces a box that
ig 50 pt high; this is appropriate because evervthing that can stretch or shrink inside a
vhox appears in the part that contributes to the height, while the depth is unaffected
by glue setting.

{;?2 The depth of a constricted \vbox is best thought of as the depth of the bottom

box inside. Thus, a vhox is conceptually built by taking o bunch of boxes and
arranging them so that their reference points are lned up vertically; then the reference
point of the lowest box is taken as the reference point of the whole, and the glue is set
so that the final height has some desired value.

@ However, this description of vboxes glosses over some technicalities that come

up when vou congider unusual cases. For example, TEX allows vou to shift
boxes in a vertical list to the right or to the left by saying ‘\moveright{dimen}{box})
or ‘\moveleft{dimen}{box)’; this is like the ability to \raise or \lower hoxes in a
horizontal Hst, and it fmplies that the reference points inside a vbox need not always
lie in a vertical line. Furthermore, it is necessary to guard against boxes that have
too mmch depth, lest they extend too far into the bottom margin of a page; and later
chapters will point out that vertical lists can contain other things like penalties and
marks, in addition to boxes and ghie.

@ Therefore, the actual rules for the depth of a constructed vbox are somewhat

TEXnical. Here they are: Given a vertical list that is being wrapped up via
\vhox, the problem is to determine its natural depth. {1) If the vertical Hst containg no
hoxes, the depth is zero. (2} If there’s at least one box, but if the final box is followed
by kerning or glue, possibly with intervening penalties or other things, the depth is zero.
{3} If there’s at least one box, and if the final box is not followed by kerning or glue,

User

vhon

depth of hox
height of hox
moveright
moveleft
ralse

lower

Chapter 12: Glue

the depth is the depth of that box. (4) However, if the depth computed by rales (1),
{2}, or {3} exceeds \boxmaxdepth, the depth will be the current value of \boxmaxdepth.
{Plain TEX sets \boxmaxdepth to the largest possible dimension; therefore rule (4)
won't apply unless von specify a smaller value. When rule (4) does decrease the depth,
TEX adds the excess depth to the box’s natural height, essentially moving the reference
point down until the depth has been reduced to the stated maximum.)

@ The glue is set in a vhox just as in an hbox, by determining a glue set ratio

and a glue set order, based on the difference between the natural height © and
the desired height 4w, and based on the amounts of stretchability and shrinkability that
happen to be present.

@ The width of o computed \vbox is the maximum distance by which an enclosed
box extends to the right of the reference point, taking possible shifting into
acconnt. This width is always nonnegative.

@ » EXERCISE 12.11

Agsume that \box1 is 1 pt high, 1 pt deep, and 1 pt wide; \box2 is 2 pt high,
2 pt deep, and 2 pt wide; the bagelineskip, lineskip, and lineskiplimit are all zero; and
the \boxmaxdepth is very large. A third box is formed by saying

\getbox3=\vbox to3pt{\moveright3pti\boxl\vskip~3pt plus3fill\box2}

What are the height, depth, and width of \box3? Describe the position of the reference
points of boxes 1 and 2 with respect to the reference point of box 3.

@@» EXERCISE 12.12
Under the assumptions of the previous exercise, but with \baselineskip=9pt
mimu=3fil, describe \box4 alter

\zetboxd=\vbox todpt{\vzs\boxl\moveleftipt\box2\vs=z}

@@» EXERCISE 12.13
Solve the previous problem but with \boxmaxdepth=-4pt.

@ We have chserved that \vbox canbines a bunch of boxes into a larger box that

kas the same bageline as the bottom box inside. TEX has ancther operation
called \vtop, which gives vou a box like \vbox but with the same baseline as the top
box ingide. For example,

\hbox{Here are \vtop{\hbox{two linez}\hbox{of text.}}}
produces

Here are two lnes
of text.

@ You can say ‘\vtop to{dimen} and ‘\vtop spread{dimen}’ just as with \vbox,

but vou should realize what such a construction means. TEX implements \vtop
as follows: (1) First a vertical box is formed as if \vtop had been \vbox, using all of
the rules for \vbox as given above. (2) The final height x is defined to be zero nnless
the very first item inside the new vhox is a box; in the latter case, x is the height of
that box. {3} Let b and d be the height and depth of the vbox in step (1) TEX
comrpletes the \vtop by moving the reference point up or down, if necessary, so that
the box has height © and depth h+d — =,

81

horiandepth
aliue set ratio
ghoe st order
VO

82

Chapter 12: Glue

@@» EXERCISE 12.14
Describe the empty boxes that you get from ‘\vbox to{dimen}{}’ and ‘\vtop
to{dimen}{}’. What are their heights, depths, and widths?

@@» EXERCISE 12.15

Define o macro \nmllbox#1#2#3 that produces a box whose height, depth, and
width are given by the three parameters. The box should contain nothing that will
show up in print.

@ The \vbox operation tends to produce boxes with large height and small depth,

while \vtop tends to produce small height and large depth. If you're trying
to make a vertical Hst out of big vboxes, however, you may not be satisfied with either
\vbox or \vtop; you might well wish that a box had two reference points simnnitaneously,
one for the top and one for the bottom. If such a dual-reference-point scheme were in
use, one conld define interiine glue based on the distance between the lower reference
point of one box and the upper reference point of ity successor in a vertical list, But
alas, TEX gives vou only one reference point per box.

@ There’s a way out of this dilemma, using an mportant idea called a “strat.”

Plain TEX defines \strut to be an invisible box of width zero that extends
just enough above and below the baseline so that vou would need no interline glue at
all i#f every line contained a strut. (Baselines are 12 pt apart in plain TEX; it turns
out that \strut is a vertical rule, 8.5 pt high and 3.5 pt deep and Opt wide.} If you
contrive to put a strut on the top line and ancther on the bottom lne, inside your large
vhoxes, then it’s possible to obtain the correct spacing in a larger assembly by simnply
letting the boxes butt together. For example, the \footnote macre in Appendix B
puts struts at the beginning and end of every footnote, so that the spacing will be right
when several footnotes cccur together at the bottom of some page.

@ If you understand boxes and glue, you're ready to learn the \rlap and \llap

macros of plain TEX; these names are abbreviations for “right overlap” and
“left overlap.” Saving ‘\rlap{{something}}’ is like typesetting (something) and then
backing up as if you hadn’t typeset anvthing. More precisely, ‘\rlap{{something}}’
creates a box of width zero, with “{something)’ appearing just at the right of that
box {but not taking up any space). The \llap macro & similar, but it does the
backspacing first; in other words, ‘\llap{{something}}’ creates a box of width zero,
with “{something} extending just to the left of that box. Using typewriter type, for
example, vou can typeset ‘# by saying either ‘\rlap/=" or /\llap=’. It’s possibie to
put text into the left margin using \llap, or into the right margin using \rlap, bhecause
TEX does not insist that the contents of a box must be strictly confined within that
box’s boundaries.

@ The interesting thing about \rlap and \llap is that they can be done so
simply with infinite glue. One way to define \rlap would be

\defi\rlap#l{{\setbox0=\hbox{#1}\copyO\kern~\wd0}}

but there’s no need to do such a lengthy computation. The actual definition in Appen-
dix B is rach more elegant, namely,

\defi\rlap#1{\hbox to Opt{#1\hss}}

strot

strot

footnote

fitting hoxes together
rlap

Nap

overlap

hackspacing

marginal notes

Chapter 12: Glue

and it’s worth pondering why this works. Suppose, for example, that you're doing
\rlap{g} where the letter ‘g’ is 5 pt wide. Since \rlap makes an hbox of width 0pt,
the glie represented by \has must shrink by 5 pt. Well, that glue has O pt as its natural
width, but it has infinite shrinkability, so it can easily shrink to —5 pt; and “\hakip~5pt’
is exactly what \rlap wants in this case.

@ » EXERCISE 12.16
Guess the definition of \llap, without peeking at Appendices A or B.

@ » EXERCISE 12.17
{This i= a sequel to exercise 12.2, but it’s trickier.} Describe the result of

\line{\hfil & puzzle.\hfilneg}

There was things which he stretched,
but mainty he told the truth.

— MARK TWAIN, Hucklfeberry Finn {1884)

Every shape exists only because Of the space around it.
. Hence there is a right’ position for every shape in every situation.
I we succeed in finding that position, we have done our job.

- JAN TSCHICHOLD, Typographische Gestaitung {1935)

83

hss

TWAIN
Clemens
TSCHICHOLD

13

Modes

Chapter 13: Modes

Just as people get into different moods, TEX gets into different “modes.” (Except
that TEX is more predictable than people.) There are six modoes:

» Vertical mode. [Building the main vertical list, from which the pages of
output are derived.]

» Internal vertical mode. [Building a vertical list for a vhox]

= Horizontal mode. [Building a horizontal list for a paragraph.]

» Restricted horizontal mode. [Building a horizontal list for an hbox]

» Math mode. [Building a mathematical formula to be placed in a hori-
zontal lst.]

» Display math mode. [Building a mathematical formula to be placed on
a hne by itsel, temporarily interrupting the current paragraph.]

In simple situations, you don’t need to be aware of what mode TgX is in, because
the computer just does the right thing. But whon you got an error messagoe
that says ! You can’t do such-and-such in restricted horizontal mede’,
a knowledge of modes helps to explain why TEX thinks you goofed.

Basically TEX is in one of the vertical modes when it is preparing a list
of boxes and glue that will be placed vertically above and below one another on
the page; it’s in one of the horizontal modes when it is proparing a list of hoxes
and glue that will be strung out horizontally next to each other with baselines
aligned; and it’s in one of the math modoes when it is reading a formula.

A play-by-play aceount of a typical TEX job should make the mode idea
clear: At the beginning, TEX is in vertical mode, ready to construct pages. If
vou specify ghie or a hox when TEX is in vertical mode, the glue or the hox
gets placed on the current page below what has already been specified. For
example, the \vekip instructions in the sample run we discussed in Chapter 6
contributed vertical glie to the page; and the \hrule instructions contributed
horizontal rules at the top and hottom of the story. The \centerline commands
also produced boxes that were included in the main vertical list; but those boxes
required a bit more work than the rule boxes: TEX was in vertical mode when
it encountered ‘\centerline{\bf A SHORT STORY}’, and it went temporarily
into restricted horizontal mode while processing the words A SHORT STORY';
then the digestive process returned to vertical mode, after sotting the glie in
the \centerline hox.

Contimiing with the example of Chapter 6, TgX switched into horizontal
mode as soon as it read the ‘07 of ‘Once upon a time’. Horizontal mode is the
mode for making paragraphs. The entire paragraph (lines 7 to 11 of the story
file} was input in horizontal mode; then the text was divided into output lines of
the appropriate width, those lines were put in boxes and appended to the page
{with appropriate interlme glue between them), and TEX was back in vertical
mode. The ‘M on line 12 started up horizontal mode again.

When TEX is in vertical mode or intornal vertical mode, the first token of
a new paragraph changes the mode to horizontal for the duration of a paragraph.

B85

imocdens

Vertical mode
Internal vertical mode
Horigontal mode
Restricted borizontal mode
Math mode

Pisplay math mode
vekip

hrule

centerling

paragraphs

B6

Chapter 13: Modes

In other words, things that do not have a vertical orientation cause the mode to
switch automatically from vertical to horizontal. This oceurs when you type any
character, or \char or \accent or \hskip or \,, or \vrule or math shift ($);
TEX inserts the current paragraph indentation and rereads the horizontal token
as if it had oceurred in horizontal mode.

@ You can also tell TEX explicitly to go into horizontal made, instead of relving
on such fmplicit mode-switching, by saying ‘\indent’ or ‘\noindent’. For
example, if Hne 7 of the story file in Chapter 6 had begun

\indent Once upon a time,

the same output would have been obfained, becanse ‘\indent’ would have instructed
TEX to begin the paragraph. And i that line had begun with

\noindent Once upon a time,

the first paragraph of the story would not have been indented. The \noindent com-
mand simply tells TEX to eater horizontal mode if the current mode is vertical or
internal vertical; \indent is similar, but it also creates an empty box whose width is
the current value of \parindent, and it puts this empty beox into the current horizontal
list. Plain TEX sets \parindent=20pt. If you say \indent\indent, vou get double
mdentation; if you say \noindent\noindent, the second \noindent does nothing.

g.?} » EXERCISE 13.1

If you say ‘\hbox{...} in horizontal mode, TEX will construct the specified
box and it will contribute the result to the current paragraph. Shmilarly, i vou say
‘Nhbox{...} invertical mode, TEX will construct a box and contribute it to the current
page. What can vou do if vou want to begin a paragraph with an \hbox?

When handling simple manuscripts, TEX speads almost all of its time in
horizontal mode {making paragraphs}, with brief exeursions into vertical mode
(between paragraphs). A paragraph is completed when you type \par or when
vour mamiserint has a blank line, since a blank line is converted to \par by
the reading rules of Chapter 8. A paragraph also ends when you type certain
things that are incompatible with horizontal mode. For example, the command
‘\vskip 1in’ on line 16 of Chapter 6°s stery file was enough to terminate the
paragraph about ‘. ..beautiful documents.’; no \par was necessary, since
A\vekip introduced vertical ghie that couldn’t helong to the paragraph.

Tf & begin-math token {$) appears in horizontal mode, TEX plunges into
math mode and processes the formula up until the closing *$°, then appends the
text of this formula to the current paragraph and returns to horizontal mode.
Thus, in the “I wonder why?” example of Chaptor 12, TEX woent into math mode
temporarily while processing \1dots, treating the dots as a formula.

However, if two consecutive begin-math tokens appear in a paragraph
{$%). TX interrupts the paragraph where it is, contributes the paragraph-so-far
to the enclosing vertical list, then processes a math formula in display math
mode, then contributes this formula to the enclosing Hst, then returns to hori-
zontal mode for more of the paragraph. (The formula to be displayed should

char

aceent
hskip
control space
vriple
indentation
indent
noindent
parindent
hhox

par

Chapter 13: Modes

end with ‘$%°.) For example, suppose you type
the number $$\pi \approx 3.1415926636$% is important.

TEX goes into display math mode between the $$%, and the output you get
states that the number

7 & 3.1415926536
is important.

TEX ignores blank spaces and blank lines (or \par commaneds) when it’s
in vertical or internal vertical mode, 30 vou need not worry that such things
might change the mode or affect a printed document. A control space (\,) will,
however, he regarded as the beginning of a paragraph; the paragraph will start
with a blank space after the indentation.

At the end of a TEX manuscript it's usually best to finish everything
off by typing ‘\bye’, which is plain TpX’s abbroviation for ‘\vfill\eject\end’.
The \vfill’ gets TEX into vertical mode and inserts enough space to fill up the
last page: \eject’ outputs that last page: and \end’ sends the computer into
its endgame routine,

@ TEX gets into internal vertical mode when you ask it to constract something

from a vertical Het of boxes (using \vbox or \vtop or \vcenter or \valign
or \vadjust or \insert). It gets into restricted hortzontal mode when vou ask it to
constrizet something from a horizontal Hst of boxes {using \hbox or \halign). Box
construction is discussed in Chapters 12 and 21, We will see Iater that there is very
little difference between internal vertical mode and ordinary vertical mode, and very
Littie difference between restricted horizontal mode and ordinary horizontal mode; but
they aren’t guite identical, because they have different goals.

@ Whenever TEX looks at a token of input to decide what should be done next,

the current mode has a potential influence on what that, token means. For
example, \kern specifies vertical spacing in vertical mode, but it specifies horizontal
spacing in horizontal mode; a math shift character like ‘$ canses entry to math mode
from horizontal mode, but it canses exit from math mode when it ocours in math mode;
two consecutive math shifts ($8) appearing in horizontal mode will initiate display math
maode, but in restricted horizontal mode they siply denote an empty math formula.
TEX uses the fact that somwe operations are inappropriate in certain modes to help vou
recover from errors that might have crept into your manuscript. Chapters 24 to 26
explain exactly what happens to every possible token in every possible mode.

@ TEX often interrupts its work in one mode to do some task in another mode,

after which the original mode is resumed again. For example, vou can say
‘Nhbox{’ in any mode; when TEX digests this, it suspends whatever else it was doing
and enters restricted horizontal mode. The matching ‘3 will eventually cause the hbox
to be completed, wherenpon the postponed task will be taken up anew. In this sense
TEX can be in many modes simultaneousty, but only the innermost mode influences the
calculations at any time; the other modes have been pushed out of TEX's consciousness.

BT

i

par

control space
bye

endgame
kern

88

Chapter 13: Modes

@ One way to become familiar with TEXs modes is to consider the following
curions test file called modes.tex, which exercises all the modes at once:

1 \tracingcommands=1
2 \hbox{

38

4 \vbox{

5 \noindent$$

& x\showlists

7 $$r$}H\bye

The first line of modes. tex tells TEX to log every command it receives; TEX will produce
diagnostic data whenever \tracingcommands is positive. Indeed, if vou run TgX on
modes.tex you will get a modes.log file that includes the following information:

{vertical mode: \hbox}

{restricted horizontal mode: blank space}
{math shift character $}

{math mode: blank space}

{\vbox}

{internal vertical mode: blank szpace}
{\noindent}

{horizontal mode: math shift character $}
{dizplay math mode: blank space}

{the letter x}

The meaning is that TEX first saw an \hbox token in vertical mode; this caused it to
g ahead and read the ‘{ behind the scenes. Then TEX entered restricted horizontal
maode, and saw the blank space token that resulted from the end of line 2 in the
file. Then it saw a math shift character token (still in restricted horizontal mode),
which caused a shift to math mode; ancther blank space came through. Then \vbox
mmangurated internal vertical mode, and \noindent instituted horizontal mode within
that; two subsequent $ signs led to display math moede. (Only the first $ was shown
by \tracingcommands, because that one caused TEX to look ahead for another.)

@ The next thing in modes.log alter the output above is “{\showlists}’. This

is another handy diagnostic command that you can use to find out things that
TEX ordinarily keeps to itself; it canses TEX to display the lists that are being worked
on, in the current mode and in all enclosing modes where the work has been suspended:

display math mode entered at line 5
\mathord

Afaml x

internal vertical mode entered at limne 4
prevdepth ignored

##% math mode entered at line 3

#i## reztricted horizontal mode entered at line 2
\glue 3.33333 plus 1.66666 minuz 1.11111
spacefactor 10C0

#i## vertical mode entered at line O
prevdepth ignored

tracingeonmmaneds
e tex
showlists

Chapter 13: Modes

In this case the lists represent five levels of activity, all present at the ead of lne 6 of
modes.tex. The current mode is shown first, namely, display math mode, which began
on line 5. The current math Hst contains one “mathord” object, consisting of the
letter x in family 1. {Have patience and vou will understand what that means, when
vou learn about TEX's math formulas.) Outside of display math mode comes internal
vertical mode, to which TEX will return when the paragraph containing the displayed
formuia is compiete. The vertical Hst on that level is empty, ‘prevdepth ignored’
means that \prevdepth has a value < —1000 pt, so that the next interline glue will be
omitted {cf. Chapter 12}. The math mode ontside of this internal vertical mode has
an empty list, likewise, but the restricted horizontal mode enclosing the math mode
containg some glee, Finally, we see the main vertical mode that encloses everything;
this mode was ‘entered at line O, i.e., before the file modes.tex was input; nothing
hras been contributed so far to the vertical list on this outermost level,

g?} » EXERCISE 13.2
Why is there glue in one of these lists but not in the others?

g?} » EXERCISE 13.3
After this output of \showlists, the modes.log file contains further output
from \tracingcommands. In fact, the next two lines of that file are

{math shift character $}
{horizontal mode: end~group character 1}

becaunse the ‘$$° on lne 7 finishes the displayed formula, and this resumes horizontal
made for the paragraph that was interrupted. What do you think are the next three
lines of modes.log?

@ » EXERCISE 13.4
Suppose TEX has generated a document without ever leaving vertical mode.
What can vou say about that document?

@@b EXERCISE 13.5

Some of TEX's modes cannot immediately enclose other modes; for example,
display math mode is never directly enclosed by horizontal mode, even though displays
ocour within paragraphs, because an interrapted paragraph-so-far of horizontal mode is
always completed and removed from TEX s memory before the processing of a displayed
formmula begins. Give a complete characterization of all pairs of consecutive modes that
can oocur in the output of \showlists.

Cvery mode of fife has its conveniences.
— SAMUEL JOHNSON, The Idier {1758)

[Rindu musicians}] have eighty-four modes,

of which thirty-six are in generai use,

and each of which, it appears, has a pecufiar expression,

and the power of moving some particular sentiment or affection.

- MOUNTSTUART ELPHINSTONE, History of india {1841)

89

mathared
prevdepth ignored
JOHNSON
BLPHINSTONE

page 90} |_ _|

14

How TgX Breaks
Paragraphs into Lines

Chapter 1{: How TgX Breaks Paragraphs into Lines

One of a typesetting system’s chief duties is to take a long sequence of words
and to break it up into individual lines of the appropriate size. For example,
every paragraph of this manual has been broken into lines that are 29 picas wide,
but the author didn’t have to worry about such details when he composed the
manuscript. TEX chooses breakpoints in an interesting way that considers each
paragraph in its entirety: the closing words of a paragraph can actually influence
the appearance of the first line. As a result, the spacing between words is as
uniform as possible, and the computer is able to reduce the number of times that
worels must he hyphenated or formulas must he split between lines.

The experiments of Chapter 6 have already illustrated the genoral ideas:
We discussed the notion of “hadnoess,’

;7 and we ran into “overfull” and *wnderfull”
boxes i difficult situations. We also observed that different settings of TEX s
\teclerance parameter will produce different effects; a higher tolerance means
that wider spaces are acceptable.

TEX will find the absolutely best way to typeset any given paragraph,

according to its ideas of minimum badness. But such “badness” doesn’t account
for everything, aned if you rely entirely on an automagic scheme you will oceasion-
ally encounter line breaks that are not really the hest on psychological grounds:
this is inevitable, because computers don’t understand things the way people do
{at least not yet). Therefore you'll sometimes want to tell the machine that
certain places are not good breakpoints. Conversely, you will sometimes want
to force a break at a partieular spot. TgX provides a convenient way to avoid
psychologically bad breaks, so that you will be able to obtain results of the finest
quality hy simply giving a fow hints to the machine.
“Ties™—denoted hy 7 in plain TpX-—are the key to suceessful fine
breaking. Once you learn how to insert them, you will have graduated from
the ranks of ordinary TgXnical typists to the select group of Distinguished
TEXuicians. And it’s really not difficult to train yourself to insert oceasional
ties, almost without thinking, as you type a manuscript.

When you type 7 it’s the same as typing a space, except that TEX won't
break a line at this space. Furthermore, you shouldn’t leave any blanks next to
the ™, since they will count as additional spaces. If you put ~ at the very end
of & line in your input file, you'll got a wider space than you want, hecause the
{return) that follows the ™ produces an extra space.

We have already observed in Chapter 12 that it’s generally a good idea
to type T after an abbreviation that dooes not come at the end of a sentence. Ties
also belong in several other placoes:

m In references to named parts of & document:

Chapter™12 Thecrem™1.2
Appendix™A Table™\hbox{B-B}
Figure™3 Lemmas 5 and™6

{(No ~ appears after ‘Lemmas’ in the final example, since there’s no harm in having
‘5 and 6° at the beginning of a line. The use of \hbox is explained helow.)

H&J, see hyphenation, line break
Justitication, see setting glog, line
aquad left, see Hosh left

quad right, see Hosh right

quad mitddle, see hreak
tolerance

Pies

auxiliary space, see tie

tilde

line breaks, avoiding

breaks, avoiding bad

92

Chapter 1{: How TgX Breaks Paragraphs into Lines

» Between a person’s forenames and between multiple surnames:

Donald™E. Knuth Luis™I. Trabb™Pardo
Bartel Leendert van"der”Waerden Charles"XII

Note that it is sometimes better to hyphenate a name than to break it be-
tween words: e.g., ‘Don-’ and ‘ald E. Knuth’ is more tolerable than ‘Donald’
and ‘E. Kauath’. The previous rule can be regarded as a special case of this one,
since we may think of ‘Chapter 12° as a compound name; another example is
‘register”X’. Sometimes a name is 30 long that we dare not tie it all together,
lest thore be no way to break the line:

Charles Leuis Xavier™ Joseph de™la Valll\’ee"Pcussin.
» Between math symbols in apposition with nouns:

dimension” $d§ width" $w§ function"$f(x)$
string™$=$ of length™$1%

However, the last example should be compared with
string”$=$ of length $1%$ or more.
» Between symbols in series:

1,72, or™3
$af, $b3, and"Pci.
1,72, \dots, " n.

= Whon a symbol is a tightly bound object of a preposition:

of"x

from 0 to™1
increase #z§ by~1
in common with™$m§.

The rule does not, however, apply to compound objects:
of $uf and " $vi.
» Whon mathematical phrases are rendered in words:

equals”n less than”ϵ (given™ $X%)
mod ™2 medulo™$p~ed for all large”$n$

Compare ‘is715° with ‘is 157times the height’
m Whon cases are being enumerated within a paragraph:
(b) "Show that $f(x)$ is (1) "continuous; (2) bounded.

It would be nice to boil all of these rules down to one or two simple principles,
and it would be even nicer if the rules could be automated so that keyboarding

Knuoth

Trabb Pardo

van der Waerden

Charles X1

Vallée Poussin

enuinerated cases within a paragi

Chapter 1{: How TgX Breaks Paragraphs into Lines

could be done without them; but subtle semantic considerations seem to be
involved. Therefore it°s best to use your own judgmoent with respoect to tics. The
computer needs your help.

A tie keeps TEX from breaking at a space, but sometimes vou want to
prevent the machine from breaking at a hyphen or a dash. This can be done
by using \hbox, hecause TEX will not split up the contents of a box; hoxes are
indecomposable units, once they have been constructed. We have already il-
lustrated this principle in the ‘Table™\hbox{B~B} cxample considercd carlier.
Another example oceurs when vou are typing the page numbers in a hibliographic
reference: 1t doesn't look good to put “22.° on a line by itself, so you can type
‘\hbox{13~~22}.° to prohibit breaking ‘13-22.° On the othor hand, TEX dooesn’t
often choose line breaks at hyphens, so you needn’t bother to insert \hbox com-
mands unless you need to correct a bad break that TEX has already made on a
PIEVIOUS TUN.

» EXERCISE 14.1
Here are some phrases eulled from previous chapters of this manual. How do
vou think the author typed them?

(ef. Chapter 12).

Chapters 12 and 21.

line 16 of Chapter 6’3 stery

lines 7 to 11

lines 2, 3, 4, and 5.

{2) a big black bar

All 256 characters are initially of category 12,
letter x in family 1.

the factor [, where 1 is 10600 times [,

» EXERCISE 14.2
How would you type the phrase ‘for all n greater than ng’ ?

» EXERCISE 14.3
And how would you type ‘excreise 4.3.2-15°7

» EXERCISE 14.4
Why is it hetter to type ‘Chapter™ 12’ than to type \hbox{Chapter 12}7
g?} » EXERCISE 14.5

TEX wiil sometimes break a math formula after an equals sign. How can vou
stop the computer fromm breaking the formuia ‘v =07

@@» EXERCISE 14.5
Explain how you could ingtruct TEX not to make any breaks after explicit
hyphens and dashes. {This iz useful in lengthy bibiographies.)

Sometimes you want to permit a line break after a */ just as if it were
a hyphen. For this purpose plain TEX allows vou to say ‘\slash’; for example,
‘inputislash cutput’ produces ‘mput/output’ with an optional break.

93

hyphen

dash

hhan

bibliographic reference
hibliographies

slash

94 Chapter 14: How TgX Breaks Paragraphs into Lines

If you want to force TEX to break between lines at a certain point in the line breaks, forcing
middle of a paragraph, just say ‘\break’. Howover, that might cause the line to :;i i:i:‘ forcing good
be really spaced out. anderfoll
If you want TpX to fill up the right-hand part of a line with blank space just ;Z’)‘{:r'}“‘“
before a forced line break, quad
without indenting the next line, say \hfil\break’. ;‘;’?é::nw
@ You may have several consecutive lines of input for which vou want the ontput kil f ‘21;) o

to appear Hne-for-line in the same way, One solution is to type ‘\pax’ at the horizontal list

end of each input Hne; but that's somewhat of a nuisance, so plain TEX provides the
abbreviation ‘\obeylines’, which canses each end-of-line in the input to be like \par.
After you say \obeylines vou will get one lne of cutpat per line of input, unless an
input line ends with ‘% or unless it is so long that it must be broken. For example, you
probably want to use \obeylimnesz if you are typesetting a poem. DBe sure to enclose
\obeylines in a group, unless yvou want this “poetry mode” to continue to the end of
vourr docuwment.,

{\obeylines\smallskip
Roses are red,

\gquad Violets are blue;
Rhymes can be typeset
\guad ¥ith boxes and glue.
\smallskip}

g?} » EXERCISE 14.7
Explain the uses of \guad in this poem. What would have happened if ‘\quad’
had been replaced by “\indent’ in both places?

Roughly speaking, TpX hreaks paragraphs into lines in the following
way: Breakpoints are imserted between words or after hyphens so as to produce
lines whose hadrnesses do not exceed the current \tolerance. If there’s no way
to insert such breakpoints, an overfull box is set. Otherwise the breakpoints are
chosen 0 that the paragraph is mathematically optimal, i.e., best possible, in
the sense that it has no more “demerits” than you could obtain by any other
secuence of breakpoints. Demerits are based on the badnesses of individual lines
and on the existence of such things as consecutive lines that end with hyphens,
or tight fines that ocour next to loose ones.

@ But the informal description of Hne breaking in the previous paragraph is

an oversimplification of what really happens. The remainder of this chapter
expiaing the details precisely, for people who want to apply TEX in nonstandard ways.
TEX’s Hne-breaking algorithm has proved to be general encugh to handle a surprising
variety of different applications; this, in fact, is probably the most interesting aspect
of the whole TEX system. However, every paragraph from now on wntil the end of the
chapter is prefaced by at least one dangerous bend sign, so vou may want to learn the
following material in easy stages instead of all at once.

@ Before the lines have been broken, a paragraph inside of TEX is actually a
horizoutal list, L.e., a sequence of items that TEX has gathered while in hord
zontal mode, We have been saving informally that a horizontal list consists of boxes

Chapter 1{: How TgX Breaks Paragraphs into Lines

and giue; the truth is that boxes and glue aren’t the whole story, Each item in a
horizontal Hst is one of the following types of things:

= a box {a character or ligature or rule or hbox or vbox);

a diseretionary break {to be explained momentarily);

a “whatsit” (something special to be explained later);

= vertical material {from \mark or \vadjust or \insert};

= a glob of glue {or \leaders, as we will gee later};

» a kern {something like glue that doesn’t stretch or shrink);

» a penalty {representing the undesirability of breaking here};
“math-on” (beginning a formula) or “math-off” {ending a formula).

The last four types {glue, kern, penalty, and math items) are called discardable, since
they may change or disappear at a lne break; the first four types are called non-
discardable, since they always remain intact. Many of the things that can appear in
korizontal Hsts have not been touched on vet in this manual, but it iso’t necessary to
nnderstand them in order to nnderstand Hae breaking. Sconer or later vouw’l! learn how
each of the gismos listed above can infiltrate a horizontal list; and if you want to get
a thorough understanding of TEX's internal processes, you can always use \showlists
with various features of the language, in order to see exactly what TEX is doing.

@ A discretionary break consists of three sequences of characters called the pre-

break, post-break, and uo-break texts. The idea is that if a line break ocours
kere, the pre-break text will appear at the end of the current line and the post-break
text will occur at the beginning of the next line; but ¥ no break occurs, the no-break
text will appear in the current line. Users can specity discretionary breaks in complete
generality by writing

\dizcretionary{{pre-break text)}{{post-break text)}{{no-break text}}

where the three texts consist entirely of characters, boxes, and kerns. For example, TEX
can hyphenate the word ‘difficult’ between the s, even though this requires breaking
the ‘i’ ligature into ‘& {ollowed by an “fi° ligature, if the horizontal list contains

dil\discretionary{f~}{fi}{ffi}cult.

Fortunately vou need not type such a mess vourself; TEX’s hyphenation algorithm
works behind the scenes, taking ligatures apart and putting them into discretionary
breaks when necessary.

@ The most common case of a discretionary break i a simple discretionary
hyphen

\discretionary{~}{}{}
for which TEX accepts the abbreviation ‘\~’. The next most common cage is
\discretionary{} {}{}

{an “empty discretionary”}, which TEX antomatically inserts after *~° and alter every
lgature that ends with =, In the case of plain TEX, empty discretionaries are therefore
inserted after hyphens and dashes. (Each font has an associated \hyphenchar, which
we can agsume for shmplicity is equal to *-.}

dizeretionary break
break, discretionary
whatssit

mark

vad just

insert

ahis

leaders

kern

penalty

math-on

math-off
discardahble
showlists

pre-break teat
post-break text
no-break text
discretionary
ligatores

empty discretionary
hyphens

caghes

hyphenchar

96

Chapter 1{: How TgX Breaks Paragraphs into Lines

@ When TEX hvphenates words, it simply inserts discretionary breaks into the
horizontal list. For example, the words ‘discretionary hyphens’ are trans-
formed into the equivalent of

dis\-cre\-tionary hy\-phens

if hyphenation becomes necessary. But TEX doesn’t apply its hyphenation algorithm
to any word that already contains a discretionary break; therefore you can use expiicit
digcretionaries to override TpX's antomatic method, in an emergency.

@ » EXERCISE 14.8

Some compounnd words in German text change their spelling when they are
split between Hnes, For exainple, ‘backen’ becomes ‘bak-ken’ and ‘Bettuch’ becomes
‘Bett-tuck’. How can you instruct TEX to produce this effect?

@ In order to save time, TEX tries first to break a paragraph into Hnes without

inserting any discretionary hyphens, This first pass will succeed i a sequence
of breakpoints is found for which none of the resulting Hnes has a badness exceeding
the current value of \pretolerance. If the first pass fails, the method of Appeadix H
is used to hyphenate each word of the paragraph by inserting discretionary breaks
into the horizontal list, and a second attempt is made using \tolerance instead of
\pretolerance. When the lines are fairly wide, as they are in this mamal, experiments
show that the first pass succeeds more than 90% of the time, and that fewer than 2 words
per paragraph need to be subjected to the hyphenation algorithm, on the average.
But when the lines are very narrow the first pass usually fails rather quickly. Plain
TEX sets \pretolerance=100 and \tolerance=200 as the defanlt values, If you make
\pretolerance=10000, the first pass will essentially always succeed, so hyphenations
will not be tried {and the spacing may be terrible); on the other hand if von make
\pretolerance=-1, TEX wiil omit the first pass and will trv to hyphenate immediately.

@ Line breaks can occur only in certain places within a horizontal lst. Roughly
speaking, they ccour between words and after hyphens, but in actuality they
are permitted in the following five cases:

a) at ghie, provided that this glee is iimmediately preceded by a non-discardable
itern, and that it is not part of a math formula (Le., not between math-on and
math-oft}. A break “at glue” occurs at the left edge of the glue space.

b} at a kern, provided that this kern is inmediately followed by glue, and that it
is not part of a math formula.

¢} at a math-off that is immediately followed by glue.

d) at a penalty {which might have been inserted antomatically in a formula).

¢) at a discretionary break.
Notice that if two globs of glue cccur next to each other, the second one will never be
selected as a breakpoint, since it is preceded by glue {which is discardable).

3

@ Each potential breakpoint has an associated “penalty,” which represents the

“apsthetic cost” of breaking at that place. In cases (a), {b), (¢}, the penalty is
zero; in case {d} an explicit penalty has been specified; and in case {e) the penalty is the
current, value of \hyphenpenalty if the pre-break text is nonempty, or the current value
of \exhyphenpenalty if the pre-break text is empty. Plain TEX sets \hyphenpenalty=50
and \exhyphenpenalty=50,

hyphenates
Clerinan
pretolerance
tolerance
hyphenpenalty
exhvphenpenalty

Chapter 1{: How TgX Breaks Paragraphs into Lines

@ For example, if vou say “\penalty 100° at some point in a paragraph, that

position will be a legitimate place to break between lines, but a penalty of 100
wifl be charged. If you say ‘\penalty~100° vou are telling TEX that this is a rather
good place to break, becanse a negative penalty is really a “bonus”; a line that eands
with a bomus wmight even have “merits” (negative demerits).

@ Any penalty that is 10000 or more is considered to be so large that TEX will

never break there. At the other extreme, any penalty that is —10000 or less
ig considered to be so small that TEX will always break there. The \nobreak macro of
plain TEX is simply an abbreviation for ‘\penalty10000°, hecause this prohibits a line
break. A tie in plain TgX is equivalent to ‘\nobreak\,’; there will be no break at the
glue represented by \y in this case, because glue is never a legal breakpoint when it is
preceded by a discardable itemn like a penalty.

@ » EXERCISE 14.9
Guess how the \break macro is defined in plain TEX.

g?} » EXERCISE 14.10
What happens if vou say \nobreak\break or \break\nobreak?

{;22 When a line break actually does ocour, TEX removes all discardable iterms that

follow the break, until coming to something non-discardable, or until coming
to another chosen breakpoint. For examnple, a sequence of glue and penalty items will
vanish ags a unit, if no boxes intervene, unless the optimum breakpoint sequence includes
one or more of the penalties. Math-on and math-off items act essentially as kerns that
contribute the spacing specified by \mathsnrround; such spacing will disappear into the
line break if a formula comes at the very end or the very beginning of a line, because
of the way the rules have been formulated above.

@ The badness of a line is an integer that is approximately 100 times the cube

of the ratio by which the glue inside the line must stretch or shrink to make
an hbox of the regquired size. For example, if the line has a total shrinkability of
10 points, and if the gloe i8 being compressed by a total of 9 poiants, the badness is
computed to be 73 (since 100 x {9/10)% = 72.9); similarly, a line that stretches by
twice its total stretchability has a badaess of 800, Dut if the badness obtained by
this method turns out to be more than 10000, the value 10000 is used. (See the
discussion of “glue set ratio” r and “glee set order™ ¢ in Chapter 12; i ¢ # 0, there is
infinite stretchability or shrinkability, so the badness is zero, otherwise the badness is
approximately min(100r®, 10000).) Overfull boxes are considered to be infinitely bad;
they are avoided whenever possible.

@ A line whose baduess is 13 or more has a glue set ratio exceeding 50%. We

call such a line tight if its glue had to shrink, loose if its glue had to strefch,
and very loose if it had to stretch so wwch that the badness is 100 or more. But if the
badness is 12 or less we say that the lne is decent. Two adjacent lines are said to be
visually incompatible if their clagsifications are not adjacent, i.e., if a tight line is next
to a loose or very loose line, or if a decent line is next to a very loose one.

@ TEX rates each potential sequence of breakpoints by totalling up demerits that
are assessed to individual lines. The goal is to choose breakpoints that vield
the fewest total demerits. Suppose that a lne has badness b, and suppose that the

97

penalty

haonos

intinite penalty
nobreak

break
mathsurround
hadnems

glue set ratio
ghue set order
intinite badness
tight

Toatws e

very loose
decent
demerits

98

Chapter 1{: How TgX Breaks Paragraphs into Lines

penalty p is associated with the breakpoint at the end of this line. As stated above,
TEX will not even consider such a Hne if p > 10000, or if b exceeds the current tolerance
or pretolerance. Otherwise the demerits of such a line are defined by the formula

H+0%+p% i 0<p< 10000
d={ I+ —p*, i 10000 < p < O
e+, if p < ~10000.

Here [is the current value of \linepenalty, a parameter that can be increased if vou
want TEX to try harder to keep all paragraphs to the minimum oumber of lines; plain
TEX sets \linepenalty=10. For example, a line with badness 20 ending at glue will
have (10 + 207 = 900 demerits, if [= 10, since there’s no penalty for a break at glue.
Minimizing the total demerits of a paragraph is roughly the same as minimizing the sum
of the squares of the badnesses and penalties; this usually means that the maximum
badness of any individual line is also minimived, over all sequences of breakpoints.

@ » EXERCISE 14.11

The formmla for demerits has a strange discontinuity: It seems more reasonable
at first to define d = {I + b} — 10000%, in the case p < —10000. Can you account for
this apparent discrepancy?
@ Additional demerits are assessed based on pairs of adjacent lines. If two con-

secutive lnes are visually incompatible, in the sense explained a minute ago,

the current value of \adjdemerits is added to d. If two consecutive Hanes end with dis-
cretionary breaks, the \doublehyphendemerits are added. And i the second-last line of
the entire paragraph ends with a discretionary, the \finalhyphendemerits are added.
Plain TEX sets up the values \adjdemerits=10000, \doublehyphendemeritz=10000,
and \finalhyphendemerits=5000. Demerits are in units of “badness sgquared,” so the
demerit-oriented parameters need to be rather large if they are to have mmch effect;
but tolerances and penalties are given in the same units as badness.

@ If you set \tracingparagraphs=1, vour log file will contain a swmmary of

TeX's line-breaking calculations, so you can watch the tradeoffs that oceur
when parameters like \linepenalty and \hyphenpenalty and \adjdemerits are twicd-
dled. The lne-break data looks pretty scary at first, but vou can learn to read it with a
little practice; this, in fact, is the best way to get a solid understanding of line breaking.
Here is the trace that results from the second paragraph of the stoxy file in Chapter 6,
when \haize=2.5in and \tolerance=1000;

[I\tenrm Mr. Drofmats---or ‘‘R. J.,’’ as he pre-
@\discretionary via @80 b=0 p=50 d=2600
@@1: line 1.2~ t=2600 -> @0

ferred to be called---was hap-pi-eat when
@ via @@1 b=131 p=0 4=29881

@@2: line 2.0 t=32481 -> @@1

he

@ via @@1 b=25 p=0 d=1225

@@3: line 2.3 t=3825 -> @@1

was at work type-set-ting beaun-ti-ful doc-
@\discretionary via @@2 b=1 p=50 d=12621
@\discretionary via @@3 b=291 p=50 d=103101

linepenalty
adidemerits
donblehyphendemerits
finalhyphendemerits
tracingparagraphs

Chapter 1{: How TgX Breaks Paragraphs into Lines

©@84: line 3.2~ t=45102 -> Q@2

-

@\discretionary via 0@3 b=44 p=50 d=15416
®85: line 3.1~ t=19241 -> @@€3

ments.

@\par via @@4 b=0 p=-10000 d=5100

@\par via @@5 b=0 p=-10000 d=5100

©86: line 4.2~ t=24341 -> Q@5

Lines that begin with ‘@@ represent feasible breakpoints, i.e., breakpoints that can
be reached without any badness exceeding the tolerance. Feasible breakpoints are
mumbered consecutively, starting with 8@1; the beginning of the paragraph is considered
to be feasible too, and it iz mumber @@0. Lines that begin with ‘'@ but not ‘0@ are
candidate ways to reach the feasible breakpoint that follows; TEX will select only the
best candidate, when there is a choice, Lines that do not begin with ‘'@ indicate how
far TEX has gotten in the paragraph. Thus, for example, we find ‘@@2: line 2.0
+=32481 -> @@1’ after ‘.. .hap-pi-est when’ and bhefore ‘he’, so we know that feasible
breakpoint @02 occurs at the space between the words when and he. The notation ‘line
2.0 means that this feasible break comes at the end of line 2, and that this line will
be very loose. (The sufhixes .0, .1, .2, .3 stand respectively for very loose, loose,
decent, and tight.) A hyphen is suffixed to the line mumber if that line ends with a
discretionary break, or if it is the final line of the paragraph; for example, ‘line 1.2~
is a decent line that was hyphenated. The notation “t=32481" means that the total
demnerits from the beginning of the paragraph to 002 are 32481, and *~> @01’ means
that the best way to get to @82 is to come from @01, On the preceding line of trace data
we see the caleulations for a typeset line to this point from @01 the badness is 131,
the penalty is €, hence there are 29881 demerits. Similarly, breakpoint @83 presents
an alternative for the second line of the paragraph, obtained by breaking between ‘he’
and ‘was’; this one makes the second lne tight, and it has only 3825 demerits when
the demerits of line 1 are added, so it appears that @03 will work much better than
@@2. However, the next feasible breakpoint {004} oceurs alter ‘doc~’, and the line from
@@2 to 0@4 has only 12621 demerits, while the line from 0@3 to @84 has a whopping
131601; therefore the best way to get from @80 to @04 is via @02, If we regard demerits
ag distances, TEX is finding the “shortest paths” from 080 to each feasible breakpoint
{using a variant of a well-known algorithin for shortest paths in an acyclic graph).
Finally the end of the paragraph comes at breakpoint @06, and the shortest path from
@80 to @06 represents the best sequence of breakpoints. Following the arrows back
from @@6, we deduce that the best breaks in this particular paragraph go through @@5,
@e3, and 0@1.

@@» EXERCISE 14.12
Explain why there are 29881 demerits from @01 to @2, and 12621 demerits
from @@2 to 004.

@@ If b=+’ appears in such trace data, it means that an infeagible breakpoint had
to be chosen becanse there was no feasibie way to keep total demerits small,

@ We still haven’t discussed the special trick that allows the final line of a para-
graph to be shorter than the others, Just before TEX begins to choose break-
points, it does two mportant things: (1) If the final item of the current horizontal

99

atsign atsign
feasible breakpoints
shortest paths

*

100

Chapter 1{: How TgX Breaks Paragraphs into Lines

list is glue, that glue is discarded. (The reason is that a blank space often gets into a
token list just before \par or just before $3, and this blank space should not be part
of the paragraph.} (2} Three mwore items are put at the end of the current horizontal
lst: \penalty10000 {which prohibits a line break); \hskip\parfillskip {which adds
“finishing giue” to the paragraph}; and \penalty-10000 (which forces the final break).
Piain TEX sets \parfillskip=Opt pluslfil, so that the last line of each paragraph will
be filled with white space if necessary; but other settings of \parfillskip are appro-
priate in special applications. For exazmple, the present paragraph ends flush with the
right margin, because it was typeset with \parfillskip=0pt; the author dide’t have to
rewrite any of the text in order to make this possible, since a long paragraph generally
allows so much flexibility that a line break can be forced at almost any point. You
can have some fun playing with paragraphs, because the algorithm for line breaking
occasionally appeasrs to be clalrvovant. Just write paragraphs that are long enough.

g?} » EXERCISE 14.13

Ben User decided to say ‘\hfilneg\par’ at the end of a paragraph, intending
that the negative stretchability of \hiilneg wounld cancel with the \parfillskip of
plain TEX. Why dida’t his bright idea work?

g?} » EXERCISE 14.14
How can vou set \parfillskip so that the last line of a paragraph has exactly
as much white space at the right as the first lne has indentation at the left?

@@» EXERCISE 14.15

Since TEX reads an entire paragraph before it makes any decisions about
line breaks, the computer’s memory capacity might be exceeded if you are typesetting
the works of some philosopher or modernistic novelist who writes 200-line paragraphs.
Suggest a way to cope with such authors.

@ TEX has two parameters called \leftskip and \rightskip that specify ghue

to be inserted at the left and right of every line in a paragraph; this glue is
taken into account when badnesses and demerits are computed. Plain TgX normally
keeps \leftskip and \rightskip zerc, but it has o ‘\narrower’ macro that increases
both of their values by the current \parindent. You may want to use \narrover when
quoting lengthy passages from a book.

{\narrower\smallskip\noindent

This paragraph will have narrower lines than
the surronnding paragraphs do, becanse it
nzes the ‘‘narrower’’ feature of plain \TeX.
The former margins will be restored after
this gromp ends.\=mallskip}

{Try it.) The second ‘\smallskip’ in this example ends the paragraph. It's important
to end the paragraph before ending the group, for otherwise the effect of \narrower
will disappear before TEX begins to choose line breaks,

g?} » EXERCISE 14.16

When an entire paragraph is typeset in Halic or slanted type, it sometimes
appears to be offset on the page with respect to other paragraphs, Explain how vou
conld use \leftskip and \rightskip to shift all lines of a paragraph left by 1 pt.

tnskip

prar

Hnishing gloe
partillskip

User

hiilneg
paragraph, ending
capacity exceeded
Jovee, Jaines
philosopher
leftskip

rightskip
DATTOWET
parindent

qooting

smallskip

italic

slanted

Chapter 1{: How TgX Breaks Paragraphs into Lines

g.?} » EXERCISE 14.17
The \centerline, \leftline, \rightline, and \line macros of plain TEX
don’t take \leftakip and \rightskip into account. How could vou make thems do so?f

@ If vou suspect that \raggedright setting is accomplished by some appropriate

manipulation of \rightskip, you are correct. But some care is necessary. For
example, a person can set \rightskip=0pt plusifil, and every line will be filled
with space at the right. But this isn’t a particularly good way to make ragged-right
marging, because the infinite stretchability will assign zero badaess to lnes that are
very short. To do a decent job of ragged-right setting, the trick is to sef \rightskip
so that it will stretch enoungh to make line breaks possible, vet not too much, because
short lines should be congidered bad. Furthermore the spaces between words should
be fixed so that they do not stretch or shrink. {See the definition of \raggedright in
Appendix B.} Tt would also be possible to allow a little variability in the interword
glue, so that the right margin would not be guite so ragged but the paragraphs would
still have an informal appearance.

@ TEX locks af the parameters that affect line breaking only when it is breaking

lines. For example, you shoulde’t try to change the \hyphenpenalty in the
nriddle of a paragraph, if you want TEX to penalize the hyphens in one word wmore than
it does in another word. The relevant values of \hyphenpenalty, \rightskip, \hsize,
and so on, are the ones that are current at the end of the paragraph. On the other
kand, the width of indentation that vou get implicitly at the beginning of a paragraph
or when you say ‘\indent’ is determined by the value of \parindent at the time the
indentation is contributed to the current horizountal Hst, not by its value at the end
of the paragraph. Similarly, penalties that are inserted into math formulas within a
paragraph are based on the values of \binoppenalty and \relpenalty that are current
at the end of each particular formula. Appendix D contains an example that shows how
to have both ragged-right and ragged-left marging within a single paragraph, without
using \leftskip or \rightskip.

@ It’s possible to control the length of lines in a much more general way, if

siinple changes to \leftskip and \rightskip aren’t flexible encugh for vour
purposes. For example, a semicircular hole has been cut out of the present
paragraph, in order to make room for a circular illustration that con-
taing some of Galileo’s immortal words about circles; all of the line

The arsa of

101

centerling
leftline
rightline

line
raggedright
hyphenpenalty
indent
parindent
binoppenalty
relpenalty

hole

Claliles

cirele
parshape
iMustrations, Htting copy aroond
Pagcal

triangle

s rcircls is & mean
proportional between any

breaks in this paragraph and in the circular guotation were found two regular and similer poly-
‘) gons of which one circumacribes
by TEX’s line-breaking algorithm. You can specify an essentially it snd the other i isoporimetric
with it. In addition, the area of the
arbitrary paragraph shape by saying \parshape={number}, where cirels in loss than that of any sircum-
N e . . K seribed polygen and greater than that
the {number} is a positive integer o, followed by 22 {dimen} spec- of any isoperimstric polygon. And fur-
e L. R .. ther, of thess circumscribed polygons,
Hications. In general, ‘\parshape=n i; [y iz ly ... 4, [,” specifies the one that has the grester muni-
- : . ke f sides hat E ts = h
a paragraph whose first n Boes will have lengths 6, 1y, ..., L, The e that has o losmar memabars
respectively, and they will be indented from the left. margin by the D e e ™
respective amounts 44, 4y, ..., 4,. If the paragraph has fewer than the greater number of

sides is the larger.

n lines, the additional specifications will be ignored; if it has more [Gstileo, LG

than n lines, the specifications for line n will be repeated ad infinitum.
You can cancel the effect of a previously specified \parshape by saying ‘\parshape=0’.

@@» EXERCISE 14.18
Typeset the following Pascalian quotation in the shape of an isosceles triangle:

102

Chapter 1{: How TgX Breaks Paragraphs into Lines

“I turn, in the following treatises, to various uses of those triangles whose generator

ig wnity. DBut I leave out many mwore than [include; it is extracrdinary how fertile in
roperties this triangle is. Evervone can try his hand.”

prop g 3 3

@ You probably won't need unusual parshapes very often. But there’s a special
cage that ocours rather frequently, so TEX provides a special abbreviation
for it in terms of two parameters called \hangindent and \hangafter. The command
‘\hangindent={dimen}’ specifies a so-called hanging indentation, and the command
‘\hangafter={number)’ specifies the duration of that indentation. Let r and « be the
respective values of \hangindent and \hangafter, and let A be the value of \hsize;
then if nn > 0, hanging indentation will ccour on lnes n+ 1, n+2, ... of the paragraph,
but if < it will eonr on lines 1, 2, .. .| |n]. Hanging indentation means that lines will
be of width ki — |z] instead of their normal width k; f £ > 0, the lnes will be indented
at the left margin, otherwise they will be indented at the right margin. For example,
the “dangerous bend” paragraphs of this manual have a hanging indentation of 3 picas
that lasts for two lnes; they were set with \hangindent=3pc and \hangafter=-2,

@ Plain TEX uses hanging indentation in its ‘\item’ macro, which produces a

paragraph in which every line has the same indentation as a normal \indent.
Furthermore, \item takes a parazeter that is placed into the position of the indentation
on the first line. Another macro called ‘Nitemiten’ does the same thing but with double
indentation. For example, suppose vou type

\item{1.} This is the first of several casez that are being
enumerated, with hanging indentation applied to entire paragraphs.
\itemitem{a}} Thiz iz the firat subcasze.

\itemitem{b)} And this i= the =second subcase. Notice

that subcases have twice as mmch hanging indentation.

\item{2.} The second case is similar.

Then you get the following output:

1. This is the first of several cases that are being enumerated, with hanging
indentation applied to entire paragraphs.
a) This is the first subcase.
b} And this is the second subease. Notice that subcases have twice as
much hanging indentation.
2. The second case is similar,

{(Indentations in plain TEX are not actually as dramatic as those displayed here; Appen-
dix B says ‘\parindent=20pt’, but this manual has been set with \parindent=36pt.}
It is customary to put \medskip before and after a group of emized paragraphs, and
to say \noindent before any closing remarks that apply to all of the cases. Blank lines
are not needed before \item or \itemitem, since those macros begin with \par.

@ » EXERCISE 14.19
Suppose one of the emrierated cases continues for two or more paragraphs.
How can you use \item to get hanging indentation on the subsequent paragraphs?

g.?} » EXERCISE 14.20
Explain how to make a “bulleted” item that says ‘e instead of 1.7,

hangindent

hangafter

hanging indentation

hsize

Htem

itemitem

mectskip

enpmerated cases in separate par
ballet

Chapter 1{: How TgX Breaks Paragraphs into Lines

@@» EXERCISE 14.21
The N\item macro doesn’t alter the right-hand margin, How could you indent
at both sides?

@@» EXERCISE 14.22
Explain how vou conld specify a hanging indentation of —2 ems (i.e., the lines
should project into the left margin), alter the first two Hnes of a paragraph.

@ If \parshape and hanging indentation have both heen specified, \parshape

takes precedence and \hangindent is ignored. You get the normal paragraph
shape, in which every line width is \h=size, when \parshape=0, \hangindent=0pt, and
\hangafter=1. TgX antomatically restores these normal values at the end of every
paragraph, and (by local definitions) whenever it enters internal vertical mode. For
example, hanging indentation that wmight be present cutside of a \vbox construction
won't aoeur inside that vhox, unless you ask for it inside.

@@» EXERCISE 14.23

Suppose you want to leave room at the right margin for a rectangular illus-
tration that takes up 15 lnes, and you expect that three paragraphs will go by before
yoir have typeset enough text to get past that llustration. Suggest a good way to do
this without trial and error, given the fact that TEX resets hanging indentation.

@ If displayed equations occur in a paragraph that has a nonstandard shape, TEX

always assumes that the display takes up exactly three lines. For example, a
paragraph that has four lines of text, then a display, then two more lines of text, is
considered to be 4+ 3+ 2 = 9 lines long: the displayed equation will be indented and
centered using the paragraph shape information appropriate to line 6.

@@ TEX has an internal integer variable called \prevgraf that records the number

of lines in the most recent paragraph that has been completed or partially
completed. You can use \prevgraf in the context of a {(number}, and you can set
\prevgraf to any desired nonnegative value if you want to make TgX think that it is in
some particalar part of the current paragraph shape. For example, let’s consider again
a paragraph that contains four lines plus a display plus two more lines. When TpX
starts the paragraph, it sets \prevgraf=0; when it starts the display, \prevgraf will
be 4; when it finishes the display, \prevgraf will be 7; and when it ends the paragraph,
\prevgraf will be 9. If the display is actually one line taller than usual, you could set
\prevgraf=8 at the beginning of the two final lines; then TEX will think that a 10-line
paragraph is being made. The value of \prevgraf affects line breaking only when TEX
is dealing with nonstandard \parshape or \hangindent.

@@» EXERCISE 14.24
Solve exercise 14.23 using \prevgraf.

@ You are probably convinced by now that TEX's line-breaking algorithm has

pleaty of bells and whistles, perhaps even too many, But there's one more
feature, called “looseness”™; some day vou might find vourself needing it, when you are
fine-tuning the pages of a book. If vou set \loosenesa=1, TgX will try to make the
current paragraph one line longer than its optimmm length, provided that there i a
way to choose such breakpoints without exceeding the tolerance you have specified for
the badnesses of individual lnes. Similarly, if vou set \looseneszs=2, TEX will try to

103

vhon

paragraph shape rese
hanging indentation reset
displayed equations
provgral

104 Chapter 14: How TgX Breaks Paragraphs into Lines

make the paragraph two lines longer; and \looszenesz=-1 causes an attempt to make looseness
it shorter. The general idea is that TEX first finds breakpoints as usual; then i the i::i;;:“ﬁm
optizzum breakpoints produce n lnes, and if the current \looseneas is [, TEX will tie i
choose the final breakpoints so as to make the final mimber of lines as close as possible widow word
to n+l without exceeding the current, tolerance. Furthermore, the final breakpoints will ;;;j; :};]“{"i‘;)’ see widow word
have fewest total demerits, considering all ways to achieve the same number of lines, baselineskip
@@ For example, you can set \looseness=1 if vou want to avoid a lonely “club i;::;}::ilmm

line” or “widow line” on some page that does not have sufficiently flexible glue, interline gloe
ar if vou want the total number of lines in some two-column document to come out :j]]::};,]:::];:dm
to be an even number. It’s usually best to choose a paragraph that is already pretty displaywidowpen alty

widowpenalty

“tull” ie., one whose last Hine doesn’t have much white space, since such paragraphs
can generally De loosened without much harm. You might also want to insert a tie
between the last two words of that paragraph, so that the loosened version will not
end with only one “widow word” on the Hne; this tie will cover your tracks, so that
peaple will find it hard to detect the fact that vou have tampered with the spacing.
On the aother hand, TEX can take almost any sutficiently long paragraph and stretch it
a bit, without substantial harm; the present paragraph is, in fact, one line looser than
its optinmm length.

brokenpenalty

@ TEX resets the looseness to zero at the same time ag it resets \hangindent,
\hangafter, and \parzhape.

@@» EXERCISE 14.25
Explain what TEX will do if you set \loozgeneas=~1000,

@ Just before switching to horizontal mode to begin scanning a paragraph, TpX
inserts the glue specified by \parskip into the vertical list that will contain
the paragraph, unless that vertical lst is empty so far. For example, “\parskip=3pt’
will cause 3 points of extra space to be placed between paragraphs. Plain TEX sets
\parskip=0pt plualpt; this gives a little stretchability, but no extra space.

@ After line breaking is complete, TEX appends the lines to the current vertical

list that encloses the current paragraph, inserting interline glue as explained in
Chapter 12; this interline glue will depend on the values of \baselineskip, \lineskip,
and \lineskiplimit that are currently in force. TEX will also insert penalties into the
vertical Hist, just before each glob of interline glue, in order to help control page breaks
that might have to be made later. For example, a special penalty will be assessed for
breaking a page between the first two lines of a paragraph, or just before the last line,
so that “club” or “widow” lines that are detached from the rest of a paragraph will not
appear all alone on o page unless the alternative is worse.

@ Here's how interline penalties are calculated: TEX has just chosen the break-

points for some paragraph, or for some partial paragraph that precedes a
displayved equation; and » lines have been formed. The penalty between Hnes y and
J+ 1, given a value of j in the range 1 £ § < n, iy the value of \interlinepenalty
plus additional charges made in special cases: The \clubpenalty is added if § = 1,
i.e., just alter the first lne; then the \displaywidowpenalty or the \widowpenalty is
added i § = n — 1, e, just before the last lne, depending on whether or not the
current lines inmnediately precede a display; and finally the \brokenpenalty iz added,
if the jth line ended at a discretionary break. (Plain TEX sets \clubpenalty=150,

Chapter 1{: How TgX Breaks Paragraphs into Lines

\widowpenalty=150, \displaywidowpenalty=50, and \brokenpenalty=100; the value
of \interlinepenalty is normally zero, but it is increased to 100 within footnotes, so
that long footnotes will tend not to be broken between pages.)

@ » EXERCISE 14.26
Consider a five-line paragraph in which the second and fourth lines end with
hkyphens. What penalties does plain TEX put between the lines?

g?} » EXERCISE 14.27
What penalty goes between the Bnes of a two-line paragraph?

@@ I you say \vadjust{{vertical list}} within a paragraph, TEX will insert the
specified internal vertical st into the vertical list that encloses the paragraph,
immediately after whatever line contained the position of the \vadjust. For example,
vou can say \vadjnst{\kernlpt} to increase the amount of space between lines of a
paragraph if those lines would otherwise come out too close together. (The anthor
did it in the previous Hne, just to illustrate what happens.) Also, if vou want to
make sure that a page break will ocour immediately alter a certain line, you can say
‘\vadjust{\eject} amywhere in that line.

@@ Later chapters discuss \insert and \mark commands that are relevant to
TEX’s page builder. If such commands appear within a paragraph, they are
removed from whatever horizontal lnes contain them and placed into the enclosing
vertical list, together with other vertical material from \vadjust commands that wmight
be present. In the final vertical list, each horizontal Hae of text is an hbox that is
immediately preceded by interline glie and immediately followed by vertical material
that has “migrated out” from that lne (with left to right order preserved, if there are
several instances of vertical material); then comes the interline penalty, if it is nonzero.
Inserted vertical material does not influence the interline glue.

@@» EXERCISE 14.28

Design 4 \marginalstar macro that can be used anywhere in a paragraph. It
shontld use \vadjust to place an asterisk in the margin just to the left of the line where
\marginalstar ccours.

@ When TEX enters horizontal mode, it will interrupt its normal scanning to read
tokens that were predefined by the command \everypar={{token list}}. For
example, suppose vou have said ‘\everypar={A}’. If vou type ‘B’ in vertical mode, TEX
will shift to horizontal mode (after contributing \parskip glue to the current page),
and a horizontal lst will be initiated by inserting an empty box of width \parindent.
Then TEX will read ‘AB’, since it reads the \everypar tokens before getting back to the
‘B’ that triggered the new paragraph. Of course, this is not a very usetul illustration of
\everypar; but if vou let your imagination run you will think of better applications.

@@» EXERCISE 14.29

Use \everypar to define an \insertbullets macra: All paragraphs in a group
of the form ‘{\insertbullets ...\par}’ should have a bullet symbol ‘e’ as part of
their indentation.

@ A paragraph of zero Hpes is formed i you say “\noindent\par’. If \everypar
is null, such a paragraph contributes nothing except \parskip glue to the
current vertical Hst.

105

footnotes

vad just

ejoct

migrate
interline gloe
marginal notes
horizontal mode
SVEryPar
parskifp
parindent
bolleted lists

106

Chapter 1{: How TgX Breaks Paragraphs into Lines

@@» EXERCISE 14.30
Guess what happens if you say ‘\noindent$$...$$ \par’.

@ Experience has shown that TEXs Hne-breaking algorithm can be harnessed

to a surprising variety of tasks. Here, for examnple, is an application that
indicates one of the possibilities: Articles that are published in Mathematical Reviews
are generally signed with the reviewer's name and address, and this information is
typeset flush right, e, at the right-hand margin. I there is sufficient space to put
such a name and address at the right of the final line of the paragraph, the publishers
can save space, and at the same thoe the resuits look better because there are no
strange gaps on the page,

This is a case where the name and address fit in nicely
with the review. A. Reviewer {Ann Arbor, Mich.)

But sometimes an extra, line must be added.
N. Bourbaki (Parig)

Let’s suppose that a space of at least two ems should separate the reviewer’'s name
from the text of the review, if they occur on the same line. We would like to design a
macro o that the examples shown above could be typed as follows in an input file:

. with the review. \signed A. Reviewer (Ann Arbor, Mich.)
. an extra line must be added. \zigned N. Bourbaki {Pariz}

Here is one way to solve the problem:

\def\signed #1 {(#2){{\nnskip\nobreak\hfil\penalty5C
\hakip2em\hbox{}\nobreak\hfil\=1#1\/ \rm{#2}
\parfillskip=0pt \finalhyphendemerits=0 \par}}

If a line break occurs at the \penalty50, the \hakip2em will disappear and the empty
\hbox will occur at the beginning of a line, followed by \hfil glue. This yields two lines
whose badness is zero; the first of these lines is assessed a penalty of 50. But if no line
break cccurs at the \penalty50, there will be glue of 2 ems plus 2 fil between the review
and the name; this yvields one lne of badness zero. TEX will try both alternatives,
to see which leads to the fewest total demerits. The one-line solution will usually be
preferred if it is feasible.

@@» EXERCISE 14.31
Explain what would happen if ‘\hbox{}’ were left out of the \aigned macro.
@@» EXERCISE 14.32

Why does the \signed macro say ‘\Iinalhyphendemerita=0’ ?

@@» EXERCISE 14.33

In one of the paragraphs earlier in this chapter, the anthor used \break to force
a line break in a specific place; as a result, the third Hne of that particalar paragraph was
really spaced ot
Explain why all the extra space went into the third line, instead of being distributed
impartially among the first three lines.

Mathematical Reviews
Huosh right

Reviewer

Bourbalki

signed
finalhyphendemerits
break

Chapter 1{: How TgX Breaks Paragraphs into Lines

@ If you want to avoid overfull boxes at all costs without trying to fix them manu-

ally, you might be tempted to set tolerance=10000; this allows arbitrarily bad
lines to be acceptable in tough situations. But infinite tolerance is a bad idea, because
TEX doesn’t distinguish between terribly bad and prepostercusly horrible lnes. Indeed,
a tolerance of 10000 encourages TEX to concentrate all the badness in one place, making
one traly unsightly line instead of two moderately bad ones, becanse a single “write-
oft” produces fewest total demerits according to the rules. There’s a much better way
to get the desired effect: TEX has a parameter called \emergencystretch that is added
to the assumed stretchability of every line when baduess and demerits are computed,
in cases where overfull boxes are otherwise unavoidable. If \emergencyastretch is posi-
tive, TEX will make a third pass over a paragraph before choosing the line breaks, when
the first passes did not find a way to satisfy the \pretolerance and \tolerance. The
effect of \emergencystretch is to scale down the badnesses so that large infinities are
distinguishable from smaller ones. Dy setting \emergencystretch high encugh {based
on \hsize} you can be sure that the \tolerance is never exceeded; heace overfull boxes
will never occur unless the line-breaking task is truly impossible.

@@» EXERCISE 14.34

Devise a \raggedcenter macro {analogons to \raggedright) that partitions
the words of a paragraph into as few as possible Bnes of approgimately equal sive and
centers each individual Bne. Hyphenation should be avoided i possibie.

When the author objects to [a hyphenation]
he shouwid be asked to add or cancet or substitute
a word or words that will prevent the breakage.

Authors who Insist on even spacing always,
with sightiy divisions aiways,
do not clearly understand the rigidity of types.

— T. L. DE VINNE, Correct Composition {1901)

in reprinting his own works, whenever [William Morris]
found a tine that justified awkwardly, he aitered the wording
solely for the sake of making it fook well in print.

When a proof has been sent me with two or three

fines 50 widely spaced as to make a grey band across the page,

i have often rewritten the passage 50 as to filf up the fines better;
but i am sorry to say that my object has generaily been so fittie
understood that the compositor has spoift alf the rest

of the paragraph instead of mending his former bad work.

- GEORGE BERNARD SHAW, in The Dolphin {1940)

107

emergencystreteh
pretolerance
toleranos
raggodoenter
raggedright

DE VINNE
Morris

SHAW

_

15

How TgX Makes
Lines into Pages

Chapter 15: How TgX Makes Lines into Pages

TEX attempts to choose desirable places to divide your document into individual
pages, and its technigue for doing this usually works pretty well. But the problem
of page make-up is considerably more difficult than the problem of line breaking
that we considered in the previous chapter, because pages often have much less
flexibility than lines do. If the vertical giue on a page has little or no ahility to
streteh or to shrink, TEX usually has no choice about where to start a new page;
conversely, if there is too much variability in the ghee, the result will ook had
beeanse different pages will be too irregular. Therefore if you are fussy about
the appearance of pages, you can expect to do some rewriting of the manuscript
until you achieve an appropriate balance, or you might need to fiddle with the
\looseness as doscribed in Chapter 14; no antomated system will he able to do
this as well as you.

Mathematical papors that contain a lot of displayed cquations have an
advantage in this regard, because the ghie that surrounds a display tends to
be quite flexible. TEX also gets valuable room to mancuver when you have
oceasion to use \smallskip or \medskip or \bigskip spacing hetween certain
paragraphs, For example, consider a page that contains a dozen or 50 exercises,
and suppose that there is 3 pt of additional space between exercises, where this
space can stretch to dpt or shrink to 2pt. Then there is a chanee to squoeeze
an extra line on the page, or to open up the page by removing one line, in
orcler to avoid splitting an exercise between pages. Similarly, it is possible to use
flexible glue in special publications like membership rosters or company telephone
directories, so that individual entries need not be split between columns or pages,
vet every column appears to be the same height.

For ordinary purposes vou will probably find that TEX’s automatic
method of page breaking is satisfactory. And when it occasionally gives un-
pleasant results, you can force the machine to break at vour favorite place by
typing \eject’. DBut be careful: \eject will cause TEX to stretch the page
out, if necessary, so that the top and bottom baselines agree with those on other
pages. If you want to cject a short page, filling it with blank space at the bottom,
type \vfill\eject’ instead.

@ If you say “\eject’ in the middle of a paragraph, the paragraph will end

first, as if you typed “\par\eject’. But Chapter 14 mentions that you can say
“vadjuat{\eject)’ in mid-paragraph, if you want to force a page break after whatever
line contains your current position when the full paragraph is eventually broken up into
lines; the rest of the paragraph will go on the following page.

@ To prevent a page break, you can say ‘\nobreak’ in vertical mode, just as

\nobreak in horizontal mode prevents breaks between Hines. For example, it
i8 wise to say \nobreak between the title of a subsection and the first line of text in that
subsection. But \nobreak doees not cancel the effect of other commands like \eject
that tell TEX to break; it only inhibits a break at glue that immediately follows. You
should become familiar with TEX s rules for line breaks and page breaks if yvou want to
maintain fine control over evervthing. The remainder of this chapter is devoted to the
intimate details of page breaking.

109

page make-up
Yoo ernenss
smallskip
medskip
bigskip

ajoct

vad just
nobreak

110

Chapter 15: How TgX Makes Lines into Pages

@ TEX breaks lists of lines into pages by computing badness ratings and penal-

ties, more or less as it does when breaking paragraphs into lines. But pages
are made up one at a time and removed from TEX s memory; there is no looking ahead
to see how one page break will affect the next one. In other words, TEX uses a special
method to find the optimum breakpoints for the lines in an entire paragraph, but it
doesn’t attempt to find the optinme breakpoints for the pages in an entire document.
The computer doesn’t have encugh high-speed memory capacity to remember the con-
tents of several pages, so TEX simply chooses each page break as best it can, by a
process of “local” rather than “global” optimization.

@ Let’s look now at the details of TEX s page-making process. Everything vou

contribite to the pages of your document is placed on the main vertical list,
which is the sequence of items that TEX has accnmmiated while in vertical mode. Each
item in a vertical list is one of the following types of things:

m 3 box {an hbox or vhox or rule);

m a “whatsit” {something special to be explained later);

m o mark (another thing that will be explained later);

» an insertion {yet another thing that we will get to};

» a glob of glue {or \leaders, as we will see later);

» a kern {something like glue that doesn’t stretch or shrink);
» a penalty {representing the undesirability of breaking here).

The last three types {glue, kern, and penalty items) are called discardable, for the
same reason that we called them discardable in horizontal lists. You might want to
compare these specifications with the analogous rules for the horizontal case, found
in Chapter 14; it turns cout that vertical lists are just like horizontal ones except that
character boxes, discretionary breaks, \vadjust items, and math shifts cannot appear
in vertical lists. Chapter 12 exhibits a typical vertical list in TEX s internal box-and-glue
representation.

@ Page breaks can cccur only at certain places within a vertical list. The per-
misgible breakpoints are exactly the sane ag in the horizontal case, namely

a) at ghue, provided that this gloe is iimmediately preceded by a non-discardable
item {ie., by a box, whatsit, mark, or ingsertion);

h) at a kern, provided that this kern is immediately followed by ghue;
¢} at a penalty (which might have been inserted automatically in a paragraph).

Interline glue is usnally inserted antomatically between the boxes of a vertical list, as
explained in Chapter 12, so there is usually a valid breakpoint between boxes.

@ Asg in horizoatal lists, each potential breakpoint has an associated penalty,

which is high for undesirable breakpoints and negative for desirable ones. The
penalty is zero at glue and kern breaks, so it is nonzero only at explicit peaalty breaks.
If vou sy ‘\penalty-100° between two paragraphs, you are indicating that TEX should
try to break here becaunse the penalty is negative; a bomus of 100 points for breaking at
this place will essentially cance! up to 100 units of badness that might be necessary to
achieve such a break. A penalty of 10000 or more is so large that it inhibits breaking;
a penalty of —10000 or less is so small that it forces breaking.

main vertical list
vertical list
whatssit
mark
insertion
ghie
leaders
kern
penalty
dizcardable
vad just
penalty

Chapter 15: How TgX Makes Lines into Pages

@ Plain TEX provides several control sequences that help to control page breaks.

For example, \smallbreak, \medbreak, and \bigbreak specify increasingly
desirable places to break, having respective penalties of —50, —100, and —200; further-
more, they will insert a \smallskip, \medskip, or \bigskip of space, respectively, if a
break is not taken. However, \smallbreak, \medbreak, and \bigbreak do not increase
existing glue unnecessarily; for example, if you say \smallbreak just alter a displayed
equation, you won't get a \amallskip of space in addition to the glue that already
follows a display. Therefore these commmands can conveniently be used before and alter
the statements of theorems, in a format for mathematical papers. In the present manual
the anthor has used a macro that puts \medbreak before and after every dangerous-
bend paragraph; \medbreak\medbreak is equivalent to a single \medbreak, so your don’t
see two medskips when one such paragraph ends and another one begins.

@ The \goodbreak macro is an abbreviation for ‘\par\penalty-500°. This is a

good thing to insert in your manuscript when proofreading, if you are willing
to stretch some page a hittle bit extra in order to improve the following one. Later on
if you make another change so that this \goodbreak commnand does not appear near
the bottom of a page, it will have no effect; thus it is not as drastic as \eject.

@ The most interesting macro that plain TEX provides for page make-up is called
\filbreak. It means, roughly, “Break the page here and fill the bottom with
blank space, unless there is room for more copy that is itself followed by \filbreak.”
Thus if you put \filbreak at the end of every paragraph, and if your paragraphs aren’t
too long, every page break will ococur between paragraphs, and TEX will fit as many
paragraphs as possible on each page. The precise meaning of \filbreak is

\vfil\penalty~200\viilneg

according to Appendix B; and this simple combination of TEXs primitives produces
the desired result: If a break is taken at the \penalty-200, the preceding \vfil will
fill the bottom of the page with blank space, and the \viilneg will be discarded alter
the break; but if no break is taken at the penalty, the \vfil and \vfilneg wiil cancel
each other and have no effect.

@ Plain TEX also provides a \raggedbottom command, which is a vertical analog
of \raggedright: It tells TEX to permit a small amount of variability in the
bottom marging on different pages, in order to make the other spacing uniform.

@ We saw in Chapter 14 that breakpoints for paragraphs are chogen by comput-

ing “demerits” for ench line and summing them over all lines. The situation
for pages is simpler because each page is considered separately. TEX figures the “cost”
of a page break by using the following formula:

P, it b < oo and p < 10000 and ¢ < 10000,

b+p+qg, b < 10000 and —10000 < p < 10000 and g < 10000;
100600, it b = 10000 and —10000 < g < 10000 and ¢ < 1TH000;
o, # (b= oo or g > 10000} and p < 10600

Here b is the badness of the page that wounld be formed i a break were chosen here;
p is the penalty associated with the current breakpoint; and ¢ is ‘\insertpenalties’,
the sum of all penalties for split insertions on the page, as explained below. Vertical
badness is computed by the same rules as horizontal badnpess; it is an integer between
& and 10000, inclusive, except when the box is overfull, when it is oo {infinity).

(MR

111

smallbreak
mecthreak
bighreak
smallskip
medskip
higskip
theorems
goodhreak
filbreak

vlilneg
raggedbottom
raggedright
ot

bhadness
insertpenalties
intinite badness

112

Chapter 15: How TgX Makes Lines into Pages

@ When a page is completed, it is removed from the main vertical list and passed

to an “output routine,” as we will see later; so its boxes and glue eventually
disappear from TEXs memory. The remainder of the main vertical list exists in two
parts: First comes the “current page.” which contains all the material that TEX has
considered so far as a candidate for the next page to be broken off; then there are
“recent contributions,” ie., items that will be moved to the current page as scon as
TEX finds it convenient to do so. If you say \showlists, TgX will display the contents
of the current page and the recent contributions, #f any, on your log file. (The example
in Chapter 13 deesn’t show any such lists because they were both empty in that case.
Chapter 24 explains more about TEX’s timing.)

@@ Whenever TEX is moving an item from the top of the “recent contributions” to
the bottom of the “current page,” it discards a discardable item {glue, kern, or
penalty} if the current page does not contain any boxes. This is how glue disappears at
a page break. Otherwise if a discardable item i a legitimate breakpoint, TEX calculates
the cost ¢ of breaking at this point, using the formula that we have just discussed. If the
resulting ¢ is less than or equal to the smallest cost seen so far on the current page, TEX
remenbers the current, breakpoint ag the best so far. And if ¢ = oo or f p < 10000,
TEX seizes the initiative and breaks the page at the best remembered breakpoint. Any
material on the current page following that best breakpoint is moved back onto the
list of recent contributions, where it will be considered again; thus the “current page”
typically gets more than one page’s worth of material before the breakpoint is chosen.

@ This procedure may seem mysterions until vou see it in action. Fortunately,

there is a convenient way to watch it; you can set \tracingpages=1, therelby
instracting TEX to put its page-cost calculations into your log file, For example, here is
what appeared on the log file when the anthor used \tracingpages=1 at the beginning
of the present chapter:

% goal height=528.0, max depth=2.2

% t=10.0 g=528.0 b=1000C p=150 c=100000#
% 22,0 g=528.0 b=10000 p=0 c=100000#

% £=34.0 g=528.0 b=10000 p=0 c=100000#

{25 gimilar lines are being omitted here)
% t=346.0 plus 2.0 g=528.0 b=10000 p=0 c=100C00#
% t=358.0 plus 2.0 g=528.0 b=10000 p=150 c=100000%
% t=370.02223 plus 2.0 g=528.0 b=10000 p=-100 c=100000#

% t=398.0 plus 5.0 minns 2.0 g=528.0 b=10000 p=0 c=100000#

% t=409.0 plus 5.0 mimnms 2.0 g=528.0 b=10000 p=0 c=100000#

% t=420.0 pluns 5.0 minms 2.0 g=528.0 b=10C0C p=150 c=100000%#
% t=431.0 plus 5.0 minms 2.0 g=528.0 b=10000 p=-100 c=100C00#
% t=459.0 plus 8.0 minms 4.0 g=528.0 b=10000 p=0 c=100000#

% ot=470.0 plus 8.0 minnz 4.0 g=528.0 b=10000 p=0 c=100000#

% t=481.0 plus 8.0 minms 4.0 g=528.0 b=10000 p=0 c=100000#

4o t=492.0 plus 8.0 minnz 4.0 g=528.0 b=10000 p=0 c=100000#

% t=503.0 plus 8.0 minms 4.0 g=528.0 b=3049 p=0 c=3049#

% t=514.0 plus 8.0 minns 4.0 g=528.0 b=533 p=150 c=683#

% t=525.0 plus 8.0 minms 4.0 g=528.0 b=b p=-100 c=-95#

% t=553.0 plus 11.0 minns 6.0 g=528.0 b=t p=(c=4

outpot routine
current page

recent contribotions
showlists
discardable ftem
tracingpages

Chapter 15: How TgX Makes Lines into Pages

This trace output is admittedly not “user-friendly” in appearance, but after all it comes
from deep inside TEX s bowels where things have been reduced to numeric calealations.
You can learn to read it with a little practice. but vou won’t aeed to do so very often
unless vou need to plunge into page-breaking for special applications. Here’s what it
means: The first line, which starts with ‘L%, is written when the first box or insertion
enters the current page Hst; it shows the “goal height” and the “wmax depth” that will
he used for that page (namely, the current values of \vszize and \maxdepth). In the
present manual we have \vaize=4d4pc amd \maxdepth=2.2pt; dimensions in the log file
are always displayed in points. The subsequent lines, which start with a single 0, are
written whenever a legal breakpoint is being moved from the list of recent contributions
to the current page list. Every % line shows ¢, which is the total height so far if a page
break were to ocour, and g, whick is the goal height; in this example g stays fixed at
828 pt, but g would have decreased if insertions such ag footanotes had ocenrred on the
page. The values of ¢ are steadily imcreasing from 10 to 22 to 34, etc.; bagselines are
12 pt apart at the top of the page and 11 pt apart at the bottom {where material is
set in nine-point type). We are essentially seeing one § line per hbox of text being
placed on the current page. However, the % lines are generated by the penalty or glue
iterns that foliow the hboxes, not by the boxes themselves. Each ¥ line shows also the
badness b, the penalty p, and the cost ¢ associated with a breakpoint; if this cost is the
best so far, it is marked with o ‘% sign, meaning that “this breakpoint will be used for
the current page if nothing better comes along.” Notice that the first 40 or so breaks
all hayve & — 10006, since they are so bad that TEX considers them indistinguishable; in
such cases ¢ = 100000, so TEX simply accummuiates material until the page is full enough
to have b < 10000, A penalty of 150 reflects the \clubpenalty or the \widowpenalty
that was inserted as described in Chapter 14. The three lines that say p=-100 are
the breakpoints between “dangerous bend” paragraphs; these came from \medbreak
commands. The notation b=+ and c=+ on the final line means that b and ¢ are infinite;
the total height of 553 pt cannot be reduced to 528 ot by shrinking the available ghoe.
Therefore the page is ejected at the best previous place, which turns out to be a pretiy
good break: b=5 and p=-100 vield a net cost of —95,

@@» EXERCISE 15.1
Suppose the paragraph at the bottom of the examnple page had been one line
shorter; what page break would have been chosen?

@@» EXERCISE 15.2
The last two “% lines” of this example show the natural height of ¢ jumping
by 28 pt, from 525.0 to 553.0. Explain why there was such a big jump.

@@ The \maxdepth parameter tells TEX to raise the bottom box on the page if

that box has too much depth, so that the depth of the constructed page will
not exceed a specified value. {See the discussion of \boxmaxdepth in Chapter 12.} In
our example \maxdepth=2.2pt, and the influence of this parameter can be seen in the
Line that says % t=370.02223°, Ordinarily ¢ would have been 370.0 at that breakpoint;
but the hbox preceding it was wmusual because it contained the letter j in \tt, and
a 10-point typewriter-style j descends 2.22223 pt below the baseline. Therefore TpX
figured badness as if the hbox were 02223 pt higher and only 2.2 pt deep.

@ Notice that the first “% line” of our examsle says t=10.0; this is 4 consequence
of another parameter, called \topskip. Glue disappears at a page break, but

113

percent peroeent
goal height
max depth
vsine
maxdepth
percent

sharp
clubpenalty
widowpenalty
medd break

*

maxdepth
boxmaxdepth
tt

topskip

114 Chapter 15: How TgX Makes Lines into Pages

it i desirable to produce pages whose top and bottom baselines occur in predetermined pagetotal
positions, whenever possible; therefore TEX inserts special glae just before the first box i;:g:ﬁ"r‘:’]‘(.

. . . . ALORTTERC
on each page. This special glue is equal to \topskip, except that the natural space ;)ﬁgemsmﬂ oh
has been decreased by the height of the first box, or it has been set to zerc in len pagefillstreteh
of a negative value. For example, if \topskip=20pt plus2pt, and if the first bhox on ;;:ng]]:m]r:“h
the current page is 13 pt tall, TEX inserts ‘\vakip7pt plua2pt’ just above that box. pagedepth
Furthermore, if the first box is more than 20pt tall, \vakipOpt plus2pt’ is inserted. inf‘»‘!"r}*i)ﬁ'nal“(‘-ﬁ
But this exarmnple is atypical, since the \topskip glie usnally has no stretchability or Jrent

. ays . empty page
shrinkahility; plain TEX sets \topskip=10pt. empty line

@@» EXERCISE 15.3

Agsuine that \vsize=528pt, \maxdepth=2.2pt, \topskip=10pt, and that no
\insert commands are being used. TEX will make pages that are 528 pt high, and the
following two statements will normally be trie: (a) The baseline of the topmost box
on the page will be 10pt from the top, i.e., 518 pt above the baseline of the page itself.
{b} The baseline of the bottonmoest box on the page will coincide with the baseline of
the page itself. Explain under what circumstances (a) and (b} will fail.

@ Since \vsize, \maxdepth, and \topskip are parameters, you can change them

at amy time; what happens if you do? Well, TEX salts away the values of
\vsize and \maxdepth when i prints the “%% lne,” ie., when the first box or insertion
cceurs on the current page; subsequent changes to those two parameters have no effect
nntil the next current page is started. On the other hand, TEX looks at \topskip only
when the first box is being contributed to the current page. If ingsertions occur before
the first box, the \topskip glue before that box is considered to be a valid breakpoint;
this is the only case in which a completed page might not contain a box.

@ You can lock at the ¢ and g values that are used in page breaking by referring

to the {dimen} values “\pagetotal’ and ‘\pagegoal’, respectively. You can
even change thew {but let’s hope that vou know what vou are doing). For example,
the command \pagegoal=500pt overrides the previously saved value of \vsize. Be-
sides \pagetotal, which represents the accumulated natural height, TEX maintains the
guantities \pagestretch, \pagefilstretch, \pagefillstretch, \pagefilllstretch,
\pageshrink, and \pagedepth. When the current page contains no boxes, \pagetotal
and its relatives are zero and \pagegoal is 16383.99998 pt {TEX'’s largest {dimen}};
changing their values has no effect at such times. The integer g in the formula for page
costs is also available for inspection and change; it is called \insertpenalties.

@@ Page breaking differs from fine breaking in one small respect that deserves
mention here: If you say \eject\eject, the second \eject is ignored, because
it is equivalent to \penalty-10000 and penalties are discarded after o page break. But if
ol say \break\break in a paragraph, the second \break causes an empty line, because
penalties are discarded alter a break in a paragraph only i they do not belong to the
final sequence of breakpoints. This technicality is animportant in practice, because
\break\break isn’t a good way to make an empty lne; that lne will usually be an
underfull hbox, since it has only the \leftskip and \rightskip glue in it. Similarly,
Nejectieject’ would not be a good way to make an empty page, even if TEX were to
change its rules somehow so that an \eject would never be ignored. The best way to
eject an empty page is to say \eject\line{I\viil\eject’, and the best way to create
an empty line is ‘\break\hbox{}\hfil\break’. Both of these avoid underfull boxes.

Chapter 15: How TgX Makes Lines into Pages

@ You are probably wondering how page numbers and such things get attached

to pages. The answer is that TEX allows vou to do further processing alter
each page break has been chosen: a special “output routine” goes into action before
pages actually receive their final form. Chapter 23 explaing how to construct output
routines and how to modily the output routine of plain TpX.

@ Every once in a while, TEX will produce a really awful-looking page and you

will wonder what happened. For example, vou might get just one paragraph
and a lot of white space, when some of the text on the following page would easily fit
into the white space. The reasom for such apparently anomalous behavior is almost
always that no good page break is possible; even the alternative that looks better to
o is quite terribie as far as TEX is concerned! TEX does not distinguwish between two
choices that both have 10000 units of badness or more, even though some bad breaks
do look much worse than others. The solution in such cases is to insert \eject or
\vfill\eject in some acceptable spot, or to revise the manuscript. If this problem
arises frequently, however, you probably are using a format that sets overly strict
limitations on page format; try looking at the output of \tracingpages and modifying

some of TEX s parameters, until you have better luck.
@ The remainder of this chapter is about insertions: things like footnotes and
illustrations, and how they interact with page breaks. Defore we discuss the

primitive operations by which TEX deals with insertions, we will take a lock at the
facilities that plain TEX provides at a higher level.

@ Iilustrations can be inserted in several ways using plain TEX. The simplest of
these is called a “Hoating topinsert”; you say

\topinsert{vertical mode material}\endinzert

and TEX will attempt to put the vertical mode material at the top of the current page.
If there’s no room for such an ingertion on one page, TEX will insert it at the top of
the next page. The {vertical mode material} can contain embedded paragraphs that
temporarily interrupt vertical mode in the usnal way; for example:

\topinsert \vzkip 2in

\hzize=3in \raggedright

\noindent{\bf Figure 3.} Thiz iz the caption to the
third illustration of my paper. I have left two inches
of space above the caption so that there will be room
to introduce s=pecial artwork. \endinsert

The caption in this example will be set ragged-right in a 3-inch column at the left of
the page. Plain TgX automatically adds a “bigskip” below each topinsert; this will
separate the caption from the text. The effects of \hsize=3in and \raggedright do
not extend past the \endinsert, since grouping is implied.

g.?} » EXERCISE 15.4
Modify this example so that the caption is moved over next to the right margin,
instead of appearing at the left,

@ Similarly, if you say ‘\pageinsert {vertical mode material} \endinsert’, the
vertical mode material will be justified to the size of a full page {without a
bigskip below it); the result will appear on the following page.

115

ilustrations
Hoating topinsent
topinsert
endinsert

caption
ragged-right
bigskip

grouping
pageinsert

116

Chapter 15: How TgX Makes Lines into Pages

@ There’s also ‘\midinsert {vertical mode material} \endinzert’, which tries
first to insert the material in place, wherever vou happen to be, in the middie
of the current page. If there is encugh room, you get the effect of

\bigskip\vbox{{vertical mode material}}\bigbreak

otherwise the \midinsert is effectively converted to a \topinsert. There iy a slight
probhability that \midinsert will not find the best piacement, becanse TEX is sometimes
processing text ahead of the current page. You may want to say ‘\goodbreak’ just
before \midinzert.

@ You should use the commands \topinsert, \pageinsert, \midinsert in ver-
tical mode (i.e., between paragraphs), not ingide of boxes or other insertions.

@ If vou have two or more \topinsert or \pageinsert commands in quick suc-

cession, TEX may need to carry them over to several subsegquent pages; but
they will retain their relative order when they are carried over. For example, suppose
you have pages that are nine inches tall, and suppose you have already specified 4 inches
of text for some page, say page 25. Then suppose you make seven topinserts in arow, of
respective sizes 1,2, 3,9, 3,2, 1 inches; the 9-inch one is actually o \pageinsert. What
kappens? Well, the first and second will appear at the top of page 25, followed by the
4 inches of copy you have already typed; that copy will immediately be followed by two
maore inches that vou type after the seven inserts. The third topinsert will appear at
the top of page 26, followed by six more inches of text; the fourth will fill page 27; and
the remaining three will appear at the top of page 28.

@ » EXERCISE 15.5
What would happen in the example just discussed if the final 1-inch insertion
were a \midinsert instead of a \topinzert?

@ At the end of a paper, you probably want to make sure that no insertions

are lost; and at the end of a chapter, vou probably want to make sure that
n¢ ingertions float into the following chapter. Plain TgX will flush out all remain-
ing mgertions, with blank space filling the bottom of incomplete pages, if you say
‘\vfill\snpereject’.

@ Besides illustrations that are inserted at the top of a page, plain TEX will alzo

insert footnotes at the bottom of a page. The \footmote macro is provided
for nse within paragraphs;* for example, the footnote in the present sentence was typed
in the following way:

. paragraphs;\footnote*{Like this.} for example,

There are two parameters to o \footnote; first comes the reference mark, which will
appear both in the paragraph™ and in the footnote itgelf, and then comes the text of
the footnote*™ The Iatter text may be several paragraphs long, and it may contain

* Like thig.

**¥ The author typed ‘paragraph\footnote{#+}{The author ...} here.

4% And ‘footnote.\footnote{$ {453$1{and ...} here. The footnotes in this manual
appear in smaller type, and they are set with hanging indentation; furthermore a
saallskip occurs belween footnotes on the same page. But in plain TEX, foctnotes

midinsert
bigskip
bighreak
goodhreak
supereject
footnotes
footnote
reference mark

Chapter 15: How TgX Makes Lines into Pages

displayed equations and such things, but it should not invelve other insertions. TEX
will ensure that each footaote ocours at the bottom of the same page as its reference.t
A long footaote will be split, if necessary, and continued at the bottom of the following
page, as you can see in the somewhat contrived example that appears here. Authors
who are interested in good exposition should avoid footnotes whenever possible, since
footaotes tend to be distracting

@ The \footnote macre should be used only in paragraphs or hboxes that are

contributed to TEX's main vertical list; insertions will be lost i they ocour
mgide of boxes that are inside of boxes. Thus, for example, you should not try to put
a \footnote into a subformula of a math formula. But it’s OK to use footaotes within
\centerline, e.g.,

\centerline{A paper by A. U. Thoxr%
\footnote*{Supported by NSF.}}

or even on the outer level of a table entry ingide an \halign.

@@ Topinserts work fine by themselves, and footnotes work fine by themselves,
but complications can arise when vou try to mix them in devious ways. For
example, i a \pageinsert floats to the page that follows a long footnote that had
to be broken, both of the held-over insertions may try to force themselves onto the
same page, and an overfull vbox may result. Furthermore, ingertions cannot appear
within ingertions, so vou can’t use \footnote within a \topinzert. If vou really need
a footnote in some caption, there’s a \vfootnote macre that can be used in vertical
mode. To use it, vou put a reference mark like “»° in the caption, and then yvou say
‘\vfootnote*{The footnotel}’ somewhere on the page where you guess that the caption
will finally fall. In such complex cirenmstances you might want to rethink whether or
not vou are really using the most appropriate format for the exposition of vour ideas.

@ Chapter 24 explains the exact rules about migration of vertical-mode material
{like footnotes) from horizontal lists to the encloging vertical list. Insertions,
marks, and the results of \vadjunst all migrate in the same fashion.

@ Now let’s study the primitives of TEX that are used to construct macros ke

\topinsert and \footmote. We are about to enter behind the scenes into a
sublanguage of TEX that permits users to do complex manipuiations with boxes and
glue. Our discussion will be in two parts: First we shall consider TEX s “registers,”
with which a user can do arithmetic related to typesetting; and then we shall discuss
the insertion items that can appear in horizontal and vertical lists. Our discussion
of the first topic (registers) will be marked with single dangerous-bend signs, since
registers are of general use in advanced applications of TEX, whether or not they relate
to insertions. But the second topic will be marked with double dangerons-bend signs,
since insertions are rather esoteric.

are typeset with the normal size of type, with \textindent used for the reference
mark, and without extra smallskips. The \textindent macro is Hke \item, but it
omits hanging indentation.

1 Printers often use the symbols \dag (]}, \ddag {1}, \S {§}, and \P {%} as reference
marks; sometimes also 3718 {{]). You can say, e.g., ‘\footnote\dag{...}".

1 Yet Gibbon's Decline and Fall would not have been the same without Iootnotes,

117

tentindent
item

dag

ddag

5

l)

Wt
Giibhon
centerline
Thor
halign
vlootnote
migration
vad just
registers
arithmetic

118

Chapter 15: How TgX Makes Lines into Pages

@ TEX has 256 registers called \countd to \count255, each capable of containing

integers between —2147483047 and +2147483647, inciusive; ie., the magni-
tudes should be less than 2% TEX also has 256 registers called \dimen0 to \dimen255,
each capable of containing a {dimen)} (see Chapter 18). There are another 236 registers
called \ekipC to \ekip255, each containing {glue) {see Chapter 12); and \mskipC to
\mmskip255, each containing {mmglie} {see Chapter 18). Yon can assige new values to
these registers by saying

\comnt{number} = {number}
\dimen{mumber} = {dimen}
\skip{number} = {glue}
\muskip{number} = {mughe}

and then you can add or subtract values of the same type by saving

\advance\count{number} by {number}
\advance\dimen{number} by {dimen}
\advance\skip{number} by {glue}
\advance\muskip{number} by {mmglue}

For example, ‘\dimenf=\hsize \advance\dimen8 by 1lin’ sets register \dimen8 to an
inch more than the current value of the normal line gize.

@ If infinite glue components are added, lower order infinities disappear. For
example, after the two commands

\skip2 = Opt plus 2fill mimm= 32fill
\advance\skip2 by 4pt plus 1fil mimnuns 2filll

the value of \skip2 will be 4pt plus 2 ill minns 2 filll

@ Maltiplication and division are possible too, but only by integers. For example,

Ammltiply\dimend by 3’ triples the value of \dimen4, and ‘\divide\skip5
by 2’ cuts in half all three components of the gloe that is corrently registered in \skip5.
You shouldn’t divide by zero, nor should vou wultiply by ammbers that will make the
results exceed the register capacities. Division of a positive integer by a positive integer
discards the remainder, and the sign of the result changes if you change the sign of
either operand. For example, 14 divided by 3 vields 4; —14 divided by 3 vields —4;
—14 divided by —3 vields 4. Dimension values are integer mnltiples of sp {scaled points).

@ You can use any \count register in the context of a {number), any \dimen
register in the context of a {dimen}, any \skip register in the context of {glue},
and any \mskip register in the context of {muglue). For example, ‘\hskip\skipl’ puts
korizontal ghie into a list, using the value of \skipl; and if \count5 is 20, the command
‘\advance\dimen20 by\dimen\count5’ is equivalent to ‘\mmltiply\dimen20 by 2°

@ A \dimen register can be used also in the context of a {number}, and a \skip

register can be used as o {dimen} or a {number}. TEX converts {glue} to
{dirnen} by omitting the stretch and shrink components, and i converts {dimen} to
{mumber} by assuming units of gp {scaled points). For exomople, if \skipl holds the
value 1pt plus 2 pt, then ‘\dimenl=\skipl’ sets \dimenl egual to Ipt; and the com-
mands ‘\count2=\dimenl’ or ‘\comnt2=\zkipl’ will set \count2 equal to 65536. These
ritles alse apply to TEX s internal parameters; for example, ‘\dimen2=\baselinezskip’
will set \dimen2 to the natural space component of the current baselineskip gine.

count
nuber
dimen
dimen
ship
ghie
mskip
mngloe
advance
maltiply
divids
B

i her
dimen
glue
mngloe

Chapter 15: How TgX Makes Lines into Pages

g.?} » EXERCISE 15.6
Test vour knowledge of TEXs registers by stating the results of each of the
following commands when they are performed in sequence:
\comnt1=50 \dimen2=\countlpt \divide\countl by &
\skip2=~10pt plus\countlfil minmns\dimen2

\multiply\skip2 by~\countl \divide\skip2 by \dimen2 \counté=\zkip2

\skipl=.5\dimen2 plus\skip2 minnz\count\countlfill
Amultiply\skip2 by\skipl \advance\skipl by-\skip2

@ » EXERCISE 15.7
What is in \skip5 after the following three commands have acted?

\skip5=0pt plus 1pt
\advance\skip5 by \skip4 \advance\skip5 by ~\skip4

g?} » EXERCISE 15.8
(For mathemagicians.} Explain how to round \dimen2 to the nearest multiple
of \dimen3, assuming that \dimen3 is nonzero.

@ The registers obey TEX s group structure. For example, changes to \count3
mside {...} will not affect the value of \count3 outside. Therefore TgX

effectively has more than 256 registers of each type. If vou want the effect of a register

conrand to transcend its group, you must say \global when you change the value,

@ » EXERCISE 15.9
What is in \countl after the following sequence of commands?

\countl=5 {\countl=2 \global\advance\countiby\countl
\advance\countiby\counti}

@ The first ten \connt registers, \countC through \count9, are reserved for a

special purpose: TEX displays these ten counts on vour terminal whenever
cutputting a page, and it transmits them to the cutput file as an identification of that
page. The counts are separated by decimal points on your terminal, with trailing *. O
patterns suppressed, Thus, for example, if \count0=5 and \count2=7 when a page is
being shipped out to the dvi file, and if the other count registers are zero, TEX will
type ‘[6.0.71°. Plain TEX uses \count(for the page number, and it keeps \countl
through \count9 egual to zers; that is why yvou see Just ‘[1]° when page 1 is being
output. In more complex applications the page mumbers can have further structure;
ten counts are shipped out so that there will be plenty of identification.

@ It’s usually desirable to have symbolic names for registers. TEX provides a
\countdef command {gimilar to \chardef, cf. Chapter 8), which makes it
easy to do this: You just say

\countdef\chapno=28

and \chapno is henceforth an abbreviation for \count28. Similar commands \dimendef,
\ekipdef, and \muskipdef are available for the other types of numeric registers. After
a control sequence has been defined by \countdef, it can be used in TEX commands
exactly as if it were an integer parameter like \tolerance. Similarly, \dimendef ef-
fectively creates a new dimension parameter, \skipdef effectively creates a new glue
parameter, and \mmskipdef effectively creates a new muglue parameter.

119

rouned

aroup stroctore
glabal

dvi

1}

countdef
dimendef
skipdef
maskipdef
parameter

120

Chapter 15: How TgX Makes Lines into Pages

@ Besides the numerical registers, TEX also has 256 box registers called \box0 to

\box255. A box register gets a value when voun say \setbox{number}=({box};
for example, ‘\getbox3=\hbox {4} sets \box3 to an hbox that contains the single let-
ter 4. Several other examples of \zsetbox have already appeared in Chapter 12. Chap-
ter 10 points out that ‘2\wd? is a {dimen} that represents twice the width of \box3;
similarly, \bt{number} and \dp{number} can be used to refer to the height and depth
of a given box register.

@ Baox registers are local to groups just as arithmetic registers are. But there's a

hig difference between box registers and all the rest: When you use a \box, it
loses its value. For example, the construction ‘\raize2pt\box2’ in a horizontal list not
only puts the contents of \box3 into the list after raising it by 2pt, it also makes \box3
void. TgX does this for efficiency, since it is desirable to avoid copying the contents
of potentially large boxes. If you want to use a box register without wiping out its
comtents, just say ‘\copy’ instead of ‘\box’; for example, ‘\raize2pti\copyd’.

@ Another way to use a box register is to extract the inside of an hbox by saying
‘\unhbox’. This annihilates the contents of the register, like ‘\box’ daes, and
it also removes one leve! of boxing, For example, the commands

\setbox3=\hbox{A} \setbox3=\hbox{\box3 B}
\setbox4=\hbox{A} \setboxd=\hbox{\unhbox4 B}

put \hbox{\hbox{A}B} into \box3 and \hbox{AB} into \box4. Similarly, \unvbox un-
wraps a vhox, I you want to construct a large box by accretion (e.g., a table of
contents), it is best to use \unhbox ¢r \unvbox as in the \zetbox4 example; otherwise
vou use more of TEX’s memory space, and vou might even obtaim boxes inside bhoxes
nested to such a deep level that hardware or software limits are exceeded.

@ The operations \unhcopy and \unvcopy are related to \unhbox and \unvbox
as \copy is to \box. {But their names are admittedly peculiar.)

@ An unboxing operation “ansets” any glue that was set at the box’s cuter level.
For example, consider the sequence of commands

\zetbox5=\hbox{A \hbox{B C}} \setboxt=\hbox teo 1.05\wd5{\unhcopy5}

This makes \box6é five percent wider than \box5; the glue between A and \hbox{B C}
stretches to make the difference, but the giue inside the inner hbox does not change.

@ A box register is either “void” or it containg an hbox or a vbox. There is a

differenice between a void register and one that containg an empty box whose
height, width, and depth are zero; for example, if \box3 is void, you can say \unhbox3
or \nnvbox3 or \unhcopy3 or \unvcopy3, but if \box3 is equal to \hbox{} vou can say
only \unhbox3 or \unhcopy3. If you say ‘\global\setbox3={hax}’, register \box3 will
become “globally void” when it is subsequently used or unboxed.

g?} » EXERCISE 15.10
What is in register \box5 alter the following commands?

\zetbox5=\hbox{4} \szetbox5=\hbox{\copy5\unhbox5\box5\unhcopys}

g.?} » EXERCISE 15.11
And what’s in \box3 after ‘{\global\zetbox3=\hbox{A}\setbox3=\hbox{}}’'?

hox
serthoa
hem

ht

dap

wl

Copy
nnhbox
oirvhon
table of contents
unheopy
ONVCODY
v

grouping with box registers

Chapter 15: How TgX Makes Lines into Pages

@ If vou are unsure about how TEX operates on its registers, vou can experiment
online by using certain “\show’ commands. For example,

\showthe\countl \showthe\dimen2 \showthe\zkip3

will display the contents of \conntl, \dimen2, and \=kip3; and ‘\showbox4’ will dis-
play the contents of \box4. Box contents will appear only in the log file, unless you
say ‘\tracingonline=1’. Plain TEX provides a macro “\tracingall’ that turans on
every possible mode of interaction, including \tracingonline. The author used these
features to check the answers to several of the exercises above.

{;?2 Large applications of TEX make use of different sets of macros written by
different groups of people. Chaos would reign if o register like \connt100, say,
were being used simultanecusly for different purposes in different macros. Therefore
plain TEX provides an aliccation facility; cooperation will replace confusion if each
macro writer uses these conventions. The idea is to say, eg., ‘\newcount’ when you
want to dedicate a \count register to a special purpose. For example, the anthor
designed a macro called ‘\exercise’ to format the exercises in this mammal, and one of
the features of \exercisze is that it computes the mumber of the current exercise. The
format macrog in Appendix E reserve a \count register for this purpose by saying

\newconnt\exno

and then the comnmand ‘\exno=0 is used at the beginning of eack chapter. Similarly,
‘\advance\exno byl’ is used whenever a new exercise comes along, and ‘\the\exno’
is used to typeset the current exercise mumber. The \newcount aperation assigns a
unigque count register to its argument \exno, and it defines \exno with a \conntdef
command. All of the other format macros are written without the knowledge of exactly
which \count register actually corresponds to \exno.

@ Besides \newcount, plain TEpX provides \newdimen, \newskip, \newmmskip,

and \newbox; there also are \newtoks, \newvread, \newwrite, \newfam, and
\newinsert, for features we haven’t discussed yet. Appendices B and E contain sev-
eral examples of the proper use of allocation. In the cases of \newbox, \newread,
etc., the allocated number is defined by \chardef. For example, if the command
‘\newbox\abstract’ is used to define a box register that will contain an abstract,
and if the \newbox aperation decides to allocate \box45 for this purpose, then it
defines the meaning of \abstract by saying ‘\chardef\abstract=45". TgX allows
\chardef’d guantities to be used as integers, so that you can say \box\abstract and
\copy\abstract, efc. {There is no \boxdef command.}

g% » EXERCISE 15.12
Design a \note macro that produces footnotes numbered sequentially. For
example,’ it should produce the footnotes here? if vou type

example, \note{First note.} it shounld produce
the footmotes here\note{Second note.} if

{Use \newconnt to allocate a \count register for the footnotes.)

! PFirst note.

2 Second note.

121

showbhox
showthe
tracingall
tracingonline
allocation
macro writer
neweonnt
countdef
newdiien
newskip
newmoskip
newhor
newtoks
newread
newwTite
newlam
newinsert
chardefl

122

Chapter 15: How TgX Makes Lines into Pages

@ Sernetimes, however, you want to use a register just for temporary storage,

and you koow that it won't conflict with anybody else’s macros. Registers
\count255, \dimen255, \skip255, and \muskip255 are traditionally kept available for
such purposes. Farthermore, plain TEX reserves \dimen0 to \dimen9, \skip0 to \skip9,
\mmzkip0 to \muskip®, and \boxC to \box9 for “scratchwork”™; these registers are never
allocated by the \new. .. operations. We have seen that \count0 through \count9 are
special, and \box255 alsc turns out to be special; so those registers should be avoided
unless vou know what vou are doing.

@ Of course any register can be used for short-tersn purposes inside a growp

(including \count® to \count9 and \bex255, and including registers that have
been alivcated for other purposes), since register changes are local to groups. However,
yoar should be sure that TEX will not output any pages before the group has ended,
because output routines might otherwise be invoked at unfortunate times. TEX is lable
to invoke an output routine whenever it tries to move something from the lst of recent
comtributions to the current page, because it might discover a page break with ¢ = oo
then. Here is a list of the times when that can happen: {a} At the beginning or end of a
paragraph, provided that this paragraph is being contributed to the main vertical list.
{b} At the beginning or end of a displayed equation within such a paragraph. (¢} After
completing an \halign in vertical mode. (d} After contributing a box or penalty or
insertion to the main vertical Hst. {e) After an \output routine has ended.

@ Now that we are armed with the knowledge of TEX's flexible registers, we

can plunge into the details of inzertions. There are 255 classes of ingertions,
\insert0 to \in=zert254, and they are tied to other registers of the same number,
For example, \inzert100 iz connected with \count100, \dimenl00, \skipl00, and
\box10C. Therefore plain TEX provides an allocation function for insertions as it does
for registers; Appendix B includes the command

\newinsert\footins

which defines \footins ag the number for footnote mgertions. Other commands that
deal with footnotes refer to \count\footins, \dimen\footins, and so on. The macros
for floating topinserts are similarly prefaced by ‘\newinsert\topins’, which defines
\topins as the number of their class. Each class of insertions is independent, but TEX
preserves the order of insertions within a class. It turns out that \footins is clags 254,
and \topins is class 253, but the macros do not use such numbers directly.

@ For our purposes let’s consider a particnlar class of insertions called class 2,
we will then be dealing with TEX s primitive command

\insert n{{vertical mode material}}
which puts an insertion item into a horizontal or vertical list. For this class of insertions

\box 7 is where the material appears when a page is output;
\count 7 is the magnification factor for page breaking;
\dimen 7 is the maximum insertion size per page;

\skip 7 is the extra space to allocate on a page.

For example, material inserted with \insert100 will eventually appear in \box100,

groups

outpot rootines, when invoked
page builder, when exercised
newinsert

insert

Chapter 15: How TgX Makes Lines into Pages

@ Let the natural height plas depth of \ingsertn be x; then \count n is 1000

times the factor by which x affects the page goal. For example, plain TEX sets
\count\footins=1000, since there is a one-to-one relationship: A Hhpoint footaote
effectively makes a page 10 pt shorter. But if we have an application where footaotes
appear in double columns, a count value of 500 would be appropriate. One of the
insertion classes in Appendix E makes marginal notes for proofreading purposes; in
that case the connt valuwe is zero. No actual magnification is done; \count « is simply
a number used for bookkeeping, when estimating the costs of various page breaks.

@@ The first footnote on a page requires extra space, since we want to separate

the footnotes from the text, and since we want to output a horizontal rule.
Piain TEX sets “\skip\footins=\bigskipamount’; this means that a bigskap of extra
space is assumed to be added by the output routine to any page that contains at least
one insertion of clagss \footins.

@ Seraetimes it is desirable to put a maximum Hmitation on the size of lnsertions;

for example, people usually don’t want an eatire page to consist of footnotes.
Piain TEX sets \dimen\footina=8in; this reans that \box\footinz is not supposed
to accnmuiate more than 8 inches of footnotes for any one page.

@ You might want to review the page-breaking algorithm explained at the be-
ginning of this chapter, before reading further. On the other hand, maybe you
don’t really want to read the rest of this chapter at all, ever.

@@ Here now is the algorithm that TEX performs when an \insert n is moved

from the “recent contributions” to the “current page” (Remember that such
a move does not mean that the insertion will actually take place; the current page will
be backed up later, to the breakpoint of least cost, and only the insertions preceding
that breakpoint will actually be performed.) Let g and ¢ be the current \pagegoal
and \pagetotal; let q be the \insertpenalties accumulated for the current page;
and let d and z be the current \pagedepth and \pageshrink. {The value of d iz at
most \maxdepth; this value has not yet been incorporated into £.) Finally, let £ be
the natural height pius depth of the \insert n that we are moving to the current page;
and let f be the corresponding magnification factor, i.e., \conntn divided by 1000.

Step 1. I there iz no previous \inzert n on the current page, decrease g by hf + w,
where h is the current height plus depth of \box s, and where w is the natural space
component of \skipn; alse include the stretch and shrink components of \skipn in
the totals for the current page (in particular, this affects 2).

Step 2. If a previcus \insert n on the current page has been split, add the parameter
called \floatingpenalty to ¢, and omit Steps 3 and 4.

Step 3. Test if the current insertion will fit on the page without splitting. This means
that it will not make the height plus depth of \boxn surpass \dimenn, when it is
added to \boxn together with all previcus \insert«n amounts on the current page;
furthermore, it means that either o f < Dort+d+2f— 2 < g. If both tests are passed,
subtract xf from g and omit Step 4.

Step 4. (The current insertion will he split, at least tentatively; bat the split will not
actually take place if the least-cost page turas out to have occurred earlier than the
present insertion.} First compute the largest amonnt » such that a height plus depth

123

bigskipamount
pagegoal
pagetotal
nsertpenalties
pagedepth
pageshrink
maxdepth
Hoatingpenalty

124 Chapter 15: How TgX Makes Lines into Pages

of » will not make the total insertions into \boxn bigger than \dimenn, and such that sphit insertion penalty
t+d+of < g (Notice that z is omitted from the latter formula, but the available i:ig ‘]ﬁ“‘ split
shrinkability wag considered in Step 3 when we tried to avoid splitting.} Then find the 5.,'){.“”1 axdapth
least-cost way to split the beginaing of the vertical Hst of the insertion so as to obtain a maxdepth

box of height 0. (Use an algorithm just like page-breaking, but without the complexity f;:lja‘:f::}]’{]:j)

of ingertion; an additional ‘\penalty~10000" item is assumed to be preseat at the end of topskip

the vertical list, to ensure that a legal breakpoint exists.] Let u be the natural height Hoatingpenalty

plus depth of that least-cost box, and let r be the penalty asseociated with the optimum
breakpoint. Decrease g by »f, and increase ¢ by r. (I \tracingpages=1, the log file
shontkd now get a cryptic message that says % splitn to o, p=r’. For example,

% =plit254 to 180.2,175.3 p=100

means that the algorithm has tried to split an \insert254 to 180.2 pt; the best split is
actually 175.3pt tall, and the penalty for breaking there is 100.)

@ This algorithm is admittedly complicated, but no simpler mechanisin seems

to do nearly as much, Notice that peanalties of —10000 inside insertions will
make certain gplits very attractive in Step 4, so the user can provide hints about
where to break, in difficult situations. The algorithm provides a variety of different
bekaviors: Floating insertions can be accommodated as a special case of split insertions,
by making each Hoating topinsert start with a small penalty, and by having zero as the
associated \floatingpenalty; non-floating insertions like footnotes are accommodated
by associating larger penalties with split insertions {see Appendix B},

@ The splitting operation mentioned in Step 4 is also available as a primitive:
“\vaplit{number} to{dimen) produces a vbox obtained by splitting off a
specified amount of material from a box register. For example,

\2etbox200=\vaplit100 to 50pt

sets \box200 to a vhox whose height is 50 pt; it goes through the vertical list inside
\box100C {which should be a vbox) and finds the least-cost break assuming a goal height
of 50 pt, considering badnesses and penalties just as in the case of page-breaking {(but
with ¢ = €}. The algorithm uges \splitmazdepth instead of \maxdepth to govern
the maxinmm depth of boxes. Then it prunes the top of \box100 by removing every-
thing up to and inchuding any discardable items that fimmediately follow the optimum
breakpoint; and # uses \aplittopskip to insert new glue before the first box inside
\box100, just as \topskip glue appears at the top of 2 page. However, if the optimum
breakpoint occurs at the end of the vertical lst inside \box100—a “\penalty-1000Q°
item is assumed to be present there—or if all items after the optimum breakpoint are
discarded, \box100 will be void after the \vsplit. And if \box100 was void before the
\vaplit, both \box100 and \box200 will be void alterwards.

@ You'd better not change \box 7, \count 7, \dimenn, or \skipn while TEX is

contributing insertions to the current page, since TEXs algorithin assumes that
those guantities are static. DBut vou can change \floatingpenalty, \splittopskip,
and \splitmaxdepth; TEX will use the values that were current just inside the closing
right brace of ‘Ninsertn{...}’ when it splits and floats insertions. For example, Ap-
pendix B uses \floatingpenalty=20000 in footaote insertions, to discourage footaotes
that split before others can start, but \floatingpenalty=0 in floating topinserts. Ap-

Chapter 15: How TgX Makes Lines into Pages

pendix B also uses special values of \aplittopskip and \aplitmaxdepth, together with
struts, so that split footnotes will be typeset with the same spacing as unsplit ones.

@ The \footnote macro puts an \insert into the horizontal list of a paragraph.

After the paragraph has been broken into lines, this ingertion will move out
into the vertical list just after the line that contained it (see Chapter 14). Since there
is no legal breakpoint between that box {i.e., that line) and the insertion, TEX will put
the insertion onto the page that contains the line that contains the insertion.

@@» EXERCISE 15.13
Study the page-breaking algorithm carefuily. Is it possible that a footnote
nright not appear on the same page as its reference?

@@ When the best page break is finally chosen, TEX removes everything after
the chosen breakpoint from the bottom of the “current page” and puts it
all back at the top of the “recent contributions.” The chosen breakpoint itself is
placed at the very top of the recent contributions. If it is a penalty item, the value
of the penalty is recorded in \outputpenalty and the penalty in the contribution fist
is changed to 10000; otherwise \outputpenalty is set to 10000. The insertions that
remain on the current page are of three kinds: For each class n there are unsplit
imsertions, followed possibly by a single split insertion, followed possibly by others. T
\holdinginzerta > 0, atl insertions remain in place (so that they might be contributed
again); otherwise they are all removed from the current page hist as follows: The unsplit
insertions are appended to \box n, with no interline glue between them. {Struts should
be used, as in the \vfootnote macro of Appendix B.) If a split insertion is present, it
i effectively \vsplit to the gize that was computed previously in Step 4; the top part
i treated as an unsplit insertion, and the remainder (if any) is converted to an insertion
as if it had not been split. This remainder, followed by any other floating insertions of
the same class, is held over in a separate place. {They will show up on the “current
page” if \showlists is used while an \output routine is active; the totat number of
such ingsertions appears in \insertpenalties during an \outpnt routine.} Finatly, the
remaining itews before the best break on the current page are put together in a \vbox
of height g, where g was the \pagegoal at the time of the break, using the saved value
of \maxdepth; this box becomes \box255. Now the user’s \output routine enters TEX s
seanner {see Chapter 23); its duty is to assemble the final pages baged on the contents of
\box255 and any insertion boxes that it knows about. The output routine will probably
nnbox those boxes, so that their glue can be reset; the glue in insertion boxes nsually
cooperates nicely with the glue on the rest of the page, when it is given a chance. After
the \output routine is finished, held-over insertion #ems are placed first on the list of
recent contributions, followed by the vertical list constructed by \output, followed by
the recent contributions beginning with the page break. (Deep breath.} You got that?

Since it is impossible to foresee how [foofnotes] will happen to come out

in the make-up, it is impracticable to number them from 1 up on each page.
The best way s to number them consecutively throughout an articie

or by chapters in a book.

— UNIVERSITY OF CHICAGO FPRESS, Manual of Style {1910)

Don’t use footnotes in your books, Don.
- JILL KNUTH {1962)

125

strots
outpotpenalty
holdinginserts
Strots
showlists
autput
insertpenaltios
maxdepth
output

hox2565
held-over insertion
CHICAGO
RKN{TH

_

16

Typing
Math Formulas

Chapter 16: Typing Math Formulas

TEX is designed to handle complex mathematical expressions in such a way that
most of them are casy to input. The basic idea is that a complicated formula
is composed of less complicated formulas put together in a simple way; the less
complicated formulas are, in turn, made up of simple combinations of formulas
that are even less complicated; and so on. Stating this another way, if vou know
how to type simple formulas and how to combine formulas into larger ones, you
will be able to handle virtually any formula at all. So let’s start with simple ones
and work our way up.

The simplest formula is a single letter, like ‘27, or a single number, like
‘2°. In order to put these into a TEX text, you type ‘x° and ‘$2¢°, respectively.
Notiee that all mathematical formulas are enclosed in special math brackets; woe
are using § as the math bracket in this manual, in accord with the plain TEX
format defined in Appendix B, because mathematics is supposedly expensive.

When vou type ‘x° the “x° comes out in italics, but when you type
‘$2%° the ‘2° comes out in roman type. In general, all characters on your key-
board have a special interpretation in math formulas, according to the normal
conventions of mathematics printing: Letters now denote italic letters, while
eligits and punectuation denote roman digits and punetuation; a hyphen {~) now
denotes a minus sign (—), which is almost the same as an em-dash but not quite
{see Chapter 2). The first § that you type puts you into “math mode” and the
secorl takes yvou out (see Chapter 13). So if you forget one § or type one § too
many, TEX will probably become thoroughly confused and vou will probably get
some sort of error message.

Formulas that have heen typeset by a printer who is unaccustomed to
mathematics usually look quite strange to a mathematician, because a novice
printer usually gets the spacing all wrong. In order to alleviate this problem, TEX
does most of its own spacing in math formulas; and it ignores any spaces that you
vourself put between $%s. For example, if you type '$ x$" and '$ 2 ¥, they will
mean the same thing as *x° and ‘$2¢%°. You can type $(x + y)/(x -~ p§ or
‘F(x+y) / (x=y) ¥, but both will vesult in “(x + y)/(z —), a formula in which
there is a bit of extra space surrounding the + and — signs but none around
the / sign. Thus, you do not have to memorize the complicated rules of math
spacing, and you are free to use blank spaces in any way yvou like. Of course,
spaces are still used in the normal way to mark the end of control sequences,
as explained in Chapter 3. In most circumstances TEX's spacing will be what a
mathematician is accustomed to; but we will sec in Chaptor 18 that there arc
control sequences by which you ean override TEX s spacing rules if you want to.

One of the things mathematicians like to do is make their formulas look
like Greek to the uninitiated. In plain TEX language you can type ‘$$\alpha,
\beta, \gamma, \delta;$$ and vou wili get the first four Greek letters

o, By 8

turthermore there are uppercase Groek letters like ‘17, which you can got by
typing ‘Γ’. Don’t feel mtimidated if vou aren’t already familiar with

127

mathematical expressions
formuolas
italic
Y
minns sign
math mode
dollarsign
SPaces
Greek
alpha

heta
gamina
delta
GasnTna

128

Chapter 16: Typing Math Formulas

Greek letters; they will be easy to learn if you need them. The only difficulty
is that some symbols that look nearly the same must be carefully distinguished.
For example, the Greek letters \nu (v} and \kappa () should not be confused
with the italic letters v and z; the Greek \phi (¢) is different from the slashed
zero called \emptyset {#). A lowercase epsilon (€) is quite different from the
symbol used to denote membership in a set (€); type ‘ϵ’ for € and
‘$ind’ for €. Some of the lowercase Greek Ietters have variant forms in plain
TEX’s math italic fonts: ‘$ (\phi,\theta,\epsilon,\rho)$" yiclds ‘(¢.d.¢, p)’
while ‘¢ (\varphi,\vartheta, \varepsilen,\varrhe) § yields (¢, 9.2, o).
Besides Greek letters, there are a lot of funny symbols like ‘=" {which
vou get hy typing ‘\approx’) and ‘r7 (which you get by typing ‘\mapsto’).
A complete list of these control sequences and the characters they correspond to
appears in Appendix F. Such control sequences are allowed only in math mode,
i.c., between §'s, because the corresponding symbols appear in the math fonts.

» EXERCISE 16.1
What should you type to get the formula ‘v + v € 17

» EXERCISE 16.2
Look at Appendixz ¥ to discover the control sequences for <%, ‘>7, and ‘#£°.
{These are probably the three most commonly used math symbols that are not
present on your keyhoard.) What does plain TEX call them?

Now let’s see how the more complex formulas get built up from simple
ones. In the first place, vou can get superseripts WP and subseripts (heren low)

by using " and “_’°, as shown in the following examples:

Input Chutput
$x" 2% x?
$x_2% T
$27x$ 2%
$x"2y 2% oy’
$x " 2y ~ 2% aty?
$x_2y_29% Lol
$_2F_3% 2

Notice that = and _
things to he superseripted or subscripted, just enclose them in braces:

$x"{2y}$ e
$27{2"x}¢ 22
$2-{2°{2"x)}}$ 2%
$y_{x_2}% Yirs

$y.ix"2}8 Y2

apply only to the next single character. If you want several

no
kappa

jphi

amptyset

epsilon

in

johi

theta

rho

varphi

vartheta

varrho

varepsilon

funsy symbols

approR

special symbols for math
mapsto

math symbols
sUperseripts

subsoripts

indices, see sobsoripts
superiors, see superseripts
inferiors, see subscripts

Chapter 16: Typing Math Formulas

The braces in these examples have been wsed to specify “subformulas,” ie,
simpler parts of a larger formmla. TEX makes a box for sach subformula, and
treats that box as if it were a single symbol. Braces also serve their usual purpose
of grouping, as discussed in Chapter 5.

Tt is illegal to type ‘x"y"2" or ‘x_y. 2" TpX will complain of a “double
superseript” or “double subscript.” You must type ‘x"{y"z} or ‘x"{yz} or
‘Azl or ‘x_{yz} in order to make your intention clear.

A supoerseript or subscript following a character applics to that character
only; but when following a subformula it applies to that whole subformula, and
it will be raised or lowered accordingly. For example,

$((x"2)73) 4% ((;{:2)3)1
$L{x"2)}"3)} 48 ((;{:2‘)3\}

I the first formula the 737 and “74° are superscripts on the right parentheses,
ie., on the *)* characters that immediately precede them, but in the secomned
formula they are superscripts on the subformulas that are enclosed in braces.
The first alternative is preferable, because it is much casier to type and it is just
a3 easy to read.

@ A subseript or superscript following nothing {(as in the *_2F_3° example on

the preceding page, where the *_2° follows nothing) is taken to mean a sub-
seript or superscript of an empty subformula. Such notations are {fortunately) rare in
mathematics; bat if vou do encounter them it is better to make vour intention clear by
showing the empty subformula explicitly with braces. In other words, the best way to
get o Fy’ in a formula is to type {3 _2F_3" or {_2}F_3 or *{_2F_3}".

@ » EXERCISE 16.3
What difference, if any, is there between the cutput of ‘$x + _2F_3% and the
output of ‘$x + {} 2F 3% 7

g?} » EXERCISE 16.4
Describe the differences between the outputs of ‘${x"y} 2% and $x"{y z}$".

You can have simmltancous subscripts and superscripts, and you can
specify them in any order:

$x°2.38 22

$x_372% 22

$x"{31416} _{92}+\pi$ B L
a4

$x_{y a b} {z_c d}s IZ;‘

Notice that simultancous suj “scripts are positioned over cach other. However, a
subseript will be *tucked in” slightly when it follows certain letters; for example,
‘$P_272%° produces ‘Pf’. If for some reason you want the left edges of both
subscript and superscript to be aligned, you can fool TEX by inserting a nuil
subformula: “$P{}_272¢° produces ‘P35

129

subformuolas
right parentheses

130

Chapter 16: Typing Math Formulas

The control sequence \prime stands for the symbol 7, which is used
mostly in superseripts. In fact, /7 is so big as it stands that you would never
want 0 yse it except in a subscript or superscript, where it occurs in a smaller
size. Here are some typical examples:

Input Chutput
$y_1"\prime$ 1
$y..2 " {\prime\prime}$ yh

$v.3 {\prime\prime\prime}$ '

Since single and double primes oceur rather frequently, plain TEX provides a
convenient abbreviation: You can simply type * instead of “\prime, and *’
instead of “{\prime\prime}, and s0 on.

$1 [glx)] g’ (x)§ [elalg' (z)
$y_1'+y 2% Y Tyl
$y’ _1+y’ 2% ¥ty
By’ 3+g’ 29 vy + g

@ » EXERCISE 16.5

Why do vou think TEX treats \prime as a large symbol that appears only in
superscripts, instead of making it a smaller symbol that has already been shifted up
into the superscript position?

@ » EXERCISE 16.6
Mathematicians sometimes use “tensor notation” in which subscripts and su-
perscripts are staggered, as in ‘K%, Explain how to achieve such an effect.

Another way to get complex formulas from simple ones is o use the con-
trol sequences \sqrt, \underline, or \overline. Like " and _, these operations
apply to the character or subformula that follows thom:

f\eqrt2$ V2
Peqri{x+2}§ VIt2
\underlined 4
$\overline{x+y}$ Tty
$\overline x+\coverline y$ T+7
$x"{\underline n}$ e
$x"{\overline{m+n}}$ R

$Asqrt{x"3+\sqrt\alphal$ LR

7 T
You can also get cube roots ‘v * and similar things by using \root:

$\root 3 \of 2% V2
$\rcot n \of {x"n+y n}$ ot oyt

$\rcot n+l \of af “Ha

prime

tensor notation

st

onderline

overline

surds, see sqrt
vinceolom, see overline
root

Chapter 16: Typing Math Formulas

@ The \zqrt and \underline and \overlime operations are able to place lines

above or below subformulas of any size or shape; the bar lines change their size
and position, so that they are long enough to cover the subformula, and high enough
or low enough not to bump into it. For example, consider ‘\overline 1’ ([} versas
‘Noverline m’ {77): the first kas a shorter bar line, and this line has been raised higher
than the bar in the second. Similarly, the bar in ‘\underline ¥’ {3} is lower than
the har in \underline x° {z); and squase root signs appear in a variety of positions
based on the height and depth of what is being \sqrt’d: o+ Vi + vy TEX kaows
the height, depth, and width of every letter and every subformula, becanse it considers
them to be boxes, as explained in Chapter 11. If vou have a formula in which there
is only one \agrt, or only one \overline v \underlinme, the normal positioning rales
work fine; but sometimes you want to have yniformity between different members of a
comrplex formula. For example, you might want to typeset \ﬁ + \/;1‘ + ﬁ’, putting
all samare roots in the same vertical position. There’s an easy way to do this, using the
control sequence \mathstrut as follows:

$\sgrt{\mathstrut a}+\zqrt{\mathstrnt d}+\sqrt{\mathstrmt y}$.

A \mathstrut is an invisible box whose width iy zero; its height and depth are the
keight and depth of a parenthesis ‘(. Therefore subformulas that contain \mathstrut
will always have the same height and depth, unless they involve more complicated
constructions like subscripts and superscripts. Chapter 18 discusses more powerful
operations called \smash and \phantom by which vou can obtain complete control over
the positioning of roots and similar signs.

» EXERCISE 16.7
Test your understanding of what you have read so far in this chapter by explain-
ing what should be typed to get the following formulas. {Be sure to check your
answer with Appendix A to confirm that you're right.)

100 2l 1y Va2 o wrz pf as,, Vhi{ox)
» EXERCISE 16.8
What mistake did B, C. Dull discover after he typed the following?

If$ x = yv#, then $x¥ is equal to $y.%

» EXERCISE 16.9
Explain how to type the following sentence:

Deleting an element from an n-tuple leaves an {n — 1)-tuple.

» EXERCISE 16.10
List all the italic lotters that descend below the bascline. (Those are the lettors
for which \underline will lowor its bar lne.)

We have discussed the fact that the characters you type have special
meanings in math mode, but the examples so far are incomplete; they don't
reveal all the power that is at your fingertips just after you press the ‘$° key. 1t's
time now to go back to basics: Let us make a systematiec survey of what each
character does, when it is used in a formula,

131

mathstrot
smash
phantom
Dull

132

Chapter 16: Typing Math Formulas

The 52 letters (A to Z and a to z) denote walic symbols {4 to Z and
a to z), which a mathematician would call “variables.” TEX just calls them
“ordinary symbols,” because they make up the bulk of math formulas. There
are two variants of lowercase L in plain TEX, namely *I° (shich you get by simply
typing ‘1) and ‘£ (which you get hy typing “\ell’}. Although mathematicians
commonly write something that looks like *£ in their mamuseripts, they do so
only to distinguish it from the numeral '1°. This distinguishability problem is
not present, in printed mathematics, since an italic ‘0 is quite difforent from a ‘17
therefore it is traditional to wse 07 unless 47 has been specifically roguested.

Plain TEX also treats the 18 characters

012345678917 .]/¢<a"

as ordinary symbols; ie., it doesn’t insert any extra space whoen these symbols
oceur next to each other or next to letters. Unlike the letters, these 18 characters
remain in roman type when they appear in formulas. There’s nothing special for
vou to remember about them, except that the vertical Hne |17 has special uses
that we shall discuss later. Furthermore, vou should be careful to distinguish
between ‘oh’ and ‘zero”: The italic letter (0 is almost never wsed in formulas
unless 1t appears just before a left parenthesis, as in *0(n)"; and the numeral 0 is
almost never used just before a left parenthesis unless it is preceded by another
eligit, as in *10(n -~ 1)’. Watch for left parentheses and you'll be QK. (Lowercase
o’s also tend to appear only hefore left parentheses: type ‘x_07 instead of ‘x_o’,
since the formula ‘x4’ is generally more correct than ‘z,°.)

The three characters +, =, and * are called “binary operations,” hecause
they operate on two parts of a formula. For example, + is a plus sign, which is
used for the sum of two numbors; = 13 a minus sign. The asterisk (} is rarer in
mathematics, but it alkso behaves as a binary operation. Here are some exam-
ples of how TEX typescts binary operations when they appear next to ordinary
symbols:

Input Chutput
$x+y-z$ LAy -z
Px+yxz$ Ttyxz
xxy/z Try/z

Notice that - and * produce quite different math symbols from what you get in
normal text: The hyphen (=) hecomes a minus sign (—), and the raised aster-
isk (*} drops down to a lower lovel (x).

@ TEX does not treat / as a binary operation, even though a slash stands for

division (which qualifies as a binary operation on mathematical grounds). The
reason s that printers traditionally put extra space around the symbols +, —, and %,
but not arcund /. I TEX were to typeset / as a binary operation, the formala '$1/2¢
would come out ‘1 /27, which is wrong; so TEX coasiders / to be an ordinary symbol.

letters

variables
ordinary symbols
ell

digits

numerals

vertical line
big-{2 notation
binary operations
plus sign

minos sign
asterizk

star, see asterisk
hyphen

slash

Chapter 16: Typing Math Formulas

@ Appendix F lists many more binary operations, for which you type control
sequences instead of single characters. Here are some examples:

$x\times y\cdot z$ Y-z

$x\circ y\bullet =z% rToymz

$x\cup y\cap z$ zynz
$x\sqcup y\sgcap z% xUyNz
$x\vee y\wedge z$ TVyhz
$x\pm y\mp z$ rtyFe

It i important to distinguish * (\times) fromn X {X} and from ¢ (x); to distinguish U
{\cup) from U {U} and from u {u}; to distinguish V {\vee} from V {¥) and from » (v);
to distinguish o (\circ) from O {0} and from o {o). The symbols V' and *A’ can also
be called \lor and \land, since they frequently stand for binary operations that are
called “logical or” and *logical and.”

@ Incidentallv, binary operations are treated as ordinary symbols if they don’t
accitr between two guantities that they can operate on. For example, no extra
space is inserted next to the +, —, and = in cases like the following:

$x=+13 T = +1
$3.142-3% 3.142 —
${Dx)¢ (D)

Congider also the following examples, which show that binary operations can be used
as ordinary symbeols in superscripts and subscripts:

$K_n"+,K_n"-$ K Ky
$z7x_{ij}% z.:ﬁ’j

$g"\circ ‘mapsto g~ \bullet$ g =g
$£ 2 {x} \cap £ *(y)% Fio)yn fuly)

g.?} » EXERCISE 16.11
How would you obtain the formmulas 2% and “Wi{2)'?

Plain TEX treats the four charactors =, <, >, and : as “relations” because
they express a relationship between two quantities. For example, ‘2 < y* means
that z 5 less than y. Such relationships have a rather different meaning from
binary operations like 4, and the symbols are typeset somewhat differently:

$x=y>z$ T=9 >z
$x:=y$ Ti=y

$x\le y\ne =% o<y #z
$x\sim y\simeq z§ Ty ez
$x\equiv y\not\equiv z§ TEYEZ
$x\subset y\subseteq z§ s CyCxz

{The last several examples show some of the many other relational symbols that
plain TEX makes available via control sequences; see Appendix T.)

133

times

g

v

cire

cdot

bullet

cap

sOCH
sOCAD
veerel e
cross, see dagger, thines
v

[350))

lor

land

logical or
logical and
relations

ler

ne

s
colon
eqoals
lessthan
greaterthan
colonequals
equiv

not

subset
subseten
sim

hooks, see sobset, supset
wiggle, see 3im

134

Chapter 16: Typing Math Formulas

The two characters *,” (comma) and *;° (semicolon) are treated as
punctuation marks in formulas; this means that TEX puts a httle extra space
after them, but not before them.

$(x,y:2) % flz.y:2)
Tt isn't eustomary to put extra space after a *.7 {period} in math formulas, so
TEX treats a period as an ordinary symbol. If you want the ‘:° charactor to he
treated as a punctuation mark instead of as a relation, just call #t \colon:
$f:A\tc B} f:A- B
$f\colen A\to B A= D
If you want to use a comma as an ordinary svmbol (e.g., when it appears in a

large mumber), just put it in braces; TEX treats anything in braces as an ordinary
symbol. For instance,

$12,345x$ 12, 345z {wrong)
$12{,}345x% 12,345z {right}

g% » EXERCISE 16.12
What’s an easy way to get a raised dot in a decimal constant {e.g., *3-1416")7

S0 far we have considered letters, other ordinary symbols, binary oper-
ations, relations, and punctuation marks: hence we have covered almost every
key on the typewriter. There are just a few more: The characters *(C and “[7 are
called “openings,” while)7 and °]° are called “closings”; these act pretty much
like ordinary symbols, but they help TEX to decide when a binary operation is
not really being used in a binary way. Then there is the character ’, which we
know is used as an abbreviation for \prime superscripts. Finally, we know that
plain TEX reserves the other ten characters:

AR I SR W

These are not usable for symbols in math mode unless their \catcede values
are changed (see Chapter 7). Although { and } specify grouping. the control
secuences N and \} can be used to get {’ as an opening and '} as a closing,
@ All of these math mode interpretations are easily changeable, since each char-
acter hag o \mathcode, as explamed in Chapter 17; none of the conventions are
permanently built into TEX. However, most of them are so standard that it is neually
unwise to make many changes, except perhaps in the imterpretations of ©, ", and @.

The special characters ~ and _ that designate supersceripts and subscripts
should not be used except in formulas. Similarly, the names of math symbols
like \alpha aned \approx, and the control sequences for math operations like
\overline, must not invade ordinary text. TEX uses these facts to detect missing
doilar signs in your input, before such mistakes cause too much trouble. For
example, suppose you were to type

The smallest $n such that $2°n>1000% is™10.

O
semicolon

ponctoation marks in formolas
period

colon

to

Iparen

Ihracket

apenings

Firaren

fenees, see opening, closing, delin
rhracket

closings

catcode

Ihrace

rhrace

matheode

at sign

leftauote

donblequote

cireumtlex

underbar

missing dollar signs

Chapter 16: Typing Math Formulas

TEX doesn’t know that you forgot a “$° after the first ‘n’, because it doesn’t
understand English; s0 it finds a “formula” between the first two § signs:

The smallest nsuchthat

after which it thinks that "2’ is part of the text. But then the ~ reveals an
inconsistency: TpX will automatically insert a § before the ~, and vou will get
an error message. In this way the computer has gotten back into synch, and the
rest of the document can he typeset as if nothing had happencd.

@ Conversely, a blank line or \par is not permitted in math mode. This gives
TEX ancther way to recover from a missing $; such errors will be confined to
the paragraph in which they ccour.

-~

@ If for some reason you camnot use ~ and _ for superscripts and subscripts,
becanse vou have an unusuaal kevboard or because you need ™ for Freach
accents or something, plain TEX lets you type \sp and \sb instead. For example,
$x\sp2$’ is another way to get ‘c®’. On the other hand, some people are lncky enough
to have kevboards that contain additional svmbols besides those of standard ASCIL
When such svinbols are available, TEX can be set up to make math typing a bit more
pleasant. For example, at the anthor’s installation there are kevs labeled 1 and 4 that
produce visible syibols {these make superscripts and subscripts look much nicer on
the sereen}; there are kevs for the relations €, 2, and # {these save time); and there are
about two dozen more kevs that occagionally come in handy. {See Appendix C.}

@ Mathematicians are fond of using accents over letters, because this is often
an effective way to indicate relationships between mathematical objects, and
because it greatly extends the number of available symbols without increasing the
mumber of necessary fonts. Chapter 9 discusses the use of accents in ordinary text, but
mathematical accents are somewhat different, because spacing is not the same; TEX
uses special conventions for accents in formulas, so that the two sorts of accents will not
be confused with each other. The following math accents are provided by plain TEX:

¢\hat a$ a
$\check a$ i
$\tilde a$ a
$hacute ad a
$\grave a$ &
#\dot a$ a
$\ddot a$ &
$\breve a$ i
$\bar a$ a
$\vec a$ a

The first wine of these are called \™, \v, N7, Vo VS N A\, and \=, respectively,
when they appear in text; \vec is an accent that appears only in formulas, TEX will
complain # vou try to use \” or \v, etc., in formulas, or i#f you try to use \hat or
\check, etc., in ordinary text.

135

par
5P

sh

character set
D ATTOW
downarrow
lary

geq

nen

aceents

hat

chechk

tilde

acute

grave

dot

ddot

hreve

bar

e

136

Chapter 16: Typing Math Formulas

@ It’s usnally a good idea to define special control sequences for accented letters
that vou need frequently. For example, you can put

\def\Ahat{{\hat A}}
\def\chat{{\hat c}}
\def\zcheck{{\check =}}
\defi\xtilde{{\tilde x}}
\def\zbar{{\bar z}}

at the beginning of a manuscript that uses the symbols A, 2, 5 z, and z more than,
say, five times. This saves you a lot of keystrokes, and it makes the manuscript easier
to read. Chapter 20 explains how to define control sequences.

@ When the letters ¢ and § are accented in math formulas, dotless symbols ¢

and g should be used under the accents. These symbaols are called \imath and
\jmath in plain TgX. Thus, for example, a paper that uses 9 and ‘J ought to begin
with the following definitions:

\def\ihat{{\bhat\imath}}
\def\ jhat{{\hat\jmath}}

@ You can put accents on top of accents, making symbols ike A that might canse

a mathematician to squeal with ecstasy. However, it takes a bit of finesse to
get the upper accent into a position that looks right, because the designer of a font
for mathematics usually tells TEX to position math accents in special ways for special
letters. Plain TEX provides a control sequence called \skew that makes it fairly easy to
shift superaccents into their proper place. For example, ‘\skew6\hat\Ahat’ was used
to produce the symbol above. The number ‘67 in this examnple was chosen by trial and
error; ‘5 geems to put the upper accent a bit too far left, while ‘7" makes it a bit too
far right, at least in the anthor’s opinion. The idea is to fiddle with the amount of skew
nntil you find what pleases you best.

@ It’s possible, in fact, to put math accents on any saublormula, not just on

single characters or accented characters. But there’s usually not mmch point
in deing so, becanse TEX just centers the accent over the whole subformula. For
example, ‘$\hat{T+¥}$’ yields ‘7 + M°. In particular, a \bar accent always stays the
same size; it’s not like \overline, which grows with the formula under it. Some people
prefer the longer line from \overline even when it applies to only a gsingle letter; for
example, ‘$\bar z+\overline z$ produces ‘Z + 7Z°, and yvou can take your pick when
you define \zbar. However, plain TEX does provide two accents that grow; they are
called \widehat and \widetilde:

$\widehat x,\widetilde x$.7

$\widehat {xy}, \widetilde {xy}$ Ty, T
$\widehat{xyz},\widetilde{xyz}$ T¥Z,Iuz

The third example here shows the maximum size available.

» EXERCISE 16.13

This has heen another long chapter; but cheer up, you have learned a lot! Prove
it by explaining what to type in order to get the formulas e, D ~ p* M + 1,

el

chotless

hmath

jmath

accents on top of accents
shew

overline

widehat

widetilde

Chapter 16: Typing Math Formulas 137

a =1
and g € (H™). (In the last example, assume that a comrol sequence \ghat ireek
P AMP 5
has already been defined, so that \ghat produees the accented letter §.) iﬂ\l;fi OR1
SPIVAK

Producing Greek letters Is a5 easy as .
You just type ... as easy as π.
- LESLIE LAMPORT, The ATEX Document Freparation System {1983)

TeX has no regard for the glories of the Greek tongue—

as far as it Is concerned, Greek letters are just additional weird symbols,
and they are allowed only in math mode.

in a pinch you can get the output rex by typing $\tan\epsiloni\chi$,

but If you're actually setting Groek text, you will be using

a different version of TeX, designed for a keyboard with Greek letters on it,
and you shouldn’t even be reading this manuai,

which is undoubtediy alf English to you.

— MICHAEL SPIVAK, The Joy of TeX {1982)

_

17

More about Math

Chapter 17 More about Math

Another thing mathematicians like to do iz make fractions—and they like to
build symbols up on top of cach other in a variety of different ways:

3
1141 141 .
2 and (9) and E Zi .
o]

You can get these four formulas as displayed equations by typing ‘$$1\over2$§’
and ‘$¥n+1\over3$$’ and ‘§¥n+i\choose3$$’ and ‘$\sum_{n=1}"3 Z_n"2%$%";
we shall study the simple rules for such construetions in this chapter.

First let’s look at fractions, which use the “\ever’ notation. The control
sequence \over applics to evervthing in the formula unless vou wse braces to
enclose it in a specific subformula; in the latter case, \over applies to everything
in that subformula,

1
- and
2 ZESLR

Input Cutput
ot a2
$Ex+y 2\over k+1§$ %
$${x+y " 2\over k}+1§¢ % 1
7?
$$X+{y"2\0ver k}+1%¢ T+ ‘k 41
$ex+{y " 2\over k+1}$$. Y’
Y TR
$$x+y-{2\over k+1}$$ PR ==

You aren’t allowed to use \over twice in the same subformula; instead of typing
something like ‘a \ever b \ever 2°, vou must specify what goes over what:

a
$${a\over bFover 28% %
$¥a\overib\over 2}$% %

2

Unfortunately, both of these alternatives look pretty awtul. Mathematicians
tend to “overuse” \over when they first begin to typeset their own work on a
system like TEX. A good typist or copy editor will convert fractions to a “slashed
form,” whenever a built-up construction would be too small or too crowded. For
example, the last two cases should be treated as follows:

$%a/b \over 2%% %ﬁ}
$%a \over b/2%% %

Conversion to slashed form takes a little hit of mathematical knowhow, since
parentheses sometimes need to be inserted in order to preserve the meaning of

139

HUTH
choose

fractions

aver

stacked fractions, see over
slashed form

parentheges

140

Chapter 17: More about Math

the formula. Besides substituting °/° for \over’, the two parts of the fraction
should be put in parentheses umless they are single symbols; for example, § be-
comes simply a/b, but %71 becomes {a+ 1)/5, and E%] hecomes (a + 1}/{6 + 1).
Furthermore, the entire fraction should generally be enclosed in parentheses if
it appears next to something else; for example, £x becomes (a/b)z. If you are
a typist without mathematical training, it’s best to ask the avthor of the manu-
seript for help, in doubtful cases: you might also tactfully suggest that unsightly

fractions be avoided altogethor in future manmuscripts.
» EXERCISE 17.1)
What's a better way to render the formula o + y&17
» EXERCISE 17.2
Convert *$712° to slashed form.
» EXERCISE 17.3
What surprise did B. L. User get when he typod “$8x = (y"2\over k+1)$§° 7
» EXERCISE 17.4
How can you make ‘72¢°? (Assume that the control sequence \cents yields *¢".)
The examples above show that letters and other symbols sometimes get
smaller when they appear in fractions, just as they get smaller when they are
used as exponents. It's about time that we studied TEX's method for choosing
the sizes of things. TEX actually has eight different styles in which it can treat
formulas, namely

display style (for formulas displayed on lines by themselves)
text style {for formulas embedded in the text)
seript style {for formulas used as superscripts or subscripts)

seriptseript style {for second-order superseripts or subseripts)

and [our other “cramped” styles that are almost the same except thai exponents
aren’t raised quite so much. For hrevity we shall refor to the cight styles as

DD T,T,5 5, 85 S5,

where D is display style, [is eramped display style, T is text style, ete. TEX
also uses three different sizes of type for mathematics; they are called text size,
seript size, and scriptseript size.

The normal way to typeset a formula with TEX is to enclose it in dollar
signs § .. . §; this yields the formula m text style (styie 73 Or you can enclose it in
double dollar signs $%. .. $$; this displays the formula in display style (style D).
The subformulas of a formmia might, of course, he in different styles. Once you
know the style, you can determine the size of type that TpX will use:

If a letter is in style then it will be set in
n.n.rT text size {like this)
5,5 seript size {Fike this)

S8, 85 scriptseript size (like this}

LUser
G ey
cets
styles

display style

tent style

seript style

seriptseript style

cragnped

sizes of type for mathematios
ternt size

seript size

seriptseript size

Chapter 17 More about Math

There is no “S555” style or “scriptscriptscript” size: such tiny symbols would
be even less readable than the scriptseript ones. Therefore TEX stays with
seriptseript size as the minimmym:

and the subscript
style s

the supersceript
style is

In a formuia
of style

DT 5 5
DT g g
S.55 i S5
5, 85 55 557

For example, i x"{a_b} is to be typeset in style D, then a_b will be set in
style S, and b in style 857 the result is 2%,

So far we haven’t seen any difference between styles D and T, Actually
there is a slight difference in the positioning of exponents, although seript size
is used in cach case: You got #° in D style and o2 in T style and 22 in D' or
T style—do vou see the difference? But there is a big distinetion between D
style and T style when it eomes to fractions:

Tn a formula
aover 3 of style

and the style of the
denominator 3 is

the style of the
numerator o is

D T T
Iy T T
T S 5!
T 5! 5!
5,585 S5 Ss!
5,85 S5 Ss’

Thus if you type “$1\over2$’ (in a text) you get 33 namely style § over style 5';
but if you type ‘$%1\ever2$$’ you get

1

2
(a displayed formula), which is style T over style T

@ While we're at it, we might as well finish the style rules: \underline does

not change the style. Math accents, and the operations \sqrt and \overline,
change uncramped styles to their cramped counterparts; for example, D changes to D,
but D stays as it was.

gég » EXERCISE 17.5
State the style and size of each part of the formula 1/ p , asswming that the
formula, itself is in style D.

Suppose you dor’t ke the style that TEX selects by its automatic siyie
rules. Then you can specity the style you want by typing \displaystyle or
\textstyle or \scriptstyle or \scriptscriptstyle; the style that you se-
lect will apply until the end of the formula or subformula, or until vou select

141

numerator
depominator
underline
Math accents
sort

averline
displaystyle
tentstyle

seript s(‘?riphsiy le

142

Chapter 17: More about Math

another style. For example, ‘$8n+\scriptstyle n+\scriptscriptstyle n.$§’
produces the display
YT TP

This is a rather silly example, but it does show that the plus signs get smaller
too, as the style changes. TEX puts no space around + signs in seript styles.

Here’s a more useful example of style changes: Sometimes you need to
typeset a “continued fraction” macde up of many othor fractions, all of which arc
supposed to be in display style:

g 1+

a +

y + —
1

g+ —

[¢¥%]

Tn order to get this effect, the idea is to type

$#a_0+{1\over\displaystyle a_1+
{\strut 1\over\displaystyle a_ 2+
{\strut 1\over\displaystyle a_3+
{\strut 1\cver a_4}}}}$$

{The control sequence \strut has been used to make the denominators taller;
this is a refinement that will be discussed in Chaptor 18. Our concern now is with
the style commands.) Without the appearances of \strut and \displaystyle
in this formula, the result would be completely different:

" 1
Qg — 1
a1 + o +1 -
L
@ These examples show that the numerator and denominator of a fraction are
generally centered with respect to each other. If vou prefer to have the nu-

merator or dencminator appear flush left, put ‘\hfill’ alter it; or if you prefer flush
right, put ‘\hfill’ at the left. For example, if the first three appearances of ‘1\over’
in the previous example are replaced by ‘1\hfill\over’, you get the display

1
g +
H
o+
H
az +
H
g + —
04
{aformat for continned fractions that many anthors prefer). This works because \hfill
stretches at a faster rate than the glue that is actually used internally by TEX when it
centers the numerators and denominators.

continned fraction
strot

Hush left

hill

Hush right

Chapter 17 More about Math

TEX has another operation \atop’, which is like \ever except that it
leaves out the fraction line:
T
$Ex\atop y+28%
Py Y2
The plain TEX format in Appendix B also defines “\cheose’, which is like \atop
but it encloses the result in parentheses:

$¥n\choose k$$ (;)

Tt 15 called \choose hecause it’s a common notation for the so-called binomial
coefficient that tells how many ways there are to choose & things out of » things.

You can’t mix \over and \atop and \choose with each other. For
example, ‘$¥n \chocse k \over 2% is illegal: you must use grouping, to get
either *$${n\choose k}F\over2$$’ or ‘$¥n\choose{k\over2}$¥’, i.c.,

2 . ()

The latter formula, incidentally, would look hetter as “$#n\choose k/2%8% or
‘$$n\chocse{l\over2}k$$’, viclding

AR

» EXERCISE 17.6

it
As alternatives 1o % ciscuss how you could obtain the two displays

» EXERCISE 17.7
Explain how to specify the displayed formula

p v 1 1
(2)4 y 1—x1-—2z?%

@ TEX has a generalized version of \over and \atop in which you specify the
exact thickness of the line rule by typing “\above{dimen}’. For example,

$$\displaystyle{a\over bl}\abovelpt\displaystyle{c\over d}$$

will produce a compound fraction with a heavier {1 pt thick} rule as its main bar:

|l

This sort of thing cccurs primarily in textbooks on elementary mathematics,

143

atop

choose

binomial coefficien
above

compound fraction

144

Chapter 17: More about Math

Mathematicians often use the sign Y to stand for “summation” and the
sign [to stand for “integration.” If you're a typist but not a mathematician,
all you need to remember is that \sum stands for 3~ and \int for [; these
abbreviations appear in Appendix F together with all the other symbols, in case
vou forget. Symbols like Y and | (and a few others like |] and [] and ¢ and &).
all listed in Appendix F) are called large operators, and you type them just as
vou type ordinary symbols or letters. The difference is that TEX will choose a
larger large operator in display style than it will in text style. For example,

$\sum x_n vields San (T style)
$$\sum x_n$3 vields Z;r:n (D style).

A displayed \sum usually occurs with “lmits,” ic., with subformulas
that are to appear above and below it. You type Hmits just as if they were
superseripts and subscripts: for example, if you want

HL

2

==l

vou type either ‘$$\sum_{n=1}"m$$’ or ‘$$\sum"m_{n=1}$$’. According to the
normal conventions of mathematical typesetting, TEX will change this to 37
{i.e., without Hmits} if it ocours in text style rather than in display style.

Tntegrations are slightly different from summations, in that the super-
seripts and subscripts are not set as Hmits even in display style:

$\int_{-\infty} {+\infty}$ vields [T (T style)
00
$int {-\infty} {+\infty}§$ vields / (D style).
hade ¢
@ Some printers prefer to set limits above and below [signg; this takes more
space on the page, but it gives a better appearance if the subformulas are

complex, because it keeps them out of the way of the rest of the formula. Similarly,
Lnits are cccasionally desirable in text style or script style; but some printers prefer
not to set limits on displayed 3 signs. You can change TEX’s convention by simply
typing \limits’ or ‘\nolimits’ immediately after the large operator. For example,

$$\int\limits 0~ {\pi\over2}$$ yields /
0

.
$$\sum\nolimite {n=1}"m$$ yields Z
ypom]

@ If you say ‘\nolimits\limits’ {preswmably becanse some macro like \int

specifies \nolimits, but you do want them), the last word takes precedence.
There’s also a conpmand ‘\displaylimits® that can be used to restore TEX's normal
conventions; i.e., the limits will be displayed only in styles D and DV,

sommation
integration

som

fint

large operators
collective signs, see large operato
sigima 5igns, see s0m
Tt

timits

nolimits
displaylimits

Chapter 17: More about Math 145

@ Sernetimes vou need to put two or more rows of Bmits uader a large operator; atop
vou can do this with ‘\atop’. For example, if vou want the displayed formula seriptstyle
BOUArE-TO0t $iEns
L delimiter
E P{/é: J} fences, see delimiters
i< parentheses
A hraces

. picces of symbols
the correct way to type it is

$$\=um,_ {\=criptstylef\le i\le mh\atop\scriptstylel<j<mn}P{i,j)$$

{perhaps with a few more spaces to make it look nicer in the mannscript file). The
mstruction ‘\scriptstyle’ was necessary here, twice—otherwise the lines 0 < 1 < w0’
and 0 < § < n° would have been in scriptscript size, which is too siuall. This is another
instance of a rare case where TEX's automatic style rules need to be overruled.

» EXERCISE 17.8
pooq 7

How would you type the displayed formula Z Z Z aglinen 7
fmm] o] feed
@ » EXERCISE 17.9
And how would you handle Z aibier: ¥
1<i<p
14y
i<k<y
Sinece mathematical formulas ean get horribly large, TEX has to have
some way to make ever-larger symbols. For example, if vou type
$P\sqrt{l+\sqri{l+\sqrt{i+
Asqri{i+\sqre{it\sqri{l+\sqrt{1+x}}}}}}}1$3

the result shows a variety of available square-root signs:

14+ 411+ 1+\/1+\/1+\;1+v1+;{:

The three largest signs here are all essentially the same, except for a vertical
segment © |7 that gets repeated as often as necessary to reach the desired size:
but the smallor signs are distinet characters found in TEX’s math fonts.

A similar thing happens with parentheses and other so-called *delimiter”
symbols. For example, here are some of the different sizes of parentheses and
braces that plain TEX might use in formulas:

((({u 23}))) {{{{{z _;}}}}}

The three largest pairs in cach case are made with repeatable extensions, so they
can become as large as necessary.

146

Chapter 17: More about Math

Delimiters are important to mathematicians, because they provide good
visual ¢lues to the underlying structure of complex expressions; they delimit the
houndaries of individual subformulas. Here is a list of the 22 hasic delimiters

provided by plain TEX:

Tnput

(

)

[or \1brack
] or \rbrack
A\ or \1brace
\} or \rbrace

Delimiter

left parenthesis: {
right parenthesis:)
left bracket: |
right bracket:]

left curly brace: {
right curly brace: }

Y1floor left floor bracket: |
Arfloor right floor bracket: |
\lceil left ceiling bracket: |
\rceil right ceiling hracket: |
\langle left angle bracket: {
\rangle right angle bracket:)

/ slash: /

\backslash reverse slash: \

| or \vert vertical har: |

A oor \Vert double vertical har: ||
\uparrow upward arcow: T
\Uparrow double upward arrow:
\downarrow downward arrow: |
\Downarrow double downward arrow: |}
\updownarrow up-and-down arrow:
\Updownarrow double up-and-down arvow: {f

Inn some cases, there are two ways to get the same delimiter; for example, you
ean specify a left bracket by typing either “[* or ‘\1brack’. The latter alternative
has been provided because the symbol * [* is not readily available on all computer
keyboards. Remember, however, that you should never try to specify a left brace
or right brace simply by typing ‘0" or *}’; the { and } symbols are reserved for
grouping. The right way is to type \{* or ‘\} or ‘\1brace’ or ‘\rbrace’.

In order to get a slightly larger version of any of these symbols, just
precede them by “\bigl’ (for opening delimiters) or “\bigr’ (for closing ones).
This makes it easier to read formulas that contain delimiters inside delimiters:

Crutput

$\bigl (x-s (x)\bigr)\bigl (y-s (y)\bigr)$ (z — s(z)) (y — s{y})
$\bigl [x-s [x]\bigr]\bigl [y-s[y]\bigrl$ [z — s[z]][y — s[y]]
f\bigl! |xl+lyl \bigrl$ el +]
$\bigl\1flcor\sqrt A\bigr\rflcor$ L\/EJ

Input

hrack

rhrack

Ihrace

rhrace

Waoor

rHoor

leeil

reeil

langle

rangle
hackslash

vert

Vert:

DR ArTowW
Uprarrow
downarrow
Downarrow

o ownarrow
Updownarrow
hent bars, see langle, rangle
curly braces, see Thrace, rhrace
lefthrachet
rightbracket
lefthrace
righthrace

/
higl
bigr

Chapter 17 More about Math

The \big delimiters are just enough bigger than ordinary ones so that the dif-
ference ean be porceived, yet small enough to be used in the text of a paragraph.
Here are all 22 of them, in the ordinary size and in the \big size:

ODOLINONT g
OUOCHLITTONI T LTS

You can also type \Bigl and \Bigr to got larger symbols suitable for displays:

OUUUTG/ANTIELT

These are 50% taller than their \big counterparts. Displayed formulas most
often use delimiters that are even taller (twice the size of \big); such delimiters
are construeted hy \biggl and \biggr, and they look ke this:

OUTHITO AT

Finally, thore are \Biggl and \Biger versions, 2.5 timoes as tall as the \bigl
and \bigr delimiters:

iinvaviiii

» EXERCISE 17.10

d* N a9
dz? Oy?
using \bigeg delimiters for the large parentheses. {The syvmbols & and ¢ that
appear here are called \partial and \varphi.)
g.?} » EXERCISE 17.11
In practice, \big and \bigg delimiters are used much more often than \Big
and \Bigg ounes. Why do you think this is true?
@ A \bigl or \Bigl or \biggl or \Biggl delimiter is an opening, like a lefi
parenthesis; o \bigr or \Bigr or \biggr or \Biggr delimiter is a cloging, like
a right parenthesis. Plain TEX also provides \bigm aned \Bigm and \biggm and \Biggm
delimiters, for use in the middle of formulas; such a delimiter plays the role of a relation,
like an equals sign, so TEX puts a bit of space on either side of it.

$\bigl{x\in A(n}\bigmix\in B{n)\bigr}$ (z € A(n} | x € B{n))
$\bigcup_n X_o\bigm\{\bigcap_n Y_n$ Uﬁ X, || ﬂn Y.

You can also say just \big or \Big or \bigg or \Bigg; this produces a delimiter that
acts as an ordinary variable. It is used primarily with slagshes and backslashes, as in
the following example.

$${a+idover bI\bigg/{c+1\over d1$$ @ ‘: 1 / C‘: 1
g ¢

L2 -
Guess how to type the formula () [a,a{;r: + f{fy}] =}, in display style,

g.?} » EXERCISE 17.12
What’s the professional way to type {z+ f{z))/(z — f{2})? (Look closely.)

147

Bigl
Bigr
higel
higer
Biggl
Biggr
partial
varphi
apening
closing
bigm
Bigm
higgm
Biggm
relation
higeap
higeap
verticalline
in

hig

Big
bige
Bigg

148

Chapter 17: More about Math

TEX has a built-in mechanism that figures ot how tall a pair of delim-
iters needs to he, in order to enclose a given subformula; so you can use this
method, instead of deciding whethor a delimiter should be \big or \bigg or
whatever, All vou do is say

\left{delim, } {subformula)\right {delim,}

and TpX will typeset the subfornla, putting the specified delimiters at the left
and the right. The size of the delimiters will be just hig enough to cover the
subformula. For example, in the display .

$#1+\left (1\overl-x"2\right) "3$$ 1+ (lm—l.,r))

TEX has chosen \biggl (and \biggr). hecause smaller delimiters would be too
small for this particular fraction. A simple formula like “$\left (x\right) ¥
vields just “(z)"; thus, \left and \right sometimes choose delimiters that are
smallor than \bigl and \bigr.

Whenever vou use \left and \right they must pair up with each other,
just as braces do in groups. You can’t have \left in one formula and \right in
another, nor are vou allowed to type things like \left (...{.. . \right)...}
or \left(...\begingroup...\right)...\endgroup’. This resiriction makes
sense, because TEX needs to typeset the subformula that appears between \left
and \right before it can decide how big to make the delimiters. DBut it is
worth explicit mention here, because you do not have to match parentheses and
brackets, ete., when you are not using \left and \right: TEX will not complain
if you mput a formula fike "$[0, 1% or even "$) ($° or just "$)$". {And it’s a
good thing TEX doesn’t, for such unbalanced formmlas oceur surprisingly often
in mathematics papers.) Even when you do use \left and \right, TEX doesn’t
look closely at the particular delimiters that you happen to choose: thus, you
can type strange things like \left)’ and/or \right (* if you know what you're
doing. Or even if you don't.

The \over operation in the example displayed above does not involve
the ‘1+° at the beginning of the formula; this happens because \left and \right
have the function of grouping, in addition to their function of delimiter-making.
Any definitions that you happen to make between \left and \right will be
local, as if braces had appeared around the enclosed subformula.

» EXERCISE 17.13
Use \left and \right to typeset the following display (with \phi for ¢):

=Y [0

f==2

At this point you are probably wondering why you should bother learn-
ing about \bigl and \bigr and their relatives, when \left and \right arc
there to caleulate sizes for you automatically. Well, #t°s true that \left and
A\right are quite handy, but there are at least three situations in which you

left

right

parentheses

brachkets

crotehets, see brackets
grouping

johi

Chapter 17 More about Math

will want to use your own wisdom when selecting the proper delimiter size:
{1} Sometimes \left and \right choose a smaller delimiter than you want. For
example, we used \bigl and \bigr to produce ||| + |y|| in one of the provious
illustrations; \left and \right don’t make things any bigger than necessary,
50 ‘$\left|\leftix\right |#\left|y\right N\right |$’ yvields only *|lz| + ly|]".
{2) Sometimes \left and \right choose a larger delimiter than you want. This
happens most frequently when they enclose a large operator in a display; for
example, compare the following two formulas:

$$\1eft (\sum_{k=1}"n A_k \right)$$ (ZA,\.)
o1

i3
$8\biggl(\sum_{k=1}"n A_k \biggr)$$ (Zr{g)

f=1
The rules of \left and \right cause them to cnclose the \sum together with
its limits, but in special cases like this #t looks better to let the limits hang out
a bit; \bigg delimiters are better here. {3) Sometimes you need to break a huge
displayed formula into two or more separate lines, and you want to make sure
that its opening and closing delimiters have the same size; but you can’t use
\left on the first line and \right on the last, since \left and \right must
oceur in pairs. The sohution 1s to use \Biggl (say} on the first line and \Biggr
on the last.

@ Of course, one of the advantages of \left and \right is that they can make
arbitrarily large delimiters—ouch bigger than \biggggg! The slashes and

angle brackets do have a maximum size, however; if you ask for really big versions of

those symbols you will get the largest ones available.

» EXERCISE 17.14
Prove that you have mastered delimiters: Coerce TEX into producing the formulia

1]
)=y MZ [m/k)/ f-;rrz-/ku) J :
o fem=]
@ If vou type *.° after \left or \right, instead of specifying one of the basic
delimiters, you get a so-called null delimiter {which i blank). Why on earth
would anvbody want that, yvou may ask. Well, vou sometimes need to produce formulas
that contain only one large delimiter. For example, the display
3$im{£' x>0
Sz, < B
kas a {* but no °}. It can be produced by a construction of the form
$$ixl=\left\{ ... \right.$3

Chagpter 18 explains how to fill in the ', ..7 to finish this construction; let’s just notice
for now that the ‘\right.’ makes it poszible to have an invisible right delimiter to go
with the visible left brace.

149

som
Tirmitss
noll delimiter

150

Chapter 17: More about Math

@ A mull delimiter isn’t completely void; it is an empty box whose width is a TEX
parameter called \nulldelimiterspace. We will see later that null delimiters
are inserted next to fractions. Plain TEX sets \nulldelimiterspace=1.2pt.

You can type ‘<" or >’ as convenient abbreviations for \langle and
\rangle, when TEX is looking for a delimiter. For example, \bigl< is equiv-
alent to “\bigl\langle’, and ‘\right> is equivalent to ‘\right\rangle’. Of
course ‘<’ and >’ ordinarily produce the less-than and greater-than relations
‘< »°, which are quite different from angle brackets (3"

@ Plain TgX also makes available a few more delimiters, which were nof listed

in the basic set of 22 because they are sort of special. The control sequences
\arrowvert, \Arrowvert, and \bracevert produce delimiters made from the repeatable
parts of the vertical arrows, double vertical arrows, and large braces, respectively,
without the arrowheads or the curly parts of the braces. They produce results similar
to \vert or \Vert, but they are surrounded by more white space and they have a
different weight. You can also use \lgroup and \rgroup, which are constructed from
braces without the middle parts; and \lmonstache and \rmonstache, which give you
the top and bottom halves of large braces. For example, here are the \Big and \bigg
versions of \vert, \Vert, and these seven special delimiters:

S O T ([(0 P

Notice that \1group and \rgroup are rather like bold parentheses, with sharper bends
at the corners; this makes themn attractive for certain large displays. Dut you can-
not use them exactly like parentheses, because they are available only in large sives
{\Big or more).

{;22 Question: What happens if a subscript or superscript follows a large delim-
iter? Answer: That’s a good guestion. After a \left delimiter, it is the first
subscript or superscript of the enclosed subformula, so it is effectively preceded by (3.
After a \right delimiter, it is a subscript or superscript of the entire \left.. . \right
subformia. And after a \bigl or \bigr or \bigm or \big delimiter, it applies only to
that particular delimiter. Thus, ‘\bigl{_ 2" works quite differently from \left{ 2’

@ If vou look closely at the examples of math typesetting in this chapter, vou

will notice that large parentheses and brackets are symimetric with respect to
an invisible horizomtal line that runs a little bit above the baseline; when a delimiter
gets larger, its height and depth both grow by the same amount. This horizontal line
is called the axis of the formula; for example, a formula in the text of the present
paragraph would have an axis at this level: ——. The bar line in every fraction is
centered on the axis, regardiess of the size of the numerator or denominator.

@ Sometimes it is necessary to create a special box that should be centered
vertically with respect to the axis. (For example, the Jz| = {... example

above was done with such a hox.) TgEX provides a simple way to do this: You Just say

\vcenter{{vertical mode material}}

nolldelimiterspace
langle

rangle
less-than
greater-than
angle brackets
arrowvert
Arrowver
bracevert

verrt

Wt

lgroup

PEFGUT
hnoustache
ringastache
moustaches
subseript
SUPErscript
haseline

axris

Chapter 17 More about Math

and the vertical mode material will be packed into a box just as if \vcenter had been
\vbox. Then the box will be raised or lowered until its top edge is as far above the axis
as the bottom edge is below.

@ The concept of “axis” is meaningful for TEX only in math formulas, not in

ordinary text; therefore TEX allows you to use \vcenter only in math mode.
If you really need to center something vertically in horizontal moede, the solation is
to say ‘$\vcenter{...}$’. (Incidentally, the constructions ‘\vcenter to{dimen}’ and
‘\vcenter spread{dimen} are legal too, in math mode; vertical glue is always set by
the rules for \vbox in Chapter 12. But \vcenter by itsell is usually sufhcient.)

@ Any box can be put into a formula by simply saying \hbox or \vbox or \vtop

or \box or \copy in the normal way, even when you are in math mode. Fur-
thermore you can use \raise or \lower, as if you were in horizontal mode, and you
can insert vertical rules with \vrule. Such constructions, like \vcenter, produce hoxes
that can be used like ordinary symbaols in math formulas.

@ Semetimes von need to make up vour own syvmbols, when vou run across

something unusual that doesn’t ocour in the fonts. If the new symbol ocours
only in one place, you can use \hbox or \vcenter or something to insert exactly what
yon want; but if vou are defining a macro for general use, vou may want to use different
constructions in different styles. TgX has a special feature called \mathchoice that
comes to the rescue in such situations: You write

\mathchoice {{math}} {{math}} ({math}}{{math}}

where each {math} specifies a subformula, TEX will choose the first subformmla in style
D or DY, the second in style T or T7, the third in style § or &, the fourth in style §5
or 887, {TEX actually typesets all four subformulas, before it chooses the final one,
because the actual style is not always kaown at the time a \mathchoice is encountered;
for example, when you type ‘\over’ you often change the style of everything that has
oceurred earlier in the formula. Therefore \mathchoice is somewhat expensive in terms
of time and space, and you should use it only when you’re willing to pay the price.)

@@» EXERCISE 17.15
Guess what output is produced by the following commands:

\def\pnzzle{{\mathchoice (D} {T}{S}{SS}}}
$$\puzzle{\puzzle\over\puzzle {\puzzle \puzzle}}$$

@@» EXERCISE 17.16

Devise o ‘\square’ macro that produces a ‘0’ for use in math formulag. The
bax should be symmetrical with respect to the axis, and its inside dimensions should
be 3pt in display and text stvies, 2.1 pt in script styles, and 1.5 ot in scriptseript styles,
The riles should be G4 pt thick in display and text styles, 0.3 ot thick otherwise.

@ Pilain TEX has a macro called \mathpalette that iz usefu! for \mathchoice
constrictions; ‘\mathpalette\a{xyz} expands to the four-pronged array of
choices ‘\mathchoice {\a\displaystyle {xyz}}... {\a\script=scriptstyle {xyz1}’.
Thus the first argoment to \mathpalette is a control sequence whose first argument is
a style selection. Appendix B contains several examples that show how \mathpalette
can be applied. {See in particular the definitions of \phantom, \root, and \smash; the
congrience sign \cong (%2} is also constructed from — and ~ using \mathpalette.}

151

vesmnter

vhon

hhan

VO

hox

COpY

ralse

lower

vrole

mathehoice

B0 are

mathpalette

congroence sign

(3(J'Ilg

constrocting new ath symbols
math sypmbols, constroction of

152

Chapter 17: More about Math

@@ At the beginning of this chapter we discussed the commands \over, \atop,
\choose, and \above. These are special cases of TEX's “generalized fraction”
feature, which includes also the three primitives

\overwithdelims{delin; }{delim:}
\atopwithdelims{delin; }{delim}
\abovewithdelims{delim; }{delims}{dimen}

The third of these is the most general, as it encompasses all of the other generalized
fractions: \overwithdelims uses a fraction bar whose thickness is the default for the
current size, and \atopwithdelims uses an invisible fraction bar whose thickness is vero,
while \abovewithdelims uses a bar whose thickness is specified explicitly. TeX places
the frmmediately preceding subformula (the numerator) over the immediately following
subformula {(the denominator), separated by a bar Hne of the desired thickness; then it
puts {delimy} at the left and {delim:} at the right. For examnple, “\choose’ is equivalent
to N\atopwithdelims(}’. If you define \legendre to he “\overwithdelims()’, you
can typeset the Legendre symbol (%) by saying {a\legendre b}’. The sive of the
surronnding delimiters depends only on the style, not on the size of the fractions; larger
defimiters are used in styles D and D' {see Appendix (). The simple commands \over,
\atop, and \above are eyuivalent to the corresponding “withdelims’ commands when
the delimiters are null; for example, ‘\over’ is an abbreviation for ‘\overwithdelims..’.

@@» EXERCISE 17.17
Define a control sequence \euler so that the Fulerian number (f) will he
produaced when you type {n\enler k}’ in a formula.

@@ Appendix (7 explaing exactly how TEX computes the desired size of delimiters

for \left and \right. The general idea iz that delimiters are vertically cen-
tered with respect to the axis; hence, if we want to cover a subformula between \left
and \right that extends y; units above the axis and g units below, we need to make
a delimiter whose height plus depth is at least y units, where y = 2max{y:,). It is
unsually best not to cover the formula completely, however, but just to come close; so
TEX allows you to specify two parameters, the \delimiterfactor f (an integer) and
the \delimitershortfall § {a dimension}. The minimum delimiter size is taken to be
at least 3 - /1000, and at least y — §. Appendix B sets f = 901 and § = 5pt. Thus,
if y — 30pt, the plain TEX format caunses the delimiter to be more than 27 ot tall; if
y = 100 pt, the corresponding delizniter will be at least 95 pt tall.

@ So far we have been discussing the rules for typing math formulas, bat we

haven't said much about how TEX actually goes about converting its input into
Lists of boxes and glee, Almost all of the control sequences that have been mentioned in
Chapters 16 and 17 are “high level” features of the plain TEX format; they are not bailt
into TEX itself. Appendix B defines those control sequences in terms of move primitive
commands that TEX actually deals with., For example, ‘\choosze’ igz an abbreviation
for ‘Natopwithdelims{)’; Appendix B not oaly introduces \choose, it also tells TEX
where to find the delimiters (and) in various sizes. The plain TEX format defines all
of the special characters ke \alpha and \mapsto, all of the special accents like \tilde
and \widehat, all of the large operators like \sum and \int, and all of the delimiters
like \lfloor and \vert. Any of these things can be redefined, in order to adapt TEX
to other mathematical stvies and/or to other fonts,

weneralized fraction

overwithdelins
fraction
atopwithdelims
abovewithdelims
numerator
depominator
choose

Legendre symbol
VT

atop

ahove

Euolerian nomber
axis
delimiterfactor
delimitershortfall

Chapter 17 More about Math

@ The remainder of this chapter discusses the low-level commands that TEX

actually obeys behind the scenes, Every paragraph on the next few pages is
marked with double dangerous bends, so you should skip to Chapter 18 unless vou are
a ghrtton for TEXaicalities.

@ All characters that are typeset in math mode belong to one of sixteen families

of fonts, numbered internally from 0 to 15, Each of these families congists
of three fonts: one for text size, one for script size, and one for scriptscriptsize. The
commands \textfont, \scriptfont, and \scriptscriptfont are used to specify the
members of each family. For example, family 0 in the plain TEX format is used for
roman letters, and Appendix B contains the instructions

\textfontO=\tenrm
\scriptfontO=\sevenrm
\scriptscriptfontlO=\fiverm

to set up this family: The 10-point roman font {\tenrm) iz used for normal symbols,
T-point roman {\sevenrm) is used for subscripts, and 5-point roman (\fiverm) is used
for sub-subscripts. Since there are up to 256 characters per font, and 3 fonts per family,
and 16 families, TEX can access up to 12,288 characters in any one formula {4096 in each
of the three sizes}. Imagine that.

@@ A definition like \textfont{family number)=(font identifier} is iocal to the

group that contains it, so you can easily change family membership from one
set, of conventions to ancther and back again. Furthermore you can put any font into
any family; for example, the command

\scriptscriptfontO=\scriptfont(

makes sub-subscripts in family O the same size as the subscripts curreatly are. TEX
doesn’t check to see if the fanilies are sensibly organized; it just follows instructions.
{However, fonts cannot be used in families 2 and 3 ualess they contain a certain number
of special parazzeters, as we shall see later.) Incidentally, TEX uses \nullfont, which
containg no characters, for each family member that has not been defined.

@ During the time that a math formula is being read, TEX remembers each

symbol as being “character position sc-and-so in family number such-and-
such,” but it does not take note of what fonts are actually in the families until reaching
the end of the formuia. Thus, if you have loaded a font calied \Helvetica that contains
Swiss-style numerals, and if you say something like

$\textfontO=\tentm 9 \textfontl=\Helvetica 9%

yoar will get two 9's in font \Helvetica, assuming that TEX has been set up to take 9's
from family 0. The reagson is that \textfont0 is \Helvetica at the end of the formmula,
and that’s when it counts. On the other hand, if yvou say

$\textfontO=\tentm 9 \hbox{$9\textfontO=\Helveticadl}$

the first 9 will be from \tenrm and the second from \Helvetica, because the formmula
inn the hbox will be typeset before it is incorporated into the surrounding formula.

@@» EXERCISE 17.18
If vou say ‘${\textfontO=\Helvetica 9}%’, what font will be used for the 97

153

Families
terntfom
seriptfont
seriptseriptfont
family O

tenrin

BEVENTIN

fiverm

nollfont

154 Chapter 17: More about Math

@@ Every math character is given an identifying code mrmber between 0 and 4095, math character
obtained by adding 256 times the family number to the position number. This hezadecimal notation
. L e ., clagses of math characters, table
is easily expressed in hexadecimal notation, using one hexadecimal digit for the family math codes
and two for the character; for example, "244 stands for character "44 in family 2. Each table of ..

large operator
binary operation
relation

character is also assigned to one of eight classes, munbered 0 to 7, as follows:

Class Meaning Ezample Class Meaning Ezample apening
0 Ordinary / 4 Opening { Cl(”ﬁ“;g .
= oy . FONCTHAYION
H Large operator \zum o Closing) {(ar]ahlu family
inary operation 5 unctuation . oplos
: Binary operat + & Punectuat '
3 Relation = 7 Variable family x :3;2“1

TN

Classes 0 to 6 tell what “part of speech” the character belongs to, in math-printing corrent font

language; class 7 is a special case discussed below. The class number is mmibtiplied by control space
46096 and added to the character number, and this is the same ag making it the leading e

digit of a four-digit hexadecimal number. For example, Appendix B defines \aum to ii}z‘_h{:{,d&
be the math character 1350, meaning that it is a large operator {class 1) found in cateods

less than
asterisk

position "50 of family 3.
@@» EXERCISE 17.19

The \oplus and \bullet gymhols (55 and o) are binary operations that appear
in positions 8 and 15 {decimal) of family 2, when the fonts of plain TEX are being used.
(Guess what their math character codes are. {This is too easy.}

@ Class 7 18 a special cage that allows math symbols to change families. It

behaves exactly like class 0, except that the specified family is replaced by the
current value of an integer parameter called \fam, provided that \fam is a legal family
mumnber {i.e., if it lies between 0 and 13). TEX antomatically sets \fam=~1 whenever
math mode is entered; therefore class 7 and class 0 are egquivalent unless \fam has been
given a new value. Plain TEX changes \fam to ¢ when the user types \rm’; this makes
it convenient to get roman letters in formulas, as we will see in Chapter 18, since
letters belong to class 7. {The control sequence \rm is an abbreviation for “\fam=0
\tenrm’; thus, \rm causes \fam to become zero, and it makes \tenrm the “current
font.” In horizontal mode, the \fam value is irrelevant and the current font governs the
typesetting of letters; but in math mode, the current font is irrelevant and the \fam
value governs the letters. The current font affects math wode only i \y is used or if
dimensions are given in ex or em units; it also has an effect if an \hbox appears inside
a formula, gince the contents of an hbox are typeset in horizontal mode.)

@ The interpretation of characters in math mode is defined by a table of 256

“mathcode” values; these table entries can be changed by the \mathcode com-
mand, just ag the category codes are changed by \catcode {see Chapter 7). Each
mathcode specifies clags, family, and character position, as described above. For exam-
ple, Appendix B contains the commands

\mathcode ‘<="313C
\mathcode ‘ ¥="2203

which cause TEX to treat the character ¢ in math wode as a relation {clags 3} found
in position "3C of family 1, and to treat an asterisk “»” as a binary operation found in
position 3 of family 2. The initial value of \mathcode‘b is "7162; thus, b is character

Chapter 17 More about Math

“62 in family 1 {italics), and its family will vary with \fam. {INITEX starts out with
\mathcode x — r for all characters x that are neither letters nor digits. The ten digits
have \mathcode x = x+ "7000; the 52 letters have \mathcode r = x+"7100.) TgX looks
at the mathcode only when it is typesetting a character whose catcode is 11 (letter) or
12 {other), or when it encounters a character that is given explicitly as \char{mumber}.

@ A \mathcode can alsc have the special value "8000, which causes the character

to behave as if it has cateode 13 (active). Appendix B uses this feature to
make * expand to “{\prime} in a slightly tricky way. The mathcode of 7 does not
interfere with the use of * in octal constants.

@@ The matheode table allows vou to refer indirectly to any character in any
family, with the touch of a single key, You can also specify a math character
code directly, by typing \mathchar, which is analogous to \char. For example, the
command ‘\mathchar"1ABC’ specifies o character of clags 1, family 10 {"4}, and position
"BC. A hundred or so definitions like

\def\sum{\mathchar”"135¢ }

woitld therefore suffice to define the special symbaols of plain TEX. But there is a better
way: TEX has a primitive command \mathchardef, which relates ¢ \mathchar just as
\chardef does to \char. Appendix B has a hundred or so definitions like

\mathchardef\sum="1350
to define the special symbols. A \mathchar mmust be between (0 and 32767 {“7FFF).

@ A character of class 1, i.e., a large operator like \sum, will be vertically centered

with respect to the axis when it is typeset. Thus, the large operators can be
used with different sizes of type. This vertical adjustment is not made for symbols of
the other classes.

@ TeX associates classes with subformulas as well as with individoal characters.

Thus, for example, vou can treat o complex construction as if it were a bi-
nary operation or a relation, etc.. if vou want to. The commands \mathord, \mathop,
\mathbin, \mathrel, \mathopen, \mathclose, and \mathpunct are used for this pur-
pose; each of them is followed either by a single character or by a sublormula in
braces. For examnple, \mathopen\mathchar"1234 is equivalent to \mathchar"4234, he-
canse \mathopen forces class 4 {opening). In the formula ‘$G\mathbin:H$’, the colon
is treated ag a binary operation. And Appendix B constructs large opening symbals
by defining \bigl#l to be an abbreviation for

\mathopen{\hbox{$\left#1l ...\right.$}}

There’s also an eighth classification, \mathiuner, which is not normally used for in-
dividual symbols; fractions and \left...\right constructions are treated as “inner”
subformulas, which means that they will be sarrounded by additional space in cer-
tain circumstances. All other subformulas are generally treated as ordinary syvibols,
whether they are formed by \overline or \hbox or \vcenter or by simply being en-
closed in braces. Thus, \mathord isn’t really a necessary part of the TEX language;
instead of typing ‘$1\mathord, 234%" you can get the same effect from '$1(,}1234¢",

155

faumily 1
char
apostrophe
pritme

active math character
actal
mathchar
char
mathchardel
chardef

large operator
mathored
mathop
mathhin
mathrel
mathopen
mathelose
mathponct
colon

higl
mathinner
left

right

156

Chapter 17: More about Math

@@» EXERCISE 17.20
Commands like \mathchardef\alpha="010B are used in Appeadix B to define

the lowercase Greek letters. Suppose that you want to extend plain TEX by putting
boldface math italic letters in family 9, analogous to the normal math italic letters

i family 1. {Such fonts aren’t available in stripped down versions of TEX, but let’s
agsume that they exist.) Assume that the control sequence \bmit has been defined as
an abbreviation for ‘\fam=9"; hence *{\bmit b} will give a boldface math italic b. What
change to the definition of \alpha will make {\bmit\alpha} produce a boldface alpha?

@@ Delimifers are specified in a similar but more complicated way, Each character

has not only a \catcode and a \mathcode but also a \delcode, which is either
negative {for characters that shonld not act ag delimiters) or less than “1000000. In
other words, nounegative delcodes consist of six hexadechmal digits, The first three
digits specify a “small” variant of the delimiter, and the last three specify a “large”
variant. For example, the command

\delcode ‘x="123456

means that if the letter x is used as a delimiter, its small variant is found in position
"23 of family 1, and its large variant is found in position 56 of family 4. If the
small or large variant is given ag 000, however {position § of family 0}, that variant is
ignored. TEX looks at the delcode when a character follows \left or \right, or when
a character follows one of the withdelims commands; a negative delcode leads to an
error message, but otherwise TEX finds a suitable delimiter by first tryving the small
variant and then the large. {Appendix G discusses this process in more detail.) For
example, Appendix B contains the commands

\delcode {="028300 \delcode®.=0

which specify that the small variant of a left parenthesis is found in position "28 of
family 0, and that the large variant is in position 0 of family 3; also, a period has
ne variants, hence ‘\left.’ will produce a null delimiter. There actually are several
different left parenthesis symbols in family 3; the smallest is in position , and the others
are linked together by information that comes with the font. All delcodes are —1 until
they are changed by a \delcode command.

@@» EXERCISE 17.21
Appendix B defines \delcode < so that there is a shorthand notation for angle
brackets. Why do vou think Appendix B doesn’t go further and define \delcode* {?

@@ A delimpiter can algo be given directly, as ‘\delimiter{number}’. In this case
the number can be as high as "TFFFFFF, i.e., seven hexadecimal digits; the
leading digit specifies a clags, from O to 7, as in a \mathchar. For example, Appendix B
containg the definition

\def\langle{\delimiter"4268304 }

and this means that \langle is an opening {class 4} whose small variant s "268 and
whoge large variant is "304. When \delimiter appears after \left or \right, the
class digit is ignored; but when \delimiter occurs in other contexts, ie., when TgX
isn’t looking for a delimiter, the three rightmost digits are dropped and the remaining
four digits act as a \mathchar. For example, the expression ‘$\langle x$° is treated
ag if it were ‘$\mathchar"4268 x$’.

areelk
holdface math italic
Delitniters
deleode
family O

left

right
withdelims
noll deliiniter
angle brackets
delimiter
langle

Chapter 17 More about Math

@@» EXERCISE 17.22
What goes wrong if you type \bigl\delimiter"4268304° 7

@@ Granted that these numeric conventions for \mathchar and \delimiter are not

beautiful, they sure do pack a lot of information into o small space. That’s why
TEX uses them for low-level definitions inside formats. Two other low-level primitives
also deserve to be mentioned: \radical and \mathaccent. Plain TEX makes square
raot signs and math accents available by giving the commands

\def\zqgrt{\radical"270370 }
\def\widehat{\mathaccent"362 }

and several more like them. The idea is that \radical i followed by a delimiter
code and \mathaccent is followed by a math character code, so that TEX knows the
family and character positions for the symbaols used in radical and accent constractions.
Appendix G gives precise information about the positioning of these characters. By
changing the definitions, TEX could easily be extended so that it would typeset a variety
of different radical signs and a variety of different accent signs, if such symbols were
available in the fonts.

@ Piain TEX uses family 1 for math italic letters, family 2 for ordinary math

symbols, and family 3 for large symbols. TEX insists that the fonts in fami-
lies 2 and 3 have special \fontdimen parameters, which govern mathematical spacing
according to the rules in Appendiz) the cmsy and cmex symbol fonts have these
parameters, so their assippment to families 2 and 3 is almost mandatory, {There is,
however, a way to modify the parameters of any font, using the \fontdimen command.)
INITEX initializes the mathcodes of all letters A to Z and a to z so that they are symbols
of clags 7 and family 1; that’s why it is nataral to use fauily 1 for math italics, Sim-
ilarly, the digits 0 to 9 are class 7 and family 0. None of the other families is treated
in any special way by TpX. Thus, for example, plain TEX puts text italic in family 4,
slanted roman in family 5, bold roman in family 6, and typewriter type in family 7, but
any of these aumbers could be switched around. There is a macro \newfam, analogous
to \newbox, that will assign symbolic names to families that aren’t already used.

@ When TgX is in horizontal mode, it is making a horizontal list; in vertical

made, it is making a vertical list. Therefore it should come as no great, surprise
that TEX is making a math st when it is in math mode. The contents of horizontal
lists were explained in Chapter 14, and the contents of vertical lists were explained in
Chapter 15; #t’s time now to describe what math lists are made of. Each item in a
math list is one of the following types of things:

» an atom (to be explained momentarily);

» horivontal material (a rule or discretionary or penalty or “whatsit”);
= vertical material {from \mark or \inzert or \vadjnst};

= a glob of ghie {from \hskip or \mskip or \nonscript);

» 3 kern {from \kern or \mkern};

m o style change (from \displaystyle, \textstyle, etc.);

= a generalized fraction {from \above, \over, etc.);

= a boundary {fiom \left or \right);

= a four-way choice (from \mathchoice).

157

radical
mathaccent
senare Toot signs
surd signs, see radical
family 1

famnily 2

family 3

math fonts
fontdimen

Cmsy

Cinex

syibol fonts
fontdimen
INITEXN

letters

newlam

math Hst

math maode
atonm

ahis

kern

style change
weneralized fraction
bhoundary

choice
mathchoice

158

Chapter 17: More about Math

@ The most important items are called atoms, and they have three parts: a
nucleus, a superscript, and a subscript. For example, i vou type

{(x_ity) " {\overline{n+1}}

in math mode, vou get a math list consisting of five atoms: (, x;, +. 7 and ™+,
The nuclei of these atoms are (, x, +, ¥, and); the subscripts are empty except for
the second atom, which has subscript 4; the superscripts are empty except for the last
atom, whose superscript is nn + 1. This superscript is itself o math list consisting of one
atowm, whose nuclens is o + 1; and that nucleus is a math Hst consisting of three atoms,

@@ There are thirteen kinds of atoms, each of which might act differently in a
formula; for example, ‘(" is an Open atoan because it comes from an opening.
Here is a complete list of the different kinds:

Ord is an ordinary atom like ‘1’

Op s a large operator atom like Y7
Bin is a binary operation atom like ‘47 ;
Rel is a relation atom like '=7;

Open i an opening atom fike *{7;

Close is a closing atom like ©);

Panct is a punctuation atom ke °,7;
Inner i an inner atom like ‘1°;
Over is an overline atom like
Under is an wnderline atom like 27 ;
Ace s an accented atom like 57
Rad is a radical atom like *v/27;
Veent is a vbox to be centered, produced by \vcenter.

wn

@@ An atom’s auclens, superscript, and subsecript are called its fields, and there
are four possibilities for each of these fields; a field can be

= empty;

= o math symbol {specified by family and position number);
= a box; or

= a math st

For example. the Close atom Y* T considered above has an empty subscript field: its
nuclens s the symbol), which is character “28 of family 0 if the conventions of plain
TEX are in force; and its superscript field is the math Hst 2 + 1. The latter math st
consists of an Over atom whose nucleus is the math lst n+ 1; and that math list, in
turn, consists of three atoms of types Ord, Bin, Ord.

@ You can see TEX's view of a math st by typing \showlists in math mode,
For example, atter ‘$(x_i+y) "{\overline{n+1}}\showlists’ vour log file gets
the following curions data:

\mathopen
Afam® (
\mathord
Afaml x
JANfaml i

noclens

superseript
subseript

atomic types, table
fields

showlists

internal list format

Chapter 17 More about Math

\mathbin
AfamQ +
\mathord
Afaml y
\mathclose
AfamG)
“\overline
~ . \mathord
~..\faml n
~.\mathbin
~L A\famQ +
~.\mathord
~LAfam® 1

In our previous experiences with \showlists we obgerved that there can be hoxes within
boxes, and that each line in the log file is prefixed by dots to indicate its position in
the hierarchy. Math lists have a slightly more complex structure; therefore a dot is
used to denote the nucleus of an atom, o *™ is used for the superscript field, and a °
is used for the subscript field. Empty fields are not shown. Thus, for example, the Ord
atom x; is represented here by three lines “\mathord’, ‘. \faml x’, and ° \faml i’.

@ Certain kinds of atoms carry additional information besides their nucleus,

sitbseript, and superscript fields: An Op atom will be marked \limits’ or
‘Anolimits’ if the normal \displaylimits convention has been overridden; a Rad
atom contains a delimiter field to specify what radical sign is to be used; and an Acc
atom containg the family and character codes of the accent symbaol.

@ When you say \hbox{. ..} in math mode, an Ord atom iz placed on the current

math Lst, with the hbox as its nucleas. Similarly, \vcenter{...} produces a
Veent atorn whose nucleus is a box. But in most cases the nuclens of an atom will be
either a symbol or o math lst. You can experiment with \showlizsts to discover how
other things like fractions and mathchoices are represented internally,

@ Chapter 26 containg complete details of how math lists are constructed. As

soon as math mode ends (Le., when the closing ‘¢’ cccurs), TgX dismantles the
current math list and converts it into a horizontal list. The rules for this conversion are
spelied out in Appendix G. You can see “before and alter” representations of such math
typesetting by ending a formula with ‘\showlizta$\showliats’; the first \showlists
will digplay the math list, and the second will show the {possibly complex) horizontal
list that iz manufactured from it.

The fearning time is short. A few minutes gives the general flavor, and
typing a page or two Of a paper generally uncovers most of the misconceptions.

— KERNIGHAN and CHERRY, A System for Typesetting Mathematics {1975)

VWithin a few hours {a few days at most)

a typist with no math or typesetting experience

can be taught to input even the most compiex equations.

— PETER J. BOEHM, Software and Hardware Considerations for a
Technical Typesetting System {1976)

159

Tirmitss
nolimits
displaylimits
hbox

veenter
KERNIGHAN
CGHERRY
BOBEHM

_

18

Fine Points of
Mathematics Typing

Chapter 18: Fine Points of Mathematics Typing

We have discussed most of the faciiities needed to construet math formmalas, but
there are several more things a good mathematical typist will want to watch for.
After you have typed a dozen or so formulas using the hasic ideas of Chapters
16 and 17, you will find that it’s easy to visualize the final appearance of a
mathematical expression as you type it. And onee you have gotten to that level,
there’s only a little hit more to learn before you are producing formulas as beau-
tiful as any the world has ever seen; tastefully applied touches of TEXnigue will
acd a professional polish that works wonders for the appearance and readability
of the books and papers that you type. This chapter talks about such tricks,
and it also fills in a few gaps by mentioning some aspects of math that didn’t fit
comfortably into Chapters 16 and 17.

1. Punctuation. When a formula is followed by a period, comma, semicolon,
eolon, question mark, exclamation point, ete., put the punctuation after the §,
whoen the formmla is in the text; but puat the punctuation before the $% when the
formula is displayed. For example,

If $x<0%, we have shown that $$y=f(x).$$

TEX’s spacing rules within paragraphs work best when the punctuation marks
are not considered to be part of the formulas.
Similarly, don’t ever type anything like

for $x = a, b§, or $cf.
Tt should be
for $x = a$, $b¥, or $cf.

(Better yet, use a tie: ‘or~$c§’.} The reason is that TEX will typeset expression
‘#x = a, b¥’ as a single formula, so 1t will put a “thin space” hetween the comma
and the 6. This space will not be the same as the space that TEX puts after
the comma affer the b, since spaces between words are always bigger than thin
spaces. Such wnequal spacing looks bad, but when you type things right the
spacing will look good.

Another reason for not typing ‘$x = a, 5%’ is that it inhibiis the pos-
sibilities for hreaking lines in a paragraph: TgX will never break at the space
between the comma and the b because breaks after commas in formulas are usu-
ally wrong. For example, in the equation ‘$x = £(a, b)$ wo certainly don’t
want o put ‘z = f(a.” on onc finc and *#)’ on the next.

Thus, when typing formulas in the text of a paragraph, keep the math
properly segregated: Don’t take operators like — and = outside of the $°s, and
keep commas mside the formula if they are truly part of the formula. But if a
comma or period or other punctuation mark belongs linguistically to the sentence
rather than to the formula, leave it outside the $7s.

» EXERCISE 18.1
Type this: Rin, t) = O™}, as t = 07,

161

period

O

sermieolon

colon

aquestion mark
exclamation point
punetoation
ponetuation marks
tie

thin space

162

Chapter 18: Fine Points of Mathematics Typing

@ Seme mathematical styles insert a bit of extra space arcund formulas to sep-

arate them from the text. For example, when copy is being produced on an
ardinary typewriter that doesn’t have italic letters, the best technical typists have tra-
ditionaliv put an extra biank space before and after each formmia, becanse this provides
auseful visual distinction. You might find it helpful to think of each $ as a syinbol that
has the potential of adding a little space to the printed outpat; then the rale about
excluding sentence punctuation from formalas may be easier to remember.

@@ TEX does, in fact, insert additional space before and alter each formula; the
amount of such space i called \mathsurround, which is a {dimen}-valued
parameter. For example, if you set \mathsurround=1pt, each formula will effectively
be 2 points wider (1 pt at each side):

{\mathsurround=1pt}
{\mathsurround=0pt)

For t =a, b, or ¢
For t = a, b, or ¢

This extra space will disappear into the left or right margin if the formmla cccurs at
the beginaing or end of a line. The value of \mathsurround that is in force when TEX
reads the closing $ of a formula is used at both left and right of that foromla. Plain
TEX takes \mathsurround=0pt, so you won't see any extra space unless vou are using
some other format, or unless you change \mathsurround yourseif.

2. Non-ttalic letters in formulas. The names of algebraic variables are usually
italic or Greek letters, but common mathematical functions like “log’ are always
set in roman type. The best way to deal with such constructions is to make
use of the following 32 control sequences (all of which are defined in plain TEX
format, sce Appendix B):

\arccos \cos \csc \exp \ker \limsup \min \sinoh
\arcsin \cosh \deg \gcd \lg \1ln \Pr \sup
\arctan \cot \det \hom \lim \lecg \sec \tan
\arg \coth Adim \inf \liminf \max \sin \tanh

These control sequences lead to roman type with appropriate spacing:
Input
$\sin2\theta=2\sin\thetal\cos\theta}
$0(n\leg n\loghlog n)$
$\Pr (X>x) =\exp(~x/\mu) $
$#\max_{1\1le n\le m}\lcg 2P_n$$

Chutput

sin 20 = Z2sm @ cosd
O{nlognloglogn)

Pr(X > x) = exp{—a /)

max log, P,
1<n<m =2

$$\1im_{x\tcOM\sin x\over x}=1%$ im O

P B

=1

The last two formulas, which are displays, show that some of the special control
sequences are treated by TEX as “large operators” with lmits just fike 37 The
subseript on \max is not treated like the subscript on \log. Subscripts and
superseripts will hecome limits when they are attached to \det, \ged, \inf,
Alim, \liminf, \limsup, \max, \min, \Pr, and \sup, in display style.

Bpace
mathsurround
roman type
arceos
e
[¥:24
R
ker
Hmsop
min
sinh
arcsin
cosh
deg
god

lg

In

Pr
B
arctan
et
clert
haom
lim
log

B0
tan
arg
coth
i
inf
Tminf
max
sin
tanh
min

Chapter 18: Fine Points of Mathematics Typing

» EXERCISE 18.2
Express the following display in plain TEX language, using \nu’ for ‘v
XK
3 : 2 w A
pr1{n) = lim Z 1~ cos (! x /n}).
p]{) FrE O ({ “/ })
o}
@ If vou need roman type for some mathematical function or operator that isn't
inciuded in plain TEXs list of 32, it is easy to define a new control sequence by
mimicking the definitions in Appendix B. Or, i vou need roman type just for a “one
shot” use, it is even easier to get what yvou want by switching to \rm type, as follovws:

$\sgrt{{\rm Var} () }$ Var(X)

$x_{\rm max}-x_{\rm min}$ Topax ™ Eain

${\rm LL} {k)\Rightarrow{\rm LR} (k}$ LL(k) = LR{K)
$h\exp(x+{\rm constant})$ explx + constant)
x~3+{\rm lower\ order\ termsl}% 2% + lower order terms

Notice the uses of \J in the last case; without them, the result would have been
‘o® + lowerordertermg’, because ordinary blank spaces are ignored in math mode.

@ You can also use \hbox instead of \rm to get roman letters into formulas. For
example, four of the last five formulas can be generated by
$\sqrt {\hbox{Var} (X) }$ Var(X)
$\hbox {LL} (k) \Rightarrow\hbox {LR} (k}$ LL{K) = LR{k)
$\exp (x+\hbox{constant}}$ explx + constant)
$x"3+\hbox{lower order terms}$ % + lower order terms

In this case "\ isn’t necessary, because the material in an \hbox is processed in horizon-
tal mode, when spaces are significant. But such uses of \hbox have two disadvantages:
{1} The contents of the box will be typeset in the same size, whether or not the box
oceurs as a sabscript; for example, ‘$x_(\hbox{max}}$’ vields ‘rmax’. (2) The font
that’s used inside \hbox will be the “current font,” so it might not be roman. For ex-
ample, if you are typesetting the statement of some theorem that is in slanted type, and
if that theorem refers to ‘$\agrt{\hbox {Var} {X}}¥’, vou will get the unintended result
‘A Var(X Y. In order to make sure that an \hbox uses roman type, you need to specify
\tm, e.g., ‘$\sgri{\hbox{\rm Var}(X}>}$’; and then the \hbox serves no purpose. We
will see later, however, that \hbox can be very useful in displayed formulas.

@@» EXERCISE 18.3
When the displayed formuia $$\1im, {n\to\infty}x_ n {\rm\ exists} \iff
\limsup_{n\to\infty}x_n = \liminf_{n\to\inftylx_n.$$ iz typeset with the stan-
dard macros of plain TEX, you get
Bm x, exists <> Hmsupr, — Hminfx,.
But some people prefer a different notation: Explain how youn could change the defini-
tions of \limsup and \liminf so that the display would be

Bm x, exists <> lm x, — Hm z,.
Tt (R0 T e (2 T b OKF

163

no

TN

control space
SPaces

hbox

corrent font
Hmsop

Hminf

164 Chapter 18: Fine Points of Mathematics Typing

@ The word “mod’ is also generally set in roman type, when it cccurs in formulas;

but tis word needs more care, becanse it is used in two different ways that
regitire two different treatments. Plain TEX provides two different control sequences,
\bmod and \pmod, for the two coges: \bmod is to be used when “mod’ is a binary operation
{1.e., when it ocours between two guantities, like a plus sign usnally does), and \pmod
ig to be used when ‘mod’ occurs parenthetically at the end of a formula. For example,

$\gcd(m,n)=\gcd{n,m\bmod n}$
$x\equiv y+1\pmod{m~2}$

ged(m, 1) = ged{n, m mod n)
t=4+1 {modm®)

The b’ in \bmod’ stands for “binary”; the 'p’ in ‘\pmod’ stands for “pareanthesized.”
Notice that \pmod inserts its own parentheses; the gquantity that appears atter ‘mod’ in
the parentheses should be enclosed in braces, if it isp’t a single symbol.

@ » EXERCISE 18.4
What did poor B. L. User get when he typed $x\equivd (\pmod vy n)$’?

@ " Eff Pi:fii?iiz :08 jmdzlm) o [L/ply [remodp {mod p}
P 0P TONKS T Kk) Nk modp b

@ The same mechanism that works for roman type in formulas can be used to

get other styles of type as well. For example, \bf vields boldface:
$\bEf atb=\Phi_md a+b=—&,,

Notice that whole fornmla didn’t become emboldened in this example; the *+° and
=" gtaved the same. Plain TEX sets things up so that commands like \rm and \bf

will affect only the uppercase letters & to Z, the lowercase letters a to z, the digits
0 to 9, the uppercase Greek letters \Gamma to \Omega, and math accents like \hat and

\tilde. Incidentally, no braces were used in this example, becanse $'s have the effect
of grouping; \bf changes the curreat font, but the change is local, so it does not affect
the font that was current outside the formula.

@ The bold fonts available in plain TEX are “bold roman,” rather than “bold

italic,” because the latter are rarely needed. However, TEX could readily be
set up to make nse of bold math italics, if desired {see Exercise 17.20}. A more extensive
set of math fouts would also include seript, Fraktur, and “blackboard hold” styles; plain
TEX doesn’t have these, bat other formats like AA(S-TEX do.

@ Besides \rm and \bf, you can say \cal in formmlas to get uppercase letters in
a “calligraphic” style. For example, ‘$\cal A% produces ‘A and ‘$\cal 2§
produces “Z°. But beware: This works only with the letters 4 to Z; yow'll get weird
results if vou apply \cal to lowercase or Greek letters.
@ There's also \mit, which stands for “math italic.” This affects uppercase
Greek, so that vou get (DA, 0, A4 2 1,2 T, ¢, ¢ 2) instead of (T',..., 1)
When \mit is in effect, the ordinary letters & to 2 and a to z are not changed; they
are set in italics as usual, because they ordinarily come fromn the math italic font.
Conversely, uppercage Greek letters and math accents are unaffected by \rm, because

they ordinarily come from the roman font. Math accents should not be used when the
\mit family has been selected, becanse the math italic font contains no accents.

biniod

jrimocd

hinary operation
User

bf

boldface

aceents

hat

tilde

seript

Fraktur
blackboard hold
AMS-TeX
German black letters
cal

calligraphic

it

math italic
uppercase Greek

Chapter 18: Fine Points of Mathematics Typing

g.?} » EXERCISE 18.6
Type the formula X TMx = (€= x =0, using as few keystrokes as possible.
{The first ‘0" is roman, the second is bold. The superscript ‘T is roman.)

gé} » EXERCISE 18.7
Figure out how to typeset ‘S C X <= S 5.

@ Plain TgX also allows vou to type \it, \al, or \tt, ¥ vou want text Halic,
slanted, or typewriter letters to oceur in o math formula. However, these fonts
are available only in text size, 50 vou should not try to use them in subscripts.

@ If you're paying attention, you probably wonder why both \mit and \it are
provided; the answer is that \mit is “math italic” {which is normally best for
formulas), and \it is “text italic” (which is normalily best for running text).

$This\ is\ math\ italic.$ This is moth itolic.
{\it Thisz iz text italic.} Thas 18 text stolic.

The math italic letters are a little wider, and the spacing is different; this works better
in most formulas, but it fails spectacuiarly when vou try to type certain italic words
like ‘dif ferent’ using math mode {‘$different$’). A wide °F is usually desirable
in formulas, but it is undesirable in text. Therefore wise typists use \it in a math
formula that is supposed to contain an actual italic word. Such cases almost never
cceur in classical mathematios, but they are common when computer programs are
being typeset, since programmers often use multi-letter “identifiers”:

$\it last:=firat$ st 1= first
$\it x_coord{point_2}$ z_coord{ porrt_2)

The first of these examples shows that TEX recognizes the ligature ‘f’ when text italic
ceeurs in a math formula; the other example illustrates the use of short underlines to
break up identifier names. When the author typeset this manual, he used ‘$\it S5¢’
to refer to style S5, since ‘$559° makes the S°s too far apart: 59

@ » EXERCISE 18.8
What plain TEX commands will produce the following display?

#
available + Z max(full{z}), reserved(i)) = capacity.

de

@@» EXERCISE 18.9
How would you go about typesetting the following computer program, using
the macros of plain TEX?

for j:= 2 step 1 until » do
begin accurn = Al k=5 — 1 A[0] := accum;
while Alk] > ecoum do
begin Ak + 1] = AL k=% -1,
end;
Alk + 1] := aecum;
end.

165

bholdface nombers in math
it

51

tt

COMPOLEr Programs
identifiers

ligature

underlines
control-undertine

166

Chapter 18: Fine Points of Mathematics Typing

3. Spacing between formulas. Displays often contain more than one formula; for
example, an equation is frequently accompanicd by a side condition:

Fo=Fyoq + Fuen, 1> 2.

In such cases you need to tell TEX how much space to put after the comma,
because TEX s normal spacing conventions would bunch things together; without
special precautions you would get

Fo=Foi1+Foan>2

The traditional hot-metal technology for printing has led to some in-
grained standards for situations like this, based on what printers call a “quad”
of space. Since these standards seem to work well in practice, TEX makes it easy
for you to continue the tradition: When you type “\quad’ in plain TgX format,
vou get a printer’s guad of space in the horizontal direction. Similarly, ‘\qquad’
gives you a double quad (twice as much); this is the normal spacing for sttuations
like the F,, example above. Thus, the recommended procedure is to type

$$ F.n = F_{n~1} + F_{n~2}, \qquad n \ge 2. $%

Tt is perhaps worth reiterating that TEX ignores all the spaces in math mode
{except, of course, the space after ‘\qquad’, which i needed to distinguish be-
twoen ‘\gqquad n’ and ‘\gquadn’); s0 the same result would he obtained if you
were to leave out all but one space:

$38F _n=F_{n-1}+F_{n-2},\qquad n\ge2.$$

Whenever you want spacing that differs from the normal conventions, you must
specify it explicitly by using control sequences such as \quad and \qquad.

@ A guad used to be a square piece of blank type, Tem wide and 1em tall—

approximately the size of o capital M, as explained in Chapter 10. This
tradition has not been fully retained: The control sequence \guad in plain TEX is simply
an abbreviation for “\hakip lem\relax’, so TEX’s quad has width bat no height.

@ You can use \quad in text as well as in formulas; for example, Chapter 14

illustrates how \gunad applies to poetry. When \guad appears in a formula it
stands for one em in the current text font, independent of the current math sive or
style or family. Thus, for example, \guad is Just as wide in a subscript as it is on the
main Hne of a formula.

Sometimes a careless author will put two formulas next to cach othoer in
the text of a paragraph. For example, you might find a sentence like this:

The Fibonacei numbers satisfy Fy, = Fy1 + Fyon. 1> 2.

Everybody who teaches proper mathematical style is agreed that formulas ought
to be scparated by words, not just by commas; the author of that sentenco
should at least have said “for n > 27, not simply *n > 2°. But alas, such lapses
are commonplace, and many prominent mathematicians are hopelessly addicted

Displays

side condition
aquad

aqoacd

qauad

A

Fibonacci
mathematical
stvle

Chapter 18: Fine Points of Mathematics Typing 167

to clusters of formuias. If we are not allowed to change their writing style, we can control space
at least insort extra space where they neglected to insort an appropriate word. :;;{mg
An additional interword space gencrally works well in such cases; for example, thin spaces

medium spaces

the sentence above was typeset thus: Sl
2 thick spaces

i

.. $F _n=F {n~1}+F_{n-2}%, \ $n\ge2%.)}$$ '
The *\" here gives a visual separation that partly compensates for the bad style. L :
gl

» EXERCISE 18.10
Put the following paragraph into TgX form, treating punciuation and spacing
carchully; also msert tics to prevent bad hne broaks.

Let H be a Hilbert space, (7 a closed bounded convex subset of H,

T a nonexpansive self map of O, Suppose that as n — o6, a,p - 0
for each k, and ~, = E}Zﬁ{@ﬂ,kw ~an 1)~ 0. Then for each z in (7,
Apz =3 000 an 1Tz converges weakly to a fixed point of 7.

4. Spacing within formules. Chapter 16 says that TEX does automatic spacing of
math formulas so that they look right, and this is almost true. But occasionally
vou must give TEX some help. The number of possible math formulas is vast,
and TEX s spacing rules are rather simple, 5o it 13 natural that exceptions should
arise. Of course, it is desirable to have fine units of spacing for this purpose,
instead of the big chunks that arise from \,, \quad and \qquad.

The basic elements of space that TEX puts into formulas are called thin
spaces, mediun spaces, and thick spaces, In order to get a feeling for these units,
let’s take a look at the F, example again: Thick spaces oceur just hefore and
after the = sign, and also before and after the > ; medium spaces occur just
before and after the + sign. Thin spaces are slightly smaller, but noticeable; it’s
a thin space that makes the difference between “loglog” and ‘log log”. The normal
space between words of a paragraph is approximately equal to two thin spaces.

TEX inserts thin spaces, medium spaces, and thick spaces into formulas
antomatically, but you can add your own spacing whenever vou want to, by using
the control sequences

\, thin space {normally 1/6 of a quad);

\> medium space (normally 2/9 of a quad);

\; thick space (normally 5/18 of a quad);

\! negative thin space {normally —1/6 of a quad).

In most cases you can rely on TRX's spacing while you are typing a manuscript,
and yvouw'll want to insert or delete space with these four control sequences only
in rare circumstances after you see what comes out.

@ We observed a minute ago that \guad spacing does not change with the style

of formula, nor does it depend on the math font families that are being used.
But thin spaces, medinm spaces, and thick spaces do get bigrer and smaller as the size
of type gets bigger and smaller; this is becanse they are defined in terms of {muglue},

168

Chapter 18: Fine Points of Mathematics Typing

a special brand of glue intended for math spacing. You specify {muglue} just ag if it
were ordinary glue, except that the units are given in terms of ‘ma’ {math units} instead
of pt or cm or something else. For example, Appendix B contains the definitions

\thinmmskip = 2mn
\medmuskip = 4mm plus 2m minus 4mm
\thickmuskip = 5mm plus 5mm

and this defines the thin, medium, and thick spaces that TEX inserts into formulas.
According to these specifications, thin spaces in plain TpX do anot stretch or shrink;
medinm spaces can stretch a little, and they can shrink to zero; thick spaces can stretch
a lot, but they never shrink.

@@ There are 18 mm to an em, where the em is taken from family 2 {the math
svmbols family). In other words, \textfont 2 defines the em value for mu
in display and text styles; \scriptfont 2 defines the em for script size material; and
\scriptscriptfont 2 defines it for scriptscript size.

@ You can insert math glue into any formula just by giving the command

Amskip{mmgluey. For example, ‘\mskip 9mm plus 2mm’ ingerts one half em of
space, in the carrent size, together with some stretchability. Appendix B defines °\,°
to be an abbreviation for “\mskip\thinmmskip’. Similarly, vou can uge the command
‘Amkern’ when there is no stretching or shrinking; \mkern18m’ gives one em of hori-
zomtal space in the current sive. TEX ingists that \mskip and \mkern be used only with
m; conversely, \hskip and \kern {which are also allowed in formulas) wust never give
units in mm.

Formulas involving caleulus look best when an extra thin space appears
betore dx or dy or dwhatever: but TEX doesn’t do this automatically, Therefore
a well-trained typist will remember to insert *\,” in examples like the following:

Input Chutput
$hint 0 \infty f{x)\,dx$]:V flz)yds
$y\,dx-x\,dy$ gdo — o dy
$dx\,dy=r\,dr\,d\theta$ drdy = rdrdf
$x\,dy/dx$ xdy/dz

Notice that no ‘\,” was desirable after the /7 in the last example. Similarly,
there’s no need for '\, in cases like

$f\int 1 x{dt\over t}§$ /%t
1

since the df appears all by itself in the numerator of a fraction; this detaches it
visually from the rest of the formula.

» EXERCISE 18.11

Explain how to handle the display

o t‘“"’{f} dat ah N
m(‘, dt = ¢ E} {GE}}; a. &> 0.
it

e
thinmuoskip
medmskip
thickmuskip
tentfont
seriptfont
seriptseriptfont
mskif
inkern

hskip

kern
caleolos

dx

Chapter 18: Fine Points of Mathematics Typing

@ When physical units appear in a formula, they should be set in roman tyvpe
and separated from the preceding material by a thin space:

$55\rm\ ,mi/hr$ 55 mi/hr
$g=9.8\rm\,m/sec"2% g = 9.8 1m/sec”
$rrmi\,ml=1. 000028\, cc$ Tl = 1000028 cc

g.?} » EXERCISE 18.12
Typeset the following display, assuming that ‘\hbar’ generates ‘h’:

B 1.0545 x 1077 ergsec,

@ Thin spaces shonld alse be inserted after exclamation points {which stand for
the “factorial® operation in a formula), if the next character is a letter or a
munber or an opening delimiter:

$(2n3 {/\bigl (n!\, (n+1) \bigr)$ () (0l {n+ 1))
52
131131 26!

Besides these cases, you will oceasionally encounter formulas inn which
the symbols are bunched up too tightly, or where too much white space appears,
because of certain unlucky combinations of shapes. It's usually impossible to
anticipate optical glitches like this until vou see the first proofs of what you
have typed; then you get to use vour judgment about how to add finishing
touches that provide extra beauty, clarity, and finesse. A tastefully applied *\,°
or NV will open things up or close things together so that the reader won’t be
distracted from the mathematical significance of the formula. Square root signs
and multiple integrals are often candidates for such fine tuning. Here are some
examples of situations to look out for:

$${521\over13!\,131\,26118%

$Asqrt2\, =% V2
$reqrtil,\log x}$ Vibgn
$0\bigl (1/\sqrt n\,\bigr)$ O{1//n)
$0N,0,.108 [0.1)

$\leg n\, (\log\leg n) 2% logn (loglogn)?
$xo2\1 /2% T2

$n/\!\leg n$ nflogn
$\Gamma_{\!2}+\Delta~{\!12}§ Tp + A?
$R_A{F L AN KL} e

$\int 0"x\'\int 0"y dF (u,v)$]ﬂ](?f dF (u, v)
$ENAnE IV int D dx\,dy$$ // da dy
D

In cach of these formmlas the omission of \, or \! would lead to somewhat less
satisfactory results.

169

Qs

hbar

exclamation points
factorial

Sauare root
moltiple integrals
A a

Delta

intint

170

Chapter 18: Fine Points of Mathematics Typing

@ Most of these exarnples where thin-space corrections are desirable arise because

of chance coincidences. For example, the superscript in $x72/2% leaves a hole
before the slash (x%/2); a negative thin space helps to fill that hole. The positive
thin space in $\sqrt{\,\log x}3$ compensates for the fact that ‘log &’ begins with a
tall, unsianted letter; and so on. But two of the examples involve corrections that were
necessary becanse TEX doesn’t really know a great deal aboat mathematics: {1) In the
formuia $\log n{\log\log n) 2%, TEX inserts no thin space before the left parenthesis,
because there are similar formulas like $\log n{x)$ where no such space is desired.
(2) In the formula $n/\log n$, TEX automatically ingserts an unwanted thin space
before \log, since the slash is treated as an ordinary symbol, and since a thin space is
unsually desirable between an ordinary symbol and an operator like \log.

@ In fact, TEX’s rules for spacing in formulay are fabrly simple, A formula is con-

verted to a math list as described at the end of Chapter 17, and the math list
consists chiefly of “atoms” of eight basic types: Ord {ordinary), Op (large operator),
Bin {binary operation), Rel {relation), Open {opening), Close {closing), Punct {punc-
tnation), and Inner {a delimited subformala}. Other kinds of atoms, which arise from
commands like \overline or \mathaccent or \vcenter, etc., are all treated as type Ord;
fractions are treated as type Inner. The following table is used to determine the spacing
between pairs of adjacent atoms:

Right atomn

Ord Op Bin Rel Open Close TPunct Inner
Ord G 1 (2) (3} ¢ G [{1}
Op 1 1 * (3 o o v {1
Bin {2} {2 * * (2} * * {2}
Left Rel {3} {3 * 0 3 o o Y
atorn Open ¢ 0 * 0 ¢ 0 v 0
Close ¢ 1 (2) (3 0 ¢ ¢ {1}
Punct (1) (1) * (1 (1) {1} 65 {1}
Inner {1} 1 (2) (3) (1) e} 1) (1)

Here 0, 1, 2, and 3 stand for no space, thin space, medinm space, and thick space,
respectively; the table entry is parenthesized i the space is to be inserted oaly in
display and text styles, not in script and scriptscript styles. For example, many of the
entries in the Rel row and the Rel column are *€3)%; this means that thick spaces are
normally ingserted before and alter relational symbols like "=, but not in subscripts.
Some of the entries in the table are “#°; such cages never arigse, because Bin atoms must
be preceded and followed by atoms compatibie with the nature of binary operations.
Appendix G containg precise details about how math lists are converted to horizontal
lists; this conversion is done whenever TEX is about to leave math mode, and the
imter-atomic spacing is inserted at that time.

@ For example, the displayed formula specification
$$xty=\max\{x, y\}\min\ {x,y\}$8

will be transformed into the sequence of atoms

s peEm o,p Ao o,n[j

atons

Ord

ordinary

Op

large operator
Bin

binary operation
Rel

relation

Open
opening
Close

closing
Punct
ponctoation
Inner
overline
mathaccent
veenter
fractions
spacing table

math spacing table

Chapter 18: Fine Points of Mathematics Typing

of regpective types Ord, Bin, Ord, Rel, Op, Open, Ord, Panct, Ord, Close, Bin, Op,
Open, Ord, Paact, Ord, and Close, Inserting spaces according to the table gives

Ord\> Bin \> Ord \; Rel\; Op Open Ord Punct \, Ord Close \>
Bin \> Op Open Ord Punct \, Ord Close

and the resulting formula is

oy = o, o] F) minf{e,
ie.,
x + ¢ = max{z,y}+ min{x,y}

This example doesn’t involve subscripts or superscripts; but subscripts and superscripts
merely get attached to atoms without changing the atomic type.

@@» EXERCISE 18.13
Use the table to determine what spacing TEX will insert between the atoms
of the formala “$F (x,y)<x™2+y72¢".

@@ The plain TgX macros \bigl, \bigr, \bigm, and \big all produce identical

delimiters; the only difference between themn is that they may lead to different
spacing, because they make the delimiter into different types of atoms: \bigl produces
an Open atom, \bigr a Close, \bigm a Rel, and \big an Ord. On the other hand, when
a subformula appears between \left and \right, it is typeset by itself and placed into
an Inner atom. Therefore it is possible that a subformula enclosed by \left and \right
will be surrounded by more space than there would be if that subformula were enclosed
by \bigl and \bigr. For example, Ord followed hy Inner {from \left) gets a thin
space, but Ord followed by Open {from \bigl) does not. The rules in Chapter 17
imply that the construction “\mathinner{\bigl {{{subformnula} \bigr)}’ within any
formula produces a result exactly equivalent to ‘\left ({subformuial\right)’, when
the {subformula) doesw’t end with Punct, except that the delimiters are forced to be
of the \big size regardless of the height and depth of the subformula.

@ TEX’s spacing rules sometimes fail when I and \P appear in a formula,
becanse | and || are treated ag ordinary symbols instead of as delimiters. For
example, constder the formulas

$1-x|=l+x|$ [— x| =+«
$\left|-x\righti=\left|+x\right|$ [=] = |+ux]
$\1floor~x\rfloor=-\lceil+x\rceil$ | =] = —[+z]

In the first case the spacing is wrong becanse TEX thinks that the plus sign is computing
the sum of °|° and ‘x’. The use of \left and \right in the second example puts TEX
on the right track. The third example shows that no such corrections are needed with
other delimniters, becanse TEX knows whether they are openings or closings.

@@» EXERCISE 18.14
Some perverse mathematicians use brackets backwards, to dencte “open in-
tervals.” Explain how to type the following bizarre formula: J—o0, T % J—oc, T

@@r EXERCISE 18.15
Study Appendix G and determine what spacing will be used in the formuia
‘$x++1$°. Which of the plus signs will be regarded as a binary operation?

171

higl

bigr

bigin

big

left:

right
mathinner
delimiters
verticalline
verticalline
brachets

opren intervals
binary operation

172

Chapter 18: Fine Points of Mathematics Typing

5. Ellipses (“three dots”). Mathematical copy looks much nicer if you are careful
ahout how groups of three dots are typed in formulas and text. Although it looks
fine to type ‘...7 on a typewriter that has fixed spacing, the result looks too
crowded when vou're using a printer’s fonts: “$x...y% results in “x..y°, and
such close spacing is undesirable except in subscripts or superscripts.

An ellipsis can be indicated by two different kinds of dots, one higher
than the other; the hest mathematical traditions distinguish between these two
possibilities. It is gencrally correct to produce formulas like

T+ ATy and {r1.....%n).
but wrong to produce formulas like
Tt an and (T1. -, Tn)

The plain TX format of Appendix B allows you to solve the “three dots” problem
very simply, and everyone will be envious of the beautiful formulas that you
procuce. The idea is simply to type \ldots when you want three low dots (...},
and \edots when you want three vertically centered dots (---).

In general, it i best to use \edots between + and — and x signs, and
also hetween = signs or < signs or C signs or other similar relations. Low dots
are used between commas, and when things are juxtaposed with no signs between
them at all. For example:

$x_1+\cdots+x_n$ P SIS
$x_1=\cdots=x_n=0% E R O
$A_1\times\cdots\times A_n$ Ay = A,
$f(x_1,\ldets,x_n)$ flo. ..o xa)
$x_1x_2\ldots x_n$ T DI

§(1-x) (1~x"2)\ldets (1-x"n)$ (L—ax)(1—a*)...(1—2")
$n(n-1)\1ldets (1§ n{n~1)...{1)

» EXERCISE 18.16
Type the lormmulas ‘21 + a1z + 3z xp and L@, @t (i, o) =
Ty + o+ Taln. [Hint: A single raised dot is called \cdot’]

But there’s an important special case in which \1dets and \cdets don’t
give the correct spacing, namely when they appear at the very end of a formula,
or when they appear just hefore a closing delimiter ke *)’. In such sttuations
an extra thin space s needed. For example, consider sentences like this:

Prove that (1~ z)"" = 1+x+ 2%+ ---.
Clearly a; < f; fori=1,2, ..., n.

The coefficionts g, ¢, ..., ¢, are positive.
To get the first sentence, the author typed

Prove that $(1-x) "{-1}=1+x+x"2+\cdots\,§.

ellipses
three dots
ldots
cdots
COTYTY s
cdot

thin space

Chapter 18: Fine Points of Mathematics Typing 173

Without the °\,’ the period would have come too close to the \cdots. Similarly,)
the second sentence was typed thus: fﬁ‘:’:s
. . . ~ . Dol
Clearly $a_i<b_if for $i=1%$,72, $\ldots\,§, n. faotnote
ling breaking in inath
Notiee the use of ties, which prevent had line breaks as explained in Chapter 14. bf;f‘f;ki"% :”f’rm“laﬁ between lines
SORTOTTIVO IS

Such ellipses are extremely common in some forms of mathematical writing, so
plain TEX allows you to say just ‘\dots’ as an abbreviation for ‘$\1dets\, ¥ in
the text of a paragraph. The third sentence can therefore be typed

diseretionary maoltiplication sign
*

The coefficients $c_ 0%, $c. 1%, \dots, fc.nf are pesitive.

» EXERCISE 18.17
B. C. Dull tried to take a shorteut by typing the second example this way:

Clearly $a_i<b_if for~$i=1, 2, \ldots, n$.
What’s so had about that?

» EXERCISE 18.18
How do vou think the author typed the footnote in Chapter 4 of this book?

6. Line breaking. When you have formmias in a paragraph, TEX may have to
break them between lines. This is a necessary evil, something like the hyphen-
ation of words; we want to avoid it unless the alternative is worse.

A formula will be broken only after a relation symbol like = or < or -,
or after a binary operagion symbol like + or — or x, where the relation or binary
operation is on the “outer level” of the formula (.o, not enclosed in {. ..} and
not part of an \over’ construction). For example, if you type

$f(x,y) = x"2-372 = (x+y) (x~y)$

in mid-paragraph, there’s a chance that TEX will break afier either of the = signs
(it prefers this) or after the = or + or ~ (in an emergency}. But there won't be
a break after the comma in any case—commas after which breaks are desirable
shouldn’t appear between §'s.

If you don’t want to permit breaking in this example except alter the
= signs, you could type

$f(x,y) = {x72-y"2} = {(x+y) (x-y7)}%

because these additional braces “freeze” the subformulas, putting them into un-
breakable boxes in which the ghue has been set to its natural width, But it isn't
necessary to hother worrying about such things unless TgX actually does hreak
a formula badly, since the chances of this are pretty shim.

@ A discretionary multiplication sien” is allowed in formulas: If you type

$(xtyd\e {x-73%, TEX will treat the \» something like the way it treats \~;
namely, a line break will be aliowed at that place, with the hyphenation penalty. How-
ever, instead of inserting a hyphen, TEX will insert a x sign in text size

174 Chapter 18: Fine Points of Mathematics Typing

@ If vou do want to permit a break at some point in the outer level of a formula, allowhreak
yvou can say \allowbreak. For example, if the formula relpenalty
binoppenalty
penalty
${x.1,\ldots,x_m,\allowbreak vy _1,\ldotz,y.n}$ nobreak
hraces
appears in the text of a paragraph, TEX will allow it to be broken into the two pieces]ﬁ‘-“}‘;;’dw
I 3 ¢ 3 TIENGDTace
'(‘-E'iz"':‘tm:’ and 'y'iz"':yﬁ)" 5{51;:
]) lefthrace
@ The penalty for breaking after a Rel atom is called \relpenalty, and the rightbrace
penalty for breaking after o Bin atom is called \binoppenalty. Pilaim TEX sets mid

i K vertical bar
\relpenalty=500 and \binoppenalty=700. You can change the penalty for breaking colon

in any particular case by typing “\penalty{number} immediately alter the atom in
guestion; then the mumber you have specified will be used instead of the ordinary
penalty. For example, you can prohibit breaking in the formula 'z = & by typing
‘$x=\nobreak0$’, since \nobreak is an abbreviation for ‘\penalty10000 ’

@@» EXERCISE 18.19
Is there any difference between the results of ‘$x=\nobreak0$’ and ‘${x=01$7

@@» EXERCISE 18.20
How could you prohibit all breaks in formulas, by making only a few changes
to the macros of plain TEX?

7. Braces. A variety of different notations have sprung up involving the symbols
{7 and ‘}; plain TEX includes several control sequences that help you cope with
formulas involving such things.

In simple situations, braces arc used to indicate a set of objects; for
example, “{a. b, ¢}’ stands for the set of three ohjects a, &, and ¢. There’s nothing
special about typesetting such formulas, except that vou must remember to use
A and \} for the hracoes:

$\{a,b,c\}$ {a.b. ¢}
$\{1,2,\1dots,n\}$ {1,2,....n}
$\{\rm red,vhite,blue\}$ {red, white, biue}

A slightly more complex case arises when a set is indicated by giving a generic
element followed by a specific condition; for example, {x | 1 > 5} stands for
the set of all objects & that are greater than 5. In such situations the control
sequence \mid should be used for the vertical bar, and thin spaces should he
inserted inside the braces:

S\, x\mid x>B\,\}$ {x]z>5}
NI\, x x>B\ 0\ {z:z>5}

(Some authors prefer to use a colon instead of |, as in the second example here.)
When the delimiters get larger, as in

{{z.f(x)) |z e D}

Chapter 18: Fine Points of Mathematics Typing 175

they should be called \bigl, \bigm, and \bigr; for example, the formula just bigl

given would be typed ;;:gﬂn

Big

Abigl\{\, \bigl(x,f(x)\bigr)\bigm|x\in D\ ,\bigr\} i);gg

FIgE

and formulas that involve still larger delimitors would use \Big or \bigg or even f:(]’:j:m o cases

\Bigg, as explained in Chapter 17. alternatives, sew cases
choices, see cases

» EXERCISE 18.21 :ﬁﬁirsand
How would you typeset the formula { 2 | A{z) € {-1,0.+1} }7 er

@ » EXERCISE 18.22

Sometimes the condition that defines a set is given as a fairly long English
description, not as a formula; for example, consider {p]p and p+ 2 are prime }’. An
hbox would do the job:

SN\, p\mid\hbox{p and $p+2% are prime}\,\}$

but a long formula like this is troublesome in a paragraph, since an hbox cannot be
broken between lines, and since the glie inside the \hbox does not vary with the
mnterword glue in the line that contains it. Explain how the given formula could be
typeset with line breaks allowed. [Hint: Go back and forth between math mode and
horizontal mode.)

Displayed formulas often involve another sort of brace, to indicate a
choice between various alternatives, as in the construction

T, ifa > 0;
o =

]~z otherwise.
You can tvpescet it with the control sequence \cases:
¥i i

$$ix|=\cazes{x,kif $x\ged§;\cr
~x,kothervise. \cr}$$

Look closely at this example and notice that it uses the character &, which wo
said in Chapter 7 was reserved for special purposes. Here for the first time in
this manual we have an example of why & is so special: Each of the cases has
two parts, and the & separates those parts. To the left of the & is a math formula
that s implicitly enclosed in $. .. %; to the right of the & is ordinary text, which
is not implicitly enclosed m $...9$. For example, the ‘~x,’” in the second line
will be typeset in math mode, but the ‘otherwise’ will he typeset in horizontal
mode. Blank spaces alier the & are ignoved. There can be any number of cases,
but there usually are at feast two. Each case should be followed by \cr. Notice
that the \cases construction typesets s own {77 there is no corresponding *}.

» EXERCISE 18.23 1/3 f0<a<1:
Typeset the display f(z) = 2/8 if8< <4
0 elsewhere.

176

Chapter 18: Fine Points of Mathematics Typing

@ You can insert ‘\noalign{{vertical mode material}}’ just after any \cr within

\cases, as explained in Chapter 22, because \cases is an application of the
general alignment constructions considered in that chapter. For example, the command
‘\noalign{\vskip2pt}’ can be used to put a little extra space between two of the cages.

@ Horizontal braces will be set over or under parts of a displayed formula if vou
use the control sequences \overbrace or \underbrace. Such constructions are
considered to be large operators like \sum, so you can put Hmits above them or below
them by specifying superscripts or subscripts, as in the following examples:
k times

$¢\overbrace{x+\cdots+x} {k\rm\;time=1}3% [S T

$$\underbrace{x+y+z}_{>\,0}.%% Y+,
N

> 8

& Martrices. Now comes the fun part. Mathematicians in many different disci-
plines like to construct rectangular arrays of fornmilas that have been arranged
in rows and columns; such an array is called a mafrix. Plain TEX provides a
\matrix control sequence that makes it convenient to deal with the most com-
mon types of matrices.

For example, suppose that you want to specify the display

T A 1 0
A & T — A 1
& 0 T A

All you do is type

$2A=\left (\matrix{x-\lambdakl&Q\cr
Okx~\lambda&l\cr
QkOkx-\lambda\crM\right).$$

This is very much like the \cases construction we looked at earlier; each row of
the matrix is followed by \cr, and “&’ signs are used between the individual entries
of each row. Notice, however, that you are supposed to put vour own \left and
Aright delimiters around the matrix; this makes \matrix different from \cases,
which mnserts a big *{* automatically. The reason is that \cases always involves
a left brace, but different delimiters are used in different matrix constructions.
On the other hand, parentheses are used more often than other delimiters, so
vou can write \pmatrix if you want plain TEX to fill in the parentheses for you;
the example ahove thon reduces to

$#A=\pmatrix{x~\lambdak. ..&kx-\lambda\cr}.$$

w &
] v 4 |. using \lgroup and \rgroup.
oz

a b ¢

gé} » EXERCISE 18.24
Typeset the display
P iflp:»[d e f

noalign
Huorizontal braces
overhrace
nderbrace
array
matrix
miatris
lambeda
pinatriz
larop
PEFGOD

Chapter 18: Fine Points of Mathematics Typing

@ The individual entries of a matrix are normally centered in columns. Each

column is made as wide as necessary to accommodate the entries it contains,
and there’s a quad of space between columns. I vou want to put something flush
right in its column, precede it by \hfill; if you want to put something flush left in its
colnmn, follow it by \hfill.

@ Each entry of a matrix is treated separately from the others, and it is typeset
as a math formula in text style. Thus, for example, if you say \rm in one entry,
it does not affect the others. Don’t try to say “(\rm x&y}’.

Matrices often appear in the form of generic patterns that use cllipses
(i.e., dots) to indicate rows or columns that are left out. You can typeset such
matrices by putting the ellipses into rows and/or columns of their own. Plain
TEX provides \vdote (vertical dots) and \ddots {diagonal dots) as companions
to \ldete for constructions like this. For example, the generic matrix

[ESR] [e5D) . Q1n
L5} [¢5D) e 2oy
@m1 Q2 .. fpp

is casily specified:
$$A=\pmatrix{a {11}&a {12}&\ldotska_{1ln}\cr
a_121} ka_{22}&\ldotska_{2nF\cr
\vdotsk\vdotsk\ddotsk\vdots\cr
a_{m1}&a_{m2}&\ldotska_{imn}\cr}$$

» EXERCISE 18.25 I3
How can you get TEX to produce the column vector

Yk

@ Sometimes o matrix is bordered at the top and left by formulas that give
labels to the rows and columns. Plain TEX provides a special macro called
\bordermatrix for this situation. For example, the display

C’ I "

c o1 G G

M=1T b 1—b ¢
A0 o) 1-a

is abtained when you type

$$¢M=\bordermatrix{&CEI&C*\cT
C&1&0&0\cr I&b&1-b&O\cr C?&0&akl-a\cr}$$

The first row gives the upper labels, which appear above the big left and right paren-
theses; the first column gives the left labels, which are typeset flush left, just before
the matrix itself. The first cohrmn in the first row is normally blank., Notice that
\bordermatrix inserts its own parentheses, like \pmatrix does.

177

auad

Huosh right
htill

Hush left
ellipses

vdots

dedots

ldots

generic matrix
coluinn vector
vector
bordermatriz

178

Chapter 18: Fine Points of Mathematics Typing

@ It’s usually inadvisable to put matrices into the text of a paragraph, be-
cause they are so big that they are better displaved. Dut occasionally vou

may want to specify a small matrix Hke {21 i) which you can typeset for example as

‘$1N\,1\chooselN,1$’. Similarly, the small matrix (‘; f;L ;) can be typeset as

$\bigl{{a\atop 1l}{b\atop m}{c\atop n}\bigr}$
The \matrix macro dees not produce small arrays of this sort.

8. Vertical spacing. If you want to tidy up an unusual formula, you know alveady
how to move things farther apart, or closer together, by using positive or negative
thin spaces. But such spaces affect only the horizontal dimension; what if you
want something to be moved higher or lower? That’s an advanced topic.
@ Appendix B provides a few macros that can be used to foo! TEX into thinking
that certain formulas are larger or smalier than they really are; such tricks can
be used to move other parts of the formula up or down or left or right. For example, we
have already discussed the use of \mathstrut in Chapter 16 and \strut in Chapter 17;
these invisible boxes caused TEX to put square root signs and the dencminators of
continned fractions into different positions than usual.

@ If you say “\phantom{{subformula}}’ in any formmla, TEX will do all of its

spacing as if vou had said simply “{{subformula}}’, but the subformula itself
will be invisibie. Thus, for example, ‘2’ takes up just as much space as
‘02" in the current style, but only the 2 will actually appear on the page. If you want
to leave blank space for a new symbol that has exactly the same stze as 5, but if you
are forced to put that symbol in by hand for some reason, “\mathop{\phantom\zum}’
will leave exactly the right amount of blank space. {The ‘\mathop’ here makes this
phantom behave like \sum, i.e., as a large operator.)

@ Even more useful than \phantom is \vphantom, which makes an invisible hox

whose height and depth are the same as those of the corresponding \phantom,
but the width is zero. Thus, \vphantom makes a vertical strut that can increase a
formmia’s effective height or depth. Plain TEX defines \mathatrut to be an abbreviation
for ‘\vphantom¢’. There’s also \hphantom, which has the width of a \phantom, but its
height and depth are zero.

@ Plain TEX alse provides “\smash{{subformula}}’, a macro that vields the same

result as ‘{{subformula}}’ but makes the height and depth zero. By using
both \smash and \vphantom you can typeset any sublormula and give it any desired
nonnegative height and depth. For example,

\mathop{\zmash\limsup\vphantom\liminf}

produces a large operator that says ‘Hmsup’, but its height and depth are those of
\liminf {i.e., the depth is zero).

@@b EXERCISE 18.26
If vou want to underline some text, vou counld use a macro ke
\def\undertext#1{$\underline {\hbox {#1}3}3}

to do the job. But this doesn’t always work right. Discuss better alternatives.

choose
matrix, sinall
atop
mathstrot
strot
phantom
new symbol
mathop
vihantom
strot
hphantom
stash

Frmind
Hmsop
underlined text

Chapter 18: Fine Points of Mathematics Typing

@ You can also use \raise and \lower to adjust the vertical positions of boxes

in formmlas. For example, the formmia '$27 {\raizelpt\hbox{$\acriptatyle
n$}}$ will have its superscript n one point higher than usual (27 instead of 27}, Note
that it was necessary to say \scriptstyle in this example, since the contents of an
\hbox will normally be in text style even when that hbox appears in a superscript, and
since \raise can be used only in connection with a box. This method of positioning
is not used extremely often, but it is sometimes heipful if the \root macro doeso’t put
its argument in a suitable place. For exazmple,

\root\raise{dimen}\hbox{$\scriptscriptstyle{argument}$Iiof. ..
will move the argument up by a given amount.

@ Instead of changing the sizes of subformulas, or wsing \raisze, you can also

control vertical spacing by changing the parameters that TgX nses when it is
converting math Hsts to horizontal Hsts, These parameters are described in Appen-
dix G; you need to be careful when changing them, because such changes are global
{i.e., not local to gronps). Here is an example of how such a change might be made:
Suppose that you are designing a format for chemical typesetting, and that you expect
to be setting a lot of formulas like ‘Fed®Crz 047, You may not like the fact that the
subseript in Fel? is lower than the subscript in Cry; and you don’t want to force users
to type monstrosities like

$\tm Fe 2" {+2}Cr_2" {\vphantom{+2}}0_4" {\vphantom{+2}}$

just to get the formula Fel*Cr,0, with all subscripts at the same level, Well, all
your need to do is set \fontdimenl6\tensy=2.7pt’ and ‘\fontdimenl7\tenzay=2.7pt’,
assuming that \temsy is vour main symbol font {\textfont2); this lowers all normal
subscripts to a position 2.7 pt below the baseline, which is enough to make room for a
possible superseript that contains a phus sign. Similarly, vou can adjust the positioning
of superscripts by changing \fontdimenld\tenay. There are parameters for the position
of the axis line, the positions of mumerator and denominator in a generalized fraction,
the spacing above and below limits, the defanlt rule thickness, and so on. Appendix G
gives precise details,

10. Special features for math hackers. TEX has a fow more primitive oporations
for math mode that haven’t been mentioned yet. They are occasionally useful if
vou are designing special formats.

@ ¥ a glue or kern specification is immediately preceded by “\nonscript’, TgX

will not use that glue or kern in script or seriptscript styles. Thus, for example,
the sequence ‘\nonscript\;’ produces exactly the amount of space specified by {(3)°
in the spacing table for mathematics that appeared earlier in this chapter.

@ Whenever TEX has scanned a $ and is about to read a math formula that

appears in text, it will first read another list of tokens that has been predefined
by the command \everymath={{foken lst}}. {This is analogons to \everypar, which
wag described in Chapter 14.} Similarly, vou can say \everydisplay={{token Hst}} to
predefine a list of tokens for TEX to read just after it has scanned an opening $3, Le., just
before reading a formula that is to be displayed. With \everymath and \everydizplay,
you can set up special conventions that vou wish to apply to all formulas.

179

ralse

lowver
seriptstyle
hbox

root

global
chemical typesetting
fontdimen
tensy
subsoripts
FUPErseripts
axris Hne
nomerator
dengminator
fraction
Hrnits

rule thickness
nonserijpt
everyinath
everydisplay

180

Chapter 18: Fine Points of Mathematics Typing

11, Summary. We have discussed more different kinds of formulas in this chapter
than you will usually find in any one book of mathematics. If you have faithfully

cdone the exercises so far, you can face almost any formula with confidence.

$

But here are a few more exerciges, to help vou review what you have learned.
Each of the following “challenge formulas” illustrates one or more of the prio-
ciples already discussed in this chapter. The anthor confesses that he is trying to trip
yoir up on several of these, Nevertheless, if you try each one before looking at the
answer, and if youw're alert for traps, vou should find that these formulas provide a

good way to consolidate and complete your knowledge,

¢

» EXERCISE 18.27
Challenge mnmber 1: Explain how to type the phrase it root’, where n

ig treated as a mathematical formula with a superscript in roman type.

W M M M

(T4 zz+a3z2 4+, +m;{;ﬂz+q;§i22+...} -

?

r EXERCISE 18.28
Challenge nmumber 2: SITS = dglon, ..., wh) = AL

» EXERCISE 18.29

Challenge number 3: Pr{fm=mn|m+n=3)
» EXERCISE 18.30
Challenge number 4: sin18% = (/5 ~ 1).
» EXERCISE 18.31
Challenge number 5: k=138 x 107 % erg/°K.
» EXERCISE 18.32)))
Challenge number 6: CNLY/N=L7C...CNL}/N =L,
» EXERCISE 18.33 o
Challenge number 7: A = [f, gz, gy vl do dy.
r EXERCISE 18.34 : :
Chalienge number 8: Joo s flon.. o xn)day L day,

r» EXERCISE 18.35
Challenge number 9: Here's a display.

o = { QX2 - PyW2Y 257 (m odd)
ey T

HE HE

PHX2 — PyW2) 257 (m cven)

T

{mod N).

» EXERCISE 18.36
Challenge number 10 And another.

1
(1—=z12) ... (1~ xp2}

» EXERCISE 18.37
Challenge pumber 11: And another,

H@Widzwwm

iz0 k20 ni Eo.ki,...28
Fo-hy4r=n

chegrenss

Chapter 18: Fine Points of Mathematics Typing

g.?} » EXERCISE 18.38
Challenge number 12: And,

nlne! ! 119 1y Thon

(g o+ 4wl (u]_ + ?12) (u; + 1y + ug) (u; R I D SR um)

@ » EXERCISE 18.39
Challenge mnmber 13: Yet another display.

;' wder 11y 7y wdo ¥2 Y o e FL
[(3'3;(1'2;”';@{\1':' _ t {lmqm4?’&}(1mqauﬂ}.”{lmqaﬁuﬁﬂ}
2 o II

b, by, .. b (1 — gbrFn)(1 — glatny | (1 — ghwin)’

r={}

g% » EXERCISE 18.40
Challenge number 14: And another.

> =] s,
p prime £>1

@ » EXERCISE 18.41
Challenge number 15: Still another.

Foa's s

Fed elements

@ » EXERCISE 18.42
Chalienge number 16: Put a \=mallskip between the rows of matrices in the

compound matrix
a b e f
¢ d g h

’n!- J
0 (k Z)
@ » EXERCISE 18.43

Challenge number 170 Make the columns flush left here.

[] [&)] e
(&3] [&)] 3 P e |
dot | 2 ‘8 4 RS A e

Cn Cnptl Cpt2 o0 (2pn
@@» EXERCISE 18.44
Challenge number 18: The main problem here is to prime the 5.

S Y fa.

reA reAd
Fat]

181

stnallskip
compound matriz
Hush left

SO Priine

=ejef

182

Chapter 18: Fine Points of Mathematics Typing

@@» EXERCISE 18.45
Chalienge mummber 19: You may be ready now for this display.
lef . 2'-} k
241k 2 } .

@@» EXERCISE 1R8.46
Challenge pumber 20: And finally, when vou have polished off all the other
exarmples, here’s the ultimate test. Explain how to obtain the commutative diagram

1
ek

0 — Op - mOp - RUEOp(=D) — 0

lﬂ;@vq

R (Ov(—iM)) 2y~

|

0

-y

using \matrix. {Many of the entries are blank.)

12. Words of advice. The number of different notations is enormous and still
growing, so you will probably continue to find new challenges as vou continue to
type mathematical papers. 16%s a good idea to keep a personal notehook in which
vou record all of the non-obvious formulas that you have handled successiully,
showing both the final output and what you typed to get it. Then you’li be able
to refer back to those solutions when you discover that vou need to do something
similar, a few months later,

If you're a mathematician who types your own papers. you have now
learned how to get enormously complex formulas into print, and you ean do so
without going through an intermodiary who may somchow distort their meaning.
But please, don’t get too carried away by your newfound talent; the fact that you
are able to typeset your formulas with TpX doesn’t necessarily mean that you
have found the best notation for communicating with the readers of your work.
Some notations will be unfortunate even when they are beautifully formatted.

commutative diagram
matrix
author, typesetting by

Chapter 18: Fine Points of Mathematics Typing

Mathematicians are like Frenchmen:
whenever you say something to them, they transiate it into their own fanguage,

and at once it is something entirely different.
— GOETHE, Maxims and Reflexions {1829)

The best notation is no notation;
wheanaver it is possibie to avoid the use of a complicated alphabetic apparatus,

avoid it.

A good attitude to the preparation of written mathematical exposition
is to pretend that it is spoken.

Fratend that you are explaining the subject to a friend

on a fong walk in the woods, with no paper availabie;

falt back on symbolism only when It Is really necessary.

- PAUL HALMOS, How to Write Mathematics {1970)

183

GOETHE
HALMOS

_

19

Displayed Equations

Chapter 18: Displayed Equations 185

By now you know how to type mathematical formulas so that TEX will handle displays
them with supreme elegance; your knowledge of math typing is nearly complete. 23{::;"“”“”
But there is one more part to the story, and the purpose of this chapter is to hhox
present the happy ending. We have discussed how to deal with individual formu- auad

las; but displays often involve a whole bunch of different formulas, or different
pieces of a huge formula, and it°s a bit of a problem to lay them out so that they
line up properly with each other. Fortunately, large displays generally fall into
a fow simple patterns.

1. One-line displays. Before plunging into the general question of display layout,
lets recapitulate what we have already covered. I you type “$8 {formula)§$’,
TEX will display the formula in flambovant display style, centering it on a line
by itself. We have also noted in Chapter 18 that it's possible to display two
short formmulas at once, by typing “$$ {formula; }\qquad{formula,}$$°; this reduces
the two-formula problem to a one-formula problem. You get the two formulas
separated by two quads of space, the whole being centered on a line.

Displayed cquations often involve ordinary text. Chapter 18 explains
how to get roman type into formulas without leaving math mode, but the best
way to get text mto a display 18 to put i into an \hbox. There needn’t even he
any math at all; to typeset

Displayed Text

vou can simply say ‘$#\hbox{Displayed Text}$$’. But here’s a more interesting
example:
Nop = Xp if and only if Y,=Y, and Z,=Z;.
Formulas and text wore combined in this case by typing
$$A_n=X_% \qquadihbox{if and conly if}\qquad
Y.0=Y_k \quadihbox{and\quad Z_n=Z k.$$

Notice that \gquad appears around ‘if and only if’, but a single \quad surrounds
‘and’; this helps to indicate that the Y and Z parts of the display are related
more closely to each other than to the X part.

Consider now the display

YVeo=X,modp and Z, =X, modgqg for all n > 0.
Can you figure out how to type this? One solution is

$8Y_n=X_n\bmed p \quadihbex{andM\quad Z_n=X_n\bmod q
\qquadinbex{fer all }n\geQ.$$
Notice that a space has been left after ‘all’ in the hbox here, since spaces
cdisappear when they are out in formula-land. But there’s a simpler and more
logical way (o proceed, once you get used to TEX s idea of modes: You can type

\qquadihbox{for all $n\gel$.}$$

186

Chapter 19: Displayed Equations

Wow-—that’s math mode inside of horizontal mode inside of display math mode.

But in this way your mamuscript mirrors what you are trying to accomplish,

while the previous solution (with the space after ‘all’} looks somewhat forced.
» EXERCISE 19.1

Typeset the following four displays (one at a time):

(o, 93
E apz" converges il |z]| < (I%zn sup [aﬂ[)

P Fd O
x+Axy— f{x) \
it)= i) - fi{x) as Az - 0.
Ax
il = 1, iy g = 0 i £ L
an are an are
The confluent image of a circle is an are or a circle
a fan a fan or amn arc

g?} » EXERCISE 19.2
Sometimes display style is too grandiose, when the formula being displayed is

1
= —x
Y 3
or something egually simple. One day B. L. User tried to remedy this by typing it as
$$y={\acriptstylellover\zcriptstyle2}x$$’, hut the resulting formula
i
y=-x
2
wasn’t at all what he had in mind. What’s the right way to get simply ‘y = 1o when
you don’t want big fractions in displays?

@ » EXERCISE 19.3
What difference, if any, is there between the regalt of typing ‘$${formmlaldd’
and the result of typing ‘$$\hbox{${formula}$}$$> ?

@ » EXERCISE 19.4

You may have noticed that most of the displays in this manual are not cen-
tered; displayed material is usually aligned at the left with the paragraph indentation,
ag part of the book design, because this is an unuswal bock. Explain how you could
typeset a formula like

that is off-center in this way.

If youw've had previous experience typing mathematical papers, you prob-
ably have been thinking, “What about cquation numbers? When is this book

going to talk about them?” Ah yes, now is the time to discuss those sneaky Hitle
labels that appear off to the side of displays. If you type

$${formulay\eqne{formula)$$

Delta
Wt
Uper
one balf

fractions in displays
displays, non-centered
eqoation numibers

Chapter 18: Displayed Equations

TEX will display the first formula and #t will also put an equation number {the
secorxl formmila) at the right-hand margin. For example,

$x72-y72 = (x+y) (x-v) . \eqno (161 $$

will produce this:

at =yt = (s -) (15)
You can also get equation numbers at the left-hand margin, with \leqno. For
example,

$8x72~y"2 = (x+y) (x~y) .\leqnc(15) §$
will produce this:
(16) wt =y = (z + Yz -)

Notice that yvou always give the equation number second, even when it is going
to appear at the left. Everything from the \eqno or \leqne command to the $3
that ends the display is the equation number. Thus, you're not allowed to have
two eguation numbcers in the same display; but there’s a way to get around that
restriction, as we'll see later.

@ Nowadays people are using right-hand equation numbers more and more, be-

cause a display most often comes at the end of a sentence or clause, and the
right-hand convention keeps the number from intruding into the clause. Furthermore,
it’s often possible to save space when o displaved equation follows a short text lne,
since less space is needed above the display; such savings are not possible with \legno,
becawse there's no roow for overlap. For example, there is less space above display (15)
than there is above (16} in our illustrations of \eqno and \leqgno, although the formulas
and text are otherwise identical.

@ If vou look closely at (15) and {16) above, you can see that the displayed

formuias have heen centered without regard to the presence of the equation
mumbers. But when a formula is large, TEX makes sure that it does not interfere with
its number; the equation number may even be placed on a line by itgelf,

» EXERCISE 19.5
How would you produce the following display?

I[——= II a-d4. (16"

1 gfz
ivo (14 o n>0 1<k<n

g.?} » EXERCISE 19.6
Eguation numbers are math formulas, typeset in text style. So how can you
get an equation number like {3-1} {with an en-dash}?

@@» EXERCISE 19.7

B. L. User tried typing ‘\eqno(*}’ and ‘\egno{*+}’, and he was pleased to
discover that this produced the eguation numbers (%} and “(xx)’. {He had been a bit
worried that they would come out “(*) and (™) instead] But then a few months
later he tried ‘\eqno{x*#)’ and got a surprise. What was it?

187

NG
leryno
en-cdash
User

188

Chapter 19: Displayed Equations

@ Sonewhere in this manuwal there ought to be a description of exactly how

TEX displays formulas; ie., how it centers them, how it places the egquation
mimbers, how it inserts extra space above and below, and so on. Well, now is the time
for those riles to be stated. Thev are somewhat complex, becanse they interact with
things like \parshape, and because they involve several parameters that haven't heen
discussed vet. The purpose of the rules is to explain exactly what sorts of boxes, glue,
and penalties are piaced onto the current vertical list when a display ocours.

@@ If a display ocours after, say, four lines of a paragraph, TEX s internal register

called \prevgraf will be equal to 4 when the display starts. The display will be
assumed to take three lnes, so \prevgraf will become 7 when the paragraph is resumed
at the end of the display {unless you have changed \prevgraf in the meantime}. TEX
agsigns special values to three {dimen} parameters immediately after the opening 8% is
sensed: \displaywidth and \displayindent are set to the line width z and the shift
amonnt ¢ for line meber \prevgraf+2, based on the current paragraph shape or hang-
ing indentation. {Usually \displaywidth is the same as \hsize, and \displayindent
is zero, but the paragraph shape can vary as described in Chapter 14.} Furthermore,
\predisplaysize is set to the effective width p of the line preceding the display, as
foliows: If there was no previous line (e.g., if the $3 was preceded by \noindent or by
the closing $$ of another display), p is set to —10383.99999 pt {i.e., to the smallest legal
dizpension, —\maxdimen). Otherwise TEX looks inside the hbox that was formed by the
previcus Hne, and sets p to the position of the right edge of the rightmoest box inside
that hbox, plus the indentation by which the enclosing hbox has been moved right, plas
two erns in the current font. However, if this value of p depends on the fact that glue in
that hbox was stretching or shrinking—for example, i the \parfillskip glue is finite,
s that the material preceding it has not been set at its natural width—then pis set to
\maxdimen. {This doesn’t happen often, but it keeps TEX machine independent, since
p never depends on guantities that may be rounded differently on different computers.)
Notice that \displaywidth and \displayindent are not affected by \leftskip and
\rightekip, but \predizplaysize is. The values of \displaywidth, \displayindent,
and \predisplaysize will be used by TEX after the displayed formula has been read,
as explained below; your program can examine them and/or change them, if you want
the typesetting to be done differently.

@ After a display has been read, TEX converts it from a math lst to a horizontal

list A in display style, as explained in Appendiz G. An equation number, if
present, is processed in text style and put into an hbox o with its natural width. Now
the fussy processing begins: Let z, ¢, and p be the carrent valuwes of \displaywidth,
\dizplayindent, and \predisplaysize. Let g and ¢ be zerc if there is no eguation
number; otherwise let ¢ be the width of the equation number, and let g be equal to
¢ phus one quad in the symbols font (ie., in \textfont2). Let wqo be the natural width
of the displayed formula k. M we + g < 2, list k& is packaged in an hbox b having its
natiral width we. But # we + ¢ > z {i.e, if the display is too wide to fit at its aatural
width), TgX performs the following “squeeze routine”: If ¢ # 0 and if there is encugh
shrinkability in the displayed formula b to reduce its width to z — ¢, then list k is
packaged in an hbox b of width z —q. Otherwise ¢ is set to zero, and list k is packaged
in a {possibly overfull} hbox b of width minfwq, z).

@ {Continuation.) TEX tries now to center the display without regard to the
equation muuber, Bat if such centering would make it too close to that muber

vertical list
prevgral
displaywidth
displayindent
hsize
predisplaysize
noindent
maxdimen
partillskip
terntfom
soeeze routing

Chapter 18: Displayed Equations

{where “too close” means that the space between them s less than the width ¢), the
equation is either centered in the remaining space or placed as far from the equation
nuber as possibie. The latter alternative is chosen only if the first item on list k is
glue, since TEX assumes that such glue was placed there in order to control the spacing
precisely. But let’s state the rules more formally: Let w be the width of box b, TgX
computes a displacement d, to be used later when positioning box b, by first setting
d=21{z—w) We>0andifd < 2e, then d is reset to £{z — w — ¢) or to zer0, where
zerc is chosen if Hst k beging with a glue item,

@@ {Continnation.) TgX is now ready to put things onto the current vertical list,

Just after the material previcusly constracted for the paragraph-so-far. First
comes a penalty item, whose cost is an infeger parameter called \predisplaypenalty.
Then comes glue. If d + s < p, or if there was a left equation nuwmber {\legno),
TEX sets g and g to glue items specified by the paraieters \abovedisplayskip and
\belowdisplayskip, respectively; otherwise g, and gy become glie items correspond-
ing to \abovedisplayshortskip and \belowdisplayshortskip. [Translation: If the
predisplaysize is short enough so that it doesn’t overlap the displayved formula, the glue
above and below the display will be “short” by comparison with the glie that is used
when there is an overlap.] If ¢ = 0 and if there is an \leqno, the equation number is
appended as an hbox by itself, shifted right s and preceded by interline glue as usual;
an infinite penalty is also appended, to prevent a page break between this number and
the display. Otherwise a glue item g, is placed on the vertical list.

@ {Continuation.) Now comes the displayed equation itself. If ¢ £ 0, the

equation number box o is combined with the formula box b as follows: Let &
be a kern of width 2 — w — ¢ — d. In the \eqno case, box b is replaced by an hbox
containing {4, k, o}; in the \leqno cage, box b is replaced by an hbox containing {a. k, b),
and d iz set to zero. In all cases, box b is then appended to the vertical lst, shifted
right by s+ d.

@ {Comtinuation.) The final task is to append the ghue or the equation number
that follows the display, If there was an \egno and i#f ¢ — (}, an infinite
penalty is placed on the vertical lst, followed by the eguation aumber box o shifted
right by s + z minus its width, followed by a penalty item whose cost is the value
of \postdisplaypenalty. Otherwise a penalty item for the \postdisplaypenalty is
appended first, followed by a glue itemn for gy as specified above. TEX now adds 3 to
\prevgraf and returns to horizontal mode, ready to resime the paragraph.

@ One consequence of these rules is that vou can force an equation mamber to
appear on a line by itself by making its width zero, ie., by saying either

‘\egno\llap{${formmla}$}’ or ‘\legno\rlap{${formuia}$}’. This makes e = &, and the

condition ¢ = ¢ controls TEXs positioning logic, as explained in the rules just given.

@ Plain TEX sets \predisplaypenalty=10000, because fine printers tradition-

ally shun displayed formulas at the very top of a page. You can change
\predizplaypenalty and \postdisplaypenalty if vou want to encourage or discourage
page breaks just before or just after a display. For example, ‘$$\postdisplaypenalty=
~10000{formmia}$$’ will force a page break, putting the formula at the bottom line, It
is better to force a page break this way than to say \eject right alter $$...$9%; such
an eject {which follows the \belowdisplayskip glue below the dizplay} causes the page
to be short, because it leaves unwanted glue at the bottom.

189

penalty
predisplaypenalty
ahovedisplayskip
belowdisplayskip
abovedisplayshortskip
helowdisplayshortskip
postedisplaypenalty
Nap

rlap

page break

aject

190

Chapter 19: Displayed Equations

@@» EXERCISE 19.8
Read the rules carefully and deduce the final position of ‘z = ¢ in the formula
$$\gunad x=y \hskipi000Opt minmns 1fil \egno{5)$$
assuming that there is no hanging indentation. Also consider \legno instead of \egno.

@@ TEX also allows “alignment displays,” which are not processed in math mode
becanse they contain no formulas at the outer level. An alignment display is
created by commands of the general form

$${assignments) \halign{{alignment}}H{assignments}$$

where the {assignments) are optional things like parameter changes that do not produce
any math lsts. In such displays, the \halign is processed exactly as if it had appeared
in vertical mode, and it will construct a vertical list » as wsnal, except that each row
of the alignment will be shifted right by the \displayindent. After the alignment and
the closing assignments have been processed, TEX will put a \predizsplaypenalty item
and some \abovedisplayskip ghie on the main vertical list, followed by o, foliowed by
a \postdisplaypenalty item and \belowdisplayskip glue. Thus, aligninent displays
are essentially like ordinary alignments, except that they can interrupt paragraphs;
furthermore, they are embedded in gine and penaities just like other displays. The
\dizplaywidth and \predisplaysize do not affect the result, although you could use
those parasneters in your \halign. An entire alignment display is considered to be only
three lines long, as far as \prevgraf is concerned.

2. Multi-line displays. OK, the use of displayed formulas is very nice. But when
vou try typing a lot of manuscripts vou will run into some displays that don’t
fit the simple pattern of a one-line formula with or without an equation num-
ber, Plain TEX provides special control sequences that will cover most of the
remaining cases.

Multi-line displays wsually consist of several equations that should be
lined wp by their ‘=’ signs, as in

Xy Xp =m,
i+ o+t =n

The recommended procedure for such a display is to use \eqalign, which works
with special markers & and \cr that we have already encountered in conneetion
with \cases and \matrix in Chapter 18. Here’s how to type this particular one:

$\eqalign{X 1+\cdote+i_pk=m,\cr
Y_1+\cdots+Y_qk=n.\cr}#$

Thore can be any number of cquations in an \eqalign; the genoral pattern is
N i 9 gn; g I
\eqalign{{left-hand side; }&{right-hand side,}\cr

{feft-hand sidey)& {right-hand sidey)\cr

{feft-hand side,,)&{right-hand side,)\cr}

aligniment displays
displayindent
predisplay penalty
abovedisplayskip
postdizplaypenalty
bhelowdisplayskip
displaywidth
predisplaysize
halign

prevgral

eqalign

ampersand

or

Chapter 19 Displayed Equations 191

where each {right-hand side) starts with the symbol on which you want alignment noalign
to oceur. For example, every right-hand side often beging with an = sign. The vskip

equations will be typeset in display style.

» EXERCISE 19.9
In practice, the left-hand sides of aligned formmulas are often blank, and the
! g
alignment is often done with respect to other symbols as well as =. For example,
the following display s typical; see i you can guess how the author typed it;
g JAAS 3 3 g 3
T(”‘} < T{Qi]grﬂ) < c(gzlgrﬂ . Qilgfﬂ\)
< 8¢ 3
= 3en'td,

The result of \eqalign is a vertically centered hox. This makes it easy
to get a formmula like

§= (=%
7= [z
You simply use \eqalign twice in the same line:
$P\left i
\eqalign{\alphak=f (z)\cr \betak=f (z"2)\cr \gammak=f(z"3)\cr}

Aright\Hqquadileft\{
\eqalign{x&=\alpha~2-\beta\cr yk=2\gamma‘crM\right\}.4$$

o= f(z) { _

B
5 R
!
RS
e —

» EXERCISE 19.10
Try your hand at the numbered two-line display
P(z) = ap + a1z + apz® + -+ a,z",
Pl—z) =ayg— a1z + Qg -+ {~1)"a,z™.

(30)

[Hint: Use the fact that \eqalign produces a vertically centered hox; the equa-
tion number “{30) is supposed to appear halfway between the two lines.]

» EXERCISE 19.11
What happens if you forget the & in one equation of an \eqalign?
@ Malti-line formulas sometimes fit together in odd ways, and youw'll find that
every once in a while you will want to move certain lnes farther apart or

clogser together. If vou type ‘\noalign{\vskip{glue}}’ after any \cr, TgX will insert
the given amount of extra glue just after that particaular line. For example,

\noalign{\vskip3pt}

will put 3pt of additional space between lines. You can also change the amount of
space before the first line, in the same way.

192

Chapter 19: Displayed Equations

The next level of complexity occurs when you have several aligned equa-
tions with several equation numbers. Or perhaps some of the lines are numbered
and others are not:

f

(z+yz—y)=2° — 2y +yz—y

=2’ -y (4)

R R R 2 -

x4yl =a" + 2oy +y". (5)

For this situation plain TEX provides \eqalignno; you use it like \eqalign, but

on each line that you want an equation number vou add “&{eguation mumber)’
just before the \cr. The example above was generated by
$N\eqalignnof (x+y) (x~y)&=x"2-xy+yx-y 2\cr

E=x"2-y"2;E(4)\cr
(x+y) " 2k=x"2+2xy+y 2. & (B)\cr }$$
Notice that the second & is omitted unless there’s an equation number.

And there’s also \legalignne, which puts equation numbers at the left.
In this case it is appropriate to move the (4} to the heginning of its equation:

(4} (w+yda—y) =2 — 2y +yz — 4
=z’ -y
(53 (x4 =2 + 2y +4°.

Although the equation numbers appear at the left, you are still supposed to input
them at the right, just as you do with \leqne; in other words, you should type
‘$f\leqalignned (x+y) (x-y) &. .. &(2)\cr. . . }$¥ to get the proviows display.
Caution: \eqalignno and \leqalignno hoth center the set of equations
without regard to the widths of the equation numbers. If the equations or their
numbers get too wide, they might overlap, yet no error message will he given.

» EXERCISE 19.12
Typeset the following display:

)] ged{u,) = ged{v, u);
(10) ged{u, v) = ged{—u,v).

» EXERCISE 19.13
And here’s another one to try, just to keep in practice:

Sad 2 2 Sad St 4 b
(/ e d;(f) = / e V) dr dy

=7, {11}

eqalignne
leqalignno
god

int

Chapter 18: Displayed Equations

@ Although \eqalign and \egalignno lock nearly the same, there’s really a

fundamental distinction between them: \eqgalign makes a single, vertically
centered box, which is no wider than it needs to be; but \eqalignno generates a set of
lines that have the full display width (reaching all the way to both marging). Thus, for
example, you can use \egalign several times in a display, but \eqalignno can appear
only once. If vou try to use \egno in conjuanction with \egalign, you get a decent
resait, but if you try to use \eqgno in connection with \egalignno you'll get some sort
of weird error messagefs).

@@ The definitions in Appendix B reveal why \eqalign and \egalignno be-
have differently: \eqgalign is an abbreviation for \vcenter{\halign{...}},
while \egalignno is an abbreviation for \halign to\displaywidth{...}; thus the
\egalignno macro generates an “alignment display.”

@@ This difference between \egalign and \eqalignno has two interesting con-
sequences. {1} It's impossible to break an \egalign between pages, but an
\egalignno can he broken. In fact, you can force a page break after a particular line if
o insert ‘\noalign{\break}’ after the \cr for that line. You can prohibit all breaks
inn an \eqalignno if you set \interdisplaylinepenalty=10000; ar you can enclose the
whole works in o \vbox:

$$\vbox{\eqalignno{...}}3

{2} You can also insert a line of text between two equations, without losing the align-
ment. For example, consider the two displays
T=yFz
and
‘_L_'Z. - ?}2 + ZZ.
These were actually generated as a single display by typing

$¢\eqalignno{x&=y+z\cr
\noalign{\hbox{and}}
X 2=y 24272 . \ex 1 $%

Therefore the fact that their = signs line up is not just a lucky coincidence. Sometines
vou will want to adjust the spacing above or below gsuch a line of inserted text, by
putting a \vakip or two inside of the \noalign{...}. Incidentally, this example also
shows that it is possible to use \egalignno without giving any equation numbers.

{Eg}»EXERCEE]ﬂJ4
What happens if \egalign is substituted for \egalignno in this last example?

§?§?>EXERCEE]BJ5
Our friend Ben User got into trouble again when he tried to move an equation
maiber wp higher than its usual position, by typing this

$$\eqalignno{. .. .&\raizsebpt\hbox{(5) \cr}$$

What was his oversight, and what could he have done instead?

193

NG
vesmnter

halign

aligninent display
page break

noalign

hreak
interdisplaylinepenalty
vhon

LUser

ralse

194 Chapter 18: Displayed Equations

@ For other types of displays, plain TEX provides \displaylines, which lets you displaylines
display any mnnber of formulas in any way yon want, without any alignment. i’:’_: |
, - w
The g(}ll(}?ﬁl form iy baselineskip
. . .) halign
$$\displaylines{{displaved formuia;}\cr Gpenup
{displayed formmlag \er lineskip
. lineskiphit
: areup
. N . Jot
{diS}}g&}'Qd iarmuian}\cr}% generic coding
: dizplaylines
Each formula will be centered, becanse \displaylines puts \hfil at the left and the eqalignne
right of each line; vou can override this centering to get things flush left or flush right leqalignno

ahovedisplayskip

by inserting \hfill, which takes precedence over \hfil. belowdisplayskip

<§,2 » EXERCISE 19.16
Use \displaylines to typeset the three-line display

&= r {1
r=y then y=ux; {2)
f =y and y=2z then z==z 3

@ If vou look closely at the multi-line displays in this chapter, you’ll see that the
baselines are farther apart than they are in normal text; mathematics publish-
ers generally do this in order to make the displays easier to read. In accordance with
this tradition, \eqalign and its relatives awtomatically increase the \bazselineskip.
If you are making a muilti-line display with TEX s primitive \halign command, instead
of using one of the plain TEX macros, you might want to make this same bageline ad-
Justent, and you can do it easily by saying ‘$$\opemupl\jot \halign{...}$$’. The
\openup macro increases \lineskip and \lineskiplimit as well as \baselineskip.
If vou say ‘\openup2\jot’, the lines are spread apart 2 extra units, where plain TEX
opens things up in units of 3pt. Since $3...$8 acts as a group, the effect of \openup
will disappear when the display is finished. Any {dimen} can follow \openup, but it’s
customary to express the amount symbolically in terms of a \jot instead of using
absolute units; then vour manuscript can be used with a variety of different formats.

@@ Plain TEX’s \displaylines, \egalignno, and \legalignno macros begin with

Nopenupi\jot’. I you don’t want the Hnes to be opened up, you can cancel
this by saying, e.g., ‘$8\opennp-1\jot \egalignno{...}%$%’. because \opemmp has a
cumulative effect.

@ Suppose that you have decided to make a homegrown dispiay having the gen-

eral form ‘$$\openupiijot \halign{...}$$’; and for convenience, let’s sup-
pose that the normal conventions of plain TEX are in force, so that \jot=3pt and
\bazelineskip=12pt. Then the \openup macro changes the baselineskip distance to
15 pt. It follows that the bageline of the text line that immediately precedes the display
will be 15 pt above the topmost baseline of the display, plus the \abovedizplayzkip.
But when the paragraph resumes, its next baseline will be only 12 pt below the bot-
tom bageline of the display, plus the \belowdisplayskip, because the \baselineskip
parameter will have reverted to its normal value, The \eqalignno and \displaylines=
macros say \noalign{\vskip—d}’ before their first lines, where d is the net amount
of opening-up, in order to compensate for this difference,

Chapter 18: Displayed Equations 195

3. Long formulas. Our discussion of mathematics typing is almost complete; we break long displayed formolas
need to deal with just one more problem: What should be done when a formula
is s0 long that it doesn’t fit on a single line?

For example, suppose that you encounter the equation

(,},(Q‘G:JW]_p 235; 1) - m3+(234m1)/235+235/(234W1)+-{v/235(234mljwa{zﬁﬁp 234“«“1} 1}

You'll have to break it up somehow; TEX has done its best to squeeze everything
together by shrinking the spaces next to the + and — signs to zero, but still the
line has come out overfull.

Let’s try to break that couation just hefore the *+7°. One common way
to do this is to type

$$\eqaligni\sigma (2-{34}-1,27{35},1)
=3+ (27 {34}~1) /2" {36} +2 {36\ }/ (2" {34}~1)\cr
E\qquad+7 /2 {35} (2" {34}~1) ~\sigma (2"{36},2"{34}~1,1) .\cr}$}
which vields
0{234 - 1: 235} 1) — “‘”3 e (234 - 1)/235 + 235/(234 o 1)
LT/ 1y (295 91 1),
The idea i3 to treat a long one-line formula as a two-line formula, using \qquad

on the second Hne so that the second part of the formula appears well to the
right of the = sign on the first line.

» EXERCISE 19.17
Explain how to deal with the following display.
Tl + ot Tpspettie = Tpth + (Al +)i +- -
+ (@ a, +efat? o+ 1))y
(g + auy + -+ Yz, + hluy, . .oug). (A7)

i

@ It’s quite an art to decide how to break long displayed formulas into several

lines; TEX never attexupts to break them, because no set of rules is really
adequate. The author of a mathematical mamuscript is generally the best judge of
what to do, since break positions depend on subtle factors of mathematical exposition.
For example, it is often desirable to emphasize some of the symmetry or other structure
that wnderlies a formula, and such things require a solid understanding of exactly what
is going on in that formula.

@ Nevertheless, it is possible to state a few rules of thumb about how to deal
with long formulas in displays, since there are some principles that the best
mathematical typesetters tend to follow:

a) Although formmias within a paragraph always break after binary operations
and relations, displayved formmlag always break before binary operations and relations,
Thus, we didn't end the first line of our ¢ ...} example with (27 {34} ~1)+"; we ended
it with “€27{34}-1)" and began the second line with +.

196

Chapter 19: Displayed Equations

b) When an equation is broken before o binary operation, the second line should
start at least two guads to the right of where the innermost subformmia containing that
binary operation begins on the first Hne, For example, i#f vou wish to break

$$\aum_{0<k<n}\left ¢ {formuia; y{formulas \right) $3

at the plus sign between {formmmla) and {formulag}, it is alinost mandatory to have the
plus sign on the second line appear somewhat to the right of the large left parenthesis
that corresponds to ‘\left (.

@ In the example just considered, special care is needed to break the formula into

two lines, becanse \left and \right delimiters cannot be used in isolation;
vour can’t have only \left in one lne of a formula and only \right in the second.
Furthermore, vou’ll want the two delimiters to be of the same sive, even though they
aceur in different Hnes. The best solution is nsaally to choose the delimiter size vourself;
for exaraple, vou could type

$$\eqalign{\sum {0<k<n}\biggl (&{formula; Y\er
&\gguad {} +{formulas M\biggr) \cr}$3

if \bigg delimiters are best. Notice that the & markers don’t cccur af = signg in this
exaimple, they just mark a point of alignment.

@ There’s another way to break long formulas, sometimes called the two-line

form. The idea is to put the first part of the formula almost flush left, and to
put the second part almoest flush right, where “almost fush” means “one quad away.”
Thus, the two-line form of the long o{...) equation considered earlier is

G2 _1,9% 1) = 34 2™)% 4 o%eM
+ 7/235(234 . }_) _ 0_{235: 234 _ }_} }_)
It isn’t difficult to get this two-line effect with \dizsplaylines:

$$\displaylines{\gnad\sigma(2~{34}-1,2"{35},1)
=-3+{2"{34}-1) /27 {35}+27 {35\ ! /{27 {34} -1} \hfill\cr
NhEfill{}+7/27 {35} (27 {34} -1} -\sigma (27 {35},2"{34}-1,1). \quad\cr}$$

An extra ‘{}’ was typed on the second line here zo that TEX would know that the '+
is & binary operation. The two-line form is especially recommended for equations that
Lave a long left-hand side; in that case the break generally comes just before the = sign.

gég » EXERCISE 19.18
Typeset the following display:

1
Z (@ —w) . Awg =yl —zi){wy — wya) .. (g — za)

i<idn
_ i
Tz -z {x -

@@» EXERCISE 19.19
If it is necessary to typeset a huge fraction like

%-n(n«%ii'

(27)

{ea; ¢) o (0q/0; ¢ oo {eng/e; ¢) (cg® 0e; ¢)
(o1 lcg/ e Qo

Y

left

right

higg

too-line

Hush left
Hush right
displaylines
fraction, huge

Chapter 18 Displayed Equations 197

in a single narrow column, you might have to break up the numerator and resort to CHAUNDY
BARRETT
Lo s <y B . s
Fh{n4-1} . s BATEY
H ea; Slegfa; ;
q (14)Ow(Q/ 34)Ow SWANSON

(eaq/e; @5 e (0% 00:0%)
{erglelcg/e; Qo
How would vou specify the latter fraction to TEX?

When a formuia is too fong for the page-width

and has to be broken into successive fines

{and we are now, of course, speaking of displayed formuiae),
it shouwid be broken, i possible, at the end of a natural ‘phrase’;
If, for example, It Is a much-bracketed formuia,

it should be broken at the end of one of the major brackets
and not at an inner symboi.

This natural phrasing (as in music or speech)

makes for inteliigibifity between writer and reader

and should not be feft to the compositor.

An author, when he finds himself writing a fongish formuia,
should indicate a convenient point of fracture in case of need.

— CHAUNDY, BARRETT, and BATEY, The Printing of Mathematics {1954)

Some authors use display with discretion,

some run even extremely fong, compliicated equations into the text,

while others tend to display every equation in the paper.

The tendency to overdispiay is probably more predominant

than the tendency to underdisplay;

for this reason it is possibie for the copy editor to shorten

{and even improve) papers by running displayed material into text. ...

On the other hand, there are occasions when the copy editor needs

to suggest the dispiay of compiicated expressions that have been run into text,
particularty when it would invoive a bad break at the end of a text line.

- ELLEN SWANSON, Mathematics into Type {1971)

age 108)

_

20

Definitions
(also called Macros)

Chapter 20 Definttions [also called Macros)

You can often save time typing math formulas by letting control sequences stand
for constructions that occur frequently in a particular manuscript. For example,
if some document wses the vector “{z1,....2,) a lot, you can type

\defi\xvec{(x_1,\1dots,x. n)}

and \xvec will henceforth be an abbreviation for *(x_1,\1dots,x_n)’. Complex
displays Like
Z (flxr, .. .2n) +g{;r:;_.,..._.,;r:ﬁ\))
(21,) 30,00
can thon be typed simply as

$\sum_{\xvecine(0,\ldets,0) } \bigl(f\xvectg\xvecibigr)$$

instead of in a tedious long form. By defining a control sequence like \xvec, you
not only cut down on the number of keystrokes that you nced to make, you also
reduce your chances of introducing typographical errors and inconsistencies.

Of course, you usually won't be making a definition just to speed up
the typing of one isolated formula; that doesn’t gain anything, because time
goes by when vou're deciding whether or not to make a definition, and when
vou're typing the definition itself. The real payoff comes when some cluster of
symhbols is used dozens of times throughout a manuscript. A wise typist will look
through a document before typing anything, thereby getting a feeling for what
sorts of problems will arise and what sorts of definitions will be helpful. For
example, Chapter 16 recommends that the control soquence \Ahat be defined at
the heginning of any manuseript that makes frecuent wse of the symbol A.

Abbreviations like \xvec turn out to be useful in many applications of
computers, and they have come to be known as macros because they are so
powerful; one little macro can represent an enormous amount of material, so it
has a sort of macroscopic effect. System programs like TEX that are designed
to deal with macro definitions are said to expand the user’s macros; for ex-
ample, \xvec expands into (x_1,\ldeots,x_n), and \1ldets in turn is a macro
that expands into \mathinner{\ldotp\ldotp\ldotp}. Thus, \xvec is actually
an abbreviation for *(x.1,\mathinner{\ldetp\ldetp\ldetp}t,x_n)’ (The ex-
pansion stops here, because \mathinner is a primitive control sequence of TEX,
and because \1dotp has been deflined with \mathchardef; thus \mathinner and
\ldotp are not macros.)

TEX users gencrally build up their own personal library of macros for
things that they want to do in different documents. For example, it is common
to have a file called macros.tex that contains definitions of your favorite spe-
cial control sequences, perhaps together with ecommands that load your favorite
special fonts, ete. If you begin a document with the command

\input macros

then TEX will read all those definitions, saving you all the trouble of retyping
them. Of course, TEX’s memory is Hmited, and it takes time to read a file, so

199

control gecoences

delining a control sequencs
abbreviations, see macros
ALTO8

ldots

mathinner

mathehardel

library of magcros

input

200

Chapter 20: Definitions (also called Macros)

vou shouldn’t put thousands of definitions into macros.tex. A large collection
of macro definitions {e.g., the set of definitions in Appendix B) is called a format
(e.g.. *plain TEX format”}; TEX has a special way to input a format at high
speed, assuming that the format doesn’t change very often.

The \xvec and \Ahat examples apply to math formulas, but you can
make good use of macro definitions even when vou aren’t doing any math at all.
For example, if you are using TEX for business correspondence, you can have a
\ycurs macro that stands for “Sincerely yours, A. U. Thor'. If you often write
form letters you ¢an have macros that generate entire sentences or paragraphs
or groups of paragraphs. The Intornal Revenue Service could, for example, make
use of the following two macros:

\def\badcheck{d penalty has been added because your
check te us was not hencred by yeur bank.\par}
\def\cheater{d penalty of 50\% of the underpaid tax

has been added for fraud.\par}

Simple maero definitions, like these, start with \def’; then comes the control
sequence name, e.g., ‘\badcheck’; and then comes the replacement text enclosed
in ‘" and ‘}. The braces do not represent grouping in this case; they simply
show the extent of the replacement text in the definition. You could, of course,
define a macro that inchides actual braces in its replacement text, as long as
those braces match each other properly. For example, \def\xbeld{{\bf x}}’
makes \xbold an abbreviation for “{\bf x}".

» EXERCISE 20.1

Write a \punishment macro that prints 100 ines containing the message ‘I must
not talk in class.” [Hint: First write a macro \mustnt that prints the message
once; then write a macro \five that prints it five times.]

é} » EXERCISE 20.2
What is the expansion of \puzzle, given the foliowing definitions?

\defh\a{\b}
\def\b{A\def\a{B\def\a{C\def\al{\b}}}}
\def\pnzzle{\a\a\a\a\a}

@ As soon as vou get the hang of simple macros like those illustrated above,

your will probably begin to think, “Boy, woaldn’t it be nice i T conld have a
macro in which some of the text in the expansion is changeable? T'd like to be able
to stick different things into the middle of that text.” Well, TEX has good news for
vorr: Control sequences can be defined in terms of parameters, and von can supply
arguments that will be substituted for the paramsetess.

@ For example, let’s consider \xvec again. Suppose that you not only refer
to {ri,.. ., Tn), but vou alse make frequent use of gy, ...,y)" and other

similar things. Then you might want to type

Ndef\row#l{{#1_1,\1dots,#1_n}}

format

bhuosingss correspondence
Thor

form letters

Internal Revenue Service
braces

grouping

parameters

arguinents

Chapter 20 Definttions [also called Macros)

after which \vow x will prodace {xi,..., xa) and \vow v will produce Ty, ...,y).
The symbol #1 stands for the first parameter to the macro, and when vou say \row x’
the x is a so-called argument that will be inserted in place of the #1's in the replace-
ment text. In this case the argwment consists of a single letter, x. You can also say
\row\alpha, in which case the argument will be the control sequence \alpha, and the
result will be “{a, ...,). If von want the argument to contain more than one symbol
or control sequence, you can simply enclose it in braces; for example, \row{x’} yields
{xh, ..., x5} The argument in this case is x° {without the braces). Incideatally, if vou
say \row{{x’}}, vou get {x’+,...,x"s); the reason is that only one pair of braces is

stripped off when the argument is collected, and (/4. .., x5} is what von get from

({x’}_1,\ldots,{x’}_n) in math mode, according to the rules of Chapter 16,

@ » EXERCISE 20.3
Continuing this example, what is the result of $\row{\bf x3}$7

@ The notation #1° suggests that there might be an opportunity to have more
than one parameter, and indeed there is. You can write, for example,

Ndef\rowd#1#2{{#1_1,\1dot=,#1_#2}}

after which ‘\row xn’ wonld be the proper protocol for {xy,....x,). There can be as
many as nine paraeters, #1 to #9, and when vou use them vou must anmber them in
aorder. For example, you can’t use #5 in o definition unless the previous parameter
in that definition was called #4. {This restriction applies only to the initial statement
of parameters, before the replacement text starts; the stated parameters can be used

any mamber of times, in any order, in the replacement text itself.)

@ A control sequence has only one definition at a time, so the second definition

of \row would supersede the first one if both had appeared in the same doc-
nment. Whenever TEX encounters a macro that it wants to expand, it uses the most
recent definition. However, definitions are local to the group that contains them; old
definitions will be restored in the usual way when a group ends.

@ Caution: When you define a macro with simple parameters, as in these exam-

ples, vou st be careful not to put blank spaces before the *{° that beging the
replacement text. For example, ‘\def\row #1 #2 {...} will not give the same result
as ‘\def\row#1#2{...}’, because the spaces alter #1 and #2 tell TEX to look for argu-
ments that are followed by spaces. {Arguments can be “delimited” in a fairly general
way, as explained below.} DBat the space alter \row is optional, as usual, becanse TEX
always disregards spaces after controf words. After you have said \def\row#1#2{...}’,
vou are allowed to put spaces between the arguments {e.g., \vow x n’), because TEX
doesn’t use single spaces as undelimited arguments.

@ The following exercise is particularly recormmended for people who want to
learn to write TEX macros. Even if you have gotten into the dangerous habit
of skimming other exercises, you should try your hand at this one.

g-% » EXERCISE 20.4

Extending exercige 20.1, write a “generalized punishment” macro that has two
parameters, so that \punishment{run}{the hallz} will produce 108 paragraphs that
say ‘T must not run in the halls”

201

sharpsign
alpha
braces
apostrophe
local

group

202

Chapter 20: Definitions (also called Macros)

@ TEX alzo allows vou to define macros whose parameters are delimited in guite
a general way; vou needn’t always enclose arguments in braces. For example,

\def\cs #1. #2\par{...}

defines a control sequence \cs with two parameters, and its two arguments will be
determined as follows: #1 will consist of all tokens between \cs and the next subsequent
appearance of ‘. {period and space); #2 will consist of all tokens between that *.)
and the next \par token. {The \par might be given explicitly, or it might be generated
by a blank line as explained in Chapter 8.) For example, when TEX expands

\cs Yon owe \$5.00. Pay it.\par

the first argument is “You owe \$5.00° and the second is ‘Pay it.’. The perioad in
‘N$5.00° doesn’t stop #1, in this example, becanse TEX keeps going wntil finding a
period that is followed tmmediately by o space.

@@ Farthermore, an argument will not stop when its delimiter is enclosed in
braces, because that would produce unbalanced braces. For example, in

\defh\cz #1.#2\par{...}

the first arguinent is now delimited by a single period, so #1 would be ‘Yon owve \$5’
and the #2 would be ‘00. Pay it.’ if \cz were invoked az above. But

\cs Yon owe {\$5.00}. Pay it.\par

satisfactorily hides the first period, making it part of argument #1, which becomes
You owe {\$5.00}.

@ If you are designing a format for mathematical papers, you will probably
want to incinde a macro for the statement of theorems, definitions, lemmas,
coroliaries, and such things. For example, vou might want to typeset a statement like

Theorem 1. TEX has a powerful macro capability.
from the input
\proclaim Theorem 1. \TeX\ has a powerful macro capability.\par

In fact, plain TEX includes a \proclaim macro that does just that; its definition is

\def\proclaim #1. #2\par{\medbreak
\noindent {\bf#1.\enzpace}{\=1#2}\par\medbreak}

s0 the arguments are delimited exactiv as in our first \ca example. The replacement
text here uses \medbreak to separate the proclaimed paragraph from what precedes
and follows; the title of the proclamation is set in bold face type, while the text itself is
set slanted. {The actual definition of \proclaim in Appendix B3 is not quite the same
as this; the final \medbreak has been modified so that a break between pages will be
discouraged immediately following the statement of a thesrem. Hence a short theorem
will tend to appear at the top of a page rather than at the bottom.)

@ By making changes to the \proclaim macre, you can change the format of
all the prociamations in vour paper, without changing the text of the paper
itself. For example, you could produce something like

THEOREM 1: TRX hes o powerful macro capability.

par
theorems

proclaim

enunciations, see proclaim
enspace

Chapter 20 Definttions [also called Macros)

by making simple alterations to the replacement text of \proclaim, assuwing that vou
have a “caps and small caps” font. TEX is intended to support higher-level languages
for composition in which all of the control sequences that a user actually tvpes are
macros rather than TpX primitives. The ideal is to be able to describe important
classes of documents in terms of their components, without mentioning actual fonts or
point sizes or details of spacing; a single style-independent document can then be set
in many different styles.

@@ Now that we have seen a number of examples, let’s look at the precise rules
that govern TEX macros. Definitions have the general form

\def {control sequence){parameter text){{replacement text)}

where the {parameter text} contaings no braces, and where all oconrrences of { and 3
in the {replacement text} are properly nested. Furthermore the # symbol has a special
significance: In the {parameter text), the first appearance of # wmust be followed by 1,
the next by 2, and so on; up to nine #'s are allowed. In the {replacement text) each #
must be followed by a digit that appeared alter # in the {parameter text}, or else the #
should be followed by another #. The latter case stands for a single # token when the
macro is expanded; the former case stands for insertion of the corresponding argument.

@ For example, let’s consider a “random” definition that doesn’t do anything
usefu! except that it does exhibit TEX's rules. The definition

\defl\cs ABE1#2C$#3\$ (#3{abR1}#1 ci##\x #2}

says that the control sequence \cs is to hayve a parameter text consisting of nine tokens
Ayp, By, #1, #2. Cii, $a, #3, [§], Lio

{agsuming the category codes of plain TEX), and a replacement text of twelve tokens
#3, {i, ais, bis, #1, Yz, #1, Lo, cir, W, [x], #2.

Henceforth when TEX reads the control sequence \cs it will expect that the next two
tokens will be A4¢ and Byy {otherwise vou will get the error message ‘Use of \cs doesn’t
match its definition’}; then comes argument #1, followed by argument #2, then Ty,
then $5, then argument #3, then \$, and finally a space token. It is customary to use the
word “argument” to mean the string of tokens that gets substituted for a paramester;
parameters appear in a definition, and arguments appear when that definition is used.
{For the purposes of these rules, we are extending Chapter 7's definition of token:
In addition to control sequences and (character code, category code) pairs, TEX also
recognizes “parameter tokens,” denoted here by #1 to #9. Parameter tokens can appear
only in token Hsts for macros.)

@ How does TEX determine where an argument stops, you ask. Answer: There

are two cases. A defimited parameter is followed in the {parameter text)
by one or more non-parameter tokens, before reaching the end of the parameter text
or the next parameter token; in this case the corresponding argument i the shortest
{possibly empty) sequence of tokens with properly nested {. ..} groups that is followed
in the input by this particular list of non-parameter tokens. (Category codes and
character codes must both match, and control sequence names must be the same.} An
undelimited parameter is followed immediately in the (parameter text) by a parameter

203

caps and small caps
higher-level languages for compo
style-independent docoment
format-independent document
generic coding

braces

category codes

token

paraineter tokens

delimited paratneter
undelimited parameter

204 Chapter 20: Definitions (also called Macros)

token, or it ccours at the very end of the parameter text; in this case the corresponding spaces
argument is the next nonblank token, unless that token is *{”, when the argument will control word
. - . o . . . sharp sharp
be the entire {...} group that follows. In both cases, # the argument found in this dimensions as argumnents
way has the form ‘{{nested tokens}}’, where {nested tokens} stands for any sequence of TeX

tokens that is properly nested with respect to braces, the outermost braces enclogsing Bpaces

the argnment are removed and the (nested tokens) will remain. For example, let’s
continue with \c2 as defined above and suppose that the subsequent text contains

\cz AB {\Look}C#{And\$ }{look}\$ 5.

Argument #1 will be the token [Look|, since #1 is an undelimited parameter (it is
followed immediately by #2 in the definition); in this case TEX ignores the blank space
after B, and strips the braces off of (\Look}. Argument #2 will be empty, since C$
follows immediately. And argument #3 will be the thirteen tokens corresponding to
the text {And\$_}{look]}, hecause #3 is to be followed by \$.’, and because the first
aeeurrence of ‘\$’ is within braces. Even though argument #3 begins with a left brace
and ends with a right brace, the braces are not removed, since that would leave the
unuested tokens ‘And\$ }{look’. The net effect then, after substituting arguments for
parameters in the replacement text, will be that TpX will next read the token list

{And\$ }{look}{ab\Look}\Look, c#\x5.

The space (, here will be part of the resulting token lst, even though it follows the
contrel word \Look, because spaces are removed after control word tokens only when
TEX first converts input Hnes to token lists as described in Chapter 8.

@@» EXERCISE 20.5

The example definition of \cs includes a ## in its replacement text, but the
way ## s actually uged in that example is rather pointless, Give an example of a
definition where ## serves a useful purpose.

@@ A speciat extengion is atlowed to these rules: If the very last character of
the {parameter text) is #, so that this # is immediately followed by {, TgX
will behave as if the { had been ingserted at the right end of both the parameter text
and the replacemnent text. For example, if vou say ‘\def\a#1#{\hbox to #1}’, the
subsequent text \a3pt{x}’” will expand to ‘\hbox to 3pt{x}’, because the argument
of \a iz delimited by a left brace,

@ Tokens that precede the first parameter token in the {parameter text} of a
definition are reguired to follow the control sequence; in effect, they become
part of the control sequence name. For example, the anthor might have said

Ndef\TeX/{...}

instead of defining \TeX without the slash. Then it would be necessary to type \TeX/
each time the TEX logo is desired, but the new definition would have the advantage that
spaces are not ignored after \TeX/. You can use this idea to define macros that are
intended to be used in sentences, so that users don’t have to worry about the possible
disappearance of spaces.

@@r EXERCISE 20.6
Define a control sequence \a such that \a{...} expands to \b{...}, and such
that TEX gives an error message if \a iz not immediately followed by a left brace.

Chapter 20 Definttions [also called Macros)

@ Complicated macros have a habit of behaving differently from what you ex-
pect, when you first define them, even though TEX s rules are not especially
complicated. If vou have trouble understanding why some \def doesn’t work the way
o think it should, help is available: Yo can set \tracingmacros=1, wherenpon TEX
will write something in your log file whenever it expands a macro, and whenever it
has read a macro argument. For example, if \tracingmacres ig positive when TEX
processes the \cg example above, it will put the following four lines into the log:

\ca AB#1#203#3\$ ~>#3{abit1}#l ci#it\x #2
#1<~\Look

#2<

#3<~{And\$ }{look}

@ In all of the rules stated above, *{’ and '} and ‘# stand for any characters

whose category codes are respectively 1, 2, and 6 in the token Hst when TpX
reads the macro definition; there’s nothing sacred about the particular symbols that
plain TEX uses to denote grouping and parameters. You can even make use of several
different characters with these category codes, all at the same thune,

<§§2>EXERCEE2&7
Suppose that ‘[°, 1, and Y have the respective catcodes 1, 2, and 6, as do
0, F, and ‘W See f you can guess what the following definition means:

\defh\ 182 [{t#]#t 12}
What token list will result when N x{[y]] [z} is expanded?

@ In practice, we all make mistakes, And one of the most common typographic
errors is to forget a ‘Y, or to ingert an extra ', somewhere in an argument
to a macre. If TEX were to follow the rules blindly in such a case, it would have to
keep absorbing more and more tokens in hopes of finding the end of the argument. Bat
a mistyped argument is unending, like so many arguments in real life {sigh); so TpX
would have to go on until the end of the file, or (mwore Bkely)} until tokens completely fill
the computer’s memory. In either case, a single typographical error would have ruined
the run, and the user would be forced to start over. Therefore TEX has another rule,
intended to confine such errors to the paragraph in which they oceur: The foken *\par’
is not allowed to occur as part of an argument, ualess vou explicitiv tell TEX that \par
is OK. Whenever TgX is about to include \par as part of an argument, it will abort
the current macro expansion and report that a “rupaway argument” has been found.

@@ If you actually want a control sequence to allow arguments with \par tokens,
you can define it to be a “long” macro by saying ‘\long’ just before ‘\def’.
For example, the \bold macre defined by

\longh\def\bold#1{{\bf#1}}

is capable of setting several paragraphs in boldface type. (However, such a macro is
not an especially good way to typeset bold text. It would be better to say, eg.,
\def\beginbold{\begingroup\bf}
\def\endbold{\endgroup}

becanse this doesn’t fill TEX s memory with a long argument.)

205

traci NEMaCTos
debugging macres
category codes
par

FUNAWAaY

long

206

Chapter 20: Definitions (also called Macros)

@ The \par-forbidding mechanism doesn’t catch all conceivable missing-brace outer

errors, however; vou might forget the } at the end of a \def, and the same for 'fid‘l“]*“ control sequence
probiem would arise. In this case it’s harder to confine the error, becanse \par is a useful ff,i,i‘,ﬁ;,im] —
thing in replacement texts; we wouldn’t want to forbid \par there, so TEX has another incomplete .
mechanism: When amacro definition is preceded by “\outer’, the corresponding control ;?iﬁ::::l input file
sequence will not be allowed to appear in any place where tokens are being absorbed global
at high speed. An \outer macro canmaot appear in an argument, {not even when \par is gdef

. . - o le
allowed}, nor can it appear in the parameter text or the replacement text of a definition, o

nor in the preambie to an alignment, nor in conditional text that is heing skipped over.
If an Nouter macro dees show up in such places, TEX stops what it is doing and reports
either a “ranaway” situation or an “incomplete” conditional. The end of an input file
is also considered to be Nonter in this sensge; for example, a file shouldn’t end in the
middie of a definition. If you are designing a format for others to use, you can help them
detect errors before too much harm is done, by using \outer with all control sequences
that should appear only at “guiet times” within o document. For example, Appendix BB
defines \proclaim to be \outer, since a user shouldn’t be stating a theorem as part of
a definition or argument or preamble,

@ We have now seen that \def can be preceded by \long or \outer, and it

can alse be preceded by \global if the definition is supposed to transcend
its growp. These three prefixes can be applied to \def in any order, and they can
even appear more than once, TEX also has a \gdef primitive that is equivalent to
\global\def. Thus, for example,

\longh\outer\globalhlong\def
means the same thing as ‘\outer\long\gdef’.

@ So far in this manual we have encountered several ways to assign a meaning
to a control sequence. For examnple,

\onth\cs={external font name} makes \cs a font identifier;

\chardef\cs={number} makes \cs a character code;
\countdef\ca={number} makes \cs a \count register;
\defhcs...{...} makes \cs a macro.

It’s time now to reveal another inportant command of this type:
\let\ca={token} gives \cs the token’s current meaning.

If the {token} is another control sequence, \cs will acquire the same significance as
that control sequence. For example, if you say ‘\let\a=\def’, you could then say
ANavb...{...} to define a macro \b, because \a would behave ke TEX’s primitive
\def command. If vou say

\letha=\b \let\b=\c \let\c=\a

yout have interchanged the former meanings of \b and \c. And i you say

\outer\def\a#l.{#1:}
\let\b=\a

the effect is exactly the same as ‘Nounter\def\b#l.{#1:} \letla=\b’

Chapter 20 Definttions [also called Macros)

@ If the {token} in a \let iz a single character—i.e., if it is a {character code,
category code) pair—then the control sequence will behave to a certain extent
Like that character; but there are some differences. For example, after ‘\let\zero=0’
you can’t use \zero in a numerical constant, becanse TEX requires the tokens in a
mumerical constant to be digits, after macro expansion; \zero is not a macro, so it
doesn’t expand. However, such uses of \let have their value, ag we will see later.

@@» EXERCISE 20.8
Is there a significant difference between ‘\let\a=\b’ and ‘\def\a{\b}’'?

@@» EXERCISE 20.9

Experiment with TEX to discover the answers to the following questions: {a) If
the control sequence \par has been redefined {e.g., ‘\def\par{\endgroup\par}’ }, is
\par still forbidden to appear in an argument? {b) If you say \let\xpar=\par, is
\xpar aiso forbidden in an argument?

@ TEX also allows the construction “\futurelet\ca{token; }{token;)’, which has

the effect of ‘\let\cs = {token:}{token;}{token:}. The idea is that vou can
say, for example, ‘\futurelet\a\b’ at the end of the replacement text of a macro;
TEX will set \a to the token that follows the macro, after which \b will be expanded.
The control sequence \b can continue the processing, and it can examine \a to see
what’s coming up next.

@ The next thing a person wants, after getting used to macros with parameters,

is the ability to write macros that change their behavior depending on current
conditions, TEX provides a variety of primitive commands for this purpose. The general
form of such “conditional text” is

\if{condition){true text}\else{false text}\fi

where the {true text} is skipped unless the {condition) is true, and the {false text)
is skipped unless the {condition} is false. If the {false text} is empty, you can omit
the \else. The \if{condition}’ part of this construction begins with a control sequence
whose first two letters are “1f°; for example,

\ifodd\count(® \rightpage \elsze\leftpage \fi

specifies a condition that is true when TEX s integer register \count? is odd. Since TEX
generally keeps the current page paxber in \count0, the macro \rightpage will be
expanded in this example i the page number is odd, while \1leftpage will be expanded
if the page mumber is even. Conditional commands always end with a final “\fi’.

@ Conditionals are primarily intended for experienced TEX users, who want to

define high-level macros; therefore the remaining paragraphs in this chapter
are headed by “double dangerous bends.” Do not feel guilty about skipping right to
Chapter 21; in other words, hnagine that the manual says ‘\ifexperienced’ right here,
and that there is a matching ‘\fi’ at the end of the present chapter.

@ Before we discuss TEX s repertoire of \1f. .. commands, let’s look at another

example, so that the general ideas will be clear. Suppose that the \count
register \balance holds an amount that somebody has paid in excess of his or her
income tax; this amount is given in pennies, and it might be positive, negative, or zero.

207

par
futorelet
looking ahead
conditional text
else

Hodd

count

page nomber

fi

208

Chapter 20: Definitions (also called Macros)

Our immediate goal will be to write a TEX macro that generates a suitable statement
for the Internal Revenue Service to inchrde as part of a letter to that person, based on
the amount of the balance. The statement will be gquite different for positive balances
than for negative ones, 5o we can exploit TEX s ability to act conditionally:

\def\statement {\ifnum\balance=0 \fullypaid
\else\ifnum\balance>® \overpaid
\else\nnderpaid
Vi
\fi}

Here \ifmm is a conditional command that compares two numbers; the \statement
macro reduces to Nnllypaid if the balance is zero, and so on.

@@ It is vastly important to notice the spaces alter the O°s in this construction.
If the example had said

...=0\fullypaid...

then TEX would have begun to expand ‘\fullypaid’ before it knew the value of the
constant 0, becanse \fullypaid might start with a 1 or something that would change
the number. {After all, ‘01’ is a perfectly acceptable {(number), in TEX s eyes.) In this
particalar case the prograze would still have worked, becanse we will see in o moment
that \fullypaid begins with the letter Y; thus, the only problem cansed by the missing
space would be that TEX would go slower, since it would have to skip over the whole
expansion of \fullypaid instead of just skipping \fullypaid as a single, unexpanded
token. But in other situations a missing space like this might cause TEX to expand
macros when vou don’t want any expansion, and such anomalies can cause subtle and
confusing errors. For best results, always put a blank space after a muneric constant;
this blank space tells TEX that the constant is complete, and such a space will never “get
through” to the output. In fact, when you don’t have a blank space after a constant,
TEX actually has to do more work, because each constant continnes until o non-digit
has been read; if this non-digit is not a space, TEX takes the token you did have and
backs it up, ready to be read again. (On the other hand, the anthor often omits the
space when a constant is immediately followed by some other character, because extra
spaces do look funny in the file; aesthetics are more important than efficiency.)

@@b EXERCISE 20.10
Continning the IRS example, assume that \fullypaid and \nnderpaid are
defined as follows:
\def\fullypaid{Your taxes are fully paid-~-thank you.}
\def\underpaid{{\count(d=~\balance
\ifnum\count0<100
You owe \dollaramount, but you need mot pay it, becamnse
our policy is to disregard amounts less than \$1.00.
\else Please remit \dollaramount\ within ten days,
or additional interest charges will be dme.\fil}}

Write a macro \overpaid to go with these, agsuming that \dollaramount is a macro
that generates the contents of \countd i dollars and cents. Your wacro should say
that a check will be mailed under separate cover, nnless the amount is less than $1.00,
in which case the person must specifically request a check,

Internal Revenoe Service
oo
space after a congtant

Chapter 20 Definttions [also called Macros)

@@» EXERCISE 20.11
Write a, \dollaramount macro, to complete the Internal Revenue \statement.

@@ Now let’s make a complete survey of TEX's conditional commands. Some of
them involve features that have not yet been introduced in this manual.

= \ifmum{number, }{relation}{number;} (compare two integers)
The {relation} must be either ‘<i2° or ‘=" or “y’. The two integer mumbers are
comrpared to each other in the usual way, and the result is true or false accordingly,

» \ifdim{dimen}{relation}{dimens} {compare two dimensions)
Thig is like \ifnum, but it compares two {dimen} values. For example, to test whether
the value of \haize exceeds 100 pt, you can say ‘\ifdim\hsize>100pt’.

» \ifodd{number} (test for add integer)

The condition is trae if the {mumber) is odd, false if it is even.

m \ifvmode (test for vertical mode)

True if TEX is in vertical mode or internal vertical mode {see Chapter 13).

m \ifhmode [(test for horizontal mode)

True if TgX is in horizontal mode or restricted horizontal mode {see Chapter 13).

» \ifmmode (test for math mode)

True if TpX is in math mode or display math mode {see Chapter 13).

m \ifiuner (test for an internal mode)}

True if TEX is in infernal vertical mode, or restricted horizontal mode, or {nondisplay)
math mode (see Chapter 13).

» \if{token }{tokens) (test if character codes agree)

TEX will expand macros following \if until two unexpandable tokens are found. I
either token is a control sequence, TEX considers it to have character code 256 and
category code 16, unless the current equivalent of that control sequence has been \let
equal to a non-active character token. In this way, each token specifies a {(charac-
ter code, category code) pair. The condition is true if the character codes are equal,
independent of the catezory codes. For example, after \def\a{*} and \let\b=+ and
\def\c{/}, the tests ‘\if*\a’ and \if\a\b’ will be true, but ‘\if\a\c’ will be false.
Also ‘Vif\a\par® will be false, but ‘\if\par\let’ will be true.

» \ifcat{token; }{tokens) {test if category codes agree)

This is just like \1f, but it tests the category codes, not the character codes. Active
characters have category 13, but you have to say “\noexpand{active character}’ in order
to suppress expansion when you are looking at such characters with \if or \ifcat. For
example, alter

\catcode‘ [*13 \catcode‘]=13 \def[{*}

the tests ‘\ifcat\noexpand[\noexpand]® and “\ifcat[* will be true, but the test
‘Nifcat\noexpand [+ will be falze.

209

oo

relation

ifelim

Hodd

ifvmade
iThimode
fmimnode
Hinner

i

Heat

category codes
Active charactens
noexpand

210

Chapter 20: Definitions (also called Macros)

» \ifx{token:}{token:} {test if tokens agree)

In this case, TEX does not expand control sequences when it looks at the two tokens.
The condition is trae if (a} the two tokens are not macros, and they both represent the
same (character code, category code) pair or the same TEX primitive or the same \font
o1 \chardef or \countdef, etc.; or if {b) the two tokens are macros, and they both
kave the same status with respect to \long and \ounter, and they both have the same
parameters and “top level” expansion. For example, after ‘\def\a{\c} \def\b{\d}
\def\c{\e} \def\d{\el} \def\e{A}’, an \ifx test will find \c and \d egual, but not
\a and \b, nor \d and \e, nor any other combinations of \a, \b, \c, \d, \e.

= \ifvoid{number}, \ifhbox{number}, \ifvbhox{muuber} {test a box register)

The {number} should be between 0 and 255. The condition is true if that \box is void
or containg an hbox or a vhox, respectively (see Chapter 15).

» \ifeof{number} [test for end of file)

The {number} should be between 0 and 15. The condition is true unless the corre
sponding input, stream is open and not fully read. {See the command \openin below.)

m \iftrue, \iffalse (always true or always false)
These conditions have a predetermined outcome. But they turn out to be useful in
spite of this, as explained below.

Finally, there’s one more conditional construction, which is somewhat ditferent
from the rest because it is capable of making a many-way branch:

» \ifcase{nmnber}{text for case O)\ox{text for case 1}\or -+ -
\or{text for case n}\else{text for all other cases)\fi

Here there are n + 1 cases separated by o \oxr’s, where n can be any nonnegative
muuber. The {mumber} selects the text that will be used. Once again the \else part is
aptional, if you don't want to specify any text for cases when the {mumber) is negative
or greater than n.

@@» EXERCISE 2().12

Design a \category macro that prints a character’s current category code
symbolically, given a one-character control sequence for that character. For example, if
the category codes of plain TEX are in force, ‘\category\\’ should expand to ‘escape’,
and ‘\category\a’ should expand to ‘letter’.

@@» EXERCISE 20.13

Test vourself on the following gquestions to see i vou understand certain bor-
derline situations: After the definitions ‘\def\a(} \def\b{*+} \def\c{True}’, which
of the following are true? {a) ‘\if\a\b’; {b) \ifcath\a\b’; {¢} \ifx\a\b’; {d} \if\c’;
() Nifcat\c’; () \ifx\ifx\ifx’. {g) ‘\if\ifx\a\b\c\else\if\a\b\c\fi\fi’.

@ Notice that all of the control sequences for conditionals begin with \if...,

and they all have a matching \fi. This convention—that \if... pairs up
with \fi—makes it easier to see the nesting of conditionals within your program. The
nesting of \if...\f1 is independent of the nesting of {...}; thus, you can begin or end
a group in the middle of a conditional, and you can begin or end a conditional in the
middie of a group. Extensive experience with macros has shown that such independence
ig fmportant in applications; but it can also lead to confusion i vou aren’t careful.

ifx

font
chardef
countdef
long
auter
ifeoid
iThbox
ifvbox
ool
GpRenin
iftroe
ifalse
Hease
or

else
nesting
groug

Chapter 20 Definttions [also called Macros)

@ It’s sometimes desirablie to pass information from one macre to another, and

there are several ways to do this: by passing it as an argument, by putting
it into a register, or by defining a control sequence that contains the information.
For example, the macros \hphantom, \vphantom, and \phantom in Appendix B are
guite siipilar, so the anthor wanted to do most of the work in another macro \phant
that would be common to all three. Soiehow \phant was to be told what kind of
phantom was desired. The fisst approach was to define control seguences \hph and
\vph something like this:

\def\hphantom{\ph YN} \def\vphantom{\ph NY} \def
\def\ph#1#2{\def\hph{#1}\def\vph{#2} \phant}

after which \phant could test \if Y\hph’ and ‘\if Y\vph’. This worked, but there were
varions ways to make it more efficient; for example, ‘\def\hph{#1}’ could be replaced
by ‘\let\hph=#1’, avoiding macro expansion. An even better idea then sugrested itself:

\def\yes{\if00} \def\no{\if01}
\def\hphantom{\ph\yez\no}...\def
\def\ph#1#2{\let\ifhph=#1\let\ifvph=#2\phant}

after which \phant could test ‘\ifhph’ and ‘\ifvph’. {This construction was tried
before Niftrue and \iffalse were part of the TEX language.} The idea worked fine,
s0 the anthor started to use \yes and \no in a variety of other situations. Dut then
one day a complex conditional failed, becaunse it contained an \ifhph-like test inside
ancther conditional:

\if... \ifhph...\fi ... \else ... \fi

Do you see the problem that developed? When the {true text} of the outermost con-
ditional was executed, everything worked fine, becanse \ifhph was either \yes or \no
and it expanded into either \if00 or \if01. But when the {true text} was skipped, the
\ifhph was not expanded, so the first \fi was mistakenly paired with the first \if;
everything scon went haywire, That’s when \iftrue and \iffalze were put into the
language, in place of \yea and \no; now \ifhph is either \iftrue or \iffalse, so TpX
will match it properly with a closing \f1, whether or not it is being skipped over.

@ To facilitate \1f... constructions, plain TEX has a \newif macro, such that
after you say ‘\newif\ifabc’ three control sequences will be defined: \ifabce

{for testing the switch), \abctime {for making the switch true), and \abcfalse {for

making it false). The \phantom prablem is now solved in Appendix B by writing

\newif\ifhph \newif\ifvph
\def\hphantom{\hphtrue‘\vphfalse\phant}

and with similar definitions of \vphantom and \phantom. There is no longer any need
for a \ph macro; again \phant tests \ifhph and \ifvph. Appendix E contains other
examples of conditionals created by \newif. New conditionals are initially false.

@ Cantion: Don’t say anything like “\let\ifabc=\iftrue’ in conditional text.

If TEX skips over this command, it will think that both \ifabc and \iftrue
require a matching \f1, since the \let is not being executed! Keep such commands
buried inside macros, so that TEX will see the ‘\Nif. .. oanly when it is not skipping
over the text that it is reading.

211

cormnnication between macros
phantom

Knuth

iftroe

Hialse

newif

212

Chapter 20: Definitions (also called Macros)

@ TEX has 256 “token list registers” called \toks0 through \toksa255, so that
token lists can easily be shuffled around withont passing them through TEX s
reading apparatus. There’s also a \tokadef instruction so that, eg.,

\toksdef\catch=22

makes \catch eguivalent to \toks22. Plain TEX provides a \newtoks macro that
allocates a new token list register; it is analogous to \newcount. Token Hst registers
behave like the token list parameters \everypar, \everyhbox, \output, \errhelp, etc.
To assign a new value to a token st parameter or register, yvou say either

{token variable)={{replacement text}}
or {token variable}={token variable}

where {token variable) means either a token list parameter or a control sequence defined
by \toksdef or \newtoks, or an explicit register designation ‘\toks{mimber})’.

@@ Everyone who makes extensive use of a powertul macro facility encounters

sitnations when the macros do surprising things. We have already mentioned
the possibility of setting \tracingmacros=1, in order to see when TEX expands macros
and what arguments it finds. There’s alse another helpful way to watch what TEX is
doing: If yvou set \tracingcommands=1, TEX will show every command that it executes,
as we saw in Chapter 13. Furthermore, if you set \tracingcommands=2, TEX will show
all conditional commands and their outcomes, as well as the unconditional commands
that are actually performed or expanded. This diaguostic information goes into vour log
file. You can also see it on vour terminal, if you say \tracingonline=1. (Incidentally,
if you make \tracingcommands greater than 2, you get the same information as when
it equals 2.} Similarly, \tracingmacros=2 will trace \output, \everypar, etc.

@ One way to uaderstand the occasional strangeness of macre operation is to

use the tracing features just described, so that yvou can watch what TEX does
in slow motion. Another way is to learn the rules for how macros are expanded; we
shall now discuss those roles,

@ TEX’s mastication process converts vour input to a long token list, as explained

in Chapter 8; and its digestive processes work strictly on this token list. When
TEX encounters a control sequence in the token list, it looks wp the current meaning,
and in certain cagses it will expand that token into a sequence of other tokens before
continuing to read. The expansion process applies to macros and to certain other
special primitives like \number and \if that we shall consider momentarily. Sometimes,
kowever, the expansion is not carried out; for example, when TEX is taking care of a
\def, the {control sequence}, the {parameter text), and the (replacement text} of that
\def are not subject to expansion. Similarly, the two tokens after \ifx are never
expanded. A complete Hst of occasions when tokens are not expanded appears later in
this chapter; vou can use it for reference in an emergency.

@@ Now let’s consider the control sequences that are expanded whenever expan-
sion has not been inhibited. Such control sequences fall into several classes:

= Macros. When a macro is expanded, TgX first determines its arguments {if
any), as explained earlier in this chapter. Each arguicent is a token list; the tokens
are not expanded when they are being accepted as arguments. Then TEX replaces the
macro and its arguments by the replacement text.

token st registers
toks

toksdef

newtoks

token Hst parameters
token variable
tracingeonmmaneds
tracingonline
tracingmacros
Expansion

Chapter 20 Definttions [also called Macros)

n Conditionals, When an \if... i8 expanded. TEX reads ahead as far as nec-
essary to determine whether the condition is trae or false; and i false, it skips ahead
{keeping track of \if...\fi nesting) until finding the \else, \oxr, or \fi that eads
the skipped text. Similarly, when \elsze, Vor, or \fi is expanded, TEX reads to the
end of any text that ought to be skipped. The “expansion” of a conditional is empty.
(Conditionals always reduce the number of tokens that are seen by later stages of the
digestive process, while macros usually increase the mumber of tokens.)

= \mumber{number}. When TEX expands \number, it reads the {number} that
follows {expanding tokens as it goes); the final expansion consists of the decimal rep-
resentation of that aumber, preceded by *~° if negative.

» \romanmumeral{mimber}. This is like \number, but the expansion consists of
lowercase roman nuserals. For example, ‘\romannumeral 1984’ produces ‘memlxxxiv’.
The expansion is empty if the nunber is zero or negative,

» \string{token}. TEX first reads the {token} without expansion. If a control
sequence token appears, its \string expansion consists of the control sequence name
(including \escapechar as an escape character, if the control sequence isp’t simply an
active character}. Otherwise the {token)} iz a character token, and its character code is
retained as the expanded result.

m \jobname. The expansion iy the name that TEX has chosen for this job. For
example, if TEX is putting its output on files paper.dvi and paper.log, then \jobname
expands to ‘paper’.

» \fontname{font}. The expansion is the external file name corresponding to the
given font; e.g., ‘\fontname\tenrm’ might expand to ‘cmrl10’ {five tokens). If the font is
not being used at its design size, the “af size” also appears in the expansion. A {font}
is either an identifier defined by \font; or \textfont{number}, \scriptfont{number},
or \scriptecriptfont{number}; or \font, which denctes the current font.

» \meaning{token}. TEX expands this to the sequence of characters that would
be displayed on vour terminal by the commands ‘\let\test={token} \show\test’.
For example, ‘\meaning A’ usually expands to ‘the letter A% ‘\meaning\4’ alter
Ndef\AB1B{\C}’ expands t¢ ‘macro:#1B->\C °

= \csname...\endcsname. When TEX expands \caname it reads to the matching
\endcsnane, expanding tokens as it goes; only character tokens should remain alter this
expansion has taken place. Then the “expansion” of the entire \cename. . .\endczname
text will be a single control sequence token, defined to be like \relax if its meaning is
currently nndefined.

» \expandafter{token}. TEX first reads the token that comes immediately alter
\expandafter, without expanding it; let’s call this token ¢. Then TgX reads the token
that comes alter ¢ {and possibly more tokens, if that token has an argument), replacing
it by its expansion. Finally TpX puts ¢ back in front of that expansion.

= \noexpand{token}. The expansion is the token itself; but that token is inter-
preted as if its meaning were ‘\relax’ if it is a control sequence that would ordinarily
be expanded by TEX's expansion riles.

» \topmark, \firstmark, \botmark, \splitfirstmark, and \splitbotmark. The
expansion is the token list in the corresponding “mark” register {see Chapter 23).

213

nuber
decimal representation
romatirireral
string
escapechar
jobname

i

fontname

at sige

font

font

neaning
CRTVATTE
endesname
expandalter
noexpand
topimark
Hrstinark
bhotmark
splithrstimark
splithotmark
mark

214 Chapter 20: Definitions (also called Macros)

» \input{file name}. The expansion is null; but TEX prepares to read from the
specified file before looking at any more tokens from its current source,

» \endinput. The expansion is null. The next time TEX gets to the end of an
\input line, it will stop reading from the file containing that line.

n \the{internal quantity}. The expangion is a list of tokens representing the
current value of one of TEX s variables, as explained below. For example, ‘\the\skip5’
might expand into '5.0pt plus 2.0fil’ (17 tokens).

@ The powerful \the operation has many subcases, so we shall discuss them: one
at o time. A variety of internal numeric quantities can be brought up front:

» \the{parameter}, where {parameter} is the name of one of TEX's integer pa-
rameters (e.g., \the\widowpenalty}, dimension parmmeters {e.g., \the\parindent),
glue parameters {e.g., \the\leftskip), or muglue parameters {e.g., \the\thinmuskip).

» \the{register}, where {register} is the name of one of TEX’s integer registers
{e.g., \the\count 0}, dimension registers {e.g., \the\dimenl69), glue registers {e.g.,
\the\skip255), or mmghte registers (e.g., \the\muskip\count2).

» \the{codename}{8-bit number}, where {codename)} stands for either \catcode,
\mathcode, \lccode, \uccode, \sfcode, or \delcode. Fur example, \the\mathcode*/
produces the current {integer) math code value for a slash.

= \the{special register}, where {special register} is one of the integer guantities
\prevgraf, \deadcycles, \insertpenalties, \inputlineno, \badnezz, or \parshape
{denoting only the number of lines of \parshape); or one of the dimensions \pagetotal,
\pagegoal, \pagestretch, \pagefilatretch, \pagefillstretch, \pagefilllatretch,
\pageshrink, \pagedepth. In horizontal modes you can alse refer to a special integer,
\the\spacefactor; in vertical modes there's a special dimension, \the\prevdepth.

= \the\fontdimen{parameter number}{font}. This produces o dimension; for
example, parameter 6 of a font is #ts “emn” value, so ‘\the\fontdimen6\tenrm’ vields
10.0pt’° (six tokens).

» \the\hyphenchar {font}, \the\skewchar{font}. These produce the correspond-
ing integer values defined for the specified font.

= \the\lastpenalty, \the\lastkern, \the\lastskip. These yield the amount
of penalty, kerning, glue, or muglue in the final #tem on the current list, provided that
the itemn is a penalty, kern, or glue, respectively; otherwise they yield ‘0 or ‘0.0pt’.

» \the{defined character}, where {defined character} is a control sequence that
kas been given an integer value with \chardef or \mathchardef; the result is that
integer value, in decimal notation.

@@ In all of the cases hsted so far, \the praduces a result that is a sequence of

ASCII character tokens. Category code 12 { “other”) is assigned to each token,
except that character code 32 gets category 10 (Sspace”). The same rule is used to
assign category codes to the tokens produced by \nnmber, \romannnmeral, \string,
\meaning, \jobname, and \fontname.

@@ There alse are cases in which \the produces non-character tokens, either a
font identifier like \tenrm, or an arbitrary token list:

» \the{font} produces a font identifier that selects the specified font. For exam-
ple, ‘\the\font’ is a control seguence corresponding to the current font.

inpuot
endinput
the

intoger parameters
ditnension paraineters

glue parameters

imngloe parameters

registers
catcode
matheade
lecode

necods

sfeode

deleode
preveral
deadeyeles
nsertpenalties
mputlinenc
hadnems
parshape
pagetotal
pagegoal
pagestreteh
pagetilstretch
pagetillstretch
pagetilllstreteh
pageshrink
pagedepth
fontdimen

em
hyphenchar
skewchar
lastpenalty
lastkern
lastskip
chardef
mathchardel
ASTIH
category codes
nuber
rommantomeral
string
meaning
jobname
fontname

Chapter 20 Definttions [also called Macros)

» \the{token variable} produces a copy of the token list that is the current value
of the variable. For example, vou can expand “\the\everypar’ and ‘\the\toksa5’.

@ TeX’s primitive comnmand \showthe’ will display on vour terminal exactly
what ‘\the’ would produce in an expanded definition; the expansion is pre-
ceded by > 7 and followed by a period. For example, ‘\showthe\parindent” will display

> 20.0pt.
if the plain TEX paragraph indentation is being used.

@@ Here now is the promised lst of all cases when expandable tokens are not ex-
panded. Some of the situations fnvolve primitives that haven’t been discussed
yet, but we'll get to thew eventually. Expansion is suppressed at the following times:

» When tokens are being deleted during error recovery {see Chapter 6).

m When tokens are being skipped becanse conditional text is being ignored.

» When TEX is reading the arguments of a macro.

n When TEX is reading a control sequence to be defined by \let, \futurelet,
\def, \gdef, \edef, \xdef, \chardef, \mathchardef, \countdef, \dimendef,
\skipdef, \muskipdef, \toksdef, \read, and \font.

» When TEX is reading argument tokens for \expandaiter, \noexpand, \string,
\meaning, \let, \futurelet, \ifx, \show, \afterassignment, \aftergroup.

» When TgX is absorbing the parameter text of a \def, \gdef, \edef, or \xdef.

n When TpX is absorbing the replacement text of o \def or \gdef or \read;
or the text of a token variable like \everypar or \toks0O; or the token list
for \nppercaze or \lowercase or \write. (The token list for \write will he
expanded later, when it is actually output to a file.}

» When TEX is reading the preamble of an alignment, except after a token for
the primitive command \span or when reading the {glue} after \tabskip.

m Just after a $5 token that begins math mode, to see if another $5 follows,

m Just after a ¢;2 token that begins an alphabetic constant.

@@ Sometimes vou will find vourself wanting to define new macros whose replace-
ment text has been expanded, based on current conditions, instead of simply
copying the replacement text verbatim. TgX provides the \edef {expanded definition)
command for this purpose, and atso \xdef {which is equivalent to \global\edef). The
general format is the same as for \def and \gdef, but TEX blindly expands the tokens
of the replacement text according to the expansion rules above. For example, consider

\def\double#1{#1#1}
\edef\a{\double{xy}} \edef\a{\double\a}

Here the first \edef is equivalent to \def\a{xyxy} and the second is equivalent o
Ndefh\al{xyxyxyxyl. All of the other kinds of expansion will take place too, including
conditionals; for example,

\Nedef\b#1#2 {\ifmmode#i\elset#2\fi}

gives a result equivalent to \def\b#1#2{#1}’ if TEX is in math mode at the time of
the \edef, otherwise the result is equivalent to ‘\def\b#1#2{#2}".

215

showthe

BITOF TOCOVETY
Tert

futurelet

def

gdef

ectel

xdef

chardefl
mathchardel
comtedel
dimendef
skipdef
moskipedef
toksdef

read

font
expandafter
noexpand
string
neaning

Tert

futorelet

ifx

showr
afterassignment
aftergroup
rerad

token variahle
everypar

toks
uppercase
Towerease
write

tabskip
alphabetic constant
edefl

xdef

216

Chapter 20: Definttions (aka Macros)
@ Expanded definitions that are made with \edef or \xdef continue to expand
tokens until only wnexpandable tokens remain, except that token lists pro-

duced by ‘\the’ are not expanded further. Furthermore a token foliowing “\noexpand’
will not be expanded, since its ability to expand hag been nullified. These two opera-
tions can be used to control what gets expanded and what doeso’t.

@ Suppose, for example, that vou want to define \a to be equal to \b {expanded)
followed by \c (not expanded) followed by \d {expanded), assuing that \b
and \d are simple macros without parameters. There are two eagy ways to do it

\edef\a{\b\noexpand\c\d}
\tokaO={\c} \edef\af{\b\the\toks(\d}

And it’s even possible to achieve the same effect without using either \noexpand or \the;
a reader who wants to learn more about TEX's expansion mechanism is encouraged to
try the next three exercises.

@@» EXERCISE 20.14
Figure out a way to define \a as in the previous paragraph, without using
TEX’s primitives ‘\noexpand’ and ‘\the’.

@@» EXERCISE 20.15

Continuing the example of expansion avoidance, suppose that yon want to
expand \b completely until only unexpandable tokens are left. but vou don’t want
to expand \c at all, and vou want to expand \d only one level. For example, alter
\defi\b{\c\c} and \def\c{*} and \def\d{\b\c} the goal would be to get the effect of
\defha{**\c\b\c}. How can such a partial expansion be achieved, using \the?

@@» EXERCISE 20.16
Solve the previous exercise without \the or \noexpand. {This is difficuit.)

@ TEX’s primitive commands \mark{...}, \mezzage{...}, \errmessage{...]},

\epecial{...}, and \urite{number}{...} all expand the token lists in braces
almost exactly as \edef and \xdef do. However, a macro parameter character like #
should not be duplicated in such commands; you need to say ##% within an \edef, but
only # within a \mark. The \write command is somewhat special, because its token
list is first, read without expansion; expansion coours later, when the tokens are actually
being written to a file.

@@» EXERCISE 20.17
Compare the following two definitions:

\Ndefha{\iftrue{\else}\fil}
Nedef\b{\iftrne{\elae}\fi}

Which of them yields an unmmatched left brace? {This is tricky.)

@ TEX hag the ability to read individual lnes of text from up to 16 files at once,
in addition to the files that are being \input. To initiate reading such an
auxiliary file, you shouid say

\openin{number}={file name}

where the {number} is between 0 and 15. (Plain TEX allocates input stream numbers
§ through 15 with the \newread command, which is analogous to \newbox.) In most

the

noexpand
expansion, avoiding
the

mark

Message
ST 5 AT

special

write

unmatched left brace
GpRenin

nevwread

Chapter 20 Definttions [also called Macros)

installations of TEX, the extension ".tex’ will be appended to the file name, ag with
\input, if no extension is given explicitly. If the file cannot be found, TEX will give no
error message; it will simply consider that the input streams is not open, and you can
test this condition with \ifeof. When vouw're done with a file, vou can say

\closein{number}

and the file associated with that input stream number will be closed, ie., returned to
its initial condition, if such a file was open. To get input from an open file, you say

\read{number}to{control sequence}

and the control sequence is defined to be a parameteriess macro whose replacement
text is the contents of the next line read from the designated file. This line is converted
to a token list, using the procedure of Chapter 8, baged on the current category codes.
Additional lines are read, if necessary, until an equal number of left and right braces
hras been found. An empty line is implicitly appended to the end of a file that is being
\read. If the {number} is not between 0 and 15, or if no such file is open, or if the
file has ended, input will be from the terminal; TpX will prompt the user unless the
{mumber} is negative. The macro definition will be local unless you say \global\read.

@ For example, it’s easy to have dialogs with the user, by using \read together
with the \message command {which writes an expanded token list on the
terminal and in the log file):

\mezsage{Please type your name:}
\readl6 to\myname
\meszsage{Hello, \myname!}

The \read command in this case will print ‘\myname=" and it will wait for a response;
the response will be echoed on the log file. The ‘\myname=" would have heen omitted if
‘\readl6’ had been ‘\read-1’.

@@» EXERCISE 20.18
The \myname example just given doesn’t work quite right, because the {returm)
at the end of the line gets transiated into a space. Figure out how to fix that glitch,

@@» EXERCISE 20.19

Continuing the previous example, define a macro \MYNAME that containg the
letters of \myname all in uppercase letters. For example, if \myname expands to Arthuor,
\MYNAME should expand to ARTHUR. Assume that \myname contains only letters and
spaces in its expansion.

@ Appendices B, D, and E contain munerous examples of how to make macros

do useful things. Let’s close this chapter by presenting a few examples that
show how TEX can actually be used as a primitive progranuning language, if you want
to achieve special effects, and if yvou don’t care very much about computer costs.

@ Plain TEX contains o \loop...\repeat construction, which works like this

You say ‘\loop « \if... 9 \repeat’, where & and A are anv sequences of
comnnands, and where \if... is any conditional test {without a matching \£i). TEX
will first do «; then if the condition is trae, TEX will do 4 and repeat the whole process
again starting with . If the condition ever turas out to be false, the loop will stop.

217

e

inpuot

ool

closein

read

to

empty line at end of Hle
dialogs with the user
Message

uppercase letters
progragmming

loop

218 Chapter 20: Definitions (also called Macros)

For example, here i a program that carries ount a little dialog in which TEX waits for
the user to type Yesz’ or ‘Neo’

\def\yes{Yes } \def\no{No } \newif\ifgarbage
\loop\message{Are you happy? }
\read~1 to\anzwer
\ifx\answer\yes\garbagefalse % the answer iz Yes
\elze\ifx\answer\no\garbagefalze % the anzswer iz No
\else\garbagetrune\fi\fi ¥ the answer iz garbage
\ifgarbage\message{{Please type Yes or No.)}
\repeat

@@» EXERCISE 20.20
Use the \loop...\repeat mechanism to constriuct a general \punishment
macro that repeats any given paragraph any given number of thines. For example,

\punishment{I must not talk in clazs.}{100}
shounld produce the results desired in exercise 20.1.

@ The first thirty prime mumbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, and 113.
You may not find this fact very startling; but you may be surprised to learn that the
previous sentence was typeset by saying

The first thirty prime numberz are \primes{30}.

TEX did all of the caleulation by expanding the \primes macro, so the anthor is pretty
sure that the list of prizze numbers given above is quite free of typographic errors. Here
is the set of macros that did it:

\newif\ifprime \newif‘\ifunknown % boolean variables

\newcount\n \newcount\p \newcount\d \newcomnt\a }, integer variables

\def\primes#1{2, 3% assume that #1 iz at least 3

\n=#1 \advance\n by-2 % n more to go

\p=5 % odd primes starting with p

\loop\ifnum\n>0 \printifprime‘\advance\p by2 \repeat}
\def\printp{, % we will invoke \printp if p is prime

\ifoum\n=1 and"\fi % ‘and’ precedez the last value

\number\p \advance\n by -1 }
\def\printifprime{\testprimality \ifprime\printp\fi}
\def\testprimality{{\d=3 \global\primetrue

\loop\trialdiviszion \ifunknown\advance\d by2 \repeatl}}
\def\trialdivision{\a=\p \divide\a by\d

\ifnum\a>\d \unknowntrue\else\unknownfalse\fi

\mmltiply\a by\d

\ifnumha=\p \global\primefalse\unknownfalse\fi}

The corputation is fairly straightforward, excent that it invelves a loop inside a loop;
therefore \testprimality introduces an extra set of Lraces, to keep the inner loop
control from interfering with the outer loop. The lbraces make it necessary to say
‘\global’ when \ifprime is being set true or false, TEX spent more time constructing

repeating commands, see loop
prime ambers

newif

NEweoUnt

maltiply

divide

advance

NEweoUnt

global

Chapter 20 Definttions [also called Macros)

that seatence than it usually spends on an entire page; the \trialdivizion macro was
expanded 132 times,

@ The \loop macro that does all these wonderful things is actually guite simple.
It puts the code that’s supposed to be repeated into a control sequence called
\body, and then another control sequence iterates until the condition is false:

\def\loopi#l\repeat {\def\body{#1}\iterate}
\def\iterate{\body\let\next=\iterate\else\let\next=\relax\fi\next}

The expansion of \iterate ends with the expansion of \next; therefore TEX is able
to remove \lterate from its memory before invoking \next, and the memory does not
fill up during a long loop. Computer scientists call this “tail recursion.”

@@ The \hex macro helow, which converts count register \n to hexadecimal no-

tation, illustrates a recursive control structure in which many copies of \hex
can be active simultanecusly. Recursion works better than simple \loop iteration in
this application becanse the hexadecimal digits are discovered from right to left, while
they must be output from left to right. {The pamber in \n should be > (.}

\def\hex{{\comnt0=\n \divide\n bylé
Vifnum\n>0 \hex\fi \count2=\n \mmltiply\count2 by-16
\advance\connt0 by\count2 \hexdigit}}
\def\hexdigit{\ifnum\count(0<10 \number\count(

\else\advance‘\count(d by~10 \advance\countd by‘A \char\count0 \fi}

@ Our final example is a macro that computes the mumber of nonblank tokens
in its argument; for example, ‘\length{argument}’ expands to ‘8°. This illus-
trates yet another aspect of macro technique.
\def\length#1l{{\count0=0 \getlength#l\end \number\count0}}
\def\getlength#l{\ifx#1\end \let\next=\relax
\elze\advance\count0 byl \let\next=\getlength\fi \next}

By this time [37 A.D.} the influence of Macro had become supreme.
— TACITUS, Annals {c.120 A.D.)

1 hate definitions.
- BENJAMIN DISRAELI, Vivian Grey {1826)

219

tail recursion
hexadecimal notation
Recorsion

Heration

Magro

TACITUS
DISRABRLY

age 220}

21

Making Boxes

Chapter 21: Muaking Bozes

In Chapters 11 and 12 we discussed the principles of boxes and glue, and by
now wo have scen many applications of those concepts. You ean get by in most
cases with the boxes that TEX manufactures auvtomatically with its paragraph
builder, its page builder, and its math formula processor; but if you want to do
nonstandard things, you have the option of making boxes by vourself. For exam-
ple, Chapter 14 points out that you can keep something from being hyphenated
or split between lines if vou enclose it in an \hbox; Chapter 19 points out that
\hbox allows you to got ordinary text into a displayed equation.

@ The purpose of the present chapter is to nail down whatever details about

boxes haven't been covered yvet. Fortunately, there isn’t much more to discuss;
we have already mentioned most of the rules, so this chapter is fairly short. In fact,
the previous chapters kave dealt with almost everything except the rules about rules.

@ To make a rule box {i.e., a solid black rectangle), you type ‘\hrule’ in vertical
mode or ‘\vrule’ in horizontal mode, followed by any or all of the specifications
‘width{dimen)’, ‘height{dimen}’, ‘depth{dimen}’, in any order. For example, if

\vrule height4pt width3pt depth2pt

appears in the middle of a paragraph, TpX will typeset the black box ‘p°. I vou specify
a dimension twice, the second specification overrules the first. If you leave a dimension
unspecified, vou get the following by default:

\hrule \vrule
width * €4 pt
height 0.4 pt *
depth 0.6 pt *

Here “*° means that the actual dimension depends on the context; the rule will extend
to the boundary of the mmaliest box or alignment that encioges it

@ For example, the author typed ‘\hrule’ just before typing this paragraph,

and vou can see what happened: A horizontal rule, 0.4 pt thick, was extended
across the page, becanse the vertical box that encloses it twrned out to be just that
wide. {In fact, the vertical box that encloses it is the page itself) Another example
appears immediately after this paragraph, where vou can see the result of

\hrule widthScm heightlpt \vazkiplpt \hrule widthécm

TeX does not put interline glue between rule boxes and their neighbors in a vertical
List, so these two rales are exactiv 1 pt apart.

g?} » EXERCISE 21.1
B. L. User dida’t want one of his horizontal rules to touch the left margin, so
he put it in a box and moved it right, lke this:

\moveright lin \vbox{\hrule width3in}

But he found that this produced more space above and below the rule than when he
had simply said “\hrule width 4in’ with no \vbox. Why did TEX insert more space,
and what should be have done to aveid it?

221

hhox

vhon

rule hon
black rectangle
hrule

vrile

wicth

height

depth
interline glue
User
imeveright

222

Chapter 21: Making Bozes

@ If vou specify all three dimzensions of a rule, there’s no essential difference

between \hrule and \vrule. since both will produce exactly the same black
box. But vou mmst call it an \hrule if you want to put it in a vertical list, and vou
st call it a \vrnle if you want to put it in a horlzontal list, regardless of whether it
actually looks like a horizontal rule or a vertical rule or neither. I you say \vrule in
vertical mode, TEX starts a new paragraph; i vou say \hrule in horizontal mode, TEX
stops the carrent paragraph and returns to vertical mode.

@ The dimnensions of a rale can be negative; for example, here’s a rule whose

height is 3 pt and whose depth is —2pt: © . However, a rule
ig invisible unless its height plus depth is positive and its width is positive. A rule
whose width is negative cannot be seen, but it acts like a backspace when it appears
in a horizontal Het.

g.?} » EXERCISE 21.2

Explain how the author probably obtained the rale > in the
previous paragraph. [Hint: It’s one inch long.]
@ Now let’s summarize all of the ways there are to specify boxes explicitly to
TEX. {1} A character by itself makes a character box, in horizontal mode;

this character is taken from the current font. (2} The commands \hrule and \vrule
make rule boxes, as just explained. {3} Otherwise you can make hboxes and vboxes,
which fall under the generic term {box}. A {box} has one of the following seven forms:

\hbox{box specification} { {horizontal material}} (see Chapter 12}
\vbox{hox specification} {{vertical material}} {see Chapter 12)
\vtop{box specification} {{vertical material}} {see Chapter 12}
\box{register number) (see Chapter 15)
\copy{register number} {see Chapter 15}
\vaplit{register number)to{dimen} {see Chapter 15)
\lastbox {see Chapter 21)

Here a {hox specification} is either ‘to{dimen)’ or ‘spread{dimen}’ or empty; this gov-
erng the setting of ghie in the horizontal or vertical lists inside the box, as explained
in Chapter 12. A (register number} is between 0 and 255; alter you say \box, that
register becomes void, but after \copy the register is wnchanged, as explained in Chap-
ter 15. The \vsplit operation is also explained in Chapter 15, In math modes an
additional type of box is available: \vcenter{box specification}{{vertical material}}
{see Chapter 17).

@@ The hattomn Line of the table above refers to \lastbox, a primitive aperation
that hasn’t been mentioned before. If the last item on the current horizontal
list or vertical st is an kbox or vbox, it is removed from the st and it becowmes the
\lastbox; otherwise \lastbox is void. This operation is allowed in internal vertical
mode, horizontal mode, and restricted horizontal mode, but vou cannot use it to take a
box from the current page in vertical mode. In math modes, \lastbox is always void.
At the beginning of a paragraph, ‘{\setbox0=\lastbox}’ removes the indentation box.

@ The operation \unskip is something like \lastbox, except that it applies to
giwe instead of to boxes, If the last thing on the current list is a glue ftem {or
leaders, as explained below), it is removed. You can’t remove ghue from the current

hackspace
haox

hhbeox

vhox

VO

hox

Copy

vsplit
lasthox
box specitication
0

spread
veenter
lasthox

internal vertical mode

indentation hox
anskip
leaders

Chapter 21: Muaking Bozes

page by using \unskip in vertical mode, but yor can say ‘\vskip~\lastskip’, which
has almost the same effect.

@ Chapters 24 to 26 present summaries of all TEX's operations in all modes,

and when those summaries mention a (box)’ they mean one of the seven
possibilities just listed. For example, vou can say ‘\setbox{register number}={box)’ in
any mode, and you can say ‘\moveright{dimen}{box}’ in vertical modes. But you can’t
say ‘\setbox{register number}=C’ or ‘\moveright{dimen}\hrule’; if you try either of
these, TEX will complain that a {box} was supposed to be present. Characters and
riles are so special, they aren’t regarded as {box}es.

@@» EXERCISE 21.3
Define a control sequence \boxit so that ‘\boxit{{box}}’ vields the given box
surrounnded by 3 points of space and by ruled lines on all four sides.

For example, the sentence vou are now reading was typeset as part of
the displayed formula $$\boxit{\boxit {\box4}}$%, where box 4 was
created by typing ‘\setbox4d=\vbox{\hzsize 23pc \noindent \strut
For example, the sentence yom are mnow reading ... \strutl}'.

@ Let’s look also at what can go ingide a box. An hbox contains a horizontal

list; a vbox contains a vertical list. Both kinds of lists are wade up primarily
of things like boxes, glue, kerns, and penalties, as we have seen in Chapters 14 and 15.
But vou can alse include some special things that we haven’t discussed vet, namely
“leaders” and “whatsits.” Our goal in the rest of this chapter will be to study how to
make use of such exotic items.

@ The dots vou see before vour eves here « < -« «« « oo s are called leacers

becanse they lead vour eves across the page; such things are often used in
indexes or tables of contents. The general idea is to repeat a box as many times as
necessary to fill wp some given space, TEX treats leaders as a special case of gloe;
no, wait, it's the other way around: TEX treats glue as a special case of leaders.
Ordinary glue fills space with nothing, while leaders fill space with any desired thing.
In horizontal mode you can say

\leaders{box or rule}\hskip{glie}

and the effect will be the same ag it vou had said just “\hskip{glue}’, except that the
space will be occupied by copies of the specified {box or rule}. The glue stretches or
shrinks in the usual way. For example,

\def\leaderfill{\leaders\hbox to lem{\hs=.\hsa}\hfill}
\line{Alpha\leaderfill Omegal}
\line{The Begiuning\leaderfill The Ending}
will produce the following two lines:
Alpha . . . 0 . o 0 0o Dinega
The Beginning The Eadiag

Here ‘\hbox to lem{\has.\hzas} specifies a box one em wide, with a period in its
center; the control sequence \leaderfill then canses this box to be replicated when

223

lastskip
leaders
leaders

224 Chapter 21: Making Bozes

filling space in the \line box. (Plain TEX’s \line macro makes an hbox whose width line
ig the \hsize.} (i(:at:s) .
nonaligned leadens
@ Notice that the dots in the two example lines appear exactly above each other, ;]]i‘:{gi:;
This is not a coincidence; #’s a consequence of the fact that the \leaders height
operation acts scmething like a window that lets vou see part of an infinite row of (‘;‘gi:i

boxes. If the words “Alpha’ and ‘QOmega’ are replaced by longer words, the number of
dots wight be different but the ones that you see will be in the same places as before.
The infinitely replicated boxes are lined up so that they touch each other, and so that,
if vou could see them all, one of them would have the same reference point as the
smallest enclosing box. Thus, \leaders will put a box flush with the left edge of an
enclosing box, if you start the leaders there; but vou won't get a box flush right unless
the width of the eaclosing box is exactly divisible by the width of the repeated box.
If the repeated box has width w, and i#f the space to be filled is at least 2, then vou
will always see at least one copy of the box; but if the space is less than 2w the box
may not appear, becanse boxes in the infinite row are typeset only when their entire
width falls inte the available space.

@ When leaders are isclated from each other, vou might not want them to be

aligned as just described, so TEX also provides for nonaligned leaders. In this
case a box of width w will be copied g times when the space to be filled is at least quw
and less than (g + 1)w; furthermore, the results will be centered in the available space.
There are two kinds of nonaligned leaders in TEX, namely \cleaders {centered leaders)
and \xleaders {expanded leaders). Centered leaders pack the boxes tightly next to
each other leaving equal amounts of blank space at the left and right; expanded leaders
distribute the extra space equally between the ¢ + 1 positions adjacent to the ¢ boxes.
For example, let’s suppose that a 10pt-wide box is being used in leaders that are
supposed to fill 56 pt of space. Five copies of the box will be used; \cleaders will
praduce 3 pt of space, then the five boxes, then another 3pt of space. But \xleaders
will produce 1 pt of space, then the first box, then another 1 pt of space, then the second
bax, ..., then the fifth box, and 1 pt of space.

@@» EXERCISE 21.4

Suppose that a 0 pt-wide box is to fill 38 pt of space starting 91 pt from the
left, of its enclosing box. How many copies of the box will be produced by \leaders,
\cleaders, and \zxleaders? Where will the boxes be positioned, relative to the left
edge of the enclosing box, in each of the three cages?

@@» EXERCISE 21.5

Assuming that the ' in the \leaderfill macro on the previous page is only
(.2 em wide, there is G.4em of blank space at both sides of the one-em box. Therefore
the \leaders construction will leave between 0.4 e and 1.4 em of blank space between
the periods and the text at either end. Redefine \leaderfill so that the amount of
blank space at either end will be between 0.1 em and 1.1 em, but the leaders on adjacent
Lines will still be aligned with each other.

@ Instead of giving a {box} in the leaders construction, you can give a {rule},

which means either \hrnle or \vrule, followed by opticnal height, width,
and depth specifications as usual. The rule will then be made as wide ag the corre-
sponding {ghne}. This is a case where \hrule makes sense in horizontal mode, becanse

Chapter 21: Muaking Bozes

it gives a horizontal rule in text. For example, if the \leaderfill macro in our earlier
ilustration is changed to

\def\leaderfill{ \leaders\hrule\hfill\ }

then the results ook like this:

Alpha Oumega
The Beginning The Eading

When a rule is used instead of a box, it fills the space completely, so there’s no ditference
between \leaders, \cleaders, and \xleaders.

@@» EXERCISE 21.6
What does \leaders\vrule\hfill produce?

@ Leaders work in vertical mode as well as in horizontal mode. In this cose

vertical ghie {e.g.. \vskip{glue} or \v£ill} is used instead of horizontal glue,
and \leaders produces boxes that are aligned so that the top of each repeated box
has the same vertical position as the top of the smallest enclosing box, plus a multiple
of the height-plus-depth of the repeated box. No interlineskip glie is placed between
boxes in vertical leaders; the boxes are just stacked right on top of each other.

@ I vou specify horizontal leaders with a box whose width isn’t positive, or if

you specify vertical leaders with a box whose height-plus-depth isn't positive,
TEX silently ignores the leaders and produces ordinary glue instead.

@@» EXERCISE 21.7
Explain how vou can end a paragraph with a rale that is at least 10pt long
and extends all the way to the right margin, like this

@ Horizontal leaders differ slightly from horizontal glue, becanse they have height
and depth when TEX calculates the size of the enclosing box {even though the
number of replications might be zero). Similarly, vertical leaders have width.

@@» EXERCISE 21.8
Demonstrate how to produce the following “TEXture’

IR R I
RRRRREREER

by using vertical leaders inside of horizontal leaders. (The TEX logo has been put into
a rectangunlar box, and copies of this box have been packed together tightly.)

@@» EXERCISE 21.9
Use vertical leaders to solve exercize 20,1,

@ The \overbrace and \underbrace macros of plain TEX are constructed by

combining characters with rales. Font cmex10 contains four symbols « . =,
each of which has depth zero and height equal to the thickness of a rule that joins them
properly. Therefore it’s easy to define \npbracefill and \downbracefill macros so
that you can obtain, e.g.,

s

”~

—_———

225

horizontal role in text
TeX logo

overhrace

onderbrace

cmexif

ophracefil]
downbracefill

braces

226

Chapter 21: Making Bozes

by saying ‘\hbox to 1C00pt{\downbracefill}\hbox to 50pt{\upbracefill}’ in ver-
tical mode. Details of those macro definitions appear in Appeadix B,

@@ The definition of \overrightarrow in Appendix B is more complex than that

of \overbrace, because it imvolves a box instead of o rule. The fonts of plain
TEX are designed so that symbols like + and — can be extended with minus signs;
similarly, <= and = can be extended with equals signs. However, you can’t simply put
the characters next, to each other, becanse that leaves gaps (" ——" and “<==="); it is
necessary to backspace a little between characters. An additional complication arises
because the extension line in a long arrow might need to be some non-integer number
of mims signs long. To solve this problem, the \rightarrowfill macro in Appendix B
uses \cleaders with a repeatable box consisting of the middle 160 units of a minus sign,
where one wnit is 5 em. The leaders are preceded and followed by — and —; there’s
enough backspacing to compensate for up to 5 units of extra space, fore and aft, that
\cleaders might leave blank. In this way a macro is obtained such that

\hbox to 100pt{\rightarrowfill}

vields ¢

@@ Now we know all about leaders. What about whatsits? Well, whatsits have

been provided as a general mechanisin by which important special printing
applications can be handled as extensions to TEX. It’s possible for svstem wizards to
modify the TEX program, without changing too much of the code, 5o that new features
can be accommodated at high speed instead of encoding them in macros. The anthor
hopes that such extensions will not be made very often, because he doesn’t want incom-
patible psendo-TEX systems to proliferate; vet he realives that certain special books
deserve a special treatment. Whatsits make it possible to incorporate new things into
boxes without bending the existing conventions too much, Dut they make applications
less portable from one machine to another.

@@ Two kinds of whatsits are defined as part of all TEX implementations. They

aren’t really extensions to TEX, but they are coded as if they were, so that
they provide a model of how other extensions could be made. The first of these is con-
nected with cutput to text files, and it involves the TEX primitive commands \openout,
\clozeount, \write, and \immediate. The second is connected with special instructions
that can be transmitted to printing devices, via TEX s \special command.

{;22 The ability to write text files that can later be input by other programs (inclad-

ing TEX) makes it possible to take care of tables of contents, indexes, and many
other things. You can say ‘\openont{mumber}={file name}’ and ‘\closeout{number)
by analogy with the \openin and \closein commands of Chapter 20; the (nummber}
st be between € and 15, The filename is usually extended with “.tex’ if it has no
extension. There is a \write command that writes one line to a file, analogous to the
\read command that reads one line; you say

\write{number}{{token list}}

and the material goes out to the file that corresponds to the given stream number,
If the {mumber} is negative or greater than 13, or if the specified stream has no file
open for ontput, the output goes to the user’s log file, and to the terminal unless the

overrightarrow
minos sigis
ArTONs

equals signs
rightarrowfill
whatsits
extensions to TpX
openoot
closeot

write
Immediate
special

AT

log file
terminal

Chapter 21: Muaking Bozes

muber is negative. Plain TEX has a \newwrite command that allocates output streaz
mimbers from 0 to 15, Output streams are completely independent of input streams.

@ However, the output actually takes place in a delayed fashion; the \openont,

\clozeout, and \write commands that you give are not performed when TpX
sees them. Instead, TEX puts these commands into whatsit items. and places them
into the current horizontal or vertical or math list that is being built. No actual
output will occour until this whatsit is eventually shipped out to the dvi file, as part
of a larger box. The reason for this delay is that \write is often used to make an
index or table of contents, and the exact page on which a particular itexs will appear
is generally unkoown when the \write instruction occurs in mid-paragraph. TgX is
usually working ahead, reading an entire paragraph before breaking it into lnes, and
accunrlating more than enough lines to fill a page before deciding what goes on the
page, as explained in Chapters 14 and 15. Therefore a deferred writing mechanism is
the only sale way to ensure the validity of page nummnber references.

@@ The {token list} of a \write command is first stored in a whatsit without per-

forming any macro expansion; the macro expansion takes place later, when
TEX is in the middle of a \shipout operation. For example, suppose that some para-
graph in your document contains the text

. For \write\inx{example: \the\count0}example, suppoze ...

Then the horizontal list for the paragraph will have a whatsit just before the word
‘example’, and just after the interword space following For’. This whatsit item con-
tains the nnexpanded token list ‘example: \the\count®’. It sits dormant while the
paragraph is being broken into lines and put on the current page. Let’s suppose that
this word ‘example’ {or some hyphenated initial part of it, like ‘ex~") is shipped out on
page 256. Then TEX will write the line

example: 256

on output stream \inx, because the “\the\count®’ wiil be expanded at that time.
Of course, \write commands are usually generated by macros; they are rarely typed
explicitly in mid-paragraph.

@ TEX defers \openont and \closeout comnmands by putting them into whatsits
too; thus, the relative order of output commands will be preserved, unless
boxes are shipped out in some other order due to insertions or such things.

@ Sometimes you don’t want TgX to defer a \write or \openout or \closeout.

You could say, e.g., ‘\shipont\hbox{\write...}’, but that would put an un-
wanted empty page in vour dvi file. So TgX has another feature that gets around this
problem: If vou type ‘\immediate’ just before \urite or \openout or \closeout, the
operation will be performed mmediately, and no whatsit will be made. For example,

\immediate\writel6{Goodbye}

prints ‘Goodbye’ on vour terminal. Without the \immediate, vou woulda’t see the
‘Goodbye’ until the current st was output. {In fact, you might never see it; or vou
may see it more than once, if the current list goes into a box that was copied.) An
Nimmediate\writeld’ differs from \measage in that \write prints the text on a line

227

nevwwrite
shipoot
Immediate
INESSALE

228

Chapter 21: Making Bozes

by itself; the results of several \mezsage commands might appear on the same line,
separated by spaces.

@@ The {token st} of a \write cught to be rather short, since it makes one line

of output. Some bnplementations of TEX are unable to write long lines; i vou
want to write a lot of stuff, just give several \write commmnands. Alternatively, you can
set TEX's \newlinechar parameter to the ASCI code number of some character that
you want to stand for “begin a new line”; then TEX will begin a new line whenever it
would ordinarily ontput that character to a file. For example, one way to output two
lines to the terminal in a single \write command is to say

\newlinechar=°\""]
\immediate\writel&{Two " Jlines.}

Each \write commmand produces output in the form that TpX always uses to dis-
play token lists symbolically: Characters represent themselves (except that you get
duplicated characters like ## for wacro parameter characters); unexpandable control
sequence tokens produce their names, preceded by the \escapechar and followed by
a space {unless the name is an active character or a control sequence formed from a
single nonletter).

@@ TEX ignores \write, \openout, and \clozeout whatsits that appear within
boxes governed by leaders. If vou are upset about this, vou shoukda’t be,

@ Since the {token list} of a deferred \write is expanded at a fairly random time

{when \shipont cccurs), you shonld be careful about what control sequences
it is allowed to contain. The techniques of Chapter 20 for controlling macro expansion
often come in handy with respect to \write.

@@» EXERCISE 21.10

Suppose that yvou want to \write a token list that involves o macro \chapno,
containing the current chapter number, as well as “\the\count®’ which refers to the
current page. You want \chapno to be expanded immediately, because it might change
before the token list is written; but you want \the\count0 to be expanded at the time
of \shipont. How can vou manage this?

@@ Now let’s wrap up our study of hoxes by considering one more feature. The

comrmand ‘\special {{token Hst}}’ can be given in any mode. Like \urite,
it puts its token list into a whatsit; and like \message, it expands the token lst im-
mediately. This token list will be output to the dvi file with the other typesetting
commands that TEX produces. Therefore it is fmplicitly associated with a particular
position on the page, namely the reference point that would have been present if a box
of height, depth, and width zero had appeared in place of the whatsit. The {token list}
in a \special command should consist of a keyword followed #f necessary by a space
and appropriate arguments. For example,

\special{halftone pici}

mmight mean that a picture on file picl should be inserted on the current page, with
its reference point at the current position. TEX doesn’t lock at the token Hst to see
if it makes any sense; the list is simply copied to the output. However, vou should
be careful not to make the list too loag, or vou might overflow TEX's string memory.

newlinechar

token lsts symbolically
hash

escapechar

leaders

special

pictore

halftones

Chapter 21: Muaking Bozes

The \zpecial comnmand enables vour to make use of special equipment that might be
avaiiable to vou, e.g., for printing books in glorions TgXnicolor.

@ Software programs that convert dvi files to printed or displayed output shounld

be able to fail gracefully when they don’t recognize vour special keywords.
Thus, \epecial operations should never do anything that changes the current position.
Whenever you use \special, you are taking a chance that your oatpat file will not be
priatable on all output devices, because all \special functions are extensions to TEX.
However, the anthor anticipates that certain standards for common graphic operations
will emerge in the TEX user community, alter careful experiments have been made by
different groups of people; then there will be a chance for some uniformity in the use
of \=pecial extensions.

@@ TEX will report the badness of ghie setting in a box if you ask for the numeric
quantity \badness after making a box, For example, you might say

\setbox0=\1line{\trialtextal}
\ifnum\badness>250 \zetboxC=\line{\trialtextb}\fi

The badiess is between 0 and 10000 unless the box is overfull, when \badnez2=1000000.

If age or weaknes doe prohibyte bioudietting,
you must use boxing.

— PHILIP BARROUGH, The Methode of FPhisicke {1583)

The only thing that never looks Fight is a rufe.
There is not in existence a page with a rufe on it
that cannot be instantiy and obviousiy improved
by taking the rule out.

- GEORGE BERNARD SHAW, in The Dolphin {1940)

229

color

badness
RARROIIGH
SHAW

age 2360}

_

22

Alignment

Chapter 22: Alignment 231

Printers charge extra when yvou ask them to typeset tables, and they do so for tables
good reason: Each table tends to have its own peouliarities, so it’s nocessary ;“:ﬁ'}']’::g“‘
to give some thought to each one, and to fiddle with alternative approaches settabs
until finding something that looks good and communicates well. However, you cotunns
N - R K)) o . N e coluinms
needsn’t be too frightened of doing tables with TEX, since plain TEX has a “tab” -+
feature that handles simple situations pretty much like you would do them on a ol rriage return
typewriter. Furthermore, TEX has a powertul alignment mechanism that makes ampersand

it possible to cope with extremely complex tabular arrangements. Simple cases
of these alignment operations will suffice for the vast majority of applications.

Let’s consider tabbing first. If you say ‘\settabs »n \cclumns’, plain
TEX makes it casy to produce Hnes that are divided into n equal-size cohomns.
Each line is speeified hy typing

N+{text ju{toxto)& - - - \er

where {text;) will start flush with the left margin, {text,) will start at the left of
the seeond column, and so on. Notice that ‘\+’ starts the line. The final column
is followed by “\cr’, which old-timors will recognize as an abbreviation for the
“carriage return” operation on typewriters that had carriages. For example,
consider the following specification:

\settabs 4 \columns

\+&&Text that starte in the third column\cr

\+&£Text that starts in the second column\cr

\+\it Text that starts in the first column, andkkk
the fourth, andibeycndilcr

After \settabsd\celumns’ sach \+ lne is divided into gquarters, so the result is

. Text that starts in the third column
: Text that starts in the second column ! :
Text that starts in the first column, and the fourth, and heyond!

This example merits careful study because it illustrates several things.
{1} The ‘&’ is ke the TAB key on many typewriters; it tells TEX to advance
to the next tab position, where thore's a tab at the right edge of each column.
In this example, TEX has set up four tabs, indicated hy the dashed lines; a
dashed line is also shown at the left margin, although there isn’t really a tah
there, (2) But "%’ isn't exactly ke a mechanical typewriter TAB, becawse it first
backs up to the beginning of the current column before advancing to the next.
In this way you can always tell what column you're tabbing to, by counting
the mumber of &’s; that’s handy, because variable-width type otherwise makes
it difficult to know whother vou've passed a tab position or not. Thus, on the
last line of our example, three &°s were typed in order to get to column 4, even
though the text had already extended into column 2 and perhaps into column 3.
{3) You can say “\cr’ hefore you have specified a complete set of columns, if the
remaining columns are blank, (4) The &'s are different from tabs i another way,

232

Chapter 22: Aligrnment

too: TX ignores spaces after ‘&, hence you can conveniently finish a column
by typing ‘&° at the end of a line in your input file, without worrying that an
extra blank space will be introduced there. {The second-last line of the example
ends with “&°, and there is an implicit blank space following that symbol; if TEX
hadn’t ignored that space, the words the fourth’ wouldn’t have started exactly
at the beginning of the fourth column.) Incidentally, plain TEX also ignores
spaces after ‘\+, so that the first cohemn is treated like the others. (5) The
‘\it’ in the last line of the example causes only the first column to he italicized,
even though no braces were used to confine the range of italics, because TEX
implicitly inserts braces around cach individual entry of an alignment.

@ Once you have issued a \settabs command, the tabs remain set until you

reset them, even though you go abead and type ordinary paragraphs as usual.
But if you enclose \settabs in {...}, the tabs defined inside a group don’t affect the
tabs outside; ‘\global\settabs’ is not permitted.

@ Tabbed lines usnally are used between paragraphs, in the same places where
yvou would type \line or \centerline to get lines with a special format. Dut
it’s also useful to put \+ lines inside a \vbox; this makes it convenient to specify displays
that contain aligned material. For example, if you type
$3\vbhox{\zettabs 3 \columns
\+Thiz iska strangekexample\cr
\tof displayed&three-column&format.\cr}$$

yon get the following display:

This is a strange example
of displayed three-column format.

In this case the first column doesn’t appear Hush left, becanse TEX centers a box that
is being displayed. Columms that end with \cr in o \+ line are put inte a box with
their natural width; so the first and second columns here are one-third of the \hsize,
but the third column is only as wide as the word ‘example’. We have used $$ in this
comstruction even though no mathematics is involved, because 3 does other useful
things; for example, it centers the box, and i inserts space above and below.

People don't always want tabs to be equally spaced, so there’s another
way to set them, by typing “\+{sample line}\cr’ immediately after ‘\settabs’.
In this case tabs are placed at the positions of the &'s in the sample line, and
the sample line itself does not appear in the output. For cxample,

\settabs\+\indent&Horizental lists\quadk\cr % sample line

\+tHorizental lists&Chapter 14\cr

\+kVertical listsiChapter 15\cr

\+EkMath lists&Chapter 17\cr

causes TEX to typeset the followmg three lines of material;

Horizontal lists Chapter 14

Vertical lists Chapter 15
Math lists Chapter 17

SPaces
it

braces
global

line
centerline
displays
dollardollar
sample line

Chapter 22: Alignment

The \settabs command in this example makes column 1 as wide as a paragraph
indentation; and column 2 is as wide as ‘Horizontal lists’ plus one quad of space.
Only two tabs are set in this case, because only two &°s appear in the sample
line. {A sample line might as well end with &, because the text following the
last tab isn’t wsed for anything.)

The first line of a table can’t always be used as a sample line, because it
won’t necessarily give the correct tab positions. In a large table you have to look
ahead and figure out the biggest entry in each column; the sample line is then
construeted by typing the widest first column, the widest second column, ete.,
omitting the last column. Be sure to incluide some extra space between columns
in the sample line, so that the columns won’t touch each other.

» EXERCISE 22.1
Explain how to typoeset the following table [from Boeck, Bertholle, and Child,
Mastering the Art of French Cooking (New York: Knopf, 1961}:

Weight Servings Approzimate Cooking Time*
8 1hs, 6 1 hour and 50 to 55 minutes
9 Ihs. 7to8 About 2 hours

91/, lhs. Bto9 2 hours and 10 to 15 minutes
101/ Ths. 9to 10 2 hours and 15 to 20 minutes

* For a stuffed goose, add 20 to 40 minutes to the times given,

@ If you want to put something fush right in its column, just type \hfill’
before it; and be sure to type ‘& after it, so that TEX will be sure to move the

information all the way until it touches the next tab, Similarly, if vou want to center

something in its column, type ‘\hfill’ before it and ‘\hfill&’ alter it. For example,

\settabs 2 \columns
\+\hfill This material is set flush rightk

\hfill This material is centered\hfill&\cr
\+\hfill in the first half of the line.&

\hfill in the second half of the line.\hfill&\cr

produces the following Btile table:

This material is set flush right This material is centered
in the first half of the line. in the second half of the line,

@ The \+ macre in Appendix B works by putting the {text} for each column
that’s followed by & into an hbox as follows:

\hbox to {coluwmmn width}{{text}\hss}

The \hsz means that the text is normally flush left, and that it can extend to the right
of its box, Since \hfill is “more Infinite” than \hzs in is ability to stretch, it has the
effect of right-justifving or centering as stated above. Note that \hfill doesn’t shrink,
but \hss does; if the text doesw’t fit in its colummn, it will stick out at the right. You
could cancel the shrinkability of \has by adding \hfilneg; then an oversize text would
produce an overfull box. You conld alse center some text by putting ‘\hag’ before it and

233

indention, see indentation
auad

Beck, Simone

Bertholle, Louvisette
Child, Julia

Hush right

hill

center

hss

htilneg

234 Chapter 22: Alignment

Just ‘& after it; in that case the text would be allowed to extend to the left and right of Computer prograims
its colamnn. The lagt column of o \+ lne (i.e., the column entry that is foliowed by \c1) ;:};‘r tabs
i treated differently: The {text} is simply put into an hbox with its natural width. 5},{,.;..1){,.,‘
@ Computer programs present difficulties of a different kind, since soime people
like to adopt a style in which the tab positions change from line to line. For

example, consider the following program fragient:

if n<rthen n:=a+1
else begin print_fotels; o=
end;
while » > 0 do
begin ¢ := link{p); free_nodelp); p =g,
end;

Special tabs have been set up so that ‘then’ and ‘else’ appear one above the other,
and so do ‘begin’ and ‘end’. It’s possible to achieve this by setting up a new sample
line whenever a new tab position is needed; but that’s a tedious job, so plain TpX
makes it a little simpler. Whenever you type & to the right of all existing tabs, the
effect is to set a new tab there, in such a way that the colnmn just completed will have
its natural width. Furthermore, there’s an operation ‘\cleartabs’ that resets all tab
positions to the right of the current column. Therefore the computer program above
can be TpXified as follows:

$$\vbox{\+\bf if $n<r? \cleartabs&\bf then $n:=n+1%\cr
\+E\DE else &{\bf begin} ${\it print_totals}$; $n:=0%$;\cr
\NHEE{\bT end};\cr
{The remaining part is lefi as an exercise}} $3

@ » EXERCISE 22.2
Complete the example computer program by specifying three more \+ lines.

@ Although \+ lines can be used in vertical hoxes, you wust never uge \+ ingide
of another \+ line. The \+ macro is intended for siiple applications only.

@@ The \+ and \=zettabs macros of Appendix B keep track of tabs by maintaining

register \box\tabs as a box full of empty boxes whose widths are the column
widths in reverse order. Thus you can examine the tabs that are currently set, Ly
saying ‘\showbox\tabs’; this puts the column widths into vour log file, from right to
left. For example, after ‘\settabs\+\hzkiplCOpt&\hskip200pt&\cr\zhowbox\tabs’,
TeX will show the lines

\hbox (0.0+0.0}x300.0
.\hbox {0.0+0.0)Yx200.0
A\hbox{0.0+0.03x100.0

@@» EXERCISE 22.3

Study the \+ macre in Appendix B and figure out how to change it so that
tabs work as they do on a mechanical typewriter (ie., so that ‘& always moves to
the next tab that les strictly to the right of the current position). Assume that
the user doesn’t backspace past previcus tab positions; for example, if the input is
N+&&\hekip-2em&x\ct’, do not bother to put % in the first or second columm, just
put it at the beginning of the third colmmn. {This exercise is a bit difficult.)

Chapter 22: Alignment

@ TEX has another important way to make tables, using an operation called

\halign { “horizontal alignment”}. In this case the table format is based on
the notion of a template, not on tabbing; the idea is to specify a separate environment
for the text in each column. Individual entries are inserted into their templates, and
presto, the table is complete.

@ For example, let’s go back to the Horizontal/ Vertical/Math list example that
appeared earlier in this chapter; we can specify it with \halign instead of
with tabs. The new specification is

\halign{\indent#\hfil&\quad#\hfil\cr
Horizontal lists&Chapter 14\cr
Vertical lists&Chapter 15\cr
Math lists&Chapter 17\cr}

and it produces exactly the same result as the old one. This example deserves careful
stady, because \halign is really guite simple once you get the hang of it. The first
line contains the preamble to the alignment, which is something like the sample line
used to set tabs for \+. In this case the preamble containg two templates, namely
‘Nindent#\hfil’ for the first colymm and ‘\quad#\hfil® for the second. Each template
contains exactly one appearance of ‘®, and it means “stick the text of each column entry
i this place.” Thus, the first column of the line that follows the preamble becomes

\indent Horizontal lists\hfil

when ‘Horizomtal lists’ is stuffed into its template; and the second columan, similarly,
becomes ‘\quad Chapter 14\hfil’. The guestion is, why \hfil? Ah, now we get to the
interesting point of the whole thing: TEX reads an entire \halign{...} specification
intao its memory before typesetting anvthing, and it keeps track of the maximum width
of each colimn, asswiing that each column is set without stretching or shrinking the
glie. Then it goes back and puts every entry into a box, setting the glue so that each
box has the maxinam coliwmn width. That’s where the \hfil comes in; it stretches to
fili up the extra space in narrower entries.

g?} » EXERCISE 22.4
What table would have resulted i the template for the first column in this
example had been ‘\indent\hfil#’ instead of ‘\indent#\hfil’?

@ Before reading further, please make sure that vou understand the idea of tem-

plates in the example just presented. There are several important differences
between \halign and \+: (1) \halign calculates the maximum column widths anto-
matically; vou don’t have to guess what the longest entries will be, as yvou do when
vou set tabs with a sample line. (2) Each \halign does its own calculation of columm
widths; you have to do semething special if von want two different \halign operations
to produce identical alipnments. By contrast, the \+ operation remembers tab positions
until they are specifically reset; any muber of paragraphs and even \halign operations
can intervene between \+'s, without affecting the tabs. {3) Becanse \halign reads an
entire table in order to determine the maxboum column widths, it {8 unsuitable for
buge tables that fill several pages of a book. By contrast, the \+ operation deals with
one lne at a time, so it places no special demands on TEX's memory. {(However, if
yoir have a huge table, vou should probably define your own special-purpose macro

235

halign

template

prewmble

sharp

halign compared to tabbing

236

Chapter 22: Aligrnment

for each line instead of relying on the general \+ operation.) {4) \halign takes less
computer time than \+ does, because \halign is a built-in command of TEX, while
\+ i a macro that has been coded in terms of \halign and various other primitive
operations. {5) Templates are much more versatile than tabs, and they can save vou a
lot of typing. For example, the Hortzontal/Vertical/Math list table could be specified
more briefly by noticing that there’s common information in the cohmuns:

\halign{\indent# lists\hfil&\qunad Chapter #\cr
Horizontal&ld\cr Vertical&i5\cr Math&17\cr}

You conld even save two more keystrokes by noting that the chapter numbers all start
with ‘1’1 {Cantion: It takes more time to think of optimizations like this than to type
things in a straightforward way: do it only if you're bored and need something amusing
to keep up vour interest.) (6) On the other hand, templates are no substitute for tabs
when the tab positions are continually varying, as in the computer program example,

@ Let’s do a more interesting table, to get more experience with \halign. Here
iy another example based on the Beck/DBertholle/Child book cited earlier:

American French Age Weight Cooking
Chicken Connection {rnonths) {Ibs.) Methods
Sguab Poussin 2 Bhtol Broil, Grill, Roast
Broiler Poulet Novveau 2t03 1o toe 24 Broil, Grill, Roast
Frver Poulet Reine Itod Z2to 3 Frv, Sauté, Roast
Roaster Poulerde 5if to 9 Over 3 Reoast, Poach, Fricassee
Fowl Poule de UdAnnée 10 to 12 Over 3 Stew, Fricassee
Rooster Cog Over 12 Over 3 Soup stack, Forcemeat

Note that, except for the title lines, the first columm is set right-justified in boldface
type; the middle columns are centered; the second columm is centered and in italics;
the final column is left-justified. We would like to be able to type the rows of the table
ag simply as possible; hence, for example, it wonld be nice to be able to specify the
bottom row by typing only

RoosterfCogilver 12&0ver 3&Somp stock, Forcemeat\cr

without worrying about type styles, centering, and so on. This not only cuts down on
keystrokes, it also reduces the chances for making typographical errors. Therefore the
template for the first colummn should be “\hfil\bf#’; for the second column it should be
Ahfil\it#\hfil’ to get the text centered and italicized; and so on. We also need to al-
low for space between the columns, say one gquad. Voila! La typographie est sur la table:

\halign{\hfil\bf#&\quad\hfil\it#\hfil&\quad\hfil#\hfilk
\quad\hfil#\hfil&\quad#\hfil\cr
{the title lines)
Squnab&Ponssin&2&\frac3/4 to 1&Broil, Grill, Roast\cr
. Forcemeat\cr}

As with the \+ operation, spaces are ignored alter &, in the preamble as well as in the
individual rows of the table. Thus, it is convenient to end a long row with ‘& when
the row takes up more than one e in your input file,

Beck
Bertholle
Child

Chapter 22: Alignment

g.?} » EXERCISE 22.5
How was the ‘Fowl line typed? {This is too easy.)

@ The only remaining problem in this example is to specify the title lines, which
have a different format from the others. In this case the style is different only
because the typeface is slanted, so there’s no special difficulty; we just type

\2l Americanf\zl French&\zl Age&\zl Weighti&\zl Cooking\cr
\sl Chicken&\sl Connection&\zl{months)&\31(1lbs.)&\s1l Methodzs\cr

It is necessary to say ‘\sl’ each time, because each individual entry of a table is
implicitly enclosed in braces.

@ The anthor uged ‘\openup2pt’ to increage the distance between bagelines in
the poultry table; a discriminating reader will notice that there’s also a bit of

extra space between the title line and the other lines. This extra space was inserted by

typing ‘\noalign{\=mallskip}’ just after the title line. In general, you can say

\noalign{{vertical mode material}}

just after any \cr in an \halign; TEX will simply copy the vertical mode material,
without subjecting it to alignment, and it will appear in place when the \halign is
finished. You can use \noalign to insert extra space, as here, or to insert penalties
that affect page breaking, or even to insert lines of text {see Chapter 19). Definitions
ingide the braces of \noalign{...} are local to that group.

@ The \halign command also makes it possible for you to adjust the spacing

between columns so that a table will fill a specified area. You don’t have to
decide that the inter-column space is a quad; you can let TEX make the decisions,
based on how wide the columns come out, becanse TEX puts “tabskip glue” between
columns. This tabskip glue is usnally zero, but you can set it to any value you like by
saying ‘\tabskip={glue})’. For example, let’s do the ponltry table again, but with the
beginning of the specification changed as follows:

\tabzkip=lem plus2em minus.5em
\halign to\hzsize{\hfil\bf#&\hfil\it#\hfil&\hfil#\hfildk
\hEil#\hfil&#\hfil\cr

The main body of the table is unchanged, but the \guad spaces have been removed
from the preamble, and a nonzerc \tabskip has been specified instead. Farthermore
‘\halign’ has been changed to “\halign to\hsize’; this means that each line of the
table will be put into a box whose width is the curreant value of \hzaize, ie., the
korizontal lne width usually used in paragraphs. The resulting table looks like this:

American French Age Weight Cooking
Chicken Connection {rnonths) {Ibs.) Methods
Squab Poussin 2 B tol Broil, Grill, Roast
Broiler Poulet Nouveau 2tod L ta 2Y4 DBroil, Grill, Roast
Frver Poulet Reine Itod Zto d Frv, Sauté, Roast
Roaster Poulgrde 5if to 9 Over 3 Reast, Poach, Fricassee
Fowl Poule de 'Annde 10 to 12 Over 3 Stew, Fricassee

Rooster og Over 12 Over 3 Soup stock, Forcermeat

237

e
poultry

noalign
nter-column space
tabskip gloe
tahskip

hsize

238

Chapter 22: Aligrnment

@ In general, TEX puts tabskip glue before the first column, after the last column,

and between the columns of an alignment. You can specify the final aligned
size by saying “\balign to{dimen}) or ‘\halign spread{dimen}’, just as vou can say
‘\hbox to{dimen}’ and ‘\hbox spread{dimen}’. This specification governs the setting
of the tabskip ghie; but it does not affect the setting of the glue within column entries.
{Those entries have already been packaged into boxes having the maximum natural
width for their columns, as described earlier.)

@@ Therefore ‘\halign to \hsize’ will do nothing if the tabskip glwe has no
stretchability or shrinkability, except that it will canse TEX to report an
underfull or overfull box. An overfull box sceurs if the tabskip ghie can’t shrink to
meet the given specification; in this case vou get o warning on the terminal and in your
log file, but there is no “overfull rule” to mark the oversize table on the printed output.
The warning message shows o “prototype row” (see Chapter 27).

@ The ponltry example just given used the same tabskip glue everywhere, but
vou can vary it by resetfing \tabskip within the preamble. The tabskip giue

that is in force when TEX reads the ‘0 following \halign will be used before the first
colirmn; the tabskip glue that is in force when TEX reads the ‘& after the first template
will be nsed between the first and second columns; and so on. The tabskip gloe that
is in force when TEX reads the \cr after the last template will be used after the last
colimn. For example, in

\tabskip=3pt

\halign{\hfil#\tabskip=4pt& #\hfilk

\hbox to 10em{\hzs\tabskip=5pt # \has}\cr ...}

the preamble specifies aligned Hnes that will consist of the following seven parts:

tabskip glie 3 pt;

first column, with template “\hfil#’;

tabskip glie 4 pt;

second column, with template “#\hfil’;

tabskip glue 4 pt;

third column, with template “\hbox to 10em{\hss# \hss}’;
tabskip glue 5 pt.

@@ TeX copies the templates without interpreting them except to remove any

\tabskip glue specifications. More precisely, the tokens of the preamble are
passed directly to the templates without macro expansion; TgX looks only for “\cx’
commands, ‘&, ‘¥, ‘\span’, and ‘\tabskip’. The {glue} following \tabskip’ is scanned
in the usual way (with macro expangion), and the corresponding tokens are not in-
cluded in the current template. Notice that, in the example above, the space alter
‘5pt’ also disappeared. The fact that \tabskip=5pt cccurred inside an extra level of
braces did not make the definition local, since TEX didn’t “see” those braces; similarly,
if \tabskip had been preceded by “\global’, TEX wouldn’t have made a global defini-
tion, it would just have put ‘\global’ into the template. All assignments to \tabskip
within the preamble are local to the \halign (unless \globaldefs is positive), so the
value of \tabskip will be 3 pt again when this particular \halign is completed.

@ When ‘\span’ appears in a preamble, it canses the next token to be expanded,
ie., “ex-span-ded,” before TEX reads on.

0

spread
tneerfoll
averfoll
averfoll role
prototype row
tabskip
globaldefs
span

Chapter 22: Alignment

g.?} » EXERCISE 22.6
Design a preamble for the following table:

1560-1628 Netherlands J. . Sweelinck
15631628 I'. Cornet

1562-1621
¢1570-1633

England P, Philips
J. Byl

Germany H. L. Hassler 1562-1612 Italy (. Frescobaldi 15831643
M. Prastorius 1571-1621 Spain F. Correa de Arauxc ¢1576-1654
France J. Tielouze 1563-1633 Fortugal M. R. Coelho ¢1555-¢1635

The tabskip giue should be zero at the left and right of each line; it should be Tem
plus 2 em in the center; and it should be .5 em plus .5 em before the names, (em plus
Sem before the dates. Assume that the lines of the tablie will be specified by, e.g.,
France&J. Titelonze&1563--1633&
Portugal&M. R. Coelhok‘\\1555~-\\1635\cr

where “\\’ hags been predefined by “\def\\{{\it c\/}}.

@@» EXERCISE 22.7
Design a preamble so that the table

rydw i =1 am
rwyt ti = thou art
mae e = he is

roeddwn i = [was
roeddet ti — thou wast
roedd e — he was

roedd hi — she wasg
roedden ni = we were
roeddech chi — vou were
roedden nhw = they were

vdw i — am I

wyt ti = art thou
vdy e = is he

vdy hi = ig she
ydyn ni = are we
vdyech ehi = are vou
ydyn nhw = are they

mae hi = she is
rydyn ni = we are
ryvdych chi = vou are
maen nhw = they are

can be specified by typing lines like
mae hi=she is&ydy hi=is shefroedd hi=she was\cr

@@» EXERCISE 22.8 B.C.
The line hreaks in the second 397 War between Syracuse and Carthage

column of the table at the right were 396: Aristippus of Cyrene and Antisthe
chosen by TEX so that the second col- nes of Athens (philosophers)

umn was exactly 16 ems wide. Fur- 395: Athens rebuilds the Long Walls
thermore, the author specified one of 394: Battles of Coronea and Cnidus

the rows of the table by typing £393: Plato’s Apology: Xenophon’s Memo-

rabilia; Aristophanes’ Ecclesiazusa
391-87: Dionysins subjugates south Italy
391: Isocrates opens his school
390: Evagoras Hellenizes Cyprus
387: “King’s Peace”; Plato visits Archy-
tas of Taras (mathematician) and
Dionysius 1

\\393&Plato’s {\zl Apology\/};
Xenophon’s
{\s1 Memorabilia\/};
Aristophanes?
{\21 Eccle=iazun=\as\/}\cr

Can you guess what preamble was used

in the alignment? [The data comes 386: Plato founds the Academy
from Will Durant’s The Life of Greece 383: Spartans cccupy Cadmeda at Thebes

{Simon & Schaster, 1939} 380: Isocrates’ Panegyricus

239

organists

Cornet, Peeter

Philips, Peter

Sweelinek, Jan Pieterszoon
Bull, Jehn

Titelouze, Jehan

Hassler, Hans Leo
Praetorius [Scholtheiss], Michael
Frescobaldi, Girolaimo
Cloelho, Mamel Rodrigoes
Correa de Araoxo, Franciseo
Welsh conjugation

Durant

Aristippus of Cyrene
Antisthenes of Athens
Plato

Xenophon

Aristophanes

Pionwsivg I of Syracose
Isocrates

Bragoras of Salamis
Archytas of Taras

240

Chapter 22: Aligrnment

@ Semetimes a template will apply perfectly to all but one or two of the entries

in a colummn. For example, in the exercise just given, the colons in the first
colwmm of the alignment were supplied by the temnplate “\hfil#:,’; but the very first
entry in that colwmn, '8.¢°, did not have a colon. TEX allows vou to escape from the
stated template in the foliowing way: 1 the very first token of an alignment entry is
Nomit® {after macro expansion), then the template of the preamble is omitted; the
trivial template ‘W iz used instead. For example, ‘8.0 was put into the table above
by typing Nomit\hfil\sevenrm B.C.’ immediately after the preamble. You can use
\omit in any column, but it must come first; otherwise TEX will insert the template
that was defined in the preamble.

@ I you think about what TgX has to do when it’s processing \halign, you’ll

realize that the timing of certain actions is critical. Macros are not expanded
when the preambie is being read, except as described earlier; but once the \cx at the
end of the preamble has been sensed, TEX must look ahead to see if the next token is
\noalign or \omit, and macros are expanded until the next non-space token is found.
If the token doesn’t turn out to be \noalign or \omit, it is put back to be read again,
and TgX begins to read the template {still expanding macros}. The teraplate has two
parts, called the v and © parts, where 2 precedes the ‘¥’ and ¢ follows #t. When TEX
kas finished the o part, its reading mechanism goes back to the token that was neither
\noalign nor ‘\emit, and continues to read the entry until getting to the & or \cor that
ends the entry; then the ¢ part of the template is read. A special internal operation
called \endtemplate is always placed at the end of the v part; this canses TEX to put
the entry into an “unset box” whose glue will be set later when the final column width
is known. Then TEX is ready for another entry; it looks ahead for Nomit {and also for
\noalign, alter \cr} and the process continues in the same way.

@ One consequence of the process Just described is that it may be dangerous

to begin an entry of an alignment with \if. .., or with any macro that will
expand into a replacement text whose first token is \Nif...; the reason iy that the
condition will be evaluated before the template has been read. (TEX is still looking
to see whether an \omit will occur, when the \if is being expanded.) For exmuple, if
\strut has been defined to be an abbreviation for

\ifmmode{text for math modes)\else{text for nonmath modes}\fi

and if \strut appears as the first token in some alignment entry, then TEX will expand
it into the {text for nonmath modes} even though the template might be ‘$#$°, becanse
TeX will not yet be in math mode when it is looking for a pogsible \omit. Chaos will
probably ensue. Therefore the replacement text for \strut in Appendix B is actually

\relax\ifmmode. ..

and ‘\relax’ has also been put into all other macros that might suffer from such timing
problems. Semetimes yon do want TEX to expand a conditional before a template is
inserted, but careful macro designers watch out for cagses where this could cause trouble.

@ When vou're typesetting mumerical tables, it’s common practice to lne up the

decimnal peints in a column. For example, if two numbers like ‘0.2010° and
‘297.1° both appear in the same column, yow're supposed to produce 0 %", This
result isn’t especially pleasing to the eve, but that’s what people do, so you might

omit
endtemplate
unset hox
conditionals
strot

fmmode
numerical tables
dectmal points

Chapter 22: Alignment

have to conform to the practice. One way to handle this is to treat the column as two
colwmms, somewhat as \egalign treats one formula as two formulas; the °° can be
placed at the beginning of the second half-column. Dut the anthor usually prefers to
use ancther, less sophisticated method, which takes advantage of the fact that the digits
¢, 1, ..., 9 have the same width in most fonts: You can choose a character that’s not
unsed elsewhere in the table, say ‘?°, and change it to an active character that produces
a blank space exactly equal to the width of a digit. Then it’s usuaily no chore to put
such nuils into the table entries so that each column can be regarded as either centered
or right-justified or left-justified. For example, '7?70.2010° and 297.1777° have the
same width, so their decimal points will line up easily. Here is one way to set up °7°
for this purpose:

\newdimen\digitwidth
\zetboxO=\hbox {\rm0}
\digitwidth=\wd0
\catcode‘ 7=\active
\def?{\kern\digitwidth}

The last two definitions should be local to some group, e.g., inside a \vbox, so that 7’
will regume its normal behavior when the table is finished.

@ Let’s ook now at some applications to mathematics, Suppose first that vou
want to typeset the small table

n =01234567 8 9 10111213 14 15 16 17 18 19 20
Gin)=— 1243678161825 3211 64 31 128 10 256 5 512 28 1024 ...

as a displaved equation. A brute force approach using \eqalign or \atop is cumbersome
because G{n) and » don’t always have the same number of digits. It would be much
nicer to type

$$\vbox{\halign{{preamble}\cx
n\phantom}&0&1&2&3% ... &20&\dots\cr
{\cal G}(n)&182&4%&3% ... &1024&\dots\cr}}$$

for some {preamble}. On the other hand, the {preamble} is sure to be long, since
this table kag 23 columns; so it looks as though \settabs and \+ will be eagier. TEX
kas a handy feature that helps a lot in cases like this: Preambles often have a periodic
structure, and i you put an extra ‘& just before one of the templates, TEX will consider
the preazsbie to be an infinite sequence that begins again at the marked templiate when
the \cr is reached. For example,

by &t &ty 8ty &g Nt is treated like ¢y klo &tz &ty Bt &ty Lt &ty k -
and
&'tj &tz&fg &t4&t5 \CI‘ 15 fI’(ﬁ*&fﬁ*d 1}1{(} f'j &fg &tg &'f;; &ta&tg &tz &'fg&' e

The tabskip glue following each template is copied with that template. The preamble
will grow as long as needed, based on the mumber of colmns actually used by the
subsequent alignment entries. Therefore all it takes is

$\hfil#$ =&\ \hfil#\hfil\cr

to make a suitable {preamble} for the G{n} problem.

241

active character

aroup

active

display

periodic preambles
cyclic preambles
atmpersand ampersand
ampersand

242

Chapter 22: Aligrnment

@ Now suppose that the task is to typeset three pairs of displayed formulas, with
all of the = signs lned up:

Vi=1w —qv;, X = 1 — iy, U = uy, for i # 4 23)
roe - _— . 23
Vi = vy, X =, Uy = + Z-i;’:j IS
it’s not easy to do this with three \egalign’s, because the S with a subscript 4 # 7
makes the right-band pair of formmlas bigger than the others; the baselines won'’t agree
unless “phantoms” are put into the other two \eqalign’s (see Chapter 19). Instead of
using \eqalign, which is defined in Appendix B to be a macro that uses \halign, let’s
try to use \halign directly. The natural way to approach this display is to type

$$\vcenter{\openupl\jot \halign{{preamble}\cr
{first line}\cr {second line}\crl}\egno (23)$3

because the \vcenter puts the lines info a box that is properly centered with respect
to the equation mymber {23)"; the \opemup macro puts a bit of extra space between
the lines, as mentioned in Chapter 19.

@ OK, now let’s figure out how to type the {first line} and (second line}. The
usual convention is to put ‘&’ before the symbols that we want to line up, so
the obvious solution is to type

V_ik=v_i-q_iv_j,&X_ik=x_i-q_ix_j,&
U_ik=u_i,\gguad\hbox{for $i\ne j$};\cr
V_j&=v_j,&X_jk=x_j,.&
U_jk=u_j+\sum_{i\ne jlg_iu_i.\cr

Thus the alipnment has six columas. We could take common elements into the preamble
{e.g., 'V’ and ‘=v_"}, but that would be too error-prone and too tricky.

@ The remaining problem is to construct a preamble to support those Hnes, To

the left of the = signs we want the column to be filled at the left; to the right
of the = signs we want it to be filled at the right. There’s a slight complication because
we are breaking a math formula into two separate pieces, vet we want the resait to
have the same spacing as if it were one formmla. Since we're putting the ‘& just before
a relation, the solution is to insert {1 at the beginning of the right-hand formula; TEX
will put the proper space before the equals sign in ‘${}=...¢°, but it puts 20 space
before the equals sign in ‘$=...9°. Therefore the desired {preamble} is

S\REil#3eS{I#\hfildk
\gguad$\hfil#$&$ (I #\hfil$s
\qguad$\hfil#$&${I#\hfil$

The third and fourth columas are like the first and second, except for the \gguad that
separates the egquations; the fifth and sixth colnmns are ke the third and fourth. Once
again we can use the handy ‘&% shorteut to reduce the preamble to

$\hTil#3&&3{I#\hTil$& \qquadd \hfil#3

With a little practice vou’ll find that it becomes easy to compose preambles as vou are
typing a manuscript that needs them. However, most manuscripts don’t need them, so
it may be a while before vou acguire even a little practice in this regard.

eqalign

phantoms

jot

veenter

GpenuD

Ihrace rhrace
atmpersand ampersand

Chapter 22: Alignment

@@» EXERCISE 22.9
Explain how to produce the following display:

e + 3 +3y+ 18z =1, {9)
6w — 17z — Bz =2 (1)

@@ The next level of complexity ocours when some entries of a table span two
or more colnmng. TEX provides two ways to handle this. First there’s
\hidewidth, which plain TEX defines to be equivalent to

\hskip-1000pt plus 1£ill

In other words, \hidewidth has an extremely negative “natural width,” but it will
stretch without Himit. If you put \hidewidth at the right of some entry in an alignment,
the effect is to ignore the width of this entry and to let it stick out to the right of its
box. {Think about it; this entry won't be the widest one, when \halign figures the
colnmn width.) Similarly, if you put \hidewidth at the left of an entry, it will stick
out to the left; and you can put \hidewidth at both lefi and right, as we’ll see later.

@@ The second way to handle table entries that span columns is to use the \span

primitive, which can be used instead of ‘&’ in any lne of the table, {We've
already seen that \span means “expand” in preambles; but outside of preambles its
nse is completely different.) When ‘\span’ appears in place of ‘&, the material before
and after the \epan is processed in the ordinary way, but afterward it is placed into a
single box instead of two boxes. The width of this combination box is the sum of the
individual column widths plus the width of the tabskip give between them; therefore
the spanning box will line up with non-spanning boxes in other rows,

@ For example, suppose that there are three columns, with the respective tem-

plates 1y # o1 & 1o ¥ o0 & ua ¥ v3; suppose that the colwmn widths are ws, 1w, ws;
suppose that go, g1, g2, g5 are the tabskip glue widths after the glue has been set; and
suppose that the line

o5 \epan gz\span uz\cr

kas appeared in the alignment. Then the materiat for “u; 010 uz00v0u30505" (Le., the
result ‘usaivs’ of colunm 1 followed by the results of columns 2 and 3) will be placed
into an hbox of width wy + g1 + w2 + gz +ws. That hbox will be preceded by glue of
width go and it will be followed by glue of width ga, in the larger hbox that contains
the entire aligned line.

@ You can use \omit in conjunction with \span. For example, if we continue
with the notation of the previcus paragraph, the line

\omit ¢ \span gz \span\omit oz \cr
would put the materiat for ‘aiuzazveas’ into the hbox just considered.

@ It’s fairly common to span several columns and to omit all their templates,

so plain TEX provides a \mmltispan macro that spans a given nwmber of
columms, For example, ‘\multizpan?’ expands into ‘\omit\span\omit\span\omit’. If
the number of spanned columns is greater than 9, vou must put it in braces, eg.,
Amultizpan{13}’.

243

spanned coluimm in tables
hidewidth

Siran

ot

o btdspran

244 Chapter 22: Alignment

@ The preceding paragraphs are rather abstract, so let’s look at an exarple that
shows what \span actuallv does. Suppose vou type

$$\tabskip=3em

\vbox{\halign{&\hrulefill#\hrulefill\cr
first&second&third\cr
first-and-second\span\omit&\cr
ksecond~and~third\span\omit\cr
first-second-third\span\omit\span\omit\cr}}$$

The preaw:ble specifies arbitrarily many templates equal to “\hrulefill#\hrulefill’;
the \hrulefill macro is like \hfill except that the blank space is filled with a hor-
izontal rule. Therefore vou can see the filling in the resulting alipnment, which shows
the spanned columns:
first second third
first-and-second
I _second-and-third
_ first-second-third

The rules stop where the tabskip glue separates colnmns. You don’t see rales in the
first line, since the entries in that line were the widest in their columns. However, if
the tabskip glue had been 1em instead of 3em, the table would have looked ke this:

first _second_ third
first-and-second
_ second-and-third
__ first-gsecond-third

@@» EXERCISE 22.10
Consider the following table, which is called Walter's worksheet:

1 Adjusted gross income. ..., 54,000
2 Zera bracket, amount for

a single individual $2,300
3 Earned income. 1.500
4 Subtract line 3 from Hne 2., 311]
5 Add lines 1 and 4. Enter here

and on Form 1040, line 35... ... 54,800

Define a preamble so that the following specification will produce Walter’s worksheet,

\halign{{preamble}\cr

1&Adjnusted gross income\dotfill\span\omit\zpan&\$4,000\cr

2%Zero bracket amount forf\cr

¥a szingle individuall\dotfill\span\omit&\$2,300\cr

3%Earned incomeh\dotfill\span‘\omit&\underbar{ 1,500} \cr

4¥Subtract line 3 from line 2\dotfill
\span\omit\span&\underbar{ 800}\cr

5&Add linez 1 and 4. Enter here\zspan\omit\zpan\cr

kand on Form 1040, line 35\dotfill\szpan‘\omit\zpan&\$4,800\cr}

{The macro \dot£ill is like \hrulefill but it fills with dots; the macro \underbar
puts its argument into an hbox and anderiines it.)

hruoletill

Walter's worksheet
IRS

Gireen, Walter
dotfill

nnderbar

Chapter 22: Alignment 245

@ Notice the “early” appearance of \cr in line 2 of the previous exercise. You or
needn’t have the same number of columns in every Hne of an alipnment; \cx’ ;éi""w 1< i;rl} atriz
VLT IATH

means that there are no more columns in the current line. ruled tables

TeX Masters

01 g1z ... O Hinterlineskt
» EXERCISE 22.11 n 5;1hm; r]m{]skip
. . R oy Uoo R e interhine gloe
Explain how to typeset the generic matrix . vrole
..................... vrile
Tini Oany Dinn

@@ The presence of spanned colamns adds a complication to TEX s rules for calen-

lating coluimn widths; instead of simply choosing the maxiimum natural width
of the columnn entries, #t's also necessary to make sure that the sum of certain widths
is big enough to accommodate spanned entries. So here is what TEX actually does:
First, if any pair of adjacent columas is always spanned as aunit (le., if there’s o \apan
between them whenever either one is used), these two columns are effectively merged
into one and the tabskip glue between them is set to zero. This reduces the problem to
the case that every tab position actually occurs at a boundary. Let there be n columns
remaining alter such reductions, and for 1 €4 < j < 2 let wy; be the maxionnn nat-
ural width of all entries that span columns 4 through 7, inchusive; if there are no such
spanned entries, let w;; = —oc. {The merging of dependent columns guarantees that,
for each j, there exists ¢ < j such that wy > —oc.) Let i be the natural width of the
tabskip glie between columns k and &+ 1, for 1 € k < . Now the final width w; of
colrmn 7 is determined by the formula,

w; = izél;‘aé{j(w;j o Z;gkq(w“ + ti)}

for j = 1,2, ..., n {in this order). It follows that wy <ws+ 4+t +wy, for all
i < 4, as desired. After the widths w; are determined, the tabskip amounts may have
to streteh or shrink; if they shrink, wy; might turn out to be more than the final width

of a box that spans columms ¢ through j, hence the glue in such a box might shrink.

@ These formulas usually work fine, but somethmes they produce undesirable
effects. For example, suppose that n = 3, wyy = woo = way = 10, wye =
weg = —oo, and wig — 100; in other words, the columns by themselves are guite

narrow, but there’s a big wide entry that’s supposed to span all three colymns. In this
case TEX's formmula makes wy — we — 10 bat wy — 80 — 15 — 12, 80 all the excess width
is allocated to the third colwma. If that’s not what you want, the remedy is to use
\hidewidth, or to increase the natural width of the tabskip glue between columns.

@ The next level of complexity that ocours in tables is the appearance of hor-
izontal and vertical ruled lines. People who know how to make ruled tables
are generally known as TpX Masters. Are vou ready?

@ If vou approach vertical rules in the wrong manner, they can be difhicult; but

there is a decent way to get them into tables without shedding too many tears.
The first step is to say ‘\offinterlineskip’, which means that there will be no blank
space between lines; TEX cannot be allowed to ingsert interline glue in its normal clever
way, becanse each line is supposed to contain a \vrule that abuts another \vrule in the
neighboring lines above and/or below. We will put a strut into every line, by including
one in the preamble; then each Hne will have the proper height and depth, and there
will be no need for interline glue, TEX puts every colmmn entry of an alipnment into

246

Chapter 22: Aligrnment

an hbox whose height and depth are set equal to the height and depth of the entire
line; therefore \vrule commands will extend to the top and bottom of the lines even
when their height and/or depth are not specified.

@@ A Scolumn” should be allocated to every vertical rule, and such a column can

be assigned the template ‘\vrule#’. Then vou obtain a vertical rule by siply
leaving the column entries blank, in the normal lines of the alignment; or you can say
Nomit® i you want to omit the rule in some Hne; or you can say ‘height 10pt’ if you
want a nonstandard height; and so on.

@ Here is a small table that illustrates the points just made. [The data appeared
in an article by A, H. Westing, BioScience 31 {1981), 523-524]

\vbox{\offinterlineskip

\hrule

\halign{&\vrule#&
\strut\guad\hfil#\gunad\cr

height2pt&\omit&&\omith\cx

&Year\hfilfg&World Populationk\cr

height2pt&\omit&&\omith\cx

\noalign{\hrule}

height2pt&\omit&&\omith\cx

£B000NBCEES , 000, 000&\cr Year World Population

£50\AD&&200, 000, 000&\ cx - -

£1650\AD&&500 , 000 , 0004\ cx SO?g fi mﬁggggg

#1850\4D&1, 000,000, 0004 cx 1630 A, 500,000,000

£1945\ADL&?2,300, 000, 000&\cr o AL O
1850 A.D. 1,000,000,000

%1980\AD&&4 , 400,000, 000&\ cx Do _

hodght 2pbi\ o b\ ond N Ge] 1945 A.D. 2,300,000,000
1980 A .D. 4,406,000,000

\hrule}

In this example the first, third, and fifth columns are reserved for vertical rules. Hori-
zomtal riles are obtained by saying ‘\hrule’ outside the \halign or ‘\noalign{\hrnle}’
inside it, because the \halign appears in a vbox whose width is the full table width.
The horizontal rules could also have been specified by saying ‘\multispan5\hrnlefill’
ingide the \halign, since that would produce a rule that spans all five columns.

@@ The only other nonchvious thing about this table is the inclusion of several

lines that say ‘height2pti\omit&&\omitlk\cx’; can you see what they do? The
Vomit instructions mean that there’s no numerical information, and they also suppress
the \strut from the line; the ‘height2pt’ makes the first \vrule 2Zpt high, and the
other two rales will follow suit. Thus, the effect is to extend the vertical rules by two
points, where they touch the horizontal rules. This is a Little touch that hmproves the
appearance of boxed tables; ook for it as a mark of gquality.

g‘?}@v EXERCISE 22.12
Explain why the lines of this table say “&\cy’ instead of just “\cx’.

@@ Another way to get vertical rules into tables is to typeset without them, then
back up {using negative glue) and insert them.

Westing
hrule
noalign
o btdspran
strot

Chapter 22: Alignment

@ Here is another table; this one has become a classic, ever since Michael Lesk
pibiished it as one of the first examples in his report on a program to format
tables [Beil Laboratories Computing Science Technical Report 49 {1976)]. It illustrates
several typical problems that arise in connection with boxed information. In order to
demonstrate TEX's ability to adapt a table to different circumstances, tabskip glue is
used here to adjust the column widths; the table appears twice, once generated by
‘\halign t0125pt’ and once by ‘\halign to200pt’, with nothing else changed.

AT&T Common Stock AT&T Common Stock
Year Price |Dividend Year Price Dividend
1971 41-54 82.60 1971 41-54 82.60
2 41-54 270 2 41-54 2.70
3 46-55 287 3 46-55 287
4 40-53 3.24 4 40-53 3.24
5 45-52 3.40 k) 45-52 3.40
6 51-59 95% 6 51-59 95%
* {first quarter only) * {first quarter only)

The following specification did the job:

\vbox{\tabzkip=0pt \offinterlineskip
\def\tablernle{\noalign{\hrule}}
\halign to{dimen}{\strut#f \viule#\tabskip=lem plus2emi
\hfil#d \vrule#& \hfil#\hfill ‘\vrule®i
\hiil#% \vrule#\tabskip=Cpt\cr\tablerule
&&\mnltispan5\hfil AT\&T Common Stock\hfili&\cr\tablernle
&&N\omit\hidewidth Year\hidewidth&&
\omit\hidewidth Price\hidewidth&&
\omit\hidewidth Dividend\hidewidth&\cr\tablerule
&%1971%%41~~54%&\$2.60& \cr\tablerule
&& %441 ~-54%%2.70& \cr\tablernle
&& 3&k46~~55&&2.87& \cr\tablerule
&& 48&A0~-53&&3 . 244 \cr\tablerule
&& 5&&45~~52&&3.40& \cr\tablerule
k& 6&&51--59&&.95\rlap*&\cr\tablernle \noalign{\=mallskip}
&\mmltispan7* (first guarter only)\hfil\cr}}

Points of interest are: {1} The first colimmn contains a strut; otherwise it would have
been necessary to put a strut on the Hines that say "ATET and “(first guarter only)’,
since those lines omit the templates of all other columns that might have a built-in
strut. {2} ‘\hidewidth’ is used in the title line so that the width of columns will be
affected only by the width of the numeric data. (3) ‘\rlap’ iz used so that the asterisk
doesn’t affect the alignment of the numbers. (4) If the tabskip specification had heen
‘Cem plus3em’ instead of ‘lem plus2er’, the alignment wouldn’t have come out right,
because ‘AT&T Common Stock’ would have been wider than the natural width of
everything it spanned; the excess width would all have gone into the ‘Dividend’ column.

@@» EXERCISE 22.13
Explain how to add 2 pt more space above and below ‘AT&T Comimon Stock’

247

Liask
ATLT
hidewidth
rlap

248

Chapter 22: Aligrnment

@@» EXERCISE 22.14
Typeset the foliowing chart, making it exactly 36em wide:
J. H. Bihning, 1838

M. J. H. Béhning, 1882

M. D. Blase, 1840

L. M. Bohning, 1912

E. F. Ehlert, 1845

P. A. M. Ehlert, 1884

C. L. Wischmeyer, 1856

@ If yow're having trouble debugging an alignment, # sometimes helps to put

‘Nddt’® at the beginning and end of the templates in your preamble. This
is an undefined contro! sequence that canses TEX to stop, displaying the rest of the
template. When TEX stops, you can use \showlists and other commands to see what,
the machine thinks it’s doing. If TEX doesn’t stop, yvou kaow that it never reached that
part of the template.

@ It’s possible to have alignments within alisnments. Therefore when TEX sees a
‘& or \apan’ or ‘\cr’, it needs some way to decide which aligpment is involved.

The rule is that an entry ends when ‘& or ‘\span’ or ‘\cr’ cceurs at the same level of
braces that was current when the entry began; Le., there mmst be an equal number of

lett and right braces in every entry. For example, in the line
\matrix{1&i\cr 0&1\cr}&\matrix{0&i\cr O&O\cxl\cxr

TEX will not resine the template for the first column when it is scanning the argiment
to \matrix, becanse the &s and \cr’s in that argument are enclosed in braces. Similarly,
&'s and \cr’s in the preambie do not denote the end of a template unless the resulting
template would have an equal mumber of left and right braces.

@ You have to be careful with the use of & and \span and \cr, because these
tokens are intercepted by TEX s scanner even when it is not expanding macros.
For example, if you say ‘\let\x=\span’ in the midst of an aligpment entry, TEX will
think that the “\apan’ ends the entry, so \x will become equal to the first token fol-
lowing the “#° in the template. You can hide this \span by putting it in braces; e.g.,
‘{\global\let\x=\span}’. {And Appendix D explains how to avoid \global here.)

@ Sorzetimes people forget the \cr on the last line of an alignment. This can
cause mysteriouns effects, because TEX is not clairvoyant. For example, con-
sider the following apparently simple case:

\halign{\centerline{#}\cr
A centered lime.\cr
And another?}

{Notice the missing \cr.} A curious thing happens here when TEX processes the
erronecus lne, so please pay attention. The template begins with ‘\centerline{’,
so TEX starts to scan the arguwment to \centerline. Since there’s no ‘\cr’ after the
question mark, the 3 after the gquestion mark is treated as the end of the argument
to \centerlime, ot as the end of the \halign. TEX isa’t going to be able to finish
the alignment unless the subsequent text has the form *. . {.. . \er’. Indeed, an entry

family tree

Bohming [Knuth], Lovise Marie
Ehlert: [Bohning], Pauline Anna |
B{)hmng, Martin Jobn Henry

r [Bhlert], Clara Lovi;

Blase [Bohmng] Maria Dorothea
Bobming, Jobst Heinrich
debugging

et

braces

spran

or

ampersand

Chapter 22: Alignment

like ‘a}b{c’ is legitimate with respect to the template \centerline{#}’, since it vields
‘N\centerline{a}b{c}’; TEX is correct when it gives no error message in this case, Dut
the computer’s idea of the current situation is different fromn the user’s, so a puzzling
error message will probably ccour a few Hnes later,

@@ To help avoid such situations, there’s a primitive command \crcr that acts

exactly like \cr except that it does nothing when it immediately follows a \cr
or a \noalign{...}. Thus, when you write a macro like \matrix, you can salely insert
\cror at the end of the user’s arguwment; this will cover up an error if the user forgot
the final \cr, and it will cause no harm if the final \cr was present.

@@ Are you tived of typing \cr? You can get plain TgX to insert an automatic
\er at the end of each input line in the following way:

\begingroup \let\par=\cr \obeylinez %
\halign{{preambie)
{first line of alignment)}

{last line of alignment}
Hendgroup

This works becanse \obeylines makes the ASCII {return} into an active character that
nses the current meaning of \par, and plain TEX puts {return} at the end of an input
line {see Chapter 8). If you don't want a Ncr at the end of a certain line, just type
%’ and the corresponding \cxr will be “commented out.” (This special mode doesn’t
work with \+ lines, since \+ is a macro whose argument is delimited by the token “\cx’,
not simply by a token that has the same meaning as \cr. But you can redefine \+ to
avercome this hurdle, if you want to. For example, define a macro \alternateplns
that is just like \+ except that its argient is delimited by the active character ~7N;
then include the command \let\+=\alternateplns’ as part of \obeylines.)

@ The control sequence \valign is analogons to \halign, but rows and cohrmns
change riles. In this case \cr marks the bottom of a column, and the aligned
columns are vhoxes that are put together in horizontal mode, The individual entries
of each column are vboxed with depth zero {ie., as if \boxmaxdepth were zero, as
explained in Chapter 12}; the entry heights for each row of a \valign are maximized
in the same fashion as the entry widths for each column of an \halign are maximized.
The \noalign operation can now be used to insert horizontal mode material between
colwims; the \apan operation now spans rows. People usually work with TEX at least a
vear before they find their first application for \valign; and then it’s usually a one-row
Avalign{\viil#\vfil\cr...} . But the general mechanism is there # you need it

If sixteen pennies are arranged in the form of a square

there wilf be the same number of pennies in every row, every cofumn,
and each of the two fong diagonais.

Can you do the same with twenty pennies?

— HENRY ERNEST DUDENEY, The Best Coin FProblems {1909)

It was she who controlied the whole of the Fifth Column.
- AGATHA CHRISTIE, N or M? {1941)

249

orer
or, avoiding
hegingrouyp

oheylines

retm

par

pereent

g

delimited argoiments
valign

horiandepth

noalign

Bpan

spanned rows in tables
DUDENEY
CHRISTIE

_

23

Output Routines

Chapter 25: Output Routines

We nvestigated TEX's page-building technique in Chapter 153, where we dis-
cussed the basic two-stage stratogy that is used: TEX gathors material until it
has accumulated more than will fit on a page; then it spews out one page of data,
based on what it thinks is the best breakpoint between pages; then it returns
to gather material for the next page in the same way, Page numbers, headings,
and similar things are attached after each page has been ejected, by a special
sequence of TEX commands called the current outpnid routine.

Plain TEX has an output routine that takes care of ordinary jobs. It han-
dles the simple things that most manuscripts require, and it also copes with more
complicated things like the insertions made with \footnote and \topinsert,
as described in the dangerous bends of Chapter 15 We shall begin the present
chapter by discussing how to make simple changes to the behavior of plain TEX s
output routine; then we shall turn to the details of how to define output routines
that do more complex tasks.

If you run TEX without modifying the plain TEX format. you get pages
that are nambered at the bottom; and each page will be approximately 87 inches
wide and 11 inches tall, including 1-inch marging at all four sides. This format
is suitable for preprints of technical papers, but you might well want to change
it, especially if you are not using TEX to make a preprint of a technical papor.

For example, we saw in the experiments of Chaptor 6 that the width
of the material on a page can be changed hy giving a different value to the
horizontal line size, \hsize. Plain TEX format says ‘\hsize=6.5in’, in order to
ohtain 8 5-inch pages with 1-inch marging; you can change \hsize to whatever
vou want. Similarly, you can control the vertical size of a page by changing
\vsize. Plain TEX sets \vsize=8.%in {not %in, since \vsize doesn’t inchude
the space for page numbers at the hottom of each page); if you say “\veize=4in’
vou will get shorter pages, with only 4 inches of copy per sheet. Tt’s best not to
monkey with \heize and \vsize except at the very heginning of a job, or after
vou have gjeeted all pages from TEX's moemory.

If you want your output to be positioned differently when it s vltimately
printed. you can offset it by giving nonzero values t0 \hoffset and \voffset.
For example,

\hoffset=.5in \voffset=1.5in

will move the output half an ineh to the right of its normal position, and 1.5
inches down. You should be careful not to offset the output so much that it
falls off the edge of the physical medium on which it is heing printed, unless you
know that such out-of-hounds activity won’t cause trouhle.

TEX is often used to typeset announcements, brochures, or other docu-
ments for which page numbers are inappropriate. If vou say

\ncpagenumbers

at the heginning of your mamuscript, plain TgX will refrain from inserting num-
bers at the bottom of each page.

251

outpot routine
footnote
topinsert

plain TEX format
page format, modifying
hsize

vsize

hotfset

volfset

brochures

page nambers

252

Chapter 23: Output Routines
@ In fact. \nopagenumbers is a special case of a much more general mechanism
by which you can control headings and footings. The plain TEX output row-

tine puts out a special line of text called the headiine at the top of each page, and
another special Hne of text called the footline at the bottom. The headline is normally
blank, and the footline is normaily a centered page number, but you can specify any
headline and footline that vou want by redefining the control sequences \headline and
\footline. For example,

\headline={\hrnlefill}

will put a horizontal rule at the top of every page. The basic idea is that plain TEX puts
‘\line{\the\headline}’ at the top and ‘\line{\the\footline} at the bottom, with
blank lines separating these extra lines from the other material. {Recall that \line
is an abbreviation for ‘\hbox to\hzize’; hence the headline and foothine are put into
hoxes as wide as the normal lines on the page itself.) The normal value of \headline
is ‘\hfil’, so that no heading is visible. The \nopagenmmbers macro described earlier
ig giraply an abbreviation for ‘\footline={\hfil} .

@ The normal value of \footline is ‘\h=s\tenrm\folio\hss’; this centers the
page number on a line, using font \tenrm, becanse \folio is a control sequence
that produces the number of the current page in text form.

@ The page number appears in TEX s internal register \count0, as explained in

Chapter 15, and plain TEX makes \pageno an abbreviation for \count(®. Thus
vou can say \pageno=100" if you want the next page of your output to be number 100.
The \folio macro converts negative page numbers to roman mumerals; if vour mans-
script begins with ‘\pageno=-1°, the pages will be mumbered 1, 4, i, iv, v, etc. In fact,
Appendix B defines \folio to be an abbreviation for

\ifmuzm\pageno<0 \romanmumeral~\pageno \else\mnumber\pagemo \fi

@ It is important to inciude the name of each font explicitly whenever vou are

defining a headline or foothne, becanse an output routine in TEX can come
into action at somewhat unpredictable times. For example, suppose that \footline
kad been set to ‘\has\folio\haz’, without specifying \tenrm; then the page number
woutld be typeset in whatever font happeas to be current when TEX decides to output a
page. Mysterious effects can occur in such cases, because TEX is typically in the midst
of page 101 when it is outputting page 100.

@ » EXERCISE 23.1
Explain how to put en-dashes around the page pumbers in a plain TEX job.

For example, * — 4 —* should appear at the bottom of page 4.
@ Here i an example of a headline in which the page numbers appear at the top.
Furthermore, odd-numbered and even-numbered pages are treated differently:

\nopagenumberz % suppress footlines
\headline={\ifodd\pageno\rightheadline \else\leftheadline\fi}
\def\rightheadline{\tenrm\hfil RIGHT RUNNING HEAD\hfil\folio}
\def\leftheadline{\tenrm\folio\hfil LEFT RUNNING HEAD\hfil}
\voffset=2\baselinezskip

nopagenimbers
headline
footline
headline
footline
hrulefill

line

tenrim

folio

PAgENG

counti

roma i inerals
rommantomeral
i her
en-cdashes

Chapter 25: Output Routines

English-language books traditionally have odd-numbered pages on the right and even-
mubered pages on the left. Text that appears as a headline on several pages is often
called a “running bead.” When you use headlines, it is generally wise to set \voffzet
to the eguivalent of two Hnes of text, ag shown in this example, so that there will still
be a margin of one inch at the top of vour cutput pages.

@ » EXERCISE 23.2

Suppose that youw're using TEX to typeset your résumé, which is several pages
lomg. Explain how to define \headline so that the first page is headed by ‘RESUME’,
centered in boldface type, while each subsequent page has a headline like this:

Résumé of A UL ThOT ..o Page 2
@ If vou don’t change the \veize, all of the headlines and footlines will ccour
in the same place regardiess of the contents of the page between them. Thus,

for example, if you are using \raggedbottom as explained in Chapter 15, so that pages
do not always contain the same amonnt of text, the raggedness will occur above the
footline; the footline won't move up. If vou do change \vsize, the footiine position
will change correspondingly, while the headline will stay put.

@ The rest of this chapter is intended for people who want an output format

that is substantially different. from what plain TEX provides. Double dangerous
bends are used in all of the subsequent paragraphs, becanse vou should be familiar with
the rest of TEX before you plunge into these final mysteries of the language. Chapter 22
tanght vou how to be a TEX Master, ie., a person who can produce complicated tables
using \halign and \valign; the {ollowing material will take you all the way to the rank
of Grandmaster, ie., a person who can design outpat routines. When yon are ready
for this rank, vou will be pleased to discover that—like alignments—ountput routines
are not really so mysterions as they may seem at first.

@@ Let’s hegin by recapping some of the rules at the end of Chapter 15. TeX
periodically chooses to output a page of information, by breaking its main
vertical list at what it thinks is the best place, and at such times it enters internal
vertical mode and begins to read the commands in the current \output routine. When
the cutput routine begins, \box255 contains the page that TEX has completed; the
cutput routine is supposed to do something with this vhox. When the output routine
ends, the list of itewns that it has constructed in internal vertical mode is placed just
before the material that follows the page break. In this way TEX s page-break decisions
can effectively be changed: Some or all of the material on the broken-off page can be
removed and carried forward to the next page.

@@ The current \output routine is defired as a token list parameter, just like

\everypar or \errhelp, except that TEX antomatically inzerts a begin-group
symbol ‘{7 at the beginning and an end-group symbol ‘P at the end. These grouping
characters help to keep the output rouvtine from interfering with what TEX was doing
when the page break was chosen; for exarsple, an output routine often changes the
\baselinezskip when # puts a headline or footline on a page, and the extra braces
keep this change local, If no \owtput routine has been specified, or if the user has
said Noutput={}’, TEX supphes its own routine, which is essentially equivalent to
Noutput={\shipout\box255}; this outputs the page without any headline or footline,
and without changing the page mumber.

253

odd-numbered pages
even-numbered pages
running head

volfset

rémnIng

Thor

raggedbottom

vtee

Grrandinaster

hor2as

autput

EVETYAr

errhelp

grouping characters
bhagelineskip

braces

defanlt cutput routine
shipout

254 Chapter 23: Output Routines

@ TEX’s primitive command \shipout{box} iz what actually causes output. It dvi

seands the contents of the box to the dvi file, which is TEXs main ountput file; eountd
after TEX has finished, the dvi file will contain a compact device-independent encoding :’]lf,l?i:::}
of instructions that specity exactly what should be printed. When a box is shipped out, write
TgX displays the values of \count0 through \count9 on your terminal, as explained ;'[r;:(:_:‘;’g“m""”1;
in Chapter 15; these ten counters are also recorded in the dvi file, where they can be oheyspaces
used to identify the page. All of the \openont, \clozeout, and \write commands that spaces active

insertpenalties

appear inside ?.é the {box} are performed in their natural order as tiwft b?x is being sutpotpenalty
shipped out. Since a \write command expands macros, as explained in Chapter 21, sUpereject
TEX’s scanning mechanism might detect syntax errors while a \shipout is in progress. oarvho

If \tracingontput is nonzerc at the time of a \shipont, the contents of the {box)
being shipped are written into vour log file in symbolic form. You can say \shipont
anywhere, not only in an output routine.

@ The deiaved aspect of \write imposes a noteworthy restriction: It is necessary

to be sure that all macros that might appear within the text of a \urite are
properly defined when a \shipout command is given. For examnple, the piain TEX for-
mat in Appendix B temporarily makes spaces active and says ‘\global\let,=\space’;
the reason is that \obeyapaces might be in force during a \write command, so a defi-
nition for | as an active character should exist during the next \shipout, even though
TEX might no longer be making spaces active at that thue.

@ Chapter 15 points out that TEX gives special values to certain internal registers

and parameters, in addition to \box255, just before the output routine beging.
Insertions are put into their own vboxes, and \insertpenalties is set equal to the total
number of heldover insertions; furthermore the \ontputpenalty parameter is set to the
value of the penalty at the current breakpoint. An output routine can be made to do
special things when these guantities have special values. For example, the output
routine of plain TEX recognizes a \supereject {which ejects all held-over insertions)
by the fact that \supereject causes \outputpenalty to be —20000, and by using
\insertpenalties to decide if any insertions are being held over.

@@ The default output routine, ‘\shipont\box255’, illustrates one extreme in
which nothing is put into the vertical list that is carried over to the next page.
The other extreme is

\Voutput={\unvbox255 \penalty\outputpenalty}

which ships nothing out and puts evervthing back onto the main vertical list. {The
command “\unvbox255’ takes the completed page out of its box, and the command
‘\penalty\ontputpenalty’ reinserts the penalty at the chosen breakpoint.) This
makes a seamless join between the completed page and the subsequent material, be-
canse TEX has still not discarded glue and penalties at the breakpoint when it invokes
an \output routine; hence TEX will go back and recoasider the page break. If the
\vaize hasn’t changed, and if all insertions have been held in place, the same page
break will be fouad; but it will be found muach faster than before, because the vertical
list has already been constructed—the paragraphing doesn’t need to be done again, Of
course, an output routine ke this makes TEX spin its wheels endlessly, 50 it is of 2o
use except as an example of an extreme case.

Chapter 25: Output Routines

@ Te prevent such looping, vour output routine should always make progress
of some sort whenever it comes into play. If vou make a mistake, TEX may
be able to help you diagnose the error, because a special loop-detection mechanism

has been built in: There is an internal integer variable called \deadcyclesz, which
is cleared to zero alter every \shipont and increased by 1 just before every \output.
Thus, \deadcycles keeps track of how many times an output routine has been initiated
since the most recent \shipout, unless your change the value of \deadcycles yourseif.
There’s also an integer parameter calied \maxdeadcycles, which plain TEX sets to 25.
If \deadcycles is greater than or equal to \maxdeadcycles when your output routine
is about to be started {ie., when \deadcycles is about to be increased}, TpX issues an
error message and performs the defanlt output routine instead of yours,

@ When vour output routine is finished, \box255 should be void. In ather words,

yvou nmst do something with the information in that box; it should either he
shipped cut or put into some other place. Sinilarly, \box255 should be void when TEX
ig getting ready to fill # with a new page of material, just before starting an output
routine. If \box255 is nonvaid at either of those times, TEX will complain that vou are
misusing this special register, and the register contents will be destroyed.

@ But let’s not talk forever about borderiine cases and special parameters; let’s

look at some real examples. The output routine of plain TEX, found in Ap-
pendix B, is set up by saying “\output={\plainoutput}’, where \plainoutput is an
abbreviation for

\shipont\vbox{\makeheadline
\pagebody
\makefootline}
\advancepageno
\ifnum\ontputpenalty>~20000 \else\dosupereject\fi

Let us congider this “program” omne line at a time:

1} The \makeheadline macro constructs a vbox of height and depth zero in such
a way that the headline is properly positioned above the rest of the page. Its actual
code is

\vbox to Opt{\vskip-22.5pt
\line{\vbox tof.5pt{}\the\headline}\v=s}
\nointerlineskip

The magic constant —22.5 pt is equal to (topskip — height of strot — 2(baselineskip}),
ie., 10pt — 8.5 0t — 24 pt; this places the reference point of the headline exactly 24 pt
above the reference point of the top Hne on the page, unless the headline or the top
line are excessively large.

2) The \pagebody macro is an abbreviation for
\vbox to\vsize{\boxmaxdepth=\maxdepth \pagecontents}

The valie of \boxmaxdepth is set to \maxdepth so that the vbox will be constructed
under the assnmptions that TEX s page builder has used to set up \box255.

255

deadeyeles
defanlt ootpot routine
hox2565
plainoutpot
makeheadline
headline
nointerlineskip
strot

vES

line

pagebody
bhoxmaxdepth
maxdepth

256

Chapter 23: Output Routines

3) The \pagecontents macro prodices a vertical list for everything that belongs
on the main body of the page, namely the contents of \box255 together with illustra-
tions {inserted at the top) and footnotes {inserted at the bottom):

\ifvoid\topinag \else\unvbox\topins\fi
\dimen0O=\dp255 \unvbox255
\ifvoid\footins\elzse ¥ footnote info iz present
\vakip\skip\footins
\footnoterule
\unvbox\footins\fi
\ifraggedbottom \kern-\dimen(® \vfil \fi

Here \topins and \footins are the insertion class numbers for the two kinds of inger-
tions used in piain TEX; if wore classes of insertions are added, \pagecontenta should
be changed accordingly. Notice that the boxes are unboxed so that the glue coming
from insertions can help out the glie on the main page. The \footneterule macro in
Appendix B places a dividing line between the page and its footnotes; it makes a net
contribution of 0pt to the height of the vertical list. Ragred-bottom setting is achieved
by inserting infinite glue, which overpowers the stretchability of \topskip.

4} The \makefootline macro puts \footline into its proper position:

\baselineskip=24pt
\line{\the\footline}

5) The \advancepageno macro normally advances \pageno by +1; but if \pageno
is negative {for roman mumerals), the advance is by —1. The new value of \pageno will
be appropriate for the next time the output routine is called into action.

\ifnum\pageno<0 \global\advance‘\pageno by-1
\elze \globalladvance\pageno by 1 \fi

6) Finally, the \dosupereject macro is designed to clear out any insertions that
have been held over, whether they are illustrations or footnotes or both:

\ifnum\inzertpenaltie=>0
\line{} \kern-\topskip \nobreak
\vfill\snpereject\fi

The mysterious negative \kern here cancels out the natural space of the \topakip
glue that goes above the empty \line; that empty line box prevents the \vfill from
disappearing into a page break. The vertical list that results from \dosupereject is
placed on TEX s list of things to put out next, just after the straggling insertions have
been reconsidered as explained in Chapter 15, Hence another super-eject will ocour,
and the process will continue until no insertions remain.

@@» EXERCISE 23.3

Explain how to change the output routine of plain TEX so that #t will produce
twice as many pages. The material that would ordinarily go on pages 1, 2, 3, ete., should
go onto pages 1, 3, 5, .. .; and the even-mumbered pages should be entirely blank except

for the headline and footline. (Imagine that photographs will be mounted on those
blank pages later.}

pagecontents
topins
footnote
topins

footing
insertions
footnoterale
Ragged-hottom setting
w1l

intinite gloe
topskip
makefootline
footline
advancepageno
PAgenc

global

advance
dosupereject
insertpenalties
supereject

kern

topskip

il

Chapter 25: Output Routines

@ Suppose now that double-column format is desired. More precisely, let’s at-

tempt to modify plain TEX so that it sets type in columns whose width is
\hzize=3.2in. Each actual page of output should contain two such coluwmns separated
by 0.}in of space; thus the text area of each page will still be 6.5 inches wide. The
keadlines and footlines should span both columans, but the colnmng themselves should
contain independent inzertions as if they were the facing pages of a book., In other
words, each colwmn shouid contain its own footnotes and its own illustrations; we do
not have to change the \pagebeody macro.

@ In order to solve this problem, let us first introduce o new dimension register
called \fnllhsize that represents the width of an entire page.

\newdimen\fullhsize
\fullhsize=6.5in \hsize=3.2in
\def\fnllline{\hbox to\fullhsize}

The \makeheadline and \makefootline macros should be modified so that they use
‘Nfullline’ ianstead of ‘\line’

@@ The new cutput routine will make use of a control sequence \1r that is set

to either ‘L’ or ‘R’, according as the next column belongs at the left or at the
right of the next page. When a left cohumnn has been completed, the cutput routine
simply saves it in a box register; when a right colunm bas been completed, the routine
cutputs both colunns and increases the page number.

\let\lr=L \newbox\leftcolumm
hountput={\if L\lr
\global\setbox\leftcolumn=\columnbox ‘\global\let\lr=R
\else \doubleformat \globall\let\lr=L\fi
\ifnum\outputpenalty>~20000 \else\dosupereject\fi}
\def\doubleformat{\shipont\vbox{\makeheadline
\fullline{\box\leftcolumm\hfil\columrmbox}
\makefootline}
\advancepageno}
\def\columnbox{\leftline{\pagebody}}

The \columnbox macro uses \leftline in order to engsure that it produces a box whose
width is \hzize. The width of \box255 is usually, but not always, equal to \hsize at
the beginning of an output routine; any other width would louse up the format.

@ When double-column setting ends, there’s a 50-50 chance that the final cofumn
kas fallen at the left, so it will not yet have been output. The code

\supereject
\if B\lr \mmllh\vfill\eject\fi

supplies an emapty right-hand column in this case, ensuring that all of the accumulated
material will be printed. It’s possible to do fancier column balancing on the last page,
but the details are tricky i footaotes and other insertions need to be accommodated
as well. Appendix E includes the macros that were nsed to balance the columns at the
end of the index in Appendix I, and to start two-cohumn format in mid-page.

@@» EXERCISE 23.4
How should the example above be modified i vou want three-cohumn output?

257

donble-colomn
hsize

pagehody
two-colomn format
mnlticolomn format
fullhsize
makeheadling
makefootline
fullline

line

advancepageno
three-colutm outpot

258

Chapter 23: Output Routines
@ Since TEX s output routine lags behind its page-construction activity, vou can
get erronecus results i vou change the \headline or the \footline in an

nncontroilled way. For example, suppose that vou are typesetting a book, and that the
format you are using allows chapters to start in the middle of a page; then it would
be a mistake to change the running headline at the moment you begin a new chapter,
since the next actual page of output might not vet include anything from the new
chapter. Consider also the task of typesetting a dictionary or a membership roster; a
well-designed reference book displays the current range of entries at the top of each
page or pair of pages, so that it is easy for readers to thamb through the book when they
are searching for isolated words or names, But TEX s asynchronons output mechanism
makes it difficult, if not impossible, to determine just what range of entries is actually
present on a page.

@ Therefore TEX provides a way to put “marks” fmto a Hst; these marks informn
the output routine about the range of information on each page. The general
idea is that vou can say

\mark{{mark text}}

in the midst of the information vou are typesetting, where the {mark text} is a token
list that is expanded as in the commands \edef, \message, etc. TEX puts an internal
representation of the mark text into the Hst #t is Dbuilding; then later on, when a
comrpleted page is packed into \box255, TEX allows the output routine to refer to the
first and last mark texts on that page.

@ The best way to think of this is probably to imagine that TEX generates an
arbitrarily long vertical list of boxes, ghue, and other iterss such as penalties
and marks. Somehow that long vertical list gets divided up into pages, and the pages
are made available to the output routine, one at a time. Whenever a page is put in
\box255, TEX sets up the value of three gquantities that act essentially like macros:

m \botmark is the mark text most recently encountered on the page that was
Just boxed;

» \firstmark is the mark text that was first encountered on the page that was
Just boxed;

» \topmark has the value that \botmark had just before the current page was
boxed.

Before the first page, all three of these are null, i.e., they expand to nothing. When
there is no mark on a page, all three are equal to the previous \botmark.

@ For example, suppose that vour manuscript includes exactly four marks, and
that the pages are broken in such a way that \mark{al} happens to fall on
page 2, \mark{7} and \mark{~} on page 4, and \mark{d} on page 5. Then

On page \topmark is \firstmark is \botmark is

H null null mall
2 nuli x X
3 x x x
4 x A

¥
5 ¥))
6 4 4 4

running headling
marks

mark

botmark
fimstark
topimark

Chapter 25: Output Routines

@ When vou use a \mark comrmand in vertical mode, TEX puts a mark into the

main vertical list. When vou use a \mark command in horizontal mode, TEX
treats it as vertical mode material like \vadjust and \insert; i.e., after the paragraph
hras been broken into lines, each mark will go into the main vertical list just after the
bax for the line where that mark originally appeared. If you use \mark in restricted
korizontal mode, the mark may migrate out to the enclosing vertical Hst in the same
way that \inzert and \vadjust items do (see Chapter 24}; but a mark that is locked
too deeply inside a box will not migrate, so it will never appear as a \firstmark or
\botmark. Similarly, a \mark that cccurs in internal vertical mode goes into a vhox,
and it is not accessible in the main vertical list.

@ Chapter 15 discusses the \vaplit command, which allows vou to break up

vertical lists by vourself. This operation sometimes provides a usetul alterna-
tive to TEX's ordinary page-buiiding mechanism. For exarmple, if vou stmply want to
typeset some material in two colwmns of equal height, vou can put that material into
a vbox, then \vaplit the box into two pieces; no output routine is needed at all. The
\vaplit operation sets up the values of two macro-like guantities that were not men-
tioned in Chapter 15 \gplitfirstmark and \splitbotmark expand to the mark texts
of the first and last marks that appear in the vertical list that wasg split off by the most
recent \vaplit command. Both gquantities are null if there were no such marks. The
values of \topmark, \firstmark, \botmark, \aplitfiratmark, and \splitbotmark are
global; e, they are not affected by TECs grouping mechanism,

@ Most dictionaries use the equivalent of \firstmark and \botmark to give guaide

words at the top of each pair of facing pages. For example, if the definition of
the word ‘“type’ starts on page 1387 and continues onto page 1388, the guide word on
page 1387 (a right-hand page) will be ‘type’; but the guide word at the top of page 1388
{a left-hand page) will be the next word in the dictionary {e.g., ‘typecast’} even though
the top of page 1388 is about ‘type’.

@ The dictionary scheme works fine for dictionaries, since a reader should start

reading each dictionary euntry at its beginning. DBut a different scheme is
appropriate for a technical book like the anthor’s Art of Computer Programming,
where Section 1.2.8 {for example) starts in the middle of page 78, but the top of
page 78 contains exercises 19-24 of Section 1.2.7. The headline at the top of page 78
refers to ‘1.2.7°, because that will help somebody who is searching for exercise 1.2.7-22.
Notice that the dictionary convention would put ‘1.2.8° at the top of page 78, bat that
would be appropriate only i Section 1.2.8 had begun exactly at the top of that page.

@ Continning this example from The Art of Computer Programining, let’s sup-
pose that the TEX mamscript for Section 1.2.8 begins with a macro call like

\beginsection 1.2.8. Fibomacci Numbers.

How should \beginsection be defined? Here is one attempt:

\def\beginsection #1. #2,
{\zectionbreak
\leftline{\zectionfont #1. #2}
\mark{#1}
\nobreak\zmallskip\noindent}

259

vad just

Insert

migrate

vsplit

splithrstiark

splithotimark

grouping

guide words

Art of Compoter Programming
Kinuth

260

Chapter 23: Output Routines

The \zectionbreak macro shouid enconrage TEX either to break the page at the current
position, or to leave a goodly amount of blank space; e.g., \sectionbreak might be an
abbreviation for ‘\penalty-200 \vskipl8pt plusdpt minnz6pt’. The \beginzection
macro ends with commands that suppress indentation of the first paragraph in the
section. But the thing that concerns us with respect to output routines is the \mark
comrmand that follows \leftline. In the example we have been considering, the begin-
ning of Section 1.2.8 would insert “\mark{1.2.8} into the main vertical Hst just after
the box containing the title of that section.

@@ Is such a \mark adequate? Unfortunately, no, not even if we assume for simo-

plicity that at most one section beging on each page. The page that containg
the beginming of Section 1.2.8 will then have \topmark=1.2.7 and \firstmark=1.2.8
regardless of whether or not the section starts at the very top of the page. What we
want in this application is a cross between \topmark and \firstmark: something that
will reflect the mark text that represents the state of affairs just after the first line of
the page. And TEX doesn’t provide that.

@@ The solution is to emit the \mark just before the \sectionbreak, instead of
Just after the \leftline. Then \topmark will always reflect the truth about

the section that is current at the top lHne. {Think about it.)
@ However, the format for The Art of Computer Programining is more complex
than this. On left-hand pages, the section mumber in the headline is sup-

posed to reflect the situation at the top of the page, as we have just discassed, but on
right-hand pages it is supposed to refer to the bottom of the page. Our solution to
the previous problem made \topmark correct for the top, but it can make \botmark
incorrect at the bottom. In order to satisfy both requirements, it is necessary to pack
more information into the marks. Here's one way to solve the problem:

\def\beginzection #1. #2.
{\mark{\currentsection \noexpand\else #1}
\sectionbreak
\leftline{\zectionfont #1. #2}
\mark{#1\noexpand\elze #1} \def\curremtzection{#1}
\nobreak'\zmallskip\noindent}

\def\currentsection{}) the curremt sectiom number

The idea is to introduce two marks, one just before the section break and one just after
the section has begun. Furthermore each mark has two parts; the mark just before the
potential break between Sections 1.2.7 and 1.2.8 is “1.2.7\else 1.2.8°, while the one
just after that potential break is ‘1.2.8\elzse 1.2.8. It follows that the section number
corresponding to the bottom of a page is the left component of \botmark; the section
mumber corresponding to the top of a page is the right component of \topmark. The
\rightheadline macro can make use of ‘\iftrue\botmark\fi’ to read the left compo-
nent, and the \leftheadline macro can say ‘\expandafter\iffalse\topmarkh\fi’ to
read the right component.

@@r EXERCISE 23.5
B. C. Dull used a coastruction very much ke the one above, but he put the
second \mark just before the \leftline instead of just after #t. What went wrong?

iftroe
expandalter
iffalse

Dol

Chapter 25: Output Routines 261

@@» EXERCISE 23.6 iftroe

The marks in the previous construction have the form ‘a\else 7', where o ilfalse }
and A are two independent pileces of information. The ‘\else’ makes it poszible to jﬁjﬁ;‘ zr::],:)k
select either & or 3 by means of \iftrue and \iffalse. (Generalize this idea: Suppose ragged-right

that yvou have an application in which marks are supposed to carry five independent
pieces of information, and that each mark has the form “ag\or axs \or cxz\ox cxs\ox exs”,
Expiain how to select any one of the five &’s from such a mark.

@@ Let’s conclude our discussion of output routines by considering an application
to indexes, such as the index to this manual that appears in Appendix 1. The
most complicated entries in such an index will look something like this:

Main entry, 4, 6, 8-10, 12, 14-16,
1822, 24-28, 30.
first subsidiary entry, 1-3, 6, 10-11,
15, 21, 24, 28.
second subsidiary entry, 1, 3, 6-7,
10, 15, 21, 25, 28, 31.

Main entries and subsidiary enfries are typeset ragged-right, with two ems of hanging
indentation after the first line; subsidiary entries are indented one em on the first line.
Our goal will be to typeset such material from input that looks like this:

\beginindex

Main entry, 4, 6, 8--10, 12, 14--16, 18--22, 24--28, 30.

\sub first subsidiary emtry, 1--3, 6, 10--11, 15, 21, 24, 28.

\sub zecond subsidiary entry, 1, 3, 6~-7, 10, 15, 21, 25, %
28, 31.

\endindex
where *. .. stands for other entries. Each line of input normally specifies one main

entry or one subsidiary entry; if an entry is so long that it doesn’t fit on a single input
line, "\ is typed at the end of the line so that it merges with the following one.

@@ The interesting thing about this index problem is that it is desirable to set

up a systemn of marks so that the cutput routine can insert speciat lines of
text when an entry has been broken between cohunns or pages. For example, if a page
break cocurs between any of the six lines of typeset output shown above, the output
routine should emit the special line

Main entry {condinued):
and if a page break ocours within a subsidiary entry, an additional special line
subsidiary eatry {continued):

should alse appear. The solution below produces marks so that \botmark will be mull if
a break cccurs between main entries; it will be ‘Main entry’ if a break ccours after lines
1, 2, or 4 of the six example output lnes; it will be ‘Main entry\sub first subsidiary
entry’ i a break occurs after Hne 3 (within the first sabsidiary entry}); and it will be
‘Main entry\sub second smbaidiary entry’ if a break occurs after line 5.

262

Chapter 23: Output Routines

@@ The reader may wish to try solving this problems before looking at the solution,

becanse it will then be easier to appreciate the subtler issunes that are involved.
{Go ahead: Try to define a macro \beginindex that does the ragged-right setting and
produces the specified marks. Turn back to the previous page to study the problem
carefully, before peeking at the answer.)

\def\beginindex{\begingroup
\parindent=lem \maxdepth=\maxdimen
\def\par{\endgraf \futurelet\next\inxentry}
\obeylinez \everypar={\hangindent 2\parindent}
\exhyphenpenalty=10000 \raggedright}
\def\inxentry{\ifx\next\zub \let\next=\zubentry
\else\ifx\next\endindex \let\next=\vfill
\else\let\next=\mainentry \fi\fi \next}
\def\endindex{\mark {}\break\endgroup}
\let\sub=\indent \newtoks\maintoks \newtoks\subtoks
\def\mainentry#1, {\mark{}\noindent
\maintoks={#1}\mark{\the\maintoks}#1,}
\def\zubentry\sub#l, {\mark{\the\maintoks}\indent
\subtoks={#1}\mark{\the\maintoks\sub\the\subtoks}#1,}

Even if you have read this solution, you probably want an explanation of what it does,
because it uses “TpXtics” that have not appeared before in this manual.

1) The \beginindex macro uses \begingroup fo keep other changes local; thus,
it won't be necessary to restore \parindent and \maxdepth, etc., to their former values
when the index is finished. The \maxdepth parameter is set to \maxdimen, which is
essentially infinite, so that \box255 will have the true depth of the lagt box that it
contains; we will uge this fact below. (It is safe to disable \maxdepth in this way, since
the entries in an index can be assumed to have reasonably small depth.}) Notice that
\obeylines is used, so that \par will effectively be inserted at the end of every line of
input. The meaning of \par is changed so that it does more than usual: First it does
\endgraf, which is TEX’s ordinary \par operation; then it sets \next to the first token
of the next line, alter which the macro \inxentry will be expanded.

2} When \inxentry comes into play it looks at \next to decide what to do.
There are three cases: If \next is ‘\sub’, the line will be treated as a subsidiary entry;
if \next i& ‘\endindex’, the next commands executed will be ‘\vfill\mark{}\break
\endgroup’; otherwise the line will be treated as o main entry.

3) The text of a main entry is put into parameter #1 of \mainentry; this param-
eter is delimited by 2 comma. The first thing that \mainentry does is “\mark{}’, which
clears the mark in case of a break between entries. Then comes ‘\noindent’, which
canses TEX to go into horizontal mode and to emit \parskip glie. {The \parskip
glue will be a legal breakpoint between lines; it will later be followed by interline glue,
when the first line of the main entry has been typeset by TEX’s paragraphing rontine.)
Then another \mark is put into the paragraph Hself; this one contains the text of the
main entry, and a \toks register called \maintoks is used to inhibit expansion of the
mark text. When the paragraph is completed and broken into lines, this particular
mark will immediately follow the box for the paragraph’s first line, so it will be the
\botmark if a page break cccurs anywhere within the paragraph.

EVETYDAr
futorelet
exhyphenpenalty
raggodright
hangindent
hegingroup
parindent
maxdepth
maxdimen
obeylines

prar

endgrafl

noindent
parskip

toks

maintoks

inhibit expansion

Chapter 25: Output Routines

4} A gimilar construction is used for \subentry, but the mark is more compli-
cated. The \maintoks register will still contain the wmain entry. The text for the
subsidiary entry is added using another token list register, \subtoks. Since \zub has
been defined to equal \Vindent, it will not be expanded in this \mark.

@@ The macros just defined will typeset entries that contain the necessary marks;

now we must constroct an output routine that uses these marks in the desired
way, to insert new lines that say “(continued)’ as mentioned above. Again, the reader
is advised to try solving this problem before looking at the following solution.

\ontput={\dimen0=\dp255 \normalountput
\expandafter\inxcheck\botmark\zub\end}
\def\inxcheck#1\sub#2\end{\def\next{#1}%
\ifx\next\empty % do nothing if \botmark i= nnll
\else\noindent #1\contimned ¥ ‘Main entry {contimmed}:*’
\def\next {#2}7,
\ifx\next\empty % nothing more if \botmark has no \sub
\else\let\zub=\continued \indent #2\fi
\advance\dimen0 by-\prevdepth \kern\dimenO \fi}
\def\contimmed{ ({\it continmned}\thinspace):\endgraf}

This coding is a bit more subtle than usual. It assumes that \normaloutput takes care
of shipping out \box255 (possibly putting it into wmiticolunm format) and advanc-
ing the page number; then comes new stuff, which is performed by \inxcheck. The
\inxcheck macro is invoked in an interesting way that allows \botmark to be separated
into its cornponents. If \botmark is null, argument #1 to \inxcheck will be aull; hence
\next will be found eguivalent to \empty. (Plain TEX says ‘\def\empty{} in order to
accommodate situations like this.) If \botmark doesn’t contain the token \sub, argn-
ment #1 will be the contents of \botmark while #2 will be null. Otherwise, if \botmark
has the form a\sub 3, argument #1 will be & and #2 will be ‘A\sub’.

@ If \botmark isn’t null, the \inxcheck macro produces one or more Hnes of text
that will be contributed to TEX's main vertical list at the position of the page
break. And here’s where the most subtle point arises: There will be interline ghue at
the page break, computed on the basis of the depth of the box that preceded the break.
That depth is known to the output routine, since it’s the depth of \box255. (The value
of \maxdepth was made infinite for precisely this reason.) Therefore the \inxcheck
macre can ingsert a \kern to compensate for the difference in depth between the old
box and the one that will be ingerted before the interline ghie that has already been
computed. Without this \kern, the spacing would be wrong, The reader should study
this example carefully, to understand the reasoning behind the \kern command, before
designing an output routine that inserts new boxes between random lines of cutput.

@@» EXERCISE 23.7
Madify this construction so that continuation lines are inserted only in the
left columns of even-numbered pages, assmming two-column format,

@@r EXFERCISE 23.8
Trie or false: The \inxcheck macro in this example contributes at most two
lines of output to the main vertical list.

263

indent

IMACTO arguments
ampty

interline gloe
maxdepth

kern

264 Chapter 23: Output Routines

@ When TEX sees an \end comand, it terminates the job only i the main end
vertical list has been entirely output and if \deadcycles=0. Otherwise it deadeycles

. . . penalty-T10000000000
ingerts the egquivalent of

\line{} \vfill \pemalty-*’1000C0C0CC0

into the main vertical list, and prepares to read the ‘\end’ token again. This has the
effect of invoking the output routine repeatedly until everything has been shipped out.
In particular, the last column of two-column format will not be lost.

@@ It is possible to devise output routines that always leave a residue on the main

vertical list, vet they never allow \deadcycles to increase. In such a case TEX
will never come to an end! An output routine can recognize that it is being invoked by
TEX’s endgame, becanse of the highly negative \ontputpenalty caused by the special
\penalty~*10000000000. At such times the output routine should modify its behavior,
if necessary, so that a happy ending will ensue.

Chapter 25: Output Routines 265

SHERIDAN
LEONTIRF

i think you wift like them,
when you shall see them on a beautiful quarto page,

wheare a neat rivuiet of text
shall meander through a meadow of margin.
‘Fore Gad they wili be the most alegant things of their kind!

- RICHARD BRINSLEY SHERIDAN, The School for Scandal {1777)

The influence of technical changes upon outputs

through variation in the generaf investment level 3

is 50 smalf that actually it could have been neglected.

— WASSILY W. LEQONTIEF, The Structure of American Economy, 1919-1929 {1941)

_

24

Summary of
Vertical

Mode

Chapter 24: Summary of Vertical Mode

The whole TEX language has been presented in the previous chapters; we have fi-
nally reached the end of our journey into previously uncharted territory. Hurray!
Victory! Now it is time to take a more systematic fook at what we have encoun-
tered: to consider the facts in an orderly manner, rather than to mix them up
with informal examples and applications as we have been doing. A child learns
to speak a language before learning formal rules of grammar, but the rules of
grammar come in handy later on when the child reaches adulthood. The purpose
of this chapter—and of the two chapters that follow-—is to present a precise and
concise summary of the language that TEX understands, so that mature users
will be able to commumnicate as effiectively as possible with the machine.

We will be concerned in these chaptors solely with TgX's primitive oper-
ations, rather than with the higher-level features of plain TEX format that most
people deal with, Therefore novice users should put off reading Chapters 24-26
until they feel a need to know what goes on inside the computer. Appendix B
containg a summary of plain TEX, together with a ready-reference guide to the
things that most people want to know about TEX usage. The best way to get an
overview of TEX from a high level is o turn to the opening pages of Appendix B.

Our purpose here, however, is to survey the low-level parts of TEX on which
higher-level superstructures have been built, in order to provide a detailed reference
for people who do need to kaow the details. The remainder of this chapter is set in
siall type, Like that of the present paragraph, since it is analogous to material that is
marked “doubly dangerons” in other chapters. Instead of using dangerous bend signs
repeatedly, et us simply agree that Chapters 24-26 are dangerous by definition.

TEX actually has a few features that dide’t seem to be worth mentioning in
previons chapters, so they will be introduced here ag part of our complete survey. I
there is any disagreement between something that was said previously and something
that will be said below, the facts in the present chapter and its successors should be
regarded as better approsimations to the truth.

We shall study TEX's digestive processes, e, what TEX does with the lists
of tokens that arrive in #s “stomach.” Chapter 7 hag described the process by which
input files are converted to lists of tokens in TEX's “mouth,” and Chapter 20 explained
kow expandable tokens are converted to unexpandable ones in TEXs “gullet” by a
process similar to regurgitation. When unexpandable tokens finaliv reach TpX’s gastro-
intestinal tract, the real activity of typesetting begins, and that is what we are going
to survey in these summary chapters,

Each token that arrives in TEX s tummy s considered to be a command that
the computer will obey. For example, the letter L’ is a conpnand to typeset an ‘L’
in the current font; “\par’ tells TgX to finish a paragraph. TgX is always in one of
sty modes, as described in Chapter 13, and a command sometimes means different
things in different modes. The present chapter is about vertical mode {and internal
vertical mode, which s almost the same): We shall discnss TEXs response to every
primitive command, when that command ocours in vertical mode. Chapters 25 and 26
characterize horizontal mode and math mode in a similar way, but those chapters are
shorter than this one because many comimands have the same behavior in all modes;
the rules for such commands will not be repeated thrice, they will appear only once.

267

vertical mode
primitive

troth

anatomy of TeX
command

268

Chapter 24: Swmmary of Vertical Mode

Sowme commands have arguments. In other words, one or more of the tokens
that follow a command might be used to modify that command’s behavior, and those
tokens are not considered to be commands themselves. For example, when TEX pro-
cesses the sequence of tokens that corresponds to ‘\dimen2=2.5pt’, it considers oaly
the first token ‘\dimen’ to be a command; the next tokens are swept up as part of the
operation, becanse TEX needs to know what \dimen register is to be set equal to what
{dimen} value.

We shall define TEX's parts of speech by using a modified form of the gram-
matical notation that was introduced about 1960 by John Backus and Peter Naur for
the definition of computer languages. Quantities in angle brackets will either be ex-
plained in words or they will be defined by syntax rules that show exactly how they
are formed from other quantities. For example,

{unit of meagure} — {optional spaces}{internal wnit}
| {optional true}{physical unit}

defines a (unit of meagure} to be either an occurrence of {optional spaces} followed by
an {internal anit}, or {optional trme} followed by {physical unit}. The symbol © — °
in a syntax rule means “is defined to be,” and ° | ' means “or.”

Sernetimes a syntax rile is recursive, in the sense that the right-hand side of
the definition involves the gquantity being defined. For example, the rule

{optional spaces) — {empty) | {space token){optional spaces)

defines the grammatical quantity called {optional spaces} to be either {empty}, or a
{space token} followed hy {optional spaces). The quantity {empty} stands for “noth-
ing,” ie., for no tokens at all; hence the syntax rule just given is a formalized way of
saying that {optional spaces) stands for a sequence of zero or more spaces.

The alternatives on the right-hand side of a syntax rule need not consist
entirely of quantities in angle brackets. Explicit tokens can be used as well. For
example, the rule

{plus or minus} — +12 | -1z

says that {phus or minus) stands for a character token that is either a plus sign or
a minus sign, with category code 12

We shall use a special convention for keywords, since the actual syntax of a
keyword is somewhat technical. Letters in typewriter type like “pt’ will stand for

{ovtional spacesy{p or P¥{t or T},

where (p or P} denotes any non-active character token for either p or P (independent
of the category code), and where {t or T} is similar.

When a control sequence like ‘\dimen’ is used in the syatax rules below, it
stands for any token whose current meaning is the same as the meaning that \dimen
kad when TEX started up. Other tokens can be given this same meaning, using \let
or \futurelet, and the meaning of the control sequence \dimen itself wmay be redefined
by the user, but the syntax rules take no note of this; they just use ‘\dimen’ as a
way of referring to a particular primitive command of TEX. {This notation is to be
distingnished from ‘[dimen]’, which stands for the control sequence token whose actual
name is dimen; see Chapter 7.)

arguiments
Backos

Nauor

angle brackets
syhtax rules
onit of measure
PECOTH Ve
optional spaces
ampty

plos or minos
character token
keywords

2k

bhoxed words

Chapter 24: Summary of Vertical Mode

Control sequences sometimes masguerade as characters, i their meaning has
been assigned by \let or \futurelet. For example, Appendix B says

\let\bgroup={ \let\egroup=}

and these commands make \bgroup and \egroup act somewhat like left and right curly
braces. Such control sequences are calied “implicit characters”; they are interpreted in
the same way as characters, when TEX acts on them as commands, but not always when
they appear in arguments to commands. For example, the command ‘\let\plus=+
does not make \pluz an acceptable substitute for the character token “+i2° in the
syatax rule for {plus or minug) given above, nor does the command “\let\p=p’ make
\p acceptable as part of the keyword pt. When TEXs syntax allows both explicit and
fmplicit characters, the rules below will be careful to say so, explicitly.

The quantity {space token}, which was used in the syntax of {optional spaces}
above, stands for an explicit or mplicit space. In other words, it denctes either a
character token of category 10, or a control sequence or active character whose current
meaning has been made equal to such a token by \let or \futurelet.

It will be convenient to use the symbols ‘0, ‘P, and ‘$ to stand for any
explicit or implicit character tokens of the respective categories 1, 2, and 3, whether or
not the actual character codes are braces or dollar signs. Thus, for example, plain TEX s
\bgroup is an example of 4 “(, and so are the tokens “{;” and “(’; but “{i2” is not.

The last few paragraphs can be summarized by saying that the alternatives
on the right-hand sides of TEX s formal syntax roles are made from one or more of the
following things: (1) syntactic quantities like {optional spaces): {2) explicit character
tokens Hke +49; (3} keywords like pt; {4) control sequence names like \dimen; or {5} the
special symbols (, 1, $.

Let us begin our study of TEX s syatax by discussing the precise meanings of
quantities like {number), {dimen}, and {glue} that cccur frequently as arguments to
commands. The most important of these is {number), which specifies an integer value.
Here's exactly what a {number) is:

{number} — {optional signs}{unsigned mrmber)
{optional signs} — {optional spaces}

| {optional signs}{ples or minusH{optional spaces)
{unsigned number} — {normal integer) | {coerced integer)
{normal integer) — {internal integer}

| {integer constant}{one optional space}

I *sz{octal constant}{one optional space)

| "yy{hexadecimal constant}{one optional space}

| ¢yz{character token}{one optional space}
{integer constant} — {digit} | {digit}{integer constant}
{octal constant) — {octal digit} | {octal digit}{octal constant}
{hexadecimal constant} — (hex digit} | {hex digit}{hexadecimal constant}
{()Ctiﬂ d“i{{lf) —_— O'gz i 1';2 i 2';2 i 352 i 4';2 i 552 i 652 i 7';2
{digit} — {octal digit} | 82 | 9:2
{hl’i?{ d“i{é'“if} —_— {dlglf) i Ay i Byy] [P i Dy] Eis] Fiy

{ &30 | Byg | Cyz | Dig | Esg | Fux
{one optional space} — {space token} | {empty}
{coerced integer) — {internal dimen)} | {internal glue}

269

harotp

EETON

corly

braces

implicit characters
ot

space token

2k

nuinber

optional signs
unsigned nusnber
norinal integer
integer constant
octal constant

hexadecimal constam

octal digit

digit

hex digit

one aptional space
coerced integer

270

Chapter 24: Swmmary of Vertical Mode

The value of a {number}) is the value of the corresponding {unsigned number), thnes —1
for every minus sign in the {optional signs}. An alphabetic constant denotes the char-
acter code in a {character token}; TEX does not expand this token, which should either
be a {character code, category code) pair, or an active character, or a control ge-
guence whoge name consists of a single character. {See Chapter 20 for a complete
Ist of all situations in which TEX does not expand tokens.) An {integer constant}
must not be immediately followed by a {digit}; in other words, if several digits appear
consecutively, they are all considered to be part of the same {integer constant}. A
similar remark applies to the guantities {cctal constant) and (hexadecimal constant}.
The guantity {one optional gpace} is {empty} only if it has to be; Le, TEX looks for
{one optional space} by reading a token and backing up if a {space token} wasn't there.

@@» EXERCISE 24.1
Can you think of a reason why von might want ‘A2’ to be a {kex digit} even
though the letter A hag category 117 {Don’t worry if vour answer is “no.” }

The definition of {number} is now complete except for the three guantities
called {internal integer}, {internal dimen}, and {internal glue}, which will be explained
later; they represent things like parameters and registers. For example, \countl
and \tolerance and \hyphenchar\tenrm are internal integers; \dimenl(and \hsize
and \fontdimen6\tenrm are internal dimensions; \skipl00 and \bazelineskip and
\lastskip are internal glue values. An internal dimension can be “coerced” to be an
integer by assuring units of scaled points. For exarple, if \haize=100pt and if \haize
is used in the context of a (mumber), it denotes the integer value 6553600, Similarly, an
internal glue value can be coerced to be an integer by first coercing it to be a dimension
{omitting the stretchability and shrinkability), then coercing that dimension.

Let’s turn now to the syntax for {dimen), and for {mudimen} its cousin:

dimnen} — {optional signs}{unsigned dimnen
i g g

unsigned dimen} — {normal dimen coerced dimen

g
{coerced dimen} — {internal glue}
{normal dimen) — {internal dimen)} | {factory{unit of measure}
factory — {normal integer} | {decimal constant

8

{decimal constant) — .12 | 12

| {digit}{decimal constant}

| {decimal constant){digit}
{unit of measure} — {optional spaces){internal it}

| {optional true}{physical unit}{one optional space;
{internal unit} — em{one optional space} | ex {one optional space}

| {internal integer} | {internal dimen} | {internal glue}
{optional trme) — true | {empty}
physical unit} — pt clin| b cm | mm | dd | cc | =

P P P P
mudimen} — {optional signs)(unsigned mudimen
i g g

unsigned mudimen} — {normal mudimen} | {coerced mudimen

8
{coerced mudimen} — {internal muglue}
{normal mmdimen} — {factor) {mu unit)
{mn unit) — {optional spaces}{internal muglue} | m {one optional space}

When ‘true’ is present, the factor is multiplied by 1000 and divided by the \mag
parazeter. Physical units are defined in Chapter 10; nm is explained in Chapter 18,

alphabetic constant
character token
one optional space

coerce jditmeng to nombery,
coerce (ghie), to (dimeny,

ditnen

unsigned dimen
coerced dimen
norinal dimen
factor

decimal constant
it of measure
internal unit

500

2

optional true
true

physical onit

ot

P

in

bp

o

i

dd

o

5P

mdimen
onsigned muodimen
coerced rodimen
norimal modimen
M it

min

mag

Chapter 24: Summary of Vertical Mode

Encouraged by our siceess in mastering the precize syntax of the guantities
{number}, {dimen}, and {mudimen}, let’s tackle {gine) and {muglue):

{glue} — {optional signs}{internal glue}
| {dimen}{stretch}{shrink}
{stretch) — plus {dimen} | plus {fil dimen) | {optional spaces}
{shrink} — minmz {dimen} | minnsz (fil dimen} | {optional spaces}
{fil dimen} — {optional signs}{factor} {fil unit}{optional spaces)
{fil unity} — £il | {fil unit}l
{muglue} — {optional signs}{internal muglue}
| {mmdimen){mustretch}{mmshrink}
{mustretch} — plus {mudimen} | plus {fil dimen} | {optional spaces}
{mughrink} — minus {mmdimen}) | minns {fil dimen} | {optional spaces)

TEX makes a large number of internal quantities accessible so that a format
designer can influence TEX's behavior. Here is a list of all these quantities, except for
the parameters {which will be listed later).

{internal integer) — {integer parameter) | {special integer) | \lastpenalty
i {conntdef token} | \count{8-bit number} | {codename}{8-bit number}
| {chardef token) | (mathchardef token) | \parshape | \inputlineno
{ \hyphenchar{font} | \skewchar{font} | \badneszs

{special integer) — \spacefactor | \prevgraf
I \deadcycles | \insertpenalties

{codename} — \catcode | \mathcode
i \lccode | \nccode | \sfcode | \delcode

{font}; — {fontdef token} | \font | {family member}

{farnily membery — {font range}{4-bit number)

{font range; — \textfont | \scriptfont | \scriptscriptfont

{imternal dimen} — {dimen parameter) | {special dimen} | \lastkern
| {dimendef token) | \dimen{8-bit number}

I {box dimension}{8-bit number} | \fontdimen{number}{font}

{special dimen} — \prevdepth | \pagegoal | \pagetotal
| \pagestretch | \pagefilstretch | \pagefillstretch
| \pagefilllstretch | \pageshrink | \pagedepth

{box dimensiony) — \ht | \wd | \dp

{internal ghie} — {glue parameter} | \lastskip
| {skipdef token} | \skip{8-bit number}

{imternal muglue} — {muglue parameter) | \last=kip
| {muskipdef token} | \muskip{8-bit number}

A {countdef token} is a control sequence token in which the control sequence’s current
meaning has been defined by \countdef; the other gquantities {dimendef token}, etc.,
are defined similarly. A {fontdef token) refers to a definition by \font, or it can be
the predefined font identifier called \mmllfont. When a {countdef token} is used as an
internal integer, it denotes the value of the corresponding \count register, and similar
statements hold for {dimendef token), {skipdef token}, {muskipdef token}. When a
{chardef token} or {mathchardef token} is used as an internal integer, it denotes the
value in the \chardef or \mathchardef itself. An (8-bit number) is a {number} whose
value is between © and 2% — 1 = 255; a {4-bit muwmber} is similar,

271

ahis

streteh

plos

plos

shrink

s

minos

il dimen

11 onidt

fil

1

mnglog
mastretch
plos

plos

moshrink
mings

minos

internal integer
lastpenalty
ot
parshape
inputhnenc
hyphenchar
skewchar
bhadness
special integer
spacefactor
preveral
deadoveles
insertpenalties
codename
catcode
matheade
lecode

necods

sfeode
deleode

fomt

font

family member
font range
terntfom
seriptiont
seriptseriptfont
internal dimen
lastkern

dimen
fontdimen
special dimen
prevdepth
pagegoal
pagetotal
pagestretch
pagetilstretch
pagehlstretch
pagetilllstretoh
pageshrink
pagedepth

hox diinension
ht

ek

dp

internal glue
lastskip

skip

internal muglue
lastskip
sk
countdel token
countdef
dimendel token
skitelef token

272

Chapter 24: Swmmary of Vertical Mode

TEX allows \spacefactor to be an internal integer only in horizontal modes;
\prevdepth can be an internal dimension oaly in vertical modes; \lastskip can be
{internal muglue} only in math mode when the current math list ends with a mughue
item; and \lastskip cannot be {internal glue} in such a cage. When \parshape iz used
as an internal integer, it denotes only the number of controlled lines, not their sizes or
indentations. The seven special dimensions \pagetotal, \pagestretch, and so on are
all zero when the current page contains no boxes, and \pagegoal is \maxdimen at such
times {see Chapter 15).

From the syatax rales just given, it’s possible to deduce exactly what hap-
pens to spaces when they are in the vicinity of nuwmerical guantities: TEX allows
a {mumber} or {dimen} to be preceded by arbitrarily many spaces, and to be fol
lowed by at most one space; however, there is no optional space after a {(nmmber}
or {dimen} that ends with an unexpandable control sequence. For example, if TEX
sees ‘\space\space24\space\space’ when it is looking for a {number}, it gobbles up
the first three spaces, but the fourth one survives; similarly, one space remains when
“24pt\space\space’ and ‘\dimen24\space\space’ and ‘\pagegoal\space’ are treated
ag {dimen} values.

@@» EXERCISE 24.2
Is "24\space\szpace pt’ a legal {dimen}?

@@» EXERCISE 24.3
Is there any difference between “+\baselineskip’, ‘~ ~\baselineskip’, and
“I\baselineskip’, when TEX reads them as {glue)?

@@» EXERCISE 24.4
What {glue} results from "DD DDPLUS2,5 \spacefactor\space, assuming the
conventions of plain TEX, when \spacefactor equals 10007

Let’s turn now to TpX's parameters, which the previous chapters have in-

troduced one at a time; it will be convenient to assemble them all together. An
{integer parameter} is one of the following tokens:

\pretolerance {badness tolerance before hyphenation)
\tolerance (badaess tolerance after hyphenation)
\hbadness {badness above which bad hboxes will be shown)
\vbadnesz {badness above which bad vboxes will be shown)

\linepenalty {amonnt added to badness of every line in a paragraph)
\hyphenpenalty (penalty for line break after discretionary hyphen)
\exhyphenpenalty (penalty for lne break alter explicit hyphen}
\binoppenalty {penalty for line break after binary operation)
\relpenalty {penalty for line break after math relation}
\clubpenalty {penalty for creating a club line at bottom of page)
\widowpenalty {penalty for creating a widow line at top of page)
\displaywidowpenalty {ditto, before a dizplay}

\brokenpenalty ({penalty for page break after a hyphenated line}
\predisplaypenalty {penalty for page break just before a display)
\postdisplaypenalty (penalty for page break just after a display)
\interlinepenalty ({additional penalty for page break between lines)
\floatingpenalty (penalty for insertions that are split)

BPaces
parameters

integer paramoter
pretolerance
tolerance

hhadness

vhadness
linepenalty
hyphenpenalty
exbyphenpenalty
hinoppenalty
relpenalty
clubpenalty
widowpenalty
displaywidowpenalty
brokenpenalty
prodisplaypenalty
postdizplaypenalty
interlinepenalty
Hoatingpenalty

Chapter 24: Summary of Vertical Mode 273

\outputpenalty (penalty at the current page break} autputpenalty
\doublehyphendemerits (demerits for consecutive broken Hnes) ?_0“kahé]f1>1m'ﬂ<kfm}:m5
- . . - . . INQINYRNEN QEMerits
\finalhyphendemerits {demerits for a penultimate broken line) adjdemerits
\adjdemerits {demerits for adjacent incompatible lines) loosenoss
\loozenesz {change to the number of lnes in a paragraph) {igl‘g}]:.lgginwms
\panzing (positive if pansing after each line is read from a file) tracingonline
\holdinginserts {pogitive if ingertions remain dormant in output box) :T A
" g - . . . TACINEItats
\tracingonline (positive if showing diagnostic info on the terminal} tract “gparagraphs
\tracingmacros (positive if showing macros as they are expanded) tracingpages
. EYEIET I . . b . , tracingootpot
\trac:}.ngstats {positive ﬁi {:sil()ir?"xﬂlg 5tz}tsat1.c5 about meu;o?}'aaage) tracinglostchars
\tracingparagraphs (3}051}%’“9 if showing Hne-break caiculatmzw} 1ra(':?ng{:{nmnan(b
\tracingpages {positive if showing page-break calenlations) :T'(“""’g'”‘ﬁ“"”‘ﬁ
. i Iy . - angnage
\tracingountput (positive if showing boxes that are shipped out) u(:}g-phg
\tracinglostchars ({positive if showing characters not in the font) lefthyphenmin
\tracingcommands {positive if showing commands before they are executed) ; ']f,]]’):;f':f}:*“”““
\tracingrestores (})G{ﬂfﬁ\“ﬁ if ShOWiElg deassigninents when groups Qild) defanlthyphenchar
\language f{the current set of hyphenation rules)]ik'}[ﬂliigﬂi“af }
i g . - . . defan Mskevchar
\uchyph {positive if hyphenating words beginning with capital letters) Slowthas
\lefthyphenmin (smallest fragment at beginning of hyphenated word} escapechar
s s . 4 ST, . endlinechar
\righthyphenmin (ﬁna,..li‘egt éfajgx'ﬁent at end of §13. Pliexfated word) neelinechar
\globaldefs {nonzero if overriding \global specifications} mandead cyclos
\defaulthyphenchar {\hyphenchar value when a font is loaded} i}ﬂ“gﬂﬁ(‘f
\defanltskewchar (\skewchar value when a font is loaded) ;;:2:;
\escapechar {escape character in the output of control sequence tokens) delimiterfactor
\endlinechar {character placed at the right end of an input Hne) :i';‘t“
\newlinechar {character that starts a new output lne} manth
\maxdeadcycles (upper bouad on \deadcycles) yoar
\h £t | ine indentat: i res after this - Bines showhoxbreadth
angafter (hanging indentation changes after this many lines) showhondepth
\fam {the current family number) errorcontextlines

\mag {magnification ratio, times 1008}

\delimiterfactor (ratic for variable delimiters, times 1000}

\time ({current time of day in minutes since midnight}

\day f{current day of the month)

\month {current month of the year}

\year (current year of cur Lord)

\showboxbreadth {maximum items per level when boxes are shown)
\showboxdepth {maximum level when boxes are shown)
\errorcontextlines {maximum extra context shown when errors coour)

The first few of these parameters have values in units of “badness” and “penalties”
that affect line breaking and page breaking. Then come demerit-oriented parameters;
demerits are essentially given in units of “badness squared,” so those parameters tend to
have larger values. By contrast, the next few parameters {\looseness, \pausing, etc.)
generally have quite suall valnes (either —1 or 0 or 1 or 2). Miscellaneons parazeters
comrplete the set. TEX computes the date and time when it begins a job, if the operating
system provides such information; but afterwards the clock does not keep ticking: The
user can change \time just like any ordinary parameter. Chapter 10 points out that
\mag rust not be changed alter TEX is committed to a particular magnification.

274 Chapter 24 Swmmary of Vertical Mode

A {dimen parameter) is one of the following:

\hfuzz (maximum overrun before overfull hbox messages ocour)
\vfuzz (maximum overrua before overfull vbox messages ocour)
\overfullrule (width of rules appended to overfull boxes)
\emergencysiretch (reduces baduesses on final pass of line-breaking)
\hsize (line width in horizontal mode)

\veize (page height in vertical mode)

\maxdepth (maximum depth of boxes on main pages)
\gplitmaxdepth {maximmun depth of boxes on split pages)
\boxmaxdepth (maximum depth of boxes on explicit pages)
\lineskiplimit (threshold where \baselineskip changes to \lineskip)
\delimitershortfall {maximm space not covered by a delimiter)
\nulldelimiterspace (width of a nuil delimiter)

\scriptspace {extra space after subscript or superscript)
\mathsurround {kerning before and after math in text)
\predisplaysize ({length of text preceding a display)
\displaywidth {length of line for displayed equation)
\displayindent (indemtation of Hne for displayed equation)
\parindent (width of \indent)

\hangindent (amount of hanging imdentation)

\hoffset (horizomtal offset in \shipout)

\voffset (vertical offset in \shipout)

And the possibilities for {glwe parameter) are:

\baselineskip {desired glue between baselines)
\lineskip ({interline glue if \baselineskip isn’t feasible)
\parskip [extra glue just above paragraphs)
\abovedisplayskip (extra glue just above displays)
\abovedizplayshortskip {ditto, following short lines)
\belowdisplayskip {extra glue just below displays)
\belowdisplayshortskip {ditto, following short lines)
\leftskip {ghie at left of justified lines)

\rightskip {gle at right of justified Hnes)

\topskip f{glue at top of main pages)

\splittopskip ({glue at top of split pages)

\tabskip {glue between aligned entries)

\spaceskip {glie between words, if nonzera)
\xspaceskip ({glue between sentences, if nonzero)
\parfillskip (additional \rightskip at end of paragraphs)

Finally, there are three permissible (muglue parameter} tokens:

\thinmekip (thin space in math formulas)
\medmmskip {mediym gpace in math formulas)
\thickmskip (thick space in math formulas)

All of these gquantities are explained in more detail somewhere else in this book, and
vou can wse Appendix [to find out where.

dimen parameter
hfozz

vlozz
overfollrule
emergencystretch
hize

i ge

maxcepth
splitmaxdepth
boxmaxdepth
lineskiplimit
delimitershortfall
nulldelimiterspace
seriptspace
mathsurround
predisplaysize
displaywidth
displayindent
parindent
hangindent
hoffset

volfset

glue parameter
baselineskip
lineskip

parskip
ahovedisplayskip
abovedisplayshortskip
bhelowdisplayskip
helowdisplayshortskip
leftskip

rightskip

topskip
splittopskip
tabskip

parfilskip
mugloe parametor
thinsmoskip
mehmuskip
thickiriskip

Chapter 24: Summary of Vertical Mode

TEX alse has parameters that are token lists. Such parameters do not eater
into the definitions of {number} and such things, but we might as well list them now
g0 that our tabalation of parameters is complete. A {token parameter} is any of:

\output {the user’s output routine)

\everypar {tokens to insert when a paragraph begins)

\everymath (tokens to insert when math in text begins)
\everydisplay {tokens to insert when display math beging)
\everyhbox (tokens to insert when an hbox beging)

\everyvbox (tokens to insert when a vbox beging}

\everyjob {tokens to insert when the job begins)

\everycr (fokens to insert alter every \cr or nonredundant \crcr)
\errhelp (tokens that supplement an \errmessage)

That makes a total of 103 parameters of all five kinds.

@@» EXERCISE 24.5
Explain how \everyjob can be non-null when a job begins.

It’s time now to return to our original goal, namely to study the commands
that are ocbeved by TEX s digestive organs. Many commands are carried out in the same
way regardless of the current mode. The most hnportant commands of this type are
called assiguinents, since they assign new values to the meaning of control sequences or
to TEX's internal quantities. For example, ‘\def\a{a}’ and ‘\parshape=1 5pt 100pt’
and ‘\advance\comnt20 by-1" and ‘\font\ff = cmif at 20pt’ are all assignments,
and they all have the sammne effect in all modes. Assignment commands often include
an = sign, but in all cases this sign is eptional; vou can leave it out if you don’t mind
the fact that the resulting TEX code might not look quite ke an assigniment.

{assignment) — (non-macro assigement) | {macre assigninent)
{non-macro assignment) — {simple assignment}

| \global{nou-macro assignment}
{macro assignment) — {definition} | {prefix}{macro assignment)
{prefix} — \global | \long | \outer
{eguals} — {optional spacest | {optional spaces) =

This syntax shows that every assignment can be prefived by \global, but only macro-
definition assignments are allowed to be prefixed by \long or \outer. Incidentally, if the
\globaldefs parameter is positive at the time of the assigniment, a prefix of \global is
antomatically implied; but if \globaldefs is negative at the time of the assignment, a
prefix of \global igignored. If \globaldefs is zerc {which it usually is), the appearance
or nonappearance of \global determines whether or not a global assigmuent is made,

{definition} — {def}{control sequence){definition text)
{def} — \def | \gdef | \edef | \xdef
{definition text} — {(parameter text}{left brace}{balanced text}{right brace}

Here {control sequence) denotes a token that is either a control sequence or an active
character; (left brace} and {right brace} are explicit character tokens whose category
codes are respectively of types 1 and 2. The {parameter text} contains no {left brace}
or {right brace} tokens, aand it obeys the rules of Chapter 20. All occurrences of

275

token parameter
autput

EVETYAr
everyinath
everydisplay
everyhbox

vy vhon
everyjob
eveTyer

or

orer

errhel
ﬂ.,‘a'.‘iig'll'll’l{‘,’ll't!.‘i
equals sign
ﬂ.,‘a'.‘iig'll'll’l{‘,’ll't!

BT -EIRLTO as;signmunt;
global

macro assigiment
pretin

long

otter

eqoals
globaldefs
detinition

def

def

melef

edef

xdef

delinition text
control senoence
left brace

right brace
parameter text

276

Chapter 24: Swmmary of Vertical Mode

{left brace} and {right brace} tokens within the (balanced text} must be properly nested
like parentheses. A \gdef command is equivalent to \global\def, and \xdef is equiv-
alent to \global\edef. TEX reads the {control sequence} and {parameter text) tokens
and the opening (left brace} without expanding them; it expands the {balanced text}
{right brace) tokens only in the case of \edef and \xdef.

Several commands that we will study below have a syntax somewhat like that
of a definition, but the {parameter text) is replaced by an arbitrary sequence of spaces
and ‘\relax’ commands, and the {left brace} token can be implicit:

{filler} — {optional spaces} | {filler}\relax{optional spaces)
{general text) — (filler) {{balanced text){right brace}

The main purpose of a {general text) is to specify the {balanced text) insgide.
Many different kinds of assignments are possible, but they fall into compara-
tively few patterns, as indicated by the following syntax rules:

{simple assignment} — {variable assigninent} | {arithmetic}
i {code assignment} | {let assignicent} | {shorthand definition}
| {foutdef token} | {family assignment) | {shape assigmnent}
i \read{mimber} to {optional spaces}{control sequence)
| \zetbox(8-bit number}{equals}{filler}{box}
| \font{control sequence}{eqnals}{file name}{at clause}
[{global assignment)
{variable assignment} — (integer variable}{equals}{number}
| {dimen variable} {equals}{dimen}
| {glue variable}{equals){glue}
{ {muglee variable}{equals) (mugle)
| {token variable}{equals}{general text}
| {token variable){equals}{filler}{token variable}
{arithmetic) — \advance{integer variable}{optional by} {number}
i \advance{dimen variable}{optional by}{dimen}
| \advance{ghte variable}{optional by}{glue}
| \advance {muglue variable}{optional by}{muglue}
| \multiply{numeric variable}{optional by} {number}
{ \divide{numeric variable}{optional by}{number}
{optional by} — by | {optional spaces}
{integer variable} — (integer parameter} | {countdef token}
| \count{8-bit number}
{dimen variable} — {dimen parameter} | {dimendef token}
| \dimen{8-bit number}
{glue variable} — {glue parameter} | (skipdef token}
| \akip(8-bit numbes)
{mmughie variable} — {muglue parameter) | {muskipdef token}
| \muskip(8-bit mrumber}
{token variable} — (token parameter} | (toksdef token}
| Vtoka(8-bit number)
{numeric variable) — {integer variable} | {dimen variable}
| {ghue variable} | {muglue variable}

halanced text
filler

relad

general text
stmple assignment
read
0
sethox
fomt

variable assignment

arithmetic
advance
maltiply

divide

optional by

by

integer variable
count

dimen variahle
dimen

glye variable
skip

mogloe variable
s kip

token variable
toks

muimeric variahle

Chapter 24: Summary of Vertical Mode

{code assignment} — {code name}{8-bit number}{equals} {(number}
{let agsignment) — \futurelet{control sequence}{token}{token}
I \let{control sequence}{equals}{one optional space}{token}
{shorthand definition) — \chardef{control sequence){equals}{8-bit number}
| \mathchardef{control sequence}{equals}{15-bit number}
| {registerdef}{control sequence){equals){8-bit number}
{registerdef} — \countdef | \dimendef | \skipdef | \muskipdef | \tokadef
{family assignment} — {(famnily member¥equals) {font}
{shape assignment} — \parshape{equals} (nmber}(shape dimensions)

The {number} at the end of a {code assignment} must not be negative, except in the
cage that a \delcode is being assigned. Furthermore, that {number} should be at most
15 for \catcode, 32768 for \mathcode, 255 for \lccode or \uccode, 32767 for \sfcode,
and 2°* — 1 for \delcode. In a {shape assignment) for which the {munber} is 7, the
{shape dimensions} are {empty} if = < 0, otherwise they consist of 2n consecutive
occarrences of (dimen). TEX does not expand tokens when it scans the arguments of
\let and \futurelet.

@@» EXERCISE 24.6

We discussed the distinction between explicit and implicit character tokens
earlier in this chapter. Explain how vou can make the control sequence \cs into an
implicit space, using {a) \futurelet, {b} \let.

All of the assignments mentioned so far will obey TEX's grouping structure;
ie., the changed guantities will be restored to their former values when the current
groap ends, unless the change was global. The remaining assignments are different,
since they affect TEX’s global font tables or hyphenation tables, or they affect certain
control variables of such an intimate nature that grouping would be inappropriate. In
all of the following cases, the presence or absence of \global as a prefix has no effect.

{global assignment} — {font assignment}
| {hyphenation assignment}
i {box size assignment}
| {interaction mode assignicent}
| {intimate assignment)
font assignment) — \fontdimen{number}{font){equals}{dimen
8
! \hyphenchar{font} {equals}{number}
| \skewchar{fout}{equals){number)
{at clanse} — at {dimen} | scaled {number) | {optional spaces}
hyphenation assignment) — \hyphenation{general text
AEY g yP g
I \patterns{general text}
box size assignment) — {box dimension }{8-bit mumber}{equals}{ditzen
g
interaction mode assignment} — \errorstopmode | \scrollmode
8 P
| \nonstopmode | \batchmode
intimate assignment) — {special integer Hequals} (number
g P g
| {special dimen}{equals){dimen}

When o \fontdimen value is assigned, the {number) wust be positive and not greater
than the aumber of parameters in the font’s metric information file, unless that font
information has just been loaded into TEX s memory; in the latter cagse, vou are allowed

277

code assignment
let assignment
fotorelet

let

shorthand definition
chardef
mathchardel
registerdef
countdef
dimendef

skipdef
mpskipeef
toksdef

family assigninent
shape assigmment
parshape

shape dimensions

nplicit character tokens

global parameters
global assignment
font assignment
fonmtdimen
hyphenchar
skevwchar

at claose

at

scaled

hyphenation assignment

hyphenation
patterns
bhox size assignment

Interaction mode assignment

errorstopmaode
serollimode
nonstopmode
batchmaode

intimate assignment

278

Chapter 24: Swmmary of Vertical Mode

to increase the number of parameters {see Appendix F). The {special integer} and
{special diznen} guantities were listed above when we discussed internal integers and
dimensions. When \prevgraf is set to a {nmmber}, the number must not be negative.

The syntax for (file name} is not standard in TEX, because different operating
systems have different conventions. You should ask your local systemn wizards for
details on just how they have decided to fmplement file names. However, the following
principles should hold universally: A {file name} should consist of {optional spaces)
followed by explicit character tokens (after expansion). A sequence of six or fewer
ordinary letters and/or digits followed by a space should be a file name that works in
essentially the same way on all installations of TEX. Uppercase letters are not considered
equivalent to their lowercase counterparts in file names; for example, if vou refer to fonts
cmrld and CMR10, TEX will not notice any similarity between them, although it might
input the same font wetric file for both fonts.

TeX takes precautions so that constructions like “\chardef\cs=10\cs’ and
‘Nont\cz=name\ca’ won't expand the second \cs until the assignments are doae.

Our discussion of agsignments is complete except that the \setbox assignment
frvolves a quaatity called (box} that has not vet been defined. Here is its syntax:

{box} — \box{8-bit number} | \copy(8-bit mmber}
| \astbox | \vaplit{8-bit number} to {dimen}
I \hbox{box specification} {{horizontal mode material}}
I \wbox{box specification} {{vertical mode material}}
[\vtop{box specification) {{vertical mode material}}
{box specification) — to {dimen}{filler}
apread {dimen}{filler} | {filler}

The \lastbox operation is not permitted in math modes, nor is it allowed in vertical
mode when the main vertical list has been entirely contributed to the current page.
But it is allowed in horizontal modes and in internal vertical mode; in such modes it
refers to {and removes) the last item of the current list, provided that the last item is
an hbox or vhox.

The three last alternatives for a (box} present us with a new sitnation: The
{horizontal mode material}) in an \hbox and the {vertical mode material} in a \vbox
can’t simply be swallowed up in one command like an {8-bit number} or a {dimen);
thousands of commands may have to be executed before that box is constructed and
before the \setbox command can be completed.

Here's what really happens: A command Like

\zetbox{nmmber}=\hbox to{dimen}{{horizontal mode material}}

canses TEX to evaluate the {number} and the {dimen}, and to put those values on
a “stack” for sale keeping. Then TgX reads the ‘{* {which stands for an explicit or
fmplicit begin-group character, ag explained earlier), and this initiates a new level of
grouping. At this point TEX eaters restricted horizontal mode and proceeds to execuie
commands in that mode. An arbitrarily complex box can now be constructed; the fact
that this box is eventually destined for o \setbox command has no effect on TEX s
behavior while the box is being built. Eventually, when the matching ‘Y apopears,
TEX restores values that were changed by assigoiments in the group just ended; then
it packages the hbox {using the size that was saved on the stack), and completes the
\setbox command, returning to the mode it was in at the the of the \aetbox.

file name

haox

hem

COpY

lasthox

v lit

0

hbox

vhox

o

box specitication

to

spread

horizontal mode material
vertical mode material

Chapter 24: Summary of Vertical Mode

Let us now consider other commands that, like assignments, are obeved in
basically the same way regardiess of TEX's current mode,

= \relax. This is an easy one: TEX does nothing.

= }. This one is harder, because it depends on the curreat group. TEX should
now be working on a group that began with {; and it knows why it started that
groap. So it does the appropriate finishing actions, undoees the effects of non-global
agsignments, and leaves the group. At this point TEX wight leave its current mode and
return to a mode that was previcusly in effect.

= \begingroup. When TEX sees this command, it enters a group that must be
terminated by \endgroup, not by }. The mode doesn’t change.

» \endgroup. TEX should currently be processing a group that began with
\begingroup. Quantities that were changed by non-global assignments in that group
are restored to their former values. TEX leaves the group, but stays in the same mode.

» \zhow {token}, \showbox {8-bit number}, \showlists, \showthe{internal
quantity}. These commands are intended to help you figure out what TeX thinks it
is doing. The tokens following \showthe should be anything that can foliow \the, as
explaimed in Chapter 20.

@@» EXERCISE 24.7

Review the rules for what can follow \the in Chapter 20, and construct a
formal syotax that defines {nternal qmantity} in a way that fits with the other syntax
rales we have been discussing.

= \zhipout{box}. After the {box) is formed—possibly by constructing it explic-
itly and changing modes during the construction, as explained for \hbox earlier—its
contents are sent to the dvi file {see Chapter 23).

= \ignorespaces {optional spaces}. TEX reads {and expands) tokens, doing
nothing until reaching one that is not a {space token}.

= \afterasaignment{token). The {token} is saved in a special place; it will be
mserted back into the mput just alter the next assignment command has been per-
formed. An assignment need not follow immediately; if another \afterasaignment is
performed before the next assignment, the second one overrides the first. If the next
assignment is a \zetbox, and i the assigned (box} is \hbox or \vbox or \vtop, the
{token} will be inserted just after the { in the box construction, not after the }; it will
also come just before any tokens inserted by \everyhbox or \everyvbox.

» \aftergroup{token}. The {token} is saved on TEX’s stack; it will be inserted
back inte the input just after the current group has been completed and its local
agssignments have been undone. I several \aftergroup commands ccour in the same
groap, the corresponding commands will be scanned in the same order; for example,
‘{\aftergroup\a\aftergroup\b}’ yields ‘\a\b’.

= \nuppercase{general text}, \lowercase{general text). The {(balanced text) in
the general text is converted to uppercagse form or to lowercase form using the \nccode
or \lccode table, as explained in Chapter 7; no expansion is done. Then TEX will read
that {balanced text} again.

» \messzage{reneral text), \errmessage{general text}. The balanced text (with
expansion} is written on the nser’s terminal, using the format of error messages in the

279

relas
hegingraup
endgrong

show

showhox
showlists
showthe
internal quantity
shipout

i
Ionorespacess
afterassigmnent
everyhbox
everyvhox
aftergroup
oppercase
lowercase
INessage

IS ALE

280

Chapter 24: Swmmary of Vertical Mode

case of \errmezsage. In the latter case the \errhelp tokens will be shown if they are
nonempty and if the user asks for help.

= \openin{4-bit number}{equals} {filename}, \closein{4-bit number}. These
comrands open or close the specified input strearn, for use in \read assignients as
explained in Chapter 20.

= \immediate\openout{4-bit number}{equals}{filename), \immediate\closeout
{4-bit number). The specified output stream is opened or closed, for use in \write
commands, as explained in Chapter 21.

» \immediate\write{number}{general text}. The balanced text is written on
the file that corresponds to the specified stream mumber, provided that such a file
is open. Otherwise it is written on the user’s terminal and on the log file. {See
Chapter 21; the terminal is cmitted if the {number} is negative.)

That completes the list of mode-independent commands, ie, the commands
that do not directly affect the lists that TEX is building. When TEX is in vertical mode
or internal vertical mode, it is constructing a vertical list; when TEX is in horizontal
mode or restricted horizontal mode, it is constructing a horizontal Bst; when TgX is
in math mode or display math mode, it is constructing—guess what—a math list, In
each of these cases we can speak of the “curreat Hst”; and there are some commands
that operate in essentially the same way, regardless of the mode, except that they deal
with different sorts of lists:

= \openout{4-bit number){equals}{filename}, \closeont{4-bit mumber}, \urite
{number}{general text}., These commands are recorded into a “whatsit” item, which
is appended to the current list. The command will be performed later, during any
\shipout that applies to this lst, unless the lst is part of a box inside leaders.

= \special{general fext). The balanced fext is expanded and put into o “whai-
sit” item, which is appended to the current list. The text will eventually appear in the
dri file as an instraction to subseguent software (see Chapter 21).

= \penalty{number}. A penalty item carrying the specified number is appended
to the current list. In vertical mode, TEX also exercises the page builder {see below).

» \kern{dimen}, \mkern{mudimen}. A kern item carrying the specified dimen-
sion is appended to the current Hst. In vertical modes this denotes a vertical space;
atherwise it denotes a horizontal space. An \mkern is allowed only in math modes.

» \unpenalty, \unkern, \unskip. If the last itemn on the current list is respec-
tively of type penalty, kern, or ghie (possibly including leaders), that itemn is removed
from the list. However, like \lastbox, these commands are not permitted in vertical
maode if the main vertical list-so-far has been entirely contributed to the current page,
since TEX never removes itews from the current page.

» \mark{general text}. The balanced text is expanded and put into a mark item,
which i appended to the current Bst. The text may eventually become the replacement
text for \topmark, \firatmark, \botmark, \splitfirstmark, and/or \splitbotmark,
if this mark itemn ever gets into a vertical list. {Mark iterms can appear in horizontal
lists and math Lists, but they have no effect until they “migrate” out of their list. The
migration process is discussed below and in Chapter 25.)

= \inzert{(8-bit aumber}filler}{{vertical mode material}}; the {8-bit number)
must not be 255, The “{’ canses TpX to enter internal vertical mode and a new

errhelp
GpRenin
closein
immediate
apengot
closeout
write

leaders
special

i

penalty

kern

mkern
onpenalty
tnkern
onskip
leaders

mark
topimark
Hmstrark
hotmark
splithrstimark
splithotmark
migration process
insert

Chapter 24: Summary of Vertical Mode

level of grouping. When the matching ‘} is sensed, the vertical list is put into an
insertion itern that is appended to the current lst using the values of \splittopskip,
\gplitmaxdepth, and \floatingpenalty that were current in the group just ended.
{See Chapter 15.) This ingertion item leads ultimately to a page insertion only if it
appears in TEX’s main vertical list, so it will have to “migrate” there if i starts out in
a horizontal Het or a math Hst. TEX also exercises the page builder {see below), alter
an \insert has been appended in vertical mode.

s \vadjust{filier}{{vertical mode material}}. This iz similar to \insert; the
comstructed vertical list goes into an adjustment item that is appended to the current
list. However, \vadjuat is not allowed in vertical modes, When an adjustient item
miigrates from a horizontal list to a vertical list, the vertical list inside the adjustient
itemn is “unwrapped” and pat directly into the enclosing list.

Almost everything we have discussed so far in this chapter could equally well have
appeared in a chapter entitled “Summary of Horizontal Mode” or a chapter entitled
“Summary of Math Mode,” because TEX treats all of the commands considered so far
in essentially the same way regardless of the current mode. Chapters 25 and 26 are
going to be a lot shorter than the present one, since it will be unnecessary to repeat
all of the mode-independent rules.

But now we come to commands that are mode-dependent; we shall conclhude
this chapter by discussing what TEX does with the remaining commands, when in
vertical mode or internal vertical mode.

One of the things characteristic of vertical mode is the page-building operation
described in Chapter 15, TeX pericdically takes material that has been put on the
main vertical list and moves it from the “contribution list” to the “current page.” At
such times the output routine might be invoked. We shall say that TEX exercises the
page huilder whenever it tries to empty the current contribution Hist. The concept of
contribution list exists only in the outermost vertical mode, so nothing happens when
TEX exercises the page builder in internal vertical mode.

Another thing characteristic of vertical modes is the interline glue that is
ingerted before boxes, based on the values of \prevdepth and \baselineskip and
\lineskip and \lineskiplimit as explained in Chapter 12, If a command changes
\prevdepth, that fact is specifically mentioned below. The \prevdepth is initially set
to —1006 pt, a special value that inhibits interline ghie, whenever TEX begins to form
a vertical list, except in the case of \halign and \noalign when the interline glue
conventions of the outer list continue inside the inner one.

= \vskip{glae}, \vEil, \vfill, \vss, \vfilneg. A glue item is appended to the
current, vertical Hst.

= {leaders}{box or rule}{vertical skip}. Here {vertical gkip} refers to one of the
five glue-appending commands just mentioned. The formal syntax for {leaders) and for
{box or rale} is

{leaders; —+ \leaders | \cleaders | \xleaders

{box or rule} — {box} | {vertical rale} | {horizontal rule}
{vertical rule} — \vrule{rule specification}

{horizontal rule} — \hrule{rule specification}

281

sphittopskip
sphitimazdepth
Hoatingpenalty
migrate

vad just

page builder
interline glue
baselineskip
lineskip

Hines kiphnit
preveepth
vakif

viil

viill

(2

vlilneg
vertical skip
leaders

hoxr or role
vertical role
horigontal role

2R2

Chapter 24: Swmmary of Vertical Mode

{rule specification} — {optional gpaces} | {rule dimension}{rule specification}
{rule dimension} — width {dimen} | height {dimen} | depth {dimen}

A glue itemn that produces leaders is appended to the current list,
= {space token). Svaces have no effect in vertical wodes.

» (box}. The box is constructed, and if the result is void nothing happens.
Otherwise the current vertical list receives (1) interline glue, followed by (2) the new
box, followed by (3} vertical material that migrates out of the new box (if the {box}
wag an \hbox command}. Then \prevdepth is set to the new box's depth, and TgX
exercises the page builder.

» \moveleft{dimen}{box};, \moveright{dimen}{box}. This acts exactly like an
ordinary {box} command, but the new box that is appended to the vertical list iz also
shifted left or right by the specified amount.

» \unvbox{8-bhit number}, \unvcopy{8-bit number}. If the specified box register
is void, nothing happens. Otherwise that register must contain a vbox. The vertical
list ingide that box is appended to the current vertical list, without changing it in any
way. The value of \prevdepth is not affected. The box register becomes void alter
\unvbox, but it remains unchanged by \unvcopy.

» {horivontal ruley. The specified rule is appended to the current list. Then
\prevdepth is set to —1000pt; this will probibit interline glue when the next box is
appended to the list.

» \halign{box specification}{{alignment material}}. The {(alignment material}
consists of a preamble followed by zero or more lines to be aligned; see Chapter 22,
TEX enters o new level of grouping, represented by the *{° and ‘Y, within which changes
to \tabakip will be confined. The alignment material can also contain optional occur-
rences of “\noalign{filler) {{vertical maode material}}’ between lines; this adds another
level of grouping, TEX operates in internal vertical mode while it works on the ma-
terial in \noalign groups and when it appends lines of the alignment; the resulting
internal vertical list will be appended to the enclosing vertical st alter the alignment
is completed, and the page builder will be exercised. The value of \prevdepth at the
time of the \halign is used at the Deginning of the internal vertical list, and the fi-
nal value of \prevdepth iy carried to the encloging vertical list when the alignment is
completed, so that the interline glue is calculated properly at the beginning and end of
the alignment. TEX also enters an additional level of grouping when it works on each
individual entry of the alignment, during which time it acts in restricted horizontal
mode; the individual entries will be hboxed as part of the final aligpnment, and their
vertical material will wigrate to the enclosing vertical list. The commands \noalign,
\omit, \span, \cr, \crcr, and & {where & denotes an explicit or fmplicit character of
category 4) are intercepted by the alignment process, enrvoute to TEX's stomach, so
they will not appear as commands in the stomach unless TEX has lost track of what
aligniment they belong to.

= \indent. The \parskip glue is appended to the current list, unless TEX is in
internal vertical mmode and the current list is empty. Then TEX enters unrestricted
horizontal mode, starting the horizontal Hst with an empty bhbox whose width is
\parindent. The \everypar tokens are inserted into TEX’s input. The page builder
is exercised. When the paragraph is eventually completed, horizontal mode will come
to an end as described in Chapter 25.

rule specilication
rule dimension
width

height

depth

leaders

space token
hox

imnigrates

hhox
preveepth
morveleft
moveright
tirvhox
OOy

rule

halign
alignment material
tabskip
noalign
migrate

omit

Fpan

or

CreT

ineent

parskifp
parindent
SVEryPar

Chapter 24: Summary of Vertical Mode

» \noindent. This is exactly like \indent, except that TEX starts out in hord
zontal mode with an empty list instead of with an indeatation.

= \par. The primitive \par command has no effect when TEX is in vertical
maode, except that the page builder is exercised in case something is present on the
contribution list, and the paragraph shape parameters are cleared.

m {. A character token of category 1, or a control sequence like \bgroup that
kas been \let equal to such a character token, causes TEX to start a new level of
grouping. When such a group ends—with ‘}'—TEX will undo the effects of non-global
assignments without leaving whatever mode it is in af that time.

= Some commands are incompatible with vertical mode because they are intrin-
sically horizontal. When the following commands appear in vertical modes they canse
TgX to begin a new paragraph:

{horizontal command} — {letter) | {otherchar) | \char | {chardef token}
| \moboundary | \unhbox | \unhcopy | \valign | \vrule
[\hskip | \hfil | \hfill | \hss | \hfilneg
I \accent | \discretionary |\~]\, |8

Here {letter} and {otherchar) stand for explicit or inplicit character tokens of categories
11 and 12, If any of these tokens ocours as a command in vertical mode or internal
vertical mode, TEX automatically performs an \indent command ag explained above.
This leads inte horizontal mode with the \everypar tokens in the input, after which
TEX will see the {horizontal command} again.

» \end. This command is not allowed in internal vertical mode. In regular
vertical mode it terminates TEX if the main vertical list is emnpty and \deadcycles=0.
Otherwise TEX backs up the \end comimand so that it can be read again; then it
exercises the page builder, after appending a box/glue/penaliy combination that will
force the onutpat routine to act. {See the end of Chapter 23)

m \dump. {Allowed only in INITEX, not in production versions of TEX.) This
command is treated exactly like \end, but it must not appear inside a group. It
cutputs a format file that can be loaded inte TEX's memory at comparatively high
speed to restore the current status.

= None of the above: I any other primitive command of TEX cceurs in vertical
mode, an error message will be given, and TEX will try to recover in a reasonable way,
For example, if a superscript or subscript symbol appears, or i any other inherently
mathematical command is given, TEX will try to insert a ‘¢ (which will stast a para-
graph and enter math mode}. On the other hand if a totally misplaced token like
\endcsname or \omit or \eqno or ¥ appears in vertical mode, TEX will simply ignore it,
after reporting the error. You might enjoy trving to type some really stupid input, just
to see what happens. {Say “\tracingall’ first, as explained in Chapter 27, in order
to get maxinmm information.)

The first and most striking feature is the Verticality of composition,
as opposed to the Horizontality of aff anterior structural modes.

— COCKBURN MUIR, Pagan or Christian? {1860)

Sometimes when | have finished a book | give a surmmary of the whole of it.
- ROBERT WILLIAM DALE, Nine Lectures on Preaching {1878)

283

noindent

par

grouping

new paragraph
horizontal command
char
noboundary
nnhbox
nheopy
valign

vrile

hskip

hiil

hill

his

htilneg

ageent
discretionary

e
deadeyelos=90
dump
INITEX
endesname
MUIR

DALE

_

25

Summary of
Horizontal Mode

Chapter 25: Summary of Horizontal Mode

Continuing the survey that was begun in Chapter 24, let us investigate exactly
what TEX's digestive processes can do, when TEX is building lists in horizontal
mode or in restricted horizontal mode.

Three asterisks, just like those that appear here, can be found near the end of Chap-
ter 24. Everything preceding the three asterisks in that chapter apples to horizontal
mode as well ag to vertical mode, s0 we need not repeat all those rales. In particular,
Chapter 24 explains assignment commands, and it tells how kerns, penalties, marks,
insertions, adjustments, and “whatsits” are put into horizontal lsts. Our present goal
ig to consider the commands that have an intrinsically horizontal flavor, in the sense
that they behave differently in horizontal mode than they do in vertical or math modes.
One of the things characteristic of horizontal mode is the “space factor,” which
modifies the width of spaces as described in Chapter 12, If a command changes the
value of \spacefactor, that fact is specifically noted here. The space factor is initially
set to 1000, when TEX begins to form a horizontal list, except in the case of \valign
and \noalign when the space factor of the outer list continues inside the inner one.

» \hskip{glae}, \hfil, \hfill, \hss, \hfilneg. A glue item is appended to the
current horizontal list.

n {leaders}{box or rule}{horizontal skip}. Here {horizontal skip} refers to one of
the five glie-appending commands just mentioned; the formal syntax for {leaders) and
for {box or rale} is given in Chapter 24. A glue item that produces leaders is appended.

» {space token}. Spaces append glue to the current Hst; the exact amount of
glue depends on \spacefactor, the current font, and the \spaceskip and \xspaceskip
parameters, ag described in Chapter 12,

® Ao A controlspace command appends glue to the current list, using the same
amount that a {space token} inserts when the space factor s 1000

= {box}. The box is constructed, and if the resalt is void nothing happens. Oth-
erwise the new box is appeanded to the current list, and the space factor is set to 10060,

s \raize{dimen}{box}, \lover{dimen}{box}. This acts exactly like an ordinary
{box} command, but the new box that is appended to the horizontal list is also shifted
up or down by the specified amount.

» \unhbox{8-bit mumber}, \unhcopy{8-bit number}. If the specified box register
is void, nothing happens. Otherwise that register must contain an hbox. The horizontal
list inside that box is appended to the current horivontal Hst, without changing it in
any way. The value of \apacefactor is not affected. The box register becomes void
after \unhbox, but it remaing unchanged by \unhcopy.

» {vertical rule}. The specified rule is appended to the current list, and the
\spacefactor is set to 1006.

= \valign{box specification}{{alignment material}}. The {alignment material}
consists of a preamble followed by zero or more columnps to be aligned; see Chap-
ter 22, TEX enters a new level of grouping, represented by the ' and ‘Y, within which
changes to \tabskip will be confined. The alignment material can also contain op-
tional ccenrrences of “\noalign{filler} {{horizontal mode material}}’ between columns;
this adds another level of grouping. TEX operates in restricted horizontal mode while
it works on the material in \noalign groups and when it appends columns of the

285

horizontal mode
space factor
spacefactor
hskip

hiil

hiill

hss

htilneg
horigontal skip
leaders

space token
control space
hox

raise

lower

nnhbox
nnheopy

rule

valign

alignment material

tabskip
noalign

286

Chapter 25: Swmmary of Horizontal Mode

alignment; the resulting internal horizontal list will be appended to the enclosing hor-
izontal list after the alignment is completed. The value of \spacefactor at the time
of the \valign is used at the beginning of the internal horizontal Hst, and the final
value of \spacefactor is carried to the enclosing horizontal list when the alipnment
is completed. The space factor is set to 1000 after each cobumn; hence it affects the
resuits only in \noalign groups. TEX also enters an additional level of grouping when
it works on each individual entry of the alignment, during which time it acts in internal
vertical mode; the individual entries will be vboxed as part of the final alipnment.

= \indent. An empty hox of width \parindent is appended to the current list,
and the space factor is set to 1000,

m \noindent. This ¢comnmand has no effect in horizontal modes.

» \par. The primitive \par command, also called \endgraf in plain TEX, does
nothing in restricted horizontal mode. But it terminates horizontal mode: The current
list is finished off by doing \unskip \penalty10000 \hskip\parfillskip, then it is
broken into Hines as explained in Chapter 14, and TEX returns to the encloging vertical or
imternal vertical mode. The lines of the paragraph are appended to the enclosing vertical
list, interspersed with interline ghue and interline penalties, and with the migration of
vertical material that was in the horizontal lst. Then TgX exercises the page builder.

» {. A character token of category 1, or a control sequence like \bgroup that
kas been \let equal to such a character token, causes TEX to start a new level of
grouping. When such a group ends—with ‘Y'—TgX will undoe the effects of non-global
assignments without leaving whatever mode it is in af that time.

» Some commands are incompatible with horizontal mode because they are in-
trinsically vertical. When the following commands appear in unrestricted horizontal
maode, they cause TEX to conclude the current paragraph:

{vertical command} — \unvbox | \unvcopy | \halign | \hrule
[\vskip | \wfil | \vfill | \vss | \vfilneg | \end | \dump

The appearance of a {vertical command} in restricted horizontal mode is forbidden, but
in regular horizontal mode it causes TEX to insert the token into the input; alter
reading and expanding this token, TEX will see the {vertical command} token
again. {The current meaning of the control sequence \par wiil be used; wmight
nao longer stand for TEX s \par primitive.)

m {letter}, {otherchar}, \char{8-bit number}, {chardef token}, \noboundary. The
most common commands of all are the character commands that tell TEX to append a
character to the current horizontal list, using the current font. If two or more commands
of this type ocour in succession, TEX processes them all ag a unit, converting to Hgatures
and/or inserting kerns as divected by the font information. {Ligatures and kerns may be
influenced by invisible “boundary” characters at the left and right, unless \noboundary
appears.) Each character command adjusts \spacefactor, using the \sfcode table as
described in Chapter 12. In unrestricted horizontal mode, a ‘\discretionary{(}{}{}’
item is appended after a character whose code is the \hyphenchar of its font, or alter
a Heature formed from a sequence that ends with such a character,

= \accent{8-hit mumber}{optional assignments). Here {optional assignments)
stands for zero or more {assignment) commands. If the assignments are not followed
by a {character}, where {character} stands for any of the commands just discussed in

indent
parindent
noindent

par

endgrafl
onskip
penalty 10000
partillskip
migration
grouping
paragraph end, implied
vertical command
anvhon
DNVEOTY
halign

hrule

vskif

w1l

il

(533

vlilneg

ertuch

dump

par

char
noboundary
spacefactor
sfeode
hyphenchar
discretionary
aceent
optional assigniments

Chapter 25: Summary of Horizontal Mode

the previous paragraph, TEX treats \accent as if it were \char, except that the space
factor is set to 1000, Otherwise the character that follows the assignment is accented by
the character that corresponds to the {8-bit number). {The purpose of the intervening
assignments is to allow the accenter and accentee to be in different fonts.) If the accent
must be moved up or down, it is put into an hbox that is raised or lowered. Then the
accent is effectively superposed on the character by means of kerns, in such a way that
the width of the accent does not influence the width of the resulting horizontal list.
Finally, TEX sets \spacefactor=1000.

m \/. If the last e on the carrent lst is a character or Hgature, an explicit
kern for its italic correction is appeaded.

» \dizcretiomary{general text}{general text}{general text}. The three general
texts are processed in restricted horizontal mode. They should contain only fived-width
things; hence they aren’t really very general in this case. More precisely, the horizontal
list formed by each discretionary general text must consist only of characters, ligatures,
kerns, boxes, and rules; there should be no glue or penalty items, etc. This command
appends a discretionary item to the current list; see Chapter 14 for the meaning of a
digcretionary item. The space factor is not changed.

m \-. This “discretionary hyphen” command is defined in Appendix H.
» \setlanguage{mumber}. See the conclusion of Appendix H.

m $. A “math shift” character causes TEX to enter math mode or display math
maode in the following way: TpX looks at the following token without expanding it. If
that token is a $ and if TpX is currently in wnrestricted horizontal mode, then TEX
breaks the current paragraph into lnes as explained above {unless the current list is
empty), returns to the enclosing vertical mode or internal vertical mode, calculates
values ke \prevgraf and \displaywidth and \predisplayszize, enters a new level of
grouping, inserts the \everydisplay tokens into the input, exercises the page builder,
processes ‘(math mode material}$$’ in display math mode, puts the dizplay into the
enclosing vertical list as explained in Chapter 19 (letting vertical material migrate},
exercises the page builder again, increases \prevgraf by 3, and resumes horizontal
mode again, with an empty list and with the space factor equal to 1000, {You got
that?} Otherwise TgX puts the looked-at token back into the input, enters a new level
of grouping, inserts the \everymath tokens, and processes “{math mwode material}$’; the
math mode material is converted to a horizontal list and appeaded to the curreat list,
surrounded by “math-on” and “math-off” itemns, and the space factor iz set to 1006.
One consequence of these rules is that ‘$$° in restricted horizontal mode simply vields
an empty math formula.

= Noune of the above: If any other primitive command of TEX occurs in horizontal
mode, an error message will be given, and TEX will try to recover in a reasonable way.
For example, if o superscript or subscript svmbol appears, or if any other inherently
mathematical command is given, TEX will try to insert a ‘$ just before the offending
token: this will enter math mode,

Otherwise. You may reduce ali Verticals into Horizontals.
— JOSEPH MOXON, A Tutor to Astronomie and Geographie {1659)

! Yon can’t use ‘\moveleft’ in horizomtal meode.
— TeX {1982)

287

/

italic correction
digeretionary
setlanguage
math shift
migrate
MOXON

_

260

Summary of
Math Mode

Chapter 26: Swmmary of Math Mode

To conclude the survey that was begun in Chapter 24, let us investigate exactly
what TEX s digestive processes can do when TgX is building lists in math mode
or in display math mode.

Three asterisks, just like those that appear here, can be found near the end of Chap-
ter 24. Evervthing preceding the three asterisks in that chapter applies to math mode as
well ag to vertical mode, g0 we need not repeat all those rules. In particular, Chapter 24
explaing assignment commands, and it tells how kerns, penalties, marks, insertions, ad-
Justents, and “whatsits” are put into math lists., Our present goal is to consider the
commands that have an intrinsically mathematical flavor, in the sense that they behave
differently in math mode than they do in vertical or horizontal modes.

Math sty are somewhat different from TpX s other lists becanse they contain
three-pronged “atoms” {see Chapter 17). Atoms come in thirteen favors: Ord, Op,
Bin, Rel, Open. Cloge, Punct, Inner, Over, Under, Acc, Rad, amd Veent. Each atom
comtaing three “fields” called its nucleus, superscript, and subscript; and each field is
either empty or is filled with a math symbol, a box, or a subsidiary math list. Math
syimbols, in turn, have two components: a family mumber and a position number.

It’s convenient to introduce o few more rules of syatax, in order to specify
what goes into a math lst:

{character) — {letter) | {otherchas) | \char{&-hit number} | {chardef token}
{math character} — \mathchar{15-bit mumber} | {mathchardef token}
| \delimiter{27-bit number}
{math symbol} — {character} | {math character}
{math field} — {math symbol} | {filler} {{math mode material}}
{delirn} — {filler}\delimiter{27-bit nmumber}
| {filler){letter} | {filler}{otherchar}

We have already seen the concept of {character} in Chapter 25. Indeed, characters
are TEX s staple food: The vast majority of all commands that reach TEX's digestive
processes in horizontal mode are instances of the {character) command, which specifies
a number between O and 255 that canses TEX to typeset the corresponding character
in the current font. When TEX is in math mode or display math mode, a {character}
comrand takes on added significance: It specifies a muzsber between O and 32767 —
2" _ 1, This is done by replacing the character number by its \mathcede value, If the
\mathcode valie turans ount to be 32768 = "8000, however, the {character} is replaced
by an active character token having the original character code (0 to 253); TX forgets
the original {character} and expands this active character according to the rules of
Chapter 20.

A {math character} defines a 15-bit number either by specifying it directly
with \mathchar or in a previous \mathchardef, or by specifying a 27-bit \delimiter
value; in the latter case, the least significant 12 bits are discarded.

It follows that every (math symbol}, ag defined by the syntax above, specifies
a 15-bit number, ie., a mumber between O and 32767, Such a aumber can be repre-
sented in the form 4096c + 256f + o, where 0 < ¢ < 8, 0 < F < 16, and 6 < o < 256.
If ¢ = 7, TgX changes ¢ to 0; and in this case #f the curreat value of \fam is between
¢ and 15, TgX alse replaces f by \fam. This procedare yields, in all cases, a class

289

math mode
atons

Herlels

noclens
SUPerseript
subsoript
character

char

math character
mathchar
math symbol
math field
delim
delimiter
matheode
active character
mathchar
mathchardel
Faun

290

Chapter 26: Swmmary of Math Mode

mimber ¢ between € and 6, a family mpmber f between € and 15, and a position num-
ber a between 0 and 255, {TEX initializes the value of \fam by implicitly putting the
assigmuent ‘\fam=~1" at the very beginning of \everymath and \everydizsplay. Thus,
the substitation of \fam for f will ocour only if the user has explicitly changed \fam
within the formmia.)

A {math field} is used to specify the nucleus, superscript, or sabscript of an
atom. When a {(nath field} is a {moath syboly, the f and o nwnbers of that sym-
bol go into the atomic field. Otherwise the {math field} begins with a {’, which
canses TEX to enter a new level of grouping and to begin a new math list; the en-
siing (math mode material} is terminated by a Y}, at which point the group ends and
the resulting math list goes into the atomic field. If the math st turns out to be simply
a single Ord atom without subscripts or superseripts, or an Acc whose nucleus is an
Ord, the enclosing braces are effectively removed.

A {delim} is used to define both a “small character” g in family f and a “large
character™ b in family g, where 00 < o, b < 255 and 0 < f, g < 15; these character
codes are used to construct variable-size delimiters, as explained in Appendix G, ¥ the
{delitn} is given explicitly in terms of a 27-bit pumber, the desired codes are abtained
by interpreting thot number as ¢- 2% + f- 220 4 . 2% 4 4. 2% £ b ignoring the value
of ¢. Otherwise the delimiter is specified as a {letter} or {otherchar} token, and the
24-bit \delcode value of that character is interpreted as -2 +a- 22 + 4. 2% + .

Now let’s study the individuaal commmands as TEX obeys them in math mode,
comsidering first the ones that have analogs in vertical and/or horizontal mode:

m \hskip{glue}, \hfil, \hfill, \hss, \hfilneg, \mskip{mugiue}. A glue item
is appended to the current math hist.

» {leaders}{box or rule}{mathematical skip}. Here {mathematical skip} refers to
one of the six glue-appending commands just mentioned; the formal syntax for (leaders}
and for (box or rale} is given in Chapter 24. A glue item that produces leaders is
appeaded to the current lst.

® \nonzcript. A special glue item of width zero is appended; it will have
the effect of cancelling the following item on the list, if that item is glue and if the
\nonzcript is eventually typeset in “script style” or in “scriptscript style”

= \noboundary. This command is redundant and therefore has no effect; bound-
ary ligatures are automatically disabled in math modes.

= {space token}. Spaces have no effect in math modes.

= \oo A controbspace command appends glue to the current list, using the same
amount that a {space token) inserts in horizontal mode when the space factor is 1000

» {hox}. The box is constructed, and if the result is void nothing happens.
Otherwise a new Ord atom is appeaded to the curreat math Hst, and the box becomes
its nucleus.

n \raise{dimen}{box}, \lower{dimen}{box}. This acts exactly like an ordinary
{box} command, but the new box that is put into the nuclens is also shifted up or down
by the specified amount.

» \vcenter{box specification} {{vertical mode material}}. A vbox is formed as

if ‘\vcenter’ had been ‘\vbox’. Then a new Vcent atom is appended to the current
math list, and the box becomes its nuclens.

delimiters
delends
hskip

hiil

hill

hss

htilneg
mskif
mathematical skip
leaders
noNSCeript
nohoondary
space token
control space
hem

raise

lower

veenter
Woeent

Chapter 26: Swmmary of Math Mode

» {vertical rule}. A rule is appended to the current list {not ag an atom).

= \halign{box specification} {{alignment material}}. This command is allowed
only in display math moede, and only when the current math list is empty. The align-
ment is carried out exactly as if it were done in the enclosing vertical mode (see Chap-
ter 24), except that the lines are shifted right by the \displayindent. The cloging
‘¥ may be followed by optional {assignment} commands, alter which ‘8% mmst con-
chide the display. TEX will insert the \abovedisplayskip and \belowdisplayskip glue
betore and after the result of the aligniment.

» \indent. An empty box of width \parindent is appended to the current list,
as the nuclens of a new Ord atom.

» \noindent. This ¢coonmand has no effect in math modes.

» {{inath mode material}}. A character token of category 1, or a control se-
¢utence like \bgroup that has been \let egual to such a character token, canses TEX
to start a new level of grouping and also to begin work on a new math list. When such
a group ends—with ‘P—TEX uses the resulting math Hst as the nuclens of a new Ord
atomn that is appended to the current Hst. If the resulting math Ist is a single Acc
atom, however {Le., an accented quantity), that atom itself is appended.

» {math symbaoi}. {This is the most comunon command in math mode; see the
syntax near the beginning of this chapter.) A math symbol determines three values,
¢, f, and a, as explained earlier. TEX appends an atom to the current Hst, where the
atom is of type Ord, Op, Bin, Rel, Open, Close, or Punct, according as the value of ¢ is
€, 1,2, 3 4, 5, or 6. The auclens of this atom is the math svmbol defined by f and o.

» {math atom}{math field}. A {math atom} command is any of the following:

\mathord | \matho \mathbin | \mathrel | \mathopen
P P
\mathclose | \mathpunct | \mathinner | \underline | \overline
P

TEX processes the (math field}, then appends a new atom of the specified type to the
current, list; the nucleus of this atom contains the specified field.

» \mathaccent{15-bit number}{math field}. TEX converts the {15-bit number}
fmto o, f, and o as it does with any \mathchar. Then it processes the {math field) and
appends a new Acc atom to the current lst. The nucleus of this atom contains the
specified field; the accent character in this atom contains {a, f).

= \radical{27-bit muuber}{math field}. TEX converts the {27-bit mumber} into
a, f, b, and g as it does with any \delimiter. Then it vrocesses the {math field} and
appends a new Rad atom to the current lst. The macleus of this atom contains the
specified field; the delimiter field in this atom contains (o, f) and (b, g).

n {superscript}{math field}. A {superscript} command is an explicit or implicit
character token of category 7. If the current Hst does not end with an atom, a new Ord
atom with all fields empty is appended; thus the current list will end with an atom,
in all cages. The superscript field of this atom should be empty; it is made nonempty
by changing it to the result of the specified {math field}.

m {subscript}{nath field). A {subscript} command is an explicit or fmplicit char-
acter token of category 8. It acts just like a {superscript) command, except, of course,
that it affects the subscript field instead of the superscript field.

291

rile

halign
displayindent
abovedisplayskip
belowdisplayskip
indent

parindent
noindent
grouping

math atom
mathaccent
radical
supersceript
subseript

292

Chapter 26: Swmmary of Math Mode

» \displaylimits, \limits, \nolimitz. These comnuands are allowed only if
the current lst ends with an Op atom. They modify a special field in that Op atom,
specifying what conventions should be used with respect to limits. The normal value
of that field is \displaylimits.

m /. A kern of width zero is appended to the current list. {This will have the
effect of adding the italic correction to the previous character, if the italic correction
wouldn’t normally have been added.}

» \discretionary{general text}{general text}{general text). This command is
treated just as in horizontal mode (see Chapter 25), but the third {general text} must
produce an empty list.

m \~. This commmand is usaally equivalent to ‘\discretionary{~}{}{}’; the *»’
i therefore interpreted as a hyphen, not ag a minus sign. {See Appendix H.}

» \mathchoice{general text}{general text){general text}{general text}. The four
general texts are each treated as subformulas {Le., like the second alternative in the
definition of {math field}). The four math lists defined in this way are recorded in a
“choice itemn” that is appended to the current list.

m \displaystyle, \textstyle, \scriptstyle, \scriptscriptstyle. A styie-
change item that corresponds to the specified style is appended to the current list.

» \left{delim}{math mode material}\right{delim}. TEX begins a new group,
and procesges the {math mode materiall by starting out with a new math list that
beging with a lett boundary item containing the first delimiter. This group amst be
terminated by ‘\right’, at which time the internal math list is completed with a right
boundary item containing the second delimiter. Then TEX appeands an Inner atom to
the current list; the mucleus of this atomn contains the internal math list.

» {generalived fraction command}. This command takes one of six forms:

\over | \atop | \above{dimen}
| \overwithdelims{delim} {delim}
| \atopwithdelims{delim} {delim}
| \abovewithdelims{delim}{delim}{dimen}

{See Chapter 17.) When TgX sees a {generalized fraction command} it takes the entire
current list and puts it into the numerator field of a generalized fraction item. The
denominator field of this new item is temporarily empty; the left and right delimiter
fields are set equal to the specified delimiter codes. TEX saves this generalized fraction
itern in a special place associated with the current level of math mode processing.
{There should be no other generalized fraction items in that special place, because
constrizctions like ‘a\over b\ever ¢’ are illegal.} Then TEX makes the current Hst
empty and continues to process commands in math mode. Later on, when the current
level of math mode is completed [either by coming o a '$° or a } or a \right,
depending on the nature of the current group), the current list will be moved into the
denominator field of the generalized fraction item that was saved; then that e, all by
itself, will take the place of the entire list. However, in the special cage that the current
list began with \left and will end with \right, the boundary tems will be extracted
from the numerator and dencminator of the generalized fraction, and the final list will
consist of three items: left boundary, generalived fraction, right boundary. (I vou

displaylimits
Tirmitss

nolimits

/

diseretionary
hyphen
mathchoice
dizplaystyvle
tentntyle
seriptatyle
seriptacriptstyle
left:

right

over

atop

above
averwithdeliins
atopwithdelims
abovewithdehms

Chapter 26: Swmmary of Math Mode

want to watch the process by which math lists are built, you might find it helpful to
type ‘\showlists’ while TEX is processing the denominator of a generalized fraction.}

» {eqnod{math mwode material}$. Here {eqno} stands for either \egno or \leqgno;
these commands are allowed only in display math mode. Upon reading {eqno}, TEX
enters a new level of gprouping, inserts the \everymath tokens, and enters non-display
math mode to put the {math mode material} into a math list. When that math list is
completed, TEX converts it to a horizontal Hst and puts the result into a box that will
be used as the equation number of the carrent display. The closing $ token will be put
back into the input, where it will terminate the display.

w 3. If TEX is in display math mode, it reads one more token, which must alse
be $. In either case, the math-shift command terminates the current level of math
mode processing and eads the current group, which should have begun with either $
or {eqno}. Once the math lst is finished, it is converted into a horiuontal list as
explained in Appendix G.

m None of the above: If any other primitive command of TEX occurs in math
mode, an error message will be given, and TEX will try to recover in a reasonable way,
For example, if a \par command appears, or if any other inherently non-mathematical
comrmand is given, TEX will try to insert a ‘$ just before the offending token; this will
lead out of math mode, On the other hand if a totally misplaced token like \endcsname
or \omit or # appears in math mode, TEX will siroply imnore it, after reporting the error.
You might enjoy trying to type some really stupid input, just to see what happens. (Say
‘\tracingall’ first, as explained in Chapter 27, in order to get moximum information.}

@@r EXERCISE 26.1

Powers of ten: The whole TEX language has now been summarized completely.
To demonstrate how much vou know, name all of the ways vou can think of in which
the numbers 10, 100, 1000, 10000, and 100000 have special significance to TEX.

@@» EXERCISE 26.2
Powers of two: Name all of the ways you can think of in which the numbers
8, 16, 32, 64, 128, 256, ... have special significance to TpX.

Mathematics is known in the trade as difficult, or penalty, copy
because it is slower, more difficult, and more expensive to set in type
than any other kind of copy normalfly oCcurring in books and journais.

— UNIVERSITY OF CHICAGO PRESS, A Manual of Style {1969)

The tale of Math is a complex oneg,
and it resists both a simpie plot summary
and a concise statement or its meaning.

— PATRICK K. FORD, The Mabinogi {1977)

293

showlists
NG

eOqno

leqno
everyinath
Powers of ten
Derek, Bo
Powers of two
CHICAGO
FORD

age 204}

_

27

Recovery from
Errors

Chapter 27: Recovery from Errors

OK, everything vou need to know about TEX has been explained-—unless you
happen to be fallible. I you don’t plan to make any errors, don’t bother to read
this chapter. Otherwise you might find it helpful to make use of some of the
ways that TEX tries to pinpoint bugs in your manuscript.

In the trial runs you did whoen reading Chapter 6, you learned the general
form of error messages, and you also learned the various ways in which you can
respond to TpX's complaints. With practice, you will be able to correct most
errors “online,” as soon as TEX has detected thom, by inserting and deleting a
few things. The right way to go about this is to be in a mellow mood when
vou approach TEX, and to regard the error messages that you get as amusing
puzzles—“Why did the machine do that?”—rathor than as personal insults.

TEX knows how to issue more than a hundred different sorts of error
messages, and vou probably never will encounter all of them, hecause some
types of mistakes are very hard to make. We discussed the “undefined control
sequence” error in Chapter 6; let’s take a look at a few of the others now.

If you misspell the name of some unit of measure—rfor example, if you
type ‘\hsize=4im’ instead of \hgize=4in’—vyou'll get an error message that
looks something hike this:

I T1legal unit of measure (pt inserted).
<tc be read again>

<to be read again>
m
<> \hsize=4im
\input story
.

TEX needs to see alegal unit before it can proceed; so in this case it has implicitly
inserted “pt’ at the current place in the input, and it has set \hsize=4pt.

What's the hest way to recover from such an error? Well, you should
always type "H or “h’ to see the help message, if you aren’t sure what the error
message means. Then you can look at the lincs of context and see that TgX
will read ‘1’ and then ‘m’ and then * \input story * if you simply hit {return}
and carry on. Unfortunately, this easy solution isn’t very good, hecause the ‘i’
and ‘m" will be typeset as part of the text of a new paragraph. A much more
graceful recovery s possible in this case, by first typing '2°. This tells TEX to
discard the next two tokens that it reads: and after TEX has done so, it will stop
again in order to give you a chance to look over the new situation. Here is what
vou will see:

<recently read> m

<x> \hsize=4im
\input story

295

EPTOT TIE55 Aes
Megal unit
FECOVET

296

Chapter 27: Recovery from Errors

Good: the ‘i and ‘m’ are read and gone. But if you hit {return} now, TEX will
‘\input story’ and try to typeset the story.tex file with \hsize=4pt; that
won’t be an especially exciting experiment, because it will simply produce dozens
of overfull boxes, one for every syllable of the story. Onee again there’s a better
way: You can insert the command that vou had originally intended, by typing

I\hsize=4in

now. This instructs TEX to change \hsize to the correct value, after which it
will \input story and youw'll be on your way.

» EXERCISE 27.1

Ben User typed "8°, not “2°, in response to the error message just considered: his
idea was to delete 'i°, ‘'m’, ‘\input’, and the five letters of ‘story’. But TEX's
TESPONSE Was

<*> \hsize=4im \input stor
¥

Explain what happened.

TEX usually tries to recover from errors either by ignoring a commane
that it doesn’t understand, or by inserting something that will keep it happy. For
example, we saw in Chapter 6 that TgX ignores an undefined control sequence;
and we just observed that TEX inserts ‘pt’ when it needs a physical unit of
measure. Here’s another example where TEX puts something in:

| Missing § inserted.
<inserted text>

$
<tc be read again>
1.11 the fact that 32768=2"
{15} wasn’t interesting
7TH
I've inserted a begin-math/end-math symbcl since I think
you left cne out. Proceed, with fingers crossed.

{The user has forgotten to enclose a formula in § signs, and TEX has tried to
recover by inserting one.) In this ease the {nserted text) is explicitly shown,
and it has not yet heen read: by contrast, our previous example illustrated a
case where TEX had already internalized the “pt’ that it had inserted. Thus the
user has a chance here to remove the inserted “$° before TEX really sees it
What should be done? The error in this example ocourred hefore TEX
noticed anything wrong: the characters "32768=2" have already been typeset in
horizontal mode. There’s no way to go back and cancel the past, so the lack of
proper spacing around the ‘=" cannot be fixed. Our goal of crror recovery in this
case is therefore not to produce perfect output; we want rather to proceed in some

LUser
help message
Missing

Chapter 27: Recovery from Errors

way 50 that TEX will pass by the present error and detect subsecquent ones. If we
wore simply to hit {return} now, our aim would not be achieved, because TgX
would typeset the ensuing text as a math fornmla: “wasn'tinteresting. . .7 ;
another error would be detected when the paragraph is found to end before any
closing “# has appeared. On the other hand, there’s a more elaborate way to
recover, namely to type ‘6° and then "I$"{15}%"; this deletes “$ {15} and inserts
a correct partial formula. But that’s more complicated than necessary. The best
solution in this case is to type just ‘2° and then go on; TEX will typeset the
incorrect pguation ‘82768=215°, but the important thing is that you will be able
to check out the rest of the document as if this error hadn’t oecurred.
@ » EXERCISE 27.2

Here’s o cage in which a backslash was imadvertently omitted:

! Missing control seguence inserted.

<inserted text>

\inaccezsible
<to be read again>

1.10 \def m
acro{replacement}

TEX needs to see a control sequence after ‘\def’, so it has inserted one that will allow
the processing to continue. (This control sequence is shown as ‘\inaccesszible’, but,
it has no relation to any control sequence that you can actually specify in an error-free
manuscript.} 1 you simply hit {retwrn} at this point, TEX will define the inaccessible
control sequence, but that won’t do you much good; later references to \macro will be
undefined. Explain how to recover from this error so that the effect will be the same
ag if line 10 of the fuput file had said ‘\def\macro{replacement}’.

@ » EXERCISE 27.3

When vour use the ‘'IT° option to respond to an error message, the roles of
Chapter 8 fmply that TEX removes all spaces from the right-hand end of the lne.
Explain how vou can use the ‘T’ option to insert a space, in spite of this fact.

Some of the toughest errors to deal with are those in which you make
a mustake on lne 20 (say), but TEX cannot tell that anything is amiss uniil it
reaches line 25 or s0. For example, if vou forget a “} that completes the argu-
ment to some macro, TEX won't notice any problem until reaching the end of
the next paragraph. In such cases you probably have lost the whole paragraph:
but TEX will usually be able to get straightencd out in time to do the subse-
quent paragraphs as if nothing had happened. A “ruynaway argument” will be
displayed, and by looking at the beginning of that text you should be able to
figure out where the missing “} belongs.

Tt’s wise to remember that the first error in your document may well
spawn spurious “errors” later on, because anomalous commands can inflict seri-
ous injury on TEX's ability to cope with the subscquent material. But most of
the time you will find that a single run through the machine will locate all of
the places in which your input conflicts with TpX’s rules.

297

inaceessible
Bpace
rinaway argument

298

Chapter 27: Recovery from Errors

When your error is due to misunderstanding rather than mistyping, the Quick
situation is even more serious: TEX’s error messages will probably not be very weird error
helpful, even if you ask TEX for help. If you have unknowingly redefined an
important control sequence—for example, if vou have said \def\box{. ..} —all
sorts of strange disasters might occur. Computers aren’t clairvoyant, and TEX
can only explain what looks wrong from its own viewpoint; such an explanation
i bound to be mysterious unless you can understand the machine’s attitude.

The solution to this problem is, of course, to seek human counsel and advice; or,
as a last resort, to read the instructions in Chapters 2, 8, ..., 26.

@ » EXERCISE 27.4
J. H. Quick {a student) once defined the following set of macros:

\newconnt\serialnumber

\def\firstmumber{\serialnumber=0 }

\def\nextnumber{\advance \zerialmumber by 1
\number\serialnumber) \nobreak\hskip.2em }

Thus he could type, for example,

\irstnumber
\nextnumber xx, \nextmmmber yy, and \nextnumber zz

and TEX would typeset ‘1) xx, 2} vy, and 3} z2’. Well, this worked fine, and he showed
the macros to his buddies. But several months later he received a frantic phone call;
one of his friends had just encountered a really weird error message:
! Missing number, treated as zero.
<to be read again>
[}
1.107 \nextnumber minusc

unle chances of error
7

Explain what happened, and advise Quick what to do.

Sooner or later-—hopefully sooner—yow’ll get TEX to process vour whole
file without stopping once to compiain. But maybe the owtput still won’t be right;
the mere fact that TEX didn’t stop doesn’t mean that vou can avoid proofreading.
At this stage it’s usually easy to see how to fix typographic errors by correcting
the input. Errors of layout can he overcome by using methods we have discussed
before: Overfull boxes can be cured as described in Chapter 6; bad breaks can
be avoided by using ties or \hbox commands as discussed in Chapter 14; math
formulas can be improved by applying the principles of Chapters 16-19.

But your output may contain seemingly inexplicable errors. For exam-
ple, if you have specified a font at some magnification that is not supported by
vour printing software, TEX will not know that there is any problem, but the
program that converts your dvi file to hardcopy might not tell you that it has
substituted an “approximate” font for the real one; the resultant spacing may
look quite horrible.

Chapter 27: Recovery from Errors

If you can’t find out what went wrong, try the old trick of simplifying
vour program: Remove all the things that do work, until you obtain the shortest
possible input file that fails in the same way as the original. The shorter the file,
the easier it will be for you or somehody else to pinpoint the problem.

Perhaps you'll wonder why TEX didn’t put a biank space in some posi-
tion where you think you typed a space. Remember that TEX ignores spaces that
foliow control words, when it reads vour file. {TEX also ignores a space after a
{number) or a {unit of measure} that appears as an argument to a primitive com-
mand; but if you are using properly designed macros, such miles will not concorn
vou, hecause vou will probably not be using primitive commands dircetly.)

@ On the other hand, if you are designing macros, the task of troubleshooting

can be a lot more complicated. For example, you may discover that TEX has
emitted three blank spaces when it processed some long sequence of complicated cade,
consisting of several dozen commands. How can you find out where those spaces crept
in? The answer is to set “\tracingcommands=1’, as mentioned in Chapter 13. This
tells TEX to put an entry in your log file whenever it begings to execute a primitive
command; vou'll be able to see when the command is ‘blank space’.

@ Most implementations of TEX allow you to interrupt the program in some way,

This makes it possible to diagnose the canses of infinite loops. TEX switches to
\errorstopmode when interrupted; hence you have a chance to ingert commands into
the input: You can abort the run, or you can \show or change the current contents of
control sequences, registers, ete. You can also get a feeling for where TEX is spending
most of its time, i vou happen to be using an inefficient macro, since random interrupts
will tend to aceur in whatever place TEX visits most often.

@ Sowmetimes an error is so bad that TEX s forced to quit prematurely. For
example, if you are rumning in \batchmode 01 \nonstopmode, TEX makes an

“emergency stop” if it needs input from the terminal; this happens when a necessary
file cannot be opened, or when no \end comimand was found in the input document.
Here are some of the messages vou might get just before TEX gives up the ghost:

Fatal format file error; I‘m stymied.
This means that the preloaded format vou have specified cannot be used, because it
was prepared for a different version of TX.

That makes 100 errors; please try again.
TEX has scrolled past 100 errors since the last paragraph ended, so it’s probably in
an endless loop.

Interwoven alignment preambles are not allowed.
If vou have been so devious as to get this message, you will understand it, and you will
deserve no sympathy.

I can’t go on meeting you like this.

A previous error has gotten TEX out of whack. Fix it and try again.

This can’t happen.

Something is wrong with the TEX vou are using. Complain fiercely.

299

Bpac
tracingeonmmaneds

interrupt

intinite loops

errorstopmode

show

hatchmeads

nonstopmode

eMergency stop

end

Fatal format file error

loop

intinite loop

Interwoven alignment preambles
[ean™t go on

This can’t happen

300

Chapter 27: Recovery from Errors

@ There's also a dreadful message that TEX issues only with great reluctance.
But it can happen:

TeX capacity exceeded, sorry.

This, alas, means that you have tried to stretch TEX too far. The message will tell
yon what part of TEX’s memory has become overloaded; one of the following fourteen
things will be mentioned:

number of strings {names of control sequences and files)
pool size {the characters In such names)

main memory size {boxes, ghie, breakpoints, token lists, characters, ete.)
hash size {control sequence names)

font memory {font metric data)

exception dictiomary {hyphenation exceptions)

input stack size {simultanecus input sources)

semantic nest size {unfinished lists being constructed)
parameter stack size {macro parameters)

btuffer size {characters in lines being read from files)
save size {values to restore at group eads)

text input levels {\input files and error insertions)
grouping levels {nnfinished groups)

pattern memory {hyphenation pattern data)

The current amount of memory available will also be shown.

@ If you have a job that doesn’t overflow TEX's capacity, yet you want to see

just how closely you have approached the lmits, just set \tracingstats to
a positive value before the end of your job. The log file will then conclude with a
report on your actual usage of the first eleven things named above {(i.e., the number of
strings, ..., the save size), in that order. Furthermore, if you set \tracingstatsa equal
to 2 or more, TEX will show its current memory usage whenever it does a \shipout
comrmand. Such statistics are broken into two parts; ‘490&5950° means, for example,
that 490 words are being used for “large” things like boxes, glue, and breakpoints,
while 5950 words are being used for “small” things like tokens and characters.

@ What can be done if TEX's capacity iz exceeded? Al of the above-listed

components of the capacity can be increagsed, provided that vour computer
is large enough; in fact, the space necessary to increase one component can usually
be obtained by decreasing some other component, without increasing the total size of
TEX. If yvou have an especially important application. vou may be able to convince
yoarr local system people to provide vou with a special TEX whose capacities have been
hand-tailored to your needs. But before taking such a drastic step, be sure that vou are
using TEX properly. If vou have specified a gigantic paragraph or a gigantic alisnment
that spans more than one page, you should change vour approach, because TEX has to
read all the way to the end before it can complete the Hne-breaking or the alisnment
caleulations; this consumes huge amounts of memory space. I you have built up an
enormons macro lHbrary, vou should remember that TEX has to remember all of the
replacement texts that you define; therefore if memory space is in short supply, you
shontkd load only the macros that you need. {See Appendices B and D, for ideas on
how to make macros more compact.)

TeX capacity exceeded
tracingstats

stack positions
shipoot

Chapter 27: Recovery from Errors 301

@ Somne erroneons TEX programms will overflow any finite memory capacity. For FECUTHON
example, alter ‘Ndef\recurse{{\recnrze)}’, the use of \recursze will imme- Bave siue

. grouping
diately bomb out: save stack

global assignments
tracingrestores
\recurze ->{\recurse right brace

} tracinglostchars
tracingoutpot

¢ TeX capacity exceeded, sorry [imput stack size=80].

\recurse -»{\recurse

)

The same sort of error will obviously ocour no watter how muck vou increage TEX's
input stack size.

@ The special case of “save size” capacity exceeded is one of the most tron-
blesomne errors to correct, especially if vou run into the error only on long
jobs. TEX generally uses up two words of save size whenever it performs a non-global
assigmuent to some quantity whose previous value was not assigned at the same level
of grouping. When macros are written properly, there will rarely be a need for more
than 108 or so things on the “save stack”™; but it’s possible to make save stack usage
grow without Hmit if vou make both local and global assigninents to the same variable.
You can figure oot what TEX puts on the save stack by setting \tracingrestores=1;
then your log file will record information about whatever is removed from the stack at
the end of a group. For example, let \a stand for the command “\advance\day by 1’;
let \g stand for ‘\global\advance\day by 1’; and consider the following commands:

\day=1 {\a\g\a\g\al}

The first \a sets \day=2 and remembers the old value \day=1 by putting it on the
save stack. The first \g sets \day=3, globally; nothing needs to go on the save stack
at the time of a global assignment. The next \a sets \day=4 and remembers the
old value \day=3 on the save stack. Then \g sets \day=5; then \a sets \day=6 and
rexperbers \day=5. Finally the ‘}’ causes TEX to go back through the save stack; if
\tracingrestores=1 at this point, the log file will get the following data:

{restoring \day=5}
{retaining \day=5}
{retaining \day=5}

Explanation: The \day parameter is first restored to its global value 5. Since this
value ig global, it will be retained, so the other saved valies {\day=3 and \day=1} are
essentially ignored. Moral: If vou find TEX retaining a lot of values, you have a set of
macros that could cause the save stack to overflow in large encugh jobs. To prevent
this, it’s usually wise to be consistent in your assignments to each variable that you
use; the assignients should either be global always or local always.

@ TEX provides several other kinds of tracing in addition to \tracingstats and

\tracingrestores: We have already discussed \tracingcommands in Chapters
13 and 20, \tracingparagraphs in Chapter 14, \tracingpages in Chapter 15, and
\tracingmacros in Chapter 20. There is also \tracinglostchars, which {if positive)
causes TEX to record each time a character has been dropped because it does not
appear in the current font; and \tracingoutput, which (if positive) canses TEX to

302

Chapter 27: Recovery from Errors

display in symbelic form the contents of every box that is being shipped out to the
dvi file. The latter allows you to see if things have been typeset proverly, i vou're
trying to decide whether some anomaly was caused by TEX or by some other softwaze
that acts on TEX’s cutput.
@ When TEX displays a box as part of diagnostic output, the amount of data

is controfled by two paramneters called \showboxbreadth and \showboxdepth.
The first of these, which plain TEX sets equal to 5, tells the maxinne number of items
shown per level; the second, which plain TgX sets to 3, tells the deepest level. For
example, a small box whose full contents are

\hbox (4.30554+1.94444)x21.0, glue set 0.5

.\hbox{4.30554+1.94444)x5.0

..\tenrm g

\glue 5.0 plus 2.0

Atenrm | {ligatnre ---)

will be abbreviated as follows when \showboxbreadth=1 and \showboxdepth=1:

\hbox (4.30554+1.94444)x21.0, glue set 0.5
.\hbox{4.30554+1.94444)x5.0 []

.etc.
And if you set \showboxdepth=0, you get only the top level:
\hbox (4.30554+1.944443%21.0, glne set 0.5 []
{Notice how ‘[1” and ‘etc.’ indicate that the data has been truncated.)

@ A nonempty hbox is considered “overfull” if its glue cannot shrink to achieve
the specified size, provided that \hbadne=zs is less than 100 or that the excess

width (after shrinking by the maxiinum smount) is more than \hfuzz. It is “tight” if

its glue shrinks and the badness exceeds \hbadness; it is “loose” if its glue stretches

and the badness exceeds \hbadness but is not greater than 100; it is “underfull” if

its ghuie stretches and the badness is greater than \hbadness and greater than 100.
Similar remarks apply to nonempty vhoxes. TEX prints 4 warning message and displays
the offending box, whenever such anomalies are discovered. Empty boxes are never
comsidered to be anomalous.

@ When an alignment is “overfull” or “tight” or “loose” or “underfull,” vou don’t

get a warning message for every aligned line; you get only omne message, and
TEX displays a prototype row (or, with \valign, a prototvpe column). For example,
suppose you say ‘\tabskip=0pt plnsi10pt \halign to200pt{&#\hfil\cr...\cx}’, and
suppose that the aligned material turns out to make two columns of widths 50 pt and
60 pt, respectively. Then you get the following message:

Underfull \hbox {badnesz 2698} in alignment at linez 11--18
(1o

\hbox{0.C+0.0}x200.0, glue zet 3.0

Agluef\tabskip) 0.0 plus 10.0

Aungetbox (0.0+0.03x50.0

Agluef\tabskip) 0.0 plus 10.0

Aungetbox (0.0+0.03x60.0

Aglue{\tabzkip) 0.0 pluz 10.0

i

shipoot
showhonbreadth
showhondepth

internal box format
syinbolic box format

ligature
em-dash
(i

ate.
overfoll
glue
hbadness
hfgze
tight
badness
loose
underfoll
alignment
prototype row
valign
halign

Chapter 27: Recovery from Errors

The “uaset boxes” in a prototype row show the individual column widths, In this case
the tabskip glue has to stretch 3.0 times ity stretchability, in order to reach the 200 pt
goal, so the box is underfull. {According to the formuala in Chapter 14, the badness
of this situation is 2700; TEX actually uses a similar but more efficient formula, so it
computes a badness of 2698.) Every line of the alignment wiil be underfull, but only
the prototype row will be displayed in a warning message, “Overfull rules” are never
appended to the Hnes of overfull alignments.

@ The \tracing... commands put all of their output into vour log file, unless

the \tracingonline parameter is positive; in the latter case, all diagnostic
information goes to the terminal as well as to the log file. Plain TEX has a \tracingall
macro that turas on the maximum amount of tracing of all kinds, It not only sets up
\tracingcommands, \tracingrestores, \tracingparagraphs, and so on, it also sets
\tracingonline=1, and it sets \showboxbreadth and \showboxdepth to extremely high
values, so that the entire contents of all boxes will be displayed.

@ Sorme production versions of TEX have been streamlined for speed. These hn-
plementations don’t ook at the values of the parameters \tracingparagraphs,
\tracingpages, \tracingstats, and \tracingrestores, because TEX runs faster when
it doesa’t have to maintain statistics or keep tabs on whether tracing is required. T
vou want all of TEXs diagnostic tools, you should be sure to use the right version.

@@ i you set \pansing=1, TEX will give you a chance to edit each line of input

ag it is read from the file. In this way you can make temporary patches (e.g.,
vou can ingsert \show... commands) while you're troubleshooting, without changing
the actual contents of the file, and you can keep TEX running at human speed.

Final hint: When working on a long manuseript, it's best to prepare only
a few pages at a time. Set up a “galley® file and a “hook” file, and enter your
text on the galley file. {Put control information that sets up your basic format
at the beginning of this file; an example of galley . tex appears in Appendix E.)
After the galleys come out looking right, you can append them to the book file;
then you can run the hook file through TEX occasionally, in order to see how the
pages really fit together. For example, when the author prepared this mamgal,
he did one chapter at a time, and the longer ehapters were split into subchapters.

@@» EXERCISE 27.5
Final exercise: Find all of the lies in this manual, and all of the jokes.

Final exbortation: GO FORTH now and create masterpieces of the publishing art!

Who can understand his errors?
- Psatm 19:12 {c. 1000 B.C.)

it is one thing, to shew a Man that he is in an Error,
and another, to put him in possession of Truth.

- JOHN LOCKE, An Essay Concerning Humane Understanding {1690)

303

tabshkip glue
Owerfoll roles
tracingonline
tracingall
showhonbreadth
showhordepth
pansing

galley

hook

s

Johes

Biblical
LOTKE

age 304}

_

A

Answers to
All the
Exercises

Appendin A: Answers to All the Ezercises

The preface to this manual points out the wisdom of trying to figure out each
exereise hefore you look up the answer here. But these answers are intended to
be read, since they occasionally provide additional information that you are best
equipped to understand when you have just worked on a problem.

1.1. A TgXnician {underpaid); sometimes also called a TEXacker.

2.1. Alice said, ‘‘I alwayz use an en-dazh instead of a hyphen when
specifying page numbers like ‘480--491° in a bibliography.’’ {The wrong
answer to this question ends with *480-491° in a bibliography.")

2.2, You get em-dash and hyphen {—), which looks awful.
2.3, flufhier firefly fisticufls, agstafl fireproofing, chiffchaft and riffraff.

2.4, ““\thinspace‘; and either *{}°° or {‘}°° or something similar. Reason:
There's usually less space preceding a single left quote than there is preceding a double
left quote. (Left and right are opposites.)

2.5. Eliminating \thinspace would mean that a user need not learn the term;
but it is not advisable to minimize terminclogy by “overloading” math mode with
tricky constractions. For example, a user who wishes to take advantage of TEXs
\mathsurround feature would be thwarted by non-mathematical uses of dollar signs.
{Incidentally, neither \thinspace nor \, are built into TEX; both are defined in teros
of more primitive features, in Appendix B.)

3.1. \I, \exercise, and \\. {The last of these is of type 2, ie., a control symbol,
since the second backslash is not a letter; the first backslash keeps the second one from
starting its own control sequence.)

3.2. math\’ematigue and centim\‘etre.

3.3. According to the index, \, is primitive but \{retura} isn’t. The command
Ndef\ M\ }in Appendix B is what actually defines \{return}, since a return is repre-
sentable as ~"N. Asking TEX to \show\" "M produces the response > \""M=macro:->\,.".

3.4. There are 256 of length 2; most of these are undefined when TEX begins.
(TgX aliows any character to be an escape, but it does not distinguish between control
sequences that start with different escape characters.} If we agswme that there are 52
letters, there are exactly 52° possible control sequences of length 3 (one for each pair
of letters, from AA to zz). But Chapter 7 explains how to use \catcode to change any
character into a “lettes”; therefore it’s possible to use any of 256° potential control
sequences of length 3.

4.1. Ulrich Dieter, {\zl Journal f\"nr die reine und angewandte
Mathematik\/ \bf201} {1959}, 37--70.

It’s convenient to use a single group for both \sl and \bf here. The *\/’ is a refinement
that you might not understand aatil you read the rest of Chapter 4.

4.2. {\it Explain ... typeset a\/ {\rm roman} word ... sentence.} Note
the position of the italic correction in this case.

4.3. \def\ic#l{\zetboxO=\hbox {#1\/I\dimend=\ud0
\zetboxO=\hbox{#1}\advance\dimenl® by ~\wd0}.

305

thinspace
mathsurround
»

B

catcode
letter

306

Appendiz A: Answers to All the Ezercises

4.4, Coatrol word naxmes are made of letters, not digits.

4.5. Say \def\sl{\it} at the beginning, and delete other definitions of \sl that
mright be present in your format file {e.g., there might be one inside a \tenpoint macro).

4.6. \font\zguinttenrm=cmril at 5Spt
\font\zgninttenrm=cmri1® scaled 500

5.1. {shelf}ful or shelf{}ful, etc.; or even shelf\/ful, which yvields a shelfful
instead of a sheifful. In fact, the latter idea—to insert an italic correction—is prefer-
able because TEX will reingert the f Hgature by itsell after hyphenating shelf {3ful.
{Appendix H points out that Heatures are put into a hyphenated word that contains no
“explicit kerns,” and an italic correction is an explicit kern.) But the italic correction
may be too much {especiatly in an italic font); shelf{\kernOpt}ful is often best.

5.2, ‘L{u}y or ‘L{tu{}y, ete. Plain TEX also has a \space macro, 80 you can type
\space\space\space. {These aren’t strictly equivalent to “\u\o\L', since they adjust
the spaces by the current “space factor,” as explained later.)

5.3. In the first case, vou get the same result as if the innermost braces had not
appeared at all, because vou haven't used the grouping to change fonts or to control
spacing or anything. TEX doese’t mind if you want to waste your time making groups
for no particnlar reason. But in the second case, the necessary braces were forgotten.
You get the letter ‘S’ centered on a Hne by itself, followed by a paragraph that beging
with ‘o should this” on the next lne,

5.4. You get the same result as if another pair of braces were present arcand \it
centered’, except that the period is typeset from the italic font. (Both periods look
about the same.} The \it font will not remain in force after the \centerline, but
this is s;mething of a coincidence: TEX uses the braces to determine what text is to
be centered, but then it removes the braces. The \centerline operation, as defined in
Appendix B, puts the resulting braceless text inside another group; and that’s why \it
disappears after \centerline. (I you don’t understand this, just don’t risk leaving
out braces in tricky situations, and yvouw'll be OK.)

5.5. \def\ital#1{{\it#1\/}}. Pro: Users might find this easier to learn, becanse
it works more like \centerline and they don’t have to remember to make the italic
correction. Con: To aveld the italic correction just before a comma or period, users
shouid probably be tanght another control sequence; for example, with

\def\nocorr{\kernlpt }

a user could type ‘\ital{comma} or \ital{period\mocorr},’. The alternative of
putting a period or comna in italics, to avedd the italic correction, doesa’t look as
good. A long sequence of italics would be inefficient for TEX, since the entire text for
the argument to \ital must be read into memory only to be scammed again.

5.6. {1 {2 3 45} 4 6} 4

5.7. \def\beginthe#l{\begingroup\defi\blockname{#1}}
\def\endthettl{\def\test {#1}%
\ifx\tezt\blockname\endgroup
\elze\errmessage{Yon should have =said
\string\endthe {\blockname}}\fi}

italic correction
/

hyphenating
explicit kerng
kern

Space

space factor

Appendin A: Answers to All the Ezercises

6.1. Laziness and/or obstinacy.

6.2. There’s an unwanted space after ‘called—', becanse {as the book says) TEX
treats the end of a line ag if it were a blank space. That blank space is usually what
yon want, except when a line ends with a hyphen or a dash; so you should waToH out
for lines that end with hyphens or dashes.

6.3. It represents the heavy bar that shows up in vour ontput. {This bar wounlde’t
be present if \overfullrule had been sef to Opt, nor is it present in an underfull box.)

6.4. This is the \parfillskip space that ends the paragraph. In plain TEX the
parfillskip is zero when the last line of the paragraph is full; hence no space actually
appears before the rule in the output of Experiment 3. But all hskips show up as spaces
in an overfull box message, even if they're zero.

6.5. Run TEX with \hzize=1.5in \tolerance=10000 \raggedright \hbadness=-1
and then \input story. TEX will report the badness of all lines {except the final lines
of paragraphs, where fill glue makes the badness zera).

6.6. \def\extraspace{\nobreak \hskip Opt pluz .15em\relax}
\def\dash{\unskip\extraspace~~~\extraspace}
(If you try this with the story at 2-inch and 1.5-inch sizes, you will notice a substantial
improvement. The \unskip allows people to leave a space before typing \dash. TEX
will try to hyphenate before \dash, but not before ‘~--7; ¢f. Appendix H. The \relax
at the end of \extraspace is a precantion in case the next word is ‘minus’.)

6.7. TEX would have deleted five tokens: 1, 1, n, |, \centerline. {The space was
at the end of line 2, the \centerline at the beginning of Hne 3.}

6.8. A contro! sequence like \centerline might well define a control sequence
like \ERROR before telling TEX to look at #1. Therefore TEX doesn’t interpret control
sequences when it scans an argument.

7.1. Three forbidden characters were used. One should type

Procter \¥ Gamble’s ... \$2, a 10\} gaim.

{Also the facts are wrong.)

7.2. Reverse slashes {backslashes)} are fairly uncommon in formulas or text, and \\
is very easy to type; it was therefore felt best not to reserve \\ for such Hmited use.
Typists can define \\ to be whatever they want {inchiding \backslaszh)}.

7.3. 1,2, 3,4, 6,7, 8, 10, 11, 12, 13. Active characters {type 13} are somewhat
special; they behave like control sequences in most cases {e.g., when yvou say ‘\let\x=""
or ‘\ifx\x"’}, but they behave like character tokens when they appear in the token list
of \uppercaszse or \lowercase, and when unexpanded after \if or \ifcat.

T.4. It ends with either > or } or any character of category 2; then the effects of all
\catcode definitions within the group are wiped out, except those that were \global.
TEX doesn’t have any built-in knowledge about how to pair up particular kinds of
grouping characters. New category codes take effect as soon as a \catcode assigninent
hras been digested. For example,

{\catcode ‘\»=2 >

307

overfollrole
parfilskip
relad
Active characters
let

i

U peTCase
lowercase

i

Heat

global

308

Appendiz A: Answers to All the Ezercises

is a complete gronp. But without the space after ‘2° it would not be complete, since TEX
would have read the ©° and converted it to a token before knowing what category code
was being specified; TEX always reads the token foliowing a constant before evaluating
that constant.

7.5. I you type ‘\message{\string"}’ and ‘\message{\stringh\~}’, TEX responds
with “°7 and ‘N7, respectively. To get \iz from \string you therefore need to make
backslash an active character. One way to do this is

{\catcode /=0 \catcode‘\\=13 /meszage{/string\}}

{The “umull contral sequence” that you get when there are no tokens between \csname
and \endczname is not a solution to this exercise, because \string converts it to
‘\csname\endczname’. There is, however, another sclution: If TEX’s \escapechar
parameter—which will be explained in one of the next dangerous bends—is negative
or greater than 255, then ‘\string\\’ works.}

T.B. N\iz @iz Niz Lo big.

7.7. \def\ifundefined#l{\expandafter\ifx\csname#1\endcsname\relax}
Note that a control sequence like this must be used with care; it cannot be included in
conditional text, because the \ifx will not be seen when \ifundefined isn’t expanded.

7.8. First \nppercase produces ‘4\lovercaze{BC}’; then you get ‘Abc’.

7.9. ‘\copyright\ \uppercase\expandafter{\romannumerall\year}’. {This is
admittedly tricky; the ‘\expandafter’ expands the token after the ‘{’, not the token
after the group.)

7.10. [{We asmiue that parameter #2 is not shply an active character, and that
\ezcapechar is between § and 255.)

\def\gobble#1{} % remove omne token
\def\appendroman#1#2#3{\edef#1{\caname
\expandafter\gobble\string#2\romannumeral#3\endcsname}}

8.1. The % would be treated as a comment character, because its category code
in 14; thus, no % token or 1 token would get through to the guliet of TEX where numbers
are treated. When a character is of category 0, 5, 9, 14, or 15, the extra \ omst be
used; and the \ doesn’t hurt, 50 you can always use it to be safe.

B.2. {a) Both characters terminate the current line; but a character of category 5
uright be converted into Lo or a token, while a character of category 14 never
produces a token. {b) They produce character tokens stamped with different category
mubers. For example, $5 is not the same token as $4, so TpX's digestive processes
will treat them differently. (¢} Same as (b}, plus the fact that control sequence names
treat letters differently. {d) No. (e) Yes: characters of category 10 are ignored at the
beginning of every line, since every line starts in state N. {f) No.

8.3. TEX had just read the control sequence \vahip, so it was in state S, and it
was just ready to read the space before ‘1in’, Afterwards it ignored that space, since it
was in state S; but if you kad typed I\obeyspaces in response to that error message,
vou world have seen the space. Incidentally, when TEX prints the context of an error
message, the bottom pair of lines comes from a text file, but the other pairs of Hnes

constant

IS e

noll control sequence
escapechar

conditional

expandalter

escapechar

context of an error message

Appendin A: Answers to All the Ezercises

are portions of token lists that TEX is reading (unless they begin with ‘<’ when they
represent text inserted during error recovery).

B.4. %5 x1: 7y 212 $3 Tis i biz viz Lie. The final space comes from the
{retura} placed at the end of the line. Code ""6 vields v only when not followed by 0-9
or a—f. The initial space is ignored, becanse state N governs the beginning of the Hne.

B.5. Hiy i1 Yeo uin . The) comes from the {return} at the end of the
first line; the second and third lines each contribute a .

8.6. The two ""B’s are not recoguized as consecutive superscript characters, since
the first “"B is converted to code 2 which doesn’t equal the following character = Hence
the resalt is seven tokens: ~~By ""By My wig "My (M), The last of these is a
control word whose name has two letters. The {space} after \M is deleted before TEX
inserts the {return} token.

8.7. Both alternatives work fine in text; in particular, they combine ag in \lg\lg
to form ligatures. But the definition in Appendix B works also in connection with
constants; e.g., \char\lg\} and \char\rq140 are valid. {Incidentally, the construction
\let\lg=* would not work with constants, since the quotes in a {oumber} must come
from character tokens of category 12; alter \let\lg=* the coutrol sequence token \lg
will not expand into a character token, nor is it a character token!)

9.1. na\"\i ve or na{\"\i}ve or na\"{\i}ve.
9.2. Beloved protégé; réle cobrdinator; soufflds, crépes, patés, etc.
9.3, \AE sop’s \QE uvrez en fran\c cais.

9.4, {\sl Commentarii Academidae\ scientiarum imperialis
petropolitan\aeh\/} iz mow {\sl Akademi\t\i a Namk SSSR, Doklady}.

9.5. Ernesto Ces\‘aro, P\’al Erd\H oz, \0 ystein Ore, Stanizs\l aw *Swiery
czkowski, Serge\u\i\ \t Inr‘’ev, Muo\d hammad ibn M\ us\"a al-Khw\“arizm\“\i.

9.6. The proper wmlant is \H, which isn't available in \tt, so it’s necessary to
barrow the accent from another font. For example, {\tt P\?al Erd{\bf\H{\tt o}}s}
uses a bold accent, which is suitably dark.

9.7. {\it Enrope on {\s1\$}15.00 a day\/}

9.8, The extra braces keep font changes local. An argument makes the use of \°
more consistent with the use of other accents ke \d, which are mamifactured from
other characters without using the \accent primitive.

10.1. Exactly 7227 pt.

10.2. —.013837in, 0.mm, +42.1dd, 3in, 29pc, 123456789 sp. (The lines of text in
this manual are 29 picas wide.)

10.3. The first is not allowed, since octal notation cannot be used with a decimal
point. The second is, however, legal, since a {mumber} can be hexadecimal according
to the rule mentioned in Chapter 8; it means 12 ce, which is 144 dd =~ 154.08124 pt.
The third is also accepted, since a {digit string} can be empty; it is a complicated way
to say Osp.

309

EFTOT TROGVETY
nuber

Tert

mnphicit character

310

Appendiz A: Answers to All the Ezercises

10.4. \def\tick#1{\vrule height Opt depth #1pt}
\def\\{\hbox to lom{\hfill\tick4\hfil\tickf}}
\wbox {\hrule\hbox {AEck8VAVMAANANVAANANNAAND D
{You might also try putting ticks at every millimeter, in order to see how good your
system is; some ontput devices can’t handle 101 rules all at once.)

10.5. For example, say ‘\magnification=\magstepl \input story \end’ to get
magnification 1200; \magstep2 and \magstep3 are 1440 and 1728, Three separate rans
are needed, since there can be at most one magnification per job. The output may ook
funny if the fonts don’t exist at the stated magnifications.

10.6. Magnification is by a factor of 1.2, Since font \firast is cmr10 at 12 pt, it will
be cmri10 at 14.4pt after magnification; font \second will be cmrld at 12pt. (TpX
changes ‘12trnept’ into ‘10pt’, and the final output magrifies it back to 12pt.)

11.1. This E is inside a box that’s inside a box.
11.2. The idea is to constract a box and to look inside. For example,
\setboxO=\hbox{\sl g\/} \showbox(

reveals that \/ is implemented by placing a kern after the character. Further experiment
shows that this kern is inserted even when the italic correction is zero.

11.3. The height, depth, and width of the enclosing box should be just large enough
to enclose all of the contents, so the result is:

\hbox (8.98608+0.0)x24,44484

Atentm T

Akern 1.66702

.\hbox{6.83331+0.0)x6.80557, shifted -2.15277
. A\tenrm E

A\kern 1.25

Atentm X

{You probably predicted a height of 8.9861; TEX's internal calculations are in sp, not
pt/100000, so the rounding in the fifth decimal place is not readily predictable.}

11.4. No applications of such symnetrical boxes to English-language printing were
apparent; it seemed pointless to carry extra generality as useless baggage that would
rarely if ever be used, merely for the sake of symmetry, In other words, the author
wore a computer science cap instead of 4 mathematician’s mantle on the day that TEX s
boxes were horn. Time will tell whether or not this was a fundamental error!

11.5. The following solation is based on a general \makeblankbox macro that prints
the edges of a box using rules of given thickness outside and inside that box; the box
dimensions are those of \box0.

\def\dolist{\afterassignment\dodolist\let\next= }
\defl\dodolist{\ifx\next\endlist \let'‘mext\relax
\else \\\let\next\dolist \fi
\next}
\def\endlizt{\endlist}

Appendin A: Answers to All the Ezercises

\def\hidehinle#1#2{\kern~#1%
\hrule height#l depth#2 \kern-#2 }
\def\hidevrule#1#2{\kern~#1{\dimen0=11
\advance\dimen(by#2\viule width\dimenO}\kern~-#2 }
\def\makeblankbox#1#2{\hbox{\lower\dpO\vbox{\hidehrnle{#1}{#2}%
\kern~#1 % overlap the rmlez at the corners
\hbox to \wdO{\hidevrnle{#1}{#2}%
\raize\htO\vbox to #1{}% szet the vrule height
\lower\dpO\vtop to #1{}} set the vrule depth
\hfil\hidevrule{#2}{#1}}%
\kern~#1\hidehrule{#2} {#1}}}}
\def\maketypebox{\makeblankbox{Opt}{1pt}}
\def\makelightbox{\makeblankbox{.2pt}{.2pt}}
\def\\{\expandafter\if\space\next\
\elze \zetboxO=\hbox{\next}\maketypebox\fi}
\def\demobox#1{\setbox0=\hbox{\dolist#1\endli=t}},
\copyM\kern-\wd\makelightbox}

11.6. \def\frac#1/#2{\leavevmode\kern.lem
\raize.5ex\hbox{\the\zcriptfont(#1}\kern-.lem
/A\kern-.15em\lower. 25ex\hbox{\the\=scriptfontld #2}}

12.1. 9+ 16 units, 9 + 32 units, 12 + 0 units. (But TEX would consider so much
stretching to be “infinitely bad.”)

12.2. ‘What happens now?’ is placed in a line of width \haize, with twice as much
space at the left as at the right; ‘and now?’ s put flush right on the following Hne.

12.3. The first two give an “overfull box” if the argument doeso’t fit on a line
the third allows the argument to stick out into the marging instead. (Plain TgXs
\centerline is \centerlinec; the stickout effect shows up in the narrow-column ex-
periment, of Chapter 6.) If the argnment, containg no infinite glie, \centerlinea and
\centerlineb produce the same effect; but \centerlineb will center an argument that
containg ‘fil’ glue.

12.4. Mr."\k Mr=z. User were married by Rev. Drofmats, who preached on
Matt. 19\thinspace:\thinapace3-~9, (Such thin spaces are traditional for Biblical
references to chapter and verse, but you weren't really expected to know that. Plain
TgX defines \thinapace to be a kern, not glie; hence no break between Hnes will ocouar
at a thinspace.}

12.5. Donald"E.\ Kmuth, °‘Mathematical typography,’’ {\sl Bull.\ Amer.\
Math.\ Soc.\ \bf1} {1979}, 337--372. (But the ‘N’ after ‘E.’ isn’t necessary,
becanse of a rule you will learn if you venture around the next dangerous bend.)

12.6. There are several ways; perhaps the easiest are to type ‘\hbox{NASA}.’ or
‘NaSa\mmull.’ {The \null macro is an abbreviation for “\hbox{}’.}

12.7. 1006, except: 999 alter B, S, D, and J; 1256 after the comma; 3000 alter the
exclamation point, the double-right-quote, and the pericds. If a period had come right
after the B {ie., if the text had said ‘B. Sally’), the space factor after that period
would have been 10606, not 3000.

311

centerling

Biblical references
thinspace

noll

312

Appendiz A: Answers to All the Ezercises

12.8. \box3 is 2pt high, 4pt deep, 3pt wide. Starting at the reference point of
\box3, go right .75 pt and down 3pt to reach the reference point of \boxl; or go right
1 pt to reach the reference point of \box2.

12.9. The stretch and shrink components of \baselineskip and \lineskip should
be equal, and the \lineskiplimit should equal the normal \lineskip spacing, to
guarantee continuity.

12.10. Yes it did, but only because none of his boxes had a negative height or depth.
He would have been safer if he had set \baselineskip=~1000pt, \lineskip=Opt, and
\lineskiplimit=16383pt. (Plain TEX's \offinterlineskip macro does this.)

12.11. The interline glue will be 4ero, and the natural height is 1 + 1~ 3+ 2 =1 pt
{because the depth of \box2 isn't included in the natural height); so the glue will
unltimately become \vskip-1pt when it’s set. Thus, \box3 is 3pt high, 2ot deep, 4 pt
wide. Its reference point coincides with that of \box2; to get to the reference point of
\boxl you go up 2 pt and right 3 pt.

12.12. The interline glue will be 6 pt minus 3fil; the final depth will be zero, since
\box2 is followed by glue; the natural height is 12 pt; and the shrinkability is 5fil. So
\box4 will be 4pt high, Upt deep, 1pt wide, and it will contain five items: \vskip
~-1.6pt, \box1, \vskipl.2pt, \moveleftdpt\box2, \vekip-1.6pt. Starting at the ref-
erence point of \box4, vou get to the reference point of \box1 by going up 4.6pt, or
to the reference point of \box2 by going up 4pt and left 4pt. (For example, vou go
up 4pt to get to the upper left corner of \box4; then down —1.6pt, ie., up 1.6pt. to
get to the upper left corner of \box1; then down 1 pt to reach its reference point. This
problem is clearly academic, since it’s rather ridiculous to include infinite shrinkability
in the baselineskip.)

12.13. Now \box4 will be 4pt high, —4pt deep, 1 pt wide, and it will contain \vakip
~2.4pt, \boxl, \vakip~1.2pt, \moveleftdpt\box2, \vakip~2.4pt. Frowm the baseline
of \box4, go up exactly 5.4 pt to reach the baseline of \box1, or exactly 3.6 pt to reach
the baseline of \box2.

12.14. \vbox to x{} produces height x; \vtop to x{} produces depth x; the other
dimensions are vero. {This holds even when 1 is negative.)

12.15. There are several possibilities:
\def\nullbox#1#2#3{\vbox te#1{\vsa\hrule height-#2depth#2vidth#3}}
works because the rule will be of zero thickness. Less tricky is
\def\nullbox#1#2#3{\vhox to#i{\vss\vtop to#2{\vzs\hbox to#3{}}}}

Both of these are valid with negative height and/or depth, but they do not produce
negative width. If the width might be negative, but not the height or depth, yvou can
1se, e.g., \def\nullbox#1#2#3{\hbox to#3{\hzs\raizse#l\mnll\lover#2\null}}. It’s
irnpossible for \hbox to construct a box whose height or depth is negative; it’s impossible
for \vbox or \vtop to construct a box whose width is negative.

However, there’s actually a trivial solution to the general problem, baged on
features that will be discussed later:

\def\nullbox#1#2#3{\zetbox0=\null

\htO=#1 \dpO=#2 \wd0=#3 \box(}

offinterlineskip

Appendin A: Answers to All the Ezercises

12.16. \def\llap#1{\hbox to Opt{\hss#1}}

12.17. You get ‘A’ at the extreme left and ‘puzzle’ at the extreme right, because the
space between words has the only stretchability that is finite; the infinite stretchability
cancels out. (In this case, TEX s rule about infinite glue differs from what you would
get in the Hmit if the value of 1fil were finite but getting larger and larger. The true
lmiting behavior would stretch the text ‘A puzele.” in the same way, but it would also
maove that text infinitely far away beyond the right edge of the page.)

13.1. Simply saying \hbox{...} won’t work, since that box will just continue the
previous vertical list without switching modes. You need to start the paragraph explic-
itly, and the straightforward way to do that is to say \indent\hbox{...}. But suppose
vou want to define a macro that expands to an hbox, where this macro is to be used in
the midst of a paragraph as well as at the beginning; then you don’t want to force users
to type \indent before calling your macro at the beginning of a paragraph, nor do you
want to say \indent in the macro itself (since that might insert unwanted indenta-
tions). One solution to this more general problem is to say “\,\unskip\hbox{...}’,
since \y makes the mode horizontal while \unskip removes the unwanted space. Plain
TEX provides a \leavevmode macro, which solves this problem in what is probably
the most efficient way: \leavevmode is an abbreviation for ‘\unhbox\voidbex’, where
\voidbox is a permanently empty box register.

13.2. The output of \tracingcommands shows that four blank space tokens were
digested; these originated at the ends of Hnes 2, 3, 4, and 5. Only the first had any
effect, since blank spaces are ignored in math formulas and in vertical modes.

13.3. The end-group character finishes the paragraph and the \vbox, and \bye
stands for ‘\vfill...’, so the next three commands are

{math mode: math shift character $}
{restricted horizontal mode: end~group character }}
{vertical mode: \vfill}

13.4. It contains only mixtures of vertical glue and horizontal rules whose reference
points appear at the lett of the page; there’s no text.

13.5. Vertical mode can ocour only as the outermost mode; horizontal mode and
display math mode can ocour only when hmediately enclosed by vertical or internal
vertical mode; ordinary math mode cannot be immediately enclosed by vertical or
mmternal vertical mode; all other cases are possible.

14.1. (cf. Chapter~12).
Chapters 12 and™21.
line”16 of Chapter”6’s {\tt story}
lines 7 to™11
lines 2,73, 4, and”5.
(2)"a big black bar
All 256"characters are initially of category™12,
letter {\tt x} in family~1.
the factor“f, where $nd~isz 1000 times"9$13.

14.2. ‘for all n greater than"$n_ 0% avoids distracting breaks.

313

intinite gloe
tnskip
leavevinode

314

Appendiz A: Answers to All the Ezercises

14.3. ‘exercise \hbex{4.3.2--15} guarantees that there is no break alter the en-
dash. Dut this precantion is rarely necessary, so ‘exercise 4.3.2~~15" is an acceptable
answer. No 7 is needed; ‘4.3.2-15° is so long that it canses no offense at the beginning
of a line,

14.4. The space you get from ~ will stretch or shrink with the other spaces in the
same line, but the space ingide an hbox has a fived width since that glue has already
been set once and for all. Furthermore the first alternative permits the word Chap-
ter to be hyphenated.

14.5. ‘\hbox{$x=0$} is unbreakable, and we will see later that ‘${x=0}$ camnot be
broken. Both of these solutions set the ghie surrounding the equals sign to some fixed
value, but such glue normally wants to stretch; furthermore, the \hbox solution might
include uadesirable blank space at the beginning or end of a line, if \mathsurround is
nonzerc. A third solution ‘$x=\nobreak0d$’ avoids hoth defects.

14.6. \exhyphenpenalty=10000 prokibits all such breaks, according to the rules
found later in this chapter. Similarly, \hyphenpenalty=10000 prevents breaks alter
tmplicit {discretionary) hyphens.

14.7. The gecond and fourth Hnes are indented by an additional “quad” of space,
ie., by one extra em in the current type style. {The control sequence \quad does an
\hakip; when TEX is in vertical mode, \hskip begins 4 new paragraph and puts ghe
after the indentation.) If \indent had been used instead, those lines wouldn’t have
been indented any more than the first and third, because \indent is faplicit at the
beginning of every paragraph. Double indentation on the second and fourth lines could
have been achieved by “\indent\indent’.

14.8. ba\ck en and Be\ttt uch, where the macros \ck and A\ttt are defined by

\defh\ck{\discretionary{k-}{k}{ck}}
\def\ttt{tt\discretionary{-}{t}{}}

The English word ‘eighteen’ might deserve similar treatment. TEXs hyphenation al-
gorithm will not make such spelling changes automatically.

14.9. \def\break{\penalty-10000 }

14.10. You get a forced break as if \nobreak were not present, becanse \break cannot
be cancelled by another penalty. In general if you have two penalties in a row, their
combined effect is the same as a single penalty whose value is the minimum of the two
original values, unless both of those values force breaks. (You get two breaks from
\break\break; the second one creates an empty line.)

14.11. Breaks are forced when p < —10000, s¢ there’s no point in subtracting a large
constant whose effect on the total demerits is known a priori, especially when that
might cause arithmetic overflow.

14.12. (10 + 131F° + 0% + 10000 = 29881 and {10 + 1)° + 50% + 100G0 = 12621, In
both cases the \adjdemerits were added becanse the lines were visnally incompati-
ble {decent, then very loose, then decent); plain TEX’s values for \linepenalty and
\adjdemerits were used.

en-cash
hyphenate
mathsorround
hskip
adidemerits
lnepenalty

Appendiz A: Answers to All the Ezercvises 315

14.13. Because TEX discards a glue itemn that occurs just before \par. Ben should displaved equations
have said, e.g., ‘\hiilneg\ \par’.

14.14. Just say \parfillskip=\parindent. Of course, TEX will not be able to find
appropriate Hne breaks unless each paragraph is sufficiently long or sufficiently Iucky;
but with an appropriate text, vour output will be immaculately syvmmetrical.

14.15. Assuming that the anthor is deceased and/or set in his or her ways, the remedy
ig to ingert ‘{(\parfillskip=0Opt\par\parskip=Opt\noindent}’ in random places, alter
each 50 lines or 50 of text. (Every space between words is usually a feasible breakpoint,
when you get sufficiently far from the beginning of a paragraph.)

14.16. {\leftskip=-1pt \rightekip=1pt {text} \par}

(This applies to a full paragraph; if yvou want to correct only isolated lines, von have
to do it by hand.)

14.17. ‘\def\line#1{\hbox to\hzize{\hskip\leftskip#i\hskip\rightskip}} is
the only change needed. {Incidentally, displayed equations don’t take account of
\leftakip aznd \rightakip either; it's more difficult to change that, because so many
variations are possible.)

14.18. The anthor’s best solution is based on a variable \dimen register \x:

\zetboxl=\hbox{I}

\zetbox0=\vbox{\parshape=11 -0\x0\x ~-1\x2\x -2\xd\x ~3\xz6\x
~4\x8\x ~5\x10\x ~6\x12\x ~7\x1d\x ~8\x16\x ~9\x18\x ~10\x20\x
\ifdim \x>2em \rightskip=-\wdl
\elze \frenchspacing \rightskip=-\wdl pluslpt mimnmslpt
\leftskip=Opt plus 1pt minuslpt \fi
\parfillskip=Cpt \tolerance=1000 \noindent I turmn, ... hand.}

\centerline{\hbox to \wdl{\boxO\hzs}}

Satisfactory results are obtained with font cmrl0 when \x is set to 8.9pt, 13.4pt,
18.1pt, 22,6 pt, 32.6 pt, and 47.2 pt, yvielding trinngles that are respectively 11, 9, 8, 7,
6, and 5 lines tall,

14.19. \item{} at the beginning of each paragraph that wants hanging indentation.
14.20. \item{\bullet}

14.21. Either change \hsize or \rightskip. The trick is to change it back again at
the end of a paragraph. Here’s one way, without grouping:
\let\endgraf=\par \edef\restorehaize{\haize=\the\hzize}

\def\par{\endgraf \restorehsize \let\par=\endgraf}
\advance\hzize by~\parindent

14.22, \dimen0=\hsize \advance\dimenC by Z2em
\parzhape=3 Opt\hzize Opt\hsize -2em\dimenl

14.23. The three paragraphs can be combined into a single paragraph, if vou use
‘\hfil\vadjust{\vskip\parskip}\break\indent’ instead of ‘\par’ after the first two.
Then of course you say, e.g., \hangindent=-50pt \hangafter=-15. {The same idea
can be applied in connection with \looseness, if vou want TEX to make one of three

316 Appendiz A: Answers to All the Ezercises

paragraphs looser but i vou don’t want to choose which one it will be. However, long linepenalty
paragraphs fill TEX s memory; please use restraint.) See also the next exercise. *}” ot
dp

14.24. Use \hangcarryover hetween paragraphs, defined as follows: :ﬁ‘;;’:]d? at beginming of paragrap!
\def\hangcarryover{\edef\next{\hangafter=\the\hangafter
\hangindent=\the\hangindent}
\pari\next
\edef\next{\prevgraf=\the\prevgraf}

\indent\next}

14.25. It will set the current paragraph in the minimum pumber of lines that can be
achieved without viclating the tolerance; and, given that number of Hues, it will break
them optimally. (However, nonzero looseness makes TEX work harder, so this is not
recomended if vou don’t want to pay for the extra computation. You can achieve
almost the same result much more efficiently by setting \linepenalty=100, say.}

14.26. 150, 100, 0, 250. {When the total penalty is zero, as between lines 3 and 4 in
this cage, no penalty is actually inserted.}

14.27. \interlinepenalty plus \clubpenalty plus \widowpenalty [amd also plas
\brokenpenalty, if the first line ends with a discretionary break).

14.28. The tricky part is to avoid “opening up” the paragraph by adding anything
to its height; yet this star is to be contributed after a lne having an unknows depth,
because the depth of the Hoe depends on details of line breaking that aren’t known until
afterwards. The following solution uses \strut, and assumes that the lne containing
the marginal star does not have depth exceeding \dp\strutbox, the depth of a \strut.

\def\strntdepth{\dp\stntbox}
\def\marginalatar{\strut\vadjust{\kern~\atrutdepth\specialatar}}

Here \specialstar is a box of height zero and depth \strutdepth, and it puts an
agterisk in the left margin:

\def\specialstar{\vtop to \strutdepth{
\baselineskip\strutdepth
\vash\llap{* }\nulll}}

14.29. \def\insertbullets{\everypar={\llap{\bullet\enzpacel}}}

(A similar device can be used to insert hanging indentation, and/or to number the
paragraphs antomatically.)

14.30. First comes \parskip ghie {but vou might not see it on the current page if you
say \showlists, since glue dizappears at the top of each page). Then comes the result
of \everypar, but let’s assume that \everypar doesn’t add anyvthing to the horizontal
list, so that you get an empty horizontal list; then there’s no partial paragraph before
the dispiay. The displaved equation follows the normal rules {it cccuples lnes 1-3 of
the paragraph, and uses the indentation and length of line 2, f there’s a nonstandard
shape}. Nothing follows the display, since a blank space is ignored alter a closing ‘$%°.

Incidentally, the behavior is different if you start a paragraph with ‘$%° instead
of with \noindent$$, since TEX inserts a paragraph indentation that will appear on a
lne by itself {with \leftskip and \parfillskip and \rightskip glue).

Appendin A: Answers to All the Ezercises

14.31. A break at \penalty50 would cancel \hskip2em\nobreak\hfil, so the next
line would be forced to start with the reviewer’s name flush left. (But \vadjust{}
would actaally be better than \hbox{}; it uses TEX more efficiently.}

14.32. Otherwise the line-breaking algorithm might prefer two final lines to one final
line, simply in order to move o hyphen from the second-last line up to the third-last line
where it doesn’t canse demerits. This in fact caused some surprises when the \signed
macre was being tested; \tracingparagraphs=1 was used to diagnose the problem.

14.33. Distributing the extra space evenly would lead to three lines of the maximum
bad=ness {10000}, It’s better to have just one bad line instead of three, since TgX doesn’t
distinguish degrees of badness when lines are really awful. In this particular case the
\tolerance was 206, so TEX didn’t try any line breaks that would stretch the first two
lines; but even if the tolerance had been raised to 10000, the optimum setting would
kave had only one underfull line. If you really want to spread the space evenly you can
do so by using \spaceskip to increase the amount of stretchability between words,

14.34. \def\raggedcenter{\left=kip=0Opt plusdem \rightskip=\leftskip
\parfillskip=0pt \zpaceskip=.3333em \xzpacezkip=.5em
\pretolerance=9999 \tolerance=9999 \parindent=0pt
\hyphenpenalty=9999 \exhyphenpenalty=9999 }

15.1. The last three page-break calculations would have been

% t=503.0 plus 8.0 minms 4.0 g=528.0 b=3049 p=150 c=3199#
% t=514.0 pluns 8.0 minns 4.0 g=528.0 b=533 p=-100 c=433#
% t=542.0 plus 11.0 minns 6.0 g=528.0 b=t p=(c=4

s0 the break would have occurred at the same place. The badness would have heen 533,
but the page would still have looked tolerable. (On the other hand if that paragraph
had been two lines shorter instead of one, the first two lines of the next “dangercous
bend” paragraph would have appeared on that page; the natural height ¢ = B3l pt
would have been able to shrink to ¢ — 528 pt because the three “medskips” on the page
would have had a total shrinkability of 6 pt. This would certainly have been preferable
to a stretched-out page whose badness was 3049; but the anthor might have seen it and
written another sentence or two, so that the paragraph would not have been broken
up. After all, this manual is supposed to be an example of good practice.)

15.2. The next legal break after the beginning of a dangerous bend paragraph ocours
28 pt later, because there is 6 pt additional space for a \medskip, foliowed by two lines
of 11 pt eack. TEX does not allow breaking between those two lines; the \clubpenalty
is set briefly to 10000 in Appendix E, since the dangerous bend symbol is two lines tall.

15.3. A page always containg at least one box, if there are no insertions, since the
legal breakpoints are discarded otherwise. Statement {a) fails if the height of the
topmost box exceeds 10pt. Statement (b} fails if the depth of the bottommost box
exceeds 2.2 pt, or if some glue or kern comes between the bottommost box and the
page break {nnless that glue or kern exactly cancels the depth of the box).

15.4. \topinsert\vskip2in\rightline{\vbox{\hsize ... artwork.}}\endinsert
does the job. But it’s slightly more efficient to avoid \rightline by changing \leftskip
as follows: ‘\leftskip=\hsize \advance\leftzkip by~3in’. Then TEX doesn’t have
to read the text of the caption twice.

317

vad just
tolerance
spaceskip
clubpenalty
rightline
leftskip

318

Appendiz A: Answers to All the Ezercises

15.5. It would appear on page 25, since it does fit there, A \midinszert will juinp
ahead of other insertions only if it is not carried over to another page; for example,
if the second 3-inch insertion were a \midinsert, it would not appear on page 26,
because it is converted to a \topinsert as soon as the \midinsert macro notices that
the ingertion is too big for page 25.

15.6. Set \countl to 56, then \dimen2 to 50 pt, then \countl to 6, then \skip2
to —10pt plus 64 minng 50 pt, then \skip2 to 60 pt plas —36 il minus —300pt, then
\skip2 to lsp minus —Gsp, then \count6 to 1, then \skipl to 25pt plus 1sp mi-
nus A, then \skip2 to 25 pt minus —150 pt, then \skipl to 0pt plus 1sp minus 1L

15.7. If \skip4 hasg infinite stretchability, \skip5 will be zero; otherwise it will be
€ pt phas I pt.

15.8. \advance\dimen2 by0.5\dimen3 \divide\dimen2 by\dimen3
\multiply\dimen2 by\dimen3

15.9. \counti takes the values 5, then 2 {the old 5 is saved), then 4 {which is made
glabal}, then 8 {and 4 is saved}; finally the value 4 is restored, and that is the answer.
{For further remarks, see the discussion of \tracingrestores in Chapter 27.)

15.10. \hbox{\hbox{A}4}. After ‘\unhbox5’, \box5 is void; \unhcopy5 vields nothing.

15.11. \hbox{i} But alter ‘{\global\setbox3=\hbox{A}\setbox3=\box3}', \box3
will be void.

15.12. \newcount\notenumber
\def\clearnotenumber{\notenmmber=0\relax}
\def\note{\advance\notenumber by 1

\footnote{$” {\the\notenumber}$}}

15.13. Yes, in severe circumstances. (1) If there is no other legal breakpoint, TEX
will take a break whose cost is oo, {2} If \vadjust{\eject} occurs on the same line
as a footnote, before that footnote, the reference will be forcibly detacked. {3) Other
\vadjust commands on that lne conld also interpose breakpoints before the insertion.

16.1. $\gamma+\nu\in\Gamma$.

16.2. \le, \ge, and \ne. {These are short for “less-or-equal,” “greater-or-equal,”
and “not-equal.”) You can also use the names \leq, \geq, and \neq. {The fourth most
common symbol is, perhaps, ‘oc’, which stands for “infinity” and is called “\infty’.)

16.3. In the former, the ° 2" applies to the plus sign {x +2 Fy); but in the latter, it
applies to an empty subformnla (& + 2 Fa).

16.4. The results are ‘v¥** and ‘¥ *; the z in the first alternative is the same size as
the g, but in the second it is smaller. Furthermore, the ¢ and z in the first case aren’t
¢uite at the same height. {Good typists never even think of the first construction,
because mathematicians never want it.}

16.5. The second alternative doesn’t work properly when there’s a subscript at the
same time as a prime. Fuorthermore, some mathematicians use \prime also in the
subscript position; they write, for example. F'{w. 2) = OF(w, 2}/0z and Fiw, z) —
OF(a, z) /0w,

le

ge

ne

leg
geq
nen
intinity
infty

Appendin A: Answers to All the Ezercises

16.6. $R_i{3"{jk}{3}_1%.

16.7. 107{10}; 2"{n+1}; {(n+1)"2; \sgrt{1-x"2}; \overline{w+\overline z};
p-17{e_1}; a_{b_{c_{d_e}}}; \root3\of{h’’_n{\alpha x}}. {Of course, vou should
enclose these formulas in dollar signs so that TEX will process them in math mode.
Superscripts and subscripts can be given in either order; for example, W’ _nandh_n*’
both work the same. You should not leave out any of the braces shown here; for
example, '$10710%° wonld vield “10°0°, But it doesn’t hurt to insert additional braces
arcund letters or numbers, as in “({n}+{1})7{2}’. The indicated blank spaces are
necessary unless vou use extra braces; otherwise TEX will complain about undefined
control segpences \overlinez and \alphax.}

16.8. He got ‘fxr = ¢... because he forgot to leave a space after ‘If; spaces dis-
appear between dollar signs. He should also have ended the sentence with ‘v.;
punctuation that belongs to a sentence should not be included in a formula, as we will
see in Chapter 18, {But you aren’t expected to know that yet.)

16.9. Deleting an element from an n-tuple leaves an ${n-1)$-tuple.
16.10. Q,f, ¢.7,p.0,%. (The analogous Greek letters are 8, v, (o w, £, p, ¢ 0, x, 00}
16.11. $2"{+2}$ and $h_»’{z)$.

16.12. $3{\cdot}1416%. {One of the earlier examples in this chapter showed that

\cdot is a binary operation; putting it in braces makes it act like an ordinary symbol.)

If vou have lots of constants like this, for exazaple in a table, there’'s a way to

make ordinary periods act like \cdot symbols: Just define \mathcode®. to be "0201,

assuming that the fonts of plain TEX are being used. However, this could be dangerous,

since ordinary periods are used frequently in displayed equations; the \mathcode change
shonld be confined to places where every period s to be a \cdot.

16.13. $e”{~x"2}$, $D\sim p~\alpha M+1$, and $\ghat\in (H"{\pi_1"{~133})°¢. (If
vou are reading the dangerous bead sections, you know that the recommended way to
define \ghat is ‘\def\ghat{{\hat g}}’.}

17.1. &+ %50 (Sxby {2/ (k+1) 38}
17.2. {{oa+ D/ {b+ 1)) ($({at1)/(b+1))x$).
17.3. He got the displayed formuia

x = (y
E+1)

hecause he forgot that an unconfined \over applies to everything. (He should probably
have typed ‘$$x=\left{y 2\over k+i\right}$$’, using ideas that will be presented
later in this chapter; this not only makes the parentheses larger, it keeps the ‘r = out
of the fraction, because \left and \right imtroduce subformulas.)

17.4. ‘$7{1\over2}\centz$’ or T$1\over2%\cents’. (Incidentally, the definition
used here was \def\cents{\hbox{\rm\rlap/c}}.)

17.5. Style IV is used for the subformula pi;,!, hence stvle 5 is used for the super-
script ¢ and the sabscript 2, and style S§7 i used for the supersuperscript primne, The
sqguare root sign and the p appear in text size; the 2 and the ¢ appear in script size;
and the 7 is in scriptscript size.

319

SPaces

areelk

italic letters with descenders
descenders

cdot

matheode

rlap

cents

320

Appendiz A: Answers to All the Ezercises

17.6. $${1\over2}{n\chooze k}$%$; $$\displaystyle{n\choose k}\over2$$. All
of these braces are necessary.

17.7. $${p \choose 2} x"2 vy {p-2} - {1 \over 1-x}{1 \over 1-x"2}.%%
17.8. $$\sum_{i=1}"p\sum_{j=1}"gq\sum_{k=1}"ra_{ij}b_{jk}c_{ki}$$.

17.9. $$\eum_{{\scriptatyle 1\le i\le p \atop \=criptstyle 1\le j\le g}
\atop \scriptstyle 1\le k\le r} a_{ij} b.{jk} c_{ki}$$.

17.10. $\di=playstyle\biggl{{\partial“2\over\partial x"2}+
{\partial~2\over\partial ¥ 2M\biggr)\bigl|\varphi{x+iy)\bigr} 2=0%.

17.11. Formulas that are more than one Hne tall are usually two Hnes tall, not 1% or
2% lines tall,

17.12. $\bigl{x+f(x)\bigr) \big/ \bigl{(x-f(x)}\bigr)$. (Notice especially the
‘Nbig/’; an ordinary slash would lock too small between the \big parentheses.

17.13. $$\pil{n)=\sum_{k=2}"n\left\lfloor\phi{k)\over k-1\right\rfloor.$$

17.14. $$\pi(n)=\sum_{m=2}"n\left\lfloor\biggl (\sum_{k=1}"{m-1}\bigl
\lfloor{m/k)\big/A\lceil m/k\rceil\bigri\rfloor\biggr) {-1}\right\rfloor.$$

17.15. A displayed formmula equivalent to $${DF{{THover{T} " {{S}{55311%%.

17.16. \def\sqr#1#2{{\vcenter{\vbox{\hrule height.#2pt
\hbox{\vrule width.#2pt height#ipt \kern#lpt
\vrule width.#2pt}
\hrule height.#2pt}}}}
\def\zquare{\mathchoice\sqr34\zqr34\aqr{2.1}3\sqr{1.5}3}

17.17. \def\enler{\atopwithdelims<>}.

17.18. The \textfontC that was current af the beginning of the formula will be
used, because this redefinition is local to the braces. {It would be a different story if
‘\global\textfont’ had appeared instead; that would have changed the meaning of
\textfontd at all levels.)

17.19. "2208 and "220F.

17.20. \mathchardef\alpha="710B. Incidentally, {\rm\alpha} will then give a spu-
rious result, because character position "0B of roman fonts does not contain an alpha;
vou should warn vour users about what characters they are allowed to tvpe under the
influence of special conventions like \rm.

17.21. I \delcode®{ were set to some nonnegative delimiter code, you would get no
error message when you wrote something like ‘\left{’. Thiz would he bad because
strange effects would happen when certain subformulas were given as arguments to
macros, or when they appeared in alignments. But it has an even worse defect, becanse
a user who gets away with ‘\left{’ is likely to try alse ‘\bigl{’, which fails miserably.

17.22. Since \bigl is defined as a macro with one parameter, it gets just ‘\delimitexr’
as the argument. You have to write ‘\bigl{\delimiter"4268304}° to make this work.
On the other hand, \left will balk if the following character is a left brace. Therefore
it’s best to have control sequence names for all delimiters.

slash
global
10

Appendin A: Answers to All the Ezercises

18.1. $R{n,t}=00"{n/21)$, as $t\te0~+$. (N.B.: ‘0{, not ‘0(°)

18.2. $$p_1(n)=\lim_{m\to\infty}\sum_{\nu=0}"\infty
\bigl (1-\coa™ {2m} (\nu! "n\pi/n)\bigr).3

[Mathematicians may enjoy interpreting this formula; of. G. H. Hardy, Messenger of
Mathematics 35 {1906), 145-146.]

18.3. \def\limzup{\mathop{\overline{\rm lim}}}
\def\liminf {\mathop{\underline{\rm lim}}}

[Notice that the Hmits ‘n — oo’ appear at different levels, in both of the displays,
becaunse ‘sup’ and the underbar descend below the bageline. It is possible to unify the
limit positions by using phantoms, as explained later in this chapter. For example,

\def\limsup{\mathop{\vphantom{\underline{}}\overline{\rm lim}}}
wonld give lower Hmits in the same position as \liminf.]
18.4. x =0 {mod ¢)"}). He should have typed ‘$x\equivli\pmod{y " n}$".

18.5. $${n\choose k}\eguiv{\lfloor n/p\rfloor‘\choose
\lfloor k/p\rfloor}{n\bmod p\choose k\bmod p}\pmod p.$$

18.6. $\bfi\bar x"{\rm TiMz={\rmOI\iff x=0%. {If you typed a space between
\tm and ©, vou wasted a keystroke; but don’t feel guilty about it.)

18.7. $S\subzeteq{\mit\Sigmal\iff S\in{\cal S}$. Ia this case the braces are
redundant and could be eliminated; but you shouldn’t try to do evervthing with fewest
kevstrokes, or vou'll outsmart vourself some day.

18.8, $${\it available}+\aum_{i=1}"n\max\bigl{{\it full}{i),
{\it reserved}{i)\bigr)={\it capacity}.$$

[If \it had been used throuwghout the formula, the subscript ¢ and superseript n wonld
have caused error messages saying ‘\scriptfont 4 is mundefined’, since plain TEX
makes Vit available only in text size.]

18.9. {\obeylines \zfcode‘;=3000
{\bf for $j:=2% step $1% until n dol}
\guad {\bf begin} ${\it accum}:=4[jl1$; $k:=j-1%; $A[0]:=\it accum$;
\gquad {\bf while $A[k]I>\it accum$ do}
\gguad {\bf begin} $A[k+1]:=A[k]$; $ki=k-13;
\gguad {\bf end};
\gquad $A[k+1]:=\it accum$;
\gquad {\bf end}.\par}

[This is something like the “poetry” example in Chapter 14, but much more difhicult.
Some manuals of style say that punctuation should inherit the font of the preceding
character, so that three kinds of semicolons should be typeset; ez, these experts
recommend k= § — 1; A[0] := accurn; end;’. The anthor heartily disagrees.]

18.10. Let $H% be a Hilbert =pace, \ $C%$"a closed bounded convex subset
of"H, \ T a nonexpanzive self map of "$C%. Suppose that az $n\to\infty$,
\ $a_{n,k}\to0$ for each"k, and $\gamma_n=\sum_{k=0}"\inftyfa_{n,k+1}-

321

Hardy
phantonms
seriptfont
sfeode
ponctuation

322

Appendiz A: Answers to All the Ezercises

a_{n,k}} "+\tol$. Then for each $x3$"in"$C%, N\ $A_nx=\zum_{k=0}"\infty mathopen
a_{n,k}T kx$ converges weakly to a fixed point of"T. ;i;‘:}z::]:}’;z

{If any mathematicians are reading this, they might either appreciate or re- hinappenalty
sent the following attempt to edit the given paragraph inte a more acceptable style: hinad

“Let ' be a closed, bounded, convex subset of a Hilbert space H, and let T be a non- pamod

expansive self map of . Suppose that as n = oo, we have a, . — & for each k,
and v, = 37 {aniii —0ns)T — 0. Then for each x in C, the infinite sum
Ay = 3% a, kT r converges weakly to a fixed point of T.7]

18.11. $$\int_O"\infty{t-ib\over t " 2+b"2}e”{iat}\,dt=
e”{ab}E_1{ab},\ggnad a,b>0.%$%$

18.12. $$\hbar=1,0545\times10"{~27}\rm\,erg\,2ec.$$

18.13. There are ten atoms {the first is f and last is ¢*); their types, and the inter-
atomnic spacing, are respectively

Ord Open Ord Punct \, Ord Close \; Rel\; Ord\> Bin \> Ord.

18.14. $\left]~\infty,Th\right [\times\left]-\infty, T\right[$. {(Or one could
say \mathopen and \mathcloeze instead of \left and \right; then TEX would not
choose the size of the delimiters, nor would it consider the subformulas to be of type
Inner.} Open intervals are more clearly expressed in print by using parentheses instead
of reversed brackets; for example, compare ‘(—oc, T) x {—oc, T) to the given formula.

18.15. The first + will become a Bin atom:, the second an Ord; hence the result is x,
medhnm space, +, medhin space, +. 1o space, 1.

18.16. $x_1+x_1x_2+\cdots+x_1x_2\1ldots x_n% and
$(x_1,\1dots,x_n)\cdot{y_1,\ldots,yv_n)=x_1y_1l+\cdots+x_ny_n$.

18.17. The commas belong to the sentence, not to the fornmla; his decision to put
them into math mode meant that TEX dida’t put large encugh spaces alter them. Also,
his formmla 4 =1,2,..., 7’ allows no breaks between lines, except alter the =, so he's

risking overfull box problems. But suppose the sentence had been more terse:
Clearly a; < b; {i=1,2,...,n).
Then kis idea would be basically correct:
Clearly $a_i<b_i$ \ €($i=1,2,\ldots,n$).
18.18. ... never‘\footnote*{Well \dots, hardly ever.} have ...

18,19, Neither formula will be broken between lines, but the thick spaces in the
second formula will be set to their natural width while the thick spaces in the first
formula will retain their stretchability.

18.20. Set \relpenalty=10000 and \binoppenalty=1C00C. And you also need to
change the definitions of \bmod and \pmod, which insert their own penalties

18.21. $\bigl\{\,x"A\bigmlh{x}\in\{~1,0,+1\}\,\bigr\}§$.

Appendin A: Answers to All the Ezercises

18.22, $\{\,p\mid p$~and $p+2% are prime$\,\}$, assuming that \mathsurround
is zero, The more difficalt alternative ‘$\{\,p\mid p\ {\rm and}\ pt+2\rm\ are\
prime\,\}$ is not a selution, becanse line breaks do not occur at \u (or at glue of any
kind) within math formulas. Of course it may be best to display a formula like this,
mstead of breaking it between fnes.

18.23. $3f{x)=\cases{1/3%if $0\le x\lel$;\cr 2/3%if $3\le x\ledd;\cr
Okelsewhere.\cr}d$s

18.24. $$\left\lgroup\matrix{a&b&c\cr d&e&f\cri\right\rgroup
\left\lgroup\matrix{n&x\cr vi&yi\cr wikz\cr}\right\rgroup$$.

18.25. \pmatrix{y_1\cr ‘vdets\cr y_k\cr}.

18.26. \def\undertext#1{$\underline {\smash{\hbox {#1}}}$} will underline the
words and cross through the descenders; or you could insert \vphantom{y} before
the \hbox, thereby lowering all of the underlines to a position below all descenders,
Neither of these gives exactly what is wanted. {See also \underbar in Appendix B.)
Undeslining is actually not very comimon in fine typography, since font changes usually
work just as well or better, when you want to emphasize something. If vou really want
unnderlined text, it’s best to have a special font in which all the letters are underlined.

18.27. $n~{\rm th}$ root. {Incidentally, it iz also acceptable to type ‘nth’,
getting ‘nth’, in such situations; the fact that the » is in italics distinguishes it from
the suffix. Typed manuscripts generally render this with a hyphen, bat ‘n-th’ is frowned
on nowadays when an italic n is available.}

18.28. ${\bf §"{\rm-1}TS=dg}{\omega.l,\ldots,\omega n) =\bf\Lambda$. (Did
yonu notice the difference between \omega (w) and w {w)?)

18.29. $\Pr{\,m=n\mid m+n=3\,}$. (Analogous to a set.)
18.30. $\=zin18"\circ={1\overd} {\=sgrt5-1)%.
18.31. $k=1.38\times10"{-16}\rm\,erg/ "\circ K$.

18.32. $\bar\Phi\subzet NL_1"#/N=\bar L_1"%
\subzeteq\cdots\subzeteq NL_n"*/N=\bar L_n"+$.

18.33. $I(\lambda)=\int\!\!\int Dg(x,y)e” {i\lambda h(x,y)}\,dx\,dy$.
{Although three \ s work out best between congecutive integral signs in displays, the
text style seems to want only two.)

18.34. $\int_0"1\!\cdots\int_0"1f{x_1,\ldots,x_n)\,dx_1\ldot=\,dx_n$.

18.35. $$x_{2m}\equivicases{Q(X m™2-P 2W _m~2)-25"2&{m odd)\cr
\noalign{\vakip2pt} % spread the lines apart a little
P_2°2(X _m"2~P_2W_m"2)~25"2& {m even)\cr}\pmod N.$$

18.36. $$(1+x_1z+x_172z"2+\cdota\,)\1ldota (1+x_nz+x_n"2z"2+\cdots\,)
={1\over(1~x_1z)\ldota{1~x_nz}}.$$ (Notice the uses of \,.}

323

mathsurround
space

onderbar

nth

GIega

Pr

cire

double integral
integral, multiple

324 Appendiz A: Answers to All the Ezercises

18.37. $$\prod_{j\geOI\biggl {\sum_{k\geCla_{jk}z k\biggr}
=\aum_{n\gellz"n\,\Biggl {\sum_
{\zcriptatyle k_0,k_1,\ldota\gel\atop
\scriptatyle k_O+k_1+\cdot==n}
a {0k _O}a. {1k _1}\ldots\,\Biggr).$$

Some people would prefer to have the latter parentheses larger; bat \left and \right
come out a bit too large in this case. It’s not dificult to defice \bigggl and \bigggr
macros, analogous to the definitions of \biggl and \biggr in Appendix B.

18.38. $${{n_1+n_2+\cdots+n_m) !\over n_1!\,n_2!%\1ldots n_m!}
={n_1+n_2\choose n_2}{n_1+n_2+n_3\choose n_3}
\dota{n_1+n_2+\cdots+n_m\choose n_m}.$$

18.39. $$\def\\#1#2{(1~q" (#1_#2+n})} % to save typing
\Pi_R{a_1,a_2,\ldots,a M\atopwithdelims[]b_1,b.2,\ldots,b_N}
=\prod_{n=0}"R{\\al\\a2\ldots\\aM\over\\b1\\b2\ldota\\bN}.$3

18.40. $$\sum _{p\rm\;prime}f{p)=\int {t>1}£{t)\,d\pi(t).9$3

18.41. $$\{\underbrace{\overbrace{\mathstrut a,‘\ldotsz,a}
“{k\;a\mathchar‘*\rm s},
\Noverbrace{\mathstrut b,\ldots,b}
“{1\;b\mathchar®*\rm s}}_{k+1\rm\;elements}\}.%$

Notice how apostrophes {instead of primes) were obtained.

18.42. $$\pmatrix{\pmatriz{a&b\ecr c&d\cr}&
\pmatrix{e&ficr gkh\cr}\cr
\noalign{\smallskip}
O%\pmatrix{i&j\cr k&l\cr}\cr}.$$

18.43. $$\det\left|\,\matrix{
c. 0kc_1\hfillkc_2\hfill&\ldotskc_n\hfill\ecr
c_1&c_2\hfillkc_3\hfill&\ldotskc_{n+1}\hfill\cr
c_2kc_3\hfillkc_4\hfill&\ldotskc_{n+2}\hfill\cr
\,\vdots\hfilld\,\vdots\hfillk

N, \vdotas\hfill&&\, \vdots\hfill\ct

c.nkc_{n+t1}\hfill&c_{n+2}\hfill&\ldots&c_{2n}\hfill\cr
Nright|>0.$3

18.44. $$\mathop{{\sum}*}_{x\in A}f{x)\mathrel{\mathop="{\rm def}}
\sum_{\zcriptstyle x\in A\atop\scriptztyle x\neO}f{x}.$$

This works because {\sum} is type Ord (8o its superscript is not set above), but
\mathop{{\sum}*’} is type Op {50 its subscript iz set below). The Hmits are centered
on ZI, however, not on . If you don’t like that, the remedy is more difficelt; one
solution is to use \sumprime_{x\in A} where \sumprime is defined as foliows:

\def\sumprime_#1{\zetbox0=\hbox{$\scriptatyle{#1}$}
\setbox2=\hbox{$\displaystyle{\sum}$}
\zetbox4=\hbox {${}’ \mathaurround=0pt$}
\dimen0=.5\wd0 \advance\dimenC by~.5\wd2
\ifdim\dimen0>0pt

higegl

bigggr
atopwithdelims
apostrophes
mathop
sumprime

Appendin A: Answers to All the Ezercises

\ifdim\dimen0>\wd4 \kern\wd4d \else\kern\dimenO\fi\fi
\mathop{{\zum}*}_{\kern-\wd4d #1}}

18.45. $$2\nparrowi\uparrow ki\mathrel{\mathop="{\rm def}}
27{27 {27 {\cdot" {\cdot"{\cdot"2}}}}}
\vbox{\hbox{$\Bigh}\zcriptstyle k$}\kernCptl}.$$

18.46. If you have to do a lot of commutative diagrams, you will want to define some
macros fike those in the first few lines of this solution. The \matrix macro resets
the bagelines to \normalbazelines, because other commands like \openup might have
changed them, so we redefine \normalbaselines in this sclution. Some of the things
shown here haven’t been explained vet, but Chapter 22 will reveal all,

$$\def\normalbaselines{\baselineskip20pt
\lineskip3pt \lineskiplimit3pt }
\def\mapright#1l{\smash{
\mathop{\longrightarrowi\limit="{#1}}}
\def\mapdown#1{\Big\downarrow
\rlap{$\vcenter{\hbox{$\scriptstyle#1$}}$}}
\matrix{&&&&&&O\cr
&&&&&k& \mapdown{}\cr
O&\mapright{}&{\cal 0}_C&\mapright\lotak
\cal E&\mapright\rho&\cal L&\mapright{}&0\cr
&&\Big\Vert&&\mapdown\phif&\mapdown\psi\cr
O&\mapright{}&{\cal 0} C&\mapright{}&
\pi_*{\cal 0}_D&\mapright\deltak
R*1f_#{\cal 0} _V{-D)&\mapright{}&C\cr
&&&k2& \mapdown{\theta_i\otimeza\gamma™ {~1}F\cr
&%&&&&E\hidewidth R™1f_*\bigl{{\cal 0}
V=i \bigr)\otimes\gamma” {~1}\hidevwidth\cr
&&&&&& \mapdown{}\cxr
&L&ELEC\ T} S

19.1. $$\sum_{n=0}"\infty a_nz n\gquad\hbox{convergez if}\gguad
fz | <\Bigl(\limzup_{n\to\infty}\root n\!\of{la_ni}\,\Bigr)~{~1}.%$

$${f{x+t\Delta x}~f{x)\over\Delta x}\to £’{(x)
\gguadihbox{as $\Delta x\to0$.}$%

$$\In_iNi=1,\gguad u_i\cdet u_j=0\guad\hbox{if $i‘\ne j$.}$$

$$\it\hbox{The confluent image ofl}\guad\left\{
\matrix{\hbox{an arc}\hfill\cri\hbox{a circle}\hfill\cr
\hbox{a fan}\hfill\ct}
\right\}\guad\hbox{is}\quad\left\{
\matrix{\hbox{an arc}\hfill\cr
\hbox{an arc or a circle}\hfill\cr
\hbox{a fan or an arc}\hfill\cri\right\}.$$

The first example incledes \! and \, to give slightly refined spacing; but the point of
the problem was to Hlustrate the hbox, not to fuss over such extra details. The last
example can be done much more siaply using the ideas of Chapter 22, i vou don’t

325

miatris

norimal baselines
hidewidth

OOt

326

Appendiz A: Answers to All the Ezercises

mind descending to the level of TEX primitives; for example, the first matrix conld be
replaced by

\,\vcenter{\halign{#\hfil\cr an arch\cr a circle\cr a fanhcr}}\,
and the second is simlar.

19.2. $$\textatyle y={1\over2}x$$. (Switching totext style is especially common
in multiline formulas. For example, vou will probably find occasions to use \textstyle
on both sides of the &'s within an \egalign.)

19.3. The latter formmia will be in text style, not display style. And even i vou do
type ‘$$\hbox{$\displaystyle{{formula} }1%°, the results are not gquite the same, as
we will see later: TEX will compress the glie in ‘$${formula}$$’ if the formula is too
wide to fit on a line af its natural width, but the glue inside \hbox{...} is frozen at
its natural width. The \hbox version also invokes \everymath.

19.4. One sclution is to put the formula in an hbox that occupies a full Hne:

$$\leftline{\indent$\displaystyle
1~{1\over2}+{1\over3}~{1\overd}+\cdots=\1n2$13$

But this takes a bit of typing. If vou make the definitions

\def\leftdisplay#1$${\leftline{\indent$\displaystyle{#1}$}$4}
\everydisplay{\leftdizsplay}

vou can type ‘$${formula}$$’ as usual, and the formatting will be inserted automat-
ically. {This doesn’t work with equation mumbers; Appendix D illustrates how to
handie them as well}

19.5. $$\prod, {k\ge0}{1\over(1-q~kz}}=
\eum_{n\geC}lz "n\bigg/\!\\prod_{1\1le k\le n}{1-q"k).\eqno(16°}$$

19.6. \egno\hbox{{3~~1}}.

19.7. When you type an asterisk in math mode, plain TEX considers * to be a
binary operation. In the cases *(*)° and “(##)’, the binary operations are converted to
type Ord, because they don’t appear in a binary coatext; but the middle asterisk in
“(exx)’ remains of type Bin. So the result was ‘(x =). To avoid the extra medinm
spaces, you can type ‘\eqgno {*{*}+)’; or you can change \mathcode ‘*, if you never use
* as a binary operation.

19.8, Assuming that \haize is less than 10000 pt, the natural width of this equation
will be too large to fit on a line; also, \guad specifies glue at the left. Therefore ‘o = 4
will appear exactly 1em from the left, and *(5)° will appear flush right. {The widths
will satisty w — 2z —q, d =80, k =g — ¢ = 18§mu.} In the case of \legno, {5} will
appear flush left. followed by one gquad of space in \textfont2, followed by one guad
of space in the current text font, foliowed by ‘x — 4,

19.9. {Note in particular that the final *.° comes before the final “\cx’.)
$$\eqalign{Tini\le T{2"{\lceil\lg n\rceil}}
&\le c{3"{\lceil\lg mn\rceil}-2"{\lceil\lg n\rceill}}\cr

£<3c\cdot3"{\1lg n}\cr
E=3c\,n" {\1g3}.\cr}$$

halign

tentntyle

eqalign

asterisk

matheode

dizplays, non-centered

Appendin A: Answers to All the Ezercises

19.10. $$\egalign{P(x}&=a_O+a_lx+a_2x"2+\cdots+a_nx m,\cr
P{~x)&=a_0~a_lx+ta_2x"2~\cdotza+{~1)"na_nx"n.\cr}\egno(30)$$

19.11. Both sides of that equation are considered to be on the left, so you get resulis
that ook like this:

= f{z)
A=15
= (2%

19.12. 3$\leqalignno{\gcdin,v)&=\gcd{v,u};&(9\cr
\ged(u,v)&=\gcd{-u,v}.&(10)\cr}$¢$

19.13. $$\egalignno{\biggl{\int {-\infty} \infty e” {-x"2}\,dx\biggr} 2
E=\int_{~\infty} " \infty\int_{~\infty} " \infty
e” {~{x"2+y 23\, dx\,dy\cr
E=\int_0~{2\piF\int_0"\infty e~ {-r~2}r\,dr\,d\theta\cr
&=\int_ 0~ {2\pit\biggl{~{e"{~r"2}\over2}
\biggl _{r=0}"{r=\infty}\,\biggr)\,d\theta\cr
E=\pi.&(11)\cx}$$

19.14. You get the displayed box

Ty oz
and
=yt 5 2

Reason: The ‘and’ occurs at the left of the \eqalign box, not at the left of the whole
display, and the \eqalign hox is centered ag usual.

19.15. By raising the equation number, he increased the line height, so TgX put extra
space between that line and the previous line when it calenlated the inter-line glue. T
he had said ‘\smash{\raise...}’, he wouldn’t have had that problem.

19.16. $$\displayline={\hfill x\egquiv x;\hfill\llap{{1)}\cr
\hfill\hbox{if}\guad x\equiv y\guad\hbox{then}\guad
y\equiv x;\hfill\llap{(2)}\cr
\hfill\hbox{if}\guad x\equiv y\guad\hbox{and}\guad
y\equiv z\gunad\hbox{then}\gquad
xheguiv z.\hfill\llap{{(3}}\cr}$$

There’s also a trickier solution, which begins with
$$\displaylines{x\equiv x;\hfil\llap{{1)}}\hfilneg\cr

19.17. $$\egalignno{x_mn_l+\cdots+x_{n+t~1}u_t
f=x_nu_1+(ax_n+c)n_2+\cdots\cr
¥\gguad+\bigl{a™{t~1}x_ntc{a”{t-2}+\cdota+1)\bigrin_t\cr
&={n_1+an_2+\cdots+a” {t-1}u_t)x_n+th{u_1,\ldots,u_t}.

\quadk {47} \cr}$$
You weren’t expected to insert the ‘\gmad’ on the last Bne: such refinements usaally
can’t be anticipated until you see the first proofs. But without that \quad the {47)’
would oceur half a gquad closer to the formula.

327

bige
smash

328 Appendiz A: Answers to All the Ezercises

19.18. $$\displaylines{\guad\sum_{1\le j\le mn}{1\over adef
€x_j~x_1)\ldots{x_j~x_{j~1}) (x~x_j) {x_j~x_{j+1}} g}%”"‘g“

\ldotza{x_j~x_n}}\hfill\cr
\Vhfill={1\over{x~x_1)\ldots{x~x_n)}.\gquad{27)\cr}$$

19.19. $$\def\\#1; {(#1;972) \infty} % to save typing
\displaystyle{g~{{1\over2}ni{n+1}}\\ea;\\eq/a; \gguad\atop
\hfill\\cag/e;\\cq~2\!/ae;}
\over(e;q} \infty(cg/e;q} \infty$$

20.1. \def\mmstnt{I mmst not talk in class.\par}
\def\five {\muztnt\mustnt\msztnt\mstnt\mstnt}
\def\twenty{\five\five\five\five}

\def\punizhment {\tventy\twenty\twenty\twenty\tventy}

Solutions to more complicated problems of this type are discussed later.

20.2. ABCAB. (The first \a expands into A\def\a{B...}; this redefines \a, so the
second \a expands into B. .., etc.) At least, that’s what happens if \puzzle ig en-
conntered when TEX is building a lst. But if \puzzle is expanded in an \edef or
\message or something like that, we will see later that the interior \def commands are
not performed while the expansion is taking place, and the control sequences following
\def are expanded; s¢ the result is an infinite string

A\def Ah\def A\def A\def A\def A\def A\def A\def A4...

which causes TEX to abort because the program’s input stack is finite. This example
points out that a control sequence {e.g., \b} need not be defined when it appears in the
replacement text of a definition. The example alse shows that TEX doesn’t expand a
macro until it needs to.

20.3. {x1,....Xn). Note that the subscripts are bold here, becanse the expansion

(\bf x_1,\ldots,\bf x_n) doesn’t “turn off” \bf. To prevent this, one should write
\rou{{\bEf x}}; or {better}, \row\xbold, in conjunction with \def\xbold{{\bf x}}.

20.4. The catch is that the parameters have to percolate down to the \mustnt macro,
if vour extend the previous answer:

\def\rmstnt#1#2{I mu=t not #1 in #2.\par}
Ndef\five#1#2 (\rmstnt (81} {#2}. .. \mnstot {#1} {(#2}}
\def\twenty#1#2{\five {#1}{#2}.. . \five{#1}{#2}}
\def\punishment#1#2{\twenty {(#1} (#2}... \twenty{#1}{#2}}

When vou pass parameters from one macro to another in this way, vou need to enclose
them in braces as shown. DBut actually this particular solution punishes TEX much
more than it needs to, becanse it takes a lot of time to copy the parameters and read
them again and again. There’s a much wore efficient way to do the job, by defining
control sequences:

\def\rmmstnt{I mmst not \deit\ im \thatplace.\par}
\def\punizhment#1#2{\def\doit{#1}\def\thatplace{#2}%
\twenty\tventy\twventy\twenty\twventy}

Appendin A: Answers to All the Ezercises

and by defining \five and \twenty without parameters as before. You can also delve
more deeply into TEXnicalities, constructing solutions that are more efficient yet; TEX
works even faster when macros commumnicate with each other via boxes. For example,

\def\mmstnt {\copyl }
\def\punishment#1#2{\setbox(=
\vbox{\strut I mmst not #1 in #2.\strut}}
\twenty\tventy\twenty\twenty\twenty}

sets 100 identical paragraphs at bigh speed, because TEX has to process the paragraph
and break it into lines only once. It°s much faster to copy a box than to build it up from
scratch. (The struts in this example keep the interbagseline distances correct between
boxed paragraphs, as explained in Chapter 12. Two struts are used, for if the message
takes more than one line there will be a strut at both top and bottom. If it were known
that each sentence will occupy only a single line, no struts would be needed, becanse
interhine glue is added as usual when a box created by \copy is appended to the current
vertical Hst.}

20.5. The ## feature is indispensable when the replacement text of a definition
containg other definitions. For example, consider

\defha#1{\def\bi#1{#%181}}

after which ‘\a!” will expand to ‘\def\b#1{#1!}’. We will see later that ## is alse
important for alignments; see, for exaaple, the definition of \matrix in Appendix B.

20.6. \def\a#{\b}.

20.7. Let’s go slowly on this one, so that the answer will give enough background
to answer all similar guestions. The {parameter text} of the definition consists of
the three tokens #1, #2, [i; the {replacement text) consists of the six tokens (i, #s,
Ja, ts, #2, [;. (When two tokens of category 6 oceur in the replacement text, the
character code of the second one survives; the character code of a category-6 character
ig otherwise irrelevant. Thus, ‘\def\ #1128 [{##] ! 1#2]° would produce an essentially
identical definition.} When expanding the given token Hst, argument #1 is x54, since
it is undelimited. Argument #2 is delimited by [, which is different fromm {4, so it is
set provisionally to {[y]1]; but the cuter “braces” are stripped off, so #2 reduces to the
three tokens [i, yvii, Jo. The result of the expansion is therefore

{18610 b [soyis 1o [o211 Fo.
Incidentally, if you display this with \tracingmacros=1, TEX says
NP2 [~ (a] w2
#1<~x
#2<-[y]

Category codes are not shown, but a character of category 6 always appears twice in
succession. A parameter token in the replacement text uses the character code of the
final parameter in the parameter text.

20.8. Yes indeed. In the first case, \a receives the meaning of \b that is curreat at
the time of the \let. In the second case, \a becomes a macro that will expand into the
token \b whenever \a is used, so it has the meaning of \b that is current at the time
of use. You need \let, if you want to interchange the meanings of \a and \b.

329

hoxes

etficient macros

comironication Detween macros
copy a box

strots

tracingmacros

token lists, as displayed by TeX

330 Appendiz A: Answers to All the Ezercises

20.9. {a} Yes. {b) No; any other control sequence can appear {excent those declared
as \omter macros).

20.10. \def\overpaid{{\countO=\balance
You have overpaid your tax by \dollaramount.
\ifnum\count0<100 It i= our policy to refund
such a small amount only if yom ask for it.
\elze A check for this amount iz being mailed
under separate cover.\fil}}

20.11. The tricky part is to get the zero in an amount like '$2.01°,

\def\dollaramonnt{\connt2=\connt(® ‘\divide\counmt2 byi00
\$\number\count?2.%
\mmltiply\connt2 by-10C \advance\count? by\count0Q
\ifnum \count2<10 O\fi
\number\count? }

20.12. \def\category#l{\ifcase\catcode #1
escapehor begingroup\or endgroup\er math\or
align\or endline\or parameter\or superscripthor
subscript\or ignoredhor space\or letter\or
otherchar\or active\or comment\or invalid\fi}

20.13. {a,b} True. (c,d} False. {ef} True. In case (e}, the (true text) starts with
‘ne’. {g) The \ifx ig false and the inner \if i3 true; so the outer \if becomes \if
True...’, which is false. (Interestingly, TEX knows that the outer \1f is false even
before it has looked at the \fi’s that close the \ifx and the inner \if.)
20.14. One idea is to say

\let\zave=\c \let\c=0 \edefla{\b\c\d} \let\c=\zave
becaunse control sequences eguivalent to characters are not expandable. However, this

doesn’t expand occurrences of \c that might be present in the expansions of \b and \d.
Another way, which is free of this defect, is

\edef\next#1#2 {\det#1 {\b#2\d}} \next\a\c
{and it’s worth a close look!).
20.15. \toksO={\c} \toks2=\expandafter{\d}
\edef\a{\b\the\toks0 \the\toks2 }
{Notice that \expandafter expands the token after the left brace here.)
20.16. The following shouldn’t be taken too seriously, but it does work:

{\zetbox0=\vbox{\halign{#{\c\span\d}\cr
\let\next=0\edef\next#l {\gdef\next{\b#1}\next\cr}}}
\let\a=\next

20.17. Neither one, although \a will behave like an npmatched left brace when it is
expanded. The definition of \b is not complete, becanse it expands to ‘\def\b{{}’;
TEX will continue to read ahead, looking for another right brace, possibly discovering a
ranaway definition! It’s impossible to define a macro that has unmatched braces. Bat
you can say \let\a={; Appendix D discusses several other brace tricks.

expandalter
Hpad
brace tricks

Appendin A: Answers to All the Ezercises

20.18. One way is to redefine \catcode*\""M=9 (ignored) just before the \read, so
that the {return} will be ignored. Another solution is to redefine \endlinechar=-1,
s0 that no character is put at the end of the Hne. Or vou could try to be tricky by
stripping off the space with macro expansion ag follovws:

\def\ztripzpace#l \next{#1}
\edef\mynanme {\expandafter\stripspace\myname\next}

The latter solution doesn’t work if the user types % at the end of his or her name, or
if the name contains control sequences.

20.19. Here are two solutions:

\def\next#1\endname {\nppercaze{\def\MYNAME{#1}}}
\expandafter\next\myname\endname
\edef\next{\def\noexpand\MYNAME {\myname}}
\nppercase\expandafter{\next}

20.20. {Here's asolution that also mnnbers the Hnes, so that the mumber of repetitions
is easily verifiable. The only tricky part about this answer is the use of \endgraf, which
is a substitute for \par becanse \loop is not a \long macre.)

\newconnt\n
\def\punizhment#1#2{\n=0
\loop\ifnum\n<#2 \advance\n byl
\item{\number\n.}#1\endgrafi\repeat}

21.1, The interline skip is added for vboxes, but not for rales; he forgot to say
\nointerlineskip, before and after the \moveright construction.

21.2. \vrule height3pt depth-2pt widthlin. Notice that it was necessary to call
it a \vrule since it appeared in horizontal mode.

21.3. \def\boxit#1l{\vbox{\hrnle\hbox{\vrule\kern3pt
\vbox {\kern3pt#l\kern3pt}\kern3dptivrnle}\hrule}}

{The resulting box does not have the baseline of the original one; you have to work a
little bit harder to get that.)

21.4. \leaders: two boxes starting at 100pt, 110pt.
\cleaders: three bhoxes starting at 95 pt, 105 pt, 115 pt.
\xleaders: three hoxes starting at 93 pt, 105 pt, 117 pt.

21.5. \def\leaderfill{\kern~-0.3em\leaders\hbox to lem{\hsz.\hzs}}
\hzkipC.6em plusifill \kern~0.3em }

21.6. Since no height or depth specification follows the \vrule, the height and
depth are ‘#°; Le., the rule extends to the smallest enclosing box. This useally makes
a heavy biack band, which is too horrible to demonstrate here, However, it does work
in the \downbracefill macro of Appendix B; and \leaders\vrule\vfill works fine
in vertical mode.

331

endlinechar
endgral

long
nointerlneskin
downbracefill

332

Appendiz A: Answers to All the Ezercises

21.7. For example, say
\null\nobreak\leaders\hrule\hskipiCOpt plusifilll\ \par

The \ provides extra glue that is wiped out by the implied \unskip at the end of
every paragraph {see Chapter 14), and the ‘\null\nobreak’ makes sure that the leaders
do not disappear at a line break; ‘£i111° overtakes the \parfillskip glue.

21.8. $$\hbox to 2.5in{\cleaders
\vbox to .5in{\cleaders\hbox{\TeX}\vfil}\hfi1l}3%

21.9. We assume that a strut is 12 pt tall, and that 50 lines fit on a page:

\setboxO=\hbox{\strut I must not talk in class.}
\null\cleaders\copyOh\vskip6(0pt\viill\eject % 50 times on page 1;
\mill\cleaders\box(O\vakip600ptibye % 50 more on page 2.

The \mnll keeps ghie {and leaders) from disappearing at the top of the page.

21.10. {\let\the=0\edef \next {\urite\cont {{token lst}}}\next} will expand ev-
erything but \the when the \write command is given.

22.1. Notice the uses of ‘\smallakip’ here to separate the table heading and footing
from the table itself; such refinements are often worthwhile,

\settabs\+\indent&10\frac1/2 lbs.\gquad&\it Servingz\gguadi\cr
\+&'\negthinspace\it Weight&\it Servings&

{\it Approximate Cooking Time\/}+\cr
\smallskip
\+&8 lbs.&6&1 hour and 50 to 55 mimmntes\cr
\+&9 lbs.&7 to 8&About 2 hourshcr
\E9\fracl/2 1bs.&8 to 942 hours and 10 to 15 mimmtes\cr
\E10\fracl1/2 1bs.&9 to 10&2 hours and 15 to 20 minmtes\cr
\smallskip
\+&* For a stuffed goose,

add 20 to 40 mimmtes to the times given.\cr

The title line specifies ‘\it’ three times, becanse each entry between tabs is treated
as a group by TEX; vou would get error messages galore if vou tried to say something
Like ‘\+&{\it Weight&Servingsak...}\cr’. The ‘\negthinspace’ in the title line is a
small backspace that compensates for the siant in an italic W, the anthor inserted this
somewhat unusaal correction after seeing how the table looked without it, on the first
proots. (Your weren't supposed to think of this, but i has to be mentioned.} See
exercise 11.6 for the ‘\frac’ macro; it’s better to say 147 than :fz", in a cockbook.

Another way to treat this table would be to display it in a vbox, instead of
including a first column whose sole purpose is to specily indentation.

22.2, In such programs it seems best to type \cleartabs just before & whenever
it is desirable to reset the old tabs. Multiletter identifiers look best when set in text
italics with \it, ag explained in Chapter 18. Thus, the following is recommended:

\t\bf while $p>0% do\cr
\t\guad\cleartabs&{\bf begin} $g:={\it linkl}(p)$;
${\it free_nodel}(p)¥; $p:=q¥;\cr
N+&{\bf end};\cr

fim
parfilskip
woll
negthinspace
it

Appendin A: Answers to All the Ezercises

22.3. Here we retain the idea that & inserts a new tab, when there are no tabs to the
right of the current position. Only one of the macros that are used to process \+ lines
needs to be changed; but (unfortunately) it’s the most complex one:

\def\t@bb@x{\if@cr\egroup % mnow \box’ holds the columm
\elze\hzs\egroup \dimen@=0\p@
\dimen@ii=\wd(® \advance\dimen@ii bylsp
\loop\ifdim \dimen@<\dimen@ii
\global\zetbox\tabsyet=\hbox {\unhbox\tabsyet
\global\setboxl=\lastbox}%
\ifvoidl \advance\dimen@ii by-\dimen@
\advance\dimen@ii by-lzp \global\zetboxl
=\hbox to\dimen@ii{}\dimen@ii=-1pt\fi
\advance\dimen@ by\wdl \global\szetbox\tabzdone
=\hbox{\box1\unhbox\tabsdone}\repeat
\setbox0=\hbox to\dimen@{\unhboxO}\fi
\box0}

22.4. Horizontal lsts Chapter 14
Vertical lists Chapter 15
Math fists Chapter 17 {ie., the first colun would be right-justified)

22.5. Fowl&Poule de 1*Ann\‘ee&10 to 12&0ver 3&Stew, Fricassee\cr

22.6. 3\halign to\hzsize{\sl#\hfil\tabskip=.5em plus.5em&
#\hfil\tabskip=0pt pluns.5em&
\hfil#\tabzkip=lem plusz2em&
\sl#\hfil\tabskip=.5em plus=.5emk
#\hfil\tabskip=Opt plus.5emk
\hfil#\tabakip=Opti\cr ...}$3

22.7. The trick is to define a new macro for the preamble:

$$\def\velshverb#i={{\bf#1} = }
\halign to\hzize{\welshverb#\hfil\tabskip=lem pluslem&
\welshverb#\hfil&\welshverb#\hfil\tabskip=Opt\cr ...}$%

22,8, \hfil#: &\vtop{\parindent=Cpt\hzize=16em
\hangindent.5em\strut#\strut}\cr

With such narrow measure and such long words, the \tolerance should probably also
kave been increased to, say, 1000 inside the \vtop; luckily it turned out that a higher
tolerance wasn’t needed.

Note: The stated preamble solves the problem and demonstrates that TEX's
line-breaking capability can be used within tables. But this particular table is not
really a good example of the use of \halign, because TEX could typeset it directly,
using \everypar in an appropriate manner to set up the hanging indentation, and using
\par instead of \cxr. For example, one could say

\hzize20em \parindentCOpt \clubpenalty10000 \widowpenaltyl(000
\def\history#1&{\hangindent4.5em

\hbox todem{\hzz#1: }\ignorespacesz}
\everypar={\history} \def\\{\leavevmode{\it c\/}}

333

tolerance
viop
strot
everypar

334 Appendiz A: Answers to All the Ezercises

which spares TEX all the work of \halign but yvields essentially the same result.

22.9. The equation is divided into separate parts for terms and plus/minus signs,
and tabskip glue is used to center it:

$$\openupi\jot \tabskip=0pt pluzifil
\halign to\displaywidth{\tabskip=0pt
$\hfil#$&$\hfil (}#{}8k
$\hfil#$&$\nfil {}1# {34
$\hfil#$E$\hril {}#{}$&
$\h£il#$&$ () #\hfil\tabskip=Opt plusifild
\llap{#}\tabskip=Opti\cr
10wk +&3x&+&3y&+£182&=1,&{9) \cx
Bwk-&17xkdk-L52&=2. & (10) \cr 143

22.10. \hfil# &#\hfil&\gquad#&\ \hfil#&\ \hfil#\cr

22.11. \pmatrix{a, {11}&a_{12}&\ldots&a_{in}\cr
a_{21}&a_{22}&\1dots&a_{2n}\cr
\rmltispand\dotfill\cr
a_{mil&a_{m2}&\ldots&a_{mn}\cr}

22.12. “\cr’ wonld have cmitted the final column, which is a vertical rule.

22.13. One way is to include two lines just before and alter the title line, saying
‘Nomit&height2pt&\mmltispanS&icr’. Ancther way is to put \bigstrmt into soine
cohrnn of the title Hue, for some appropriate invisible box \bigstrut of width zero.
Either way makes the table look better.

22.14. The trick is to have “empty” columns at the extreme left and right; then the
\hrulefill’s are able to span the tabskip glue.

$$\vbox{\tabskip=Cpt \offinterlineskip

\halign to 36em{\tabskip=0Opt pluslemi¥
#\hfil&#E# \hfilk#&#\hfil&#\tabskip=0Opt\cr

&&E&&N\strnt J. H. B\"ohning, 1838&\cr

&&&&\mmltispan3\hrulefill\cr

&&g\strut M. J. H. B\"ohning, 1882&%\vrule\cr

&&\mnltispan3\hrulefill\cr

E&\vrule&&\vrule&\sttut M. D. Blase, 1840&\cy

&&\vrule&&\mltizpan3\hrulefill\cr

&\ztrut L. M. Bohning, 1912&\vrule\cr

\mnltispan3\hrnlefill\cr

& \vrulek&&\strut E. F. Ehlert, 1845&\cr

&&\vrule&&\mltizspan3d\hrulefill\cr

& \vrule&\strut P. A. M. Ehlert, 1824&\vrule\cr

&&\multispan3\hrulefill\cr

&&&&\vrulek\strut C. L. Wischmeyer, 1850&\cr

&&&&\rmltispan3\hrulefill\cr}}$$

22.00. (Solution to Dudeney’s problem.) Let \one and \two be macros that produce
a vertical list denoting one and two pennies, respectively. The problem can be solved

leavevinode

Appendin A: Answers to All the Ezercises

with \valign as follows:
\valign{\viil#g\viil#\viil#&\viil#\cr

\twok\one&\onek\one\cr @ @ @

\one&\one&\twok\one\cr

\one&\one&\onek\two\cr @ @ @ @

\one&\two&\onek\one\cr} @ @ @ @
Since \valign transposes rows and columns, the result is @ @ @ @ .

23.1. \footline={\hzs\tenrm-- \folio\ --\hss}

23.2. \headline={\ifnum\pageno=1 \has\tenbf R\’ESUM\’E\has
\elze\tenrm R\’esum\’e of A. U. Thor \dotfill\ Page ‘\folio\fi}

{You should alse say \nopagenumbers and \voffset=2\baselineskip.)

23.3. \output={\plainontput\blankpageoutput}
\def\blankpageoutput{\shipout\vbox{\makeheadline
\vbox to\vaize{}\makefootline}\advancepagenol}

23.4. Set \hsize=2.1in, allecate ‘\newbox\midcolumn’, and use the following code:

NVoutput={\if L\lr
\global\setbox\leftcolumm=\columnbox \global\let\lr=M
\else\if M\lr
\global\setbox\midcolumn=\colummbox \global\let\lr=R
\else \tripleformat ‘\globalllet\lr=L\fi\fi
\ifnum\outputpenalty>~20000 \else\dosupereject\fi}
\def\tripleformat{\zhipout\vbox{\makeheadline
\fullline{\box\leftcolumn\hfil\box\midcolumn\hfil\colummbox}
\makefootline}
\advancepageno}

At the end, \supereject and say ‘\if L\lr \else\mnlli\vfill\eject\fi’ twice.

23.5. He forgot that interline glue i inserted automatically before the \leftline;
this permits a legal breakpoint between the \mark and the \leftline box, according
to the rales of page breaking in Chapter 15, One cure wonld be to say \nobreak just
after the \mark; but it’s usually best to put marks and inzertions just after boxes.

23.6. Say, for example, \ifcase2\expandafter\relax\botmark\fi to read part oy
of \botmark. Ancther solution puts the five components into five parameters of a
macre, analogous to the method used by \inxcheck later in this chapter; but the
\ifcasge approach is usually more efficient, becanse it lets TEX pass over the unselected
components at high speed.

23.7. ‘\output={\dimen0=\dp255 \normalountput
\ifodd\pageno\elae\if L\lr
\expandafter\inxzcheck\botmark\sub\end\fi\fi}
In this case the \normalowtput imacro should be the two-column output routine that

wag described earlier in this chapter, beginning with \if L\lY’ and ending with
“\let\lr=L\fi’. {There is no need to test for \supereject.)

335

valign
interline glue
nobreak
nsertions

336

Appendiz A: Answers to All the Ezercises

23.8. Falzse. If the text of the main and/or subsidiary entry is lengthy, a continuation
line may actually become two or more lines, {Incidentally, hanging indentation will
then ocour, becanse the \everypar command—swhich was set up outside the \output
rountine—is effective inside.} The \vsize must be large enongh to accommodate all
continuation Hnes plus at least one more line of index material, or else infinite looping
will ocour.

24.1. I \cs has been defined by \chardef or \mathchardef, TEX uses hexadecimal
notation when it expands \meaninghcs, and it assigns category 12 to each digit of
the expansion. You might bave an application in which you want the last part of the
expansion to be treated as a {mumbery. {This is admittedly an obscure reason.)

24.2, Yes; any number of spaces can precede any keyvword.

24.3. The first two have the same meaning; but the third coerces \bagelineskip to
a {dimen} by suppressing the stretchability and shrinkability that might be present.

24.4, The natural width is 221 dd (which TEX rounds to 15497423 sp and displays
ag 236.47191pt). The stretchability is 2500 8p, since an internal integer is coerced to a
dizpension when it appears as an {internal unit}. The shrinkability is zero. Notice that
the final \=pace is swallowed up as part of the optional spaces of the {shrink} part in
the syntax for {glue}. {If FLUS had been MINUS, the final \space would not have been
part of this {gue}])

24.5. it was non-null when a \dump operation cecurred. Here's a nontrivial exam-
ple, which sets up \batchmode and puts \end at the end of the input file:

\everyjob={\batchmode\input\ jobname\end}

24.6. (a) \def\\#1\\{F\Euturelethes\\uh. {b) \def\\{\let\ca= }\\L. (There
are many other solutions.)

24.7. {internal quantity} — {internal integer} | {internal dimen}
| {internal glue} | {internal muglue} | {internal nonnumeric)
{internal nonnumericy — {token variable} | {font}

26.1. Radix 10 notation is used for numeric constants and for the cutput of mumneric
data. The first 10 \count registers are displayed at each \shipout, and their values
are recorded on the dvi file af such times. A box whose glue hag stretched or shrunk to
its stated stretchability or shrinkability has badness 100; this baduess value separates
“loose” boxes from “very loose” or “ynderfull” ones. TEX will scroll up to 100 errorsin a
single paragraph before giving up {see Chapter 27). The normal values of \spacefactor
and \mag are 1000. A \prevdepth value of —1000pt suppresses interline glue. The
badness rating of a box is at most 10006, except that the \badness of an overfull box
is 1000000, INITEX initializes \tolerance to 10000, thereby making all line breaks
feasible. Penalties of 10000 or more prohibit breaks; penalties of —10000 or less make
breaks mandatory. The cost of a page break is 100000, if the badness is 10000 and if
the agsociated penalties are less than 10000 in magnitude {see Chapter 15).

26.2. TEX allows constants to be expressed in radix 8 {octal) or radix 16 {hexadeci-
mal) notation, and it uses hexadecinal notation to display \char and \mathchar codes.
There are 16 families for math fonts, 16 nput streains for \read, 16 output streams for
\urite. A \catcode value must be less than 16. The notation "77, 77@, ""A specifies

chardef

mathchardel

hexadecimal notation
meaning

coerce nombery, to (dimeny,
SPaces

dump

jobname

batchmaode

ertuch

Appendin A: Answers to All the Ezercises

characters whose codes differ by 64 from the codes of 7, @, A; this convention applies
only to characters with ASCII codes less than 128, There are 256 possible characters,
hence 256 entries in each of the \catcode, \mathcode, \lccode, \uccode, \sfcode, and
\delcode tables. All \lccode, \nccode, and \char values must be less than 256. A
font has at most 256 characters. There are 256 \box registers, 256 \connt registers,
256 \dimen registers, 256 \skip registers, 256 \muskip registers, 256 \toks registers,
256 hyphenation tables. The “at size” of a font ust be less than 2048 pt, i.e., 2% pt.
Math delimiters are encoded by multiplving the math code of the “small character”
by 2°2. The magnitude of a {dhnen} value mwust be fess than 16384 pt, Le., 2° pt; stan-
larly, the {factor} in a {fil dimen) must be less than 2°*. A \mathchar or \spacefactor
or \afcode value must be less than 2°°; a \mathcode or \mag valie must be less than
ot equal to 2°°%, and 2™ denotes an “active” math character. There are 2% gp per pt.
A \delcode value must be less than 2%°; a \delimiter, less than 227, The \end com-
mand sometimes contributes a penalty of —2% to the current page. A {dimen) must be
less than 2% sp in absolute value; a {mnnber) must be less than 2% in absclute value,

27.1. Heforgot to count the space; TEX deleted ‘17,
{Bat all is not lost; he can type ‘1’ or “2°, then {return}, and alter being prompted by
“** he can enter a new line of input.)

27.2. First delete the nawanted tokens, then ingsert what vou want: Type 8° and
then ‘T\macro’. {Incidentally, there’s a sneaky way to get at the \inaccezsible control
sequence by typing

I\garbage{}\let\acceszible=

in responge to an error message like this. The anthor designed TEX in such a way that
vou can’t destroy anything by playing such nasty tricks.)

27.3. ‘I.% does the trick, if % is a comment character.

27.4. The ‘minns’ of ‘minnscule’ was treated as part of the \hskip command in
\nextoumber. Quick should put ‘\relax’ at the end of his macre. [{The keywords 1,
plus, minng, width, depth, or height might just happen to ocour in text when TEX is
reading a glue specification or a rule specification; designers of general-purpose macros
shonld guard against this. If you get a4 ‘Missing number’ error and you can’t guess
why TEX is looking for a number, plant the instruction ‘\tracingcommanda=1’ shortly
hefore the error point; your log file will show what command TgX s working on.)

27.5. If this exercise isn’t just a joke, the title of this appendix is a He.

if you can't solve a probiem,

vou can alwavs fook up the answaer.

But piease, try first to solve it by yourseif;
then vou'll fearn more and you'il fearn faster.

— DONALD E. KNUTH, The TeXbook (1983)

How answer you for your sefues?
- WILLIAM SHAKESFEARE, Much Adoe About Nothing {1598)

337

Kinuth

comment character
mings

keywords

!

plus

width

depth

height

Missing number
KNgTH
SHAKESPEARE

age 338)

_

B

Basic
Control
Sequences

Appendin B: Basic Control Sequences

Lets begin this appendix with a chart that summarizes plain TEX s conventions.

Characters that are reserved for special purposes: v { } § & # ¥ -

\rm roman, {\sl slanted}, {\bf becldface}, {\it italic\/} type

TOman, slanted, holdface, italic type
6T i e 78 PE A \# \& \Y \ae \AE ‘oe \DE \aa \AA \es \o \O
R a7 8 #F &Y% 2 E e E A A B g O

Va Ve Ve V'u A=y Vo \.p \uMi \w e \VH\j MMA\i u \bk \c ¢c \d &
a & o6 u ¥ 7 p i 8 3 i k G h

Al AL A\dag A\ddag A5 \P {\it\$} &} \copyright \TeX \dots

I L) i LI | £ © TEX

Line break controls: \break \ncbreak \allowbreak \hbox{unbreakable}
dis\-cre\~ticn\-ary hy\-phens virgule\slash breakpoint
Breakable horizontal spaces: Unbreakable horizomtal spaces:

Ay, normal interword space ~ normal interword space

\enckip this much \enspace this much

\quad this much \thinspace this much

Aqquad this much \negthinspace thignuch

\hekip {arbitrary dimen} \kern {arbitrary dimen}

Vertical spaces: \smallskip —— \medskip \bigskip

Page break controls: \eject \supereject \nobreak \goodbreak \filbreak
Vertical spaces and good breakpoints: \smallbreak \medbreak \bigbreak

\settabs 4 \columns
\+Here’s an examplekof\hfill some ktabbing:&\hrulefill&\cr

Here’s an examplie of some tabbing:
\hrulefill Ndotfill ...
\leftarrcwfill \rightarrowfill ?

\upbracefill \downbracefill ~

e

More general alignments use \halign, \valign, \omit, \span, and ‘multispan.

Examples of the principal conventions for text layout appear on the next page.

339

surmmary of plain TeX
ks

tabbing

aceents

340

Appendiz B: Basic Control Sequences

% This test file generates the cutput shown on the oppesite page.
¥ It’s a bit complex because it tries to illustrate lots of stuff.
% TeX ignores commentary (like this) that follows a ‘%’ sign.

% First the standard output style is changed slightly:

\heize=29pc % The lines in this bock are 29 picas wide,
\vesize=42pc % The page body is 42 picas (not counting footlines).
Afootline={\tenrm Footline\quad\dotfill\quad Page ‘folic}
\pageno=1009 % This is the starting page number (don’t ask why).

% See Chapter 23 for the way tc make cther page format changes via
% \noffset, \voffset, \ncpagenumbers, \headline, or \raggedbottcm.

\tepglue lin % This makes an inch of blank space (1in=2.54cm).
\centerline{\bf A Bold, Centered Title}

\smallskip % This puts a little extra space after the title line.
\rightline{\it avec umn scus~titre \‘a la fran\c caise}

% Now we use \beginsection to introduce part 1 of the document.
\beginsection 1. Plain \TeX nclogy % The next line must be blank!

The first paragraph of a new secticn is net indented.
\TeX\ recognizes the end of a paragraph when it comes tc a blank
line in your manuscript file. % or to a ‘\par’: see below.

Subsequent paragraphs {\it are\/} indented.\footnotex*{The amcunt
of indentation can be changed by changing a parameter called

{\tt\char‘\\parindent}. Turn the page for a summary of \TeX’s most

impertant parameters.} (See?) The computer breaks a paragraph'’s

text into lines in an interesting way---see reference™ [1] ~~~and h¥%
yphenates words autcmatically when necessary.

\midinsert % This begins inserted material, e.g., a figure.
\narrower\narrower % This brings the margins in (see Chapter 14).
\neindent \llapd{‘‘}If there hadn’t been rcom for this material on
the present page, it would have been inserted on the next one.’’
\endinsert % This ends the inserticn and the effect of \narrower.

\preclaim Thecrem T. The typesetting of $math$ is discussed in
Chapters 16~-19, and math symbols are summarized in Appendix”F.

\beginsection 2. Bibliography\par % ‘\par’' acts like a blank line.
\frenchspacing % (Chapter 12 reccmmends this for bibliographies.)
V\item{[1]} D."E. Knuth and M."F. Plass, ‘‘Breaking paragraphs
inte lines,’’ {\sl Softw. pract. exp. \bfill} (1981), 1119-~1154.
\bye % This is the way the file ends, not with a \bang but a \bye.

hsize
vsize
footline
pagenc
topgloe
centerline
stnallskip
rightline
heginsection
blank line
TeX

par
footnote
tt

char
percent
midinsert
noindent
Nayp
proclaim
frenchspacing
item
Plass
Knuth
bye

Appendin B: Basic Control Sequences

A Bold, Centered Title

avee un sous-titre 4 la frangaise

1. Plain TgXnology

The first paragraph of a new section is not indented. TEX recognizes the end of
a paragraph when it comes to a blank Hne in vour manuscript file.

Subsequent paragraphs are indented.* (See?) The computer hreaks a para-
graph’s text into lines in an interesting way—see reference [1l—and hyphenates
words automatically when necessary.

“If there hadn’t been room for this material on the present
I
page, it would have been inserted on the noxt one.”

Theorem T. The typesetting of math is discussed in Chapters 16-19, and math
symbols are summarized in Appendix F.

2. Bibliography

1] D. E. Knuth and M. F. Plass, “Breaking paragraphs imto lines,” Softw.
pract. exp. 11 {1981}, 1119-1184.

* The amount of indentation can be changed hy changing a parameter called
g N SIRg A [
‘parindent. Turn the page for a summary of TEX’s most important paramoters.

Footline ... Page 1009

341

342

Appendiz B: Basic Control Sequences

The preceding example illustrates most of the basic things that yvou can
cdo directly with plain TRX, but it does not provide an exhaustive list. Thus,
it uses \centerline and \rightline, but not \leftline or \line; it uses
\midinsert, but not \topinsert or \pageinsert; it uses \smallskip, but not
\medskip or \bigskip: it uses \1lap but not \rlap, \item but not \itemitem,
\topglue but not \hglue. It does not illustrate \raggedright setting of para-
graphs; it does not use \ebeylines or \obeyspaces to shut off TEX s automatic
formatting. All such control sequences are explained later in this appendix, and
further information can be found by looking them up in the index. The main
purpose of the example is to serve as a reminder of the repertoire of possibilities.

Most, of the control sequences used in the example are defined by maeros
of plain TEX format, but three of them are primitive, i.e., built in: “\par’ (end of
paragraph), ‘\neindent’ (beginning of non-indented paragraph), and "\/’ {italic
eorrection). The example also assigns values to two of TEX's primitive param-
eters, namely \heize and \vesize TEX has scores of parameters, all of which
are listed in Chapter 24, but only a few of them are of special concern to the
majority of TEX users. Here are examples of how you might want to give now

ralues to the most important parameters other than \hsize and \vsize:

“tolerance=500 (TEX will tolerate lines whose badness is rated 500 or less.)
\looseness=1 {The next paragraph will be one kne longer than usual.)
\parindent=4dmm {Paragraphs will be indented by four millimeters.)
“hoffset=1.5in {All ouiput will be shified right by one and a half inches.)
\veffset=24pt {All output will he shifted down by 24 points.)
‘baselineskip=11pt plus.lpt (Basclines will be 11pt apart, or a bit more.)
\parskip=3pt pluslpt minus.5pt (Exiraspace will precede each paragraph.)

Plain TEX uses \parindent also to control the amount of indentation provided
by \item, \itemitem, and \narrower.

@ The remainder of this appendix is devoted to the details of the plain TgX

format, which is a set of macros that come with normal implementations of
TEX. These macros serve three basic purposes: (1) They make TEX usable, becanse
TeX’s primitive capabilities operate at a very low level. A “virgin” TEX system that
kas no macros is like a newborn baby that has an finmense amount to learn about the
real world; but it is capable of learning fast. {2} The plain TEX macros provide a basis
for more elaborate and powerful formats tailored to individual tastes and applications.
You can do a lot with plain TgX, but pretty soon youw'll want to do even more. {3) The
macros also serve to illustrate how additional formats can be designed.

Semewhere in vour computer system vou should be able to find a file called
plain.tex that contains exactly what has been preloaded into the running TEX system
that you use. Our purpose in the rest of this appendix will be to discuss the contents
of plain.tex. However, we will not include a verbatimm description, becanse sowme
parts of that file are too boring, and because the actual macros have been “optimized”
with respect to memory space and running time. Unoptindzed versions of the macros
are easier for hrmans to understand, so we shall deal with those; plain.tex contains
equivalent constructions that work better on a machine.

oheylines
obeyspaces
as 15, see obeylings, obeyspaces
primitive
parameters
tolerance
Yoo ernenss
parindent
hoffset
volfet
haselineskip
parskip
hem
itemitem
DATTHWET
pladn.tex
optimized
efficiency

Appendin B: Basic Control Sequences

So here’s the plan for the rest of Appendix B: We shall go through the con-
tents of plain.tex, interspersing an edited transcription of that file with comments
about noteworthy details. When we come to macros whose usage has not yet been
explained—ior example, somehow \vglue and \beginsection never made it into Chap-
ters 1 through 27—we shall consider them from a user’s viewpoint; but most of the
timne we shall be addressing the isswes from the standpoint of a macro designer,

1. The code tables. A format’s first duty is to establish \catcode values. This is nec-
essary becanse, for example, a4 \def command can’t be used until there are characters
like { and } of categories 1 and 2. The INITEX program {whick reads plain.tex s¢
that TEX can be initialized) begins without knowing any grouping characters; hence
plain.tex starts out as follows:

% Thiz i= the plain TeX format that’s described in The TeXbook.
% M.B.: A verzion number i= defined at the very end of this file;
% please change that number whenever the file is modified!

% And don’t modify the file under any circumstances.

\catcode‘\{=1 } left brace iz begin-group character

\catcode‘\}=2 } right brace 12 end-group character

\catcode‘\$=3 }, dollar sign iz math shift

\catcode‘\g=4 }, amperzand iz alignment tab

\catcode‘\#=6 }, hash mark is macro parameter character

\catcode ‘\"=7 \catcode‘\""K=7 % circumflex and uparrow for superscriptsa
\catcode‘_ =8 \catcode‘\""A=8 ¥ underline and downarrow for subscripts
\catcode ‘\""I=10 J ASCII tab iz treated as a blank space
\chardef\active=13 \catcode‘\"=\active % tilde is active

\catcode ‘\""L=\active \outer\def "L{\par} ¥ ASCII form-feed is \outer\par

\mezsage{Preloading the plain format: codes,}

These fnstructions set up the nonstandard characters “"K and ~~4 for superscripts and
subscripts, in addition to ~ and _, so that people with extended character sets can
use T and 4 as recommended in Appendix C. Farthermore ~~I {ASCII {tab}) is given
category 10 {space); and ~"L {ASCIT {formfeed}) becomes an active character that
will detect runaways on files that have been divided into “file pages” by {formfeed}
characters. The control sequence \active is defined to yield the constant 13; this is
the one category code that seemns to deserve a svinbolic name, in view of its frequent
use in constrocting special-purpose macros.

When INITEX begins, category 12 {other) has been assigned to all 256 possible
characters, except that the 52 letters 4...2 and a. ..z are category 11 {letter), and a
few other assignments eguivalent to the following have been made:

\catcode ‘\% =14
\catcode ‘\""7=15

\catcode®\ =10
\catcode ‘\""M=5

\catcode ‘\\ =0
\catcode ‘\""@=9

Thus V' is already an escape character, °) i a space, and % is available for comments
on the first line of the file; ASCI {mull} is ignored, ASCI {return} is an end-of-line
character, and ASCII {delete} is invalid.

The \mezsage command shown above prints a progress report on the terminal
when plain.tex is being input by INITEX. Later on comes ‘\message{registers,}’

343

cateode
INITEX
SOperseripts
subsoripts
oparrow char
downarrow char
ASCEH

tab

file pages
formfeed
active
hackslagh
space

noll

iR uaiiyil

delete
INESSALE

344 Appendiz B: Basic Control Sequences

and several other messages, but we won't mention them specifically. The terminal will o

eventually display something like this when initialization is complete: ;‘}'“‘PW saudl

Tt

dospecials

at-sign characters
private control sequences
matheade

** plain

{plain.tex Preloading the plain format: codes, registers,
parameters, fonts, more fomts, macros, math definitioms,
output romtines, hyphenation {hyphen.tex)}

* \dump

Beginning to dump on file plain.fmt

followed by a variety of statistics about what fonts were loaded, ete. If you want to
make o new format super.tex that adds more features to plain.tex, it’s best not
to make a new file containing all the plain stuff, or even to \input plain; just type
‘gplain super’ in response to INITEXs ** prompt, to input plain.fmt at high speed.

After the opening \message, plain.tex goes on to define a control sequence
\dozpecials that lists all the characters whose catcodes should probably be changed
to 12 {other} when copying things verbatim:

\def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&%
Ndo\#\do\"\do\""Khdo\ _\do\ " "ANdo\Y\do\ "}

{Appendix E illustrates how to use \dospecials.} The ASCIT codes for {null}, {tab},
{linefeed), {formfeed}, {return}, and {delete} have not been included in the list.

At this point plain. tex completes ity initialization of category codes by set-
ting \catcode ‘\@=11, therely making the character ‘@ behave temporarily like a letter.
The command \catcode ‘\@=12 will appear later, hence at-sign characters will act just
like ordinary punctuation marks when TgX is running. The idea is to make it easy
for plain TEX to have private control sequences that cannot be redefined by ordinary
users; all such control seguences will have at least one ‘@ in their names.

The next job is to set up the \mathcode table:

\mathcode *\""®="2201
\mathcode ‘\""C="010C
\mathcode ‘\~"F="3232
\mathcode ‘\""I="010D
\mathcode ‘\""L="2206
\mathcode ‘\""0="0140
\mathcode *\""R="225C
\mathcode ‘\""U="0239
\mathcode ‘\""X="3220
\mathcode ‘\~" [="2205
\mathcode ‘\"""="3211
\mathcode '\ ="8000
\mathcode ‘\ {="4028
\mathcode ‘ \+="202B
\mathcode ‘\.="0134
\mathcode‘\ ;="603B
\mathcode *\>="313E
\mathcode ‘\\="026E
\mathcode ‘\{="4266

\mathcode ‘\""A="3223
\mathcode '\~ “D="225E
\mathcode ‘\"“G="0119
\mathcode ‘\"~J="010E
\mathcode *\"“M="2208
\mathcode ‘\""P="321A
\mathcode ‘\"~§="225B
\mathcode ‘\"“V="220A
\mathcode ‘\""¥="3221
\mathcode ‘\""\="3214
\mathcode‘\~"_="225F
\mathcode ‘\ !="5021
\mathcode ‘\}="50329
\mathcode‘\,="613B
\mathcode ‘\/="013D
\mathcode ‘\<="313C
\mathcode ‘\?="503F
\mathcode ‘\]="505D
\mathcode ‘\|="0264

\mathcode ‘\""B="010B
\mathcode ‘\""E="0234
\mathcode ‘\““H="0115
\mathcode *\"~"K="3222
\mathcode *\""N="0231
\mathcode *\"~(Q="321E
\mathcode *\""T="0238
\mathcode *\""W="3224
\mathcode ‘\""Z="8000
\mathcode ‘%"]="3215
\mathcode ‘\~"7="1273
\mathcode \?="8000
\mathcode ‘ \#="2203
\mathcode ¢\ ~="2200
\mathcode ‘\:="3034
\mathcode ¢ \=="303D
\mathcode ‘\ [="405B
\mathcode ‘_="8000
\mathcode ‘\}="5267

Appendin B: Basic Control Sequences

A matheode is relevant only when the corresponding category code is 11 or 12; therefore
many of these codes will rarely be looked at. For example, the math code for "M
specifies the character \oplus, but it’s hard to fmagine a user who would want ™M
{ASCII {return}) to produce an & sign in the middle of a math formula, since plain
TeX appends ™M to the end of every line of input. The math codes have been set up
here, however, to be entirely consistent with the extended character set presented in
Appendix C and the Computer Modern fonts described in Appendix F. INITEX has
done the rest of the work, as far as mathecodes are concerned: It has set \mathcode x —
* + 7000 for each of the ten digits © = ‘0 to ‘9; \mathcode x = 1 + "7100 for each of
the 52 letters; and \mathcode x = & for all other values of x.

There's no need to change the \uccode and \lccode tables, INITEX has made
\nccode ‘X=X, \nccode x=*X, \lccode‘X="x, \lccode ‘x=*x, and it has made gimilar
assigmmuents for all other letters. The codes are zero for all nonletters. These tables are
used by TEX's \uppercase and \lowercasze aperations, and the hyphenation algorithm
also looks at \lccode (see Appendix H). Changes should be made only in format
packages that set TEX up for languages with more than 26 letters {see Chapter 8).

Next comes the \afcode table, which INITEX has initialized entirely to 1006,
except that \afcode‘X=099 for each of the 26 uppercase letters. Some characters are
made “trapsparent” by setting

\sfcode‘\}=0 \sfcode®\’=0 \=fcode‘\]=0 % won’t change the =pace factor

and the \nonfrenchspacing macro will be used later to change the sfeodes of special
punctuation marks. {Chapter 12 explains what an \sfcode does.}

The last code table is called \delcode, and again it’s necessary to change only
a few values. INITEX has made all delimiter codes eqgual to —1, which means that no
characters are recognized as delimiters in formulas. Dut there’s an exception: The value
\delcode‘\.=0 has been prespecified, so that *.° stands for a “mull delimiter.” {See
Chapter 17.) Plain format sets up the following nine values, baged on the delimiters
avatiable in Computer Modern:

\delcode '\ (="028300 \delcode ‘\/="02F30E \delcode*\)="020301
\delcode ‘\ [="05B302 \delcode ‘\{="26A30C \delcode ‘\]="05D303
\delcode ‘\<="26830A \delcode ‘\\="28E30F \delcode ‘\>="2693CB

It’s important to note that \delcode ‘\{ and \delcode‘\} have been left equal to —1.
If those codes were set to certain values, a user would be able to type, eg., \big{’
to get a big lefi brace; but it would be a big mistake. The reason is that braces are
used for grouping, when supplying arguments to macros; all sorts of strange things can
happen if vou try to use them both as math delimiters and group delimiters.

At this point the plain.tex file contains several definitions

\chardef\@ne=1 \chardef\tw®=2 \chardef\thr@@=3 \chardef\zixt@@n=16
\chardef\@cclv=255 \mathchardef\@cclvi=256
\mathchardef\@m=1000 \mathchardef\@M¥=10000 \mathchardef\QMM=20000

which allow “private” coatrol sequences \@ne, \tw@, etc., to be used ag abbreviations
for commonly used constants 1, 2, ... this convention makes TEX run a little faster,
and it means that the macros will consume slightly less memory space. The usage
of these abbreviations will not, however, be shown below unless necessary; we shall
pretend that “1, appears instead of \@ne, 10000, instead of \@M, and so on, since

345

return
necode
lecode
Dppercase
sfeode
delcode
period

null delimiter
left brace
right brage
braces

Ene
aptimization
etficiency

346

Appendiz B: Basic Control Sequences

that makes the programs more readable. (Notice that the long form of \@ne is 1,/
including a space, becanse TEX looks for and removes a space following a constant.)

2. Allocation of registers. The second major part of the plain.tex file provides a
foundation on which systems of independently developed macros can coexist peacefully
without interfering in their usage of registers. The idea is that macro writers should
abide by the following ground rules: (1) Registers numbered 0 to 9 are always free for
temporary “scratch” use, but their values are always assumed to be clubbered whenever
any other macro might get into control. (This applies to registers ke \dimen0, \toks0,
\ekipl, \box3, etc.; but TpX has already reserved \count0 through \count9 for page
number identification.} (2} The registers \count255, \dimen255, and \skip255 are
freely available in the same way. {3} All assipnments to the scrateh registers whose
mumbers are 1, 3, 5, 7, and 9 should be \global; all assignments to the other scratch
registers {0, 2, 4, 6, 8, 255) should be non-\global. {This prevents the phenomenon of
“save stack buildup” discussed in Chapter 27.) {4) Furthermore, it’s possible to use any
register in a group, if vou ensure that TEX s grouping mechanism will restore the register
when vouw're done with the group, and if vou are certain that other macros will not
make global assignments to that register when you need it. (5) But when a register is
used by several macros, or over long spans of time, it should be allocated by \newcount,
\newdimen, \newbox, etc. {6} Similar remarks apply to input/output streams used by
\read amd \write, to math families used by \fam, to sets of hyphenation rules used by
\langnage, and to insertions (which require \box, \count, \dimen, and \skip registers
all having the same number).

Some handy abbreviations are introduced at this point so that the macros
below will have eagsy access to scratch registers:

\countdef\count@=255 \toksdef\toks@=0 \skipdef\skip@=0
\dimendef\dimen@=0 \dimendef\dimen@i=1 \dimendef\dimen@ii=2

Here now are the macros that provide allocation for quantities of more per-
manent value, These macros use registers \count10 through \count20 to hold the
nmuibers that were allocated most recently; for example, if \newdimen has just reserved
\dimenl5, the value of \countll will be 15, However, the rest of the world is anot
supposed to “koow” that \count1l has anvthing to do with \dimen registers. There’s
a special counter called \allocationnumber that will be equal to the most recentiv al-
located number, alter every \newcount, \newdimen, ... \newinsert operation; macro
packages are supposed to refer to \allocatiounumber if they want to find out what
mimber was allocated. The inside story of how allocation is actually performed should
be irrelevant when the allocation macros are used at a higher level; vou musto’t assume
that plain.tex really does allocation in any particular way.

\count10=22 % thisz counter allocates \count registers 23, 24, 25,
\count11=9 % thisz counter allocates \dimen registers 10, 11, 12,
\count12=9 % this counter allocates \zkip registers 1C, 11, 12,
\count13=9 ¥ thiz counter allocatez \mmakip registerz 10, 11, 12,
\connt14=9 % this counter allocates \box registers 10, 11, 12,
\count15=9 ¥ thisz counter allocatez \toks registera 10, 11, 12,
\count16=~1 3 this counter allocates imput streams 0, 1, 2,
\count17=~1 % this counter allocates output =treams 0, 1, 2,
Ncount18=3 this counter allocates math families 4, 5, &,

registers

macro conventions
seratch

global

save stack boildop
input foutpot streams
rerad

writie

families

Faun

language

hem

connt

dimen

skip
allocationnumber

Appendin B: Basic Control Sequences 347

\count19=0 % thisz counter allocates langunage codes 1, 2, 3, ... mdkne
\count20=255 % this counter allocates insertiomns 254, 253, 252, ... wkg“
\countdef\inzsc@unt=20 ¥ nickname for the inzertion counter ﬁi:iﬁxf;
\countdef\allocationmumber=21 % the mo=t recent allocation nevwskip
\countdef\m@ne=22 \m@ne=-1 % a handy constant 2ziggme
\def\wlog{\immediate\urite~1} % thiz will write on log file {only) newtoks
\Nouter\def\newcount{\alloc@d\ count\countdef\inac@unt} 22$:ﬁ§;
Nouter\def\newdimen{\alloc@l\dimen\dimendef\insc@unt} newFam
\outerh\def\newskip{\alloc®2\skip\skipdef\insc@unt} newlangoage
\outer\def\newmuskip{\alloc@3\muskip\mskipdef\@cclvil} ;ﬁﬂ:ﬁ:ﬁ
\outerhdef\newbox{\alloc@4\box\chardef\insc@unt} debugged
\let\newtoks=\relax % thiz allows plain.tex to be read in twice ?§TH?”
\outerh\def\nevhelp#1#2{\newtoks#1l#l=\expandafter{\csname#2\endcsname}} Z$;E§;age
\outer\def\newtoks{\alloc@5\toka\tokadef\@cclvil} MEMGTY

\onter\def\newread{\alloc@6\read\chardef\2ixt@@n}
\onter\def\newwrite{\alloc@7\urite\chardef\sixt@@n}
\onter\def\newfam{\alloc@8\fam\chardef\2ixt@@n}
\outer\def\newlanguage{\alloc@9\language\chardef\@cclvi}
\def\alloc@#1#2#3#4#5{\global \advance\count1#l by 1
\ch@ck#1#4#2}, make sure there’s still room
\allocationnumber=\countl#l \global#3ik5=\allocatlounumber
\wlog{\string#5=\zstring#2\the\allocationnumber}}
\onterh\def\newinsert#1{\global\advance\insc@unt by-1
\ch@ckO\inac@unt\count \ch@ckl\inscOunt\dimen
\ch@ck2\insc@unt\skip ‘\ch@ck4\insc@unt\box
\allocatiounumber=\insc@unt
\global\chardef#i=\allocatiounumber
\wlog{\string#l=\string\insert\the\allocationnumber}}
\def\ch@ck#1#2#2{\ifnum\connt 1#1<#2},
\else\errmeszage{lo room for a new #3}\fi}

The “\alloc® macre does most of the work of allocation. It puts a message like
‘\maxdimen=\dimenl® into the log file after \newdimen has allocated a place for the
\dimen register that will be called \maxdimen; such information might be useful when
difficult macros are being debugged.

A \newhelp macro has been provided to aid in creating home-made help texts:
You can say, e.g., \newhelp\helpont{This iz a help message.}, and then give the
command ‘\errhelp=\helpout’ just before issuing an \errmessage. This method of
creating help texts makes efficient use of TEX s memory, because it puts the text into
a control sequence name where it doesn’t take up space that is needed for tokens.

The plain file now goes ahead and allocates registers for important constants:

\newdimen\maxdimen \maxdimen=16383.99999pt

\newskip\hideskip \hideskip=-1000pt plnsifill

\newskip\centering \centering=0Opt plnz 1000pt mimmz 10C0pt
\newdimen\p@® \p@=1pt % this savesz macro space and time
\newdimen\z® \z@=Cpt \newskip\z@zkip \z@:skip=0pt plusCpt minusOpt
\newbox\voldb@x % permanently voild box register

348

Appendiz B: Basic Control Sequences

The control sequence \maxdimen stands for the largest permissible {dimen}. Alignment
macros that appear below will make use of special glue values called \hideskip and
\centering. N.B.: These three constants must not be chauged under any circnm-
stances; vou should either ignore them cormpletely or just use them and enjoy them.
In fact, the next four constant registers (\p@, \2@, \z@=skip, and \voidb@x)} have heen
given private names so that they are untouchable. The control sequence \p@ is used
several dozen times as an abbreviation for ‘pt °, and \z@ is used quite often to stand for
either ‘Opt * or ‘0 °; the use of such abbreviations saves almost 10% of the space needed
to store the tokens in plain TEX's macros. But we shall stick to the unabbreviated forms
below, so that the macros are more readable.
A different sort of allocation comes next:

\outer\def\newif#1{\count@=\escapechar \escapechar=~1
\expandafter\expandafter\expandafter
\edef\@if#1{true}{\let\noexpand#l=\noexpand\iftruel}}
\expandafter\expandafter\expandafter
\edef\@if#1{falze}{\let\noexpanditl=\noexpand\iffalse}}
\@if#l{falze}\ezcapechar=\count@} % the condition starts out false
\def\@i1f#1#2{\csname\expandaf ter\if@\string#1#2\endcsnamea}
{\nccode‘1=*i \uccode‘2=‘f \uppercase{\gdef\1f@12{}}} ¥ ‘if’ is required

For example, the command \newif\ifalpha creates a tric of control sequences called
\alphatrue, \alphafalse, and \ifalpha (see Chapter 20}.

8. Pargmneters. INITEX sets almost all of the numeric registers and parameters equal
to zero; it makes all of the token registers and parameters empty; and it makes all of
the box registers void. Dut there are a few exceptions: \mag is set initially to 1000,
\tolerance to 1000, \maxdeadcycles to 25, \hangafter to 1, \ezcapechar o ‘\\,
and \endlinechar to ‘\""M. Plain TEX assigns new parameter values as follows:

\pretolerance=100 \tolerance=200 \hbadness=1000 \vbadnesz=1000
\linepenalty=10 \hyphenpenalty=50 \exhyphenpenalty=50

\binoppenalty=700 \relpenalty=500

\clubpenalty=15C \widowpenalty=150 \displaywidowpenalty=50
\brokenpenalty=100 \predisplaypenalty=10000

\doublehyphendemerits=10000 \finalhyphendemerits=5000 \adjdemerits=10000
\tracinglostchars=1 \uchyph=1 \delimiterfactor=901
\defanlthyphenchar=*\~ \defaunltskewchar=-1 \newlinechar=-1
\showboxbreadth=5 \showboxdepth=3 \errorconmtextlines=5

\hfnzz=0.1pt \vfnzz=0.1pt \overfullrmle=5pt

\hzize=6.5in \vsize=8.9%in \parindent=20pt

\maxdepth=4pt \splitmaxdepth=\maxdimen \boxmaxdepth=\maxdimen
\delimiterzhortfall=5pt \nmlldelimiterspace=1.2pt \zcriptzpace=0.5pt
\parskip=0pt plu= ipt

\abovedisplayskip=12pt plus 3pt minuns 9pt
\abovedisplayshortskip=Cpt plus 3pt

\belowdisplayskip=12pt plus 3pt minunz 9pt
\belowdisplayshortskip=7pt plunz 3pt minns 4pt

\topakip=10pt \zplittopskip=10pt

\parfillskip=0pt plus 1fil

maxdimen
hideskip
centering

string

escapechar

nppercase

iftroe

ifalse

expandafter

edefl

noexpand

CHENQAINE

parameters, default values

defanlt values of parameters

mag
toleranos
maxdeadoyeles
hangafter
escapechar
endlinechar
pretolerance
tolerance

hbhadnes

vhadness
linepenalty
hyphenpenalty
exbyphenpenalty
binoppenalty
relpenalty
clubpenalty
widowpenalty
displaywidowpenalty
brokenpenalty
predisplaypenalty
donblehyphendemerits
finalhyphendemerits
adjdemerits
tracinglostchars
uchyph
delimiterfactor
defanlthyphenchar
defan tskewchar
newlinechar
showhonbreadth
showhondepth
errorcontextlines
hfuzz

vfuzz

averfollrole

hsize

vsize

parindent

maxdepth
splitiaxdepth
hoxmaxdepth
delimitershortfall
nolldelimiterspace
seriptspace

parskip
abovedisplayskip
abovedisplayshortskip
belowdisplayskip
belowdisplayshortskip
topskip

splittopskip
partillskip

Appendin B: Basic Control Sequences

\thinmzkip=3m
\medmuskip=4mn pluz 2rm minus 4mu
\thickimskip=5mu plus 5Smm

(Some parameters are set by TEX itsell ag it runs, so it is mappropriate to ind-
tialive them: \time, \day, \month, and \year are established at the beginning of a joby;
\ontputpenalty is given a value when an \ouwtput routine is invoked; \predisplayaize,
\displaywidth, and \displayindent gef values just before a display is processed; and
the valies \looseneza=0, \hangindent=0pt, \hangafter=1, \parshape=C are assigned
at the end of a paragraph and when TEX enters internal vertical mode.)

The parameters \baselineskip, \lineskip, and \lineskiplimit have not
been initialized here, but a macro called \normalbaselines is defined below; this
macro sets \baselineskip=\normalbaselineskip, \lineskip=\normallineskip, and
\lineskiplimit=\normallineskiplimit. An indirect approach like tids has been used
s0 that several different type sizes may be handled, as illustrated in Appendix E. Plain
TEX deals exclusively with 10pt type, but it supports extension to other styles.

Some “psendo parameters” come next. These quantities behave just like in-
ternal parameters of TEX, and users are free to change them in the same way, but they
are part of the plain TEX format rather than primitives of the language.

\newzkip\smallskipamount % the amount of a \szmallskip
\smallskipamount=3pt plusipt mimn=ipt

\newskip\medskipamount % the amount of a \medskip
\medskipamount=6pt pluz2pt minn=2pt

\newskip\bigskipamount % the amount of a \bigskip
\bigskipamount=12pt plus4pt minunsdpt

\newskip\normalbaselineskip % normal value of \baselineskip
\normalbaselineskip=12pt

\newskip\normallineskip % normal value of \lineskip
\normallineskip=1pt

\newdimen\normallinezkiplimit % normal value of \lineskiplimit
\normallineskiplimit=Cpt

\newdimen\jot % unit of measure for opening up displays
\jot=3pt

\newconnt\interdizplaylinepenalty % interline pemalty in \displaylines
\interdisplaylinepenalty=100

\newcount\interfootnotelinepenalty % interline penalty in footnotes
\interfootnotelinepenalty=100

4. Font information. Now plain.tex brings in the data that TEX needs to know about
kow to typeset lots of characters in lots of different fonts. First the \magstep macros
are defined, to support font scaling:

\def\magstephalf{1095 }
\def\magstep#1{\ifcase#1 1000\or
1200\or 1440%\or 1728\or 2074\or 2488\fi\relax}

{(Tncidentally, \magatep doesn’t nse \mmltiply to compute values, since it is supposed to
expaad to a {oumber} enroute to TEX's “stomach”; \mmltiply wouldn’t work, becaunse
it is an assignment command, performed only in the stomach .}

349

thinmuoskip
mecskip
thickioskip

time

day

month

yerar
outputpenalty
predisplaysize
displaywidth
displayindent
looseness
hangindent
hangafter
parshape
baselineskip
lineskip
lineskiplimit
norimal baselines
peerndo parameters
parameters, psendo
stallskipameonnt
medskipamount
bigskipamount
normal baselneskip
normallineskip
normallineskiplimit
Jot

interdisplaylinepenalty
interfootnotelinepenalty

magstep
magstephall
moltiply
number
anatomy

350

Appendiz B: Basic Control Sequences

One of the main things that distinguishes one format from another is the fact
that each format gives TEX the necessary knowledge about a certain family of typefaces.
In this case the Computer Modern types described in Appendix F are taken as a basis,

although there is a provision for incorporating other styles,

\font\tenrm=cmriC
\font\sevenrm=cmry

\font\teni=cmmilC
\font\seveni=cmmi?

\font\tensy=cmsy10
\font\zevensy=cmsy7

\font\tenex=cmex10

\font\tenbf=cmbx10
\font\sevenbf=cmbx7

\font\tensl=cms110
\font\tentt=cmtt10
\font\tenit=cmtil0

\font\preloaded=cmrd
\font\preloaded=cmré

\font\preloaded=cmmi9
\font\preloaded=cmmi6

\font\preloaded=cmzy9
\font\preloaded=cmsy6

\font\preloaded=cmbxz9
\font\preloaded=cmbx6

\font\preloaded=cmz19
\ont\preloaded=cmtt9
\font\preloaded=cmti9

\font\preloaded=cmr&
\font\fiverm=cmr5

\font\preloaded=cmmi8
\ont\fivei=cmmib

\font\preloaded=cmsy8&
\font\fivesy=cmsy5

\font\preloaded=cmbx&
\font\fivebf=cmbx5

\font\preloaded=cms18
\ont\preloaded=cmtt8
\font\preloaded=cmtif

\font\preloaded=cmss1® \font\preloaded=cms=q8
\font\preloaded=cmesil0 \font\preloaded=cmssqi8

\font\preloaded=cmr7 scaled \magstep4 % for titles
\font\preloaded=cmtt1? scaled \magstep2
\font\preloaded=cmssbx1} scaled \magstep2

% Additional \preloaded fonts can be specified here.
% {And those that were \preloaded above can be eliminated.)
\let\preloaded=\undefined % preloaded fontsz must be declared anew later.

Notice that most of the fonts have been called \preloaded; but the control sequence
\preloaded iz made nndetfined at the very end, so those fonts cannot be used directly.
There are two reasons for this strange approach: First, it is degirable to keep the total
number of fonts of plain TEX relatively small, becanse plain TEX is a sort of standard
format; it shouldn’t cost much for someone to acguire all the fonts of plain TEX in
addition to those he really wants. Second, it is desirable on many computer systems to
prefoad the information for most of the fonts that people will actually be using, since
this saves a lot of machine time. The \preloaded font information goes into TEX’s
memory, where it will come alive instantly if the user defines the corresponding \font
again. For example, the book format in Appendix E says ‘\font\ninerm=cmxr®’; alter
that assigument hag been obeved, the control sequence \ninerm will identify the cmr9
font, whose information does not have to be loaded again.

The exact anmber and nature of fonts that are preloaded i unimportant; the
only mportant thing needed for standardization between machines is that sixteen basic
fonts {cmrl0, cmr?, ..., cmtilC) should actnally be loaded. The plain.tex files used
on different machines can be expected to differ widely with respect to preloaded fonts,
since the choice of how many fonts to preload and the selection of the most important
fonts depends on local conditions. For example, at the author’s university i iy ugeful
to prefoad a font that containg the Stanford seal, but that particular foat is not very
popular at Berkeley.

Computer Modern
tenrin
preloaded

Appendiz B: Basic Control Sequences

Most of these fonts have the default values of \hyphenchar and \skewchar,
namely ‘- and ~1; but the math italic and mwath symbol fonts have special \skewchar
values, which are defined next:

<

\skewchar\teni=?177 \skewchar\seveni=*177 \skewchar\fivei=’177
\skewchar\tensy=’60 \skewchar\sevensy=’60 \skewchar\fivesy=’60

Onee the fonts are loaded, they are also grouped into families for use in math
setting, and shorthand names like \rm and \it are defined:

\textfontO=\tenrm \scriptfontl=\zevenrm \zcriptacriptfontO=\fiverm
\def\rm{\fam0 \tenrm}

\textfontl=\teni \szcriptfomtl=\zeveni \scriptscriptfontl=\fivei
\def\mit{\faml } \def\oldstyle{\faml \temi}

\textfont2=\tenzy \scriptfont2=\zevenay \scriptscriptfont2=\fivesy
\def\cal{\fam? }

\textfont3=\tenex \scriptfont3=\tenex

\newfam\itfam \def\it{\fam\itfam\tenit} \textfont\itfam=\tenit
\newfam\slfam \def\sl{\fam\slfam\tensl} \textfont\slfam=\tensl
\newfam\bffam \def\bf{\fam\bffam\tenbf} \textfont\bffam=\tenbf

\scriptfont\bffan=\zevenbf \scriptscriptfont\bifam=\fivebf
\newfam\ttfam \def\tt{\fam\ttfam\tentt} \textfont\ttfam=\tentt

\scriptacriptfont3=\tenex

4. Macros for test. The fifth part of plain.tex introduces macros that do basic for-
matting vnrelated to mathematics. First come some macros that were promised above:

\def\frenchspacing{\sfcode‘\.=1000 \sfcode‘\?=1000 \zfcode®\!=1000
\efcode®\:=1000 \sfcode’\;=1000 \sfcode‘\,=1000 }

\def\nonfrenchspacing{\sfcode ‘\.=3000 \sfcode‘\7=3000 \=fcode‘\!=3000
\efcode®\:=2000 \afcode’\;=1500 \afcode‘\,=1250 }

\def\normalbaseline={\lineskip=\normallineskip
\baselineskip=\normalbaselineskip \lineskiplimit=\normallineskiplimit}

The next macros are simple but vital. First \{tab} and \{return} are defined
so that they expand to \{space}; this kelps to prevent confusion, since all three coses
look identical when displayved on most computer terminals. Then the macros \lg,
\rg, \lbrack, and \rbrack are defined, for people who have difficulty typing quota-
tion marks and/or brackets. The control sequences \endgraf and \endline are made
equivalent to TEX's primitive \par and \cr operations, since it is often usefnl to rede-
fine the meanings of \par and \cr themselves., Then come the definitions of \zpace
{a blank space}, \empty (a lst of no tokens), and \mull (an emwpty hbox). Finally,
\bgroup and \egroup are made to provide “hmplicit” grouping characters that tarm
out to be especially useful in macro definitions. {See Chapters 24-26 and Appendix D
for information about fmplicit characters.)

Ndef\T I\ T Adef\TTHLN b

\def\lgq{‘} \def\rq{’} \def\lbrack{[} \def\rbrack{]l}
\let\endgraf=\par \let\endline=\cr

\def\zpace{ } \def\empty{} \def\null{\hbox{}}
\let\bgroup={ \let\egroup=}

351

hyphenchar
skewchar

811

it
seriptseriptfont
textfont
seriptiont

it

aldstyle

cal

H

bi

newlam

tt
frenchspacing
sfeode
nonfrenchspacing
norimal baselines
control tab
control return
control space
Ig

)

hrack

rhrack
endgrafl
endline

par

or

space

enipty

null

hgroop
EETON

mplicit characters

352

Appendiz B: Basic Control Sequences

Sernething a bit tricky comes up now in the definitions of \obeyapaces and
\obeylines, since TEX is only “half obedient” while these definitions are half finished:

\def\obeyspaces{\catcode‘\ =\active}

{\obeyspacesiglobal\let =\space}

{\catcode‘\""M=\active % these lines pmst end with %’
\gdef\obeylinez{\catcode ‘\""M=\active \let ~"M=\parl}}
\global\let~"M=\par} % this iz in case ""M appearz in a \write

The \obeylinez macre says \let”"M=\par’ instead of ‘\def”"M{\par}” because the
\let technigue allows constructions suck as ‘\let\par=\cr \obeyline= \halign{...}’
i which \cr’s need not be given within the alignment.

The \loop...\repeat macro provides for iterative operations ag illustrated at
the end of Chapter 20. In this macro and several others, the control sequence ‘\next’
is given a temporary value that is not going to be needed later; thus, \next acts like a
“serateh control sequence.”

\def\loop#l\repeat{\def\body{#1}\iterate}
\def\iterate{\body \let\next=\iterate \else\let\next=\relax\fi \next}
\let\repeat=\fi % this makes \loop...\if...\repeat skippable

Spacing s the next concern. The macros \enskip, \guad, and \gguad provide
spaces that are legitimate breakpoints within a paragraph; \enzpace, \thinspace,
and \negthinspace produce space that cannot cause a break {althongh the space will
disappear if it occurs just next to certain kinds of breaks). All six of these spaces
are relative to the current font. You can get horizontal space that never disappears
by saying ‘\hglue{glue)’; this space is able to stretch or shrink. Shnilarly, there’s a
vertical analog, ‘\vglue{glue}’. The \nointerlineskip macro suppresses interline glue
that would ordinarily be inserted before the next box in vertical mode; this is 2 “one
shot” macro, but \offinterlineskip is more drastic—it sets things up so that future
interline glue will be present, but zero, There also are macros for potentially breakable
vertical spaces: \smallskip, \medskip, and \bigskip.

\def\enskip{\hskip.5em\relax} \def\enzpace{\kern.5em }
\def\guad{\hskiplem\relax} \def\ggunad{\hskip2em\relax}
\def\thinzpace{\kern .16667em } \def\negthinspace{\kern~.16667em }

\def\hglue{\afterassignment\hgl@\=kip@=}
\def\hgl@{\leavevmode \count@=\spacefactor \vrmle widthOpt
\nobreak\hskip\skip@ \spacefactor=\count@}
\def\vglue{\afterassignment\vgl@\skip@=}
\def\vgl@{\par \dimen@=\prevdepth \hrule heightOpt
\nobreak\vskip\skip@ \prevdepth=\dimen@}
\def\topglue{\nointerlineskip \vglne-\topskip \vglnel} % for top of page
\def\nointerlineskip{\prevdepth=~1000pt }
\def\offinterlineskip{\bazelinezkip=~1000pt
\lineskip=Opt \lineskiplimit=\maxdimen}
\def\zmallzkip{\vskip\smallskipamount}

\def\medskip{\vzkip\medskipamount}
\def\bigskip{\vakip\bigskipamonnt}

obeyspaces
oheylines
halign

or

loop

repeat

et

seratch control sequence

enskip

auad

ey ac

engpace
thinspace
negthinspace
heloe

vghue
nointerlneskin
otfinterlineskip
interline glue
stnallskip
medskip
bigskip
topeloe
afterassigmnent

Appendin B: Basic Control Sequences

Speaking of breakpoints, the following macros introduce penalty markers that
make breaking less, or more, desirable, The \break, \nobreak, and \allowbreak
macros are intended for use in any mode; the ™ (tie) and \slash {hyphen-like /)
macros are intended for horizontal mode. The others are intended only for vertical
maode, 6., between paragraphs, so they begin with \par.

\def\break{\penalty~10000 } \def\nobreak{\penaltylOGC0 }
\def\allowbreak{\penalty(}

\def " {\penaltyl10000\ }
\def\slash{/\penalty\exhyphenpenalty}

\def\filbreak{\par\vfil\penalty~-200\vfilneg}
\def\goodbreak{\par\penalty-500 }
\def\eject{\par\penalty-10000 }
\def\supereject{\par\penalty-20000 }

\def\removelastskip{\ifdim\lastakip=0pt \else\wskip-\lastskip\fi}
\def\smallbreak{\par \ifdim\lastskip<\zmallskipamount
\removelastskip \penalty-50 \smallskip \fi}
\def\medbreak{\par \ifdim\lastskip<\medszkipamount
\removelastskip \penalty-100 \medskip \fi}
\def\bigbreak{\par \ifdim\lastskip<\bigskipamount
\removelastskip \penalty-200 \bigskip \fi}

Boxes are next: \line, \leftline, \rightline, and \centerline produce
baxes of the full line width, while \1lap and \rlap make boxes whose effective width
is zero. The \underbar macro puts its argument into an hbox with o straight Hne at a
fixed distance under it.

\def\line{\hbox to\hsize}

\def\leftline#1{\line{#1\h=s}} \def\rightline#1{\line{\hss#1}}
\def\centerline#1{\line{\h=2#1\hs=}}

\def\llap#1{\hbox to Opt{\hss#1}} \def\rlap#i{\hbox to Opt{#i\hasl}

\def\m@th{\mathzurround=0pt }
\def\underbar#l{$\zetboxO=\hbox{#1} \dpO=0Opt
\m@th \underline{\box0}$}

[Notice that \underbar uses math mode to do its job, although the operation is essen-
tially non-mathematical in nature. A few of the other macros below use math mode
in similar ways; thus, TEX s mathematical abilities prove to be useful even when no
mathematical typesetting is actually being done. A special control sequence \m@th is
wsed to “turn off” \mathsurround when such constructions are being performed.)

A \strut is implemented here as a rule of width zero, since this takes minimum
space and time in applications where numerous struts are present,.

\newbox\strutbox
\zetbox\strutbox=\hbox{\vrule height8.5pt depth3.5pt widthOpt}
\def\ztrut{\relax\ifmmode\copy\atrutbox\elze\unhcopy\atrutbox\fi}

The \relax’ in this macro and in others below is necessary in case \atrut appears
first in an alignment entry, becanse TEX is in a somewhat uapredictable mode at such
times {see Chapter 22).

353

penalty
break
nobreak
allowhreak
slash
filbreak
good break
eject
supereject
removelastskip
smallbreak
medbreak
highreak
line
leftline
rightline
centerline
Nap

rlap
underbar
mikth
mathsurround
strot

relast

354 Appendiz B: Basic Control Sequences

The \ialign macro provides for alipmments when it is necessary to be sure ialign
that \tabakip is initially zero. The \hidewidth macro can be used essentially as \hfill :‘:}i‘;:};““
in alignment entries that are permitted to “stick out” of their column, There’s also hidewiath
\rmltizpan, which permits alignment entries to span one or more columns, ;ni}ll}i'}svan

abhing
\def\ialign{\everycr={}\tabskip=Cpt \halign} ¥ initialized \halign cleartabs
\def\hidewidth{\hskip\hideskip} ottiabs

lasthon
unhbox
\def\rmltispan#l{\omit ‘\mscount=#1 \loop\ifmum‘\mscount>1 \=p@n\repeat} outer

\def\sp@n{\span‘omit ‘\advance\mscount by -1 }

\newcount\msconnt

Now we get to the “tabbing” macros, which are more complicated than any-
thing else in plain TgX. They keep track of the tab positions by maintaining boxes
full of empty boxes having the specified widths. {The best way to understand these
macros is probably to watch them in action on simple examples, using \tracingall.}

\newif\ifus@ \newif\if@cr
\newbox\tabs \newbox\tabsyet \newbox\tabzdone

\def\cleartabs{\global\zetbox\tabsyet=\null \zetbox\tabs=\null}
\def\settabs{\setbox\tabs=\null \futurelet‘next\zett@b}
\let\+=\relax % in case this file is being read in twice
\def\zett@b{\ifx\next\+ \let\next=\relax % turn off \outerme=zs
\def\next{\afteraszignment\a@tt@b\let\next}}
\elze\let\next=\s@tcols\fi\next}
\def\zs@tt@b{\let\next=\relax ‘\us@falze‘\m@ketabbox}
\onter\def\+{\tabalign} \def\tabalign{\uz@true \m@ketabbox}
\def\s@tcols#1\columnz{\count@=#1 \dimen@=\hzize
\loop \ifnum\count@® ¢ \@nother \repeat}
\def\@nother{\dimen@ii=\dimen® \divide\dimen@ii by\count@®
\setbox\tabs=\hbox{\hbox to\dimen@ii{}\unhbox\tabsl}}
\advance‘\dimen® by-\dimen®ii \advance\count@ by -1 }

\def\m@ketabbox{\begingroup
\global\zetbox\tabayet=\copy\tabs \global\setbox\tabzdone=\mnll
\def\cr{\@crtrue\crcr\egroup\egronp
\ifn=@ \unvbox0 \lastbox\fi \endgroup
\zetbox\tabs=\hbox{\unhbox\tabzyet\unhbox\tabsdone} 1}/
\zetbox0=\vbox\bgroup\@crfalse \ialign\bgroup&\t@bbox##\t@bb@x\crcr}

\def\t@bbox {\zsetboxl=\hbox\bgroup}
\def\t@bb@x{\if@cr\egroup % now \box(0 holds the column
\elze\has\egroup \global\zetbox\tabayet=\hbox{\unhbox\tabsyet
\global\setboxl=\lastbox}% now \boxl holds its size
\ifvoidl \global\setboxl=\hbox to\wd0{}}
\else\setboxO=\hbox to‘\wdl{\unhbox(O}\fi
\global\zetbox\tabsdone=\hbox{\box1\unhbox\tabsdone}\f1i
\boxC}

The macre \+ hag been declared “\outer’ here, so that TEX will be better able to
detect runaway arguments and definitions {see Chapter 20). A non-\outer version,

Appendin B: Basic Control Sequences

called \tabalign, has also been provided in case it is necessary to use \+ in some
“inner” place. You can use \tabalign just like \+, except after \settaba.

s Paragraph shapes of a Hmited but important kind are provided by \item,
\itemitem, and \narrower. There are also two macros that haven’t been mentioned
before: {1} \hang causes hanging indentation by the normnal amoeunt of \parindent,
after the first line; thus, the entire paragraph will be indented by the same amount
{unless it began with \noindent). (2) \textindent{stuff} is like \indent, but it puts
the ‘stnff’ into the indentation, flush right except for an en space; it also removes spaces
that might follow the right brace in {stuff}’. For example, the present paragraph
was typeset by the commands ‘\textindent{\bullet} Paragraph shapes ...’; the
opening ‘T cccurs at the normal position for a paragraph’s first letter,

\def\hang{\hangindent\parindent}

\def\item{\par\hang\textindent}

\def\itemitem{\par\indent \hangindent2\parindent \textindent}

\def\textindent#1{\indent\llap{#1\enspace}\ignorespaces}

\def\narrower{\advance\left=kip by\parindent
\advance\rightzkip by\parindent}

The \beginzection macre is intended to mark the beginning of a new major
subdivision in a document; to use it, you say “\beginzection{section titie}’ followed by
a blank line {or \par}. The macro first emits glne and penalties, designed to start a new
page if the present page is nearly fall; then it makes a \bigskip and puts the section
title Hush left on a line by itself, in boldface type. The section title is alse displaved on
the terminal. After a \smallskip, with page break prohibited, a \noindent command
is given; this suppresses indentation in the next paragraph, ie., in the first paragraph
of the new section. (However, the next “paragraph” will be empty if vertical mode
material immediately follows the \beginzection command.)

\onter\def\beginzection#l\par{\vskipOpt plus.3\vzize\penalty~-250
\vekipCpt plu=-.3\vsize\bigskip\vskip\parskip
\mezsage{#1}\leftline{\bi#1}\nobreak\zmallakip\noindent}

Special statements in a mathematical paper are often called theorems, lennnas,
definitions, axioms, postulates, remarks, corollaries, algorithms, facts, conjectures, or
some such things, and they generally are given special typographic treatment. The
\proclaim macro, which was illustrated earlier in this appendix and also in Chapter 20,
puts the title of the proclamation in boldface, then sets the rest of the paragraph in
slanted type. The paragraph is followed by something similar to \medbreak, except
that the amount of penalty is different so that page breaks are discouraged:

\outerh\def\proclaim #1. #2\par{\medbreak
\noindent {\bf#1l.\enspace} {\z1l#2\paxr}}
\ifdim\lastskip<\medskipamount \removelastskip\penalty55\medskip\fi}

Ragged-right setting is initiated by restricting the spaces between words to
have a fived width, and by putting variable space at the right of each line. You should
not call \raggedright until your text font has already been specified; it is assumed that
the ragged-right material will ot be in a variety of different sizes. {If this assumption
ig not valid, a different approach should be used: \fontdimen parameters 3 and 4 of the
fonts you will be using should be set to zero, by saying, eg., ‘\fontdimen3\tenrm=0pt’,

355

tabalign
settabs

e
itemitem
DATTOWET
hang
parindent
noindent
textindent
indent

bollet
ignorespaces
heginsection
bigskip
smallskip
noindent
Message
theorems
proclaim
mecthreak
Ragged-right setting
raggedright
fontdimen

356 Appendiz B: Basic Control Sequences

These parameters gpecify the stretchability and shrinkability of interword spaces.) A
special macro \ttraggedright should be used for rageed-right setting in typewriter
type, since the spaces between words are generally bigger in that style. {Spaces are
already unstretchable and wnshrinkable in font cmtt.)

\def\raggedright {\rightskip=0pt plusa2em
\spaceskip=.3333em \xspaceskip=.5em\relax}
\def\ttraggedright{\tt\rightskip=0pt pluzs2em\relax}

Now we come to special symbols and accents, which depend primarily on the
characters available in the Computer Modern fonts. Different constructions will be
necessary i other stvles of type are used. When a symbol is built wp by forming a box,
the \leavevmode macro is called first; this starts a new paragraph, if TEX is in vertical
mode, but does nothing #f TpX s in horizontal mode or math mode.

\chardef\%=*\}% \chardef\&=°‘\& \chardef\#=‘\# \chardef\$=‘\$%
\chardef\ss="19

\chardef\ae="14 \chardef\oe="1B \chardef\o="1C
\chardef\AE="1D \chardef\0E="1E \chardef\0d="1F
\chardef\i="10 \chardef\j="11 % dotlesz letters
\def\aa{\accent?27a} \def\l{\char?4Cl}

\def\leavevmode{\unhbox\voidb@x} % begin= a paragraph, if necessary

\def_{\leavevmode \kern.CBem \vbox{\hrule width(.3em}}

\def\L{\leavevmode\zetboxO=\hbox{L}\hbox to\wdO{\hss\char’40L}}

\def\aA{\leavevmode\zetbox(=\hbox{h}\dimen@=\ht0 \advance\dimen@® by-lex
\rlap{\raize.67\dimen®@\hbox {\char*27}}4}

\def\mathhexbox#1#2#2{\leavevmode

\hbox{2$\m@th \mathchar"#182#3%}}
\def\dag{\mathhexbox279} \def‘ddag{\mathhexbox274}
\def\S{\mathhexbox278} \def\P{\mathhexbox27B}

\def\oalign#l{\leavevmode\vtop{\bazelineskipOpt \lineskip.25ex
Mialign{##\crcr#ilcrcr}}} % put characters over each other
\def\ooalign{\lineskiplimit~\maxdimen \oalign}
\def\d#1{\oalign{#1\crcr\hidewidth.\hidewidth}}
\def\bi#1{\oalign{#1\crcr\hidewidth
\vbox to.2ex{\hbox{\char’26}\vzs}\hidewidth}}
\defhc#l{\setboxO=\hbox {#1}\ifdim\htO=1ex \accent’30 #1%
\elze{\ooalign{\hidewidth\char’30\hidewidth\crcr\unhbox0}I\fi}
\def\copyright{{\ooalign
{\hfil\raisze.07ex\hbox{c}\hfil\crcr\mathhexbox20D}}}

\def\dots{\relax\ifmmode\ldots\elae$\m@th \ldot=\,$\fi}
\Ndef\TeX{T\kern-.1667em \lower.S5ex\hbox{E}\kern-.125em X}

Ndef\ ‘#1{{\accent"12 #1}} \def\’#1{{\accent"13 #1}}
\def\v#1{{\accent"14 #1}} \def\n#i{{\accent"15 #1}}
Ndef\=#1{{\accent"16 #1}} \def\"#1{{\accent"5E #1}}
\def\.#1{{\accent”"5F #1}} \def\H#1{{\accent"7D #1}}
Ndef\"#1{{\accent"7E #1}} \def\"#1{{\accent"7F #1}}
Ndef\t#1{{\edef\next{\the\font}\the\textfonti\accent"7F\next#1}}

interword spaces
spaceskip
aspaceskip
ttraggedright
typewriter type
leavevinode
control pereent
control ampersand
control hash
control dollar

as

O€

o

AR

OF

6]

i

i

aa

1

control underling
.

AA
mathhexbox
dag

ddag

b
l)
calign
ooalign
d

b

4
copyright
dots

TeX

B

v
0

ese hat
H

ese tilde

t

Appendiz B: Basic Control Sequences

At this point three alternative control-symbol accents are defined, suitable for
keyboards with extended character sets {cf. Appendix C):

AMeth\ " =\v Alet\""S=\n \let\ " D=\"

Various ways to fill space with leaders are provided next.

\def\htnlefill{\leaders\hrule\hfill}
\def\dotfill{\cleaders\hbox{$\m@th \mkernl.S5mm . \mkernl.S5mm#}\hfill}
\def\rightarrowfill{$\m@th \mathord- ‘\mkern-6mu
\cleaders\hbox{$\mkern-2mm \mathord- \mkern-2mu$}\hfill
\mkern-6mm \mathord\rightarrow$}
\def\leftarrowfill{$\m@th \mathord\leftarrow \mkern-6mm
\cleaders\hbox{$\mkern-2mm \mathord- \mkern-2mu$}\hfill
\mkern~6m \mathord-$}

\mathchardef\braceld="37A ‘\mathchardef\bracerd="37B
\mathchardef\bracelu="37C \mathchardef\bracern="37D
\def\upbracefill{$\m@th
\bracelu\leaderz\viule\hfill\bracerd
\braceld\leaders\viule\hfill\braceru$}
\def\dowvnbracefill{$\m@th
\braceld\leaderz\viule\hfill\bracern
\braceln\leaders\vrule\hfill\bracerd$}

The \upbracefill and \downbracefill macros have restricted usage: they mmst ap-
pear all by themselves in an hbox or an alignment entry, except for horizontal spacing.

Finally, the fifth section of plain.tex cloges by defining \bye:

Vouterhdef\bye{\par\viill\=zuperejectiend} % the recommended way to stop

6. Muacros for math. The sixth section of plain.tex is the longest; but it will suffice to
give only excerpts here, because most of it is simply a tedious listing of special syinbols
together with their font locations, and the same information appears in Appendix F.

Some rudimentary things come first: The control sequences \sp and \sb are
provided for people who can’t easily type = and _; there are four control symbaols that
provide spacing corrections; a “discretionary times sign” \# is defined; and then there’s
an interesting set of macros that convert £277 into £ {\prime\prime\prime}:

\et\zp=" \let\sb=_ {\catcode‘_=\active \globalllet_=_}
\defh, (\mskip\thinmmskip} \def\!{\mskip~\thinmuzkip}

\def\> {\mskip\medmszkip} \def\;{\mskip\thickmskip}
\def*{\discretionary{\thinspace\the\textfont2\char2}{}{}}
{\catcode*\""Z=\active \gdef "Z{\not=}} % ""Z is like \ne in math

{\catcode‘*=\active ‘gdef’{ \bgroup\prim@=}}

\def\prim@z {\prime\futurelet\next\prom@=}

\def\prom@z{\ifx’ \next\let\nxt\pr@@@z \else\ifx \next\let\nxt\pro@at
\elze\let\nxt\egroup\fi\fi \nxt}

\def\pr@@@=#1{\prim@s} \def\pré@ot#1#2{#2\egroup}

357

aceents
leaders
hruolefill
dotfill
rightarrowlill
leftarrowtill
upbracefill
downbracefill
bye

otter

B

sh
discretionary times sign
*

358 Appendin B: Basic Control Sequences

The next job is to define Greek letters and other symbols of type Ord. Up-
percase Greek letters are assigned hexadecimal codes of the form "7xxx, so that they
will change families when \fam changes. Three dots -’ are used here and below to
indicate that additional symbols, having similar definitions, are listed in Appendix F.

\mathchardef\alpha="010B
\mathchardef\Gamma="7000 \mathchardef\Omega="7004
\mathchardef\aleph="0240 \mathchardef\spadesnit="027F
\def\hbatr{{\mathchar’26\mkern~9mmh}}
\def\snrd{{\mathchar"1270}}
\def\angle{ {\vbox{\ialign{$\m@th\scriptstyle#i$\crcr
\not\mathrel {\mkernldmm}\crcr \noalign{\nointerlineskip}
\mkern2.5mn\leaders\hrnle height.34pt\hfill\mkern2.5m\crcr}}}}

\mathchardef\omega="0121

Large operators are assigned hexadecimal codes of the form "1xxx:

\mathchardef\smallint="1273

\mathchardef\sum="1350 \mathchardef\bignplus="1355
\mathchardef\intop="1352 \def\int{\intop\nolimits}
\mathchardef\ointop="1348 \def\oint{\ointop\nolimits}

Integral signs get special treatment so that their limits won’t be set above and below.

Binary operations are next; nothing exciting here,

\mathchardef\pm="2206 \mathchardef\amalg="2271

Relations are also fairly straighttorward, except for the ones that are con-
structed from other characters. The \mapstochar is a character 97 of width zerc that
is quite useless by itself, but it combines with right arrows to make \mapato ‘—’ and
\longmapste ‘*—’. Similarly, \not ig a relation character of width zerc that puts
a slash over the character that follows. When two relations are adjacent in a math
formula, TEX puts no space between them.

\mathchardef\leg="3214 \mathchardef \perp="323F
\def\joinrel {\mathrel {\mkern~-2mu}}

\def\relbar{\mathrel{\smash~}} \def\Relbar{\mathrel=}
\def\longrightarrow{\relbar\joinrel\rightarrow}
\def\Longrightarrow{\Relbar\joinrel\Rightarrow}
\def\longleftarrow{\leftarrow\joinrel\relbar}
\def\Longleftarrow{\Leftarrow\joinrel\Relbar}
\def\longleftrightarrow{\leftarrow\joinrel\rightarrow}
\def\Longleftrightarrow{\Leftarrow\joinrel \Rightarrow}
\mathchardef\mapstochar="322F \def\mapsto{\mapstochar\rightarrow}
\def\longmapsto{\mapstochar\longrightarrow}

\mathchardef\lhook="312C \def\hookrightarrow{\lhook\joinrel\rightarrow}
\mathchardef\rhook="312D \def\hookleftarrow{\leftarrow\joinrel\rhook}

\def\neg{\not=} \defl\models{\mathreli\joinrel=}
\def\bowtie{\mathrel\triangleright\joinrel \mathrel\triangleleft}

After defining characters \ldotp and \cdotp that act as math punctuation,
it is easy to define \ldotz and \cdots macros that give the proper spacing in most

areek letters
Ord

fam

alpha

Janma

aleph

hbar
surd

angle
som

it
mapstochar
mapsto
longmapsto

not
joinrel

relbar
Relbar
longrightarrow
Longrightarrow
longleftarrow
Longleftarrow
longleftright arrow
Longleftrightarrow
hookrightarrow
hookleftarrow
ner
medels
howtie
Idotp
cdotp
ldots
cdots

Appendiz B: Basic Control Sequences

cirenmnstances. Vertical and diagonal dots {(\vdota and \ddots) are also provided here:

\mathchardef\ldotp="613A\mathchardef\cdotp="6201\mathchardef\colon="6034
\def\ldots{\mathinner{\ldotp\ldotp\ldotpl}}
\defh\cdots{\mathinner{\cdotp\cdotp\cdotp}}
\def\vdots{\vbox{\bazelineskip=4pt \lineskiplimit=Opt
\kernfpt \hbox{.}\hbox{.}\hbox{.}}}
\def\ddotz{\mathinner{\mkernim\raize7pt\vbox{\kern7pti\hbox{.}}\mkern2m
\raizedpt\hbox{.}\mkern2mu\raizelpt\hbox{.}\mkernimm}}

Most of the math accents are handled entirely by the \mathaccent primitive,
but a few of the variable-width ones are constructed the hard way:

\defh\acute{\mathaccent"7013 } \def\ddot{\mathaccent"707F }
\def\widetilde{\mathaccent"0365 } \defl\widehat{\mathaccent"(362 }
\def\overrightarrow#l{\vbox{\ialign{##\crcr
\rightarrowfill\crcri\noalign{\kern-1pt\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}}
\def\overleftarrow#l{\vbox{\ialign{##\crcr
\leftarrowfill\crcri\noalign{\kern-1pt\nointerlinezkip}
$\hfil\displaystyle{#1}\hiil$\crcr}}}
\def\overbrace#l{\mathop{\vbox{\ialign{##\crcr\noalign{\kern3pt}
\downbracefill\crcri\noalign{\kern3pt\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}I\limits}
\def\nnderbrace#1{\mathop{\vtop{\ialign{##\crcr
$\hfil\displaystyle{#1}\hfil$\crcrinoalign{\kern3pt\nointerlineskip}
\npbracefill\crcr\noalign{\kern3pt}}}}\limits}
\def\skew#1#2#3{{#2{#3\mkern# 1rm} \mkern~#1mu}{}}

Now we come to 24 delimiters that can change their size:

\def\langle{\delimiter"42683CA }
\def\lbrace{\delimiter"4266308 }
\def\lceil{\delimiter"4264306 }
\def\lfloor{\delimiter"4262304 }
\def\lgroup{\delimiter"4000334 }

\def\rangle{\delimiter"526930B }
\def\rbrace{\delimiter"5267309 }
\def\rceil{\delimiter"5265307 }
\def\rfloor{\delimiter"5263305 }
\def\rgronp{\delimiter"500033B }

\def\lmoustache{\delimiter"4000340 } \def\rmomstache{\delimiter"5000341 }

\def\uparrow{\delimiter"3222378 } \def\Uparrow{\delimiter"322A37E }
\def\downarrow{\delimiter"3223379 } \def\Downarrow{\delimiter"322B37F }
\def\updowvnarrow{\delimiter"326C33F } \def\arrowvert{\delimiter"033C000 }
\def\Updownarrow{\delimiter"326D377 } \def\Arrowvert{\delimitexr"033D000 }
\def\vert{\delimiter"026430C } \def\Vert{\delimiter"026B30D }
\def\backslash{\delimiter"026E30F } \def\bracevert{\delimiter"033EQ0C }

The ‘\big...\Bigg macros produce specific sizes:

\def\bigl {