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1

Introduction

Understanding brain structure and principles of operation is one of the major
challenges of modern science. Since the experiments by Galvani on frog muscle
contraction in 1792, it is known that electrical impulses lie at the core of the
brain activity.

The technology of neuro-electronic interfacing, besides its importance for
neurophysiological research, has also clinical potential, so called neuropros-
thetics. Sensory prostheses are intended to feed sensory data into patient’s
brain by means of neurostimulation. Cochlear prostheses [1] are one example
of sensory prostheses that are already used in patients. Retinal prostheses are
currently under research [2].

Recent neurophysiological experiments [3, 4] show that brain signals
recorded from motor cortex carry information regarding the movement of
subject’s limbs (Fig. 1.1). These signals can be further used to control exter-
nal machines [4] that will replace missing limbs, opening the field of motor
prosthetics, devices that will restore lost limbs or limb control.

Fig. 1.1. Robotic arm controlled by monkey motor cortex signals. MotorLab, Uni-
versity of Pittsburgh. Prof Andy Schwartz, U. Pitt
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Another group of prostheses would provide treatment for brain diseases,
such as prevention of epileptic seizure or the control of tremor associated with
Parkinson disease [5]. Brain implants for treatment of Epilepsy and Parkinson
symptoms (Fig. 1.2) are already available commercially [6, 7].

Fig. 1.2. Implantable device for Epilepsy seizures treatment [7]. Cyberonics, Inc.
http://www.cyberonics.com/

The “far goal” of neural prosthetics is a device to replace higher-level cog-
nitive functions of damaged brain. It will maintain bi-directional communica-
tion with neural tissue, decode, process and feed back neural data in order to
replace lost functionality of damaged brain parts. Such devices are yet many
years in the future, but even those are already mentioned in the literature [8].

Electronic devices for neuronal interfacing advance as new fabrication
technologies have become available. Started as plain metal wires, neuronal
interfaces gradually developed into complex micro-fabricated arrays of hun-
dreds of three-dimensional sensing sites [9], some to be used in live animals
(so called in-vivo experiments), others to sample data from cultured neural
networks (in-vitro experiments). As neurophysiological research advances, in-
creasing demands on the instrumentation push the interfacing devices towards
tighter integration, larger numbers of sensing/stimulating points and wireless
operation.

The number of recording sites involved in in-vivo experiments is expected
to grow to thousands [10]. The devices for cultured networks interfacing, the
Multi-Electrode Arrays, suffer currently from too low spatial resolution (hun-
dreds of recording sites), which will probably grow manyfold. Latest reported
state-of-the-art devices fabricated on silicon already include above ten thou-
sand sensing points [11].

Increasing demands of neurophysiology on one hand and the growing com-
plexity of neuro-electrical interfaces on the other hand pose new requirements
for electronic devices supporting these interfaces. A very simple experiment
can be conducted with a few electrodes connected with a shielded analog ca-
ble to an analog signal acquisition PC card. This approach becomes increas-
ingly problematic when the number of electrodes grows larger; it is absolutely
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impractical for wireless operation. In the latter case signals must be acquired,
digitized and modulated for wireless transmission. Closer examination shows
that mere signal acquisition and digitization is not sufficient for wireless op-
eration of large-scale neuronal interfaces; it is simply impossible to transmit
all the data acquired from the interface within a reasonable power budget.

It is therefore concluded that a new type of electronic device is needed
for the emerging field of neuronal interfaces. This device, the Neuroprocessor ,
would allow computational neuronal interfaces. Beyond mere signal acquisi-
tion, the Neuroprocessor would perform computation on the acquired signals.
At the early stages this computation would extract meaningful information
out of raw recordings to minimize the required bandwidth for wireless com-
munication. Later, the Neuroprocessor will interpret the signals and compute
the required stimulation to feed back into the tissue and/or control external
prosthetic devices.

1.1 Overview of the Book

This book focuses on computational interfaces with biological neural networks,
with an emphasis on VLSI technology. Circuits for neuronal data acquisition
and shaping are explored, together with algorithms for low-power integrated
processing of neuronal data. An effort is also made in integrated in-vitro neu-
ronal interfaces.

The book is organized as follows: A brief background on neuronal commu-
nication and microelectrode recording is presented in Chap. 2. An emphasis is
placed on selected properties of extracellular microelectrodes. In Chap. 3 we
argue that conventional, i.e. “non-computational” neuronal interfaces are in-
sufficient for the evolving needs of neurophysiology research and of the emerg-
ing field of neuroprosthetics. We introduce the concept of a computational
neuronal interface, the Neuroprocessor that performs significant computa-
tional tasks near the recording front-end without relying on an external host.
The Neuroprocessor allows for significant reduction of the communication link
bandwidth, enabling wireless operation of large-scale neuronal interfaces. It
also enables autonomous operation, required by neuroprosthetic devices.

An important goal of this work was to develop an integrated, wireless-ready
neuronal recording interface that can be incorporated into a multi-channel
recording system. As part of this work, three front-end ICs, NPR01 -NPR03 ,
were designed, fabricated and evaluated. Along with every IC, a suitable test-
ing environment for electrical characterization was developed. Technical dis-
cussions regarding the circuit and architecture design of the first two genera-
tions are given in Chap. 4. The third generation of the front-end IC, NPR03 , is
a complete, fully-integrated, mixed-signal multi-channel recording interface.
It was embedded into a miniature headstage, successfully tested in neuronal
signal recording from a rat cortex. It was also successfully tested in recording
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form neural tissue cultured in-vitro. NPR03 and accompanying systems and
experiments are discussed in Chap. 5.

Chapters 6 and 7 present spike processing algorithms and in-vitro neuronal
interfaces. The appendicies describe the detailed design of NPR01 -NPR03 .
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Recording From Biological Neural Networks

The core functionality of neural networks is through electrical communica-
tion between neurons. Recording and stimulating electrical activity in neural
networks is the enabling technology for most neurophysiology-related appli-
cations and research. This chapter presents a short description of mechanisms
responsible for electrical activity in neurons, theoretical background for electri-
cal transduction between biological medium and electronic circuits and some
practical cases of such transducers, the neuronal probes. Finally, we describe
a typical setup for multi-electrode recording and the informative content of
the recorded signal.

2.1 The Neuron

During the second half of the nineteenth century it was largely understood that
the brain consisted of a complex, interactive network of single cells (neurons)
(Fig. 2.1) [12, 13].

Fig. 2.1. A single neuron and a neural network [14]. Web: Neuroscience for kids.
http://faculty.washington.edu/chudler/calpyr.html
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Neurons are specialized, non-spherical cells consisting of a cell body
(soma), many short dendritic processes, and one longer protrusion called the
axon, enclosed by a thin double layer of molecules, the membrane (Fig. 2.2).
An axon is a signal transmitter, it delivers the signals generated by the soma

SomaNucleus

Axon

Axon

Terminal

Synapse

Dendrites
Membrane

Fig. 2.2. Neurons

to its end terminal. Special chemicals, the neurotransmitters, are released
from the terminal. They diffuse through the synapse towards the dendrite or
the soma of a receiving (post-synaptic) neuron. Dendrites therefore are the
“input terminals” of the neuron, they transduce the chemical synaptic inputs
to electric potentials.

2.1.1 The Membrane and Resting Potential

The information is transferred among neurons via electrical potentials, called
action potentials. These are short (order of 1 msec) deviations of the intra-
cellular electrical potential from the resting potential. The neuron potential
is controlled by the membrane, through the mechanism of sodium-potassium
pumps. The mechanism of neuronal membrane operation was quantitatively
described in [15], known as the Hodgkin-Huxley model.

The membrane isolates electrically the inside of the cell from the extracel-
lular solution. Being a very thin (about 5 nm) layer of insulator, the membrane
is capacitive from the electrical point of view. Sodium (Na+) and potassium
(K+) ions can penetrate the membrane through special pores, sodium and
potassium channels. The ions traverse the channels across the gradients of
their electrochemical potentials. Both sodium and potassium channels are
gated: they open or close according to the polarization of the membrane. In
addition, a special channel exists: the sodium-potassium pump. It moves K+
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and Na+ ions against the potential gradients by absorbing metabolic energy
(ATP molecules). For each three Na+ ions moved out of the cell this pump
pushes a pair of K+ ions into the cell, pulling the intracellular potential below
the extracellular environment.

Due to the sodium-potassium pump operation the intracellular concentra-
tion of K+ is much larger than the extracellular concentration. The opposite
holds for Na+. The Hodgkin-Huxley model treats the membrane permeability
for each ion type as a non-linear conductance that is driven by the ion Nerst
potential1 (Fig. 2.3). gNa, gK and gL are the membrane ion conductances

Cm

Ena Ek El

g_na g_lg_k

Inside

Outside

Fig. 2.3. Hodgkin-Huxley model of the neural membrane

for Na+, K+ and leakages. ENa, EK and EL are the corresponding Nerst
potentials. Cm is the capacitance of the membrane.

When resting, the permeability (the “ease of penetration” through the
membrane) of potassium ions is about 100 times larger than that of sodium
ions. Related to Fig. 2.3, gK is 100 times larger then gNa. Thus the intracel-
lular resting potential is slightly larger than EK . The actual resting cell po-
tential value varies for different cell types between −50 mV and −90 mV [17],
measured with respect to the potential of the extracellular solution.

2.1.2 Action Potential

The membrane potential is subject to change, due to the activity of pre-
synaptic neurons: neurotransmitters absorbed by the dendrites perturb slightly
the membrane potential. The perturbations are accumulated, resulting in a
gradual depolarization of the membrane. The ion channels open gradually
due to the membrane depolarization, until it reaches a certain threshold,
about 20 mV above the resting potential. Beyond this point, Na channels
open rapidly, avalanche-like. Sodium ions enter the membrane, making the

1 Nerst equation gives the difference in ion potential across the membrane, as a
function of an intra- and extracellular ion concentration ratio [16]
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inside of the cell positive. The intracellular potential is pulled towards the
Nerst potential of Na+ ions, typically some 100 mV above the resting value.
With the rise of the cell potential Na conductance declines back to zero. At the
same time the potassium conductance rises and K+ ions flow out of the cell.
At the potential peak the inward flow of Na+ is exceeded by the outward K+
flow and the potential swings towards EK , even below its resting value. At this
point all the sodium channels are inactivated. The cell has gained some Na+
ions and has lost some K+ ions. The concentrations are restored by means of
the sodium-potassium pump (energy consuming), during the refractory period
that lasts typically a couple of milliseconds (Fig. 2.4).

potential
Resting

Threshold
about 20mV

VnaV

g_na

g_k

0mSec 1mSec 2mSec

Vk

Fig. 2.4. Action potential

A special note about action potentials must be made, from the neuron
behavior perspective: Firing of an action potential indicates that the mem-
brane depolarization has gone beyond a particular limit. The information in
action potential is expressed in the bare fact of firing, and not in the shape of
the pulse. In digital communications this form of signalling is termed “pulse
position modulation”, or PPM.

2.1.3 Excitation Propagation

During an exhibition of action potential, there is a positive charge inside the
cell (Na+ ions), while the extracellular volume adjacent to the soma is slightly
negative. The excessive concentration of Na+ ions makes them flow out of the
soma down the axon. Concurrently, outside the cell the Na+ ions flow towards
the soma (due to the negative near the soma), Fig. 2.5. The current flow
depolarizes an adjacent section of the membrane thus the excitation impulse
travels along the axon. This form of propagation is called “uniform”.

Another form of excitation propagation, the “saltatory propagation” hap-
pens when the axon membrane is covered by myelin cells, except for regularly
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Membrane
Fig. 2.5. Uniform excitation propagation

spaced points, the nodes of Ranvier Fig. 2.6. Since myelin is a good insulator,

Myelin

Ranvier node
Fig. 2.6. Saltatory excitation propagation

excitation can not occur except in the places where the myelin cover is thin-
ner, nodes of Ranvier. The excitation propagates in “jumps” between adja-
cent nodes and the impulse travels much faster: propagation speed in a myeli-
nated nerve fiber is 80–120 m/S, while unmyelinated nerve conduction speed is
0.5–2 m/S [12, 17].

Table 2.1 summarizes some of the physical properties of neurons.

Table 2.1. Typical values of neuron physical properties [18]

Soma diameter 5–20 μm
Axon diameter 1–20 μm
Membrane thickness 5 nm
Dendrite length up to 10 μm
Axon length up to 1 m

Resting cell potential −70 mV
Action potential duration 1 mSec
Action potential peak (above resting value) 100 mV
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2.2 Interfacing Neurons Electrically

In the biologic environment the currents are carried in the electrolytic medium
by means of ion conduction. Electronic circuits, which are commonly used for
transduction and processing of neural signals, all use electronic conduction.
An electrode (either recording or stimulating) provides transduction between
these two media. Numerous textbooks treat the electrode-electrolyte interface
electrochemically [16] and electronically [17, 19, 20]. First reviews on electrode
properties can be found in [21] and [22]. Additional reviews are available in [23]
and in [24].

It must be noted that ionic mobility in biological medium is typically six
orders of magnitude below the electron/hole mobility in metals or semicon-
ductors [16], thus the time constants of the two media differ significantly:
aqueous electrodes operate typically in 10 kHz bandwidth [19].

As we are going to present in detail, the electrode transduction takes place
either by capacitive coupling or by charge transfer, in which electrons are
transferred to and from the solution ions. The transfer occurs by two types
of chemical reactions: oxidation (electrons are donated) and reduction (elec-
trons are absorbed). When voltages across the interface are low, voltage-driven
charge transfers across the junction are negligible and the capacitive effect
prevails. This is the common case for recording, which is usually done with
a high-impedance preamplifier and no DC currents across the electrode. This
mode of operation typically involves small-signal measurements and electrodes
are viewed as networks of linear elements (mostly capacitive).

When it comes to neurostimulation (involving non-negligible DC currents),
a current flow is conducted through an electrode by means of carrier exchange.
Large-signal model of an electrode must be considered, which involves elec-
trochemical mechanisms of charge transduction [19].

2.2.1 Double Layer Capacitance

When an electrode is placed into an electrolyte, a space charge layer builds
up at the interface due to various chemical reactions [16]. The build up con-
tinues until a sufficiently strong electric field is formed to initiate a reverse
reaction. At equilibrium forward and reverse reactions are equal and the net
current across the junction is zero; the process resembles a PN semi-conductor
junction.

The ion distribution in an electrolyte is modelled as a charge plane near
the electrode (outer Helmholz plane, OHP), where the potential drops linearly,
like in a common plate capacitor. The charge plane is followed by a cloud of
mobile ions with approximately exponential potential drop (Fig. 2.7). The
plate capacitance of the Helmholz layer can be calculated as:

CH =
ε0εrA

dOHP



2.2 Interfacing Neurons Electrically 11

dOHP , the OHP distance from the electrode, is extremely small, typically less
than 10 Å. In [19], the worst-case capacitance of Helmholz layer is estimated
at 0.11 pF/μm2 .

A model for the capacitance of the mobile ions was suggested by Gouy
and Chapman and is reviewed in [16]. It is voltage-dependent, as the ion
distribution depends on the potential applied across the junction:

CD =
ε0εr

LD
cosh

zV0

2Vt

where V0 is the potential over the junction, Vt is the thermal voltage, z is the
ion charge, and LD is the Debye length:

LD =

√
ε0εrVt

2z2qn0

n0 is the ion concentration in the solution (ions/liter).

Fig. 2.7. Metal-electrolyte interface potential. Adopted from [24]

The effective capacitance of the electrode-electrolyte interface is the su-
perposition of CD and CH :

CI =
(

1
CH

+
1

CD

)−1

For most biological solutions, when a zero bias is applied, CH and CD are of
the same order. A typical value of a net capacitance is about 0.05 pf/μm2 [24].

2.2.2 Resistance at the Interface and Charge Transfer

To move charge into or out of the electrode a potential must be applied.
Potential shift from the equilibrium value V0 is called an overpotential :
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η = V − V0

There are four processes, each of them is associated with its overpotential.
The total overpotential, η:

η = ηt + ηd + ηr + ηc

ηt is due to the charge transfer through the double layer, ηd is due to the
diffusion of ions in the electrolyte towards the electrode, ηr and ηc are due
to chemical reaction at the electrode and due to transfer of metal ions into
electrolyte. The last two terms are usually insignificant in biological applica-
tions [20]. ηt dominates near the equilibrium. At higher currents, ηd becomes
significant due to the limited rate of ion supply from the bulk solution.

At equilibrium, oxidation and reduction proceed at equal rates: J0 =
JOX = −JRED. This equilibrium current density, J0, is called exchange cur-
rent density . ηt can be related to the current density by the Butler-Volmer
equation:

J = J0(e(1−β)zηt/Vt − e−βzηt/Vt)

β is the symmetry factor that reflects the differences in energy barriers of the
two reactions. For small deviations from the equilibrium J can be linearized
(assuming β of 0.5) as

J = J0
zηt

Vt

Thus the near-equilibrium charge transfer area conductance is

Gt = J0z/Vt

This value describes the charge transfer resistance in recording applications,
where an electrode is coupled to a high-impedance preamplifier and the net
current is zero. It is rather small: for 2 × 10−4, the largest value of J0 among
those brought in [19], it is only 80 pΩ−1/μm2 . Thus an electrode with area of
1000 μm2 will have (at small bias) Rt of 12.5 MΩ .

In stimulation applications, where significant deviations from the equi-
librium occur, Rt is significantly smaller. For instance, in a certain experi-
ment [25], a 100 μA current was conducted through a 700μm2 electrode by
applying only a 1V potential.

2.2.3 Diffusion Resistance Near DC

When an electrode conducts a steady state current, an ion concentration is
increased near the electrode with respect to the bulk solution. The concen-
tration is due to the diffusion of ions from the solution towards the electrode.
The diffusion process causes an overpotential to be developed, ηd.

For any electrode, there is some limiting rate at which ions can be supplied
from the bulk. Let Js be a corresponding limiting current density. Diffusion
overpotential at current J is given by [20]:
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J/Js = 1 − e−|ηd|z/Vt

This equation is valid for near-DC conditions.

2.2.4 AC Diffusion Resistance

Imagine a sinusoidal potential applied to the electrode. It would force a si-
nusoidally varying spatial concentration of ions. The variation will be largest
at the interface and will decay deeper in the bulk. Damping of the variations
will increase as the frequency increases. Thus the length to which the effect
extends into the solution decreases with frequency and the concentration gra-
dient at the interface increases with frequency, allowing more rapid supply of
the ions to the interface. Therefore, effective impedance is smaller for larger
frequencies.

The diffusion equations were solved by Warburg (the solution is reviewed
in [16]). The solution is a frequency dependent parallel R-C impedance model,
in series with a charge-transfer resistance Rt (Fig. 2.8).

Ci

Rt

Rp

Cp Zw

Fig. 2.8. Small-signal model of an electrode

Both Rp and Cp are frequency-dependent, and are given (for unit area) as:2:

Rp =
2σ

ω1/2

Cp =
1

2σω1/2

σ =
Vt

z2n0
√

2D

where D is the diffusion coefficient of the ions. Warburg area impedance can
be calculated as:

Zw = (Rp + jωCp)−1 =
σ

ω1/2
(1 − j)

2 The presentation in [16] is preferred
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Besides the f−1/2 frequency dependence this impedance has a constant phase
of 45◦.

2.2.5 Electrode Noise

As we have seen above, the electrode impedance has an active (real) compo-
nent along with a reactive (imaginary) component, therefore it must generate
electronic noise. It has been shown in [22] and confirmed in [24] that the noise
is thermal, and it is generated by the resistive part of the electrode impedance.
To obtain an estimate of the electrode noise we shall consider two boundary
cases for sample noise calculation: one where the electrode current is lim-
ited by charge transduction through the interface (Rt) and another when the
current is diffusion limited (ZW ).

We shall make all the calculations for a 1000 μm2 electrode. Using the
typical values we have seen above, the interfacial capacitance CI is about
50 pF and Rt (for charge transfer limited case) is 12.5 MΩ . If an amplifier

Ci

tissue
Rt

i_n

Fig. 2.9. Rt limited electrode

(Fig. 2.9) has an approximately infinite input impedance, then the noise power
spectral density (PSD) at the amplifier input will be:

4kTGt(
Rt

1 + jωRtCI
)2 =

4kTRt

1 + ω2R2
t C

2
I

Taking the integral with respect to f :

vn
2 =

2kT

πCI
arctan 2πfRtCI

For measurement bandwidth from DC to 10 kHz, since 2 π104RtCI is much
larger than 1, we have:

vn
2 =

2kT

πCI
× π

2
=

kT

CI

which is classic kT/C noise, independent of Rt. The RMS value is about 9μV .
For the diffusion-limited junction we shall take data presented in [17] (page

18, Table 1–4). It shows measurements of Cp of different electrodes in different
solutions. The data was fit to
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Cp =
k

fα

by constants k and α. Among the presented cases, we select Pt/0.025N HCL,
since its impedance is the closest match of Warburg model with α of −0.495
and k of 322 μF/cm2 . For 1000μm2 electrode k is 3.22 nF. The corresponding
value of σ is about 1/16·109 sec1/2F−1. For simplicity of calculation we neglect
CI with regard to Cp, although for frequencies around 10 kHz Cp falls below
CI (32 pF vs. 50 pF). The equivalent circuit is much like Fig. 2.9, but we use
Rp and Cp instead of Rt and CI .

PSD(vn) =
4kTRp

1 + ω2R2
pC

2
p

=
4kT2σω−1/2

1 + 1

Integrating with respect to f :

vn
2 =

4kTσ

π
·
√

f

which is about 6μV RMS. This value is somewhat overestimated, since we
have neglected CI .

A practical electrode will probably be somewhere in between the two cases,
i.e. its behavior will be affected by both the charge-transfer process and the
diffusion process. Note, that in both cases the noise is inverse proportional
to the square root of the electrode area. Thus a larger (and less selective)
electrode will generate less noise.

2.3 Neuronal Probes for Extracellular Recording

Neuronal probes (or neuronal electrodes) are used to measure the electri-
cal activity of neural networks. Above we have briefly discussed the electro-
chemistry and electrical properties related to a generic metal electrode inter-
facing a living tissue. This section describes different types of such electrodes
for extracellular recording, which means sensing the electrical current induced
in the extra-cellular solution by the electrical activity of nearby neurons. Re-
views of different types of electrodes can be found in [26], in [27] and in [18].

It is important to note that a signal picked up during an extracellular
measurement can not usually be related to a particular unit. Moreover, ex-
tracellular electrode typically records activity from more than a single unit.
The problem of identifying the active unit upon action potential discovery is
usually referred to as “spike-sorting” (Chap. 6).

Techniques exist for intra-cellular recording, i.e. penetrating the soma by
a special electrode and measuring the cell potential directly. Signals recorded
this way are typically much cleaner and the originating neuron is known.
However the complexity of fabricating, handling and placing the intracellu-
lar electrodes in the tissue is significantly higher, compared to extracellular
electrodes.
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2.3.1 Penetrating Electrodes

Penetrating electrodes are usually thin needles, insulated along the entire
length, with only the tip exposed. Traditionally, these are metal wires [21,
17]. The individual wires can be assembled into dense bundles for multi-site
recording [28]. Such bundles are available commercially [29, 30].

Microfabrication techniques are used to produce multi-site electrode arrays
on a silicon substrate (Fig. 2.10) [31, 32, 33], allowing for several potential
advantages:

• Photolitography permits manufacturing precise recording site positions
with uniform and repeatable characteristics.

• Thin film processing allows integrating multiple recording sites on a single
silicon shaft, eliminating the need for work consuming assembly of discrete
structures and reducing the overall device volume.

• Silicon substrate allows integrating electrode with on-chip circuitry, as
was demonstrated in [33]. The recording and stimulating electronics was
integrated with a multi-site probe of the “Michigan Probe” family.

The “Utah Microelectrode Array” [9] is another example of a micromachined
multielectrode probe, consisting of a ten-by-ten array of 1mm silicon needles,
glass isolated at the base.

(a) (b)

(c)

Fig. 2.10. Microfabricated probes. (a) [32]. (b) [31]. (c) [9]
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2.3.2 Cuff Electrodes and Regenerating Sieve Electrodes

Cuff electrodes (reviewed in [26] and in [18]) are placed inside a tubular cuff
warped around a nerve. Such electrodes may be used when inserting a pene-
trating electrode is inappropriate, for example when the nerve is too deep.

Regenerating sieve electrode [34, 35, 36] is a thin “holed” plate. During the
implantation, the target nerve is cut, and the plate is placed inside the cut, in
such way that nerve fibers (axons) regenerate through the holes in the array;
the nerve “grows through” the plate. Sensing sites aligned near the holes sense
only the fibers that pass through adjacent holes. Thus sieve electrodes (unlike
cuff electrodes) are inherently selective to the different fibers in a nerve.

2.4 Recording from Cultured Neural Networks

Neuronal networks can be cultured out of the animal body on specialized
devices, the Multi-Electrode Arrays (MEAs) [37, 38]. Recording from cultured
networks has several advantages over in-vivo recording:

• Development of the network can be monitored under controlled and re-
producible experimental conditions.

• Dense recording sites allow recording from a large number of neurons in
small volumes, an impossible task to achieve by using microprobes and
micromanipulators.

• Placement of neurons inside a cultured network can be forced, allowing
development of patterned networks [39, 40], allowing studying the effects
of network geometry on network behaviour.

Cultured networks are widely used in studies of neural network dynamics [41,
42]. They are also employed as biosensors for drug testing and environmental
hazard detection [43, 44].

An MEA (first introduced in [37]), is a dish made of biocompatible ma-
terial, such as glass, ceramic or silicon, with deposited sensing/stimulating
sites, conducting wires and connection pads (Fig. 2.11). The entire device is
insulated electrically, except for the electrode tips. The recording sites (usu-
ally several tens for an MEA) are typically of 10–20μm diameter and 100–
200 μm spacing. MEAs of various configurations in terms of electrode material,
shapes and positioning have been fabricated. A review on MEA configurations
and methods of fabrication is available in [46, 19].

2.4.1 MEAs on Silicon Substrate

As it is possible to grow neural networks upon glass substrate, it is possible
to do that on silicon substrate as well, integrating recording electronics on
the same die with the recording electrodes [11, 47, 48, 49, 50]. The electrical
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Fig. 2.11. An MEA from Multichannel Medical Systems [45]. Multichannel Sys-
tems, Germany. http://www.multichannelsystems.com

properties of neuron-silicon junctions are extensively treated in [51]. In sili-
con multi-electrode chips (MECs) neurons are capacitively coupled to gates
of FET transistors integrated on the substrate. Neural activity is measured
as action potentials affect the current flow through transistor channels. It was
shown also [52] that individual neurons can be stimulated, (i.e. action poten-
tials excited) by underlying electronic circuitry capacitively coupled to neural
somata through a thin oxide layer.

There are two types of recording circuits: The first approach [53] utilizes
a neuron placed on top of a thin oxide layer of a MOS transistor as a gate.
Electrical activity of the neuron affects the electrical field across the transistor
oxide and modulates the current through the channel. Another approach [49,
47, 11] uses a floating-gate MOS, with the gate capacitively coupled to a
neuron via thin oxide layer. Action potentials modulate the gate potential
which in turn affects the drain-source current.

Both methods require a voltage bias of Vth to exist between the transistor
gate and the chip substrate in order for transistor to conduct current. This
bias increases the effects of electrochemical corrosion, due to increased currents
through oxide cracks. Shappir et al. [48] overcome this drawback by using a
depletion MOS, that allows recording with zero bias voltage at the expense
of an additional processing step.

2.5 Typical Multi-Electrode Recording Setup

A typical setup for multi-electrode neuronal recording experiment is presented
in Fig. 2.12. The setup can be clearly separated into two major parts: the
one that is mechanically attached to the subject (neuronal interface or the
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Stimulating

Recording frontend

Stimulation frontend

Headstage Wired/wireless
communication/power

Host

algorithm
Feedback

Recording
electrodes

electrodes

Fig. 2.12. Typical setup for multielectrode neuronal recording

headstage) and the stationary part (the host). Inside the neuronal interface,
signals acquired by the recording electrode arrangement are shaped (pream-
plified, filtered, possibly digitized) by the recording front-end. Either a wired
or wireless communication link transfers the signals to the stationary host. In
case of communication over wires, some sort of mechanical strain relief solu-
tion must be employed if the subject is to be let free. This is typically done
by means of a “commutator”, a mechanical device connecting two cables that
allows both sides to be rotated freely with respect to each other (Fig. 2.13).
The host performs the necessary computation and datalogging steps on the
incoming input signals and calculates the stimulation feedback. Stimulation
instructions are sent back into the interface where they are applied to the
stimulation electrodes by the stimulating front-end.

Numerous implementations of such interfaces are available [54, 29, 45, 55].
The headstages are typically assembled of discrete components on miniatur-
ized printed circuit boards (Fig. 2.13). A construction of such a headstage was
described in [56].

Various headstage components, especially the recording front-end circuits
have been implemented on VLSI chips, providing a higher level of integra-
tion. Various aspects of neuronal preamplifiers have been the subject of many
studies: [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], including noise-power op-
timization and DC input stabilization (reviewed in greater detail in Chaps. 4
and 5).

Integration of processing electronics with the neuronal probes was also ad-
dressed. A micro-assembled device is presented in [69], with a micromachined
electrode array mounted on top of the processing chip. In [64] a neuronal
probe integrated on the same substrate with recording circuitry is described.

Wireless communication makes for another direction in neuronal interfac-
ing research. A wireless headstage described in [57] is available at [55]. Analog
signals from fifteen input channels pass intermediate modulation on differ-
ent frequencies and then the cumulative signal is transmitted after another
modulation of RF carrier. In [70] the digitized signal is transmitted from the
recording device by passive telemetry. A commercial 2.4 GHz radio module (so
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(a) (b)

(c)

Fig. 2.13. (a) 16-channel tethered headstage [54]. Plexon, Inc., US. http://
plexoninc.com (b) Wireless headstage [57]. (c) 16-channel commutator [54]. Plexon,
Inc., US. http://plexoninc.com

called mote) from [71] was used for wireless communication with a headstage
in [72].

Power is yet another important aspect of neuronal interface operation.
Successful attempts of remotely powering the front-end device by telemetry
have been reported [70, 73]. Another report [69] describes an optically powered
device with an integrated photo-voltaic cell.

A certain commonality among the existing devices is very relevant to our
discussion: (almost) no computation is ever performed at the interface side.
The front-end devices rely on the host “to be there” for any computation
needed. In some exceptional cases, front-end circuit may measure some fea-
tures of the recorded signal to assist the data processing on host. Two such
cases (to the best of our knowledge) exist. In [62], the amplitude of a spike
is measured. In [74] a threshold detection is applied, with the threshold level
automatically calculated based on measurements of the input signal RMS.

2.6 Recorded Signal Information Content

Information exchange inside neural networks is carried out through action
potential firing by individual cells, that inhibit or excite the action potentials
of other cells. The shape of spikes generated by a neuron does not change over
time (except for periods of bursts) [75]. The information is encoded by the
positions of the spikes on the time axis, rather than by the features (e.g., height
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or width) of the action potential waveforms. The times and the originating
cells of the firing events therefore define the “informative content” in neuronal
signals. After it is extracted from the recorded signal, higher level algorithms
concerned with behavioral aspects of neuronal networks can be applied.

Extracting information out of the recorded signal can be divided into a
pair of distinct tasks: detecting the firing events in the signal (so called spike-
detection) and recognizing their sources (spike-sorting). Since firing events
are associated with transient peaks in the measured potential, they can be
detected by threshold crossing. Resolving the sources of these events is not
straightforward, since an extracellular electrode will often sense activity from
more than a single neuron. It is usually assumed that action potentials of
different neurons will have different shapes on the recorded waveform. Shape-
based classification techniques can be utilized for classification of originating
units. We shall return to spike detection and sorting techniques in Chap. 6.
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The Neuroprocessor

Wireless neuronal interfaces are in need in clinical practice, neuronal pros-
thetics and neurophysiology research. In the former, they will eliminate the
transcutaneous wires, improving the quality of life for the patients and re-
ducing contamination risk. In the latter, they will allow recording from freely
behaving animals that are not constrained by the connecting wires. Needless
to say, such interfaces have to be powered by miniature-size power cells, yet
they are to provide sufficient battery life. For human patients, it has to be
days if the battery is rechargeable or years if the battery is to be replaced.

Conventional neuronal interfaces such as described in Chap. 2 serve as
mere transducers of the signal between the host and the tissue. As such, they
transmit all the recorded data and rely on a permanently available host to per-
form the required computation/data logging. The communication bandwidth
required for such operation can be easily calculated given the number of elec-
trodes involved in the interface. There are indications that a good quality
prediction of a limb movement may require recording from even thousands of
cells [3, 76]. Experiments involving hundreds of cells were reported [3, 28]. The
increase in the scale of neuronal interfaces is supported also by introducing
microfabrication technologies into the development of neuronal probes, exam-
ples are the 100-electrode Utah array [9] and the Michigan probe available
with up to 64 channels [77].

Let us consider an interface of a hundred of electrodes, each sampled at
25 Ksps with eight bits of precision, the cumulative datarate is 20 Mbps, far too
high for a system powered by a miniature-size battery. This observation was
already reported in [74, 78]. It uncovers a fundamental limitation of the non-
computational paradigm, showing it inadequate for interfacing large numbers
of neurons wirelessly.

We propose the Neuroprocessor , a computational neuronal interface. Un-
like the conventional neuronal interfaces, the Neuroprocessor will perform sig-
nificant amounts of computation close to the tissue, communicating only the
(low-bandwidth) outcome. Eventually, the entire feedback algorithm that is
currently executed on the host can be integrated into the Neuroprocessor,
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eliminating the need of permanent host connection completely. This is an im-
portant advantage considering neuronal prosthetics, as a prosthetic device can
hardly rely on the host to be constantly present.

3.1 Datarate Reduction in Neuronal Interfaces

Datarate explosion can be lowered to some extent, if we recall that infor-
mation exchange inside neural networks is carried through neuronal firing.
The times of neuronal firing events and their origins are the essential features
in the recorded neuronal signals. Communicating the continuous signal from
the recording electrode is a waste of bandwidth, knowing that neuronal firing
events are relatively rare (up to tens of spikes per second) and do not last long
(order of a millisecond); most of the time the electrodes record background
noise. Preferrably, spike activity would be detected in the recorded signal and
only signal portions containing such activity would be communicated. This
approach for datarate relaxation was suggested in [74].

If an electrode is sampled at 25 KSps with eight bit precision, a hundred
electrodes generate 20 Mbps. Assuming that a neuron fires twenty times a
second on average and every electrode senses three to four neurons, the elec-
trode would record close to a hundred spikes per second on average. Assuming
also that a spike lasts 1–2 msec, the datarate can be reduced to 2–4 Mbps by
detecting spikes in the recorded signal, and communicating only the active
signal portions. Although about an order of magnitde bandwidth reduction
can be achieved, the resulting datarates are still high.

Let us recall once again that what we seek in neuronal signals are the times
of firing events and their sources. The times and sources of the firing events will
be extracted from the recorded signal at the host by means of spike sorting (in
a multi-unit experiment) or a mere spike detection (single-unit experiment).
Communicating the analog waveforms of the signal, even clipped to the times
of firing activity, is yet a waste of communication bandwidth. Detection and
sorting would be preferrably done on the interface, limiting the communication
to the mere indications of spikes and their sources. Using the figures as above,
assuming that every spike results in 32-bit spike notification message, the
cumulative datarate for a hundred of electrodes is only 320 Kbps, another
order of magnitude datarate reduction. Such datarate can be communicated
over low-power (tens of milliamps) wireless datalinks. Commercial products
for such communication are already available: examples can be found at [71]
(Zigbee standard [79]) or at [80] (MICS band).

3.2 Neuroprocessor Overview

The conceptual architecture of the Neuroporcessor is laid out in Fig. 3.1.



3.2 Neuroprocessor Overview 25

extraction
Feature

electrodes
Recording

frontend
Recording

electrodes
Stimulating

Drivers
Waveform
generation

St
im

ul
at

io
n 

C
ha

nn
el

s

Stim.
signals waveforms

Stim.
commands

Stim.

calibration
Internal

Prosthetic
control

Host
comm.

External
sensors

uController
CPU/

Local &

R
ec

or
di

ng
 C

ha
nn

el
s

Raw
recorded
signals

Neuronal
recorded
SPK, LFP

Neuronal
events

In
te

rc
on

ne
ct

algorithm
Feedback

RF
Power

Fig. 3.1. Neuroprocessor conceptual architecture

Recording front-end brings the signals acquired by the recording electrodes
into a form suitable for neuronal data extraction. This typically involves DC
drifts removal, amplification and filtering (the front-end will be discussed in
greater depth in Chaps. 4 and 5). Feature extraction may operate on digital
or analog signals. Consequently, the front-end includes digitization.

The registered neuronal events may be used in different ways, depending on
the particular applicaiton the Neurprocessor is used for: stimulative feedback
calculation, prosthetic device control and/or indication to the host of the
neuronal activity.

The stimulation path consists of waveform generation blocks driving stim-
ulation electrodes. As the latter are typically large, their impedance tends
to be significantly lower than that of the recording electrodes, potentially
requiring special output drivers.

One important remark must be made regarding the Fig. 3.1: The data
reduction is performed right after the front-end in every channel and only the
event information is communicated on the bus. Doing otherwise (communi-
cating raw signals on the internal bus to a central “feature extraction” unit)
would cause the same communication load we have pointed to in previous
sections to exist on the internal chip bus, i.e. the communication bottleneck
would be “pushed” inside the chip. Intra-chip communications are far less
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power consuming, and with the datarates aforementioned are probably man-
ageable. However, there is no good reason to do so: as we are going to see
in Chap. 6, the common extraction steps (spike detection and sorting) are
typically performed on a channel with no regard to other channels. The ex-
traction unit is better placed on every channel to save the bandwidth on the
chip interconnect.
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Integrated Front-End for Neuronal Recording

4.1 Background

A signal recorded by an extracellular microelectrode consists of several com-
ponents in several frequency bands [81]. Neuronal firing activity occupies the
100–10.000 Hz frequency band. The amplitude of neuronal spikes picked up
by an extracellular electrode is typically small, below 100μV . Another com-
ponent of neuronal signal is the Local Field Potential (LFP). The LFP carries
cumulative information regarding the activity of large ensembles of cells [75].
It was shown to carry useful information with regard to sensory response [82]
and motion [83, 84]. LFP occupies the low-frequency band, below 200 Hz and
exhibits much larger amplitudes, of up to 5 mV. Large (hundreds of millivolts)
slow drifts of electrode potential are the third and the most “annoying” com-
ponent of a recorded signal. These drifts are associated with electrochemical
reactions at electrode-tissue interface.

The electrode noise (Chap. 2) together with the background noise define
the noise floor. A typical setup may provide signals with several microvolt
noise floor [24, 85].

4.1.1 Blocking the DC Drifts

Blocking the DC drifts is one of the largest challenges facing integrated neu-
ronal preamplifier design. Due to their large amplitudes, the drifts are to
be blocked even before the first preamplifier stage to avoid saturation. The
blocking circuit must therefore exhibit very low noise levels. Blocking must
also occur at a very low frequency: several Herz, if the LFP is to be left intact,
or several hundreds of Herz, if the LFP can be blocked. Such time constants
are not readily available within an integrated circuit, making the blocking
of DC drifts a challenging task. We would like to stress that due to a large
number of experiments conducted with LFP signals, it seems advantageous
not to block the LFP, but to make it available at the channel output.
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Several approaches have been shown. Using off-chip capacitors in a feed-
back path of an input amplifier is suggested in [58]. The corner frequency is set
so that the LFP is blocked as well. The convenience of using large capacitors
comes at the expense of an increased pin-count (an additional pin per chan-
nel) and element count (an external capacitor per channel). This latter issue
makes this approach impractical for implanted or minituarized head-stages
serving hundreds of channels.

In this context, we would like to point out that the signal can be high-pass
filtered by subtracting the low-frequency component from the input. Some of
the presented works [68, 58, 59] take this approach placing a low-pass filter
(LPF) in a feedback path of an amplifier (Fig. 4.1).

Low−Pass  filter Off−chip

(a) (b)

Fig. 4.1. (a) DC blocking with low-pass feedback. (b) Implementation in [58]

Fully integrated approaches were also demonstrated. One of the earli-
est fully integrated neuronal preamplifiers was published in [59]. A diode-
capacitor feedback path was utilized for low-frequency filtering. A diode typi-
cally exhibits a very large small-signal impedance at near-zero current levels;
this was used to achieve a large time constant. The drawback of the approach
(as we see it) is that the input differential pair was placed outside the feedback
loop. The DC drifts are blocked at the output of the first amplification stage.
Large input offset may therefore drive the first stage far from the equilibrium
point.

AC coupling the electrode to the preamplifier input seems therefore a bet-
ter approach. This was demonstrated in [64, 66]. In both cases, the coupling
capacitor was provided by the interface capacitance of the recording electrode.
A diode was employed as a shunting element in [64]; A MOS transistor biased
in subthreshold region was used in [66]. Relying on the electrode for the cou-
pling capacitor has two disadvantages. First, the properties of the recording
electrode must be known apriori, and the preamplifier must be designed with
that particular electrode in mind. Second, the impedance of the recording
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electrode is usually not purely reactive, it has also a resistive part, usually
very large, but not infinite. Thus the DC gain of this scheme is not strictly
zero, although it can be made very small [64].

In [68] AC coupling was implemented with an integrated capacitor and
a diode-connected MOS transistor as a shunting element. The DC gain of
this arrangement is strictly zero. It was also suggested to place the coupling
capacitor underneath the bonding pads to save die area. AC coupling with a
subthreshold MOS device for shunting was also employed in [57].

A different method was demonstrated in [63, 61, 86] (Fig. 4.2). The weak-
inversion devices used in a feedback path provide for a very high small signal

In

C1

C2

C1

C2

Ref

Fig. 4.2. Blocking DC with weak-inversion MOS devices

resistance at near-zero bias. When a higher voltage is applied across the device
(in either direction) the current grows exponentially: either because of the
opening of the MOS channel or because of the forward bias of the drain-
substrate junction.1 Thus the output voltage of this amplifier is forced within
certain limits. In [62, 87] it was suggested to make the gate potential of the
MOS devices adjustable. The corner frequency of the high-pass filter can thus
be controlled.

[67] suggests a digital feedback for DC blocking: The output signal is to
be digitized, processed and fed back to the amplifier negative input through
a D/A converter. No implementation is published though, and the approach
raises certain questions, regarding the implementation of a D/A converter
with sub-millivolt accuracy and output noise at the microvolt level.

1 Was used in [63, 61]. Olsson et al. [86] use a slightly different connection.
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4.2 NPR01 : First Front-End Generation

The first recording front-end, fabricated also as technology and design plat-
form validation step, included eight channels, each one consisting of a two-
stage low noise single-ended preamplifier and a low pass filter. DC stabi-
lization was achieved with input reset gates. Channel schematic is presented
in Fig. 4.3. DC stabilization was achieved by periodically asserting φ1 and φ2

Φ 1 Φ 2

Fig. 4.3. NPR01 channel schematic

for short periods. Moreover, if φ2 is deasserted after φ1 is deasserted, then the
output offset of the first stage is rejected at the second stage as well. A simple
ring oscillator and the logic necessary for generation φ1,2 were also included
on the chip.

The chip was fabricated in 0.35 μm , double-poly, triple-metal mixed-signal
process (AustriaMicroSystems), with 3.3V power supply. It was tested elec-
trically and found functional. It was also tested as a preamplifier on an MEA-
interfacing board (Fig. 4.4). It was observed during the experiments that reset
gates introduce too much switching noise into the input signal. Single ended

(a) (b)

Fig. 4.4. (a) NPR01 micrograph. (b) Test board
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architecture of the amplifiers provided poor PSRR, allowing large supply in-
terference. Both the supply interference and the switching noise completely
obscured the neural activity. Two conclusions were made: The reset gate ap-
proach for stabilization of the input DC level was proved impractical and
abandoned; differential input stages were employed in the following genera-
tions of sensing chips.

4.3 NPR02 : Analog Front-End With Spike/LFP
Separation

The second version of the front-end chip [88], NPR02 , included twelve fully-
differential recording channels each with a complete neuronal signal shaping
chain. DC blocking was achieved with a first order high-pass filter at chan-
nel inputs employing integrated resistors and off-chip capacitors. NPR02 also
introduces band-splitting of a neuronal signal into spike data and LFP. The
chip was fabricated in 0.35 μm double-poly, quad metal mixed signal process
by AustriaMicroSystems. NPR02 operates on a dual-rail supply of +/−1.65 V.

4.3.1 Splitting Spike and LFP

Cleared of the near-DC drifts, the neuronal signal has two components left:
the spiking activity (occupying frequencies of 0.2–10 kHz) and the local field
potential (below 100–200 Hz). Preferably, both are made available at the out-
put. However, the combined signal is hardly usable, since the algorithms that
operate on spike data require clearing the LFP and vice versa. Spikes and
LFP must therefore be separated and provided on two separate outputs. The
separation can be done in the digital domain, by digitizing the combined sig-
nal and applying digital filtering afterwards. It can also be done in the analog
domain, potentially saving some power.

Since spikes are rare events, if one can detect (or even suspect) their pres-
ence in the signal by analog computation, then the digitizer can be activated
only on the portions of the signal when a spike is suspected. Threshold de-
tection, for example, is easily done in analog domain. Making digital compu-
tations, on the other hand, requires the digitizer and the splitting filters to
operate continuously. Making separate analog outputs with spike and LFP
information can therefore potentially lead to power saving on the digitizer
and subsequent digital filters.

Splitting the combined signal can also relax the dynamic range required
at the analog chains. We recall that the LFP amplitude can reach several mil-
livolts, and the amplitude of the spikes is several hundreds of microvolts. The
noise floor of spike recording is around several microvolts. Thus the dynamic
range of the combined signal is defined by the amplitude of the LFP signal
on one hand and the noise floor of the spikes on the other hand at levels of
around 1000. The required resolution of the digitizer is 10 bit at least. If we
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split the signal, the maximum dynamic range is at the spike part, which is
now defined by the noise floor and the spike amplitude and is ten times lower.
Thus the dynamic range of the parts of the analog chain following band split-
ting needs be only 100; and seven bits of resolution at the digitizer. The input
preamplifier must provide a full dynamic range in both cases.

4.3.2 NPR02 Architecture

The architecture of a single NPR02 channel is shown in Fig. 4.5.

input DC block x100 Band Split

VGA

x10 VGA LPF

LFP

Spike

Diff.

Fig. 4.5. NPR02 channel architecture

The signal is cleared of the DC component, amplified a hundred times and
split into the spike and LFP parts. The spike part is then amplified by ten and
amplified again by a variable gain amplifier. Spike band is limited by a second
order Bessel filter with variable cutoff frequency. The LFP part is amplified
by a variable-gain amplifier (VGA). Both spike and LFP outputs are buffered
to chip pads.

Figure 4.6 shows the block diagram of an NPR02 channel. The input high-
pass filter makes use of external capacitors. 8 MΩ resistors (high resistive poly)
were placed on chip. To make a cutoff at about 1 Hz, 22 nF external capacitors
can be used, available in miniature SMD packages. The band splitter was
realized as a first order RC filter, with 5 MΩ resistor and 160 pF (gate oxide)
capacitor.

Assuming the output LPF has a steep rolloff above some frequency fb, the
noise introduced by the splitter into the spike band is:√

4kT · R · fb

which is about 30 μV for fb of 10 kHz. The noise floor of the channel is aimed
at a level of 2–3 μV . To suppress the splitter noise reliably, the preamp must
provide gain of well above 20; the preamp gain was set to 100. Both VGAs
provide digitally selectable gains of 2.5/5/7.5/10. The maximal total gain of
the spike chain is therefore 10,000, and that of the LFP chain is 1,000.

The output LPF is a Sallen-Key biquad [89], realizing a second-order
Bessel low-pass filter (Fig. 4.7). The cutoff frequency was made programmable
through shorting resistor segments. The LPF provides buffered output that
can drive chip pads.
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Fig. 4.6. NPR02 block diagram

programmable resistor

buf outin
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Fig. 4.7. Spike output LPF

DC offsets of both spike and LFP channels have to be compensated: The
LFP channel amplifies the input preamp offset (hundreds of μV , typically) by
up to 60 dB; unless compensated, it would limit the dynamic range severely
or even saturate the VGA. The spike chain output offset is determined by
the offset of the ×10 stage amplified by 40 dB, as the DC part of the preamp
output signal is blocked by the band splitter. Smaller than LFP, spike offset is
yet significant: the ×10 stage has larger input offset compared to the preamp,
since the latter uses very large input devices due to the noise requirements.

Offset compensation is carried out by two calibration digital-to-analog
converters (DACs), one for LFP and one for spike, applied to the last ampli-
fication stages (VGAs). The DACs are implemented as 5-stage R2R resistor
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ladders, having 400 mV output swing. DAC values are stored in registers that
can be individually accessed through a common bus with five address/data
bits and three control bits.

4.3.3 Input Preamplifier

The circuit of the input preamplifier is shown in Fig. 4.8. A degenerated dif-
ferential cascoded transconductor stage followed by a current amplifier loaded

M6

vdd

vss

current
amplifier

x5

pos
rb

r r

negM1 M2

M3

bias

RM5

Fig. 4.8. NPR02 input preamplifier

with a resistor to convert the output current to voltage. The gain of the input
stage is given by:

A =
2R

r + rm
=

2R/r

1 + rm/r

where rm is the transresistance of M1,2. While r can be matched to R by
using the same resistor types and employing appropriate layout techniques,
there is no straightforward way of matching r to rm. The sensitivity to rm

can be reduced by reducing the ratio rm/r, but there is a limit on how high
r can be due to the noise requirements (some 10 kΩ ) and reducing rm means
more power.

Instead, we match r to rm by appropriately controlling the bias currents
through M1,2. M1,2 are operated in the subthreshold region (the smallest rm

for a given Id) so that rm is inversely proportional to Id:
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rm =
ηVth

Id
, Vth =

kT

q

Id is given by:

Id =
Vdd − Vgs3

rb

thus we can write the gain as:

A =
2R

r + rb
ηVth

Vdd−Vgs3

We match rb to r and keep Vgs3 much lower than Vdd. Since the ratio of
Vth and Vdd is small, the above expression becomes weakly dependent on
process parameter η and on Vgs3. The chip is expected to work in constant
temperatures (subject body), thus the dependence on V th is not worrying.
One sigma chip-to-chip channel gain variation of less than 2% was actually
measured.

The procedure for sizing the preamp and choosing transistor current is de-
scribed in Appendix A. Without going into too much detail here, the evident
drawback of this circuit is the degeneration of the input differential pair. On
one hand it is desirable to control the gain; on the other hand it reduces the ef-
fective input transconductance, degrading the power-noise performance (more
noise for a given power). From this perspective, feedback circuits such as [63]
and alike perform better: the gain is set by the feedback and no degeneration
is needed.

However, there is also an advantage, a low input capacitance. Feedback
circuits use a large input capacitor (10 pF typically). Input capacitance of the
preamp is lower: gate capacitance of the input transistor is some 5 pF and
it is reduced by degeneration. The effective input capacitance for the circuit
shown is about 700 fF.

Because of the low input capacitance, the preamplifier designed for NPR02
was also used in a chip for in-vitro recording (Chap. 7). The recording sites in
such a chip typically provide much lower interface capacitance (i.e. coupling
capacitance between the tissue and the preamplifier), thus low capacitance at
preamplifier input is essential.

4.3.4 NPR02 Measurements

Measurement setup and test board block diagram are presented in Fig. 4.9.
The layout and the assembled test-board are shown in Fig. 4.10. The test-
board includes a matrix of digitally controlled switches that connect inputs
of NPR02 with a voltage divider driven by a waveform generator. The outputs
can be connected through another switch matrix to a scope, via board out-
put channels. Every channel is configurable, it can provide various gain levels
and/or filtering (see Appendix A for details).
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Voltage
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Channel #1
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NPR02

CPLD

PC

GPIB bus

NPR02 test board

Fig. 4.9. NPR02 measurement setup

The switches and NPR02 are controlled by an on-board programmable logic
device, that communicates with the computer host via a parallel port. The
host also controls the waveform generator and the scope by means of a GPIB
bus. This allows for developing fully automatic measurement procedures with
MATLAB “Instrument Control” toolbox for NPR02 evaluation.

(a) (b)

Fig. 4.10. (a) NPR02 micrograph. (b) NPR02 test board

The measured step response for several channels from ten tested chips is
shown in Fig. 4.11. The gains of the preamplifier, ×10, and VGA stages mea-
sured to 0.92 of the intended values. Thus, gain error of 0.913 appears at the
spike chain and gain error of 0.922 appears at the LFP chain. The variations
are much smaller then expected; standard deviation of the channel gain is 1%.
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Fig. 4.11. NPR02 frequency response: (a) spike. (b) LFP

The conclusion is that the statistical models are rather pessimistic. If the cir-
cuit is to be redesigned, we can allow much smaller degeneration and reduce
power consumption. If we repeat the calculations for preamp sizing described
in Appendix A using three times smaller r/rm, the current consumption goes
down to 40% of the present value.

A certain issue can be observed in Fig. 4.11. The splitter pole is displaced
and exhibits rather large variation among the different curves. We relate this
to a failure in a bias circuit in the splitter. The splitter uses a rather large
gate capacitor to form the pole. The capacitor bulk has to be biased properly
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to bring the MOS capacitance to its largest. This was done with a special bias
block, which has failed.

Figure 4.12 shows the input-referred noise measured with NPR02 , along
with the simulated curve. The measurements agree with expectations. Total
input referred noise (spike channel) is 3μV .
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Fig. 4.12. Input-referred noise of the spike chain (a) and the LFP chain (b) NPR02 .
Thick lines denote the simulated curves
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NPR03: Mixed-Signal Integrated Front-End
for Neuronal Recording

5.1 Overview

NPR03 [90] is a fully integrated mixed-signal twelve-channel front-end. DC
regulation is obtained with an input high-pass filter built of weak-inversion
MOS devices and integrated capacitors. The corner frequency of this filter
is digitally programmable with gate bias voltage setting by special DACs.
NPR03 has differential inputs, spike/LFP band separation and digital offset
calibration. Spike/LFP gains and output LPF cutoff frequencies are digitally
programmable for each channel.

A 10-bit analog-to-digital converter (ADC) is integrated in every channel.
A special “inverted dual-ladder” resistor DAC [91] was designed to be used in
the ADCs. The channels communicate with the central controller over an in-
ternal synchronous bus. The controller takes care of channel readout, internal
bus mastering and host communications over a five-wire bit serial synchronous
line (McBSP [92]). All the channel parameters (offsets, gains, corner frequen-
cies) and controller registers are accessible by the host through the McBSP
interface. The same interface is also used for streaming the recorded data to
the host. NPR03 can also be instructed to apply threshold detection on the
recorded channels and stream only active portions of the recorded signals
(signal clipping).

A special system incorporating an evaluation board and an embedded
computer communication board was designed to interface the NPR03 with the
host computer via Ethernet line. Host-side software with a Graphical User
Interface was developed for NPR03 control and data display.

The improvements introduced in NPR03 compared to NPR02 are summa-
rized below.

• A fully integrated preamplifier with digitally-tunable DC blocking filter
was designed for the recording channel.
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• All the parameters of the recording channels are stored in dedicated reg-
isters inside the channel. VGA gains and filter frequencies can be set for
every channel individually (in contrast with NPR02 ).

• Ten bit channel-level ADCs allow for digitization of recorded signals at
40 KSps.

• The channels are accessed through an internal synchronous bus, both for
register setting and for readout of the recorded signals.

• Chip operation is timed by an integrated controller. The controller is re-
sponsible for the internal bus management, register access, data readout,
multiplexing and host communications.

• Host communication is carried out over a five-wire, synchronous, serial bus.
• The controller is capable of “signal clipping”: it can apply threshold detec-

tion to the incoming signal and communicate a certain number of samples
from a channel after a threshold crossing event has been detected on this
channel.

Figure 5.1 shows the layout of NPR03 .

Fig. 5.1. NPR03 layout

5.2 NPR03 Architecture

The block diagram of NPR03 is shown in Fig. 5.2.
The controller has two modes of operation, programming and streaming.

In the programming mode, contents of internal registers can be stored and
fetched by the host. In the streaming mode, the controller continuously polls
the channel ADCs, checks for threshold crossing events on every channel, and
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Fig. 5.2. NPR03 block diagram

transmits the active signal segments to the host. All twelve channels or an
arbitrary subset thereof can be enabled for data streaming.

A threshold crossing event is triggered for a certain channel when the
output of this channel falls below the low threshold or rises above the high
threshold. A certain number of samples from that channel will be communi-
cated to the host following the threshold crossing event. The threshold values
and the number of samples to transmit after the threshold event are pro-
grammable. The entire data stream, without clipping, can be obtained from
the chip by setting both thresholds identical.

5.2.1 Chip Communications

The chip communicates over a McBSP bus [93]. This is a five-wire, full-duplex,
bit-serial synchronous bus; a synchronization clock signal is constantly sup-
plied by the host. Communication is carried out in frames; the host sends
24-bit frames (we refer to this direction as downwards) and the chip replies
with 16-bit frames (the upwards direction). The lengths of downward and up-
ward frames were conveniently chosen to match the lengths of a single host
instruction packet and a single reply packet respectively. NPR03 downward and
upward frame formats are described in Appendix B.

The maximal data rate that is generated by the chip can be calculated
as follows: A channel ADC sample is ten bit wide (although seven bits are
sufficient, we have implemented ten bit ADCs for verification purposes). To-
gether with a four bit channel number and a two bit control field, an ADC
sample can be communicated in a single 16-bit frame. Sampled at 40 Ksps,
a single channel would generate a 640 Kbps. Although there are only twelve
channels in the current version of the chip, the bus interface was designed to
support sixteen channels for future versions; the aggregate datarate is there-
fore 10.24 Mbps. The bus was set to operate on a slightly higher, 12.5 MHz
clock signal.
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5.2.2 Instruction Set and Register Access

The chip operation is controlled through instructions sent via the McBSP bus.
Four instructions are available:

• STORE reg val: Store value in a register.
• FETCH reg: Fetch register contents.
• RUN: Start streaming data.
• STOP: Stop streaming data.

There are two kinds of parameters that control the chip, those affect-
ing controller operation and those affecting the channels. The former include
clock divider settings, threshold values, number of samples to communicate
upon threshold detection and channel enabling bit mask; the registers for
their storage reside in the controller and are accessed directly. The latter in-
clude offset calibration data, channel gains and filter frequencies; the registers
are distributed over the channels and are accessed through the internal bus.
NPR03 registers and their functionality are described in Sect. B.2.

The internal bus has eight data lines, two control lines and a clock. A reg-
ister connected to the bus is identified by a distinct eight-bit address. Every
bus access is carried out in two steps; during the address step (ADDR is high)
the address is driven on DTA<7:0>. The register matching this address is se-
lected. During the data step (ADDR is low) the contents of the selected register
are driven on the bus by the channel (WR is low) or the register is updated
with the value on the bus (WR is high). The bus can be accessed in three possi-
ble scenarios, SELECT-READ, SELECT-WRITE and SELECT-READ-MODIFY-WRITE.
Figure 5.3 shows the bus signals during the last access scenario.

5. register updated

CLK

2. channel selected

WR

ADDR

1. host asserts ADDR
drives address on bus

3. register value
driven on bus

4. host asserts WR
drives data on bus

DTA<7:0>

Fig. 5.3. SELECT-READ-MODIFY-WRITE bus access

A ten-bit ADC sample is read with two register accesses, since the registers
are fixed eight-bit width. Another write access is needed to request the next
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conversion at the channel ADC. Reading a single ADC sample out of a channel
takes therefore five clock cycles. 16 channels sampled at 40 Ksps need bus clock
rate of at least 3.2 MHz. Since the bus clock is derived form the McBSP clock
by integer division, the most suitable division factor is 3, setting the bus clock
to about 4.16 MHz.

5.3 Host Interface

A special interface provides for communication between a personal computer
and the neuronal recording front-end. The basis of the interface is an Al-
tera Nios II development kit board incorporating an Altera Cyclone II FPGA
device, RAM and flash memory, and an integrated Ethernet physical inter-
face/MAC (Fig. 5.4).
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Fig. 5.4. NPR03 host interface board

The FPGA incorporates an Altera Nios II embedded processor core, bus
logic and custom-developed peripheral for McBSP communications with the
neuronal recording front-end. The embedded processor executes the μC/OS
real-time operating system (RTOS) and custom-developed real-time software
for handling the neuronal data stream. The software reads the serial McBSP
data, packetizes it and transmits the packets over Ethernet to a host computer
using UDP/IP protocol. It also handles the incoming instructions from the
host and communicates them to the chip.

The host side software consists of a low-level C++ module that handles the
data stream in real time, dumps it onto the disk and performs the decimation
necessary for an on-screen display. Displaying data on screen without some
sort of decimation (i.e. downsampling) would result in too high screen refresh
rates, imperceivable by the human eye. Data display and system control are
performed by the top-level Java GUI module (Fig. 5.5).
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(a) (b)

Fig. 5.5. (a) NPR03 evaluation board and host interface. (b) screenshot of the host-
side software

5.4 NPR03 Channel

The block diagram of the NPR03 recording channel is shown in Fig. 5.6. Most of
the analog circuitry was left unchanged from NPR02 . The input preamplifier,
designed anew, is an exception and is discussed below.

5.5 Analog-to-Digital Converter

A 10-bit successive approximation ADC was added at every channel. It was
intended to operate at 40 kSps sampling rate and provide input range close
to the supply rails. The ADC employs a dual resistive ladder 10-bit DAC,
comparator, digital controller and sample-and-hold.

Miller sample-and-hold was utilized (Fig. 5.7). The convenience of this
scheme is that the opamp inputs are always kept close to ground potential,
thus it does not require a rail-to-rail opamp input even when the whole circuit
does operate rail-to-rail. A simple opamp with cascoded output stage was used
in the SAH.

A rail-to-rail comparator was designed for the ADC (Fig. 5.8). Rail-to-rail
operation was achieved with two complimentary input differential pairs; the
pairs are followed by a summing stage and a latch.

A novel, dual resistive ladder DAC [91] was developed for in NPR03.1 In a
single resistive ladder DAC, the current flow is inversely proportional to the
ladder resistance, while the output impedance (and thus, the settling time) is
directly proportional to the ladder resistance. Therefore, current consumption
multiplied by the settling time is a constant. Ten-bit DAC is hard to implement
with a single ladder, due to the large number of taps to break out. Above eight

1 For such low frequencies, a capacitive DAC would probably be much more power
efficient. However, we could not have reliably designed one due to a severe bug in
the design kit concerned with capacitance extraction.
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Fig. 5.6. NPR03 recording channel

bit, two serially connected ladders are typically used. To avoid loading the first
ladder with the second ladder, the resistance of the latter is typically increased,
raising the power-delay constant. In [91] we describe a dual-resistive ladder
that provides no penalty associated with the usage of the second ladder; it
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has a power-delay constant of a single ladder. It also reduces significantly the
parasitic capacitance compared to existing dual-ladder schemes.

5.6 Integrated Preamplifier With DC Blocking

The preamplifier is shown in Fig. 5.9. A weak inversion MOS in parallel with
Cf make for a first-order high pass filter for input DC stabilization. As the
conductance provided by the feedback transistor does not belong to a set of
controlled process parameters, the cutoff frequency can not be reliably set to
a certain value by design. Hence, we have made it digitally programmable
through gate bias voltage adjustment with a 5-bit DAC. We have indeed
measured more than an order of magnitude variation in the cutoff frequency
without calibration (Fig. 5.10), but with proper DAC setting we have managed
to bring all the channels close to a target 1Hz cutoff.

5.6.1 Choosing Ci and Cf

Process documentation provided characterization of MOS transistors for cur-
rents of down to 1pA (for W/L of unity) (Fig. 5.10), corresponding to gm
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Fig. 5.9. (a) NPR03 preamplifier. (b) Preamplifier opamp

values of about 40 pΩ−1 . As we did not wish to depart significantly of the
characterized region in a first test-chip, we have chosen Cf of 1 pF. Ci defines
the input capacitance of the preamplifier together with the parasitic capaci-
tance of the bonding pads and ESD structures. When the impedance of the
recording probe is known aprori, an optimal input capacitance can de de-
termined to relax the tradeoff between noise contribution of the preamplifier
and signal deterioration by the input capacitance. When the impedance of the
electrode is not known, input capacitance of up to 10 pF is a common prac-
tice. We have chosen Ci of 5 pF, leaving up to another 5 pF for the parasitics
and ESDs. This gives a modest gain value of five at the first stage; which can
probably be increased with smaller Cf .

5.6.2 Noise Analysis

Several noise sources can be identified within the preamp circuit (Fig. 5.11):
Shot noise due to leakage currents through pad ESD protection diodes (iesd),
shot noise due to leakage currents through diffusions of the feedback MOS
(id), thermal noise of the feedback MOS (ir) and the noise of the ampli-
fier (ia), represented by an equivalent current noise source at the output. To
make further analysis easier we shall make several neglections and simplifying
transformations on the circuit, bringing it to the form shown in Fig. 5.12:

• The circuit has an input current noise due to the ESD structures, thus its
noise performance depends on the input impedance. The size of the ESD
structures used is about 3500 μm2 and the typical value of diode leak-
age current density is 0.1 fA/μm2 , giving ESD leakage of 350 fA. Let us
assume that the circuit is connected to a recording probe with character-
istic impedance of Z0 at 1 kHz. RMS noise voltage at the input in 10 kHz
band is:
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different dies. (b) Sub-threshold PMOS characterization curves

vn,esd =
√

2qIesd · Z2
0 · 104 = 3 · 10−14 · Z0

For Z0 of 10 MΩ (which is very large), vn,esd is 300 nV, which is negligible
compared to contributions of other noise sources. The actual noise volt-
age due to ESD currents in the neuronal spike band (0.2–10 kHz) is even
smaller, if we take into account that electrode impedance usually exhibits
Warburg characteristics [17], i.e. decreases as 1/

√
f .

• Since the electrode capacitance is typically much larger than Ci, we shall
assume that the input is grounded.
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• The feedback transistors have diffusions of about 7μm2 , placing the
leakage currents at about 0.7 fA. The associated shot noise density is
about 2 · 10−34 A2/Hz. Assuming the cutoff frequency of 1 Hz, Rf is
(2πCf )−1 = 160 GΩ , with the current noise density of 10−31 A2/Hz.
Therefore, we can neglect the diffusion leakage noise sources, id,1−4.

• At last, we transform the circuit to a single-ended form, replacing the
noise sources ir,1 and ir,2 with the equivalent ir of twice the power spectral
density.

Ir

Cf

Ci
Rf

Ia

out

Fig. 5.12. Preamp noise sources, simplified

The transfer function of the current ir is:

vo

ir
= G∗

f

gm − sC∗
i

gm − G∗
f
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where C∗
i is Ci in parallel with the amplifier input capacitance, and G∗

f is
Gf in parallel with Cf . If we bias the amplifier in the μA range, then gm is
hundreds of μΩ−1 , much larger than sC∗

i and G∗
f at frequencies of interest.

Thus,
vo

ir
∼= G∗

f

We calculate the output voltage noise in the spike band due to ir, assuming
that a first-order high-pass filter (i.e. frequency splitter) limits the band below
some f1 and a low-pass filter with steep rolloff (output LPF in spike channel)
limits the band above f2.

vn,r
2 =

∫ f2

0

4kT2Gf

ω2C2
f + G2

f

· ω2

ω2 + ω2
1

df

=
2kTGf

π2C2
f

1
f2
0 − f2

1

∫ f2

0

f2
0

f2 + f2
0

− f2
1

f2 + f2
1

df

=
2kTGf

π2C2
f

1
f2
0 − f2

1

[
f0 arctan

f

f0
− f1 arctan

f

f1

]f2

0

=
2kTGf

π2C2
f

1
f2
0 − f2

1

[
f0 arctan

f2

f0
− f1 arctan

f2

f1

]

f0 is the cutoff frequency of the DC-blocking HPF, and is about 1 Hz. f1 is
the splitter pole location, and is about 200 Hz. f2 is the spike band limit and
is about 10 kHz. Thus we can approximate with f0 � f1 � f2:

vn,r
2 ∼= 2kTGf

π2C2
f

1
f2
1

(π

2
f1 −

π

2
f0

)
∼= 2kTGf

2πC2
f

1
f1

=
2kT

2πCf
· ω0 ·

1
f1

=
2kT

Cf
· f0

f1

Reflecting vn,r to the input gives:

vn,r,in
2 =

2kT

Ci
· Cf

Ci
· f0

f1
=

2kT

Ci
· 1
A

· f0

f1

For the values chosen, vn,r,in is 1.3 μV . It can be further decreased by choosing
a smaller Cf . With adjustable cutoff frequency f0, one gains control over the
tradeoff between the amount of noise injected by Rf and low frequency input
suppression.

There exists another interesting aspect of Rf implementation. In our de-
sign, the gate length of the feedback MOS is 40μm , not so convenient to
layout as a single gate. Thus we break the transistor into four serial gates of
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Fig. 5.13. Breaking feedback transistor into four gates: (a) equivalent circuit. (b)
Increased Rf noise PSD at the output

10 μm width (Fig. 5.13). By doing so, we insert parasitic diffusion capacitors
into the feedback network. These capacitors shunt a part of the feedback cur-
rent to ground and increase the contribution of Rf noise. The actual spike
band noise due to feedback resistors is increased from 1.3 μV to 1.6 μV .

Targeting the total preamplifier spike band noise at 2μV limits the contri-
bution of ia to 1.2 μV . The amplifier should be sized and biased accordingly.
The sizing procedure is described in Sec. B.3.

5.6.3 Discussion

The expression for the input-reflected noise PSD of the integrated preamplifier
used in NPR03 is brought in Sec. B.3. It can be written in the form of

(
C∗

i

Ci

)2

·
(

1
gm

)2

·

⎡
⎣16kT

3
+

1
gm

∑
j

in,j

⎤
⎦

where gm is the transconductance of the input differential pair, C∗
i is the to-

tal capacitance on the input node and in,j are noise current power spectra of
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other transistors in the signal path. It clearly shows that by making the ra-
tios in,j/gm small enough, noise contributions of all but the input transistors
can be suppressed. This requires bringing the transconductance of the bottom
NMOS current sources below gm, not easily done, remembering that NMOS
sources and input differential pair exhibit the same current flow. NMOS tran-
sistors must have small W/L, typically resulting in extremely large lengths
and large gate-source voltages. This was clearly demonstrated in [63] (albeit
with a somewhat different circuit topology), where NMOS sources were made
with L of 40 μm . The total area of the preamplifier was 0.16 mm2 . Such area
requirements were considered unacceptable during NPR03 design. We have
used shorter NMOS transistors resulting in a worse power-noise tradeoff and
much smaller area, 0.075 mm2 . This noise-power-area tradeoff can be relaxed
by a novel preamp circuit we describe in Sect. 5.9.

5.7 NPR03 Measurements

The measurements were carried out on the NPR03 chip automatically, using
the evaluation kit (Fig. 5.5).

Figure 5.14 shows cumulative plots of the frequency response of spike and
LFP channels from several dies. We have used the circuits from NPR02 , with
an exception of re-designed preamplifier. Thus, splitter pole location deviation
and gain errors that we have experienced with NPR02 are present. The gain is
3.8 K for spike and 430 for LFP channels (the new preamplifier has ×50 gain,
thus the target gains are two times smaller compared to NPR02 ).

Figure 5.15 shows the behavior of the input HPF for several DAC settings,
as measured on the LFP channel.

Spike and LFP channel noise PSD is shown in Fig. 5.16. Noise PSD was
measured at the output and divided by the channel gain. Black solid lines
represent the simulated curves. The noise measured is indeed close to the ex-
pectations with an exception for the displaced splitter frequency. RMS values
are 2.9 μV for spike and 14μV for LFP. On the LFP channel the 1/f2 curve
of the feedback resistor is clearly visible. The LFP noise measurement is lim-
ited by the quantization noise of the sample-and-hold, not seen on the spike
channel, as the LFP gain is almost ten times lower.

Another noise measurement was made in parallel on the integrated channel
and a channel with external capacitors, such as were used in NPR02 (several
such channels were included in NPR03 for testing) (Fig. 5.17). Both channels
were measured with grounded input, in parallel. Heavy external interference
is seen on the channel with extrnal cap, that is not present on the integrated
channel. The interference is picked up on the external capacitors and PCB
tracks between the capacitors and the chip inputs, that are not present with
integrated channels. With some optimism about the improved external noise
immunity of the integrated channels, it will not necessarily improve recording
quality, as we expect most interference to be picked up on the electrodes.
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Fig. 5.14. Frequency response cumulative plots: (a) Spike. (b) LFP

Measurements of DAC, ADC and SAH circuits are brought in Sect. B.4
and in [91].

5.8 An NPR03 -Based Miniature Headstage

A miniature headstage (Fig. 5.18) was designed using NPR03 . It was success-
fully tested in-vivo with Michigan probes implanted in rat cortex. Samples of
recorded signals are shown in Fig. 5.19.
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Fig. 5.15. Input HPF response for several DAC settings: (a) Time axis. (b) Fre-
quency axis
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(a)

(b)

Fig. 5.18. (a) NPR03 headstage. (b) Encapsulated embedded interface board
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Fig. 5.19. (a) Recorded signal with NPR03 headstage from rat cortex. (b) Closeup

The headstage interfaces a PC host via the same FPGA board used for
NPR03 measurements. Headstage supply planning was done with special care,
to avoid digital supply interference and ground loops. The headstage power
supply system is shown in Fig. 5.20. Passing McBSP signals through magne-
tocouplers [94] allows for complete separation between digital (FPGA board)
and analog (FPGA board daughter card) supplies. The headstage receives pre-
regulated 5 V supply from the daughter card and regulates it down to 3.3 V
and 1.65 V, for NPR03 power. To avoid passing the power lines through the flex-
ible cable (potentially degrading the supply, introducing noise) the daughter
card replicates the headstage regulator to power the magnetocouplers. Note
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that NPR03 analog ground, which should be the ground of the subject, is at
1.65 V potential with respect to the low point of the daughter card supply. For
this reason, an isolated power supply (i.e. with transformer) must be used for
powering the headstage, since it has no direct connection with wall ground.
Otherwise, the headstage regulator can get shortened if the subject touches
the wall ground (i.e. water pipes) or if one wishes to measure signals on the
headstage and connects a scope to the headstage ground (scope ground is
usually tied to wall ground).

The headstage was also tested with a glass multielectrode array (MEA).
The setup is shown in Fig. 5.21.

Sample signals captured from MEA are shown in Fig. 5.22. The perfor-
mance of NPR03 was also verified against a commercial sysem for MEA record-
ing. Figure 5.23 shows segments of signals recorded by NPR03 (blue) and by
the commercial system (red). The two signals recorded from the same MEA
(but not simultaneously). Although the commercial system states somewhat
larger noise level than NPR03 , the plot shows identical noise levels, because the
limiting noise factor is the electrode, which is identical in both cases. Spike
waveforms differ, due to different filter configurations implemented in both
systems.

5.9 A Novel Opamp for The Front-End Preamplifier

A key issue with design of a front-end amplifier, such as the one in Fig. 5.9, or
as the one brought in [63], is to bring down the transconductance of NMOS
sources far below that of the input differential pair. Together with L−2 1/f
noise dependence, this results in very large NMOS channel lengths and over-
drive voltages.

We suggest to improve this situation by replacing the bottom sources with
resistors (Fig. 5.24). The immediate advantage is the lack of 1/f noise. The
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Fig. 5.21. Testing NPR03 with MEA

thermal noise of a saturated MOS transistor with overdrive voltage Vov and
channel current I can be written as:

Si,MOS =
8
3
kT

(
2I

Vov
+ gm,bs

)

Following the notation of Sect. B.3, we replace gm,bs by ξgm, and rewrite the
above as:

Si,MOS =
8
3
kT (1 + ξ)

2I

Vov
=

16
3

kT (1 + ξ)
I

Vgs − VT

If we replace the transistor by a resistor, so that the operating point is un-
changed, we must use R = Vds/I. The noise generated by R is
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Fig. 5.22. Signals recorded from MEA with NPR03 (a). A closeup on a single
spike (b)

Si,R =
4kT

R
= 4kT

I

Vds

One is not likely to place Vds below Vgs, to maintain enough signal headroom.
In [63], NMOS sources operate with Vds = Vgs; in NPR03 preamp circuit,
Vds much higher than Vgs was used. Even when operating with Vds = Vgs,
the resistor is clearly generating less noise than MOS at the same operating
point.

Replacing transistors with resistors deteriorates, however, the circuit gain.
The maximal possible gain, assuming the input transistors are large enough
to operate at a very weak inversion, is:

gmR =
I

κVth
· VR

I
=

VR

κVth

The gain is not likely to be above several tens; for feedback operation a larger
value is desirable.
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Fig. 5.23. Signal recorded by NPR03 (left) and a commercial system (right)
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Fig. 5.24. Replacing NMOS current sources with resistors

The gain can be increased by introducing another stage; stability issues
have to be addressed. In a typical two-stage amplifier the dominant pole is
placed at the output of the first stage, taking advantage of its high output
resistance. The second stage also typically carries a large current, so that the
second pole (at amplifier output) is placed far above the dominant pole. In
our case, neither of the above points holds: The first stage has a low output
resistance of R. The second stage current must be significantly lower than
that of the first stage, not to increase the current consumption. Hence, we
place the dominant pole at the amplifier output and the second pole at the
output of the first stage. The complete circuit is shown in Fig. 5.25.

5.9.1 Noise Analysis

By the following analysis we shall derive a ratio I1/I2 that yields the minimal
noise under a given current consumption. For this approximate analysis we
shall neglect the 1/f noise contribution. We expect it to be minor, as the
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input PMOS devices have large gate areas and operate in subthreshold. The
insignificant contribution of 1/f noise was also noted in [63].

The output thermal noise current PSD of the circuit (open loop) can be
written as

Sio,n
= 2 · 8

3
kT

[
(1 + ξ)gm1R

2g2
m2 +

3
2
Rg2

m2 + (1 + ξ) (gm2 + gm3 + gm4)
]

The output voltage noise of the closed loop circuit is:

vo,n =
C∗

i

Cf
· 1
sC∗

i + Gm
io,n

where C∗
i is the total capacitance at the input node, and Gm is the total

transconductance of the opamp, Gm = gm1Rgm2. We assume that for the
frequencies of interest Gm � sC∗

i and reflect vo,n to the input by circuit gain:

vi,n =
C∗

i

Ci
· 1
Gm

io,n

Substituting Sio,n, the input noise PSD can be written as:

Svi,n
=

(
C∗

i

Ci

)2 16
3

kT
1 + ξ

gm1

[
1 +

3
2(1 + ξ)

1
gm1R

+
1

gm1
· gm2 + gm3 + gm4

g2
m2R

2

]

It is clear that the noise decreases with gm2 and increases with gm4, thus we
shall size M2 large, and M4 small. We write the transconductance of a MOS
transistor in subthreshold (accoridng to [95]) as
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gm,j =
κIj

Vth
· Gj

where G(I) is a function of the saturation current IS :

G(I) =
2

1 +
√

1 + 4I/IS

G(I) is a slowly changing function, ranging from 0.9 for very weak inversion
(I = 0.1IS) to 0.3 at the border of subthreshold region (I = 10IS). For ap-
proximate calculations we shall assume G4 of 0.3 and G2 of 0.9. We substitute

gm1 =
κI1

Vth
G1 gm2 =

κI2

Vth
G2

gm3 =
2 · 2I2

Vov,3
gm4 =

κI2

Vth
G4

R = VR/I1

and rewrite Svi,n
as:

Svi,n
=

(
C∗

i

Ci

)2 16
3

kT (1 + ξ)
Vth

κI1G1

[
1 +

3
2(1 + ξ)

Vth

κG1VR
+

+
(

Vth

κVR

)2

· I1

I2
· 1
G1G2

·
(

1 +
4Vth

κVov,3G2
+

G4

G2

)]

For any given I1 and I2, this equation yields an optimal width W for the
input differential pair (the one that minimizes Svi,n

). If we constrain the total
current dissipation, I = I1 + 2I2, and rewrite the equation once again,

Svi,n
=

(
C∗

i

Ci

)2 16
3

kT (1 + ξ)
Vth

κG1

[
1
I1

(
1 +

3
2(1 + ξ)

Vth

κG1VR

)

+
2

I − I1

(
Vth

κVR

)2 (
1

G1G2

) (
1 +

4Vth

κVov,3G2
+

G4

G2

)]

we can also find optimal ratio I1/I. If we recall that G(I) is a slowly changing
function of I, this task reduces to minimizing f(I1),

f(I1) =
1
I1

(
1 +

3
2(1 + ξ)

Vth

κG1VR

)

+
2

I − I1

(
Vth

κVR

)2 (
1

G1G2

)(
1 +

4Vth

κVov,3G2
+

G4

G2

)

=
A

I1
+

2B

I − I1

which is easily found as
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I1
I

=
1

1 +
√

2B/A

This can be calculated to I1/I = 0.87, using 0.5 as an estimate of G1. Thus
we conclude that adding a second amplifier stage for a better gain incurs only
a modest penalty in current consumption (13% of the total current).

Simple numerical model optimization (using MATLAB) for I1, I2 and W1

(with L1 of 1μm ) is shown in Fig. 5.26. The noise is calculated over 200 Hz-
10 kHz bandwidth, corresponding to the bandwidth of neuronal spike signals;
1/f noise is included in the model. The ratio I1/I is indeed very close to our
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Fig. 5.26. Numerical model optimization: (a) Contour plots of input RMS noise
vs. bias current and Wp. (b) Optimal ratio I1/I vs. bias current (I)

prediction and exhibits only minor changes with I.
Figure 5.27 shows the input-referred RMS noise at optimal points as a

function of I, obtained with MATLAB model and SPECTRE simulations.
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Fig. 5.27. RMS input noise voltage vs. bias current. MATLAB model and SPEC-
TRE simulations

5.9.2 Stability

The loop transfer function of the circuit can be written as:

LT (s) =
Cf

C∗
i

× sCf − Gm(s)
sC∗

o

C∗
i and C∗

o are the total capacitances connected to the input and the output
nodes of the amplifier. We have disregarded the effects of Rf , that donates
a pole and a zero in very low frequencies (about 1 Hz) and does not affect
stability. We have also assumed that the dominant pole is placed at the origin.
In other words, the output impedance of the transconductor is very high.
Gm(s) has two poles: one is formed between R and the capacitance at the
output of the first stage, the other is formed at the source of the output
cascode transistor M5.

Gm(s) =
Gm0p1p2

(s + p1)(s + p2)

Substituting this into LT yields:

LT (s) =
C2

f

C∗
i C∗

o

× s(s + p1)(s + p2) − Gm0p1p2/Cf

s(s + p1)(s + p2)

Our goal is to provide a 60◦ phase margin. We shall first find the unity gain
frequency ω0:

1 = |LT (jω0)| =
C2

f

C∗
i C∗

o

∣∣∣∣jω0(jω0 + p1)(jω0 + p2) − Gm0p1p2/Cf

jω0(jω0 + p1)(jω0 + p2)

∣∣∣∣
Let’s assume that the parasitic poles p1,2 are well above this frequency:
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1 = |LT (jω0)|

∼=
C2

f

C∗
i C∗

o

∣∣∣∣jω0(p1)(p2) − Gm0p1p2/Cf

jω0(p1)(p2)

∣∣∣∣
=

C2
f

C∗
i C∗

o

√
ω2

0 + G2
m0/C2

f

ω0

Solving for ω0:

ω0 =
Cf

C∗
i C∗

o

Gm0

given that C∗
i C∗

o/C2
f � 1. Now we can check the phase at ω0. Again, we

assume that ω0 � p1, p2:

� LT (jω0) = � jω0(jω0 + p1)(jω0 + p2) − Gm0p1p2/Cf

jω0(jω0 + p1)(jω0 + p2)

∼= �
j − C∗

i C∗
o/C2

f

j(1 + jω0/p1)(1 + jω0/p2)

∼= −π

2
−

C2
f

C∗
i C∗

o

− ω0

(
1
p1

+
1
p2

)

For phase margin of 60◦, the following must be satisfied:

π

6
>

C2
f

C∗
i C∗

o

+ ω0

(
1
p1

+
1
p2

)

=
Cf

C∗
i C∗

o

(
Cf + Gm0

p1 + p2

p1p2

)

By substituting:

p1 = (RCp1)
−1

p2 = (gm5Cp2)
−1

where Cp1 and Cp2 are the capacitances at the output of the first stage and
at the source of M5, we obtain:

π

6
>

Cf

C∗
i C∗

o

[
Cf +

κVR

Vth

G1G2

G5

(
Cx2 +

κVRG5

Vth

I2

I1
Cp1

)]

Using the ratio of I2/I1 for optimal noise performance, and substituting G1, G2

and G5 of 0.5, 0.9 and 0.9, we have:

π

6
>

Cf

C∗
i C∗

o

[Cf + 8.5 · (Cp2 + 1.4 · Cp1)]

To satisfy the condition, we place a compensating load capacitor, CL. C∗
o

becomes Cf + CL, and the condition can be satisfied by:
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CL >
6
π
· Cf

C∗
i

[Cf + 8.5 · (Cp2 + 1.4 · Cp1)] − Cf

For Cf of 1pF, Ci of 5pF the condition is not difficult to hold: if we estimate
Cp2 as 100fF, and Cp1 as 250fF (as it is loaded by diffusions of input transis-
tors), CL needs only be 400fF, which can be provided by a 200fF differential
load.

5.9.3 Conclusions

Section 5.9 present the design of a power-optimized input preamplifier, achiev-
ing the optimum design point in power-noise tradeoff (Fig. 5.27). It features
fully differential architecture, potentially allowing for high PSRR and CMRR.
The usual NMOS active loads at the first stage were replaced by resistors, pro-
viding a better power-noise tradeoff. In particular, they significantly lower 1/f
noise contribution. A second stage was added to provide high gain, that was
deteriorated by active load replacement. It is shown that the second stage
does not contribute significantly to power consumption (consumes 15% of the
total current).

5.10 Conclusions

This concludes our discussion of the integrated front-end circuits for neural
sensing. Three generations of such circuits were developed, with the latter be-
ing a system-on-a-chip, with twelve differential sensing channels with numer-
ous programmable features and integrated, per-channel ADC. The channels
accessed over an internal parallel bus by an integrated controller, capable of
sampling all the channels and streaming the data over a digital serial com-
munication channel. The front-end circuit was tested with both in-vivo and
in-vitro recording and proved operational. Finally, we presented a novel design
for the input stage to be included in future versions of the front-end.
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Algorithms for Neuroprocessor Spike Sorting

6.1 Introduction

The first stage of processing the neural signals coming from a recording front-
end may be the detection of time points of firing events. This task is typically
referred to as spike-detection. Since an electrode might sense activity of sev-
eral adjacent neurons, one may try to classify detected firing events to their
originating neurons. This process is called spike-sorting . What makes spike-
sorting possible is that action potentials generated by different neurons will
have fairly different characteristic shapes. Sorting algorithms try to classify
incoming spikes into shape-groups and treat every group as if originated by
the same neuron.

Spike detection and sorting algorithms have been the subject of extensive
work over many years [96]. Many different methods were proposed, including
various clustering methods such as feature analysis [96] or PCA [97], template
matching [98], wavelet-transform based methods [99, 100, 101] and artificial
neural networks [102].

The purpose of the work presented in this chapter was to develop algo-
rithms for integrated spike detection and sorting. The feasibility of on-chip
sorting was shown in [78], which examined the power requirements of hard-
ware implementation of some common sorting algorithms. We show below
that spike-sorting power consumption can be reduced significantly by trading
some classification accuracy in state-of-the-art clustering algorithms in return
for considerable savings in power. Detailed description of the study, including
algorithm validation, can be found in [103, 104] and in [105].

6.1.1 Clustering Methods

Clustering methods apply transformations on spike signals mapping them
onto a shape-space to form scatter-plots. Under a successful mapping spikes
of similar shapes fall close to each other, while spikes of different shapes lie



70 6 Algorithms for Neuroprocessor Spike Sorting

apart. The resulting scatter plot has a set of clusters, areas with high density
of mapped spikes, each representing spikes of a different characteristic shape.
Sorting is performed by assigning spikes to clusters, for example, by choosing
the closest cluster. Figure 6.1 shows an example of a two-dimensional scatter-
plot obtained by measuring two features of spikes. The process is successful if

fe
at

ur
e 

2

feature 1

Well Isolated cluster

Poorly isolated clusters

Decision boundaries

Classified data

Disregarded data

Fig. 6.1. Example scatter plot of two measured features

the clusters in the shape-space can be distinguished, and the distances between
cluster centers (typical shapes) are larger than cluster spread (background
noise influence).

Shape-space can be defined by selecting a set of spike shape features,
such as the height of the first peak, the height of the second peak or spike
“width”, i.e. time interval between points at 50% maximal height. Measured
features define the axes of this space. This is the method of feature analysis. To
make it work reliably, one must select the most discriminative set of features.
This technique was common in the past [96], mostly due to the very modest
computation requirements: typically the selected features are measured on the
signal and require none or very little computation. Today feature analysis is
replaced by a more precise and significantly more computationally complex
Principal Component Analysis [97].

Cluster boundaries can be defined on the scatter plot once it has been
generated. Spikes that fall inside the boundaries of a particular cluster are
assigned to that cluster. Those that fall outside of any cluster boundaries
are disregarded. Often, decision boundaries are defined by manually drawing
polygons on the shape-space [106]. Automatic approaches exist as well, such
as K-means or Bayesian clustering [107, 108].
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6.1.2 Spike Detection and Alignment

Both feature analysis and PCA do not operate on the continuous recorded sig-
nal. Instead, they process signal frames that contain suspected spikes, imply-
ing that initial detection must be performed prior to the spikes being sorted.
This is typically done by monitoring threshold-crossing events of the input
signal. The threshold is positioned somewhere between the background noise
level and the level of spike peaks. Threshold placement trades off the amount
of false-triggered spikes versus the amount of missed true-spikes. A circuit for
automatic noise level estimation and subsequent threshold adjustment was
proposed in [74].

Once the threshold crossing is detected, there still exists a question of
frame alignment with respect to threshold crossing. For example, one might
start the frame at the threshold crossing instant. However, since the threshold
is placed high above the background noise level, a significant portion of spike
(prior to the threshold crossing) is lost. Another possibility is to align the
frames with respect to spike peaks (i.e. to position spike peaks at a certain
offset from frame start). But the peak point can be affected by noise, since the
signal has a zero derivative near the peak. Yet another approach was taken by
the commercial software [29] (described in [109]): the frame is aligned to the
point of minimal error between the spike and its representation by the princi-
pal components used for sorting. The rationale is clear, remembering that the
whole purpose of the alignment is to assist sorting. The computational burden
is immense: full principle component representation has to be calculated and
subtracted from the signal for every possible frame offset.

6.1.3 Issues in Spike Sorting

Several factors make sorting spikes difficult. Simultaneous firing of two units
(overlapping spikes) sensed by the same electrode may result in spike shape
that is not similar to either of the units involved. Moreover, such firing does not
have a characteristic shape, as its waveform depends on the relative position
of firing events on the time axis. On the occasion of units firing in opposite
directions, the spikes may cancel one another.

Action potential shapes tend to change when a “pulse train” is fired (se-
quence of pulses with a very short inter-spike interval). Towards the end of
the train amplitudes are diminished and widths are increased. Instability in
recording conditions, such as subject movement or electrode movement within
the tissue can also influence the shapes of recorded spikes. Bayesian clas-
sification may perform better under non-stationary recording conditions as
was shown in [107]. Moreover, thanks to classification certainty prediction of
Bayesian method, it is possible to track recording problems based on drops in
classification certainty.
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6.2 Spike Sorting in a Neuroprocessor

Spike detection and sorting reduces the recorded data from raw analog wave-
forms to mere identifications of spike occurrences and origins. As discussed
in Chap. 3, the Neuroprocessor must employ spike sorting following the record-
ing front-end to allow low-power operation; otherwise it will spend too much
power on communicating the unnecessary data.

Regardless of the underlying algorithms, spike sorting by clustering con-
sists of two distinct tasks: mapping spikes onto a shape-space (scatter plot
generation) and relating the points on the shape-space to clusters (definition
of decision boundaries on the scatter plot). Both need certain computation
parameters to be known before spikes can be actually sorted: for scatter plot
generation, one has to set the mapping, i.e. determine the discriminative fea-
tures or principal components; decision boundaries are required for clustering.
With off-line experiments, where raw signals are recorded for a period of time
for later processing, the sorting is performed on the entire set of recorded
data. This is not possible with Neuroprocessors: real-time operation requires
processing the spikes “on the fly”. Neuroprocessor sorting algorithms must
therefore operate in two phases: learning and production. During learning,
production phase parameters are calculated. Ideally, learning is done once,
during the initialization of the Neuroprocessor. In practice, however, the al-
gorithms are to be retrained once in a while due to the instability of recorded
signal shapes. Neuroprocessor must track the sorting process, and re-train it-
self when needed. With Bayesian sorting, for example, it is possible to track
the classification certainty and re-train when a drop is detected.

Learning is based on knowledge gained from a cumulative picture of many
recorded spikes, while production is performed on every spike separately. Con-
sequently, one must strive to reduce the production phase computations to a
minimum, while the learning can be very complex. Luckily, clustering algo-
rithms follow this paradigm. For example, principal components are calculated
as eigenvectors of the covariance matrix of the recorded spikes. Calculation of
a covariance matrix requires a large number of spikes and finding eigenvectors
of a large matrix is far from trivial. On the other hand, once we have cal-
culated the principal components, signal mapping involves only computation
of several dot-products. A similar approach is applied to clustering: deter-
mination of decision boundaries involves complex clustering algorithms; once
the boundaries are defined, checking whether a given point lies inside a given
polygon is trivial.

Figure 6.2 illustrates spike sorting in a Neuroprocessor. Production map-
ping is placed inside the channel, to avoid communicating the raw data even
on the internal bus. The mapping stage also includes detection and alignment
of the signal. Decision regarding the point assignment on the shape-space can
be relayed to a global chip processor, as the amounts of data to be communi-
cated are modest (point coordinates). The learning can be performed at any
place in the path, including learning on the external host. If the mapping
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Fig. 6.2. Neuroprocessor spike sorting

training is to be done on a host, raw-signal communication is required. In
that case, part of the chip bandwidth is allocated for raw-signal communi-
cation from the trained channel. Of course, only one or a small number of
channels can be trained at a time, due to the limited bandwidth. With a large
number of channels it also poses a constraint on how often a single channel
can be retrained.

6.3 Spike Sorting Algorithms

This section presents several algorithms for spike sorting [103]. We start from
a full-fledged Principal Component Analysis and gradually introduce changes
to reduce its computation complexity (while also decreasing classification ac-
curacy). Before that, we address the evaluation of these algorithms. An al-
gorithm is characterized by two qualities: power consumption for involved
computation and classification accuracy. Since there is no reliable way to de-
termine power consumption prior to actual circuit design, we use computation
complexity as an estimate for power consumption. This can be expressed as
the total number of additions and multiplications required in a given algo-
rithm. Multiplication is roughly counted as ten additions to generate a single
algorithm “complexity index”.

The accuracy of the algorithms was validated against commercial PCA-
based spike-sorting reference software [29]. Spike data was taken from elec-
trophysiological recordings, obtained from microelectrodes in various cortical
regions. Spikes were detected and aligned off-line, by the reference software.
The output of detection and alignment were passed to the reference spike-
sorter and to the validated algorithm and the results were compared. Two
types of errors emerge when a proposed algorithm is compared with the ref-
erence: A spike can be unclassified, i.e. it is not assigned to any cluster by
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the algorithm, while it has been assigned to some cluster by the reference al-
gorithm. A spike can also be mis-classified, i.e. assigned to a different cluster
than expected. Both error types are combined into a cumulative error rate
which is used as an accuracy measure. The algorithm validation scheme is
shown in Fig. 6.3.

Evaluated Algorithm

Reference Software

signal Detection Alignmnet

rate

Sorter

SorterTraining

Compare

Recorded

Error

Fig. 6.3. Sorting algorithm accuracy validation

6.3.1 PCA Approximations

The reference sorting algorithm is based on PCA with two principal compo-
nents. It operates on signal windows of N points. The transformation within
the reference algorithm requires computing of two dot-products of N -point
vectors, each requiring N multiplications and N additions. Hence, the overall
computation burden is 2N multiplications and 2N additions, corresponding
to a complexity index of 22N .

The first approximation of the above algorithm, Segmented PCA, performs
similar calculation with downsampled versions of the principle component
vectors (Fig. 6.4). The signal is averaged over S time intervals Ti. The value
of every integral is multiplied by the average of the principal component vector
over interval Ti. A single multiplication is required for each segment, reducing
the total number of multiplications for every vector downto S. The number
of additions required for signal downsampling is N , and another S additions
are needed for the dot-product of the downsampled signal. The total of 2S
multiplications and N + 2S additions make for complexity index of 22S + N .

Another level of savings can be obtained by rounding the principal com-
ponent values to the closest powers of 2. In such case multiplications can be
replaced by bit shifting, which is counted as an addition. N + 4S additions
and zero multiplications yield a complexity index of N + 4S.
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6.3.2 Time Domain Classification

The Hard Decision, HD approach involved comparing the recorded signal
with a certain set of points, or a “separation line” (Fig. 6.5)(a). Data points
of spike of cluster A are likely to be above the separation line during interval
#1 and below it during interval #2. Thus the comparisons would generate a
high number of ones for interval #1 and a high number of zeroes for interval
#2. Exactly the opposite holds for spikes of cluster B. The numbers of ones
a signal generates over intervals #1 and #2 are summed into T1 and T2,
respectively. These are compared against cluster threshold values Th1 and
Th2. If T1 > Th1 and T2 < Th2 then the signal is assigned to cluster A. The
procedure is described for two clusters, but can be extended to more clusters
by adding more separation lines. The separation line can be obtained as an
inverse-projection of a center-point between two clusters on the shape-space.
Fig. 6.5(b) shows how the center point is placed between cluster boundaries
on the line connecting the clusters’ centers-of-mass. HD computation involves
N comparisons of the signal window with the separation line, counted as N
additions. Hence, the complexity index is N .

The Soft-Decision (SD) algorithm is similar to HD, except that the latter
first compares the signal with the separation line and then sums up the results,
while SD integrates the signal over intervals #1 and #2, directly obtaining T1

and T2, and then compares them against sorting thresholds. The number of
sums to perform during integration depends on the length of time intervals #1
and #2. For our verification, we have chosen the total length of the intervals
as 100 points, giving a complexity index of 100. Typically, S < 100 < N .

Looking at HD and SD sorting procedure on the shape-plane spanned
by T1 and T2, we see that it divides the plane into four quadrants by two
lines intersecting at the separation point (Th1, Th2) (Fig. 6.6). Two of the
quadrants are not classified to either of the clusters. In case of closely-spaced
clusters, this leads to a large number of unclassified spikes, as confirmed by
verification.
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6.3.3 Integral Transform

Time domain classification procedures described above are attractive due to
their simplicity. Unfortunately, due to the presence of two unclassified quad-
rants in the shape space, the accuracy of the results is poor. The results can
be improved even with the same shape-space mapping, by employing a better
decision scheme. For example, in Fig. 6.6 the lines x = Th1 and y = Th2 can
be rotated about (Th1, Th2) (Fig. 6.7). Half-plane left of L1 is assigned to B,
and half-plane to the right of L1 to A. L2 in this case is not used.

We denote the above method of shape-space mapping as Integral Trans-
form (IT); namely integrating the spikes over the two significant phases (i.e.
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periods when it reaches the peak amplitude). IT can be viewed as “PCA with
degenerated PCs”: the two vectors used for IT shape-space generation are
rectangular windows over intervals #1 and #2. Our trials show that IT can
provide accurate results when used with properly defined decision boundaries.

6.3.4 Decision Boundaries

So far, we have looked upon the creation of cluster-plots on the shape-space
by various transformations of the signals. A separate problem is to define
decision boundaries of the clusters after the plot has been created.

Linear classification has been selected to minimize the cost of hardware
implementation. A single line divides the shape-space into two half-planes,
which can be sufficient in simple cases for separation of two clusters (Fig. 6.7).
In case of a larger number of clusters, or when “outliers” need be ruled out,
more lines can be used. The decision regarding a position of a point with
respect to every line requires a single multiplication and a single addition.
Thus adding a decision line to the shape-space is relatively easy.

6.3.5 Validation

The algorithms were checked with N of 200, as dictated by the reference algo-
rithm. Downsampled PCA versions were verified for seven and fifteen segments
(PC7, PC15). Another complexity reduction (PC7R, PC15R) was attempted
on downsampled PCA, as the principle component factors (downsampled)
were approximated by the closest powers of 2, reducing the multiplication
complexity to that of an arithmetic shift (counted as an addition). Valida-
tion results [105] are presented in Fig. 6.8 and in Table 6.1. The complexities
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shown include the shape-space transformation and classification with a sin-
gle straight line (which is the cause of a single multiplication in IT, PC7R
and PC15R). Time domain algorithms yield high error rates due to large

Table 6.1. Summary of validation results

Alg. Adds. Muls. Compl. Idx. Uncl. (%) Miscl. (%) Err. rate (%)

HD 200 0 200 20 2.7 23

SD 100 0 100 19 2.2 21

IT 100 1 110 0.8 1.4 2.2

PC7R 230 1 240 0.5 1.2 1.7

PC15R 260 1 270 0.5 1.1 1.6

PC7 215 15 365 0.4 1.0 1.4

PC15 230 30 530 0.4 0.9 1.3

PCA 400 400 4,400 0.0 0.0 0.0
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numbers of unclassified spikes. All versions of the segmented PCA are much
more complex than IT yielding only marginal accuracy improvements. The
IT algorithm clearly constitutes the knee point of the graph.
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6.4 Detection and Alignment Algorithms

Spike detection and alignment (D&A) clips the signal around a suspected spike
before it is sorted. Accurate D&A is essential for successful spike sorting, as
sorting is sensitive to spike position in the frame (as are all the algorithms
described above).

We verify several D&A algorithms [104, 110] with respect to their impact
on sorting: a good algorithm aligns spikes so that only a small number of clas-
sification errors are caused at the subsequent sorter. Again, we compare our
algorithms to the state-of-the-art commercial algorithm described in [109].
Figure 6.9 describes the validation scheme. All algorithms detect spikes by

Evaluated Algorithm
rate

Reference

Compare

Sorter
Reference

D&ATraining

Reference
D&A

signal
Recorded

Error

Sorter

Fig. 6.9. D&A algorithms validation scheme

threshold crossing. The initial frame of M samples is generated, with K sam-
ples preceeding and N samples succeeding the threshold crossing event. The
alignment is to determine the offset i0 ∈ {1..K} so that N samples starting
from i0 are passed to spike sorting.

6.4.1 Algorithms Verified

The reference algorithm (denoted as PCA D&A) computes principal compo-
nent representation of the N -point frame for every i ∈ {0..K}, based on the
first two principal components. The offset selected is the one that yields the
smallest energy of error between the signal and its representation by the first
two principal components. The required computation is lengthy: for every in-
spected offset, one must compute projections on the two PCs (2N additions
and 2N multiplications). Then compute the representation in PC space: 2N
multiplications and N additions. Then subtract it from the signal (N addi-
tions). Then calculate the energy of the difference, which is another N addi-
tions and N multiplications. The whole computation takes 5N multiplications
and 5N additions for every offset, giving complexity index of K · 55N .
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To reduce the computation burden, we have tried to align spikes with
respect to the maximum correlation point of the incoming signal with the
first principal component (Maximum Projection Alignment, MPA). We take
advantage of the observation that this correlation typically exhibits a sin-
gle maximum near a spike. The calculation is much simpler: for every offset
inspected, one must compute only a projection of the signal on the first princi-
pal component, requiring N additions and N multiplications. The complexity
index is therefore K · 11N .

As in spike sorting PCA, we also tried to simplify PCA D&A by downsam-
pling the signal and the principal components (i.e. Segmented PCA D&A).
Downsampling the signal costs N additions. Assuming we use S segments,
the computation with downsampled signal requires 5S additions and 5S mul-
tiplications, similarly to the regular PCA. The complexity index is therefore
K · (55S + N).

Similarly to sorting algorithms, we tried to replace principal component
shape-space generation (that requires heavy computation of PC projections)
by a much lighter integral transform. Its major advantage is the lack of multi-
plications. In the same way MPA D&A seeks the maximal correlation with the
first principal component, Maximum Integral Transform Alignment searches
for the maximum correlation with the rectangular window over the first time
interval. As in spike sorting MITA can be viewed as MPA with the first prin-
ciple component degenerated to a rectangular window. The computation in-
volves summation of samples in a moving window. When implemented effi-
ciently, it can be done with 2N + K additions.

6.4.2 Validation Results

Error rates of the software sorter under various D&A algorithms are summa-
rized in Table 6.2. We have also examined the performance of the sorter when
no alignment is done, i.e. spikes are aligned to the point of threshold crossing.
Simulations were performed with N of 200 and K of 50, in accordance with the
reference algorithm. As with sorting, integral transform gives small accuracy

Table 6.2. Validation results summary

Algorithm Additions Multiplications Complexity Error rate (%)

Threshold 50 0 50 9.4

MITA 450 0 450 1.2

PC7 12,000 1750 30,000 0.7

MPA 10,000 10,000 110,000 0.3

PCA 50,000 50,000 550,000 0.0

penalty with a very strong reduction of computation complexity, constituting
the knee point of the accuracy-complexity graph.
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MEA on Chip: In-Vitro Neuronal Interfaces

Multielectrode arrays (MEAs) are the principal instruments for non-invasive
interfaces with biological neural networks (Chap. 2). MEAs allow multichan-
nel recording and stimulation with neuronal networks cultured for several
months. Planar arrangement of electrodes upon the substrate defined by pho-
tolitographic methods potentially enables high spatial recording resolution
with very large numbers of electrodes. Unlike penetrating probes, electrodes
of MEAs need not be manually positioned inside the brain tissue one-by-one.

Similarly to penetrating probes, MEA must provide bio-compatible elec-
trodes for tissue interfacing. To allow sensing of microvolt signal levels, it
must be coupled to a low-noise signal conditioning front-end. A processing
unit can acquire the signal and originate stimuli back to the tissue. A temper-
ature controller must be included within a cultured network recording setup,
to maintain the neurons at a/the constant temperature of 36◦.

MEAs on glass substrate typically integrate recording electrodes connected
by wires to contact pads on MEA perimeter Fig. 7.1. Contact pads are typ-

Wires

Contact sites

Recording sites

Fig. 7.1. Commercial MEA (Multichannel systems)
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ically much larger than the recording sites, as they are clipped to recording
front-end equipment. The breakout from the compact 2D structure of small
recording sites into 1D structure of contact pads limits the number of channels
the MEA can provide in practice.

Silicon multielectrode arrays, or Multielectrode Chips (MECs) allow inte-
gration of electronic circuits on the same substrate with electrodes (Fig. 7.2).
The breakout towards the perimeter is relaxed, potentially allowing for a larger
number of electrodes. In addition MEC provides a better system integration

Frontend Frontend

Neural network

Recording Stimulation

Si substrate

Frontend FrontendFrontend

Elec
tro

de

Elec
tro

de

Elec
tro

de
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tro

de
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Fig. 7.2. Multielectrode chip concept

and enables on-die processing for data compression and stimulation feedback.
Integrated circuits typically use aluminum or copper for metal intercon-

nects. Both are subject to fast corrosion when put into biological medium. Re-
ported integrated circuits for multielectrode recording fabricated in standard
CMOS processes [47, 11, 48, 50] involve various proprietary post-fabrication
steps for electrode definition:

• [50]: gold deposited on top of aluminum contacts.
• [48]: areas of field oxide are etched to expose polysilicon electrodes.
• [11]: stack of Ti/Pt and dielectric layer deposited on top of the electrodes.
• [47]: Pt deposited on top of recording sites.

Such processing steps are hardly a commodity: they require special facilities
and complicate MEC fabrication. Lithography is probably the most problem-
atic, as it requires expensive mask sets.

In our work [111] we have addressed the development of standard CMOS
MEC, involving no or only simple post-fabrication processing. The following
summarizes the work:

• Design of a prototype sensor circuit
• Fabrication in standard CMOS process
• Testing of isolation and sealing techniques for MEC
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• Testing and modeling of bare aluminum sensing sites
• Investigation of various post-processing steps

Post-processing steps under investigation included coating the MEC with thin-
layers of various dielectrics. Such coating does not require lithography, as it can
be applied on the whole die surface non-selectively (as long as the bondpads
are protected).

7.1 Prototype Sensor

The prototype sensor addresses the following tasks:

• Interface a biological matter with aluminum microelectrodes
• Amplify extracellular potentials
• Allow comparison of different electrode sizes
• Allow characterization of different electrode coatings
• Provides basic temperature control

The chip includes thirty differential amplification channels coupled to elec-
trodes of different sizes distributed over the chip surface. Amplifiers provide
gain of 40 dB sufficient to drive the signals off the chip without degrading
SNR. Unity gain stages are used to drive off-chip loads. A temperature sensor
for detection of 37◦ level and a special resistor for tissue heating were also
included on the chip (Fig. 7.3).

x100 x1

Heating
resistor

Temperature
sensor

Channel #15

Channel #2
Channel #1

DC
stabilization

Fig. 7.3. MEC blocks

7.1.1 Electrode Design

Electrodes were designed as areas of exposed top metal interconnect layer.
Passivation (thick oxide, about 2.5μm width) above electrode sites was etched
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by a standard process step, similarly as it is etched above bonding pad open-
ings. Conceptional chip layer stack is shown in Fig. 7.4. Process design rules
demand arrays of vias placed beneath exposed top metal, to improve me-
chanical stability of the bond pads. Vias contribute to the roughness of the
top metal surface, degrading the quality of coating deposition. Since the elec-
trodes are not bonded, one might consider removing via arrays from beneath
the electrodes. We have decided to keep the vias, fearing fabrication reliabil-
ity problems. Aluminum, being a non-noble metal, forms a thin (several nm)

Fig. 7.4. Layer stack in MEC

layer of oxide when introduced into a biological medium. Due to the oxide
barrier, a capacitive interface is formed. For 4 nm oxide thickness and dielec-
tric coefficient of 9, area capacitance of 2 μF/cm2 is formed. For an electrode
of 100 μm2 , this would be 2 pF, quite sufficient for preamplifier coupling.

As shown in [111], spontaneous oxide barrier may fail to protect aluminum
electrodes from corrosion. Additional dielectric layer (Al2O3, Ta2O5) can be
deposited on the chip for electrode protection. Dielectric layer deposition is
much less complicated than noble metal deposition, as it can be deposited
over the entire chip area. Unlike noble metal, dielectric layer requires no high
definition lithography and can be made with primitive mask sets for bonding
pad protection. Dielectric layer, however, degrades the interface capacitance:
for 40 nm deposition with dielectric constant of 20, area capacitance is only
0.44 μ/cm2, 440 fF for 100 μm2 electrode, making amplifier design a challenge.

7.1.2 Low Noise Amplifier

Low noise preamplifier designed for NPR02 (Chap. 4) was employed for the
prototype in-vitro sensor. It was found highly suitable for the in-vitro sensor
due to its low input capacitance. Input capacitance of a general differential
pair (Fig. 7.5) is defined by gate-source and gate-drain capacitors of the input

Coating (optional)

Gate

M1

M3
Mtop

Passivation

Substrate

FieldOx

M2
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Cgd

Vin

(b)

Fig. 7.5. (a) General differential pair. (b) Preamp circuit

transistor. The gate-drain capacitance exhibits Miller effect; it is effectively
multiplied by the stage gain, i.e. Vd/Vin. In the preamplifier circuit, the small-
signal drain voltage of the input transistors, Vd, is effectively zero due to the
cascode transistor, thus the Miller effect is eliminated. Because of source de-
generation, gate-source voltage is lower by a factor of (gmRs+1)−1, effectively
lowering the gate-source capacitor by the same factor. Input capacitance of
850fF was simulated for the preamplifier. That can be compared, for example,
to the circuit used in NPR03, having input capacitance of 5 pF.

7.1.3 Input DC stabilization

DC input stabilization was achieved with periodically shortened reset gates.
Although continuous bias technique was successfully used in NPR03, reset gates
were adopted for simplicity of modeling and implementation. Reset gate bi-
asing suffers from several serious drawbacks: Periodic artifacts are introduced
into the signal because of reset pulses. While the reset gates are opened, input
potentials slew slowly due to leakage currents in reset transistor diffusions.
Mismatches in these leakage currents generate potential differences in elec-
trodes across the chip, contributing to corrosion. Continuous bias technique
would enforce constant and equal potentials over all the electrodes potentially
leading to better corrosion immunity.

High-impedance input node capacitance characterization was made possi-
ble by signal injection through an RC voltage divider. An array of capacitors
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of known sizes can be selectively connected to the input node, to allow several
independent measurements. Since there are several unknown capacitors con-
nected to the input node, several equation have to be formed to find all the
unknowns. The input node with characterization circuits is shown in Fig. 7.6.

Reset

C2 C3C1

RC voltage divider

Capacitor array

Fig. 7.6. Input node capacitance characterization

7.2 Temperature Sensor and Heater

A bandgap temperature sensor was implemented on chip, based on bipolar
elements. The circuit is described in [111]. A 5 W heating element was imple-
mented as a polysilicon resistor. As the process specifies poly resistor operation
up to 16 V, the resistance of the heater must be about 50 Ω. To meet maximal
current density specifications, the resistor must be made wide enough. Special
care must also be taken to make sure the heat is distributed equally over the
resistor length: poly turns must be avoided, and solid wire connection with
large numbers of vias must be used. Maximal bond wire current specification
must also be met: A total of twelve bond pads was allocated for heater supply.

7.3 Post-Processing and Bath Formation

Post processing involves coating the electrodes with dielectric layers to protect
them from corrosion and prepare them for interaction with biological culture.
A bath has to be formed on the packaged chip to contain the biological solution
and protect the chip bonding pads and bond wires from interacting with it.
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7.3.1 Post Processing

Deposition of thin dielectric layers was tested on unpackaged dies, using a
crude metal mask for protection of pad areas. The layers were evaporated in
an electronic beam evaporator. The dies obtained this way were not tested due
to unavailability of a reliable bonding service. Evaporation was also made on
factory-packaged chips, as the ceramic packages could withstand the process.
Packaged chips do not require bonding mask. Figure 7.7 shows a processed
packaged chip. Various technical aspects of the process are discussed in [111].

Fig. 7.7. Packaged chip with evaporated dielectric. The circle showing evaporation
area is clearly visible

7.3.2 Culture Bath Formation

To contain the biological solution a glass bath was mounted on top of the chip
package (Fig. 7.8). While the thick field oxide layer protects most of the chip
area from contacting the solution, pad areas and bond wires remain open. A
special isolation layer must be deposited for pads and bond wires protection.

Two different epoxy types were tried for isolation. Epoxy-isolated chips
failed, due to small cracks that appeared in the epoxy isolator causing opens
at bonding sites (Fig. 7.9).

To prevent cracking, the epoxy was replaced by Sylgard-184 (Fig. 7.10).
It is a low-viscosity material, widely used in bio-applications for electrical
isolation, thanks to good biocompatibility. It was successfully used with six
chips for up to six weeks of operation in a salty solution.

While Sylgard can provide the required isolation quality, the process of
applying it to the chips is problematic, as it is fully manual. Extra care has to
be exercised not to damage the wire-bonds. Isolation is, consequently, time-
consuming and is not expected to have a good yield. One way to improve
the situation is to change the chip layout: move all the pads to one side, far
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Bond wire
Package Die

Glass bath

Insulator

(a)

(b)

Fig. 7.8. (a) Bath formation bond isolation. (b) Isolated chip with bath

from the active chip area (i.e. area with electrodes). This would make isolator
application much easier.

Preferably, some automatic technique must be developed, especially if vol-
ume fabrication is desired. One existing technology to try is flip-chip bonding.
The die has to be mounted to the PCB, provided that PCB has a hole, so
that chip electrodes remain uncovered (Fig. 7.11).

7.3.3 Electrode Characterization

Electrode impedance was measured by injecting small-amplitude sine waves
through resistors of known value (Fig. 7.12). Interface capacitance of 30–40 pF
was measured with an aluminum electrode. 1.5 pF was measured with a coated
electrode (Al2O3, TiO2 stack of 110 nm). Both electrodes have a very large
resistance (above 100 MΩ ).
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Fig. 7.9. Cracks in epoxy isolation

Fig. 7.10. Chip with applied Sylgard protection

Fig. 7.11. Chip-on-board mounting of MEC

It was noted that electrodes suffer corrosion when placed in physiological
medium and the chip supply is turned on. Corrosion was much slower when
the supply was disconnected. The believed reason is in differences of electrode
potential due to non-uniform leakage currents. Spontaneous oxide formed on
the electrode surface does not provide sufficient protection: when an exter-
nal potential of 1V is applied, the corrosion is fast enough to eliminate the
electrode completely within seconds. Larger electrodes tend to degrade faster
than the smaller ones.

PCB Sylgard isolation

Support Die
Bond

Bath
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R

R

Fig. 7.12. Electrode impedance measurement

Coating with a dielectric layer improved chemical stability. Coated elec-
trode could withstand potentials of volts. However, the success of protection
varied significantly from one electrode to another (Fig. 7.13). As with plain
Aluminum, larger electrodes degraded faster than smaller ones.

Fig. 7.13. (a) Coated electrode after 3V potential. (b) Identical electrode broken
down at 2.5V potential

The non-uniformity of the results can be explained by roughness of the
exposed top-metal area. It is caused in part by via arrays that are re-
quired under exposed top metal by the design rules (Fig. 7.14). Another
probable cause are surface artifacts. This also explains why larger electrodes
tend to degrade faster: the probability for a surface artifact grows linearly
with area.

7.3.4 Culturing neural cells

Rat cells have been cultured on top of the isolated chips (Fig. 7.15). The
same procedure that is routinely used for culturing cells on top of MEAs was
employed with the chips. They were held inside an incubator for six weeks;
the electrical activity was checked every two weeks. The recorded electrical
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Surface

Coating

Fig. 7.14. SEM image of an electrode showing non-flat surface beneath the coating

Fig. 7.15. Neuron cell cultured on top of MEC

activity remained stable, except for some degradation in spike amplitudes
towards the sixth week. This can be related to degradation of the aluminum
electrodes. Examples of the recorded spikes are shown in Fig. 7.16.

Fig. 7.16. Samples of recorded neural spikes
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7.4 Conclusions and Future Work

A 0.35 μm prototype chip for in-vitro interfacing biological neural networks
was designed and fabricated. The chip included aluminum electrodes, active
circuitry for amplifying the recorded signals, circuits for electrode character-
ization and temperature control. A simple step for electrode protection by a
thin isolator layer, requiring no lithography, was also considered. The chips
were successfully isolated with Sylgard-184. Neurons were cultured on top of
the chips for six weeks with stable electrical activity recordings.

Aluminum electrodes can potentially be used for neural sensing. They do
not seem to have any toxic effects on the tissue. Corrosion prevention is of
extreme importance. Thin-film isolation layer is an option, but work has to
be done to improve the quality of isolation, without employing complicated
post-processing steps, such as CMP. Perhaps eliminating vias under exposed
top-metal areas can improve the surface roughness.

A robust, preferably automatic procedure for isolation of the bond pads
and wires has to be developed. The current procedure of applying Sylgrad by
hand yields working chips, but is extremely time-consuming. The effort can be
substantially reduced by placing all the bond pads on one side of the chip, far
from the active area. This, however will constrain the number of pins available
for chip interfacing. Appropriate architectural solutions are to be developed
for internal multiplexing of recorded signals to allow streaming over a narrow
interface.
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Conclusions

8.1 Research Contributions

The research presented in this book aimed at architectures for neuronal inter-
faces. The concept of the Neuroprocessor — a computational neuronal inter-
face, the main contribution of this work, has been reviewed in detail. Unlike
other existing neuronal interfaces providing for mere amplification, shaping
and transduction of neuronal signals, the Neuroprocessor integrates compu-
tational capabilities at the recording (or stimulating) front-end. These capa-
bilities are used for reduction of recorded data, so that only small portions
of the raw datarate have to be communicated outside the Neuroprocessor.
Thus, it enables low power operation of neuronal interfaces, such as required
at miniature implants.

8.1.1 Integrated Neuronal Recording Front-End Circuits

Design considerations and test results of three generations of recording front-
end integrated circuits, NPR01 -NPR03 , are shown. NPR03 is a fully-integrated,
12-channel data acquisition system for neuronal signal recording, includ-
ing low-noise amplification, band-splitting of neuronal signals, integrated
per-channel ADC and numerous programmable features (including offset cali-
bration). The channels communicate over an internal parallel bus with an inte-
grated controller, capable of streaming the sampled data from all the channels
on a serial communication link. NPR03 included also a novel, robust scheme
for DC stabilization of neuronal preamplifier input that was developed, im-
plemented and successfully tested.

A miniature headstage employing NPR03 is presented. The design of
FPGA-based embedded computer board with real-time software accompa-
nying the headstage is also described. The system was successfully tested in
both in-vitro and in-vivo neuronal recording experiments, with the summary
of the results presented in this book.
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The design of a novel, fully differential neuronal preamplifier was pre-
sented, with detailed analytical derivation of the noise-power tradeoff opti-
mum point, confirmed by numerical analysis and transistor-level circuit sim-
ulation. The preamplifier provides for an improved noise performance by re-
placing active loads at the input stage with resistors. Despite that, it suffers
no gain deterioration thanks to a gain-boosting second stage, that is shown
to draw only a small portion of the consumed current.

8.1.2 Low Power Algorithms for Spike Sorting and Detection

The development of several low-power algorithms for spike detection and sort-
ing is shown. The algorithms were aimed at implementation on a special-
purpose hardware. This is in contrast with the majority of known algorithms
that are software-based. The algorithms were designed as modifications of al-
gorithms known in the field with a goal of trading off a small percentage of
computation accuracy for large savings in computational complexity. They
were verified by numerical simulations on real neuronal recordings and com-
pared with a state-of-the-art algorithm, chosen as a “golden-rule”. It is shown
that several percent of accuracy reduction can lead to orders of magnitude
savings in computational complexity, and consequently in power consumed
by the electronic circuits.

8.1.3 In-Vitro Neuronal Interfaces

The design of a Multielectrode array for in-vitro culturing of neuronal tissues
on a CMOS chip is presented, together with encapsulation procedures for
bond-pad protection. The fabrication requires no processing steps beyond the
standard CMOS technology, enabling inexpensive and rapid mass-fabrication
of such devices. The electrode sites are formed by removing the passivation
above the top Aluminum layer. It was determined experimentally that neurons
show no signs of intoxication when exposed to the Aluminum electrodes. It was
also shown that Aluminum electrodes allow for several weeks of stable record-
ing, but deteriorate rapidly when stimulation potentials are applied. A simple
post-processing step of thin-film dielectric coating was applied for electrode
protection. It was a non-selective coating, requiring no photo-lithography, the
most expensive part in microfabrication. The electrodes demonstrated far bet-
ter corrosion immunity, although poor quality of deposited thin film layers did
not allow for an extensive study.

8.2 Future Work

8.2.1 Neuroprocessors

Further investigation of architecture aspects of the neuronal front-end chips
should be made. In particular, there are several architectural questions left
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out of this book. These points allow potential power optimizations in the
recording front-end by learning the properties of the signals recorded:

• Analog vs. digital processing. Integrated circuits described in this book ac-
quire the input signals continuously and convert them into digital streams.
Data reduction algorithms are executed in the digital domain, requiring
continuous operation of ADCs. This paradigm may be altered if spike de-
tection is carried out in the analog domain (e.g., threshold detection by a
comparator). The ADCs, thus, can be turned on only upon the detection
of a spike, potentially saving power.

• Another potential for power saving lies with powering the LNA, the dom-
inant consumer of power. It might be possible to lower its bias current
(at the cost of higher noise) during inter-spike intervals, which can be
adaptively determined.

• Yet more power can be saved within the LNA: if the spectrum of the spikes
at every channel can be learned, a matching filter (analog or digital) can
be constructed to emphasize the relevant frequency band and suppress the
irrelevant bands. Thus, the noise seen within the input signal is reduced,
and the LNA current can be lowered.

More research may be performed on implementation of the algorithms.
Most importantly, implementations need to be evaluated regarding the power
they require, raising among others the following questions: should the com-
putations be performed by a central processor or distributed over the input
channels; how the memory is to be implemented (central or distributed) and
how the data get communicated within the Neuroprocessor (synchronous or
asynchronous, serial or parallel, shared bus or dedicated interconnect, etc.).

A variety of circuit and architectural problems arise when stimulation is
integrated with the Neuroprocessor, as it may require relatively high voltage
or current levels. Fully-integrated, power-efficient voltage converters probably
have to be designed for Neuroprocessors.

With Neuroprocessor dies available, the issue of bio-compatible packaging
and implant encapsulation should also be considered. One of the most impor-
tant problems is powering the implant: should it be done remotely (i.e., RF
power), locally (battery cell) or combined (battery cell recharged by RF).

8.2.2 In-Vitro Recording

Studies of in-vitro recordings can be divided into processing, encapsulation
and architecture research: Robust and reliable processing steps are to be de-
veloped for electrode protection. The current problem with thin-film dielectric
deposition is chip surface roughness, caused in part by passivation openings
above the electrodes. Perhaps partial thinning of the passivation layer can
improve the situation.

The encapsulation procedure used in this work, although operational, re-
quired much handcraft and is hardly robust. Improvement can be achieved
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with better layout configurations, where electrodes are placed on one side of
the die while all the bonding pads are concentrated on the opposite side at a
large distance.

When the channel count of an MEC increases, a problem of signal readout
arises. Since it is infeasible to provide a wire to every electrode with large
electrode counts, some sort of channel multiplexing is in order. With low-level
signals involved, multiplexing at required sampling rates is non-trivial and
has to be investigated. After that, the problem of data reduction (resembling
the one in Neuroprocessors) has to be addressed: Although the MEC does
not operate wirelessly, the number of channels it may incorporate is orders
of magnitude larger than that of the in-vivo Neuroprocessor, making raw
streaming of all the acquired signals impossible.
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NPR02 Technical Details

A.1 NPR02 Preamp Sizing

A.1.1 Gain Deviation

First, we examine the expected preamp gain variation.
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Both Δη/η is easily estimated with statistical simulations as a relative
variation in transistor transconductance under constant current. Its standard
deviation (for large transistors) was found to be around 2%.
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If we choose M3 large enough, Vgs3 is roughly equal to its threshold voltage.
And relative current variation can be calculated as:
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Threshold voltage relative variation is about 10%. Substituting Vdd of 3.3 V
and nominal threshold voltage of 0.7 V gives:
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Standard deviation of the gain is aimed at 1–1.5%. Thus a condition upon r
and rm can be derived, rm must be placed between r/2 and r. rm was roughly
placed at 2r/3.

A.1.2 Preamp Noise

The output current noise contribution of the thermal noise of M1 and M2
(Fig. 4.8), neglecting the contribution of the source-bulk transconductance
gm,bs can be calculated as:
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)2

If we denote the ratio r/rm by α, we can rewrite the above as:
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The contribution of degeneration resistors r is:
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can be rewritten as:
Sir = 8KT
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(1 + α)2

The contribution of M5 and M6 is:
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and the sum of the above components is:
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Knowing that the input transconductance is (r + rm)−1, we can reflect the
above to input as
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Substituting rm and gm,5 we obtain:
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The associated input noise energy over bandwidth fb can be calculated as:
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For a given noise voltage and W5/L5, this equation can be solved iteratively
for I. In Fig. A.1 the solution is shown for α of 3/2, fb of 10 kHz and vn of
2 μV. Limiting the overdrive voltage to some 200 mV, we obtain W5/L5 of
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Fig. A.1. M5 current and overdrive voltage as function of W5/L5

5 and I of 20 μA. The actual value to be taken for I is higher, since this
calculation did not take into account the effects of gm,bs, noise contributions
of PMOS current sources. Also, vn must be set somewhat smaller than the
goal 2 μV, to allocate some space to 1/f noise. I was set to 25 μA. This sets rm

to about 2 kΩ and r to about 3 kΩ. The input transconductance is therefore
200 μΩ−1.

1/f noise of the circuit is dominated by M5 and M6. The output noise
current density is:
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S1/f =
kF IAF
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f

The spike band is limited by a single pole high pass filter at the low-frequency
side with pole at f1. At the high frequency side the band is limited at fb and
we assume that the rolloff is steep. Output current noise energy introduced
into the spike band by 1/f is:
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Since fb is about 10 kHz and f1 is hundreds of Herz, this can be further
simplified:

in,1/f
2 = βL ln

fb

f1

The thermal input noise voltage is about 2μV . Thus corresponding output
current is 2μV · 200μΩ−1 = 400 pA. The goal is to keep thermal noise dom-
inating over the spike band; we require the energy of 1/f noise to be much
lower than that of thermal noise, for example:

in,1/f
2 =

1
4
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2

Thus we can write:

βL ln
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f1
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(
400 · 10−12

4

)2

Ln can be calculated to satisfy this equation. The result for fb of 10 kHz, f1

of 200 Hz and 1/f constants for the process in use is 15 μm . Thus Wn was
set to 80 μm and Ln to 15 μm .

The size of M1 and M2 can be chosen rather arbitrarily, as long as the W/L
is kept high enough to keep the transistors in weak inversion. Choosing W,L
too large is not desirable, as it increases the input capacitance. W was set to
800 μm and L to 2 μm.

A.2 NPR02 Testboard Output Channel

The channel schematic is presented in Fig. A.2. The channel consists of a
two-stage amplifier and fourth-order Bessel filter. The filter is made of two
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Fig. A.2. An output channel on NPR02 testboard

Sallen-Key biquads. The amplifier gain can be set to a unity, 10, 100 and
1000. Amplifier gain and channel configuration are set with eight digitally-
controllable switches (MAX395). The channel can be configured so that the
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amplifier, the filter or both may be connected or bypassed. TL074 operational
amplifier was used within the channel.1

1 High input impedance and low noise operation limited the operational amplifier
choice to those with JFET input devices. It was also desired to find one available
in quad packages.



Appendix B

NPR03 Technical Details

B.1 NPR03 Instruction Set

The format of the frames sent by the host to NPR03 (downward frames) is
shown in Fig. B.1. The 24-bit frame includes eight bits of opcode mnemon-

Data

23 15 10 7 0

OpCode AddrHi AddrLo

Fig. B.1. NPR03 downward frame

ics, eight bits for register identification and eight data bits. The instructions
are shown in Table B.1. A fetch/store command can address either a con-

Table B.1. NPR03 instructions

Opcode Mnemonic Opcode Address Data Action

Fetch 1 Register code N/A Fetch register content

Store 2 Register code Value Store register content

Start 3 N/A N/A Start streaming data

Stop 4 N/A N/A Stop streaming data

troller register or a register inside one of the channels. When addressing a
channel register, AddrLo must be set to the required channel number (1..12)
and AddrHi to the channel register number. To address a controller register,
AddrHi must be set to the controller register number and AddrLo must be
zero. Register codes are summarized in Table B.2.

The format of NPR03 upward frames is shown in Fig. B.2. The NP3 may
send either of the two types of reply frames Table B.3. Replies sent in the idle
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Table B.2. NPR03 register codes

Channel registers Controller registers

Register AddrHi AddrLo Register AddrHi AddrLo

ADC0 1..12 0 CEMR0 13 0

ADC1 1..12 1 CEMR1 14 0

HPF 1..12 2 LTHR 15 0

MSC 1..12 3 HTHR 16 0

SPK 1..12 4 SCNR 17 0

LFP 1..12 5 CDIVCNT 18 0

CDIVADC 19 0

14 13

Addr DataHi DataLo

7 09

S/LFlg

15

Fig. B.2. NPR03 upward frame

mode have Fl of “0”. All idle-mode replies will have S/L field of “0”, unless
the chip has received an illegal instruction. When a register is fetched (idle
mode), the 8-bit value is returned in DataLo. Replies sent in the streaming
mode have Fl of “1”. S/L of “1” means that a frame carries a sample of an
LFP output; S/L of “0” means SPK output. The Addr field designates the
channel number. DataHi and DataLo together make for a 10-bit data word.

Table B.3. NPR03 reply frame fields

Reply to Fl S/L Addr DataHi DataLo

Fetch 0 0 n/a n/a Value

Store 0 0 n/a n/a n/a

Error 0 1 n/a n/a n/a

Stream 1 1=LFP, 0=SPK 1..12 D9-8 D7-0

B.2 NPR03 Registers

B.2.1 Channel Registers

The registers described below affect the operation of the recording channels.
The whole set of these registers resides in every recording channel.



B.2 NPR03 Registers 105

ADC0

RDY D9 D8 D7 D6 D5 D4 D3

RDY (R/O) Indicates that the channel ADC has finished a conver-
sion

D9-3 (R/O) Upper seven bits of the 10-bit conversion result

ADC1

D2 D1 D0 S/L TST REQ n/a n/a

D2-0 (R/O) Lower three bits of the 10-bit conversion result
S/L (R/W) Selects whether the ADC connects to the SPK (‘0’) or

the LFP (‘1’)
TST (R/W) Testing. Has no effect on channel operation.
REQ (W/O) Conversion start request. When ‘1’ is written into REQ,

the ADC will start a conversion cycle as soon as it fin-
ishes the current conversion cycle

HPF

B3 B2 B1 B0 n/a n/a n/a n/a

B3-0 (R/W) Sets the cutoff frequency of the DC blocking HPF on
the integrated channels

MSC

F2 F1 F0 CPL NUL TST n/a n/a

F2-0 (R/W) LPF cutoff frequency at SPK output
CPL (R/W) Connects the internal 8MΩ resistors to inputs (external-

cap channels)
NUL (R/W) Nulls the input
TST (R/W) Testing. No effect on channel operation

SPK

OF4 OF3 OF2 OF1 OF0 G1 G0 n/a

OF4-0 (R/W) SPK channel offset calibration (calibration DAC input)
G1-0 (R/W) SPK channel gain (VGA gain setting)
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LFP

OF4 OF3 OF2 OF1 OF0 G1 G0 n/a

OF4-0 (R/W) LFP channel offset calibration (calibration DAC input)
G1-0 (R/W) LFP channel gain (VGA gain setting)

B.2.2 Controller Registers

The registers below reside inside the controller, which can access them directly
(not through the internal bus).

CEMR0

R8 R7 R6 R5 R4 R3 R2 R1

R7-0 (R/W) Setting Ri to ‘1’ enables data streaming from channel i

CEMR1

n/a n/a n/a n/a R12 R11 R10 R9

R12-9 (R/W) Setting Ri to ‘1’ enables data streaming from channel i

LTHR

LTHR (R/W) holds the eight most significant bits of the low threshold value.
The two least significant bits are always taken as “00”. Low threshold value
is therefore LTHR*4.

HTHR

HTHR (R/W) holds the eight most significant bits of the high threshold value.
The two least significant bits are always taken as “00”. High threshold value
is therefore HTHR*4.

SCNR

SCNR (R/W) holds the number of samples to be streamed out upon threshold
crossing detection.
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CDIVCNT

H3 H2 H1 H0 L3 L2 L1 L0
CDIVCNT (R/W) holds two four bit values, H3-0 and L3-0 that specify how
the McBSP clock is divided to obtain the controller clock and the bus clock.
H3-0 specifies for how many half-cycles of the McBSP clock the controller
clock stays high. L3-0 specifies for how many half-cycles of McBSP clock the
controller clock stays low. The count is one-based, i.e. a value of zero in H3-0
(or L3-0) means a single half-cycle.

CDIVADC

CDIVADC (R/W) has the same structure as CDIVCNT and similar interpre-
tation. It defines how the controller clock is divided to obtain the clock for
ADC operation.

B.3 NPR03 Preamp Sizing

Differential output current noise is contributed by the PMOS input pair and
NMOS current sources (Fig. 5.9). Each transistor contributes channel shot
noise of the form

id =
8
3
kT (gm + gmbs)

and 1/f noise

if,pmos =
kF IaF

CoxWL · f

if,nmos =
kF IaF

CoxL2 · f

Bulk-source transconductance, gmbs is given by:

gmbs =
γ

2
√

2|ΦF | − Vbs

· gm = ξgm

The coefficient ξ can be calculated to about 0.25 for the process in use, for
bulk-source voltages of 0–200 mV. id can be rewritten in terms of ξ as

id =
8
3
kT (1 + ξ)gm

The total output current noise is therefore:

Sio,n
=

8
3
kT (1 + ξ) (gm,n + gm,p) +

kF,pI
aF,p

CoxWpLp · f +
kF,nIaF,n

CoxL2
n · f
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The transfer function from the output current noise to output voltage noise
can be shown as:

vo,n

io,n
=

s(Ci + Cf + Cx) + Gf

(sCf + Gf )(gm + sCi)

where Cx is the input capacitance of the amplifier. The noise is suppressed
below f1 by the splitter; unlike the noise injected by Gf , in this case there
are no 1/f2 components, thus the noise below f1 (order of 200 Hz) can be
neglected. Above 200 Hz, we can neglect Gf with respect to sCf . Also, gm is
much larger than sCi for the frequencies of interest:

vo,n

io,n
=

Ci + Cf + Cx

Cf
· 1
gm

This can be further reflected to input, multiplying by Cf/Ci:

vi,n = io,n · Ci + Cf + Cx

Ci
· 1
gm

The total input noise energy can be written after substituting io,n and inte-
grating from f1 to f2 (we approximate also with f2 � f1):

vi,n
2 =

(
Ci + Cf + Cx

Ci · gm,p

)2

×

×
[
8
3
kT (1 + ξ)(gm,p + gm,n)f2 + ln

f2

f1

(
kF,pI

aF,p

CoxWpLp
+

kF,nIaF,n

CoxL2
n

)]

As vi,n clearly decreases with gm,p, we shall try to maximize the latter, thus the
input PMOS pair will be in weak-inversion. gm,p dependence on bias current
and transistor geometry is most conveniently described by EKV model [95]:

gm,p =
κI

Vth
· G(I)

where G(I) is given by

G(I) =
1 − e−

√
I/IS√

I/IS

κ is a process parameter, estimated to about 0.85. IS is given by

IS =
2μ0,pCoxV 2

th

κ
· Wp

Lp
= 94nA · Wp

Lp

Cx is a gate capacitance of the input transistor, proportional to WpLp. Since
vi,n increases with gm,n, we shall place the NMOS sources in saturation, with
large Ln and small Wn. With several simple substitutions we can write gm,n

as a function of current and overdrive voltage:
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gm,n =
2I

Vovd,n

We limit the overdrive voltage on the NMOS transistors to 300 mV. With
the above expressions for gm,n, gm,p and Cx, vi,n is fully given with four circuit
parameters: Wp, Lp, Ln and I. vi,n is clearly inversely dependent on Ln, and
directly dependent on Lp, thus we shall place Ln at the largest possible value
for layout convenience (10μm ), and we shall set Ln to a small value (1μm ).
Figure B.3 shows the contour plot of vi,n as a function of I and Wp. Figure B.3
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Fig. B.3. Amplifier noise contribution contour plot

shows that there is an optimal Wp for a given I. This is because gm,p increases
with Wp, lowering the noise, but Cx increases with Wp making it worse. Trying
lower Ln yields only insignificant savings in bias current, some 10% when Ln

is moved from 1 μm to 0.5 μm .
The actual sizing chosen: Wp of 400 μm, Lp of 1 μm and I of 25 μA, making

the amplifier noise contribution about 1.4μV, a bit higher than the desired
1.2 μV. The total preamp noise is therefore 2.2 μV.

B.4 Measurements of Additional NPR03 Channel Circuits

B.4.1 SAH Measurements

Measurements of SAH circuits are shown in Fig. B.4. The measurements were
performed on a stand-alone SAH circuit included in NPR03 for testing. Since
the SAH was not intended to drive off-chip loads, the standalone circuit was
measured at 10 kSps and not at the target 40 kSps. Direct measurement of the
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Fig. B.4. Cumulative plots of SAH measurements. (a) Transfer function. (b,c) Sine
input with close-up. (d,e) Output noise PSD with close-up

transfer function proved somewhat problematic, due to the difficulty with sup-
plying accurate input voltage (at least 10-bit accuracy was at need). Instead,
a statistical measurement technique was employed, based on the following
observation: We supply an input voltage uniformly distributed over the in-
put range and measure the distribution of the output voltage. If we denote
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the SAH transfer function by TF (x), the output distribution density function
fo(x) will be proportional to:

fo(x) ∝
(

d

dx
TF (x)

)−1

Therefore we can restore TF (x) if we measure fo(x) by:

TF (x) =
∫ x

0

f−1
o (ζ)dζ

Input voltages of uniform distribution were supplied with a triangle-wave func-
tion generator, with output amplitude above the SAH full-scale. The input
frequency was chosen to have a small greatest common divisor with the sam-
pling frequency.

SAH was also measured with 1Vpp, 1.414 kHz sine wave at the input with
THD of about 55 dB. Noise was measured with grounded input, with RMS
value of 0.9 mV. All the measurements repeated on several dies with only
small deviations.

B.4.2 ADC Measurements

Measurements were performed on a standalone ADC included in NPR03 for
testing at 40 kSps rate (Fig. B.5). Transfer function was measured with sta-
tistical method similar to that used for SAH measurement. With 1Vpp input
sine wave the ADC shows THD of about 55 dB. The ADC experiences sev-
eral non-linearities at input voltages with 300 mV of supply rails, related to
the input sample-and-hold. Unfortunately, test circuitry does not allow ADC
measurements without the input SAH.
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Fig. B.5. Cumulative plots of ADC measurements. (a) Transfer function. (b) Sine
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