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For the sake of persons of different types, scientific truth should 
be presented in different forms, and should be regarded as equally 
scientific, whether it appears in the robustform and the vivid coloring 
of a physical illustration, or in the tenuity and paleness of a symbolic 
expression. 

James Clerk Maxwell 
Address to the Mathematics and Physical Section, 
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Preface 

TEXT OVERVIEW 

This text emphasizes the successful engineering design of digi tal devices and machines from 
first principles. A special effort has been made not to "throw" logic circuits at the reader so 
that questions remain as to how the circuits came about or whether or not they will function 
correctly. An understanding of the intricacies of digital circuit design, particularly in the 
area of sequential machines, is given the highest priority - the emphasis is on error-free 
operation. From an engineering point of view, the design of a digital device or machine is 
of little or no value unless it performs the intended operation(s) correctly and reliably. 

Both the basics and background fundamentals are presented in this text. But it goes well 
beyond the basics to provide significant intermediate-to-advanced coverage of digital design 
material, some of which is covered by no other text. In fact, this text attempts to provide 
course coverage at both the first and second levels - an ambitious undertaking. The aim 
is to provide the reader with the tools necessary for the successful design of relatively 
complex digital systems from first principles. In doing so, a firm foundation is laid for the 
use of CAD methods that are necessary to the design of large systems. In a related sense, 
VHDL behavioral and architectural descriptions of various machines, combinational and 
sequential, are provided at various points in the text for those instructors and students who 
wish to have or require a hardware description language in the study of digital design. 

The text is divided into 16 relatively small chapters to provide maximum versatility in its 
use. These chapters range from introductory remarks to advanced topics in asynchronous 
systems. In these chapters an attempt is made to replace verbosity by illustration. Students 
generally do not like to read lengthy verbal developments and explanations when simple 
illustrations suffice. Well more than 600 figures and tables help to replace lengthy expla
nations. More than 1000 examples, exercises, and problems (worked and unworked, single 
and multiple part) are provided to enhance the learning process. They range in complex
ity from simple algebraic manipulations to mUltipart system-level designs, each carefully 
chosen with a specific purpose in mind. Annotated references appear at the end of each 
chapter, and an appendix at the end of the text provides the details of subjects thought to 
be peripheral to the main thrust of the text. Chapter 1 breaks with tradition in providing 
a complete glossary of terms, expressions, and abbreviations that serves as a conspicuous 
and useful source of information. 

SUBJECT AREAS OF PARTICULAR STRENGTH IN THIS TEXT 

Like others, this text has its subject areas of strengths - those that are uniquely presented in 
sufficient detail as to stand out as significant didactic and edifying contributions. This text 

xix 



xx PREFACE 

breaks with tradition in providing unique coverage in several important areas. In addition to 
the traditional coverage, the following 20 subject areas are of particular strength in this text: 

1. Thorough coverage of number systems, arithmetic methods and algorithms, and codes 

2. Mixed logic notation and symbology used throughout the text 

3. Emphasis on CMOS logic circuits 

4. Unique treatment of conventional Boolean algebra and XOR algebra as these subjects 
relate to logic design 

5. Entered variable mapping methods as applied throughout the text to combinational 
and sequential logic design 

6. Applications of Reed-Muller transformation forms to function minimization 

7. Nonarithmetic combinational logic devices such as comparators, shifters, and FPGAs 

8. Arithmetic devices such as carry-save adders, multipliers, and dividers 

9. Three uniquely different ALU designs, including an introduction to dual-rail systems 
and ALUs with completion signal and carry look-ahead capability 

10. Detection and elimination methods for static hazards in two-level and multilevel (e.g., 
XOR-type) circuits including the use of binary decision diagrams (BDDs) 

11. Design and analysis of flip-flops provided in a simple, well organized fashion 

12. Detection and elimination of timing defects in synchronous sequential circuits 

13. Input synchronization and debouncing, and FSM initialization and reset methods 

14. Use of unique modular methods in the design of shift registers and counters 

15. Complete coverage of ripple counters, ring counters and linear feedback shift register 
(LFSR and ALFSR) counters 

16. Application of the array algebraic and one-hot approaches to synchronous FSM design 

17. Detection and elimination of timing defects in asynchronous fundamental mode FSMs 

18. Design and analysis of asynchronous FSMs including the nested cell approach, single 
transition time (STT) machines by using array algebra, and the one-hot code method 

19. High speed externally asynchronous/internally clocked systems, including an intro
duction to dynamic domino logic applications 

20. Programmable asynchronous sequencers 

READERSHIP AND COURSE PREREQUISITES 

No prior background in digital design is required to enter a first course of study by using 
this text. It is written to accommodate both the first- and second-level user. What is required 
is that the reader have sufficient maturity to grasp some of the more abstract concepts that 
are unavoidable in any digital design course of study. It has been the author's experience 
that digital design makes an excellent introduction to electrical and computer engineering 
because of the absolute and precise nature of the subjects - there are no approximation 
signs. This text is designed to make first reading by a user a rewarding experience. However, 
there is sufficient advanced material to satisfy the needs of the second level students and 
professionals in the field. A first-level understanding of the subject matter is necessary 
before entering a second-level course using this text. 
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SUGGESTED TEXT USAGE 

Perhaps the best advice that can be given to instructors on the use of this text is to study 
the table of contents carefully and then decide what subject matter is essential to the course 
under consideration. Once this is done the subject area and order of presentation will usually 
become obvious. The following two course outlines are offered here as a starting point for 
instructors in making decisions on course subject usage: 

The Semester System 

[1] First-Level Course-Combinational Logic Design 

Block I 

Introduction (Chapter 1) 
Number systems, binary arithmetic and codes (Sections 2.1 through 2.5 or choice) 
Binary state terminology, CMOS logic circuits, and mixed-logic symbology 

(Sections 3.1 through 3.7) 
Reading and construction of logic circuits (Section 3.8) 
XOR and EQV operators and mixed-logic symbology (Section 3.9) 
Laws of Boolean and XOR algebra (Sections 3.10 through 3.12) 
Review 

EXAM #1 

Block /I 

Introduction; logic function representation (Sections 4.1 and 4.2) 
Karnaugh map (K-map) function representation and minimization, don't cares, 

and multi output optimization (Sections 4.3 through 4.5) 
Entered variable mapping methods and function reduction of five or more variables 

(Sections 4.6, 4.7 and 4.12) 
Introduction to minimization algorithms (Section 4.8) 
Factorization and resubstitution methods (Subsections 4.9.1 and 4.9.2) 
Function minimization by using XOR K-map patterns (Sections 5.1 through 5.4) 
Review 

EXAM #2 

Block III 

Introduction to combinational logic design (Section 6.1) 
Multiplexers, decoders, priority encoders, and code converters (Sections 6.2 

through 6.5; Section 2.10) 
Magnitude comparators, parity generators and shifters (Sections 6.6 through 6.8) 
Programmable logic devices - ROMs, PLAs and PALs (Sections 7.1 through 7.6) 
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Adders, subtractors, multipliers, and dividers (Section 2.6 and Subsections 2.9.1 
through 2.9.5 or choice; Sections 8.1 through 8.7 or choice) 

Arithmetic and logic units - ALUs (Section 8.8) - may be omitted if time-limited 
Static hazards in combinational logic devices (Sections 9.1 and 9.2) 
Review 

EXAM #3 and/or FINAL 

[21 Second-Level Course - State Machine Design and Analysis 

Block IV 

Introduction; models, the state diagram, and heuristic development of the basic 
memory cells (Sections 10.1 through 10.4) 

Design and analysis of flip-flops, flip-flop conversion; timing problems; asyn
chronous overrides; setup and hold time requirements (Sections 10.5 through 
10.11) 

Design of simple synchronous finite state machines; K-map conversion; analysis 
of synchronous FSMs (Sections 10.12 and 10.13) 

Review 

EXAM #1 

Block V 

Introduction; detection and elimination of timing defects in synchronous state 
machines (Sections 11.1 through 11.3) 

Synchronizing and stretching of asynchronous inputs; metastability; clock skew 
and clock sources (Sections 11.4 through 11.6) 

Initialization and reset of FSMs, and debouncing circuits (Sections 11.7 and 11.8) 
Applications to the design and analysis of more complex synchronous FSMs; ASM 

charts and state assignment rules; array algebraic approach to FSM design; state 
minimization (Sections 11.9 through 11.12) 

Review 

EXAM #2 

Block VI 

Introduction; design of shift registers and synchronous counters; synchronous vs 
asynchronous parallel loading (Sections 12.1 through 12.3) 

Shift register counters and ripple counters; special purpose counters (Sections 12.4 
through 12.5) 

Alternative architecture - use of MUXs, decoders, PLDs, counters and shift reg
isters; the one-hot design method (Sections 13.1 through 13.5) 

The controller, data path, functional partition, and system-level design (Sections 
13.6 and 13.7) 

Introduction to asynchronous sequential machines - fundamental mode FSMs 
(Sections 14.1 through 14.9) 
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Pulse mode approach to asynchronous FSM design (Sections 15.1 through 15.6) 
Selected topics in Chapter 16 

Review 

EXAM #3 and/or FINAL 

xxiii 

The choice of course content is subject to so many variables that no one course outline will 
suffice even within a single institution where several instructors may teach a given course. 
n is for this reason that the text is divided up into 16 relatively small chapters. This offers 
the instructor somewhat more flexibility in the choice of subject matter. For example, if it is 
desirable to offer a single (combined) semester course in digital design, it might be desirable 
to offer both combinational and sequential (synchronous FSM) logic design. Such a course 
might include the following subject areas taken from Blocks I through VI in sample course 
outlines [1] and [2]: 

[3] Single (Combined) Semester Course in Digital Design 

Binary state terminology, and mixed-logic symbology (Sections 3.1 through 3.7) 
Reading and construction of logic circuits (Section 3.8) 
XOR and EQV operators and mixed-logic symbology (Section 3.9) 
Laws of Boolean and XOR algebra (Sections 3.10 through 3.12) 
Review 

EXAM #1 

Logic function representation (Sections 4.1 and 4.2) 
K-map function representation and minimization, don't cares and multioutput 

optimization (Sections 4.3 through 4.5) 
Entered variable mapping methods and function reduction of five or more variables 

(Sections 4.6, 4.7 and 4.12) 
Multiplexers, decoders, priority encoders, and code converters (Sections 6.2 

through 6.5) 
Comparators, parity generators, and shifters or choice (Sections 6.6 through 6.8) 
Adders, subtractors, and multipliers (Sections 8.1 through 8.3; Section 8.6) 
Static hazards in combinational logic devices (Sections 9.1 and 9.2) 
Review 

EXAM #2 

Heuristic development of the basic memory cells (Sections 10.1 through 1004) 
Design and analysis of flip-flops, flip-flop conversion (Sections 10.5 through 10.8) 
Asynchronous overrides; setup and hold time requirements; design and analysis 

of simple synchronous state machines (Sections 10.10 through 10.13) 
Detection and elimination of timing defects in synchronous state machines 

(Sections 11.1 through 11.3) 
Synchronizing of asynchronous inputs (Section 1104) 
Initialization and reset of FSMs; debouncing circuits (Sections 11.7 and 11.8) 
Shift registers and counters (Sections 12.1 through 12.3) 
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Alternative architecture - use of MUXs, decoders, PLDs; the one-hot method 
(Sections 13.1 through 13.3, Section 13.5) 

The controller, data path, and functional partition and system-level design 
(Sections 13.6 and 13.7) 

Review 

EXAM #3 and/or FINAL 

Though the subject coverage for EXAM #3 in course sample outline [3] seems large in 
proportion to those required for EXAM #2, a close inspection will indicate that the number 
of sections are the same. The sections required for EXAM # I number about half that of the 
other two. 

The Quarter System 

Not all courses at colleges and universities are operated on a semester basis. Some are 
operated on the quarter system. This requires that the course subject areas be divided up 
in some logical and effective manner, which may require that both combinational and 
sequential machines be covered within a given quarter course. As a guide to subject area 
planning on the quarter system when using this text, the following quarter system may be 
considered (refer to sample course outlines [11 and [2]): 

First Quarter 

Block I 
EXAM #1 

Block II 
EXAM #2 

Second Quarter 

Block III 
EXAM #1 

Block IV 
EXAM #2 

Third Quarter 

Block V 
EXAM #1 

Block VI 
EXAM #2 

Fourth Quarter (if applicable) 

Chapters 14 and 15 
EXAM #1 

Chapter 16 
PROJECT and/or EXAM #2 
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Certainly, there are an endless number of ways in which the subject areas can be divided up 
to meet the requirements of digital design courses that are offered on the basis of a semester, 
quarter, or trimester system. The presence of 16 relatively small chapters should make the 
decision process less complicated and lead to a meaningful and productive treatment of 
digital logic design. 

INSTRUCTIONAL SUPPORT SOFTWARE AND MATERIALS 

For the Student 

Bundled with this text on CD-ROM are five important software programs: a logic simulator 
called EXL-Sim2002; two logic minimizers, BOOZER and ESPRESSO II; and two advanced 
CAD programs called ADAM and A-OPS. Complete instructions are included with each 
software program. The following is a short description of each software program. More 
detail descriptions are available in Appendix B. 

EXL-Sim2002 is a gate-level, interactive, schematic-capture and simulation program that 
is ideally suited for use with this text at either the entry or advanced-level oflogic design. Its 
many features include drag-and-drop capability, rubber banding, mixed logic and positive 
logic simulations, macro generation, individual and global delay assignments, connection 
features that eliminate the need for wire connections, schematic page sizing and zooming, 
waveform zooming and scrolling, and a variety of printout capabilities. 

BOOZER is a software minimization tool that is recommended for use with this text. It 
accepts entered variable (EV) or canonical (l's and O's) data from K-maps or truth tables, 
with or without don't cares, and returns an optimal or near optimal single or multi-output 
solution. It can handle up to 12 Boolean functions and as many inputs when used on modern 
computers. 

ESPRESSO II is another software minimization tool that is in wide use in schools and in
dustry.1t supports advanced algorithms for minimization of two-level, multi-output Boolean 
functions but does not accept entered variables. 

ADAM (for Automated Design of Asynchronous Machines) is a very powerful software 
tool that permits the automated design of very complex asynchronous and synchronous 
state machines, all free of timing defects. The input files are state tables for the desired 
state machines. The output files are given in the Berkeley format appropriate for directly 
programming PLAs. 

A-OPS stands for Asynchronous One-hot Programmable Sequencer designs of asyn
chronous and synchronous state machines. A-OPS generates output files and VHDL code 
for the automated timing-defect-free design of I-Hot sequencers and state machines that 
can be driven by either PLAs or RAM. This software tool can be used to design systems 
that permit instant switching between radically different timing-defect-free controllers on 
a time-shared basis. 

For the Instructor 

An instructor's manual is placed on CD-ROM together with all five software programs 
given in the previous paragraphs. The instructor's manual contains the statement of and 
the detailed solutions for all problems presented in the text, all in PDF format. All figures 
(also in PDF format) are provided separately in the manual for selective use in creating 
transparencies or hard copies. Acrobat Reader 5.0, required for reading these files, is free 
from the Adobe web site http://www.adobe.com. 
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ERRORS 

Any text of this size and complexity is bound to contain errors and omissions that have 
been overlooked throughout the extensive review and editing process. Identification of any 
error or omission would be greatly appreciated by the editors of Academic Press and by the 
author. Constructive comments regarding matters of clarity, organization and coverage of 
subject matter are also valued. Such information should be directed to the author: 

Professor Richard F. Tinder 
School of Electrical Engineering and Computer Science 
Washington State University 
Pullman, WA 99164-2752 
e-mail address: rtinder@eecs.wsu.edu 
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CHAPTER 1 

Introductory Remarks 
and Glossary 

1.1 WHAT IS SO SPECIAL ABOUT DIGITAL SYSTEMS? 

No area of technology has had or is likely to continue to have more of a profound impact on 
our lives than digital system development. That's quite a statement, but its truth is obvious 
when one considers the many ways we have become dependent on "digitized" technology. 
To put this in perspective, let us review the various areas in which digital systems play 
an important role in our lives. As this is done, keep in mind that there is significant, if 
not necessary, overlap in the digital system technologies that make possible those areas we 
have come to take for granted: computing, information retrieval, communication, automatic 
control systems, entertainment, and instrumentation. 

Computing: A computer, like the telephone and television, has become almost an es
sential part of every household. Word processing, information retrieval, communication, 
finance and business management, entertainment, art and graphics - these are but a few 
of the functions performed by our beloved computers. In the span of a little more than 
10 years, computers in the home and in small businesses have advanced from what was 
termed microcomputers to the present computers with nearly mainframe capability. Home 
computers can now perform relatively sophisticated operations in the areas just mentioned. 
Of course, vastly improved computer speed and memory, together with powerful software 
development, are primarily responsible for the rapid rise in personal computer capabilities. 
In addition to the digital computer itself, there are other digital devices or peripherals that are 
normally part of a computer system. These include disk drives, CD-ROM drives, modems, 
CRT and LCD monitors, sound cards, scanners, and printers. Then there are the hand-held 
calculators that now have nearly microcomputer capability and are quite inexpensive, All of 
these things have been made possible because of the advances in digital system technology. 
But this is just the beginning. 

Information Retrieval: The ability to consult one's favorite encyclopedia via CD-ROM or 
surf (browse) the World Wide Web (WWW) has become a very important part of computer 
use in the home, at school, and in business. The use of CD-ROMs also permits access to 
information in the specialized areas of literature, music, religion, health, geography, math, 

1 
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physical science, biology, and medicine, to name a few. But information retrieval is not 
limited to these functions. Network communication between computers and our ability to 
tap into huge university libraries are other important sources of information. Think of where 
businesses would be without access to data-base information that is critical to day-to-day 
operation. Local and national security operations depend heavily on data-base information 
stored on computers that are most likely part of a network. Yes, and then there is education. 
What an invaluable source of information the computer has become both in the classroom 
and in the home. 

Communications: It would be hard to imagine what our world would be like without the 
ability to send facsimile (fax) communications or e-mail. These are digital transmission 
methods that were developed to a high degree of sophistication over a period of about 
10 years. Of course, the modem, another digital device, has made this possible. Digital 
communication is hardly limited to fax and e-mail. One's home phone or cellular phone 
is likely to be digital, permitting a variety of features that were difficult if not impossible 
to provide by means of an analog transmission device. Scientific data, national security 
information, and international communications, all of which are collected and transmitted 
back to earth by satellite, are accomplished by digital transmission methods with accuracy 
not possible otherwise. 

Automatic Control Systems: Digital automatic control systems have replaced the old ana
log methods in almost all areas of industry, the home, and transportation. Typical examples 
include rapid transit systems, integrated circuit fabrication systems, robot systems of all 
types in assembly-line production, space vehicle operations, a variety of automobile asso
ciated operations, guidance systems, home security systems, heating and air-conditioning 
systems, many home appliances, and a host of medical systems. 

Entertainment: Who cannot help but be awed by the impressive computer generated 
graphics that have become commonplace in movies and in games produced on CDs. Movies 
such as Jurassic Park and the new Star Wars series will perhaps be remembered as having 
established a new era in the art of make-believe. The games that are available on the 
home computer include everything from chess and casino-type games to complex and 
challenging animated aircraft operations and adventure/fantasy games. Then add to these 
the high-quality sound that CDs and the Internet produce, and one has a full entertainment 
center as part of the personal computer. Of course, the incursion of digital systems into 
the world of entertainment extends well beyond movies and games. For example, one has 
only to listen to digitally recorded or remastered CDs (from the original analog recordings) 
to enjoy their clear, noise-free character. Also, don't forget the presence of electronic 
keyboard instruments ranging from synthesizers to Clavinovas and the like. Then for those 
who consider photography as entertainment, digital cameras and camcorders fall into this 
category. And the list goes on and on. 

Instrumentation: A listing of the many ways in which digital system technology has af
fected our lives would not be complete without mentioning the myriad of measurement and 
sensing instruments that have become digitized. Well known examples of electronic labora
tory testing equipment include digital voltmeters, ammeters, oscilloscopes, and waveform 
generators and analyzers. Then there are the sophisticated medical instruments that include 
MRI and CAT scan devices. Vital signs monitoring equipment, oximeters, IV pumps, pa
tient controlled analgesia (PCA) pumps, digital ear thermometers, and telemetry equipment 
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are typical examples of the many other ways the medical industry has made use of digital 
systems technology. 

1.2 THE YEAR 2002 AND BEYOND? 

If one considers what has happened in, say, the past 15 years, the path of future techno
logical development in the field of digital systems would seem to be limited only by one's 
imagination. It is difficult to know where to begin and where to end the task of forecasting 
digital system development, but here are a few examples in an attempt to accomplish this: 

Computer power will continue to increase as the industry moves to 0.101l (and below) 
CMOS technology with speeds into the terahertz range and with a demand for more efficient 
ways to sink the heat generated by billions of transistors per processor operated with supply 
voltages of one volt or below. There will be dramatic changes in the peripherals that are 
now viewed as part of the computer systems. For example, vacuum (CRT) monitors will 
eventually be replaced by picture-frame style LCD monitors, or by micropanel displays 
using either DLP (Digital Light Processing) or FED (field emission display) technologies. 
Digitized high-definition TV (HDTV) will eventually replace all conventional TV sets, and 
the World Wide Web (WWW) will be viewed on HDTV via special dedicated computers. 
In all, larger, sharper, brighter, and clearer computer and TV displays are to be expected, 
together with a fast-growing and impressive assortment of wireless hand-held and wrist
bound devices. 

Expect that the mechanically operated magnetic storage systems (disk drives) of today 
will soon be replaced by a MR (magneto-resistive) technology that will increase the areal 
storage density (gigabits per square inch) by a factor of 100 to 200, or by OAWD (optically 
assisted Winchestor drive) and MO (magneto-optical) technologies that are expected to 
increase the areal density even further. Eventually, a holographic storage technology or 
a proximal probe technology that uses a scanning tunneling microscopic technique may 
provide capabilities that will take mass storage to near its theoretical limit. Thus, expect 
storage systems to be much smaller with enormously increased storage capacity. 

Expect that long-distance video conferencing via computer will become as commonplace 
as the telephone is today. Education will be a major beneficiary of the burgeoning digital 
age with schools (K-12, and universities and colleges both public and private) being piped 
into major university libraries and data banks, and with access to the ever-growing WWW. 
Look for the common film cameras of today to be replaced by digital cameras having 
megapixel resolution, audio capability, and with the capability to store a large number of 
pictures that can be reviewed on camera and later presented on screen by any computer. 
Expect that certain aspects oflaser surgery will be microprocessor controlled and that X-ray 
imaging methods (e.g., mammography) and radiology generally will be digitally enhanced 
as a common practice. Also, health facilities and hospitals will be linked for immediate 
remote site consultation and for specialized robotics surgery. 

Expect digital systems to become much more sophisticated and pervasive in our lives. 
Interconnectivity between "smart" electrically powered systems of all types in the home, 
automobile, and workplace could be linked to the web together with sophisticated fail-safe 
and backup systems to prevent large-scale malfunction and possible chaos. Such inter
connected systems are expected to have a profound effect on all aspects of our lives
what and when we eat, our exercise habits, comfort and entertainment needs, shopping 
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activities, medical requirements, routine business transactions. appointment schedules, and 
many others imaginable. 

Optical recognition technology will improve dramatically in the fields of robotics, vehi
cular operation, and security systems. For example, expect that iris and retinal pattern 
recognition will eventually be used to limit access to certain protected systems and areas, 
and may even replace digital combination locks, IDs, and licenses for such purposes. 
Taxation, marketing, and purchasing methods will undergo dramatic changes as digital 
systems become commonplace in the world of government, commerce. and finance. Even 
the world of politics, as we now know it, will undergo dramatic change with the use of new 
and more efficient voting and voter sampling methods. Mass production line manufacturing 
methods by using robots and other digitally automated mechanical devices will continue to 
evolve at a rapid pace as dictated by domestic and world market forces. Expect that logic 
minimization tools and automated digital design tools will become more commonplace 
and sophisticated, permitting designers with little practical experience to design relatively 
complex systems. 

Business networking will undergo dramatic improvements with the continued devel
opment of gigabit Ethernet links and high-speed switching technology. Home connectiv
ity will see vast improvements in satellite data service downloading (up to 400 kbps), 
56-kbps (and higher) modems that need high-quality digital connections between phones 
and destination, improved satellite data service with bidirectional data transmission, and 
DSL (digital subscriber line) cable modem systems. 

Finally, there are some really exciting areas to watch. Look for speech recognition, speech 
synthesis, and handwriting and pattern recognition to dramatically change the manner in 
which we communicate with and make use of the computer both in business and in the 
home. Somewhere in the future the computer will be equipped with speech understanding 
capability that allows the computer to build ideas from a series of spoken words - perhaps 
like HAL 9000 in the film 2001: A Space Odyssey. Built-in automatic learning capability 
may yet prove to be the most challenging undertaking facing computer designers of the 
future. Thus, expect to see diminished use of the computer keyboard with time as these 
technologies evolve into common usage. 

Revolutionary computer breakthroughs may come with the development of radically 
different technologies. Carbon nanotube technology, for example, has the potential to 
propel computer speeds well into the gigahertz range together with greatly reduced power 
dissipation. The creation of carbon nanotube transistors could signal the dawn of a new 
revolution in chip development. Then there is the specter of the quantum computer, whose 
advent may lead to computing capabilities that are trillions of times faster than those of 
conventional supercomputers. All of this is expected to be only the beginning of a new 
millennium of invention limited only by imagination. Remember that radically different 
technological breakthroughs can appear at any time, even without warning, and can have a 
dramatic affect on our lives, hopefully for the better. 

To accomplish all of the preceding, a new generation of people, technically oriented to 
cope with the rapidly changing digital systems technology, will result as it must. This new 
generation of people will have a dramatic impact on education. labor, politics, transportation, 
and communications. and will most certainly affect domestic and global economies. Thus, 
expect that more pressure and responsibility will be placed on universities to produce the 
quality training that can match up to this challenge, not just over a short period but also in 
the long term. 
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1.3 A WORD OF WARNING 

Not yet mentioned are the changes that must take place in the universities and colleges 
to deal with this rapidly evolving technology. It is fair to say that computer aided design 
(CAD) or automated design of digital systems is on the upswing. Those who work in the 
areas of digital system design are familiar with such hardware description languages as 
VHDL or Verilog, and the means to "download" design data to program PLAs or FPGAs 
(field programmable gate arrays). It is possible to generate a high-level hardware description 
of a digital system and introduce that hardware description into circuit layout tools such 
as Mentor Graphics. The end result would be a transistor-level representation of a CMOS 
digital system that could be simulated by one of several simulation tools such as HSPICE 
and subsequently be sent to the foundry for chip creation. The problem with this approach to 
digital system design is that it bypasses the need to fully understand the intricacies of design 
that ensure proper and reliable system operation. As is well known, a successful HSPICE 
simulation does not necessarily ensure a successful design. In the hands of a skilled and 
experienced designer this approach may lead to success without complications. On the 
other hand, if care is not taken at the early stages of the design process and if the designer 
has only a limited knowledge of design fundamentals, the project may fail at one point 
or another. Thus, as the use of automated (CAD) designs become more attractive to those 
who lack design detail fundamentals, the chance for design error at the system, device, 
gate, or transistor level increases. The word of warning: Automated design should never 
be undertaken without a sufficient knowledge of the field and a thorough understanding of 
the digital system under consideration - a little knowledge can be dangerous! This text is 
written with this warning in mind. The trend toward increasing CAD use is not bad, but 
automated design methods must be used cautiously with sufficient background knowledge 
to carry out predictably successful designs. Computer automated design should be used 
to remove the tedium from the design process and, in many cases, make tractable certain 
designs that would otherwise not be possible. But CAD is not a replacement for the details 
and background fundamentals required for successful digital system design. It is the goal 
of this text to provide the reader with the necessary details and background fundamentals 
so as to permit a successful transition into the CAD domain. 

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 

Upon entering any new field, there is always the problem of dealing with the "jargon" that 
is peculiar or unique to that field. Conspicuously absent in most texts on digital design is a 
glossary of terms, expressions, and abbreviations that are used - yes, and even overused
in presenting the subject matter. Readers of these texts are often left leafing through back 
pages and chapters in search of the meaning of a given term, expression or abbreviation. 
In breaking with tradition, this text provides an extensive glossary, and does so here at the 
beginning of the text where it can be used - not at the end of the text where it may go 
unnoticed. In doing this, Chapter 1 serves as a useful source of information. 

ABEL: advanced Boolean expression language. 
Accumulator: an adder/register combination used to store arithmetic results. 
Activate: to assert or make active. 
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Activation level: the logic state of a signal designated to be active or inactive. 
Activation level indicator: a symbol, (H) or (L), that is attached to a signal name to 

indicate positive logic or negative logic, respectively. 
Active: a descriptor that denotes an action condition and that implies logic 1. 
Active device: any device that provides current (or voltage) gain. 
Active high (H): indicates a positive logic source or signal. 
Active low (L): indicates a negative logic source. 
Active state: the logic I state of a logic device. 
Active transition point: the point in a voltage waveform where a digital device passes 

from the inactive state to the active state. 
Addend: an operand to which the augend is added. 
Adder: a digital device that adds two binary operands to give a sum and a carry. 
Adderlsubtractor: a combinational logic device that can perform either addition or sub-

traction. 
Adjacent cell: a K-map cell whose coordinates differ from that of another cell by only 

one bit. 
Adjacent pattern: an XOR pattern involving an uncomplemented function in one cell of 

a K-map and the same function complemented in an adjacent cell. 
ALFSR: autonomous linear feedback shift register. 
ALFSR counter: a counter, consisting of an ALFSR, that can sequence through a unique 

set of pseudo-random states that can be used for test vectors. 
Algorithm: any special step-by-step procedure for accomplishing a task or solving a 

problem. 
Alternative race path: one of two or more transit paths an FSM can take during a race 

condition. 
ALU: arithmetic and logic unit. 
Amplify: the ability of an active device to provide current or voltage gain. 
Analog: refers to continuous signals such as voltages and current, in contrast to digital 

or discrete signals. 
AND: an operator requiring that all inputs to an AND logic circuit symbol be active before 

the output of that symbol is active - also, Boolean product or intersection. 
AND function: the function that derives from the definition of AND. 
AND gate: a physical device that performs the electrical equivalent of the AND function. 
AND laws: a set of Boolean identities based on the AND function. 
AND-OR-Invert (AOI) gate: a physical device, usually consisting of two AND gates 

and one NOR gate, that performs the electrical equivalent of SOP with an active low 
output. 

AND plane: the ANDing stage or matrix of a PLD such as a ROM, PLA, or PAL. 
Antiphase: as used in clock-driven machines to mean complemented triggering of a 

device relative to a reference system, such as, an PET input device to an RET FSM. 
Apolar input: an input, such as CK, that requires no activation level indicator to be 

associated with it. 
Arbiter module: a device that is designed to control access to a protected system by 

arbitration of contending signals. 
Arithmetic and logic unit (ALU): a physical device that performs either arithmetic or 

logic operations. 



1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 7 

Arithmetic shifter: a combinational shifter that is capable of generating and preserving 
a sign bit. 

Array algebra: the algebra of Boolean arrays and matrices associated with the automated 
design of synchronous and SIT machines. 

Array logic: any of a variety of logic devices, such as ROMs, PLAs or PALs, that are 
composed of an AND array and an OR array (see Programmable logic device or PLD). 

ASIC: application-specific IC 
ASM: algorithmic state machine. 
Assert: activate. 
Assertion level: activation level. 
Associative law: a law of Boolean algebra that states that the operational sequence as 

indicated by the location of parentheses in a p-term or s-term does not matter. 
Associative pattern: an XOR pattern in a K-map that allows a term or variable in an 

XOR or EQV function to be looped out (associated) with the same term or variable in 
an adjacent cell provided that the XOR or EQV connective is preserved in the process. 

Asynchronous: clock-independent or self-timed-having no fixed time relationship. 
Asynchronous input: an input that can change at any time, particularly during the sam

pling interval of the enabling input. 
Asynchronous override: an input such as preset or clear that, when activated, interrupts 

the normal operation of a flip-flop. 
Asynchronous parallel load: the parallel loading of a register or counter by means of 

the asynchronous PR and CL overrides of the flip-flops. 
Augend: an operand that is added to the addend in an addition operation. 
Barrel shifter: a combinational shifter that only rotates word bits. 
Base: radix. Also, one of three regions in a BIT. 
Basic cell: a basic memory cell, composed of either cross-coupled NAND gates or cross-

coupled NOR gates, used in the design of other asynchronous FSMs including flip-flops. 
BCD: binary coded decimal. 
BCR: binary coded hexadecimal. 
BCO: binary coded octal. 
BDD: binary decision diagram. 
Bidirectional counter: a counter that can count up or down. 
Binary: a number system of radix 2; having two values or states. 
Binary code: a combination of bits that represent alphanumeric and arithmetic informa

tion. 
Binary coded decimal (BCD): a 4-bit, IO-word decimal code that is weighted 8,4,2, I 

and that is used to represent decimal digits as binary numbers. 
Binary coded hexadecimal (BCR): the hexadecimal number system used to represent 

bit patterns in binary. 
Binary coded octal (BCO): the octal number system used to represent bit patterns in 

binary. 
Binary decision diagram (BDD): a graphical representation of a set of binary-valued 

decisions, beginning with an input variable and proceeding down paths that end in either 
logic I or logic O. 

Binary word: a linear array of juxtaposed bits that represents a number or that conveys 
an item of information. 
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Bipolar junction transistor (BJT): an npn or pnp transistor. 
Bipolar PROM: a PROM that uses diodes as fusible links. 
BIST: built-in-self-test. 
Bit: a binary digit. 
Bit slice: partitioned into identical parts such that each part operates on one bit in a multibit 

word - part of a cascaded system of identical parts. 
BJT: bipolar junction transistor. 
BO: borrow-out. 
Bond set: in the CRMT method, a disjoint set of bond variables. 
Bond variable: one of two or more variables that form the axes of an EV K-map used in 

the CRMT method of function minimization. 
Boolean algebra: the mathematics of logic attributed to the mathematician George Boole 

(1815-1864). 
Boolean product: AND or intersection operation. 
Boolean sum: OR or union operation. 
BOOZER: Boolean ZEro-one Reduction - a multioutput logic minimizer that accepts 

entered variables. 
Borrow-in: the borrow input to a subtractor. 
Borrow-out: the borrow output from a subtractor. 
Boundary: the separation of logic domains in a K-map. 
Bounded pulse: a pulse with both lower and upper limits to its width. 
Branching condition (BC): the input requirements that control a state-to-state transition 

in an FSM. 
Branching path: a state-to-state transition path in a state diagram. 
Buffer: a line driver. 
Buffer state: a state (in a state diagram) whose only purpose is to remove a race condition. 
Bus: a collection of signal lines that operate together to transmit a group of related signals. 
Byte: a group of eight bits. 
C: carry. Also, the collector terminal in a BJT. 
CAD: computer-aided design. 
CAE: computer-aided engineering. 
Call module: a module designed to control access to a protected system by issuing a 

request for access to the system and then granting access after receiving acknowledgment 
of that request. 

Canonical: made up of terms that are either all minterms or all max terms. 
Canonical truth table: ai's and O's truth table consisting exclusively of minterms or 

maxterms. 
Capacitance, C: the constant of proportionality between total charge on a capacitor and 

the voltage across it, Q = C V, where C is given in farads (F) when charge Q is given in 
coulombs and V in volts. 

Capacitor: a two-terminal energy storing element for which the current through it is 
determined by the time-rate of change of voltage across it. 

Cardinality: the number of prime implements (p-term or s-term cover) representing a 
function. 

Carry generate: a function that is used in a C<1rry look-ahead (CLA) adder. 
Carry-in: the carry input to a binary adder. 
Carry look-ahead (CLA): same as look-ahead-carry. 
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Carry~out: the carry output from an Adder. 
Carry propagate: a function that is used in a CLA adder. 
Carry save (CS): a fast addition method for three or more binary numbers where the 

carries are saved and added to the final sum. 
Cascade: to combine identical devices in series such that anyone device drives another; 

to bit-slice. 
Cell: the intersection of all possible domains of a K-map. 
Central processing unit (CPU): a processor that contains the necessary logic hardware 

to fetch and execute instructions. 
CGP: carry generate/propagate. 
CI: carry-in. 
Circuit: a combination of elements (e.g., logic devices) that are connected together to 

perform a specific operation. 
CK: clock. 
CL or CLR: clear. 
CLA: carry look-ahead. 
CLB: configurable logic block. Also, a logic cell (LC). 
Clear: an asynchronous input used in flip-flops, registers, counters and other sequential 

devices, that, when activated, forces the internal state of the device to logic O. 
Clock: a regular source of pulses that control the timing operations of a synchronous 

sequential machine. 
Clock skew: a phenomenon that is generally associated with high frequency clock dis-

tribution problems in synchronous sequential systems. 
C~module: an RMOD. 
CMOS: complementary configured MOSFET in which both NMOS and PMOS are used. 
CNT: mnemonic for count. 
CO: carry-out. 
Code: a system of binary words used to represent decimal or alphanumeric information. 
Code converter: a device designed to convert one binary code to another. 
Collapsed truth table: a truth table containing irrelevant inputs. 
Collector: one of three regions in a BJT. 
Combinational hazard: a hazard that is produced within a combinational logic circuit. 
Combinational logic: a configuration of logic devices in which the outputs occur in 

direct, immediate response to the inputs without feedback. 
Commutative law: the Boolean law that states that the order in which variables are 

represented in a p-term or s-term does not matter. 
Comparator: a combinational logic device that compares the values of two binary num

bers and issues one of three outputs indicative of their relative magnitudes. 
Compatibility: a condition where the input to a logic device and the input requirement 

of the device are of the same activation level, that is, are in logic agreement. 
Compiler: converts high-level language statements into typically a machine-coded or 

assembly language form. 
Complement: the value obtained by logically inverting the state of a binary digit; the 

relationship between numbers that allows numerical subtraction to be performed by an 
addition operation. 

Complementary metal oxide semiconductor (CMOS): a form of MOS that uses both 
p- and n-channel transistors (in pairs) to form logic gates. 
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Complementation: a condition that results from logic incompatibility; the mixed-logic 
equivalent of the NOT operation. 

Complex PLD: an on-chip array of PAL-like PLDs with 110 blocks and a programmable 
interconnect structure. 

Composite output map: a K-map that contains entries representing multiple outputs. 
Computer: a digital device that can be programmed to perform a variety of tasks (e.g., 

computations) at extremely high speed. 
Concatenation: act of linking together or being linked together in a series. 
Conditional branching: state-to-state transitions that depend on the input status of the 

FSM. 
Conditional output: an output that depends on one or more external inputs. 
Conjugate gate forms: a pair of logic circuit symbols that derive from the same physical 

gate and that satisfy the DeMorgan relations. 
Connective: a Boolean operator symbol (e.g., +, EB, n). 
Consensus law: a law in Boolean algebra that allows simplification by removal of a 

redundant term. 
Consensus term: the redundant term that appears in a function obeying the consensus 

law. 
Controlled inverter: an XOR gate that is used in either the inverter or transfer mode. 
Controller: that part of a digital system that controls the data path. 
Conventional K-map: a K-map whose cell entries are exclusively I's and O's. 
Counter: a sequential logic circuit designed to count through a particular sequence of 

states. 
Counteracting delay: a delay placed on an external feedback path to eliminate an E

hazard or d-trio. 
Count sequence: a repeating sequence of binary numbers that appears on the outputs of 

a counter. 
Coupled term: one of two terms containing only one coupled variable. 
Coupled variable: a variable that appears complemented in one term of an expression 

(SOP or POS) and that also appears uncomplemented in another term of the same ex
pression. 

Cover: a set of terms that covers all minterms or maxterms of a function. 
CPLD: complex PLD. 
CPU: central processing unit. 
Creeping code: any code whose bit positions fill with I 's beginning at one end, and then 

fill with O's beginning at the same end. 
Critical race: a race condition in an asynchronous FSM that can result in transition to 

and stable residence in an erroneous state. 
CRMT: contracted Reed-Muller transformation. 
Cross branching: multiple transition paths from one or more states in the state diagram 

(or state table) of a sequential machine whereby unit distance coding of states is not 
possible. 

CU: control unit. 
Current, I: the flow or transfer of charged matter (e.g., electrons) given in amperes (A). 
Cutoff mode: the physical state of a BJT in which no significant collector current is 

permitted to flow. 
Cycle: two or more successive and uninterrupted state-to-state transitions in an asyn

chronous sequential machine. 
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Data bus: a parallel set of conductors which are capable of transmitting or receiving data 
between two parts of a system. 

Data lockout: the property of a flip-flop that permits the data inputs to change immediately 
following a reset or set operation ~':ithout affecting the flip-flop output. 

Data lockout Hip-Hop: a one-bit memory device which has the combined properties of a 
master/slave flip-flop and an edge triggered flip-Hop. 

Data path: the part of a digital system that is controlled by the controller. 
Data path unit: the group of logic devices that comprise the data path. 
Data selector: a multiplexer. 
Data-triggered: referring to flip-flops triggered by external inputs (no clock) as in the 

pulse mode. 
DeL: digital combination lock. 
Deactivate: to make inactive. 
Deassert: deactivate. 
Debounce: to remove the noise that is produced by a mechanical switch. 
Debouncing circuit: a circuit that is used to debounce a switch. 
Decade: a quantity of 10. 
Decoder: a combinational logic device that will activate a particular minterm code output 

line determined by the binary code input. A demultiplexer. 
Decrement: reduction of a value by some amount (usually by 1). 
Delay: the time elapsing between related events in process. 
Delay circuit: a circuit whose purpose it is to delay a signal for a specified period of 

time. 
Delimiter: a character used to separate lexical elements and has a specific meaning in a 

given language. Examples are @,#, +, I,', >. 
DeMorgan relations: mixed logic expressions of DeMorgan's laws. 
DeMorgan's laws: a property that states that the complement of the Boolean product of 

terms is equal to the Boolean sum of their complements: or that states that the complement 
of the Boolean sum of terms is the Boolean product of their complements. 

Demultiplexer: a combinational logic device in which a single input is selectively steered 
to one of a number of output lines. A decoder. 

Depletion mode: a normally ON NMOS that has a conducting n-type drain-to-source 
channel in the absence of a gate voltage but that looses its conducting state when the 
gate voltage reaches some negative value. 

D ftip-Hop: a one-bit memory device whose output value is set to the D input value on 
the triggering edge of the clock signal. 

D-Hop module: a memory element that is used in an EAIC system and that has charac
teristics similar to that of a D flip-flop. 

Diagonal pattern: an XOR pattern formed by identical EV subfunctions in any two 
diagonally located cells of a K-map whose coordinates differ by two bits. 

Difference: the result of a subtraction operation. 
Digit: a single symbol in a number system. 
Digital: related to discrete quantities. 
Digital combination lock: a sequence recognizer that can be used to unlock or lock 

something. 
Digital engineering design: the design and analysis of digital devices. 
Digital signal: a logic waveform composed of discrete logic levels a binary digital 

signal). 
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Diode: a two-terminal passive device consisting of a p-n junction that permits significant 
current to flow only in one direction. 

Diode-transistor logic: logic circuits consisting mainly of diodes and BJTs. 
Direct address approach: an alternative approach to FSM design where PS feedback is 

direct to the NS logic. 
Disjoint: as used in "mutually disjoint" to mean a set of p-terms whose ANDed values 

taken two at a time are always logic zero; or a set of s-terms whose ORed values taken 
two at a time are always logic one. 

Distributed path delays: a notation in which a path delay is assigned to each gate or 
inverter of a logic circuit. 

Distributive law: The dual of the factoring law. 
Divide-by-n counter: a binary counter of n states whose MSB output divides the clock 

input frequency by n. 
Dividend: the quantity that is being divided by the divisor in a division operation. 
Divider: a combinational logic device that performs the binary division operation. 
Divisor: the quantity that is divided into the dividend. 
DLP: digital light processing. 
DMUX: demultiplexer (see decoder). 
Domain: a range of logic influence or control. 
Domain boundary: the vertical or horizontal line or edge of a K-map. 
Don't care: a non-essential minterm or maxterm, denoted by the symbol ¢, that can take 

either a logic I or logic 0 value. Also, a delimiter ¢ that, when attached to a variable or 
term, renders that variable or term nonessential to the parent function. 

DPU: data path unit; also data processing unit. 
Drain: one of three terminals of a MOSFET. 
DRAM: dynamic RAM. 
Driver: a one-input device whose output can drive substantially more inputs than a stan

dard gate. A buffer. 
DTL: diode-transistor logic. 
D-trio: a type of essential hazard that causes a fundamental mode machine to transit to 

the correct state via an unauthorized path. 
Duality: a property of Boolean algebra that results when the AND and OR operators (or 

XOR and EQV operators) are interchanged simultaneously with the interchange of l's 
and O's. 

Dual-rail systems: as used in this text, a system of split signals in an ALU configuration 
that permits a completion signal to be issued at the end of each process, be it arithmetic 
or logic. 

Dual relations: two Boolean expressions that can be derived one from the other by duality. 
Duty cycle: in a periodic waveform, the percentage of time the waveform is active. 
Dyad: a grouping of two logically adjacent minterms or maxterms. 
Dynamic domino logic: buffered CMOS logic that requires complementary precharge 

and evaluate transistors for proper operation. 
Dynamic hazard: multiple glitches that occur in the output from a multilevel circuit 

because of a change in an input for which there are three or more asymmetric paths 
(delay-wise) of that input to the output. 

Dynamic RAM: a volatile RAM memory that requires periodic refreshing to sustain its 
memory. 
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EAIC system: externally asynchronous/internally clocked system. 
ECL: emitter-coupled logic. 
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Edge-triggered flip-flop: a flip-flop that is triggered on either the rising edge or falling 
edge of the clock waveform and that exhibits the data-lock-out feature. 

EEPROM: electrically erasable PROM. 
E-hazard: essential hazard. 
EI: enable-in. 
Electron: the majority carrier in an n-type conducting semiconductor. 
Electronic switch: a voltage or current controlled switching device. 
Emitter: one of three terminals of a BJT. 
Emitter-coupled logic (ECL): a high-speed non saturating logic family. 
EN: enable. 
Enable: an input that is used to enable (or disable) a logic device. or that permits the 

device to operate normally. 
Encoder: a digital device that converts digital signals into coded form. 
Endless cycle: an oscillation that occurs in asynchronous FSMs. 
Enhancement mode: a normally OFF NMOS that develops an n-channel drain-to-source 

conducting path (i.e., turns ON) with application of a sufficiently large positive gate 
voltage. 

Entered variable (EV): a variable entered in a K-map. 
EO: enable-out. 
EPI: essential prime implicant. 
EPLD: erasable PLD. 
EPROM: erasable programmable read-only memory. 
EQPOS: EQV-product-of-8ums. 
Equivalence: the output of a two-input logic gate that is active if, and only if, its inputs 

are logically equivalent (i.e., both active or both inactive). 
EQV: equivalence. 
EQV function: the function that derives from the definition of equivalence. 
EQV gate: a physical device that performs the electrical equivalent of the EQV function. 
EQV laws: a set of Boolean identities based on the EQV function. 
Erasable programmable read-only memory (EPROM): a ROM that can be program

med many times. 
Error catching: a serious problem in a JK master/slave flip-flop where a I or 0 is caught 

in the master cell when clock is active and is issued to the slave cell output when clock 
goes inactive. 

Essential hazard: a disruptive sequential hazard that can occur as a result of an explicitly 
located delay in an asynchronous FSM that has at least three states and that is operated 
in the fundamental mode. 

Essential prime implicant (EPI): a prime implicant that must be used to achieve mini-
mum cover. 

EU: execution unit. 
EV: entered variable. 
EV K-map: a K-map that contains EVs. 
EV truth table: a truth table containing EVs. 
Even parity: an even number of 1'8 (or D's) in a binary word depending on how even 

parity is defined. 
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EVM: entered variable K-map. 
Excess 3 BCD (XS3) code: BCD plus three. 
Excitation table: a state transition table relating the branching paths to the branching 

condition values given in the state diagram for a flip-flop. 
Exclusive OR: a two-variable function that is active if only one of the two variables is 

active. 
EXOP: XOR-sum-of-products. 
Expansion of states: opposite of merging of states. 
Extender: a circuit or gate that is designed to be connected to a digital device to increase 

its fan-in capability - also called an expander. 
Factoring law: the Boolean law that permits a variable to be factored out of two or more 

p-terrns that contain the variable in an SOP or XOR expression. 
Fall time: the period of time it takes a voltage signal to change from 90% to 10% of its 

high value. 
FaIling edge-triggered (FET): activation of a device on the falling edge of the triggering 

(sampling) variable. 
False carry rejection: the feature in an ALU where all carry-outs are disabled for all 

nonarithmetic operations. 
False data rejection (FDR): the feature of a code converter that indicates when unau

thorized data has been issued to the converter. 
Fan-in: the maximum number of inputs a gate may have. 
Fan-out: the maximum number of equivalent gate inputs that a logic gate output can 

drive. 
FDR: false data rejection. 
FDS diagram: fully documented state diagram. 
FED: field emission display. 
Feedback path: a signal path of a PS variable from the memory output to the NS input. 
FET: falling edge-triggered. Also, field effect transistor. 
Fetch: that part of an instruction cycle in which the instruction is brought from the memory 

to the CPU. 
FF: flip-flop. 
Field programmable gate array (FPGA): a complex PLD that may contain a variety of 

primitive devices such as discrete gates, MUXs and flip-flops. 
Field programmable logic array (FPLA): one-time user programmable PLA. 
FIFO: first-in-first-out memory register. 
Fill bit: the bit of a combinational shifter that receives the fill logic value in a shifting 

operation. 
Finite state machine (FSM): a sequential machine that has a finite number of states in 

which it can reside. 
Flag: a hardware or software "marker" used to indicate the status of a machine. 
Flip-flop (FF): a one-bit memory element that exhibits sequential behavior controlled 

exclusively by a clock input. 
Floating-gate NMOS: special NMOS used in erasable PROMs. 
Floating point number (FPN) system: a binary number system expressed in two parts, 

as a fraction and exponential, and that is used in computers to arithmetically manipulate 
large numbers. 

Flow chart: a chart that is made up of an interconnection of action and decision symbols 
for the purpose of representing the sequential nature of something. 
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Flow table: a tabular realization of a state diagram representing the sequential nature of 
an FSM. 

Fly state: a state (in a state diagram) whose only purpose is to remove a race condition. 
A buffer state. 

Forward bias: a voltage applied to a p-n junction diode in a direction as to cause the 
diode to conduct (tum ON). 

FPGA: field programmable gate array. 
FPLA: field programmable logic array. 
FPLS: field programmable logic sequencer. 
Free set: variables of a function not used as the bond set in CRMT forms. 
Frequency, f: the number of waveform cycles per unit time in Hz or S-I. 

Frequency division: the reduction of frequency by a factor of fin usually by means of 
a binary counter, where n is the number of states in the counter. 

FSM: finite state machine, either synchronous or asynchronous. 
Full adder (FA): a combinational logic device that adds two binary bits to a carry-in bit 

and issues a SUM bit and a carry-out bit. 
Full subtractor (FS): a combinational logic device that subtracts a subtrahend bit and a 

borrow-in bit from a minuend bit, and issues a difference bit and a borrow-out bit. 
Fully documented state diagram: a state diagram that specifies all input branching 

conditions and output conditions in literal or mnemonic form, that satisfies the sum 
rule and mutually exclusive requirement, and that has been given a proper state code 
assignment. 

Function: a Boolean expression representing a specific binary operation. 
Functional partition: a diagram that gives the division of device responsibility in a digital 

system. 
Function generator: a combinational logic device that generates logic functions (usually 

via a MUX). 
Function hazard: a hazard that is produced when two or more coupled variables change 

in near proximity to each other. 
Fundamental mode: the operational condition for an asynchronous FSM in which no 

input change is permitted to occur until the FSM has stabilized following any previous 
input change. 

Fusible link: an element in a PLD memory bit location that can be "blown" to store a 
logic 1 or logic 0 depending on how the PLD is designed. 

Gain element: a device, such as a buffer, used to boost a signal. 
GAL: general array logic. 
Gate: a physical device (circuit) that performs the electrical equivalent of a logic function. 

Also, one of three terminals of a MOSFET. 
Gated basic cell: a basic cell that responds to its Sand R input commands only on the 

triggering edge of a gate or clock signal. 
Gate/input tally: the gate and input count associated with a given logic expression - the 

gate tally mayor may not include inverters, but the input count must include both external 
and internal inputs. 

Gate-minimum logic: logic requiring a minimum number of gates; may include XOR 
and EQV gates in addition to two-level logic. 

Gate path delay: the interval of time required for the output of a gate to respond to an 
input signal change. 

Glitch: an unwanted transient in an otherwise steady-state signal. 
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Go/No-Go configuration: a single input controlling the hold and exit conditions of a 
state in a state diagram. 

Gray code: a reflective unit distance code. 
Ground: a reference voltage level usually taken to be zero volts. 
GS: group signal. 
Half adder (HA): a combinational logic device that adds two binary bits and issues a 

sum bit and a carry-out bit. 
Half subtractor: a combinational logic device that subtracts one binary bit from another 

and issues a difference bit and a borrow-out bit. 
Hamming distance: as used in this text, the number of state variables required to change 

during a given state-to-state transition in an FSM. 
Handshake interface: a configuration between two devices whereby the outputs of one 

device are the inputs to the other and vice versa. 
Hang state: an isolated state in which an FSM can reside stably but which is not part of 

the authorized routine. 
Hardware description language (HDL): a high-level programming language with spe

cialized structures for modeling hardware. 
Hazard: a glitch or unauthorized transition that is caused by an asymmetric path delay 

via an inverter, gate, or lead during a logic operation. 
Hazard cover: the redundant cover that removes a static hazard. 
HDL: hardware description language. 
Heuristic: by empirical means or by discovery. 
Hexadecimal (hex): a base 16 number system in which alphanumeric symbols are 

used to represent 4-bit binary numbers 0000 through 1111. (See Binary coded 
hexadecimal. ) 

Hold condition: branching from a given state back into itself or the input requirements 
necessary to effect such branching action. 

Holding register: a PIPO (storage) register that is used to filter output signals. 
Hold time: the interval of time immediately following the transition point during which 

the data inputs must remain logically stable to ensure that the intended transition of the 
FSM will be successfully completed. 

Hole: the absence of a valence electron-the majority carrier in a p-type conducting 
semiconductor. 

HV: high voltage. 
Hybrid function: any function containing both SOP and POS terms. 
IC: integrated circuit. 
ICS: iterated carry-save. 
Implicant: a term in a reduced or minimized expression. 
Inactive: not active and implying logic O. 
Inactive state: the logic 0 state of a logic device. 
Inactive transition point: the point in a voltage waveform where a digital device passes 

from the active state to the inactive state. 
Incompatibility: a condition where the input to a logic device and the input requirement 

of that device are of opposite activation levels. 
Incompletely specified function: a function that contains nonessential minterms or max

terms (see Don't care). 
Increment: to increase usually by 1. 
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Indirect address approach: an alternative approach to FSM design where PS feedback 
to the NS logic is by way of a converter for the purpose of reducing MUX or PLD 
size. 

Inertial delay element: a delay circuit based mainly on an R-C component. 
Initialize: to drive a logic circuit into a beginning or reference state. 
Input: a signal or line into a logic device that controls the operation of that device. 
Input/state map: a K-map, with inputs as the axes and state identifiers as cell entries, 

that can be used to detennine if the sum rule and the mutually exclusive requirement of 
any state in an FSM have been violated. 

Integrated circuit (IC): an electronic circuit that is usually constructed entirely on a 
single small semiconductor chip called a monolith. 

Intersection: AND operation. 
Inversion: the inverting of a signal from HV to LV or vice versa. 
Inverter: a physical device that performs inversion. 
Involution: double complementation of a variable or function. 
VO: input/output. 
lOB: I/O block. 
Irredundant: not redundant, as applied to an absolute minimum Boolean expression. 
Irrelevant input: an input whose presence in a function is nonessential. 
Island: a K-map entry that must be looped out of a single cell. 
Iterative: repeated many times to achieve a specific goal. 
JEDEC: Joint Electron Device Engineering Council as it pertains to PLD programming 

format. 
JK flip-flop: a type of flip-flop that can perform the set, reset, hold, and toggle operations. 
Juxtapose: to place side by side. 
Karnaugh map (K-map): graphical representation of a logic function named after M. 

Karnaugh (1953). 
Keyword: a word specific to a given HDL. 
Kirchhoff's current law: the algebraic sum of all currents into a circuit element or circuit 

section must be zero. 
Kirchhoff's voltage law: the algebraic sum of all voltages around a closed loop must be 

zero. 
K-map: Karnaugh map. 
LAC: look-ahead-carry (see also CLA). 
Large-scale integrated circuits (LSI): IC chips that contain 200 to thousands of gates. 
Latch: a name given to certain types of memory elements as, for example, the D latch. 
Latency: the time (usually in clock cycles) required to complete an operation in a se-

quential machine. 
LCA: logic cell array. 
LD: mnemonic for load. 
Least significant bit (LSB): the bit (usually at the extreme right) of a binary word that 

has the lowest positional weight. 
LED: light-emitting diode. 
Level: a term used when specifying to the number of gate path delays of a logic function 

(from input to output) usually exclusive of inverters. See, for example, two-level logic. 
Level triggered: rising edge triggered (RET) or falling edge triggered (FET). 
Linear state machine: an FSM with a linear array of states. 
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Line driver: a device whose purpose it is to boost and sharpen a signal so as to avoid 
fan-out problems. 

LFSR: linear feedback shift register. 
LFSR counter: a counter, consisting of an LFSR, that can sequence through a unique set 

of pseudorandom states controlled by external inputs. 
Logic: the computational capability of a digital device that is interpreted as either a logic 

1 or logic O. 
Logic adjacency: two logic states whose state variables differ from each other by only 

one bit. 
Logic cell: a configurable logic block (CLB). 
Logic circuit: a digital circuit that performs the electrical equivalent of some logic func

tion or process. 
Logic diagram: a digital circuit schematic consisting of an interconnection oflogic sym

bols. 
Logic family: a particular technology such as TIL or CMOS that is used in the production 

ofICs. 
Logic instability: the inability of a logic circuit to maintain a stable logic condition. Also, 

an oscillatory condition in an asynchronous FSM. 
Logic level: logic status indicating either positive logic or negative logic. 
Logic level conversion: the act of converting from positive logic to negative logic or 

vice versa. 
Logic map: any of a variety of graphical representations of a logic function. 
Logic noise: undesirable signal fluctuations produced within a logic circuit following 

input changes. 
Logic state: a unique set of binary values that characterize the logic status of a machine 

at some point in time. 
Logic waveform: a rectangular waveform between active and inactive states. 
Look-ahead-carry (LAC): the feature of a "fast" adder that anticipates the need for a 

carry and then generates and propagates it more directly than does a parallel adder (see 
also carry look-ahead). 

Loop-out: the action that identifies a prime implicant in a K-map. 
Loop-out protocol: a minimization procedure whereby the largest 2 group of logically 

adjacent minterms or maxterms are looped out in the order of increasing n (n = 0, 1, 2, 
3, ... ). 

LPD: lumped path delay. 
LPDD: lumped path delay diagram. 
LSB: least significant bit. 
LSD: least significant digit. 
LSI: large-scale integration. 
Lumped path delay diagram (LPDD): a diagram that replaces discrete gates with other 

logic symbols for the purpose of comparing path delays from input to output. 
Lumped path delay (LPD) model: a model, applicable to FSMs that operate in the 

fundamental mode, that is characterized by a lumped memory element for each state 
variable/feedback path. 

LV: low voltage. 
Magnitude comparator: comparator. 
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Majority function: a function that becomes active when a majority of its variables become 
active. 

Majority gate: a logic gate that yields a majority function. 
Mantissa: the fraction part of a floating point number. 
Map: usually a Karnaugh map. 
Map compression: a reduction in the order of a K-map. 
Map key: the order of K-map compression; hence, 2N - I1

, where N is the number of 
variables in the function to be mapped and n is the order of the K-map to be used. 

Mapping algorithm: In FSM design, the procedure to obtain the NS functions by ANDing 
the memory input logic value in the excitation table with the corresponding branching 
condition in the state diagram for the FSM to be designed, and entering the result in the 
appropriate cell of the NS K-map. 

Master/slave (MS) flip-flop: a flip-flop characterized by a master (input) stage and a 
slave (output) stage that are triggered by clock antiphase to each other. 

Mask: to prevent information from passing a certain point in a given process. 
Mask programmed: refers to the bit patterns produced in a PLD chip at the foundry. 
Maxterm: a POS term that contains all the variables of the function. 
Maxterm code: a code in which complemented variables are assigned logic I and un

complemented variables are assigned logic 0 - the opposite of min term code. 
Mealy machine: an FSM that conforms to the Mealy model. 
Mealy model: the general model for a sequential machine where the output state depends 

on the input state as well as the present state. 
Mealy output: a conditional output. 
Medium-scale integrated circuits (MSI): IC chips that contain 20 to 200 gates according 

to one convention. 
Memory: the ability of a digital device to store and retrieve binary words on command. 
Memory element: a device for storing and retrieving one bit of information on command. 

In asynchronous FSM terminology, a fictitious lumped path delay. 
Merge: the concatenation of buses to form a larger bus. 
Merging of states: in a state diagram, the act of combining states to produce fewer states. 
Metal-oxide-semiconductor: the material constitution of an important logic family 

(MOS) used in IC construction. 
Metastability: an unresolved state of an FSM that resides between a Set and a Reset 

condition or that is logically unstable. 
Metastable exit time: the time interval between entrance into and exit from the metastable 

state. 
MEV: Map entered variable. 
Minimization: the process of reducing a logic function to its simplest form. 
Minimum cover: the optimally reduced representation of a logic expression. 
Minterm: a term in an SOP expression where all variables of the expression are repre

sented in either complemented or uncomplemented form. 
Minterm code: a logic variable code in which complemented variables are assigned 

logic 0 while uncomplemented variables are assigned logic 1-the opposite of maxterm 
code. 

Minuend: the operand from which the subtrahend is subtracted in a subtraction operation. 
Mixed logic: the combined use of the positive and negative logic systems. 
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Mixed-rail output: dual, logically equal outputs of a device (e.g., a flip-flop) where one 
output is issued active high while the other is issued active low, but the two are not issued 
simultaneously. 

Mnemonic: a short single group of symbols (usually letters) that are used to convey a 
meaning. 

Mnemonic state diagram: a fully documented state diagram. 
Model: the means by which the major components and their interconnections are repre

sented for a digital machine or system. 
Module: a device that performs a specific function and that can be added to or removed 

from a system to alter the system's capability. A common example is a full adder. 
Modulus-n counter: (see divide-by-n counter) 
Monad: a minterm (or maxterm) that is not logically adjacent to any other minterm (or 

maxterm). 
Moore machine: a sequential machine that conforms to the Moore model. 
Moore model: a degenerate form of the Mealy (general) model in which the output state 

depends only on the present state. 
Moore output: an unconditional output. 
MOS: metal-oxide-semiconductor. 
MOSFET: metal-oxide-semiconductor field effect transistor. 
Most significant bit (MSB): the extreme left bit of a binary word that has the highest 

positional weight. 
MSB: most significant bit. 
MSD: most significant digit. 
MSI: medium scale integration. 
MTBF: mean time between failures. 
Muller C module: a rendezvous module (RMOD). 
Multilevel logic minimization: minimization involving more than two levels of path 

delay as, for example, that resulting from XOR-type patterns in K-maps. 
Multiple-output minimization: optimization of more than one output expression from 

the same logic device. 
Multiplex: to select or gate (on a time-shared basis) data from two or more sources onto 

a single line or transmission path. 
Multiplexer: a device that multiplexes data. 
Multiplicand: the number being multiplied by the multiplier. 
Multiplier: a combinational logic device that will multiply two binary numbers. Also, 

the number being used to multiply the multiplicand. 
Mutually exclusive requirement: a requirement in state diagram construction that for

bids overlapping branching conditions (BCs)-i.e., it forbids the use of BCs shared 
between two or more branching paths. 

MUX: mUltiplexer. 
NAND-centered basic cell: cross-coupled NAND gates forming a basic cell. 
NAND gate: a physical device that performs the electrical equivalent of the NOT AND 

function. 
NANDIINV logic: combinational logic consisting exclusively of NAND gates and in

verters. 
Natural binary code: a code for which the bits are positioned in a binary word according 

to their positional weight in polynomial notation. 
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Natural binary coded decimal: a 4-bit, lO-word code that is weighted 8, 4, 2, 1 and that 
is used to represent decimal numbers. Same as binary code. 

NBCD: natural binary coded decimal. Same as binary coded decimal (BCD). 
n-channel: an n-type conducting region in a p-type substrate. 
Negative logic: a logic system in which high voltage (RV) corresponds to logic 0 and 

low voltage (LV) corresponds to logic 1. The opposite of positive logic. 
Negative pulse: a 1-0-1 pulse. 
Nested cell: a basic cell that is used as the memory in an asynchronous FSM design. 
Nested machine: any asynchronous machine that serves as the memory in the design of 

a larger sequential machine. Any FSM that is embedded within another. 
Next state (NS): a state that follows the present state in a sequence of states. 
Next state forming logic: the logic hardware in a sequential machine whose purpose it 

is to generate the next state function input to the memory. 
Next state function: the logic function that defines the next state of an FSM given the 

present state. 
Next state map: a composite K-map where the entries for each cell are the next state 

functions for the present state represented by the coordinates of that cell (see flow 
table). 

Next state variable: the variable representing the next state function. 
Nibble: a group of four bits. 
NMH: noise margin high - the lower voltage limit of logic 1 and the upper boundary of 

the uncertainty region. 
NML: noise margin low - the upper voltage limit of logic 0 and the lower boundary of 

the uncertainty region. 
NMOS: an n-channel MOSFET. 
Noise immunity: the ability of a logic circuit to reject unwanted signals. 
Noise margin: the maximum voltage fluctuation that can be tolerated in a digital signal 

without crossing the switching threshold of the switching device. 
Non-restoring logic: logic that consists of passive switching devices such as diodes or 

transmission gates that cannot amplify but that dissipate power. 
Nonvolatile: refers to memory devices that require no power supply to retain information 

in memory. 
NOR-centered basic cell: cross-coupled NOR gates forming a basic cell. 
NOR gate: a physical device that performs the electrical equivalent of the NOT OR 

function. 
NORIINV logic: combinational logic consisting exclusively of NOR gates and inverters. 
NOT function: an operation that is the logic equivalent of complementation. 
NOT laws: a set of Boolean identities based on the NOT function. 
npn: refers to a BIT having a p-type semiconductor base and an n-type semiconductor 

collector and emitter. 
NS: next state. 
Octad: a grouping of eight logically adjacent minterms or maxterms. 
Octal: a base 8 number system in which numbers 1 through 7 are used to represent 3-bit 

binary numbers 000 through 111. (See Binary coded octal.) 
Odd parity: an odd number of 1's or O's depending on how odd parity is defined. 
Offset pattern: an XOR pattern in a K-map in which identical subfunctions are located 

in two nondiagonal cells that differ in cell coordinates by two bits. 
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Ohm's law: voltage is linearly proportional to current, V = RI, where R is the constant 
of proportionality called the resistance (in ohms). 

One-hot code: a nonweighted code in which there exists only one 1 in each word of the 
code. 

One-hot design method: use of the one-hot code for synchronous and asynchronous 
FSM design. 

One-hot-plus-zero: one-hot code plus the all-zero state. 
One's complement: a system of binary arithmetic in which a negative number is repre-

sented by complementing each bit of its positive equivalent. 
Operand: a number or quantity that is to be operated on. 
Operation table: a table that defines the functionality of a flip-flop or some other device. 
Operator: a Boolean connective. 
OPI: optional prime implicant. 
Optional prime implicant (OPI): a prime implicant whose presence in a minimum 

function produces alternative minimum cover. 
OR: an operator requiring that the output of an OR gate be active if one or more of its 

inputs are active. 
OR-AND-Invert gate: a physical device, usually consisting of two OR gates and one 

NAND gate, that performs the electrical equivalent of POS with an active low output. 
Order: refers to the number of variables on the axes of a K-map. 
OR function: a function that derives from the definition of OR. 
ORG: output race glitch. 
OR gate: a physical device that performs the electrical equivalent of the OR function. 
OR laws: a set of Boolean identities based on the OR function. 
OR plane: the ORing stage of a PLD. 
Outbranching: branching from a state exclusive of the hold branching condition. 
Output: a concluding signal issued by a digital device. 
Output forming logic: the logic hardware in a sequential machine whose purpose it is to 

generate the output signals. 
Output holding register: a register, consisting of D flip-flops, that is used to filter out 

output logic noise. 
Output race glitch (ORG): an internally initiated function hazard that is produced by a 

race condition in a sequential machine. 
Overflow error: a false magnitude or sign that results from a left shift in a shifter when 

there are insufficient word bit positions at the spill end. 
Packing density: the practical limit to which switches of the same logic family can be 

packed in an Ie chip. 
PAL: programmable array logic (registered trademark of Advanced Micro Devices, Inc.). 
PALU: programmable arithmetic and logic unit. 
Parallel adder: a cascaded array of full adders where the carry-out of a given full adder 

is the carry-in to the next most significant stage full adder. 
Parallel load: the simultaneous loading of data inputs to devices such as registers and 

counters. 
Parity: related to the existence of an even or odd number of 1 's or O's in a binary word. 
Parity bit: a bit appended to a binary word to detect, create, or remove even or odd parity. 
Parity detector: a combinational logic device that will detect an even (or odd) number 

of I's (or O's) in a binary word. 
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Parity generator: a combinational logic device that will append a logic I (or logic 0) to 
a binary word so as to generate an even (or odd) number of l's (or O's). 

Passive device: any device that is incapable of producing voltage or current gain and, 
thus, only dissipates power. 

Pass transistor switch: a MOS transistor switch that functions as a nonrestoring switch-
ing device and that does not invert a voltage signal. A transmission gate. 

PCB: printed circuit board. 
p-channel: a p-type conducting region in an n-type substrate. 
PDF: portable document format. 
l'DP: power-delay product. 
PE: priority encoder. 
Period: the time in seconds (s) between repeating portions of a wavefonn; hence, the 

inverse of the frequency. 
Physical truth table: an 110 specification table based on a physically measurable quantity 

such as voltage. 
PI: prime implicant. 
Pipeline: a processing scheme where each task is allocated to specific hardware Goined 

in aline) and to a specific time slot. 
PIPO: parallel-inlparallel-out operation mode of a register. 
PISO: parallel-inlserial-out operation mode of a register. 
PLA: programmable logic array. 
Planar format: a two-dimensional K-map array used to minimize functions of more than 

four variables. 
PLD: programmable logic device. 
PLS: programmable logic sequencer. 
PMOS: a p-channel MOSFET. 
p-n junction diode: (see Diode) 
pnp: refers to a BJT having an n-type semiconductor base and a p-type semiconductor 

emitter and collector. 
Polarized mnemonic: a contracted signal name onto which is attached an activation level 

indicator. 
Port: an entry or exit element to an entity (e.g., the name given to an input signal in a 

VHDL declaration). 
POS: product-of-sums. 
POS hazard: a static O-hazard. 
Positional weighting: a system in which the weight of a bitin a binary word is detennined 

by its polynomial representation. 
Positive logic: the logic system in which HV corresponds to logic I and LV corresponds 

to logic O. 
Positive pulse: a 0-1-0 pulse. 
Power, P: the product of voltage, V, and current, I, given in units of watts (W). 
Power-delay product (PDP): the average power dissipated by a logic device multiplied 

by its propagation delay time. 
PR or PRE: preset. 
Present state (PS): the logic state of an FSM at a given instant. 
Present state/next state (PS/NS) table: a table that is produced from the next state 

K-maps and that is used to construct a fully documented state diagram in an FSM analysis. 
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Preset: an asynchronous input that is used in flip-flops to set them to a logic 1 condition. 
Prime implicant (PI): a group of adjacent minterms or maxterms that are sufficiently 

large that they cannot be combined with other groups in any way to produce terms of 
fewer variables. 

Primitive: a discrete logic device such as a gate, MUX, or decoder. 
Priority encoder: a logic device that generates a coded output based on a set of prioritized 

data inputs. 
Product-or-sums (POS): the ANDing of ORed terms in a Boolean expression. 
Programmable logic array (PLA): any PLD that can be programmed in both the AND 

and OR planes. 
Programmable logic device (PLD): any two-level, combinational array logic device 

from the families of ROMs, PLAs, PALs or FPGAs, etc. 
Programmable read-only memory (PROM): a once-only user-programmable ROM. 
PROM: programmable read-only memory. 
Propagation delay: in a logic device, the time interval of an output response to an input 

signal. 
PS: present state. 
PS/NS: present state/next state. 
P-term: a Boolean product term-one consisting only of ANDed literals. 
P-term table: a table that consists of p-terms, inputs, and outputs and that is used to 

program PLA-type devices. 
Pull-down resistor: a resistor that causes a signal on a line to remain at low voltage. 
Pull-up resistor: a resistor that causes a signal on a line to remain at high voltage. 
Pulse: an abrupt change from one level to another followed by an opposite abrupt change. 
Pulse mode: an operational condition for an asynchronous FSM where the inputs are 

required to be nonoverlapping pulse signals. 
Pulse width: the active duration of a positive pulse or the inactive duration of a negative 

pulse. 
Quad: a grouping of four logically adjacent minterms or maxterms. 
Quadratic convergence: a process as in "fast division" whereby the error per iteration 

decreases according to the inverse square law. 
Quotient: the result of a division operation. 
R: reset. 
Race condition: a condition in a sequential circuit where the transition from one state to 

another involves two or more alternative paths. 
Race gate: the gate to which two or more input signals are in race contention. 
Race path: any path that can be taken in a race condition. 
Race state: any state through which an FSM may transit during a race condition. 
Radix: the number of unique symbols in a number system - same as the base of a number 

system. 
RAM: random access memory. 
Random access memory (RAM): a read/write memory system in which all memory 

locations can be accessed directly independent of other memory locations. 
R-C: resistance/capacitance or resistor/capacitor. 
Read only memory (ROM): a PLD that can be mask programmed only in the OR 

plane. 
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Read/write memory (RWM): a memory array (e.g., RAM) that can be used to store and 
retrieve information at any time. 

Redundant cover: nonessential and nonoptional cover in a function representation. 
Redundant prime implicant: a prime implicant that yields redundant cover. 
Reflective code: a code that has a reflection (mirror) plane midway through the code. 
Register: a digital device, configured with flip-flops and other logic, that is capable of 

storing and shifting data on command. 
Remainder: in division, the dividend minus the product of the divisor and the quotient. 
Rendezvous module: an asynchronous state machine whose output becomes active when 

all external inputs become active and becomes inactive when all external inputs become 
inactive. 

Reset: a logic 0 condition or an input to a logic device that sets it to a logic 0 condition. 
Residue: the part of term that remains when the coupled variable is removed (see con

sensus term). 
Resistance, R: the voltage drop across a conducting element divided by current through 

the element (in ohms). 
Resistor-transistor logic: a logic family that consists of BJTs and resistors. 
Restoring logic: logic consisting of switching devices such as BJTs and MOSFETs that 

can amplify. 
RET: rising edge triggered. 
Reverse bias: a voltage applied to a p-n junction diode in a direction that minimizes 

conduction across the junction. 
Reverse saturation current: the current through a p-n junction diode under reverse bias. 
Ring counter: a configuration of shift registers that generates a one-hot code output. 
Ripple carry (R-C): the process by which a parallel adder transfers the carry from one 

full adder to another. 
Ripple counter: a counter whose flip-flops are each triggered by the output of the next 

LSB flip-flop. 
Rise time: he period of time it takes a voltage (or current) signal to change from 10% to 

90% of its high value. 
Rising edge triggered (RET): activation of a logic device on the rising edge of the 

triggering variable. 
RMOD: rendezvous module. 
ROM: read-only memory. 
Round-off error: the amount by which a magnitude is diminished due to an underflow 

or spill-off in a shifter undergoing a right shift. 
RPI: redundant prime implicant. 
RTL: resistor-transistor logic. 
Runt pulse: any pulse that barely reaches the switching threshold of a device into which 

it is introduced. 
S: set. Also, the source terminal of a MOSFET. 
Sampling interval: sum of the setup and hold times. 
Sampling variable: the last variable to change in initiating a state-to-state transition in 

an FSM. 
Sanity circuit: a circuit that is used to initialize an FSM into a particular state, usually a 

resistor/capacitor (R-C) type circuit. 
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Saturation mode: the physical state of a BJT in which collector current is pennitted to 
flow. 

Schmitt trigger: an electronic gate with hysteresis and high noise immunity that is used 
to "square up" pulses. 

Selector module: a device whose function it is to steer one of two input signals to either 
one of two outputs depending on whether a specific input is active or inactive. 

Self-correcting counter: a counter for which all states lead into the main count sequence 
or routine. 

Sequence detector (recognizer): a sequential machine that is designed to recognize a 
particular sequence of input signals. 

Sequential machine: any digital machine with feedback paths whose operation is a func
tion of both its history and its present input data. 

Set: a logic 1 condition or an input to a logic device that sets it to a logic 1 condition. 
Setup time: the interval of time prior to the transition point during which all data inputs 

must remain stable at their proper logic level to ensure that the intended transition will 
be initiated. 

S-hazard: a static hazard. 
Shift register: a register that is capable of shifting operations. 
Shift: the movement of binary words to the left or right in a shifter or shift register. 
Shifter: a combinational logic device that will shift or rotate data asynchronously upon 

presentation. 
Sign bit: a bit appended to a binary number (usually in the MSB position) for the purpose 

of indicating its sign. 
Sign-complement arithmetic: 1's or 2's complement arithmetic. 
Sign-magnitude representation: a means of identifying positive and negative binary 

numbers by a sign and magnitude. 
Single transition time (STT): a state-to-state transition in an asynchronous FSM that 

occurs in the shortest possible time, that is, without passing through a race state. 
SIPO: serial-inlparallel-out operation mode of a register. 
SISO: serial-inlserial-out operation mode of a register. 
Slice: that part of a circuit or device that can be cascaded to produce a larger circuit or 

device. 
Small-scale integration: Ie chips that, by one convention, contain up to 20 gates. 
SOP: sum-of-products. 
SOP hazard: a static 1-hazard. 
Source: one of three terminals of a MOSFET. The origin of a digital signal. 
Spill bit: the bit in a shifter or shift register that is spilled off (lost) in a shifting operation. 
SPDT switch: single-pole/double-throw switch. 
SPST switch: single-pole/single-throw switch. 
Square wave: a rectangular wavefonn. 
SRAM: static RAM. 
SSI: small-scale integration. 
Stability criteria: the requirements that detennine if an asynchronous FSM, operated in 

the fundamental mode, is stable or unstable in a given state. 
Stable state: any logic state of an asynchronous FSM that satisfies the stability criteria. 
Stack format: a three-dimensional array of conventional fourth-order K-maps used for 

function minimization of more than four variables. 
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State: a unique set of binary values that characterize the logic status of a machine at some 
point in time. 

State adjacency set: any 2" set of logically adjacent states of an FSM. 
State code assignment: unique set of code words that are assigned to an FSM to charac

terize its logic status. 
State diagram: the diagram or chart of an FSM that shows the state sequence, branching 

conditions, and output information necessary to describe its sequential behavior. 
State machine: a finite state machine (FSM). A sequential machine. 
State identifier: any symbol (e.g., alphabetical) that is used to represent or identify a 

state in a state diagram. 
State table: tabular representation of a state diagram. 
State transition table: (see excitation table). 
State variable: any variable whose logic value contributes to the logic status of a machine 

at any point in time. Any bit in the state code assignment of a state diagram. 
Static hazard: an unwanted glitch in an otherwise steady-state signal that is produced by 

an input change propagating along asymmetric path delays through inverters or gates. 
Static-l hazard: a glitch that occurs in an otherwise steady-state I output signal from SOP 

logic due to a change in an input for which there are two asymmetric paths (delay-wise) 
to the output. 

Static-O hazard: a glitch that occurs in an otherwise steady-state 0 output signal from POS 
logic due to a change in an input for which there are two asymmetric paths (delay-wise) 
to the output. 

Static RAM: a nonvolatile form of RAM - does not need periodic refreshing to hold its 
information. 

Steering logic: logic based primarily on transmission gate switches. 
S-term: a Boolean sum term-one containing only ORed literals. 
Stretcher: an input conditioning device that catches a short input signal and stretches it. 
STT: single transition time. 
Stuck-at fault: an input to a logic gate that is permanently stuck at logic 0 or logic 1 

because of a shorted connection, an open connection, or a connection to either ground 
or a voltage supply. 

Substrate: the supporting or foundation material in and on which a semiconductor device 
is constmcted. 

Subtractor: a digital device that subtracts one binary word from another to give a differ-
ence and borrow. 

Suhtrahend: the operand being subtracted from the minuend in a subtraction operation. 
Sum-of-products (SOP): the ~Ring of ANDed terms in a Boolean expression. 
Sum rule: a mle in state diagram construction that requires that all possible branching 

conditions be accounted for. 
Switching speed: a device parameter that is related to its propagation delay time. 
Synchronizer circuit: a logic circuit (usually a D flip-flop) that is used to synchronize 

an input with respect to a clock signal. 
Synchronous machine: a sequential machine that is clock driven. 
Synchronous parallel load: parallel loading of a register or counter via a clock signal to 

the flip-flops. 
System level design: a design that includes controller and data path sections. 
Tabular minimization: a minimization procedure that uses tables exclusively. 
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T flip-flop: a flip-flop that operates in either the toggle or hold mode. 
TG: transmission gate. 
Throughput: the time required to produce an output response due to an input change. 
Time constant: the product of resistance and capacitance given in units of seconds (s) - a 

measure of the recovery time of an R-C circuit. 
Timing diagram: a set of logic waveforms showing the time relationships between two 

or more logic signals. 
Toggle: repeated but controlled transitions between any two states, as between the Set 

and Reset states. 
Toggle module: a flip-flop that is configured to toggle only. Also, a divide-by-2 counter. 
Transfer characteristic: for a transistor switch, a plot of current (I) vs voltage (V). 
Trans-HI module: a transparent high (RET) D latch. 
Trans-LO module: a transparent low (FET) D latch. 
Transistor: a three-terminal switching device that exhibits current or voltage gain. 
Transistor-transistor logic: a logic family in which bipolar junction transistors provide 

both logic decision and current gain. 
Transition: in a digital machine, a change from one state (or level) to another. 
Transmission gate: a pass transistor switch. 
Transparent D latch: a two-state D flip-flop in which the output, Q, tracks the input, D, 

when clock is active if RET or when clock is inactive if FET. 
Tree: combining of like gates, usually to overcome fan-in limitations. 
Triggering threshold: the point beyond which a transition takes place. 
Triggering variable: sampling (enabling) variable. 
Tri-state bus: as used in this text, the wire-ORed output lines from a multiplexed scheme 

of PLDs having tri-state enables. Note: tri-state is a registered trademark of NSC. 
Tri-state driver: an active logic device that operates in either a disconnect mode or an 

inverting (or noninverting) mode. Also, three-state driver. Note: tri-state is a registered 
trademark of NSC. 

True hold: the condition whereby a device can sustain the same logic output values over 
any number of clock cycles independent of its input logic status. 

Truth table: a table that provides an output value for each possible input condition to a 
combinational logic device. 

TTL: transistor-transistor (BJT) logic. 
Twisted ring counter: a configuration of shift registers that generates a creeping code 

output. 
Two-level logic: logic consisting of only one ANDing and one ORing stage. 
Two-phase clocking: two synchronized clock signals that have nonoverlapping active or 

nonoverlapping inactive waveforms. 
Two's complement: one's complement plus one added to the LSB. 
Unconditional branching: state-to-state transitions that take place independent of the 

input status of the FSM. 
Unconditional output: an output of an FSM that does not depend on an input signal. 
Union: OR operation. 
Unit distance code: a code in which each state in the code is surrounded by logically 

adjacent states. 
Universal flip-flop: a JK flip-flop. 
Universal gate: a NAND or NOR gate. 
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Universal shift register: a shift register capable of performing PIPO, PISO, SIPO, and 
SISO operations in addition to being capable of performing the true hold condition. 

Unstable state: any logic state in an asynchronous FSM that does not satisfy the stability 
criteria. 

Unweighted code: a code that cannot be constructed by any mathematical weighting 
procedure. 

USR: universal shift register. 
UVEPROM: ultraviolet erasable PROM. 
VEM: variable entered map. 
Very large scale integrated circuits: IC chips that contain thousands to millions of gates. 
VHDL: VHSIC hardware description language. 
VHSIC: very high spee.d integrated circuit. 
VLSI: very large scale integrated circuits. 
Voltage, V: the potential difference between two points, in units of volts (V). Also, the 

work required to move a positive charge against an electric field. 
Voltage waveform: a voltage waveform in which rise and fall times exist. 
Weighted code: a binary code in which the bit positions are weighted with different 

mathematically determined values. 
Wired logic: an arrangement of logic circuits in which the outputs are physically con-

nected to form an "implied" AND or OR function. 
WSI circuits: wafer-scale integrated circuits. 
XNOR: (see Equivalence and EQV) 
XOR: exclusive OR. 
XOR function: the function that derives from the definition of exclusive OR. 
XOR gate: a physical device that performs the electrical equivalent of the XOR function. 
XOR laws: a set of Boolean identities that are based on the XOR function. 
XOR pattern: any of four possible K-map patterns that result in XOR type functions. 
XS3 code: BCD code plus three. 
ZBI: zero-blanking input. 
ZBO: zero-blanking output. 
Zero banking: a feature of a BCD-to-seven-segment conversion that blanks outthe seven

segment display if all inputs are zero. 
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CHAPTER 2 

Number Systems, Binary 
Arithmetic, and Codes 

2.1 INTRODUCTION 

Number systems provide the basis for conveying and quantifying information. Weather 
data, stocks, pagination of books, weights and measures - these are just a few examples 
of the use of numbers that affect our daily lives. For this purpose we find the decimal (or 
Arabic) number system to be reliable and easy to use. This system evolved presumably 
because early humans were equipped with a crude type of calculator, their 10 fingers. But a 
number system that is appropriate for humans may be intractable for use by a machine such 
as a computer. Likewise, a number system appropriate for a machine may not be suitable 
for human use. 

Before concentrating on those number systems that are useful in computers, it will be 
helpful to review those characteristics that are desirable in any number system. There are 
four important characteristics in all: 

• Distinguishability of symbols 

• Arithmetic operations capability 

• Error control capability 

• Tractability and speed 

To one degree or another the decimal system of numbers satisfies these characteristics 
for hard-copy transfer of information between humans. Roman numerals and binary are 
examples of number systems that do not satisfy all four characteristics for human use. On 
the other hand, the binary number system is preferable for use in digital computers. The 
reason is simply put: current digital electronic machines recognize only two identifiable 
states, physically represented by a high voltage level and a low voltage level. These two 
physical states are logically interpreted as binary symbols I and O. 

A fifth desirable characteristic of a number system to be used in a computer should be 
that it have a minimum number of easily identifiable states. The binary number system 
satisfies this condition. However, the digital computer must still interface with humankind. 
This is done by converting the binary data to a decimal and character-based form that can 

31 
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be readily understood by humans. A minimum number of identifiable characters (say 1 and 
0, or true and false) is not practical or desirable for direct human use. If this is difficult 
to understand, imagine trying to complete a tax form in binary or in any number system 
other than decimal. On the other hand, use of a computer for this purpose would not only 
be practical but, in many cases, highly desirable. 

2.2 POSITIONAL AND POLYNOMIAL REPRESENTATIONS 

The positional form of a number is a set of side-by-side (juxtaposed) digits given generally 
infixed-point form as 

Radix 

MSD Point LSD 

t t t 
(an-I'" a2alaO a-Ia-2a-3'" a-m), 

(2.1) 
N, 

'-.--' 
Integer Fraction 

where the radix (or base), r, is the total number of digits in the number system, and a is 
a digit in the set defined for radix r. Here, the radix point separates n integer digits on the 
left from m fraction digits on the right. Notice that an-I is the most significant (highest 
order) digit called MSD, and that a-m is the least significant (lowest order) digit denoted 
by LSD. 

The value of the number in Eq. (2.1) is given in polynomial form by 

n-I 

N ~ i ( /I-I + + 2 + 1+ 0 + -I , = ~ air = all-Ir ... a2r air aor a_lr 
i=-m 

(2.2) 

where ai is the digit in the ith position with a weight ri. 
Applications of Eqs. (2.1) and (2.2) follow directly. For the decimal system r = 10, 

indicating that there are 10 distinguishable characters recognized as decimal numerals 
0, 1,2, ... , r - 1(= 9). Examples ofthe positional and polynomial representations for the 
decimal system are 

and 

11-1 

NIO = (d3d2 d ldo' L 1L 2L 3 )1O 

= 3017.528 

NIO = L d i lO
i 

i=-3 

= 3 X 103 + 0 X 102 + 1 X 101 + 7 x 100 + 5 X 10-1 + 2 X 10-2 + 8 X 10-3 

= 3000 + 10 + 7 + 0.5 + 0.02 + 0.008, 



2.3 UNSIGNED BINARY NUMBER SYSTEM 33 

where d; is the decimal digit in the ith position. Exclusive of possible leading and trailing 
zeros, the MSD and LSD for this number are 3 and 8, respectively. This number could have 
been written in a form such as NIO = 03017.52800 without altering its value but implying 
greater accuracy of the fraction portion. 

2.3 UNSIGNED BINARY NUMBER SYSTEM 

Applying Eqs. (2.1) and (2.2) to the binary system requires that r = 2, indicating that there 
are two distinguishable characters, typically 0 and (r - 1) = 1, that are used. In positional 
representation these characters (numbers) are called binary digits or bits. Examples of the 
positional and polynomial notations for a binary number are 

= 1 0 1 1 0 1 . 1 0 12 

t t 
MSB LSB 

and 

11-1 

N= L b;2' 
i=-~m 

= 1 X 25 + 0 X 24 + 1 X 23 + 1 X 22 + 0 X 21 

+ 1 x 2° + 1 x T 1 + 0 X T2 + 1 X T3 

= 32 + 8 + 4 + 1 + 0.5 + 0.125 

=45.625 10 , 

where n = 6 and m = 3, and h; is the bit in the ith position. Thus, the bit positions are 
weighted, ... 16, 8, 4, 2, 1, 112, 114, 118, ... for any number consisting of integer and fraction 
portions. Binary numbers, so represented, are sometimes referred to as natural binary. In 
positional representation, the bit on the extreme left and extreme right are called the MSB 
(most significant bit) and LSB (least significant bit), respectively. Notice that by obtaining 
the value of a binary number, a conversion from binary to decimal has been performed. The 
subject of radix (base) conversion will be dealt with more extensively in a later section. 

For reference purposes, Table 2.1 provides the binary-ta-decimal conversion for two-, 
three-, four-, five-, and six-bit binary. The six-bit binary column is only halfway completed 
for brevity. 

In the natural binary system the number of bits in a unit of data is commonly assigned a 
name. Examples are: 

4 data-bit unit - nibble (or half byte) 
8 data-bit unit- byte 
16 data-bit unit-two bytes (or half word) 
32 data-bit unit-word (or four bytes) 
64 data-bit unit - double-word 
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Table 2.1 Binary-to-decimal conversion 

Two-Bit Decimal Three-Bit Decimal Four-Bit Decimal Five-Bit Decimal Six-Bit Decimal 
Binary Value Binary Value Binary Value Binary Value Binary Value 

00 0 000 0 0000 0 10000 16 100000 32 
01 001 1 0001 10001 17 100001 33 
10 2 010 2 0010 2 10010 18 100010 34 
11 3 011 3 0011 3 10011 19 100011 35 

100 4 0100 4 10100 20 100100 36 
101 5 0101 5 10101 21 100101 37 
110 6 0110 6 10110 22 100110 38 
111 7 0111 7 10111 23 100111 39 

1000 8 11000 24 101000 40 
1001 9 11001 25 101001 41 
1010 10 11010 26 101010 42 
1011 11 11011 27 101011 43 
1100 12 11100 28 101100 44 
1101 13 11101 29 101101 45 
1110 14 11110 30 101110 46 
1111 15 11111 31 101111 47 

The word size for a computer is determined by the number of bits that can be manipu
lated and stored in registers. The foregoing list of names would be applicable to a 32-bit 
computer. 

2.4 UNSIGNED BINARY CODED DECIMAL, HEXADECIMAL, AND OCTAL 

Although the binary system of numbers is most appropriate for use in computers, this 
system has several disadvantages when used by humans who have become accustomed to 
the decimal system. For example, binary machine code is long, difficult to assimilate, and 
tedious to convert to decimal. But there exist simpler ways to represent binary numbers for 
conversion to decimal representation. Three examples, commonly used, are natural binary 
coded decimal (BCD), binary coded hexadecimal (BCH), and binary coded octal (BCO). 
These number systems are useful in applications where a digital device, such as a computer, 
must interface with humans. The BCD code representation is also useful in carrying out 
computer arithmetic. 

2.4.1 The BCD Representation 

The BCD system is an 8, 4, 2, I weighted code. This system uses patterns of four bits to 
represent each decimal position of a number and is converted to its decimal equivalent by 
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Table 2.2 BCD bit patterns and decimal equivalent 

BCD BCD 
Bit Pattern Decimal Bit Pattern Decimal 

0000 0 1000 8 
0001 1001 9 
0010 2 1010 NA 
0011 3 1011 NA 
0100 4 1100 NA 
0101 5 1101 NA 
0110 6 1110 NA 
0111 7 1111 NA 

NA = not applicable (code words not valid) 

polynomials of the fonn 

NJO = b3 X 23 + b2 X 22 + b 1 X 21 + bo x 20 

= b3 X 8 + b2 X 4 + b 1 X 2 + bo x 1 
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for any b3b2b1bo code integer. Thus, decimal 6 is represented as (0 x 8) + (l x 4) + (1 x 
2) + (0 x 1) or 0110 in BCD code. As in binary, the bit positional weights of the BCD code 
are derived from integer powers of 2". Table 2.2 shows the BCD bit patterns for decimal 
integers 0 through 9. 

Decimal numbers greater than nine or less than one can be represented by the BCD code 
if each digit is given in that code and if the results are combined. For example, the number 
63.98 is represented by (or converted to) the BCD code 

6 3 . 9 8 

63.98 JO =(01100011.10011000)scD 

= 1100011.10011 BCD 

Here, the code weights are 80, 40, 20, 10; 8, 4, 2, 1; 0.8, 0.4, 0.2, 0.1; and 0.08, 0.04, 0.02, 
0.0 I for the tens, units, tenths, and hundredths digits, respectively, representing four decades. 
Notice that the leading and trailing O's can be dropped. Pencil-and-paper conversion between 
binary and BCD requires conversion to decimal as an intermediate step. For example, to 
convert from BCD to binary requires that groups of four bits be selected in both directions 
from the radix point to fonn the decimal number. If necessary, leading and trailing zeros 
are added to the leftmost or rightmost ends to complete the groups of four bits as in the 
example above. Negative BCD numbers are coded by using 1O's complement notation as 
discussed in a later section. 

Another code that is used for number representation and manipulation is called Excess 
3 BCD (or XS3 BCD or simply XS3). XS3 is an example of a biased-weighted code (a bias 
of 3). This code is formed by adding 001 h (= 3 10) to the BCD bit patterns in Table 2.2. 
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Thus, 

XS3 = BCD + 0011. 

For example, the number 63.9810 is represented in XS3 code as 1001 0110. 1100 101lxs3. 
To convert XS3 to BCD code, 0011 must be subtracted from XS3 code. In 4-bit quan
tities the XS3 code has the useful feature that when two numbers are added together in 
XS3 notation, a carry will result and yield the correct value any time a carry results in 
decimal (i.e., when 9 is exceeded). This feature is not shared by either binary or BCD 
addition. 

2.4.2 The Hexadecimal and Octal Systems 

The hexadecimal number system requires that r = 16 in Eqs. (2.1) and (2.2), indicating 
that there are 16 distinguishable characters in the system. By convention, the permissible 
hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F for decimals 0 
through IS, respectively. Examples of the positional and polynomial representations for a 
hexadecimal number are 

= (AF3 . C8)16 

with a decimal value of 

11-1 

N= L h;16; 
;=-m 

= 10 X 162 + 15 X 161 + 3 x 16° + 12 x 16- 1 + 8 X 16-2 

= 2803.78125 10. 

Here, it is seen that a hexadecimal number has been converted to decimal by using Eq. (2.2). 
The octal number system requires that r = 8 in Eqs. (2.1) and (2.2), indicating that there 

are eight distinguishable characters in this system. The permissible octal digits are 0, 1, 2, 
3,4, 5, 6, and 7, as one might expect. Examples ofthe application of Eqs. (2.1) and (2.2) are 

= 501.748 , 

with a decimal value of 

Il-I 

N= L 0;8; 

i=-111 

= 5 X 82 + 0 X 81 + 1 x 8° + 7 X 8- 1 + 4 X 8-2 

= 321.9375 10 • 
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Table 2.3 The BCH and BCO number systems 

Binary BCH BCO Decimal Binary BCH BCO Decimal 

0000 0 0 0 1010 A 12 10 
0001 1 1011 B 13 11 
0010 2 2 2 1100 C 14 12 
0011 3 3 3 1101 D 15 13 
0100 4 4 4 1110 E 16 14 
0101 5 5 5 1111 F 17 15 
0110 6 6 6 10000 10 20 16 
0111 7 7 7 11011 1B 33 27 
1000 8 10 8 110001 31 61 49 
1001 9 11 9 1001110 4E 116 78 

When the hexadecimal and octal number systems are used to represent bit patterns in 
binary, they are called binary coded hexadecimal (BCH) and binary coded octal (BCO), 
respectively. These two number systems are examples of binary-derived radices. Table 2.3 
lists several selected examples showing the relationships between BCH, BCO, binary and 
decimal. 

What emerges on close inspection of Table 2.3 is that each hexadecimal digit corresponds 
to four binary digits, and that each octal digit corresponds to three binary digits. The 
following example illustrate the relationships between these number systems: 

5 B F . D 8 

10110111111.11011 2 = 0101 1011 1111.1101 1000 

=5BF.D8 16 

2 6 7 7 6 6 

=010 110 111 111 . 110 110 

= 2677.668 

= 1471.84375 10 • 

To separate the binary digits into groups of four (for BCH) or groups of three (for BCO), 
counting must begin from the radix point and continue outward in both directions. Then, 
where needed, zeros are added to the leading and trailing ends of the binary representation 
to complete the MSDs and LSDs for the BCH and BCO forms. 

2.5 CONVERSION BETWEEN NUMBER SYSTEMS 

It is not the intent of this section to cover all methods for radix (base) conversion. Rather, 
the plan is to provide general approaches, separately applicable to the integer and fraction 
portions, followed by specific examples. 
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2.5.1 Conversion of Integers 

Since the polynomial form of Eq. (2.2) is a geometrical progression. the integer ponion can 
be represented in nested radix form. In source radix s. the nesled rcprescntalion is 

= ao + S(OI + S(02 + ... + a~ _d) · · .), 

("-' ) i-I =a()+ .~ LOiS ,-, 
(2.3) 

for digits 0i having integer values from 0 to n - I. The nested rddix form nOt only suggests 
a conversion process, but also fonns the basis for computerized conversion. 

Consjder that the number in Eq. (2.3) is 10 be represented in nested radix r form. 

(2.4) 

where. in general. m *' '1 . Then. if the source number N, is d ivided by r. the results arc of 
the foml 

N, R 
-~ Q+ - . , , (2.5) 

where Q is the integer quotient rearranged as Qo = b l + r(b2 + .. . + b", _I) " .) and R is 
the remainder Ro = boo A second division by r yields Qu/r = QI + Rl /r. where QI is 
arranged a.<; Q I = h2 + r(b3 + ... + bm _ I) .. ')T and R I = hi . Thus. by repealed divisiQn 
of the integer result Qi by r.the remainders yield (bo. hi , b2 •.... bm _ J ),. in that order. 

The conversion method just described. called the radix divide method. can be used 10 

convert between any two integers of different radices. However, the requirement is: 

The arithmetic required by N, I r must be carried out in source radix, s. 

Except for source radices 10 and 2, this creates a problem for humans. 
Table 2.4 provides the recommended procedures for integer conversion by noncomputer 

means. The radix divide method is suitable for use in computers only if they are programmed 
to carry out the arithmetic in different radices. NOli(:e the partitioning required for conversion 
between binary and BCH and BCD integers. 

The following two algorithms offer noncomputer methods for integer conversion: 

Algorithm 2.1 : N, -4- N~ Positive Integer Conversion 

Use Eq. (2.2) and the substitution method with base 10 arilhmelic to convert N$ to NIO. 
then use the radix divide method and base 10 arithmetic 10 convert Nlo to N •. 
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Table 2.4 Summary of recommended methods for integer conversion 
by noncomputer means 

Integer 
Conve~ion 

NIO - N, 
N, -NIlJ 

N ')Hf lO ....... N ')'i-IO 

NBCII ....... N2 
NBCa ...... N2 
NsclI - Nsca 
Nseo ...... N8C1' 
NSCD""" N XSJ 

Nxs.l ...... NBeD 

Conversion 
Method 

Radix division by radix r using Eq. (2.5) 
Eq. (2.2) or (2.3) 
N, --+ NIlJ by Eq. (2.2) or (2.3) 
NIlJ ....... Nr radix division by r u:;ing Eq. (2.5) 

Special Cases for Binary Forms 

Positional weighting 
Partition N2 into groups of four bits starting from 

radix point, then apply Table 2.3 
Panition N2 into groups of three bits staning from 

radix point, then apply Table 2.3 
Reverse of N2 ...... NsclI 
Reverse of N2 --+ N8CO 

NseH - Nl - Nsca 
N8CO """ N2 - Nsell 
Add 001 h (= 310) to NSCD 

Subtract 00112 (= 310) from NxSJ 

Algorithm 2.2: Nz( - N'!." Positive Integer Conversion 

39 

To convert numbers Nl" 10 N21 , where 11 and k are integers, convert Ihe groups of" 
digits in No':!., 10 N2 , then reorganize the result in groupsofk beginning with theLSB and 
proceeding toward the MSB. I Finally, replace each group of k, reading from the LSB, 
with the digit appropriate for number system N2,. 

The integer conversion methods of Table 2.4 and Algorithms 2.1 and 2.2 are illustrated 
by the following simple examples: 

EXAMPLE 2.1 13910 _ N~ 

N j , Q R 
13912 69 
6912 34 1 
3412 ~ 17 0 
1712 8 
812 ~ 4 0 
412 ~ 2 0 
212 ~ I 0 
112 0 139 10 = 100010 11 2 

EXA~fPLE 2.2 10001011 2 - NIO 

By posilional weights NlO = 128 + 8 + 2 + I = 139 10. 

I NOle Illal tead ing O's may be nceded to complete the groups of k. 
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EXAMPLE 2.3 13910 -+ N8 
Nlr Q R 
139/8 17 3 
17/8 2 1 
2/8 0 2 13910 = 2138 

EXAMPLE 2.4 100010112 -+ N Bco 

2 3 
010 001 011 = 213Bco 

EXAMPLE 2.5 213Bco -+ NBcH 

2 3 8 B 
213Bco =010 001011 = 100010112 = 1000 1011 = 8B I6 

EXAMPLE 2.6 2138 -+ Ns 

2138 = 2 X 82 + 1 X 81 + 3 x 8° = 139iO 
Nr Q R 

139/5 27 4 
27/5 5 2 
5/5 0 
1/5 0 2138 = 10245 

Check: 1 x 53 + 0 X 52 + 2 X 51 + 4 x 50 = 125 + 0 + 10 + 4 = 13910 

2.5.2 Conversion of Fractions 

By extracting the fraction portion from Eq. (2.2) one can write 

·N = (a_ls- 1 + a_2s-2 + ... + a_ms-In}, 

= s-l(a_1 + s-l(a-2 + ... + a_m»·· .}, 

( 

m ) -I -i+1 =s a-I+Lo-iS 
1=2 s 

(2.6) 

in source radix s. This is called the nested inverse radix form and provides the basis for 
computerized conversion. 

If the fraction in Eq. (2.6) is represented in nested inverse radix r form, then 

·N = (b_1r- 1 + b_2r-2 + ... + b_"s-")r 

=r-l(b_ 1 +r- l(b_2+···+ b_p»···)r 

=r- I (b_ 1 + tb-ir-i+l) 
1=2 r 

(2.7) 

for any fraction represented in radix r. Now, if source N., is multiplied by r, the result is of 
the form 

·N, x r = I + F, (2.8) 
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where I is the product integer, 11 = b_ l , and Fo is the product fraction arranged as FI = 
r - l(b_2 + r - l(b_3 + ... + b_ r »· .. ),. By repeated multiplication by r of the remaining 
fractions F;, .he resulting integers yield (b_ l , b- 2. b_) . . . . b_m ) , in that order. 

The conversion just described is called the radix multiply method and is perfectly general 
for converting between fractions of differem radices. However, as in the case of integer 
conversion, the requirement is that the arithmetic required by ·N, x r must be carried out 
in source radix. s. For noncomputer use by humans, this procedure is usually limited to 
fraction conversions NIO ~ NT> where the source radix is \0 (decimal). Algorithm 2.3 
gives the recommended methods for converting between fractions of different radices. The 
radix multiply method is well suited to computer use. 

Algorithm 2.3: ·N,. +- ·N, Fraction Conversion 

( I) Use Eq . (2 .2) and the substitution method with base s arithmetic, or 
(2) Use the radix mUltiply method of Eq. (2.8) with source radix s arithmetic . 

In ei.her case for nonco mputer means, if the source radix is other than 2 or 10, convert 
the fraction as follows: ·N\ -)0 · N~ ,~ III -)0 ·Nr so that base 2 or 10 arithmetic can be 
applied. 

Shown in Table 2.5 are the recommended methods given in some detail for fraction 
conversion by noncomputer means. Notice again the partitioning that is now required for 
conversion between binary fractions and those for BCH and BCD. 

For any integer of source radix s, there exists an exact representation in radix r . This is not 
the case for a fraction whose conversion is a geometrical progression that never converges. 

Table 2.5 Summary of recommended mel hods for fraction conversion 
by non computer means 

Fractioll 
Conversion 

·NIO -+ · N , 

·N, ~ · N IO 

·N.k,1O -+ .N , ), ;J. IO 

· N 2 -+ ·NIO 

·Nz ....... ·NeCH 

·NBCH -+ ·N2 
·NBCO~ ·N~ 

·NBCH -. ·Neco 

·Neco - ·NRCH 
·N/J(:n -+ .NXSJ 

·NXS.l -+ ·NeeD 

Conven;ion 
Melhod 

Radix multiplication by using Eq. (2.8) 
Eq. (2.2) or (2.6) 
· N~ -+ ·NIO by Eq. (2.2) or (2.6) 
·N IO -- ·N , radix multiplication by Eq. (2.5) 

Special Case.~ for Binary Fonns 

Posillonal weighting 
Partilion . N 2 into groups of four hilS starting from 

radix point. then apply Table 2.3 
Panition ·N1 inlo groups of three bits starting from 

radix point, then apply Table 2.3 
Reverse of ·N2 -)- ·NBCH 

Reverse of ·N2 ....... ·NBCO 

·NecII _ ·N2 -+ ·NBco 

.Neco ...... ·Nz -+ ·NBClI 
Add 001 h (= 310) to NBCD 
Subtract 00112 (= 310) from NXSJ 



42 CHAPTER 2/ NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES 

Tenninaling a fraction conversion at n digits (to the right of the radix point) results in an 
error or uncertainty. This error is given by 

where the quantity in brackets is less than (a- N + I). Therefore, tenninating a fraction 
conversion at n digits from the radix point results in an error with hounds 

(2.9) 

Equation (2.9) is useful in deciding when to terminate a fraction conversion. 
Often, it is desirable to terminate a fraction conversion at n + I digits and then round off 

to" from the radix point. A suitable method for rounding to /I digits in radix r is: 

Algorithm 2.4: Rounding Off 10 II Digits for Fraction Conversion in Radix r 

Perform the fraction conversion to (II - I) digits from the radix point. then drop the 
(n - 1) digit if G_ ("+ I ) < r /2; add r - In- I) to the result if (L(II_ I) .:: r /2. 

After rounding off to II digits, the maximum error becomes the difference between the 
rounded result and the smallest value possible. By using Eq . (2.9). this difference is 

-" ( 1) - " ( a_(,,+J) ) E:max= r Q_n + - r a_n + --,-

Then, by rounding to II digits. there results an elTOr with bounds 

(2. 10) 

If a-{~+ I) < r /2 and the (II + I ) digit is dropped. the maximum error is , -". Note that for 
N,. --\. NIO --\. Nr type conversions, the bounds of errors aggregate. 

The fraction conversion methods given in Table 2.5 and Algorithms 2.3 and 2.4 are 
i11ustrated by the following examples: 

EXAMPLE 2 .7 0 .654 10 _ Nz rounded to 8 bits : 

.N., x r 
0.654 x 2 
0.308 x 2 
0.616 x 2 
0.232 x 2 

F 
0.308 
0.616 
0.232 
0.464 

I 
1 
o 
1 
o 
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0.464 x 2 0.928 0 
0.928 x 2 0.856 
0.856 x 2 0.712 
0.712 x 2 0.424 1 0.65410 = 0.101001112 
0.424 X 2 0.848 0 Emax = 2-8 

EXAMPLE 2.8 0.65410 --+ N8 terminated at 4 digits: 

'N., x r F I 
0.654 x 8 0.232 5 
0.232 x 8 0.856 1 0.65410 = 0.51668 

0.856 x 8 0.848 6 with error bounds 
0.848 x 8 0.784 6 0< E :::: 7 x 8-4 = 1.71 X 10-3 by Eq. (2.9) 

EXAMPLE 2.9 Let 0.51668 --+ N2 be rounded to 8 bits and letO.51668 --+ NIO be rounded 
to 4 decimal places: 

0.51668 = 5 X 8- 1 + 1 X 8-2 + 6 X 8-3 + 6 X 8-4 

= 0.625000 + 0.015625 + O.oI1718 + 0.001465 

= 0.653810 rounded to 4 decimal places; E 10 :::: 10-4 

'N., x r 
0.6538 x 2 
0.3076 x 2 
0.6152 x 2 
0.2304 x 2 
0.4608 x 2 
0.9216 x 2 

F 
0.3076 
0.6152 
0.2304 
0.4608 
0.9216 
0.8432 

0.8432 x 2 0.6864 

I 
1 
0 
1 
0 
0 

0.6864 x 2 0.3728 I 0.51668 = 0.1010011 h (compare with Example 2.7) 
0.3728 x 2 0.7457 0 EIO:::: 10-4 + 2-8 = 0.0040 

EXAMPLE 2.10 0.101001112 --+ NBCH 

·A 7 

0.101001112 = 0.1010 0111 = 0.A7BCH 

2.6 SIGNED BINARY NUMBERS 

To this point only unsigned numbers (assumed to be positive) have been considered. How
ever, both positive and negative numbers must be used in computers. Several schemes have 
been devised for dealing with negative numbers in computers, but only four are commonly 
used: 

• Signed-magnitude representation 

• Radix complement representation 
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• Diminished radix complement representation 

• Excess (offset) code representation 

Of these, the radix 2 complement representation, called 2's complement, is the most widely 
used system in computers. 

2.6.1 Signed-Magnitude Representation 

A signed-magnitude number in radix r consists of a magnitude INI together with a symbol 
indicating its sign (positive or negative) as follows: 

(2.11) 

where the subscript rSM refers to signed-magnitude in radix r. Such a number lies in the 
decimal range of -(r,,-I - I) through +(rn - L - 1) for n integer digits in radix r. The 
fraction portion, if it exists, consists of m digits to the right of the radix point. 

The most common examples of signed-magnitude numbers are those in the decimal and 
binary systems. The sign symbols for .decimal (+ or -) are well known. In binary it is 
established practice to use the following convention: 

o denotes a positive number 

1 denotes a negative number. 

One of these (0 or I) is placed at the MSB position of each SM number. Four examples in 
8-bit binary are: 

EXAMPLE 2.11 

EXAMPLE 2.12 

EXAMPLE 2.13 

Magnitude 
,---, 

+45.510 = 0 101l01.l2sM 

t 
Sign 

Bit 

+010 = 0 0OOO0002SM 

Magnirude 
,...--"-.. 

-123 10 = 1 11110 112sM 

t 
Sign 

Bit 
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EXAMPLE 2.14 

-010 = 1 000000025:11 

Although the sign-magnitude system is used in computers, it has two drawbacks. There 
is no unique zero, as indicated by the previous examples, and addition and subtraction 
calculations require time-consuming decisions regarding operation and sign, for example, 
(-7) minus (-4). Even so, the sign-magnitude representation is connnonly used injloating
point number systems as discussed in Section 2.8. 

2.6.2 Radix Complement Representation 

The radix complement N re of an n-digit number N r is obtained by subtracting N r from rn
, 

that is, 

Nre = rl1 N r 

= Nr + llSD (2.12) 

where 

N r Digit complementation in radix r 

This operation is equivalent to that of replacing each digit ai in Nr by (r - 1) - ai and 
adding 1 to the LSD of the result as indicated by Algorithm 2.5. The digit complements 
N r for three commonly used number systems are given in Table 2.6. Notice that the digit 
complement of a binary is formed simply by replacing the 1 's with O's and O's with l's 
required by 211 N2 1 N 2 as discussed in Subsection 2.6.3. The range of representable 
numbers is -(r"- I ) through +(rn- 1 - 1). 

Application of Eq. (2.12) or Algorithm 2.5 to the binary and decimal number systems 
requires that for 2'5 complement representation N1C = N 2 + lLsB and for 1O's complement 
NlOc = N 10 + lL.5O, where N 2 and N 10 are the binary and decimal digit complements 
given in Table 2.6. 

Table 2.6 Digit complements for three 
commonly used number systems 

Complement (N r) 

Digit Binary Decimal Hexadecimal 

0 9 F 
0 8 E 

2 7 D 
3 6 C 
4 5 B 
5 4 A 
6 3 9 
7 2 8 
8 I 7 
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Algorithm 2.5: NrC ...... N, 

Replace each digit (I , in N, by (r - 1) - (I, and then add 1 to the LSD of the rcsuhalll. 

A simpler, "pencil-and-paper" method exists for the 2's complement of a number Nz 
and is expressed by Algorithm 2.6: 

Algorithm 2.6: N2C +- Nl 

For any binary number N~ :lIld beginning with the LSB. proceed (Owued the MSB until 
the firsT 1 bit has been reached. Relain that I bit nnd complement the remainder of the 
bils toward and including the MSB . 

With reference to Table 2.6, Eq. (2.12). and Algorithm 2.5 or 2.6, the fo llowing examples 
of radix complement representation are provided: 

EXAMPLE 2.IS The lO's complement of 47.83 is N 10 + I LSD = 52.17. 

Ex.OfPLE 2.16 The2's complement of 0101 101.101 is Nl + IU8 = 1010010.011. 

EXAMPLE 2.17 The 16's complement of A3D is N 16 + I UD == 5C2 + I = :5C3. 

The decimal value of Eq. (2. [2) can be found from the polynomial expression as 

.. -2 

Nre)IO = -(0 .. _ 1, ,, - 1)+ L o / r
' 

, .. - III 

(2.13) 

for any II-digit number of radix r. In Eqs. (2.12) and (2.13) the MSD i)\ talen to be the 
position of the sign symbol. 

2'5 Complement Representation lbe radix complement for binary is the 2's comple
ment (2C) representation. In 2's complement the MSB is the sign bit. I indicating a negative 
number and 0 a positive ODe. The decimal range of representation for" integer bits in 2's 
complement is from _(2,,- I) through +(2,,- 1 - I). From Eq. (2.12), the 2's complement is 

formed by 

(2. 14) 

for any binary number Nz of n integer bits. Or by Algorithm 2.5. the 2's complement or 
a binary number N2 is obtained by replacing each bit (I, in Nz by (I - a,) and adding 1 
to me LSB of the result. The simpler pencil-and· paper method. often used to gener.lle 2's 
complement from a binary number N,. results from application of Algorithm 2.6. III this 
case Nl is the bit complement of tile number as given in Table 2.6. A few examples of 8-bit 
2's complement numbers are shown in Table 2.7. Notice that application of Eq . (2.14) or 
Algorithm 2.6 changes the sign of the dedm31 value of a binary number (+ 10 - and vice 
versa), and that only one zero representation ex.ists. 

Application of Eq. (2.13) gives the decimal value of any 2 's complement number. in
cluding those containing a radix point. For example, the p3Uem N 2C. = 11010010.011 has 
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Table 2.7 Examples of eight-bit 2's and l's 
complement representations (MSB = sign bit) 

Decimal 2's 1 's 
Value Complement Complement 

-128 10000000 
-127 10000001 10000000 
-31 11100001 11100000 
-16 11110000 11101111 
-15 11110001 11110000 
-3 11111101 11111100 
-0 00000000 11111111 
+0 00000000 00000000 
+3 000000 1 I 00000011 

+15 00001111 00001111 
+16 00010000 00010000 
+31 00011111 00011111 
+127 01111111 01111111 
+128 

a decimal value of 

(N2c) 10 = -1 X 27 + 1 X 26 + 1 X 24 + 1 X 2' + 1 X 2-2 + 1 x r3 

= -128 + 64 + 16 + 2 + 0.25 + 0.125 

= -45.625/0. 

47 

But the same result could have easily been obtained by negation of N2C followed by the 
use of positional weighting to obtain the decimal value. Negation is the reapplication of 
Eq. (2.12) or Algorithms 2.5 or 2.6 to any 2's complement number N2C to obtain its true 
value. Thus, from the forgoing example the negation of N2C is given by 

N2C hc = 00101101.101 

= 32 + 8 + 5 + 0.5 + 0.125 

= 45.625/0, 

which is known to be a negative number, -45.625/0. 
Negative BCD numbers are commonly represented in lO's complement notation with 

consideration of how BCD is formed from binary. As an example, -59.24/0 = 40.76/0 is 
represented in BCD lO's complement (BCD,IOC) by 

-0101 100l.0010 0100)Bcn = 0100 0000.0111 011O)BcD,lOC, 

where application of Eq. (2.l2), or Algorithm 2.5 or 2.6, has been applied in radix 10 fol
lowed by the BCD representation as in Subsections 2.4.1. Alternatively, the sign-magnitude 
(SM) representation of a negative BCD number simply requires the addition of a sign bit 
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10 the BCD magnitude according to Eq. (2.11). Thus, 

-0 101 1001.0010 OJOO)8CD = (I 01011001.0010 OIOO)YCD. :>SM. 

2.6.3 Diminished Radix Complement Representation 

The dimini.~hed radix complement N(T_I IC of a number NT having n digits is obtained by 

(2.15) 

where. according to Eq. (2.12), N(r - I )C + I = Nr<:. Therefore. it follows that 

This means the diminished radix complement of a number is lhe digits complemem of 
thai number as expressed by Algorithm 2.7. The range of representable n digit numbers in 
diminished radix complement is -(r"- I - I) through +(rn- 1 ~ I) for radix r . 

Algorithm 2.7: Ntr- I}C ~ Nr 

(1) Replace each digit I'l / of N T by r - 1 - Gi or 
(2) Complement each digit by N r as in Table 2.6. 

In the binary and decimal number systems the diminished radix complement represen
tations are the I 's complement and 9's complement, respectively. Thus, I 's complement is 
the binary digits complement given by N1c = N2, whi le the 9's complement is the decimal 
digits complement expressed as N9C = N 10. Examples of eight-bit t's complements are 
shown in Table 2.7 together with their corresponding 2's complement representation for 
comparison. Nolice that in 1 's complement there are two representations for zero, one for 
+0 and me other for -0. This fact limits the usefulness of the I 's complement representation 
for computer arithmetic. 

Shown in Table 2.8 are examples of lO's and 9's complement representations in n digits 
numbering from 3 to 8. Notice that leading D's are added to the number on the left to meet 
the n digit requirement. 

Table 2,8 Examples of 10'5 and 9'5 complement 
representation 

Number " 10'5 Complement 9's Complement 

0 , [ I J()(J(XX) 99999 
3 3 997 996 

14.59 6 9985.41 9985.40 
225 4 9775 9774 

21.456 5 78.544 78.543 
1827 8 99998173 99998172 

4300.50 7 95699.50 95699.49 
69.100 6 930.900 930.899 
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2.7 EXCESS (OFFSET) REPRESENTATIONS 

Other systems for representing negative numbers use excess or offset (biased) codes. Here, 
a bias B is added to the true value Nr of the number to produce an excess number, Nxs , 

given by 

Nxs = Nr + B. (2.16) 

When B = ,,,-I exceeds the usable bounds of negative numbers, Nxs remains positive. 
Perhaps the most common use of the excess representation is in floating-point number sys
tems - the subject of the next section. The biased-weighted BCD code, XS3, was discussed 
in Subsection 2.4.1. 

Two examples of excess 127 representation are given below. 

EXAMPLE 2.18 

-4310 11010101 
+12710 01111111 ---

8410 01010100 

EXAMPLE 2.19 

2710 00011011 
+12710 01111111 ---

154 10 10011010 

N2 •s Compl. 

B 
Nxs = -4310 in excess 127 representation 

N2's Compl. 

B 
Nxs = 27 10 in excess 127 representation 

The representable decimal range for an excess 2/- 1 number system is _2/- 1 through 
+(2/-1 - 1) for an n-bit binary number. However, if N2 + B > 2/- 1 - 1, overflow occurs 
and 2,,-1 must be subtracted from (N2 + B) to give the correct result in excess 2,,-1 code. 

2.8 FLOATING-POINT NUMBER SYSTEMS 

Infixed-point representation [Eq. (2.1)], the radix point is assumed to lie immediately to the 
right of the integer field and at the left end of the fraction field. The fixed-point system is the 
most commonly used system for representing bounded orders of magnitude. For example, 
with 32 bits a binary number could represent decimal numbers with upper and lower bounds 
of the order of ± 1010 and ±1O- 1O • However, for greatly expanded bounds of representation, 
as in scientific notation, the floating-point representation is needed. This form of number 
representation is commonly used in computers. 

A floating-point number (FPN) in radix r has the general form 

(2.17) 

where M is thejraction (or mantissa) and E is the exponent. Only fraction digits are used 
for the mantissa! Take, for example, Planck's constant h = 6.625 X 10-34 J s. This number 
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can be represented many different ways in floating-point notation: 

Planck' s constant, h = 0.6625 X 10- 33 

= 0.06625 X 10-32 

= 0.006625 X 10- 3). 

All three adhere to the form of Eq. (2.17) and arc. therefore. legitimate floating-point 
numbers in radix 10. Thus, as the radix point floats 10 tbe lcc!, the exponent is scaled 
accordingly. The first fonn for h is said to be normalized because tbe mosl significant digit 
(MSD) of M is nonzero. a means of standardizing the cadi" point position. NOIice that the 
sign for M is positive while Ihat for E is negative. 

In computers the FPN is represented in binary where the normalized representation 
requires that the MS8 for M always be 1. Thus, the range in M in decimal is 

0.5 S M < I. 

Also, the fraedon (mantissa) M is represented in sign-magnilUde from. The nonnalized 
format for a 32-bit floating-point number in binary. which agrees with the IEEE standard 
(31. is shown in Fig. 2.1. Here, the sign bit (I if negative or 0 if positive) is placed at bit 
position 0 to indicate the sign of the fraction. Notice that the radix point is assumed to lie 
between bit positions 8 and 9 to separate the E bit-field from the M bit-field. 

Before two FPNs can be added or subtracted in a computer, the E fields must be compared 
and equalized. and the M fields adjusted. The decision-making process can be simplified 
if all exponents are convened to positive numbers by using the excess representation given 
by Eq. (2.16). For a q-digit number in radix" the exponent in Eq. (2.17) becomes 

where E is the actual exponent augmented by a bias uf B = ,'I - I. The range in the actual 
exponent Er is usually taken to be 

o 11 1hrough 8 1 ... 1 '~~~-'~L;~~~r!...~Ug~h~"3_1~~z~.=~--, 
Sign ExpOll9nt E i 
Bit (radix 2. bias 127) 

Assumed 
position 01 
radix point 

FIGURE 2.1 

Fraction F 
(Mantissa) 

IEEE standard bit format for 32·bit nonnalized floating-point representation. 
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In the binary system, required for computer calculations, Eq. (2.l8) becomes 

(2.19) 

with a range in actual exponent of 1) ~ +(2q- 1 - 1). In 32-bit normalized 
floating-point form, the exponent in Eq. (2.19) is stored in either excess 127 or excess 128 
code (depending on the FPN system used) while the mantissa is stored in sign-magnitude 
form. 

There still remains the question of how the number zero is to be represented. If the M 
field is zero, then the exponent can be anything and the number will be zero. However, 
in computers the normalized FPN2 limits M to (0.5 ~ M < 1) since the MSB for M is 
always 1. The solution to this problem is to assume that the number is zero if the exponent 
bits are all zero regardless of the value of the mantissa. But this leads to a discontinuity in 
normalized FPN2 representation at the low end. 

The IEEE standard for normalized FPN2 representation attempts to remove the problem 
just described. The IEEE system stores the exponent in excess 2q - 1 - 1 code and limits the 
decimal range of the actual exponent to 

For 32-bit FPN single precision representation, the exponent is stored in excess 127 code 
as indicated in Fig. 2.1. Thus, the allowable range of representable exponents is from 

12610 000000012 through + 12710 = 111111102. 

This system reserves the use of all O's or alii's in the exponent for special conditions [3]. 
So that the M field magnitude can diminish linearly to zero when E = -126, the MSB 1 
for M is not specifically represented in the IEEE system, but is implied. 

The following example attempts to illustrate the somewhat confusing aspects of the IEEE 
normalized representation: 

EXAMPLE 2.20 The number 10110 1.11 00 lz is to be represented in IEEE normalized 
FPN2 notation: 

101101.1100h = .10110111001 x 26 Sign bit = 0 (positive) 

where 

E<.! 6 + 127 13310 = 1000010b 

M = 0110111001 ... 00 (the MSB = 1 is not shown). 

Therefore, the IEEE normalized FPN is 

FPN2 = 0 10000101 0110111001 ... 0. 

Still, other forms of FPNs are in use. In addition to the IEEE system, there are the IBM, 
Cray, and DEC systems of representation, each with their own single- and double-precision 
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[orms. For example, the IEEE double-precision FPN system requires an exponent of II bilS 
in excess 1023 code and a mantissa (in sign-magnitude) of 53 bits for a total 64 bits. 

2.9 BINARY ARITHMETIC 

There aTC many ways in which to manipulate data for the purpose of computation. It is 
nOI the intent of this section to discuss all these methods. Rather. the emphasis will be 
on the basic addition. subtraction. multiplication, and division methods for binary number 
manipulation as a foundation for the design ofthc arithmetic units featured in Chapter 8. The 
coverage will include the basic heuristics involved in fixed -poim binary arithmetic together 
with simple examples . Advanced melhods applicable to computer arithmetic operations 
are provided as needed for the device design. A limited treatment of floating-point binary 
arithmetic will be given in a later section. 

2.9.1 Direct Addition and Subtraction of Binary Numbers 

The addi tion of any two positive binary numbers is accomplished in a manner similar to 
that of two radix (base) 10 numbers. When the addition of two binary bits exceeds 01 2, a 
carry bit is added to the next MSB, and this process is continued unti l all bits of the addend 
and augend have been added together. As an example consider the addition of the following 
two 8-bil numbers: 

EXAMPLE 2.21 

I I I I Cam~j 

5910 0 0 t 0 I 12 ~ Augend 

+12210 ~+~O~'~~'~O~' ~O~, 
181 10 10 01012 

~ Addend 
~ Sum 

Notice thai in binary addition the carry is rippled to the left in much the same manner as 
in base 10 addition. The binary numbers are easily converted to base to by the method of 
positional weight described in Section 2.3. 

Algorithm 2.8: A2 + B2 

(I ) Set operands A2 == a,,_ la ll _! .. . alaO and 8 2 = bM_ l b,,_~ . • . !Jlbo, and their sum 

A~ + 82 = S,,5,,_I'" 5150 = S2· 
(2) Set i =OandS2 =0. 
(3) If Go + bo < 102. S(J = ao + bo :.md a carry C I = 0 is generated for position i + I = I. 
If (10+ bo :::. tOl.then Su = (l() +bo- 102 and a carry Ci+1 = 1 is generated into posilion 
i+1=1. 
(4) Continue steps (2) and (3) in the order i = 1,2,3, .. . , 1/ - 1 with carries generated 
into position i + I. 
(5) The most significant sum bit is Sn = en. where e" is the carry resulling from the 
addition or (/n- I, b,,_I, and en_I. 
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Direct subtraction of two binary numbers also parallels that for base 10 subtraction. 
Now however, when the subtrahend bit is 1 when the minuend bit is 0, a borrow is required 
from the next MSB. Thus, the borrowing process begins at the MSB and ends with the 
LSB the opposite of the carry process for addition. Remember that a borrow of 12 from 
the next MSB. creates a 102 in the column being subtracted. The following 8-bit example 
illustrates the subtraction process in base 2: 

EXAMPLE 2.22 

101 10 

10 

lUI 

001010010 

o I 1 0 11 1 11 12 
-0 0 I I I 0 I O2 = 
00101011 

Borrows 

Minuend 
Subtrahend 
Difference 

Here, the notation 11 or I represents denial of the 0 or 1 when a borrow is indicated. Notice. 
as in the example just given, that the borrowing process may involve more than one level 
of borrowing as the process proceeds from right to left. 

2.9.2 Two's Complement Subtraction 

Computer calculations rarely involve direct subtraction of binary numbers. Much more 
commonly, the subtraction process is accomplished by 2 's complement arithmetic a con
siderable savings in hardware. Here, subtraction involves converting the subtrahend to 2's 
complement by using Eq. (2.14) in the form IV 2 + I and then adding the result directly to 
the minuend. For an n-bit operand subtraction, n + 1 bits are used where the MSB bit is 
designated the sign bit. Also, the carry overflow is discarded in 2's complement arithmetic. 
The following example illustrates the process for two four-bit numbers, A and B: 

EXAMPLE 2.23 

A 

-B 

0: 1101 

-0:0111 

0:1101 =+13)0 

+1:1001 =-710 rm 0 :0110 '" +6)0 

Discard L Sign bit positive 
overflow 

Further illustration continues by interchanging the minuend and subtrahend so as to yield 
a negative number: 

EXAMPLE 2.24 

A 0:0111 

-B - 0 1I01 

0:0111 '" +710 

+1: OOll -13 10 

~ 1:1010 ::::: -610 

Discard L Sign Bit negative 
overflow 
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In this case, the difference I : 1010 is given in 2 's complemelll. 1l\e answer in true (onn 
is the 2's complement (negation) of this result given by I : 1010 _ 0 : 01 iO! or 610 
which is negative. Algorithm 2.9 summarizes the steps required for the 2's complement 
subtraction. 

( I) SCI II-bit operands A = (1,,(1,,_ I .. . (II au and B = b"/),, • .• . b1 boo where the MSB a" 
and b" are reserved as sign bils. initially both O. 
(2) Generale 8u' by applying Eq. (2. 14). 
(3) Add operands A2 + B,u- IIccording 10 Algorithm 2.8. 
(4) Ifl A21 :> 1 8~1. lhen the sum (S2:> 0) is the true value wilh the sign bilO. lfl All < IB~I. 

then the :'iU1ll (S < 0) is given in 2's complement wi lh sign bi! equul to I. 
(5) Tile tnle value of a 2's complemcm sum is obtained by neglil ion. S!chc . 
(6) I f A2 and 81 are both negative numbers, the ~um (52(" < 0) il: obluined by steps (2), 
(3), and (5). 

2.9.3 One's Complement Subtraction 

Somewhat Jess common is the l's complement subtraction of two binary numbers. In this 
case the subtrahend is converted to I's complement by using Eq. (2. 15) ill the fo rm H2' 
The result is then added to the minuend with the carry overflow carried-end-around and 
added to the LSB. Clearly. this is a more complex process than that for 2's complement. 
The following two examples illustrate the subtraction process: 

EXAMPLE 2.25 

A 
- B 

0 :1101 

-0 :0111 

0 : 1101 - +t: 1000 

~: 
0 :0110 = +610 

SignBit~ 
Again, the minuend and subtrahend are interchanged for compari ~on purposes, yielding a 
ncgalive difference as follows: 

EXAMPLE 2,26 

A 

- B 
0 :01 JJ 

- 0 :1101 

0 ;0111 

+1· 0010 

I : 1001 

.0 
1: 1001 = - 6

10 

SignBil~ 
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In this latter case the result is given in 1 's complement. The true value for the difference is 
obtained by negation and is 1: 1001 --+ 0: 01102 = 610, which is known to be negative. 

2.9.4 Binary Multiplication 

Like binary addition and subtraction, binary multiplication closely follows base 10 multi
plication. Consider two n-bit binary integers A2 = (all-I· .. a2alaO) and B2 = (bl1 - 1 ••• b2 
b1boh- Their product A2 x B2 is expressed in n-bits assuming that both numbers are ex
pressible in nl2 bits excluding leading zeros. Under this assumption the product is 

(

"-1 ) 
f.1P = A x B = La;. i . B 

1=0 

(2.20) 

meaning that if B = b ll - I ••• b2b 1bo, the product 2i x B is 

i x B =bll-I···b?b1ho (){)···o. - '-,-' 

i ;"en)s 

Thus, the product A x B is expressed as the sum of the partial products Pi in the form 

/I-I II-I 

P = LP; = La;(bll - t ••· b2btbo ~). (2.21) 
;=0 i=O i ::.ems 

Therefore it should seem clear that binary multiplication requires addition of all terms 
of the form 2; x B for all i for which ai = 1. The following example illustrates this 
process. 

EXAMPLE 2.27 

A 00001111 Multiplicand 
xB x 0000 1011 Multiplier 

00001111 20 x B 
000011110 21 x B 

0000000000 
00001111 000 2' x B 

111011 Level 1 Carries 
1 Level 2 Carries 

000 10 10010 1 
'-v-' 

Product P2 

S-bit 
representatio/l 

Notice that the carry process may involve more than one level of carry as is true in this 
example. The following algorithm avoids multiple levels of carry by adding each product 
to P as it is formed. 
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Algorithm 2 .10: A;> x 82 

(1) Set n = 2k. where k is the number of bils of the larger number exclusive of leading 
zero!). 
(2) Set A = a,, _I '" Glfl l(!() and B = bn_I" . b2blbo for an /I "bit multiplier and an /I -bi! 
multiplicand. respectively. 
(3}Scl P = Ound; =0. 
(4) If 11, = !. calcubl.lc 2' x B = (b~_ l'" b1bo ~ and add it to P. 

I~m' 

(5) Increment i by I. 
(6) Repent sleps (3) and (4) for;lll 0 ::- i .:0::: (11 - I) ending with a product P2 of 11 bils 
or less. 

if A~ and Hi represent operands expressible by a different number of bits. k and m, 
exc!usiveofleading zeros, then theirproduCi is P2' = A1 x 8i given in 11 =:: (k + m) bits. For 
numbers comaining both integers and fraclions, k and m must each include all bits exclusive 
of leading integer zeros. For example, if Bi = 1101.11 (m = 6) and A~ = 110.1 (k = 4), 
their product P2n will be given in n = 6 + 4 = 10 bits. The following example illustrates 
th~ multiplication process for these two operands. 

EXAMPLE 2.28 

1101.11 
xllO.1 

110 111 
0000000 

11011 100 
J 10111 000 
111011 

I 
1011001.01 I 

MUltiplicand B'J' 
Multiplier A~ • 

2° x B 

22 X B 
23 X 8 
Level I Carries 
Level 2 Carries 

Product r; 

Z's Complement Multiplication To understand 2's complement multiplication it is help
ful to introduce the conceptof modulo 2" (Mod 2N) arithmetic. In Mod 2" arithmetic multipli
cation is carried out in 2's complement numbers (if negative) ignoring the overflow beyond 
n bits. For example, 2~ x 1111 (Mod 2~) = 10000 = 24 or generally, for number B of II bits, 

2" )( B(Mod 2")::::. 2". 

Consider the n-bit integer operands A2 = an _ I ' . ·aIOO and 8 2 = b,, _1 ... b1bo. Then, if 
the product is P = A x (-B ). there results, after converting B 10 2's complement, 

P2 = A2 )( (B2d 

= AJ x (2N - B) Mod 2" 

= A z x 2" - A2 X 82 Mod 2" 

Mod 2" (2.22) 
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Thus, P1 = A2 X (Bl e) generates the 2's complement of A2 x 8 2 - the form in which a 
computer stores the results. The "true" value of P2 can be obtained by negation, which is 
the 2's complement of the result, that is, P2hc = (2" - A2 x 8 2hc. 

Likewise, if both Al and B2 are negative n-bit operands. then the product (-A2) x (-B2) 
becomes. after conversion to 2's complement by Eq. (2.14). 

or 

P2 = Ax X (Ble> 

=(2n-A2)x(r-B) Mod2n 

=2" x 2n -2nA2 -2nB2+A2 x 8 2 Mod2 

=22n _ 2n -2" + A2 x 8 2 Mod 2n 

(2.23) 

where 22" - 2" - 2" (Mod 2n) = O. Thus. the product of two negative binary numbers 
in 2's complement notation is the positive product of the two numbers. In dealing with 
numbers whose bit representations are. say, k > m. excluding leading zeros for both. the 
2'5 complement product Pic must be given in n = 2k bits. This count for k must include 
fraction bits. if present, but exclude both leading and trailing zeros. 

The fo llowing example illustrates 2's complement multiplication of two numbers with 
fractions each of k = m = 4 bits and represented as k + m = 8-bit operands: 

EXAMPLE 2.29 

-2.25 
x6.5 

-14.625 

- 000010.01 
x 0000 I 10.1 

III lOLl I 
xOOOOIIO.J 

11110111 
000000000 

Multiplicand. BU' 
Multiplier. Al 
2° x 8 

11i101iiOO 22X B 
11110111000 2J xB 
1010101100 Levell Carries 
10101 Level 2 Carnes 

110010001011 Product, Pzc Mod 28 
~ 

8-bir ... ·/'Ftrtlll(1liOll 

The true value of the 8-bit representation is obtained by negation, 

IOOO l.O ll ze hc = 01110.1012 = 14,625. 

which. of course, is a negative number. This example illustrates what is called Booth's 
algorithm for fast signed multiplication, and is expressed as follows; 

AlgOrithm 2.11 : A2 x B2C or Ax x B2C 

(I) Set n = 2k. where k(>m) is the larger of two numbers2 counting both integer and 
fraction bits in k but excluding leading and trailing zeros. 

2n.e two numbers are initially IA~I of" bits and IBin I of m bits or vice versa. 



58 CHAPTER 2/ NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES 

(2) Generate the l's complement of the negative number{s) by applying Eq. (2.14), 
(3) Carry out steps (3) through (6) of Algorithm 2. iO applied 10 operands A2 and B2C 

or A2C' and B2C• represented as n-bi! operands. 10 generate the product P]''c or P21
, Use 

Mod 2" arithmetic where applicable. 

2.9.5 Binary Division 

The division operation is generally more complex than that for multiplkation. This is so 
because the result is often not an integer. though the dividend and divisor may be. Consider 
that A2 and 8 2 are binary operands each of fI bits and that 

.-, 
A -+- B ~ L Q,2' + RIB, (2.24) 

;=0 

where A is the dividend, B is the divisor. Q is the quonem, and R is the remainder such 
that 0 ::: R < B . An integer quotient is expressed as the binary number Qn-l' " Ql Q (I' 

From Eq. (2.24) there results the expression 

"-, 
A~B·LQ,i+R, (2.25) 

1= 0 

which fonns the basis for a restoring type of binary division procedure; 
Begin with n - I for a k-bit divisor and a {k + tl)-bit dividend to yield an n-bit quotienr 

and a k-bit remainder. If 

A _2,,-1 8 = A - bn- I ···b1bo ~:::: O. 

Ii-I ,~m' 

Qn - l = 1 or otherwise Q,,_\ = O.lf Q,, - l = 1. the remaining qnotient bits Q,, _\ . .. Q\ Qo 
are found beginning with A' = A _ 2" - \ B. Then. if A' _ 2,, -2 B ::: O. Q,, - 2 = lorOlherwise 
QN -2 = O. Consequently, if Q,,-2 = I . the remainiog quotients Qn-.l .. . Q\ QIJ are found 
beginning with AI! = A' - 2,, - 2 B. etc. The procedure just described mimics the familiar 
pencil-aod-paper division method. 

As an example. consider the following division operation A -+- B with 5-bil operands: 

EXAMPLE 2.30 

00000101 ~ Q 

B = 0101 ./00011011 = A 

-00010100=22 . B 

OOOOOIII=A' =A -22B 

-00000101 =2°. B 

0010= R = A' - 20 B 
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In this example, nOI all steps are shown, but the implied division process is 

A - 24 B=A -01010000 < 0, Q4 =0 

A - 2J B = A - 00101000 < 0, QJ = 0 

A _21 8= A -00010100 > O. 

=ool ll =A', Q2= 1 

A'-2'B=A'-OOOOIOiO > O, QI =0 

A' - 20 B = A' - OOOIX}JOl ;.. 0, Qll = I 

=00000010 = Ail = R, 
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where A - 25 B < 0, A - 21> B < O. A - 27 B, etc .. all yield quotients biLS Q = O. 
Notice that the subtractions can be eanied OUI with 2's complement arithmetic according 
to Algorithm 2.9. 

The following algorithm generalizes the binary division process as just presented: 

Algorithm 2.12: A2 -:- Bl 

( I) Set n to k-bits and A to (k + /I )-bits. 
(2 ) Set i = " - I and the remainder = A. 
(3) Sct Q, = I jf R - 2' Ii 2: 0 and subtract 2; B from A: otherwise set Q, = 0 if 
R - 2' 8 < 0. 
(4) Repeat step (2) for i = n - 2." - 3 . .... 1.0 to generate quotient bits Q,,1. 
Q,,_,I .. . . . Q I, Qn ending with the finaln-bit quotiem Q = Q,,_I'" QI Qo· 

Binary division involving numbers wilh fractions is handled in a manner similar to that 
for decimals. The bit position of the radix point measured from tbe LSB in the dividend is 
the same for the qUOIient. If a fraction exists in the divisor. the radix point of the quotient 
is Ihat of the dividend minus that of the divisor alilaken fTOm the LSB. 

Division involving negative numbers is most easily carried om as unsigned division with 
the result detennined by the normal laws of algebra - thai is, operands of like sign produce 
a positive quotient. while those of unlike sign produce a negative quotient. The remainder 
is given the same sign as the dividend. Signed division can be performed directly by using 
2's complement. but the process requires many decision-making steps and, for this reason, 
is rarely used. 

High-Speed Division by Direct Quadratic Convergence A great deal of effort has 
gone into making multiplication as fast and efficient as possible fo r use in high-speed 
computers. So it is only logical that use be made of this fact in generating suitable algorithms 
for high-speed division. Such methods. commonly used in modem computers, involve 
iterative divide algorithms and are nOllreslOri/lg. One such method features a system that 
opef'dtes on both the dividend DD and me divisor Ds with equal multipliers so as to cause 
the divisor to converge quadratically 011 unity. thereby yielding the dividend as the quotient. 
This requires mat at least the divisor Ds be repre!>emed as a fraction . Therefore. in binary 
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the divisor must be represented in the decimal range 0.5 S operand < 1. If both operands 
are so represented, the direct quadratic convergence method is ideally suited for use with 
the mantissas in normalized FPN notation described in Section 2.8. 

For this approach the quotient is given by 

DIVIDEND DD 
Q = DIVISOR = Ds 

Df)' ko·k1 ·k2 .. • Q 
= . =?-. 

Ds . ko . kl . k2 . . . 1 
(2.26) 

The process begins with Ds = 1 - a, where a = 1 - Ds. But since Ds < 1, it follows that 
a < 1. Next choose 

ko = 1 +a 

= 1 + (1 - Ds) = 2 - Ds , 

giving the updated product 

Ds . ko = (1 - a)(1 + a) = 1 - a 2
, 

which is closer to 1 than Ds. Now set 

kl = 1 + a2 = 1 + (1 - Dsko), 

giving the updated product 

Continuing, set 

so that the updated product becomes 

This process continues until the desired number of iterations has been reached or until the 
updated product Ds . ko . kl . k2 ... = 1. 

Notice that each kj is 1 plus the radix complement of the product of Ds and all the k 
factors to that point. This can be generalized mathematically as 

[ j-l] 
k j = 1 + Ds' IT k, . 

1=0 rC 

(2.27) 
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Consider the following simple example for the division operation, which will be carried 
out in both decimal and binary: 

DD [0.375J [0.011 J 
Ds = 0.500 10 =. 0.100 2· 

EXAMPLE 2.31 In decimal: 

ex = 1- Ds = 0.5 

ko = 1 + ex = l.5 

Dsko = 0.75 

k, = 1 + (0.75)lOc = l.25 

Dskok, = 0.9375. 

k2 = 1 + (0.9375)loc = l.0625 

Dskok,k2 = 0.99609375 

k3 = 1 + (0.99609375)lOc = 1.00390625 

Dskok,k2k3 = 0.99998474l. 

Therefore, after four iterations the quotient becomes 

Q = DDkOk,k2k3 =0.749988556 

= 0.749989 rounded to six places (10-6
). 

Note that a fifth iteration with k4 = l.000015259 produces Q = 0.750000 rounded to 
six places. 
In binary: 

ex = 1 - Ds = 0.1 

ko = 1 + ex = 1.1 

Dsko = 0.11 

k, = 1 + (O.llhc = l.01 

DskokJ = 0.1111 

k2 = 1 + (O.l111hc = l.0001 

Dskok,k2 = 0.11111111 

k3 = 1 + (0.11111 1 11hc = l.00000001 

DskokJk2k3 =0.1111111111111111. 
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Therefore. at the end of four iterations the quotient is 

::=. 0.75 10 after rounding. 

In 32-bit FPN notation the quotient Q would be given as 

.2... ~ ~1I111l1111111l 1010· · -OQ. 
'E M 

where the most significant 1 bit in the mantissa M has been omitted in agreement the IEEE 
normalized FPN notation discussed in Section 2.8. 

In the simple example just given the value of a was determined by the value of Ds. 
Because Ihis is a quadratic convergence algorithm, the proces.~ stans off slowly, particu
larly if the divisor is close to ~. The division calculations in computers can be speeded 
up by using ROM look-up tables to delennine C! based on the divisor value. Further
more, it is common practice to fix the number of iterations and then deal with rounding 
problem. 

With some simplifying assumptions the following algorithm generalizes the quadratic 
convergence process for iterative division: 

Algorithm 2.13: Q = DI) -;... D~· 

(I) Sel Ds 10 normulized FPN fonn. retain the MSB [ in the mantissa. and adjust the 
exponent as required by the FPN notation. 
(2) Calculate Q' = I - Ds by using Algorithm 2.9. 
(3) Sct ko = I + 0' and calculate (Dskohc by using Algorithms 2.10 lind 2.6. 
(4) Set kl = I + (DSkohc and calculate (Dskokdu' as in step (3). 

(5) Repeat steps ( I ) through (4) for k/ = I + [ns . H k,] for all j ::::; 2, 3 . .... ,., 
i- I j I 

(6) Calculate Q::::; Dj) n k,. when Os n k, = I. 
, .... 0 ; = 0 

2.9.6 BCD Addition and Subtraction 

Compared to binary arithmetic, BCD arithmetic is more complex. particularly with regard 
to hardware implementation . This is true since not all possible four-bit binary number states 
correspond to the BCD num~r system. The six number patterns 10 I O. 10 II. 1100. I J 0 I. 
1110. and III J are not valid BCD states. as is indicated in Table 2.2. 

BCD Addition BCD addition is si milar to unsigned binary addition, except that a correc
tion must he made any time a sum exceed .. 910 ::::; 1001 2. Summation begins with the least 
significant digit (LSD) and ~nds with the most significant digit (MSD). If the sum exceeds 
1001 for any given digit. that sum is corrected by adding 6 10 = 01 10.:.. with acany of 0001 
to the next MSD. The following example illustrates the addition process for two-decade 
BCD integers A'ICD = A loA I and Bm::D = Blu BI represented in three-decade fonn: 
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EXAMPLE 2.32 

056 j() ~ 0000 0101 0 11 08eo AugeruJ Aaco 
+ 069 10 ~ +0000 Q[ [0 100 [Beo Addend Bllcf) 

12510 0000 1011 1111 SlltII 

01 100110 CorreC'tion 
I 1111 110 Carries 

0001 00 10 OIOl s\o Result = 12510 

The following algorithm generalizes the process just given for operands having both 
integer.; and fractions . 

Algorithm 2.14: ilHCf} + BIJCI) 

(I) Sct BCD operands in descending decade order. Anco = ... AwoA lO A 1 A.t A.ot ... 
and BHW == .•. BUXl BIIJ BI B I BJII ... such that the MSDs for A and B arc 0000 (null). 
(2) SCt i == LSD for matching operand decades. 
(3) If A, + 8, > 1001 by Algorithm 2.8, add OliO to that result and carry 0001 over 
to the next MSO. If A, + B, < 1001, add 0000 to the resu lt nnd carry 0000 to the next 
MSD. 
(4) R~,pcat steps (2) and (3) for matching decades in the order of 101 i, J lYi. I O·li .. , .. 
MSD. 

BCD Subtraction Negative BCD numbers are most conveniently rcpresentcd in I()'s 
complement ( IOC). Thi s permits negative BCD numbers to be added according 10 Algo
rithm 2.14 . The result. if negative. will be represented in lOe form requ iring negation to 
obtain the true value. 

EXAMPLE 2.33 

08.25 10 -+ 

- 13.52 10 -+ 

- 05.2/10 

08.25 10 -+ 
+R6,48 Ioc -+ 

94.73 IOc 

0000 1000 . 00 10 0 10 I lieD 

+ 1000 0110 . 0100 IOOO~Cf)f,rw' 
1000 1110 . 0110 1[01 

+ 0110 0 110 
Il t 

1001 0100 . 01 11 0011 8<,'/J).,0( 

The true (absolute) value of the result is found by negation to be 

94.731O£' ) IOC = 05 .21W or 0000 010 1 .001001 r INU,' 

Sum 
Correction 
C(Jrries 

Result 

Note that to cOIwen direclly from the BCD fonn, BCD)wc = Nx + 1010 = N 2 + 
I /'sB + 1010 for the LSD but thereafter is BCD)ux: = it l + 1010 = N'JC. discarding any 
carry overflow in either case. 

The following algorilhm gene-ralizcs the proce§s of BCD sublraction. 

Algorithm 2. 15: Anco + BIIC{)hOC' or ABcm,o<, + B BCDf,oe 

(I) Convert any negative decimal number to its I O's complement ( I OC) by Algorithm 2.5 
with r = 10. 
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(2) Represent each operand in BCD fonn. 
(3) Carry out steps ( I) through (4) of Algorithm 2.14. If the result is negative. the true 
value is found by negation: [(remlt)loc hoc = (resufl)IICD. If the result is positive. that 
result is the true value. 

2.9.7 Floating-Point Arithmetic 

Up ( 0 this point the ari thmetic operations have involved tilted-point representation in which 
all bits of a binary number were represented. In many practjcal applications the numbers may 
require many bits for thei r representation. Tn Section 2.8 the Hoaling-point number (FPN) 
system was discussed for just that reason. Now it is necessary to deal with the arithmetic 
associated with the FPN system, namel y addition. subtraclion , multiplication, and division . 

FPN Addition and Subtraction Before two numbers can be added or subtrncted one from 
the other, it is necessary that they have the same exponent. This is equivalent to aligning 
their radix points. From Eq. (2. 17) for radix 2. consider the following two FPNs: 

x = Mx ·2E, 

"nd 

Y = M y · 2£'. 

Now. if for exampJe Ex :! Er.lhen Y is represented as M y' 2E~. where 

M~=·OO .. · Of-d-2"·f-,~ and E~=Er +(Ex- Ey)= Ex. -£ , - 1., 

so (hat X + Y = (Mx + M y)' 2£' or X - r = (Mx - M y)' 2£', etc. Here. My = 
./-1 f - !" . f - m originally. but is now adjusted so that the exponents for both operands are 
the same. The addition or subtraction of lhe frac tions M x and M;. is carried oul according 
(0 Algorithm 2.8 or Algorithm 2.9, respectively. 

Consider the following examples of FPN addition: 

EXAMPLE 2.34 - Addition 

145.50010 
+ 27.62510 

173. 12510 

~ 
10010001.1 00, ~ X 
000 11 000.1017. = y 

Comparing and equalizing !.he exponents Ex and Ey gives 

145 .500 10 = .1 00 10001100 X 28 

27.625 10 = .000 11011101 X 28. 
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In FPN notation the addition operation becomes 
s to M 

,.-'-, , 
145.500 ~ 0 10000111 100100011000 ... 00 

+27.625 ~ +0 10000111 000110111010· . ·00 , 
173.125 0 10000111 101011010010···00 

where the exponents given in excess 127 form are 127 + 8 = 135 as discussed in Section 2.7. 
To represent the result in normalized FPN notation, the most significant 1 bit of the mantissa 
is omitted, yielding the result 0 10000 111 010 110 100 100 ... 00 for the sign, exponent, and 
mantissa fields, respectively. 

EXAMPLE 2.35 - Subtraction in 2's complement 
s E M 
~ ,.-'-, 

-145.500 ~ 0 10000111 011011101000· . ·od 
+27.625 ~ +0 10000111 000110111010· . ·00 

-117.875 0 10000111 100010100010···00 

The true value is obtained by negation of the mantissa (taking its 2's complement), giv
ing the sign magnitude result 110000111 011101011110·· ·00, which is -117.87510' In 
normalized FPN notation the MSB I bit of the mantissa would be omitted, giving the 2's 
complement result 110000111 00010100010···00. 

FPN Multiplication and Division In some respects multiplication and division of FPNs 
is simpler than addition and subtraction from the point of view of the decision-making 
problem. Multiplication and division operations can be carried out by using the standard 
methods for such operations without the need to compare and equalize the exponents of 
the operands. The following generalizations of these processes illustrates the procedure 
involved. 

The product of two operands X and Y in radix r is represented as follows: 

P=XxY 

= (Mx . rEx) x (My· r Ey ) 

= (Mx x My)· r(l;x+Ey) 

where the exponents are added following Algorithm 2.8 while the mantissas are multiplied 
by using Algorithm 2.10. The addition and multiplication of signed numbers is covered by 
Algorithms 2.9 and 2.11, respectively. 

Similarly, for division in radix r the quotient is given by 

Q=X-;-Y 

= (Mx . rEx) -;- (My. rEy) 

= (Mx -;- My)· r(Ex-E y). 
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Here, the exponents are subtracted (added) in radix 2 (binary) by using the same algo
rithms as for addition, namely Algorithms 2.8 and 2.9. The division of the mantissas, on 
the other hand, is best accomplished by using the quadratic convergence iterative divide 
method discussed in Subsection 2.9.5, since the mantissas are usually represented in nor
malized FPN form. The following examples illustrate the multiplication and division of 
FPNs. 

EXAMPLE 2.36 - FPN signed-magnitude multiplication 

s 

----7.25 10 ~ 

x4.5O IO ~ +0 
-32.625 10 1 

E 

~ 

10000010 
+ 10000010 

10000101 

M 

11101000···06 
x 10010000···00 

00000000 ... 00 
000000000 ... 00 

0000000000 ... 00 
00000000000···00 

111010000000···00 
0000000000000···00 

00000000000000···00 
111010000000000···00 

1000001010000000···00 

23-bif representation 

The result, given in normalized signed-magnitude 32-bit FPN form, is 

110000101000001010000000·· ·OFl'N = -32.625 11). 

where the MSB 1 bit of the mantissa is omitted. Note that the mantissa has a magnitude 
.10000010100·· ·00 x 26 = 100000.101. 

EXAMPLE 2.37 - FPN signed-magnitude division 

4.5 0.1001 x 23 X 
-0.625 :::} - 0.1010 Y 

In FPN notation the operands are 

X = 0 10000010 100100· .. 00 

Y = 1 01111111 101000 .. ·00. 

Division of the mantissas Mxl My = DDI Ds by Algorithm 2.13: 

ex = 1 - D s = I - .10 1 000 ... 00 = .011000 ... 00 

ko = 1 + ex = 1.011000· .. 00 

Dsko = .11011100 .. ·00 
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kl = I + (Dsko}x' = 1.00100100 .. · 00 

Dskok l = .1 111 1010111 100 .. ·00 

k~ = 1 + (Ds~"x = 1.00000101000100 .. ·00 

Dskpk 1k2 = .I 1 111111111001100101 111 

kJ = J + {Dskoklk!hC = 1.00000000000110011010001. 

After four iterations the quotient is given by 

which is Iruncated to 23 bits. The quotient has a decimal value of 

(0.899996755 X 2~) 1O = 7.199974045010. 

in normalized FPN signed-magnitude 32 bit form the quotient is given by 

Q = I 10000010 1 100110011001 10001 I()(M)(). 
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where the MSB J bi t of the mantissa has been omitted as discussed in Section 2.8. Note 
that the subu-action of exponents Ex - Ey is 130 - 127 = 003 10 or 100000102 in excess 
127 code. The sign bits are added in binary giving S". + Sr = 0 + I = I, where any carry 
(in this case 0) is discarded. 

Algorithm 2.16: Signed-Magnitude (X x Y)"-PN or (X ..;- Y)"PN 

(I) Sct operands X and }' in IEEE normalized FPN form (sec Section 2.7). 
(2) Add the exponents Ex and E) accordi ng to Algorithms 2.8 or 2.9. 
(3) If X x Y. then multiply mantissa fractions according to Algorithm 2. 10. 
(4) If X ..;- Y. then divide mantissas according to Algorithm 2.13. 
(5) Add the sign bits 5x + 5)' and discllrd the carry. 
(6) Set result in IEEE nonnali1.ed FPN form. 

2.9.8 Perspective on Arithmetic Codes 

It should seem clear to the reader that certain arithmelic operations are more easily executed 
than others, depending on whether or nOI the operands are signed and depending on the 
number code used to carry out the operation. Table 2.9 is intended 10 show the general 
degrec of difficulty of certain arithmetic opcmtiollS rdative to the arithmetic code (signed· 
magnitude. 2's complement, etc.) used. 

Not indicated in Table 2.9 are the subdivisions within a given type of arithmetic operation . 
For example, no distinction is made between a direct division (restoring) algorithm and all 

iterative divide (nonrc .~toring) algorithm. which may differ significantly with regard to dir
ficuhy -the laller being easier (or operands represented in FPN notation. As a general rule!. 
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Table 2.9 Arithmetic codes vs the degree of difficulty of arithmetic operations 

Arithmetic Operation Unsigned Numbers Signed-Magnitude Two's Complement 

Unsigned addition Easy Easy Easy 
Signed Difficult Easy 

addition/subtraction 
Unsigned multiplication Fairly difficult Fairly difficult Difficult 

Signed multiplication Fairly difficult Difficult 
Unsigned division Difficult Difficult Very difficult 

addition/subtraction of signed numbers involves relatively simple arithmetic manipulations 
of the operands compared to multiplication; and division requires more decision-making 
steps than multiplication. Also not shown in Table 2.9 are the l's complement, BCD, and 
XS3 number codes, since they are not commonly used in computer numeric operations. 
Finally, a direct correspondence is implied between degree of difficulty and the hardware 
requirements to carry out a given arithmetic operation. 

2.10 OTHER CODES 

Most binary codes of value in digital design fall into one or more of the following ten 
categories: 

Weighted binary codes 
Unweighted binary codes 
Biased codes 
Decimal codes 
Self-complementing codes 

Unit distance codes 
Reflective codes 
Number codes 
Alphanumeric codes 
Error detecting codes 

The previous sections have introduced examples of weighted binary codes, number codes, 
biased codes, and decimal codes. Number codes are those such as 2's and 1 's complement 
that are used in addition/subtraction operations. Now, other codes (excluding alphanumeric 
codes) will be briefly discussed so as to provide a foundation for the developments in later 
chapters. 

2.10.1 The Decimal Codes 

Shown in Table 2.10 are seven decimal (10 state) codes that can be classified as either 
weighted or unweighted codes. All but one of these codes is weighted as indicated in the 
table. A weighted code can be converted to its decimal equivalent by using positional weights 
in a polynomial series as was done for the BCD code (1) discussed in Subsection 2.4.1. 
Code (2), the XS3 code, is a biased-weighted code considered in Subsection 2.4.1 and in 
Section 2.7. An unweighted code, such as code (7), cannot be converted to its decimal 
equivalent by any mathematical weighting procedure. 

Not all weighted decimal codes are natural in the sense that their code weights cannot 
be derived from positive powers of 2 as is done for codes (I) and (2). Codes (3) through (6) 
in Table 2.10 are of this type. Code weights such as -1, -2,5, and 6 cannot be generated 
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Table 2.10 Weighted and unweighted decimal codes 

Weighted codes Unweighted 

Dec. (I) (2) (3) (4) (5) (6) (7) 

Value (BCD) (XS3) 2421 84-2-1 86421 51111 Creeping Code 

0 0000 0011 0000 0000 00000 00000 00000 
1 0001 0100 0001 0111 00001 00001 10000 
2 0010 0101 0010 0110 00010 00011 11000 
3 0011 0110 0011 0101 00011 00111 11100 
4 0100 0111 0100 0100 00100 01111 11110 
5 0101 1000 1011 1011 00101 10000 11111 
6 0110 1001 1100 1010 01000 11000 01111 
7 0111 1010 1101 1001 01001 11100 00111 
8 1000 1011 1110 1000 10000 11110 00011 
9 1001 1100 1111 1111 10001 11111 00001 

by any positive integer power of 2, but they can still serve as code weights. As an example, 
consider how decimalS is represented by code (4): 

Decimal equivalent = 5 

84-2-1 code representation = (l x 8) + (0 x 4) + [1 x (-2)] + [1 x (-1)] 

= 1011. 

Note that there may be more than one combination of weighted bits that produce a given 
state. When this happens, the procedure is usually to use the fewest 1 's. For example, 
decimal 7 can be represented by 00111 in code (5), 86421 code, but 0l00l is preferred. An 
exception to this rule is the 2421 code discussed next. 

Codes (2), (3), and (4) are examples of codes that have the unusual property of being self
complementing. This means that the 1 's complement of the code number is the code for the 
9's complement of the corresponding decimal number. In other words, the I's complement 
of any state N (in decimal) is the same as the (9 - N) state in the same self-complementing 
code. As an example, the 1 's complement of state 3 in XS3 (0110) is state 6 (l 00 1) in that 
same code. The I's and 9's complement number codes were discussed in Subsection 2.6.3 
and are presented in Tables 2.7 and 2.8, respectively. 

2.10.2 Error Detection Codes 

There is another class of weighted or semiweighted codes with the special property that 
their states contain either an even number or an odd number of logic J's (or O's). Shown 
in Table 2.11 are four examples of such codes. This unique feature make these codes 
attractive as error-detecting (parity-checking) codes. Notice that both the 2-out-of-5 code 
(semi weighted) and the biquinary code (weighted 5043210) must have two l's in each of 
their 10 states and are, therefore. even-parity codes. In contrast, the one-hot code (weighted 
9876543210) is an odd-parity code, since by definition it is allowed to have only a single 
I for any given state. Code (d) is no more than the BCD code with an attached odd parity
generating bit, P. 
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Table 2.11 Error detection codes 

(a) (b) (c) (d) 
Even Parity Even Parity Odd Parity Odd Parity 

Decimal 2-out-of-5 Biquinary One-Hot BCD 
Value (74210) 5043210 9876543210 P842 I 

0 11000 01 00001 0000000001 10000 
I 00011 01 00010 0000000010 00001 
2 00101 10 00100 0000000100 00010 
3 00110 1001000 0000001000 10011 
4 01001 0110000 0000010000 00100 
5 01010 10 00001 0000100000 10101 
6 01100 10 00010 0001000000 10110 
7 10001 10 00100 0010000000 00111 
8 10010 10 01000 0100000000 01000 
9 10100 10 10000 1000000000 11001 

The advantage of using an error-detecting code is that single-bit errors (those most likely 
to occur) are easily detected by a parity detector placed at the receiving end of a data bus. If a 
single error occurs, the parity is changed (odd-to-even or vice versa) and further processing 
can be delayed until the error is corrected. On the other hand, if two errors occur, the error 
cannot be detected by any simple means. 

2.10.3 Unit Distance Codes 

The last class of codes that will be discussed here are called unit distance codes, so called 
because only one bit is permitted to change between any two of their states - recall that 
in natural binary, adjacent states may differ by one or more bits. Three examples of unit 
distance codes are given in Table 2.12: (1) a decimal code, (2) a reflective unit distance code 
called Gray code, and (3) an XS3 decimal Gray code formed from the inner 10 states of 
code (2). The reflective character of the Gray and XS3 Gray codes are easily revealed by the 
fact that all bits except the MSB are mirrored across an imaginary plane located midway in 
the 16 states and 10 states, respectively, as indicated by the dashed lines. The unit distance 
property of the Gray code will be used in logic function graphics discussed at length in 
Chapter 4. Also, the unit distance and reflective character of the Gray code make it uniquely 
suitable as a position indicator code for rotating disks and shafts. Encoding errors produced 
by rotational irregularities can be detected and corrected by the use of such a code. 

Although only a 4-bit Gray code is represented in Table 2.12, it should be noted that a 
Gray code of any number of bits is possible. Also, there are other unit distance codes that 
can be generated with any number of bits but they will most likely not be reflective. 

2.10.4 Character Codes 

The most common character code is called ASCII (pronounced "as-key"), the acronym for 
American Standard Code for Information and Interchange. ASCII code represents each 
character as a 7-bit binary string, hence a total of 27 = 128 characters, and is given in 
Table 2.13. This code encodes numerals, punctuation characters, all upper- and lowercase 



Table 2.12 Unit dis~ance codes: (1) a decimal code 
(nonreflective); (2) four-bit Gray code (reflective); 

(3) XS3 Gray decimal code (reflective) 

(1) (2) (3) 
Decimal Decimal 4-Bit XS3 Gray 

Value Code Gray Code Decimal Code 

0 0000 0000 0010 
1 0001 0001 0110 
2 0011 0011 0111 
3 0010 0010 0101 
4 0110 0110 0100 

5 1110 0111 1100 
6 1111 0101 1101 
7 1101 0100 1111 

8 1100 1100 1110 
9 0100 1101 1010 

10 1111 
11 1110 
12 1010 
13 1011 
14 1001 
15 1000 

Table 2.13 ASCII character code 

3{,aS<4 (column) 

Row 000 001 010 011 100 101 110 111 

a3 a2a lao (Hex) 0 2 3 4 5 6 7 

0000 0 NUL DLE SP 0 @ P P 
0001 SOH DCl 1 A Q a q 
0010 2 STX DC2 2 B R b r 
0011 3 ETX DC3 # 3 C S c s 
0100 4 EOT DC4 $ 4 D T d 
0101 5 ENQ NAK % 5 E U e u 
0110 6 ACK SYN & 6 F V f v 
0111 7 BEL ETB 7 G W g w 
1000 8 BS CAN 8 H X h x 
1001 9 HT EM 9 I Y Y 
1010 A LF SUB * J Z j z 
101 I B VT ESC + K [ k 
1100 C FF FS < L \ 
1101 D CR GS M 1 m 
1110 E SO RS > N 1\ n 
111 I F SI US ? 0 0 DEL 
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alphabet letters, and a variety of printer and typewriter control abbreviations. An eighth bit 
(not shown) is often used with the ASCII code for error detection purposes. 

Another common character code is known as EBCDIC (pronounced "ebb-see-dick"), 
the acronym for extended BCD interchange code. It uses 8-bit BCD strings so as to encode 
a 256-character set. 

FURTHER READING 

Literature on number systems and arithmetic is extensive. Many journal articles and most 
texts on digital logic design cover these subjects to one extent or another. Portions of this 
chapter regarding number systems are taken from contributions by Tinder to The Electrical 
Engineering Handbook, cited here. Recognized classic treatments of number systems and 
arithmetic include those of Gamer, Hwang, and Knuth. The IEEE publication on the standard 
for floating-point arithmetic is also frequently cited. These references, together with recent 
texts covering the subject areas, are cited here. 
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PROBLEMS 

Note: Use Tables P2.1, P2.2, and P2.3 as needed in working the following problems. 

2.1 Convert the following decimal numbers to binary: 
(a) 5 

(b) 14 

(c) 39 

(d) 107.25 

(e) 0.6875 
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2.2 Convert the following binary numbers to decimal by using the method of positional 
weights: 
(a) 0110 

(b) 1011 

(c) 11001 

(d) 11011001.11 

(e) 0.01011 

2.3 Convert the decimal numbers of Problem 2.1 to BCD. 

2.4 Convert the binary numbers of Problem 2.2 to BCD. To do this, add trailing and 
leading O's as required. 

2.5 Convert the following BCD numbers to binary: 
(a) 00010011 

(b) 01010111 

(c) 0101000110 

(d) 1001000.00100101 

(e) 0.100001110 101 

2.6 Convert the decimal numbers in Problem 2.1 to XS3. 

2.7 Convert the BCD numbers in Problem 2.5 to XS3. 

2.8 Convert the binary numbers in Problem 2.2 to BCH. 

2.9 Convert the BCD numbers in Problem 2.5 to BCO. 

2.10 Convert the following numbers to binary: 
(a) 6135208 

(b) 2FD6A25B 16 

(c) 11110011100.01lxs3 

(d) 6! 

2.11 Convert the following fractions as indicated: 
(a) 0.53410 --+ N2 rounded to 8 bits. 

(b) 0.3DF216 --+ N2 rounded to 8 bits. 

(c) 0.53410 --+ NI6 terminated at 4 digits. 

(d) 0.54278 --+ N2 rounded to 8 bits. 

2.12 Convert the following numbers to signed-magnitude binary form: 
(a) +56.25 10 

(b) -94.625 10 
(c) -7BD.5 16 

(d) +1258 
(e) -0110101.l0011BcD 

2.13 Give the radix complement representation for the following numbers: 
(a) The lO's complement of 47.6310 
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(b) The 2's complement of 011011101.1101 2 

(c) The 8's complement of 501.748 

(d) The 16's complement of AF3.C8'6 

2.14 Represent the following numbers in IEEE normalized FPNz form: 
(a) 1101011.1011 2 

(b) +27.687510 

(c) -145.50010 

2.15 Add the following binary additions and verify in decimal: 
(a) 10 + 11 

(b) 101 + 011 

(c) 10111 + 01110 

(d) 101101.11 +011010.10 

(e) 0.1100+1.1101 

2.16 Carry out the following binary subtraction operations in 2's complement and verify 
in decimal: 
(a) 01100 - 00101 

(b) 011l01l - 0011001 

(c) 01001000 - 01110101 

(d) 010001.0101 - 011011.1010 

(e) 00.011010 - 01.110001 

2.17 Repeat Problem 2.16 in l' s complement. 

2.18 Carry out the following binary multiplication operations and verify in decimal: 
(a) 11 x 0101 

(b) III 0 1 x 11110 11 

(c) 1001.10 x 11101.11 

(d) 110.011 x 1101.0101 

(e) 0.1101 x 0.01111 

2.19 Carry out the following complement multiplications and verify in decimal: 
(a) 00000111 x -00001101 

(b) 110 x -11101 (k = 5) 

(c) -11.01 x 101.11 (k = 5) 

(d) 111.111 x -1.101 (k = 6) 

(Hint: Consider switching minuend and subtrahend operands if it yields less work.) 

2.20 Find the quotient for each of the following division operations by using the binary 
equivalent of the familiar "pencil-and-paper" method used in long division of decimal 
numbers. Show work details. 
(a) 1100 --:- 100 

(b) 111111 --:- 1001 

(c) 11001.1 --:- 011.11 (Carry out quotient to the 2-2 bit and give the remainder) 

(d) 100 --:- 1010 (Carry out quotient to the 2-6 bit and give remainder) 
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2.21 Use the direct quadratic convergence method to obtain the quotient for the following 
fractions. To do this, use Eqs. (2.26) and (2.27). 
(a) (0.25 -;- 0.75)10 in decimal. Find Q after three iterations and rounded to 10-5 . 

(b) (0.01 -;- O.llh in binary. Compare Q after two iterations rounded to 2-8 with Q 
after three iterations rounded to 2 16. For comparison, use decimal values derived 
from the binary results. 

2.22 Carry out the following hexadecimal operations and verify in decimal: 
(a) lA8 + 67B 

(b) ACEFI + l6B7D 

(c) 1273 16 - 3A8 

(d) 89[6 x lA3 

(e) A2 x 15BE3 

(f) lEC87 -;- A5 (Hint: Use decimal ~ hex methods with Table P2.3.) 

2.23 Convert the following decimal numbers to BCD with the MSDs null (0000), then 
carry out the indicated arithmetic in BCD by using Algorithms 2.14 and 2.15 in 
Subsection 2.9.6: 
(a) 04910+07810 

(b) 168.610+057.510 

(c) 09310-06710 

(d) 034.79 10 -156.23 10 

2.24 Perform the FPN arithmetic indicated below. To do this follow the examples in Sub
section 2.9.7. 
(a) 135.2510 + 54.62510 

(b) 54.625 10 - 135.2510 

(c) 3.7510 X 5.062510 

(d) 4.5010 x (-2.312510) 

(e) 6.25 -;- (-0.37510) 

Note: Use the sign-magnitude FPN system for parts (d) and (e) following Exam
ples 2.36 and 2.37. 

2.25 To add XS3 numbers, a correction by either adding or subtracting 0011 is necessary 
depending on whether or not a 1 carry is generated. Study, then write an algorithm 
for the addition in XS3 numbers. 

2.26 Prove that a self-complementing unit-distance code is not possible. 

2.27 An inspection of the binary and Gray codes in Tables 2.1 and 2.12 indicates a unique 
relationship between these codes. Examine these codes and devise a simple algorithm 
that will permit direct "pencil-and-paper" conversion between them, binary-to-Gray 
or vice versa. 

2.28 Decipher the following ASCII code. It is given in hexadecimal, MSD first. 

57 68 61 74 69 73 79 6F 75 72 6E 61 6D 65 3F 



Table P2.1 Powers of 2 

2n n 2-n 

1 0 1.0 
2 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 O.oI5 625 

128 7 0.007 812 5 
256 8 0.003 906 25 
512 9 0.001 953 125 
024 10 0.000 976 562 5 

2 048 11 0.000 488 281 25 
4 096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 
65 536 16 0.000 015 258 789 062 5 

131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
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o 0 
1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
A A 
B B 
C C 

Table P2.2 Hexadecimal addition table 

BCD E F 

2345678 9A B C 
2345678 9A BCD 
345678 9ABC DE 
45678 9ABCD E F 
5678 9ABCDE FlO 
6 7 8 9 ABC D E F 10 11 
7 8 9 ABC D E F 10 11 12 
8 9 ABC D E F 10 11 12 13 
9 ABC D E F 10 11 12 13 14 
ABC D E F 10 11 12 13 14 15 
BCD E F 10 11 12 13 14 15 16 
C D E F 10 II 12 13 14 15 16 17 
D E F 10 11 12 13 14 15 16 17 18 
E F 10 11 12 13 14 15 16 17 18 19 
F 10 11 12 13 14 15 16 17 18 19 IA 

10 11 12 13 14 15 16 17 18 19 lA IB 

Table P2.3 Hexadecimal multiplication table 

D E F 
E F 10 
F 10 11 

10 11 12 
11 12 13 
12 13 14 
13 14 15 
14 15 16 
15 16 17 
16 17 18 
17 18 19 
18 19 lA 
19 lA 18 
lA 18 IC 
18 IC lD 
IC ID IE 

o 23456789 A BCD E F 

00000000000000000 
0123456789 ABC DE F 

2 0 2 4 6 8 ACE 10 12 14 16 18 IA lC IE 
3 0 3 6 9 C F 12 15 I 8 1 B 1 E 21 24 27 2A 2D 
4 0 4 8 C 10 14 18 IC 20 24 28 2C 30 34 38 3C 
5 0 5 A F 14 19 IE 23 28 2D 32 37 3C 41 46 4B 
6 0 6 C 12 18 IE 24 2A 30 36 3C 42 48 4E 54 5A 
7 0 7 E 15 lC 23 2A 31 38 3E 46 4D 54 5B 62 69 
8 0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 
9 0 9 12 IB 24 2D 36 3E 48 51 5A 63 6C 75 7E 87 
A 0 A 14 IE 28 32 3C 46 50 5A 64 6E 78 82 8C 96 
BOB 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 
C 0 C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 
DOD lA 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 
E 0 E lC 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 
F FIE 2D 3C A5 B4 C3 D2 E I 
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CHAPTER 3 

Background for Digital Design 

3.1 INTRODUCTION 

The contents of this chapter are considered all important to the reader's understanding of 
the remainder of this text and, hence, to an understanding of modern digital design methods. 
In this chapter the reader will learn mixed logic notation and symbology, Boolean algebra, 
and the reading and construction of logic circuits. Besides becoming the industrial standard, 
mixed logic notation and symbology, once learned, offers a remarkably simple, direct means 
of reading and constructing logic circuits and timing diagrams. Use wil1 be made of the 
CMOS logic family to develop this symbology. Other logic families, such as NMOS and 
TTL, are discussed in Appendix A. 

This chapter goes beyond the usual treatment of Boolean algebra to present what is 
called XOR algebra, an extension of Boolean algebra that deals with functions that have 
become very important in circuit design, particularly in arithmetic circuit design. CMOS 
realizations of XOR functions have, in a special sense, revolutionized thinking along these 
lines, making the use of such functions much more appealing to the logic designer. 

3.2 BINARY STATE TERMINOLOGY AND MIXED LOGIC NOTATION 

Digital systems are switching devices that operate in only one of two possible states at any 
given time, but that can be switched back and forth from one state to another at very high 
speed (millions of times per second). The two states are high voltage (HV) and low voltage 
(LV). The LV and HV levels are usually taken as 0 V and 2 to 5 V, respectively, for common 
CMOS logic circuits. 

To design a useful digital device, meaningful logic names must be assigned to the inputs 
and outputs of a logic circuit so that their physical interpretation in tenus of voltage levels 
can be made unambiguously. This requires the use of a notation that can easily bridge the gap 
between the logic domain in which the device is designed, and the physical domain in which 
the device is to be operated. The following subsection defines this notation. 

3.2.1 Binary State Terminology 

A state is said to be active if it is the condition for causing something to happen. And for 
every active state there must exist one that is inactive. In the binary (base 2) system of I's 
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and O·s. these descriptors take me following meaning; 

Logic I is the ACTIVE state 
Logic 0 is tire INACfIV£ slate 

Thus. in the logic df1mailZ, logic I is assigned loth~' active condition while logic Oisa~signed 
to the inactive condition . This will always be so. 

A symbol that is attached to the name of a signal and that establishes which physical 
slate. HV or LV, is 10 be the active stale for that signal. is called the activation level indicaTOr. 
The activation level indicators used in this text are 

(H) meaning ACTIVE HIGH 
(L) meaning ACT/VI:.' LOW 

Thus, a line signal LOAD(H) is onc for which the active state occurs lit high voltage 
(HV), and LOAD(L) is one for which the active Siale occurs at low voltage (LV). This 
is illustrated in Fig. 3.1. Here. the name LOAD is the physical wavefoml output of a 
digital device. and LOAD(H) and LOAD(L) are equivalent logical interprelations of that 
physical waveform. Notice that logic waveforms are rectangular (i.e .• with zero rise and 
fall times). whereas physical wavefonns must have finite rise and fall li mes. Finitc rise 
and fall times are a consequence of the fac t thai changes in the physical Sl,lIe of any
thing cannot occur instantancously. Logic levcl transitions. on the other hand. are non
physical and occur ahruptly at the active and inactive transition points of the physical 
waveform. as indicaled by the vertical dotted lines in Fig. 3. 1. AIM). the physical wave
forms in Fig. 3. 1 have amplilUdes measured in terms of voltage whereas logic wave
fonns have amplitudes indicated by the logic levels 0 and I. Labels such as LOAD(H) 
or LD(H) and lOAD(L) or LD(L) arc commonly referred to as poll"i<.ed mnemonics. 
The word "polarized" refers to the use of actjvalion level indicator symbols. (H) and (L). 
Thus. LD(L) means LOAD active (or asserted) low. and LOCH) refers 10 LOAD active 
(or asserted) high. 

Inputs .( 

FIGURE 3.1 

Digital 

De""'" 
LOAD 

HV 

tV 

'I'" 

[ 
LOAD(H) O(H) 

Logic Domain O(l ) 

" LOAD(L) 1(l) 

Physical Domain 

_lime 

Mixed logic interpretalion of a physical wavefonn showing a digital deVK:e with its voltage waveform 
arxl the positive and negative logic interpretations of the wavcform. 
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HV 1(H) 

LV O(H) 

FIGURE 3.2 
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Voltage noise margins 

NMH 
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Logic interpretation of voltage waveforms. (a) Positive logic. (b) Negative logic. 
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OIL) 

1(L) 

What results from an inspection of the physical and logic waveforms in Fig. 3. 1 is the 
important conclusion 

HV corresponds to I (H) :: O(L) 

LV corresponds to O(H):: J(L). 
(3. I) 

Relations (3.1) represent the essence of mixed logic Ilotation and are used throughout this 
text for the purpose of converting from the logic domain to the physical domain or vice 
versa. Thus, the physical state of HV is represented by either I (H) or O(L) in the logic 
domain while the physical state of LV is represemed by either O(H) or I(L) in the logic 
domain. The expression "mixed logic" applies to the use of both the positive logic and 
negative logic systems within a given application. 

The positive and negative logic systems. which follow from Eqs. (3. 1), are presented in 
Fig. 3.2. Here. the two systems are shown on logic waveform pulses similar to those shown 
in Fig. 3. 1. The high noise margin (NMH) and low noise margin (NML) are included as a 
reminder Ihal their inner boundaries are also the inner limits of thc logic states (1 and 0) 
as well as the outer limits of the uncertainty region. A signal whose value lies in the 
uncertai nty region cannot be taken as either logic I or logic O. 

The digital device shown in Fig. 3.3 illustrates the use of polarized mnemonics in the 
mixed logic digital system. Shown here are two inputs. LD(H) and CNT(L), and one out~ 

put, DONE(H). The input LD(H) is said to arrive from a positive logic source (active 
high) while CNT(L) arrives from a negative logic source (hence, active low). The output 
DONE(H) is del ivered to the next stage as a positive logic source (active high). LD and eNT, 

LO( HI 

CNT(l) 

fiGURE 3.3 

Digital 
Device 

PQlarized mnemonics applied to a digital device. 

OO NE(H) 
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which represent LOAD and COUNT, respectively, are meaningful abbreviations called 
mnemonics. 

3.3 INTRODUCTION TO CMOS TERMINOLOGY AND SYMBOLOGY 

Complementary MOSFET (CMOS) switching circuits are composed of n-type MOSFETs 
(NMOS for short) and p-type MOSFETs (PMOS). As a help in reading and constructing 
CMOS switching circuits, the simplified symbols and ideal equivalent circuits for both 
types are given in Fig. 3.4. Thus, for either, the OFF condition is always an open circuit 
while the ON condition is always a short circuit. But the voltage levels causing the ON and 
OFF conditions for NMOS and PMOS are opposite; hence, they are called complementary. 
Notice that the voltage to produce the ON or OFF condition is always applied to the gate, G, 
and that the drain-to-source is either nonconducting (lDrain = 0) for the OFF condition or 
conducting (VDS = 0) for the ON condition. Use of Fig. 3.4 makes reading and construction 
of CMOS circuits very easy. However, know ledge of which terminal is the drain and which 
is the source is important only when configuring at the transistor circuit layout level. 

Proper CMOS circuit construction requires that the NMOS and PMOS sections be posi
tioned as shown in Fig. 3.5. The reason for this particular configuration is that NMOS passes 

Drain 
D D D 

Gate. G -1 tIn = 0 
) Short Ck,,;' 

LV- } Open HV- VDS = 0 r Circuit 

S S S 
Source 

OFF ON 

Drain 
D D D 

Gate. G -4 tIn = 0 
) ShM C;",U 

HV- } Open LV- VDS = 0 r Circuit 

S S S 
Source 

OFF ON 
FIGURE 3.4 
Symbols and ideal equivalent circuits for nand p MOSFETs: (a) NMOS. (b) PMOS. 
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LV well but not HY. Conversely. PMOS passes HV well bul notLY. The proper plaeement of 
the NMOS and PMOS sections results in a sharp, relatively undistorted waveform. Inverting 
this configuration would require that the NMOS and PMOS sections pass voltage levels 
that they do not pass well. resulting in a distortion of the voltage waveform. Therefore. the 
PMOS section i~always placed on the HV end with the NMOS on the LV side, as in Fig. 3.5. 

3.4 LOGIC LEVEL CONVERSION: THE INVERTER 

When a positive logic source is converted to a negative logic source. or vice versa, logic 
level conwrsion is said to occur. The physical device that performs logic level conversion 
is called the inverter. Shown in Fig. 3.6a is the CMOS version oflhe inverter. It is a CMOS 
inverter because it is composed of both NMOS and PMOS cast in the complementary COlJ

figumtion of Fig. 3.5. The physical truth table, shown in Fig. 3.6b, is easily understood 
by referring to Fig. 3.4. The logic interpretations and conjugate logic symbols that derive 
from the physical truth table are shown in Figs. 3.6c and 3.6d. The conjugate logic circuit 
symbols are used to indicate Ihe logic level conversion X (H) -40 X(L) or X(L) --t X (H) 
depending on where the active loll' indicator bubble is located. The designation "conjugate" 
indicates that the symbols are interchangeable, as they must be since they are derived from 
the same physical device (the inverter). 

The CMOS inverter is used here for the purpose of developing the concept of logic level 
conversion. However, there arc versions of the inverter that belong to logic families other 
than the CMOS family. These include the NMOS and lTL families, all of which yield 
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+Voo 
(H) ---l> (L) Xin Xout (L) ---l> (H) 

Conversion LV HV Conversion 

j HV LV j (b) 

Xin X
OUi X(H) j X(L) X(L) X(H) 

1 1 o , 0 
1 I 1 0 0 

Active Low 
r,ndicator Bubble ~ 

X(H) ---[)?- X(L) X(L) ~ X(H) 
--

(a) (c) (d) 

fiGURE 3.6 
The inverter, its I/O behavior, and its two logic interpretations. (a) The CMOS transistor circuit. 
(b) Physical truth table. (c) Active-high-to-active-Iow conversion and logic circuit symbol. (d) Active
low-to-active-high conversion and logic circuit symbol. 

the physical truth table and logic interpretations given in Figs. 3.6b, 3.6c, and 3.6d. More 
detailed information on these logic families is presented in Appendix A. 

3.5 TRANSMISSION GATES AND TRI-STATE DRIVERS 

A MOS transistor switch that functions as a passive (non-amplifying) switching device 
and that does not invert a voltage signal is called a transmission gate or pass transistor. 
Logic circuits composed of transmission gates are called steering logic and are discussed in 
Section 6.9. Shown in Fig. 3.7 are the circuit symbols and equivalent circuits for the NMOS, 
PMOS, and CMOS transmission gates. Here, it can be seen that the ON condition in Fig. 3.7b 
permits an input signal Xi to be transferred to the output; hence, X 0 Xi. Conversely, the 
OFF condition disconnects the output from the input, allowing no signal to be transferred. 
Notice that the CMOS transmission gate requires complementary "enable" inputs, EN and 

to the NMOS and PMOS gates, respectively. This simply means that when one enable 
input is at high voltage (HV) the other must be at low voltage (LV) and vice versa. 

As indicated earlier, an NMOS switch passes LV well but not HV, the reverse being 
true for a PMOS switch. Consequently, some distortion of the transmitted waveform is to 
be expected in NMOS and PMOS transmission gates operated in the transfer mode (ON 
condition). The CMOS switch, on the other hand, combines the best of both worlds, thereby 
minimizing waveform distortion. 

An active (restoring) switching device that operates in either a transfer or disconnect 
mode is called a tri-state driver or tri-state buffer. If in the transfer mode it is designed to 
invert, it is called an inverting tri-state driver. These devices are called "tri-state" or "three
state" because they operate in one of three states -logic 0, logic 1, or high-impedance 
(Hi-Z) state. In the Hi-Z or disconnect state the tri-state driver is functionally "floating;' as 
if it were not there. Tri-state drivers are used to interface various IC devices to a common 
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Transmission gate circuit symbols and their idealized equivalent circuits. (a) Simplified circuit 
symbols for NMOS, PMOS, and CMOS transmission gates. (b) ON (transfer) mode equivalent circuit. 
(c) OFF (disconnect) mode equivalent circuit. 

data bus so that the devices will not interfere with each other. By this means, tri-state drivers 
permit multiple signal sources to share a single line if only one of the signals is active at any 
given time. These drivers also serve as a controlled enable on the output of some devices. 
Note that the term "tri-state" is a trademark of National Semiconductor Corporation. Thus, 
the use ofthe term "tri-state" in this text acknowledges NSC's right of trademark. The terms 
tri-state and three-state are often used interchangeably. 

Shown in Fig. 3.8 are four types of CMOS tri-state drivers constructed from the equivalent 
of two or three inverters. They differ in the activation levels of the control input, C, and the 
output, X". indicated by the logic circuit symbols. The choices are inverting or noninverting 
tri-state drivers with active high or active low control inputs, as provided in Figs. 3.8a-d. The 
buffering (driving) strength is the same for all tri-state drivers, however. This is so because 
during the transfer stage the outputs Xo are connected to the supply + VDD depending on 
the character of the driver and the Xi voltage level. For example, in the case of the inverting 
tri-state driver of Fig. 3.8c, a control C = HV connects the output Xo to + VDD if the input 
is Xi = LVorconnects Xo to ground if Xi = HV. Thus, in the transfer mode, the transistors 
of a tri-state driver serve as transmission gates, thereby permitting an input signal to be 
enhanced (or refreshed); hence the meaning of the term driver. Of course, in the disconnect 
mode the tri-state driver produces a very large impedance (Hi-Z) between its input and 
output, virtually disconnecting the input from the output. 

Note that the conjugate logic circuit symbols are provided for each tri-state driver shown 
in 3.8 and that these symbols are interchangeable-as they must be, since they are 
derived from the same physical device (the tri-state driver). The idea here parallels that of 
the inverter and its conjugate logic circuit symbols shown in Fig. 3.6. Symbol X appearing 
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CMOS tri-state drivers, conjugate circuit symbols, and ideal equivalent circuits. (a) Noninverting 
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Inverting tri-state driver with active high control. (d) Inverting tri-state driver with active low control. 
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on the output of an inverting tri-state driver in the transfer mode indicates an inverted voltage 
signal. Thus, if X is at LV, then X is at HV and vice versa. 

Buffers, or line drivers as they are sometimes called, may be composed of a series of 
inverters or gates used as inverters, or they may be simply a tri-state driver operated in the 
transfer mode. Remember, it is the function of a line driver to boost and sharpen signals that 
might otherwise degrade below switching levels or be distorted. The mixed logic circuit 
symbols for buffers are given in Fig. 3.20a. 

3.6 AND AND OR OPERATORS AND THEIR MIXED-LOGIC 
CIRCUIT SYMBOLOGY 

There are just two binary logic operations that underlie all of logic design and Boolean 
algebra (after George Boole, 1815-1864, English mathematician). These are the AND and 
OR operations. The following are the operator symbols (or connectives) that are used for 
AND and OR: 

(-) --+ AND (+) --+ OR 

So, if one writes X· Y, XY, or (X)(Y), it is read as X AND Y. Note that the AND operator (-) is 
also called the Boolean product (or intersection) and may be represented by the alternative 
symbol (1\). Thus, X . Y = X 1\ Y is the intersection or Boolean product of X and Y. 
In contrast, X + Y is read as X OR Y. The operator (+) is often called the Boolean sum 
(or union) and may be represented by the alternative symbol (v). Hence, X + Y = X v Y 
is the union or Boolean sum of X and Y. 

By using the two Boolean operators, an endless variety of Boolean expressions can be 
represented. Simple examples are expressions such as 

F=X+Y·Z and G = X· (Y + Z). 

The first is read as F equals X OR (Y AND Z). In this expression the Boolean quantity 
Y . Z must first be evaluated before it is "ORed" with X. The second expression is read as 
G equals X AND (Y OR Z). In this case the quantity (Y + Z) must first be evaluated before 
it can be "ANDed" with X. Thus, the hierarchy of Boolean operation is similar to that of 
Cartesian algebra for multiplication and addition. 

3.6.1 Logic Circuit Symbology for AND and OR 

The meanings ofthe AND and OR operators (functions) are best understood in terms of their 
logic circuit symbols. Shown in Fig. 3.9 are the distinctively shaped logic circuit symbols 
commonly used to represent the AND and OR operators, which may have mUltiple inputs 
and a single output. The functional descriptions of these symbols are stated as follows: 

The output of a logic AND circuit symbol is active !f, and only if, all inputs are active. 

The output of a logic OR circuit symbol is active if one or more of the inputs are 
active. 
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(a) (b) 

FIGURE 3.9 
Distinctive logic circuit symbols for the binary operators. (a) AND symbol. (b) OR symbol. 

The functional descriptions may be taken as the definitions for AND and OR. Remember 
that the term active implies logic 1. 

The distinctively shaped symbols in Fig. 3.9 represent the functional descriptions for 
AND and OR and provide the logical interpretation for a variety of physical devices 
called gates. That is, each gate must satisfy the logical AND or logical OR functional 
description. By definition: A gate is an interconnection of electronic switches and other 
circuit elements arranged in such a way as to produce the electrical equivalent of a logic 
operation. The inputs and outputs of a gate are measured in terms of voltages (LV or 
HV), whereas the inputs and outputs of a logic symbol, as in Fig. 3.9, are expressed in 
terms of logic I or logic 0 together with the appropriate activation level indicators, (H) 
and (L). 

3.6.2 NAND Gate Realization of Logic AND and OR 

The physical device shown in Fig. 3.10a is a two-input NAND gate. NAND is short for 
NOT-AND. Because this version of NAND gate complies with the generalized CMOS gate 
configuration in Fig. it is called a CMOS NAND gate. The physical truth table for this 
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The two-input NAND gate, its 1/0 behavior, and its two logic interpretations. (a) CMOS transistor 
circuit. (b) Physical truth table. (c) Logic AND interpretation and circuit symbol. (d) Logic OR 
interpretation and circuit symbol. 
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FIGURE 3.11 
Multiple input NAND gates and logic circuit symbols. (a) CMOS logic circuit. (b) AND interpretation. 
(c) OR interpretation. 

or any NAND gate is given in Fig. 3.10b. It is easily generated by applying the ON and 
OFF equivalent circuits for NMOS and PMOS given in Fig. 3.4. 

The two logical AND and OR interpretations of the NAND gate and their mixed logic 
circuit symbols are given in Figs. 3.1 Oc and 3.1 Od. They, too, apply to NAND gates belonging 
to logic families other than CMOS, as explained further in Appendix A. Notice that by 
applying Eqs. (3.1) the truth tables for the AND and OR interpretations satisfy the definitions 
for AND and OR given earlier in connection with Fig. 3.9-no other combination of 
activation level symbols applied to inputs X and Y satisfies these definitions. But both logic 
circuit symbols represent (in the logic domain) the physical NAND gate, since both are 
derived from it. Thus, one symbol (c) performs the AND operation with active low output, 
while the other symbol (d) performs the OR operation with active low inputs. The symbols 
are interchangeable in a logic circuit and, for that reason, are called conjugate NAND gate 
symbols even though, strictly speaking, they are only logic circuit symbols. 

Multiple input CMOS NAND gates result by adding more PMOS in parallel and an equal 
number of NMOS in series, as shown in Fig. 3.11. The logic circuit symbols and output 
expressions shown in Figs. 3.11 band 3.11c result. The number of inputs is usually limited 
to eight or fewer, mainly because of an increase in resistance of the series N-MOSFETs, 
each of which has a small ON channel resistance associated with it. Therefore, too many 
inputs causes an increase in gate propagation delay and a degradation of the signal. The 
number of inputs that a gate can have is called the fan-in. For example, a four-input NAND 
gate would have a fan-in of 4. 

3.G.3 NOR Gate Realization of logic AND and OR 

The transistor circuit for the two-input CMOS NOR gate is shown in Fig. 3.12a. NOR is 
short for NOT-OR. The physical truth table and the AND and OR logical interpretations 



90 CHAPTER 3/ BACKGROUND FOR DIGITAL DESIGN 

x Y Z 

Logic AND LV LV HV Logic OR 
Interpretation LV HV LV Interpretation 

~ 
HV LV LV 

~ HV HV LV 
x--t-----a 

X(L) Y(L) Z(H) (b) X(H) Y(H) Z(L) 
y--+----t-O 1 1 0 0 0 

1 0 0 0 1 1 
0 1 0 0 1 ..---+--t---Z 
0 0 0 1 

X(L)D-Z(H) 
Y(L) 

X(H)=D-
Y(H) Z(L) 

Z(H} = (X'Y}(H) Z(L} = (X+ Y)(L} 

(a) (c) (d) 

FIGURE 3.12 
The two-input NOR gate, its I/O behavior and its two logic interpretations. (a) CMOS transistor circuit. 
(b) Physical truth table. (c) Logic AND interpretation and circuit symbol. (d) Logic OR interpretation 
and circuit symbol. 

that derive from it are given in Figs. 3.12b, 3.12c, and 3.12d, respectively, and these also 
apply to NOR gates belonging to other logic families, as discussed in Appendix A. As 
before, the physical truth table is obtained by applying the equivalent circuits given in 
Fig. 3.4 to the transistors in Fig. 3.12a. The AND and OR logic interpretations in parts (c) 
and (d) derive from the application of Eqs. (3.1) to the physical truth table and are observed 
to agree with the definitions of AND and OR given in connection with Fig. 3.9 - again, 
no other combination of activation level symbols applied to inputs X and Y satisfies these 
definitions. Thus, there results two logic circuit symbols, one performing the AND operation 
with active low inputs (c) and the other performing the OR operation with active low output. 
Since the logic symbols are interchangeable, they are called conjugate NOR gate symbols. 

Multiple input NOR gates are produced by adding more PMOS in series and an equal 
number of NMOS in parallel, as indicated in Fig. 3.13a. The logic symbols for multiple 
input NOR gates are shown in Figs. 3.13b and 3.13c. As in the case of mUltiple NAND 
gates, there exists a practical limit to the number of NOR gate inputs (fan-in) because of 
the channel resistance effect. Thus, too many inputs to a NOR gate will increase the gate 
propagation delay and degrade the signal. 

When fan-in restrictions become a problem, a gate tree structure (e.g., a NOR gate tree) 
can be used. A gate tree is a combination of like gates that form a multilevel array (see 
Fig. 4.49). Thus, a tree composed of OR gates and an inverter can replace a multiple-input 
NOR gate when the number of inputs exceeds the fan-in limit for that gate. 

3.6.4 NAND and NOR Gate Realization of logic level Conversion 

Inherent in any NAND or NOR gate is the ability to function as an inverter. Thus, under 
the proper conditions, the NAND or NOR gate can perform the equivalent of logic level 
conversion as in Fig. 3.6. Shown in Figs. 3.14 and 3.15 are the various input connections 
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that permit this to happen. These input connections result directly from the logic truth 
tables in Figs. 3.10 and 3.12. The arrows on the left side of each truth table are given 
to draw attention to those portions of the table that dictate how the connections to the 
NAND and NOR gates must be made. For example, the extreme upper and lower arrows 
in Fig. 3.14a indicate that the two inputs to the NAND gate can be connected for the 
X(H) -+ Z(L) = X(L) conversion. The lower two arrows indicate that the same conversion 
can be achieved by setting Y(H) = l(H). It is not likely that a NAND or NOR gate would 
be used as a replacement for an inverter if the latter were available, but the substitution is 
permissible if the need is there. Obviously, the NAND or NOR gate inverter is more costly 
(spacewise) and is slower than the inverter in Fig. 3.6. 

3.6.5 The AND and OR Gates and Their Realization of Logic AND and OR 

NA.~ and NOR CMOS gates are natural electrical realizations of the AND and OR logic 
operators, but the AND and OR CMOS gates are not. This can be understood if one recalls 
that a transistor switch is, by its nature, an inverter. Thus, it might be expected that proper 
CMOS realizations of NOT-AND and NOT-OR would be simpler (by transistor count) than 
the equivalent CMOS realizations of AND and OR, and this is the case. 

Shown in Fig. 3.16a is the transistor circuit for the CMOS version of the two-input AND 
gate. It is seen to be composed of the NAND gate followed by an inverter, hence NAND
NOT or NOT-AND-NOT. By application of Eqs. (3.1), the physical truth table for the AND 
gate, given in Fig. 3.16b, yields the AND and OR interpretations shown in Figs. 3.16c, 
and 3.16d. From these interpretations there results the two conjugate AND gate symbols, 
one performing the AND operation with active high inputs and output (c) and the other 
performing the OR operation with active low inputs and output as indicated by the active 
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FIGURE 3.17 
The two-input OR gate, its I/O behavior, and its two logic interpretations. (a) CMOS transistor circuit. 
(b) Physical truth table. (c) Logic AND interpretation and circuit symbol. (d) Logic OR interpretation 
and circuit symbol. 

low indicator bubbles. The logic interpretations and mixed logic circuit symbols also apply 
to the AND gate of any logic family. 

The CMOS version of the two-input OR gate, its physical truth table, and its two logic 
interpretations are shown in Fig. 3.17. Again, Eqs. (3.1) and the functional descriptions 
associated with Fig. 3.9 have been applied to the physical truth table, Fig. 3.17b, to yield 
the AND and OR interpretations and the mixed logic circuit symbols presented in Figs. 3.17c 
and 3.17d. The two logic circuit symbols are interchangeable and hence are conjugate OR 
gate symbols. One symbol performs the AND operation and has active low inputs and 
output, while the other performs the OR operation and has active high inputs and output. 
As before, the truth table and logic AND and OR interpretations apply also to an OR gate 
of any logic family. 

Multiple input CMOS AND and OR gates are possible by combining the transistor circuit 
in either Fig. 3.11 or Fig. 3.13 with an inverter. The conjugate gate symbols for AND and 
OR that result are shown in Figs. 3.18 and 3.19. The same limitations on numbers of inputs 
that apply to CMOS NAND and NOR gates also apply to CMOS AND and OR gates. 

FIGURE 3.18 

A(H)~ 
8(H) : Z(H) 

Y(H) 

Z(H) = (A . B ..... Y)(H) 

(a) 

A(LI:P-
8(L) : Z(L) 

Y(L) 

Z(l) = (A + B + ... + Y)(L) 

(b) 

Logic symbols for multiple input AND gates. (a) AND interpretation. (b) OR interpretation. 
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FIGURE 3.19 

A(L):P-
B(L) : Z(L) 

Y(L) 

Z(L) (A' B ..... Y)(L) 

(a) 

A(H) 
B(H)-.r--

Y(H) 

Z(H) 

Z(H) (A + B + ... + Y)(H) 

(b) 

Logic circuit symbols for multiple input OR gates. (a) AND interpretation. (b) OR interpretation. 

AND and OR gates can be configured by "flipping" end-for-end the NAND and NOR 
gates shown in Figs. 3. lOa and 3.12a, respectively, such that the NMOS occupy the HV end 
while the PMOS reside at the LV end. However, to do this requires that the NMOS pass HV, 
which they do not do well, and that the PMOS pass LV, which they do not do welL Thus, 
although such flipped configurations logically satisfy the AND and OR interpretations for 
the respective gates, their output signals would be somewhat distorted. For minimum output 
signal distortion the PMOS and NMOS portions for any gate should be configured as in 
Fig. 3.5. 

3.6.6 Summary of logic Circuit Symbols for the AND and OR functions 
and logic level Conversion 

For reference purposes, a summary is now provided for the mixed logic symbology that 
has been covered so far. Shown in Fig. 3.20 are the conjugate mixed logic circuit symbols 
together with the physical gate names they represent. The conjugate mixed logic circuit 
symbols for the inverter and buffer are given in Fig. 3.20a. Notice that the conjugate pairs of 
logic circuit symbols in Fig. 3.20b are split into two groups, one group performing the AND 
function and the other performing the OR function. The buffer, not previously discussed, 
is included here for completeness. It functions as an amplifier to boost the signal to meet 

AND OR 
Function Function 

Logic level conversion and buffer 
~ ~ 

=D- +- NANDGate-- =D-
-£>0- +- Inverter -to -<\>- V- +- NORGate--

-{>- +- Buffer -to -<\>0- =D- +- ANDGate -- =D-
(a) =D- +- OR Gate -- ::[)-

(b) 

FIGURE 3.20 
Summary of conjugate mixed logic circuit symbols and the gates they represent. (a) Logic level 
conversion and buffer symbols. (b) AND and OR function symbols. 
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fan-in requirements. For reference purposes, the ANSIIIEEE Standard logic symbols for 
gates are provided in Appendix C.l. 

3.7 LOGIC LEVEl INCOMPATIBILITY: COMPLEMENTATION 

The eight conjugate gate symbols in Fig. 3.20b perform one of two logic operations, AND 
or OR, regardless of the presence or absence of the active low indicator bubbles that serve 
to associate the symbols to the physical gates from which they are derived. However, the 
presence or absence of an active low indicator bubble on the input to a given circuit symbol 
indicates the activation level of the input, (L) or (H), that is "required" by that gate. Thus, 
the presence of active low indicator bubbles on the inputs to a logic symbol requires that 
all inputs arrive from negative logic sources while the absence of bubbles requires that the 
inputs arrive from positive logic sources. \\Then these requirements are met the inputs are 
said to have logic compatibility with the logic symbol. 

But suppose an input signal arrives at the input to a logic symbol with an activation level 
that is of opposite polarity to that required by the logic circuit symbol. When this happens a 
condition of logic incompatibility exists, and this requires that the signal name in the output 
be complemented. 

The operation of complementation is defined by the following important relations applied 
to a logic function a: 

such that 

a(L) = a(H) and a(H) = a(L) 

(a . a)(H) = O(H) 

(a . a)(L) = O(L) 

(a + a)(H) = l(H) 

(a + a)(L) = l(L). 

(3.2) 

(3.3) 

The overbar is read as "the complement of." Thus, in the logic domain a logic function 
a ANDed with its complement a is logic 0, or the function ORed with its complement is 
logic 1. 

In Fig. 3.21 are four typical examples of input logic level incompatibility each requiring 
the complementation of the incompatible input name in the output expression. Note that 
this is indicated in two ways. In Fig. 3.2Ia, Eqs. (3.2) are applied directly to satisfy the logic 
level compatibility requirements of the logic symbol. In Fig. 3.2lb, an incompatibility slash 
"I" is placed on the input line containing the logic incompatibility as a visual reminder that 
a logic level incompatibility exists and that the input name must be complemented in the 
output expression. 

The pairs oflogic circuit symbols in Figs. 3.21a and 3.2lb are conjugate symbol forms 
as in Fig. 3.20. Because these conjugate circuit symbols are interchangeable, their output 
expressions are equal and are representative of a set of such equations called the DeMorgan 
relations. This subject will be considered further in Section 3.10. 
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X(H) = X(L)~ _ 
Y(L)~ (XY)(H) 

X(H)~ _ 
+--+- Y(L) = Y(H) ~ (X+Y)(L) 

(XY}(H) = (X+Y)(L) 

Incompatability C slash 
X(H) ----r-\., _ - X(H) ~.. -
Y(L) ~ (H)(L) +--+- Y(L) --<L./ (X+Y}(H) 

bCOmpatibility (X'Y)(L) = (X+Y)(H) 

(a) 

slash (b) 

FIGURE 3.21 
Examples oflogic level incompatibility. (a) Applications of Eqs. (3.2). (b) Use of the incompatibility 
slash (j) as an alternative. 

Earlier it was stated that the only logic function of the inverter is to perform logic level 
conversion, (H) -+ (L) or (L) -+ (H), and this is true. But to what purpose? The answer 
is simply stated: 

The logicalfunction of the inverter is to create or remove an input logic level incom
patibility depending on the output function requirements of the logic symbol to which 
the input is attached. 

Consider two examples oflogic level conversion in Figs. 3.22a and 3.22b. Here, NAND and 
OR logic realizations of logic functions require the use of inverters to create and remove 
logic level incompatibilities, respectively. 

FIGURE 3.22 

Desired 
Function 

Z(H) = (X+Y}(H) 

Desired 
Function 

Z(L) " (XY)(L) 

--

--

NAND/INV Logic 
Realization 

X(L)~ Z(H) (X+Y)(H) 
Y(L)~ 

Y(H) ~ L Incompatibility 

(a) 
slash 

ORiINV Logic 
Realization 

X(L)~ 
Y(H)~ Z(L) (X'Y}(L) 

Y(L) ~ L Logic compatibility 

(b) 

Examples of logic level conversion. (a) Creation of a logic incompatibility witb active low inputs. (b) 
Removal of a logic incompatibility with inputs X(L) and Y(lJ). 
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3.8 READING AND CONSTRUCTION OF MIXED-LOGIC CIRCUITS 

The very simple procedures that are necessary to construct and read mixed-logic circuits 
are now demonstrated by more complex examples. Consider the function F(H): 

_ ,;:- OR output stage 

F(R) = (A'B + B'e](R) 

'J' AND input stages 

Notice that this function is formed by ORing together two ANDed terms and is read as F 
equals A "bar" AND BORed with B "bar" AND C, all active high. The logic circuit for this 
function is shown in Fig. 3.23, where it is assumed that the inputs arrive active high (H), that 
is, from positive logic sources. Two logic realizations are shown, one NANDIINV logic and 
the other AND/ORJINV logic, both yielding the function F(R). Thus, by complementing 
between the AND and OR stages (area enclosed by dotted lines), the physical realization 
is altered but without changing the original function -logic level compatibility has been 
preserved. Observe that an incompatibility slash (H/") is placed on a given symbol input as a 
reminder that an input logic incompatibility requires complementation of the input name in 
the output expression. In Figs. 3.23c and 3.23d are two additional means of representing the 
function F -namely, the truth table and logic waveforms. Here, a binary input sequence 
is assumed and no account is taken of the path delays through the gates and inverters. 

A second more complex example is shown in Fig. 3.24, where a function Z(L) has 
been implemented by using NANDINORIINV logic in (a) and by using AND/ORJINV 

A( H) --, /v-r"'1 

B(H) --.---; 

C(H)---l 

(a) 

A(H) 
B(H) 

F(H) +-+ 
C(H) 

F(H) = (AB + BC)(H) (b) 

AS 

0 0 
Z(H) 0 0 

0 1 
0 1 
1 0 
1 0 
1 
1 

C 

0 
1 
0 
1 
0 
1 
0 
1 

A(H) ____ ...J 

(e) 
B(H)_----' 

C(H) 

F(H) 

FIGURE 3.23 

(d) 

Examples of the reading, construction, and waveform analysis of a logic circuit. (a) NANDIINV and 
(b) Al'TD/ORJINV logic realizations of the function F(H) with active high inputs. (c) Truth table for 
the function F. (d) Logic waveforms for the function F assuming a binary input pattern. 

F 

0 
1 
1 
1 
0 
1 
0 
0 
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A(H) : ... r (A+B+C)(l) 

B(HI~ 
A(H) .' .. . r (A+B+C)(H) 

B(HI~ C(H) : C(H) :. 
: Z(l) : Z(l) E(ll: ,,\_ D(l) .: 

E(l) -c{) .... ~ (D+E)(H) 

D(l) .: 

"~(D+E)(l) 
(b) (a) 

Z(l) = I(A + B + C)-(D + E)](l) 

FIGURE 3.24 
Logic realizations of the function Z(L) with inputs A(H), B(H), C(H), D(L), and E(L). (a) NANDI 
NOR/INV logic. (b) AND/ORJINV. 

logic in (b). In this example the ORing input stages receive inputs that are assumed to 
arrive as A(H), B(H), C(H), D(L), and E(L). Here again, by complementing between the 
AND and OR stages (dotted boxes), the physical realization is changed without altering 
the original function. Notice that incompatibilities exist on inputs and between ORing and 
ANDing stages requiring (in each case) complementation of the signal name in the output 
expression as indicated by the "/" symbol. 

Reading vs Construction of Logic Circuits Implied by Figs. 3.23 and 3.24 is the pro
cedure to be followed when reading or constructing a logic circuit: 

The reading of a logic circuit always begins with the inputs and ends at the output, 
hence" input-to-output." 
Construction of a logic circuit begins at the output stage and continues to the inputs, 
hence "top down." 

One must not begin construction of a mixed-logic circuit until the activation levels of the 
inputs and outputs are known and the output and input stage operators have been identified. 
If a circuit has been presented in positive logic form (no mixed logic symbology), it is 
advisable for the reader to convert the circuit to mixed logic form before reading it. This 
will speed up the reading process and minimize the probability for error. 

3.9 XOR AND EQV OPERATORS AND THEIR MIXED-LOGIC 
CIRCUIT SYMBOLOGY 

Certain functions consisting of AND and OR operations occur so often in digital logic 
design that special names and operator symbols have been assigned to them. By far the most 
common of these are the exclusive or (XOR) and equivalence (EQV) functions represented 
by the following operator symbols: 

EB -+ XOR, 
0-+ EQV, 

meaning "one or the other but not both equivalent." 
meaning "both the same (equivalent)." 
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(a) 

(c) 

FIGURE 3.25 

99 

(b) 

(d) 

Distinctive logic circuit symbols for XOR and EQY. (a) The XOR function circuit symbol. (b) The 
EQV function circuit symbol. (c) and (d) illustrate the meaning of multiple input symbols. 

Thus,ifone writes X EB Y,itisread asX XORY; X<::)Y isreadasX EQV Y. TheEQVopera
tor is also known as XNOR (for EXCLUSIVE NOR), a name that will not be used in this text. 

Like the AND and OR functions, the XOR and EQV functions are best understood 
in terms of the logic circuit symbols representing them. Figures 3.25a and 3.25b give 
the commonly used XOR and EQV circuit symbols for which the following functional 
descriptions apply: 

The output of a logic XOR circuit symbol is active if one or the other of two inputs is 
active but not both active or inactive - that is, if the inputs are not logically equivalent. 

The output of a logic EQV circuit symbol is active if, and only if, both inputs are 
active or both inputs are inactive - that is, if both inputs are logically equivalent. 

A circuit symbol for either XOR or EQV consists of two and only two inputs. Multiple input 
XOR or EQV circuit symbols are understood to have the meaning indicated in Figs. 3.25c 
and 3.25d and are known as tree forms. 

The defining relations for XOR and EQV are obtained from the functional descriptions 
just given. In Boolean sum-of-products and Boolean product-of-sums form these defining 
relations are 

A EB B == A . B + A . B = (A + B) . (A + B) (3.4) 

and 

A <::) B == A . B + A . B = (A + B) . (A + B). (3.5) 

In words, the XOR function in Eq. (3.4) is active if only one of the two variables in its 
defining relation is active but not both active or both inactive. Thus, A EB B = 1 if only one 
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X---.--~ 

(a) 

FIGURE 3.26 

Z 

X 

XOR LV 
Interpretation LV 

r- HV 
HV 

X{H) Y(H) Z(H) 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

~~~l~ Z(H) 

Z(H) = (X$Y)(H) 

(c) 

Y 
LV 
HV 
LV 
HV 

(b) 

Z' Z 
HV LV EQV 
LV HV Interpretation 
LV HV 

~ HV LV 

X(H) Y(H) Z(L) 

0 0 1 
0 1 0 
1 0 0 
1 1 1 

~~~lD-Z(L) 
Z(L): (X8Y)(L) 

(d) 

The XOR gate, its UO behavior, and its two logic interpretations. (a) A CMOS transistor circuit. (b) 
Physical truth table. (c) Logic XOR interpretation. (d) Logic EQV interpretation. 

of the two variables takes logic I at any given time. Conversely, the EQV function in Eq. (3.5) 
is active only if both variables in its defining relation are active or both are inactive. In this 
case A 0 B = 1 only if both variables are logically equivalent (both logic 1 or both logic 0). 

3.9.1 The XOR and EQV Functions of the XOR Gate 

Shown in Fig. 3.26a is one of several CMOS versions of the XOR gate. This version makes 
rather clever use of NMOS and PMOS totaling six transistors. Notice that the output stage 
is an inverter that acts not only to invert the signal. but also as a gain element to boost the 
signaL This is important since the remainder of the circuit is composed of NMOS and PMOS 
transmission gates (Fig. 3.7) that lack the ability to amplify. In Fig. 3.26b is the physical 
truth table for the XOR gate. Observe that all but the X, Y = LV, LV input conditions 
produce a Z' voltage that is the voltage level from one or both inputs. This is characteristic 
of logic gates composed of pass transistors. 

Presented in Figs. 3.26c and 3.26d are the XOR and EQV logic interpretations of the 
XOR gate together with their distinctively shaped circuit symbols. The logic truth tables 
for these interpretations derive from the defining relations given by Eqs. (3.4) and (3.5), 
respectively, and from Eqs. (3.1). Observe that the XOR symbol with active high inputs and 
output is interchangeable with an EQV symbol with active low output. Thus, it follows that 
(X ED y)CH) (X 0 y)(L). 

3.9.2 The XOR and EQV functions of the EQV Gate 

A version of the CMOS EQV gate is shown in Fig. 3.27a. It is obtained from the XOR 
version in Fig. 3.26a by "complementing" the MOS transistors in the Z' circuit to obtain 
the Z" circuit in Fig. 3.27a. Notice that all input conditions except X, Y = HV, HVproduce 
a Zl! output directly from one or both of the inputs. Also note that Z" is an XOR output, 



3.9 XOR AND EQV OPERATORS 

x---.----1 

(a) 

FIGURE 3.27 

Z 

x 
XOR LV 

Interpretation LV 

r- HV 
HV 

X(H) Y(H) Z(L) 

0 O. 0 
0 1 1 
1 0 1 

0 

X(H)D-
Y(H) Z(L) 

Z(L) = (XEIlY)(L) 

(c) 
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Y Z" Z 
LV LV HV EQV 
HV HV LV Interpretation 

LV HV LV 

~ HV LV HV 

(b) X(H) Y(H) Z(H) 

0 0 1 
0 1 0 
1 0 0 

X(H)D-Z(H) 
Y(H) 

Z(H) = (X8Y)(H) 

(d) 

The EQV gate, its I/O behavior. and its two logic interpretations. (a) A CMOS transistor circuit. 
(b) Physical truth table. (c) Logic XOR interpretation. (d) Logic EQV interpretation. 

whereas Z' is an EQV output, and that they are the inverse of each other. In each case an 
inverter is added to invert the signal as well as to buffer the output Z. 

The physical truth table for the EQV gate and its two logic interpretations are given in 
parts (b), (c), and (d) of Fig. 3.27. The same procedure used for the XOR gate is used here 
to obtain the logic truth tables and circuit symbols for the EQV gate. In this case, the XOR 
symbol with active low output is interchangeable with the EQV symbol with active high 
inputs and output resulting in the relation (X EEl Y)(L) = (X 0 Y)(R). 

3.9.3 Multiple Gate Realizations of the XOR and EQV Functions 

The CMOS transistor circuits for the XOR and EQV functions given in Figs. 3.26 and 3.27 
represent the most efficient use of MOSFETs for such purposes. However, there are occa
sions when such MOS implementations of these functions are not possible. One example 
is the use of programmable logic arrays (PLAs), as discussed in Section 7.3, to implement 
arithmetic-type circuits discussed in Chapter 8. PLAs are devices that must use two-level 
gate forms to implement XOR or EQV functions- XOR or EQV gates are not commonly 
part of the PLA architecture. Shown in Fig. 3.28 are four multiple-gate realizations of the 
XOR and EQV functions. The circuits in Figs. 3.28a and 3.28b have been derived from the 
defining relations for XOR and EQV given by Eqs. (3.4) and (3.5), respectively and are 
suitable for two-level circuit design. The three-level circuits in Figs. 3.28c and 3.28d are 
not suitable for two-level circuit design. These three-level circuits result from derivatives 
of the defining relations: 

A . (AB) + B(AB) = AB + AB XOR form 

(A + AB)(B + AB) = (A + B)(A + B) EQV form 

(3.4a) 

(3.4b) 

The applications of CMOS AND-OR-invert and OR-AND-invert gates to the implemen
tation of XOR and EQV functions are given later in Subsection 7.7.1. Such CMOS 
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A(H) 
8(H) 

B(H) 

~(""BI(HI 
(a) 

~(AC-'BI(HI 
(b) 

A(H) 

B(Hl 

~(""BI(HI 
(el 

FIGURE 3.28 

A(H)~ 
(A0B)(H) 

B(H)-

(d) 

Multiple gate realizations of the XOR and EQV functions. (a, b) Two-level NAND implementations 
of the XOR and EQV functions. (c, d) Three-level NAND and NOR implementations of the XOR 
and EQV functions. 

realizations of these functions are shown to be closer to a single level of path delay rather 
than two levels, as is true for those in Figs. 3.26a and 3.27a. 

3.9.4 The Effect of Active Low Inputs to the XOR and EQV Circuit Symbols 

An interesting property of the XOR and EQV logic symbols is the fact that when the two 
inputs are of opposite polarity the output function is complemented, but when the inputs are 
of the same polarity (both active high or both active low) the function remains unchanged. 
This is illustrated by the four examples in Fig. 3.29. Thus, a single incompatibility comple
ments the function (changing an XOR output function to an EQV output function or vice 
versa). whereas a double incompatibility or no incompatibility retains the output function. 
These results may be proven by altering the appropriate logic truth table in Figs. 3.26 and 
3.27 to agree with the input activation levels indicated for each logic circuit symboL 

X(L)~. 
Y(H) ---t-L-r (X$Y)(L) 

(al 

X(L)~ 
yell ~ (X$Y)(L) 

X(L)~ 
yell ~ (X0Y)(H) 

(b) 

FIGURE 3.29 
Effect of active low inputs to XOR and EQV logic circuit symbols. (a) Single logic incompatibilities. 
(b) Dual logic incompatibilities. 
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XOR gale performing the XOR gate performing the 
XOR operation EOV operation , , , , , 

D- O- ~ XOR => D- D-O< 
Gate 

0< 

(a) 

EO V gate perlorming the EOV ga te perlorming the 
XOR operation EOV operat ion , , , , , , 

0- D- ~ EOV => :j[)-- D-O< 
Gate 

0< 

(b) 

FIGURE 3.30 
Summary of conjugate mixed logic circuit symbols for the XOR and EQV gates. (a) XOR gate 
symbols. (b) EQV gate symbols. 

3.9.5 Summary of Conjugate Logic Circuit Symbols for XOR and EQV Gates 

For reference purposes the logic circuit symbols represeming the XOR and EQV gales are 
summarized here. Shown in Fig. ).30a are the four conjugate forms for the XOR gate and in 
(b) the fOUIconjugale forms for the EQV gate. The conjugate logic circuit symbol forms are 
interchangeable, as indicated by the two-way arrows. This illfonnation can be very useful 
when synthesizing logic circuits containing XOR or EQV functions . Notice thaI dual logic 
low indicator bubbles, representing double incompatibilities, have no effect on the logic 
fllnc tion . The reader is referred to Fig. 3.29b for reinforcement of this fac t. 

3.9.6 Controlled logic Level Conversion 

In Section 3.4 the concept of logic level conversion was introduced in connection with the 
invener. Here, the subject of logic Icvel conversion is revisited as it relates to the XOR 
or EQV gate. Another interesting and useful propeny of the XOR and EQV gates is that 
they can be operated in either one of two modes: the inverter mode or the transfer mode. 
These modes aTe illustrated in Fig. 3.3 1. where exclusive use is made of the XOR symbol to 
represent the XOR and EQV gales. In Fig . 3.3 1 a the XOR interpretation of the EQV gate is 
used for (H)"":" (L) logic level conversion or for logic transfer depending on the logic level 
of the cOlltroUing input. Notice that the buffer symbol is used to represent the transfer mode. 
These two modes are easily deduced from the trulh table given at left in Fig. 3.3la. Similarly, 
in Fig . 3.3Ib. the XOR interpretation of the XOR gate is used for !.he (L )....:,. (H )convcrsion 
mode or for the logic transfer mode depending on the logic level of the controlling input 
Here again , these results are easily deduced from the truth table to the left in Fig. 3.3lb, 
which has been altered from that in Fig. 3.26c to account for the active low inputs. 

The positive logic interpretation of an XOR gate used a~ a controlled inverter is given in 
Fig. 3.31c. This is included to add greater understanding of the XOR gate and its operation . 
AJthough all three cases in Fig. 3.3 1 physically represent controlled inversion, it is common 
[0 find controlled inveners represented as in Fig. 3.31c. A typical example is in the design 
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(In'W1et') 

(b) 

)((HI-{>--- X(H) 

Tr8l'lsfe1 
(Butter) 

X(L1VXIH) 
• X(L) 

I(L) 

Xll) -<{>o- X(L) 

Tran,rer 
(Buffer) 

X(III Y(HI Z(HI 

o 0 0 
o , 1 
1 0 , 
1 1 0 

Positive logic interpretation 

X(H)-P-XlHI X(Hlrf[:>-XIHl 

1(104) O(H) 

X(Hl-{)o-X(H) X(H)-{>-X(H) 

X(H) ... X(H) 
(Inverter) 

(,) 

Transfer 
(Bulfer) 

Controlled logic level Conversion. (a) n~ EQV gale used for (H) -+ (L) C(,Jnvcrsiun and logic 
transfer, (b) The XOR gate in mixed logic notation USf.:d fur (L) -0. (H) conversion. (e) Posi tive logic 
interpretation of the XOR gale used M a contro lled inverter. 

of (he addcrlsubtraclor featured in Fig. 8.9. In making the transition from Fig. 3.3 1b to 
Fig. 3.31c. it should be rccalled that complementation of both inputs to 3n XOR or EQV 
circuit symbol leaves the output function unaltered. Notice that the inverter and buffer 
symbols in Fig. 3.3 1 are the same as thOl>(: given in fig. 3.20a. 

3.9.7 Construction and Waveform Analysis of Logic Circuits Containing 
XOR·Type Functions 

As an extension of Section 3.8, the reading and construction of a mulrilevellogic circuit 
cOnlaining an XOR function is demonstrated by the NANDIXORINORflNV circuit in 
Fig. 3.32a representing the function Y = .4 G:l BC + ht. A multilevel logic funclion is one 
thaI has more than two gate path delays from input to output, In thiscase there are three leve ls 
of path delay. Here. an XOR gate perfonns the XOR operdtion 10 yield the (.4 ED BC)(H) 
inpullo the NOR outpUt stage perfonning the OR operation . The waveform for Ot(ll} is 
obtained by ANDing the complement of the 8 (H ) wavefonn with the complement of the 
C( H ) wavefonn by using a NOR gate to pcrfonn the AND operation. Thus, there are three 
logic incompatibilities. one for the A(H ) input and the other two for the B(H ) and C(H) 
inputs, but inverters are not needed to create these logic level incompatibilities. 

Presented in Figs. 3.32b and 3.32c are the truth table and logic wavefonns for the circuit 
in Fig. 3.32a. l1lC inputs are arbi trari ly given in bi nary sequence, and the output wavefonns 
from the intennediate stages are given to reveal the advantage of the mixed logic method. 
No account is taken of the propagation delays of the gates and inverters. Notice that (he 
(.4 (9 BC)(H ) and SC(H ) logic signals are logically compatible with the requirements of 
the ORing operation of the NOR gate output stage. If compleme.ntation is carried out within 
the dashed box. the wavefonns for the resulting (A (9 BC)(L) and fJC(L) signals would 
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B(H) 
C(H) 
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C(H) 
(B'C)(L) _____ --' 

(B'C)(H) 

(AEBBC)(H) 
Y(L} ------, 

Y(H) 

(e) 

fIGURE 3.32 

::o-...--Y(L) 

Y(H) 

Y = (AEaBC + BC) 

105 

ABC Y 

000 1 
001 1 
010 1 
011 0 
100 1 
101 0 
1 1 0 0 
1 1 1 1 

(b) 

(a) NANDINORIXORJINV logic circuit. (b) truth table, and (c) logic waveforms for the function Y 
with active high inputs and mixed logic outputs. 

remain the same as those shown for the active high signals, but with opposite activation 
levels. However, the physical nature of the devices required for implementation would now 
become NAND/EQV IORI ANDIINV as taken from input to output. 

Another interesting facet of the mixed logic method is the fact that an inverter on the 
output stage permits the generation of mixed rail output signals. The Y(L) and Y(H) signals 
constitute the mixed rail outputs and have waveforms that are identical if account is not 
taken of the propagation delay through the inverter. In the physical domain, however, the 
voltage waveforms represented by Y(L) and Y(H) would be the inverse of one another. 

3.10 LAWS Of BOOLEAN ALGEBRA 

To design a digital circuit that will perform a given function, it may be necessary to ma
nipulate and combine the various switching variables in certain ways that are in agreement 
with mathematical logic. Use of the laws of Boolean algebra makes these manipulations 
and combinations relatively simple. This special mathematical logic, named in recognition 
of the English mathematician George Boole, can be rigorously and eloquently presented 
by using axioms, theorems, and corollaries. However, for our purposes there is no need for 
such a formal approach. The laws of Boolean algebra are relatively few and can be deduced 
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from the truth tables for NOT, AND, and OR. In this section these laws are developed 
exclusively within the logic domain with only passing reference to activation levels. 

3.10.1 NOT, AND, and OR laws 

NOT Laws The unary operator NOT is the logic equivalent of complementation and 
connotes inversion in the sense of supplying the lack of something. Although NOT is 
purely a logic concept and complementation arises more from a physical standpoint, the 
two terms, NOT and complementation, will be used interchangeably following established 
practice. 

The truth table for NOT is the positive logic interpretation of the physical truth table 
given in Fig. 3.6b. It is from this truth table that the NOT laws are derived. 

NOT 
Truth Table NOT Laws 

* 0=1 (3.6) 

o . 1 ... I 0 
0 X X 

The NOT operation, like complementation, is designated by the overscore (or "bar"). A 
double bar (or double complementation) of a function, sometimes called involution, is the 
function itself, as indicated in Eqs. (3.6). 

As examples of the applications of the NOT laws, suppose that X _ A B. Then the 
function X = A B is read as A AND B bar the quantity complemented. and X = A B = A B . 
Or, if Y 0, then Y 0 = 1, etc. Finally, notice that Eqs. (3.2) can be generated one from 
the other by involution-even in mixed logic notation. Thus, a(L) &(H) a(H), and 
so on. 

AND Laws The AND laws are easily deduced by taking the rows two at a time from the 
truth table representing the logic AND interpretation of the AND gate given in Fig. 3.16c. 
Thus, by taking Y equal to logic values 0, 1, X, and X, the four AND laws result and are 
given by Eqs. (3.7). 

AND 
Truth Table AND I~aws 
X Y X·y X·O =0 
0 0 0 X·I =X (3.7) 

0 ] 0 ... X·X=X 
0 0 X·X=O 

To illustrate the application of the AND laws, let X be the function X = A + B so that 
(A+B)·O O,(A+B)·I=A+B,(A+B)·(A+B)=A+B, and (A+B).(A+B) 
= O. These laws are valid regardless ofthe complexity of the function X, which can represent 
any multi variable function. 
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OR Laws The four OR laws are deduced from the logic OR interpretation of the OR gate 
given in Fig. 3.17d by assigning to Y the values 0, 1, X, and X and are given by Eqs. (3.8). 
The OR laws are illustrated by letting X represent the function X = BC. Then, according 
to the OR laws, BC + 0 = BC, BC + 1= 1, BC + BC = BC, and BC + BC = 1. Here 
again, use has been made of a multi variable function X to demonstrate the applicability of 
a fundamental Boolean law, the OR law. 

OR 
Truth Table OR Laws 
X Y X+Y X+O=X 
0 0 0 X + I = I (3.8) 

0 • X+X=X 
1 0 X+X=1 

Notice that the AND and OR laws are easily verified by substituting 0 and I for the 
multivariable function X in the examples just given, and then comparing the results with 
the AND and OR truth tables. 

3.10.2 The Concept of Duality 

An inspection of the AND and OR laws reveals an interesting relationship that may not be 
obvious at first glance. If the l's and O's are interchanged while the AND and OR operators, 
(-) and (+), are interchanged, the AND laws generate the OR laws and vice versa. For 
reference purposes, the interchange of l's and O's simultaneously with the interchange of 
operators is represented by the double arrows (++) as follows: 

{
O++ll (.) ++ (+) 

0)++EB 

This simultaneous interchange of logic values and operators is called logic duality. The 
duality between the AND and OR laws is given by Eqs. (3.9). 

AND Laws OR Laws 

X·O =0 By X+O=X 
X·l =X ... • X+ I = I (3.9) 

X·X=X Duality X+X=X 
X·X=O X+X=1 

Perhaps the best way to demonstrate duality is by the two dual sets 

(A 0) B)[AB + .1B] = 0 .... --.. (A EB B) + [(A + B) . (A + B)] = I 

and 

X 0) (X + y) = X . Y .------. X EB (X . y) = X + Y, 
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where the double arrow ( +---+ ) again represents the duality relationship of the set. For each 
dual set it can be seen that an operator in the left side equation has been replaced by its 
dual in the right side while the logic 0 and 1 (in the first dual set) are interchanged. Note 
that the two equations in a given set are not algebraically equal-they are duals of each 
other. However, a dual set of equations are complementary if an equation is equal to logic 
1 or logic 0 as in the first example. Such is not the case for the second set. The concept of 
duality pervades the entire field of mathematical logic, as will become apparent with the 
development of Boolean algebra. 

3.10.3 Associative, Commutative, Distributive, Absorptive, and Consensus Laws 

The associative, commutative, distributive, absorptive, and consensus laws are presented 
straightforwardly in terms of the multivariable functions X, Y, and Z to emphasize their 
generality, but the more formal axiomatic approach is avoided for the sake of simplicity. 
These laws are given in a dual form that the reader may find useful as a mnemonic tool: 

Associative Laws 

Commutative Laws 

Distributive Laws 

Absorptive Laws 

Consensus Laws 

[
(X. Y) . Z = X . (Y . Z) = X . Y . Z 1 

(X + Y) + Z = X + (Y + Z) = X + Y + Z 

[
x.y.z=x.z.y=z.x.y=... 1 

X+Y+Z=X+Z+Y=Z+X+Y=··· 

[

(X. Y) + (X . Z) = X . (Y + Z) Factoring Law 1 
(X + y) . (X + Z) = X + (Y . Z) Distributive Law 

[
X . (X _+ Y) = X . Y 1 
X + (X . Y) = X + Y 

[

(X. y) + ~X . Z) + (Y . Z) = (X . Y) + (~ . Z) I. 
(X + y) . (X + Z) . (Y + Z) = (X + Y) . (X + Z) 

(3.lO) 

(3.11) 

(3.12) 

(3.l3) 

(3.14) 

Notice that for each of the five sets of laws, duality exists whereby the AND and OR 
operators are simultaneously interchanged. The dual set of distributive laws in Eqs. (3.12) 
occur so often that they are sometimes given the names factoring law and distributive law 
for the first and second, respectively. The factoring law draws its name from its similarity 
to the factoring law of Cartesian algebra. 

Although rigorous proof of these laws will not be attempted, they are easily verified 
by using truth tables. Shown in Figs. 3.33 and 3.34 are the truth table verifications for the 
AND form of the associative law and the factoring law. Their dual forms can be verified in 
a similar manner. 

Proof of the commutative laws is obtained simply by assigning logic 0 and logic 1 to the 
X's and Y's in the two variable forms of these laws and then comparing the results with the 
AND and OR truth tables given by Eqs. (3.7) and (3.8), respectively. 

The distributive law can also be verified by using truth tables. However, having verified 
the factoring law, it is simpler to prove this law with Boolean algebra by using the factoring 
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Decimal X Y Z X·y y·z (X· Y). z X· (y. Z) X·Y·Z 
0 0 0 0 0 0 0 0 0 
I 0 0 I 0 0 0 0 0 
2 0 I 0 0 0 0 0 0 
3 0 I 1 0 I 0 0 0 
4 I 0 0 0 0 0 0 0 
5 I 0 1 0 0 0 0 0 
6 1 1 0 1 0 0 0 0 
7 1 1 1 1 1 1 1 1 

FIGURE 3.33 
Truth table for the AND form of the associative laws in Eqs. (3.10). 

law together with the AND and OR laws. This is done in the following sequence of steps 
by using square brackets to draw attention to those portions where the laws indicated on 
the right are applied: 

[(X + Y)(X + Z)] = [X· (X + Z)] + [Y . (X + Z)] Factoring law (applied twice) 

= [X· X] + (X· Z) + (Y . X) + (Y . Z) AND law (X . X = X) 

= [X + (X . Z) + (Y . X)] + (Y . Z) 

= X . [1 + Z + Y] + (Y . Z) 

= X + (Y· Z). 

Factoring law 

OR law (1 + Z + Y = I) 

In similar fashion the second of the absorptive laws is proven as follows: 

X + XY = [(X + X)(X + Y)] Distributive and OR laws 

= 1 . (X + Y) AND law (l . (X + Y) = X + Y) 

=X+Y. 

The remaining absorptive law is easily proved by first applying the factoring law followed 
by the AND law X . X = O. Duality can also be used as a validation of one form once its 
dual is proven. 

Decimal X Y Z x·y X·Z Y+Z (X . Y) + (X . Z) X· (Y + Z) 
0 0 0 0 0 0 0 0 0 
1 0 0 1 0 0 1 0 0 
2 0 1 0 0 0 1 0 0 
3 0 1 1 0 0 1 0 0 
4 1 0 0 0 0 0 0 0 
5 1 0 1 0 1 1 1 1 
6 1 1 0 1 0 1 1 1 
7 1 1 1 1 1 1 1 1 

FIGURE 3.34 
Truth table for the factoring law given in Eqs. (3.12). 
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The first of the consensus laws in Eqs. (3.14) is proven by applying the OR and factoring 
laws: 

OR law and factoring law 

Factoring law 

XY + XZ + YZ=XY + XZ + [(X + X)YZ] 

=XY+XZ+[XYZ+XYZ] 

= [XY(l + Z)] + [XZ(l + Y)] 

=XY+XZ. 

Factoring law (applied twice); OR law 

Proof of the second of the consensus laws follows by duality. 

3.10.4 DeMorgan's Laws 

In the latter half of the nineteenth century, the English logician and mathematician Augustus 
DeMorgan proposed two theorems of mathematical logic that have since become known 
as DeMorgan's theorems. The Boolean algebraic representations of these theorems are 
commonly known as DeMorgan's laws. In terms of the two multivariable functions X and 
Y, these laws are given in dual form by 

DeMorgan's Laws (3.15) 

More generally, for any number of functions, the DeMorgan laws take the following 
form: 

and (3.15a) 

X + Y + Z + ... + N = X . Y . Z ..... N. 

DeMorgan's laws are easily verified by using truth tables. Shown in Fig. 3.35 is the truth 
table for the first ofEqs. (3.15). 

Application of DeMorgan's laws can be demonstrated by proving the absorptive law 
X+XY=X+Y: 

X + XY = X . (XY) = X . (X + Y) = X . X + X . Y = X . Y = X + Y. 

Notice that the double bar over the term X + XY is a NOT law and does not alter the 
term. Here, DeMorgan's laws are first applied by action of the "inner" bar followed by 
simplification under the "outer" bar. Final application of DeMorgan's law by application 

x y x·y x·y X Y x+y 
0 0 0 1 1 1 1 
0 1 0 1 1 0 1 
1 0 0 1 0 1 1 
1 1 1 0 0 0 0 

FIGURE 3.35 
Truth table for DeMorgan's Law X . Y = X + Y. 
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of the outer bar takes place only after simplification. As a general rule, DeMorgan's laws 
should be applied to a function only after it has been sufficiently reduced so as to avoid 
unnecessary Boolean manipulation. 

3.11 LAWS OF XOR ALGEBRA 

The laws of XOR algebra share many similarities with those of conventional Boolean 
algebra discussed in the previous section and can be viewed as a natural extension of the 
conventional laws. Just as the AND and OR laws are deduced from their respective truth 
tables, the XOR and EQV laws are deduced from their respective truth tables in Figs. 3.26c 
and 3.27d and are given by Eqs. (3.16) together with their truth tables: 

XOR 
Truth Table 

X y EI1Y 

0 0 0 

0 1 

0 

0 ~ IXORLawsl 

XEI1 0 =X 

XEI11 =X E B~ ~ 

XEI1X= 0 Duality 

XEI1X= 1 

I EQVLaws I / 
X01=X 

XOO=X 

XOX=1 

XOX=O 

EQV 
Truth Table 

X Y OY 

0 0 1 

0 1 o 
0 o 

(3.16) 

Here, the dual relationship between the XOR and EQV laws is established by interchanging 
the 1 's and O's while simultaneously interchanging the XOR and EQV operators, as indicated 
by the double arrow. 

The associative and commutative laws for EQV and XOR follow from the associative 
and commutative laws for AND and OR given by Eqs. (3.10) and (3.11) by exchanging 
operator symbols: 0 for (.) and EEl for (+). The distributive, absorptive, and consensus 
laws of XOR algebra follow from their AND/OR counterparts in Eqs. (3.12), (3.13), and 
(3.14) by replacing the appropriate (+) operator symbols with the EEl operator symbols, 
and by replacing the appropriate (-) symbols with the 0 symbol, but not both in any given 
expression. In similar fashion, DeMorgan's laws in XOR algebra are produced by substi
tuting 0 for (-) and EB for (+) in Eqs. (3.15), These laws are presented as follows in dual 
form and in terms of variables X, Y, and Z, which may represent single or multivariable 
functions: 

(
(X 0 Y) 0 Z = X 0 (Y 0 Z) = X 0 Y 0 ZJ 

Associative Law 
(X EB Y) EB Z = X EB (Y EB Z) = X EB Y EB Z 

(
X 0 Y 0 Z = X 0 Z 0 Y = Z 0 X 0 Y = .. 'J 

Commutative Laws 
XEBYEBZ=XEBZEBY=ZEBXEBY=,,· 

(3.17) 

(3.18) 
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Distributive Laws (3.19) I (X· Y) EEl (X . Z) = X . (Y EEl Z) Factoring Law ) 

(X + Y) 0) (X + Z) = X + (Y 0) Z) Distributive Law 

Absorptive Laws 

Consensus Laws 

DeMorgan's Laws 

I X· (X EEl Y) = X . Y ) 

X + (X 0) Y) = X + Y 

I (X· Y) EEl (X . Z) + (Y . Z) = (X . Y) EEl (X . Z) ) 

(X + Y) 0) (X + Z) . (Y + Z) = (X + Y) 0) (X + Z) 

(3.20) 

(3.21) 

(3.22) 

Notice that each of the six sets of equations are presented in dual form. Thus, by interchang
ing AND and OR operators while simultaneously interchanging EQV and XOR operators, 
duality of the set is established. The first of the distributive laws given in Eqs. (3.19) can be 
termed the factoring law of XOR algebra owing to its similarity with the factoring law of 
Cartesian algebra and that of Eqs. (3.12). 

Generalizations of DeMorgan's XOR laws follow from Eqs. (3.15a) and (3.22) and are 
given by 

and (3.22a) 

Verification of the associative, commutative, and distributive laws is easily accomplished 
by using truth tables. For example, the second of the distributive laws in Eqs. (3.19) is verified 
by the truth table in Fig. 3.36. Here, Eq. (3.5) is used together with the OR laws [Eqs. (3.8)] 
to show the identity of the terms (X + Y) 0) (X + Z) and X + (Y 0) Z). 

The distributive laws may also be proven by using Boolean algebra. For example, the 
factoring law of Eqs. (3.19) is proven by applying the defining relation of the XOR function 

x Y Z X+Y X+Z Yoz (X + Y) 0 (X + z) X +(Yo z) 
0 0 0 0 0 1 1 1 

0 0 1 0 1 0 0 0 
0 1 0 1 0 0 0 0 
0 1 1 1 1 1 1 1 
1 0 0 1 1 1 1 1 
1 0 1 1 1 0 1 1 

1 1 0 1 1 0 1 1 

1 1 1 I 1 1 1 1 

FIGURE 3.36 
Truth table for the XOR distributive law given in Eqs. (3.19). 
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given by Eq. (3.4) and by using the AND and OR laws of Eqs. (3.9): 

[(XY) E9 (XZ)] = [(XY)](XZ) + (XY)[(XZ)] Eq. (3.4) and Eq. (3.15) 

= [(X + l')(XZ)] + [(XY)(X + Z)] Factoring law [Eqs. (3.12)] 

= [XXZ + Xl'Z] + [XXY + XYZ] AND and OR laws [Eqs. (3.9)] 

= [Xl'Z + XYZ] Factoring law [Eqs. (3.12)] 

= X[l'Z + YZ] Eq. (3.4) 
= X(Y E9 Z). 

In these equations, the square brackets [ ] are used to draw attention to those portions where 
the laws or equations indicated on the right are to be applied in going to the next step. 
Equation (3.4) refers to the defining relation for XOR given by X ED Y = XY + Xl'. 

The absorptive laws are also easily proven by using Boolean algebra. Beginning with 
the first of Eqs. (3.20), there follows 

X· [(X ED Y)] = X . (Xl' + XY) Eq. (3.4) 

= [X· (Xl' + Xy)] Factoring law [Eqs. (3.12)] 

= [X . Xl' + X· XY] AND and OR laws [Eqs. (3.9)] 

=XY, 

where the square brackets [ ] are again used to draw attention to those portions where the 
laws or equations indicated on the right are to be applied. The second of Eqs. (3.20) is 
proven by the following sequence of steps: 

X + [(X (:) Y)] = X + (Xl') + (XY) Eq. (3.5) 

= [X + (Xl')] + XY Factoring law [Eqs. (3.12)] 

= [X(l + l') + XY] OR and AND laws 

= [X + XY] Absorptive law [Eqs. (3.13)] 

=X+Y. 

Notice that in the foregoing proofs, use is tacitly made of the important dual relations 

XEDY=XEDl'=XEDY=X(:)Y 

X (:) Y = X (:) l' = X (:) Y = X ED Y. 
(3.23) 

These relations are easily verified by replacing the variable (X or Y) by its complement 
(X or l') in the appropriate defining relation, (3.4) or (3.5). 

An inspection of Eqs. (3.23) reveals what should already be understood - that comple
menting one ofthe connecting variables complements the function, and that the complement 
of an XOR function is the EQV function and vice versa. A generalization of this can be 
stated as follows: 

In any string oftenns interconnected only with XOR and/or EQV operators, an odd 
number of complementations (variable or operator complementations) complements 
the junction, whereas an even number of complementations preserves the function. 
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To illustrate, consider a function F consisting of a string of four multi variable terms W, X, Y, 
and Z interconnected initially by XOR operators: 

F=WffiXffiYffiZ=WffiXffiYOZ 

= WOXffiYffiZ=WOXOYffiZ = ... 

P=WffiXffiYffiZ=WffiXffiYOZ 
(3.24) 

= WOXOYOZ=WOXffiYffiZ=··. 

An examination of Eqs. (3.24) reveals that there are 64 possible expressions representing 
F and 64 for P, all generated by repeated applications of Eqs. (3.23). The number 64 is 
derived from combinations of seven different objects taken an even or odd number at a time 
for F and P, respectively. 

Application of Eqs. (3.24) is illustrated by 

A 0 (A 0 D + C) 0 iJ = A 0 [(A ffi D)C] 0 B 

= A ffi [(A ffi D)C] ffi B, 

where the original function has been converted from one having only EQV operators and 
two complemented variables to one having only XOR operators with no complemented 
variables. The two alternative forms (right side) differ from each other by only two comple
mentations. Notice also that the first alternative form involved applications of DeMorgan's 
laws given by Eqs. (3.15) and (3.22). 

3.11.1 Two Useful Corollaries 

Interesting and useful relationships result between XOR algebra and conventional Boolean 
algebra by recognition of the following two dual corollaries, which follow directly from the 
definitions of the XOR and EQV operations: 

COROLLARY I If two functions, a and {3, never take the logic I value at the 
same time, then 

a'{3=O and a+{3=affi{3 (3.25) 

and the logic operators (+) and (ffi) are interchangeable. 

COROLLARY II If two functions, a and {3, never take the logic 0 value at the 
same time, then 

a + {3 = I and a· {3 = a 0 {3 (3.26) 

and the logic operators (0) and (0) are interchangeable. 

Corollary I requires that a and {3 each be terms consisting of ANDed variables called 
product terms (p-terms) and that they be disjoint, meaning that the two terms never take logic 
I simultaneously. By duality, Corollary II requires that a and {3 each be terms consisting of 
ORed variables called sum terms (s-terms) and that they be disjoint, meaning that the two 
terms never take logic 0 simultaneously. The subject of these corollaries will be revisited 
in Section 5.5 where their generalizations will be discussed. 
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The most obvious application of Corollaries I and II is in operator interchange as demon
strated by the following four examples: 

[1] AB + Be = (AB) EB (Be), 

where a = AB, f3 = Be, and a . f3 = 0 by Corollary I. 

[2] (,4 + B + X) . (A + B + e + Y) = (,4 + B + X) 8 (A + B + e + Y). 

where a = (,4 + B + X), f3 = (A + B + e + Y) and a + f3 = 1 according to Corollary II. 

[3] a + b ffi be = a + b + be = a + fj + e, 

where Corollary I has been applied followed by the absorptive law in Eqs. (3.13). 

[4] (Xl') 8 (X + Y + Z) = (XY)(X + Y + Z) = Xl' Z 

Here, Corollary II is applicable since X I' = X + Y, and the result follows by using the 
AND and OR laws given by Eqs. (3.9). 

3.11.2 Summary of Useful Identities 

The laws ofXOR algebra have been presented in the foregoing subsections. There are several 
identities that follow directly or indirectly from these laws. These identities are useful for 
function simplification and are presented here in dual form for reference purposes. 

( 
~ ffi Y = X ffi ~ = X ffi Y = ~ 8 ~ = X 8 Y I (3.27) 
X8Y=X8Y=X8Y=XEBY=XffiY 

{
X ED X = X 8 X = J } 
X 8 X = X ED X = 0 (3.28) 

{
I ffi X = X} { 0 ffi X = X} (3.29) 
08X=X I8X=X 

{
Xl' ffi X = XY EB Y = XY } 

(X + Y) 8 X = (X + Y) 8 Y = X + Y (3.30) 

{ 
XYEBX=XYffiY=IffiXY } 

(X + Y) 8 X = (X + Y) 8 Y = 0 8 (X + y) (3.31) 

{ 
(XY) ffi (X + Y) = X ffi Y} (3.32) 
(X + Y) 8 (XY) = X 8 Y 

{
XY+YZ+XZ=XYffiYZffiXZ } 

(3.33) 
(X + Y)(Y + Z)(X + Z) = (X + Y) 8 (Y + Z) 8 (X + Z) 

Note that in these identities, either X or Y or both may represent muitivariable functions or 
single variables of any polarity (i.e., either complemented or uncomplemented). 
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By applying the laws and corollaries previously given, the majority functions identity of 
three variables expressed by Eqs. (3.33) is proven as follows: 

XY + YZ + XZ = XY(Z + Z) + (X + X)YZ + XCY + Y)Z OR Laws 
[Eqs. (3.8)] 

= XYZ + XYZ + XYZ + XYZ + XYZ + XYZ Eqs. (3.19) and 
OR Laws 

XYZ El7 XYZ El7 (XYZ + XYZ) Corollary I 

= XY El7 (Y El7 X)Z Eqs. (3.19), OR 
Law, Eq. (3.4) 

= XY El7 YZ El7 XZ. Eq. (3.8) 

Proof of the second identity of Eqs. (3.33) follows by duality, that is, simply by interchanging 
all (+) with (-) operators while simultaneously interchanging all El7 with 0 operators. The 
generalized majority function identity is given by 

[WXY···+ WXZ···+ WYZ··· +XYZ· .. + ... ] 

=[WXY···EBWXZ···EBWYZ·"EBXYZ· .. EB ... J, 

which also has its dual formed by the simultaneous interchange of the operators. 
This concludes the treatment of Boolean algebra. While not intended to be an exhaustive 

coverage of the subject, it is adequate for the needs of digital design as presented in this 
text. Additional references on Boolean algebra are available in the list of further reading 
that follows. 

3.12 WORKED EXAMPLES 

EXAMPLE 3.1 Given the waveforms (heavy lines) at the top of Figs. 3.37a and 3.37b, draw 
the two waveforms for the two terminals below each. 

EXAMPLE 3.2 Complete the physical truth table in Fig. 3.38b for the CMOS logic circuit 
given in Fig. 3.38a. Name the gate and give the two conjugate logic circuit symbols for this 
gate in part (c). 

EXAMPLE 3.3 The logic circuit in Fig. 3.39 is a redundant circuit, meaning that excessive 
logic is used to implement the function Z(H). (a) Name the physical gates that are used in 
the logic circuit in Fig. 3.39. (b) Read the circuit in mixed-logic notation and express the 
results in reduced, polarized Boolean form at nodes W. X. Y, and Z. 

(a) (I) NAND, (2) NOR, (3) NOR, (4) OR, (5) AND, (6) NOR 

(b) W(H) = A8(H) 

X(L)= 8C(L) 

Y(L) = (C + D)(L) 

Z(H) = W XY(H) = (AB)(BC)(C + D)(H) (A + 8)(8(;)«(; + D)(H) 

(A + 8)(8(; + 8(; D)(H) 

= A8C(H) 
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F(H) 

FIGURE 3.40 
Logic circuit for the function given in Example 3.4. 

EXAMPLE 3.4 Use three NAND gates and two EQV gates (nothing else) to implement the 
following function exactly as written: 

F(H) = [(W EB Y) EB (XZ) + WY](H) 

The solution is shown in Fig. 3.40. 

EXAMPLE 3.5 A simple function of three inputs is given by the following expression: 

F(H) = (AB + C)(H). 

(a) Construct the logic circuit by using ANDINORIINV logic. Assume that the 
inputs arrive active high. 

(b) Construct the CMOS circuit for the function given in Part (a). 

(c) Obtain the physical truth table for the circuit of Part (b). 

(d) Obtain the positive logic truth table for the circuit of Part (b). 

The solutions to Example 3.5 are given in Fig. 3.41. Notice that PMOS and NMOS are 
organized according to Fig. 3.5, and that the PMOS section generates the complement of 
that of the NMOS section, hence the complementary MOS. Also note that the output of the 
A inverter is connected to both the PMOS and NMOS inputs of the complementary sections 
for F. 

EXAMPLE 3.6 Use the laws of Boolean algebra, including XOR algebra and corollaries, to 
reduce each of the following expressions to their simplest form. Name the law( s) in each step. 

[1] A + ABC + (B + C) = A + ABC + BC DeMorgan's law [Eqs. (3.15)] 

= A + BC + BC Absorptive law [Eqs. (3.13)] 

= A + B(C + C) Factoring law [Eqs. (3.12)] 

= A + B AND and Or laws [Eqs. (3.7) and (3.8)] 

[2] (a + b)(ii + c)(ii + c) = (a + b)(ii + c· c) 

= (a + b)ii 
= iia + iib 
= iib 

Distributive law [Eqs. (3.12)] 
AND and OR laws [Eqs. (3.7) and (3.8)] 
Factoring law [Eqs. (3.12)] 
AND and OR laws 
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Circuit lind truth table representations for the function F of Example 3.5. (a) Logie cin:uit. (b)CMQS 
circuit. (e) Physical truth table. (d) Logic tru th tllble. 

13) (X + y)(X + Z)IY(X + 7.)+ Yl =(X + rZ)(y(x + 2)+ YJ Distributive law 
[Eqs. (3. 12)] 

= (X + y Z)(X + Y + 21 Absorptive law 
[Eqs. (3.I3)J 

= X + y 2 Y + y Z Z Distributive law 
= X + rz AND and OR laws 

14) (b $ c) + (ab)(a + c) = (b 0 c) + (ii + b)(ac) Eqs. (3.23); DeMorgan's laws 
[Eqs. (3.I5)J 

= (b 0 c) + aae + abc) Factoring law [Eqs. (3. 12)J 

=(bc+be+ abc) 

= (bc + he) 
=bmc 

(51 (X + Y) 0 (X '" Y)=(X + Y)0(XY + XY] 

= (X + YXx y + X Y) 
= XY+Xy 
=Xy 

Eq. (3.5): AND and OR laws 

Factoring law: AND and OR laws 
Eqs. (3.5) and (3.23) 

Eq. (3.4) 

Comllary II [Eq. (3.26)] 

Factoring law; AND and OR laws 

OR laws 
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[6] (A + 13 + AC) 0 (AB + C) = (A + 13 + AC)(AB + C) 

(A + 13 + C)(AB + C) 

= C + (A + B)(AB) 

Corollary II 
Absorption [Eqs. (3.13)] 

Distributive law 

=C 
[Eqs. (3.12)] 

Factoring law; AND and 
OR laws 

[7] iie + (ii + b) 0 (a + be) iie + (ab) EB (ii + be) DeMorgan's law [Eqs. (3.15); 
Eqs. (3.23)] 

iie + (ab) + (ii + be) Corollary I [Eq. (3.25)] 

= ab +ii + be 

=ii+b+be 

=ii+b+e 

Factoring law; AND and OR laws 
Absorption [Eqs. (3.13)] 

Absorption 

[8] wi} + wxz + WXZ + +xz = wiy + wxz + wxz 
+xz(w+w) 

wiy +xz 

Consensus law [Eqs. (3.14)] 

Factoring law [Eqs. (3.12)] 

Or laws 

[9] A EB B EB (A + B) = A EB [13 EB (AB)] 

= A EB [B(l EB A)] 

A EB (AB) 

A(l EB B) 
AB 

Eqs. (3.27) 

XOR Factoring law [Eqs. (3.19)1 

Eqs. (3.29) 

XOR Factoring law 
Eqs. (3.29) 

[10] f dEB bed EB abd EB ed EB ad EB abed 
= [d EB ed] EB [abel EB ad] EB [bed EB abed] Rearranging terms 

[d(l EB e)] EB [ad(b EB 1)] EB [bedO EB ii)] XOR Factoring law [Eqs. (3.19)] 

cd EB abd EB abed 

cd EB [abd(l EB c)] 

cd EB abcd 

Repeated applications of Eqs. (3.29) 

XOR Factoring law [Eqs. (3.19)] 

Application of Eqs. (3.29) 

Notice that the gate/input tally of f has been reduced from 10/24 to 3/8 in the final 
expression. Application of Corollary I further reduces f to (abc + cd). 

FURTHER READING 

Additional reading on the subject of mixed logic notation and symbology can be found in 
the texts of ~omer, Fletcher, Shaw and Tinder. . 

[1 J D. J. Comer, Digital Logic and State Machine Design. 3rd ed. Saunders College Publishing, Fort 
Worth, TX, 1995. 
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[2] W. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs, 
NJ, 1980. 

[3] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993. 
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs, 

NJ,1991. 

Virtually every text on digital or logic design provides some coverage of Boolean al
gebra. The texts of McCluskey and Dietmeyer are noteworthy for their coverage of both 
conventional Boolean algebra and XOR algebra including a very limited treatment of the 
Reed-Muller expansion theorem. 

[5] D. L. Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Boston, MA, 1978. 
[6] E. J. McCluskey, Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986. 

A more formal treatment of XOR algebra can be found in the work of Fisher. 

[7] L. T. Fisher, "Unateness Properties of AND-EXCLUSIVE OR," IEEE Trans. on Computers 
C-23, 166-172 (1974). 

A brief history of Boolean algebra is provided in Chapter 2 of Hill and Peterson. 

[8] F. J. Hill and G. R. Peterson, Digital Logic and Microprocessors, John Wiley, NY, 1984. 

CMOS logic, which is emphasized in this text, is adequately covered by Weste and 
Eshraghian in Chapter I and portions of Chapter 5. But an excellent coverage of experimen
tal work on various XOR and EQV gates on the MOS transistor level is given by Wang et al. 

[9] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley, Reading, 
MA,1985. 

[10] I. Wang, S. Fang, and W. Feng, "New Efficient Designs for EXOR andXNOR Functions on the 
Transistor Level." IEEE Journal of Solid-State Circuits 29(7), 780-786 (1994). 

PROBLEMS 

3.1 Define the following: 
(a) Mixed logic 

(b) Polarized mnemonic 

(c) Logic level conversion 

(d) Active and inactive states 

(e) Inverter 

(f) Gate 

3.2 Identify the gate appropriate to each of the physical truth tables in Fig. P3.1. Note: It 
may be necessary to search this chapter for the answers. 
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A 8 V A 8 V A 8 V A 8 V A 8 V 

LV LV HV LV LV LV lV LV LV LV LV HV LV LV LV 
LV HV HV LV HV HV LV HV LV LV HV LV LV HV HV 
HV LV HV HV LV HV HV LV LV HV LV LV HV LV HV 

HV HV LV HV HV HV HV HV HV HV HV LV HV HV LV 

(a) (b) (e) (d) (e) 

FIGURE P3.1 

3.3 By using a skelch. indicate how the CMOS inverter of Fig. 3.6a can be converted to a 
IWO-lmnsistor noninverting switch. What would be thc disadvantage (if any) of such 
a device? 

3.4 Given the waveforms from the IWO logic devices in Fig. P3.2. sketch the wavefonns for 
X(voltage). X(L). Y( H). and Y(vol tage). Keep the logic and voltage levels as shown. 

3.5 With reference to Problem 3.4. explai n the differences between the logic levels for 
Ihe X(H) and X(L) wavcfonns and Ihose for the y(H) and Y(L) waveforms. Do these 
d ifferences represent a contradiction in the definilion of positive and negative logic ? 
Explain. 

3.6 Use the inverter. its I/O bchllvior. and the logic c ircu it symbols in Pig. 3.6 10 explain 
how the PMOS indicator bubble in the inverlcr circuit is related to Ihe ;lclive low 
indicator bubble appearing 0 11 the inverler symbols. 

Digital 
Devk:e 

#1 

Digital 
Device 

#2 

f-- X(H) '(H) ,r----, II 
O(H) ----' '----' L __ 

HV 
X(vo/ts) LV 

X(L) 1(L) 
O(L) 

h--- V{H) 1(H) 
O(H) 

-{»- V(L) 'IL) __ J-l_----.lll, __ _ 
O(l) 

HV 
Y from inverter (vo/ts) 

lV 

FIGURE P3.2 
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3.7 Use the definitions of positive and negative logic and Fig. 3.6 as a guide to construct 
the physical truth table and its two mixed logic truth tables for each of the tri-state 
drivers in Fig. 3.8 as listed below. Remember to include both inputs Xi and the control 
C. Use the letter D to represent the disconnect mode. 
(a) Noninverting tri-state driver with C(H). 

(b) Noninverting tri-state driver with C(L). 

(c) Inverting tri-state driver with C(H). 

(d) Inverting tri-state driver with eeL). 

3.8 By adding an inverter to each, reconfigure the tri-state drivers in Figs. 3.8c and 3.8d 
so that they become noninverting tri-state enable switches with driver capability. Give 
the circuit symbols and ideal equivalent circuits for these two reconfigured tri-state 
switches. 

3.9 Reconfigure the NAND gate in Fig. 3. lOa by flipping it end-for-end such that the two 
series NMOS are on the + VDU (HV) end and the two parallel PMOS on the ground 
(LV) end. 
(a) Construct the physical and mixed logic truth tables for this reconfigured CMOS 

circuit. Is this a valid gate form and, if so, what logic function does it perform? 
(Hint: Compare with 3.16.) 

(b) What, if any, are the disadvantages of this new configuration? Explain. 

3.10 Repeat Problem 3.9 for the NOR gate in Fig. 3.12a, but with the two parallel NMOS 
on the HV end and the series PMOS on the LV end. (Hint: Compare with 
Fig. 3.17.) 

3.n Explain why the AND and OR gates of Figs. 3.16 and 3.17 cannot be used for 
logic level conversion as is done for the NAND and NOR gates of Figs. 3.14 and 
3.15. 

3.12 Write the logic expressions for the action indicated by the situations given below. Use 
mnemonics or abbreviations where appropriate. 

(a) Bob will go fishing in a boat only if the boat does not leak and if it is not windy. 
Otherwise, he will fish from the bank, but only if the fish are biting. 

(b) A laboratory class consists of five students (A, B, C, D, and E) each from a dif
ferent discipline. An experiment has been assigned that must be carried out with 
anyone of the following combinations of students: 

A and C but not D 
A or B but not both (see Section 3.9) 
D but only if E is present 

(c) A robot is activated only if a majority of its three switches (X, Y, and Z) are turned 
ON and is deactivated if a majority of its three switches are turned OFF. 

3.13 Archie CAl, Betty (B), Cathy (C). and David CD) may attend a school dance, but will 
dance only with the opposite sex and then only under the following conditions: Archie 
will dance with either Betty or Cathy. However, Cathy will dance with Archie only 
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if Betty is not present at the dance. David will dance only with Betty. Obtain the logic 
expression representing the active state of dancing for A, B, C, and D. 

3.14 Use a minimum number of gates and inverters to implement the functions below 
with NANDJINV logic. Give the gate/input tally for each logic circuit, excluding in
verters. Implement the function exactly as presented make no alterations. Assume 
that all inputs arrive from positive logic sources. Use the inverters for logic level 
conversion. 

(a) Z(H) = (X}' + W)(H) 

(b) F(H) = [AD + (B + E)](H) 

(c) geL) = (illy + x + z)(L) 

(d) G(L) [(AB + C)(D + E)](L) 

. (d + e)](H) 

3.15 Repeat Problem 3.14 by using NORJINV logic. Assume that all inputs arrive from 
positive logic sources. 

3.16 Repeat Problem 3.14 by using AND/ORJINV logic. Assume that all inputs arrive from 
positive logic sources. 

3.17 Use three NOR gates (nothing else) to implement the function Y(H) below ex
actly as written. Assume the inputs arrive as follow: A(H), B(H), C(H), D(L), 
and E(L). 

Y(H) [(AD) . (B + C + E)](H) 

3.18 Use three NAND gates (nothing else) to implement the function Z(H) below ex
actly as written. Assume the inputs arrive as follow: A(H), B(H), C(H), D(L), and 
E(L). 

Z(H) = [(A + D) + (BC E)](H) 

3.19 Name the gates used in each of the logic circuits shown in Fig. P3.3 and give the 
mixed logic expression at each node in mixed logic notation. Use Figs. 3.20, 3.23, 
and 3.24 as a guide if needed. 

3.20 The CMOS circuits in Fig. P3.4 perform specific logic functions. Construct the physi
cal and mixed logic truth tables for each circuit, indicate what logic function it performs 
and give its two conjugate logic circuit symbols. Note that B is the inverse voltage 
of B. 

3.21 Use two NOR gates and one XOR gate (nothing else) to implement the function Y (H) 

below exactly as written. Assume the inputs arrive as A(H), B(H), C(H), D(L), 
and E(L). 

Y(H) = r(A $ D) . (B + C + E)](H) 

3.22 Use three NAND gates, one EQV gate, and one inverter (nothing else) to implement 
the function G(H) below exactly as written. Assume the inputs all arrive from positive 
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A(H)~l X(l) 
D(H) 

3 Z(H) 
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C(H) Y(H) 
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8(H) 

C(H)-------I 
F(L) 

(e) O(l) (d) 

FIGURE P3.3 

logic sources. 

G(H) = [(X Y) (l) Z + XYZ](H) 

3.23 Use three NAND gates and two EQV gates (nothing else) to implement the func
tion F(H) below exactly as written. Assume the inputs arrive as W(L), X(L), Y(H), 
and Z(H). 

F(H) = [(W (l) Y) (l) CXZ) + WY](H) 

3.24 Unused inputs must not be left dangling. Instead, they must be tied to other inputs, 
or be connected to HV or LV depending on the logic operations involved. Implement 
the following functions with the logic indicated. 
(a) A four-input NOR gate performing the (AB)(H) operation with inputs A(L) and 

B(H). 

(b) A three-input NAND gate performing the X(H) -* X(L) logic level conversion 
operation. 

(c) An XOR gate performing the controlled X(L) -* X(H) logic level conversion 
operation. 

(d) A four-input AND gate performing the (.4 + B)(L) operation with inputs A(H) 
and B(L). 

3.25 Construct the truth table and the mixed logic waveforms for the functions below by 
using a binary input sequence in alphabetical order, all inputs active high. Use Ta
ble 2.1 in Section 2.3 if needed, and follow the format of Fig. 3.32 in constructing 
the waveforms. Do not take into account the propagation delays through gates and 
inverters. 

V(L) 
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A 

Z 

B------' 

(a) 

A 

B -..--+---. 

B -~-+---' 

(e) 

FIGURE P3.4 

(a) Function Z(H) in Fig. P3.3a. 

(b) Function G(H) in Problem 3.22. 

(c) Function F(H) of Problem 3.23. 

A r---+- Z 

B 

(b) 

Z 

3.26 Reduce the following expressions to their simplest form and name the Boolean 
laws used in each step. (Note: Follow the procedure of Examples 3.6 in Section 
3.12.) 

(a) ab(c + h) + ah 
(b) (X + Y)(XZ + Y) (Hint: First use the distributive law.) 

(c) A + AC + B 

(d) (x + y)(x + z)[y(x + z) + y] 

(e) AB + Ac D + BC + Ac 
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3.27 Reduce the following expressions to their simplest form, but do not name the Boolean 
laws used in each step. 

(a) A + ABC + A + C 

(b) (aed + ad)(ad + cd) 

(c) (WX+Y+W)(WX+Y+WX) 

(d) (x + y)(i + z)(y + z) 

(e) (A + BC)(AB + ABC) (Hint: Simplify under short complementation bars first.) 

(f) ii + b + a(h + be) + (b + c) . abed 

(g) (A + B + C + D)(,.1 + C + D)(,.1 + B + D) (Hint: First use consensus.) 

3.28 Reduce the following expressions to their simplest form and name the Boolean laws 
used in each step. 

(a) (a EB b + b)(a + b) 

(b) (XY) EB (X + Y) 
(c) x 0 y 0 (xy) 

(d) [(X + Y) 0 (X + Z)] + X 

(e) [(A + B) . C] EEl [A + B + AC] (Hint: Find a way to use Corollary II.) 

3.29 Reduce the following expressions to their simplest form, but do not name the Boolean 
laws used in each step. 

(a) A + A EB B + ,.1B 

(b) (05 + [S EB (ST)]}(H) = [?](L) 

(c) (X + Y) 0 (X EB Y) 

(d) (a 0 b) EB (ah) 

(e) (i + y)(x EB y + y) 

(f) [1 EEl (1 + oJ) + 1 0 O](H) = [?](L) 

3.30 Use the laws of Boolean algebra, including the XOR laws, identities, and corollaries 
given by Eqs. (3.17) through (3.33), to prove whether the following equations are true 
(T) or false (F). Do not name the laws used. 

(a) X 0 (X + Y) = XY 

(b) ab(h + be) + be + abed = be 

(c) A EB B EB (A B) = ,.1B 

(d) X EB (XY) = X + (X 0 Y) 

(e) f(AB)(A 0 B)](L) = ,.1B(H) 

(f) AXY + AXY + ,.1Y = (AX) EB Y (Hint: First apply Corollary I.) 

3.31 Use whatever conjugate gate fOlms are necessary to obtain a gate-minimum imple
mentation of the following functions exactly as written (do not alter the functions): 

(a) F(H) = ([A EB B] . [(BC) 0 D]}(H) with inputs as A(H), B(H), C(L), and 
D(L). 

(b) K(L) = [A EEl C EEl (BD) EEl (,.1BCD)](L) with inputs from negative logic 
sources. 
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FIGURE P3.S 

3.32 Use NORIXORJINV logic to implement the function below exactly as written by 
using the fewest number of gates and inverters possible, assuming the inputs A and 
B arrive active low and inputs X and Y arrive active high. 

Z(H) = {[X 0 (A + Y)] . B}(H) 

3.33 A room has two doors and a light that is controlled by three switches, A, B, and C. 
There is a switch beside each door and a third switch in another room. The light is 
turned on (LTON) any time an odd number of switches are closed (active). Find the 
function LTON(H) and implement it with a gate-minimum circuit. Assume that the 
inputs are all active high. 

3.34 The logic circuits shown in Fig. P3.5 are redundant circuits, meaning that they contain 
more logic than is necessary to implement the output function. Identify each numbered 
gate and give the simplest mixed logic result at each node indicated. To do this, it will 
be necessary to use the various laws of Boolean algebra together with mixed logic 
notation. 

Q 
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T 
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In-Section I ~AB )t(AB) 

..1 

Ib) 

3.35 By following Subsection 3.10.2. write the dual fonns for the functions y(H). G(H). 
and Z( H ) in Problems 3.21. 3.22. and 3.32_ 

3.36 Use the laws of XOR algebra and idenlities given in Eqs. (3.17) through (3.33) to 
reduce the fo lloWing funct ion to its simplest (gate-minimum) fonn: 

F=D m B ~ BD $ BCD $AeAD eAceACD eA B . 

3.37 The mixed logic circuit for the multiple gate real ization of the XOR function F(L ) = 
(AB + A8)(L) = (A 0 B)(L) = (A $ 8 )( H ) is shown in Fig. PJ.6a. together 
with its CMOS organization in Fig. P3.6b. It derives from the defining relations 
given by Eqs. (3.4) and (3.5). Construct the CMOS circuit (excluding inverters) for 
this function by using the proper placement of the PMOS and NMOS as indicated 
in Figs. 3.5 and P3.6b. Also. construct the physical and logic truth lables for this 
function. 

3.38 The logic circu it fonhe funccion YU/ ) = IA (B + CD)J(H ) is given in Fig. P3.7 . 
(a) Assuming that inputs A. B. C. and D arrive from positive logic sources. construct 

the CMOS circuit for the function y(H). 

(b) Obtain the physical and positive logic truth table for this function. 

3.39 Shown in Fig. P3.8 is a CMOS circuit having three inputs and one output. 

FIGURE P3.7 

81H) 
C(H) 
O(H) AIH)~YIH) 
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A ----.---CI 

z 
B --...-1---...-0 

C ----------4---1 

FIGURE P3.8 

(a) Construct the physical truth table for this circuit taking into account all possible 
combinations of LV and HV inputs. 

(b) If the inputs and outputs are all assumed to be active high, find the logic function 
for Z(H) and its logic circuit. 

3.40 The CMOS circuit in Fig. P3.9 is an example of a gate-matrix layout. The circuit 
has four inputs, A. B. C. and D, and one output Z. Note that X indicates an internal 
connection. 
(a) Construct the physical truth table for this circuit taking into account all possible 

combinations of LV and HV inputs. 

(b) If the inputs and outputs are all assumed to be active high, find the logic function 
for Z(H) and construct the logic circuit for Z(H). 

C-4 p-D 
z 

~A 

FIGURE Pl.9 



CHAPTER 4 

Logic Function Representation 
and Minimization 

4.1 INTRODUCTION 

A given logic function can be represented in a variety of different forms, and often one 
of these forms proves to be the best for the application under consideration. It is the purpose 
of this chapter to consider the different forms of logic representation. It is also the purpose of 
this chapter to consider the reduction and minimization of these different forms. Knowing 
how to reduce or minimize a logic function is important so as to reduce design area, power 
consumption, and cost by eliminating unnecessary hardware. Also, the minimized function 
often reveals information that is not readily apparent from a nonminimized form. In short, 
the information in this chapter is essential to good design practices and specifically to an 
understanding of the remainder of this text. 

4.2 SOP AND POS FORMS 

Without specific mention of it, SOP and POS forms have already been used in the discussions 
of Chapter 3. Typical examples are the defining relations for XOR and EQV given by 
Eqs. (3.4) and (3.5) in Section 3.9, where each is given in both SOP and POS form. To 
understand what is meant by SOP and POS, the AND operation is taken as the Boolean 
product and the OR operation represents the Boolean sum. Thus, SOP means sum-oJ
products while POS denotes product-oj-sums. These definitions will be used throughout 
the text. 

4.2.1 The SOP Representation 

Consider the function of three variables given by the Boolean expression 

J(A,B, C) =AB+BC+ ABC. 
'-v-' 

minlerm 

(4.1) 
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The function in Eq. (4.1) is written in sum-oj-products (SOP) form, meaning ORing 
of ANDed terms also called p-tenns (product-terms). Although there are three p-terms 
in this expression, only the term ABC is called a minterm. A minterm is defined as 
follows: 

Minterm: Any ANDed term containing all the variables oj afunction in complemented 
or uncomplemented Jonn. 

Use will be made of the symbol 

(4.2) 

to represent the ith minterm of a function. Notice that two of the three p-terms in Eq. (4.1) 
cannot be minterms by this definition. 

To simplify minterm representation, a shorthand notation is used and is based on the 
following mintenn code: 

MINTERM CODE 

Complmented variables: logic 0 
Uncomplented variables: 

Once the logic O's and l's have been assigned to all variables in a given minterm. a minterm 
code is established where the subscript in mj becomes the decimal equivalent of the binary 
code formed by the logic state assignments. For example. the minterm in Eq. (4.1) is repre
sented by 

since the binary of 100 has a decimal value of 4. A complete minterm eode table for four 
variables is given in Fig. 4.1. A similar minterm code table can be constructed for any 
number of variables. 

A function composed completely of a logical sum of minterms is said to be in canonical 
SOP Jonn. A typical example is given by the following expressions, where use has been 
made of the minterm code shorthand notation and the operator symbol L to represent the 
logical sum of minterms: 

YeA, B, C) = ABC + ABC + ABC + ABC + ABC 
'-v-" .-v-' '-,,-' '-v-" -v-' 

000 all III 100 110 

= L m(O, 3, 4, 6, 7). 

A reduced SOP function such as that in Eq. (4.1) can be expanded to canonical form by 
applying the factoring law and the AND and OR laws given in Section 3.10. This is 
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SOP Term Binary Decimal mj SOP Term Binary 

- - - -ABCD 0000 0 mo ABCD 1000 

ABC D 0001 1 m1 ABCD 1001 

ABC D 0010 2 m2 ABCD 1010 

ABCD 0011 3 m3 ABCD 1011 

ABCD 0100 4 m 4 ABCD 1100 

ABCD 0101 5 ms ABCD 1101 

ABCD 0110 6 ms ABCD 1110 

ABCD 0111 7 m7 ABCD 1111 

FIGURE 4.1 
Minterrn code table for four variables. 

demonstrated by expanding Eq. (4.1) as follows: 

f(A,B, C) =AB +BC +ABC 

=AB(C + C) + (A +A)BC +ABC 

=ABC + ABC + ABC + ABC + ABC 

= L m(2, 3,4,7). 

133 

Decimal mi 

8 ma 
9 mg 
10 m10 

11 m 11 

12 m 12 

13 m 13 

14 m14 

15 m 15 

(4.3) 

Note that the OR law X + X = 1 has been applied twice and that the two identical minterms 
ABC are combined according to the OR law X + X = X. 

The canonical truth table for Eqs. (4.3), shown in Fig. 4.2, is easily constructed from 
the minterm code form. However, the truth table can also be constructed directly from the 
original reduced form given by Eqs. (4.1). Notice that a logic 1 is placed in the f column 
each time an AB = 01 occurs, each time a BC occurs, and for ABC. Thus, construction 

ABC f 

00 0 0 

00 1 0 

01 0 m2 
o 1 1 m3 
10 0 m4 
1 0 1 0 

1 1 0 0 

1 1 1 1 m7 
FIGURE 4.2 
Truth table for Eq. (4.3). 
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of the truth table from a reduced fonn permits a simple means of obtaining the canonical 
representation without having to use the Boolean manipulation given by Eqs. (4.3). 

4.2.2 The POS Representation 

An alternative means of representing a logic expression is to cast it in product-of-sums 
(POS) fonn, meaning the ANDing of ORed terms, also called s-tenns (sum-tenns). An 
example of POS representation is given by the function 

f(A, B, C, D) = (A + B)(ji + B + C + D)(B + t + D) (4.4) 

MaXlerm 

where, of the three s-tenns, only the tenn (A + B + C + D) is called a maxterm. 
A maxterm is defined as follows: 

Maxterm: Any ORed term containing all the variables of afunction in complemented 
or uncomplemented form. 

The symbol 

(4.5) 

will be used to represent the ith maxtenn of a function. 
Maxtenn representation can be simplified considerably by using the maxterm code: 

MAXTERM CODE 

Complemented variable: 
Uncomplemented variable: 

logic 1 
logic 0 

The assignment of the logic l's and O's in this manner to all variables in each maxtenn 
establishes the maxtenn code, where the subscript in Mi is the decimal equivalent of the 
binary number fonned by the logic state assignments. The maxterm code table for four 
variables is given in Fig. 4.3. Use of this table is illustrated by maxtenn in Eq. (4.4), 

A+B+C+D=M13 

1 1 0 1 

where 11012 = 13\0. 
A comparison of the mintenn and maxtenn code tables in Figs. 4.1 and 4.3 indicates that 

and (4.6) 

mi=Mi, 
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POS Term Binary Decimal Mj POS Term Binary Decimal Mj 

A+B+C+D 0000 0 Mo A+B+C+D 1000 8 Me 
-

A+B+C+D 0001 1 M1 A+B+C+D 1001 9 Mg 
A+B+C+D 0010 2 M2 A+B+C+D 1010 10 M10 
A+B+C+D 0011 3 M3 A+B+C+D 1011 11 M11 
A+B+C+D 0100 4 M4 A+B+C+D 1100 12 M12 
A+B+C+D 0101 5 Ms A+B+C+D 1101 13 M13 
A+B+C+D 0110 6 M6 A+B+C+D 1110 14 M14 - - - -
A+B+C+D 0111 7 M7 A+B+C+D 1111 15 M15 

FIGURE 4.3 
Maxterm code table for four variables. 

revealing a complementary relationship between minterms and maxterms. The validity of 
Eqs. (4.6) is easily demonstrated by the following examples: 

and 

if 12 = A + B + C + D = ABCD = m 12, 

where use has been made of DeMorgan's laws given by Eqs. (3.15a). 
A function whose terms are all max terms is said to be given in canonical POS form as 

indicated next by using maxterm code. 

f(A, B, C) = (A + B + C)· (A + B + C)· (A + B + C)· (A + B + C) 
'-.-' ------ '-.--' '-.-' 

001 10 L 1 00 000 

= MI . Ms . M4 . Mo 

= n M(O, 1,4,5) 

Note that the operator symbol n is used to denote the ANDing (Boolean product) of max
terms Mo, M 1, M4, and Ms. 

Expansion of a reduced POS function to canonical POS form can be accomplished as 
indicated by the following example: 

f(A, B, C) = (A + C)(B + C)(A + B + C) 

= (A + B B + C)(AA + B + C)(A + B + C) 

= (A + B + C)(A + B + C)(A + B + C)(A + B + C)(A + B + C) 

= n M(l, 3,4,7). (4.7) 

Here, use is made of multiple applications of the distributive, AND, and OR laws in the 
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ABC 

o 0 0 1 ma 
o 0 1 0 ---+ M1 
o 1 0 1 m2 
o 1 1 0 ---+ M3 
1 0 0 0 ---+ M4 
1 0 1 ms 
1 1 0 1 m6 
1 1 0 ---+ M7 

FIGURE 4.4 
Truth table for Eqs. (4.8). 

form of (X + y)(X + Y) = X. Notice that the AND law M3 . M3 = M3 is applied since 
this maxterm occurs twice in the canonical expression. 

The results expressed by Eq. (4.7) are represented by the truth table in Fig. 4.4, where 
use is made of both minterm and maxterm codes. Function f values equal to logic 1 are 
read as rninterms, while function values equal to logic 0 are read as maxterms. From this 
there emerges the result 

f(A, B, C) = Lm(O, 2, 5, 6) = n M(1, 3,4,7), (4.8) 

which shows that a given function can be represented in either canonical SOP or canonical 
POS form. Moreover, this shows that if one form is known, the other is found simply by 
using the missing code numbers from the former. 

By applying DeMorgan's laws given by Eqs. (3.15a), it is easily shown that the comple
ment of Eqs. (4.8) is 

leA, B, C) = n M(O, 2, 5, 6) = Lm(1, 3,4,7). (4.9) 

This follows from the result 

I = L m(O, 2, 5, 6) = mo + m2 + ms + m6 
- - - -= ma . m2 . ms . m6 

= Ma . M2 . Ms . M6 

= n M(O, 2, 5, 6) = Lm(1, 3, 4, 7) 

A similar set of equations exist for I = n M(l, 3, 4, 7). Equations (4.8) and (4.9), viewed 
as a set, illustrate the type of interrelationship that always exists between canonical forms. 

There is more information that can be gathered from the interrelationship between canon
ical forms. By applying the OR law, X + X = 1, and the OR form of the commutative laws 
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to Eqs. (4.8) and (4.9), there results 

f + 1 = Lm(O, 2, 5, 6) + Lm(l, 3,4,7) 

= Lm(O, 1,2,3,4,5,6,7) 

=1. 

Generally, the Boolean sum of all 2" minterms of a function is logic 1 according to 

211-1 

Lm; = 1. 
;=0 
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(4.10) 

Similarly, by using the AND law, X . X = 0, and the AND form of the commutative laws, 
there results 

f ·1 = n M(l, 3,4,7)· n M(O, 2, 5,6) 

= n M(O, 1,2,3,4,5,6,7) 

=0. 

Or generally, the Boolean product of all 2n maxterms of a function is logic 0 according to 

2"-1 

nM;=O. ( 4.11) 
;=0 

Equations (4.10) and (4.11) are dual relations by the definition of duality given in Subsection 
3.10.2. 

To summarize, the following may be stated: 

Any function ORed with its complement is logic 1 definite, and any function ANDed 
with its complement is logic 0 definite - the form of the function is irrelevant. 

4.3 INTRODUCTION TO LOGIC FUNCTION GRAPHICS 

Graphical representation of logic truth tables are called Karnaugh maps (K-maps) after M. 
Karnaugh, who, in 1953, established the map method for combinational logic circuit syn
thesis. K-maps are important for the following reasons: (1) K-maps offer a straightforward 
method of identifying the minterms and max terms inherent in relatively simple minimized 
or reduced functions. (2) K-maps provide the designer with a relatively effortless means of 
function minimization through pattern recognition for relatively simple functions. These 
two advantages make K-maps extremely useful in logic circuit design. However, it must be 
pointed out that the K-map method of minimization becomes intractable for very large com
plex functions. Computer assisted minimization is available for logic systems too complex 
for K-map use. The following is a systematic development of the K-map methods. 
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A rn, 

0 A = mo 

A m1 

(a) 

fiGURE 4.5 

A 

a 

(b) 

Minterm code 
numbers 

Minterm code 
numbers 

(a) Minterm code table for one variable and (b) its graphical equivalent. (c) Alternative formats for 
first order K-maps showing minterm positions. 

4.3.1 First-Order K-maps 

A first-order K-map is the graphical representation of a truth table of one variable and is 
developed from the minterm code table shown in Fig. 4.5a. The minterm positions in a 
first-order K-map are shown in Fig. 4.5b, leading to the alternative formats for a first-order 
K-map given in Fig. 4.5c. The number in the lower right-hand comer of a K-map in Fig. 4.5c 
indicates the position into which a minterm with that code number must be placed. 

Consider the three functions given by the truth tables in Fig. 4.6a. Notice that all in
formation contained within a given truth table is present in the corresponding K-map in 
Fig. 4.6b and that the functions are read as /1 = X, h = and h = 1 from either the 
truth tables or K-maps. Thus, a logic I indicates presence of a minterm and a logic 0 (the 
absence of a min term) is a maxterm. 

4.3.2 Second-Order K-maps 

A second-order K-map is the graphical representation of a truth table for a function of two 
variables and is developed from the min term code table for two variables given in Fig. 4.7a. 
The graphical equivalent ofthe minterm code table in Fig. 4.7a is given in 4.7b, where 
the minterm code decimal for each of four mi is the binary equivalent of the cell coordinates 

x 
o o 

o 

(a) 
All that is X 

FIGURE 4.6 

X 

o 

o 

(b) 

All that is X 

X 

o 
o 

(a) Truth table and (b) first order K-maps for functions 11,12, and h of one variable X. 
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B A 
B A 

A B m, 
B 

A 0 

B 
r.r 1 A 0 ~ B 0 .,.---. 

o 0 ~B = "'0 0 m, m, 0 0 
0 1 AB = m - , 0 0 

, 
1 0 AB="" A ~ A~ B~ ,I 1 1 AB=m3 

(a) 

FIGURE 4.7 

m, m, 

(b) 

2 3 

Minteon code 
numbers 

(c) 

(a) Mimerm code lable for lWO variables and (b) its graphieal"'"quivalcm. (e) Ahcrnativc formals for 
.<;econd-order K.maps showi ng rnintcrm posi tions. 

(read in alphabetical order AB) of the cell into which that minterm is placed. From these 
figures there result 'he two alternative K-map formats shown in Fig. 4 .7c. where the number 
in the lower right-hand corner of each cell is the decima l equivalent of the coordinates for 
that cel1 given in binary. 

As examples. functions II and h of two variables (X and Y) are represented by lruth 
tables in Fig. 4 .8a and by K-maps in Fig . 4.Sb. Function / 1 is shown to have .wo mintenns 

and (WO maxtcons while function h has three minterms and one maxterm. From the trulh 
.ables the functions can be rcad in SOP foml as 

fl(X. Y)= Lm( I.3)=XY +XY= Y 

(4. 12) 

fz(x. Y)= LI1I (O. 2. 3) =XY + Xy +xy= X + Y. 

However, by combining ("' looping oul" ') adjacent mintenns these results are immediately 
obvious as indicated in Fig. 4.8b. 

All thai Is Y All tha i is Y 

x y f, f, 

o 0 0 1 
o 1 1 0 

y 
X 0 1 

r< 
0 0 1 

0 , 

AA that is - -
X OT XY: (X+Y) 

y ,-
0 1 N 

0 1 
... 

0 
0 , 

1 0 0 , 
1 , 1 1 

1 0 1 , 3 
f = , 

1 1 ' ", 
/ f, y = X +Y 

-A1l lhal ls NOT Y =- Y All !halls X 
(a l (b) 

fiGURE 4.8 
(a) Tnuh tables for luoo.:tions / 1 and h. (b) K·maps fOf (unctions / 1 and h . showing minimum SOP 
cover (shaded) and POS CQ\·er (dashed loops). 
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The same results could have been obtained by reading thc maxterms in the K-maps of 
Fig. 4.8b. Thus, in maxterm code the canonical and minimum POS forms become 

II fl M(O, 2) = (X + y)(X + y) y 

and (4.13) 

h fl M(l) = (X + Y), 

where for II the distributive law in Eqs. (3.12) has been applied. Another way of looking 
at the results given by Eqs. (4.13) is to read groups of adj~cent maxterms. For II the two 
adjacent maxterms (O's) are read as "all that is NOT Y" or Y Y. Similarly, for function h 
the 0 in cell 1 is read as "all that is NOT X¥" or simply X + Y. 

4.3.3 Third-Order K-maps 

In dealing with functions of three variables, a suitable graphical representation and K-map 
format must be decided. One choice would be to use a three-dimensional graphic having 
one axis for each variable. However, such a graphical representation would be difficult to 
construct and equall y difficult to read. A much better choice would be to maintain the domain 
concept in two dimensions. To do this requires the use of two variables for one axis. Shown 
in Fig. 4.9a is the graphical representation for the min term code table of three variables as 
deduced from Fig. 4.1. Again, the rninterm positions are those given by the coordinates of 
the cells read in alphabetical order XYZ. From this there results the two alternative formats 
for a third-order K-map given in Fig. 4.9b, where the minterm code numbers in decimal are 
shown in the lower right-hand comers of the cells. 

Notice that the two-variable axes in the third-order K-maps of Fig. 4.9b are laid out in 
2-bit Gray code, a unit distant code featured in Subsection 2.10.3. This is important so that 
each cell along the two-variable axis is surrounded by logically adjacent cells. The result is 
that the Y and Z domains in Fig. 4.9 are maintained intact. Notice that in Fig. 4.9a the logic 
adjacency along the two-variable axis is continuous as though the K-map were formed into 
a cylinder about the X axis (orthogonal to the YZ axis). Had the YZ axis been laid out in 
binary, the Z domain would be split into two separate sections, making map plotting and 
reading difficult. For this reason all axes of two or more variables are laid out in Gray code 
so as to maximize axis coherency. 

00 01 I 11 10 I ZXY 00 01 

x 

0 0 
0 1 3 

x ~ ~ __ ~ __ -= __ m_7~7~ __ ~ 
I 

x 
C 4 5 7 

2 0 

61/ ZC 1 
/ I 

Z 

(a) 

FIGURE 4.9 

z 
(b) 

(a) Minterm positions and (b) alternative formats for third·order K-maps. 

Y 
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YZ 
X 00 01 I 11 

0 0 1 1 , , 

F, x [1 p, 1 1 , XYZ F, 
o 0 0 0 o I 
001 1 Z 
o 1 0 0 All that IS 
o 1 1 1 1 NOT YZ = (Y+Z) 

o 0 0 
0 1 1 

0 
YZ 0 X 00 01 " 0 0 1 

1 0 0 , 
(al X[1 0 0 , , 

All that is NOT XY " (X+Y) Z 

(bl 

FIGURE 4.10 

yr Allth 

10 

0 , 
' r 

,~ 
I / F, 

All thai Is Xz 
Y 

10 

, , 
1 , 

at is Z 

All that is 

NOTZ "' Z 

All that Is Y 

Fl"' XZ" ~ 
'" (Y"Zj(X"Y) 
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Truth tables for functions FI and F2 . (b) K·map representations for functions Ft and F2 showing 
minimum SOP cover (shaded) and minimum POS cover (unshadedl. 

To illustrate the application of third-order K-maps. two simple functions arc presented 
in Fig. 4.10. Here. the truth tables for functions FI and F1 are presented in Fig. 4. lOa and 
their K-map representations together with minimum cover arc given in Fig. 4. lOb. Notice 
that the I's and 0\, are placed at the proper coordinates within the K-maps. in agreement 
with the truth lable. From the K-maps, the canonical and minimum SOP forms for functions 
FI and F2 are read as 

FleX, Y, Z) = Lm(l. 3, 5, 7) =XYZ + in + XYZ +xrz 
~2 

F2(X. Y, Z)= Lm(l,2,3 , 6, 7j=XYZ +XYZ + XY2+XY2+XYZ 
=XZ + Y. 

(4. 141 

By grouping minterms in Fig. 4. IOb. the minimum SOP expressions. FJ = Z and F2 = XZ+ 
Y. become immediately apparent. 

The O's in the K·maps of Fig. 4.lOb can be given in canonical and minimum PQS fonns: 

FI(X, Y. Z)= n M(O, 2. 4. 6) 

= (X + Y + Z)(X + Y + Z)(X + y + Z)(X + Y + Z) 

=Z 

F,(X, Y, Zl~ n M(O.4.51~(X + Y + 21(X + Y + ZI(X + Y + ZI 
~ (Y + ZXX + Y), 

(4. 151 
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BC 
A 00 01 

AllhallS 0 1 

Nllhat is 

'e 
• 

11 10 

, 
AS Al 
All thai is 1~'t~~e;;::j;J-~''''Y 

At All thai is ABC 

(a) 

FIGURE 4.11 

AU that is , ~r- ~(A 
BC 

A 00 01 11 ,,' 

A 

0 1 'l 0 0 , , 
[ 1 1 1 1 

• , • Y 

All !hat is A Y 
(b) 

(3) K -mllp for the r~duccLi fUlK'ltoll Y of Eq. (4. 16), (b) K-map showing minimum SOP and POS 
c(lver for (ul1(:lion Y . 

as read in maxtenn code. The minimum POS resulls are easily read from Ihe K. maps of 
Fig,: 4.1Ob by combining adjacent O's as indicated. Thus, FI is read as "allthat is NOT r' 
or t = Z. Similarly. F2 can be read as "al l thai is NOT YZ + XY'or YZ+ Xy = (Y + Z) 
(X + n. Noticcthatlhcdistributive law in Eqs. (3.12) is appJiedas(Y +Z)(X + n = y +XZ. 
demonstrating that the SOP and pas ronns for F2 arc algebraically equal. as they must 
be. The minimum POS rcsulls given by Eqs. (4.15) call also be obtained by applying the 
Boolean law~ given in Section 3.10. but with somewhat mor~ effort. For example. FI is 
minimized to give the result Z after three applications of the distributive law in Eqs. (3. 12) 
together with the AND and OR laws. 

The use of third-order K-maps is further illu~lr<lted by placing the reduced SOP function 

(4. 16) 

inlo the third-order K-map in Fig. 4.11 a. Then by grouping adjacent mintenns (shaded 
loops) as in Fig. 4 .1 Ib.lhere results the minimum expression for Eq. (4.16). 

(4. 17) 

As expected, the same results could have been obtained by grouping Ihe a~el\l maxtenns 

(O's) in Fig. 4. Jib, which is equivalent 10 saying "all that is NOT A 8" or A B = A + iJ . 
Other infonnation may be gleaned from Fig. 4.1 L Extracting canonical infonn:nion is 

as easy as reading the minterm code numbers in the lower right-hand comer of each cell. 
Thus, the canonical SOP and canonical POS forms for fu nct ion Y are given by 

Y = Lm(O. 1,4,5. 6.7) 

=AOt + ABC +AOC + ABC + ABC + ABC 

y = n M(2.3) 

=(A+8 +C)(A+ii+C) 

as read in mintcnn code and maxlenn code. respectively. 

(4 .1 8) 
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FIGURE 4.12 
Alternative fonnats for fourth-order K-maps. 

4.3.4 Fourth-Order K-maps 

At this point it is expected that the reader is familiar with the formats for first-, second-, 
and third-order K-maps. Following the same development, two alternative formats for 
fourth-order K-maps are presented in Fig. 4.12, where use of the minterm code table in 
Fig. 4.1 is implied and where A is the MSB and D is the LSB. Here, both two-variable axes 
have logic coordinates that are unfolded in Gray code order so that all juxtaposed minterms 
(those separated by any single domain boundary) are logically adjacent. Notice that each 
cell in the K-maps of Fig. 4.12 has a number assigned to it that is the decimal equivalent 
of the binary coordinates for that cell (read in the order ABeD), and that each cell has four 
other cells that are logically adjacent to it. For example, cell 5 has cells 1, 4, 7, and 13 
logically adjacent to it. 

Just as a third-order K-map forms an imaginary cylinder about its single variable axis, 
a fourth-order K-map whose axes are laid out in Gray code will form an imaginary toroid 
(doughnut-shaped figure), the result of trying to form two cylinders about perpendicular 
axes. Thus, cells (0, 8) and (8, 10) and (1, 9) are examples oflogically adjacent pairs, while 
cells (0. 2, 8, 10) and (0, ].4,5) and (3, 7, 11, 15) are examples of logically adjacent groups 
of four. 

To illustrate the application of fourth-order K-maps, consider the reduced SOP function 

F(A, B, C, D) = ACD + CD + ABCD + BCD + ABCD (4.19) 

and its K-map representation in Fig. 4.13a. By grouping logically adjacent minterms as in 
Fig. 4.13b, a minimum SOP result is found to be 

(4.20) 

Notice that the original function in Eq. (4.19) requires six gates, whereas the minimum 
result in Eq. (4.20) requires only four gates. In both cases the gate count includes the final 
ORing operation of the p-terms. The minimum POS cover for function F is obtained by 
grouping the logically adjacent O's as in Fig. 4.13c, giving 

Fpos = (B + C + D)(A + B + C)(B + C + D), (4.21) 
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which is sayi ng "alJ that is NOT (BtD + ABC + BCD)" as indicated in Fig. 4.13c . The gate 
tally for Eq. (4.21) is four. including the final ANDing of s-tenns, which is less than the 
original function in Eq. (4. 19). Canonical mintenn and maxterm representations are easily 
detennined by reading the 1 's and D's in the K-maps of Fig. 4.13 to give 

F= Lm(O, 1.2,5, 6.7 ,8,9, 10, 13) 

= n M(3 , 4, II , 12, 14 , 15). 

4.4 KARNAUGH MAP FUNCTION MINIMIZATION 

(4.22) 

Use of the K-map offers a simple and reliable method of minimizing (or at least greatly 
reducing) logic expressions. In fact. this is the most important application of K-maps. In 

All that 
IS ABC 
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Section 4.3, simple examples serve to demonstrate how K-maps can be used to extract both 
canonical and minimum SOP and pas forms depending on whether 1 's or O's are read. 
Now it is necessary to present certain important information that was not explicitly stated 
earlier, but was implied. 

It should be clear from Section 4.3 that each line or edge of a K-map forms the boundary 
between two complementary domains. As a result, minterms or maxterms that are separated 
by a line or edge are logically adjacent and can be combined to form a reduced function. 
The following rule generalizes this point: 

Reduction Rule 

Each variable domain boundary crossed in an adjacent group (looping) requires the 
absence of that variable in the reduced term. 

Thus, a pair of logically adjacent minterms or max terms crosses one domain boundary and 
eliminates the domain variable in the reduced term; a grouping offour logically adjacencies 
crosses two domain boundaries and eliminates the two domain variables in the reduced 
function. In this way 2" logic adjacencies (n = 1,2,3, ... ) can be extracted (looped out) 
to produce a reduced (N - n)-variable term of an N -variable function. 

To help ensure a minimized result from K-map extraction, thereby avoiding possible 
costly redundancies, the following loop-out protocol is recommended but not required: 

Loop-out Protocol 

Loop out the largest 2" group of logically adjacent minterms or maxterms in the order 
of increasing n = 0, 1, 2, 3, .... 

When following this protocol, single isolated minterms or maxterms (monads), if present, 
should be looped out first. This should be followed by looping out groups of any two logicall y 
adjacent minterms or maxterms (dyads or duads) that cannot be looped out in any other 
way. The process continues with groups of four logic adjacencies (quads), then groups of 
eight (octads), etc. - always in groups of 2" logic adjacencies. 

As an example of the pitfalls that can result from failure to follow the loop-out protocol, 
consider the function represented in the K-map of Fig. 4.14. Instinctively, one may be 
tempted to loop out the quad (dashed loop) because it is so conspicuous. However, to do 
so creates a redundancy, since all minterms of that grouping are covered by the four dyads 
shown by the shaded loops. 

Since K-maps are minterm-code based, minimum pas cover can be extracted directly, 
avoiding the "NOT" step indicated in Figs. 4.8,4.10,4.11, and 4.13, by using the following 
procedure: 

Simplified POS Extraction Procedure 

Take the union (ORing) of the complemented domains in which the 2" groups of 
logically adjacent maxterms exist. 

Groups of minterms or maxterms other than 2" groups (e.g., groups of three, five, six, 
and seven) are forbidden since such groups are not continuously adjacent. Examples of such 
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fiGURE 4.14 
Minimum cover (shaded) by using the loop-olll protocol avoids thl;: redundant quad (dashed lvop). 

forbidden groups arc presented in Fig. 4.15. which has been "crossed out" to indicate that 
such groupings are 110t allowed. 

4.4.1 bamples of Function Minimization 

Just as canonical fonm can be read from a K-map in two ways (SOP and POS). so also can 
a function be read from a K-map in either minimum SOP fonn or minimum POS form. To 
illustrate, consider the function 

G(A, X, Y) = Lm(O, 3, 5, 7). (4.23) 

which is mapped and minimized in Fig. 4.16. Noting that the I's arc looped oul as two 
dyads and a monad as are the O's, there results 

Gsop=AXY+XY+AY (minimum SOP cover) 

, 
, 
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, 

fiGURE 4.15 
Examples of forbidden (11On-2") groupings of mintenns and maxtenns. 
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FI GURE 4.16 
K.maps fOf Eq. (4.23). (3) Minimum SOP cover. (b) Minimum POS co\·er. 

CPQS = (A + X + h(X + Y)(A + Y) (minimum POS covcr). 

Application of the laws of Boolean algebra shows that the SOP and POS minima are aJge· 
braicallyequal: 

(A +X + Y)(X + y)(A + n=(A + X + Y)(AX +XY +AY + y) 

=(A + X + hUlx + y) 

=AXY+XY+AY. 

A!o> a second example. consider the reduced function given in POS form: 

YCA . B, C, D) = (A +B+D)(B+ (')(A + C+D)(..1 + B+ C + 0 ). (4.24) 

To map this function. one simply maps the O's in maxlenn code. as indicated in Fig. 4.17a. 
The representation in Fig. 4.173 is not minimum. However. afler the maxtenns are re· 
grouped. a minimum POS representation is shown in Fig. 4.17b. Notice thai the dyad 
M(S. 13) crosses the A boundary. pennitting (AA + iJ + C + D) = (8 + C + D) as the re· 
duced Neon. Similarly. the quad M (2. 3. 6, 7) crosses the Band D boundaries to yield 
(1\ +BB +t + DD =(A + C). Also. the quad M(2. 3. to. I I) crosses theA and 0 bound· 
aries. eliminating these variables to give (B + C) as the reduced s·term. 

The minimum SOP cover for the funcl ion )' of Eq. (4.24) is shown in Fig. 4.17c and 
consists of one dyad and two quads. The dyad m( 14. (5) crosses the D boundary. permitting 
ABC(D+ D)=ABC. while the quad m(O. 4. 8. (2) crosses theA and B Ixlundaries. yielding 
(A +.4)( 8 + iJ)CD = CD. Likewise. the quad 111(0, 1.8.9) crosses theA and D boundaries 
10 give ile as the reduced p--Ienn. The minimized results that are extracted from Figs. 4.17b 
and 4. 17c are now presented as 

Y"os = (8 + C + D)(A + C)(8 + C) Minimum POS cover 

and 

Ysop =ABC+ CD + Be, Minimum SOP cover 
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(a) K-map representing the cover as gh'cll by Eq. (4.24). (b) MlIlimum POS cover. (c) Minimum SOP 
cover. 

which are shown to be algebraically equal if o ne carries oul the required algebraic manip
ulalions. 

4.4.2 Prime Implicants 

Groups of2" minlcnns or maxlenns thai cannot be combined with ()(her 2" groups in any 
way 10 produce terms of fewer variables arc called prime implicl1nts (Pis). TIle loop-out 
protocol described in lhe previous seclion offers a procedure for achieving minimum cover 
by systematically extracting Pis in the oroerofincreasing n(1I =0. 1.2,3 . .. ). But the task 
of achieving minimum cover following the loop-out protocol (or any procedure for that 
maner) is not quite as straightforward as o ne might believe. Difficulties can arise when 
optional and redundant groupings of adjacent mintenns or maxtcnns are prescnt. To deal 

(B+C) 

(Me) 
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with these problems, it will be helpful to idemify the following three subsets of Pis: 

• Essential Prime Imp/jeants (EPls): Single-way Pis that must be used to achieve 
minimum cover 

• Optional Prime Implicams (OPIs): Optional-way Pis that are used for alterna
tive minimum cover 

• Redundant Prime Implicanrs (RPIs): Superfluous Pis that cannot be used if mi
nimum cover is to result. 
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Any grouping of 2n adjacencies is an implicant, including a single minteml or maxtenn. 
but it may nO[ be a PI. For exa.mple, a solitary quad EPI cOnlains eight RPIs. four monads. 
and four rlyads. none of which are PIs. 

To iIluSirate a simple mapping problem with oplional coverage, consider the function 

Z(A , B , C, D) ~ L m(2, 4, 6, 8, 9, 10, II. 15), (4,25) 

which is mapped in Fig. 4.18a. Noting first the minterm adjacencies that fonn the three 
rlyarls (no monads exisl) and the single quad, there results the SOP minimum expression 

- - jActJl _ Z.IOP=ACD+ABD+ BCD +AB, (4.26) 

which has three EPr p·terms (two dyads and one quarl), and two OPI dyads indicated in 
braces. The mintenn m 2 can be covered in two ways to fonn the OPf dyads m(2. 6) and 
m(2. 10) shown with dashed loops in Fi g. 4. 18a. Remember that when one OPI is selected 
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FIGURE 4.18 
K-maps showing EPl s and OPIs for the function Z in Eq. (4.25). (a) SOP minimum cover. (b) PQS 
minimum cover. 
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to be an EPI, the other OPI becomes redundant (an RPI). In similar fashion a minimum 
pas cover is extracted as shown in Fig. 4.18b, giving the result 

ZPOs = (A + B + C)(B + C + D)(A + B + D) _ _ (A + D), 
_ _ _ _ I (A + B + C) ) -

(B + C +D) 
(4.27) 

which is seen to have four dyads (including one of two OPIs) and one quad. The maxterm 
M13 can be looped out in two ways (dashed loops in Fig. 4.18b) to form the OPI dyads 
M(l2, 13) and M(5, 13) represented by the bracketed s-terms in Eq. (4.27). 

4.4.3 Incompletely Specified Functions: Don't Cares 

In the design of logic circuits nonessential minterms or maxterms may be introduced so as 
to simplify the circuit. Such nonessential minterms or maxterms are called don't cares and 
are represented by the symbol 

¢ = MiniMax = don't care. 

Thus, the don't care can be taken as logic 0 or logic 1, take your choice. The symbol ¢ can 
be thought of as a logic 0 with a logic 1 superimposed on it. 

Don't cares can arise under the following two conditions: 

• When certain combinations of input logic variables can never occur, the output 
functions for such combinations are nonessential and are assigned don't cares . 

• When all combinations of input logic variables occur but certain combinations 
of these variables are irrelevant, the output functions for such combinations are 
assigned don't cares. 

As an example of the second condition, the BCD number system discussed in Subsection 
2.4.1 has 10 4-bit binary patterns for decimal integers 0 through 9. Thus, there are six 4-bit 
patterns, representing decimal integers 10 through 15 that are never used - that is, we 
"don't care" about them. Accordingly, the don't care symbol ¢ can be assigned to any 
output generated by one of the six nonessential 4-bit patterns. This will be demonstrated in 
Subsection 6.5.2 for conversion from BCD to XS3 decimal codes. 

Consider the three-variable function 

Essential 
minterms 

Nonessential 
minferms 

(dOll '[ cares) 

(4.28) 

written in canonical SOP form showing essential minterms and nonessential min terms (don't 
cares). The K-maps representing minimum SOP and pas cover are shown in Figs. 4.19a 
and 4.19b, giving the results 

Fsop=AB + C 

FPOs = (A + C)(B + C). 
(4.29) 
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K-mllps for Eq, (4,28) showing EPIs containing don't cares_ (a) Minimum SOP cover. (b) Minimum 
POS cover, 

Notice that the don't cares rP2 and ¢~ arc purposely used differently to obtain the minimum 
SOP and POS expressions of Eqs. (4.29). The resull is thai the Fsop and Ff'OS expressions 
are algebraically equal since there is no shared use of don't cares between the two functions 
(¢5 = I and th = 0 in both cases), Thus, Fsop can be produced by algebraically manipu
lating FPOs. Had no use been made of the two don ' t cares in Fig, 4.19, the resuhs would be 
quite different, namely Fsop = ABC + AC + Be and FPOs = (A + B + C)(A + B + C), 
which are logically equivalent but not algebraically equal. 

As a second example consider the four-variable function given in canonical PQS form 
showing essential and nonessential maxterms: 

Y(A, B, C , D) = f1 M(O, 1,2,4,6, 9, 11, 15) , ¢(3 . 8,10. 12) . 
.. ~ 

E.,se,ui,,, ",,<.Ctam .• 
(d",, ·/catn) 

(4.30) 

In Fig. 4.20 the O's and rP's of Eq. (4.30) are mapped in maxterm code, and the mini
mum covers for Ypm and Y:sop are shown by the shaded loops in Figs. 4.20a and 4.20b, 
respectively. The resulting minimum POS and SOP expressions for Eq. (4.30) are 

YPOS = (.4. + C + D)(A + D)B 

Ysop =ABD + BCD + AD 
(4.311 

Again it is noted thai these expressiom are logically equivalent. However, they are alge
braically unequal because of the shared use of don' t cares (¢8 and ¢1U) in the loop-out 
process. NOIice also that Ysop contains OPTs BCD and ABC with ABD as an EPI. since 
mintcrm III 13 can be looped out in two ways (with 1115 or with rPI2). Similarly, OPIs ABD 
and ACD result if BCD is an EPt since minterm ttl ? can be looped out in two ways (with 
1//5 and with ¢3), No OPIs exist for YPOs. 

The Cate/lnput Tally I'S Cardinality of a Fundion Throughout this text use will be 
made of the ratio of the gate tally to the input tally (gare/inpm tally) a.<; a measure of function 
complexity in terms of hardware cost. Input tallies include both external and internal inputs 
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K-maps for Eq. (4.30) containing don't cares showing (a) minimum POS cover and (b) minimum 
SOP cover comaining OPIs for mintenns in cells 7 and 13 but not shown. 

(connections) to gates. Gate tallies are weighted more heavily than input tallies. Inverters 
can be included in the gate/input tally of a given function only if the activation levels of the 
inputs are known . Unless otherwise stated. the gateJinpm tallies will be given exclusive of 
inverters. An inverter is considered to be a gale with onc input. 

The number of p-terms or s-Ienns representing a function is called the cardinality of 
the funct ion. Thus, the cardinality of a cover represents the number of prime implicants of 
the function . and a minimum cardinality (or cover) consists only of EPls. When significant 
numbers of don't cares are present in a function , there may exist several alternative covers 
of minimum cardinal ity that may differ in gate/input tally. 

As an example of the use of the gate/input tally and cardinality, consider the minimized 
expressions in Eqs. (4.29). Here. Fsop has a gate/input taUy of 2/4, whereas the gate/input 
tally for Fpos is 3/6. both exclusi ve of inverters and both with a minimum cardinality of2. 
Thus. the SOP expression is the si mpler of the two. However, this may not always be true. 
Taking a gate and input count of Eqs. (4.31) reveals that the gate/i nput tally for Ypos is 3/8 
while that for Ysop is 4/ 11. again both exclusive of possible inverters. Thus. in this case, 
the POS expression is the simpler hardware-wise. but both expressions have a minimum 
cardinality of 3. Notice that a single variable EPt contributes to the cardinality count of the 
function but not to the gate tally. 

4.5 MULTIPLE OUTPUT OPTIMIZATION 

Frequently, logic system design problems require optimization of multiple output functions, 
all of which ~re functions of the same input variables. For complex systems this is generally 
regarded as a tedious task to accomplish witho:.u the aid of a computer, and for this reason 
computer programs have been written to obtain the optimum cover for multi output func tions 
of many variables. Examples of such computer programs arc discus~ed in Appendix B. I. 
In this secti on a simple approach to this process will be presented but limited (0 two or 
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FIGURE 4.21 
Block diagram for an Ir-inputlm -<>utput c()mbinational logic syStem. 

Ihree OUlputs. each OUIPUI being limi ted 10 four variables or less. Beyond these limitations. 
computer-aided optimization is recommended. 

Consider the n-input/m-output system illustrated by the block diagram in Fig. 4.2 1. 
Suppose the object is to minimize each of the m output functions in such a way as to 
make use of as many of the shared terms between them as possibk, thus optimizing the 
combinational logic of Ihis system. The recommended procedure is given in four sleps thai 
follow. 

Multiple-Output Minimization Procedure 

Slep 1. Obtain the canonical SOP or POS forms. If necessary, K-maps can be used 
for this purpose. 

Step 2. AND the canonical SOP forms or OR Ihe canonical POS fonns in some 
systenuuic way (for example. II ·12.12' I J, b . h ·· ·. or II + 12. h + Ii. 
h + f~ . ... ) and m;lp each ANDed or ORed c)(pression separately. looping out 
all shared Pi s (COmmo n Icnns). 

Minlerm ANDing rules: 

m,· ·mi= mi 

m;· m / =O (i"j) 

m, . <Pi = /II, (4.32) 

<p,' • 4>1 =q,; 

Maxtcrm DRing rules: 

M, +M, =M, 

M; + MJ = I (i #= j) 

M,' + r/>, = M, (4.33) 

~, +~i =~, 

M, +~, =~, + ~J = 1 (i" j) 
Step 3. Make a lable or the resu hs or step 2 giving all shllred Pis in literal foml. 
Step 4. From K~maps of the original fUllc tions. loop out the shared Pis given in 

step 3. then loop OUI Ihe remaining EPls fo ll(lwing the IOOp--ot.r l protocol with 
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one exception. If the adjacencies of the shared PIs are part of a larger 2n grouping 
of adjacencies, use the larger grouping, but only if it leads to simpler form. 

For simple systems the four-step procedure just given can be shortened considerably 
by simply comparing the K-maps of the functions. Often the adjacency patterns lead to an 
immediate recognition of the shared PIs that should be included for optimum cover. 

To illustrate the four-step procedure given previously, consider the system of three out
puts, each a function of three variables: 

{

fl(A' B, C) = L m(O, 3, 4, 5, 6)) 
h(A, B, C) = Lm(1, 2, 4, 6,.7) . 

h(A, B, C) = L m(l, 3,4,5,6) 

(4.34) 

Equations (4.34) satisfy step I of the multiple-output minimization procedure. Then, mov
ing on to step 2, the ANDed functions are given in Fig. 4.22, together with their respective 
K -maps and minimum cover. The minimum coverin each ANDed K -map indicates the com
mon terms that must be included in the optimized expressions for the three-output system. 

The table of shared PIs for each of the ANDed forms and the appropriate transfer of these 
shared PIs into the K-maps of the original functions are given in Fig. 4.23, in agreement 
with steps 3 and 4 of the multiple-output minimization procedure. Notice that the dyad 
AC is common to all three ANDed functions, as is evident from the ANDed function 
fl . 12 . 13 = m( 4,6) indicated in the table of shared PIs of Fig. 4.23. 

By looping out the shared PIs first in Fig. 4.23 followed by the remaining EPIs, there 
result the optimal expressions 

I fl =ABC +AC +AB + BC ) 
h=ABC+AC+AB+BC . 
13 =ABC+ABC+AC +AB 

(4.35) 

Notice that the dyad m(1, 3) in the 13 K-map is avoided, hence also an individual minimum 
for 13, so that the expression for 13 can be completely generated from the terms in fl and 
12, the optimal solution. The optimum gate/input tally is 10/28 for this system of three 
outputs, each output having a cardinality of 4. 
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fiGURE 4.23 
Tabl\! of shared Pis and the K.maps fur the functions /1. 12, and J.h showing optimal rollcr for the 
three-output ~ys tcm of Eqs. (4.34). 

As a second example. consider the output funt:tions for the four-inputJtwo-output logic 
system represented by Eqs. (4.36) and by the block diagram in Fig. 4.24. It is required that 
this system be optimized with respect to both PO$ cover lind SOP cOllcr following the four
step multiple output minimization procedure and that the results be compared to detennine 
wbich. if e itber. is the more optimum. The optimized system is to be implemented with 
either NOR/INV logic or NANDflNV logic. 

j,(A. B, C. 0) ~ n M(1.2, 3. 4, 5, 9. 10)· ¢(6. I I. 13) 

= Lm(O. 7, 8, 12. 14. 15) + 1P(6, I I. 13) 

h(A. B , C, D) = n M (2. 5, 9. 10. 11 , 15)· 41(3, 4,13 , 14) 

= Lm(O, 1, 6. 7.8 . 12)+1P(3.4. 13, 14) 

Opfimized POS Cover. ORing of the canonical fOnTIS of Eqs. (4.36) yields 

t, + h ~ n M(2 . 3. 4, 5. 9.10. 11 )· ¢(IJ). 

(4.36) 

where use has been made of the ORing rules given by Eqs. (4.33) at the beginning of thi s 

fiGURE 4.24 
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and shared PIs for (/1 + i2J. (h) K.maps showing optimal POS cover for functions /1 and /1 . 

section. Figure 4.25a gives the K·map and table of shared Henn PIs for II + h The final 
step involves looping out the individual functions by following the loop-out protocol in 
such a manner as to incorporate as many shared Pis as nect:ssary to achieve optimum cover 
for the two output ... Reading the K-maps in Fig. 4.25b for /1 and b produces the results 

I
f, ~(A+~ + C)(8+ ~X~ + ~) I . 
/l ~(A + 8 + C)(8 + CXA + D ) 

(4.37) 

which yields a combined gate/input tally of 6/ 15 exclusive of possible inverters. Notice 
that the shared PI dyad (A + C + V) is covered by the quads (C + D) and (.4 + D) in 
the expressions for 11 and /2. respectively. Thus. the optimum coverage for both 11 and 
h is. in this ca.;e, that of the individual minimum forms. This is not usually the case. as 
is demonstrated next for the optimum SOP resul ts. Note that if strict use had been made 
of all the shared Pi s in the table of Fig. 4.25a together willi a required dyad for each 
output, the combined gate/input tally would become 7/ 22. significantly greater than that of 
Eqs. (4.37). 
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Multiomput SOP optimization for the system tCpreseflled by Eq);. (4.:16) :and Fig. 4.24. (a) K-map 
and shared PIs for /1 . b. (b) K-maps showing optimal SOP cover for functions /. and /!. 

Optimi;.ed sOP Cover. At·ming the canonical SOP forms of Eqs. (4.36) by using the 
ANDing rules given by Eqs. (4.32) produces 

j, . h = Lm(O. 6. 7. 8, 12. 14)+ .(131. 

The K-map fOl f, ·12 and the table of shared p-Ienn PIs is given in Fig. 4.26a. The K-maps 
in Fig. 4.26b show the optimized cover for the two-fu nction system. The results are 

lfl =~BC + ~~~ +~~ \ . 
/2= ABC + ABC+CD 

(4.38) 

which represent a combined gate/input tally of 7/19 making usc of only one of the three 
shared Pis . Here, shared PI dyads ABO and SeD are rejected in favor of quads AB and tD 
in the I. and h K-maps. respectively. Notice that (unction II is nOi an individual minimulIl. 
but combined with the individual minimum for funcfion h results in an optimized system. 
An individual minimum for function b is achieved by replacing the shared PI m(6, 7) with 
the quad m(6, 7. 14, 15) in Fig. 4.26b. When combined with the individual minimum for 
funct ion /1, there resul ts a gale/input tally of 8/2 1. which is not optimal. Also. nOle th:tt 
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FIGURE 4.27 
NORfINV logic circuit for the optimized POS system of Fig. 4.25. 

making use of all shared PIs in the table of Fig. 4.26a together with the required additional 
p-term cover yields a combined gate/input tally of 7/22. 

Comparing the POS and SOP results with optimum system covers of cardinality 4 and 
5, respectively, it is clear that the POS result is the more optimum (gate/input tally of 
6/15 or 10/19 including inverters). Shown in Fig. 4.27 is the optimal NORIINV logic 
implementation of the POS results given by Eqs. (4.37). 

The simple search method used here to obtain optimum results becomes quite tedious 
when applied to multiple output systems more complicated than those just described. For 
example, a four-inputlfour-output SOP optimization problem would require at least 10 
ANDed fourth-order K-maps, including one for each of six ANDed pairs. For systems this 
large and larger it is recommended that a computer optimization program (Appendix B) be 
used, particularly if a guaranteed optimum cover is sought. Optimum cover, as used here, 
means the least number of gates required for implementation of the multiple output system. 
Obviously, the number of inverters required and fan-in considerations must also be taken 
into account when appraising the total hardware cost. 

4.6 ENTERED VARIABLE K-MAP MINIMIZATION 

Conspicuously absent in the foregoing discussions on K-map function minimization is the 
treatment of function minimization in K -maps oflesser order than the number of variables of 
the function. An example of this would be the function reduction of five or more variables in 
a fourth-order K-map. In this section these problems are discussed by the subject of entered 
variable (EV) mapping. which is a "logical" and very useful extension of the conventional 
(l's and O's) mapping methods developed previously. 

Properly used, EV K-maps can significantly facilitate the function reduction process. 
But function reduction is not the only use to which EV K-maps can be put advantageously. 
Frequently, the specifications of a logic design problem lend themselves quite naturally 
to EV map representation from which useful information can be obtained directly. Many 
examples ofthis are provided in subsequent chapters. In fact, EV (entered variable) K-maps 
are the most common form of graphical representation used in this text. 

If N is the number of variables in the function, then map entered variables originate 
when a conventional Nth-order K-map is compressed into a K-map of order n < N with 
terms of (N n) variables entered into the appropriate cells of the nth-order K-map. Thus, 
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(a) Truth luble for function Y in Eq. (4.39) showing subfunclions for a tirs(-order map compression. 
(b), (c) Second and first-order EV K-maps showing submaps and minimum SOP cover c;macled in 
mintcnn code. 

each cell of the nth-order K -map becomes a submap of order (N - n). hence K-maps within 
K-maps. 

To illustrate. consider the three-variable function 

Y(A , B, C) = Lm(l , 3,4, 5, 6), (4.39) 

which has been placed in a truth table and mapped into a second-order EV K-map, as shown 
in Figs. 4.28a and 4.28b. The subfunclions indicated to the right of the truth table arc also 
represented as first-order submaps corresponding to (he cells 0, I. 2, and 3 in the EV K-map 
of Fig. 4.28b. The minimum cover is then obtained by looping out the cell entries. as shown 
by the shaded loops. giving the minimum resu ll 

( 4.4()) 

Notice that the tcrm At covers only the t in the I = C + t of cell 2. This requires that 
(he C in the 1 be covered by one of !.he two OPls, AS or Be. and the fanner is chosen. 

The same result can be obtained from a second-order compression if the expression of 
Eq . (4.39) is compressed into a first-order K-map. This is done in Fig. 4.28c, where B 
and C are now the EVs. The minimum cover is indicated by the shaded loops. yieldi ng 
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the exprcs~ion in Eq. (4.40). The OPI Be is not easily seen in the fil1it-order EV K-map. 
but can be found by observing the I's representing Be in the two submaps shown in 
Fig. 4.2&. 

MiJp Key It has already been pointed oul that each cell of the compressed nih-order 
K-map represenls a submap of order (N - II) fOf an N > n variable function. Thus. each 
submap covers 2N

-
n possible rninlerms or maxterms. This leads to the conclusion that any 

compressed nth-order K-map. representing a function of N :> n variables, has a Map Key 
defined hy 

Map Key = 2N-~ N:> n (4.41) 

The Map Key has the special propcny that when multiplied by a cell code number of 
the compressed nih-order K-map there results the code number of the first minterm or 
maxterm possible for that cell. Furthermore. the Map Key also gives the maximum number 
of mintenns or maxlcrms that can be represented by a given cetl of the compressed nth-order 
K-map. These facts rna)' be summarized as follows: 

Conventional K-map: Map Key = I (no EVs, I 's and D's only) 
first-order compression K-map: Map Key = 2 (one EV) 
Second-order compression K-map: Map Key = 4 (two EVs) 
Third-order compression K-map: Map Key = 8 (three EVs), etc. 

As an example. the first-order compressed K-map in Fig. 4.28b has a Map Key of 
2J - 2 = 2. So each of iLS cells represents two possible minterms (first-order submaps) begin
ning with minleml code number equal to (Map Key = 2) x (Cell Number). This is evident 
from an inspection ofthe truth table in Fig. 4.28a. Similarly. the second-order compression in 
Fig. 4.28c has a Map Keyof2l - 1 = 4. Therefore. each cell represents four possible minterms 
represented by the conventional second-order submaps shown to the sides of Fig. 4.28c. 

The compressed K-maps in Fig. 4.28 can aJso be read in maxtenn code as indicated by 
the shaded loops in Fig. 4.29. In this case the logic I in cell 2 must be excluded. The result 
for either the first -order or second-ordcr compressed K-maps is 

Y/'Os = (A + iJ + C)(A + C). (4.42) 

B 
, 

(M C) 

A 0 ~ (AI CI A 

0 C C 0 
0 

<[ .[ B.C-, 
y y 

IA, B. C) (A.B.C) 

FIGURE 4.29 
Second- and firsl-order EV K-maps showing minimum POS coverfot fUnC1ion Y u.lracled in Jl\iUlenn 
<ode. 
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vari:lble A showing minimum cover for Y as cXU'aCted in mintenn code. 

That Ypas in Eq. (4.40) and YSOf' in Eq. (4.42) are algebraically equal is made evident by 
carrying out the following Boolean manipulation: 

where the two p-tenns in brackets are OPls, thereby rendering one to be redundant 
In the second·order K-maps of Figs. 4.28 and 4.29. C is taken to be the EV, However, 

any of the three variables could have been chosen as the EV in the first-order compres
sion K-maps. As an example, variable A is the EV in Fig. 4.30. where the columns in 
the conventional K-map of (a) form the submaps of the cells in the compressed K-map 
of Fig. 4.30b. Minilnom cover extracted in minterm code then yields the same result as 
Eq. (4.40). Or. if extracted in max term code. Eq. (4.42) would result. Thus. one concludes 
that the choice of EVs in a compressed K-map does not affect the extracted minimum result. 

Reduced bul nOlllninimum functions can be easily compressed into EV K-maps. This is 
demonstrated by mapping the four-variab le function 

(4.43) 

inlO the third-order EV K-maps shown in Fig. 4.3 1. where the Map Key is 2. Here. Dis 
the EV and I = to + D). Figure 4.31a shows the p-terms (loops) exactly as presented in 
Eq. (4.43), However, regrouping of the logic adjacencies permits minimum SOP and POS 
cover to be exlmcled. This is done in Figs. 43 l b and 4.3 Ic. yielding 

Xsop=AD+AC+AB 

X/'os = (A + jj + D)(.4 + C). 
(4.44) 

where the expressions for X.~oP and X"os represent gate/input tallies of 4/9 and 3/7. res
pectively, excluding IXIssible inverters. 

The four-variable function X in Eq. (4.43) can also be minimized in a second-order EV 
K-map. Shown in Fig. 4.32 is the second-order compression and minimum SOP and POS 
cover for this fu nction, giving the same resul ts as in Eqs. (4.44). Notice thaI after covering 
the D in cell I of Fig. 4.32a. it is necessary to cover all that remains in cell 0 by looping 
out the I as an island to give AB. In thi s case the I has the value I = C + t = D + D. 
Clearly. the 1 in cell 0 cannol be used in extracting minimum cover in maxterm code. 
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4 .6.1 Incompletely Specified Functions 

The EV mapping method is further iIluslratcd by compre.<ising Ihe incompletely specified 
function 

I(A. B. C. D ) ~ Lm(3. 6. 9.10, 11)+ ¢(O. 1.4.7.8) (4.45) 
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FIGURE 4.32 
Second-order compressions of the function X showing (a) minimum SOP cover and (b) minimum 
POS cover. 
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imo the third-order K-map in Fig. 4.33a. a fi rst-order compression with a Map Key of 2. 
Here, the subfunctions arc presemed in their simplest fonn yet preserving alI canonical 
itlformation. In Figs. 4.33b and 4.33c are shown the minimum SOP and POS covers for this 
function, which produce the expressions 

tsar = BD + ABC + AS 

I"us = (A + B + D)(B + jj )(A + B), 
(4.46) 

bolh of which have a gale/input tally of 4/ 10. In extracting the minimum expressions of 
Eqs. (4.46). the loop-oul prOiocol is first applied to the entered variable D and then applied 
to the I 's or O·s. 

Some observations arc necessary with regard 10 Fig . 4.33 and Eqs. (4.46). First. these 
ex.pressions arc logically equivalent but are nul algebraically equal. The reason is that the 
don't cares ¢4 and ¢ 7 in cells 2 and 3 are used differcnl1y for the hop and fPO.~. For 
example. (dJ1 + D)sop = 1 for tP 7 = 1 but (¢ 7 + D)POs = D. since, in (his case, tP 7 = O. 
Second. the extraction process involved some techniques in dealing with ¢'s that have 
no1 been discussed heretofore. These techniques are set off for reference purposes by the 
following: 
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Remember: 

• Treat the don't care (¢) as an entered variable - which it is. 

• In simplifying incompletely specified subfunclions. apply the absorptive laws: 

X +¢X=X + I> 

X · (I> + Xl = I> X. 

• Subfunclions of the I,pc (41 + X ) have an essenliai SOP componcnI bUI no 
essenlial POS component. (Proved by substituting the sel to. I f for 41.) 

• Subfunclions of the type ¢X have an essential POS component but no essenlial 
SOP componcnI. (Proved by substituting the set {O. I} for rj).) 

Concluding this section is the function 

Z(A. B. C. 0)= n M (2, 4. 7.11. 12. 14, 15) 

= Lm(O, 1,3.5,6,8,9.10, 13), (4.47) 

which is represented by the second-order EV K-maps in Fig. 4.34, where C and 0 are Ihe 
EVs and the Map Key is 4. This example is interesting because of the XOR function in 
cell I, which must be represenled by both the SOP and POS defining relations, given in 
Eqs. (3.4), so as to extract minimum SOP and POS cover. To assist the reader in identifyi ng 
the subfunctions, second-order conventional submaps in C and D axes are shown for each 
cell . Thus, the subfunction for cell 0 is L 111(0, 1,3) == t + D, while that for cell 1 is 

8+C .. o 

A-B-o 

Secood-order EV K-maps and submaps for Eqs. (4.47) llhowing (a) minimum SOP cover and (b) 
minimum POS cover. 
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L m(5, 6) C €B D CD + CD = (C + D)(C + D). The minimum SOP and POS results 
are given by 

Zsop =ABCD + ABD + ABD + CD + BC 

Zpos = (A + B + C + D)(B + C + D)(B + C + D)(A + jj + D)(A + C + D). 
(4.48) 

From the results depicted in Fig. 4.34, certain conclusions are worth remembering and are 
set off by the following: 

• In minterm code, subfunctions of the type XY are subsets of forms of the type 
X+Y. 

• In maxterm code, subfunctions of the type X + Yare subsets of forms of the 
typeXY. 

What this means is that subfunctions of the type XY can be looped out from terms of the 
type X + Y to produce reduced SOP cover. For reduced POS cover, subfunctions of the 
type X + Y can be looped out from terms of the type XY (there are more D's in XY than in 
X + Y ). For example, in Fig. 4.34 CD is looped out of both C + D and C + D to contribute 
to minimum SOP cover. However, in Fig. 4.34b both C + D and C + D are looped out of 
CD, leaving C + D to be covered by A + jj + D. 

4.7 FUNCTION REDUCTION OF FIVE OR MORE VARIABLES 

Perhaps the most powerful application of the EY mapping method is the minimization or 
reduction of functions having five or more variables. However, beyond eight variables the 
EY method could become too tedious to be of value, given the computer methods available. 
The subject of computer-aided minimization tools is covered in Appendix B. 

Consider the function 

F(A, B, C, D, E) = L m(3, 11, 12, 19,24.25,26,27,28,30), (4.49) 

which is to be compressed into a fourth-order K-map. Shown in 4.35 is the first-order 
compression (Map Key = 2) and minimum SOP and POS cover for the five variable function 
in Eqs. (4.49). The minimized results are 

Fsop = BCDE + CDE + ABE + ABC 

Fpos = (A + D + E)(C + E)(B + E)(A + C + D)(B + D), 
(4.50) 

which have gate input tallies of 5/17 and 6/17, respectively. Thus, the SOP result is the sim
pler of the two. Also, since there are no don't cares involved, the two expressions are algebrai
cally equal. Thus, one expression can be derived from the other by Boolean manipulation. 

A more complex example is presented in Fig. 4.36, where the six-variable function 

Z(A, B, C, D, E, F) 

= Lm(O, 2, 4. 6, 8,10,12,14,16,20,23,32,34,36,38,40, 

42,44,45,46,49,51,53,54,55,57,59,60,61,62,63) (4.51) 
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is compressed into a founh-order K-map. a second-ordcrcompression (Map Key = 4). The 
minimum SOP and POS covcr is indicated by the shaded loops in Figs. 4 .363 and 4.36b 
and yield the following minimum expressions for function Z: 

ZS()P = BCV£F +ACEF + ACDE +ADEP +ABF + of 
2ms = (A +8 +E+ F)(A + E + P,eA + D +F)(A +0 + C + E + F) (4.52) 

.(A +B + D + F)(B + D+F)(B + E + fJ(B + C + F)(A+ B+ C). 
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Nolice that the SOP fonn of the equivalence (unction. E 0 F = EF + EF given by Eq. (3.5). 
is used in cell 5 (0 extract minimum cover in minteml code and that the POS fonn (£ + F) 
. ( E + F) is required for extraction of minimum cover in max lenn code. Note also that the 
loop-out protocol is applied first to the EVs and then to the l 's (in mintenn code) and O's 
(in maxterm code) as "clean-up" operations. This protocol procedure is recommended 10 

avoid possible redundancy. 
There are other K-map formalS that can be used to exlJ'act reduced or minimum cover 

for a given function. Consider again the six-variable funct ion given in Eq. (4.5 1). Presented 
in Fig. 4.37 is the AI BII CDIEF fonnat for the conventional ( I's and O's) mapping o f Ihis 
func tion where only minterm code extraction is considered. Observe that extraction of the 
EPls takes on a three-dimensional (3-0 ) character in a 2· 0 layoUl, which can be somewhat 
perplexing. 

As: a final example. the format of Fig. 4.37 is used to deal with the following incompletely 
specified function of eight variables: 

Z(o , b, C, d . e, f. S. T) = L m(l6, 18.20,22,24. 26. 28 .30. 48.50.52.54, 56,58.60, 
62. 98.99.102. 103. 106. 107. 110. 111. 160- 191. 
225-227. 229-23 1,233-235.237-239. 
24 1,243.245-247.248.250.252,254.255) 

+ ¢(0- 15. 32- 47 . 64- 79. 11 2-159. 192-207). (4.53) 
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FIGURE 4.40 
Submap for Cell 15 of Fig. 4.39 showing minimum slIbfllnction cover. 

Presented in Fig. 4.38 is the second-order compression of this function (Map Key = 4) by 
using the fonnat ajb llcdjef, where 5 and T are the EVs. The minimized result. as extracted 
from Fig. 4.38. is given by 

Zsop = cdeT+aceT+ac/S+ariT + Js + bi + ab, (4.54) 

where, for clarity's sake. only the loopings for the first three and sixth p-tenns are shown. 
Here again the p-tenns are given in the order determined by the loop-out protocol first for 
the EVs then for the l's as a "clean-up" operation. Note that the term ab covers all the l's 
and don't cares in cells 321hrough 47 of Fig. 4.38. but is not shown. 

Next. the function of Eq. (4.53) is compressed into the fourth-order K-map of Fig. 4 .39. 
a fourth-order compression (Map Key = 16). The same minimum result given by Eq. (4.54) 
is easily obtained from Fig. 4.39 as indicated by the shaded loopings and verified by Boozer. 
To understand the entry in Cell 15 of Fig. 4.39, a submap for this cell is provided in Fig. 4.40. 
The last line of essential minterms in Eq. (4.53) penains to Fig. 4.40. 

4.8 MINIMIZATION ALGORITHMS AND APPLICATION 

Tabular methods for function minimization have been devised that can be irnplemenled by 
a computer and can therefore be used to minimize functions having a large number of inpm 
variables. One such method has become known as the Qlline- McCllIskey (Q-M) algorithm. 
Typical of these melhods. the Q-M algorithm first finds the prime implicants (PIs) and then 
generates the minimum cover. Another imponanl minimization algorithm is a heuristic-type 
algorithm called Espresso. This section will provide a description of these two algorithms 
together with simple illustmtive applications. 

4.8.1 The Quine-McCluskey Algorithm 

To understand the Q-M algorithm, it is helpful to review the tabularfonnat and notation that 
is unique to it. In Fig. 4.41 is shown the Q-M notation that will be used in the two examples 
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ABeD 

o 0 1 0 

Decimal 

2 

Boundary line 

FIGURE 4.41 

Adjacent minterm 

~ 
code numbers 

r Positional weight of variable 
I removed (6 - 2 = 4 or B) 

,--"--. 

2, 6 (4) 0 -- 1 0 

\.- Dash indicates variable 
(B) removed 

Logically adjacent minterms in minterm 
code 

Quine-McCluskey (Q-M) notation for PI determination. 

that follow. Notice that the Q-M notation uses minterm code, minterm code numbers, and 
positional weights for PI determination. 

EXAMPLE 1 Consider the minimization of the incompletely specified function 

YeA, B, C, D) = Lm(O, 1,4,6,8,14,15) + ¢(2, 3, 9). (4.55) 

In the Q-M algorithm the ¢'s are treated as essential minterms, and minterm sets k are 
compared with sets (k + 1) in a linear and exhaustive manner. The first step in the application 
of the Q-M algorithm is presented in Fig. 4.42. Here, a check mark (.J) indicates that an 
implicant is covered by a PI in the column to the right and, therefore, cannot itself be a PI. 
Thus, unchecked terms in columns 4 and 6 are the indicated PIs and those that are lined out 
are redundant. 

The second step in the application of the Q-M method is the identification of the essential 
prime implicants (EPIs). Presented in Fig. 4.43 is a table of the PIs (taken from Fig. 4.42) 
vs the essential minterms in Eq. (4.55). The check mark (.J) within the table indicates that 
a given minterm is covered by a PI. The EPIs are selected from a minimum set of PIs that 
cover all of the essential minterms of the function Y in Eq. (4.55) and are presented in 
Eq. (4.56): 

(4.56) 

This result can be easily verified by the conventional K-map extraction method described 
in Section 4.4. 

EXAMPLE 2 In this example a minimum POS result is required for the incompletely 
specified function 

F(W, X, Y, Z) = Lm(O, 1,4,5,11,12,13,14,15) + ¢(2, 7, 9) 

= n M(3, 6, 8,10)· ¢(2, 7, 9). 

(4.57) 

(4.58) 
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No. of 
D. 

o { 0000 0 0,1 (1) ABC -- " 0,1,2,3 A B ---- o 0 -- --

0001 0,2 (2) A B -- D " 0,1,8,9 Be -- -- 0 0 --
- --

0010 2 0,4 (4) A -- C D " 6,2,1,3 AS 
- -

" 0100 4 0,8 -- BCD 0,2,4,6 A -- -- 0 o -- -- 0 

1000 8 1,3 (2) A B -- 0 " 0,4,2,6 A .... D 

2{ 
0011 3 1,9 (8) -- BCD " 0,8,1,9 _. S C --

0110 6 2,3 (1) ABC -- " 
1001 9 2,6 (4) A·- C 0 " 3 { 1110 14 4,6 (2) A B _. 0 " 4 { 1111 15 8,9 ABC _. " -

6,14 (8) •• BCD 6,14 .• BCD 

14,15 (1) ABC •• 14,15 ABC •• 

" Indicates that an implicant is cOllered by a Prime Implicant in the columns to the right. 

FIGURE 4.42 
Detennination of PIs for the l's in the function Y of Eg. (4.55). 

To do this. the O's of Eq. (4.58) will be treated as l's, as required by the Q-M algorithm, 
to yield Fpos in minimum SOP form. Then, application of DeMorgan's law, given by 
Eqs. (3.15), yields the results F pos Fpos by involution. Here, the </>'s in Eq. (4.58) are 
treated as essential minterms, not as nonessential maxterms. Shown in Fig. 4.44 is the tabu
lar determination of PIs for the D's, treated as 1 's, in the maxterm form of function F given 
by Eq. (4.58). 

The final step is to tabulate the PIs of Fig. 4.44 with the maxterms (now treated as 
minterms) in Eq. (4.58) to obtain the EPIs for the function F pos. This is done in Fig. 4.45. 

0 1 4 

Pis 

0,1,2,3 .f .f 

0,1,8,9 .f .f 

0,2,4,6 " .f 

6,14 

14,15 

FIGURE 4.43 

6 8 14 

.f 

.f 

.f .f 

.f 

15 

.f 

Essential Pis 

-- --8e Be 
__ A···· D = AD 

--ABC =ABC 

Table of PIs (from Fig. 4.42) vs minterms for the function Y of Eg. (4.55) showing the resulting EPIs. 
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tilL. 
oIl's 

1{ 0010 2 2,3 (1) W X y-- I 2,3,6,7 W Y --

1000 6 2,6 (4) w -- y z I 2,6,3,7 ',/.,J n y .... 

,I 0011 3 2,10 (8) -- X Y Z I 2,10 -- X Y Z 

0110 6 8,9 (1) W X y-- I 8,9 W X y--

1001 9 8,10 (2) w X -- z I 8,10 WX Z 

1010 10 3,7 (4) W -- Y Z I 

3{ 0111 7 6,7 (1) W Xy-- I 

I Indicates thai an implicanl is covered by a Prime Implicanl in the columns 10 the right. 

FIGURE 4.44 
Tabular determination ofPl:; for the O's (treated as l's) in function F ofEq. (4.58). 

giving the final results 

Fpos=Wy+ wit 
Fpos FPOs = (W + Y)(W + X + Z). (4.59) 

Notice that the PI (2, 3,6,7) is the EPI WYand that the remaining maxterms (treated as 
minterms) are covered by the PI (8,10), the minimum set of PIs covering all minterms. 

Had the Q-M algorithm been applied to Eq. (4.57), the minimum SOP result would be 

Fsop = WY + wx + WZ, (4.60) 

which is algebraically equal to the POS result of Eq. (4.59). The reason for this is that the 
application of the Q-M algorithm uses the three t/J's in the same way for the two cases, 
a feature of the Q-M method. As a general rule, this is rarely the case for SOP and POS 
minimized forms of incompletely specified functions obtained by other methods. 

3 6 8 10 Essential Pis 

Pis 

2,3,6,7 I I ---+ w -- y.- = w y 

2,10 I 

8,9 I 

6,10 I I ---+ w X _. Z = W X Z 

FIGURE 4.45 
Table of PIs (from Fig. 4.44) vs maxterms treated as minterms for function F of Eq. (4.58) showing 
the essential PIs. 
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4.8.2 Cube Representation and Function Reduction 

The cube notation is commonly used in CAD programs and, in fact, is the notation that is 
used in the computer implementation of the Q-M algorithm described in Subsection 4.8.1. 
In this notation an n-dimensional cube has 211 vertices formed by the intersection of n 
dimensional lines. Most commonly one thinks of a cube as three-dimensional (a 3-cube) 
having 23 = 8 vertices. But the concept is much more general, extending to n dimensions 
that generally cannot be easily visualized by a geometrical figure. 

Cube representation is usually based on minterm code. Thus, the minterms of a switching 
function can be mapped onto the 2/1 vertices of an n-dimensional cube such that each pair 
of adjacent vertices differ by exactly one bit position. As an example, consider implicants 
(2,3) and (6, 7) listed in the Q-M example of Fig. 4.44. In minterm code cube notation, these 
implicants would be represented as (0010, 0011) and (0110, 0 Ill), respectively. Reduction 
of these implicants to PI (r-cube) form occurs between adjacencies (adjacent vertices) as 
follows: 

0010 + 0011 = 001- = WXY and 0110 + 0111 = 011- = WXY 

or, finally, 

(001-) + (011-) = 0 - 1- = WY, 

where 0 represents the complemented variable, 1 is the un complemented variable, and the 
"-" symbol represents an irrelevant input variable (representing both 1 and 0). Thus, in gen
eral, an r-cube of an n-variable function is produced by combining 2r adjacent minterms, 
thereby eliminating r variables in a function reduction process. 

4.8.3 Qualitative Description of the Espresso Algorithm 

The two-level minimization algorithm called Espresso belongs to a class of minimization 
algorithms that use heuristic logic methods as opposed to the linear exhaustive PI search 
of the Q-M method. In effect, all heuristic methods group, expand and regroup adjacent 
minterms over a number of iterations until an optimal or near-optimal grouping, called the 
irredundant set, is found. The exact strategies used and the order in which they are used 
depends on the particular algorithm. 

Though a detailed description of the Espresso algorithm is beyond the scope of this text, 
the principal steps involved can be qualitatively understood by the K-maps in Fig. 4.46. Here, 
the four basic steps of the Espresso algorithm are represented by four fourth-order K-maps 
labeled ORIGINAL, REDUCE, EXPAND and IRREDUNDANT. The ORIGINAL function, 
plotted in Figure 4.46a, is the graphical equivalent to the PI table of the Q-M method since 
it represents the largest number of prime implicants, that is, six PIs. The original function 
is then regrouped to form a smaller (REDUCED) number of prime implicants (four PIs) 
in Fig. 4.46b and then EXPANDED (RESHAPED) to form four PIs by eliminating two 
PIs. Notice that the cardinality is preserved in the REDUCE-to-EXPAND step. Finally, an 
IRREDUNDANT set is found by regrouping and eliminating yet another PI, resulting in only 
three EPIs. This irredundant set is said to have minimum cardinality, that is, minimum cover. 

The Espresso algorithm just described qualitatively is usually called Espresso-II. Since its 
inception, various improvements have been made, adding to the speed and multiple-output 
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capability. These improved Espresso algorithms include the two referred to as Espresso
EXACT and Espresso-MV. A detailed description of these and other closely related algo
rithms can be found in references cited al the end of this chapter. 

4.9 FACTORIZATION, RESUBSTITUTlON, AND DECOMPOSITION METHODS 

Beyond Ihe SOPor POS minimum result. it is possible to further reduce the gatelinpUilally. 
reduce the number of inverters. and reduce the gate fan-in requirements for some functions 
by using a technique caUed factoring or factori zation. The results of factorization lead 10 
muflilevel forms that are hybrid.~, since they cannOI be classified as either purely SOP or 
POS. A multilevel logic realization of a function is one involving more than two levels of 
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gate path delay excluding possible inverters. The logic circuits considered to this point are 
classified as two-level. 

4.9.1 Factorization 

The method of factorization is illustrated by using a simple example. Consider the minimum 
SOP function 

F = ABC + AD + BD + CD, (4.61) 

which requires a gate/input tally of 5/13 excluding inverters. This requires four ANDing 
operations with a maximum of three inputs per gate, and one ORing operation requiring four 
inputs. Also, if it is assumed that the inputs arrive active high, two inverters are required, 
bringing the total gate/input tally to 7/15. Now suppose that it is desirable to limit the 
fan-in to a maximum of three inputs per gate and to eliminate the need to use inverters in 
generating the complements of Band C variables. This can be accomplished by factorization 
of Eq. (4.61) in the following manner: 

F = ABC + AD + BD + CD 

AB(B + C) + AD + (B + C)D 

= AB(BC) + AD + (BC)D. (4.62) 

The term ABC is factored as ABC = AB(B + C). Notice that if the function ofEq. (4.62) is 
implemented as a NAND circuit, a gate/input tally of 5/12 would result with a maximum 
fan-in of 3 with no inverters. 

An interesting feature of the factorization method is that there is usually more than one 
way in which to factor a given function. So it is with Eq. (4.61), which can be factored as a 
three-level hybrid form in the following alternative way: 

F =ABC +AD +BD+ CD 

= ABC + D(A + B + C). 

[f implemented with NAND gates, the gate/input becomes 411 0 plus two inverters, assuming 
that the inputs arrive active high. 

The factorization method can be extended to multioutput systems of the type considered 
in Section 4.5. The process is illustrated by the following simple example where three 
optimized functions are factored as indicated: 

fl + AC + AB = A(B + C) + AB = A(BC) + AB 

h =ABC + BC + AB = B(A + C) + AB B(AC) + AB (4.63) 

h BC + ABC + BC = C(B + C) + B(A + C) C(BC) + B(AC). 

Here, terms in expressions for h and h are factored as ABC + BC B(AC + C) = 
B(A + C) B(AC) and BC = C(B + C) = C(BC). With NAND logic and assuming the 
inputs arrive active high, the total gate/input tally for the factored expressions is 12/20, 
including one inverter, with fan-in requirements of two inputs per gate. In comparison, the 
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original optimized SOP expressions require a gate/input tally of 14/30, including three 
inverters, and have a maximum fan-in requirement of 3. 

The factorized expressions of Eqs. (4.63) are three-level functions, whereas the original 
SOP expressions are two-level. This brings up other aspects of the optimization problem, 
namely the design area (real estate usage) vs delay (performance), as discussed in Section 
4.10. 

4.9.2 Resubstitution Method 

The Boolean resubstitution method possesses a close resemblance to polynomial division 
and works to generate multilevel functions that have improved fan-in (hence improved area) 
requirements. The process of resubstitution begins by finding a good, if not optimal, divisor 
P in the expression 

F PQ+R, (4.64) 

where F is the dividend, Q is the quotient, and R is the remainder. Heuristic algorithms 
exist that can accomplish this, but they are complex and fall outside the scope of this text. 
However, an attempt will be made to illustrate the resubstitution method with a simple 
example. Consider the minimized SOP five-variable function 

F = ABE +ABCD + CDE +ACE +ABCD +ABE+ CDE. (4.65) 

Noting the appearance of AB, AB, CD, CD, E, andE in six of the seven p-terms, the divisor 
is chosen to be P = AB + CD + E. The process continues by repeating three steps for each 
of the seven p-terms: 

Step 1. Select term ABE. 
Step 2. AND (Boolean multiply) ABE· P =ABE +ABCDE + ABEE = ABE. 
Step 3. Delete AB in ABE· P to yield term E . P. 
Step 1. Select term ABCD. 
Step 2. A."l'D ABCD . P = ABCD + ABCDE = ABCD. 
Step 3. Delete AB in ABCD . P to yield term CD . P. 

Repeat Steps 1,2, and 3 for the remaining five terms in the order given by Eq. (4.65): 

CDE· P ABCDE + CDE = CDE. Delete CD in CDE· P to yield E· P. 
ACE· P O. Thus. no literals can be deleted inACE· P. 
ABCD· P ABCD +ABCDE = ABCD. Delete CD inABCD. P yieldAB . P. 
ABE· P ABCDE + ABE = ABE. Delete E in ABE· P to yield AB . P. 
CDE· P = ABCDE + CDE = CDE. Delete E in CDE . P to yield CD . P. 

In the preceding set of steps it should be observed that the only literals that can be deleted 
are those that appear as p-terms in the divisor P. Also, it should be noted that the choice 
of divisor P is somewhat arbitrary, since there are other combination of terms that can be 
used in the resubstitution process. 

The final results of resubstitution are expressed by the partition 

F =ABP + CDP+ EP +ACE 

=PQ+R, (4.66) 
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FIGURE 4.47 
NANDINORJINV realization of the partitioned function given by Eq. (4.66). 

where P = AB + CD + E, Q = AB + CD + E and R = ACE. Function F, expressed by 
Eqs. (4.66), represents four levels of path delay, as shown implemented by NANDINOR!INV 
logic in Fig. 4.47 where it is assumed that all inputs arrive active high. Notice that the 
gate/input tally is now 11/25, including three inverters, and that only one gate has a fan-in 
of 4. If a fan-in limitation of 4 is also applied to the original two-level SOP expression in 
Eq. (4.65), a three-level circuit results having a gate/input tally of 14/35, including five 
inverters, and four gates with a fan-in of 4. Thus, the partitioned function of Fig. 4.47 has 
an improved design area factor but not necessarily an improved performance. A discussion 
of the design area vs performance factors is given in Section 4.10. 

The resubstitution method just described bears similarity to portions of some heuristic 
two-level minimization algorithms such as Espresso II, qualitatively described in Subsection 
4.8.3. In particular, the introduction of a new literal, divisor term P in step 2 and the subse
quent deletion of literals in step 3 of resubstitution is a generalization of the REDUCE and 
EXPAND processes in Espresso II. In these processes, Espresso seeks to add literals existing 
in one product term of the original expression to other candidate terms so that implicants 
covered by a given expanded implicant can be deleted. Thus, by repeated introduction of 
divisor P followed by deletions of redundant terms, the resubstitution process seeks a more 
optimum result, not unlike the heuristic processes in Espresso. 

4.9.3 Decomposition by Using Shannon's Expansion Theorem 

Shannon's expansion theorem states that any Boolean function ofn variables !(Xn-l, ... X2, 

Xl, Xo) can be decomposed into the SOP form 

+ XJ(Xn-l, ... , Xi+l, 1, Xi-I, ... ,X2, Xl, XO) 

= iJ~OP + Xi !SOP 
XI Xi 

(4.67) 
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or into its dual POS form 

. [Xi + !(Xn-I, ... , Xi+l, 0, Xi-I, ... , X2, XI, XO)] 

= [X. + !~oS] . [x- + !POS] 
1 Xi I Xi ' 

(4.68) 

where flOP and !x~OP are the cofactors for Xi and Xi in Eq. (4.67), and I{OS and 1{05 are 
the cofactors for Xi and Xi in Eq. (4.68). 

Proof of Eqs. (4.67) and (4.68) is easily obtained by setting Xi = I and then Xi = ° and 
observing that in each case the surviving cofactors are identical to the left side of the 
respective equation. For example, setting Xi = I in Eq. (4.67) leads to 

!(Xn-I, ... , Xi+l, I, Xi-I, ... ,X2, XI, XO) = !(XIl-I, ... , Xi+l, I, Xi-I, ... ,X2, XI, XO), 

since Xi = ° when Xi = I. 
Multiple applications of Eqs. (4.67) and (4.68) are possible. For example, if decompo

sition is carried out with respect to two variables, XI and Xo, Eq. (4.67) becomes 

!(Xn-I, ... , X2, XI, xo) = X IXO!(XIl-I, ... , X2, 0, 0) + X IXO!(XIl-I, ... , X2, 0, 1) 

+ XIXO!(XIl-I, ... , X2, 1,0) + XIXO!(XIl-I, ... , X2, I, I) 

= mO!(xn-l, ... , X2, mo) + ml !(Xn-I, ... , X2, ml) 

+m2!(xn-I, ... , X2, m2) + m3!(xn-I, ... , X2, m), 

or generally for decomposition with respect to (Xk-I, ... , X2, XI, xo), 

2'-1 

!(XIl-I, ...• X2, XI, xo) = L mi(xn-l, ... ,X2, XI, xo) . !(XIl-I, ... , Xko mi). (4.69) 
i=O 

Here, mi are the canonical ANDed forms of variables X j taken in ascending minterm code 
order from i = ° to (2k - 1), and mi represents their corresponding minterm code. As an 
example, decomposition with respect to variables (Xl, XI, xo) gives 

!(Xn-l, ... , Xz, Xl, XO) = X2XlXO!(Xn-l, ... , X), 0, 0, 0) 

+ X2XIXO!(Xn-l, ... , X3, 0, 0, 1) + ... 

for k = 3. 
In similar fashion, the dual of Eq. (4.69) is the generalization of Eq. (4.68) given by 

2'-1 

!(XIl-I, ... , X2, XI, xo) = n [Mi(xll-I, ... , Xl, XI, Xo) + !(Xn-l, ... , Xko M i ), (4.70) 
i=O 

where now Mi represents the canonical ORed forms of variables X j and Mi represents their 
corresponding maxterm code. 
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As a practical example of the application of Shannon's expansion theorem, consider the 
function 

F(A, B, c, D) = L m(l, 3,4,5,9,10,13,14,15), (4.71) 

which is represented in the truth table of Fig. 4.48a and in the K -map of Fig. 4.48b. Applying 
Eq. (4.69) for decomposition with respect to variables C and D gives the cofactors 

{

FO=(A,B.O,O)=AB I 
FJ = (A, B, 0,1) = 1 

F2=(A,B,I,0)=A ' 

F, = (A, B, 1, 1) = A 0 B 

from which the function F can be written as 

FCD(A, B, C, D) = CD (A B) + CD(l) + CD(A) + CD(A 0 B) 

=ABCb + CD +Acb + (A 0 B)CD, 

which could have been deduced directly from an inspection of the truth table or K-map in 
Fig. 4.48. 

But the variables about which the function is to be decomposed are a matter of choice. 
If it is required that the function F be decomposed with respect to variables A and B, the 
result would be 

FAB(A, B, C, D) = AB(D) + AB(C) + AB(C EB D) + AB(C + D), 

which, like the previous result, can be read directly from either the truth table or the K-map. 
Note that decompositions of the type just described can be very useful in implementing 

c 

A B C 0 F A B C 0 F 
A 

CO 
B 00 01 I 11 10 I 

0 0 0 0 0 0 0 0 0 00 1 1 

0 0 0 1 1 0 0 1 

0 0 1 0 0 0 0 
0 0 1 1 0 1 0 

0 0 0 0 0 0 

0 0 1 1 0 1 A 
0 0 0 0 
0 0 

01 1 1 

[ 1 1 1 

10 1 1 
/ 

/ 

} 
F 

D 

(a) (b) 

FIGURE 4.48 
Truth table (a) and K-map (b) for the fUllction F given by Eq. (4.71). 
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functions of a large number of variables by using devices with lesser input capability. The 
use of multiplexers discussed in Section 6.2 offers a good example of this fact. 

The process of decomposition can be reversed to yield a purely SOP or purely POS 
expression from the decomposed expression. This is illustrated by factoring out A, A, E, 
and B in tum from FAB to yield the SOP expression 

FAB =AB(D) +AB(C) +AE(C EB D) +AB(C + D) 

= A [ED + BC] + A[E(C EB D) + B(C + D)] 

=AE[Dl +AB[C] +AE[CD + CD] +AB[C + D] 

= ABD + A BC + ABCD + ABCD + ABC + ABD, 

where C EB D = CD + CD follows from Eq. (3.4). A cursory inspection of the SOP form 
of FAB verifies its agreement with Fig. 4.48. 

4.10 DESIGN AREA VS PERFORMANCE 

It is common to observe an inverse relationship between design area and performance 
(delay). That is, circuit realizations with improved design area commonly suffer from 
poorer performance and vice versa. It is known that CMOS gate performance decreases 
(i.e., delay increases) with increasing numbers of inputs (fan-in). The larger the fan-in, 
the greater is the path delay through the gate. As an example, consider the function of 
Eq. (4.65). It has a cardinality of 7 that must be ORed. Shown in Fig. 4.49a are four alter
native ORing configurations for seven inputs. It is expected that there exists a trade-off 
between design area and delay for these four configurations, as illustrated in Fig. 4.49b. 

(I) Fan·in 7 (II) Fan-in 4 
(IV) 

Delay (I) (II) 
(III) 

Design Area 

(III) Fan·in 3 (IV) Fan-in 3 

(a) (b) 

FIGURE 4.49 
Area/delay trade-off for the seven-input function of Eq. (4.65). (a) Four alternative DRing configu
rations. (b) Possible area/delay trade-off points for configurations (I), (II), (III), and (IV), showing 
effect of treeing and cascading configurations. 
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Here, tree configuration (III) is expected to show the least delay, but at the cost of greater 
design area. Tree configuration (II) would seem to have the most favorable area/delay trade
off, while gate (I) and cascade configuration (IV) are expected to have the least favorable 
trade-off. A dual set of ANDing operations would show the same area/delay trade-offs. 

4.11 PERSPECTIVE ON LOGIC MINIMIZATION AND OPTIMIZATION 

The EV mapping methods described in Sections 4.6 and 4.7 are useful up to three or 
four orders of map compression. However, with increasing compression order beyond 
third order, the gap usually widens between the reduced forms obtained and the absolute 
minimum result. This is especially true if reduced or minimized subfunctions are used to 
extract cover from such EV K -maps. For this reason a practical limit of four orders of K -map 
compression (eight variables) is set, and use of reduced or minimum subfunctions is highly 
recommended. The use of submaps can narrow the gap between a reduced result and one 
that is an absolute or exact minimum. This fact is implied by the simple examples given in 
the sections on EV mapping methods. 

Beyond four orders of compression in fourth-order K-maps, the use of computer algorith
mic methods for logic minimization becomes necessary. But even these computer programs 
have their limitations, particularly with regard to multiple output systems having a large 
number of input variables. It is an established fact that the generalized optimal solution for an 
n-variable function is impossible. The reason for this is that 2" min terms must be dealt with 
in some manner or another. Minimization problems in the class referred to as P are called 
tractable problems those for which an optimum or near-optimum solution is possible. 
Those that are intractable belong to the class of problems referred to as NP-complete. The 
search for faster, more robust algorithms to optimize very large multiple output systems 
continues. These algorithms are most likely to be of the heuristic type. Though the Q-M 
linear tabular method is useful in introducing readers to the subject of logic minimization, 
it is of little practical importance given the much-improved heuristic methods now in use. 

Finally, it must be said that the SOP (or POS) minimization of a function may not be an end 
in itself. Section 4.9 demonstrates that optimization may continue beyond minimization by 
techniques such as factorization and resubstitution that generate multilevel functions. To do 
this, however, brings into play other factors such as area/delay trade-offs. Thus, there emerge 
two approaches to function optimization from which the designer must choose: Optimize 
design area under delay constraints or optimize delay under design area constraints. It is 
unlikely that a system can be optimized with respect to both design area and delay, although 
it may be possible to come close to this for some systems. 

4.12 WORKED EV K-MAP EXAMPLES 

EXAMPLE 4.1 Compress the following four-variable function into a third-order K-map 
and extract minimum SOP and minimum POS cover from it. 

f(A, B, C, S) = L m(2, 3, 5,6,7, 10, 12, 13,15) 

= n M(O, 1,4.8.9,11,14). (4.72) 
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The compressed third-order K-maps representing SOP and POS cover are shown in 
Fig. 4.50. Applying the loop-oUi protocol first to the EV and then to the I's and D's gives 

Iso? = BCS + BS + ABC +AC 

/pos=(A + B + t + 5)(,4 + B + S)(A + C + S)(B + C) 

EXAMPLE 4.2 A four-variable function Z comaining don't cares is shown in Ihe com
pressed third-order K-map of Fig. 4.51. Two first-order submaps for cells 4 and 6 are also 
shown to demonstrale that the don't care (4)) is treated as an EV, which it is. 

(a) Rcprcscm the function Z in canonicaJ SOP and POS form by using coded notation. 
Noting that the Map Key is 24- 3 :: 2, the results can be written directly in canonical SOP 

and POS form by counting by 2's or by making use of first-order submaps in D, and by 
applying the mintenn and maxtenn codes, respectively. For example. cell 3 represents m t;. 

or M7• cell 4 represents (t/Jm s + m9) or t/JMs, and so on. Proceeding in this manner. the 
results are given by 

Z(A. B, C, D)= L m(O, 1,5,6,9, 10, II) + t/J(2, 3, 8,13) 

~ n M(4. 7.12.14.15)· .(2, 3. 8, 13), (4.73) 

where knowing one canonical form yields the other through observation of the missing 
numbers in the fonner. 

FIGURE 4.51 
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Compressed K-map for Example 4.2 showing sample first-order submaps. 
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FIGURE 4.52 
(a) Minimum SOP CQver and (b) minimum f'OS CO\'cr for function Z of Example 4.2. 

(b) Extract minimum SOP and minimum POS cover for the function Z. 
In Fig. 4.52 :Ire the third-order K-m:lps showing lhe minimum SOP :lOd minimum POS 

cover for the funclion Z. NOIice Ihat the subfunction in cell 6 is interpreted differently in 
Ihe SOP and POS K-maps. 

From reading this cover, Ihe resulls are 

ZWp=ACD+CD +B 

Zp()s =(B + C + D)(B + t + D)(A + HI, 

which are seen to be logically equivalent but not algebraically equal, NOIice thaI the I 's in 
the SOP K-map are looped oul as the octad B by using 418 = I in cell 4 of Fig, 4.5 I to give 
411 + D = I. Also, note that the 0 in cell 6 of the POS K-map in Fig. 4.51 is looped OUI as 
the quad A + jj by using tPLJ = 0 to give fJlJD = O. Thus, tPLJ is used as n I for minimum 
SOP extraction but as a 0 (or minimum POS extrxtion. meaning that the SOP and PQS 
expressions cannot be algebraically equal. 

EXAMPLE 4.3 A four-variable funclion F(A. B. C, D) containing don' l carts is com
pressed into the truth table given in Fig. 4.53. 

(a) Represent the function F in a l'econd-ordcr K-map. and express F in canonic!!1 SOP 
and PaS form by using coded notation. 

(b) By proper interpretations of the don't Cllre subfu nc' ions. loop out Ihe minimum SOP 
and POS covcr from the ~cond-order K-map and give ,he gate/input tallies for each. 

A • F 

0 0 CO 
0 I C·(; .O) 

0 (;fC+O) 
0 

FIGURE 4.53 
Compressed truth table ror a function F of four variables. 
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(a) Second-order compressed K-map and its submaps for the four-variable function given in the EV 
truth table of Fig. 4.53. (b) EV K-map~ showing minimum SOP cover and minimum POS covt:r. 

(a) The simplest means of obtaining the canonical fonns from Fig. 4.53 is to use a 
second-order K-map. Shown in Fig. 4.54a is the second-order compressed K-map together 
with its submaps fora Map Key of2-t-2 ==- 4. By reading the submapsdirectly, the canonical 
fonns become 

F==- Lm(3,6,9. IO.ll)+tb(7.8) 

~ n M(O . 1.2.4.5.12.13.14. lSI· 0(7 . 8). (4.74) 

(b) The compressed second-order K-maps for the fUlledan F are given in Fig . 4.54b. 
From these K-maps the minimum SOP and minimum POS expressions are found to be 

rsop = BCD +ABC +AB 

FPOs = (A + B + D)(A + C)V\ + B), 

with gate/input tallies of 4/11 and 4/ 10. respectively, excluding possible inverters. Notice 
that the minimum sap and pas cover resulis from these K-map.~ by taking 4> 7 = I to give 
C(¢7 + D)= C in cell I, and by taking ¢s = I to give (¢ ~ +C + D)= I in cell 2. Because the 
don'tcares,¢ 7 and ¢~,are used inthesame way (no shared use) in both K-maps ofFig.4.54b. 
the minimum SOP and POS expressions are algebraically equal. 

EXAMPLE 4.4 A five-variable function f is given in the canonical form: 

f(A , B, C. D, E) = Lm(3, 9,10. 12, 13,16.17.24.25.26,27,29,31). (4.75) 

(a) Use a fourth-order EV K-map to mi nimize this function in both SOP and PQS form. 
A compression of one order requ ires that the Map Key be 2. Therefore. each cel1 of 

the fourth-order EV map represents a first· order submap covering two possible minlerm or 
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I f SOP 
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Ib) 

0 
0 1,. 

" I / f 

Fourth-order EV K-maps for the Ii\'~·\·ariablc function / in EQ. (4.75). (a) Minimum SOP cover and 
(b) minimum PeS cover. 

maxterm positions. In Fig. 4.55 are the fourth-order EV K-maps showing minimum SOP 
and minimum PaS cover for which Ihe expression are 

isop = ADCDE + BCDE + HDE + ABE + ABeD + ACD 

/pos=(A + C + D + E)(A +8 + D +£")(,4 +C +E)(A +B+E)(,4 + B + in 
·IA +c+ D)IA + B+ DlIB+C). 

NOlice thai the loop-oUI prOiocol is applied first to the EVs and then to the I ·s or 0'5 as 
a "cleanup" operation, a practice that should always be followed. Also. nOlice that for the 
POS result, the term (8 + f> + E) is an OPI for the term (A + B + E). 

(b) Find th t! minimum SOP cover for the five-variable func tion in Eq. (4.75) by using 
conventional ( I 's and O's) AIiBe/DE fonnat K-map si milar to that used for a six-variable 
fUnclion in Fig. 4.37. 

Shown in Fig. 4.56 is the conventional ( I 's and O's) K-map indicating minimum SOP 
cover. 

EXA.MPLE 4.5 Map the reduced function in Eq. (4.76) inlo a fourth-order K-map and 
extract minimum SOP and POS cover. Give the gate/i nput tally for each result. excl usive 
of possible inveners. 

Y = ASCfJE + ABeD + ABDE + BefJE T A8CiJ£ + ABDE +A8e£ 
+ BeDE +,4 eDE + AilcE 

14.76) 

The function ofEq . (4.76) is mapped into the fourth-order K-mtlp shown in Fig. 4.57. 
and the minimum SOP and minimum POS covers are indicated with shaded loops. The 
resul ting minimum expressions are given by 

YS(.JP=A8DE +ABDE + BeE + BDE + BeE 

Yros = (8 + D + EXC + D + £)(B + EXA + C + E)(8 + C + D)(A + B + e), 
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FIGURE 4.56 
Conventional ( I's and O's) (onnat of the type A IIBC/DE for The function f in Eq. (4 .75). 

which represent gate/input tallies of 6/ 22 and 7/23, respectively, for the Ysop and Ypos 
results, exclusive of inverters. Notice that the I's in the SOP K-map are covered by the 
quads BCE and BDE,and that the 0 in cell 12 of the POS K-map is covered by the quads 
(ii + D + E) and (A + C + EJ. 
EXAMPLE 4.6 Compress the fOllowing function into a second-order K-map and extract 
minimum SOP and POS covcr: 

Z(A , B, C , D ) = n M (2, 4, 7. II , 12, 14 , IS) 

= Lm(O, 1,3,5 . 6.8, 9. 10. 13). (4 .77) 

In Fig. 4.58 are the second-order EV K-maps and sublllaps showing minimum SOP and 
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} 
V 



" 
o 

c , 
, 

, 
I 

0 

4 .12 WORKED EV K-.MAP EXAMPLES 

, 
I , 
I 0 , 

0 0 

187 

2;-0 0 , 
, 0 I • , , 0 A 

B 0 I 

I 0 (C, D) Cl{~}o CO·@1 

I C I'Liij~ CO 1/ 
/ Z 1B

' , 
" I 

, I 0 , 
(a) 1ffii

' , 
'0 I 

SOP I 0 0 

3 

t LCd) 

I~C+O l~·ii I 

CO . cJ 

(b) 

FIGURE 4.58 
Second-order EV K-maps and submaps for the function Z in Eq. (4.77) showing (a) miflimum SOP 
cover and (b) minimum POS cover. 

minimum POS cover for the function Z wi th the resulls given by 

2 .\01> = ABeD + ABO + ABiJ + iJe + CD 

Zpas = (A + B + t+ D)<ij + e: +D)(8 +C+ D)(A + 8 + D)(,\ + C+ D) 

Notice how easy it is 10 read <I subfunction when accompanied by a submap. Thus, the 
SOP tcnll C:D is easily ohserved 10 Ix: prcscm in each of the four submaps of Fig. 4.58a. 
Similarly, to. read as a POS teml in Fig. 4.58b, is seen to contain both the (C + D) and 
(C + 0) terms by a cursory inspection of the submaps. 

EXAMPLE 4.7 Compress the fol lowing six-variable runction into a founh-order EV 
K-map and extract minimum SOP and minimum POS cover for it: 

W(A . B.C. D, E. F)= Lm(4.6, 8. 9.10, II, 12. 13. 14, 15,20.22.26.27.30,31. 

36.38,39,52.54.56,57,60,6 1). (4.78) 

Compressing a six-variable function into a fourth-order K-map requires a Map Key of 
i ,--4 = 4, hence four possible minlenns per K-map cell . This is a second-order compression 
lllCaning that ea('h cell of the K-map contains suhfunction s from a se<:ond-order K-map. 
Sho ..... n in Fig. 4.59 are the fourth-order K-maps for the function Win Eq. (4.78) where the 
EVs arc E and F . The minimum covers for the SOP and POS functions are indicated by 
shaded loops and yield 

w~o,. =ABCOE + ABCi + CDt + ACE +ABC 

WI>os =(A +8 + t+ E )(C + E +t)(n + r + ;:')(A + C + 1)(.4 + C +E) 
. (A + B +C)(C+ 0 ). 

which represent gate/input tallies of 6/ 23 and 8/ 28, respectively. Note thai t~ loop-out 
protocol is applied fi rst to the EVs and then to the I 's nndO's as cleanup opemtions. a proce
dure thai should always be rollowed. Observe also that the.-.e expres.. .. ions are algebraically 
equal si nce no don't cares are involved. 
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cover and (b) minimum POS cover. 

FURTHER READING 

Nearly every lexton digital or logic design provides somecoverageof convenrional (I's and 
0'5) K-map methods. Typical among these arc texIS of Hill and Peterson: Nelson. Nagle. 
Carroll and Irwin: and Roth . 

[I] F. J. Hill andO. R. Pelerson. Digital Logic and MicroprocessQrs. John Wiley & Sons, New York. 
19&4. 

[2] v. P. Nelson. H. T. Nagle. R. D. Carroll, and J D. Irwin. Digilul uigic Circuit Analysis and 
DesiR'I. Prentice Hall. Englewood Cliffs, NJ. 1995. 

[3J c. H. Roth. Fundamentals of Logic Desi~n. 41h cd .. West. 51. Paul. MN. 1992. 

References on entered variable (EV) K-map methods are limited to only a few texts. The 
best sources appear to be the texts of Comer, Shaw. and Tinder. 

[4) D. J. Comer. Digilfll wgit' lind Stal~ M(/chil!~ Design. 3rd ed., Sanders College Publishing. Fon 
Worth. TX, 1995 . 

(5) A. W. Shaw, wglt· CirculI Design. Sanders College Publishing. Fort Worth, TX. 1993. 
[6J R. F. Tinder. Digital t:nglnuriflgDuign: A MrxlwlApproacl!. Prentice Hall. Englewood Cliffs. 

NJ . I991. 

A classic contribution 10 logk minimizatio n generally. is found in the text of Kohavi. 
There. can be found early lIe&lmcntofthe algebraic, tabular, and mapping methods. Entered 
variable K·map methods are nOI treated in this Ie,;!. 

17) Z . Kohavi. SWitchmg and Finite AIIIOIIIOla TlI~Qry. McGraw-Hili . New Yorl:. 1978. 

Hie two logic minimization algori thms briefly discussed in this chapter. the Quinn
McCluskey method and the Espresso approach (which is a heuristic algori thm). have been 
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cited in countless publications. A few representative sources of these methods are presented 
here. Included are some of the original references as well as some of the more current ones, 
which often provide useful summaries of the methods. 

[8] E. J. McCluskey, Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986. 
[9] E. J. McCluskey, "Minimization of Boolean Functions," Bell Syst. Tech. 1. 35(5), 1417-1444 

(1956). 
[10] W. V. Quine, "The Problem of Simplifying Truth Functions," Am. Math Monthly 59(8), 521-531 

(1952). 
[11] R. K Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic Minimization 

Algorithmsfor VLSI Synthesis. Kluwer Academic Publishers, Boston, 1984. 
[12] R. Rudell and A. Sangiovanni-Vincentelli, "Multiple-valued Minimization for PLA Optimiza

tion," IEEE Transactions on CADICAS CAD-6(5), 727-750 (1987). 
[13] R. K Brayton, P. C. McGeer, J. V. Sanghavi, and A. L. Sangiovanni-Vincentelli, "A New Exact 

Minimizer for Two-Level Logic Synthesis," in Logic Synthesis and Optimization (T. Sasao, Ed.). 
Kluwer Academic Publishers, Boston, 1993. 

References on the factorization, resubstitution, and decomposition methods of optimiza
tion of multilevel circuits are fairly numerous but are set in fairly advanced notation. Perhaps 
the most useful are those found in texts by De Micheli, Kohavi, and Dietmeyer, and in the 
reference book edited by Sasao. Advanced preparation by the reader is recommended for 
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PROBLEMS 

4.1 Expand each of the following expressions into canonical (literal) form by using the 
appropriate Boolean laws: 
(a) e(a,b)=a+b 

(b) !(x,y)=x+xy 

(c) g(A, B, C) = ABC + ABC+ AB + BC + ABC 

(d) heX, Y, Z) = (X + n(X + Y + Z)(Y + .2)(X + Y +.2) 
(e) E(A, B, C, D) = (A + BC)(B + D)(A + C + D)(A + B + C + D)(B + D) 

(f) F(w, x, y, z) = wxyz + WXZ + xyz + wxyz + xz + wxyz + wxyz 

(g) C(a, b, c, d,) = (a + b + c + d)(b + c + d)(ii + b)(b + d)(ii + c + d) 

(h) H(V, W, X, n = VWXY +XY + WXY + VWXY+ VXY+ VWXY+ WXY 

4.2 Place each of the three-variable functions below in a canonical truth table and in a 
conventional (l's and O's) K-map. Place the variables on the K-map axes in alphabetical 
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order beginning with the ordinate (vertical) axis, as has been done throughout this text. 
(a) peA, B, C) (A + B +C)(A +B + C)(A + B+ C)(A + B + C)(A +B+ C) 
(b) Q(a, b, c) = mel, 2,4,5,6) 

(c) W(a, b, c) = abc + abc + abc + abc + abc 
(d) X(A, B, C) = n M(O, 1,2,6,7) 

(e) Y(w, x, y) = wx + + w(x EB y) + wy 
(f) Z(A, B, C) = (A + B) <:) (AC) + AB 

(g) F(X, Y, Z) = XY ffi YZ EB XZ + XY 

(Hint: Expand first.) 

(Hint: First construct a truth table 
with input A.) 

[Hint: See Eq. (3.33).] 

4.3 Place each of the four-variable functions below in a canonical truth table and in a 
conventional (1's and O's) K-map. Place the variables on the K-map axes in alphabetical 
order beginning with the ordinate (vertical) axis, as has been done throughout this text. 
(a) R(u, v, W, x) = Lm(O, 2, 3, 7, 8, 9,10,11,13) 

(b) Sea, b, c, d) = (a + b)(a + bc)(b + c)(a + b + c) 

(c) T(W, X, Y, Z) = YZ + WXY + WXYZ + + WYZ + WxY.Z + XYZ 
Cd) U(A, B, c, D) = n M(O, 5,8,9, 11, 12, 15) 

(e) V(a, b, c, d) = L m(O, 4, 5, 7,8,9,13,15) 

(f) W(u, v, w, x) = rcv + w) <:) x1(u + w)(u + v)(u + x) 

(g) X(A, B, C, D) = (A EB B)CD + BCD + BCD + (A + B)CD + AB(C <:) D) 
(Hint: First construct a truth table for CD, then map the result into aI's and O's 
K-map.) 

(h) F(W, X, Y, Z) = (X ffi Z) ffi rW(Y EB Z)) + XYZ 
(Hint: First construct a truth table for W'X. then map the result into a I 's and O's 
K-map.) 

4.4 Place each function ofProblem4.1 into a conventional (l 's and O's) K-map and extract 
canonical (coded) SOP and POS expressions from that K-map. 

4.5 Minimize each function of Problem 4.2 in both SOP and POS form with a third-order 
K-map. By using the gate/input tally (exclusive of possible inverters) determine which 
is simpler, the SOP or POS expression, Do not implement with logic gates. 

4.6 Minimize each function of Problem 4.3 in both SOP and POS form with a fourth
order K-map. By using the gate/input tally (exclusive of possible inverters), determine 
which is simpler, the SOP or POS expression. Do not implement with logic gates. 

4.7 The following three-variable functions are incompletely specified functions, that is, 
they contain don't cares. By using a third-order K-map, minimize each function in 
both SOP and POS form with and without the use of the don't cares in each case. 
Identify any OPIs that may be present. 
(a) e(A, B, C) Lm(O, 1,2,7) + ¢(3, 5) 

(b) I(X, Y, Z) n M(3, 4, 6)· ¢(O, 2) 

(c) g(a, b, c) m(O, 1,5,7) + ¢(2, 4) 

(d) hex, y, z) n M(3, 4, 5)· ¢(O, 1,2) 

(e) i(X, Y, Z) = L m(O, 5) + ¢(l, 2, 3, 7) 
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4.8 The following fOLlr-variable functions are incompletely specified functions - they 
contain don', cares. Use aconvemional (I'sand O's) K-map to minimizecach function 
in both SOP and POS form and, with the he lp of the gate/input tally (exclusive of pos
sible inverters), indicate which is simpler. Also. identify any OPls that may be present. 
(a) £ (a. h. c.d) = Lm(6. I L. 12. 13. 14) + 41(0. L. 2, 3. 4 . 5) 

(b) F(A, B , C, OJ = n M (O, J, 6, II , 13 , 15) ' 4>(5,8, 10, 14) 
(c) G(W, X. Y. Z) = L m(O. 4. 6. 8, 9, 10. II. 14, 15) +4>(L. 5) 

(d) H(w,x,Y,,)= nM(I.2 , 3,9, 10, 14) -¢( II , 13) 
(e) I(A, B , C. 0 ) = L m(4, 5, 7,12,14,15) + ¢(3, 8, 10) 
(f) l(a,h,c,d)= nM(O, I.U, 7,9) -4>(4,6,10,13) 

4.9 F ind the optimum cover (either SOP or POS) for the following four-inpuutwo-outpUl 
system (see Fig. P4. 1). Base your choice on the Iota! gate/input lally (including in
verters) (or the syslem. Assume the in pUIS and outputs are all active high. Do nol 
construct the logic circuit 

II = L m(O. 2, 4, 5 , 9, 10, II. 13. 15) 

h = Lm(2. 5, 10, I I. 12. 13, 14. (5) 

4.10 Three functions. each of three inputs. are given in canonical SOP fonn. Follow the 
di scussion in Section 4,5 and find the optimized SOP minimum for the three func
tions taken 3S a system. Give the lolal gatelinput lally for the system. exclusive of 
invencrs. 

/ ,(A. B. C) = L m(l. 3, 5. 6 . 7) 

f,(A, S ,C)= Lm(O, 1.3,6) 

h(A. B. C) = Lm(O. 5. 7) 

4.1 1 TWo functions. each of four variables. are given in canonical SOP fonn. Follow the 
discussion in Section 4.5 and find the optimized SOP and POS minimn for lhe two 
functions taken as a system. By using the gale/input lally. exclusive of inveT1eJS, 
indicate which is simpler. the SOP result or the POS result. 

F,(A. B . c. D) = L m(7. 8,10. 14. 15) + ~L, 2. 5. 6) 

F2( A. B.C. D )= LIII(1.5 , 7,8.11.14.15)+41(2.3.10) 



192 CHAPTER 4/ LOGIC FUNCTION REPRESENTATION AND MINIMIZATION 

4.12 The two four-variable functions shown are presented in canonical POS form. Follow 
the discussion in Section 4.5 and find the optimized SOP and POS minima for the two 
functions taken as a system. Use the gate/input tally, including inverters, to determine 
which is simpler, the SOP result or the POS result. Implement the simpler of the two 
forms in either NANDIlNV or NORJINV logic. Assume that the inputs and outputs 
are all active high. 

gl(A, B, c, D) =D M(O, 3, 4,11,12,13,15)· tP(2, 5, 6) 

g2(A, B, c, D) = n M(O, 1,9,12,13)· tP(2, 3, 4,10) 

4.13 Given below is a set of three functions, each of four variables. Follow the discussion 
in Section 4.5 and find the optimized SOP and POS minima for the three functions 
taken as a system. Use the gate/input tally, excluding inverters, to determine which is 
simpler, the SOP result or the POS result. [Hint: In determining the shared PIs, don't 
forget to include the ANDed and ORed functions (Yl . Y2 • Y3) and (Yl + Y2 + Y3).] 

y, (a, b, c, d) = L m(O, 1. 2, 5, 7,8, 10, 14, 15) 

Y2(a, b, c, d) = Lm(O, 2, 4,5,6,7,10,12) 

Y3(a, b, c, d) = L m(O, 1, 2,3,4,6,8,9, 10, 11) 

4.14 Extract minimum SOP and POS expressio!1s (cover) from the K-maps shown in 
Fig. P4.2. Where appropriate, application of the loop-out protocol discussed in Section 
4.4 will help to avoid redundancy. 

4.15 Following the discussion in Section 4.6, compress each function in Problem 4.2 into 
a second-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use 
the LSB variable as the entered variable (EV). 

4.16 Following the discussion in Section 4.6, compress each function in Problem 4.3 into 
a third-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use 
the LSB variable as the entered variable (EV). 

4.17 Following the discussion in Section 4.6, compress each function in Problem 4.7 into 
a second-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use 
the LSB variable as the entered variable (EV). 
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FIGURE P.4.2 
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4.18 Following the discussion in Section 4.6, compress each function in Problem 4.8 into 
a third-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use 
the LSB variable as the entered variable (EV). 

4.19 Following the discussion in Section 4.7, compress each of the following five-variable 
functions into a fourth-order K-map (Map Key 2) and extract minimum SOP and 
POS cover. Use the LSB variable as the entered variable (EV). 
(a) q(A. B, C, D, E) n M(O, 1,2,5,14, 16. 17, 18, 19,21,26,27,30) 

(b) rCA, B. C, D, E) = ABCE + ACDE + BCDE + ABct + ABDE 
+ABCDE + BCDI; +ABD+ BCD+ ABCDE 

(e) seA, B, C, D, E) = Lm(O, 2,4,5,7,10,13,15,21,23,24,25,28,29,30) 

(d) teA, B, C, D) (A + B + D +E)(B+ C+D + E)(A +B +E)(A + C + D+ 
. (li + C + D)(B + C + D + E)(A + B + C + D + E)(B + (; + D + E) 
. (A + li + C)(B + C + D)(B + C + D + E) 

4.20 Minimize each funetion of Problem 4. 19 in both SOP and POS by using a conventional 
(l's and O's) K-map. To do this follow the example in Fig. 4.56. 

4.21 Following the discussion in Section 4.6, compress each function in Problem 4.2 into 
a first-order K-map (Map Key = 4) and extract a minimum SOP and POS expression 
for each. Use the last two significant bit variables as EVs. 

4.22 Following the discussion in Section 4.6, compress each function in Problem 4.3 into a 
second-order K-map (Map Key = 4) and extract a minimum SOP and POS expression 
for eaeh. Use the last two significant bit variables as EVs. 

4.23 Following the discussion in Section 4.6, compress each function in Problem 4.7 into 
a first -order K -map (Map Key = 4) and extract a minimum SOP and POS expression 
for each. Use the last two significant bit variables as EVs. 

4.24 Following the discussion in Section 4.6, compress each function in Problem 4.8 into a 
second-order K-rnap (Map Key = 4) and extract a minimum SOP and POS expression 
for each. Use the last two significant bit variables as EVs. 

4.25 Compress each function in Problem 4.19 into a third-order K-map (Map Key 4) and 
extract a minimum SOP and POS expression for each. Use the last two significant bit 
variables as EVs. 

4.26 Shown in Fig. P4.3 are two functions, F and each of four variables, that have 
been compressed into third-order K-maps. (Hint: It will help to first simplify the 

Be 
A 00 01 11 10 00 01 11 10 

0 .p+D 0 0 .p -0 0 1 D .pD 

1 0 1 .pD D 1 D(.p+D) .p+D .pO.,.D .p 

/ / 
/ F / Z 

(a) (b) 

FIGURE P.4.3 
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subfunctions in cells 4 and 7 of function Z by applying the laws of Boolean algebra 
while treating the if> as an entered variable.) 
(1) By following the example in Fig. 4.33a, construct the first-order submap for each 

of the eight cells in each K-map. 

(2) Give the canonical SOP and POS expressions in code form for each function. 

(3) Extract the minimum SOP and POS forms from each third-order K-map, keeping 
in mind the discussion on the use of don't cares in Subsection 4.6.1. 

4.27 Compress the fourth-order K-map in Fig. P4.4 into a second-order K-map (Map 
Key = 4) and loop out minimum SOP and POS expressions according to the follow
ing format: 
(a) Set A. B as the axis variables. 

(b) Set B, C as the axis variables. 

(c) Set A. C as the axis variables. 

4.28 Compress the following function into a fourth-order K-map (Map Key = 4) and extract 
minimum SOP and POS forms. By using the gate/input tally (exclusive of inverters), 
indicate which form is simpler. 

Y(A, B, C, D, E, F) = n M(O, 1,5,7,9,15,16,18,21,24,29,31,35,37,39, 

40,45,49,50,56,58,60,61,63) 

4.29 Shown in Fig. P4.5 is a function of six variables that has been compressed into a 
third-order K-map, hence a third-order compression (Map Key = 8). 

B c 
A 00 01 11 10 

0 1 X+V X'V Z 

1 1 X'V 0 z 
1/ 

/F 

FIGURE P.4.5 
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(a) From the third-order K-map, write the canonical coded SOP and POS for this 
function. 

(b) Use this K-map to extract the minimum SOP and POS expressions for this function. 

4.30 Find the minimum SOP and POS expressions (cover) for each of the following 
sub-functions and give the cell location of each sub-function in the fourth-order 
K-map. 
(a) peA, B, C, D, E, F, G) = L m(33, 34, 36, 38) + 1jJ(32, 29) 

(b) Q(a, b, c, d, e, f, g, h) = L m(l14, 116, 118, 122, 124, 126) 

(c) R(A, B, C, D, E, F, G) = nM(105, 107, 108, 109, 110) 

(d) Sea, b, c, d, e, f, g, h) = n M(l76, 181, 182, 183, 184, 189, 191) 
·1jJ(l77, 185, 190) 

4.31 Minimize each of the following functions in both SOP and POS form by using the 
Quine-McCluskey (Q-M) algorithm discussed in Section 4.8. 
(a) J(w,x,Y)=Lm(0,1,3,5,7) 

(b) g(a, b, c) = n M(2, 3,4,6) 

(c) F(W, X, Y, Z) = L m(O, 2,4,5,6,8,10, 11, 13, 14) 

(d) G(A, B, C, D) = n M(l, 2, 3,5,7,9,11,12,14) 

4.32 Minimize each of the functions of Problem 4.7 in both SOP and POS form by using 
the Quine-McCluskey (Q-M) algorithm discussed in Section 4.8. Keep in mind the 
manner in which the Q-M algorithm treats don't cares. 

4.33 Minimize each of the functions of Problem 4.8 in both SOP and POS form by using 
the Quine-McCluskey (Q-M) algorithm discussed in Section 4.8. Keep in mind the 
manner in which the Q-M algorithm treats don't cares. 

4.34 Use the method ofJactorization to obtain a gate-minimum SOP and POS result for 
the following two-level functions. Find the gate/input tally (including inverters) for 
each and compare the results with the two-level minimum forms. Assume the inputs 
all arrive from positive logic sources. (Hint: First minimize the functions in two-level 
form and then apply the factorization method.) 
(a) Y = AB + BD + AC+ ABC+ ACD 

(b) F = ABDE + ABCE + CDE + BCDE + ABCD + (A <::) C)(B + D) 

4.35 Use the resubstitution method discussed in Subsection 4.9.2 to obtain a gate mini
mum for each of the following functions. Compare the gate/input tally (excluding 
invertors) of the result with that for the two-level minimum. Also, comment on fan-in 
and inverter requirements for each, and on the gate propagation delay level for each. 
Assume that all inputs are active high. (Hint: First obtain the two-level SOP minimum 
expression, then plan to use the suggested divisor given for each.) 
(a) F(W, X, Y, Z) = L m(O, 4, 5, 7,10,13.14,15) (Use divisor X + Z) 
(b) G(A, B, C, D) = Lm(O, 1,2,3,4,9,10,11,13,14,15) _ 

(Use divisor A + C + D) 

(c) H(W, X, Y, Z) = n M(O, 2, 4, 6, 9) (Your choice of divisor) 

4.36 Decompose each function in Problem 4.31 by applying Shannon's expansion theorem 
discussed in Subsection 4.9.3. Try at least two sets of two-variable axes about which 
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each expansion is to be performed. Compare the best expansion result for each with 
its two-level K-map minimum result. 

4.37 Use BOOZER, the logic minimizer bundled with this text, to verify or compare (if ap
plicable) the results with any of the previously stated problems. For example, Problem 
4.37/4.6c would require use of BOOZER to minimize Problem 4.3c, since Problem 
4.6 refers to Problem 4.3. [Hint: To obtain a minimum POS result by using BOOZER, 
map the function, complement each cell of the K-map, enter the results into BOOZER 
and minimize as an SOP function, and then complement the BOOZER result. Note 
that either entered variables (EVs) or l's and O's can be entered into the BOOZER 
algorithm - your choice.] Follow the entry protocol contained in the Readme.doc 
accompanying the BOOZER software. 

4.38 Repeat Problem 4.37 by using the ESPRESSO logic minimizer bundled with this text. 
For example, Problem 4.38/4.19b would require the use of ESPRESSO to minimize 
the function r after it has been properly expressed in minterm code form. 



CHAPTER 5 

Function Minimization 
by Using K-map XOR Patterns 
and Reed-Muller 
Transformation Forms 

5.1 INTRODUCTION 

In this chapter it will be shown how simple "pencil-and-paper" methods can be used to 
extract gate-minimum multilevel logic designs not yet possible by any conventional method, 
including the use of CAD techniques. The methods described here make possible multilevel 
IC designs that occupy much less real estate than would be possible for an equivalent two
level design, and often with little or no sacrifice in speed - an advantage for VLSI design. 

There are a variety of approaches to logic function minimization, which can be divided 
into two main categories: two-level and multilevel approaches. Chapter 4 was devoted 
primarily to the two-level approach to minimization. Combining entered variable (EV) sub
functions and the XOR patterns (described in the following section) in a K-map extraction 
process is a special and powerful form of multilevel function minimization. Used with two
level logic forms (AND and OR functions) this multilevel minimization approach leads 
to XORISOP, EQVIPOS, and hybrid forms that can represent a substantial reduction in 
the hardware not possible otherwise. XORISOP and EQVIPOS forms are those connecting 
p-terms (product terms) with XOR operators or s-terms (sum-terms) with EQV operators, 
respectively. Hybrid forms are those containing a mixture of these. 

Another approach to multilevel logic minimization involves the use of Reed-Muller 
transformation forms (discussed in Sections 5.5 through 5.12) that are partitioned (broken 
up) into tractable parts with the assistance of entered variable Karnaugh maps (EV K-maps). 
The process is called the contracted Reed-Muller transformation (CRMT) minimization 
method and is expressly amenable to classroom (or pencil-and-paper) application. General 
information covering the subjects associated with Reed-Muller minimized logic synthesis 
are cited in Further Reading at the end of this chapter. 

The word level (meaning level of a function) reters to the number of gate path delays 
from input to output. In the past the XOR gate (or EQV gate) has been viewed as a two-level 
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device, meaning two units of path delay as implied by the defining relations for XOR and 
EQV given by Eqs. (3.4) and (3.5). But the emergence of CMOS IC technology has moved 
the XOR and EQV gates close to single-level gates with respect to compactness and speed, 
as is evident from Figs. 3.26 and 3.27. The term multilevel, as used in this text, means the 
use of XOR and/or EQV gates together with two-level logic to form multiple levels of path 
delay as measured from input to output. 

The concept of minimization. as used in this text, is presented in terms of three degrees. 
A minimum result is one that yields the lowest gate/input tally for a particular method used, 
for example, a two-level minimum result, but may not be the lowest possible. An exact 
minimization designates a result that has the fewest p-terms possible in an expression or 
the fewest s-terms possible in an expression. An absolute minimum expression is one that 
has the lowest possible gate/input tally considering all possible methods of minimization. 
Thus, an absolute minimum is a gate/input-tally minimum (or simply gate-minimum) and 
is usually the result of a specific or unique method of minimization. As a reminder, the 
gate/input tally (defined in Subsection 4.4.3) will usually be given exclusive of possible 
inverters. Only when the input activation levels are known can the gate/input tally include 
the inverter count. 

Where appropriate to do so, reference will be made to the defining relations for XOR 
and EQV given by Eqs. (3.4) and (3.5) and to the XOR and EQV laws, corollaries, and 
identities presented in Section 3.10. Reference will also be made to minterm code (logic 0 for 
a complemented variable and logic I for an uncomplemented variable), and to maxterm code 
which is the dual of minterm code as discussed in Section 4.2. The EV K-map methods used 
in this chapter may be considered as an extension of the conventional methods discussed in 
Sections 4.6 and 4.7. 

5.2 XOR-TYPE PATIERNS AND EXTRACTION OF GATE-MINIMUM COVER 
FROM EV K·MAPS 

There are four types ofXOR patterns that can be easily identified in EV K-maps: 

1. Diagonal patterns 

2. Adjacent patterns 

3. Offset patterns 

4. Associative patterns 

References will frequently be made to the so-called XOR-type patterns in EV K-maps. 
These are references to the diagonal, adjacent, offset, and associative patterns listed above 
and are found only in compressed K-maps. A kth-order K-map compression results when 
an N-variable function is represented in an nth-order K-map-that is, k = N - n. Of the 
XOR-type patterns, only the offset pattern requires third and higher order K-maps for its 
appearance. K-maps used in the following discussions are all minterm code based, but are 
used to extract gate-minimum functions in both min term code and maxterm code. 

Simple examples of the first three patterns are shown in Fig. 5.la, where a six-variable 
function has been compressed into a third-order EV K-map. Empty cells 0 and 2 in Fig. 5.la 
are to be disregarded so as to focus attention on the patterns: The diagonal pattern formed by 
cells 1 and 4 is read in minterm code as BX( A EEl C) or in maxterm code as B + X + A 0 C. 
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Examples of XOR paucms in compr~ssed K·maps. (al Diagonal. adjacent, and offset patterns. (b), 
(e), (d) Associate pattem~. 

Notice thai the diagonal pauem lies in the 8 dom:lin (8 domain in maxterm code) "for all 
that is X," and that the defining relations for XOR and EQV, Eqs. (3.4) and (3.5). are used 
forcells I and 4to give A6:lC and A 0C, respectively, for mimerm code and maxterm code. 
The adjacent palfem is fonned by cells 3 and 7 and is read 8C(A 0 Z) in mintenn code or as 
8 +C + A 0 Z in maxterm code. Here, lhe adjacent pattern lies at the intersection of domains 
Band C in minterm code (8 + C in maxterm code), and again the defining relations for 
XOR and EQV arc used to obtain the mimcrm and maxtcnn extraction. respectively. The 
offset pattem is fonned by cells 5 and 6 and is read in mintenn code as A yeB e C) and in 
maxterrn code as A + Y + 8 0 C. In this case, the offset paltcm lies in the A domain (A in 
maxtenn code) " for all that is Y." and the defining relations, Eqs. (3.4) and (3 .5), are used 
for cells 5 and 6 to obtain Be e and B 0 C, respectively. Throughout this discussion it is 
assumed thai any entered variable. for example X. Y. or Z, may represent a single variable 
or a multivariable function of any complexity. 

Each of the three XOR-type patterns extracled from Fig. 5.la has a gale/input tally of 
2/ 5 (excluding inveners). 1lIe gatdinpm tally is a measure of logic circuit rust (ill hardware 
and real estate) and is defined in Subsection 4.4.3. The gate count is, of course, lhe more 
significant of the Iwo tallies and the input Uilly includes the inputs 10 all gates in rhe logic 
circulI. Unless Slated othuwise. the gate/i nput tally will exclude inverters and their inputs. 
By comparison, the two-level logic gate/input tal ly for each of the pauerns in Fig. 5 . la is 
3/8. 

The associative patterns shown in Figs. 5. lb, 5. lc, and 5. ld may combine wilh any or 
all of the other three patterns to foml compound paltems. For this reason tbe associative 
pauems require special consideration and will be dealt with separately in the following 
subsection. 
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5.2.1 Extraction Procedure and Examples 

Before illustrating the extraction process by example, it will be instructive to outline the 
extraction procedure. In this procedure, reference will be made to minterm and maxterm 
codes for clarification purposes. Since all K-maps are minterm code based, extraction of 
EQYIPOS cover from them requires that the K-map domains be complemented, but not 
the entered variables. Extraction of XORfSOP cover follows conventional procedure. The 
following six-step extraction procedure applies generally to all four types of XOR-type 
patterns. 

Extraction Procedure 

Step I. Identify the type of EV XOR pattern that exists in the K-map. A diagonal pat
tern requires identical K-map cell entries in diagonally located cells. An adjacent pattern 
requires complementary K-map cell entries in logically adjacent cells. An offset pattern 
requires identical cell entries in cells whose coordinates differ by two bits (a Hamming 
distance of2). Associative patterns require terms associated by an XOR or EQV connective 
in at least one cell. 

Step II. Write down the K-map domains in which the XOR pattern exists and any 
sub functions that are the same in the pattern. Remember that in maxterm code the domains 
are complemented, whereas in minterm code they are not. 

Step III. Extract the XOR pattern of type 1, 2, or 3 that exists by using the defining SOP 
or POS relations for XOR and EQV given by Eqs. (3.4) and (3.5). Associative patterns, 
of type 4, are extracted in a manner similar to the extraction of EV .1'- and p-terms as 
discussed in Section 4.6. Thus, associative patterns with XOR connectives are extracted in 
minterm code while those with EQV connectives are extracted in maxterm code. Compound 
associative patterns involve some combination of associative pattern with one or more of 
the other three patterns. They may also include the intersection (ANDing) of patterns or 
the union (ORing) of patterns. In all cases involving an associatil'e pattern, the associating 
connective must be preserved in the resulting expression. 

Step IV. Extract any remaining two-level SOP or pos cover that may exist. 
Step V. Combine into SOP or pos form the results of steps I through IV. The resulting 

expression may be altered as follows: Single complementation of an XORlEQV-associated 
term complements the XOR or EQV connective while double complementation of the asso
ciated terms retains the original connective. 

Step VI. {f necessary, test the validity of the extraction process. This can be done by 
introducing the K-map cell coordinates into the resulting expression. Generation of each 
cell sub function of the K-map validates the extraction procedure. 

Examples The simplest associative patterns are formed between XOR -associated or EQV
associated variables and like variables in adjacent cells. Three examples are presented in 
Figs. 5.lb, 5.lc, and 5.ld, all representing second-order K-map compressions (two EVs). 
For the first-order EY K-map, shown in Fig. 5.lb, the function E is read in minterm 
code as 

EXOR1SOI' = (A . X) ttl Y = (A + X) 0 Y (5.1) 
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and is seen to be a two-level function. Here, according to step III of the extraction procedure, 
the associative XOR pattern is extracted in mintenn code in SOP fonn with X located in 
the A domain, hence A . X. The EXOR/sOP fonn can be converted to the EEQVIPOS fonn by 
double complementation as required by Eqs. (3.24), or can be read in maxterm code directly 
from the K-map. 

The function F in the second-order K-map of Fig. 5.1c is read in maxtenn code, accord
ing to step III and is given by 

FEQVIPOS = [(B + y) 0 X] . A, (5.2) 

which is a three-level function. In this case the EQV connective associates the 9 in cells 
o and 2 (hence B + 9 in maxtenn code) with the X in all four cells. The remaining POS 
cover in cell 0 is extracted with the don't care (¢) in cell 1 by ANDing the previous result 
with A as required by step IV in the extraction procedure. 

The function G in the third-order EV K-map, shown in Fig. 5.1d, is also read in maxterm 
code. Here, the EQV connective associates the X's in cells 0, 1,4, and 5 (thus, B + X in 
maxterm code) with the Y's in cells 5 and 7 (hence, A + C + Y), giving the result 

- - -
GEQVIPOS = [(B + X) 0 (A + C + y)](A + C + X), (5.3) 

which is also a three-level function. The tenn (A + C + X) removes the remaining POS 
cover in cells 4 and 6, as required by step IV 

For comparison purposes the two-level minimum results for Esop, Fpos, and Gpos are 

Esop=XY+AXY+AY 
- --

Fpos = (X + Y)(B + X + Y)(B + X)A 

G POs = (B + X + y)(A + C + X + 9)(A + C + X) 

. (A + B + X)(A + i3 + X + 9). 

(5.4) 

(5.5) 

(5.6) 

The use of associative patterns often leads to significant reduction in hardware compared 
to the two-level SOP and POS fonns. For example, function EXOR/sOP has a minimum 
gatelinput tally of 2/4 compared to 4/10 for Esop, the two-level SOP minimum form. The 
gate/input tally for FEQVlPos is 3/6 compared to 4/11 for the FPOs expression, and function 
GEQVlPOS has a minimum gate/input tally of 4/12 compared to 6/22 for Gpos, the two-level 
POS minimum result, all excluding inverters. 

XOR patterns may be combined very effectively to yield gate-minimum results. Shown 
in Fig. 5 .2a is a second-order compression where diagonal, adjacent, and offset patterns are 
associated in minterm code by the XOR operator in cell 1. Here, the defining relation for 
XOR, given in Eqs. (3.4), is applied to the diagonal pattern (cells 1 and 4) in the i3 domain 
for all that is X to yield i3 X(A EI1 C). This pattern is then associated with the intersection 
(ANDing) of the adjacent pattern (A 0 Y) and the offset pattern (B EI1 C) in cells 1,2,5, 
and 6 to give the gate-minimum, three-level result 

HXOR/sOP = [B X(A EI1 C)] EI1 [(A 0 Y)(B EI1 C)] (5.7) 

with a gate/input tally of 6/13. The defining relation for EQV, given in Eqs. (3.5), is used 
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FIGURE 5.2 
Examples of complex XOR pal/ems. (a) Combined XOR-typc pallems. (b), (c) Compound associative 
patterns. 

[or the adjacent pattern (i;; in ~he A domain ~nd Y in the A dO.!Dain), while Eqs..: (3 .4) are 
applied to the offset pattern (Yand Y in the BC domain. and Yond Y in the BCdomain). 
Notice that the O's in cells 3 and 7 play no role in this offset/adjacent pattern even though 
they are included in the shaded loop covering this pattern. 

For comparison purposes, the two-level minimum result is 

Hsop = ABCXY + ABCX + ABCY + BCXY + ABCY + ABty. (5.8) 

which has a gate/input taJly of7/31. Compari !';.on with Eq. (5.7) makes it clear that the three
level resull provides a better gate-minimum resull but not necessarily a better perfonnance. 
To evaluate the relative perfonnance of the two approaches. fan-in restrictions and gate 
propagation delays would have to be established. 

Compound (interconnected) associative panems are also possible and may lead to gare
minimum functions. allhough often of a higher level (hence slower) than those where there 
is no interconnection between associative pal1cms. fuo examples are given in Figs. 5.2b and 
5.2e. both third-order compressions (hence three EVs). Function I is exliJcted in maxtenn 
code, yielding tbe four-level , gate-minimum result 

hQVlPQS = [B + (A 111 X)} 0 [Y + (A Ell B)J 0 [A + Z1 . (5.9) 
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which has a gate/input tally of 7/14. Extraction involves the association of an adjacent 
pattern and a diagonal pattern with the three EQV connectives. The adjacent pattern in 
domain B (cells 0 and 2) requires the use of Eqs. (3.5) to give [B + (A EEl X)]. This is 
associated with the diagonal pattern in cells 0 and 3, by using Eqs. (3.5), "for all that is 
Y" to give [Y + (A EEl B)], but is also associated with the cell 3 connective in domain A 
for all that is Z. Notice that the terms in square brackets are commutative. For comparison 
purposes the two-level POS result for function [ is given by 

- - - - --
[pos = (A + B + X + y)(A + B + X + y)(A + B + X + Z)(A + B + X + Z) 

x (A + B + Y + Z)(A + B + Y + Z) (5.10) 

and has a gatelinput tally of 7/30. 
The function J in Fig. 5.2c is extracted in minterm code, giving the four-level, gate

minimum result 

JXORISOP = [D(B <::) Z)(A <::) C)] EEl [B(A EEl X)(C <::) D)] EEl [C(D <::) Y)(A <::) B)] (5.11) 

with a gate/input tally of 11/25. This function is extracted as three sets of two intersecting 
patterns, all associated by the three XOR connectives. The "Z" set consists of adjacent and 
diagonal patterns where application ofEqs. (3.5) yields (B <::) Z) and (A <::) C), respectively, 
which intersect (AND) in the 15 domain. The "X" set consists of adjacent and offset patterns 
that are read as (A EEl X) and (C <::) D), by application ofEqs. (3.4) and (3.5), and that intersect 
in the B domain. Here, as in Fig 5.2a, the O's (now in cells 5 and 13) are disregarded in 
the development of the offset/adjacent pattern. Finally, the "Y" set also consists of adjacent 
and offset patterns such that the application of Eqs. (3.5) yields (D <::) Y) and (A <::) B), 
respectively, which intersect in the C domain. As in the previous example, the terms in 
square brackets ofEq. (5.11) are commutative. In comparison, the two-level SOP minimum 
for function J is given by 

Iso? =ABCDXY +ABCDYZ + ABEDi +ABCDY +ABCDY + ABCDX +ABCDX 

+ABCDZ + ACDXZ + BCDXZ + BCDXY + ACDYZ (5.12) 

and has a gate/input tally of 13/74. Again, the gate/minimum advantage of the multilevel 
function over its two-level counterpart in Eq. (5.12) is evident. 

Both four-level functions, hQvIPoS and JXORISOP, are easily verified by introducing in 
tum the coordinates for each cell into the particular expression. For example, if one sets 
ABCD = 1111 in Eq. (5.11), the subfuction X EEl Y is generated for cell 15 as required by 
Fig. 5.2c. Generation of the sub functions in each cell validates the extraction process. 

The gate/input tallies for all six functions represented previously are given exclusive 
of inverters. When account is taken of the inverters required for inputs assumed to arrive 
active high, the gate/input tally differentials between the multilevel results and the two
level results increases significantly. These gate/input tallies from previous examples are 
compared in Table 5.1, where all inputs are assumed to arrive active high. 

There are other factors that may significantly increase the gate/input tally and throughput 
time differentials between multilevel and standard two-level SOP and POS minimum forms. 
These include gate fan-in restrictions and static hazard cover considerations. Static hazards 



204 CHAPTER 5/ FUNCTION MINIMIZATION 

Table 5.1 Gate/input tallies including inverters for functions E, F, G, H, I, 
and I represented as multilevel logic forms and as two-level logic forms 

Function 
Multilevel 
Two-level 

E 
2/4 
7/13 

F 
4/7 
7/14 

G 

5/13 
11/21 

H 
7/14 
12/36 

I 
8/15 
12/35 

J 
12/36 
20/81 

are a type of timing defect that will be discussed at length in Chapter 9. The term/an-in 
refers to the number of inputs required by a given gate. For logic families such as CMOS, 
propagation delay is increased significantly with increasing numbers of gate inputs, and it 
is here where the multilevel XOR forms often have a distinct advantage over their two-level 
counterparts. For example, the largest number of inputs to any gate in the implementation of 
function IxoRisoP is 3, whereas for the two-level function lsop it is 12. Thus, depending on 
how such a function is implemented, the gate/input tally and throughput time differentials 
between the multilevel and two-level results could increase significantly. An example of 
how multiple output optimization considerations may further increase the gate/input tally 
differential between the multilevel and two-level approaches to design is given in Section 8.8. 

5.3 ALGEBRAIC VERIFICATION OF OPTIMAL XOR FUNCTION 
EXTRACTION FROM K-MAPS 

Verification of the multilevel XOR forms begins by direct K-map extraction of the function 
in SOP or POS form by using minterm code for XOR connectives and maxterm code for 
EQV connectives. It then proceeds by applying Corollary I [Eq. (3.25)] or Corollary II 
[Eq. (3.26)] together with commutivity, distributivity, and the defining relations for XOR 
and EQV given by Eqs. (3.18), (3.19), (3.4), and (3.5). 

As an example, consider the function H in Fig. 5.2a, which is extracted in minterm code. 
Verification of this function is accomplished in six steps: 

H = ABC(X EB Y) + ABCX + ABCY + ABCY + ABCY (1) From K-map 

= [ABC(X EB Y)] EB (ABCX) EB (ABCy) 
EB (ABCy) EB (ABCy) (2) By Eq. (3.25) 

= (ABCX) EB (ARCY) EB (ABCX) EB (ABCy) 
EB (ABCy) EB (ABCy) (3) By Eqs. (3.19) 

= [BX{(AC) EB (AC)}] EB [BC{(Ay) EB (AY)}] 
EB [BC{(AY) EEl (AY)}] (4) By Eqs. (3.19) 

= [BX(A EB C)] EB [BC(A 8 Y)] EB [BC(A 8 Y)] (5) By Eqs. (3.25), 
(3.19), (3.4), and (3.5) 

= [BX(A EB C)] EB [(A 8 y)(B EB C)] (6) By Eqs. (3.19) 
and (3.4) 

Notice that in going from step 3 to step 4 the commutative law ofXOR algebra is used. 
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As a second example, consider function I in Fig. 5.2b, which has been extracted in 
max term code. Verification of this function is also accomplished in six steps: 

I = (A + B + X 0 Y)(A + B + X 0 Z)(A + E + Y 0 Z) (1) From K-map 

= (A + B + X 0 Y) 0 (A + B + X 0 Z) 0 (A + E + Y 0 Z) (2) By Eq. (3.26) 

= (A + B + X) 0 (A + B + Y) 0 (A + B + X) 0 (A + B + Z) 
0(,1 + E + Y) 0 (A + E + Z) (3) By Eqs. (3.19) 

= [B + (A + X) 0 (A + X)] 0 [Y + (A + B) 0 (A + En 
0[,1 + Z + (B 0 E)] (4) By Eqs. (3.19) 

= [B + (A + X)(A + X)] 0 [Y + (A + B)(A + E)] 0 [A + Z] (5) By Eq. (3.26) 

= [B + (A EB X)] 0 [Y + (A EB B)] 0 [A + Z] (6) By Eqs. (3.4) 

In going from step 3 to step 4, commutivity was applied before application of Eqs. (3.19). 
Also, in step 4, B 0 E = O. 

5.4 K-MAP PLOTTING AND ENTERED VARIABLE XOR PATTERNS 

At the onset let it be understood that one does not usually hunt for applications of the 
XOR pattern minimization methods described here. It is possible to do this, as the example 
in this section illustrates, but it is more likely that such methods would be applied to 
EV XOR patterns that occur naturally in the design of a variety of combinational logic 
devices. Examples of these include a 2 x 2 bit "fast" multiplier, comparator design, Gray
to-binary code conversion, XS3-to-BCD code conversion, dedicated ALU design, binary
to-2's complement conversion, and BCD to 84-2-1 code conversion, to name but a few, most 
covered in later chapters. EV XOR patterns may also occur quite naturally in the design of 
some state machines as, for example, the linear feedback shift register counters discussed 
in Subsection 12.4.3. 

EV K-map plotting for the purpose of extracting a gate-minimum cover by using XOR 
patterns is not an exact science, and it is often difficult to find the optimum K-map com
pression involving specific EVs, hence specific K-map axis variables. However, for some 
functions it is possible to plot the map directly from the canonical form, as illustrated by 
the example that follows. For some relatively simple functions, the K-map plotting process 
can be deduced directly from the canonical expression. Consider the simple function given 
in canonical code form: 

f(W. X. Y, Z) = Lm(l, 2, 3, 6, 7,8,11,12,13). (5.13) 

Shown in Fig. 5.3 are the conventional (I 's and a's) K-map and the second-order compres
sion (two EVs) K-map derived directly from the conventional K-map. The two-level SOP 
minimum and the multilevel XOR/SOP gate-minimum forms are 

fsop = WXZ + WXy + WYZ + XYZ + WY (5.14) 
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Compressed K-maps for extraction of gate-minimum XOR forms . (a) Conventional K.map for func
tion f in Eq. (5 .13). Second-order compression K-map deduced from K-map in (3) showing XOR 
patterns. (e) Alternative second-order K-rnap. 

,nd 

ixoRlSol' = L(Y $ W)] Ell (X Z) + W Y. (5.15) 

which have gate/input tallies of 6/19 and 5/ 10, respectively. The second-order K-map in 
Fig. 5.3b is deduced from the K-map in Fig. 5.3a by observing That W 0 X exists in the 
y Z = 0 I column, with Wand W located in adjacent Y Z columns. Thus, by t..'1king Y and Z 
as the axis variables and Wand X as the EVs for the compressed K-map, the XOR p:lItcms 
appear, allowing one to easily extract gate-minimum results. 

Notice that the W in the EV K-map of Fig. S.3b must be looped our a second time to 
give the W Y tenn ill Eq. (5 . 15). This is necessary because cover remains in W + X afler 
the associative pattern involving Wand X in cell I has been extracted. That is. only W ffi X 
has been looped out of W + X, making it necessary to cover either W or X a second time. 
This is easily verified by introducing the coordinates of the cell 3 (Y = I , Z = I) inco 
Eq. (5. 15 ). Without the tenn WYthe subfunction W + X cannot be generated. The residual 
cover in W + i can also be looped out of cell 3 by extracting i Y Z and using il in place 
ofWY in Eq. (5. 15). 

Only in one other compressed K-maparc the gate-minimum XOR patterns and Eq. (5. 15) 
results obvious, and that is shown in Fig . 5.3c. In all four othercompresscd K-map possibil
ities, those having axes WI X, XI Z. W 12, and IV I Y .the XOR patterns shown in Figs. 5.3b 
and 5.3c disappear, making a gate-minimum extraction without extensive Boolean manip
ulation very difficull if not impossible. Notice that the comprcs~ed K-map in Fig. 5.3c is 
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easily obtained from that of Fig. 5.3a by introducing the coordinate values for X and Y into 
Fig. 5.3b to obtain the subfunctions in terms of Wand Z. 

For complex functions involving five or more variables, the process of generating a 
gate-minimum result by using XOR EV patterns becomes increasingly more a matter of 
trial and error as the number of variables increases. Again, the application of the EV XOR 
pattern approach to design is left more to the natural occurrence of such patterns than 
it is to the hunt-and-choose method. However, if it is known that XOR patterns occur 
naturally in some functions and if one is familiar with conventional (l's and O's) K-map 
methods for five or more variables, it is possible to deduce a compressed K-map that will 
yield XORISOP or EQVfPOS forms, but that may not necessarily represent gate-minimum 
results. 

To overcome the obvious problem of dealing with complex K-map XOR patterns in 
functions having more the five variables, an algebraic approach can be used, a subject that 
is discussed at length in the remaining sections of this chapter. 

5.5 THE SOP·TO·EXSOP REED-MULLER TRANSFORMATION 

A generalization of Corollary I (Subsection 3.11.1) can be expressed in canonical form as 

2H~1 

FI1 (xo, XI,···, Xli_I) = L(m;. f) 
i=O 

2'1 -1 

= E9(mi . Ii) 
i=O 

where the 2" mi represent minterms read in minterm code, and the fi represent their 
respective coefficients whose values derive from the binary set {O, I}. The mi symbols 
represent minterms that are, by definition, mutually disjoint, since only one minterm can be 
active (logic I) for the same values of inputs. For this reason, it is permissible to interchange 
the OR and XOR operators as in Eq. (5.16). Thus, Eq, (5.16) expresses a transformation of 
an SOP expression to an EXSOP (EXclusive OR-sum-of-products) expression. Notice that 
if all it are logic I, then Fn = I, 

By setting Xi =Xi EB 1, all Xi are eliminated from the EXSOP form of Eq. (5.16) and a 
function of positive polarity results. Then after considerable Boolean manipulation involving 
multiple applications of the XOR form of the distributive law given by Eqs. (3.19), the 
EXSOP expression of Eq. (5.16) is recast as the Reed-Muller expansion in the EXSOP 
form 

FII(xo, XI, •.. ,XII-I) = go EB gIX,,_1 EB g2XI1~ 2 EB g3X/1-2 XI1-1 

EB g4XI1-3'" EB g2"-I XOXI ••. XII-I, (5.17) 

where the gi are called the Reed-Muller (R-M) coefficients for a positive polarity 
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(uncomplemented fi) R-M expansion (PPRME). Each R-M coefficient is the set 

gi =ffih (5.18) 
j<;i 

obtained from the subnumbers of i by replacing m l's with O's in 2m possible ways in the 
binary number corresponding to decimal i: 

go =fo 

gl = EBf(l, 0) = fl EB fo 

g2 = EBf(2, 0) = 12 EB fo 

g3 = EBf(3, 2, 1,0) = h EB 12 EB fl EB fo 

g4 = EBf(4, 0) = f4 EB fo 

gs = EBf(5, 4,1,0) = fs EB f4 EB fl EB fo 

2"-1 

g2"-1 = ffifi. 
;=0 

.. ·000 

.. ·001·· ·000 

···010···000 

.. ·011···010···001···000 

···100···000 

.. ·!Ol··· 100·· ·001·· ·000 

Note that any g; in Eq. (5.18) is 1 if an odd number of f coefficients are logic I, but is 
o if an even number of f coefficients are logic 1. If a Kamaugh map (K-map) of FIl is 
available, the values for the g; are easily determined by counting the I 's in the map domains 
defined by the O's in the binary number representing i in gi. For example, the value of gs 
is found by counting the I's present in the XOX2 domain for a function F4 = (XOXIX2X3). 

Thus, gs = I if an odd number of l's exists or gs = 0 otherwise. Similarly, to determine 
the logic value for g8 one would count the number of l' s present in the x I x 2X 3 domain for 
the same function, etc. All terms in the PPRME expansion whose g coefficients are logic 0 
are disregarded. 

5.6 THE POS-TO-EQPOS REED-MULLER TRANSFORMATION 

The dual of Eqs. (5.16) is the generalization of Corollary II (Subsection 3.11.1) and is 
expressed as 

2"-1 

FIl(xo, XI, X2,···, xll-d = n (M; + fi) 
;=0 

211-1 

=O(M; +f;) 
;=0 

= (Mo + fa) 0 (MJ + fl) 0 (M2 + h) 

0"'0(M2"-1 +h-d, (5.19) 
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where the 2" Mi in Eq. (5.19) represent max terms read in maxterm code, and the Ii repre
sent their respective coefficients whose values derive from the binary set to, l}. The 211 Mi 
maxterms are mutually disjoint since only one maxterm can be inactive (logic 0) for the 
same values of inputs. For this reason it is permissible to interchange the AND and EQV 
operators in Eq. (5.19). Thus, Eq. (5.19) expresses the transformation of a POS expres
sion to an EQV-product-of-sums (EQPOS) expression. Note that if all Ii are logic 0, then 
Fn =0. 

Setting Xi = i i 0 0 eliminates all Xi from Eq. (5.19), resulting in a negative polarity 
expression for the function FII , which is simplified by multiple applications of the EQV 
form of the distributive law given by Eqs. (3.19). The result is the Reed-Muller expansion 
in the EQPOS form 

FII(xo, Xl, X2, ... ,XII-I) = go 0 (gl + XII-I) 0 (g2 + XII -2) 0 (g3 + Xn-2 + XII-I) 

0(g4+Xn-3)0 .. · o (g2"-1 +XO+Xl + ... +Xn-I) 

(5.20) 

where the gi are now the R-M coefficients for an EQPOS (negative polarity) R-M expansion. 
Each EQPOS R-M coefficient is the set 

(5.21) 

obtained from the subnumbers of i by replacing m 1 's with O's in 2'" possible ways in the 
binary number corresponding to decimal i, as in Eq. (5.18). Thus, the array of gi for an 
EQPOS expansion is the same as that for an EXSOP expansion except that the EB operator 
is replaced by the 0 operator. In Eq. (5.21) any gi is 0 if an odd number of I coefficients are 
logic 0, but is 1 otherwise. Again, the use of a K-map can be helpful in obtaining the values 
by counting the O's within a given domain similar to the procedure explained earlier for the 
case of the EXSOP expansion. Thus, any gi is 0 if an odd number ofO's exist within a given 
domain defined by the O's in the binary number. All terms in the R-M EQPOS expansion 
whose g coefficients are logic 1 are ignored. 

5.7 EXAMPLES OF MINIMUM FUNCTION EXTRACTION 

In this section two examples of minimum function extraction are presented that bear the 
same relationship to each other as do the conventional and EV K-map methods - that is, 
one is based on canonical forms (conventional method) while the other is equivalent to the 
use of entered variables in K-maps (called the CRMT method). 

A SIMPLE EXSOP EXAMPLE Consider the function 

F3 = ABC + AS + AC = Lm(3, 4, 5, 6) 

= EB m(3, 4, 5, 6), (5.22) 
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where, for this example, f, = f4 = f, = f6 = 1 and fo = f, = fz = 17 = O. Therefore, 
the gi are found as follows: 

go = fa = 0 

g, = EBf,(1, 0) = 0 

g2 = ffifz(2, 0) = 0 

g3 = ffif,(3, 2,1,0) = 1 

g4 = EBf4(4, 0) = 1 

g5 = EBfs(5, 4,1,0) = 0 

g6 = ffif6(6, 4, 2, 0) = 0 

g7 = ffih(7-0) = O. 

Here, the notation (7-0) means (7, 6, 5, 4, 3, 2, 1,0). From Eq. (5.17) the result is an exact 
minimum given directly as 

(5.23) 

which is a much simplified result compared to the original function and has a gate/input 
tally of 2/4. This function is said to be a positive polarity R-M expression or PPRME. 

The same result is achieved, but with less effort, if the variables of function F3 are 
partitioned into two distinct sets: a disjoint set of bond variables (called the bond set) and 
a free set of variables (called the free set), both chosen from the set {A, B, C} and recast 
into a contracted (reduced) form for application of Eqs. (5.16) and (5.17). Here, {A, B} 

is chosen as the bond set to be coupled with the remaining (orthogonal) free set, {C}. In 
this particular case, any combination of bond and free sets would achieve the same desired 
result with equal ease. When a function is recast into bond and free sets it is said to be in a 
contracted Reed-Muller transformation (CRMT) form. For this example, the CRMT form of 
function F3 is 

FAB = (A B)C + (AB) + (AB)C = (AB)C EB (AB) ffi (AB)C 

= (AB)fo ffi (AB)f, ffi (AB)fz ffi (AB)f, 

= go ffi Bg i ffi Ag2 ffi ABg3, (5.24) 

where the subscript in FAB identifies the bond set {A, B}. Notice that use was made of 
ABC + ABC = AB and that all terms of the bond set are mutually disjoint. Now, the 
f coefficients are fa = 0, f, = c, fz = 1, and f, = C. Therefore, the resulting CRMT 
coefficients become 

go=fo = 0 g2 = fz EB fa = 1 

g, = fl EB fa = C g3 = f, ffi fz ffi f, ffi fa = C ffi 1 ffi C ffi 0 = O. 

Introducing these coefficients into the CRMT expression gives the result 

as before. 

F2 = go ffi Bg, EB Agz ffi ABg3 

= 0 EB BC EB A ffi 0 

= BC ffi A (5.25) 

This simple example has been given to illustrate the application of the CRMT method of 
function minimization. The examples that follow are designed to establish the foundation 
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(a) Conventional K-map for function Z. (b). (c) Compressed EV K.maps for function Z representing 
bond sets IA. HJ and {A. C) showing min imum cover by using XOR.type pauems. 

for a tractable CRMT minimization procedure, one that is suitable for classroom (or pencil
and-paper) application. 

A MORE COMPLEX EXSOP EXAMPLE Consider the function and its canonical R-M 
transfonnation 

Z~(A, B. c. D) = Lm(l , 2. 4, 6. 7. 8, 9. 10. J5) 

~ EBm( 1.2 . 4 . 6 . 7.8.9.10.15) . (5 .261 

In Fig. 5.4a is shown the conventional K-map for function Z. In Figs. 5.41l and 5.4c are 
shown the second-order compressed K-maps of function Z for bond sets IA. BI and lA, C). 
respectively. which are representative of the six possible bond sets for two variables. 

Considering first the bond set fA. Bf. as depicted in Fig. 5.4b. and noting that [he cell 
entries are the j coefficients, the function 24 is recast into the following CRMT fonn: 

Z,.,/J = (.48)/1, $ (A8)/1 EEl (AR )/ l $ (A8)h 

~ (AR~C al D) al (A B)(C + D) al (ARlie + D) al I AD)CD 

= 8fl$ Bg i $ Agz $ ABg~ 

for wroch the CRi\1T coefficients are 

8o=/fl=C $ D 

(5.27) 

8' =$/(1. 0) = (C + D) $C $ D = CD$C ffi D = CDffi D = (; fBCD = I \BCD 

81=EElj(2, 0) = (C + D) EEl C $ 0 = CD $C $ D = CD ffi D = CD 

83=$/(3.2.1,0) = CD GJ(C + D) GJ 1 EEl CD = CD$CD$OGJCD = CD. 
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where use has been made of the XOR form of Eqs. (3.31), and the XOR DeMorgan identities 
given in Eqs. (3.27) from which, for example, there results (C + D) EB C = CD EB C in 
gl. Introducing these coefficients into Eq. (S.27) and simplifying by using the XOR form 
of Eqs. (3.30) gives the minimum result 

ZAB = C EB D EB B EB BCD EB ACD EB ABCD 

= B EB C EB D EBACD EB.4.BCD, 

which is a three-level function with a gate/input tally of 6/1S. 

(S.28) 

Repeating the same procedure for Fig. S.4c and bond set {A, q, the function Z is recast 
into the CRMT form 

~c=~~hEB~q~EB0~hEB0qh 

= (.4.C)(B EB D) EB (.4.C)(B + D) EB (AC)B EB (AC)(B EB D) 

= go EB gl C EB g2A EB g3AC, (S.29) 

where the g coefficients become 

go = B EB D 
- - - - -

gl = (B + D) EB B EB D = BD EB B EB D = BD EB D = B EB BD = I EB BD 
- -

g2 = B EB B EB D = D 

g3 = B EB D EB B EB 1 EB BD = D EB BD = BD. 

Then by introducing these g coefficients into Eq. (S.29) and simplifying with the XOR form 
of Eqs. (3.30), there results the exact minimum 

ZAC = B EB D EB BCD EB CD EB AD EB ABCD 

= B EBAD EB CD EBABCD, (S.30) 

which is a three-level function with a gate/input tally of 6/14 excluding possible inverters. 
The results for ZAB and ZAC are typical of the results for the remaining four two-variable 

bond sets {C, D}, {B, D}, {A, D}, and {B, q. All yield gate/input tallies of6/140r6/1S and 
are three-level functions. Thus, in this case, the choice of bond set does not significantly 
affect the outcome, but the effort required in achieving an exact minimum may vary with 
the choice of the bond set. No attempt is made to use single- or three-variable bond sets for 
function Z. 

A comparison is now made between the CRMT minimization method and other ap
proaches to the minimization of function Z. Beginning with the canonical R-M approach 
and from Fig. S.4a, the I coefficients easily seen to be 

11= h = 14 = 16 = h = Is = h = 110 = III = 114 = 115 = I and 

10 = h = 15 = 112 = 113 = O. 
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Then from Eq. (5.16) the R-M gi coefficients are evaluated as follows: 

go = /0 = 0 

gl = EEl/(l, 0) = 1 

g2 = EEl/(2, 0) = 1 

g3 = EEl/(3, 2,1,0) = 0 

g4 = EEl/(4, 0) = 1 

gs = EEl/(5, 4,1,0) = 0 

g6 = EEl/(6, 4, 2, 0) = 1 

g7 = EEl/(7 - 0) = 1 

gs = EEl/(8, 0) = 1 

g9 = EEl/(9, 8,1,0) = 1 

glO = EEl/(lO, 8, 2, 0) = 1 

gll = EEl/(ll - 8, 3 - 0) = 1 

gl2 = EEl/(l2, 8, 4, 0) = 0 

g13 = EEl/(l3, 12,9,8,5,4,1,0) = 0 

gl4 = EEl/(l4, 12, 10,8,6,4,2,0) = 1 

gls = EEl/(l5 - 0) = 1. 
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Note that the gi coefficients are immediately realized by counting 1 's within the domains 
of the conventional K-map shown in Fig. 5.4a. Thus, gl3 = 0 since an even number of l's 
exist in the C domain (determined from 1101), or g9 = 1 because an odd number of l's 
exist in the BC domain (from 1001). Disregarding the g = 0 coefficients, there results the 
positive polarity R-M expression and its simplified mixed polarity form 

Z4 = Dgi EEl Cg2 EEl Bg4 EEl BCg6 EEl BCDg7 EEl Ags EEl ADg9 EEl ACgJO EEl ACDg l1 

EEl ABCg l4 EEl ABCDg l 5 

= D EEl C EEl B EEl BC EEl BCD EEl A EEl AD EElAC EEl ACD EEl ABC EElABCD 

= D EEl C EEl B EEl BCD EEl AD EEl ACD EEl ABCD 

= B EEl C EEl D EElACD EElABCD, (5.31) 

which is a three-level function having a gate/input tally of 6/15 excluding possible inverters. 
The function in Eq. (5.31) is seen to be the same as that in Eq. (5.28), but it is not an exact 
minimum. Here, multiple applications of the XOR identities in Eqs. (3.30) have been applied 
to excise terms. 

Other comparisons are now made between the CRMT method and the EV K-map and 
conventional K-map methods presented in Sections 4.6 and 4.4. From Figs. 5.4b and 5.4c, 
the minimum cover extraction by using XOR type patterns (shown by loops) gives 

ZKmapAB = B(C EEl D) + D(A EEl B) + BCD (5.32) 

and 

ZK.mapAC = (BC) EEl (AD) + C(B EEl D) (5.33) 

representing three-level functions with gate/input tallies of 6/14 and 6/12, respectively, 
excluding possible inverters. The function ZK.mapAC is a gate/input-tally minimum for 
function Z. The results in Eqs. (5.32) and (5.33) are hybrid forms classified as mixed 
AND/OR/EXSOP expressions. The two-level SOP minimum, obtained from Fig. 5.4a, 
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offen; another comparison and is 

z = nCD + ABb + BCD + BCD + ABt (S.34) 

with a gate/input {ally of 6/ 20. again excluding inverters. 
Comparing the results for the four methods used to minimi7.c function Z given by 

Eqs. (5.28) through (5.34), it is clear that the CRMT results in Eqs. (5 .28) and (5.30) are 
compelilive with the other methods. However, only the CRMT result in Eq. (5.30) is an exact 
EXSOP minimum result As will be demonstrated furthe r by other examples. the CRMT 
and EV K-map methods of minimization tend to yield results that are typically competitive 
with or more optimum than those obtained by the o ther methotis, including computerized 
two-level resuils. These observations are valid for relatively simple expressions amenable 10 
classroom methods. No means are yet available for making a fa ifcomparison or the CRMT 
approach with related computer algorithmic methods. 

AN EQPOS EXAMPLt: Consider the four variable function G and its canonical R·M 
transformation 

G(W. X, Y. Z) ~ n M(O. 1, 6,7. 8.10.13 , IS ) ~ 0 M (O. 1.6.7.8. 10.13. I S), 

(S.3S) 

which follows from Eqs. (5. 19). Thc convCnlional (J's and O's) K·map for thi s function 
is shown in Fig. 5.5a. Begin with tht: CRMT minimization method applied to bond set 
{w, Xl as depicted in Fig. 5.5b. which is a second·order compres5ion of the func tion G. 
From Eqs. (5.20) and (5 .2 1) and for bond SCI I \v' XI. this function is represented in the 

w x 
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FIGURE SOS 
(a) Conventional K. map for function G. (hJ. (c ) Compressed EV K-maps of fuoction for bond sets 
IW. Xl and If. Z) showinl[ mmimumcovcr by using XOR-lype pallems. 
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negative-polarity CRMT fonn 

G wx (W +X + /0)0(W + X + /1)0CW + X + h)0CW + X + 13) 

(W + X + Y) 0 (W + X + 1') 0 (lV + X + Z) 0 (W + X + 

which are read in maxtenn code. From Eq. (5.21) the g coefficients become 

go= Y g2=Z0 Y 

gl 1'0 Y = 0 g3 = Z 0 i 0 0 = 1. 
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(5.36) 

Introducing these coefficients into Eq. (5.36) yields the absolute minimum EQPOS 
expression 

Gwx Y 0 X 0 eW + Z 0 Y) 

= YO X 0 (lY + Y) 0 (lY + Z) 

= X 0(W + Y)00V + Z) 

that is seen to be a three-level function with a gate/input tally of 4/8. 

(5.37) 

The CRMT minimization process is repeated for the bond set {Y, Zl as depicted in 
Fig. 5.5c. The CRMT expression now becomes 

Gyz (Y + Z + go) 0 (Y + i + g]) 0 (1' + Z + g:!) 0 (1' + Z + g3) 

(Y + Z + X) 0 (Y + Z + W 0 X) 0 0' + Z + W 0 X) 0 (1' + i + X) 

go 0 + g] )ei; + g2)(1' + i + g3) (5.38) 

for which the g coefficients are found to be 

go = /0 X 

g] = 0/(1, 0) = W 0 X 0 X = lY 
g2=0/(2,0) = WOX0X= W 

g3 0/(3,2,1,O)=XOW0XOW=I, 

where use is made of gl = 0/(1,0) ::::: W in the last tenn for g3. Then. introducing these 
coefficients into Eq. (5.38) gives the absolute minimum result 

- - -
G yZ = X 0 (W + Z)O(W + y), (5.39) 

which is again a three-level function with a gate/input tally of 4/8, inverters excluded. 
The same result is, in this case, obtained by minimizing a canonical R-M expansion of 

Eq. (5.35), which becomes 

G4 (W, X, Y, Z) OM(O, 1,6,7,8,10,13,15) 

go 0 (MI + gl) 0 (M2 + g2) 0 (M3 + g3) 0 ... 0 (MIS + gI5)' 
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From the conventional K-map in Fig. S.Sa and counting O's within a given domain, the g 

coefficients are found to be go = g2 = g4 g9 glo = 0 with all the rest being logic 1. 
Introducing these values in the R-M expansion gives the minimum result 

as before in Eq. (S.39). 

G4 00 f 0 X 0 (W + .2) 0 CW + f) 

00 X 0 (W + .2) 0 (W + f) 

= X 0 (W + Z) 0 (W + Y), (S.40) 

The result previously obtained for Gyz can also be obtained by using the CRMT approach 
in a somewhat different way. The plan is to obtain the result for the SOP CRMT expansion 
("for the O's") and then complement that result to produce the EQPOS CRMT expansion 
form. Complementing each of the four EV cell entries in Fig. S.Sb gives 

Gyz(EPOS) = (YZ)X + (YZ)(W EB X) + (y.2)(w EB X) + (YZ)X 

= go EB Zg I EB Y g2 EB YZg3, 

with g values 

go= fo = X g2 = EBf(2, 0) 

gl = EBf(1, 0) = WEB X EB X = W g3 = EBf(3 0) 

(S.4l) 

0, 

where use is made of gl = EBf(l, 0) = W in the last term for g3. Introducing these values 
into Eq. (S.4l) gives 

Gy-AEPOS) = X EBZWEB YW, 

resulting in the EQPOS expression 

GyZ = X EB ZW EB YW 

= X 0 (W + .2) 0 (W + f), (S.42) 

where an odd number of complementations (operators and operands) have been performed 
to complement the function. Notice that the f coefficients are also the complements of 
those required for the EQPOS expansion, as they must be, since the cells of the EV K-map 
in Fig. S.Sb were complemented. 

It is interesting to compare the results just obtained for G with those read from the EV 
K-maps in Figs. S.Sb and c, and with two-level POS minimization. Following the procedure 
given by [3, 4J, the results for G wx and GIL are read directly in maxterm code from the 
K-maps (see K-map loopings) as 

GK.map WX = [W + (X EB Y)][(W + (X EB Z)] (5.43) 
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and 

GK.map YZ = [W + (Y 0 Z)] 0 (X EB Z)] (5.44) 

with gate/input tallies of 5/10 and 4/8, respectively. Note that reading a K-map in maxterm 
code requires that the domains (not the entered variables) be complemented, since the 
K-maps are minterm-code based [3]. In comparison, the two-level minimum result from 
Fig. 5.5a is 

G = (W + X + Y)(W + X + Y)(W + X + Z)(W + X + Z), (5.45) 

which has a gate/input tally of 5/16 excluding possible inverters. 
Notice that all CRMT minimization results, the canonical R-M minimization result, and 

one EV K-map result for G all represent three-level functions with minimum gate/input 
tallies of 4/8 (excluding possible inverters). In comparison, the best two-level result that can 
be obtained for G yields a gate/input tally of 5/16, again excluding inverters. Notice also 
that the two-level result requires that four s-terms be ANDed in the output stage, whereas 
all other results mentioned earlier have a fan-in limit of two. Increased fan-in can slow the 
throughput of a circuit, particularly in CMOS, as was discussed in Subsections 3.6.2 and 
3.6.3, and in Section 4.10. 

5.8 HEURISTICS FOR CRMT MINIMIZATION 

A given minimization method can yield a guaranteed exact minimum for a function if, and 
only if, an exhaustive search is carried out. Applied to the CRMT method this involves 
finding the optimum (bond set)/(free set) combination for the optimal reduction process 
of minimization required by the CRMT method. As the number of inputs to a function 
increases, the task of performing an exhaustive search becomes more difficult, eventually 
requiring computer algorithmic means. Even then, an intractable problem eventually ensues 
when the number of inputs becomes excessively large for the minimization algorithm used. 
When this happens, the minimization problem is known to be NP-complete (see Section 
4.11). 

Fortunately, variation in the choice of bond set for CRMT minimization often results in 
little or no difference in minimum gate/input tally for a minimized function. However, the 
effort required to achieve a minimum result may vary considerably with bond set choice. 
Thus, if a guaranteed absolute minimum is not required, alternative choices of bond set 
should yield an acceptable minimum, but with some limits placed on the number of bond set 
variables. By the pencil-and-paper method this means that for practical reasons the number 
of bond set variables should not exceed four for most applications of the CRMT method. 
The limit on the total number of variables is placed between eight and twelve depending on 
one's ability to use entered variables. In any case, experience in the application of the laws 
and identities of XOR algebra is an invaluable asset in achieving a minimized result. 

Given these preliminary comments, the following procedure should be helpful in apply
ing the CRMT "hand" minimization method to functions of 12 variables or less: 

Step 1. Choose a bond set and construct an entered variable (EV) K-map with the K
map axes as the bond set. The starting point in this process can be a canonical SOP or 



218 CHAPTER 5/ FUNCTION MINIMIZATION 

POS expression, a conventional (1's and O's) K-map, or a truth table. The cell subfunctions 
of the EV K-map become the Ii coefficients in the CRMT fonn of Eq. (5.16) or (5.19). 
Thus, the entered variables make up the free set. As a caveat, try to avoid bond sets that 
generate I coefficients like· .. Z(X + Y) .. . , since such coefficients do not produce simple 
g coefficients. Note that an EV truth table, such as that in Fig. 8.26, will also suffice for the 
purpose of the CRMT minimization method if the table-heading variables are taken as the 
bond set variables. 

Step 2. For the choice of bond set used, obtain a set of minimum CRMT gi coefficients 
from Eq. (5.18) or (5.21) by using the EV K-map cell entries as the Ii coefficients and by 
applying Eqs. (3.19). If alternative minimum expressions exist for a given g coefficient, 
choose among these for the "best" one in consideration of steps 3 and 4 that follow. Thus, 
if an exact minimum result is required for a given bond set, an exhaustive search for an 
optimum g set must be carried out. 

Step 3. Recast the function in positive or negative CRMT fonn by using the g set from 
step 2 in Eq. (5.17) or (5.20). 

Step 4. Reduce the results of STEP (3) by applying the laws and identities given by 
Eqs. (3.19) and (3.27)-(3.33). Keep in mind that identical EXSOP terms in the fonn ... EB 
X Ef7 X Ef7 ... or EQPOS terms in the form· .. 0 X 0 X 0 ... can be excised immediately 
in their respective CRMT expressions. 

Step 5. If an exact minimum result is required, an exhaustive search must be carried 
out by repeating Steps (1) through (4) for all possible bond sets. As a practical matter for 
penci1-and-paper application of the CRMT method, the exhaustive search process should not 
be conducted on functions exceeding five variables. For example, a five-variable function 
would have to be partitioned into 10 two- or 10 three-variable bond sets in addition to the 
partitioning for the remaining bond sets. Of course, if an exact minimum is not required, 
most any choice of CRMT bond set will yield an acceptable minimum for many applica
tions - one that may even be a near-exact minimum. 

Step 6. Don't cares, if present, must be considered during the bond set selection process. 
This is usually done with the intent of reducing the complexity of the CRMT g coefficients, 
if not optimizing them. It is often the case that simple I coefficients (EV K-map cell entries 
such as 0, 1, X, or X EB Y) yield simple g coefficients that lead to near-exact minimizations. 
In any case, the presence of don't cares will complicate considerably an exhaustive search 
process. 

Step 7. If more than one function is to be optimized, the procedure is to set up the 
CRMT fonns separately as in steps 1-5 and then follow a systematic reduction process for 
each, taking care to use shared tenns in an optimal fashion. 

5.9 INCOMPLETELY SPECIFIED FUNCTIONS 

Consider the five-variable function 

I(a,b,c,d,e)= Lm(l,3,4,6,9, 10, 12, 13, 18,21,23,25) 

+ ¢(O, 8,11,14, 15, 16,24,26,27,29,30,31), (5.46) 

where ¢ is the symbol representing don't cares (nonessential minterms). Shown in Fig. 5.6a 
is the conventional K-map for this function and in Fig. 5.6b its second-order EV K-map 
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FICURE 5.6 
K-maps for the nve-variable fUl1\:tion f given in Eq. (5.46). (a) Conventional K-map array for bond 
set la. bl . (b) Third·order compression of function f for bond set la. bl showing minimum cover by 
using the adjacent XOR pattern in ma10term code. 

(third-order compression) for bond set {a, bl. Recasting this function into the CRMT fonn 
of Eqs. (5.16) and (5. 17) gives 

f,lb = libfa (J) libfJ ED abh (J) abh 

= lib(c!B e)!B lib!B ab(c @i)(J)abe 

= go $ bg J $ agl E9 abg) (5.47) 

with g values 

go=cme 82=c$iffie$e= I 

gJ = I EB effie = E E9 e = cElli 8J = e ffie ffi i E9 e ffi i = e. 

Here, doo't cares are set as 4>0 = t/>!4 = 41!6 = 4130 = 0 with the remainder equal to 
logic I. Introducing the values imo Eq. (5.47) and simplify ing yields the mixed polarity 
result 

Jab = c Ell e Ell bE ffi bl! ffi a ffi a be 

= a ffi effie EEl be ffi iibe 

=0 tIl e $ (b + c) ~ abe 

=a$iEBbcEEl iibe. (5.48) 
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which is a three-level minimum with a gate/input tally of 5/11 excluding possible inverters. 
No attempt is made to examine bond sets other than {a, b}. Consequently, Eq. (5.48) cannot 
necessarily be regarded as an exact minimum. 

The EQPOS CRMT form for bond set {a, b} is obtained from Eqs. (5.20) and (5.21) and is 

(5.49) 

for which the g coefficients are 

go = c EEl e = c 8 e g2 = c EEl e 8 c EEl e = 0 

g, = 1 8 (c 8 e) = c 8 e = c 8 e g3 = e 8 e 8 c 8 c 8 e = e .. 

After introducing these coefficients into Eq. (5.49) there results the mixed polarity CRMT 
result 

jab = c 8 e 8 (b + c 8 e) 8 a 8 (a + b + e) 

= a 8 e 8 c 8 (b + c) 8 (b + e) 8 (a + b + e) 

= a 8 e 8 (b + c) 8 (a + b + e). 

This is a three-level EQPOS minimum with a gate/input tally of 5/11. 

(5.50) 

Now it is desirable to compare the CRMT minimum forms of Eqs. (5.48) and (5.50) 
with the EV K-map and two-level results. Reading the loops of Fig. 5.6b in maxterm code 
(or the submaps in Fig. 5.6a) gives 

h-map = (b + a EEl c EEl e)(a + b + e), (5.51) 

which is a four-level function having a gate/input tally of 5/11 excluding possible inverters. 
By comparison, the computer-minimized two-level POS minimum result is 

jpos = (a + b + c + e)(a + b + c + e)(a + c + e)(a + b + c + e) (5.52) 

and has a gate/input tally of 5/19. The SOP minimum result (not shown) has a gate/input 
tally of 7/22. No attempt is made to minimize function j by the EXSOP minimization 
approach, which is best accomplished by computer algorithmic means. 

Figure 5.6 illustrates how the CRMT method can be applied to a five-variable function 
having a two-variable bond set, {a, b} in this case. Shown in Fig. 5.7a is the conventional 
K-map array suitable for an eight variable function F having the bond set {w, x, y, z}, and in 
Fig. 5.7b its fourth-order compression, also for bond set {w, x, y, z}. These K-map formats 
also suggest a means by which functions with more than eight variables can be minimized 
by the CRMT method, providing one can deal with EV K-maps within EV K-maps. Large 
numbers of don't cares would greatly reduce the complexity of the K-map cell entries (and 
hence j coefficients) in Fig. 5.7b. 
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5.10 MULTIPLE OUTPUT fUNCTIONS WITH DON'T CARES 

The problem of selecting an optimum bond set is further complicated by the presence of 
don', cares in muhiple ompul systems. Applicalion of the CRMT minimization procedure 
given earlier 10 such systems is il lustrated by minimizing the following two four-variable 
functions containing don', cares: 

F(A , B . C, D) = L: mO. 6, 8. 9. 12, 15) + cP(I , 4, 5, II) 

, nd (S.S3) 

H (A . B , c. D ) = L m(1, 4. 7.10. 12, 13) + ~(2. S. 6. 8. 11 . IS). 

The conventional fourth-order K-maps for fu nctions F and H are shown in Fig. 5.8a. 
The don', cares are so chosen as to best meet the requirements of the CRMT minimization 
procedure fo r both fu nctions. but with no guarantee of a two-function optimal result. The 
bond sets arc arbitrarily chosen to be {C. 0\ ilnd lA, 81 . respectively. for fu nctions F and 
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H, and their canonical SOPIEXSOP transformations now become 

F = L m(3, 5, 6, 8, 9, 12, 15) = EB (3,5,6,8,9, 12, 15) 

and (5.54) 

H = L m(l, 2,4,7,10, 11, 12, 13) = EB m(l, 2, 4, 7,10,11,12,13). 

Here, for function F, the don't cares are choosen to be <p] = <P4 = <P11 = 0 and <P5 = 1. 
For function H the don't cares are assigned the values <P5 = <P6 = <P8 = <P]5 = 0 and 
<P2 = <p]] = 1. The don't-care values are chosen in agreement with STEP (6) of the heuristics 
for CRMT minimization given previously. Thus, the CD columns and the AB rows have 
simple subfunctions of the type X and X EB Y to improve chances for an optimum result. 

Function Fin Eqs. (5.53) is now recast as the contracted CRMT form 

FeD = (CDfo) EB (CDft) EB (CDh) EB (CDh) 

= (CD)A EB (CD)(A EB B) EB (CD)AB EB (CD)(A EB B) 

= go EB Dg] EB Cg2 EB CDg3 

for bond set {C, D} and with CRMT coefficients 

go=A g2 = AB EB A = 1 EB AB 

g] = A EB B EB A = B g3 = A EB B EB AB EB B = ,113. 

Introducing these coefficients into Eq. (5.55) gives the minimized result for FeD 

FeD = A EB BD EB C EB ABC EB ABCD 

= A EB C EBBD EBABCD. 

Following the same procedure for function HAB , there results 

HAB = (AB fo) EB (AB!J) EB (AB h) EB (AB h) 

= (AB)(C EB D) EB (AB)(C EB D) EB (AB)C EB (AB)C 

= go EB Bg 1 EB Ag2 EB ABg3 

(5.55) 

(5.56) 

(5.57) 

for bond set {A, B}. From Fig. 5.8b and Eq. (5.18), the CRMT g coefficients become 

go=C EB D 

gl = C EB DEB C EB D = 1 

g2 = C EB C EB D = D 

g3 = C EB C EB I = 0, 

which, when introduced into Eq. (5.57), give the absolute minimum result 

HAB = C EB D EB B EB AD 

=CEBBEBAD. (5.58) 
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The two CRMT optimized functions are now expressed together as 

{
FeD = A ffi C ffi B!? ffi ABCD j , 
HAB = C ffi B ffiAD 

(5.59) 

representing a three-level system with a combined gate/input tally of 8/18, but with no 
shared terms. 

A comparison is now made with other approaches to the minimization of these functions. 
The EV K-map minimum results read directly from the cover (shown by the loopings) in 
Figs. 5.8b are 

{ 

FK-map [A 0 C 0 ~jj + D)](B + C + D)j , 
HK-map = B EB C ffi AD 

(5.60) 

representing a three-level system having a gate/input tally of 8/17 with no shared terms. 
Notice that function F is extracted (looped out) in maxterm code, whereas function H is 
extracted in minterm code. The computer-optimized two-level SOP result is 

{ 
F =~C~ +~~D +~CD + ~Dj, 
H =BCD+ACD+AB+BC 

(5.61) 

with a total gate/input tally of 10/29 excluding possible inverters. 
For further comparison, these two functions are minimized together as a system by using 

canonical R-M forms. As a practical matter, an exhaustive search is not carried out on the 
choice of don't cares and, consequently, an exact EXSOP result cannot be guaranteed. 
However, a few trial-and-error attempts at minimization indicate that an exact or near-exact 
result is obtained for function F if all l!>'s are taken as logic I, but that for function H the 
don't-care values are taken to be the same as those used by the CRMT method. Therefore, 
from the conventional K-maps in Fig. 5.8a there result the following canonical R-M forms: 
For F the R-M coefficients are 

gl=84=g5=g7=g8=g9=glO gIl gl2 1, 

and for H they are 

gl = g2 = 84 = 89 = 1. 

Introducing the g values for functions F and H into Equation (5.17) separately gives 

F = D EB B EB BD EB BCD EB A EB AD EB AC EB ACD EB AB 

=AD EB ACD EB BCD EB A EBAB EB B 

=AD EBACD EB BCD EBAB ffi B (5.62) 
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for function F and 

H = D EB C EB B EB AD = AD EB C EB B (5.63) 

for function H. Then, combining an optimum set of shared EXSOP terms results in the 
expressions 

I
F = rB EB~D] EBAB EBACD EBBeD). 

H = [B EB AD] EB C 
(5.64) 

This is a four-level system having a total gate/input tally of 9/20, including shared term 
B EBAD. 

Comparing results in Eqs. (5.60), (5.61), and (5.64) with thoseforthe minimized CRMT 
forms in Eqs. (5.59) clearly shows that the CRMT method is competitive with the K-map and 
two-level minimization methods and illustrates the advantage of simplicity that the CRMT 
minimization approach has over that of the EXSOP minimization as a pencil-and-paper 
method. 

5.11 K-MAP SUBFUNCTION PARTITIONING FOR COMBINED CRMT 
AND TWO-LEVEL MINIMIZATION 

Any function can be partitioned in a manner that permits it to be minimized by a combination 
of the CRMT and two-level methods. Function partitioning for this purpose is best carried out 
within an EV K-map, hence subfunction partitioning. This partitioning process is significant 
because with K-map assistance it makes possible the selection of the most tractable (if not 
optimal) parts of a function for the combined two methods of minimization. This can be 
of great advantage for a multioutput function where shared term usage is important. There 
still remains the problem of knowing what is the "best" choice of function partitioning for 
optimal results. An absolute minimum result in the CRMT approach not only would require 
an exhaustive search of the best CRMT bond set minimum, but must be accompanied by 
an exhaustive two-level search. This is no easy task except for, perhaps, relatively simple 
functions. However, if an absolute minimum result is not sought, there may exist a variety 
of ways in which a given function can be partitioned without significant change in the 
cost (complexity) of the resulting minimized function. In any case, the combined minimum 
forms are classified as partitioned EXSOP/SOP forms or their dual EQPOS/POS. 

As a simple example ofK-map function partitioning, consider function ZAC in Fig. 5.4c. 
Here, the literal 15 in cell 1 (see dashed loop in domain A C) is separated out to be later 
ORed to the CRMT solution as the EPI A CD. After removal of the literal 15, the CRMT g 
coefficients become 

- -
go = B EB D g2 = B EB B EB D = D 

g] = B EB B EB D = D g3 = B EB 15 EB B EB D = O. 

Introducing these coefficients into Eq. (5.29) and adding the two level result ACD yields 
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FIGURE 5.9 
Combined CRMT and two-level minimization of a two-output system of six variables. (a) Third-order 
compression of function FI, (b) third-order compression of function F2. 

the minimum result 

[863 D 63 CD 63 AD] +ACD, 

[863 CD 63 AD] +ACD, (5.65) 

where ZAC is now a four-level function with a gate/inputtally of 6/13. Recall that the CRMT 
result in Eq. (5.30) is only a three-level function. The extra level in Eq. (5.65) compared to 
Eq. (5.30) is due to the OR operator of the mixed form. 

A more interesting example is the EXSOP/SOP partitioning of the two function system 
shown in Figs. 5.9a and 5.9b. In this case, all entries in cells 100, 101, 111, and 110 for 
function FJ are partitioned out (set to logic 0) for CRMT minimization, but are extracted 
optimally as shown by the two-level minimum cover. Similarly, for function 6, terms X Y 
and X Y in cells 011 and 010 are partitioned out of the CRMT minimization but are extracted 
optimally in SOP logic. Also, the don't cares in the F2 K-map are set to logic 0 for both the 
CRMT and two-level minimizations. 

The minimization process is now carried out on both the function FI and F2 in such a 
manner as to make effective use of any shared terms that may occur. By using Figs. 5.9a 
and 5.9b, the function FI and F2 are cast in the form of Eq. (5.17) to give 

(5.66) 
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After partitioning, CRMT coefficients for function FJ become 

go = X EB Z 

gJ = 1 

gl = Y 

g3 =0 

g4 = X EB Z 

gs = 1 

g6=Y 

g7 =0. 

The two-level minimization result for cells 100, 101, 111, and 110 is simply 

ACX +ACX + ABY = A(X EB C + BY). 
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(5.67) 

Introducing the g coefficients into Eq. (5.66) and adding the two-level result gives the mixed 
minimum result 

FJ = X EB Z EB C EB BY EB AX EB AZ EB AC EB ABY + A(X EB C + BY) 

= (X EB C) EB AZ EB ABY EB A(X EB C) + A(X EB C + By) 

= A[Z EB (X EB C) EB BY] + A(X EB C + BY). (5.68) 

Applying the same procedure to the partitioned Fl function gives the CRMT g coeffi
cients 

gO=g4=XZ 

gJ = gs = Z 

g2 = g6 = YZ 

g3 = g7 = O. 

From the K-map for Fl, the two-level minimum result is easily seen to be 

ABCXY + ABCXY = ABY(X EB C). (5.69) 

Now introducing the g coefficients into Eq. (5.66) and adding the two-level result yields an 
EXSOP/SOP minimum, 

F2 = XZ EB CZ EBBYZEB AXZ EB ACZ EB ABYZ + ABY(X EB C) 

= AXZ EB A cz EB ABYZ + ABY(X EB C) 

= AZ[(X EB C) EB (BY)] + A(BY)(X EB C). 

The combined two-function minimum result is now given by 

(5.70) 

[ 
FJ = A_[Z EB (X EB C) EB (BY)] +_ A(X EB C + BY») , 

(5.71) 
F2 = AZ[(X EB C) EB (BY)] + A(BY)(X EB C) 

which represents a five-level system with a combined gate/input tally of 11/24 excluding 
possible inverters. 
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The OR operators in Eqs. (5.71) add an extra level of path delay compared to forms 
that are exclusively EXSOP/SOP. This can be demonstrated by avoiding the partitioning of 
function F,. When this is done the CRMT g coefficients become 

go = X EEl Z 

g, = 1 

g2 = Y 

g3 =0 

g4=Z 

gs =0 

g6 = Y EEl (X + Y) EEl X = Y EEl XY EEl X = Y EEl XY = XY 

g7 = 0 EEl 1 EEl XY EEl XY = 1 EEl Y = Y. 

Introducing these g coefficients into Eq. (5.66) gives the EXSOP/SOP result 

F, = X EEl Z EEl C EEl BY EEl AZ EElABXYEEl ABCY 

= (X EEl C) EEl AZ EEl BY EElABY(X EEl C) 

= [ABY(X EEl C)] EEl (AZ) EEl (BY), (5.72) 

which is a four-level function with a gate/input tally of 7/15, exclusive of inverters. This 
compares to the mixed five-level function F, in Eqs. (5.71), which has a gate/input tally of 
8/16. 

Subfunction partitioning in max term code is equally effective in facilitating the min
imization process. As a simple example. consider the function FeD in Fig. 5.8b and the 
EQPOS CRMT form 

(5.73) 

which follows Eq. (5.20). Proceeding with the CRMT minimization, with B partitioned out 
of the term Ii . B in cell 10, gives the CRMT g coefficients 

go = A g2 = A 0A = 0 
- -

g, = A0 B 0 A = B g3 = A 0 B 0 A 0 B = 1. 

Introducing these coefficients into Eq. (5.73) and adding the two-level result gives 

(5.74) 

which is exactly the same as the K-map minimum result in Eqs. (5.60). 
Notice that the mixed CRMT/two-level method requires that the partitioning be carried 

out in either minterm or maxterm code form. Thus, if sub functions of the type X + Yare 
partitioned, the entire minimization process must be carried out in minterm code. Or, if terms 
such as X . Y are partitioned, the minimization process must be carried out in maxterm code. 
Note that either X or Y or both may represent multivariable functions or single literals of 
any polarity. 
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5.12 PERSPECTIVE ON THE CRMT AND CRMT/TWO-LEVEL 
MINIMIZATION METHODS 
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The main advantage of the CRMT method of function minimization lies in the fact that 
it breaks up the minimization process into tractable parts that are amenable to pencil
and-paper or classroom application. The CRMT minimization process can be thought of 
as consisting of three stages: the selection of a suitable bond set, the optimization of the 
CRMT g coefficients (for the chosen bond set), and the final minimization stage once 
the g coefficients have been introduced into the CRMT form. If an exact minimum is 
not required, a suitable bond set can be easily found, permitting the CRMT method to be 
applied to functions of as many as eight variables or more. Knowledge of the use of EV 
K-maps and familiarity with XOR algebra are skills essential to this process. A properly 
conducted CRMT minimization can yield results competitive with or more optimum than 
those obtained by other means. 

It has been shown that minimization by the CRMT method yields results that are often 
similar to those obtained by the EV K-map method described in Section 5.4. This is partic
ularly true when the EV K-map subfunctions are partitioned so as to take advantage of both 
the CRMT and two-level (SOP or paS) minimization methods. In fact, when sub function 
partitioning is carried out in agreement with the minimum K-map cover (as indicated by 
loopings), the CRMT/two-level result is often the same as that obtained from the K-map. 
It is also true that when a function is partitioned for CRMT and two-level minimizations, 
an extra level results because of the OR (or AND) operator(s) that must be present in the 
resulting expression. Thus, a CRMT/two-level (mixed) result can be more optimum than 
the CRMT method (alone) only if the reduction in the gate/input tally of the CRMT portion 
of the mixed result more than compensates for the addition of the two-level part. At this 
point, this can be known only by a trial-and-error-method that is tantamount to an exhaustive 
search. 

If an exact or absolute minimum CRMT result is sought, an exhaustive search must 
be undertaken for an optimum bond set. Without computer assistance this can be a te
dious task even for functions of four variables, particularly if the function contains don't 
cares. Multiple-output systems further complicate the exhaustive search process and make 
computer assistance all the more necessary. One advantage of the mixed CRMT/two-Ievel 
approach to function minimization is that each method can be carried out independently on 
more tractable parts. 

FURTHER READING 

Additional information on XOR algebra, XOR function extraction from K-maps, and logic 
synthesis with XOR and EQV gates can be found in the texts of Roth, Sasao (Ed.), and 
Tinder. 

[1] c. H. Roth, Fundamentals of Logic Design, 4th ed. West, St. Paul, MN 1992 (Chapter 3). 
[2] T. Sasao, "Logic Synthesis with XOR Gates," in Logic Synthesis and Optimization (T. Sasao, 

Ed). Kluwer, 1993 (see, e.g., Chapter 12). 
[3] R. F. Tinder, Digital Engineering Design: A Modem Approach. Prentice Hall, 1991 (see, e.g., 

Chapter 3). 
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[4] R. F. Tinder, "Multilevel Logic Minimization by Using K-map XOR Patterns," IEEE Trans. on 
Ed. 38(4), 370-375 (1995). 

Earlier work on Reed-Muller expansions and the use of conventional K-map methods 
to obtain Reed-Muller coefficient values can be found in the work of Dietmeyer and Wu 
et al. 

[5] D. L. Dietmeyer, Logic Design of Digital Systems. Allyn and Bacon, 1978 (Chapter 2). 
[6] X. Wu, X. Chen, and S. L. Hurst, "Mapping of Reed-Muller Coefficients and the Minimization 

of Exclusive-OR Switching Functions," Pmc. lEE. Part E, 129, 15-20 (1982). 

An excellent experimental study of the various XOR and EQV (XNOR) CMOS gate 
configurations can be found in the work of Wang, Fang, and Feng. 

[7] J. Wang, S. Fang, and W. Feng, "New Efficient Designs for XOR and XNOR Functions on the 
Transistor Level," IEEE Journal of Solid-State Circuits 29(7), 780-786 (1994). 

Many approaches to the decomposition and minimization of multilevel (Reed-Muller) 
forms can be found in literature. A few representative works are cited below: 

[8] D. Bochman, F. Dresig. and B. Steinbach, "A New Decomposition Method for Multilevel Circuit 
Design," The European Conference on Design Automation, Amsterdam, The Netherlands, 25-28 
Feb. 1991,pp. 374-377. 

[9] H. M. Fleisher and J. Yeager, "A Computer Algorithm for Minimizing Reed-Muller Canonical 
Forms," IEEE Trans. Comput. 36(2), 247-250 (1987). 

[10] J. M. Saul, "An Algorithm for the Multi-level Minimization of Reed-Muller Representations." 
IEEE Int. Confon Computer Design:VLSI in ComputersandProcessors (Cat. No. 91CH3040-3), 
pp. 634-637. IEEE Computer Soc. Press, Los Alamitos, CA, 1991. 

[11] T. Sasao, "Logic Synthesis with XOR Gates," in Logic Synthesis and Optimization (T. Sasao, 
Ed.), Kluwer, 1993, pp. 259-285. 

[12] N. Song and M. A. Perkowski, "EXORCISM-MV-2: Minimization of Exclusive Sum of Products 
Expressions for Multiple-valued Input Incompletely Specified Functions," Proc. of the 23rd 
International Symposium on Multiple-Valued Logic, ISMVL '93, Sacramento, CA, May 24-27, 
1993, pp. 132-137. 

[13] W. Wan and M. A. Perkowski, "A New Approach to the Decomposition of Incompletely Spe
cified Functions Based on Graph-Coloring and Local Transformations and its Application to 
FPGA Mapping," Proc. of the IEEE EURO-DAC '92 European Design Automation Conference, 
Hamburg, Sept. 7-10, Hamburg, 1992, pp. 230-235. 

PROBLEMS 

Note: Most K-map minimization results of problems that follow can be verified by intro
ducing the binary coordinates of each K-map cell into the resulting expression. Generation 
of each cell subfunction by this means validates the extraction results. In some cases, it 
may be necessary to construct a suitable EV K-map for this purpose. Also, to obtain correct 
answers for these problems, the reader will be required to make frequent use of the laws, 
corollaries, and identities of XOR algebra given in Section 3.11. 
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5.1 Compress the following function into a first-order K-map of axis A, and loop out a 
gate minimum expression by using XOR-type patterns in minterm code. Next, obtain 
the SOP minimum from the same K-map and compare the gate/input tallies for both 
the XOR and SOP forms. Finally, construct the logic circuits for the XOR and SOP 
results assuming that the inputs and output are all active high. What do you conclude 
from these comparisons? 

E=AXY+AXY+AY 

5.2 The output F of a logic circuit is a function of three inputs A. B, and C. The output 
goes active under any of the following conditions as read in the order ABC: 

All inputs are logic I 
An odd number of inputs are logic I 
None of the inputs are logic 1 

(a) Construct a truth table for output function F and inputs ABC. 

(b) Map the result in a second-order K-map and extract a gate-minimum expression 
by using XOR-type patterns. 

(c) Further compress this function into a first-order K-map of axis A and again extract 
a gate-minimum expression by using XOR-type patterns. Compare the result with 
that of (b). 

(d) Finally, place this function in a conventional (l's and O's) K-map and extract 
minimum two-level SOP and POS logic expressions. By using the gate/input tally 
(exclusive of inverters), compare the results with those of (b) and (c). What do 
you conclude from this comparison? 

5.3 Compress the following function into a second-order K-map with axes as indicated 
and extract a gate-minimum expression for each set of axes by using XOR patterns. 
Use the gate/input tally, exclusive of possible inverters, to compare this result with the 
minimum expressions for the two-level SOP and POS results. What do you conclude 
from this comparison? What is the gate delay level for the XOR pattern results? (Hint: 
It will be helpful to first plot this function into a conventional l's and O's K-map.) 

(a) Axes W, X 

(b) Axes Y, Z 

(c) Axes X, Y 

F(W, X, Y, Z) = Lm(O, 2, 5, 7, 9,11,12) 

5.4 Shown in Fig. P5.1 are six EV K-maps that contain XOR-type patterns and that 
represent two and three levels of compression. Use minterm code to loop out a gate
minimum cover for each by using XOR patterns (where appropriate). For comparison, 
loop out a minimum two-level SOP cover for each and compare their relative com
plexity by using the gate/input tally exclusive of possible inverters. Also, as part of 
the comparison, comment on the fan-in requirements for each. 
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5.5 Use maxterm code and XOR-type patterns to loop out a gate-minimum expression 
for each of the five functions represented in Fig. P5.2. Give the gate/input tally for 
each and compare that value with the gate/input tallies for the two-level SOP and POS 
minimum expressions obtained from the same K-maps. [Hint: To obtain the two-level 
expressions from the K-maps in Figs. 5.2d and 5.2e, it will be necessary to expand 
the XOR and EQV subfunctions by using their defining relations given by Eqs. (3.4) 
and (3.5).] 

5.6 Compress each of the following functions into a second-order K-map with axes A, B 
and loop out a gate-minimum expression for cach by using XOR-type patterns where 
appropriate. Obtain the two-level SOP and POS minimum result and use the gate/input 
tally (exclusive of possible inverters) to compare the multi-level result. (Hint: Consider 
both minterm and maxterm codes when looping out XOR-type patterns for gate
minimum results.) 
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(a) W(A, B, C, D) = L m(3, 6, 9, 12) 

(b) X(A, B, C, D) = TI M(2, 3,4,5,7,8,9,11,14,15) 

(c) YeA, B, C, D) = L m(l, 2,4,7, 11, 13, 14) 

(d) Z(A, B, C, D) = TI M(O, 3,4,6,9, 10, 13) 

5.7 The following incompletely specified function contains XOR-type patterns: 

G(A, B, C, D) = n M(O, 1,2,3,8,11,12,13)· 4>(4, 5, 6, 7). 

(a) Compress the following function into a second-order K-map of axes A, B and loop 
out a gate-minimum expression by using XOR-type patterns where appropriate. 
(Hint: Consider both minterm and maxterm codes and the best use of the don't 
cares when looping out XOR-type patterns for a gate-minimum result.) 

(b) Use the same K-map to extract minimum SOP and POS expressions for this 
function. Compare the gate/input tallies (exclusive of possible inverters) for the 
XOR result with those for the SOP and POS results. What do you conclude from 
these comparisons? 

(c) Construct the logic circuit for both the XOR result and the SOP result, assuming 
that the inputs and output are all active high. 

5.8 Use XOR-type patterns to extract a gate-minimum expression for each of the three 
functions represented in Fig. P5.3. Use the gate/input tally (exclusive of inverters) 
to compare the multilevel result with that for the two-level SOP and POS minimum 
result. Note that compound XOR-type patterns may exist. [Hint: For hand 13, it will 
be necessary to make use of Eqs. (3.27).] 

5.9 A computer program has been written that will yield a minimum solution to a combi
national logic function, but only in SOP form. It accepts the data in either conventional 
(l's and O's) form or in two-level EV SOP form - it does not recognize the XOR or 
EQV operators. 

a 

1 

(1) Given the functions Fl and F2 represented by the EV K-maps in Fig. P5.4, extract 
a gate-minimum expression from each in maxterm code by using the pencil-and
paper method and XOR-type patterns. 

(2) By following Example 2 in Section 4.8, outline the procedure required to "trick" 
the computer program into yielding a two-level minimum expression from the 
K-maps in Fig. P5.4, that can be easily converted to minimum POS form. (Hint: 

00 

X 

X 

It will be necessary to complement the subfunction in each cell of the K-map and 
represent it in SOP form.) 

01 11 10 00 01 11 10 
Be 

A 00 01 11 10 
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/~ 
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(3) Use the procedure in part 2 to obtain the two-level POS expression for function F j 

in Fig. P5.4a. Next. convert each cell of the original K-map to two-level pas sub
function form and extract a two-level pas minimum expression from it by using 
maxterm code. Should it agree with the results obtained by using the procedure 
of part 2? Explain. 

(4) Repeat part 3 for function F2 in Fig. P5.4b. 

5.10 Repeat Problem 5.3 by using the CRMT method, taking each bond set as the axis 
indicated in the problem. Use the gate/input tally (exclusive of possible inverters) to 
compare the CRMT results with the two-level SOP minimum in each case. 

5.11 Use the canonical Reed-Muller (R-M) approach to obtain an absolute minimum for 
the function F given in Problem 5.3. Compare the results with the two-level SOP 
minimum result by using the gate/input tally (exclusive of possible inverters). 

5.12 Use the CRMT method to obtain an absolute minimum for the function G in Problem 
5.7 by taking axes A, B as the bond set. Use the gate/input tally (exclusive of possible 
inverters) to compare the CRMT result with the two-level SOP minimum result. 

5.13 Use the CRMT method to obtain an absolute minimum for each of the four functions 
given in Problem 5.6. Take axes A, B as the bond set for each. Construct the logic 
circuit for each CRMT minimum function assuming that all inputs and outputs are 
active high. Also, for comparison, construct the logic circuit for the minimum two
level SOP or pas minimum result, whichever is the simpler in each case. 

5.14 Use the canonical R-M approach to obtain a gate-minimum for the four functions given 
in Problem 5.6. Then, by using the gate/input tally (exclusive of possible inverters), 
compare these results with the two-level SOP or pas minimum results, whichever is 
the simpler in each case. 

5.15 (a) The following two functions are to be optimized together as a system by using 
the multiple-output CRMT method discussed in Section 5.10. To do this, collapse 
each function into a third-order K-map with axes A, B, C and then use the CRMT 
approach in minterm code to minimize each function while making the best use 
possible of shared terms. Plan to use {A, B, C} as the bond set. 

FjCA, B, C, D, E)= Lm(2, 3, 4-7, 9,11,12,15,21,23,25,27) 

F2(A, B, C, D, E) = L m(4, 5,10,11,13,15-17,20,23-25,30,31) 
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(b) Obtain the optimized two-level SOP results for the two functions and compare 
them with the results of part (a) by using the gate/input tally (including inverters) 
assuming that the inputs and outputs are all active high. 

(c) Construct the logic circuits for the circuits of parts (a) and (b). 

5.16 (a) Use subfunction partitioning of the following function for CRMT/two-Ievel min
imization in minterm code. To do this, collapse this function into a third-order 
K-map of axes A, B, C and follow the discussion given in Section 5.11. Choose 
{A, B, C) as the bond set for the CRMT portion. 

F(A, B, C, D, E) = Lm(4, 7,10-12,14,16-19,21,23,24-27,28,30) 

(b) Without partitioning, use the CRMT method to obtain a gate-minimum for this 
function. Compare this result with that of (a) by using the gate/input tally exclusive 
of inverters. 

5.17 A function F is to be activated by the use of three switches, A, B, and C. It is required 
that the function F be active iff a single switch is active. Thus, if any two or three of the 
switches are active the function must be inactive. Design a gate minimum circuit for 
the function F consisting of three XOR gates and an AND gate (nothing else). Assume 
that the inputs and output are all active high. (Hint: Apply the CRMT method.) 
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CHAPTER 6 

Nonarithmetic Combinational 
Logic Devices 

6.1 INTRODUCTION AND BACKGROUND 

It is the purpose of combinational logic design to build larger, more sophisticated logic 
circuits by using the most adaptable and versatile building blocks available. The choice of 
discrete gates as the building blocks is not always a good one, owing to the complex nature 
of the circuits that must be designed and to the fact that there are integrated circuit (IC) 
packages available that are much more adaptable. It is the plan of this chapter to develop 
these building blocks and demonstrate their use in construction of larger combinational 
logic systems. Brief discussions of the various device performance characteristics and a 
design procedure are provided in advance of the logic device development. 

6.1.1 The Building Blocks 

It is well understood that the digital designer must be able to create combinational circuits 
that will perform a large variety of tasks. Typical examples of these tasks include the 
following: 

Data manipulation (logically and arithmetically) 
Code conversion 
Combinational logic design 
Data selection from various sources 
Data busing and distribution to various destinations 
Error detection 

To implement circuits that will perform tasks of the type listed, the logic designer can 
draw upon an impressive and growing list of combinational logic devices that are com
mercially available in the form of IC packages called chips. Shown in Fig. 6.1 is a partial 
listing of the combinational logic chips, those that are of a nonarithmetic type (a) and those 
that are arithmetic in character (b). Only the devices in Fig. 6.1 a will be considered in this 
chapter. 

237 
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(a) 
Non-Arithmetic Combinational Logic 

Devices 

FIGURE 6.1 

Multiplexers (Data Selectors) 
Decoders / Demultiplexers 

Priority Encoders 
Code Converters 

Comparators 
Parity Detectors 

Combinational Shifters 

(b) 
Arithmetic-Type Combinational Logic 

Circuits 

Adders 
Subtractors 

Arithmetic and Logic Units 
Multipliers 

Dividers 

Partial lists of available nonarithmetic IC devices and arithmetic IC devices. 

6.1.2 Classification of Chips 

IC chips for the devices ofthe type listed in Fig. 6.1 can be classified as small-scale integrated 
(SSI) circuits, medium-scale integrated (MSI) circuits, large-scale integrated (LSI) circuits, 
very-large-scale integrated (VLSI) circuits, and wafer-scale integrated (WSI) circuits. It has 
become customary to assign one of the preceding acronyms to a given IC circuit on the 
basis of the number of equivalent fundamental gates (meaning AND, OR, Inverter or NAND, 
NOR, Inverter) that are required to implement it. By one convention, these acronyms may 
be assigned the following gate count ranges: 

SSI circuits: up to 20 gates 
MSI circuits: 20 to about 200 gates 
LSI circuits: 200 to thousands of gates 
VLSI circuits: thousands to millions of gates 

WSI chips might contain tens to hundreds of VLSI circuits. This classification scheme is 
obviously ineffective in revealing the true complexity of a given IC relative to the digital 
system in which it operates. For example, an LSI chip might be a 64-bit adder or it might 
be a moderately complex microprocessor. Thus, the reader should exercise caution when 
evaluating the complexity of a chip based on some count system. Finally, it is now common 
practice for logic designers to design chips for a limited, specific application. Such chips are 
called application-specific ICs, or ASICs, and may differ greatly from the usual commercial 
chips. ASICs can reduce total manufacturing costs and can often provide higher performance 
than is possible by combining commercially available devices. 

6.1 .3 Performance Characteristics and Other Practical Matters 

The most desirable features a designer would want in a switching device, say, for integrated 
circuit applications are as follows: 

• Fast switching speed 

• Low power dissipation 

• Wide noise margins 
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FIGURE 6.2 
Voltage waveforms showing propagation delays and rise and fall times for a 2-input NAND gate with 
output Z as in Fig. 3.10. 

• High fan-out capability 

• High packing density 

• Low cost 

Although no single family or technology has all these desirable features, some may come 
close, at least for most of those listed above. A summary of these and other practical matters 
now follows. 

Propagation Delay (Switching Speed) and Rise and Fall Times The propagation delay 
or switching speed of a device is the measured output response to an input change. Typically, 
a given logic circuit will have many outputs and many inputs with various input-to-output 
paths, each with a different path delay. Furthermore, propagation delays usually differ for 
output changes that are low-to-high (tplh) compared to those that are high-to-low (tphl), but 
both of which are measured from the 50% point of the input signal to the 50% point of the 
output response signal as illustrated in Fig. 6.2. The average propagation delay for a given 
input-to-output path is then given by 

tplh + tphi 
tp(avg) = 2 ' (6.1) 

where, typically, t pllz > t plr!. Since several input -to-output paths may be invol ved, the timing 
specifications given by manufacturers often include typical extremes in propagation delay 
data. A minimum value for tp is the smallest propagation delay that the logic device will 
ever exhibit; the maximum value is the delay that will "never" be exceeded. The maximum 
value is the One of most interest to designers since it is used to determine useful factors 
of safety. For modem CMOS, these values lie in the range of 0.1 to IOns. Also shown in 
Fig. 6.2 are the rise and fall times, tr and t J, as measured between the 10% and 90% marks 
of a given waveform. 

Power Dissipation Logic devices COnSume power when they perform their tasks, and 
this power is dissipated in the form of heat, Joule heat. Of the various logic families, 
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CMOS devices consume the least power and then only during switching intervals - that 
is, dynamic power dissipation. Thus, CMOS power consnmption is frequency dependent 
and may become quite large at very high frequencies. The bipolar families of devices (see 
Appendix A) consume the most power, mainly due to leakage current, but are much faster 
than CMOS. Other logic families tend to fall in between these two extremes. 

A useful figure of merit for logic devices is called the power-delay product (PDP) given 
by 

PDP PColISumption X 'p(avg) , (6.2) 

which is the product of the power consumed by the device and its average propagation delay 
given by Eq. (6.1). The PDP of a device is sometimes called the speed-power product and is 
usually expressed in picojoules (l mW x 1 ns I pJ 10-12 joules). Since it is desirable 
for a given logic device to have both a low power consumption and a small propagation 
delay, a low PDP is also desirable. 

Noise Margins The noise margin of a logic device is the largest voltage that can be added 
to or subtracted from the logic voltage and still maintain the required logic level. The noise 
margins are defined as 

I N~IL = VILma, - VOLrn", 

N~IH = VOHmin - VlHmin 
(6.3) 

and are shown in Fig. 3.2. The voltage parameters defined by manufacturers are expressed 
as follows: 

Vnmax Maximum input voltage guaranteed to be recognized as LOW level. 

VOL max Maximum output voltage guaranteed to be recognized as LOW level. 

VOHrnin Minimum output voltage guaranteed to be recognized as HIGH level. 

VlHrnin Minimum input voltage guaranteed to be recognized as HIGH level. 

As an example, typical values for high speed (HC) CMOS are VILmax 0.3 VDD , VIHmin = 
O.7VDD, with VOLma, being slightly above zero voltage and VOHmin being slightly below the 
supply level V DD. 

CMOS logic has always been considered as having good noise margins. However, in the 
low submicron ranges, CMOS noise margins have been reduced to relatively low values. 
The bipolar families are usually considered to have good noise margins. It is important that 
the noise margins of logic devices be wider than any noise transients that may occur so as 
to prevent unrecoverable errors in the output signals. Thus, noise margins may be regarded 
as the margins of safety within which digital systems must be operated if their behavior is 
to be predictable. 

Fan-out and Fan-in Since the output from a switching device (for example, a gate) has a 
definite limit to the amount of current it can supply or absorb, there is a definite limit to the 
number of other switching devices that can be driven by a single output from that switch. 
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This limit is called the fan-out of a given device and is, in effect, the worst-case loading 
specification for that device. The fan-out limit is usually given in microamps (/LA). If the 
fan-out limit of a device is exceeded, the signal can be degraded. MOS circuits are least 
affected by fan-out restrictions, whereas members of the bipolar families are dramatically 
affected by such restrictions. Propagation delay is essentially unaffected by fan-out limita
tions. 

The maximum number of inputs permitted to control the operation of a digital device 
(usually a gate) is called the fan-in. Thus, a gate with four inputs has a fan-in of 4. In 
general for CMOS gates propagation delay increases with increasing fan-in. Fan-in and its 
consequences are discussed in Subsections 3.6.2 and 3.6.3 and in Section 4.10. 

Cost The cardinality or cover of a function is a measure of the cost of that function. 
Design area is also a measure of the cost of a function and is called area cost. Thus, the 
cardinality or design area of a function can be given a monetary value, and this is what 
is of particular interest to manufacturers of digital devices. But there are more factors that 
contribute to the monetary cost of an Ie. To one extent or another all of the factors previously 
mentioned directly or indirectly affect the cost of an Ie. Appendix A gives qualitatively the 
performance characteristics as a measure of cost for commonly used IC logic families. 

6.1.4 Part Numbering Systems 

Typically, parts in data books are given specific part numbers indicative of the logic func
tion they perform and the logic family to which they belong. Commercially available digital 
devices belonging to the CMOS and TIL (transistor-transistor logic) families are given 
the part prefix "74xnnn", where the "x" represents a string of literals indicating the logic 
family or subfamily and "nnn" is the part number. To understand this nomenclature the 
following literals are defined: H = High-speed, L = Low-power, A = Advanced, F = Fast, 
C = CMOS, and S = Schottky. For example, 74HCOO is a two-input high-speed CMOS 
NAND gate and a 74AS27 is a three-input advanced Schottky NOR gate. To avoid referring 
to any specific logic family or subfamily, the "x" descriptor is used along with the part 
number. For example, a 74x15l is an 8-to-l multiplexer of a generic type, meaning that it 
belongs to any of the families for which the prefix "74 ... " is applicable. The TIL subfam
ilies designated 74nnn, 74Lnnn, and 74Hnnn have been made obsolete by the presence of 
modem Schottky subfamilies. 

Another member of the bipolar family is called ECL for emitter-coupled logic. The 
ECL family is currently the fastest of the logic families but has an extremely high power 
consumption and high PDP. ECL parts are named either with a 5-digit number system 
(lOnnn) or a 6-digit system (lOOnnn), depending on which subfamily is being referenced. 
In either case all part numbers "nnn" are always three digits in length, unlike those for 
CMOS and TTL families, which can be two or three digits in length. Appendix A quali
tatively summarizes the performance characteristics of TTL, ECL, NMOS, and CMOS 
families. 

6.1.5 Design Procedure 

The design of any combinational logic device generally begins with the description of 
and specifications for the device and ends with a suitable logic implementation. To 
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assist the reader in developing good design practices, the following six-step sequence is 
recommended: 

Step 1: Understand the device. Describe the function of the device; then clearly 
indicate its input/output (I/O) specifications and timing constraints, and con
struct its block diagram(s). 

Step 2: State any relevant algorithms. State all algorithms and/or binary ma
nipulations necessary for the design. Include a general operations format if 
necessary. 

Step 3: Construct the truth tables. From step 2, construct the truth tables that 
detail the I/O relationships. Truth tables are usually presented in positive logic 
form. 

Step 4: Obtain the output functions. Map or use a minimization program to 
obtain any minimum or reduced expressions that may be required for the output 
functions. 

Step 5: Construct the logic diagrams. Use either a gate or modular level ap
proach (or both) to implement the logic expressions obtained in step 4. Imple
ment from output to input, taking into account any mixed logic I/O conditions 
and timing constraints that may be required. 

Step 6: Check the results. Check the final logic circuit by simulation before 
implementation as a physical device. Real-time tests of the physical device 
should be the final test stage. 

This text follows the six-step sequence where appropriate and does so without specifically 
mentioning each step. 

6.2 MULTIPLEXERS 

There is a type of device that performs the function of selecting one of many data input 
lines for transmission to some destination. This device is called a multiplexer (MUX for 
short) or data selector. It requires n data select lines to control 2" data input lines. Thus, 
a MUX is a 2"-input/l-output device (excluding the n data select inputs) identified by the 
block diagram in Fig. 6.3a. Shown in Fig. 6.3b is the mechanical switch equivalent of the 
MUX. Notice that the function of the enable (EN = G) is to provide a disable capability to 
the device. Commercial MUX ICs usually come with active low enable, EN(L). 

The general logic equation for the MUX of Fig. 6.3 can be expressed as 

2'1--1 

Y = 2:)m;. I;)· EN, (6.4) 
i=O 

where m; represents the ith minterm of the data select inputs (e.g., m2 = S,,_I ... S2S1S0). 
The validity of this equation will be verified in the following subsection on multiplexer 
design. 

6.2.1 Multiplexer Design 

The easiest and most "logical" way to design a MUX is to represent the MUX by a com
pressed, entered variable (EV) truth table. This is illustrated by the design of a 4-to-1 
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A 2"-t0-1 multiplex~r (MUX) or data ~elector. (a) Block diagram symbol. (b) Mechanical switch. 
equivalcOi. 

(22-10-1) MUX with active low enable. Shown in Fig. 6.4 are the logic symbol, EV truth 
table. and K-mllp for Ihe 4-to- 1 MUX. From the K·map Ih('re result Ihe output expressions 
given by 

Y = 51$o loEN + SISo llEN + SISoJ,"EN + SISoJ)EN 

= mo /oE,V + mill EN + nl1hEN + mJIJEN 
2: - 1 

= I )", . h) · EN. 
i.O 

(6.5) 

represeming four daln inpul jines, tWO data select lines, and one OUlput. The circuit for the 
4-to- l MUX is obilli ncd dir~c lly from Eq. (6.5) and is pres~ntcd in Fig. 6.4d, lOgether with 
its shorthand circuit symbol given in Fig. 6.4e. 

An m x 2" input MUX can be produced by stacking /If 2"-to-l MUXs with outputs 10 an 
111-10- ] MUX output stag('. This is illustr.ned in Fig. 6.5. where four 8-10- 1 (74xI5 1) MUXs 
are stacked to produce a 32-10-1 MUX. Notice Ihm this MUX can be disabled simply by 
using the EN(L) line to the output stage MUX. For an explanation of the pan identification 
notation (e.g., 74x· .. ), see Subsection 6.1.4. 

Many variations of the stacked MUX configuration are possible. limited only by the 
availability of different MUX sizes. For example. two l6-to-1 MUXs combine 10 form a 
)2-10- 1 MUX or four 4-10-1 MUXs combine to produce a 16-to-l MUX. In the forme r case 
a 2-10-1 MUX must be used to complcte the stack configuration. whereas in Ihc latter case 
a 4-to- 1 MUX is required. lherc are other ways in which to stack and package MUXs. One 
variation is illustrated in the discussion that follows. 

Morc than one MUX can be packaged in an Ie, and this can be done in a variety of 
ways. One configuration is illustrated by the design of the 74x 153 4-inpuLl2-bit MUX 
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shown in Fig. 6.6. Reading directly from the EV truth table in Fig. 6.6a yields the output 
expressions 

IY = 5 ,50 110 , IG + 5 1Su ll l . IG + S,SUlll ' lG + SISol'~· IG 

2Y = 5 ,50210 , 2G + 51S02l1 . 2G + S,So2h· 2G + S,So2 /J . 2G, 

which are implemented with NANDfTNV logic in Fig. 6.6c. 

(6.6) 

The tradilionallogic symbol for the ' 153 MUX is given in Fig. 6.6b. Notice that there 
arc two data select inputs that simuhancously control data selection to both outputs, and 
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fiGURE 6.5 
Four 8-10-1 MUXs and a 4-10--1 MUX combine 10 produce a 32-10-1 MUX having five data select 
inputs 54. S3. 52. 51. and So and an active low enable. 

thai !.here are two independently operated enahle inputs, I G and 2G. that enable or disable 
either or both of the MUXs. 

6.2.2 Combinational Logic Design with MUXs 

A MUX is a function genermor and can be used 10 implement a function in canonicaJ form 
or in compressed (reduced or minimum) foml . To understand !.his, consider the function 

Y(A , B.C , 0 )= Lm(3, 4,5 , 6. 7,9,10.12,14.15) 

= n M(O , 1.2,8. 11,13). (6.7) 

If this function is implemented with a 16-10·] MUX, then all inputs representing minterms 
in Eq. (6.7) are connected 10 logic 1 mV) while all maxterms are connected to logic 0 (LV). 
In this case !.he data select variables aTe the four function variables. But ifit is desirable to 
implement Eq . (6.7) with a 4-10-1 MUX. two levels of K-map compression are needed. as 
in Fig. 6.7b. 

Notice that the dala select variables. SI = A and So = B. fonn the axes of (he MUX 
K-map in Fig. 6.7b and thai !.he functions generated by the 4-10-1 MUX in Fig. 6.7 are 
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FIGURE 6.6 
Dt:Sign of the 74x 153 4-inputl2-bit MUX. (a) EY truth table. (b) Tradilionallogic symbol. (c) Logic 
diagram. 

given by 

IY=IA/lCD + AB+AB(C IllDI+ ABIC+DJI I 
0' , 

Y = [(A + B + C D)(A + B + C ffi D)(/\ + B + C + D)] 

(6.8) 

both of which are three-level hybrid fonns that are generated (H) or (L) from the Y(H) and 
yeLl outpuL~ of the MUX. The latter of the two may nol seem obvious but is easily verified 
by extracting cover in maxlcrm code from the second-order K-map in Fig. 6.7h. Note also 
thai if an 8-10-1 MUX is used to implemcnllhe function in Eq. (6.7).!he K-map in Fig. 6.7a 
applies. where the data seleci variables are now A, B, and C . In this case inputs II and 14 

lY(H) 

2Y(H) 



B 
A 

0 

, 

6.2 MULTIPLEXERS 247 

1(lJ 

e a 
(H) (H) G 

I, 

1(H) I, V(H) 
~·to·1 y 
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y / Y S, S, 

la) Ibl lei 
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FIGURE 6.7 
Implementation of !.he function in Eq. (6.7) by using a 4-10-1 MUX . (a), (h) First- and second-order 
K-map compressions for the runct ion Y. lc) Logic circuit. 

are connected to D(H), inputs 15 and h are connected to D(L). inputs h fl. and" connect 
to I ( H) , and 10 goes to ground O( H ). 

There still remains the problem of dealing with active low inputs 10 a MUX . The rules 
are simply stated: 

For Active Low Data Select Inputs to M UXS 

( I) Complement the MUX K-map ax is of any active low d,ua select input and 
renumber the K-map cells. The new cell numbers identify the MUX inputs to which 
they must be connected. 

01 

(2) Use an inverter on the inpUl of an active low data ~lect input and do not 
complement the MUX K-map axis. 

For All Other Active Low Inputs 

Active low non data select inputs are dealt with as any combinational logic problem 
with mixed-logic inputs (see, e.g., Section 3.7). Therefore, do not complement any 
EV subfunction in a MUX K-map. 

To illustrate the problem of mixed- logic inputs to a MUX, consider the function of 
Eq. (6.7) with inputs that anive as A(H), 8(L). C(H), and O(L ). Impiememalion with a 
4-to-l MUX follows as in Fig. 6.8, where the B axis of the MUX K-map is complemented 
since no inverter is used on the B(L)data select input line. Notice that no additional inverters 
are required when compared to the implememation of Fig. 6.7, and that the resulting outpUiS 
are identical to those of Eqs. (6.8) . The use of an EQV gate in place of an XOR gate is a 
consequence of the D (L) and the fact that only one inverter is used. 
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fiGURE 6.8 
Implementation of the function in Eq. (6.7) with mi;\ed-logic inputs by using a 4-10-1 MUX. (a) 
Second-order K-map compressions for the functioo Y showing the renumbered cells due to B(L). (b) 
Logic circuit. 

6.3 DECODERS/DEMULTIPLEXERS 

A decoder is an n-input!2"-output combinational logic device that has tbe function of 
activating one of the 2n outputs for every unique binary input pattern of n bits. The circuit 
symbol for an n-to-2n decoder is shown in Fig. 6.93. where IN-I - 10 are the data inputs. 
Y!"_l - Yo are the outputs, and G is the enable. Each output is identified by the minterm 
code mi of the binary input pallem it represents and can be represented. generally, as 

Y, =m/' EN. (6.9) 

where mo = 1~_ 1 .. . ' 21110. ml = 1,,_1 ... , 211/0 • m2 = 1~_1" . 121110. and so on . For 
Ihis reason a decoder can be called a milJlerm code generafOr. Commercial decoders are 
Ilvai lable in a variet), of sizes and packaged configurations, but most all feature active low 
outpU!S and an active low enable. 

Shown in Fig. 6.9b is the same decoder used as a demultiplexer (DMUX). Now. the 
3c!ive low enable EN(L) to the decoder becomes the si ngle data input l/)<lt,,(L) to the 
OMUX. and the data inputs '0. /J , 12 . .... /,,- 1 for the decoder become the datasclect inputs 
Suo SI. S2 . ... • S~ _ I for the DMUX. The outputs for the decoder and DMUX are the same 
if it is under~tood that Ii i.~ replaced by S, in Eq. (6.9) . The active low outputs and active low 
enable are of particular importance when a decoder is used as a DMUX. since tbe DMUX 
is often paired wilh a MUX for dnta routing as explained later. 

6.3.1 Decoder Design 

Decoder design is illustrated by the design of a 3-10·8 decoder. Shown in Fig. 6. 10 is the 
collapsed canonical 110 truth table for the enable inpul (EN). the three data inpul't (12, II. 



EN(L) 

Ig(H) 

t,(H) 

12(H} 
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10 YO Yo{l ) = mgEN (L) 
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FIGURE 6.9 

'o •• ILI-< G 
1-to-2n 
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Yo :r- Vorl) = moEN(LJ 

Y1 ::>- Y,(L) = rn ,EN(L) 

y 2 :>-- y 2(L) = rn2EN(L) 

I I I I 
'-.r-------' 

n Data-Select 
Inputs 

(bl 

Generalization of adecoder/demultiplexer(DMUX). (a) An /1-10-2" decoderwirh an active lowenable. 
(b) The decoder of (a) used as a 1-10-2" DMUX with data input IOata(L). 

and /(jl and the eight outputs y7 • . .. , Yt . Ylo and Yo. The truth table is tcnned a collapsed 
truth table because of the irrelevant inp/ll symbol X used to represent either logic 0 or logic 
I. Thus, X X X in the first row of the table represents eight mintenns in variables I I. Notice 
that only one minterm code line is activated for each corresponding three-bit binary pal1em 
that appears on the input with active EN. 

Each output (Yi ) column in Fig. 6.10 represents a third-order K-map containing a single 
minterm ANDed with EN. However. it is not necessary to construct eight EV K-maps to 
obtain the eight output expression for Yi • since this information can be read directly from 

EN I , I, I, Y, Y, Y, Y, Y, Y, Y, Y" 

0 X X X 0 0 0 0 0 0 0 0 , 0 0 0 0 0 0 0 0 0 0 1 Yo = 121110 , EN , 0 0 1 0 0 0 0 0 0 1 0 YI=12 1Ifo · EN , 0 , 0 0 0 0 0 0 , 0 0 Y:-..=i2/ Iio· EN 
1 0 , , 0 0 0 0 , 0 0 0 YJ=i211/0' EN 
1 1 0 0 0 0 0 , 0 0 0 0 Y4=h 111o' EN , , 0 , 0 0 , 0 0 0 0 0 Ys= lllllo · EN , 1 , 0 0 , 0 0 0 0 0 0 Y6=lllllo · EN , , , , , 0 0 0 0 0 0 0 Y7 = 12/1/0' EN 

X mdlcates an Irrelevant mput and represents either logiC 0 or logiC I . 

FIGURE 6.10 
Collapsed truth table for a 3-to-8 decoder/demultiple:<er with enable showing output e:<pressions that 
derived directly from the truth table. 
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FIGURE 6.11 
Implementation of the 3-10-8 decoder/demultiplexer in Fig. 6.10. (aJ Logic circuit with active low 
outputs and active low enable. (b) Logic symbol. (c) An alternative threc-enablc configuration u~cd 
by the commercial 74)( 138 decoder. 

the truth table and is provided in the third column of Fig. 6.10. When the requirements of 
active low outputs and active low enable are introduced, the Yo' expressions for the 3-10-8 
decodcr/dcmulliplcxer in Fig. 6. 10 are implemented with NANDIINV logic as shown in 
Fig. 6.1 I a. Its logic symbol is given in Fig. 6.11 (b). 

A single enable input is used to enable or disable the decoder of Fig. 6.11. But other 
enable configurations are common. For example, a commercially available 3-to-8 decoder, 
the 74x 138. has the same decoder logic as in Fig. 6.1I a, except the commercial unit fea
tures three enable inputs as indicated in Fig. 6. ll c . Multiple enable inputs pennit greater 
versatili ty when controlling a given decoder from various sources. 

Decoders can be slacked (cascaded) in hierarchical configuralions to produce much larger 
decoders. This requires that the 2'" outputs of one decoder drivc the EN controls of 2" other 
decoders, assuming that all outputs of the leading decoders are used. As an example, four 
3-10-8 decoders are enable/selected by a 2-to-4 decoder in Fig. 6. 12 to produce a 5-10-32 
decoder. Simil<lrly. two 4-10-16 decoders can be stacked to produce a 5-to-32 decoder when 
enable/selected by a single inverter. Or cascading four 4-10-16 decoders produces a 6-to-64 
decoder when enable/selected by a 2-to-4 decoder. Note that stacking any two decoders 
requires only an inverter acting as a l-lO-2 enable/select decoder. 
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FIGURE 6.12 
Slacking of four 3-10-8 decoders 10 produce a 5-10-32 decoder. 

Decoders can be packaged in pairs such as the duaI 2-to-4 74x 139 decoder. Such a dual 
set will have two independent enable inputs. one for each or the two 2-to-4 decoders. lbe 
2-to-4 decoder in Fig. 6. 12 is actually one half of the 74)( 139. indicated as ~ 74)( 139. 

6.3.2 Combinational logic Design with Decoders 

Decoders can be used effectively to implement any function represented in canonical form. 
All that is needed is the e)(temallogic required 10 OR minterms for SOP representation or 
to AND maxtemlS for PaS representation. As a simple example. consider the two functions 
in canonical form: 

F{A , B,C) = L m(I ,), 4.7) SOP 

G(A , B, C) ~ n M(2, 3, 5, 6) POS, 
(6. 10) 

Assuming that the inputs arrive as A(H ). B (H ). C( H ), and that the outpUis are delivered 
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Y, 0-

Y, 
F(H) = L m(1, 3.4 ,?) (H) 

Y, 
3-10-8 Y, 

Decoder Y, 
G(H) = OM(2,3 ,5,6) (H) 

Y, 
Y, 
Y, 

Decoder irnplemenlations of Eqs. (6. 10) assuming inputs and outputs are all aClive high. 

active high. these two functions are implemented as given in Fig. 6.13. To understand why 
function G is implemented with an AND gate. consider what is generated by the ANDing 
operation: 

If it is desirable 10 issue G active low, a NAND gale would be used in place of the AND 
gale. Or if F is to be issued active low, an AND would be needed in place of the NAND. 
Actually. 10 fully understand the versatile nalUre offunction implemcnlation with decoders, 
the reader should experiment by replacing the NAND and AND gates in Fig. 6.13 with a 
variety of gates, including treed XOR and EQV gates. 

The problem of mixed-logic inputs can be deal! with in a manner similar to those issued 
10 MUXs. The rules are similar 10 those for MUXs and are stated as follows: 

For Mixed-Logic Data Inputs to Decoders 

(I) Complement the hit of any active low input 10 a decoder and renumber the 
mintenns accordingly. 

or 
(2) Use an invener on the input line of an active low input and do not complement 

the bit. 

Consider, as an example, the two functions of Eqs. (6.10) with inputs that arrive as 
A(H) , B(L). and eeL). Functionally. the mixed-logic forms of Egs. (6.10) become 

Fso p[A(H), B(L), C(L)] = Fso p[A, jj, C](H) 

, nd (6.11 ) 

G l'o s [A (H), B(L), C(L)] = G pos [A , fl , C](H). 
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Then by Eqs. (6. 11) and if inverters are not to be used, the Band C bits must be comple
mented: 

mu = OOO~ 011 = m, 
nil = 001 -+ 010 = m ~ 

ffl:. = 010 -.;. 001 = m) 

m ) = 011-+ 000 = !no 

"'4 = 100-+ III =1117 

m~ = 101 ....... 110="'6 

m6= 110-+ 101 =m~ 

ffl1= 111-+ IOO=m4. 

Thus. to accommodate the mixed-logic inputs, the two functions in Eqs. (6.10) must be 
connected 10 the decoder according 10 the renumbered functions 

F[A(H) , B(L), e(L)] ~ 2.:,"(0. 2, 4, 7) ,nd 

G[A(H). B(L), C(Lll ~ n MeO. 1.5,6), 

Of course, if inverters are used on the B(L) and C(L) inputs. no complementation is 
necessary and the functions are implemented according to Eqs. (6. 10). 

Decoders, used as demultiplexers (DMUXs), are simply reoriented so that the active 
low enable is lhe only data input. Now the Ii inputs become the data select inputs Si as 
in Fig. 6.9b. Used in conjunction with MUXs. the MUX/DMUX system offers a means 
of time-shared bussing of multiple-line data Xi on a single line as illustrated in Fig. 6. 14. 
Bussing data over large distances by using this system results in a significant savings on 
hardware, but is a relatively slow PJ()(.;css . 

Source Destination 

Yo 
Y, 

1-to-2" 
Y, 

y G DMUX 
(Decoder) 

X2"_1(H) Y2 ft_1 

s ... , ... 8 2 s, S, 

'--------y---- '--------y-----

/ Sr.-1 ... S2,8 1.8o(H) --">\Q'--~/'--------------~ 
'--------y-----
n Data-8elecllnpuls 

f iGURE 6.14 

><,(l) = X,IH) 

X,(L) = X,(H) 

><,(l) = X,(H) 

Generalization of a MUXlDMUX system for bussing data on 2n - I lines over a single time-shared 
line from the MUX source to the DMUX destination. 
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6.4 ENCODERS 

By definit ioll an encoder pcrfonns nn operation that is the opposite to tbat of a decoder. 
TIulI is. an encoder must generate a different output bit paltem (code) (or each input line 
that becomes active. For a binary encoder, Ihis requirement can be enforced only if one 
outpUi binary word of /I bits is associated with only one of 2" "decimal" input lines 
(0. 1.2.3 ... . , 2" - I ). Obviously. if more than one inpul line is active. the output be· 
comes ambiguous in such an encoder. The ambiguity problem is overcome by prioritizing 
the input. When this is done the result is called a priority encoder (PE), which assigns a 
priority to each input according to a PE schedule for that encoder. Most encoders are PEs. 

A priority encoder is generall y an n-inputlm-ouipul (n :::: 2m) device as indicated by the 
circuit symbol in Fig. 6.15. In addit io n to the 1/ address inputs and m OUlpUIS. a commercial 
PE will usually have three other input and output lines that are used 10 cascade (Slack) 
PEs: an enable- hI input (EI) , an enable-out o utput (EO). and a group .fig/luI OUlplIl (GS). 
The purpose oflhe as output is to indicate any legilimate encoding condition. meaning chat 
EI is active concurrently with a single active. address input. All inputs and outputs of a PE 
are active low as shown. 

The design of a simple 3-inputl2-Qulput PE wilh cascading capabilily is illustmlt:d in 
Fig. 6.16. Shown in Fig. 6.163 is Ihe priority schedule and the collapsed 110 lruch table 
for this encoder. The EV K-maps in Fig. 6.l6b are ploued from the truth table. and the 
minimum cover yields che following o utput e:tpressions: 

YI = ' 2EI + IIEI 

EO= i '2 llloEI 

Yo= i,/oEI + 12EI 

GS = (12 + II + 10)£1 = EO· EI . 
(6.12) 

These expressions are implemented with minimum logic in Fig. 6. 16c for active low inputs 
and outputs as required in Fig . 6 .15. Notice that chis circuit represenrs a simple mulliompm 
optimization. which is deduced by inspection of expressions for EO and GS. 

The OUlputs EO and GS require special aUeOlion since their logic values have been 
specifi cally chosen to make cascading of PEs possible. When tbe address inputs for the IItb 
stage are all inactive (logic 0). it iii the function of £O~ to activale Ihe (II - 1 )Ib stage. This 
assumes thai prioritization is assigned from highcsi active input (dt.'Cimal.wise) 10 lowest. 
Therefore. EO can be active only for inactive address inputs and aclive £1. " is the function 

FIGURE 6. IS 

n-Io-m 
Priority Encoder (PE) 

Logic symbol for an n -to-m priorit)" encoder with cascading capability. 



Priority Sch edule EI I, I, '0 GS Y1 YO EO 

Null slate 0 X X X 0 0 0 0 
12 (h ighest) -- encoded as 11 1 1 X X 1 1 1 0 
I, (middle) -- encoded as 10 1 0 1 X 1 1 0 0 
10 (Iowesl) -- encoded as 01 1 0 0 1 1 0 1 0 
Inactive state .- encoded 00 1 0 0 0 0 0 0 1 

(.) 

I I 
I ' 0 00 " 11 10 , 

II 
I ' 0 00 " 11 10 , 
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FIGURE 6.16 
Design of a truce-input priority encoder with cascading capability. (a) Priority schedule ami collapsed 
truth table. (b) EV K-mllps. (c) Minimi?:ed lagil.: circuit. 
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(GS,) 
EI, EI, I, I, I, I, I, I, Y2 Y I YO EO I EOO EI(L) EI, GS, 

0 0 X X X X X X 0 0 0 0 0 I ~,IL) 
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0 X X X X X 0 0 

, 
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0 0 0 0 X 0 0 0 
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0 0 0 0 0 0 0 0 I,.IL) 
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0 0 0 0 0 0 0 0 0 

, 
EO, 

X = Irrelevant input (logic 0 or logic 1) 

I') Ibl 

fiGURE 6.17 
'TWo 3-10-2 PEs in cascade (0 pruducc Ii 6-11)-3 PE. (a) Collapsc:d truth ruble. (b) Logic circuit . 

of the GS output to go active for any valid encoding candidon for thai stage. meaning £1 
active concurrently with II single active address input. and to provide an additional output 
bit (MSB) for each stage added in cascade fashion . 

1\0.'03-10-2 PEs of the type in Fig. 6.1 6arc shown stacked in Fig. 6.1710 fonn a 6·10-3 PE. 
The truth table for the two PE combination is given in Fig. 6. 17a and includes the cascading 
bits El. EO. and GSfor PE , and PEu. From Eqs. (6.12) and Fig. 6 .17. the cascading bits for 
the system are expressed as 

GS I=EO,EI 1 

E0 1 = 15/ ,.13£1 , = Elo 

EOo = 1211 10Elo. 

(6. (3) 

Notice that CS t = Y2 indicates a valid encoding coooition only for act ive inputs 15. 14 • and 
I ). wbile GSo (not sbown) indicates a valid encoding condition only for active inputs Iz . I I , 
and 1o, OutpUi 1;tate 100 cannol occur according to Eqs. (6. 12) and (6.13) and Fig. 6.17a. 

Priority encoders of the type represented in fig. 6.15 are commt:rcially available as Ie 
chips. Typically. they are produced in the 8-10-3 tine size. such as the 74x 148. which can 
be Slacked to produce 16-10-4 line and 32-10-5 line PEs. Their applications include code 
conversion. code generation. aod ,,-bit encoding in digital systems having a hierarchy of 
subsystems that must be prioritized. 

Those PEs that do not have EO and GS outputs. and hence cannot be stacked. are also 
avai lable commercially as ICs. Their design closely follows the design of PEs of the type in 
Fig. 6.16. They arc commonly produced in 9-10-4 line sizc for usc a1; BCD priority encoding. 
keyboard encoding. and range selection. 

Y,(L) 

Y,ll) 

Y, ll) 



6.5 CODE CONVERTERS 257 

6.5 CODE CONVERTERS 

Various codes are discussed at length in Section 2.10. On occasion it is necessary to convert 
one code to another. Devices that are designed to execute a code conversion are called code 
converters. Considering the many codes that are currently in use, it follows that there are 
a very large number of converters possible. Not taking into account any particular area of 
specialty, a few of the more common code conversions are as follows: 

Binary-to-Gray conversion and vice versa 
BCD-to-XS3 conversion and vice versa 
Binary-to-BCD conversion and vice versa 

6.5.1 Procedure for Code Converter Design 

The following is a simple three-step procedure that will be followed in this text, often 
without reference to this subsection: 

1. Generally, follow the design procedure in Subsection 6.1.5. 

2. If conversion involves any of the decimal code input (e.g., BCD), only 10 states can 
be used. The six unused input states are called false data inputs. For these six states 
the outputs must be represented either by don't cares (cp's) or by some unused output 
state, for example alII's. That is, if the requirement is for false data rejection (FDR), 
then the output states must correspond to at least one unused output state; if not, 
cp's are entered for the output states. Thus, FDR means that the outputs must never 
correspond to a used output state when anyone of the six unused states arrive at the 
input terminals. If false data is not rejected, then the outputs corresponding to the six 
unused states can take on any logic values, including those of used output states. 

3. If the input code is any other than binary or BCD and if EV K-maps are to be used in 
minimizing the logic, it is recommended that the input code be arranged in the order 
of ascending binary, taking care to match each output state with its corresponding 
input state. 

6.5.2 Examples of Code Converter Design 

To illustrate the code converter design process, four examples are presented. These examples 
are quite adequate since the conversion procedure varies only slightly from one conversion 
to another. The four examples are Gray-to-binary conversion, BCD-to-XS3 conversion, 
BCD-to-binary conversion, and BCD-to-seven-segment-display conversion. Of these, the 
last two are by far the most complex and perhaps the most important considering that binary, 
BCD, and the seven-segment display are commonly used in digital design and computer 
technology. 

Gray-to-Binary Conversion The Gray-to-binary conversion table for 4-bit codes is given 
in Fig. 6.1Sa. Here, for convenience of plotting EV K-maps, the input Gray code and 
the corresponding output binary code have been rearranged such that the Gray code is 
given in ascending minterm code (compare Tables 2.1 and 2.12). The second-order EV 
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Gray Binary Gray Binary 
ABC 0 A'S' C' D' ABC D A'S' C' D' 

0 0 00 0 0 0 0 0 00 1 1 
0 0 o 1 0 0 0 1 1 0 o 1 1 1 0 
0 0 1 0 0 0 1 1 0 1 0 1 0 0 
0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 
0 1 o 0 0 1 1 1 1 1 00 0 0 0 
0 1 o 1 0 1 1 0 1 1 o 1 0 0 1 
0 1 0 0 1 0 0 1 1 1 0 0 1 
0 1 1 0 0 1 1 1 0 0 

Ca) 

B 
A 0 

By inspection 
0 0 A(H) A'(H) 

A'=A 
1 0 

8(H) 8'(H) 
B' 

B 
A 0 C'(H) C(H) 

0 

DIH) D'(H) 

Ib) (0) 

fiGURE 6.18 
Design of a 4-bh GraY-lo-bina!)' converter. (a) UO truth table. (b) Output EV K-maps plolled from 
(a) showing minimum cover. (c) Resuhing logic circuit according to Eqs. (6.14). 

K-maps. shown in Fig, 6. 19b. are plotted directly from the truth table and yield the minimum 
cover. 

A'=A 

8 '= AG1B 

C'=AEbBGtC 

D'= A $ B $ C E& D. 

(6. (4) 

from which the logic circoil of Fig. 6.18c results. Notici ng the trend in Eqs. (6. 14), it is clear 
that an XOR gale is added in series fashion with each additional bit of the Gray-to-binary 
conversion. With Ihis trend in mind any size Gray-to-binary converter can be implemented 
wilhoul the need to repeal the steps indicaled in Fig. 6.18. 

BCD-to-XS3 Conversion As a second example, consider tbe conversion belween two 
decimal codes. BCD and XS3. Shown in Fig. 6. 19a is the truth table for the BCD-to-XS3 
conversion where. for this design. false dala is nOT rejected. Thus. ¢'s become the output 
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BCD XS3 
ABC 0 A'S' C' 0' 

0 0 o 0 0 0 1 1 
0 0 o 1 0 0 0 
0 0 1 0 0 0 1 
0 0 1 1 0 1 0 
0 1 o 0 0 1 1 1 
0 1 o 1 1 0 0 0 
0 1 1 0 1 0 0 1 
0 1 1 1 1 0 0 

0 o 0 1 0 1 1 
0 o 1 0 0 
0 1 0 1 0 1 1 

o 0 .'S o 1 j 1 1 0 
1 1 

(.) 

FIGURE &,19 
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BCD 
Input 

B 
0 1 A 0 1 

0 C+D 0 C+O r "I C+O 

( 1 " 1 c+o
L ~ . 

A 
B 

0 1 A 0 1 

C" D
r h C" D 0 o r -. 0 

C0D~ I-' ¢ 1 o ~ ~ . 
C 

(b) 

A(H)~A'(H) 
B(H) 
C(H) D-
O(H) S'(H) 

C(H) ID-D(H)-----{)o I " I C'(H) 

L. ---D'(H) 

(0) 
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B' 

0' 

XS3 
Output 

Design of (he BCO-(o-XS3 converterwitbout FOR. (a) Truth (able. (b) EV K-maps showing minimum 
cover. (c) logic cireuil according to Eqs. l6.IS), 

XS3 code paltem~ corresponding to the six unused input BCD states. The resulting EV 
K-maps for the outpul functions are given in Fig, 6.19b, from which (he gate-minimum 
cover is extracted as 

l
A'~ B(C+D)+AI 
B' ~B$(C+D) 

C'=CO D . 

D' =D 

(6.15) 

rcpresenling a gate/input tally of 5/10, excluding inverters. The subfunctions for cell 2 in 
Fig. 6.19b result from an appropriate use of the ¢ ·s. Shown in Fig. 6.19c is the three-level 
logic circuit for this converter implemented with NOR/XQR/INV logic assuming that the 
inputs and outputs are all active high . The subject of mixed logic inputs (0 an XOR gate is 
discussed at length in Subsection 3.9.4. 

Had FOR been a design objective for the BCD-to-XS3 converter. the ,p's in Fig. 6.19a 
would have to be replaced by an unused (FOR) output state. If the FOR state is taken 10 
be 1111. the K-maps of Fig. 6.19b are altered accordingly. and the resulting gate-minimum 
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output expressions become 

A'=B(C+D)+A 

8 ' = B $(C + 0)+ A8 

C'=C0D+ AC +AB 

= C EI1 fj + AC + AD 

D' =D+AC+AB, 

(6.16) 

now representing agate/input tally of 10/22. excluding an inverter but including three shared 
Pis. Clearly. the FDR feature comes at a significant price in lerms of hardware . FDR Siaies 
o ther than the 1111 can be used, as for example the 0000 stale, bul all increase the cost in 
hardware even further. 

Conversion between BCD and Binary lbe BCD and binary codes are Iwoofthe most 
widely used codes in digital design. so it is fitting thaI conversion between them be consid
ered. The simplest approach is to establish workable algorithms to produce an expandable 
modular design. Even so. such tasks rank among the more difficult conversion problems. 
Consider. for example, thai a two-digit BCD word convcr1s to an 8-bit binary number. 
whereas an 8-bit binary word convens to a three-digit BCD representation. 

Two algorithms will now be considered that make conversion between these two codes 
tractable and that lead to modular designs. In these algorithms shifting right by one bit 
is equivalent to dividing by 2 (sri = +2) and shifting left by one bit is equivalent to 
multiplying by 2 (sll = x2). Also. LSD and MSD refer to the least significant digit and 
Jnost significant digit. respectively. for the BCD number. A detailed treatment of the bi
nary and BCD number systems is provided in Sections 2.3 and 2.4. and the pencil-and
paper conversion method between the binary and BCD number systems is discussed in 
Subsection 2.4.1. 

The first of the two algorithms. the BCD-to-binary conversion. requires that the BCD 
number first be placed in imaginary storage cells. For example. a two-decade BCD number 
will occupy eight imaginary storage cells. After this has been done. then thc algorithm 
proceeds as follows: 

Algorithm 6.1 BCD-to-Binary Conversion by the (+2);(-3) Process 

( I) Shift the BCD number to the right by one bit into the new LSD position. but keeping 
account of the bits shifted OUI of the LSD. 
(2) Subtract 001 I from lhe LSD (or add 1101 to !.he LSD if in 2's complement) iff the 
new LSD number is greater !.han 7 (01 11 ). After subtracting 3, shift right immeditttely 
even if the new LSD is greater man 7. 
(3) Repeat sleps (I) and (2) until the final LSD Dumber can no longer be grcaler than 
decimal 7. The answer is now in binary. 

Algorithm 6.1 is someLimes referred 10 as the shift-right/subtract 3 for (+2)/ (-3») algo
rithm. The algorilhm for binary-la-BCD conversion can be thought of as the mathematical 
dual of Algorilhm 6.1 . In this case the process (XlUld be called the shift-left/add 3 {or (x2)/ 
(+3») algorithm. Begin by placing the binary number outside and to the right of the LSD 
positions. then proceed as follows: 
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Algorithm 6.2 Binary-to-BCD Conversion by the (x2)/(+3) Process 

( I ) Shift the binary number to lhe left by one bit into the new LSD position. 
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(2) Add 0011 to the new LSD iff the new LSD number is greater than 4 (0100). After 
adding 3, shift left immedi3lely. 
(3) Repeat sleps ( I) and (2). When all binary bilS have been shifted into digit positions, 
the process ceases and the answer is in BCD. 

To design conveners by either Algorithm 6. 1 or 6.2, it is not necessary to resort 10 

arithmetic means as implied by the algorithms. Rather, a modular approach is easily estab
lished by constructing a relatively simple tnlth table followed by appropriate minimization 
methods. The process is now illustrated by designing an 8-bit BCD-to-hinary convener. 

BCD-to-Binary Conversion A truth table matching BCD wi th the con-esponding binary 
from 0 to 19 is given in Fig. 6.20a. Inherent in this truth table is the shift-right/subtract-) 
Algori thm 6. 1. The decimal range 0 10 19 is chosen to illustrate the process but i .~ easily 
extended 10 39, 79, or 99, etc. This truth table will be used to design a BCD-ta-binary 
module th:lt can be cascaded to produce any size converter. It is possible to use a decimal 
range of 0 to 99 for this purpose. but the size of the module is considered 100 large to be of 
value for Ihis example. 

Shown in Fig. 6 .20b arc the K·map~ and minimum covcr for four of the five output 
functions of the 2-digit BCD-Io-binary module. The two-.level minimum expressions for 
Ihe BCD-to-binary module. as read from the K-maps and truth tuble, are 

8 4 = D4D2DI + D~D3 

8) = DdhDI + D~ fJ2 D I + tJ~D3 

Bl = V.JhV, + D4D2 + D2DI 

81 = D~D, + D4 V I = D4 EI1 VI 

80 = Do by inspection. 

(6. 17) 

which represent a galt/input tally oJ 11 /27 excluding inverters but including one shared PI. 
The logicdrcuit for this module is given in Fig. 6.2 1a and is cascadt..'d in Fig. 6.21 b to produce 
the S-bit BCD-tO-binary converter. Notice that the four modules are cascaded in such a way 
as to satisfy the right-shift requirement of Algorilhm 6. 1. If expansion beyond 8 bits is 
needed. each additional bit requires thar an addi tional module be added in cascade fashion. 

BCD-ro-Seven-Segmenr Display No discussion of code conversion is complete without 
including the BCD-to-seven-segmem decoder (converter). Light--cmiuing diodes (LEOs) 
and liquid crystal displays (LCDs) are used extensively to produce the familiar Arabic 
numerals. The use of the BCD-to-seven-segmcnt decoder is an important means of accom
plishing this. 

Shown in Fig. 6.22a IS the seven-segment display fannat and the ten decimal digits that 
are produced by the decoderfdi~play. lbe truth table for the convener is given in Fig. 6.22b 
and features a blanking input SI. but lacks FDR since q,'s are assi!loed to the six unused 
input stales. 

The EV K-maps for the seven segment OUlpots are shown in Fig. 6.22c, where a 
ncar-minimum POS cover for each has been looped oui. This resulls in the following 
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BCD Binary 
A A 

OJ D2 0 , D, 84 83 82 Bl 80 Dec. DD , , DD , , 
0 0 
0 0 
0 0 
0 0 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 

0 0 0 
0 1 0 
1 0 0 
1 1 0 
0 0 0 
0 1 0 
1 0 0 
1 1 0 
0 0 0 
0 1 0 
0 0 0 
0 1 0 
1 0 0 
1 1 0 
0 0 0 
0 1 0 
1 0 1 
1 1 1 
0 0 1 
0 1 1 

la) 

FIGURE 6.20 
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D, 
0 0 0 0 
0 0 1 1 
0 1 0 2 
0 1 1 3 
1 0 0 4 
1 0 1 5 
1 1 0 6 
1 1 1 7 
0 0 0 8 
0 0 1 9 
0 1 0 10 
0 1 1 11 

D, 

1 0 0 12 
1 0 1 13 
1 1 0 14 
1 1 1 15 
0 0 0 16 
0 0 1 17 
0 1 0 18 
0 1 1 19 

D, 00 01 11 10 D, D, 00 01 

00 0 0 0 0 00 0 0 

01 0 ; ; ; 01 , • 
11 , ; ; ; 11 0 ; 

10 0 0 , 0 10 P 1 

, , DODD , , 
D, 00 01 11 10 D, D, 00 01 

00 0 0 'r 
, 00 0 'r 

01 0 • .'- • 01 0 ;'-

11 0 • • • 11 , ; 

10 0 1 0 -.2.- 10 c...!- O 

B, 

(b) 

Design of an 8·bit BCD.lo-bin::uy converh:r. (3) Truth table for a 2-digit BCD-Ie-binary module. (b) 
K-maps ploued dircclly from Ihe [ruth table showing minimum cover. 

expressions 

{I =(A + B + C + DXiJ + D) 

b=B+C 0 D = B + C (9 0 
~(B + C + O)(B +t+ D) 

'~(B +C+ D) 

d~(B +C + O)( ii +C '" D) 

~ (B + C + O)(B + C + D j(8 + t + 0 ) 

e= o(ii + C) 

f ~ (C + OXA + B + 0)(8 + C) 

g ~(A + 8 + C)(B + t + 0), 

(6. 18) 

11 10 

0 0 

; ; 

; ; 

0 '-'---

11 10 , 0 

; ; 

; q-

0 '"-
B 
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MSD LSD 

I I I I 
D. 0, 0, 0, 
BCD-to-Binary Module 

B,(H) B. B, B, 

I I I 
D. 0, 0, 0, 
BCD-to-Binaty Module 

"1 
FIGURE 6.21 

B,(H) 

B,(H) 

B. B, e, 

I I I 
D. 0, 0, 0, 
BCD-t0-8lf1ary Module 

B. B, B, B, 

I I I 
D. 0, 0, 0, 
BCD-I0-8lnary Module 

B. B, B, B, 
I I I I 

(bl 

lmplem~nlatioo of the BCD-to-binary module and the 8·bll BCD-to-binary con\"ener. (3, Logic 
cireuil for the 2-digit module 3Ccording 10 Eqs. (6.17). (b) Cascaded modules 10 produce the 8-bil 
converter. 

which represent a POS gate/inpul laJ1y of 19/ 50. excluding inveners. Notice lhat two of 
these seven expressions are also presented in hybrid (POSIXOR) fOfTTl and thai one. d. is a 
three·level expression jf!he XOR lerm is considered one level as in Fig. 3.200. 

A BCD-to-seven-segment converter uses either a common cathode or common allode 
LED display as shown in Fig. 6.23. 1.>01 where the individual LEOs are arrnnged as in 
Fig. 6.22a. The common anode configuration requires thaI the outputs in Eqs. (6.18) be 
active low while the conunon cathode configuration requires that they be active high. For 
Ihis example the corrunon cathode configuration of LEOs is chosen. requiring thllt the 
expressions in Eqs. (6.18) be complemented and active low. Wh~n this is done. the resulting 
two-level SOP (active low) expressions become Eqs. (6.19). 

B, 

B, 
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61 A 6 C D • 
0 X X X X 0 

0 0 0 0 1 
0 0 0 1 0 
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0 0 1 1 1 
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0 0 1 1 
0 1 0 0 
0 1 1 1 1 
1 0 0 0 1 

0 0 1 1 
0 1 0 
0 1 1 

0 0 
0 1 
1 0 , 1 

Ibl 

FIGURE 6.22 
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n u i23YSb 
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Segment Outputs A 
6 0 1 

A , o [C . 5) 0 

b , d , f 9 
1 1 ,p 

0 ,0. 0 . 0 .0 . .0. a 
1 1 1 1 0 
1 0 00 0 
0 1 1 0 1 

6 
A _0. 1 

0 C -t D 1 

1 1. 1 o .Q 1 
1 1 0 o 1 1 

1 C + O ¢ 

0 1 1 o 1 1 
0 1 1 1 1 f 
1 1 0 o 0 0 
1 1 1 " f " f 
1 0 o 1 

i 
,p', 

1 
6 

A 0 , 
0 0 c · o 

1 1 ¢ 
9 

6 
0 1 A 

0 1 ceo 

1 1 ¢ 

" A
6 0 1 

0 c.j) coo 

1 c . 5 ¢ 

101 

Near-minimum design of a BCD-Io-seven-segment converter. (a) Display format and the ten dedmal 
digits. (b) Truth table with a blanking input and without FDR. (e) EV K-maps for the seven-segment 
outputs showing near-minimum POS cover as given by Eqs. (6. 18). 

a(L)~ [ABtD + BDIILI 

bl L) ~ [BCD + BCD]fLI 

c(L)~ [BCDIIL) 

d(LI ~ [BCD + BCD + BCDIIL) 

elL) ~ [D + BC](L I 

f l L ) ~ [C D + A B D + BCIILI 

g(L)~ [ABC + BCDII L) 

16.19) 

and are implemented in Fig. 6.24. where the active low blanking input Bl(L) is real ized by 
using inverting tri -state drivers with active low controls as in Fig. 3.8d . Thus. BI serves to 

b 
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bed 

¥¥st= 
! 

(a) (b) 

FIGURE 6.23 
LED configurations for the BCD-to-seven-segment display converter. (a) Common anode. (b) Com
mon cathode. 

enable the decoder if BI(L) = I (L), or disable it if BI(L) = O(L). Notice that the common 
cathode configuration of LEDs in Fig. 6.23b requires the inputs to be 1 (H) = HV to force 
the diode into forward bias (conducting mode). Thus, a O(L) for any output in Eqs. (6.19) 
is a l(H), which is the same as a I in the positive logic truth table of Fig. 6.22b. Coupling 
the decoder of Fig. 6.24 with the common anode configuration requires the use of nonin
verting tri-state drivers with active low controls as in Fig. 3.8b. In this case, each output 
in Eqs. (6.19) would be issued active high such that any O(H) output (to the LED) forces a 
diode in Fig. 6.23a into forward bias. A commercial IC chip with logic suitable for coupling 
with the common anode LED configuration of Fig. 6.23a is the 74x49. Its logic differs 
somewhat from that of Fig. 6.24 because it generates the blanking condition in a differ
ent way - it uses a form of FDR - and it reverses the input lettering from MSB (D) to 
LSB (A). 

The blanking feature shown in Fig. 6.25 is useful in removing leading zeros in integer 
displays and trailing zeros in fixed-point decimal displays. When the blanking feature is 
used in this way it is called zero-blanking. For example, 036.70 would appearifno zeros are 
blanked but would be 36.7 after zero-blanking. To accomplish the zero-blanking capability 
requires that additional logic be connected to the BI input. The idea here is that when the 
inputs to an MSD stage are zero, the zero-blanking logic must deactivate BI [BI(L) O(L)] 
but must not do so for intermediate zeros as, for example, in 40.7. ICs with this capability 
are designed with a zero-blanking input (ZBl) and a zero-blanking output (ZBO) so that 
when the decade stages are connected together, ZBO-to-ZBI, zero blanking can ripple 
in the direction of the radix point terminal. This is easily accomplished as illustrated in 
Fig. 6.25 for an integer display, where external logic is connected to the BI inputs of the 
BCD-to-seven-segment decoders of Fig. 6.24 such that only leading zeros are blanked in 
ripple fashion from MSD-to-LSD. 

6.6 MAGNITUDE COMPARATORS 

A device that determines which of two binary numbers is larger or if they are equal is called 
a magnitude comparator or simply comparator. A vending machine, for example, must en
gage a comparator each time a coin is inserted into the coin slot so that the desired item can be 
dispensed when the correct change has been inserted. The block diagram symbol for an n-bit 
comparator with cascading capability is given in Fig. 6.26. Here, it is to be understood that 
gt and (A > B) represent A greater than B; eq and (A = B) represent A equal to B; It and 
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MSO LSD 

A(H) B(H) C(H) O(H) 

c( L) 

., A 

dILl 

(a) 

B c o 
B CD-Io-Seven -Segme nl 

Oecoder 

abcde 9 

(b) 

ell) I(L) 

Logic circuit (a) and circuit symbol (b) rortheBCD-to-sc:ven-segment decoder according 10 Bqs. (6.19) 
and Fig. 6 .22. featuring an ac tive low blanking input 81 implemented by using illvening three-state 
drivers with active low controls. 

(A < B) represent A less than 8. For cascading purposes. the inputs gt, eq. and It to the klh 
stage are the outputs (A > B, A = B, and A < B) from the next least significant (k - 1 )th 
stage. while the corresponding outpuisofthekth stage are me inpulS (g t. eq. and It) to the next 
most significant (k + I}th stage. Thus, the magnitudes of the klh Siage are more significant 
thanlhoseofthe(k - I)lhstagc:. as the magnimdes of the (J: + J)th slagearemoresignificanl 

gIl ) 
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JL 
- '> .r-. 280(H) 

Z81(H) al A a c 0 

BCD-to-Seven-Segment 
Decoder lal la 

ABC D 

ahcdef 
abcdefg 

'( nn n 
(0) (b) 

A a c 0 A a c 0 A a c 0 
O(H) lal (MSD) za ZBI la zal (LSD) za 

o b e d • abe d • f a b c d e f 9 

(e) 

FIGURE 6.25 
BCD-Io-sevcn-scgmenl d«oding ..... ith lero-blanking capability. (a) Extemal logic required for zero 
blanking. (b) Circuit symbol for zero-blanking decoder module. (cl Cascaded modules for integer 
representation showing rippled zero blanking of leading zeros from MSD-to-LSD stages. 

Ihlm those of the klh stage. etc. Though seemingly trivial, these fal;ls are imponam in estab
lishing the proper truth table entries for comparator design. as the following examples will 
illustrate. 

The design of a usefull;a<;cadable comparator begins with the I-bit design. Shown in 
Fig. 6.27 are the EV truth t.able and EV K-maps for a cascadable I -bit comparator. The 

o o 

n-BII Compara tor 

FIGURE 6.2& 
Circuit symbol for an n-bit comparator ..... ith cascading capability. 
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B • A B A>B A=B A<B A 0 0 A 0 1 

o 0 gl eq It 0 gl 0 0 II CD 
o 1 0 0 1 0 

1 0 1 0 0 I CD 91 0 II 
1 1 gl eq It 2 

3 (A>8) 2 
3 (A<8 ) 

(a) (b) 

FIGURE 6.27 
Design of acascadable l -bit comparal0r. (a) EV truth !.able. (bJ Output EV K-maps showing minimum 
cover with XOR-IYpe functions. 

gate-minimum cover for each of the three outpulS, a<; cxtracled rrom the K-maps. is 

I
(A > 8) =gl(A 0 8HAjjl 
(A = 8) = eq(A 0 B) . 

(A < 8) = II(A 0 BH AS 

(6.20) 

as given in three- level form. These represent a gatelinpullally of 8/16. excluding invcners. 
Notice Ihal in the tnl th table of Fig. 6.27a all three input~, gt, eq. and It, appear only when 
A and B are of equal magnitude and thai logic 1 appears when one. A or B, dominales in 
magnitude . 

In order LO establi sh an impoflanl trend in the output expressions. one that can be used 
10 establish the logic for any size comparator. it is helpful to construct the truth table and 
EV K-maps for a cascadable 2-bit comparator. These arc provided in Fig. 6.28. As in the 
I-bi t comparator design. the EVs (8" eq, and It) in the truth table of Fig. 6.28a are the 
outputS from the next least significant slage. which explains why they appear only when A 
and B are of equal magnitude. The gate-minimum output cover given in Fig. 6.28b yields 
the following expressions in three-level form : 

(A > B) = gtAoBo(A I 0 HJ) + Ao{gt + BoX A I 0 B I ) + AIBI 

= gt(A I 0 B1X AO 0 Bo) + AoBo(A I 0 8 1) + A I B I 

(A = B ) = eqA oBo(A I 0 B1) + eqAoBo(AI 0 8 1) 

=eq(AI 0 Bd(Ao0 Bo) 

(A < B ) = Ao(ft + Bo)(A I 0 BI) + IIAoBo(A I 0 B r) + AI BJ 

= /t(AI 0 BI)(Ao 0 Bo) + AoBu(AI 0 Bl ) + A,BI 

(6.2) 

These represeOl a gate/input tally of 11 / 29 (excluding inverters) with a maximum fan-in of 
4. Notice thai in arriving at the second equation for each of the outputs. use is made of the 
absorptive law, Eqs. (3.13). in the fonn gf + Bo = gtBo + Bo and It + Bo = 1180 + Bo. In 
comparison, a two- level optimization of this comparator gives a 8atc/input tally ofll / &], 
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Oec. 
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00 
01 
02 
03 
10 
It 
12 
13 
20 
21 
22 
23 
30 
31 
32 
33 

0 0 0 0 91 eq 11 

~ .. 9 ... 0 ... ' . .. o 0 I 
001 0 ··0······ ·0····· ' 

AoB, 
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1 0 0 1 o 0 A1 00 Ot It to 

. 1 .... .. . 9 ... 1 .. .. 1 ........ 9 ....... O . IIBo , 0 1 o 0 0 , , 91 eq 11 
0 11+60 0 

\al 

Ib) 

fiGURE 6.28 
Design o f a cascadable 2·bi, cOmp3T310r. (3) Compressed Wlh L1ble. (b) EV K-maps ploned from (:I) 
showing minimum cover involving XOR-type fuoclions. 

excluding inverters, tlOO has a maximum fan ·in of 7. Thus. the advanltlge of the multilevel 
gate-minimum fonn over that of the two- level implementation is evident. This is especially 
true if CMOS is used in the dcsign of the compardtor. Recall rhat the CMOS EQV gale in 
Fig. 3.27a has aboutlhe same gale path delay a.~ a two-input NAND gate. 

If A = B in Eqs. (6.20) tlnd (6.21), there resulls (A > B) = f:t and (A < B) = 1(, each 
of which must be logic 0 for the A = B condi tion from Ihe next least significant stage. 
Therefore, it follows generally Ihal 

(A = H) = (;;-;--[i) . (A < H). (6.22) 

which yields (A = B) = 0 for any condition other Ihan A = B. 
The trend Ihal emerges in the OUlpUt expressions is easil y deduced from an inspection of 

Eqs. (6.20) and (6.2 1), thereby pennitti ng {he three OUIPUI expressions 10 be written for any 

(A>B) 

(A:B) 

(A<B) 
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number of bits. As an example, the output expressions for a cascadable 4-bit comparator 
become 

333 

(A> B) = gt· D(Ai 0 Bi ) + AoEo D(A; 0 B;) + Al E, D(Ai 0 Bi ) 

;=0 ;=1 

+ A2B2(A; 0 B;) + A3B3 
3 

(A = B)=eq· D(A; 0 B i ) = (6.23) 
;=0 
3 3 3 

(A < B) = it· D(A; 0 Bi ) + AoBo D(A; 0 Ba + AIBI D(A; 0 B;) 
;=0 i=l ;=2 

+ A 2B2(A i <::) B;) + A3B3 

where 

3 

D(A; <::) B i ) = (Ao 0 Bo)(AI <::) B])(Az 0 Bz)(A3 <::) B3) 
;=0 

and 

3 

D(A; 0 Bi ) = (Az <::) B2 )(A3 <::) B3), etc. 
i=2 

Implementation of Eqs. (6.23) is given in Fig. 6.29, using three-level NANDINORlEQV 
logic and limiting fan-in to 5. Here, the gate/input tally is 23/67, excluding inverters. 

The commercial chip that is equivalent to the cascadable 4-bit comparator of Fig. 6.29 is 
the 74xx85. Though the two differ somewhat in the logic circuit makeup, they function in 
exactly the same way. Either can be cascaded to form a comparator of any number of bits in 
multiples of four bits. Shown in Fig. 6.30 is an 8-bit comparator formed by cascading two 
4-bit comparators in series. Notice that the inputs to the least significant stage are required 
to be at the fixed logic levels shown. 

Combining three or more comparators in series suffers significantly in propagation delay. 
Much better is the series/parallel arrangement shown in Fig. 6.31. Here, six 4-bit compara
tors are combined to form a 24-bit comparator where no more than two comparators are 
placed in series and all inputs and outputs are active high. In this case, a dominant A or 
B word is picked up by one of the five stages in ascending order of significance and is is
sued as either (A > B), (A = B), or (A < B) from the MSB stage of the output comparator. 
Words A and B of equal magnitude are picked up by the least significant stage and issued by 
the output comparator as (A = B). The series/parallel comparator arrangement in Fig. 6.31 
is justifiable on the basis of path delay arguments when the alternative is considered 
namely, the series configuration of six 4-bit comparators. Notice that not all of the 24 bits 
of the comparator need be used. Any size A, B words up to 24 bits can be compared by 
using the comparator of Fig. 6.31. The only requirement is that words A and B be of equal 
length and that MSB inputs not in use be held at O(H). 
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FIGURE 6.29 
Three-level logic circuit for the cascadable 4-bit comparator by using NANDINORlEQV logic with 
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6.7 PARITY GENERATORS ANO ERROR CHECKING SYSTEMS 

A parity bit can be appended to any word of n bits to generate an even or an odd number 
of l's (or O's). A combinational logic device that generates even or odd parity is caned a 
pari'>, genera/or. A device that is used to detect even or odd parity is called a paritydeteclOT. 
To understand the concept of parily generation and detection, consider the following 8-bil 
words 10 which a ninth parity bit is appended as the LSB shown in brackets: 

0' 

I I 0 I 0 I 0 I III : Even parity generation = Odd parity deteclion 

1 J 0 I 0 I 0 I (0): Odd parity generation = Even parity detection 

I 1010001 (I]: Odd parity generation = Even parit), detection 

I I 0 I 000 1 (0] : Even parity generation = Odd parity detection . 

Thus, parity generation includes the parity bit in the count of 1'5, whereas parity detection 
excludes the parity bit in the count but uses the parity bit to identify the parilY status (even 
or odd) of the word. The parity bit may be appended either at the LSB position, as in the 
examples just given, or al the MSB position. 

XOR gates can be combined to produce n-bit parity circuits. As an example, consider 
the design of a 4-bit even-parity gel/era/or module shown in Fig. 6.32. The second-order 
EV K-maps in Fig . 6.32b follow directly from (he truth table in Fig. 6.32a and yield the 
output expression 

(6.24) 

which is implemented in Fig. 6.32c. 

A B CD PEven Gen AB CD PEwn Clen 
0 

o 0 0 0 0 1 o 0 0 1 
o 0 0 1 1 1 o 0 1 0 (b) P Even Gon 

o 0 1 0 1 1 0 1 0 0 
o 0 1 1 0 1 o 1 1 1 .... _ .. ....... 
o 1 0 0 1 1 1 0 0 0 
o 1 0 1 0 1 1 0 1 1 

PevenGen( H) o 1 1 0 0 1 1 1 0 1 C(H)_ o 1 1 1 1 1 1 1 1 0 ntH) 

(01 '01 

FIGURE 6.32 
Design of the 4-bil even parily generator module. (al Truth table. (b) EV K-map. (c) Logic circuit 
according to Eq. (6.24)_ 
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8·bit Parity Module 

P(H) 

Control 
O(H) - Even Parity Generation 
1{H) - Odd Parity Generation 

An 8-bir even/odd parity generator circuit with a control input. 

This 4~bil parity generator module of Fig. 6.32 can be combined with another to form 
the 8-bit parity generator module shown in Fig. 6.33. Here. an additional XOR gate is 
added as a control to generate either an even or odd parity generate output. Notice that two 
8-bit parity generator modules can be cascaded to produce a 16-bil module. and two 16-bit 
modules can be cascaded 10 produce a 32-bit module, e lC., each with a control XOR gate 
to pnxJuce either an even or odd parity generation output. Note also that any 2"-bit parity 
module is an n-level XOR circuit. excl uding any control XOR gate . Thus. a 32-bi t parity 
module represents a 5-level XOR circuit. a 64-bit module is a 6-level circuit. etc. 

Error Checking Systems Errors occur in digital systems for a variety of reasons. These 
reasons include logic noise. power supply surges, electromagnetic interference, and crosstalk 
due to physically close signals. Single-error detection in a digital system usually amounts to 
a parity checking system where the parities at the source and destination sites are compared. 
A typical single-error checking system for an 8-bit data bus is illustrated in Fig. 6.34. In 
thi s case an 8-bit parity generator of the type in Fig. 6.33 is used at the source to generate 
either an even or odd parity bit. The 9-bit parity detector at the destination is the 8-bit parity 

8/
Tap B-bit 

1.g
erge Error·Prone /T" B·bit 

Data Bus Transport andlor 9 Data Bus a 
Data Storage 

17-lo'P 
Subsystem a p 9 

a-bit 9·bit 
Parity Parity 

Destination 

'7-IO(H) 

Error Check 
Generator Detector O(L ) - Data valid 

1 (L) - Data error 

FIGURE 6.34 
Error checking system for an S-I:lit data bus by using an S·bit parity generator althe source and a 9-bil 
parity detector at the destination sile. 
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generator module of Fig. 6.33 with an XOR gate and inverter as the output stage. hence an 
EQV gate. as implied in Fig. 6.34. 

The parity checking scheme illustrated in Fig. 6 .34 is valid for the. detection uf a single 
error in the 8-bit word. Actually. it is valid for any odd number of errors. but the probability 
thai three or more errors will occur in a given word i.\ near zero. What a single-bit parity 
checking system cannot do is detect an even number of errors (e.g .. two errors). It is also true 
that the error checking system of Fig. 6.34 cannot correct any single error it detects. To do 
so would require detecting its location. which is no trivial task. To identify the location of an 
error bit requires multiple parity detection units on the submodular level down on the bit 
level, a significantcosl in hardware. However. when Ihisis done, ancrroneous bit can becor
rected. Memory systems in modem computers have such singie-error correction capability. 

6.8 COM81NATIONAl SHIFTERS 

Shifting or rotating of word bits to the right or lefl can be accomplished by using colilbina
tional logic. Devices that can accomplish this are called combinational shifters. or barrel 
shifters if their function is only to rotate word bits . Shifters are used for bit ex traction op
emtions. transport, editing, data modification. and arithmetic manipulation. among other 
applications. 

A general n-bit shifter is an (II + III + 3)-inputill -output device represented by the. logic 
symbol in Fig. 6.35a. with the inlerpretations of the control inputs given in Fig. 6.35b. 
A shifter of this type accepts n data input bits (1n _J - 10 ) and either passes these yalucs 
straight through to the data outputs (Y,, _I - Yo). or shifts or rotates them by one or morc bit 
positions to the right or left with 0 or J fiJI on command of the 111 + 3 control inputs. The 
control inputs consist of a rotate control (R), fill conlrol (F). direction control (D), and III 
inputs (Am ~! - Ao) 10 conlrol the number of bit positions to be shifted or rotalcd - usually 
binary encoded to O. 1.2.3 . . .. , P bit positions. For thc shifter of Fig . 6.35. the control 

Control { R,F,D 
Inputs A _A 

~, .. 

f iGURE 6.35 

3 

m 

Data Inputs 

1"-1-10 

0 

General 
n-Bit 

Shifter 

0 

Yn.\-Yo 
Data Outputs 

(,) 

Control Variable Operation 

R=O 
R=1 

F=O 
F = 1 

D=O 
0=1 

(b) 

Shift 
Rotate 

O-Fill 
1-Fill 

left 
Right 

A general n-bit shifler. <a) Block diagram sYll1bo1. (b) lnlC!"pretalion oflh~ cornrol inpul.'!. R. F, and D. 
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o 

0 1 

1 

0 

R '" 0 
F= 0 5 
D = 1 

A,Ao = 10 

1 1 o 

0 0 0 1 

'--v--' '--v--' '-v------' ~ 
Spill bit 

R=l 
F =; 5 
D:1 

A,Ao '" 01 

fiGURE 6.36 

(a) 

1 0 

1 1 

(e) 

'------ O-FIII bits ----" 

1 

o 

R=l 
F=; 5 

0=0 
A,Ae, = 10 

1 

o 

(b) Spill bits 

1 0 1 

1 1 1 

(d) 

Examples of shift and rotation operations by using :I general 4-bil shifter. (a) Shifl )eft one bil (81 1) 
with O-fill. (b) Shifl right 2 biL~ (sr2) with O-Fill. (c) Roule right one bil (IT I). (d) ROIale left two bits 
(rI2). 

input word is given the POSiliollaJ weights R F DA'''_I . _. Ao and is sometimes represented 
as S' _J' " S,SO. where k = In + 3. 

The control variable (R = 0) causes the shifter in Fig. 6.35 to shift the input word (right 
or left) by p bit<; while, at the same time, causes Spill and 0- or I-Fill by p bits. The control 
variable (R = I) rotates the input word (right or left) by p bits with no Spill or Fill. These 
operations are illuSlrated in Fig. 6.36 for a 4-bit shifter with input word IIDI. In Figs. 6.36a 
and 6.36b, the shifter is sct for shifting operations, first shift left by one bit (set) and then 
shift right by two hits (sr2) with ~pillllnd O-fill bits equal to the number of bits shifted. Note 
Ihat the spill bils are always losl. In Figs. 6.3& and 6.36d. the shifter is SCI fQr rotation with 
seuings for I-bit right rotation (IT\) and 2-bits left rotation (re2). respectively. Notice that 
rotation requires that end bits, nonnally spilled (discarded) in a shift operation. be rotated 
around to the opposite end of tile shifter. The rotation mode could be called the barrel shifter 
mode. the word barrel implying "shift around." 

TIle design of a 4-bil shifler capable of lefl shifting or roUilion by up 10 three bils is shown 
in Fig. 6 .37. To reduce the size oflhe lable, the fill bit F is included as an entered variable in 
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Design of a 4-bit general shifter that can shift or rOlate left up to three bits with F fill. (a) EV Truth 
table. (b) OUtPUt K-maps suilable for 8·[0-1 MUX implementation. 

the truth table of Fig. 6.37a. and the absence of the direction variable D implies that 0 = 0 
for left shift/rotate. Thus, there are four control variables R, F. A I, and Ao. as indicated in 
Fig. 6.37a. The EV K-maps in Fig. 6.37b are plotted directly from the truth table. 

The four outputs represented by the K-maps in Fig. 6.37b can be implemented in a 
variety of ways. including discrete logic. However. their form suggests an 8-l0- 1 MUX 
approach. which is the approach of choice for this example. Shown in Fig. 6.38 is the MUX 
implementation of the general 4-bit left shifter/rotalOr represented by Fig. 6.37. 
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FIGURE 6.38 
MUX implementation of the general 4-bit left shifter/rutator with F (0 or I) fill. The MUX select 
inputs are weighted RAI Ao for 525150. respectively. 
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Notice that in Fig. 6.38 the control variable D is missing, meaning that D = 0 for left 
shifting. Had the variable D been included for left or right shifting/rotating, fourth-order 
EV K-maps and l6-to-l MUXs would have to be used if the architecture of Fig. 6.38 were 
to be retained. Also note that this shifter can be cascaded by connecting Y3(H) of one stage 
to F(H) of the next most significant stage, etc. 

6.9 STEERING LOGIC AND TRI-STATE GATE APPLICATIONS 

Any of the combinational logic devices discussed to this point can be designed by using 
transmission gates together with inverters. When this is done the devices are classified 
as steering logic. A transmission gate lacks logic function capability by itself, but can be 
configured with other transmission gates to steer the logic signals in a manner that carries out 
a logic function. Inverters are necessarily included in most steering logic designs because 
transmission gates are passive and noninverting, as explained in Section 3.5. 

As a simple example, consider a 4-to-1 MUX defined by the truth table in Fig. 6.39a. 
This device can be implemented easily with CMOS transmission gates and inverters and at 

AND plane OR 
/~ ____ -J~~ ____ ~, 

! 
y 

EN(L) 

o X X ',(H) 

o o Y{H) 

o 

X = Irrelevant Input 

(a) 

(b) 

FIGURE 6.39 
Transmission gate implementation of the 4-to-l MUX. (a) Truth table. (b) Logic circuit with a tri-state 
buffered/enabled output. 
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a considerable savings in transistor count and design area, as indicated in Fig. 6.39b. Here, 
the MUX is enabled and buffered by using a tri-state driver with an active low control input. 
Thus, the disable condition [EN(L) = O(L)] is actually a disconnect state as indicated in 
Fig. 3.8b and is represented by the dash in the truth table of Fig. 6.39a. Notice that the AND 
plane, equivalent to the four four-input NAND gates in Fig. 6.4d, is constructed with only 
eight transmission gates, and that the OR operation is "wired" to the tri-state driver since 
only one line can be active at any given time. Consequently, the transmission gate design 
represents a significant savings in hardware cost and will be faster (shorter throughput) 
compared to the NAND gate design in Fig. 6.4d. 

An important aspect of steering logic designs is that the transmission gates are non
restoring devices and must be buffered to prevent degradation of the signal. The following 
is offered as a "rule of thumb" in dealing with transmission gate designs: 

For signal-restoring purposes in logic designs that use transmission gates, plan to 
buffer each signal for every four transmission gates through which the signal must 
pass. CMOS transmission gates should be counted as two pass transistors. 

The design of a 2-to-4 decoder is used here as another simple example of a CMOS 
transmission gate (TG) implementation of a combinational logic device. Shown in Fig. 6.40a 
is the truth table for this decoder and in Fig. 6.40b is the TG implementation of the decoder 
taken directly from the truth table. The outputs are shown enabled and buffered with inverting 
tri-state drivers having an active low control input as in Fig. 3.8d. If active high outputs are 
required, noninverting tri-state drivers of the type shown in Fig. 3.8b can be used. Notice 
that each" 1" CMOS TG leading to a Y output must have a "0" TG associated with it and 
that all TGs have complementary EN inputs connected to them from an inverter. Thus, since 
there is a series of two" I" TGs per Y output, there are two "0" TGs for each output, making 
a total of 16 TGs or a total of 60 transistors, including inverters and tri-state buffer/enables. 
In comparison, the gatewise CMOS NAND implementation of the same decoder yields a 
transistor count of only 34. Though the transistor count for the TG design is greater than 
that for the gatewise implementation, the speed (throughput) should be comparable and 
perhaps a little faster for the TG design. 

6.10 INTRODUCTION TO VHDL DESCRIPTION 
OF COMBINATIONAL PRIMITIVES 

With ever-increasing complexity of digital systems, there comes a greater need for simu
lation, modeling, testing, automated design, and documentation of these systems. The 
challenge here is to make the English language readable by a computer for computer-aided 
design (CAD) purposes. Hardware description languages (HDLs) satisfy these require
ments. VHSIC (for very high speed integrated circuit) is such an HDL. It was funded by the 
Department of Defense in the late 1970s and early 1980s to deal with the complex circuits of 
the time. However, the capabilities of the VHSIC language soon reached their limit, giving 
way to more advanced HDLs that could meet the challenges of the future. One important 
language that has emerged is known as VHSIC Hardware Description Language or simply 
VHDL. VHDL was first proposed in 1981 as a standard for dealing with very complex 
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EN(L) ------------......, 

(b) 

FIGURE 6.40 
Transmission gate implementation of the 2-to-4 decoder. (a) Truth table. (b) Logic circuit with active 
low outputs produced by tri-state buffer/enables. 

circuits. It has since gone through several revisions and in 1987 and 1993 was adopted as 
the IEEE 1076-1987 and 1076-1993 standards, respectively. The examples given in this 
section will use these standards. 

VHDL is a powerful tool capable of top-down design descriptions covering various 
levels of abstraction ranging from the behavior level, to the dataflow level, to the structural 
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level. Examples of the behavior level of represenlalion are truth tables and algorithmic 
descriptions. The structural level of representation typically includes various primitives 
logether wilh the interconnections required to make a circuit. The primilives covered in this 
chapter include discrete gates. decoders. encoders. MUXs, comparators. parity generators. 
and combinational shifters. Other primitives, including those associated with arithmetic 
circuits. PLDs, and sequential circuits. will be considered in subsequent chapters. 

Before illustrating the use of VHDL for some well known combinational primitives. it 
will be helpful 10 review some assignment statements re1evanl lO behavioral modeling. For 
example, 

a <= b; 

is read as "a is assigned the value of b." As a second example. 

Y <= 12 after 10 ns; 

is interpreted as fo llows: "Y is assignt!d the value ofl2 afler 10 nanoseconds have elapsed." 
In Ihese IWO examples. "<=" is an assignmem operalor that assigns a value 10 a sig
nal. Another assignmcnt operator is the ":=" operator. It is used to assign a value to a 
variable: 

resul t := Xi or delay:= 4 ns: 

Here, result and delay arc variables and are assigned the values of X and 4 ns, respectively. 
To illustrate, consider the VHDL behavioral descriplion of the Iwo-input NOR gate 

primilive given in Fig. 6.4 1 a. In this case the entity is called lIor2 with inputs i1 and i2, 
and output, 0 1, as indicated in Fig. 6.4 lb. The architecture for l1or2 is arbitraril y called 
l1or2.behavior and provides lhat "0 1 is assigned the value i I nor i2 [or not(i1 or i2)1 after 
5 nano~onds." Thus, 5 ns is the propagation delay of the gale. Notice that all VHDL 
keywords, such as entity, port. and end. and the VHDL logical "or" are highlighted in bold 
for visual effect. Also, note that the entries are case insensitive . The keyword port is used 
to idenrify Ihe input and output ports of the entity. 

As a second example consider Ihe VHDL behavioral descriplion for a 4-to-l MUX prim
itive given in Fig. 6.42. For this example an arbitrary delay is assigned (to Ihe data selection 
process) the keywords generic (del :time), meaning that time delay (del) is determined by 

entlly nor2 Is 
port (it, i2: in bil: 01. out bit) : 

end nor2 : 

architecture nor2 be haVior of nor2 is 
begin 

01 <= not (I t or 12) after 5 liS: 
end nor2_b9ha viof: 

" ~I 

FIGURE 6.41 

-~ 
~ 

(b) 

Behavioral model for a 2-input NOR gate. (a) YHDL entity declaration and behavioral description. 
(b) NOR gate circuil symbol with inpuls, iI and i2. and output, 01. 
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enlily mux4 Is 
generic (del: lime); 
pori (iO, 11, 12, i3: In bit_vector (0 to 3) : 

end mux4 : 

01 : out bll_vector (0 to 3)) : 
group selllS (51,50) ; 

architec ture mux4 behavior of mux4 Is 
begin 

01 <=- iO afler del when 51 ,, '0' and sO" '0' else 
11 after del when IS 1 = '0' and sO ,: ' " alse 
i2 after del when 51 '" '" and sO :: '0' else 
13 afler del when 51 '" '1' and sO " ' 1' ; 

end mux4_behavior; 

(.) 

fiGURE 6.42 

-

-

" 
" 4·10 " 

MUX " 12 

" " ., 
(b) 

Behavioral model for a 4·[0-1 MUX. (a) Entity declaralion and behavioral dei.Cription. (b) Logic 
symbol. 

the logic and the environment and, therefore. is not given a specific value for any of the 
behavioral events. Again. as in Fig. 6.41, the VHDL keywords are highlighted as a visual 
effect for the reader. The logic symbol for the 4-to-l MUX is given in Fig. 6.42b and indi 
cates fou r data inputs (;3, ;2, i I. iO), two data select inputs (s I and sO). and a single output. 
01, all active high. 

Notice that the VHDL language grammar is to some extent intuitive. Forexample, group 
sel Is (s I, sO) identifies a collection of named entities (s I, sO) as belonging to the group 
name "se\." Or, the third line under architecture {begin has the following meaning: Output 
0 1 is assigned the value;2 after an arbitrary delay when the select inputs, sl and sO. are 
I and O. respectively, or else .. . . The behavioral model in Fig. 6.42 is but one of sc\'eral 
VHDL description formats that could be used . The reader should experiment with others 
to gain experience in behavioral modeling. 

The complete VHDL gate-level description of the I-bit comparator is next offered as the 
fin::tl example in this chapter. In Figs. 6.43a and 6 .43b are given the truth table and logic 
circuit symbol for the J-bit comparator. The K-maps and gate-minimum cover for the bit 
comparator were given previously in Fig. 6 .27b. resulting in the output expressions given 
by Eqs. (6.20). By using the factorization method presented in Subsection 4.9.1, Eqs. (6.20) 
are converted to two-level minimum form as follows: 

a.gl.b = gl(a 0 b) + ab = gm + 81b + ab 
a _eq_b = eq(o 0 b) = eqii6 + eqab 
oJt.b= 1'(0 0 b) + iib = Ita + ltb + ab. 

Here. gt, eq, and It have thc same meaning as is used in Section 6.6. 

(6.25) 

The logic circuit representing Eqs. (6.25) is shown in Fig. 6.43c. where the gate numbers 
and intcrmediate o utput functions. inrl. inr2, inr3 .... are specified for each inverter and 
NAND gate. This is done for tracking purposes during the VHDL description that follows. 

The VHDL gale-level description of the bit-comparator is divided into three pans: entity 
declaration. behavioral description. and the strucfllrol description. The average primitive 
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• b a-ljt_b a_eCLb aJI_b a{H) 

o 0 gf eq " 
b(H) 

o 1 0 0 1 2 
1 0 0 0 
1 1 gf eq " (.J 

gt(H) 

• 
- b a-ljCb eq(H) ,..., 
- g' Comparatora_e<Lb 

It(H) 
eq a_ lt_b 

- " 
(bJ (oj 

FIGURE 6.43 
Design of the cascadable bit-comparator. (a) Truth table. (b) Logic circuit symbol. (c) Circuit diagram 
in NANDIINV logic according to Eqs. (6.25). 

propagation delay, denoted as avg..delay, is computed in each gate model at the end of the 
VHDLdescription by using (fplh+tphl)/2, which is Eq. (6. I) discussed in Suhsection 6 . 1.3. 
The propagation delays are defined in Fig. 6.2. As in the two previous examples. the VHDL 
keywords and logic operdlOrsarc indicated in bold for visual effect. Two new keywords have 
been added: generic map associates conslanls within a portion of the VHDL description 
10 constants defined outside Ihal portion ; port map <l$sociates port signals within a portion 
of Ihe VHDL description to ports outside of that portion. 

The following is the complete gate-level VHDL description of the I -bit comparator given 
the name bir ..compare: 

entity biLCompare is 

generic (tplh I. tphll. tplh2. tphl2, tplh3, tpill3: time); 

port (a. b, gt. eq. It: in bit 3_gLb, a..eq_b, aJLb: out bit): 

end bit-compare: 

an:hited:urt' behave_comp ofbiLCompare is 

begin 

a_gLb <= ' I' when a > b else '0'; 

aJLb <= ' 1' when a < b else '0'; 

a_eq_b < = gt ifgt <= ' I' else 

eqif eq < ='l'else 

It ifh <= ' I '; 

end behave-comp: 
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architecture structure_comp of biLcompare is 

component inv 

generic (tplh, tphl: time); port (il: in bit; 01: out bit); 

end component; 

component nand2 

generic (tplh, tphl: time); port (ii, i2: in bit; 01: out bit); 

end component; 

component nand3 

generic (tpIh, tphI: time): port (il, i2, i3: in bit; 01: out bit); 

end component; 

for all: inv use entity avg_delay jnv; 

for all: nand2 use entity avg_delay _nand2; 

for all: nand3 use entity avg_delay..nand3; 

-- Intermediate signals must be declared: 

signal imI, im2, im3, im4, im5, im6, im7, im8, im9, imlO: bit; 

begin 

a_gLb output 

gatel: inv generic map (tpIh, tphl) port map (a, iml); 

gate2: inv generic map (tpIh, tphl) port map (b, im2); 

gate3: nand2 generic map (tplh, tphl) port map (gt, a, im3); 

gate4: nand2 generic map (tplh, tphl) port map (gt, im2, im4); 

gate5: nand2 generic map (tplh, tphl) port map (a, im2, im5); 

gate6: nand3 generic map (tpIh, tphl) port map (im3, im4, im5, a_gLb); 

a_eq_b output 

gate7: nand3 generic map (tpIh, tphl) port map (eq, iml, im2, im6); 

gate8: nand3 generic map (tpIh, tphI) port map (eq, a, b, im7); 

gate9: nand2 generic map (tplh, tphi) port map (im6, im7, a_eq_b); 

aJLb output 

gatelO: nand2 generic map (tpIh, tphl) port map (It, imI, im8); 

gatell: nand2 generic map (tplh, tphl) port map (It, b, im9); 

gatel2: nand2 generic map (tpIh, tphl) port map (imI, b, imlO); 

gate 13: nand3 generic map (tpIh, tphI) port map (im8, im9, im 1 0, a_ILb); 

end structure_comp; 

The following are the gate model descriptions for inv, nand2 and nand3: 

entity inv is 

generic (tpIh: time := 4ns; tphI: time := 2 ns); 

port (il: in bit; 01: out bit); 

end inv; 
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architecture avg_delay inv of inv is 

hegin 

01 <= not il after (tplh + tphl)/2; 

end avg_delay I; 

entity nand2 is 

generic (tplh: time := 6ns; tphl: time 4 ns); 

port (i I, i2: in bit; 0 I: out bit); 

end nand2; 

architecture avg_delay -Iland2 of nand2 is 

hegin 

01 <= il nand i2 after (tplh + tphl)/2; 

end avg_delay2; 

entity nand3 is 

generic (tplh: time := 7ns; tphI: time := 5 ns); 

port (ii, i2, i3: in bit; 01: out bit); 

end nand3; 

architecture avg_delay _nand3 of nand3 is 

hegin 

01 <= not (il and i2 and i3) after (tpih + tphI)/2; 

end avg_delay3; 

In the preceding examples VHDL syntax has been applied sometimes without comment. 
There are relatively few syntax rules that need be followed to create proper VHDL descrip
tions of devices. The following arc some of the more important examples of these syntax 
rules: 

• VHDL is not case sensitive. Upper- or lowercase characters can be used as 
desired. 

• Identifiers must begin with a letter and subsequent characters must be alphanu
meric but may contain the underscore "_n. For example, in Fig. 6.42 the identi
fiers are mux4 and mux4_behavior. 

• The semicolon H;" is used to indicate the termination of a statement. For example: 
"end nand3;". 

• Two dashes "--" are used to indicate the beginning of a comment. A comment 
in VHDL is not read by the compiler but serves as a message or reminder to the 
reader. 

An interesting and useful feature of VHDL is that it supports what is called operator 
overloading. This feature permits custom operations to be defined. The following example 
illustrates how operator overloading can be used to define a new data type: 

function "and" (1,r: stdJogicll64) return UXOI is 
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begin 

retum( (and_table )(l,r)); 

end "and"; 

architecture example of and_operation is 

signal Y,A,B: stdJogic_ll64; 

begin 

Y <=AandB; 

end example; 

Here, stdJogicl164 refers to an IEEE standard logic package within which UXOI is a 
sUbtype for 4-valued logic systems. Thus, the operation "and" takes on the new meaning 
"and_table" contained in the standard package. Also, I and r (in line 1) are two of a class of 
value kind attributes that return the leftmost element index (1) or rightmost element index 
(r) of a given type or sUbtype. 

Several operators, or constructs as they are sometimes called, have been used in the 
examples given previously. Although it is true that the VHDL language contains a large 
number of these constructs, only a few are necessary for most logic synthesis purposes. The 
most important of these are given in Fig. 6.44. Included are assignment, relational, logical, 

Assignment Operators: 
<= Signal assignment 

Relational Operators: 
'" Equality 
< Less than 

:'" Variable assignment 

1= Inequality > Greater than 
<= Less than or equal >= Greater than or equal 

Logical Operators: 
and AND 
xor XOR 

or OR 
xnor EQV 

nand NAND nor NOR 
not Logical negation 

Arithmetic Operators: 
+ Addition • Subtraction • Multiplication 1 Division 

Shift Operators: 
s" Shift left log ical 
ro. Rotate left logical 

Miscellaoeous Operators: 
.. Exponentiatioo 

FIGURE 6.44 

sri Shift right logical 
ror Rotate right logical 

abs Absolute value & Concatenation 

Partial listing of important VHDL operators supported by the IEEE 1076-1993 standard. 
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FIGURE 6.45 

'U' 
'0' 
'L' 

Description 

Unlnitlalized 
Logic 0 (driven) 
Logic 0 (read) 
Don't care 

'X' 
'1 ' 
'H' 
'Z' 

Eight logic data types supported by the IEEE 1076-1164 standard. 

Description 

Unknown 
Logic 1 (driven) 
Logic 1 (read) 
High impedance 
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arithmetic, shift, and miscellaneous operators. Be aware that some of the operators have 
different meanings depending on the synthesis tool used. 

The IEEE standard 1164 supports standard data types that allow mUltiple 110 values 
to be represented. As an example, the standard data type having eight values permit the 
accurate modeling of a digital circuit during simulation and is presented in Fig. 6.45. The 
word "driven" used in the description of data type characters '0' and '1' indicates that these 
logic values are assigned (or forced) to a signal (e.g., an output). The word "read" would 
apply to input logic values that must be read by a device. Note that each data type character 
must be enclosed in single quotes as, for example, 'X'. 

VHDL is a large and complex language that is easy to learn at the beginning but difficult 
to master. It is particularly well suited to the design of very large systems, perhaps more so 
than any other HDL. Libraries of circuit elements can be easily built, used, and reused in a 
very effective and efficient manner, and this can be done at different levels of abstraction 
ranging from the block diagram level to the transistor level. In fact, one ofVHDL's strengths 
is that it offers nearly unlimited use of reusable components and access to standard libraries 
such as the built-in IEEE 1076-1993 Standard and the IEEE 1076-1164 Standard. Used in 
the hands of a skilled designer, VHDL can greatly increase productivity as well as facilitate 
the move into more advanced tools (for example, simulators) and advanced target systems. 
Further Reading contains essential references for continued development in VHDL. 

6.11 FURTHER READING 

Most textbooks on digital design cover one or more of the performance characteristics re
lated to digital design. Typical among these are the texts by Comer, McCluskey, Tinder, 
and Wakerly. The text by Wakerly covers these subjects in considerable detail and consid
ers various logic families. The performance characteristics covering several of the more 
common logic families can be found in the Electrical Engineering Handbook (R. C. Dorf, 
Editor-in-Chief). 

[1) D. J. Comer, Digital Logic and State Alachine Design, 3rd ed. Sanders College Publishing, Fort 
Worth, TX, 1995. 

[2] R. C. Dort, Editor-inChief, Electrical Engineering Handbook, 2nd ed .. CRC Press, Boca Raton, 
FL, 1997,pp. 1769-1790. 

[3) E. J. McCluskey, Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986. 
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice-Hall, Englewood Cliffs, 

NJ, 1991. 
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[5] J. F. Wakerly, Digital Design Principles and Practices, 2nd ed. Prentice-Hall, Englewood Cliffs, 
NJ, 1994. 

The usual combinational logic devices such as MUXs, decoders, code converters, and 
comparators are covered adequately by most texts, including those just cited, but the texts 
by Tinder and Wakerly provide what is perhaps the best coverage of the group. 

Steering logic seems to be covered adequately in only a few texts, among which are 
those of Hayes and Katz. 

[6] J. P Hayes, Introduction to Digital Logic Design. Addison Wesley, Reading, MA, 1993. 
[7] R. H. Katz, Contemporary Logic Design. BenjaminiCommings Publishing, Redwood City, CA, 

1994. 

There are numerous texts and reference books on VHDL. For instructional purposes the 
texts of Dewey, Navabi, Pellerin and Taylor, Perry, Roth, and Skahill are good choices. The 
texts by Pellerin and Taylor and by Skahill include CD-ROMs containing fully functional 
VHDL compilers. The text by Dewey is somewhat unusual in that it nicely combines digital 
design and analysis with VHDL. 

[8] A. M. Dewey, Analysis and Design of Digital Systems with VHDL. PWS Publishint Co., Boston, 
1997. 

[9] Z. Navabi, VHDLAnalysis and Modeling of Digital Systems. McGraw-Hill, New York, 1993. 
[10] D. Pellerin and D. Taylor, VHDL Made Easy. Prentice Hall PTR, Upper Shaddle River, NJ, 1997. 
[II] P. J. Ashenden, The Designer's Guide to VHDL, Morgan Kaufmann Publishers, San Francisco, 

CA,1996. 
[12] c. H. Roth, Jr., Digital Systems Design Using VHDL. PWS Publishing Co., Boston, 1998. 
[13] K. Skahlll, VHDLfor Programmable Logic. Addison-Wesley, Reading, MA, 1996. 

The latest VHDL IEEE standard is the 1076-1993 standard. Standard 1076 has been 
augmented by standards 1164, 1076.3 and 1076.4. These latest standards are identified as 
follows: 

Standard 1076-1993, IEEE Standard VHDL Language Reference Manual, IEEE, 
1994. 

Standard 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model 
Interoperability, IEEE, 1993. 

Standard 1076.3, VHDL Synthesis Packages, IEEE, 1995. 
Standard 1076.4, VITAL ASIC Modeling Specification, IEEE, 1995. 

These IEEE documents can be obtained from IEEE at the following address: IEEE Service 
Center, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331 (Phone: 1-800-678-
IEEE). 

PROBLEMS 

6.1 The propagation delays for a state-of-the-art CMOS logic gate are calculated to be 
<pill = 0.25 ns and <phi = 0.35 ns with a power dissipation of 0.47 mW. Calculate the 
power-delay product (PDP) in picojoules predicted for this gate. 
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6.2 The voltage parameters for a high-speed CMOS (HC) gate are measured to be VILma, = 
O.23VDD and VIHmin O.59VoD with VOLmax = O.08VDD and VOffmin O.90VDD for 
a supply of 2.8 V. 

(a) Calculate the noise margins for this gate. 

(b) Use the values calculated in part (a) to explain what they mean in relationship to 
the interpretation of logic 1 and logic 0 for this gate. 

6.3 Construct a logic circuit that combines two 16-to-l MUXs to form a 32-to-l MUX. 
(Hint: Use an inverter to select the appropriate MUX.) 

6.4 Use an 8-to-l MUX to implement each of the following functions, assuming that all 
inputs and outputs are active high. 

(a) W(A, B, C) = Lm(l, 2,4,5,6) 

(b) X(A, B, C) = ABC + ABC + ABC + ABC + ABC 

(c) YeA, B, C) = n M(O, 1,2.6,7) 

(d) Z(A, B, C) = (A + B) 0 (AC) + AB 

6.5 Repeat Problem 6.4 but instead use a 4-to-l MUX to implement each function. To do 
this use minimum external logic and the two most significant inputs as the data select 
variables. 

6.6 Repeat Problem 6.5 assuming that only input B arrives from a negative logic source 
and that one inverter is permitted to be used on a data select input. 

6.7 Use a 4-to-l MUX to implement each of the following functions, assuming that all 
inputs and outputs are active high. It is required that minimum external logic to the 
MUX be used in each case, and that the data select inputs be A and B. 

(a) U(A, B, c, D) = Lm(O, 4,5,7,8,9,13,15) 

(b) V(A, B, c, D} = n M(O, 5,8,9, 11,12,15) 

(c) W(A, B, C, D} = Lm(4, 5, 7,12,14,15) + ¢(3, 8,10) 

(d) X(A, B, C. D) = n M(O, 1,2,5,7, 9}· tjJ(4, 6,10, l3} 

6.8 Implement the following function by using the hardware indicated (nothing else). 
Assume that the inputs arrive as A(H}, B(L), C(H), and D(L), and that the output is 
issued active high. 

F(A, B, c, D) = Lm(O, 1,3,4,6,8,9, lO.l1, 12,15) 

Permitted hardware: One 4-to-l MUX; one NAND gate; one XOR gate. 

6.9 Implement the following function by using the hardware indicated (nothing else). 
Assume that the inputs arrive as A(L), B(H), C(H), and D(H), that the output is 
issued active high. (Hint: Fjrst find the absolute minimum expression for Z.) 

Z = AeD + ABeD + (A"':'" B)CD + (A 0 B)CD 

Permitted hardware: One 2-to-l MUX; one NAND gate; one AND gate. 

6.10 (a) Configure a 6-to-64 decoder by using only 3-to-8 decoders. 

(b) Configure a 6-to-64 decoder by using only 4-to-16 and 2-to-4 decoders. 
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6.U Implement the function in Problem 4.28 by using a l6-to- l MUX assuming that all 
inputs and the output are active high. 

6.12 Repeat Problem 6.11 if only the B input is active low and no additional hardware 
(e.g .. an inverter) is penniued. 

6.13 Design a bitwise logic function generator that will generate any of the 16 possible 
logic functions. End with a single expression F that represents the 16 bitwise logic 
functions . To do this use a 4-to- t MUX and nothing else. (Hint: Interchange the names 
for the dat.1 and data-select inputs to the MUX) 

6.14 Implement each function in Problem 6.4 by using a 3-to-8 decoder and the necessary 
external hardware, assuming that all inputs and outputs are active high. 

6.15 Implement funclion F in Problem 6.8 by using a 4-to-16 decoder, one OR gate. and 
two NAND gales (maximum fan-in of 6), taking the input activation levels as given 
in Problem 6.8. 

6.16 Repeat Problem 6.15 by replacing Ihe 4-10- 16 decoder with two 3-to-8 decoders and 
one inverter. 

6.17 The function below is to have inputs that arrive as A(H), B(L ). and C(}I), with an 
output F(L). 

F(A, B, C) == L m(O, 1, 6, 7) 

(a) Implement thi s function by using a 3-10-8 decoder and one NAND gate (nothing 
else). Assume that the decoder has active low outpuK (Hint: Use the AND fonn 
of the two conjugate NAND gate circuit symbols 10 meet the requirement of an 
active low output.) 

(b) Repeat part (a) by using two 2-t0-4 decoders, a NAND gate, and one inverter 
(nothing else). 

6.18 The circuit shown in Fig, P6. 1 connects a decoder to a MUX. Analyze this circuit by 
finding Y(H) in lenns of inputs A, B. C, and D. 

Vo '0 - '0 V, I, 2-10-4 
81H) 

AIL) --,'- I, Decoder V, I, 

Y, I, 

FIGURE P6.1 

4-to-l 
MUX 

S, So 

I I 
CIH) DIH) 

V-
Vcr-

VIH) 

VILI 
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I, Y, Yo(L) 

O{rI) I, 4-10-\ 
2-10-4 Y, V j(L) 

MUX Y EN Decoder 
I, \D MUX) Y, Y 2(L) 

C(H) 
I, Y, V J( L) 

D{H) S, S, S, S, 

A{L) 9 {H) 
FIGURE P6.2 

6.19 Analyze the network in Fig. P6.2 by obtaining the outpUilogic expressions for Yo(L), 
YI(L), Y2(L), and Y)(L) in tcnnsof inpuls A, B, C. and D . Assume that the DMUX 
is enabled if EN(L) = I(L). 

6.20 Design an 8-inpUi (h-/o). noncascadable priority encoder (PEl that will issue all 2n 

binary states. Thus, include an EN input but do not include the cascading bits El, EO, 
and GS. 

(a) Construct the collapsed priority schedule table for this PE by using X as the 
irrelevant inpUi symbol. Assume that the logic value EN = I enables the PE. 
(Hint: There are three outputs.) 

(b) Map the output functions into fourth-order EV K-maps with axes h,lr,. I~, f4 and 
extract minimum SOP expressions for these functions. 

(c) Implement the results of part (b) by using NANOnNV logic assuming that all 
inputs and outputs are active low. 

6.21 Repeat Problem 6.20 but with cascading bits El. EO. and GS. all of which must be 
active low. 

6.22 Use NORJINV logic to design a noncascadable three-input priority encoder that will 
operate according to the following priority schedule: 

Input C - Highest priority encoded as 10 
Input A - Middle priority encoded as 0 I 
Input B - Lowesl priority encoded as 00 
Assign II 10 Ihe inactive slate. 

Assume that all inputs arrive active high and that the outputs are issued active low. 

6.23 Design a Gray-to-BCD code converter by using four 4-to-1 MUXs and a gate
minimum el(temallogic. The inputs arrive as A(H). B(L). C(H), and D(H). and 
the outputs are all active high. 

6.24 Use three XOR gates and two OR gates (nothing else) to design a gate-minimum 
circuit for a4-bit binary-lo-2's complement (or vice versa) converter. Lei BJ , 8 2• 8 1• 

Boand T3 , T2, TI • To represent the4-bil binary and 2'scomplement words. respectively. 
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and assume that all inputs and outpuES are active high. (Him: Use second-order EV 
K -maps. constructed from the truth table. and XOR pauems. Factor BJ from the SOP 
minimum expression and then apply the defining relation for XOR.) 

6.25 Design a gale-minimum circuit for a BCD-!O-creeping code converter assuming that all 
inputs and outputs are active high and thai the inpulS are reslOcted 10 the ten BCD stales. 
To do this referlo Table 2. 10 and plan to use second-ordcr EV K-maps for convenience. 

6.26 (a) Design an 8-bit binary-to-BCD converter based on Algori thm 6.2 in Subsection 
6.5.2. To do Ihis, fi rst design the minimum NANOnNV togic for the converter 
module required to convert to BCD the binary numbers eq uivale nt of decimal 0 
through 19. Noee chat the shifl-left/add-3 algorichm is inherent in the cruch cable 
for the converter module and that the LS B in binary is the same. a.~ the LSB in 
BCD. Next. cascade the modules as in Fig. P6.3 to carry out Algorithm 6.2 for 
the g-bit converter. All inputs and outputs arc assumed to be active high. 

(b) Use the converter module of part (a) IOgethcr with Fig. P6.3 to find the BCD for 
a binary number equivalent to 15910 . 

6.27 Analyze the logic circuit for the BCD-Io·seven-segment decoder in Fig. 6.24 by con
structing a mixed-logic truth table for active high binllry inputs equivalent to decimals 
210 and 910 . Thus. the seven outputs must all De active low, suilllble to drive the 
common cathode LED display in Fig. 6 .23b. 

6.28 (a) Following Fig. 6.28a, construct the truth table for a cascadable 3-bit comparator, 
but do not map it 

(b) By using only Eqs. (6.23), write the three output expression~ for the 3-bit com
pnrtnor. 

FIGURE P6.3 
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(c) Implement the results of part (b) by making usc of Eq. (6.22), Is an eq input 
necessary? 

6.29 Given the block symbol for a <f.-bit cascadable comparator in Fig. 6.30 and with the 
appropriate gate-minimum NANDIEQVflNV extemallogic, design a 5-bit eascadable 
comparator. (Hint: Use the I-bit comparator as the output (MSB) stage.) 

6.30 Design a 4-bit even-parity detector with respect to logic I by using only XOR gates 
(nothing else). Show how this result can be use<l1O produce a4-bit odd-p<lrity detector 
without adding additional hardware. 

6.31 (a) Design a logic circuit that will detect a majority of seven inputs A, B, C , D , E, 
F, and G that are active at anyone time, and this under the following conditions: 
Circuits 1 and 2 represent majorityfunctions that must each detect a majority of its 
three inpuL'> that are active. Thus, if any four or more of all seven inputs are active, 
the output Majority Detect will be active; otherwise the output will be inactive. To 
do thi s, use the "divide-and-conquer" approach. Referring to Fi g. P6.4, construct 
truth tables for identical circuits 1 and 2 such that their outputs are active any 
time two or three of their inputs are active. Inputs A and D are the MSB inputs 
for each of the two circuits. Next, map each majority funct ion (actually, one will 
do) from the truth tables and extracl a gate-minimum cover. Finally, inU"oduce lhe 
input G = Z into the logic for circuit 3 such that the output, Majority Detect. is 
active iff the input conditions are met. End with a gate· minimum logic circuit that 
will contain XOR functions. 

(Hints: Properly done, the output Majority Detect can be ohtained directly 
without the use of a truth table. Note that if G is inactive, the oUlput of circuit 3 
can detect a majority of 4,5, or 6 active inputs. However, with input G active, the 
output of circuit 3 can detect a majority of only 5 or 7 active inpuls. To obtain a 
gate-minimum circuit for Majority Delect (seven gates and one inverter for Circuit 
3, 15 total). it will be necessary 10 plot a fourth-order K-map with input G as the 
entered variable.) 

(b) Repeat pan (a) but without circuits I and 2. Thus. lind the optimum two-level 
logic expression for the output Majority Detect with the seven inputs presented 
directly to cln:uit 3. To do this, plol a fourth-order EV K-map with EVs E, F, and 
G (a third-order compression with a Map Key of 8), then use the logic minimizer 
(e.g .. BOOZER software bundled with this text) to obtain the result. Do nOI 

A{H) 

BtH) Clrcu~ 1 X(H) 

C(H) X 

G(H) Z Clrcu~ 3 Majority Oelec1(H) 

D(H} y 

E(H) Cjrcu~ 2 Y(H) 

F(H) 

FIGURE P6.4 
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implement the function. [Hint: The easiest approach is to count the number of 
inputs (A, B, C, and D) that are active for each cell of the fourth-order K-map. 
Then enter the three EV s (in minimum subfunction form with the aid of a third
order K-map) in those cells as needed to bring the count of active inputs to four 
or more. If this is correctly done, 35 EPIs and no inverters will be required.] 

(c) From the K-map in part (b), extract a gate-minimum expression by using XOR 
patterns. If this is correctly done, the gate count will be reduced to 18 (a four-level 
function) with no inverters required. 

6.32 Design a 4-bit general shifter that can shift or rotate, right or left, up to three bits with 
F fill. To do this, do the following: 

(a) Construct the truth table for this shifter. 

(b) Use the truth table of part (a) to plot the fourth-order K-map for each of the four 
outputs. 

(c) From the results of part (b), write the expression for each output in a form suitable 
for a 4-to-1 MUX implementation by taking the data select inputs as Al and Ao. 
Do not implement. 

6.33 Find the gate-minimum external logic for a 4-bit shifter that will cause it to operate 
according to the following table. To do this, make use of XOR patterns. Show the 
resulting logic circuit required to be connected to the shifter assuming that all inputs 
and outputs are active high. 

Shifter input 

Even 1 parity 
Odd 1 parity 
1111 (Exception) 

Action 

Shift right 1 position with 0 fill 
Shift left 2 positions with 1 fill 
Transfer 

(Hint: It is only necessary to know the logic for F, D, AI, and Ao, which are the 
outputs for the truth table. Properly done, the minimum external circuitry will consist 
of three XOR gates, two NAND gates, and two inverters. Note that max term code 
must be used to extract Ao from the K-map). 

6.34 Combine two 4-to-1 steering logic MUXs, shown in Fig. 6.39b, to produce an 8-to-1 
line MUX. To do this you are permitted to use a single additional CMOS inverter and 
a CMOS OR gate. 

6.35 Write the VHDL behavioral description for the majority function F = AB + BG + 
AG. To do this, use the keywords that are defined in Section 6.10. 

6.36 Write the VHDL behavioral and structural descriptions for a 2-to-4 decoder with 
active high outputs. To do this follow the examples in Section 6.10. 

6.37 At the discretion of the instructor, write the VHDL behavioral description for any 
device featured in this chapter. Note that more than one correct approach may exist 
in writing the behavioral description of a given device. 

6.38 At the discretion of the instructor, write the VHDL structural description of any device 
for which Problem 6.37 has been assigned. Note that correct approaches often vary 
in writing structural descriptions of devices. 



CHAPTER 7 

Programmable Logic 
Devices 

7.1 INTRODUCTION 

A class of devices called programmable logic devices (or PLDs) can be thought of as 
universal logic implementers in the sense that they can be configured (actually programmed) 
by the user to perform a variety of specific logic functions. So useful and versatile are these 
PLDs that one might question why any other means of design would ever be considered. 
Well, the answer is, of course, that there is a time and place for a variety of approaches to 
design - that is, no one single approach to design satisfies all possible problem situations. 
However, the option to use PLDs offers the logic designer a wide range of versatile devices 
that are commercially available for design purposes. 

Some PLDs are made to perform only combinational logic functions; others can per
form both combinational and sequential logic functions. This chapter will consider those 
PLDs capable of performing both combinational and sequential logic functions, but the 
exemplar applications will be limited to combinational logic design. Four commonly used 
PLDs considered here are the read-only memory (ROM) devices and their subgroups, the 
field programmable logic array (FPLA) devices, the programmable array logic (PAL) de
vices and their subgroups, and field programmable gate arrays (FPGAs) and subgroups. 
Other PLDs include erasable programmable logic devices (EPLDs), including erasable 
programmable ROMs, generic array logic (GAL) devices, and field programmable logic 
sequencers (FPLSs). Except for FPGAs, most of the PLDs mentioned have some com
monality, namely a two-level AND/OR configuration. What is connected to the AND/OR 
network distinguishes one PLD from another. The development that follows attempts to 
illustrate the differences between these various PLDs and to provide a few useful examples 
of their application to combinational logic design. 

7.2 READ-ONLY MEMORIES 

A ROM is an n-inputlm-output device composed of a nonprogrammable decoder (ANDing) 
stage and a programmable (OR) stage as illustrated in Fig. 7.1. Bit combinations of the n 
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2ft Minlerm Code Lines 

" n-10-2n 0 , 

" 
Address OR Memory 0 , 

nAddfess Decoder Anay mOulpUts 
InpulS I""'" tPloorammable) 

'. , programmable) 
0 _, 

2"xmAOM 

FIGURE 7.1 
Block diagram showing [he fixt'<i addrtss decoder (AND) stage and the programmable OR memory 
stage for a ROM of size 2" words x m bits. 

input variables are called addresses, and in ROMs there are 2" mintcnn code lines, each 
representing a coded minlenn on the output side of the decoder stage. Therefore. since 
there nre n possible addresses to a ROM, there arc r possible words Ihal can be stored 
in the ROM, each word being m bits in Si7.£. Any m-bit output word programmed into the 
ROM can be selected by the appropriate input address and is nonvolatile - il is stored 
permanently in the ROM . 

The dimensions and sizt! of an "-input/m -ouplut ROM are given by 

211 x m = (r)(m) bits --- ~. Dlmens;O~ 1 Sit.., 

meaning that 2n words, each of m bits. produce .. total of (r )(111) bits. The size of a ROM 
may be rounded off to the Ilearci;t integer power of 2 in K (J O~) bits of ROM . For example, 
an 8-input/4-outpul ROM is represented as a 28 x 4 = 256 x 4 bit = 1.024 bit or I Kbit 
ROM. The problem with the bit-roundoff fonn of representation i~ Ihal knowledge of the 
dimensions is lost. Thus, a I KbiT ROM could be any of the following: 27 x 8 = 26 x 16, 
etc. This c-an be avoided by giving the ROM size in dimension (2" x /11) (onn, which clearly 
specifies the number of inputs and outpUts. 

ROMs may differ in a variety of ways, bul the main d ifferences center about the manner 
in which they are programmed, and on whether or not they can be erased and reprogrammed 
and how this is accomplished. Members of the ROM family of PLDs may be divided into 
three main categories: 

• Read-only memories (ROMs) - Mask programmable OR stage only 

• Progranunable ROMs (PROMs) - User programmable once 

• Erasable PROMs (EPROMs) - User erasable many times 
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Mask-programmahle ROMs are progr.ammcd during the fabrication process by selec
tively including or omitting Ihe switching elements (transistors or diodes) thai form 
the memory array stage of the ROM . Because the masking process is expensive, the use of 
mask-programmable ROMs is economically justifiable only if large numbers are produced 
10 perform the same function. 

When one or a few ROM-type devices are needed to perform ccnain func tions. PROMs 
can be very useful. Mosl PROMs are fabricated with fl/sible links on all transistors (or 
diodes) in the OR memory st:lge. thereby permitting user programming of the ROM - a 
write-once capabili!y. Shown in Fig. 7.2 is the circuit for an unprogrammed 2" x m PROM 

B 

Programmabl e ~ 
Fusible Li nk ------+ y ~A 

G""d SymbOI_~ ~ 

Prog rammable OR Stage 
,~--~~~---, 

Pull -up 
Res istor 

l~mm~~~'~+-______ ~-+ __ -r-1 __ -r-1 __ 

n-to·2 ~ 

Decode I 
AND Stage 

(nonprogrammable) 

m 

m 

m2••1 

EN (l) __________ --L+-_----,I----L+-_~--.-/ 

FIGURE 7.2 

° m.I( Hl 

MemQry Bit PQs lt iQn 

O, (H) 

Logic cireuil fOf an unprogrammed 2" x m PROM ~howing the nonprogrnmmable decoder (AND) 
sectton and programmable NMOS CQrme(:l ion~ (rusible links) rorcach normally aClive bil lQCation in 
the OR (memory) seclion. Tn-state drivers provide an enable capability. 
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consisting of a nonprogrammable decoder (AND) section and NMOS programmable con
nections (fusible links) on every memory bit location to form the programmable OR section. 
Also shown are inverting tri-state drivers (see Fig. 3.8d) on the PROM outputs to provide 
an active low enable control capability. The PROM chip is produced with all transistors 
"connected" such that each memory bit position is normally active high. Thus, when a 
decoder output line becomes active, all connected NMOS are turned ON, pulling those 
bit positions to O(H), resulting in a I(H) from each tri-state driver. A bit position is pro
grammed when a fusible link is "blown," disconnecting that bit position. Disconnected 
bit positions cannot be pulled low and therefore, must remain at I (H). If all bit positions 
on an OR column are disconnected by programming, the output is O(H) from the tri-state 
driver. Or, if one or more OR column bit positions are left connected, the output will be 
a I(H) if a decoder line to one of those bit positions becomes active - the OR function. 
The PROM of Fig. 7.2 is programmed (one time only permitted) with a PROM program
mer by applying voltage pulses to target fusible links, causing disconnection of these bit 
positions. 

The masking process of a mask-programmable ROM places NMOS connections at pre
determined (programmed) memory bit positions. The positioned NMOS connections would 
look similar to those in Fig. 7.2, except their fusible links would be missing. Because the 
masking process is expensive, mask-programmable ROMs are used only for high-volume 
commercial applications. 

Much more useful, generally, are the EPROMs, since they can be programmed, erased, 
and reprogrammed many times. These devices fall into two main categories: ultraviolet 
erasable PROMs (UVEPROMs) and electrically erasable PROMs (EEPROMs). In either 
case the technology is similar - use is made of floating-gate NMOS transistors at each 
memory bit location, as illustrated by the OR memory stage in Fig. 7.3. 

Each transistor in Fig. 7.3 has two gates, a connected outer gate and an inner floating 
(unconnected) gate that is surrounded by a highly insulating material. Programming occurs 
when a high positive voltage is applied to the connected gate inducing a negative charge on 
the floating gate which remains after the high voltage is removed. Then, when a decoder 
line becomes active (HV), the negative charge prevents the NMOS from being turned ON, 
thereby maintaining a I(H) at the memory bit position. This is equivalent to blowing a 
fusible link in Fig. 7.2. If all floating-gate NMOS in an OR column are so programmed, 
the output from the inverter is O(H). But if a decoder line is active to any unprogrammed 
floating-gate NMOS, that bit position will be pulled to ground O(H), causing the output to 
be I(H) from the inverter - again, the OR function. 

Erasure of a programmed floating-gate NMOS occurs by removing the negative charge 
on its floating gate. This charge can remain on the gate nearly indefinitely, but if the floating 
gate in a UVEPROM is exposed (through a "window") to ultraviolet light of a certain 
frequency, the negative charge on the floating gate is removed and erasure occurs. Similarly, 
if a voltage of negative potential is applied to the outer connected gate of an EEPROM, 
removal of the negative charge occurs. The technology for the UVEPROMs and EEPROMs 
differ somewhat as to the manner in which the floating gate is insulated; otherwise, they 
share much in common. 

Technologies other than those just described are used to manufacture PROMs. For ex
ample, in bipolar PROMs, diodes with fusible links replace the NMOS in Fig. 7.2 with each 
diode conducting in the A -+ B direction (see blowup of the fusible link). Now, however, 
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fiGURE 7_3 
Logi.; circuit for an unprogrammed OR (memory) section of an EPROM il luslrating the nOaling-gate 
NMOS transistor technology required for a program/erase/program cycle. 

the decoder has active low outputs. Then, when a decoder output becomes active. I{L) = 
O(H). a bit position fora connected diode is pulled low, O(H). A disconnected (programmed) 
diode maintains a I (H) at the bit position when selected. If all diode bit positions in an OR 
column are disconnected. then the output for that column must be O(H) from the inverting 
tri-slate driver. However. if one (or more) of the bit position diodes in an OR column is 
left connected and is selected by an active low decoder line. the output will be I(H) from 
the tri-stale driver. The diode technology, used extensively in the early stages of ROM 
development, is now in less common use than MOS technology. 

7.2 .1 PROM Applications 

The AND section of any ROM device is a non programmable decoder, and sir.ce a decoder is 
a minlenn code generator the following requirement must be met for ROM programming: 

To program a ROM. all input and output MIa must be represented in canonical Jonn. 
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PROM implementation of a noncascadable 2-bit comparator. (a) Canonical truth table. (b) D~odcr 
and symbolic representation of fusible bit position patterns in the OR memory section, 

This fact is illustrated by considering the noncascadable 2-bil comparator represemed by 
the canonical truth table in Fig. 7.4a. This truth table has been constructed from Fig. 6.28 by 
setting gl = 1 when A > E, eq = I when A = B. and If = 1 when A < B. or by setting these 
inputs to zero otherwise. Shown in Fig. 7.4b is a 24 x 4 PROM thai has been programmed to 
fUnclion a<; the 4-inputl3-outpul noncascadable 2-bit comparator. Here, a symbolic notation 
is used so as to avoid the need to exhibit the details of the logic circuit. including the 
output invcners. For consistency with Fig. 7.2, tri-state drivers are added to the output with 
the understanding that a filled square (.) represenls the storage of I(L) and that an open 
circle (0) represents the storage of D(l). Notice that one of the four output lines is left 
unused. 

Programming a PROM thai functions as the cascadable 2-bit comparator of Fig. 6.28 
would require a PROM of dimensions 27 )( 3. a significant increase in hardware. In facl, 
to do so might seem 10 be hardware ovcrkill. considering thai a 7-10-[28 line decoder 
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section would be required. Recall that the Ihrl!c-leve!logic circuit for the cascadable 2-bi! 
comparator in Fig. 6.28 has a gateJinpUl tally of only 23/67. 

7.3 PROGRAMMABLE LOGIC ARRAYS 

Like the ROM. the PLA is an n-input/m-output device composed of an input ANDing stage 
and a memory (ORing) output stage. Unlike the ROM . however. both stages of the PLA 
are programmable. as indicated by the block diagram in Fig. 7.5. The AND matrix (array) 
generates the product tenns (p-tenns), while the OR malfix ORs the appropriate product 
terms together to produce the required SOP functions. 

The dimensions of a PLA are specified by using three numbers: 

n x p y m 

t t t 
No. of No. of No. of 
inputs product outputs 

terms 

The number p gives the maximum number of product terms (p-tenns) rennitted by the 
PLA. The magnitude of p is set by the PLA manufacturer based on expected user needs 
and is usually much less than 2n , the decoder outpUl of a ROM. For example, a PLA 
specified by dimensions 16 x 48 x 8 would have 16 possible inputs and could gener
ate 8 different outpUl<; (representing 8 different SOP expressions) composed of up to 48 
unique ORed p-IenllS. A p-term mayor may not be a minterm. In contrast, a 16-input 
ROM could generate the specified number of outputs with up to 211> = 65 ,536 minterms. 

I, 

I, 
. . 

fIGURE 7.S 
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r p produci term (P·term) lines 

P 

P, : 
OR Memory 

· Arrav : . 
· . · (programmable) 

p .. 

: 

nxpxm PLA 

0 , 
0 , 

Block diagram for an n-inpullm-output PLA showing the programmable AND and OR array siages 
and the p proouci-Icnn lines. 

m Outputs 
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The comparison here is 48 p-terms and 48 ORing connections for the unprogrammed PLA 
vs 65,536 minterms and 65,536 ORing connections for the unprogrammed ROM, a vast 
difference in hardware. Typically, commercial PLAs have inputs ranging in number from 
8 to 16, with 20 to 60 addressable p-terms and up to 10 outputs that mayor may not 
have controIled polarity by using XOR gates on the output lines (see Subsection 3.9.6). 
PLA IC chips of most any n x p x m dimensions can be manufactured to user specifi
cations. 

PLAs, like ROMs, are constructed of interconnecting arrays of switching elements that 
perform the AND and OR operations. Members of the PLA family fall generally into two 
classes: 

• Programmable logic arrays (PLAs) - Mask programmable AND and OR stages 

• Field programmable logic arrays (FPLAs) - One-time programmable AND 
and OR stages 

Thus, PLAs are programmed during fabrication in a manner similar to ROMs, while FPLAs 
are write-once programmed by the user. 

Shown in Fig. 7.6 is the MOS version for an unprogrammed n x p x m FPLA illustrating 
the programmable bit connections in both the AND and OR array sections. A given p-term 
row can become active, PieHl = l(H), iff all of the NMOS switches on the AND side are 
either disconnected or turned OFF. If anyone of the NMOS in a p-term row is turned ON, 
then that row is pulled low, O(H). An active p-term line causes a connected OR bit position 
in its path to be pulled low, resulting in a l(H) from the output tri-state inverter. The buffer 
between the AND and OR stages is necessary to boost and sharpen the signa\. Such a buffer 
could consist of two CMOS inverters. Notice that tri-state drivers provide an active low 
enable control on the OR stage. 

The programming of a PLA is best understood by considering the 3-input/2-output FPLA 
segment in Fig. 7.7. Here, the single p-term line is programmed to generate 0 1 (H) I (H) 
and Oo(H) = O(H) any time the p-term II . 10 becomes active. Notice that both NMOS bit 
positions for h are disconnected together with those for the h (L) and 10(H) lines. Thus, if 
It is O(H) and 10 is l(H), the p-term line PieHl is forced active which, in tum, causes output 
OI(H) to become l(H), but not output Oo(H), whose bit position has been disconnected, 
causing it to become O(H). In effect, disconnection (blowing) of a fusible link in the AND 
plane actually "makes the connection" of the p-term input (l j or I j), and disconnection 
of a fusible link in the OR plane stores a I(H) = O(L). These facts may make it easier to 
understand the symbolic representations illustrated in Subsection 7.3.1. 

7.3.1 PLA Applications 

Unlike the programming of ROMs which require canonical data, PLAs require minimum 
or reduced SOP data. Thus, the most efficient application of an FPLA would be one for 
which the needed product terms fit within the FPLA's limited p-term capability. A good 
example is the FPLA implementation of the 4-bit combinational shifter of Fig. 6.37. Shown 
in Fig. 7.8 is the truth table (reproduced from Fig. 6.37a) and the EV K-maps and minimum 
cover for this shifter. The minimum output expressions for this shifter are obtained directly 
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from the K·maps and are given as (ollow~: 

YJ=A IAoh+A,Ao/2+A ,Ao/t + A,A"/" 

Y2 = A,Aoh + A,Ao/, + A,Ao/o + RA ,Aoh + RFA,An 

Y, = }hAo / , + AIAo/o + RA ,AolJ + RA,Aol! + RFA, 

Yo = A,Ao/o + RAtAoh + RA,Aol! + RA ,AoJ, + RFA , + RFAo. 

(7.1) 
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Disconnected 
fus ible links +VOD 

FIGURE 7.7 
Portion of a 3-inputl2-oulput FPLA programmed for a single p-tenn showing connected and discon
nected NMOS bit positions in both AND and OR planes. 

Having obtained the minimum expressions for the four outpUis given by Eqs. (7. 1). all 
that remains is to construct the p-tenn rable from which Ihe FPLA can be programmed. In 
this case an FPLA having minimum dimensions of 8 x 19 x 4 will be required. Note that 
there are 20 p-terms but one (RFA I) is a shared PI. Presented in Fig. 7.9 is the p-term table 
for the 4-bit shifler. Notice that uncomplcmentcd input variables arc indicated by logic I 
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0 I, I, I, 
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fiGURE 7.8 
Design of a 4-bit general shifter that can shift or rotate left up to three bits with F filL (a) EV truth 
table. (b) Output EV K-maps showing minimum two-level cover suitable for FPLA implementation. 
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p-Term Inputs Outputs 

R P Al Ao h lz It 10 Y3 Y2 Yj Yo 

A1Ao13 - - 0 0 I - - - I 0 0 0 

A.IAoh - - 0 1 - I -- - I 0 0 0 

AIAol1 - I 0 - - I I 0 0 0 

A IAolo - - 1 1 - - - 1 I 0 0 0 
- -
AIAoh - - 0 0 - I - 0 I 0 0 

AIAoiJ - - 0 1 - - 1 0 I 0 0 

AJAoio 1 0 - - I 0 I 0 0 

RAIAoh I - I I I - - - 0 I 0 0 

RFAIAo 0 I I I - - 0 I 0 0 

AJAoh - - 0 0 - - I - 0 0 I 0 

A1Ao/o - - 0 I - - - 1 0 0 I 0 

RAJAoh I - I 0 1 - - - 0 0 I 0 

RAIAoh I - 1 1 - I 0 0 1 0 

MAl 0 1 1 - - - - 0 0 1 1 

A1Ao/o - - () () - I 0 a () I 

RAIAoh 1 - 0 I I - 0 0 a I 

RAIAoh 1 - 1 () - I - 0 0 0 I 

RAIAol1 1 - 1 1 - - 1 0 0 0 I 

MAc 0 I - I - - 0 0 0 I 

FIGURE 7.9 
P-term table for the 4-bit shifter represented in Fig. 7.8 and by (7.1). 

and complemented input variables by logic 0, and the absence of an input to a p-tenn is 
indicated by a dash. 

Presented in Fig. 7.10 is the symbolic representation of an 8 x 20 x 4 FPLA programmed 
according to the p-term table in Fig. 7.9. The symbolism that is used avoids the need to 
provide details of the specific technology used in the FPLA. However. reference to Figs. 7.6 
and 7.7 permits one to associate the symbolism of Fig. 7.10 with FPLA MOS technology. 
Notice the existence of the shared PI, kPA (, in the Yl and Yo output columns. 

The symbolism of Fig. 7.10 is meant to be easily understood. The x in the AND plane 
signifies an input to a p-term and represents a disconnected fusible NMOS link in the 
sense of Fig. 7.7. The filled square (.) in the OR plane represents the programmed stor
age of I(L) created by a connected fusible NMOS link in the sense of Fig. 7.7, and the 
open circle (0) in the OR plane indicates the programmed storage of O(L) created by a 
disconnected fusible NMOS link. To assist the reader in deciphering this notation, repre
sentative p-terms are provided in Fig. 7.10 at the left and adjacent to their respective p-term 
lines. 
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and showing the fusible bit posi tion patterns in both the AND and OR planes. Representat ive p-tenns 
arc given to the IcC! of their respective p-term lines. 
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7.4 PROGRAMMABLE ARRAY LOGIC DEVICES 

Perhaps the most widely used PLD is the programmable array logic (PAL) device. The 
PAL device can be programmed only in the AND plane. For reference purposes the main 
differences between ROMs, PLAs and PAL devices may be stated as follows: 

ROM devices - Programmable in the OR plane only 
PLA devices - Programmable in both AND and OR planes 
PAL devices - Programmable in the AND plane only 

Thus, a PLA device may be thought of as a combination of ROM and PAL device pro
gramming characteristics. PAL devices, like PLAs, commonly include a variety of devices 
external to their OR planes, including XOR gates, AND-OR-invert logic, and registered 
outputs. 

The acronym PAL is a registered trademark of Advanced Micro Devices, Inc. Therefore, 
hereafter it will be understood that use of the name PAL will acknowledge AMD's right of 
trademark for all devices that carry the name PAL. 

PAL devices characteristically provide a fixed number of p-terms per output and cannot 
take advantage of shared PIs. This is illustrated by the unprogrammed 8 x 20 x 4 PAL 
device shown in Fig. 7.11, which allows up to five p-terms per output. If the number of 
p-terms for a given output exceeds the number provided by the PAL device, the remaining 
p-terms can be given to another column output line, and the two ORed external to the OR 
plane. Thus, in the case of the 4-bit shifter, the Yo(H) output, requiring six p-terms, would 
have to have one or more of its p-terms given to a fifth output line (not shown) and the two 
lines ORed external to the OR plane. The MOS version of a basic PAL device would look 
like that for the PLA in Fig. 7.6, except that the NMOS bit positions in the OR stage would 
be permanently connected - no fusible links. 

The basic PAL device simply employs an AND and OR section either in the form of 
AND/OR or ANDINOR as in Fig. 7.12a. However, the output logic of most PAL devices 
goes beyond the basic PAL. Shown in Fig. 7.12b is a segment of a PAL device that supports 
an L-type (logic-type) macrocell consisting of a controlled inverter (XOR gate), an AND
controlled output enable, and a feedback path. The feedback path is useful for cascading 
combinational logic functions, or for the design of asynchronous (self-timed) sequential 
machines covered in Chapter 14. In either case, one output function is fed back to become 
the input in the generation of another output function. 

Macrocells containing on-chip flip-flops are also found in PAL devices, as illustrated in 
Fi g. 7 .12c. These are called R -type (regi stered-type) macrocells; they support feedback from 
a flip-flop output and a controlled tri-state driver/enable. Both the clock signal and the output 
enable signal can be supplied externally or can be generated from within the PAL device. 
PAL devices with R-type macrocells are useful in the design of synchronous (clock-driven) 
sequential machines, which are discussed at length in Chapters 10 through 13. The descrip
tion of flip-flops and the details of their design and operation are presented in Chapter! O. 

The versatility of PAL devices is improved significantly by the use of V-type (variable
type) macrocells such as that illustrated in Fig. 7.13. Now, the output signal generated from 
a 4-to-l MUX can be combinational or registered depending on the data select inputs S1 
and So whose logic values are set by programming fusible links. Thus, data select inputs 
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Logic equivalent ~gmclltsof rcal PAl. de\'i«!s AAowing macmcelliogic. (a) Basic I/O PAL (b) lrtype 
m3Cmeell for a progl1lmmabie 110 PAl. device with cootrolled inverter OUtput, feedback capabili ty, 
and ANO-<:Onlrol1ed cnable. (c) Macrocell for a registered (R-type) 1/0 PAl. dcvkc with feedback 
from a tlip-tlap and with II comroUed enable. 

of St , So = 00 Of S" So = OJ gellerate an aclj\'C low or acti\'c high output (from Ihe 
lri -stat~ driver), respectively, directly from the AND/OR sections of the PAL device 
hencc, eombimllional. For data select inputs of 51. So = 10 or 5 t • So = II, registered (flip
flop) OUIPUIS nre genenned Dclive low or active high, respecrively. from the inverting tri
state driver. Thus. the V-type macrocell combines lhe capabilities of Ihe L-Iype and R-type 
maerocells of Fig. 7. 12. Butlhe V-type macroccll goes well beyond these eapabililies and 
offen: even more flexibil ity. A 2-10-1 MUX pennits the active high and active low feedback 
signals 10 be generated either by the 4·to-l MUX with its four oplions or directly by the 
active low OUlput of the ftip-flop . The data scieci inpul S 10 Ihe 2-10- 1 MUX is taken from 
the progrJmmed data seleer input SI to the 4-10-1 MUX. as shown in Fig. 7.13. Because 
of the fl exibility they offer. PAL devices wilb V-type maerocells are a popular choice for 
designers of both combinmional logic or sequential machine design. 
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fiGURE 7.11 
Output macrocell for V-type PAL devicc~ showing 110 COftnecliOll~ and ccillogie. Source: PAL !>I!vir~ 
Daw 80010:, Advanced Micro Devices. Inc., Sunnyvale, CA, 1992. 

7.5 MIXEO-lOCIC INPUTS TO AND OUTPUTS FROM 
ROMs, PlAs, AND PAL DEVICES 

The subject of mixed· logic inputs to decoders was discussed in Subsection 6.3.2. There. 
two options were given for dealing with input" thai arrive both from positive and negalive 
logic sources. These input rules are necessary since the decoder is nomlally an Ie chip with 
no user access to ils inlemai structure. Because ROMs, PLAs. and PALs also exi st as Ie 
chips. lhe same input rules also apply 10 them. For reference purposes, thc!>C input rules are 
stated as follows: 

For Mixed-Logic Inputs to ROMs. PLAs. and PALs 

( I ) In the program table for a ROM. PLA or PAL device, complement each bit in the 
column of an active low input 

0' 

(2) Use an invener on the input line of an active low input to one of these PLDs and 
do not complement tht: bits in that column of the program table. 

Clearly, the...e mixed-logic input rules are basically the same 3. .. those stated in Subsection 
6.3.2 for decoders. 
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The mixed-logic output rules for ROMs, PLAs, and PALs differ somewhat depending 
on the PLD in question. The mixed-logic output rules for ROMs are as follows: 

For Mixed-Logic Outputs from ROMs 

(1) In the ROM program table complement each bit in the column of any output from 
a ROM that is required to be active low, 

or 

(2) Use the inverter capability of the ROM, or add one externally, on that output line to 
generate the active low output and do not complement the bits in the output column. 

Since ROMs accept only canonical (minterm) data, it is permissible, as an option, to 
complement the output column for an active low output. This is equivalent to complementing 
the conventional (l's and O's) K-map for the active low output to yield 

Ysop(L) = Ysop(H), (7.2) 

which follows from the definition of complementation given by Eq. (3.2). But this is only 
possible for canonical data as in the case of a ROM. For example, suppose it is required 
that the output (A = B) in Fig. 7.4 be generated active low. To do this, the (A = B) output 
column can be complemented, interchanging the (0) and (-) symbols, or an inverter can be 
connected to the (A = B) output line from the PROM. 

The situation for PLA and PAL devices is much different from that for ROMs relative 
to active low outputs. Now, reduced or minimum forms constitute the output functions, 
and complementation of the output columns of active low outputs would result in radically 
different functions. Equation (7.2) does not apply to output column complementation for 
these PLDs. The rule for dealing with active low outputs from PLA and PAL devices is 
stated in the following way: 

For Active Low Outputs from PLA and PAL Devices 

If a given output line from a PLA or PAL device must be generated with an activation 
level different from that provided internally by the PLD, use must be made of an 
inverter added externally to that line. Complementation of an output column in the 
p-term table is not permitted. 

As an example, consider the FPLA in Fig. 7.10, which has been programmed to function 
as a 4-bit shifter with F fill. Suppose that R arrives active low and that all outputs must 
be delivered to the next stage active low. To achieve this objective with minimum exter
nal logic, the R column is complemented and, if mixed logic outputs are not provided 
internal to the FPLA, inverters are placed on the output lines for Y3, Y2 , Y" and Yo. Com
plementation of the R column in the p-term table of Fig. 7.9 requires that the l's and O's 
be interchanged but leaving all dashes unaltered. Thus, the x's in the two R columns in 
Fig. 7.10 will be moved from the active high column to the active low column and vice 
versa. The meaning of the x's was explained previously in discussing the symbolism of 
Fig. 7.10. 
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7.6 MULTIPLE PlD SCHEMES FOR AUGMENTING INPUT 
AND OUTPUT CAPABILITY 

Occasions arise when tbe 110 requi rements of a design exceed the capabi lilies of the avai lable 
PLD. When this happens the designer may have no alternative bUI to combine PLDs in some 
suitable fashion to meellhe design requirements. To accomplish this requires the combined 
use of tri-state driver and wired-OR technologies. which pennit nearly an unlimited number 
of output:) from different PLDs to be ORed together. The use of OR gates to accomplish 
this task would suffer the disadvantage of fan-in limitations and speed reduction. 

Figures 7.2 and 7.6 illustrate the use of inverting tn-stale drivers (see Fig. 3.8) with ac
tive low enable control EN(l) on the outpUilines from the PROM and FPLA. respectively. 
These tn-state drivers not only function to satisfy the logic level requirements of the device 
outputs, but also pemlit a type of PLD multiplexing based on the transfer and disconnect 
(high Z) modes of the tri-state drivers. The two principal modes of tri-state driver operation 
are illustrated in Figs. 7.l4a and 7.14b. and the block diagrams for PLDs with active high 
tn-state driver outputs controlled by active high and active low enable controls are shown 
in Fig. 7.14c. 

By using a multiplexed scheme involving a decoder and PLDs with active low tri-state 
enable controls, it is possible to increase the input capability beyond thai of the sland-alone 
PLDs. Such a scheme is shown in Fig. 7 .15, where a (k - n)-to-2(k-~) line decoder is used 
to select 2(k-~) n-input PLDs, each with m outputs. The use of active low tri-stale enables, 

Y(H) Y(L) Y(H) Y(l ) 

l1H~ IIL I~ DlH!{ O(lI~ 
Y(L) 

Inverler 
Y(H) 

Disconnect 

Mode Mode 

1'1 Ibl 

" 

PLD PLD 
EN(H) EN EN (L) EN 

m m 

FIGURE 7.14 
Tn·state driver/enables used in PLDs. (a) Transfer and (b) disconnect modes of openllion for :Jctive 
high and ac tiVo!. Jow tri·state drivers. (c) Block diagrams for a PLD wilh active high and active low 
lri·stale driver/enables. and active high outputs. 



7.6 MULTIPLE I'LD SCHEMES FOR AUGMENTING INPUT AND OUTPUT 313 
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FIGURE 7.15 
Multiplexed scheme by using a dccO<kr and n-input PLDs [0 increase input variable: capability rrom 
n toic.>n . 

as in Fig. 7.1 4, makes possible the wire·ORed connection or outputs ~h()wn in Fig. 7. 15. 
Thi s is so because the most significant I i_ I . .. . , I" input bits activate only one of the 2 (t - IlI 

II-inpul PLDs at any given time. As indicated in Fig. 7.15 by the notation =:n , not all the 
avai lable inpms 10 a given PLD need be used. Also, each PLD output need not be connected 
(wire·ORed) with the corresponding outpulS from olher PLD.~ to fonn tri·statc bus lines. 

Although Fig. 7.15 satisfies Ihe need to augment the input capability of PLDs. it does 
nol address the problem of limited OUlput capabi lity. When Ihe number of output functions 
of a design exceeds the OUlput capability of the PLDs in usc, a parallel arrangement of 
the type shown in Fig. 7.16 can be used. This scheme is applicable 10 any stage of the 
multiplexed configuration of Fig. 7.15. It indicates that p PLDs, each of Tn outputs, yield II 
maximum of (p x m) possible Outputs per stage, thereby increasing the output capability 
from m to (p )( m), However, it is imporlanl to understand that the,~e outputs must nor 
be wire·ORed together, since Ihey are from PLDs that are activated by the same decoder 
output - the PLDs in Fig. 7.16 are not multiplexed. Note th:ll me PLDs need not have the 
same number of inputs or outputS, but thc number of input~ is limited to n or less. 

EXAMPLE 7.1 Suppose it is required 10 generate three output [unctions of 10 variables 
by using 28 )( 4 PROMs. Since the number of input variables exceeds me number of PLD 
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FIGURE 7.16 
Scheme for increasing the output function capability from //I to (p x nr) for :lI1y stage of the PLD 
configuration shown in Fig. 7.15. 

inputs by 2, a 2-10-4 decoder is required to selectively activate the four PROMs one at a 
time. Presented in Fig. 7. 17 is the ROM program table that satisfi es the requirements of this 
example. Since four PROMs are required (t* ~~) = 4). the program table must be partitioned 
into four parts, each part being a program for a single PROM . O nce programmed. the four 
PROMs are configured with the 2-10-4 decoder a.~ illuSlfaied in Fig. 7.18. The outputs arc 
wire-ORed together as shown to generate the three outputs of 10 variables. 

EXAMPLE 7.2 Augmentation of the input. outpu!. and p-term capability of the PLDs in 
use is illustrated by the following example. Consider the implementation of 16 fu nctions of 
iO variables by using 8 x 20 x 4 FPLAs subject to the following p-term constraints dictated 
by the function makeup: 

Eight of the functions each require that 20 < P ::: 40, while the remaining 8 
require that p ::: 20. Here, p is the number of p-terms per function. 

The p-term program table format for this system is given in Fig. 7.19. The p-terms are listed 
on the left side of the table, and the 10 FPLA inputs to the p-terms are indicated by using 
the notation given in Fig. 7.19. 11 is implied by the program table of Fig. 7. 19that two inpu ts, 
19 and Is. to a 2-t0-4 decoder are to be used to determine the FPLA assignment. With this in 
mind. one possible assignment scheme is as follows: The eight functions requiring 20 to 40 
p-terms take decooer addresses of 00 or 01 , while functions requiring 20 or fewer p-tenns 
take decooer addresses of iO or 11 . 

Implementation of the 16 functions of 10 variables. according to the decooer assignments 
j ust given. requires that s j", 8 x 20 x 4 FPLAs be selected by the 2-to-4 decoder as shown 
in Fig. 7.20. Here. four of the func tions. YJ . Y> Y" and YI,), are assigned 10 FPLAoand 
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FPLA Inputs FPLA Outputs fPLA 
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FIGURE 7.19 
P· term table forma t for a multiple FPLA scheme to gcm,:ratc 16 functions of 10 variables by using si" 
8 x 20 )( 4 FPLAs subjecllo the p-Icml conditions stated in Example 7.2. 

FPLAl; the remain ing four. Y7, Y6. Y~. and Y4. are assigned to FPLAI and FPLA3. Notice 
that the active low tri-state enables for FPLAo and FPLA I are connected together and 10 a 
single decoder output as are those for FPLA2 and FPLA) . By wire-~Ring the outpms in 
this manner. eighl of the 16 outpUi functions are each permitted 10 have up to 40 p-Icnns 
with the remaining eight functions limited to 20 p-tenns. 
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FIGURE 7.20 
Scheme to generate 16 fUllCtions of 10 variables by using 8 )( 20 x 4 FPLAs subject to p-tcrrn re
quircmenL<;; 8 funclions for which 20 < p ~ 40, and 8 functions for which p .::: 20. 
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7.7 INTRODUCTION TO FPGAs AND OTHER GENERAL-PURPOSE DEVICES 

The devices briefly discussed in this section vary in size from SSI to LSI circuit modules and 
range greatly in complexity from simple gate-level modules to those having a multiplicity of 
components, including flip-flops. Of the general purpose devices. the simplest are the AND
OR-invert or OR-AND-invert type devices with logic equivalent gate counts numbering 
typically in the three to five range. These SSI circuits are often used as building blocks in 
complex logic devices. Then. within the PLD spectrum of devices. the most complex class 
belongs to the field programmable gate array (FPGA) devices, which may contain a variety 
of primitive components, including discrete gates, MUXs, and flip-flops. Since this chapter 
deals only with combinational logic devices, the treatment here will deal mostly with those 
PLDs and general-purpose devices that are combinational in character. 

The discussions to this point in the text have dealt only with combinational logic, con
sequently, the reader is not expected to grasp the significance of flip-flop operation in the 
output logic stage to some PLDs. The use of these "registered" PLDs will become evident in 
later chapters when sequential machines are discussed in detail. Treatment here will begin 
with simple general-purpose building block devices and will end with an introduction to 
the complex FPGAs. 

7.7.1 AND-DR-Invert and OR-AND-Invert Building Blocks 

Just as the XOR and EQV functions can be implemented by what amounts to one gate 
level of MOS transistors as in Figs. 3.26 and 3.27. so also can the A.~D-OR-invert and 
OR-AND-invert functions be implemented with just one gate level of transistors. Shown 
in Fig. 7.21a is the CMOS realization of the AND-OR-invert (AOI) gate. It is called a 
gate since it is a CMOS SSI circuit and has a propagation delay equivalent to that of a 
single NAND or NOR gate. There are many useful applications of this basic building block, 
including integration with much larger PLD logic blocks. The physical truth table and its 
mixed-logic interpretation are presented in Figs. 7.21b and 7.21c, respectively. The output 
logic expression can be read directly from the mixed-logic truth table and is 

F(L) = [AB + CD](L), (7.3) 

which results in the logic equivalent circuit for the AOI gate shown in 7.2Id. 
As a simple example of the use of the AOI gate, consider the two-level active low EQV 

function given by 

F(L) = (AB + AB)(L). 

This function can be implemented in Fig. 7.21d by connecting A to C and B to D via two 
inverters, a transistor count of 12. In comparison, the EQV gate of Fig. 3.27a requires only 
six transistors. 

The CMOS realization of the OR-AND-invert(OAI) gate is the dual of that for the AND
OR-invert gate and is easily obtained by flipping the latter end-for-end while interchanging 
all NMOS with PMOS and vice versa. This is done in Fig. 7.22a. The same duality exists 
between the truth tables of Figs. 7.21 and 7.22, where H's and L's are interchange between 
physical truth tables and 1 's and O's are interchanged between mixed-logic truth tables. The 
output expression for the OAI gate is obtained directly from Fig. 7.22c by reading the O's 
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in the F column and complementing the resul ts to give 

F (L) = IIA + B)le + D)](L), 17.4) 

which yields Ihe logic equivalent circuit for the OAI gale shown in Fig. 7.22d. 
As a simple example of lhe use of the OAI gale. consider the two-level active low XOR 

function given by 

FIL) = IA + B)(A + B)(L). 

This function can be implemented in Fig. 7.22d by connecting A to C and B to D via two 
inverters fora total of 12 transistors, twice the transislOrcoun tofthc XOR gate of Fig. 3.26a. 

There are severaJ variations on the AOl and OAI gate themes of Figs. 7.21 and 7 .22. For 
ex.ample. adding an inverter to (he output of each of these gates makes them AND-OR and 
OR- AND gates. More input stages can also be added (0 the AOI or OAi gates. Shown in 
Fig. 7.23 is the logic equivalent circuit for the 74x.54, a IO-input ADI circuit. Clearly. the 
additional input capability adds to the versatility of the device. 
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7.1.2 Actel Field Programmable Gate Arrays 

As indicated previously, the architectures of FPGAs can be very complex and, in fact. are 
generally regarded as being III the high end in complexity of the programmable gate ar
ray (PGA) spectrum. The ACT- ! family of FPGAs (from Actel Corp.) discussed in thi s 

FIGURE 7.23 
Logic equivalent circuit for the to-input 74)(54 AOI circuit. 
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FIGURE 7,24 
An ACT-J family logic moduli:. Sourei:: ACT Family Field Programmable Gale Arm_\' Databook. 
ACleJ Corp .. Sunnyvale, CA. 1991. 

subsection are programmable by the end user. They represent some of the simpler PGAs in 
the sense that the logic components of these devices consist of relatively simple combina
tional structures. However. the programmable switching matrices required to interconnect 
the ACT-I logic cells are re latively complex and cannot be reprogrammed. 

Shown in Fig. 7.24 is an ACT-! logic module consisting of three 2-10-1 MUXs and a 
2-input OR gate for a total of eight inputs and one output. The output logic function is easily 
deduced from Fig. 7.24 to be 

y = (~)Co + (51 + So )C] 

= (S ] + So)(S;lAo + SAA I) + (SI + So)lSsBo + SaBd. (7.5) 

To achieve the status of an FPGA. Actel enmeshes hundreds of ther.e modules in a ma
trix of programmable interconnections. A segmem of the ACT-l interconnect architecture 
is illustrated in Fig. 7.25, courtesy of the Actel Corporation. Here. dedicated vertical track
ing lines connect with each input to and output from a logic module. while other vertical 
tracking lines function as feedthrough between channe ls. Connections between horizontal 
and vertical tracking lines are made by "blowing" the cross fuses at intersections in ac
cordance with the required fuse pattern program. Since some wire tracks may be blocked 
by previously allocated tracks, a sequence of jogs from horizontal to vertical tracks and 
vice versa can be used to circumvent the blockage, thereby pennitting connection to an 
appropriate logic module. Because of the versatility jog programming provides. the ACT-I 
family ofFPGAs achieves a gale-equivalence capability several times the number of logic 
modules. For example. the ACf-l A 1010. which has 295 logic modules. purports to have 
a gale equivalency of 1200. 
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7.7.3 Xilinx fPGAs 

Field programmable gate arrays (FPGAs) offer the most design versatility of the PLDs 
considered so far. and their architecture differ.; markedly from those of PALs and Actel 
PLDs. The Xilinx FPGA family of Ie devices consists of an array of configurable logic 
blocks (CLBs). 110 blocks (lOBs). and a switching interconnect matrix. as illustrated in 
Fig. 7.26. The low-end FPGAs suppon three kinds of interconnects: direct. general-purpose. 
and long-line interconnections. The djrect interconnects (not shown in fig. 7.26) connect 
CLBs to adjacenl CLBs for localized applications with minimum propagation delay. The 
gellem/·purpose interconnects connc<.:t CLBs to other CLBs via the horizontal and vertkal 
interconnect lines and switching matrices. Finally. the long-line imercoflnects are reserved 
for signals Ihat must be disuibuted 10 numerous eLBs andior lOBs with minimum time
delay distribution (lime skew) problems. The programming of sophisticated devices such as 
Xilinx FPGAs requires the use of dedicated software such as XACf by Xilinx, Inc. FPGAs 

;= ~ 
= "'--<r 
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by other manufacturers. which differ significantly from those of Xilinx, require their own 
dedicated software. 

Though Xilinx no longer produces the series 2000 FPGAs. a general description of lhese 
devices is useful to in!roduce the subject of FPGAs. Shown in Fig. 7.27 is the Xilinx series 
2000 FPGA logic cell, which consists of a combinational logic section, six MUXs. and 
a memory clemen! (flip-flop). (Note ; The reader is not expected to have a knowledge of 
flip-flops. which are covered at lenglh in Chapter 10.) ~ combinational logic section 
can generate any single function of f01Jr variables. F = G, or any two functions. each of 
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three or fewer variables with separate F and G outputs. The funclions arc gcner.uoo by 
a l6-bil programmable lookup table based on sialic RAM tcchnology. thereby making 
reprogramming possible. 

The simplest Xilinx rOB belongs to the 2000 series and is one consisting oflwo MUXs. 
A In-slate driver/enable, a noninverting buffer. and a Hip-Hop. as shown in Fig. 7.28. 1be If 0 
pin can function as either a dedicated input or a dedicated output. or it can be switched dy
namically between the two. When the lri-state driver is disabled (disconnect mode). the UO 
pin perfonns as a dedicated input. In thi s mode the 2-10- 1 MUX selects either a buffered input 
from the flip-flop or one directly from the buffered input and delivers that input to the logic 
cell. When the tri-state driver is enabled (transfer mode), the liD pin functions as a dedicated 
output from the logic ceU. However. in this mode the 2-to-l MUX CAn select the logic cell 
output via the buffer and return it to the logic cell as feedback. a bi-directionaIIfO condition. 

The size and capability of the Xilinx FPGAs vary dramatically depending on the series 
and family to which the FPGA belongs. Shown in Table 7.1 are a few specifications for 
representative FPGAs of three famili es belonging to the XC4DOO series. They range in CLB 
numbers from 100 for the XC4003E to 8464 fort he XC40250XV. TIle XC40250XV fea tures 
a gale range up to 500.000 (including RAM), has more than 100.000,000 transistors. and 
can operate at over 100 MHz. In comparison. the Pentium 11 microprocessor has 7.500,000 
transistors but can operate at higher speeds. 

Presented in Fig. 7.29 is the simplified architecture for the Xi linx XC4000 family of 
CLBs. Each CLB contains three function generators and two independent mcmory elements 
(fli p-flops) that are triggered on ei ther the rising edge or fa lling edge of the clock signal. 
depending on the logic level from the 2-to-1 MUXs. Multiplexers in the CLB map the four 
control inputs CI . e2, C3, and C4 into the- internal control signals HI , Din . SI R. and 
CKf.;v in any requ ired manner. Combinational logic can be extracted directly from the three 
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function generalOrs at the X and Y outputs via the G', F' MUXs. By this means the CLB 
can implement any two functions of up to four variables. any function of five variables, or 
even some functions of up to nine variables. As an added advantage of the XC4000 series 
CLBs, function generators F' and G' contain dedicated arithmetic logic to increase the 
performance of the basic arithmetic and comparator operations. 

Theflip-f1opsgencratcoutpUls Q X and QY from programmable data inputs viathe4~to-l 
MUXs. The SI R control logic either presets (PR = I. CL = 0) or clears (CL = 1. PR = 0) 
the flip-flops. depending on the logic level of the SI R input. A clock enable CKE/', input to 
the flip-flops permits the CLB to hold (store) data for an indefinite period of time. Again. 
it should be understood that the reader need not have a knowledge of ftip-flops 10 obtain 
useful information from this subsection. The subjeci of flip-flops is covered al length in 
Chapter 10. 

Table 7.1 Range of Xilin,," fPGA, B~ongiog 10 Ihe XC4000 CMOS Series 

Technology 
(slipply/scale Maximum Maximum 

factor - maximllm Product logic gates RAM bit~ CLB Nllmber Maximum 
frequellCy) ".~ (no RAM) (no logic) matrix array of Hip-Hops user lfO 

5 V/O.51l-66 MHz XC4003E 3K 3.2 K 10 x 10 _ 100 360 80 
3.3 VJO.3/1.-SOMHz XC4085XL 85K lOOK 56 x 56 = 3.136 7. 168 448 

2 . ~ VJO.25/!-I00 MHz XC40250XV !SOK 271 K 92 x 92 = 8,464 18,400 '48 
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As expected. the 1/0 blocks (lOBs) for the XC4000 families of FPGAs arc uscr-configur
able, relatively complex, lind versatile, just as are the CLBs. Shown in Fig. 7.30 is Ihe 
simplified block diagrnm representing this family of lOBs. The buffered input signals from 
lhe 1/0 pin either are issued directly to thl! CL8 (sec inpuL~ labeled I I and h). or are issued 
to the CLB from the flip-nop outpUt Q after an optional delay. all defemlined by 2-10·) 
MUXs. The delay can be used II) eliminate the need for n data hold-time requiremcnl althc 
external pin. 

The output signals from the CLB can be inverted or not inverted and can either pass 
directly to lhe liD pad or be stored in the memory elemenl (ftip-flop). The output enable OE 
signal acts on the lri-state driverlbuffer 10 produce either a bidirectional 1/0 capability or a 
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monodirectional input capahi]jty by imposing a high-impedance condition on the tri-state 
driver. The slew-rate control can also act on the tri-slate driver, but docs so to minimize the 
power consumption from bus transients when switching noncritical signals. 

There are many other features and programmable options of the lOB. These include 
programmable pull-up and pull-down resistors that connect unused I/O pins (via NMOS) 
10 eilher VDD or ground 10 minimize power consumption, Separate input and OUlput clock 
signals can be inverted or not inverted to produce rising- or falling-edge triggering of the 
flip-flops . Also. the flip-flops can be globally preset or cleared as is the case for the CLBs, 
Olher characteristics of the lOBs. as well as those of the CLBs. an~ best understood by 
consulling Xilinx's Programmable Logic Data Book (see Furlher Read ing at the cnd or mis 
chaptcr). 

The matrix of programmable inlerconnccls for the Xilinx XC4000 families of FPGAs 
are significantly different from and more complex than those of the discontinued XC2000 
.~eries. For the XC4000 series there are three main types of interconnects: single-length 
Jines. double· length /illes, and longlines. A lypica1 routing scheme for CLB connections 
to adjacent single-length lines is illuslratcd in Fig. 7.31. The switch matrix consisls of six 
programmable transmission gates at the intersection of each single·length line as shown 
in the figure. The tmnsmission gate con fi guration pcnnits a given line signal to be routed 
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in anyone of three directions. in one of twO trans .... erse directiOils or on the same line. or 
along any combination of these. The single-length lines are used primarily for local network 
branching with fan -out greaLCr than I. The rouling channels are designed to minimize path 
delay and power consumption. and their number between switch matrices .... aries with the 
si7.t of the matrix . 

Double-length lines (nOl shown) are those that interconnect e .... ery other swilch matrix 
and are. therefore. twice as long as tbe single-length lines shown in Fig. 7.3 1. The double
length lines. which pass by two CLBs before entering a switch matrix. are grouped in pairs 
and offer the most efficient implementation of poinH o-poinl interconnections of interme· 
diate length. Any ClB input. except CK. can be driven from adjacent double-length lines. 
and the CLB OUtputs can be routed to nearby double-Ienglh lines in either horizontal and 
.... enical directions. 

The ionglincs(aiso not shown in Fig. 7.31» run the kngth orthe array in both vertical and 
horizontal directions. They are designed to distribute signals of .... arious types throughout 
the array with minimum time delay (skew) problems. Networks with high fan-out and time
critical signals are ideally suited for longl ine usage. A programmable switch located at 
the center of each intersecting [ongline permits a signal to be split into two independent 
signals. both traveling half the \'enical or horizontal length of the array. Inputs to the CLB 
can be dri .... en by adjacent longlines. but outputs from the CLB can be routed to adjacent 
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longlines only via tri-state drivers. Programmable interconnect points between longlines 
and single-length lines are available. However, no interconnect points are provided between 
double-length lines and others. 

Logic cell arrays (LCAs), such as the XC4000 series FPGAs, have the unique property 
that they can be reconfigured within a system and can even be dynamically altered to perform 
different functions at different times in a process. This family of devices contain 16 x 1 and 
32 x 1 static RAM primitives that are user-configurable via look-up tables. Self-diagnosis, 
hardware for different environments, or dual-purpose applications - these exemplify the 
versatility that is inherent in reconfigurable LCAs. Properly used, such devices can minimize 
design effort and reduce costs. However, all of the above are possible only with the use of 
CAD help, the topic of Section 7.8. For much more complete information on Xilinx FPGAs, 
the reader is referred to Further Reading at the end of this chapter. 

7.7.4 Other Classes of General-Purpose PLDs 

To provide the reader with an overall perspective on the diversity of general-purpose PLDs 
and for reference purposes, the following additional classes of complex PLDs (CPLDs) are 
offered as an extension of the devices discussed in the previous two subsections: 

Generic Array Logic (GAL) Devices: Erasable MSI PLDs that may contain 
AOIs, XOR gates, and registers in the output stage for sequential machine 
design. GAL is a registered trademark of Lattice Semiconductor, Hillsboro, 
OR 97124. 

Erasable programmable logic devices (EPLDs): Erasable CMOS-based de
vices whose macrocells typically contain discrete gates, MUXs, and registers 
(flip-flops) for sequential machine design. Some EPLDs may contain arithmetic 
logic units (ALUs). Both Altera and Xilinx Corporation offer EPLDs of vari
ous complexity. Detailed information on EPLDs are available from the Alrera 
Data Book, Altera Corporation, and from The Programmable Logic Data Book, 
Xilinx Corporation, 1994. 

Field programmable logic sequencers (FPLS): Similar to PAL and GAL de
vices that have output logic consisting of discrete gates and flip-flops. Detailed 
information on these devices is available from Phillips, Programmable Logic 
Devices (PLD) Handbook, Phillips Semiconductor, Sunnyvale, CA, 1994; and 
Programmable Logic Data Handbook, Signetics Co., Sunnyvale, CA, 1992. 

7.8 CAD HELP IN PROGRAMMING PLD DEVICES 

The programming of a PAL IC device, like that of a ROM or PLA, can be accomplished by 
a physical device (a programmer) that applies voltage pulses to target fusible links, causing 
disconnection of the bit positions as discussed in Section 7.2. The programmer may be a 
dedicated device or one of universal capability for ROMs, PLAs, and PAL devices, and it 
may even have erasure capability. In any case, the difficult part of the programming process 
is providing the instructions required to fit the Boolean expressions into the capability of 
the specific PLD device, for example, a PAL device, that may support an L-, R-, or V-type 
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macro cell structure. This difficulty is overcome by proprietary software from manufacturers 
of PLD devices and PLD device programmers. A commonly used CAD package for this 
purpose is called ABEL (for Advanced Boolean Expression Language, a product of DATA 
I/O Corp., Redmond, WA). The ABEL compiler accepts I/O data in tabular form, minimizes 
it by using algorithms based on Espresso (discussed in Section 4.8), and generates ajuse 
map that can be read in one of several standard formats by the programming device: JEDEC 
(Joint Electron Device Engineering Council) format, ASCII hex format, Intel Hex format, 
etc. As the name implies, the fuse map (pattern) targets those fusible links that must be 
disconnected. 

ABEL is not the only PLD programming compiler that is currently in use for PAL devices. 
A CAD software called PALASM (for PAL assembler) is commonly used to convert SOP 
Boolean expressions or truth tables into fuse maps for PAL devices. 110 pin specifications on 
the chip are required. Like ABEL, the PALASM compiler generates a fuse map in JEDEC 
format that can be read by the PAL programming device. PALASM is available without 
cost from AMD Inc. (Advanced Micro Devices, Inc.). 

For Xilinx FPGA devices, dedicated and sophisticated CAE (computer-aided engineer
ing) software called XACT (for Xilinx automated CAE tools) is available from the Xilinx 
Corp. XACT uses a three-step interrelated and iterative design process: design entry, design 
implementation, and design verification. For design entry at the gate level, the designer 
may begin with a schematic capture and labeling of the circuit to be implemented. To do 
this the designer can choose Viewlogic's Viewdraw, Mentor Graphics' Design Architect, or 
OrCAD's SDT, since these are all supported by the XACT development system. Design en
try at the behavioral level (for example, Boolean equations or state machine descriptions) is 
best accomplished by the Xilinx -ABEL and X -BLOX products of Xilinx and other products 
by CAE vendors. Also, for complex systems, the use of high-level hardware description 
languages such as VHDL is recommended. Xilinx offers HDL interfaces for synthesis tools 
from synopsis and View logic Systems. Mentor Graphics, Cadence Design Systems, and 
Exemplar Logic also offer HDL synthesis tools fashioned for Xilinx FPGAs. 

One advantage of the Xilinx design environment is that the designers can combine 
schematic, text, gate-level, and behavioral-level descriptions at the design entry stage and 
then reuse such descriptions within the same system or in other systems at some future time. 
This is called mix-mode design entry and can be carried out by using different design entry 
tools, allowing the designer to choose the most effective and efficient design tool for each 
portion of the design. 

Following the design entry comes the design implementation. Here, the FPGA design 
entry tools are mapped into the resources of the target device architecture, optimally select
ing the routing channels that connect the CLBs and lOBs of the logic cell array. Although 
this can be accomplished automatically, the designer can and should exert control over the 
implementation process to minimize potential problems. For this purpose the Xilinx design 
environment provides an interactive, graphics-based editor that permits user manipulation 
of the logic and routing schemes for the FPGA device. 

The design verification is the last part of the design process and necessarily follows 
the implementation stage. In-circuit testing, simulation at various levels, and static timing 
analysis are involved in the verification stage. This is accomplished by use of timing cal
culators, back-annotation capability, and static timing analyzers, which are available from 
Xilinx Corp. and various third-party vendors. 
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FURTHER READING 

Any recent text will have some coverage of the basic PLDs: ROMs, PLAs, and PAL devices. 
However, there are a few texts that appear to cover these subjects better than most. The text 
by Nelson, Nagle, Carroll, and Irwin and that by Yarbrough appear to cover the basics 
rather well and extend their coverage into the industrial level. Other important books that 
deal strictly with digital design with PLDs are those of Pellerin and Holley, Lala, Bolton, and 
Carter. The text by Tinder appears to be the only one dealing with mixed logic inputs to and 
outputs from PLDs. For multiple PLD schemes for augmenting input and output capability, 
the text by Tinder and that by Ercegovac and Lang are recommended. Data handbooks are 
often a necessary source for detailed current information, and none is better than that for 
PAL devices by Advanced Micro Devices. 

[1] M. Bolton, Digital Systems Design with Programmable Logic. Addison-Wesley, Reading, MA, 
1990. 
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The subject ofFPGAs is covered adequately by several recent texts and more extensively 
by the device manufacturers of these devices. For introductory material on FPGAs, the 
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information, no sources are better than the recent data books from Xilinx, Actel, and Altera. 
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7.1 A 24 x 4 ROM is to be used to implement the following system of three functions, 
assuming that all inputs and outputs are active high. 

y,(a, h, c, d) = Lm(O, 1, 2, 5, 7, 8,10,14,15) 

Y2(a, b, c, d) = Lm(O, 2, 4, 5, 6, 7,8,10,12) 

Y3(a, b, c, d) = Lm(O, 1,2,3,4,6,8,9,10,11) 

(a) Construct the ROM program table for this system of three functions. 

(b) From the program table of part (a), construct the symbolic representation offusible 
links by following the example in Fig. 7.4. 

7.2 A 24 x 4 ROM is to be used to design and implement a BCD-to-binary module that 
can be cascaded to produce any size of a BCD-to-binary converter (e.g., see Fig. 6.21). 

(a) Construct the ROM program table for this module following Fig. 6.20. 

(b) From the program table in part (a), construct a symbolic representation of the 
fusible links by referring to the example in Fig. 7.4. 

7.3 A 24 x 4 PROM is to be used to implement the following system of three functions: 

F,(A, B, C) = n M(O, 2,4) 

F2(A, B, C, D) = n M(3-12) 

F3(A, B, C) = n M(2, 3, 5, 7) 

(a) Construct the program table for this ROM if the inputs arrive as A(H), B(H), 
CCL), and D(H), and the outputs are F, (H), F2 (L), and F3(H). Use of inverters 
is not permitted. 

(b) From the program table in part (a), construct a symbolic representation of the 
fusible links following the example in Fig. 7.4. 

7.4 A multiplexed scheme of 26 x 4 EPROMs is to be used to design and implement a 
circuit that will convert 8-bit one-hot code (see Table 2.11) to 4-bit binary. Assume 
that all false data are rejected and indicated by binary 1000. 
(a) In place of a ROM program table, give the coded canonical SOP forms for each 

binary output. 

(b) Illustrate with a block diagram how the outputs of the multiplexed scheme must 
be wired-ORed to produce the four binary outputs of the converter. (Refer to 
Section 7.6 and Figs. 7.14 and 7.15 for a discussion of multiplexed schemes and 
wired-ORed connections.) 
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7.5 Design an XS3-to-Gray code converter by using a 4 x 8 x 4 FPLA. Assume that all 
inputs and outputs are active high and that false data are not rejected. 
(a) Construct the minimized p-term table for this converter. 

(b) From the p-term table in part (a), construct the symbolic representation for the 
fusible links following the example in Fig. 7.10. 

7.6 The following three functions are to be implemented by using a 4 x 8 x 4 FPLA. 

FJ = AB + ABC + BC + AC 

F2 = A EB (BC) 

F3(A, B, C) = n M(1, 3,6) 

(a) Construct the minimized p-term table for the three functions. Assume that the in
puts arrive as A(H), B(H), and C(L) and that the outputs are issued as F J (H), F2(L), 
and F3(H). 

(b) From the p-term table in part (a), construct the symbolic representation for the 
fusible links following the example in Fig. 7.10. An inverter is permitted on the 
active low input. 

7.7 A BCD-to-XS3 code converter is to be designed by using a 4 x 12 x 4 PAL. 
(a) Construct the minimized p-term table for this converter. Assume that the inputs 

and outputs are all active low, and that all false data are encoded as 0000. Keep in 
mind that PALs cannot take advantage of shared PIs as can PLAs. 

(b) From the p-term table of part (a), construct the symbolic representation for the 
fusible links following the example in Fig. 7.11. Inverters may be used on the 
inputs. 

7.8 A cascadable 2-bit comparator is to be designed by using a PAL. 
(a) Given the compressed truth table and EV K-maps in Fig. 6.28, find the minimum 

SOP logic expressions for the three outputs and construct the minimum p-term 
table from these expressions. Assume that all inputs and outputs are active high. 

(b) From the p-term table in part (a), determine the minimum size PAL that can be 
used and then construct the symbolic representation of the fusible links for this 
comparator. Include tri-state enables. 

7.9 The three functions in Problem 7.1 are to be designed by using a 4 x 16 x 4 PAL. 
(a) Construct the minimized p-term table for these three functions keeping in mind 

that a PAL cannot take advantage of shared PIs as can PLAs. Assume that the 
inputs arrive as a(L), beL), c(H), and d(H), and that the outputs must be issued 
as YJ (H), Y2(L), and Y3(H). Note that inverters are not permitted on the inputs. 

(b) From the program table of part (a), construct the symbolic representation of fusible 
links by following a form similar to that of Fig. 7.11, but with tri-state enables on 
the outputs. 

7.10 The Actel (ACT-I) logic module, shown in Fig. 7.24, is embedded by the hundreds 
in Actel's FPGAs. This module is remarkably versatile in its ability to implement a 
large number of simple SOP functions active high, or pas functions active low. As 
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examples, implement each of the following logic functions by using a single ACT-l 
module assuming all inputs are active high: [Hint: Use Fig. 7.24, not Eq. (7.5), and 
plan to include O's and 1 's as inputs where needed.] 

(a) Y(H) = (A + B)(H) = A . B(L) 
(b) Y(H) = ABC(H) = (A + B + C)(L) 
(c) Y(H) = (AB + AB)(H) = [(A + B)(A + B)](L) 
(d) YeA, B, C)(H) = ~m(2, 3,5, 7)(H) 

A two-input NAND gate 
A p-term (or s-term) 
Defining relations for XOR 
Canonical SOP function 

7.11 The AOI and OAI gates in Figs. 7.21, 7.22, and 7.23 are versatile building blocks that 
can be used in the implementation of a variety of logic functions. Simple examples 
are given in Subsection 7.7.1. With a minimum of external logic, apply these AOI and 
OAI gates in creative ways to implement the following functions: 
(a) Use one AOI gate (nothing else) to implement the expression for (A = B)(H) 

given by Eq. (6.22). 

(b) Use a minimum number of AOI gates to implement the three-function system in 
Problem 7.6 with input and output activation levels as stated. (Hint: For F J , use 
Fig. 7.23) 

(c) Use a minimum number of OAI gates to implement the three-function system in 
Problem 7.3 with input and output activation levels as stated. (Hint: For F2 , use 
the dual of Fig. 7.23.) 
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CHAPTER 8 

Arithmetic Devices 
and Arithmetic Logic Units (ALUs) 

8.1 INTRODUCTION 

In this chapter digital circuits will be designed with electrical capabilities that can be 
interpreted as performing the basic arithmetic operations of binary numbers. The basic 
operations include 

• Addition 

• Subtraction 

• Multiplication 
• Division 

Now, Boolean equations are uniquely defined so as to perform specific arithmetic operations, 
and the l's and O's, which have previously been used only as logic levels, must take on a 
numerical significance. The reader must keep in mind that an arithmetic circuit is only the 
electrical analog of the arithmetic operation it represents. In fact, it is the interpretation of 
the electrical circuit's behavior that bridges the gap between physical and logic domains. 

The treatment of arithmetic circuits presented in this text is not intended to be a treatise 
on the subject. Rather, the intent is to introduce the subjects at both the beginning and 
intermediate-to-advanced levels utilizing, where necessary, appropriate algorithms for the 
basic operations in question. The subjects of arithmetic logic units (ALUs) and the applica
tion of dual-rail methods, which are covered in later sections, fall within the intermediate
to-advanced level of coverage and may not be expected to be part of a first-level course in 
digital design. 

8.2 BINARY ADDERS 

Because of the nature of binary and the requirements for arithmetic manipulation, ap
proaches to basic adder design vary considerably depending on the form the manipulation 
takes. There are ripple-carry adders, carry-save, carry select, and carry-look-ahead adders, 

335 
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the last three being classified as "high-speed" adders. This lis t offour does not nearly cover 
the scope of adder design. nor does it establish the general character of these ari thmetic 
devices. It docs introduce the concept of computational speed as it relates to the addition 
process, however that is characterized. 

8.2.1 The Half Adder 

The half odder (HA) is the simplest of all the arithmetic circuits and may be regarded as 
the smallest building block for modular design of arithmetic circuits . The HA consists of 
two inputs. A and B, and two outputs, sum S and carry C, as indicated by the logic circuit 
symbol in Fig. 8.1 a. The operation [onnal and truth table for the HA are given in Fig. 8. 1 b 
and 8.1c. Here, A plus B yields the resuh CS, where carry is the MSB and sum is the LSB. 
When mapped as in Fig. 8.1 d, the results for sum and carry are read directly as 

\
S=A fIl Bj. 
C=A · B 

(8.1) 

The logic circuit fo r the HA is implemented by using Eqs. (S.l) and is given in Fig. S. le. 
Here. the choice is made to use the XOR gale in the implementation of the HA . However, 
use could have been made of the two- or three-level XOR realizations given in Fig. 3.2S. 
or the transmission gate approach by using AOI or OAI gates as in Fig. 7 .21 and 7.22. The 
XOR gate. g iven in Fig. 3 .26, is the simplest CMOS design possible. 

""e HA S Sum 
BI! B B 

C 

Carry 

A Auge nd A B C S 
• B Addend 0 0 0 0 
--

C S 0 0 

t L Sum S, lSB 0 0 1 

Carry C. MS6 0 

(.) (b) Ie) 

B 
A 0 

B 
A 0 I A(H) ===!1rl:[) 8(H) 

S{H) 

o 0 0 0 0 

HA 
o I 0 0 

~ s 
C(H) 

(d) (e) 

FIGURE 8.1 
Design of the half adder (HA ). (3) Block diagram for the HA. (b) Operation fonnat . (c) Truth table 
for A plus B. showing carry C, and ~um S. (d) K-maps for sum and carry. (e) Logic circuit for the 
HA. 
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A B C. C~ S 

Carry-in 
0 0 0 0 0 

C. Carry-in 0 0 1 0 1 

C. A Augend 0 0 0 1 
Bit A A + B Addend 0 1 0 FA S Sum 
BitS , 

C OlI! S 1 0 0 0 1 c_ 
~ Sum, LSB 1 0 1 0 

Carry-out Carry-oul. MSB 1 1 0 0 
1 1 1 

la) Ib) (e) 

0 A 
B 

0 

Id ) 

FIGURE 8.2 
Design of the fuJi adder (FA). (a) Block diagram for (he FA. (b) Operation fonnat for the FA. (e) 
Truth table for A p[u.~ B plus Cin. showing carry-out CoM_ and ~um S. (d) EV K-maps for sum and 
carrY·Qut. 

8.2.2 The Full Adder 

The half adder (HA) just designed has severe limitations in modular design applications 
because it cannot accept a carry-in from the previous ~Iage. Thus, Ihc HA cannOI be used for 
multiple bit addition operations. The limitations of the HA are easily overcome by using the 
full adder (FA) presented in Fig. 8.2. The FA features three inputs. A. B, and carry-in C;". 
and two outputs, sum S and carry-out c,.",. as indicated by the logic symbol and operalion 
formal in Figs. 8.2a and 8.2b. The (ruth table ror A plus B pillS C;Il is given in Fig. 8.2c with 
output~ C"w and S indicated in the two columns on the right. As in the t'ase or the HA, the 
inputs are given in ascending binary order. EV K-maps for sum and carry-out in Fig. S.2d, 
showing diagonal XOR pallems, are plotted directly rrom the truth table and give the 
results 

I
s = C",(A <!l B) + t",(A $ 8)1 

=A EEl B E£l C;" . 

C"", = C",(A EEl B) + An 

(8.2) 

Here. multioutput optimiz:ation has been used to the extent that the term (A EEl B) is used by 
both the 5 and Cml, expressions. Recall that A $ 8 EEl C;" = (A EEl 8) EEl C;n. 
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fiGURE 8.3 

A(H) 
8(H) 

c," 

:-- - - -~-(~)~- --
. . ~ ~ 
- )-7-- -"t-Hi 

C
nU1 

)---S(H) 

HA , 

FA 

Logic circuit for the full adder (FAJ showing it to be composed of two HAs and a NAND gate. 

The output expressions in Eqs. (8.2) are used to implement the FA shown in Fig. 8.3. As 
indicated. the FA is composed of two HA s and a NAND gate. The nodes P(H) and G(L) are 
indicated for later reference in Section 8.4. Notice that the NAND logic in Fig. 8.3 can be 
replaced by AND/OR logic but. for reasons to be discussed in Section 8.5, are kept as NAND. 

8,2,3 Ripple-Carry Adders 

The full adder (FA) can now be used 10 design a ripple-carry udder, sometimes caned a 
pseuaoparal/e/ ack1eror simply parallel adder. An n~bit ripple-carry (R-C) adder is a (2n + 
I )-input/Cn + 1 )-output combinalional logic device that can add two n-bit binary numbers. 
The block diagram symbol and general operation format for this adder arc presented in 
Figs. 8.4a and 8.4b, together with an illustration of the ripple-carry effect in Fig. BAc. The 
general operation format represents the familiar addition algorithm used in conventional 
arithmetic where carry from an addition operation is always to the next most significant 
stage. Notice that the subscripts are consistent with the powers of 2 to the left of the radix 
point in polynomial notion as is discussed in Section 2.3. Thu~ , the bits of each word re~ 
presenting a number are written in ascending order of positional weight from right to left. 
The addition process follows Algorithm 2.8 given in Section 2.9. Actually. the position of 
the radix poi nt in the two numbers is arbitrary, since the adder has no means of sensing 
these positions. The only requi rement is that the user of this adder make certain the radix 
poinl'i "line up" just as in conventional arithmetic. Thus, if significant bit positions exist to 
the right of the radix point for augend A and addend B, meaning that these numbers have 
a fraction component. then there must be an equal number of such positions for the two 
numbers. each of n bits total. 

The modular design of the n-bit ripple-carry adder fo llows directly from Fig. 8.4. All 
that is required is thai a series array of n FAs designated FAo, FA I, .. . , FAn _I, one for 
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C"C •. , 
C, 

An_, A, 
+ Bn , B, 
5"5" I S, 

(01 

FIGURE 8.4 

" " 

I Caul 

C, 
A, A. 
B, B, 
S, S. 

n·Bil 
Ripple-Carry 

Adder 

(aj 

C in - Co = O(H) 

C"l C'l C'l An., ... A2 A I A ~ 
+Bo., L~ ~ ~ 

CnS •. , C3SZ C2S 1 CIS o 

(el 

The n-bil ripple-carry adder. (;I) Block diagram circuiT symbol. (b) OperaTion formal. (c) Ripple carry 
effect. 

each bit. be connecte<l such thallhe carry-oul of one stage is the carry-in to the next moSt 
significant stage. This connection is shown in Fig. 8.5 where it is assumed thai all inputs 
arrive active high. Notice that the condition of no carry to the initial stage (FAo) is satisfied 
by Co = O(H ) (ground) or by using a HA for this stage. 

8n.dH) An_,( H) 8 2{H) A2(H) 8 1{H) AI(H) 8o{H) Ao(H) 

B A B A B A B A 

FAn., FA, FA, FA, 
C~, 

S 
C," Cou, 

S 
C. CO"' 

S 
C, C~, 

S 
c. 

5o.,(H) 5 2(H) SIIH) 5 0(H) 

FIGURE a.5 
An /l-bit ripple-carry adder implemented with II fuJi adders_ 

O(H) 
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$" 

FIGURE 8.6 

4-Bi! R-C 
Adder 

COY! G", 
5 

4 

B,. A,. 

B A 

4-Bil R-C 
Adder 

CM 5 
C," 

4 

5,. 

B~ A~ 

B A 

4-BitR-C 
Adder 

C~ 
5 

C, 

4 

5,. 

A 16-bil ripplc-~'arry adder implemented with four 4-bit ripple-carry (R-C) adders_ 

O(HI 

An n-bit ripple-carry adder is more likely to be designed by using /I m-bil adder modules 
rather than individual FAs. One example, represented in Fig. 8.6. features four4-bit ripple
carry (R-C) adders in ripple-carry fash ion 10 produce a 16-bit adder. Olherexamples include 
a l6-bit R-C adder composed of two 8-bit R-C adders, or a 32-bil implemented with four 
8-bit R-C adders. 

There are practical1imitations associated with the operation of an R-C adder of the Iype 
presenled in Figs. 8.5 and 8.6. To operate an R-C adder correctly, all input bits. for augend 
A and addend B. must be presented stably to the adders for a time equal to or greater than 
Ihe time ir takes for Ihe carry signal 10 ripple from stage to stage across the entire adder. 
Thus, this ripple lime delennines Ihe maximum frequency of input data preseotalion (to the 
adder siages) for a seri es of addition operations. Remember Ihal an addition operation in 
an R-C adder is not complete umilthe carry signal passes through the last (MSB) stage of 
the adder. Discussions of ways to speed up the addition process will be considered Ialer in 
Sections 8.4 and 8.5. 

8.3 BINARY SUBTRACTORS 

The electrical equivalent of the binary subtraction operation can be carried out by using 
full subtractors,j usl as the electrical equivalent of binary addition can be accomplished by 
using full adders . Although this is rarely done. the desigo of the full subtracror provides a 
good introduction to the more useful suhject of adderlsubtractors (devices that can serve in 
either capacity) and 10 the subject of parallel dividers considered in Section 8.7 . 

The design of tbe full subtractor (FS) follows in a manner similar 10 the design of the 
FA with, of course, some important differences. The inputs now become the minuend A, 
subtrahend B, and borrow-in Bi,,, and the outputs become the difference D and borrow~ou l 

Bm", which are shown by the block symbol in Fig. 8.7a. The operation fomlat for the FS 
and truth table for A - (B pItH Bin ) are given in Figs. 8.7b and 8.7c. Notice that BoUl = I 
any time that (B plus Bin) > A. and thai the difference D = I any time the Ihree inputs 
exhibit odd parity (odd number of 1 's) - the same as for sum S in Fig. 8.2c. 
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A 8 8 .. B D 

0 0 0 0 0 
0 0 1 1 1 

0 1 0 1 1 

0 0 
1 0 0 0 1 

1 0 0 0 
1 1 0 0 0 

1 1 1 1 1 

(oj 

Boo, 

D..:sign of the full subtractur (FS). (a) Block diagram for the rs. (b) Operation format, (ej Truth 
table for A - (B plus Bjn), showing outputS borrow-out BOOf and difference D, (d ) EV K-maps for 
difference lin d borrow·oul, 

The EV K-maps for difference and borrow-Qut are plotted directly from the truth table in 
Fig. 8.7c and are given in Fig. 8.7d, where again XOR diagonal patterns exist. The outputs, 
as read from the K-maps, arc 

I D = AffiBffiB,,, I 
B"",= B;,,(AIDB)+AB . 

(8.3) 

where it is recalled from Eqs. (3.23) that A 0 B = A e B. The FS can oow be implemcnted 
from Eq,s, (8.3) with the results shown in Fig. 8.8. Obsen'c that the FS consists of two half 
subtractors (HSs) and that the only difference between a HS and a HA is the presence of 
two inven'ers in the NAND ponion of the FS circuit. Use will be made of this fact in the 
nellt section dealing with the subject of adderlsublIactors, devices that can perform either 
addition or sign-complement subtraction. 

Full sublractors can be cascaded in series such that the bolTow-out of one stage is the 
borrow-in to the next mOl\t significan t stage. When this is done. a ripple-borrow sublraclOr 
results. similar to the ripple-cany adders of Figs. 8.5 and 8.6. However, the ripple-borrow 
subtractor suffers from the same practical li mitation as does the ripple-carry adder
namely. that the subtraction process is not complete until the borrow signal completes 
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A( H) =::;+;::jj 
B(H) D(H ) 

FIGURE 8.8 
Logic circuil for the fu ll sublraclor (FS) showing it 10 be composed or two half subtractors (HSs) and 
a NAND gale. 

its ripple path across the entire subtractor. As with the ripple-carry adder, the ripple-borrow 
subtractor is limited to applications not requiring high-speed calculations. 

8.3.1 Adder/Subtractors 

The adder/subtractor approach to arithmetic circuit design permits the use. of one sct of 
hardware to accomplish both addition- and subtraction-type operations. One means to 
accomplish this becomes evident from an inspection of the FA and FS circuits of Figs. 8.3 
and 8.8. As was pointed out previously, the FA and FS differ only by two inverters in the 
AND/OR part of the circuit. If the inverters are rcplaced by a controlled inverters (XOR 
gates as in Fig. 3.3Ic). an adderlsubtractor results. Thus, when the control input to the XOR 
gate is I (H) the XOR gate functions as an inverter, creating an FS, or when the control input 
is O(H) the device functions as an FA. When such FAIFS modules are connected in series 
as in Figs. 8.5 and 8.6, the result is a parallel adderlsubtractor. 

Another approach to adderlsubtTactOT design makes use of 2's complement arithmetic 
as discussed in Subsection 2.9.2. The design of the adder/subtractor now follows by using 
the ripple-carry adder hardware of Fig. 8.5 together with XOR gates used as controlled 
inverters on the B,(H) inputs. The result is the n-bit adderlsubtractor shown in Fig. 8.9. If 
the mode control input is set A/S(H) = I (H), the operalion is sublTaction [A i plus (- B;)) 
in 2's complemem and the final carry-out is discarded. However, if the add/subtraci conlTol 
is set AI S(H) = O(H). the operation is addition and the final carry-out becomes the most 
sign ificant sum bit SII' For subtmction the final sum bit, S~_I. is the sign bit, which caD be 
positive (if 0) or negative (if I) depending on the outcome. Notice that for subtraction a 
I (H) is imroduccd imo FAo as the initial carry-in Co, a requiremem ofEq. (2.14). Also, note 
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An II·bit adder/subtractor with ripple/carry implememed with full adders and XOR gates. 

that if only subtmction is required. the XOR gates can be replaced by inverters. Remem
ber, if the subtraction results in a negative number, that number is in 2's complement (see 
Algorithm 2.9). 

8.3.2 Sign-Bil Error Deteclion 

In Subsection 2.6.2 il is slated that the decimal range of representation for n integer bits in 
2's complement is 

Table 2.7 illustrates this fact with a few e)(amples in 8-bit binary, where the sign bit is the 
MSB. What this means with regard to 2's complement arithmetic is as follows: If any two 
positive numbers sum 10 a decimal value N 1u > (2n - 1 

- I). the sign bit will be in error (thus 
negative). Simi larly, if any twu negative numbers sum to a decimal value N10 < _ (2,, -1 ), 

the sign bit will again be in error (thus positive). If number A is positive and number B 

is negative. the sign bit will always be correct. assuming thai both numbers are properly 
represented such that S,, _I is the sign bit for each. Now, with reference to Fig. 8.9, two 
negative numbers cannot be properly represented in 2's complemenl, so that leaves two 
positive numocrs as the only possibility for sign-bit error in this adder/subtractor or in any 
ripple-carry adder. Two examples of 8-bit addition of positive numbers are illustrated in 
Fig. 8.10. In Fig. 8.IOa the twonumber~ sum 10 decimal 128, resulting in a sign-bit overflow 
error because 128> (28- 1 - 1) = 127. The sign bit "I" indicates a negative number, which 
is an error. In Fig. 8. lOb. the two numbers sum to a decimal value of 127, which is within 
the acceptable limit, and no sign-bit overflow error occurs. 

T! is useful to be able to detect a sign-bit overflow error in a ripple-carry adder or 
adder/sublractor so that corrective steps can Hike place. An inspection of Fig. 8.10 and the 
truth table for an FA in Fig. 8.2e indicates that a sign-bit overflow error can occur in the 
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sum of two positive numbers only if Cn =1= CIl - I . Thus, a sign-bit overflow error detector 
can be implemented by 

SError Del = CIl EB CIl - I , (8.4) 

requiring that the sign-bit carry-in Cn-l be accessible, which it may not be for IC chips. 
Another approach permits a detector to be designed that depends only on the external 
inputs to and sum bit from the sign-bit stage. A further inspection of truth table for an FA 
in Fig. 8.2c indicates that a sign-bit overflow error can occur only if A = B when COllI =1= S 
for the (n - I)th stage. Shown in Fig. 8.11a is the truth table for the sign-bit overflow error 
conditions based on this fact. From this truth table there results the expression 

(8.5) 

which permits the use of the 2-to-1 MUX implementation shown in Fig. 8.11 b. For purposes 
of comparison, the implementation of Eq. (S.4) is given in Fig. 8.llc. 

8.4 THE CARRY LOOK-AHEAD ADDER 

The ripple-carry (R-C) adder discussed in Section S.3 is satisfactory for most applications 
up to 16 bits at moderate speeds. Where larger numbers of bits must be added together at 
high speeds, fast adder configurations must be used. One clever, if not also intuitive, design 
makes use of the modular approach while reducing the propagation time of the R-C effect. 
The approach has become known as the carry look-ahead (CLA) adder. In effect, the CLA 
adder "anticipates" the need for a carry and then generates and propagates it more directly 
than does a standard R-C adder. 

The design of the CLA adder begins with a generalization of Eqs. (S.2). For the ith stage 
of the ripple-carry adder, the sum and carry-out expressions are 

l
Si = Ai EB Bi EB C; } 

= Sum of the ith stage 

Ci+1 = Ci(Ai EB Bi) + AiBi 

= Carry-out of the ith stage 

(S.6) 

From the expression for Ci+1 it is concluded that Ci+1 = 1 is assured if (Ai EB Bi ) = 1 and 
Ci = I, or if Ai Bi = 1. 

Next, it is desirable to expand Eqs. (S.6) for each of n stages, beginning with the 
1st (first) stage. To accomplish this, it is convenient to define two quantities for the ith 
stage, 

I Pi = Ai EB Bi = Carry Propagate) , 

G i = Ai . Bi = Carry Generate 
(S.7) 

which are shown in Fig. S.3 to be the intermediate functions P(H) and G(L) in the full 



346 CHAPTER 8/ ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs) 

adder. Introducing these equation into an expansion ofEqs. (8.6) gives 

1st stage 

2nd stage 

3rd stage 

nth stage 

! SO~ PO<ll Co I 
C I = PoCo + Go 

I 
s. ~ p. <ll C. ) 

Cn+1 = P~C" + Gil 

= P" P~ -I P,, -2 '" PoCo + P" Pn- 1 P,, -2·· · 

PIGo+···+G" 

(8.8) 

To implement Eqs. (8.8), use is made of the carry look-ahead module shown in Fig. 8.12, 
which is deduced from Fig. 8.3 and Eqs. (8.7). Notice that the CLA module has but one 
ha.lf adder but has two additional outputs, carry generate G and ca.rry propagate P. Whereas 
the S, temlS are produced within the each FA, the C,+I terms must be formed externally 
by what is called the carry generateiprvpagale (CGP) network. It is the COP network to 
which G(L) and P(H) must be connected in accordance with Eqs. (8.8). 

Construction of an n-bit CLA adder requires the use of n CLA modules together with the 
COP network according to Eqs. (8.8). This is done in Fig. 8.13 for the three least significanr 

G(L)---<o 

FIGURE B.12 

CLA 
Module 

8(H) A(H ) 

HA, 

P(H) S(H) 

CLA 
G Module C ,. 

(a) (b) 

The carry-look-ahelld (eLA) module. (a) Logic circuit deduced from Fig . 8.3 and Eqs. (8.7). (b) Logic 
circuit symbol. 
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FIGURE 8.13 
The three least significant stages of an /I·bit carry look-ahead (CLA) adder showing the earry generate! 
propagate network. 

bit stages of an n-bit CLA adder. Each of the CLA modules are of the type given in Fig. 8. 12 
and the shaded portion below the CLAs in Fig. 8.13 represents the CGP network as required 
by Eq.~. (8.8). Notice that for Co(H) = O(H). a requirement for proper operation of the 
adder, one NAND gate in each stage is disabled. This does not mean that such disabled 
NAND gales should be eliminated from the CGP network. All NAND gates shown in the 
cap network become necessary jf m-bit CLA adder modules are to be cascaded to form m 
n-bit CLA adders. It is also interesting 10 note that the CLAn module together with its CGP 
logic is exactly Ihe same as all FA in Fig. 8.3. FurthemlOre, if the extra hardware is of no 
concern. all CLA modules can be replaced by FAs with G and P outputs. 

An inspection of Fig. 8.13 makes it clear that the hardware requirement for the CGP 
network increases significantl y as the number of stages increases. The gate count for the 
CLA adder in Fig. 8.13 is 5, 11 , and 18 for the three stages 0, I, and 2 as shown. A fourth 
st:lge would have a IOtal gate count of26 and a fifth stage would be 35, etc. In fact, the total 
number of gates required for an n-bit eLA is given by 

Total gate counl = (n 2 + 3n)/2 + 
---------

3n = (11 2 + 911)/ 2 
(8.9) 

r-
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Carry to 
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4·811 4·8U 4-811 0- ' ClA~ ClA , ClA. 

~e r<G Module 
--<G 

Module 
+- r<G 

Module h-ot C. c. C. 
P S P S P S ---

T J t 
5\1 a( H) 5 7 •• (H) S'O( H) 

C"., ... G, P, C, G, P, C, Go Po CO 

CGP Network of Figure 8.13 

FIGURE 8.14 
The three least signifieam stages of a earry look-ahead (CLA) adder showing the earry gener
ate/propagate network between 4-bit modules. 

nlis count is 10 be compared [05n for a ripple-carry (R-C) adder of the type ~how" in 
Fig. 8.5. For example. an 8-bit CLA adder requires 68 gates, compared 1040 for the R-C 
adder. but the CLA adder is more than twice as fast. Funhennore. as the number of stages 
increases. so does the maximum fan-in requirement. For the CLA adder. the maximum 
fan-i n is (n + I ), compared to 2 for the R-C adder. The possibility of additional hardware 
toeompensate for fan-in and fan-out limitations of lhe CLA adder must be weighed against 
the faClthat the maximum propagation delay for Inc n-bit CLA adder of Fig. 8.13 is 4 gate 
delays. compared to 211 For the R-C adder. 

The modular approach to CLA adder design can be taken one step further hy using the 
COP network For n-bit CLA adder modules to create a larger adder. To do this. one simply 
cascades mIl-bit CLA modules in series to create an adder of k == III X fI bilS in size. This 
is demonstnlled in Fig. 8. 14. where 4-bit CLA adder modules are cascaded by usi ng the 
COP network shown in Fig. 8. 13. The adder in Fig . 8.14 is called a group CLA adder. This 
group CLA adder configuration saves hardware. but at the expense of increased propagation 
delay. For example. a 16-bit CLA adder with I-bit CLA modules requires 200 gates with 4 
gate-levels of delay. 2 for generation of G and P and 2 For carry generation. In comparison. 
a 16-bit g{(Jup CLA adder with 4-bil CLA modules requires 11 8 gates but has 6 gate-levels 
of delay (2 extra gate delays for carry). Note that the comparisons jusl made do not take 
into account any additional gates required to deal with fan-in and fan-out limi tations. 

The foregoing discussion suggests that there is a practical limit to the number of CLA 
adder stages that can be used without creating excessive amounts of hardware with the 
accompanying fan-in and F"n-out restrictions and path delay problems. To overcome Ihis 
limitation the concept of the group CLA adder configuratio n can again be used. but in a 
rather different way. For example. each 4-bit CLA stage in Fig. 8.14 can be replaced by 
4-bit R-C FA stages or by 4-bit adderlsubtractors stages as in Fig. 8.9 such that the MSB 
module of each stage is equipped with G and P outputs or is 11 CLA module of the type in 

H) 
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Fig. 8.12. In fact, the nature of the adder stage to be cascaded in CLA fonn is immaterial 
as long as the MSB module of each stage has G and P outputS to be connected to the CGP 
network. In any case combining R-C and CLA technologies reduces hardware requirements 
but, of course, does so at the expense of increasing path delay. 

8.5 MUlTIPLE·NUM8ER ADDITION AND THE CARRY·SAVE ADDER 

To add more than two binary numbers by the "conventional"' methods discussed in Sections 
8.3 and 8.4 requires that the addition process be carried out in stages, meaning that k 
operands are added in k - 1 two-operand additions. each addition (following the first) being 
that of the accumulated sum with a operilnd. This staged addition operation is relatively 
slow since carries are propagated in each stage. However, addition of binary numbers is 
nol limited to {Wo number addition stages. Actually. many binary numbers can be added 
together in ways that reduces the total addition time. One way to accomplish this is to usc a 
type of "fast" adder called an iterative can}'-saw (ICS) adder. The algorithm for iterative 
CS addition of more than two operands is stated as follows: 

Algorithm 8.1: Slim S = A + 8 + C + D + E · .. by Carry-Save Method 

(1) Set integers A = All_ I A,I _2 ... At AO, 8 = 0,, _1 Bn_ ! ... 81 Bo. C = C~_ IC"_2 ... 
CICo,etc. 

(2) Sum sO = A + B + C = ~-1 s2-1 , .. s? sg exclusive of all carries-out C~. 
(3) Sum S' = 5.(j + D+ CJ = S~ _ !S~_2 . , . SI S(\ exclusive of all carries-out C; , but with 

carries C~ shined left by one biL 
(4) Sum S2 = S' + E + C; = S~_ IS;_'2 " . SrSJ exclusive of all carries C; but with 

carries C~ shined left by one biL 
(5) Continue process until hlst integer has been added and only two resultant operands 

remain: pseudosum S' and final CS carries C/. 
(6) End with final sum S = S' + C' = S"S,,_ I ... S, So by using either R-C or CLA 

addition. 

The carry-save process described in Algorithm 8.1 appJies 10 m integer operands and 
involves m - 2 CS additions resulting in two operands: a pseudosum S' and the final CS 
carries C'. The final step (step 6 in Algorithm 8.1) adds the two operands S' and C' by using 
either a R-C adder or a CLA adder. The CS process (steps 1 through 5 in Algorithm 8.1) 
avoids the ripple-carry problem of R-C adders. resulting in a savings of addition timc. For 
R-C adders of the type in Figs. 8.5 and 8.6. a time (m - l)lR _C would be rcquired 10 add 
m integer operands. However, for addition of m integer operands by the CS method. a time 
(m - 2)tes + tR_e is required, which represents a significant savings of time for m > 3, 
since tes < tR_e for a given number of addition operations.lfCLA addition is involved, the 
time tR _C can be replaced by t eLA with less savings in time between the two methods. 

The iterative CS process just described in Algorithm 8.1 is illustrated in Fig. 8.15a where 
four 4-bit integers, A. B, C. and D, are added. The ICS adder required for Ihis process is 
shown in Fig. 8.ISb, where use is made of FAs, a HA , and either a R·C adder or a CLA 
adder for the final sum operation. 
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FIGURE 8.15 
The: carry-save (CS) method of addit ion. (a) CS addit ion of four 4-bit numbers. (b) Thc: CS adder 
designed to add four 4-bil operands by using FAs a HA and a 4 -bil R-C 0( C LA adder. 

8.6 MULTIPLIERS 

An n x m multiplier is an (n + m)- inpu!l(n + //I )- output device that perfonns 1m: 
logic equivalent of an II-bil x m-bit binary multipl ication. Shown in Fig. 8.16a is the block 
circuit symbol. and in Fig. 8. 16b the operation fannat for tl 4-bil x 4-bil multiplier that 
follows Algori thm 2.10. given in Subsection 2.9,4. As indicated in the operation fonnallhe 
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A, A, A, Mul tip licand A, 

B, B, B, Mul tiplier Bj 

P" P" Poo 

} P"t;aI P"doc" P" P" P" 
P" 

P, P, P, Product p. 

Characteristics of the 4x4 bit multiplier. (a) Block circuit symbol. (b) Operation format showing 
partial products and final product bits. 

multiplication process consists of four multiplicand bils Ai' four multiplier bils Bi • partial 
product bits Pi). and the final eighl product bits Pk . 

The 4 x 4 bit multiplication process, represented in Fig. 8.16b and by E)(ample 2.27 in 
Subsection 2.9.4. can bcimplemented at the modular level by using HAs and FAs to perfonn 
the summmion between the panial products and carries. Note that the partial products are 
generated by AND operations Pij = B,' . A i' and that the product bits in each column of 
Fig. 8.16 are the sums of these partial products and the carries between stages as indicated 
by the XOR operations in Fig. 8.17. 

Some explanation of Fig. 8.17 may be helpful. Recalling the sum expression for all FA 
in Eq. (8.2). it follows that k FAs can accommodate 2k XOR operators or 2k + 1 variables 
in an XOR siring such as that of Eq. (5.16). For 2k - I XOR operators in the siring, use 
can be made of one HA. Note that the C;, symbols in Fig. 8.17 refer to carnes from the ith 
to the jrh sum stage. 

The product bits Pi indicated in Fig. 8.17 can be compulcd by fi rst generating the partial 
products followed by a summation of these partial products with the appropriate carries. 
This is done in Fig. 8.18. where six of the eight sum stages are shown separated by dotted 

FIGURE 8.17 

Po = Poo 
P , = Po, (!1P ,O 

P2 ", P02$ P' I11P20$CI2 

P3 = PCl $ P'2 $ P ~I m PlO m [CnEt C2l'l 

P 4 = P 13 e P22 e P 31 11 [C34 11 C14'ffi Cl ; '] 

P5 = P23$ Pne[C.5eC.s'11C.s"l 

Ps= Pne[Css$Css'l 

p 7 = C6 ? 

The summations of partial products and carries required to produce the product bits for the multipli. 
calion of two 4-bil operands shown in Fig. 8.16b. 
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FIGURE 8.18 
Implementation of the 4x 4 bit multiplier or Fig. 8. 17. (a) Generation of the partial products. (b) Use 
of FAs and HAs to sum the partial products and carries. 

lines, the final stage being the carry C67 = P7 and the initia1 stage being Poo = Po. Although 
the s tring of XOR operations in each product expression of Fig. 8.17 can be computed in 
any arbitrary order. the carry configurations of Fig . 8. 18 are so chosen as to make use of 
s tandard 4-bil R-C adders with HAs as initial stages. Now it is possible to replace the 4-bit 
R-C adders with 4-bit CLA adders al a significant savings in calculatio n time. Note that the 
number of carries Cij for each stage in Fig. 8. 17 agrees wilt! those in Pig. 8.18. 

The multiplication process ean also be carried out by using the carry-save (CS) method of 
summing the partial products and carries in a manner similar to Ibat of Fig. 8. 15. However. in 
Ibis case the operands must be summed by the iterative CS method expressed by Algorithm 
8. 1. Such a CS scheme. shown in Fig. 8. 19. is a type of arra)' muftiplier called an iterative 
CS multiplier. Here. a 4-bil CLA adder is used (or the final sum of the two operdnds. 5 1 
and CJ. as in Fig. 8.15. 

I 
A 

Po 
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FIGURE 8.19 
The iterative carry-save (lCS) method with FAs. HAs. and a 4-bit CLA adder used to multiply two 
4-bil operands. Partial products P;j are generated as in Fig. 8.18. 

The iterative CS multiplier of Fig. 8.19 has the advantage of reduced compUiation time 
compared to the R-C approach illustrated in Fig. 8.18. For /1 rows and 211 - I columns of 
partial products. the summation time for an iterative CS (ICS) multiplier is 

tiCS = (n - 2)tF .... + {x-c , (8.10) 

where tFA is !.he delay of a FA and IR_C is the time required for the R-C adder to complete 
the summation. In comparison, the summation time required for a multiplier that uses only 
R-C adders (as in Fig. 8. 18), is 

(8.11) 

Thus for large n, the iterati ve CS multiplier is about twice as fasl as the one dUll uses only 
R-C adders. If CLA adders are used for bo!.h types of multipliers, the difference in speed 
between !.he two is reduced and may even shrink to near zero for certain values of n. 

8.7 PARALLEL DIVIDERS 

An n +- m parallel divider is an (11 + m )-bitlvariable-bit output device that performs the 
electrical equivalent of the binary operation symbolized by A -:- B = Q with remainder 
R. As used here. A and B are the dividend and divisor operands, respectively, and Q is 
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Remainder. R 

the quotient. The block diagram symbol for this divider is given in Fig. 8.20. where it is 
understood that m .:::: fI for the binary integers of these operands. 

The details of the logic ci rcuitry for a divider depend on the algorithm used to execute 
the division operation. Recall that in Subsection 2.9.5. Algorithm 2.12 presented a division 
procedure that is close to the familiar subtract·Gnd·shift procedure used in decimal long 
division. It is this same procedure Ihat is used to design a parallel divider. but modified in 
Ihe following way to accommodate hardware application: 

I. Successively subtract the subtrahend B from the minuend A by starting from the 
MSB end of A and shifting 1 bit IOward the LSB after each subtraction stage: 

(a) When the most significant (MS) borrow bil for the present stage is 0, the minuend 
for the next stage (remainder from the present stage) is the differen<.:e of the 
present stage. 

(b) When the MS borrow for the present stage is 1, the minuend for the next stage is 
the minuend of the present stage. 

2. Complement the MS borrow bit for each stage and let it become the quotient bit for 
that stage. 

3. Repeat steps 1 and 2 until (he subtrahend B has been shifted to the LSB end of the 
minuend A, The final remainder R will be detennined by the logic level of the MS 
borrow as in step I a or 1 b. 

The procedure just described, a modification of Algorithm 2.12. is illustrated in Fig. 8.2 1a 
fo r a 5-bit dividend. A = 10001 and a 3-bit divisor B = 0 II. The result is A .;- B = Q with 
remainder R. where the 3-bit quotienl is Q = 101 and the 5-bit remainder is R = 00010. 
Thus. in decimal 17 .;- 3 = 5 with remainder 2, which would be written as 17 and 2/3 or 
17.66666 .... Similarly. in Fig. 8.21b, A = 11011 2 (27 10 ). B = 1002 (4 10) with the resull 
Q = OOII~ (6 IQ) and R = 0001 b(3 1O). 

To design a parallel divider, the requirements of the subtract-and-shift process, illus
trated in Fig. 8.21. must be met. First, the subtrahend must be successively subtracted from 
the minuend. and then shifted from the MSB end of the minuend toward its LSB end by 
one bit after each subtraction stage. This is easi ly accompli shed by shifting the subtrahend 
presentation to an array of full subtractors (FSs). Second. the remainder R must be properly 
gated. Taking 89m to mean the MS borrow for a given stage, the division process requires 
that R = D when B",,, = ° and R = A for B"ul = I. where D and A are the difference and 
minuend. respectively, for the presen t stage. Shown in Fig. 8.22 arc the truth table (a). EV 
K-map (b). and the subtractor module (c). together with its block symbol (d). that meet the 
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FIGURE 8.21 
Two illustrations of the subtract-and-shift method or binary division for 5-bit dividends and 3-
bit divisors. (3) The result is Q = OOiOl (510) with R=OOOIO(2w) when A = 10001 (1710) and 
B = 011 (310), (b) The result is Q = 00 110 (61f) with R = 0001 I (3 1o) when A z> I WII (27 10) and 
B= 1{1O(4 1O). 

remainder requirements just given. Notice thai the expression R = B"u,A + B"",D applies 
to a 2-to-l MUX with inputs A and D and output R when 8,,,,, is the data select input. 

All that rem3ins is to construct an array of subtractor modules for the subtmct-and-shirt 
process required for the paralle l divider. This is done in Fig. 8.2311 for a dividend (minuend) 
of 5 bits and a divisor (subtrahend) of 3 bits. Here, the quotient outputS Q2(H). QI (H). and 
Qo(/i) are issued complemented from the active low outputs of inverter symbols defined 
in Fig. 7.6. The truth table for:l full subtractor is given in Fig. 8.23b to assist the reader in 
analyzing this divider circuit. 
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FIGURE 8.22 
Design of me subtractor module for u.~ in thedesign of a parallel divider. (a) Tnllh lable for remainder 
R and final borrov.·-mu. (b) EV K-map and g:uing logic for R. (e) The subtraclOr module by using a 
FS and II 2-to-l MUX. (d) Circuit block ~ymbol for 1he sublraclor module in (c) . 
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(a) Parallel divider for a S·bie dividend. A. J·bit divisor. B. a 3-bie quotient. Q. and a S·bit remainder, 
R, designed with an array of 15 sobcraClor modules oCme lype shown in Fig. 8.22. (b) Trulh table for 
a fu ll sublf3Clor. 

The divider in Fig. 8.23 can be expanded to accommodate larger dividends and quotients 
by adding subtractor modules in both the y. and X-directions, respectively. Referring to 
Fig. 8.20, lhe relationship between n , m. and k is given by 

k=n-m+1 (8. 121 

for full usage of an n x k array of subtcactor modules. For example, a l6-bit dividend 
(n = 16) and an 8-bil divisor (m = 8) can be used 10 generate 1I 9~bil quolien! (k = 9) in a 
16 x 9 array of subtractor modules. Or a 32-bil dividend and a 24-bit divisor can be used 
to generate a 9-bit quotient in a 32 x 9 array of subtractor modules. In all such cases the 
remainder is of II bils. II is also acceptable to use any lesser portion of a given array of 
subtractor modules to carry out a dIvide operation, but Eq. (8. 12) must still apply to thai 



8.8 ARITHMETIC AND LOGIC UNITS 357 

portion of the array that is used. However, to do this requires proper placement of O's on 
modules that are not used. For example, if m = n, only one quotient bit is generated and 
O's must be placed on all open inputs to the right of the MSB column of the array. 

Dividers of the type shown in Fig. 8.23 can be classified as "fast" dividers. This is because 
they are asynchronous in nature, meaning that the results are generated as fast as the logic 
permits. However, it is characteristic of such circuits that with increasing operand size the 
hardware requirements increase rapidly making them impractical for many applications 
where space requirements are important. There are other methods of achieving the division 
operation with less hardware but at the expense of operation time, as expected. These 
methods require storage elements such as registers and fall outside the treatment of this text. 

8.8 ARITHMETIC AND LOGIC UNITS 

As the name implies, the arithmetic and logic unit (ALU) is a universal combinational 
logic device capable of performing both arithmetic and logic operations. It is this versatility 
that makes the ALU an attractive building block in the central processing unit (CPU) of 
a computer or microprocessor. It is the object of this section to develop the techniques 
required to design and cascade ALU devices following three very different approaches: the 
dedicated ALU approach, the MUX approach, and the dual-rail approach with completion 
signals. 

The number and complexity of the operations that a given ALU can perform is a matter 
of the designer's choice and may vary widely from ALU to ALU, as will be demonstrated 
in this section. However, the choice of operations is usually drawn from the list in Fig. 8.24. 
Other possible operations include zero, unity, sign-complement, magnitude comparison, 
parity generation, multiplication, division, powers, and shifting. Multiplication, division, 
and related operations such as arithmetic shifting are complex and are found only in the 
most sophisticated ALU chips. Also, the AND, OR, and XOR operations are often applied 
to complemented and uncomplemented operands, making possible a wide assortment of 
such operations. 

Presented in Fig. 8.25 is the block diagram symbol for a general n-bit slice ALU. This 
ALU accepts two n-bit input operands, Bn - l ... BlBo and All-I'" AlAo, and a carry-in 
bit, Cn, and operates with them in some predetermined way to output an n-bit function, 
FIl - l ... FJ Fo and a carry-out bit, emf' Here, the term n-bit slice indicates a partition of 
identical n-bit modules of stages that can be cascaded in parallel. Thus, an FA in an n-bit 
R-C adder could be called a I-bit slice for that adder. Also, use of sign-complement arith
metic avoids the need for both carry and borrow parameters. 

Arithmetic Operations Logic Operations 
Negation Transfer 
Increment Complementation 
Decrement AND 
Addition OR 

Subtraction XOR(EQV) 

FIGURE 8.24 
Arithmetic and logic operations common to ALUs. 
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B .. ,., 8 ,8 0 An., ' ' A,Ao M. 3 r11 _ ~" 5,3 0 

, 

a A 

c., n·blt Slice ALU C" 

G P F 

FIGURE 8.25 
Block diagram symbol for a general I·bit slice ALU with CLA capability. 

The choice of operation between the two operands. A and B. is detennined by the m 
mode/select inputs. M . Sm-2'" S,So. shown in Fig. 8.25. The mode input M sets the ALU 
for either an arithmetic or logic operation. and the function select inputs. Sm-2 . .. S, So. de
termine which panicuiaroperation. within the arithmetic or logic mode. is to be perfonned. 
Just as the carry-out bit em" is required for cascading standard R-C arithmetic units. as in 
Fig. 8.5, the carry propagate and carry generate bits. P and G, are required for cascading 
carry look-ahead (eLA) units. In this section, ALUs with R-C and CLA capabil ities are 
designed. Commercial ALU chips are available that have both of these features. 

6.6.1 Dedicated ALU Design Featuring R-C and CLA Capability 

The EV operation table in Fig. 8.26 represents a simple I-bit slice ALU capable of pelf onn
ing four specific arithmetic functions and four specific logic functions. all 011 command of 

M S, S, F Operation· c~ 

0 0 0 AEDC" Transfer (LSB C" = 0) or iocrement (LSB COl = 1) 01 A kC.., 
- -

0 0 1 AffiC., l's (LSB C,., ,,0) or 2's (LSB C .. '" 1) complement of A A·C., { 0 1 0 A@BtllC., AplusBilLSBC,, "O or AplusBpluSlI1LSBC .. =1 C .. (AGl B) + A'B 
- - -- -

0 1 1 A@BIlIC., Bminus A if LSBC" = 1 or AplusB if LSBC.,=O C,.,(AGlB) + AB 

{ 
1 0 0 A Transler A 0 

-
1 0 1 A Complement 01 A 0 

1 1 0 A.a AOA B 0 
-

1 1 1 A.B A complement OR A 0 

• Subtraction operaHons assume 2's complement arithmetic. 

FIGURE 8.26 
Operation table for a simple I-bit stice ALU showing output functions. F and COU1 ' for four arithmetic 
operalions (M =0) and four logic operations (M = I). 
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the three mode/select inputs M. 5). and So. On the right side of the table are the function 
expressions F. a brief descri ption of each function operation . and carry-oul expressions. 
Co",, The cxpres~ions for F and G'UI are deduced from Eqs. (8 .2) for the full adder (FA) 
together with Eqs. (3.23). Notc that false carry rejection during the logic mode is realized 
by placing zeros in the C"'" column for the four logic operations - the carry-out function 
has no relevance in a logic operation. Notice further that the two possible logic states for 
C ill lead to different interpretations for each of the four arithmetic operations. For example, 
A E:B Ci" is the transfer of A if CII = O. but represenl.S the increment of A if the LSB C" = I 
( B = 0 is implied). Or, A E9 Cill represents the I 's complement of A if LSB CIII = 0 but is 
the 2's complement of A ifLSB Ci" = I (B = I is implied). Subtraction operations by this 
ALU are carried OUI by 2's complement arithmetic as discussed in Subsection 2.9.2. 

The dedicated ALU of Fig. 8.26 is now designed by using the EV K-map methods with 
XOR patterns as discussed in Section 5.2. Shown in Figs. 8.27a and 8.27b are the third
order EV K-maps for F and C,~'" which are plotted directly from the operation table in 
Fig. 8.26 by using the mode/select inputs as the K-map axes. These third-order EV K-maps 
represent three orders of map compression because Ihere are three EVs. By compressing the 
third-order K-ntaps by one additional order (hence now four orders of K-map compression), 
there results the second-order EV K-maps shown in Figs. 8.27c and 8.27d. Oplimum cover 
is then extracted from these second-order K-maps by using associative XOR-typc paltems, 
as indicated by the shaded loops. (See Section 5.2 for a discussion of associative panems). 
From these K-maps there results 

I F =(MCi,,)EB(AEBSo)€B(SI B) + MS)B I 
c'm' ~ (MC,,,)[(A Ell So) (j) (S,B)) + M (S, B)(A (j) So) , 

(8.13) 

which represent fo ur-level logic with a collective gate/input tally of 10/22 excluding any 
inverters that may be required. Notice that several terms in Eqs. (8.13) are shared between 

ss ss 
M 

, , 
M 00 01 11 10 

, 
' 00 01 11 10 

0 AGlC., A$C .. AGlB$C ... AGlBmC", 0 AC. AC ... C .. (Ae B) " AS C,,(A(flB)-+ AS 

, A A A- S A- S , 0 0 0 0 

F eM 
(a) (b) 

M 
s, 

0 1 M 
s , 

0 1 

0 (AGlSglmlC .. ~JGl(AGlSo ) rIB 0 LC .. (A(£lSo) C ... (A(£lSol (£l(c .,aJ +(B(A$So~ 

1 (A<IlSJ I-"(AiBSo} -{a ) 
F 

1 0 0 

{; 
(') (d) 

FIGURE 8_27 

K-map representations for iunctilJn F and carry-out Co•a given in Ihe operation table of Fig. 8.26 for a 
I-bit slice ALU_ (3). (b) Third-{lrder EV K-maps plotted directly from Fig. 8.26 (e). (d) Second-order 
EV K-maps showing optimum cover for the two-output system. 

,. 
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(:I) Optimum gate-level implementation of the I-bit slice ALU represented by the operation table of 
Fig. 8.26 and by Eqs. 8.13. (b) Block diagram symool for the I-bit ALU in (a). 

the two functions. tl result of the optimal organization of the operations in the table of 
Fig. 8.26. 

Some cllplanation of Eqs. (8. 13) is necessary. Referring to function F. the separate 
"island" loop for operand lJ in cell 3 of Fig. 8.27c is necessary to complele the cover for 
thai celt This is so because after (A $ So) and B have been used 10 loop OUI the associative 
patterns. cover still remains in cell 3, as explained for a similar case in Section 5.4. The 
residual cover is extracted either by looping OUI operand B as an island to give the term 
M SI 8 , or by looping out (A EB So) in the M domain 10 give Ihe lenn M (A E9 So). It is the 
former that is chosen for this design eX3mple. 

Equations (S. 13) can be implemented in a number of ways by using discrete logic. One 
means of accomplishing this is shown in Fig. 8.28, where usc is made of NANDINORJEQV 
logic, assuming IIlat all inputs and outputs are active high. Notice thai lhis is a four-level 
circuit with a maximum fan-In of 3. Also, the reader is reminded that two active low inputs 
to an XOR gale or EQV gate retains the function , as discussed in Subsection 3.9.4. 

An n-bil ripple-carry (R-q ALU can be produced by cascading the I-bit slice ALU of 
Fig. 8.28 in a manner similar to that used to produce an II-bit R-C adder from n FAs in 
Fig. S.5. This is done in Fig. 8.29, but with the added requirement of connecting the three 
mode/sclect input to all slages as shown . It is also possible to construct an II-bil R-C ALU 
by cascading m-bil ALU modules in a manner similar to cascading configuration of R-C 
adders in Fig. 8.6. 

The two functions in Eqs. (8. 13) are not the only expressions that can be derived from 
the operation table for F and C(n</ in Fig. 8.26. Referring to Fig. 5.9, it can be seen mat 
the fu nctions FI and Fz are exactly those for F and C"u" respectively, if the appropri
ate substitutions are made and if the don' , cares in the Fz K-map are each sct to logic 
zero. Thus, from Eqs. (5.71) and (5.72) the two outputs for the I-bit ALU now become 
either 

I F= M[C;n EEl (A EB So) EB (SIB)] + M (A $ So + SIB» ) 

CO"' ~ MC;I(A Ell 50) Ell (S, 8)1 + M( 5, 8)(A Ell So) 
(8 .14) 
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r------+----1f-,....---+--+;----+--f-,.....;3~ M. 51' So (H) 
A 

l -bit 
ALU 

F 

FIGURE 8.29 

B A 

l·b it 
ALU 

F 

B A 

H it 
ALU 

F 

c. 

B A 

l·bit 
ALU 

F 

An n-bi t R-C ALU produced by cascading 11 I-bit slice ALUs ofthl! type shown in Fig. 8.28. 

0 ' 

I F ~ [MS, B( A <!lSO)l<!l (M C,)<!l(S, B ) I 
C"", = ,\fCJ[( A $ So) EB (SI B)J + ,w(SI B)(A $ So) • 

(8.15) 

depending on whether or not subfunction parti tioni ng is used for a combined C RMT and 
two-level resul t for function F. T he two outputs in Eqs. (8. 14) represent a fi ve- Ic\'cl system 
with a combined gate/input (ally of 11 /24. and those in Eqs. (8. 15) represent a four-level 
syslem with a lolal gate/input ta lly of 11 /25. both excluding possible inverters. Thus. the 
C RMT rcsU]L" in Section 5.1 1 are comparable but somewhat less o ptimal than those of 
Eqs. (8. 13) extracted from K-maps. 

The n -bit R-C ALU of Fig. 8.29. like the R-C adder, suffcrs a size limitalion due 10 

the ripple-carry effect. as discussed in Subsection 8. 2.3. To overcome this limitation the 
calT)' look-ahead (CLA) feature can be coupled with the ALU design . (Sec Section 8.4 for a 
discussion oflhe C LA addcr.) In Fig. 8.30 is the VO table (or the I-bit slice ALU with C LA 

FIG URE 8.10 

F p 

A 

AsC,. A 

G 

o 
A Arilhmetlc { ~ ~ ~ 

Operations 0 1 0 AeBeC .. (A9B) A'S 
- -

o ( 1 AEDBeC.. (AeB) A B 

' ~p;:;;,~",{"~"'~ .. ; ... f:··········· I·' ....... ·'1' ..... . 

• Subtraction operations assume 2's complement ar ithmet ic. 

Operation table (Of the simple I-bit slice ALU of Fig. 8.26 showing CLA OUtput functions P and G 
based on Eq!. (8.7). 
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0 [A$So AEilSol m@J 0 ( S,A) (8(A..s,) ) 

1 0 0 
/ 

1 0 0 1/ 
/ P /G 

FIGURE 8.31 
EV K-maps and minimum cover for carry propagate (P) and carry generate (G) parameters given in 
Fig. 8.30. 

capability. Here. the COUI functions of Fig. 8.26 are replaced with those for carry propagate, 
P. and cany generate, G. which are derived from Eqs. (S.2) and (8.7). Logic O's are placed 
in the P and G columns for the logic operations to indicate false carry rejection. as was 
done in the operation table of Fig. 8.26. 

The design ofthe I-bit slice ALU of Fig. 8.30 continues by plotting the P and G outputs in 
second-orderK-maps as was the case for Cout in Fig. 8.27d. This is done in Fig. 8.31, where 
optimum cover is indicated with shaded loops for each of the outputs. yielding the re~ult~ 

I I' ~M[(AIllS0)Ill(S'B)l I 
G~M(S,B)(AIllSo)+MS,SoA . 

(8. 16) 

Notice that a single associative pattern is used to extract optimum cover for output. P. 
In completing the design of the I-bit slice ALU with CLA capability. it must be remem

bered that it is the carry parameters in Eqs. (8.16) thai take tbe place of the COUI expression 
in Eqs. (S.13). This is done by combining the carry expressions of Eqs. (S.16) with the 
expression for function F in Eqs. (8.13). The result is the logic circuit in Fig. S.32a and its 
block diagram symbol in Fig. S.32b for a I-bit sl ice ALU with CLA capability. 

",H) 
S,(H) 
8(H) 

"IH) 
F(H) 

C1.(H) 

M{H) 
M(H) 

P(H) , ·bit CLA 
G ALU 

P F 
M(H ) )o-'<C~ G IH) 
Sl(H) 

So(H) 

AIH) 

la ) Ib) 

FIGURE 8.32 
(a) Optimum gate-level implementation of the I-bit sliec ALU with eLA capability represented by 
the operation table of Fig. 8.30 and by Egs. (8. 16). (b) Block diagram symbol for the I-bit ALU in (a). 
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.. . I I I I I I 3 . 

Carry • A If • A vi • A f 
to n-1 1-BII 1,B~ 1-Bit 

stage AWl ALU, AtU, - G Module C G"""·c, G Module C , O(HI 
p s p s p s ... 

F!IHI F~(HI F~IHI 
C ·· · ., G, P, C, G, P, C, Go Po Co 

CGP Network of Figure 8.13 

FIGURE 8.33 
The three least significant stages of an n-hit carry look-ahead (CLA) ALU showing the block symbol 
for the carry generateJpropagate network used between J -bit modules. 

The I-bit slice ALU module in Fig. 8.32 can be cascaded by using the CLA carry 
generate/propagate (CGP) network given in Fig. 8.13. This is accomplished in Fig. 8.33, 
where the three least significant I-bit stages are shown connected to the CGP network. 
Cascadable unils of this type can be cascaded as groups to produce even larger units. This 
is done by connecting the carry-oUi of one n-bit stage to the carry-in of another. etc., with 
the mode/select inputs connected 10 all stages. 

8.8.2 The MUX Approach fo AlU Design 

There are occasions when a designer requires an ALU that is fully programmable, that will 
perfonn a wide variety of tasks both arithmetic and logic. and that can be pm to a circuit 
board wim off-the-shelf components, or that can be designed for VLSI circuit applications. 
The MUX approach to ALU design can provide this versatility and computational power, 
which are difficult to achieve otherwise. In this subsection a programmable ALU (PALU) 
will be designed by the MUX approach that can pelform the following operations on IWO 

II-bit operands: 

1. Arimmetic operations 

(a) Add with carry. or increment 

(b) Subtract with borrow. or decremenl 

(c) Partial multiply or divide sleps 

(d) One's or 2's complement 

2. Comparator operations 
(a) Equal 

3. Bitwise logic opeI'"J.tions 

(a) AND, OR, XOR. and EQV 

(b) Logic-level conversion 

(c) Transmit or complement data bil 
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IrnpiementalLon of the Jlh I-bit slice PALU with shirtld t and shift right capability by using three 
4-10.-1 MUXs, a DMUX, a NAND gale, and an Aor gate. 

4. Shift operations 

(a) Shift or rotate left or right by one bit 

It is required that each I-bit slice of the PALU have a resulting output function F and 
that the PALU be cascaded with respect 10 the carry-in and cany-om parameters, C,~ and 
C,>tr" Also, it is required that the PALU operate w ith Ja fse carry rejection, that is, that C"", 
be disabled for all oonarithmetic operations. 

The logic circuit diagram for the ith I-bit slice PALU and its block diagr.lm symbol are 
presented in Figs. 8.34 and 8.35. As can be seen. the PALU consists of three 4-to-l MUXs. 
a 1-10-2 DMUX. a NAND gate. and an ADI gate (see Subse<:tion 7.7.1 for a discussion of 
ADI gates). For reference purposes the MUXs are named 

MUX-D => Disable Carry MUX-Output D 
MUX-E => Extend Carry MUX-Dutput E 
MUX-R => Result MUX -OUIput F 

To help understand how the PALU is able to perform such a variety of tasks as listed earlier. 
it useful to write the Boolean expressions for the outputs from the three MUXs and from 

F(H) 

F(L) 
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• 
R E 0 • A 

UR 

J'" 
To Jt-t stage c~ I·BII PALU C. From J·t stage 

From J~ t stage C. Mudule C~ To J.j stage 

EN 
F F 

FIGURE 8.35 
Block diagram symbol for Ihe Jth I -bit PALU module of Fig. 8.34. 

{he AOI gale. RefelTing 10 Fig. 8.34, these outputs are 

and 

I) _ _ _ _ 

F = R = L = Rimi = RJC;nE + R2C;"E + RtCNE + ROCi"E 
;=3 
o 

E = L = E,.mj = E)AB + E2AB + £1.4B + E(fAB 
i .. J 
o 

D = L = Dim; = D)AB + D2A8 + DIAB + DoA8 ,_3 

COU! = C;"E + D, 

365 

(8.17) 

(8.18) 

where the control address inpuls Ri , E" and Di are the coefficients of m t Ihat represent the 
canonical fonnsof inpul selS C j". E or A, B. Thus. R2m2 = R2C,nE or Eomo = EoA 8, ele. 

Notice that Eqs. (8.17) derive directly from Eq. (6.5). but where now the data selcci 
and data inputs are interchanged-that is, there are now four data select inpuls (control 
address inputs) each for Ri • Ii, and D;. two data inputs, A and B . Referring to the K-map 
in Fig. 6.4c for a 4-10-1 MUX. it is easy to see that 16 possible funclions in data variables 
51 and So result by assigning 1"s and O's to the four variables h h. II, and 10 in the 
K-map. taking EN = I. Thus. for programming purposes, the four components for each of 
the control address inputs (coefficients of mi). Hi, Ei , and D i • are encoded in the order of 
descending positional weigh!. but are given in decimal equivalent 10 represent anyone of the 
16 possible logic functions in variables, A and B. As examples. D = A + jj is represented 
as D = 11012 = 1310 , E = A8 if E = 0100:2 = 4 10. or F = E 0 C~ is represented as 
R = 10011 = 910 and F = E liB c,." when R = 01102 = 610. elc. 

In Fig. S.34 it can be seen that the MUX output signals, D(L) and E(H), together with 
carry-in Cin• drive the AOJ gale, but that only the MUX output E(H) combines with Ci,,(H) 
in MUX-R to produce the resuilanl function F. Thecarry-oul C"I4«L) from the AOlgate. on 
the other hand, is a function of E , D. and the carry-in inpul. C;", as indicated in Eq. (S. IS). 
This is necessary for the arithmetic operations that the PALU must perfonn. The D in 
Eq. (8.18) is used to disable COU1 for nonarithmetic operations. If D is set equal to 0 for 
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a given non arithmetic operation, it follows that jj = I and Cout(L) = l(L) = O(H), which 
is interpreted as a carry-out disable for that operation. Thus, the carry-out disable feature 
of the PALU is equivalent to the false carry rejection used in the ALU operation tables of 
Figs. 8.26 and 8.30. In a sense, the output of MUX-D performs the same mode control 
operation as does M in the ALU of Figs. 8.28 and 8.29. 

The operation ofthe PALU is illustrated by 12 examples in the operation table of Fig. 8.36 
with the help of the n-bit PALU shown in Fig. 8.37. The first five operations in Fig. 8.36 
are arithmetic while the last seven are logic. To understand the entries in this table, some 
explanation is necessary. The control address inputs, R, E, and D, are the binary coefficients 
in Eqs. (8.17) represented in decimal. Operations (1) through (4) are arithmetic operations 
that follow directly from Eqs. (8.2) for the FA and require specific values for the c'n to 
the LSB stage of the n-bit PALU in Fig. 8.37. For these arithmetic operations, the carry 
must propagate from LSB-to-MSB (left), which requires that the direction input be set to 
L / R = O. Note that this PALU cannot support CLA capability since not all carry operations 
are based on Eqs. (8.2). 

Operation (1) requires that the operand magnitudes fall within the limits set in Subsec
tion 8.3.1. Operation (2), A minus B, adds A to the 2's complement of B and requires 

Operation * F Cout LlR R E 

A plus B (LSB Cin = 0) A EBB EBC in Cin(AEBB) + AB 0 6 6 

- -
A minus B (LSB Cin = 1) A EBB EBC in Cin(AEBB} + AB 0 6 9 

Increment B (LSB Cin = 1) BEBC in Cin ' B 0 6 10 

2' complement of A (LSB Cin = 1) AEBC in Cin + A 0 6 3 

A = B (LSB Cin = 0) (A0B)C in Cin + AEBB 0 2 9 

AEBB AEBB ¢ 10 6 

A·B A'B ¢ 10 B 

A+B A+B ¢ 10 11 

Complement A A ¢ 10 3 

(10) Transfer B B ¢ 10 10 

(11) Shift A left 1 bit (Fill = LSB Cin) Cin A 0 12 0 

(12) Shift Bright 1 bit (Fill = MSB Cin) Cin B 12 0 

• Subtraction operations assume 2's complement arithmetic with LSB Gin = 1. 

FIGURE 8.36 
Twelve sample operations generated by the I-bit slice PALU in Fig. 8.34 showing the shift direction 
input and the decimal values for the data select variables, R, E, and D. 
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FI GURE 8.37 
An ,. -bil PALU with operalional characleristics given by Figs. 8.34. 8.35. and 8.36. and by Eqs. (8.17). 
and (8. 18). 

that LSB CIt! = I in Fig. 8.37 and that lhe MSB be reserved for the sign hil as d is· 
cussed in Seclion 8.3. For oper:ltion (2). Ihe requirements of F and C,,,,, are thai R = 
E (D C,q = 0 1102 = 610. E = A ED B = A 0 B = 10012 = 9 1(1. and Ihal D = 
A + B = lOl l = 11,0. Operation (3) simply requires thaI LSB C,,, = 1 when A = O. 
for which the requirements of functio n F are that R = EED Cit! = 01102 = 6,0, 
E = B = 10102 = 10 '0, and D = 1 = 1111 = 15'0 so that b = 0 in Eq . (8.18). 
The 2's complement of operation (4) follows Algocithm 2.5 represenloo by Eq. (2.14). 
TIle 2's complement operation sets LS8 C; .. = I, then wilh B = I and A is comple. 
mented, R ;:s:: E ffi C,~ = 01102 = 6 10, E = A = 00112 = 310 and D = A = 
001 12 = 310. Operations (6) through (l0) arc simple bitwise logic operations for which 
F = R = E when R = 10 Uh = 10'0_ ::md C,,,,, = I and LI R = t/J forfalse call)' rejectIon 
when D = 0. 

Openllion (5) is the comparator o~ralion. A = 8 , considered either an nrilhmetic or 
logic oper:llion . Th(: requirement for this operation is as follows: If the twO operands, A 
and B. arc equal on a bitwise comparison basis. then J-~ _I = I for an n· bit PALU with 
its LSB C",(L) = ()(L ). Or if the operands are oot equal. ,.--,, _ , = O. Thus. C"", = 0 will 
ripple from the LSB stage to the MSB stage and all outputs will be ,.~ = I. Hov.·(:v(:r, if 
anyone of the bitwise comJX1rlsons yields an inequality. the call)' C_, = I will ripple 
from that stage to the MSB stage and generate F,,_I = 0 at the MSB stage. Thcref()fe, 
operation (5) requires that R = C;~ E = 00102 = 210. E = A 0 8 = 1001 2 = 9,o. lmd 
D = A 0 B = 1001 , which, when inu-oduccd inlo Eqs. (8.17) and (8 .18). yields the resuhs 
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p.-
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given in Fig. 8.36. 

= Cin + A E!7 B 

By comparing the result F = (A0B)C in with Eqs. (6.20) for a I-bit comparator, it becomes 
evident that Cin = eq is the (A = B) output from the next least significant stage. 

The remaining two operations, (11) and (12), are shift operations that can be considered 
both arithmetic and logic in nature. For example, operation (11) shifts word A by one bit 
to the left, which can be interpreted as a x 2 operation, and hence a partial multiplication 
step. Referring to Section 8.6 and Algorithm 2.10, it is clear that a bit-by-bit left shift is 
a partial step used to execute the multiplication of two operands. This requires that the 
Jth function bit FJ receive the Cin from the (J - l)th stage, and that the COUI of the 
Jth stage be the A input to that stage, for which F = R = Cin = 11002 = 1210 and 
D = A = 0011 2 = 310 . 

There are many other operations possible by the PALU that are not listed in the operation 
table of Fig. 8.36. As examples, operation (9) can be interpreted as the 1 's complement of 
A according to Algorithm 2.7 as applied to binary, and operation (7) can be considered as a 
partial product required in the multiplication of two operands. Also, arithmetic operations 
other than the operations (1), (2), and (3) are possible. 

There are a total of 16 bitwise logic operations that can be generated by the PALU, 
but only five are listed in Fig. 8.36. For reference purposes, the 16 logic functions in two 
operands, A and B, that can be generated by Eqs. (8.17) are summarized by 

B 
A 0 

0 Fo 

1 F2 

FIGURE 8.38 

o 
F = L F;m, = F3 AB + F2AB + FlAB + FoAB 

i=3 

F3 F2 Fl Fo F F3 F2 Fl 

0 0 0 0 0 0 0 

1 0 0 0 1 A·B 0 0 

0 0 0 A-B 0 

0 0 1 1 A 0 1 
Fl 

0 0 0 A-B 0 

0 0 1 B 0 F3 
V 

/F 0 0 AEBB 
0 A+B 

(a) (b) 

(8.19) 

Fo F 

0 A-B 
1 A8B 
0 B 
1 A+B 
0 A 
1 A+B 
0 A+B 

1 

The 16 possible bitwise logic functions for operands A and B according to Eq. (8.19) (a) K-map 
representation. (b) Tabular representation. 
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and can be represented either by the K-map in Fig. 8.38a or by the table in Fig. 8.38b. 
The table is generated by asigning l's and O's to the four coefficients, F3 , F2, F I , and Fo. 
These functions will again be used by an even more versatile ALU, which is designed in the 
following section. 

8.9 DUAL-RAIL SYSTEMS AND ALUs WITH COMPLETION SIGNALS 

As implied in Section 8.8, ALUs are important because they make possible the use of 
the same device to perform many different operations, thereby increasing versatility while 
minimizing the need to combine different modules for those operations. Because of these 
advantages, ALUs are commonly found in processors where the specific operations are 
performed on command from the controller in the processor. Although these ALUs support 
a variety of arithmetic and logic operations and may include CLA capability, they typically 
have single rail carries (like those treated in Section 8.8) and cannot communicate to the 
processor when a given operation has been completed. To remedy this situation, completion 
signals are issued following worst-case delays that are associated with the various ALU 
operations. 

This section features a programmable ALU (PALU) that will issue a final completion 
(DONE) signal immediately following the completion of any operation, no matter how 
complex or simple it is. This is a significant feature for an ALU, since arithmetic op
erations require more time to complete (because of the carry problem) than do bitwise 
logic operations. Used in a microprocessor, PALUs with DONE signals avoid the need 
to assign worst-case delays to the various ALU operations. Thus, whenever an operation 
(logic or arithmetic) is completed, a DONE signal is sent to the CPU (central process
ing unit), thereby permitting immediate execution of the next process without unnecessary 
delay. 

Listed in Fig. 8.39 are the four modes of operation that the PALU can perform. As 
indicated, the PALU can perform bitwise logic operations (MI Mo = 01), or it can perform 
left or right shift operations (M I Mo = II) on operand B. But it can also perform arithmetic 
operations on the result of either a logic or a shift operation, as indicated by mode controls 
M, Mo = 00 and M, Mo = 10, respectively. For example, any logic operation in Fig. 8.38 
(e.g., A EEl B) or shift in operand B can be added to or subtracted from operand A. With 
DONE signals issued following the completion of each process, it is clear that this PALU 
offers a higher degree of versatility than is available from the ALUs in Section 8.8. 

An ALU will now be designed that is even more versatile than that of the MUX ap
proach in Subsection 8.8.2. In addition, it is the goal of this section to develop the concepts 

M1 Mo MODE 

0 0 Arithmetic on Logic 

0 1 Logic 

0 Arithmetic on B-Shift 

B-Sh ift (right or left) 

FIGURE 8.39 
Modes of PALU operation. 
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Jlh l·Bi! PALU Module 

Done J 
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• 1 
J'" I- Add/Sub 

Arithmet ic 
Module 
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S I' S -

Mo GO 

Add/Sub 

Block diagram s(ruClUre (a) and block circuit symbol (b) for the llh I-bit PALU module capable of 
pcrfonning thl: modes of operation listed in Fig. 8.39 with (omplction (Done) signals. 

of dual-rail systems and complelion signals, and apply them to the design of a PALU with 
operational capability defined by Fig. 8.39. Also. both ripple-carry (R-C) and carry look
ahead (CLA) designs will be considered. The following develops the details of this unusual 
but versatile PALU. 

Shown in Figs. 8.40a and 8.40barc the block diagram and logic circuit symbol for a I-bil 
slice PALU that can perfonn the operations represented in Fig. 8.39 and issue a Done signal 
following the completion of each operation . An inspection of Fig. 8.40 indicates that there 



8.9 DUAL-RAIL SYSTEMS AND ALUs WITH COMPLETION SIGNALS 371 

are inputs specific to the Jth module and those that are global (applied to all modules in a 
cascaded system). Specific to the Jth PALU module are the operands inputs A], B], B]_I, 
and B] -I. The B] -I input arrives from the B input to the next LSB stage in a cascaded 
configuration and is necessary for left shifting. Similarly, the B 1+ I input arrives from the B 
input to the next MSB stage to permit right shifting. The input and output dual-rail carries 
shown in Fig. 8.40 are also specific to the Jth module and are defined as follows: 

I 
CillO = carry-in 0 to stage J from stage J - I } 

en I = carry-in I to stage J from stage J - I 

CowO = carry-out 0 to stage J + 1 from stage J . 

Cou,1 = carry-out I to stage J + I from stage J 

(8.20) 

The meaning here is that CinO = I when the carry-in to the Jth stage is logic 0, and Cinl = 1 
when the carry-in to the Jth is logic 1. Thus, both carry-in parameters cannot be active at 
the same time. Similarly, CoutO = 1 when carry-out to the (J + 1 )th is logic 0, or Cou,1 = 1 
when the carry to the (J + l)th is logic 1, where again only one carry parameter can be 
active at any given time. 

The global inputs to the PALU include the two mode control inputs, MJ and Mo, the 
function generate signals, F3 , F2 , FI , and Fa, a shift-direction input I;R (meaning right, 
"not left" when active), an add/subtract input Add/Sub (meaning subtract, not add when 
active), and a start signal called GO. The add/subtract control input operates the same as 
that use for the adder/subtractor design in Subsection 8.3.1, but only if the mode control 
Mo = 0 according to Fig. 8.39. Also, the shift-direction control I; R is operational only if 
mode control MI = 1, as indicated in Fig. 8.39. 

The two outputs, Done] and R], are specific to the Jth PALU mudule. When the Jth 
stage result of a bitwise logic operation or arithmetic operation is indicated by the output 
R], a completion signal Done] is issued. However, it is the requirement of an n-bit PALU 
design that a final (overall) completion signal, DONE, will not be issued until the Done 
signals from all n stages have become active. Thus, the results from those n stages must not 
be read until the final DONE has emerged. 

Logic Module The logic module is responsible for carrying out both the 16 bitwise logic 
operations given by Eq. (8.19) and the shift left or right operation with 0 or 1 fill. (See Section 
6.8 for details of a combinational shifter.) Presented in Fig. 8.41 are the output parameters, 
X], T1, and To, for the J th PALU logic module. The output function X], representing the 
mode control settings for logic and shift operations (according to Fig. 8.39), is given by the 
truth table and EV K-map in Figs. 8.4la and 8.41b. The dual-rail outputs from the logic 
module, TI and To, are defined in the truth table of Fig. 8Alc and represent only logic and 
shift modes - arithmetic operations are excluded. 

The output function X] is read directly from the EV K-map in Fig. 8.4lb and is 

(8.21) 

where the quantity (I; R . B]-l + I; R . B]+J) represents the shift left or right operation 
but only when mode control MI = 1, as required by the mode control table in Fig. 8.39. 
Thus, right shift by one bit occurs when I; R = I and left shift by one bit occurs when 
I; R = O. Function F] represents the 16 possible bitwise logic operations, as in Eq. (8.19), 
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FIGURE 8.41 
Requiremenls of output parameters for the Jlh PALU logic module according to Fig. 8.39. (a) Truth 
table showing mode scllings for logic and shift operations. (0) EV K-map for (a). (c) Dual-rail outputs 
represenfing only logic and shifl ol'Crations from logic module. 

and is given here for reference pUfJXIses: 

(8.22) 

The dual-rail OUlpUiS from the lIh logic module. defined in Fig. SAle. are read directly 
from the truth table and are 

IT, ~GO.Mo·~ I· 
To =GO·Mo·X , (8.23) 

The meaning of these dual-rail parameters is as follows; For logic or shift operations. the 
mode control requirement is Mo = 1 according to Fig. 8.39. Thus, for GO= I (stan active), 
TJ = I and To=O if X, = I, or TI =0 and To= I if X, =0 . The dual-rail outputs are 
necessary to generate completion signals following logic and shift operat ions. 

Presented in Fig. 8.42 is the logic circuit for the lth PALU logic module as required by 
Eqs. (8.21)-(8.23). The 4-10-1 MUX provides the 16 possible bitwise logic functions of the 
two operands, A, and B j • as represented by Eq. (8.22), but only if the mode control setting 
is M I = O. The shift right/left ponion of the circuit is activated when the mode setting is 
MI = I. Then when l.jR = I. Bj +1 is received from the next MSB stage producing a I-bit 
right shift, or if ij R = 0, B j- I is received from the next LSB stage, forcing a I-bit left shift. 

Arithmetic Module To design an ari thmetic module with completion signal capability, 
it is necessary to first establish the concept of dual-rail canies. This is accomplished by 
rewriting the equations for a full adder as they pertain 10 the Jth I-bit PALU arithmetic 

x, 
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Dual-rail output section 

GOIH�---f-rl-l----./ 
T,IL) 

M,(H) 

4-10-1 MUX 

(Bit-wise logic section) 
To( L) 

F)LJ 
p--'-"~~=>2X",'~H~I...l--.::....------+ {TO BJ 01 A!ithmeUc L ________ ---'I Module 

FI GURE 8.42 

FIGURE 8.42 

Sh ift sect ion 

Logic circuit for the Jtb PALU logic rrKxiL.t!c ba.scd on f.qs. (8.21 HH.Z3). 

module. The sum e)(pres~ion from Eqs. (8.2) is restated he re as 

S= A Ell B EllCi" 

and is partitioned inlO the following two pan.s with respect 10 logic I and logic 0 : 

and 

SI = (A Ell B)C:;II + (A 0 B )C;11 

~ I A <I> BIC,,,O+ I A 0 BIC;,, ' 

50 ~ (A <I> B)C,,, + (A 0 BIC,,, 

~(A <I> BIC. ' + (A 0 B)c,,,O 

(8.24) 

Here. use has been made. of Eq. (3.4) in the foml S = xy + fy. where x = Am 8 and 
)' = C",. Thus. for 51. carry- in isrtpresented as C:"H = C .. "O. and Cp , = C", l whereas for So 
the carry-i n is represented as G"It = C,,, ( and Cill = enO. The split-ra il sums. 51 and So. in 
Eqs. (8.24). are summarized in Fig. 8.43a IOgclher with the dual-rai l cany-ouls. C"", I and 
C,,,,,Q. as they are affected by the operands. A and B. and the dual-rail carry-ins. Cill I and 
CillO. Here. 51 is aclive if the sum is logic I othelWise inactive. or So is aclive if the sum is 
logic 0 Olherwise inactive. 

The carries have a si milar meaning. An active C;nJ,,,,/ 1 implies a carry (in or o ut) of logic 
I . and an aClive C;,II","O implies a carry (in or out) of logic 0. Thus, C,,,,,,, .. , I and Cinlow10 
cannot both be aClive (Ink,.: logic I) at Ihe sante time. Also. C;"'n~1 1 = C;WUlI'O = 0 is an 
indelenninate state of no carry. In effect, a three-state code representation is used for carry
in /C,,, I. CI"O}. carry-oUi {C"", l. C<>~,OI . and sums {SI . So}. This means lhat each of these 
three dual-rail pairs can assume one Mthe three state values taken fro lllihe set (00, 01. 10) . 
All three pairs arc required to be set initially in logic state (00) and then transit to either 
slate (01 ) or (l 0) following the activation of the start signal GO shown in Fig. 8.40. State 
(1 1) is not pennitted. 
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Requirements of a split-rail sum and carry system. (a) Truth table for sum and carry partitions. (b) 
EV K-maps plotted from the truth table in (a). 

With these definitions in mind and by referring to Subsection 8.2.2 for the full adder, 
the carry partitions in the truth table of Fig. 8.43 can be understood. The dual-rail sum and 
carry-outs in Fig. 8.43a are plotted in the EV K-maps of Fig. 8.43b. From these K-maps 
there results the dual-rail carry-out expressions for the Jth stage, 

lC,ilIlI = (A EI7 B)Cinl + ~~} . 
CoutO = (A EI7 B)CiIlO + AB 

(8.25) 

Now, it is necessary to introduce the mode control Mo (consistent with Fig. 8.39) and 
start input GO together with an add/subtract parameter a = B EI7 (Add/Sub) that replaces 
operand B in Eqs. (8.24) and (8.25). When this is done the dual-rail sum and carry-out 
parameters for Jth the module become 

S[ = GO· Mo[(A EI7 a)CinO + (A 0 a)C;nl] 

So = GO· Mo[(A EI7 a)Cin I + (A 0 a)C;nO] 

Coutl = GO· Mo[(A EB a)C;nl + Aa] 

CoutO = GO· Mo[(A EB a)C;nO + Aa] 

(8.26) 

Use of the mode control Mo avoids issuing a false sum from the arithmetic module and 
acts as a false data rejection feature during nonarithmetic operations. The XOR function 
a = B EI7 (Add/Sub) that replaces operand B permits the subtraction operation by using 2's 
complement arithmetic as is done for the adder/subtractor in Subsection 8.3.1. For addition, 
Add/Sub = 0 passes operand B, but for subtraction Add/Sub = 1 complements operand B, 
as required in 2's complement arithmetic. 
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Dual·rail carry,oui 
logic 

M ,(HI--t===t;;:::::;:::::;;r o--------;::==~ 
GO(H) -I=i=i~$t=:: 

Add/Sub(H) 

BJ{H) 
From Logic 
Module In 

Figure 8.43 

0----+----9--

Completion and resull logic 

C 1(HI 

FIGURE 8.44 
Logic circuit for the Jth arithmetic module represented by Eqs. (8.26) and (8.27). showing the 
CQrnpletion (DOlle J) and result (RJ) OUtput logic that includes the dUal-ra il inputs T) and T~ from the 
logic module and the dual-rail carry-out logiC. 

Shown in Fig. 8.44 is the logic circuit for the lth arithmetic module as represented 
by Eqs. (8.26). In addition, there is incl uded the completion (DoneJ) and result (HJ ) 

logic section that derives from equations tbat combine the results from the logic mod
ule with those from the arithmetic module. For the Jtb PALV module. these equations are 
given by 

HI =TI +SI 

Ro = To+SQ 

and 

R = RI . Ho 
Done = RI + Ro 

(8.27) 

Notice that the result R = R) No is a resolved result required to issue a logic I when RJ = I 
or a logic 0 when Ro = I according to the definitions of the dual-rail components of R. 
However. a completion signal Done = I is issued in either case to indicate that a valid result 
is present. Thus, except for the initialization state GO = O. for which HI = Ro = O. one or 
the other of RI or Ro will be active. indicating a valid result, but they will never both be 
active simultaneously. 

The cascading of I-bit modules to fonn an n-bit PALU is easily accomplished as illus
trated in Fig. 8.45. All that is required is to connect each set of dual-rail carry-outs from one 
stage to the next MSB stage and all global inpms to all stages. The shift inputs. B ) _ I and 
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Bj +l • must be connected appropriately for left and right shifting as shown. Barrel shifting 
(rotation) right can be accomplished by connecting Ih~ Ru output to Ihe H" input. Similarly, 
barrd shifting left resulls if the R,, _I outpUi is connccled to the H_I input. Notice that 
the carry-in inputs, c'n I and CmO, to the LSB (PALUo) stage are correctly initialized 
for add or 2's complement arithmetic (see Subsection 8.3.1 regarding adderlsubtractors). 
Thus, if AddlSub= I, required for subtraction by 2's complement. a logic I is carried in to 
the LSB stage (CIII I = 1). Conversely. if AddlSllb = O for addition. a logic 0 is carried in 
(C,.O= I). 

Then-input NOR gate in Fig. 8.45 requires special oonsideration. This gate must AND 
the individual DonciL) signals to produce the final DONE(H) represented by the expression 

.-, 
DONE = n (lxm~) •. (8.28) 

;.u 

Thus. the conjugate gate form shown in Fig . 3.13b must he used. With inputs to such a gate 
numbering more that four. there is the problem of fan-in as discussed in Section 4.10. The 
larger the fan-in , the greater is the p:tth delay through the gate. In facl. there is a definite 
limit as (Q the number of inputs available in commercial NOR gate chips. 

The fan-in problem is effectivel), eliminated by using the CMOS NOR gate construction 
shown in Fig. 8.46a. Here, the number of permissible inputs up 10 about eight will have 
negligible effect on the path delay through the gate, which is essentially that of a rwo-input 
NOR gate. All DOlle inputs must go to LV before the output DONE can go to HV. So if one 

Specially 
bull! PMOS 

'---+----- DONE 

Doneo --t----+--f---' 
Done 1 ---~----+---" 
Dons

2 
___ ~ ___ -.J 

(a) 

FIGURE 8.46 

(b) 

Multiple inpul NOR gale ~pccifkany designed to minimi7.e fan-in-limitations. (a) CMOS circuit 
required for Fig. 8.45 . (b) Generalized NOR gate symbol for this circuit. 

Z(H) 
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or more of the inputs are at HV, the output is pulled low (to LV). Thus, the PMOS must be 
specially designed so that the Drain-to-Source resistance remains sufficiently high so as to 
minimize Drain current when one or more of the NMOS are turned ON. Here, the PMOS 
serves the same function as the depletion-mode NMOS in Fig. A.I of Appendix A. Both 
function as pull-up transistors. Hence, the CMOS NOR gate of Fig. 8.46 could be replaced 
by the NMOS technology of Figure A.I. In any case, the NOR gate logic symbol for this 
circuit is given in Fig. 8.46b, which is the same as that in Fig. 3.13b. 

8.9.1 Carry Look-Ahead Configuration 

Like the R-C adder of Fig. 8.5, the PALU just described suffers a size limitation due to the 
ripple-carry effect. The carry propagation time increases with increase in the size of the 
PALU. To reduce significantly the propagation time, carry look-ahead (CLA) capabilities 
can be incorporated into a dual-rail PALU design. From Eqs. (8.7) the following definitions 
can be applied to the lth I-bit PALU module: 

I 
p = A EB ex = Carry propagate I 
p' = GO Mo' p = Modified carry propagate 

G 1 = GO~o' ~ex = Carry generate w/r to logic I . 

Go = GOMo . Aa = Carry generate w/r to logic 0 

(8.29) 

Here, Gl and Go are the dual-rail carry generate parameters, and ex = B EB (Add/Sub) 
is the add/subtract parameter that replaces operand B in Eqs. (8.7). Introducing Eqs. (8.29) 
into the sum and carry-out expressions of Eqs. (8.26) yields 

SI = (GOMO)PC;110 + (GOMo)PC;" I 

So = (GOMo)PC;n 1+ (GOMo)PC;"O 

Coufl = GOMoPC;,, 1 + GOMoAex 

=plC;n1 + G 1 

CoutO = GOMoPC;nO + GOMoAa 

= P'CnO + Go 

(8.30) 

which are applied to the lth I-bit PALU module with CLA capability. As in Eqs. (8.26), 
the appearance of the mode control Main Eqs. (8.29) and (8.30) avoids issuing a false sum 
from the arithmetic module and acts as a false carry rejection feature during nonarithmetic 
operations. The carry-out expressions Courl = P'Ci,,1 + G 1 and COl/fO = P'CnO + Go 
can be expanded as in Eqs. (8.8) and, therefore, constitute the CGP network similar to 
that in Fig. 8.13 with pi replacing P in that network. Thus, all that remains in the design 
of the dual-rail PALU with CLA capability is to implement Eqs. (8.29) together with 
the sum expressions in Eqs. (8.30). Presented in Fig. 8.47a is the logic circuit for the 
arithmetic module of a I-bit PALU with completion signal and CLA capability as required by 
Eqs. (8.27), (8.29), and (8.30). Remember that it is the modified carry propagate parameter 
pi, not P, that combines with the dual-rail carry generate parameters, G I and Go. to form 
the CGP network as in Fig. 8.13. The logic circuit symbol for this arithmetic module is 
given in Fig. 8.47b. 
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FIGURE 8.47 
The jlh I-bi! arithmclic moduli: for a PALU with L'Ompletion signal and CLA capability according 10 
Eqs. (8.29) and (8.30). (3) Logic circ:uit showing carry propagaH:, and dual-rail carry generate, carry 
inputs and result signals. (b) Block circuit symbol fOf the logic circuit in (a). (e) Completion/result 
logic circuit for combi~d logic; and ari.hmelic module.~_ 

The PALU can be completed by combining the logic module in Fig. 8.42 with the arith
metic module o f Fig. 8.47 . This requires thai the completion signals from the logic module. 
TI and To. be combined with the completion/result signals from the arithmetic mOOule. SI 
and Su, 10 yield the Done and R signals as indicated in Fig. R.47c. Further modifications and 
a significant increase in hardware are required 10 make the PALU symmetric wi th respect 
to both operands. In this case either an A or B shift would ~ pos.~ible with arithmetic 
oper.ltions pcrfomlCd o n either. 

The I-bit PALU must now be cascaded in a manner simi lar to (heCLA adder in Fig. 8.13, 
except thai now one CGP network. is needed for logic I (G 1. PI) and another is needed for 
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CGP Network of Figure 8.13 
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FIGURE 8.48 
The three least significant bit stages of an n-bit arithmetic module for a PALU wid) CLA and comple. 
tion signal capability showin¥- the carry ¥-cnerateJpropagate (CGP) network required for the dual-rail 
carries and ellrry g~'tleratc puramclcrs. 

logic 0 (Go, Pi ), as required for dual-rail carries. This is demonSlfated in Fig. 8.48, where 
for simplicity only the arithmetic module is fealUred. Notice that the carry~in 's for the 
LSB stage ~ropcrly initialized for addition or 2's complement arithmctk. Hence, for 
subtraction, AddlSllb = I introduces a logic limo C;" I and a logic 0 into CinO, as required 
by Eq. (2.14). But for addi tion, Add/Sub = 0 inmxtuces a logic ° inlo carry.in C,,, I and 
a logic I into ClnO (meaning 0 carry-in). To complele the PALU design. il is necessary to 
include Ihe logic module in Fig. 8.42 with the arithmetic module in Fig. 8.48 and combine 
the completion and result signals as indicated in Fig:. 8.47c. It is also necessary 10 connec( 
the X J output from the logic module to the B J input of the arithmetic module for each stage. 

Clearly, the hardware commitment forthedual-rail CLA PALU increases considerably a'i 
me numberof stages increases. For this reason it is recomme nded [hat the group CLA method 
be used on. say. 4-bit stages. For example, each of the J-bit PALUs in Fig. 8,48 would be 
replaced by four I-bit stages of a "conventional" type (i.c .. without CLA capability) and then 
cascaded with the dual-mil CPG networks as in Fig. 8.48. This requires that only the MSB 
stage of each groupof four need be altered. as in Fig. 8.47. to accommodate the CLA feature. 

8,10 VHDl DESCRIPTION Of ARITHMETIC DEVICES 

To recap what was stated or intimated in Section 6. 10, the VHDL model of a ci rcuit is 
called its entity. which consists of an illlerface descriptioll and an archileCtuml description. 

A dd/Sub 
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ci 

s 

co 

FIGURE 6.49 
Logic circuit for the full adder showi ng inpulli. outputs. and intermediate connection labels required 
for the VHDL description. 

The inlerface of an entity specifies its circuil pons (inputs and outpUlS) and [he architecture 
gives its contents (e.g .. ils interconnections). The architecture o f an entity is divided into 
different levels of abstraction. which include its structure, dataflow. and behavior, the 
behavior description being the most abstract. The following VHDL description of the full 
adder. shown in Fig. 8.49. illuSlrates these three levels of abstraction (refer to Section 6.10 
for a description of the key words used); 

. - Declare entity : 

entity fulLadder.example l .. 

port (a, b, ci : in bit: s, co: out bit): 

end fulLadder .example; 

.• Declare architecture beginning with structure: 

architedurr stmcture or fulLadder _example is 

component XORZ 

port (x. y: In bit; z: out bit): -. declares XOR gale 

component NAND2 

port (x, y: in bit; z: out bit); _. declares NAND gate 

end component; 

signal im !. im2, 1m3: bit:·· declares intermediate signals 

_. Declare inlerconnections between component gates: 

begin 

G I: xorZ port map (a. b. im I); 

G2: xorZ port map (iml . ci, s); 
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G3: nand2 port map (a, b, im2); 

G4: nand2 port map (iml, ci, im3); 

G5: nand2 port map (im2, im3, co); 

end fuILadder_example; 

-- Declare dataflow: 

architecture dataflow of full_adder _example is 

begin 

s <= a xor b xor ci after 12 ns; 

co <= (a and b) after 10 ns or (iml and ci) after 16 ns; 

end dataflow; 

-- Declare behavior: 

architecture behavior of full_addecexample is 

begin 

process (a, b, ci) 

variable a, b, ci, s: integer; 

begin 

if a = '0' then a:= 0; else a:= I; 

end if 

ifb = '0' then b := 0; else b:= I; 

end if 

-- 16 ns is worst case delay 

-- converts a to integer 

-- converts b to integer 

if ci = '0' then ci = 0; else ci := I; -- converts ci to integer 

s := a + b + ci; -- computes sum of inputs 

case s is 

when 0 => s <= '0'; co <= '0'; 

when I => s <= 'I'; co <= '0'; 

when 2 => s <= '0'; co <= '1'; 

when 3 => s <= '1'; co <= '1'; 

end case; 

end process; 

end full_adder_example; 

In the full adder example just given, notice that all keywords are presented in bold type 
and that the symbol "=>" is read as "is the value of." Also note that the operators that 
are used are those listed in Fig. 6.44 of Section 6.10 and that the double dash "--" is used 
to indicate the beginning of a comment. The delay times given for s and co are based on 
average gate path delays of 6 ns for the XOR gate and 5 ns for the two-input NAND gate, 
as expressed in Eq. (6.1). 

An important feature of VHDL is its modularity capability, which allows models to be 
reused in the description of other larger entities. A good example is the VHDL structural 
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description of a four-bit adder composed of four full adders described in the previous 
example. If Fig. 8.49 is used with reference to Figs. 8.4 and 8.5, the structure of the four-bit 
adder is given as follows: 

entity fouLbiLadderis 

port (aO, aI, a2, a3, bO, bl, b2, b3, ci: in bit; sO, sl, s2, 83, co: out bit; 

end fouLbit-adder; 

architecture connectJour of four _bit-adder is 

component fulLadder 

port (a, b, ci: in bit; s, co: out bit); 

end component; 

for all: full_adder use entity fulLaddecexample; 

signal cl, c2, c3: bit 

begin 

FAO: full_adder port map (aO, bO, ci, sO, cl); 

FA1: fulLadder port map (aI, bl, cl, sl, c2): 

FA2: fulLadder port map (a2, b2, c2, s2, c3); 

FA3: fulLadder port map (a3, b3, c3, s3, co); 

end connecLfour; 

end fouLbit-adder; 

Just given is an architectural description for the full-adder primitive, followed by that for 
a four-bit adder formed by cascading four full-adder primitives. However, within VHDL 
compilers, encapsulations of such primitives are provided so that they can be easily re
trieved and used in the architectural descriptions of larger systems. Thus, for well-known 
primitives like those just considered, there is no need to construct the detailed architec
tural descriptions this has already been accomplished for the convenience of the user. 
These primitives exist within standard logic packages. The IEEE 1164 standard library is 
an example, and its contents are made available by making the statements 

library ieee 

use std_IogicJI64.all 

Once a standard library is made available in the design description, use can be made of data 
types, functions, and operators provided by that standard. Standard data types include bit, 
biLvector, integer, time, and others, and the operators are of the type given in Fig. 6.44. 
The standard package defined by the IEEE 1076 standard includes declarations for all the 
standard data types. For detailed information on these and other subjects related to standard 
libraries and packages the reader is referred to Further Reading. 

FURTHER READING 

Most recent texts give a fair account of the basic arithmetic devices, including the full 
adder, parallel adders, subtractors, adderlsubtractors, and carry look-ahead adders. Typical 
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examples are the texts of Comer, Ercegovac and Lang, Hayes. Katz, Pollard, Sandige, 
Tinder, Wakerly, and Yarbrough. The subject of multiple operand addition and the carry
save adder appears to be covered adequately only in texts by Ercegovac and Lang and by 
Tinder. Note that some of the listed devices mayor may not be the strength of a text. 

[I] D. J. Comer. Digital Logic and State Machine Design, 3rd. ed., Sanders College Publishing, Fort 
Worth, TX, 1995. 

[2] M. D. Ercegovac and T. Lang, Digital Systems and HardwareiFinnware Algorithms. John Wiley 
& Sons, New York, 1985. 

[3] J. P Hayes, Introduction to Digital Logic Design. Addison Wesley, Reading, MA, 1993. 
[4] R. H. Katz, Contemporary Logic Design. Benjumin/Commings Publishing, Redwood City. CA. 

1994. 
[5] L. H. Pollard, Computer Design and Architecture. Prentice Hall, Englewood Cliffs, NJ. 1990. 
[6] R. S. Sandige, Modern Digital Design. McGraw-Hill, New York, 1990. 
[7] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice-Hall, Englewood Cliffs, 

NJ,1991. 
[8] 1. F. Wakerly, Digital Design Principles and Practices, 2nd ed., Prentice-Hall, Englewood Cliffs, 

NJ,1994, 
[9] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/St. 

Paul, 1997. 

A few books adequately cover combinational multipliers. These include the texts by 
Ercegovac and Lang, Katz, Pollard, and Tinder, all previously cited. Of these, only the text 
by Tinder appears to cover combinational dividers. 

A somewhat older text by Kostopoulos covers a rather broad range of subjects relative 
to arithmetic methods and circuits, including a good treatment of combinational multipliers 
and dividers. A recent text by Parhami provides an exhaustive treatment of the subject and 
is highly recommended. 

rIO] G. K. Kostopoulos, Digital Engineering. John Wiley & Sons, New York, 1975. 
[Ill B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press, 

New York, 2000. 

The subject of arithmetic and logic units (ALUs) is somewhat esoteric. Nevertheless, 
it is covered to one extent or another by a few well-known texts. These include those by 
Ercegovac and Lang, Hayes, Katz, Tinder, and Yarbrough, all previously cited. In addition, 
the text of Mead and Conway discusses an ALU suitable for processor application that is 
the starting point for the ALU treated in Subsection 8.8.2 of this text. Apparently, only the 
text by Tinder develops the dedicated multilevel ALU by using XOR/SOP logic. Coverage 
of dual-rail arithmetic systems, particularly ALUs, is difficult if not impossible to find in 
any text. The source on which this text is based is the thesis of Amar cited next Here, 
dual-rail ALUs, multipliers, and dividers, all with completion signals, are discussed in 
detail. 

[12] A. Amar, "ALUs, Multipliers and Dividers with Completion Signals:' M.S. Thesis. School of 
Electrical Engineering and Computer Science. Washington State University. Pullman, WA, 1994. 

[13] C. Mead and L. Conway, introduction to VLSi Systems. Addison-Wesley, Reading, MA, 1980. 
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8.1 Use one half adder, one NOR gate, and one inverter (nothing else) to implement a 
circuit that will indicate the product of a positive 2-bit binary number and 3. Assume 
all inputs and outputs are active high. (Hint: Construct a truth table with AB as the 
inputs and Y), Y2, Y" Yo as the outputs.) 

8.2 Use a full adder (nothing else) to implement a circuit that will indicate the binary 
equivalent of (x 2 + x + 1), where x = AB is a 2-bit binary word (number). Assume 
that the inputs and outputs are all active high. (Hint: Construct a truth table with AB 
as the inputs and Y), Y2 , Y" Yo as the outputs.) 

8.3 Design a three-input logic circuit that will cause an output F to go active under the 
following conditions: 

All inputs are logic I 
An odd number of inputs are logic I 
None of the inputs are logic 1 

To do this use one full adder and two NOR gates (nothing else). Assume that the inputs 
arrive active high and that the output is active low. 

8.4 Prove that the logic circuit in Fig. PS.l is that of a full adder. Also, prove that Cout is 
the majority function AB + BC + AC. (Hint: Make use of K-maps or truth tables to 
solve this problem.) 

8.S Use the logic circuit in Fig. P8.l (exactly as it is given) to construct a staged CMOS 
implementation of the full adder. Refer to Fig. 3.41 for assistance if needed. 

8.6 Use the symbol for a 3-to-8 decoder and two NAND gates (nothing else) to implement 
the full adder. Assume that the inputs arrive as A(H), B(H), and Cin(L) and that the 
outputs are issued active high. (Hint: First construct the truth table for the full adder, 
taking into account the activation levels of the inputs and outputs.) 

8.7 Without working too hard, design a 4-bit binary-to-2 's complement converter by using 
half adders and inverters (nothing else). Use block symbols for the half adders and 
assume that the inputs and outputs are all active high. 
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8.8 Without working too hard. uscfimr full adders (nothing else) to d(."'Sign a circuit that 
will convert XS3 to BCD. Assume that all inputs and outpUIS are active high. (Hint: 
Use 2's complem~nt :uithmetic.) 

8.9 Analyze the adderfsubtractor in Fig. 8.9 in 4 bits by adding or sublracling the binary 
equivalent of the numbers listed below. To do this. give the sum (or difference) and 
carry logic values at each siage. 

(.) A = 1101: 8 = 01 11 If A/S(H ) = O( H ) 

(b) A= 1101: 8 =0111 IfA / S(H) = I (H ) 

(e) A = OliO: B = 1101 If A/ S(If ) = I (H ) 

8.10 Analyze the 3-bitcarry look-ahead adder (CLA) in Fig. 8. 13 by introducing the number 
given below. To do this, give the G(L) and P(H ) logic \lnlues in addi tion 10 the sum 
and carry values. 

ta) A == 011; B == 110 
(b) A = III : 8 =101 

8.11 (a) By using Algorithm 2.1 4 in Subsection 2.9.6 and awo 4·bit ripple/carry adders, 
complete the design of ahe single-digit BCD adder in Fig. P8.2a, one that can be 
bit-sliced (cascaded) to produce an n-digi t BCD adder. To do this. fi rsl find the 
minimum logic for the correction pammeter X that will indicate when the sum is 
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X 

I + 
B, 82 6 1 B. 

C~ 

fiGURE P8.2 

BCD Opera l'lds 

t t 
S, 

C~, 4·Bit Adder 

$3 52 51 50 

O(HI 

A, 

4·811 Adder 

53 S~51So 

+ + + + 
'------v------

BCD Sum 

(a> 

A2 A, AI) 

C" +-

C. +-

{

Carry 11'1 
from next 
LSD stage 

O(HI 

• 
B 

1·0iglt BCD 
Adder 

S 

(bl 

• 
A 



PROBLEMS 387 

greater than 9 but less than 19. Then use one of two 4-bit adders (as shown) to add 
OllO to the sum conditionally on X. Note the logic symbol for the I-digit BCD 
adder in Fig. P8.2b. What restrictions, if any, are placed on the operands? 

(b) Test the design of a two-digit BCD adder by adding the following two BCD 
numbers: 

Test #1 A = 910; B = 710 
Test #2 A = 3410 ; B = 19\0 

To do this, indicate the logic values for each sum, carry, and correction parameter 
X. 

8.12 (a) Alter the design of Problem 8.11 with the appropriate external logic so as to 
create a one-digit BCD adderlsubtractor that can be bit-sliced to form an n-digit 
BCD adderlsubtractor, all with B as the subtrahend. (Hint: Add an enable EN(H) 
= AIS(H) mode control to the correction logic of Problem 8.ll and use 10's 
complement arithmetic to perform BCD subtraction operations. To do this, fol
low Fig. 8.9 with the appropriate external logic on the input for cascading pur
poses. Also, remember that a 1 carry cannot be generated in BCD subtraction. 
It is important to note that, in this case, the negative number is not converted to 
lO's complement as in Algorithm 2.15, which is an alternative means of BCD 
subtraction. ) 

(b) Test the design of a two-digit BCD adderlsubtractor by introducing the following 
numbers and mode control: 

Test #1 A = 610, B = 2910 , and AI S(H) = O(H) 
Test #2 A = 610 , B = 29 10, and AIS(H) = l(H) 

To do this, indicate the logic values for each operand, sum, carry, mode control, and 
correction parameter. Note that if the result of a subtraction is a negative number, 
it will be represented in lO's complement, and that its true value can be found by 
negation of each digit separately. 

8.13 Use two 4-bit binary adders and the necessary correction and external logic to design 
a one-digit XS3 adder (similar to BCD adder in Fig. P8.2) that can be cascaded to 
form an n-digit XS3 adder. To do this, use the following algorithm: 

Add XS3 numbers by using binary addition: If there is no 1 carry from the 4-bit sum, 
correct that sum by subtracting 0011 (310). If a 1 carry is generated from the 4-bit 
sum, correct that sum by adding 0011. Remember that XS3 numbers less than 3 or 
greater than 12 are not used and that the sum of two XS3 numbers cannot exceed 24\0. 

[Hint: First, find the minimum logic for the correction parameter X that will indicate 
when the sum is greater than 12 but less than 25, the range over which a 1 carry is 
generated. Also, controlled inverters (XOR gates) must be used for the addition or 
subtraction of 310.] What restrictions, if any, are placed on the operands? 

8.14 (a) Alter the design of Problem 8.13 so as to create a one-digit XS3 adderlsubtractor 
that can be cascaded to form an n-digit XS3 adderlsubtractor, all with B as the 
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subtrahend. Note that a 1 carry cannot be generated in XS3 subtraction. (Hint: An 
additional four controlled inverters are needed for the add/subtract operations.) 

(b) Test the design of a two-digit XS3 adder/subtractor by introducing the following 
numbers and mode control: 

Test #1 A = 6\0, B = 29]0, and AI S(H) = O(H) 
Test #2 A = 610 , B = 2910, and AI S(H) = l(H) 

To do this indicate the logic values for each operand, sum, carry, mode control, and 
correction parameter. Note that the decimal value of a negative XS3 number is found 
by subtracting ... 0011 from the negated number and reading it as a BCD number. 

8.15 In Fig. P8.3a is shown a network containing several combinational logic devices 
including a 4-bit ripple/carry adder. 
(a) Complete the truth table in Fig. P8.3b. 

(b) Use a decoder and a single OR gate to accomplish the result given in part (a). 
Assume that the decoder has active high outputs. 

8.16 (a) Design a 4-bit noncascadable comparator by using two 4-bit subtractors and one 
NOR gate (nothing else). [Hint: It will be necessary to switch operands on one 
of the two subtractors. Also, in a subtractor, a final borrow-out of 1 indicates 
(minuend) < (subtrahend), but a final borrow-out of 0 indicates (minuend) ::: 
(subtrahend). Thus, if both borrow-outs are logic 0, then the two numbers are 
equal. Note that a negative difference is given in 2's complement but taking into 
account Bin)LSB = 0.] 

(b) Test the design in part (a) by using the following operands: 

Test #1 A = 1101; B = 0110 
Test #2 A = 0110; B = 1101 
Test #3 A = 1010; B = 1010 

(c) Show that the difference of the two operands can also be read from the circuit. 

8.17 (a) By using Eqs. (8.8), complete the carry look-ahead adder (CLA) circuit in Fig. 8.13 
for a cascadable 4-bit CLA adder unit. Thus, include the carry generate/propagate 
logic from the fourth stage. 

(b) Test the results by adding the following numbers: 

Test #1 A = 0111; B = 0110 
Test #2 A = 1101; B = 1010 

8.18 Analyze the carry-save circuit of Fig. 8.15b by introducing the three operands given 
in Fig. 8.15a into the circuit. To do this, give the logic values for each operand, sum, 
and carry. 

8.19 Analyze the 4 x 4 binary multiplier in Fig. 8.18 by introducing the following operands 
into the circuit: 
(a) A = 1101; B = 0110 

(b) A = 1001; B = 1011 
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To do lhi ~, list all partial products, indicate the sum and carry values at each stage. 
and end with the fi nal product values. 

8.20 (a) Combine Ihe 4 x 4 binary multiplier in Fig. 8. 18 with the S-bit binary-to-BCD 
converter in Fig. P6.3 10 produce a one-digit BCD multiplier thaI can be bit
sliced to ronn an ,,-digit BCD multiplier. What restrictions must be placed on the 
oper.:tnds? 

(b) Test the re.cm lts of pan (a) by introducing the following operands into lhe result ing 
circuit of part (a): 

Test #1 A = 011 J: B = 1000 
Test #2 A = 1001 ; B = 0011 

So( H) 

5 ,(H) 

5 2(H) 

5 3(H) 



390 CHAPTER 8/ ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs) 

M Sl So F COUI Operation* 

0 0 0 AEBSEBC 1n Cin(AEBS) + A'S A plus S 
-

'''lhm,H, { 0 0 1 AEBSEBC in Cin(A0S) + A'S A minus S* 

Operations 0 1 0 (A+S)EBC;n C;n'(A+S) A plus AS 

0 1 1 (AS)EBC in Cin' S + A A plus (A+B) 

lo:,,·r 1 0 0 AEBS ¢ A XOR S 

1 0 1 A0S ¢ A EQV B 

Operations 1 1 0 A+B ¢ A OR S 
- - ¢ - -

1 1 1 A'S A AND S 

• Subtraction operations assume 2's complement arithmetic. 

FIGURE PS.4 

(c) Use a block symbol for the I-digit BCD multiplier together with the block symbol 
for the binary-to-BCD converter of Fig. P6.3 to design a 2 x 2 BCD multiplier. To 
do this, form a array of I-digit multipliers and connect them properly to a 4-digit 
BCD adder. Indicate the digit orders of magnitude (10°, 101

, 102
, and 103

) at all 
stages of the multiplier. 

8.21 By using the results shown in Fig. 6.19, alter the design of the BCD multiplier of 
Problem 8.20 so as to produce a cascadable one-digit XS3 multiplier. (Hint: It will 
be necessary to design an XS3-to-BCD converter as an output device.) 

8.22 With reference to Fig. 8.22, analyze the parallel divider shown in Fig. 8.23. To do this, 
introduce the operands A = 11010 and B = 110 and indicate on the logic circuit the 
logic value for each operand, borrow, remainder, and quotient. 

8.23 Shown in Fig. P8.4 is the operation table for a cascadable one-bit arithmetic and logic 
unit (ALU) that has three mode/select inputs that control four arithmetic operations 
and four bitwise logic operations. 
(a) Design this ALU by using a gate-minimum logic. Note that this design includes 

the use of compound XOR-type patterns similar to those used in Fig. 8.27. End 
with a logic circuit for both function F and Couto 

(b) Test the design of part (a) by introducing the following operands with (C;nkI'B = 
Add/Sub. for arithmetic operations: 

Tests #1 A=lO; B=l1 2-BitALU; {OOO } MSISo = 101 

Tests #2 A =0100; B =0111 4-BitALU; MSISo = {:} 



CHAPTER 9 

Propagation Delay and Timing 
Defects in Combinational Logic 

9.1 INTRODUCTION 

To this point in the text, combinational logic circuits have been treated as though they 
were composed of "ideal" gates in the sense of having no propagation delay. Now it is 
necessary to take a step into the real world and consider that each gate has associated 
with it a propagation time delay and that, as a result of this delay, undesirable effects may 
occur. 

Under certain conditions unwanted transients can occur in otherwise steady-state signals. 
These transients have become known as glitches, a term that derives from the German 
glitsche, meaning a "slip" (hence, the slang, error or mishap). A glitch is a type of logic 
noise that is undesirable because its presence in an output may initiate an unwanted process 
in a next-stage switching device to which that output is an input. In some circuits glitches 
can be avoided through good design practices; in other circuits they are unavoidable and 
must be dealt with accordingly. 

There are three kinds of logic noise that occur in combinational logic circuits and that 
are classified as hazards. 

Static hazards: 
Static i-hazard (also called SOP hazard) - A glitch that occurs in an otherwise 

steady-state 1 output signal from SOP logic because of a change in an input 
for which there are two asymmetric paths (delay-wise) to the output. 

Static O-hazard (also called POS hazard) - A glitch that occurs in an otherwise 
steady-state 0 output signal from POS logic because of a change in an input 
for which there are two asymmetric paths (delay-wise) to the output. 

SIalic l-Hazard 
l~O~l 

Static O-Hazard 
O~l~O 

391 
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Dynamic hazards: Multiple glitches that occur in the outputs from multilevel 
circuits because of a change in an input for which there are three or more 
asymmetric paths (delay-wise) of that input to the output. 

Dynamic O~l ~O~l 
Hazard 

Dynamic 1 ~O~l ~o 
Hazard 

Function hazards: A type of logic noise that is produced when two or more 
inputs to a gate are caused to change in close proximity to each other. 

In this chapter the discussion will center on how these hazards occur and how they can be 
avoided or eliminated. Since the subject of hazards is also of considerable importance to 
sequential machine design, it with be revisited in subsequent chapters. 

9.2 STATIC HAZARDS IN TWO-LEVEL COMBINATIONAL LOGIC CIRCUITS 

A single glitch that is produced as a result of an asymmetric path delay through an inverter 
(or gate) is called a static hazard. The term "static" is used to indicate that the hazard 
appears in an otherwise steady-state output signal. Thus, a static hazard is not "stationary" 
or "motionless," as implied by the usual usage of the word static, but is quite unstationary 
and transient. 

The best way to introduce static hazard detection and elimination in combinational logic 
is by means of simple examples. However, before proceeding further it will be helpful to 
define certain terms that are used in identifying static hazards in SOP or POS combinational 
logic circuits, and to provide a simple procedure for their elimination: 

Coupled variable: An input variable that is complemented in one term of an 
output expression and uncomplemented in another term. 

Coupled term: One of two terms containing only one coupled variable. 
Residue: That part of a coupled term that remains after removing the coupled 

variable. 
Hazard cover (or consensus term): The RPI required to eliminate the static 

hazard: 
AND the residues of coupled p-term to obtain the SOP hazard cover, or 
OR the residues of coupled s-terms to obtain the POS hazard cover. 

Note that in either case the RPI (redundant prime implicant) is a result of the application of 
a consensus law given by Eqs. (3.14). 

Static Hazard Detection and Elimination Static hazard detection involves identifying 
the coupled terms in an logic expression. Static hazard elimination occurs when the con
sensus p-term RPI is ORed to the SOP expression containing the static hazard, or when the 
consensus s-term RPI is ANDed to the POS expression containing the static hazard. Note 
that if the RPI is contained in a more minimum term, that term should be used. 



9.2 STATIC HAZARDS IN TWO-LEVEL COMBINATIONAL lOGIC CIRCUITS 393 
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FIGURE 9.1 
A Slatic I-hazard produced by a I ....,. 0 change in inpul A. (a) K-map for Equation (9. 1) showing 
loops for coupled lenns and lransilion from stale 11 I to state 011. (b) Logic cireuil for Equalion (9.\) 
~howing asymmelrie pllths for A. (c) Timing diagram for the circuit in (bJ illuslrat ing Ihe production 
of the stalic I-hazard after two gate path delays (2r) following the change in A. 

Consider the SOP function given by 

Y=AB+AC. (9. () 

L-J 
011 III 

Here, A is the coupled variable, A Band AC arc tht.: coupled terms. aud the hazardous 
lransilion read in minteml code is II I - 01 J as indicafed by the coupled lenns in Eq. 
(9.1) and by the K-map in Fig. 9.1a. The 10gie circuit for Eq. (9. 1) is given in Fig. 9.1b. 
where the two asymmetric paths of input A to the output are indicated by the heavier 
lines. With all inputs active high. the Iransition II I -+ 0 II produces a static I -hazard 
after a 1 ....... 0 change in input A, as illuslratcd by the logic timing diagram in Fig. 9.1c. 
Thus, when the coupled tenns arc QRcd, a small region of logic 0 (shaded region) creates 
the SOP hazard of magnitude equal to that through the inverter. The path delay through 
a NAND gate is designated by T with input leads assumed 10 be ideal with zero path 
delay. 

The ANDcd re.siduesof Eq. (9.1) is the RPI BC. When this is added to Eq. (9. 1) there 
results 

Y=A8 +AC+ Be r --H~:,,,,I ,,, ..... 
(9.2) 

which diminates the hazard. This is demonstrated by the K-map.logic circuit, and timing 
diagram in Fig. 9.2. Notice that the hazard cover Be in Ihe K-map of Fig. 9.2a is an RPI 

and that it covers the hazardous transition III -+ 01 1 indicated by the alTow. When this 
RPI is added to the original expression. as in Eq. (9.2). the resull is [he logic circujt in 
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Elimination of the stalk ]·haJ.3rd by adding hli1.aN COver. (3) K.map showing RPlthat coven; the 

hazardous transition 111 -0- 01 J. (b) Logic circuit that includes 1hl! shadl-d hUlard CO\'ct gflle BC(L). 
(c) Timing diagr<lID showing the elimination of the sialic hazard in Fig. 9. 1 due to prcsenc~ of the 
hazard cover leon BC(L). 

Fig. 9.2b. which completely eliminates the static I -hazard as illustrated in Fig. 9.2c. In fact, 
the hazard is eliminated regardless of the magnitude of the delay through the invcner - the 
hazard cannot form even if. for example, the delay is a ridiculous thousand times that of 
a NAND gate. It is also true thai Ihe results shown in Fig. 9 .2 are valid if AND/ORITNV 
logic replaces the NANDflNV logic shown . [n this case the couplcd {cms and hazard cover 
RPI would all be active high. but the wavefonns would remain the same. the benefit of 
mix.ed-Iogic notation. 

There is the question of how the activation level of the coupled variable A affects the 
results illustrated in Figs. 9.1 and 9.2. If A arrives active low. A(L).lhen the inverter must 
be placed on the A line to the AC gale. The static I-hazard is still formed, but as a result 
of a 011 -- III transition following a 0 -- 1 change in input A. This is illustrated in 
Fig. 9.3 for purposes of comparison with Figs. 9.1 and 9.2. NeveI1hcless, the static I-hazard 
is eliminated by the ha7.ard cover BC as shown in Fig. 9.3. Again. replacing the NANDflNV 
logic by ANDIOR!INV logic would nOI alterthc waveforms but would change the activation 
levels of the coupled teons and hazard cover [0 active high. 

The forgoing discussion dealt with static hazards in SOP logic. The detection and elim
inalion of static O-ha7-<lrds in POS combinational logic follows in similar but dual fashion. 
Consider the function 

Y = (A + 8)(.4 + C). (9.3) 
I t 

00\\ 100 

where A is again the coupled variable but now (A + 8) and (A + C) are the coupled tenns_ 
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Y(H) 

Small region 01 logiC 0 J 
(e) 

Elimination of the static I-hazard for the case of an active low coupled variable. (a) K-map showing 
RPI mat covers the hazardous [nmsit ion 01 r -+ r r I . (b) Logic circu it that includes the shaded hazard 
cover gate Be(l). (c) Timing diagram showing tht;: elimination of the static I-hazard due to presence 
of the hazard cover term BC(L). 

Read in maxterm code. assuming NORfJNV logic and active high inputs, the hazardous 
transition is 000 -jo 100 following a 0 ~ I change in A as s hown in Fig. 9.4a. The logic 
c irc uit for Eq. (9.3) is given in Fig. 9.4b, where the two asymmellic paths for input A to 

the output are indicated by heavy lines. The Sialic O-hazard is fonned as a result of the two 
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A static O-hazard produced by a 0 ........ I change in input A. (a) K-map for Eq. (9.3) showing loops 
for coupled tenns and transi tion from state 000 to state 100. (b) Logic circui t for Eq. (9.3) showing 
asymmetric paths for A. (c) Timing diagram for the circuit in (b) illustrating the production of me 
static O-hazard after tWO gate path delays 21" following the change in A . 
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Elimination of the stalic-O hazard by adding hazard covcr, (a) K-map showing RPI thai covers the 
hazardous transit ion {)()() -+ 100. (b) Logic circuit that includes the shaded hazard covcr gate (8 + 
C)(L). (c) Timing diagram showing the elimination of the slatic O-hazard due to presence of the hazard 
cover term ( B + C)(L). 

asymmetric paths(delay-wise) such thai a small region of logic I exists when the waveforms 
for the coupled terms are ANDed as illustrated in Fig. 9.4c. 

The Slatic Q-hazard shown in Fig. 9.4c is eliminated by adding hazard cover 10 the 
function of Eq. (9.3). The ORcd residues for funclion Y in Eq. (9.3) is (8 + C). When this 
is added (ANDed) to Eq. (9.3), there results 

Y = (A + 8)(.4 + C) . (8 + C). (9.4) 
~ 

which eliminates the staticO-hazard as illustrated in Fig. 9.5. Notice that (B +C) covers the 
transition 000...". 100 as indicated by the arrow in the K-map of Fig. 9.5a, and that it is by 
definition an RPI. The logic circuit for Eq. (9.4) is given in Fig. 9.5b and is now hazard-free 
as illustrated in Fig. 9.5c. Here. it is seen that the small region oflogic 1 that caused the static 
O-hazard in Fig. 9.4 has been rendered ineffectual because of the ANDed RPI (8 + C)(L). 
which remains at D(L) during the hazardous transition . Note that if only input A arrives 
active low A(L). the static O-hazard still fonns, but as result of a 100 _ 000 transition 
following a 1 _ D change in A. Changing from NORJINV logic to OR! ANDIINV logic 
in Figs. 9.4 and 9.5 does not alter any of the conclusions drawn to this point. However, the 
activation level s of the coupled terms and hazard cowr must be changed to active high in 
Fig. 9 .5c, but leaving their waveforms unaltered. 

Detection lind elimination of static hazards in two-level combinational logic circuits is 
actually much simpler than would seem evident from the foregoing discussion. Actually, 
all that is necessary is to follow the si mple procedure given next. 
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Procedure for Detection and Elimination of Static Hazards in Combinational Logic 
Circuits 

I. Identify the couple terms in an SOP or POS expression. 

2. OR their consen~us (RPl) P-Ienns 10 Ihe SOP expression. or AND their consensus 
s-Ierms to the POS expression. 

3. Reject any set of IWO terms cOnlaining more than one couple variable. Remember: 
Only one variable is allowed (Ochange in a .ffat;c hawrd transitio". All Olher variables 
must be constant. 

4. Read the initial and final stales from the coupled terms in a hazardous transition by 
using minlerm code for SOP and maxlenn code for POS. 

As an example. consider the following minimum SOP function of four variables showing 
two hazard transitions together with the corresponding hazard cover for each: 

0001 Wll 

I I 
Fso1' = Bcb +ACD + Be +ABO + ABt . 

t I ----. . HUl.~rdr""tr 

(9.5) 

0100 0101 

In this expression. NAND/INV logic is assumed with inputs that arrive active high. Here. 
the hazard cover ABt is the ANDcd residues (consemus p-Icrm) of coupled terms nCD and 
XC D. where D is the coupled variable . And hazard cover ABO is Ihe ANDed residuc~ of 
couple tcnns A CD and Be. where C is the coupled variable. These Sialic I-hazard transitions 
are illustrated in the K-map of Fig. 9.6a by using arrows indicating a I -jo 0 change in the 
couple variable. The consensus termS can be seen 10 cover the hazartl tran~ition s (arrows). 
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Terms BCD and Be cannot be coupled terms and cannot produce a static hazard, since they 
contain more than one couple variable-they have no consensus term. These terms form 
what is called a/unction hazard, a subject that is discussed in a later section. 

The procedure for detection and elimination of static O-hazards in POS logic is the dual 
of that for the detection and elimination of static I hazards in SOP logic. As an example, 
consider the minimum POS representation of the function F together with the hazard 
transitions and hazard cover given in Eq. (9.6): 

1101 IlI1 

I t 
Fpos = (B + e + D)(A + e + D)(B + C) . (A + B + e)(A + B + 15) . (9.6) 

t H uzard cover 
1000 1001 

Here again, inputs e and D are the coupled variables where the inputs are assumed to 
arrive active high but with NORJINV logic. Notice that the initial and final states are read 
from the coupled terms by using maxterm code and are exactly those shown by arrows 
in Fig. 9.6b, indicating a 0 --+ I change in the coupled variable. The hazard covers are 
the ORed residues (consensus s-terms) of the coupled terms and are ANDed to the orig
inal expression in Eq. (9.6). Note also that the s-terms (B + e + D) and (B + 0) are 
not coupled terms and cannot produce a static O-hazard since they contain two coupled 
variables - remember, only one variable is allowed to change in the production of a static 
hazard. Also, if a coupled variable arrives active low with all other inputs active high, then 
the arrow indicating the hazard transition for that coupled variable must be reversed in 
Eq. (9.6). 

As a final example. consider the function Z of five variables, 

1l1O0 IlIOI 

t I 
Z = BCD + eD£ +AD£ + ABE +ABe +ABC£ + ABeD. (9.7) 
It' , 

01010 01000 Hazard cocer 

where the coupled variables are easily seen to be D and E. Assuming NANDIINV or 
AND/ORJINV logic and that all inputs arrive active high, the two hazard transitions are 
indicated by arrows in Eq. (9.7). Thus, read in minterm code, coupled terms BCD and 
AD E produce a static I-hazard during the transition 01010 --+ 01000 following a I --+ 0 
change in D, while terms ABE and eD£ generate a static I-hazard during the transition 
1110 1 --+ 11100 following a I --+ 0 change in E. Adding the ANDed residues of the coupled 
terms for each hazard transition gives the hazard-free expression in Eq. (9.7). 

It should be clear to the reader that the detection and elimination of static hazards can be 
conducted without the aid of K-maps or logic circuits simply by following the four steps 
given previously. Exceptions to this rule are discussed in the next section, where diagrams 
of a rather different sort are used to simplify the process of identifying and eliminating 
static hazards in multilevel XOR-type functions. 
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9.3 DETECTION AND ELIMINATION HAZARDS IN MULTILEVEL 
XOR·TYPE FUNCTIONS 
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Conventional static hazard analysis used in two~level logic docs not address the problcm 
of hazards in multilevel XOR-type functions. This section presents a simple bUi general 
procedure for the detection and elimination of static hazards in these functions . It is shown 
that all static hazards can be eliminated with redundant cover derived by using a method 
based on lumped path delay diagrams (LPDDs), and that this method is of unrestricted 
applicability. The problems associated with dynamic hazards. as they relate to static hazard 
cover, are also considered. 

Multilevel XOR-typc functions of the type considered in this section find use in arithmetic 
circuits. such as dedicated arithmetic logic units, and in error detection circuits. These 
functions can be obtained from logic synthesis algorithms or from K-map extraction as was 
demonstrated in Chapler 5. If steady, clean outputs from these functions are required. it is 
necessary to remove any logic (hazard) noise that may be present. 

Modern CMOS Ie technology has proouced XOR and EQV gates whose speed and 
compactness arc close to those of other two-input gates (see, e.g .• Figs. 3 .26 and 3.27). This 
has made the use of XOR and EQV gates more practical and has led 10 the development 
of various methods of multilevel functio n implementation that take <ldvantage of these 
gates. These implementations can produce gate-minimum results not possible with two
level logic. When fan-in restrictions on two-level implementations are considered, multilevel 
implementations become even more attractive. 

The simpler multilevel functions include the XORiSOP and EQVIPOS forms. The 
XORISOP form connects p-tcrms with OR and XOR operators, while the EQV/POS form 
connects s-tcrms with AND and EQV operators. XOP and EOS forms are special cases of 
XOR/SOP and EQVIPOS, respectively, and arc considered to be special two· level forms 
of representation. The XOP form connects p-terms only with XOR operators, and the EOS 
form eonnt!cts s-tcrms only with EQV operators. Multilevel functions more complex than 
XORISOP and EQVIPOS arc classified simply as compound multilevel forms for lack of a 
practical classification scheme. 

As was stated in Section 9.2, a static hazard is a glitch in an otherwise steady-state 
output signal and is produced by two asymmetric paths from a single input. Figure 9.7 is 
a generalization of the condition that allows the static hazard 10 fonn in mul tilevel circuits. 
The coupled variable must be an input to the initial gate in each path (Gates I and 3 in 

Coupled 
Variable 

Input 

FIGURE 9.7 

Path 1 

Path 2 

Hazard 
Gate 

Hazard Gate 
Output 

Ahernative paths of the coupled variable 10 the hazard gate that is nC(:t!ssary for static hazard formation 
in a multilcvcllugic circuit. 
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Fig. 9.7). The signal must propagate through each path until both paths reach a single gate, 
called the hazard gate. If, for example, the signal requires more time to propagate through 
Path 1 than through Path 2, the signal from Path 2 will reach the hazard gate before the 
signal from Path 1. This asymmetry in path delay may cause a static hazard, depending on 
the nature of the hazard gate and the gates in the two paths. Here, an inverter is considered to 
be a gate and the hazard gate mayor may not be the output gate. Also, lead delays are treated 
as ideal with negligible path delay, and each gate has an inherent delay associated with it 
that depends on its type, the number of inputs, and the technology used to implement it. 

Static hazard analysis in multilevel functions is more complicated than in two-level logic. 
Nevertheless, the static hazard is formed in agreement with the requirements of Fig. 9.7. 
Each path may consist of any number of gates, and the gates in Path I may differ in several 
respects from those in Path 2. Thus, if 

(L Path I delays) =I (L Path 2 delays), (9.8) 

hazard formation is possible according to Fig. 9.7. Furthermore, in multilevel functions of 
the type considered in this section, the difference between the Path 1 and Path 2 delays may 
range from that of an inverter to one or more gate delays. Thus, the size (or strength) of 
the static hazard glitch in a multilevel logic circuit may be considerable. Whereas the static 
hazard glitch in two-level logic caused by an inverter mayor may not cross the switching 
threshold, a static hazard glitch in a multilevel XOR-type circuit may be quite large and 
may easily cross the switching threshold. 

9.3.1 XOP and EOS Functions 

The simplest XOR/SOP or EQV /POS functions that produce static hazards are very similar 
to conventional two-level functions. If no more than one term in an SOP function can be 
active at any given time, the terms are mutually disjoint and the OR operators can be replaced 
with XOR operators as indicated by Corollary I in Subsection 3.11.1. The result is an XOP 
function. Hazards in an XOP function can be detected and eliminated by a method parallel 
to that described for SOP functions in Section 9.2. 

As an example, consider the reduced function N in SOP and XOP form: 

Nsop = ABC + ABD + ABCD + ABeD 

Nxop = ABC EEl ABD EEl ABCD EEl ABeD. 

(9.9) 

(9.10) 

The p-terms are mutually disjoint, so the direct conversion from SOP to XOP is permitted. 
It follows from the conventional methods discussed in Section 9.2 that two static hazards 
will occur in Nsop of Eq. (9.9): between coupled terms ABD and ABC on a 1111 -+ 0111 
transition following a 1 -+ 0 change in A, and between coupled terms ABD and AB CD 
on a (1111 -+ 1011) transition following a 1 -+ 0 change in B. Each hazard is caused by 
an inverter through which the coupled variable must pass. This inverter makes the two path 
delays (Fig. 9.7) unequal, allowing the hazards to form following a change in each coupled 
variable. Each hazard is eliminated by adding a consensus p-term consisting of the ANDed 
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residues, giving the result 

Nsop = ABC + ABD + ABCD + ABet> + (BCD + A CD) --.
H a:ard cove' 

401 

(9.11 ) 

The method of hazard detection and elimination for Nxop in Eq. (9.10) is quite similar 
to that of Nsop in Eq. (9.11). However, a hazard can now occur in either direction between 
the coupled terms. Thus, for coupled terms ABD and ABC a static I-hazard is produced on 
either a 1111 ~ 0111 or 0111 ~ 1111 transition following a I ~ 0 or 0 ~ J change in 
couple variable A. Similarly, for coupled terms ABD andAB CD a static I-hazard can occur 
on either a 1111 ~ 10 11 or 10 II ~ 1111 transition following a I ~ 0 or 0 ~ I change in 
coupled variable B. The complete details of these events are provided in Eq. (9.12), where 
the two hazards have been eliminated by the adding hazard cover. Note that each cover 
term is added to the function with an OR operator and not with an XOR operator. This is 
important because after hazard cover is added, the terms are no longer mutually disjoint. 
Therefore, adding the hazard cover by using an XOR operator would fundamentally alter 
the function. 

Nxop = ABC 6:l ABD 6:l ABCD 6:l ABet> + (BCD + ACD) (9.12) 

t t 
'-,.--' 

- _ H a:.ard coper 
0111 1111 

The bidirectionality of the XOP hazard production in Eq. (9.12) is due to the nature of 
the XOR gate. Unlike an OR gate or an AND gate, an XOR gate will produce an output 
change with any single input change. Furthermore, if both inputs to an XOR gate change 
simultaneously, the final output will be the same as the initial output. Therefore, if the two 
inputs change at different times but in close proximity to one another, a short glitch will 
occur, regardless of the state transition involved or the order in which the inputs change. 
However, on a 0 1 ~ 10 change in the two inputs to an OR gate, for example, the order 
in which the inputs change will determine whether or not a hazard occurs. This difference 
between XOR gates and OR gates is the reason a static hazard can be caused by a coupled 
variable change in either direction for an XOP function but in only one direction for an SOP 
function. 

The timing diagram in Fig. 9.8 illustrates the behavior of lV.'iOI' and Nxop without and 
with hazard cover. At least one hazard cover signal is active during each hazard to prevent 
it from propagating to the final output signal. Note that hazards occur in Nsop only on the 
falling edge of the coupled variable, but occur in Nxop on both the rising and falling edge 
of the coupled variable. 

A relationship similar to that between SOP and XOP functions exists between POS and 
EOS functions. If no more than one term in a POS function can be inactive at any given 
time, the terms are mutually conjoint and the AND operators can be replaced with EQV 
operators to form an EOS function. Hazards in the EOS function will be identical to those 
in POS, except that hazards in EOS will occur in both transitional directions. Hazard cover 
is formed by ORing the residues of the two coupled terms. An AND operator must be used 
to connect each hazard cover term to the original function. 
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C(H) 

D(H) 

Nsop(H) ~-W 

Nxop(H} 

8CD(H) 

ACD(H) 

Nsop(H}* 

Nxop(H)* 

u 

• Indicates with hazard cover 

FIGURE 9.8 
Timing diagram for functions Nsop and Nxop without and with (*) hazard cover in accordance with 
Eqs. (9.11) and (9.12). 

As an example, consider the reduced POS and EOS forms of function L, which are the 
complements of function N in Eqs. (9.11) and (9.12), i.e., L = N. These POS and EOS 
functions are represented by the following expressions. together with the hazard transitions 
and hazard cover for each: 

1111 1011 

t I 
LPOs = (A + B + C)(A + B + 15)(A + B + C + 15)(A + B + C + D) 

I t 
0111 1111 

. (8 + C + D)(A + C + D) (9.13) 
, I 

Hazard cover 

1111 1011 

t 
LEOS = (A + B + C) <:) (A + B + D) <:) (A + B + C + D) <:) (A + B + C + D) 

t t 
0111 1111 

. (B + C + 15)(A + C + D). (9.14) 

Hazard cover 

The coupled variables are A and B, and the coupled terms and hazard transitions are indi
cated by arrows. The hazard cover terms for both the POS and EOS forms are (13 + (} + ]]) 
and (.4 + (} + ]]), each of which is the ORed residues of the respective coupled terms. 
Notice that in both cases the hazard cover terms are ANDed to the original expressions. 

The timing diagram in Fig. 9.9 illustrates the behavior of LPOs and LEOS without and 
with hazard cover. This behavior is similar to that of Nsop and Nxop in Fig. 9.8, but static 
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0 
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LEQS(H)+ 1 
0 

• Indicates with hazard cover 

FIGURE 9.9 
Timing diagram for functions L POS and LEOS without and with (*) hazard cover in accordance with 

(9.13) and (9.14). 

hazards are static 0 hazards in LPOs and LEOS rather than the static 1 hazards as in Nsop and 
Nxop . Again notice that the static hazards in Lws, like those in ~l(()R, are formed following 
both a 0 -+ 1 and 1 -+ 0 change in the coupled variable. It is this characteristic that 
distinguishes SOP and POS forms from XOP and EOS forms. The former types generate 
static hazards on a single change of the coupled variable, whereas the latter types generate 
static hazards on both 1 ~ 0 and 0 -+ 1 changes in the coupled variable. 

9.3.2 Methods for the Detection and Elimination of Static Hazards in Complex 
Multilevel XOR-type Functions 

Function minimization methods involving K-map XOR-type patterns and Reed-Muller 
transformation forms are considered in detail in Chapter 5. For certain functions these 
methods lead to gate-minimum forms that cannot be achieved by any other means. An 
inspection of these forms reveals that they are of the general form 

F = (a EB {3) + [' + ... , (9.15) 

where a, {3, and r can be composed of SOP, POS,XOP, orEOS terms or some combination 
of these. The XOP and EOS functions discussed in Subseetion 9.3.1 are a special case of 
Eq. (9.15), and the methods used there for the detection and elimination of statie hazards 
parallel those used for two-level logic discussed in Seetion 9.2. However, these simple 
methods cannot be applied to the more complex functions eonsidered in this subsection. 
Now, use must be made of special graphic methods to assist in the determination of path 
delay asymmetry according to Fig. 9.1. 
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v VI1,2] A(XB)C 
{ Vy} 11 

v A x 

(a) (b) 

FIGURE 9.10 
Hazard detection and hazard cover for function Q in Eq. (9.15). (a) LPDD showing two paths for 
input Y. (b) Path requirements of input Y to produce an active Q output and the hazard cover for the 
static 1 hazard. 

Consider the five-variable function 

Q = (AY) $ (Xii) + CY, (9.16) 

which is a relatively simple form ofEq. (9.15). This function has a static I-hazard for which 
the hazard cover cannot be readily identified by the standard methods used in Subsection 
9.3.1. Other means must be used to identify the conditions for hazard formation and the 
cover that is necessary to eliminate it. 

Shown in Fig. 9.lOa is the lumped path delay diagram (LPDD) that is a graphical 
equivalent of the logic circuit for function Q in Eq. (9.16). Use of the LPDD makes possible 
a simple means of detecting and eliminating the static I-hazard. However, some explanation 
of the use of this diagram is needed. The inputs are assumed to be active high, and inputs 
such as ii and C imply the use of an inverter that is not shown. 1\vo paths, Y[l] and y[2], 
for variable Yare shown from input to output Q. The path requirements for input Y and 
Y that cause the output Q to be active are given in Fig. 9.lOb. Thus, for Y inactive (Y), 
path Y[ I] is enabled to cause Q = 1 if both A and xii are active. And for Y active, 
path Y[2] is enabled to cause Q = 1 if C active (C = 0). The hazard cover is found by 
ANDing both enabling path requirements to give (AXiiC) as indicated in Fig. 9.l0b. But 
for Y inactive, input A is irrelevant to path Y[ 1]. Thus, the final result for function Q is 
given by 

Q=(AY)$(XB)+ CY+AXBC 

=(AY)$(XB)+ CY+XBC. (9.17) 

The timing diagram for function Q in Fig. 9.11 confirms the results presented in Fig. 9.10 
and in Eq. (9.17). Notice that the hazard cover iicx removes the static I-hazard as indicated 
by Q(H)*. The size (strength) of the static hazard, indicated by ~t, is the difference in path 



9.3 DETECTION AND ELIMINATION HAZARDS 

FIGURE 9.11 
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Timing diagram for functions Q without and with (*) hazard cover in agreement with Eq. (9.17). 

delays Y[l] and Y[2] in Fig. 9. lOa as it relates to Fig. 9.1. This path delay asymmetry may 
be expressed as 

which is easily ascertained from an inspection of Fig. 9. lOa. 
That the hazard cover for Eq. (9.16) is 13 ex and is independent of input A can be easily 

demonstrated by the use of a binary decision diagram (BDD) constructed from an inspection 
ofEq. (9.16). This BDD is given in Fig. 9.12, where the binary decisions begin with variable 
Y and end with an output (for Q) that is either logic 0 or logic I. The requirement for static 
l-hazard cover is that the decisions must lead to an active output Q. Thus, for Y = 0 the 
path to Q = 1 is enabled if X = 1 and B = 0 or xiJ and is enabled for Y = 1 if C = 0 

Y 

.... Q Output 

FIGURE 9.12 
BDD for function Q in Eq. (9.16) showing the binary decisions required for an active output inde
pendent of input A. 
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A[1,2] BCD { A A} 11 BCD {~}~ 

B[1,2J ACD {:}: NA' _ {B}O ACD BONA' 

A B B D 
• Not applicable if equal B paths are assumed 

(a) (b) 

FIGURE 9.13 
Hazard detection and hazard cover for function N in Eq. (9.18). (a) LPDD showing two paths for 
input A and two paths for input B. (b) Path requirements for inputs A and B required to produce an 
active N output, and the hazard covers necessary to eliminate the static 1 hazards. 

or all read in positive logic. ANDing the two enabling conditions gives the hazard cover 
XB· C. Clearly, the binary decisions involving input A (dashed lines) are irrelevant to the 
enabling path conditions for an active output Q. 

A BDD is a graphical representation of a set of binary-valued decisions, each of which 
ends with a result that is either logic 1 or logic O. Thus, the BDD allows one to easily 
detennine the output for any possible combination of input values. The BDD is used by 
starting with an input variable (top of the BDD) and proceeding in a downward path to an 
output logic value that corresponds to the value of the last input in that path. Thus, the final 
element, usually presented in a rectangle, is the logic value of the function (e.g., output Q 
in Fig. 9.12) for the input values used. 

As a second and more complex example, consider the four-variable function 

N = [(A EB B)C] EB [(B 0 mAl, (9.18) 

which is a three-level form ofEqs. (9.9) and (9.1 0) obtained by the CRMT method discussed 
in Section 5.7 taking {A, C} as the bond set. The LPDD, shown in Fig. 9.13, indicates that 
there is at least one static I-hazard and one static O-hazard associated with this function. 
Input A has two paths to the output Z, A[l] and A[2]. Path A[l] to output N is enabled if C 
is active, with B active or inactive depending on input A. Path A[2] to output N is enabled 
if Band D are logically equivalent (via the EQV operator). Therefore, for input conditions 
BCD, output N is active for A = I via path A[2] only and is active for A 0 via path 
A [1] only, indicating a static I-hazard. However, for input conditions BCD the output N is 
inactive for both A and A: For A = 1 the output N = 1 EB 1 = 0, and for A 0 the output 
NO(£) 0 = O. When the output is inactive for both input conditions, a static O-hazard is 
indicated. The result of this static hazard analysis is that BCD becomes the static I-hazard 
cover that must be ORed to Eq. (9.18), and that BCD = (B + 6 + D) is the static O-hazard 
cover that must be ANDed to Eq. (9.18). When hazard cover is added, the final expression 
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Timing diagram for function N in Eq. (9.18) showing static 1 and static 0 hazards and showing the 
result of adding hazard cover according to Eq. (9.19). 

for N becomes 

N = {[(A EB B)C] EB [(B 0) D)A] + !JCD} . (B + C + D~, (9.19) 

Hazard co/;,er 

which is now a five-level function. Note that the order in which the hazard cover is added 
is immaterial. Thus, Eq. (9.19) could have been completed by first ANDing (B + 6 + D) 
to the original expression followed by ORing BCD to the result. 

The paths B [1] and B [2] are not expected to create static hazards, assuming that the 
XOR and EQV gates have nearly the same path delays. This is a good assumption if CMOS 
technology is used for their implementation as in Figs. 3.26 and 3.27. However, if the two 
B path delays are significantly asymmetric, then both static 1 and static 0 hazards would 
exist and would be eliminated by adding hazard covers in addition to those for the path A 
hazards (see Fig. 9.13b). 

The timing diagram in Fig. 9.14 illustrates the results expressed by Eqs. (9.18) and (9.19) 
and by Fig. 9.13. The static I-hazard occurs with changes in A under input conditions BCD, 
and static 0 hazards occur with changes in A under input conditions BCD. But when BCD 
is ORed to the expression in Eq. (9.18), the static I-hazard disappears. Similarly, when 
BCD = (B + 6 + D) is ANDed to function N in Eq. (9.18), the static 0 hazards disappear. 
Notice that the strength of either type of static hazard in Fig. 9.14 is the difference in delay 
between the two paths expressed by 

where each hazard is initiated after a delay of (tXOR + tAND) following a change in input A. 
This information is easily deduced from an inspection of Fig. 9.13. 

The BDD for function N in Eq. (9.18) is given in Fig. 9.15. Once the coupled variables 
have been identified by the LPDD, the BDD can be used to obtain the hazard cover for 
both the static I-hazard and static O-hazard. An inspection of the binary decisions required 
to render N = 1 indicate a path BC for input condition A = 0 and a path BD for A = 1. 
When these two input paths are ANDed together the result is BCD, the enabling condition 
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FIGURE 9.15 
BDD for function N in Eq. (9.18) showing binary decisions required for static 1 and static 0 hazard 
formation. 

for the static I-hazard to form and, hence, also the hazard cover for that hazard. There are 
no other valid input paths for output N = 1, since their ANDing (intersection) is logic O. 
In a similar fashion, the binary decisions required to produce N = 0 indicate a path B for 
A = 0 and DBC for input condition A = 1. When these input path conditions are ANDed 
the result is BCD, which when complemented yields (B + 6 + D), the hazard cover for 
the static O-hazard. All other ANDed input path combinations for A = 1 result in logic 0 
and hence are invalid. 

BDDs can be very useful in identifying the hazard cover(s) for a given coupled variable, 
which is best identified by first by using an LPDD. The difficulty is not in the reading of 
the BDD to obtain the hazard cover, but in its construction. The reader should appreciate 
the fact that constructing of a BDD from a Boolean expression of the type considered in 
this section is no trivial task. In contrast, the LPDD, which is essentially a logic circuit, is 
easily constructed from the Boolean expression. For this reason, LPDDs should be used for 
most hazard analyses, reserving the use of BDDs for the difficult cases where the hazard 
cover is not easily revealed by an inspection of the LPDD. 

9.3.3 General Procedure for the Detection and Elimination of Static Hazards in 
Complex Multilevel XOR-Type Functions 

The static 1 and static 0 hazards in N were detected and eliminated by following a procedure 
that is applicable to any function. The procedure consists of the following three steps: 

Step I: Use an LPDD to identify the two paths for each coupled variable whose path 
delays to the output differ according to Fig. 9.1. A determination of the path delays is not 
always a straightforward task, since the technology used for the individual gates may not 
be known. Worse yet, integrated circuits may make such determination nearly impossible 
without empirical data. 

Step II: Find the hazard conditions and hnzard cover for each coupled input variable 
in the LPDD by ANDing the variables that enable the two paths from the coupled variable 
to the output with those variables required to block (disable) all other paths. The gates 
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in the two enabling paths must not prevent the propagation of the coupled variable to the 
output stage. To accomplish this, other noncoupled variable inputs to AND operators must 
be active (logic 1), and other noncoupled variable inputs to OR operators must be inactive 
(logic 0). All other paths to the output stage must be blocked by proper selection of input 
activation levels. The use of a BDD is quite suitable for the purpose of finding hazard cover. 
Moreover, the BDD can also be used to simplify separately static I-hazard cover and static 
O-hazard cover. Note that static 1 and static 0 covers must never be simplified together. 

For Nxop , the LPDD (Fig. 9.l3a) shows that C must be logic I so that the AND operator 
does not block path A[l]. The output from the EQV operator, which becomes an input to 
the AND operator in path A[2], must also be logic 1. Inputs Band D must therefore be 
logically equivalent so as to enable path A[2] to the output. There are no other paths to 
consider. Thus, the hazard cover is BCD for the static I-hazard and BCD = (B + C + D). 

Step III: Add the hazard cover to the original function by using an OR operator for 
static I-hazard cover and by using an AND operator for a static O-hazard cover. The 
I-hazard cover and the O-hazard cover must be added separately but may be added in 
either order. In Eq. (9.19) the static I-hazard cover is added to N before the static O-hazard 
cover. If the O-hazard cover were added to Eq. (9.19) before the I-hazard cover, the result 
would be 

N = {[(A EEl B)C] EEl reB 8 D)Al' (B + C + D)} + BCD (9.20) 
\ I 

H(/:ard cOt'er 

Eqs. (9.19) and (9.20) have gate/input tallies of 9/20, excluding inverters. There is often 
little advantage of one implementation over the other. 

9.3.4 Detection of Dynamic Hazards in Complex Multilevel XOR-Type Functions 

Up to this point the discussion has centered around the detection and elimination of static 
hazards in multilevel XOR-type functions. As it turns out these functions also have a 
propensity to form dynamic hazards, and there mayor may not be a means of eliminating 
these defects. One example is the five-variable, four-level function given by 

K = [B + (A EEl X)] 8 {[Y + (A EEl B)] 8 [;1 + Z]}. (9.21) 

The LPDD for this function, presented in Fig. 9.I6a, reveals both static and dynamic 
hazards as indicated in Figs. 9 .16b and 9.16c. The enabling path conditions for inputs A 
and B required to produce the static 1 and static 0 hazards are found in the same manner as 
for function N in Fig. 9.13. Obviously, static hazard analysis is considerably more involved 
than the analysis for function N. Furthermore, the additional logic required to eliminate 
all static hazards in function K is considerable. To eliminate both static 1 and 0 hazards 
requires that four p-terms be ORed to function K in Eq. (9.21) and by the ORing of three 
s-terms to that result, as required by Fig. 9.16b. The order in which the ORed and ANDed 
terms are added is immaterial. 

The input conditions required to produce dynamic hazards in function K are given in 
Fig. 9.16c. Remember: Dynamic hazards can exist in a given function only if there are 
three or more paths of an input to the output. This condition is satisfied for input A as 
indicated. Notice that a dynamic hazard is identified in an LPDD when the enabling paths 
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FIGURE 9.16 
Hazard analysis of function K in Eq. (9.21). (a) LPDD showing three paths for input A and two paths 
for input B. (b) Path enabling requirements for A and B to produce static 1 and static 0 hazards. 
(c) Path A enabling requirements for the production of dynamic hazards in function K. 

of the coupled variable to the output yield both a logic 1 and logic 0 as in Fig. 9.16c. This 
same information can be gleaned from a BDD, but, because of the difficulty in constructing 
the BDD, the LPDD approach is preferred. 

The timing diagram for Eq. (9.21) is shown in Fig. 9.17, where dynamic hazards of the 
1-0-1-0 and 0-1-0-1 types occur following 1 -+ 0 and 0 -+ 1 changes in coupled variable 

A(H) 6~ 

B(H) 

X(H} 

Y(H) 

Z(H) 

K(H} Ln nJ '--___ nJ LnL--___ _ 

K*(H) Ln ___ --'nJ '--___ --InJ 

• Indicates with static hazard cover 

FIGURE 9.17 
Timing diagram for function K in Eq. (9.21), showing dynamic hazards produced without and with 
static hazard cover under input conditions given in Fig. 9.16c. 
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+- K Output 

FIGURE 9.18 
BDD for function K in Eq. (9.21) that can be used to show enabling paths of input A to output K as 
in Figs. 9.16b and 9.l6c. 

A, respectively. Notice that the dynamic hazards continue to occur even after input X is 
changed from logic I to logic O. This is predictable from Fig. 9.16c, since the enabling paths 
for input A, BXYZ and BXYZ, are satisfied in both cases. Input conditions other than these 
enabling paths for A would not allow production of the dynamic hazards. As indicated by 
the K* waveform in Fig. 9.17, static hazard cover cannot be used to eliminate a dynamic 
hazard. 

The enabling paths for input A, shown in Figs. 9.16b and 9.16c, can also be deduced 
from the BDD in Fig. 9.18 for function K in Eq. (9.21). However, somewhat greater effort 
is needed to obtain this information from the BDD owing to its nature. For example, the 
enabling paths of A required to produce the dynamic hazards are seen to be ABXYZ and 
ABXYZ, yielding K = 0 and K = I, respectively, with active X. Similarly, for X the enabling 
paths of A are observed to be ABXYZ and ABXYZ for K = I and K = 0, respectively. The 
static I and static 0 hazards due to coupled variable A are deduced from the BDD in a 
similar manner. 

A few points need to be remembered when using LPDD and/or BDD graphical means 
to obtain the enabling paths of coupled variables. 

• The LPDD should be used to identify the coupled variable and any asymmetry 
that may exist in the alternative paths. 

• The LPDD or a BDD can be used to deduce the enabling paths for that coupled 
variable. 

• A BDD must be constructed for each coupled variable, whereas a single LPDD 
can be used for all coupled variables. 

• Both logic values of the coupled variable must be considered when using either 
the LPDD or BDD, but only for the LPDD must account be taken of blocked 
paths. 



412 CHAPTER 9/ PROPAGATION DELAY AND TIMING DEFECTS 

A(H)~ 
8(H) ~Z(H) 

(a) 

FIGURE 9.19 

A(H) 

1 8(H) 0 _____ --' 

Z(H) ~ ---------,U 
FunctionJ 
Hazard 

(b) 

Demonstration of function hazard formation. (a) An XOR gate. (b) Timing diagram showing produc
tion of a function hazard when inputs A and B are changed in close proximity to each other. 

9.4 FUNCTION HAZARDS 

In the expression for Zsop given by Eq. (9.7), it is observed that pairs of terms such as 
BCD and eDE or ADE and ABE each contain two couple variables. These pairs of terms 
are not coupled terms and cannot produce static hazards in the sense of Section 9.2. Also, 
their ANDed residues are always logic 0 - as are the ORed residues logic I for pairs of 
s-terms containing two (or more) coupled variables in a POS expression. But these pairs of 
terms can produce another type of hazard called a function hazard, which is also static in 
the sense that it occurs in an otherwise steady-state signal. Function hazards result when 
an attempt is made to change two or more coupled variables in close proximity to each 
other. Potential hazards of this type are very common. In fact, any two (or more) input gate 
can produce a function hazard if the two inputs are caused to change in close proximity to 
each other. As an example, consider a simple XOR gate in Fig. 9.19a. If the two inputs are 
changed close together as shown in Fig. 9.19b, a function hazard results. In effect, function 
hazards in most circuits can be avoided if care is taken not to permit the inputs to change 
too close together in time. 

9.5 STUCK-AT FAULTS AND THE EFFECT OF HAZARD COVER 
ON FAULT TESTABILITY 

If, by some means, an input to a logic gate becomes permanently stuck at logic 0 or logic 1, 
a single stuck-at fault is said to exist. Inadvertent shorted connections, open connections, or 
connections to the voltage supply can take place during the manufacture of a given device 
such as a gate. When this happens the device fails to operate correctly. Models have been 
created to test specifically for stuck-at faults in various logic devices. One such model has 
become known as the single stuck-at fault model and is regarded as the simplest and most 
reliable model to use. Here, exactly one line, say to a gate, is assumed to be fixed at a logic 
1 or logic 0 and, therefore, cannot respond to an input signal. Testing for such faults in a 
complex combinational logic circuit is often complicated and may involve the application 
of elaborate testing procedures, the subject of which is beyond the scope of this text. For the 
reader wishing more information on fault models, test sets, design testability, and related 
subject matter, references are given in Further Reading at the end of this chapter. 

Because a single input change to an XOR or EQV operator produces an output change, 
multilevel functions containing these operators can be more easily tested than their 



9.5 STUCK-AT FAULTS AND THE EFFECT OF HAZARD COVER 
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Fault'S 
Error 

Effect of stuck-at fault on function Nxop in Eq. (9.12). (a) AND representing the ABCD term and 
showing a stuck-at fault on input C. (b) Timing diagram showing effect of the stuck-at 0 fault and the 
masking effect of hazard cover. 

two-level SOP or POS counterparts. This, of course, is one advantage in the use of XOP, 
EOS, and CRMT circuits discussed in Chapter 5. However, if static hazards must be elimi
nated in these circuits prior to fault testing, this advantage may be lessened or eliminated. 
Static hazard cover must always be redundant cover (i.e., not essential to function represen
tation). Redundant cover can make stuck-at fault testing more difficult and may even mask 
an existing stuck-at fault. When considering the testability of a circuit, the designer must 
consider the effect of any static hazard cover needed. 

As an example, consider function Nxop in Eqs. (9.10) and (9.12) before and after the 
ad~ition of static hazard cover. Suppose there is a stuck-at-O fault at any input to the term 
ABCD. This fault causes an output error on the input condition 1011. However, the addition 
of hazard cover ACD holds the output active and masks the presence of this fault. Thus, after 
hazard cover is added, one cannot test for this fault by the standard methods of observing the 
final output. The timing diagram in Fig. 9.20 illustrates the masking effect of hazard cover 
in the Nxop function. This timing diagram can be easily understood if it is recalled that an 
odd number of l's in an XOR string such as that for function Nxul' in Eqs. (9.10) and (9.12) 
yields a logic 1 for that function. Consequently, introducing the change 1111 ~ 1011 into 
these equations with and without the hazard cover ACD and with C = 0 results in the timing 
diagram shown in Fig. 9.20b. In conclusion it can be stated that fault detection and location 
test sets should be used prior to the addition of hazard cover; if not. some stuck-at faults 
may not be detected and located. 

FURTHER READING 

The subject of static hazards in two-level combinational logic circuits is covered adequately 
in texts by Breuer and Friedman, Katz. McCluskey. Tinder, Wakerly. and Yarbrough. Dy
namic hazards and function hazards are also covered by McCluskey. However, there is no 
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known published infonnation on static hazards in circuits of the XOR type considered in 
this chapter. 
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articles by Akers and Bryant. 
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The subjects of fault detection and fault models are well covered by a number of texts 
and articles. For the beginning reader the text of Hayes does a commendable job. The text 
by McCluskey (previously cited) and that by Nelson, Nagle, Carroll, and Irwin are also 
recommended. For the advanced reader the texts by De Mecheli (previously cited) and Lala 
can be useful. 

[11] J. P. Hayes, Introduction to Digital Design. Addison-Wesley, Reading, MA, 1993. 
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[14] A. Chatterjee and M. A. d' Abreu, "The Design of Fault-Tolerant Linear Digital State Variable 
Systems: Theory and Techniques," IEEE Trans. on Computers 42(7),794-808 (1993). 

[15] T. Lin and K. G. Shin, "An Optimal Retry Policy Based on Fault Classification," IEEE Trans. 
on Computers 43(9), 1014-1025 (1994). 

[16] B. Vinnakota and N. K. Jha, "Diagnosability and Diagnosis of Algorithm-Based Fault-Tolerant 
Systems," IEEE Trans. on Computers 42(8), 924-937 (1993). 
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PROBLEMS 

9.1 A function Y is represented in the K-map of Fig. P9.1. Refer to the examples in Section 
9.2 and do the following: 
(a) Loop out a minimum SOP and POS cover and then use arrows in separate K-maps 

to indicate the direction of the hazardous SOP and POS transitions that are present 
in this function. 

(b) Find the hazard covers and combine them with the minimum SOP and POS ex
pressions. Also, show these covers on the appropriate K-maps. 

AB CD 
00 01 11 10 

00 0 1 1 0 

01 1 1 1 1 

11 0 0 0 1 

10 0 1 1 1 

/ y 

FIGURE P9.1 

9.2 The following minimum SOP function contains both static I-hazards and static 0-
hazards: 

(a) Map and loop out this function in a fourth-order K-map and indicate the direction 
of each SOP hazardous transitions on the map by using an arrow. Follow the 
example in Fig. 9.6a. 

(b) Find the hazard covers and add them to the original expression above. 

(c) By following the example in Eq. (9.5), confirm that the same information can be 
obtained directly from the minimum SOP expression just given. 

(d) Repeat parts (a), (b), and (c) for the POS hazards (static O-hazards) in the minimum 
POS expression for this function. 

(e) Use the gate/input tally (exclusive of possible inverters) to compare the SOP and 
POS expressions with hazard cover included. Which result is simpler? 

9.3 The following function contains a single static I-hazard: 

Fsop = ABC + AC + CD. 

(a) From this expression (without using a K-map), determine the coupled terms, the 
initial and final states of the hazardous transition, and the hazard cover to be added 
to the expression. To do this, follow the example in Eq. (9.5). 



416 CHAPTER 9/ PROPAGATION DELAY AND TIMING DEFECTS 

(b) Use a timing diagram to show the development of this hazard, similar to the 
example in Fig. 9.lc. Then, by adding the hazard cover, show that the hazard is 
eliminated following the example in Fig. 9.2c. Assume that the inputs and output 
are all active high. 

(c) Construct the logic circuit for Fsop and include the hazard cover. 

9.4 Map the expression in Problem 9.3 and extract a minimum expression for FPOs . This 
function contains a single static O-hazard. 

(a) From this expression (without using a K-map), determine the coupled variable, 
coupled terms, the initial and final states of the hazardous transition, and the hazard 
cover to be added to the expression. To do this, follow the example in Eq. (9.6). 

(b) Use a timing diagram to show the development of this hazard, similar to the 
example in Fig. 9.4c. Then by adding the hazard cover, show that the hazard is 
eliminated following the example in Fig. 9.Sc. Assume that the inputs and output 
are all active high. 

(c) Construct the logic circuit for Fpos and include the hazard cover. 

9.5 Each of the following minimum or reduced functions contains one or more static 
hazards. For each function (without using a K-map), determine the coupled variable, 
coupled terms, the initial and final states of the hazardous transition, and the hazard 
cover to be added. 

(a) W = ABeD + BCD + ACD 
(b) R = (U + W + X)(U + V + W)(V + X) 

(c) G = wXy +XYZ+ WYZ+ Wy 
(d) T = (A + B + 6)(A + B + C)(A + D)(B + D) 
(e) Y=wyz+xz+xy 

9.6 A five-variable function Z is represented in the second-order K-map of Fig. P9.2. It 
contains a single SOP hazard (static I-hazard). 

(a) Extract minimum SOP cover for this function and determine the coupled variable, 
coupled terms, the initial and final states of the hazardous transition, and the hazard 
cover to be added to the expression. To do this, follow the example in Eq. (9.5). 
(Hint: There are two possible coupled terms depending on how minimum cover 
is extracted.) 

(b) Use a timing diagram to show the development of this hazard, similar to the 
example in Fig. 9.lc. Assume that all inputs are active high. Then by adding the 
hazard cover, show that the hazard is eliminated following the example in Fig. 9. 2c. 

B 
0 1 A 

0 CDE E 

1 E CD+E 
1/ 

/ z 
FIGURE P9.2 
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9.7 Find the minimum POS expression for the function in Fig. P9.2. How many static 
O-hazards does this function have? What do you conclude as to the relative complexity 
of the SOP and POS expressions for this function when account is taken of hazard 
cover? 

9.8 The following six-variable function has several static I-hazards. Construct a table 
listing the coupled variable, coupled tenns, initial and final states, and the hazard 
cover for each of the hazards. 

F = ABCDi' + ABCE + ABCF + ABCt + DtF + CDt 

9.9 The following multilevel functions have one or more static hazards. For each expres
sion (without using a K-map), detennine the coupled variable, coupled terms, the 
initial and final states of the hazardous transition (read in alphabetical order), and 
the hazard cover to be added to the expression. To do this, follow the examples in 
Eq. (9.12), (9.13), and (9.14), whichever is relevant to the particular function. 

(a) G = wXY EEl XYZ EEl WIT EEl WY 
(b) T = C4 + B + 6) 0 (A + B + C) 0 (A + D) 0 (B + D) 

9.10 The following three-level XOR-type function has two static I-hazards: 

f = (Y EEl W) EEl (XZ) + WY. 

(a) Construct the lumped path delay diagram (LPDD) for this function. From the 
LPDD detennine the hazard cover and initial and final states for each of the static 
hazards. Follow the example in Fig. 9.10. (Hint: Keep in mind the bidirectionality 
of the static hazards in XOR-type functions and read the states for function f in 
the order of W'XYZ). 

(b) By using two binary decision diagrams (BDDs), show the binary decisions re
quired for each static I-hazard fonnation. 

9.11 The following three-level function has both a static I-hazard and a static O-hazard: 

F = [X EEl WYl EEl (WZ). 

(a) Construct the LPDD for this function (exactly as written). Then, determine the 
hazard cover and initial and final states for each of the static hazards. Read the 
states in alphabetical order. Follow the example in Fig. 9.13 and Eq. (9.19). 

(b) Use a timing diagram to show the development of the two hazards, similar to the 
example in Fig. 9.14. Then by adding the hazard cover, show that the hazards are 
eliminated. Assume that all inputs and the output are active high. 

(c) By using a binary decision diagram (BDD), show the binary decisions required 
for the static I-hazard formation. 

9.12 The following four-level function has three static I-hazards, one static O-hazard, and 
one dynamic hazard: 

Y = [B EEl (AD)] EEl [AB EEl ACD EEl BCD] 
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(a) Construct an LPDD for this function (exactly as written) and find the hazard cover 
for each of the static hazards and the conditions required to produce the dynamic 
hazard. Indicate the initial and final states for each of the static hazards. Follow 
the example in Fig. 9.16. (Hint: No dynamic hazard exists due to a change in 
either input A or D, and the one that does exist is conditional on A. Also, look for 
the possibility that a static hazard may change from a static I-hazard to a static 
O-hazard depending on the order of change of one or two variables.) 

(b) Use aBDD to show the enabling paths of the variable whose change is responsible 
for the dynamic hazard formation. Follow the example in Fig. 9.18. 

(c) Use a timing diagram (simulation) to show the development of the dynamic hazard. 
Demonstrate that the dynamic hazard cannot be eliminated by adding static hazard 
cover. 

(d) Demonstrate with both an LPDD and a timing diagram that the dynamic hazard 
can be eliminated by making the B paths to the output less asymmetric. 

9.13 At the discretion of the instructor, use the EXL-Sim2002 simulator included on the 
CD-ROM bundled with this text to simulate any of the following problems: 9.3b, 
9.4b, 9.6b, 9.11b, 9.I2c, 9.l2d. For example, an assignment 9. 13/9.6(b) requires the 
use of EXL-Sim2002 to verify the existence of the static I-hazard and its hazard cover 
by simulating the five variable function Z in Fig. P9.2. 



CHAPTER 10 

Introduction to Synchronous State 
Machine Design and Analysis 

10.1 INTRODUCTION 

Up to this point only combinational logic machines have been considered, those whose 
outputs depend solely on the present state of the inputs. Adders, decoders, MUXs, PLAs, 
ALUs, and many other combinational logic machines are remarkable and very necessary 
machines in their own right to the field of logic design. However, they all suffer the same 
limitation. They cannot perform operations sequentially. A ROM, for example, cannot 
make use of its present input instructions to carry out a next-stage set of functions, and an 
adder cannot count sequentially without changing the inputs after each addition. In short, 
combinational logic devices lack true memory, and so lack the ability to perform sequential 
operations. Yet their presence in a sequential machine may be indispensable. 

We deal with sequential devices all the time. In fact, our experience with such devices is 
so commonplace that we often take them for granted. For example, at one time or another 
we have all had the experience of being delayed by a modern four-way traffic control light 
system that is vehicle actuated with pedestrian overrides and the like. Once at the light we 
must wait for a certain sequence of events to take place before we are allowed to proceed. 
The controller for such a traffic light system is a fairly complex digital sequential machine. 

Then there is the familiar elevator system for a multistory building. We may push the 
button to go down only to find that upward-bound stops have priority over our command. 
But once in the elevator and downward bound, we are likely to find the elevator stopping 
at floors preceding ours in sequence, again demonstrating a sequential priority. Added to 
these features are the usual safety and emergency overrides, and a motor control system that 
allows for the carrier to be accelerated or decelerated at some reasonable rate. Obviously, 
modern elevator systems are controlled by rather sophisticated sequential machines. 

The list of sequential machines that touch our daily lives is vast and continuously growing. 
As examples, the cars we drive, the homes we live in, and our places of employment all use 
sequential machines of one type or another. Automobiles use digital sequential machines 
to control starting, braking, fuel injection, cruise control, and safety features. Most homes 
have automatic washing machines, microwave ovens, sophisticated audio and video devices 
of various types, and, of course, computers. Some homes have complex security, energy, 

419 
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and c1imale control systems. All of these remarkable and now commonplace gifts of modem 
technology are made possible through the use of digital sequential machines. 

The machines just mentioned are called sequential machines. or simply slate machines. 
because they possess true memory and can issue lime-dependent sequences of logic signals 
controlled by present and past input infonnation. These sequential machines may also be 
SYllchronolls because the data path is controlled by a system clock. in synchronous sequen
tial machines. input data are introduced into the machine and arc processed sequentially 
according 10 some algorithm. and outputs are generated - all regulated by a system clock. 
Sequential machines whose operation is clock independem (i .e .• self-limed) are called asyn
chrOllOu.5 sequemial machines, the subject of Chapters 14, 15. and 16. 

Synchronous sequential machines and their design, analysis, and operation are the sub
jects covered in this chapter. Treatment begins with a discussion of the models used for 
these machines. This is fo llowed by a discussion of an important type of graphic that is used 
to represent the sequential behavior of sequential machines and by a detailed development 
of the devices used for their memory. The chapter ends with the design and analysis of rel
atively simple state machines. The intricacies of design are numerous and require detailed 
consideration. For this reason they are discussed later. in Chapler 11. 

10.1.1 A Sequence of logic States 

Consider that a synchronous sequential machine has been buill by some means and thllt 
it is represented by the block symbol in Fig. 1O.1a. Then suppose the voltage wavefonns 
from its three outputs are detected (say with a waveform analyzer) and displayed as in 

~ _A HV 
LV / \ 

~ 

~ 
Synchronous HV 

Sequential • B 
Machine LV \ / \ I .. . -Time 

~ . c HV 
LV 

(.) (b) 

, 1 A(H) 
, 

Logi~ 8 (H) 
, 

Domain 
, 

C(H) , "'-Time 

State ABC = 010 011 100 101 11 0 111 000 001 

A present state at some pOint in time ~ 
(0) 

FIGURE 10.1 
A sequence of logic events from a synchronous state machine. (a) Block diagram symbol and (b) 

omput voltage waveform~. (c) Timing diagram representing the positive logic interpretation of the 
voltage wavelonns and showing II sequence of logic states. 
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Fig. 10.1 b. From these physical waveforms the positive logic waveforms are constructed 
and a sequence oflogic states is read in the order ABC as shown in Fig. 10.lc. A group of 
logic waveforms such as these is commonly known as a timing diagram, and the sequence 
of logic states derived from these waveforms is seen to be a binary count sequence. Here, 
A, B, and C are called state variables because their values collectively define the present 
state of the machine at some point in time. Knowing the present state in a sequence of states 
also reveals the next state. Thus, in Fig. lO.lc, if state 101 is the present state, then 110 is 
the next state. This short discussion evokes the following definition: 

A logic state is a unique set of binary values that characterize the logic status of a 
sequential machine at some point in time. 

A sequential machine always has a finite number of states and is therefore called afinite 
state machine (FSM) or simply state machine. Thus, if there are N state variables, there 
can be no more than 2N states in the FSM and no fewer than 2. That is, for any FSM, 

2 .:::: (number of states) .:::: 2N 

For example, a two-state FSM requires one state variable, a three- or four-state FSM requires 
two state variables, five- to eight-state FSMs require three state variables, etc. More state 
variables can be used for an FSM than are needed to satisfy the 2N requirement, but this 
is done only rarely to overcome certain design problems or limitations. The abbreviation 
FSM will be used frequently throughout the remainder of this text. 

To help understand the meaning of the various models used in the description and design 
of FSMs, four binary sequences of states are given in Fig. 10.2, each presenting a different 
feature of the sequence. The simple ascending binary sequence (a) is the same as that in 
Fig. 10.1. This sequence and the remaining three will be described as they relate to the 
various models that are presented in the following section. 

10.2 MODELS FOR SEQUENTIAL MACHINES 

Models are important in the design of sequential machines because they permit the design 
process to be organized and standardized. The use of models also provides a means of 
communicating design information from one person to another. References can be made to 
specific parts of a design by using standard model nomenclature. In this section the general 
model for sequential machines will be developed beginning with the most elemental forms. 

Notice that each state in the sequence of Fig. 10.2a becomes the present state (PS) at 
some point in time and has associated with it a next state (NS) that is predictable given the 
PS. Now the question is: What logic elements of an FSM are required to do what is required 
in Fig. 1O.2a? To answer this question, consider the thinking process we use to carry out a 
sequence of events each day. Whether the sequence is the daily routine of getting up in the 
morning, eating breakfast, and going to work, or simply giving our telephone number to 
someone, we must be able to remember our present position in the sequence to know what 
the next step must be. It is no different for a sequential machine. There must be a memory 
section, as in Fig. lO.3a, which generates the present state. And there must be a next state 
logic section, as in Fig. lO.3b, which has been programmed to know what the next state 
must be, given the present state from the memory. Thus, an FSM conforming to the model 
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State variables ABC PS NS, r State symbol 

,.) 011 100 101 110 111 000 

X'" Up count ood X '" down count 

, , x x x x , 
(0) 

x x 
PS NS if X 

X , x , X ZI1 X x 
(0) 

x x 

x X X X x ZUifX x x 
(d) 

x , 
fiGURE 10.2 
A sequence of states wilh present and next statts based on Fig. 10. 1. la) A simple ascending binary 
sequence showing present state (PS) and next state (NS). (b) A bidirectional (up/down J binary sequence 
showing PS and NS depending on logic level of input X. Ie) A bidirect ional binary sequence wi th 
output Z in slate I II . (d) A bidirectional sequence with output Z in state III conditional on input X 
(up..coum). 

of Fig. 10.3b is capable of perfonning the simple ascending binary sequence represented by 
Fig. 10.2a. However. to carryout the bidirectional binary sequence of Fig. IO.2b. a machine 
confonning to the basic model of Fig. lO.k is required to have external input capability. 
As in the case of Fig. 1O.2b, an input X would force the FSM to count up in binary, while 
X would cause it to count down in binary. 

If it is necessary that the FSM issue an outpuf on arrival in any given Slale, output-forming 
logic must be added as indicated in Fig. 10.4. This model has become known as M oore 's 
model and any FSM that conforms to this model is often called a Moore machiM in hooof of 
E. F. Moore. a pioneer in sequential circuit design. For example. an FSM that can generate 
the bidirectional binary sequence in Fig. 10.2c is called a Moore FSM, since an output Z is 
unconditionally activated on arrival in state I II (up arrow. t) and is deactivated on exiting 
this slate (down arrow. ~); hence the double arrow (.t.. t) for thl! output symbol Z J. t . Such 
an output could be lermed a Moore Oil/put. that is. an outPUt that is issued as a function of 
the PS only. The functional rela tio nships for a Moore FSM are 

I PS=f(NS) I 
NS = [,(1P. PS) . 

OP = {,"(PSI 

where /P represents the external inputs and OP the outpul~. 

(10.1 ) 
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Developmem of the basic modd for sequemiaJ machines. fa) The memory section only. (h) Model 
for an FSM capabk of performing the sequence in Fig. IO.2a. ~howing the memory section and 
NS-fonning logic. (c) The basic model for an FSM capabk of performing the sequence in Fig. 1O.2b 
when the external input is X. 
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Moore's model for a sequential machine capable of performing the bidireclional binary sequence in 
Fig. IO.2c. showing the ba~ic model in Fig. 1O.3c with Ihe added oulpul-forming logic thaI depends 
only on the PS. 
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Mealy's (genemi) model for a sequential machine capable of performing the bidirectional binary 
sequence in Fig. 1O.2d. showing the basic rnodel in Fig. lO.Jc wi th the adtJ...--d oulpul-forming logic 
thai depends on bo(h IP and PS. 

Now suppose it is necessary to issue an output conditional on an input as in the bidirec
tional binary sequence of Fig. IO.2d. This requires a model whose outputs no t only depend 
on the PS, bUi also depend on the inputs. as illustrated in Fig. 10.5. Such a model is the 
most gel/eml model fOf state machines and is known as Mealy's model after G. H. Mealy. 
another pioneer in the field of sequential machines. Thus. an FSM that confonns to this 
model can be called a Mealy machine and would be capable of generating the bidirectional 
binary sequence of Fig. IO.2d, where the output is issued in slate III btu only if X is active 
(i.e., on an up count). Such an output could be tenned a Mealy Olllpur, that is. an output that 
is issued conditional on an input. The funct ional relationships fOf a Mealy FSM are 

1 
pS~ fiNS) I 
NS ~ f'(lP. PS) . 

OP ~ r(/p. PS) 

(10.2) 

As is ev ident from an inspection of Figs. 10.4 and 10.5, the only difference between a 
Mealy FSM and a Moore FSM is that the Mealy machine has one or more outputs that are 
conditional on one or more inputs. 11le Moore machine has no conditional outputs. Hereafter, 
reference made to a Mealy machine or a Moore machine will imply this d ifference . Similarly, 
outputs thai are referred to as Mealy outputs will be those that arc issued conditionally on 
onc or more inputs. and outputs referred to as Moore outputs will be those that are issued 
unconditionally. 

10.3 THE FUllY DOCUMENTED STATE DIAGRAM 

In Fig. 10.2. a single input X is used to inftueoce the sequential behaviorofa binary sequence. 
A more complex example might involve several inputs that control the sequential behavior 
of the FSM. Such an FSM might be caused 10 enter one of several possible sequences (or 
routines). each with subroutines and ootputs, all controlled by extemal inpUis whose values 
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(a) Features of the fully docwncntcd state diagram section. (b) The inpullstate map for state h. 
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b 
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change at various times during the operation of the FSM. Obviously. some means must be 
found by which both simple and complex FSM behavior can be represented in a precise 
and meaningful way. Thefully documented slale diagram discussed in this section is one 
means of representing the sequential behavior of an FSM. 

Presented in Fig. 1O.6a is a portion of a slate diagram showing Ihe important features 
used in ils construction. Attention is drawn 10 states identified as a , b. c, and d. Here. 
state b is the present state (PS) at some point in time and is given rhe state code assign
ment . . · 010. Notice that Slare b branches 10 itself under the branching condition X Y, the 
holding condition for that state. and rhat the next state (NS) depends on which input. X or 
Y, changes first If X changes first, hence X Y -4 X Y, the FSM will transit to the next state 
d. where it will bold on the input condition X, where X = X Y + X Y. OI if Y changes first, 
XY _ XY. the FSM will transit to state c. where there is no holding condition. 

The output notation is straightforward. There are two types of outputs that can be repre
sented in a fully documented state diagram. Referring to state b in Fig. 10.6a, the output 

LOADH 

is an unconditional (Moore) output issued any time the FSM is in state b. The down/up 
arrows (.t. t) signify that LOAD becomes active (up arrow, t) when the FSM enters state b 
and becomes inactive (down arrow, .t.) when the FSM leaves that Slate. The order in which 
the arrows are placed is immaterial as, for example, up/down. The output DONE in state c 
is also an unconditional or Moore output. The second type of output, shown in state d of 
Fig. 1O.6a and indicated by 

COUNT H ifY. 

is a conditional output that is generated in state d but only if Y is active - hence, COUNT 
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... . 

1'1 

FIGURE 10.7 
Application of the sum rule given by Eq. (10.3). (a) State diagram segment showing branching 
conditions relative to the jth state. (b) Application of the sum rule to the jth state in the state diagram 
segment. 

is a Mealy oUlput according to the Mealy model in Fig. 10.5. Thus, if input Y should toggle 
between active and inactive conditions while the FSM resides in state d, so also would the 
output COUNT toggle with Y. 

The Sum Rule There are cenain rules that musl "normally" be folJowed for proper con
struction of state diagrams. One of these rules is called the sum rule and is stated as follows: 

The Boolean sum of all branching condilionsfrom a given stale mu,S{ be logic J. 

With reference to Fig. 10.7, this rule is expressed mathematically as 

,-, 
I:;J,-; ~ I, (10.3) 
i=n 

where fi _ j represents the branching condition from the jlh 10 the ith stale and is summed 
over n states as indicated in Fig. 10.7b. For example, if the sum rule is applied to state b in 
Fig. 1O.6a. the result is 

Xy + X + XY = I , 

since according 10 the absorptive law, Eq. (3.13). X +X Y = X +Y. which is the compiemenl 
of XY. The graphical representation of the sum rule, as applied 10 stale b, is shown in 
Fig. 1O.6b and is called the input/slate map. Had the sum rule not been satisfied, one or 
more branching conditions would not be accounted for and one or more of the cells in 
the inpulfstate map of Fig. IO.6b would be vacant. If applied, unaccounled-for branching 
conditions can cause an FSM (0 malfunction. 

The Mutually Exclusive Requirement While satisfying the sum (L: = 1) rule is a nec
essary condition for state branching accounlability in a fully documented state diagram, it 
is not sufficient to ensure thaI the branching conditions are nonoverlapping. The meaning 
of this can be stated as follows: 
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, -I 

(3) (b) 

FIGURE 10.8 
Application of the nlulUally exclusiye requirement g iven by Eq. (10.4). (a) State diagram segment 
.~ howing branching conditions relative to the j th statt. (b) Application of lhc mutually exclusive 
requirement to the state diagram segment in (a). 

caeh po.rsible branching condition from a given state mllst be associated with no 
more than one bnlllching polh. 

With reference 10 Fig. 10.83, this condition is expressed mathematically as 

"-I 

f; ~j = L f"- j. . .., 
, i'i 

()0.4) 

where each branching condilion is seen to be the complement of the Boolean sum of those 
remaining as indicated in Fi!L..!Mb. When applied [0 state b in Fig. 10.6, Eq. (10.4) gives 
the resu h s X Y = X + X Y = X + Y = X Y and X = XY + Xl' = X.etc .. clearly indicating 
that both the mutually exclusive requirement and the sum rule are satisfied. See Problem 
lD.24 for more on this subject. 

Now consider the case shown in Fig. 1O.9a. where the sum rule is obeyed but not the 
mutually excl usive requirement In Ihis case, (he branching condition XY is associated 

x 

b 

(3) 

FIGURE 10,9 

o 

X"'X+XY;l 
Sum rule holds 

XY .. X+X 

Mutually exclusive 
condition does not hold 

X 
y , 1 

, 3 3 

, 0 b+o 

(b) 

(a) A portion of a state diagram for which the mutually exclusive condi tion does not hold. (b) Inpulislale 
map showing violation of the mutually exclusive requiremenl as applied to Sla te a under branching 
coodilion X Y, 
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with both the a -+ b and the a -+ C branching paths. Thus, if XY -+ XY while in state 
a, malfunction of the FSM is likely to occur. In Fig. 10.9b is the input/state map showing 
violation of Eq. (lOA) under input condition XY shared by branching paths a -+ band 
a -+ c. Thus, if the mutually exclusive requirement is to hold for a given state, the input/state 
map must not have cells containing more than one state identifier. 

When Rules Can Be Broken There are conditions under which violation of the sum rule 
or of the mutual exclusion requirement is permissible. Simply stated, these conditions are 
as follows: If certain branching conditions can never occur or are never permitted to occur, 
they can be excluded from the sum rule and from the mutually exclusive requirement. This 
means that Eqs. (10.3) and (lOA) need not be satisfied for the FSMto operate properly. As an 
example, suppose that in Fig. 10.6 the branching condition is Y for branching path b -+ c. 
Thus, the sum rule holds since X Y + X + Y = I. However, the branching condition X Y is 
common to both the b -+ c and b -+ d branching paths with branching conditions Y and 
X, respectively. Clearly, the mutually exclusive requirement of Eq. (lOA) is not satisfied, 
which is of no consequence if the input condition XY can never occur. But if the input 
condition XY is possible, then branching from state b under XY is ambiguous, leading to 
possible FSM malfunction. See Problem 1O.24b for a more direct means of testing for the 
mutual exclusivity of branching conditions. 

10.4 THE BASIC MEMORY CELLS 

Developing the concept of memory begins with the basic building block for memory called 
the basic memory cell or simply basic cell. A basic cell plays a major role in designing a 
memory device (element) that will remember a logic 1 or a logic 0 indefinitely or until it 
is directed to change to the other value. In this section two flavors of the basic cell will be 
heuristically developed and used later in the design of important memory elements called 
jlip-jiops. 

10.4.1 The Set-Dominant Basic Cell 

Consider the wire loop in Fig. 10. lOa consisting of a fictitious lumped path delay (LPD) 
memory element !3.t and two inverters whose function it is to maintain an imaginary signal. 
The LPD memory element is the path delay for the entire wire loop including inverters 
concentrated (lumped) in !3.t, hence the meaning of the word "fictitious." But since there 
is no external access to this circuit, introduction of such a signal into this circuit is not 
possible. This can be partially remedied by replacing one of the inverters with an NAND 
gate performing the OR operation as in Fig. 10. lOb. Now, a Set (0 -+ 1) can be introduced 
into the circuit if S(L) = I(L). This can be further understood by an inspection of the 
Boolean expression Qt+1 = S + Qt for the circuit in Fig. 1O.lOb, where the following 
definitions apply: 

Qt+1 = Next state 

Qt = Present state. 
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o 0, Hold 
1 1 Sel 

(0) 

Developmentof {he concepl o(Sct. (a) Wire loop with a fictitious lumped path delay mt mory clemen! 
and two inverters used 10 restore an imaginary signal. (b) Win: loop with one inverter replaced by a 
NAND gale u~d to introduce· OJ Set condition. (c) Truth table obtained (rom the logic expression for 
Q,+I in (b) showing the Hold and Sct conditions. 

The truth table in Fig. 1O.10c is constructed by introducing the values {O, I f for S into this 
equation and is another means of representing the behavior of the ci rcuit in Fig. IO. IOb. 
The hold condition Q, +I = Q/ occurs any time the next siale is equal 10 the presenl slale. 
and the Set condilion occurs any time the next state is a logic I , i.e .• Q,.f.1 = I. 

The circuit of Fig. 10. lOb has the ability to introduce a Set condit ion as shown. bUI no 
means of introducing a Reset (I _ 0) condition is provided. However. this ClIO he done 
by replacing Ihe remaining inverter with an NAND gate perfonning the AND operation 
as shown in Fig. 1O. lla. Then, if R(L) = I(L) when S(L) = O(L), a Rese! condition is 
introduced into Ihe circuit. Thus. both a Sct and Reset condi!ion can be introduced illlo the 
circuit by external means. This basic memory element is called the set·dominan/ basic cell 
for which the logic circuit in Fig. 10.lla is but one of seven ways to represent ils character. 
as discussed in the following paragraphs. 

Fictitious Lumped path 
delay memory element ~ 

5(l) ~ O,.,(H) @] O,(H) 

R(l) ~~Re,., I 

FIGURE 10.11 

0"1:: S + RQ, SOP 

(.) 

0, 

0 

QI" 

(0) 

5 R ° ., 
0 0 0, Hold 

0 , 0 Reset 
0 1 Set 

1 Set 

(0) 

"The set-dominant basic cell represented in diffe rent ways. (a) Logic circu It showing the Set and Restl 
I;apability. and the Boolean equation for the next stale runctioo. Q/+ I. (b) EV K-map with minimum 
(:O'o"er indicatw by shaded loops. (c) Operation table for the ~t-dominanl basic cell showing lhe Hokl. 
Set. and Reset conditions inherent in the basic m¢mory cell. 
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S State 
State variable Input logic 
variable, Q change values 

~r-"----.... 

Qt --+ 0t+1 S R 

Reset Hold o --+ 0 0 ¢ 
~ ____ ~IlL ____ __ 

Set 0 --+ ¢ R(L) __ ----'nL ___ -' 
Reset --+ 0 0 1 

Set Hold --+ {~ ~} 
S+R 

(a) (b) (e) 

FIGURE 10.12 
The set-dominant basic cell (contd.). (a) State diagram derived from the operation table in Fig. 1O.11c. 
(b) Excitation table derived from the state diagram. (c) Timing diagram illustrating the operation of 
the set-dominant basic cell. 

Reading the circuit in Fig. I O.lla yields the following SOP expression for the next state 
function: 

(10.5) 

When this expression is plotted in an EV K-map, Fig. 10.llb results, where minimum cover 
is indicated by shaded loops. From this expression or from the EV K-map, it is clear that 
a set condition is introduced any time S = I, and that a reset condition results only if 
R = I and S = O. However, if both inputs are inactive, that is, if S = R = 0, it follows 
that Qt+l = Qf, which is the hold condition for the basic cell. The Hold. Set, and Reset 
conditions are easily observed by inspection of the operation table for the set -dominant basic 
cell given in Fig. 10.11 c. The basic cell is called set-dominant because there are two input 
conditions, SR and SR, that produce the Set condition as indicated by the operation table 
in Fig. 10.11 c. Notice that Fig. 10.11 represents four ways of representing the set-dominant 
basic cell: logic circuit, NS function, NS K-map, and operation table. 

By using the operation table in Fig. 10.11c, the state diagram for the set-dominant basic 
cell can be constructed as given in Fig. 1O.12a. To clarify the nomenclature associated with 
any fully documented state diagram. the following definitions apply to the state variable 
changes and will be used throughout this text: 

{ 

0 -+ 0 = Reset HOld] 
0-+ 1 = Set 

1 -+ 0 = Reset . 

1 -+ 1 = Set Hold 

(10.6) 

Thus, for the state diagram in Fig. 1O.12a, S is the Reset Hold branching condition, S is 
the Set branching condition. SR is the Reset branching condition, and S + R is the Set 
Hold branching condition. The output Q is issued (active) only in the Set state (state 1), 
not in the Reset state (state 0). Notice that for each of the two states the sum rule (L: = 1) 
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holds as it must. But all branching conditions are easily deduced from an inspection of the 
operation table. For example, the Set condition is the Boolean sum Sl? + SR = S. or the 
Set Hold condition is the sum S R + s R + S R = S + R. which is simply the complement 
of the Reset branching condition 5 R = S + I? in agreement with the sum rule. 

From the state diagram of Fig. 10.12a another important table is derived, called lhe 
excitation table, and is presented in Fig. iO.12b. Notice that a don't care ¢ is placed in 
either the S or R column of the excitation table for the basic cell to indicate an unspecified 
input branching condition. For example. the Set branching condition S requires that a I be 
placed in the S column while a ¢ is placed in the R column, indicating that R is not specified 
in the branching condition for Sel. Similarly. for the Set Hold branching path I ...". I. the 
branching condition S + I? requires a 1 and ¢ to be placed in the Sand R columns for the S 
portion of the branching condition. and that a ¢ and 0 to be placed in the S and R columns 
for the I? portion, respectively. Thus. the excitation table specifies the input logic values for 
each of the four corresponding state variable changes in the state diagram as indicated. 

As a seventh and final means of representing the behavior of the sel-dominant basic cell. 
a timing diagram can be constructed directly fro m the operation table in Fig. 1O.llc. This 
timing diagram is given in Fig. IO.12c. where the operating conditions Set. Set Hold. Reset. 
and Resel Hold are all represented - at this poi.nt no account is taken of the path delay 
through the gates. Nolice that the set-dominant character is exhibited by the S. R = 1,0 
and S, R = I, I input conditions in both the operation table and timing diagram. 

10.4.2 The Reset-Dominant Basic Cell 

By replacing the two inverters in Fig. 10. IOa with NOR gates. there results the logic circuit 
for the reset-dominant basic cell shown in Fig. 10.13a. Now, the Set and Reset inputs are 
presented active high as S(H) and R(H). Reading the logic circuit yields the POS logic 
expression for the next state, 

QI+I = I?(S+ QI)' (10.7) 

Fletillous l umped path 

delay memory element ~ 

R(H) O,.,/H) ~t 
5/H) 

a (H) 
a , 

0 ® ' R 

S R a 
0 0 a , Hold 

1 & 
0 1 0 Reset 

0 S" 
Se t~Aeset 

a 1 0 Reset ,., 

(a) (b) (0) 

FIGURE 10.11 
The reset-dominant basic cell represented in different ways. (a) Logiccircuit showing the Set and Reset 
capability, and the Boolean equation for the next stale function. Q,+ 1. (b) EV K-map with minimum 
cover indicated by shadlXl loops. (c) Operation table for the reset-dominant basic cell showing the 
Hold, Set, and Reset conditions inherent in the basic memory cell. 
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State 
S+R variable Input logic 

change values 
State 
variable, a 

~,.--A---.. 

at ~ 0t+l S R 

Reset Hold o ~ 0 {~ ~} 
Set O~ 0 

Reset ~ 0 ¢ 

Set Hold ~ ¢ 0 
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(a) (b) 

FIGURE 10.14 

S(H)~ 

R(H)_~---,n,-__ ----, 

The reset-dominant basic cell (contd.). (a) State diagram derived from the operation table in Fig. 
1O.13c. (b) Excitation table derived from the state diagram. (c) Timing diagram illustrating the oper
ation of the reset-dominant basic cell. 

which is plotted in the EV K-map in Fig. lO.13b with minimum cover indicated by shaded 
loops. The operation table for the reset-dominant basic cell is constructed directly from 
the Boolean expression for Qt+l and is given in Fig. 1O.13c, where input conditions for 
Hold, Reset, and Set are depicted. Notice that the Set condition is introduced only when 
S R is active, whereas the Reset condition occurs any time R is active, the reset-dominant 
character of this basic memory element. 

The state diagram for the reset-dominant basic cell is constructed from the operation 
table in Fig. 10.1 3c with the result shown in Fig. 1O.14a. Here, the Set condition S R is 
placed on the 0 -+ I branching path. Thus, it follows that the Reset Hold condition is 
S + R, which can be read from the operation table as S R + S R + S R = S + R, or is simply 
the complement of the Set input condition SR = S + R, a consequence of the sum rule. 
The remaining two branching conditions follow by similar reasoning. 

The excitation table for the reset-dominant basic cell is obtained directly from the state 
diagram in Fig. 1O.14a and is presented in Fig. 1O.14b. Again, a don't care ¢ is placed in 
either the S or R column of the excitation table for the basic cell to indicate an unspecified 
input branching condition, as was done in the excitation table for the set-dominant basic 
cell of Fig. 10.12b. The nomenclature presented to the left of the excitation table follows 
the definitions for state variable change given by Eqs. (10.6). 

The seventh and final means of representing the reset-dominant basic cell is the timing 
diagram constructed in Fig. lO.14c with help of the operation table in Fig. lO.13c. Again, no 
account is taken at this time of the gate propagation delays. Notice that the reset-dominant 
character is exhibited by the S, R = 0, I and S, R = 1,1 input conditions in both the 
operation table and the timing diagram. 

At this point the reader should pause to make a comparison of the results obtained for the 
set-dominant and reset-dominant basic cells. Observe that there are some similarities, but 
there are also some basic differences that exist between the two basic memory elements. 
Perhaps these similarities and differences are best dramatized by observing the timing 
diagrams in Figs. lO.12c and 1O.14c. First, notice that the Sand R inputs arrive active 
low to the set-dominant basic cell but arrive active high to the reset-dominant cell. Next, 
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observe the difference in the QUO wavefonn for these two types o f basic cells. Clearly, 
the set-dominant character is d ifferent from the reset-domina", character wi lh regard to the 
S , R = I, I input condition. This difference may be regarded as the single most importanl 
difference bc!tween these two mc::mory cells and will playa role in the d iscussion thaI follows. 

10.4.3 Combined form of the Excitation Table 

The ex.citation table for a memory element has spec ial meaning and utili ty in state machine 
design . In subsequent sections it will be shown that the basic memory cell plays a major 
role in the design and analysis of tlip-ftops, the memory elemen ts used in synchronous 
state machine design. Two such ex.cit3tion tables have been identified so far: one associated 
with the set-dominant basic cell and the other associated with the resct-dominant cell. 
For purposes of flip-fl op design these two excitation tables arc inappropriate because of 
the different way they behave under the S. H = I. I input condition. To overcome this 
difference. the two may be combined to give the sing le generic (combilled) excitarion table 
as shown in Fig. 10. 15. Here, common S. R input conditio ns for the IWO e.~c i tation tables 
in Figs. 10.I.5a and IO.15b are identified for ea("h of the four branching paths given and 
are broughttogelher to fonl1 the combined excitation table in Fig. 1O. 15c. The important 
characteristic of the combined excitation is Ihal rhe S. R = I. I conditioll i.5 absellf. This 
Icads 10 the fo llowi ng important SIUle melllS: 

• Because (he S, R == I . I CO/ldilioll i.~ 1101 prese/ll in ,h~ combilled excilarion rabie, 
i l is applicable 10 tithe/' Ihe sel·domill(1II1 basic cell or rhe reset·domin.anT basic 
cell . 

• Throughoul rhe remainder of This Ie,TI only Ihe combined excitatioll toble will be 
uud ill the desigll of otlrer .HOle mochi/les, includb'g orher memory elements called 
flip·flops. 

0 .... 0'1 S R 
o ~ 0 0 ~ 

o ~ • 
~ 0 0 

~)~ 1 ~ {J 
Excitation Table IOf 
the Set-Dominant 

BaSIC Cell 

(a) 

FIGURE 10.15 

",~a. s R 
0 ~ 0 0 • 
0 ~ 1 1 0 

1 ~ 0 0 1 

1 ~ 1 • 0 
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a .... 0'1 S R 

0 ~ 0 {~ ~} 
0 ~ 1 1 0 

/: ~ 0 • 
~ • 0 

Excitation Table for 
the Reset-Dominant 

Basic Cell 

(b) 

The cxcitalion table for Ihe basic cell. (a) Excitation table for the set-dominant (NAND·based) basic 
cd!. Ih) Excitation lable for lhe rcset-dominant (NOR-based) basic cell. (cJ Generic (combined) 
excitation lable applicabte to eilhcr of thc basic cells since the S, R = I. I condition is absent. 
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S(L)~ [S + ROt](H) 

R(L) ---fC:3:l- R[S + ROtl(L) 

S R/ S + ROt / R'[S + ROtl 

0 0 °t °t Hold 
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Outputs 
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0 Ambiguous 

(a) (b) 

FIGURE 10.16 
Mixed-rail outputs of the set-dominant basic cell. (a) Logic circuit showing the mixed-logic output 
expressions from the two gates. (b) Truth table indicating the input conditions required for mixed-rail 
outputs. 

Thus, the individual excitation tables for the set-dominant and reset-dominant basic cells 
will be of no further use in the discussions of this text. 

10.4.4 Mixed-Rail Outputs of the Basic Cells 

There are subtle properties of the basic cells, yet to be identified, that are essential to 
the design of other memory elements. These properties deal with the output character of 
the basic cells. Referring to the logic circuit in Fig. 1O.lla, only one output is identified 
for the set-dominant basic cell. However, by removing the fictitious lumped path delay 
(LPD) memory element t1.t and arranging the conjugate NAND gate forms one above the 
other, there results the well-known "cross-coupled" NAND gate configuration shown in 
Fig. I O.16a. There is but one feedback path for the basic cell (indicated by the heavy line), 
though it may appear to the reader as though there are two. 

The mixed-logic output expression from each of the two conjugate NAND gate forms in 
the set-dominant basic cell is read and presented as shown in Fig. 1O.16a. Using these two 
output expressions, the truth table in Fig. I O.16b is constructed. In this table it is observed 
that all input conditions except S, R = I, I generate what are called mixed-rail outputs from 
the two conjugate NAND gate forms. This means that when a O(H) is produced from the 
OR form, a O(L) appears on the output ofthe AND form. Or when the former is I(H), the 
latter is I(L). The S, R = I, I input condition, meaning S(L) = R(L) = l(L), produces 
outputs that are I(H) and O(L) = I(H) from the OR and AND forms, respectively, and 
are not mixed-rail outputs - the NAND gate outputs are ambiguous, since they cannot be 
labeled as either Set or Reset. 

A similar procedure is used in defining the mixed-rail outputs from the reset-dominant 
basic cell. Shown in Fig. 1O.17a are the "cross-coupled" NOR gates where the fictitious 
LPD memory element t1.t has been removed, and outputs from the two conjugate NOR gate 
forms are given in mixed-logic notation. Notice again that only one feedback path exists as 
indicated by the heavy line. 

The input conditions required to generate mixed-rail outputs from the reset-dominant 
basic cell are presented in the truth table of Fig. 1O.17b. This table is obtained from the 
logic circuit and mixed-logic expressions in Fig. 1O.17a. Notice that all input conditions 
except the S, R = I, I condition generate mixed-rail outputs from the two conjugate NOR 
gate forms, similar to the case of the set-dominant basic cell in Fig. 1O.16b. Thus, again, the 
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Mixed-rail outputs of the reset-dominant basic cel\. (a) Logic circuit showing the mixed-logic output 
expressions from the two confugate gate forms. (b) Truth table indicating the input conditions required 
to produce mixed-rail output conditions. 

S, R = I, I condition produces an ambiguous output, since the outputs from the conjugate 
NOR gates are neither a Set nor a Reset. 

Clearly. the mixed-rail outputs of the two types of basic memory cells and the combined 
excitation table representing both basic cells all have something in common. From the 
results of Figs. 1O.ISc, 1O.16b, and 1O.17b, the following important conclusion is drawn: 

The mixed-rail output character of the set- and reset-dominant basic cells is inherent 
in the combined excitation table of Fig. 10. 15c, since the S, R = 1, 1 input condition 
is absent. 

Use of this fact will be made later in the design of the memory elements, called flip-flops, 
where the basic cells will serve as the memory. Thus, if the S, R = I, I condition is never 
allowed to happen, mixed-rail output response is ensured. But how is this output response 
manifested? The answer to this question is given in the following subsection. 

10.4.5 Mixed-Rail Output Response of the Basic Cells 

From Subsection 10.4.4, one could gather the impression that a mixed-rail output response 
from the conjugate gate forms of a basic cell occurs simultaneously. Actually, it does not. To 
dramatize this point, consider the set-dominant basic cell and its mixed-rail output response 
to nonoverlapping Set and Reset input conditions shown in Fig. 1O.ISa. It is observed that 
the active portion of the waveform from the ANDing operation is symmetrically set inside 
of that from the ~Ring (NAND gate) operation by an amount i on each edge. Here, it is 
assumed that i) = i2 = i is the propagation delay of a two-input NAND gate. Thus, it 
is evident that the mixed-rail output response of the conjugate gate forms does not occur 
simultaneously but is delayed by a gate propagation delay following each Set or Reset input 
condition. The circuit symbol for a set-dominant basic cell operated under mixed-rail output 
conditions is given in Fig. 1O.ISb. Should an S, R = I, I input condition be presented to the 
set-dominant basic cell at any time, mixed-rail output response disappears, and the circuit 
symbol in Fig. 1O.1Sb is no longer valid. That is, the two Q's in the logic symbol assume 
the existence of mixed-rail output response. 

In a similar manner, the mixed-rail output response of the reset-dominant basic cell to 
nonoverlapping Set and Reset input conditions is illustrated in Fig. 1O.ISc. Again, it is 
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FIGURE 10.18 
Mixed-rail outpul response of the basic cells and circuit symbols. (a) Logic circuit and mixed-rail 
output response for the set-dominant basic cell. (b) Circuit symbol symbol for The sd-dominant basic 
cell. (e) Logic circuit aJld mixed-rail output response for the reset·dominant basic cell. (d) Cireuil 
symbol for the reset-dominant basic cell. 

observed that the active portion of the waveform from the ANDing (NOR gate) operation 
is symmetrically set within that oflhe ~Ring operation by an amount equal to, = 'I = '2, 

the propagation delay of a NOR gate. The circuit symbol for the reset~dominant basic 
cell operated under mixed-rail output conditions is given in Fig. 1O.ISd. The difference 
in circuit symbols for set- and reset~dominant basic ceUs is indicative of the fact that the 
former requires active low inputs while the latter requires active high inputs. As is the case 
for the set-dominant basic cell, an S, R = I, I input condition eliminates mixed-rail output 
response and invalidates the circuit symbol in Fig. IO.JSd. The two Q's in the logic symbol 
assume the existence of mixed-rail output response. 

10.5 INTRODUCTION TO FLlp·FlOPS 

The basic cell. to which the last section was devoted, is not by itsel f an adequate memory 
element for a synchronous sequential machine. It lacks versatility and, more importantly. 
its operation cannot be synchronized with other parts of a logic circuit or system. Actually, 
basic cells are asynchronous FSMs without a timing control input but which arc essential to 
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Clock logic waveforms. (a) Regular clock waveform showing rising and falling edges and a fixed 
clock period TCK. (b) Irregular clock waveform having no fixed clock period. 

the design ofjiip-jiops, the memory elements that are used in the design synchronous state 
machines. A flip-flop may be defined as follows: 

Ajiip-jiop is an asynchronous one-bit memory element (device) that exhibits sequen
tial behavior controlled exclusively by an enabling input called CLOCK. 

A flip-flop samples a data input of one bit by means of a clock signal, issues an output 
response, and stores that one bit until it is replaced by another. One flip-flop is required 
for each state variable in a given state diagram. For example, FSMs that are capable of 
generating the 3-bit binary sequences shown in Fig. 10.2 each require three flip-flops for 
their design. 

The enabling input, clock, can be applied to the flip-flops as either a regular or irregular 
waveform. Both types of clock waveforms are represented in Fig. 10.19. The regular clock 
waveform in Fig. 10.19a is a periodic signal characterized by a clock period TCK and 
frequency fCK given by 

1 
fCK = -r. ' 

CK 

(10.8) 

where fCK is given in units of Hz (hertz) when the clock period is specified in seconds. 
The irregular clock waveform in Fig. 1O.19b has no fixed clock period associated with it. 
However, both regular and irregular clock waveforms must have rising (0 ~ 1) and falling 
(l ~ 0) edges associated with them. as indicated in Fig. 10.19. 

10.5.1 Triggering Mechanisms 

In synchronous sequential machines, state-to-state transitions occur as a result of a triggering 
mechanism that is either a rising or falling edge of the enabling clock waveform. Flip-flops 
and latches that trigger on the rising edge of the clock waveform are said to be rising 
edge triggered (RET), and those that trigger on the falling edge of the clock waveform are 
referred to asfalling edge triggered (FET). These two triggering mechanisms are illustrated 
in Fig. 10.20, together with the logic symbols used to represent them. The distinction 
between flip-flops and latches will be made in Section 10.7. 
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Rip-Hop and latch logic circuit symbology. (a) Rising-edge triggering. (b) Falling-edge triggering. 

Mechanisms involving a two-stage triggering combination of RET and FET Hip-flops 
are classified as masrer-slave (MS) triggering mechanisms and Hip-flops that employ this 
lwo-stage triggering are called, accordingly. master- slave (MS)jfifJ-jfoPS. MS flip-flops will 
be dealt with together wilh edge-triggered flip-flops in subsequent s<.-ctions. 

10.5.2 Types of Flip-Flops 

The designer has a variety of fl ip-flops and triggering mechanisms from which 10 choose for 
a given FSM design . The mechanisms are classified as either edge lriggered (ET), meaning 
RET or FET. or master-slave (MS). The types of flip-flops and the mechanisms by which 
they operate arc nonnally chosen from following list: 

D flip-flops (ET or MS triggered) 
T flip-flops (ET or MS triggered) 
JK flip-flops (ET or MS triggered) 

The generalized definitions of the flip-flop types D, T. and JK are internationally accepted 
and will be discussed in rum in the sections that follow. There are other flip-flop types 
(e.g., SR flip-flops) and other lriggering mechanism interpretations, and these will be noted 
where appropriate. II is Ihe intent of this tex110 concentrate on the major Iypes of flip -flop 
memory elements. 

10.5.3 Hierarchical Flow Chart and Model for Flip-Flop Design 

In checking the data books on flip-flops il becomes clear that there exists an interrelationship 
between the different lypes sugge~ting that in many cases there exists a "parent" flip-flop 
type from which the others are created-a hierarchy for Hip-nap design. In fact, it is the 0 
flip-flop (D-FF) that appears 10 be the basis for the creation of the other lypes of fli p-flops, 
as indicated in the flow chart of Fig. 10.21. However. it is the J K flip-flop types that are 
called universal flip-jfops because they operate in all the modes common to the D. T, and 
SR Iype flip-flops. Also. once created. the JK flip-flops are most casily converted 10 other 
types of flip-flops (e.g .. JKs converted to Ts). as suggested by the flow chart. With few 
exceptions, flip-flops other than D, JK , and SR Iypes are rarely avai lable commercially. Of 
the latches. one finds that only the 0 and SR latches are available commercially. 

There are. of course. exceptions to this hierarchy for flip-flop design. but il holds true for 
most of the fl ip-flops. The miscellaneous category of flip-flops includes those with special 
properties for specific applications. The SR flip-flop types fall into this category. 
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D·FFs 

FIGURE 10.21 
Row chan for fl ip-nQ(l de.~ign hierarchy. showing D type flip-flops as ccntnlilo the dl!sign of other 
flip-flops. 

The model that is used for flip-flop design is the basic model g iven in Fig. to.3c but 
adapted specifically to fl ip-flops. This model. presented in Fig. 10.22a, is applied to a 
generalized. fic titious RET XY type flip-fl op and features o ne or more ba.~ i c memory 
cells as the memory. the next state (NS) fonning logic, external inputs including clock 
(CK), the Sand R nex t state funct ions. and the presem state (PS) feedb:lck paths. Had 
the fic titious XY-FF been given an f'ET mechanism. a bubble would appear on me outside 
of the clock triggering symbol (Ihe triangle), NOle that the Sand R next state functions 
would each be represented by dual lines if two basic cells are used as lhc memory for 
the XY flip-flop . The logic circuit symbol for the RET XY flip-flop (XY-FF) is given in 
Fig . JO.22b. 

Not all flip-flops 10 be discussed in the sections that follow hav~ two data inputs and nol 

all have PS feedback paths as in Fig. 10.22. And nOl all flip-flops will be rising edge lriggered 
as in this fictitious flip-flop. Funhcm)ore, flip-Hops classified as master-slave !lip-flops do 
not adhere to the model of Fig. 10.22. since they are two-stage memory clements composed 
of two memory e lements of one type or anOlher. Nevertheless. the model of Fig. 10.22 
prescnl" a basis for flip-flop design and will be used in Ihe discussions that follow. 

x 
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(a) The basic model adapted to a fictitious RET XY type fl ip-flop showing the basic cell(s) 3S memory. 
the NS forming logic. thl! S 3nd R next State fUCnlions. !he external data inputs X and y, the clock 
(CK) input. and the presenl slalc(PS) feedback lines from the mixed-rail OUlpLUS Q. (b) Cif('uit symbol 
for the RET XY Hip.flop. 
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10.6 PROCEDURE FOR FSM (FLIP-FLOP) DESIGN 
AND THE MAPPING ALGORITHM 

The following three-step procedure will be used in the design ofFSMs including Hip-Hops: 

I. Select the FSM (e.g .. a flip-Rop Iype) to be designed and represent this FSM in the 
fonn of a slate diagram. The oUlptJl-forming logic can be mapped and obtained at 
this point. 

2. Select the memory element (e.g., a basic cell o r Rip-fl op) to be used in the design of 
the FSM (e.g. , in the design of another Hip-Hop) and represent this memory element 
in the fonn of an excitation table. 

3. Obtain the NS fune lion(s) for the FSM in the fonn of NS K-maps by combining the 
information represenled in the state diagram with that represenled in the eltcitation 
table for the memory. To accomplish thi s. apply the fo llowing fflllppillg algorithm: 

Mapping Algorilhm (or FSM Design 

AND the memory input logic vallie ill the e.xc;tmioll flIble with the corre.f}WlldiIl8 bmllch
ing condition (Be) ill rhe .wate diagram/or the FSM to be df'signe(/. and ellfer tile result 
ill the appropriate cell of the NS K -map. 

The mapping algori thm is of general applicabil ity. It will be used nOI only to design and 
convert Hip-Hops. but also 10 design synchronous and asynchronous slate machines of any 
size and complex ity. The idea behind the mapping algorithm is that all FSMs. including 
flip-Ilops, are charactt:rized by a state diagram and a memory represented in the fonn of an 
excilalion table. The mapping algorithm provides the means by which these twocnlitics can 
be broughl together in some useful fashion so that the NS func lions can be obtai ned. For 
now. the means of doing this centers around the NS K-maps. But the procedure is general 
enough to be computerized for CAD purposes by using a state table in place of the state 
diagram. Use will be made of this fact in the latter chapters of this text. 

10.7 THE D FLIP-flOPS: GENERAL 

Every properly designed and operated D-FF behaves according to a single internationally 
accepted definition that is expressed in anyone or all of the three ways. Presented in 
Fig. 10.23 are the three means of defining the D flip-flop of any type. The first is the 
operation table for any D-fF given in Fig. 10.23a. It specifies that when 0 is active Q must 
be active (Set condition), and when 0 is inactive Q must be inactive (Resct condition). The 
state diagram for any D-FF. given in Fig. 1O.23b, is best derived from the operation table 
and expresses the same infonnation about the operation of the D-FF. Thus, stale 0 is the 
Reset stale (Q/ = 0) when D = 0, and slate I is the Set stale (Qr = I ) when 0 = I. 

The excitation table for any D-FF. given in Fig. IO.23c. is the third means of ex.pressing 
the definition of a D-FF. It is best derived directly from Ihe state diagram in Fig. 1O.23b. In 
this table the Qf _ Q,+I column represents the stale variable change from PS to NS, and 
the D column gives the input logic value for the corresponding branching path in the Slate 
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Generalized D flip-flop definition expressed in terms of the operation table (a), the state diagram (b), 
and the excitation table (c). 

diagram. For example, the Reset hold branching path 0 -> 0 is assigned D = 0 (for D), 
and the Set branching path 0 -> 1 is assigned the D = 1 for branching condition D. The 
excitation table for the D-FF is extremely important to the design of other state machines, 
including other flip-flops, as will be demonstrated in later sections. 

Now that the foundation for flip-flop design has been established, it is necessary to 
consider specific types of D flip-flops. There are three types to be considered: the D-Iatch, 
the edge triggered (ET) D flip-flop, and the master-slave (MS) D flip-flop, all of which 
adhere to the generalized definition of a D flip-flop expressed in Fig. 10.23. Each of these 
D-type flip-flops is represented by a unique state diagram containing the enabling input 
clock (CK) in such a way as to identify the triggering mechanism and character of the D 
flip-flop type. In each case the memory element used for the design of the D flip-flop is the 
basic cell (set-dominant or reset-dominant) that is characterized by the combined excitation 
table given in Fig. 10.15c. The design procedure follows that given in Section 10.6 where 
use is made of the important mapping algorithm. 

10.7.1 The D-Latch 

A flip-flop whose sequential behavior conforms to the state diagram presented in Fig. 10.24a 
is called an RET transparent (high) D latch or simply D latch. Under normal flip-flop action 
the RET D latch behaves according to the operation table in Fig. 10.23a, but only when 
enabled by CK. The transparency effect occurs when CK is active (CK = 1). During this 
time Q goes active when D is active, and Q goes inactive when D is inactive-that is, 
Q tracks D when CK = 1. Under this transparency condition, data (or noise) on the D 
input is passed directly to the output and normal flip-flop action (regulated by CK) does not 
occur. If the D latch is itself to be used as a memory element in the design of a synchronous 
FSM, the transparent effect must be avoided. This can be accomplished by using a pulse 
narrowing circuit of the type discussed later. The idea here is that minimizing the active 
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FIGURE 10.24 
The RET D latch. (a) State diagram for the 0 latch showing transparency effect when CK = I. (b) 
Excitation table for the basic cell and characteriUttion of the memory. 

ponions of the clock waveform also minimizes the probability that the transparent effect 
can occur. Although this is likely to be true. it is generally recommended that the D latch 
not be considered as a viable option when selecting a memory element for FSM design. 
Of course, if D can never go active when CK is act ive, the 0 latch can be considered as a 
viable option for memory in FSM design. 

The memory element 10 be used ill the design of tbe 0 latch is one or the olher of lwo 
basic cells (Fig. 10.18) characterized by the combined excitation table given in Fig. IO.24b. 
The plan for design of the D latch is simply to take the information contained in the state 
diagram of Fig. 1O.24a and in the exci tation table in Fig. 1D.24b, and bring the two kinds 
of infonnation together in the form of next-state K-maps by using the mapping algori thm 
given in Section 10.6 . When this is done the following infOOllation is used for the K-map 
entries.: 

ForO ...... 0 

For 0-1> I 

For l _O 

For 1-1> I 

(place 0 . (V + CK) = Din Cell DoftheS K-map I 
1 place ¢ . (D + eK) = ¢(D + CK) in Cell 0 of the R K -map 

(

place I . (DCA,) = DCK in Cell 0 of the S K -map I 
place O· (DCK) = 0 in Cell 0 of the R K -map 

I place O· (DCK) = 0 in Cell I of the S K -map I 
place I -(Del<) = bCKinCell1 of the RK-map 

/

Place ¢ . (~ + CK) = ¢(D + CK) in Cell i of the S x-mapl . 
place O· (DCK) = 0 in Cell I of the R K -map 

This results jn the next stale EV K-maps. minimum neXI state functions for Sand R. and the 
logic circui t and symbol all shown in Fjg. 10.25. The four null (zero) entries are omitted in 
the EV K-maps, leaving only the two essential and two nonessential (don' , care) entries for 
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FIGURE 10.25 
Design oflhe RET D latch by using a basic cell a..~ lhe memory. (a) EV K-maps and minimum Boolean 
expressions for the Sand R next-slale funclions. \b) Logic cif"{"uil showing the NS logic from part (a) 
and th~ sel-uumin:mt b:lsi~(:ell as the memory. fc) Logicdrcuit symbol fOf the RET D latch. 

use in extra'ting minimum cover. Note that DCK (in the S K-map) is contained in rJ>D.that 
bCK (in the R K-map) is contained in ¢i>. and that the logic circuil confomls to Ihe model 
in Fig. 10.22 exclusive of PS feedback. The CK input to the circuit symbol in Fig. 10.25c 
is consistent with that for a latch as indicmed in Fig. 1O.20a. 

The behavior or the RET 0 latch is best demonstrated by the timing diagram shown 
in Fig. 10.26. Here. normal 0 flip-flop (D-FF) action is indicated for D pulse durations 
much longer than a CK period. For normal O-FFbehavior, Q goes aClive when CK samples 
(senses) D active. and Q goes inactive when CK samples D inactive. However, when CK is 
aClive and D changes activation \eve\. the transparency effect occurs. This is demonstrated 
inlhe timing diagram of Fig. 10.26. 

The FET (transparent low) D latch is designed in a similar manner to the RET D latch 
just described. All that is required is to complement CK throughoUi in the state diagram 
of Fig. 10.240. as shown in Fig. lO.27a. Now. the transparency effeCi occurs when CK is 
inactive (CK = 0). If a set-dominant basic cell is again used as the memory. there resuils the 
logic circuil of Fig. 10.27b. where an inverter is the only added fearure to Ihe logic ci.rcuil 
shown in Fig. I O.25b. The logic cireuit symbol ror the FEr D latch is given in Fig. IO.27c. 
Here, Ihe active low indicator bubble on the clock input identifies this as a falling edge 

O(HI __ st------"Li-_---.J n n ILII 

n a (HI __ ~-------t-----~ ILII 

Normal D· FF action 

n ILII 

~ ~ 
Transparency 

a(l l -~,~===v_=-=-=-=-j-/ ---;:: 
FIGURE 1(1.16 
Timing diagr.lffi for an RET 0 latch 5hov.·ing JtOnnal D-FF aclion and (hoe- transparency effecl lhat can 
occur when CK is active. where no account is taken of gale path delays. 
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Thc FEr D latch. (a) State diagram showing condition for transparency. (b) Logic circuit assuming 
the use of a set-dominam basic cell as the memory for design. (c) Logic circuit symbol. 

triggered device consistent with Fig. IO.20(b). A CK{H) or CK(L) simply means RET or 
FET, respectively. 

If either the RET D latch or the FET D latch is 10 be used as the memory element in the 
design of a synchronous FSM. extreme care must be taken to ensure that the transparency 
effect does nOl occur. Transparency effects in flip-Hops result in unrecoverable errors and 
must be avoided. This can be accomplished by using a pulse narrowing circuit of the type 
shown in Fig. 10.28a. Here. an inverting delay element of duration tJ..l is used 10 produce 
narrow pulses of the same duration in the oUipullogic waveform as indicated in Fig. 10.2gb. 
The delay element can be one or any odd number of inverters, an inverting buffer, or an 
inverting Schmitt nigger. In any case. the delay element must be long enough to allow the 
narrow pulses to reliably cross the switching threshold. If the delay is too long, the possibillY 
of transparency exists; if it is too short, flip-flop triggering will not occur. 

10.7.2 The RfT 0 Flip-Flop 

The transparency problem inherent in the D latch. discussed in the previous subsection. 
place" rather severe constrainlS on the inputs if the latch is 10 be used as a memory element 

CK~CK' 
~ 

eK 

(.) 

FIGURE 10.28 

eK -----.l1=::r~~L 
eK ---'_ , ... 

eK' nL-___ --..JnL __ _ 
---" (b) 

Pulse narrowing circuit. (a) Logic circuit showing an inverting delay element 1::.( used to prodLlce 

narrow pulses from long input pulses. (b) Positive logic timing diagram showing the resulting narrow 
pulses of duration I::.t on the output wavefonn. 
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FIGURE 10.29 
The RET D flip-flop as represented by state diagrams. (a) Resolver FSM input stage. (b) Set-dominant 
basic cell output stage. 

in the design of a state machine. This problem can be overcome by using an edge triggered 
D flip-flop that possesses data lockout character as discussed in the following paragraph. 
Shown in Fig. 1O.29a is the resolver FSM that functions as the input stage of an RET D 
flip-flop. Here, state a is the sampling (unresolved) state, CK is the sampling (enabling) 
input, and states band c are the resolved states. Observe that the outputs of the resolver 
are the inputs to the basic cell shown in Fig. 1O.29b, and that the output of the basic 
cell is the output of the D flip-flop. Thus, an input FSM (the resolver) drives an output 
FSM (the basic cell) to produce the D flip-flop which conforms to the general D flip-flop 
definitions given in Fig. 10.23. Note that both the resolver and basic cell are classified as 
asynchronous state machines, yet they combine to produce a state machine (flip-flop) that 
is designed to operate in a synchronous (clock-driven) environment. But the flip-flop itself 
is an asynchronous FSM! 

To understand the function of the RET D flip-flop, it is necessary to move stepwise 
through the operation of the two FSMs in Fig. 10.29: Initially, let Q be inactive in state a 
of the resolver. Then, if CK samples D active in state a, the resolver transits a ----;. c and 
issues the output S, which drives the basic cell in Fig. 1O.29b to the set state I where Q is 
issued. In state c, the resolver holds on CK, during which time Q remains active; and the 
data input D can change at any time without altering the logic status of the flip-flop - this 
is the data lockout feature. When CK goes inactive (CK), the resolver transits back to state 
a, where the sampling process begins all over again, but where Q remains active. Now, 
if CK samples D inactive (D) in state a, the resolver transits a ----;. b, at which time R is 
issued. Since the branching condition S R is now satisfied, the basic cell is forced to transit 
to the reset state 0, where Q is deactivated. The resolver holds in state b on active CK. Then 
when CK goes inactive (CK), the resolver transits back to the unresolved state a, at which 
time the sampling process begins all over again, but with Q remaining inactive. 

The design of the RET D flip-flop follows the design procedure and mapping algorithm 
given in Section 10.6. Since the logic circuit for the set-dominant basic cell is known and 
given in Fig. 1O.l8a, all that is necessary is to design the resolver circuit. This is done by 
using what is called the nested cell model, which uses the basic cells as the memory elements. 
Shown in Fig. 10.30 are the state diagram for the resolver (the FSM to be designed), the 
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fiGURE 10.30 
Resolver design for the RET D flip-flop. (a) Stale diagram for tile re~olveT. (0) Charac ten 7.al ion of Ihe 
memory. (c) EV K-map.~ for Ihe ne."";1 state funelionf> requin:d 10 drive the two basic cells. (d) Output 
K-maps for the resolver. 

characterization of the memory (combined excitation table for the basic cell), and the EV 
K-maps for the next state and output functions. 

The mapping algorithm requires that the information contained in the stale diagram or 
Fig. 1O.3Oa be combined with the excitation table of Fig. I0.30b to produce the next state 
EV K-maps. This has been done in Fig. 1O.3Oc by inlrOducing the following information 
obtained by a step-by-step application of the mapping algorithm: 

State 00 (K-map cell 0) 

. / 0 --) 1. place 1 . ( DCK) = DCK in the S .... K-map! Bit A _ _ 
0 -+ 0, place (jJ . ( D + CK ) in the RA K-map 

. /0 --) I, place I . (DCK) = OCK in the Ss K-map! BII B _ 
o -+ 0 , place ¢ . ( D + CK) in Ihe Ra K-map 
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State 01 (K-map cell 1) 

. 10---+ 0, place 0 in the SA K-map, ) 
BIt A 

place ¢> in the RA K-map 

Bit B 11 ---+ 0, place I . (CK) = CK in the RB K-map ) 
1 ---+ 1, place ¢> . (CK) = ¢>CK in the SB K-map 

State 10 (K-map cell 2) 

. 11 ---+ 0, place 1 . (CK) = CK in the RA K-map ) 
BIt A 

1 ---+ 1, place if> . (CK) = ¢>CK in the SA K-map 

. 1°---+ 0, place ° in the SB K-map, ) BItB . 
place if> in the RB K-map 
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Notice that for every essential EV entry in a given K-map cell there exists the complement 
of that entry ANDed with ¢> in the same cell of the other K-map. This leads to the following 
modification of the mapping algorithm in Section 10.6 as it pertains to SIR mapping: 

1. Look for Sets (0 ---+ 1) and Resets (I ---+ 0) and make the entry l·(Appropriate BC) in 
the proper Si or Ri K-map, respectively, according to the combined excitation table 
for the basic cell. (Note: BC = branching condition.) 

2. For each Set entry (from [1]) in a given cell ofthe Si K-map, enter ¢>.(Appropriate BC) 
in the same cell ofthe corresponding R K-map. 
For each Reset entry (from [1]) in a given cell of the R K-map, enter ¢>. 
(Appropriate BC) in the same cell of the corresponding Si K-map. 

3. For Hold Resets (0 ---+ 0) and Hold Sets (1 ---+ I), enter (O,¢» and (¢>,O), respectively, 
in the (S; ,Ri) K-maps in accordance with the combined excitation table for basic cell 
given in Fig. 1O.15c. 

Continuing with the design ofthe RET D flip-flop, the minimum NS and output functions 
extracted from the EV K-maps in Figs. 1O.30c and 1O.30d are 

j
SA=SDCK RA=CKj 
sB=AbCK RB=CK, 

S=A R=B 

(10.9) 

which are implemented in Fig. I O.3la. Here, the basic cells for bits A and B are highlighted 
by the shaded areas within the resolver section of the RET D flip-flop. Notice that the 
requirement of active low inputs to the three set-dominant basic cells is satisfied. For 
example, in the resolver FSM this requirement is satisfied by RA(L) = RB(L) = CK(L) = 
CK(H). The circuit symbol for the RET D flip-flop is given in Fig. 10.31 b, where the triangle 
on the CK input is indicative of an edge triggered flip-flop with data-lockout character and 
is consistent with Fig. 1O.20a. 
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Reso lver 
~_~A~ __ , 

A 

CKIH)-t-t--t 

Output 
Basic Cell 
~ 

Q(H) 

O(l ) o B 

I' ) Ib) 

FIGURE 10.]1 
(a) Logic circuit for the RET D Hip-flop as constructed from Eqs. (10.9) showing the resolver and 
output basic cell stage. (b) logic cin:uit symbol. 

The operation of the RET 0 fli p-fl op is best represented by the liming diagr.tm in 
Fig. 10.32, where arrows on the rising edge of the clock W:lVefonn provide a reminder that 
this is an RET flip-flop. The edge-triggering feature is made evident by the vertical dashed 
lines, and the data lockout character is indicated by the absence of a flip-flop output response 
to narrow data pulses during the active and inactive portions of the clock wavefonn. For the 
sake of simplicity, no account is taken of gate propagation delay in Fig. 10.32. 

10.7.3 The Master-Slave 0 Flip·Flop 

Another usefu l type of D Hip·Hop is the master-slave (MS) 0 flip-flop defined by the two 
state diagrams in Fig. 10.33a and that confonns 10 the general definitions for a 0 flip-flop 
given in Fig. 10.23. The MS 0 fUp-flop is a two-stage device-consisting of an RET D latch 

CK 

DIHI ___ Jt----ll~i _--1ln_-1L-
O(H) ____ j-----L ______ _ 

O(l) ____ J-----L ______ _ 
FIGURE 10.32 
Timing diagram showing proper operalion of the RET D nip-flop. 
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Mastel Sla ve 

The master-slave (MS) D flip-flop. (a) State diagram for the master and slave stages. (b) Logic circuit. 
(c) Circuit symbol. 

as the master stage and an FET 0 latch as the slave stage. The output of the master stage is 
the input 10 the slave stage. Thus, the transparency problem of the D latch in Fig. 10.24a bas 
been eliminated by the addition of the slave stage that is triggered antiphase to the master. 
Thus, should signals pass through the master stage when CK is active, they would be held 
up at the slave stage input until CK goes inactive. 

The design of the MS D flip-flop can be carried out following the same procedure as 
given in Figs. 10.24. 10.25, and 10.27. However. this is really unnecessary, since the logic 
circuits for both stages are already known from these earlier designs. The result is the logic 
circuit given in Fig. I O.33b, where the output of the master RET D latch symbol is the input 
to the slave FET D latch symbol. 'The logic circuit symbol is shown in Fig. LO.33c and is 
identified by the pulse symbol on the clock input. 

The operation of the MS 0 flip-flop is illuSlrmed by the timing diagram in Fig . 10.34, 
where no account is taken of gate propagation delay. Notice that signals that arc passed 
through the master stage during active CK are nOI passed Ihrough the slave stage, which is 

CK 

D(H)===~~==~=~n =~~~~ O.(H) ~ 

O(H) 

FIGURE 10.34 
Timing diagram for the MS D flip-flop showin£ tbe output respon~c from master and slav..: stages, 
and the absence of complete transparency with no accoullI takell of gate path delays. 
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o ---'-~/r-' X>-1<::;:r..,..-<t>- Q(H) 

(a) 

FIGURE 10.35 

'----Q(L) 

CK 

CK 

<1>1 '" Q(H) 

<1>2 = Q(L) 

Q(L) 

(b) 

(a) The MS 0 flip-flop configured with CMOS transmission gates and inverters and requiring two
phase (24)) clocking. (b) The reset-dominant basic cell used to generate 24> clocking as indicatcd by 
thc output logic waveforms. 

triggered antiphase to the master. However, there is the possibility of noise transfer, though 
of low probability. If logic noise should appear at the input to the slave stage just at the 
instant that CK goes through a falling edge, that noise can be transferred to the output. 

One important advantage the MS D flip-flop has over the edge triggered variety is that the 
MS D flip-flop can be configured with transmission gates and inverters. Such a configuration 
is shown in Fig. 10.35a. where two CMOS transmission gates are used together with two 
inverters. To achieve the two-stage effect required by the MS configuration, the CMOS 
transmission gates must be operated by using two-phase (2c:t» clocking such that the active 
portions of the clock phases are nonoverlapping. Shown in Fig. 10.35b is a reset-dominant 
basic cell used to generate the two clock phases (c:t> I and c:t>2) whose active portions are 
separated in time by an amount 7:. the path delay of a NOR gate. Notice that both phase 
waveforms (c:t> j and c:t>2) are given in positive logic, similar to the physical voltage waveforms 
but without rise and fall times. These clock phase signals must each be supplied to the CMOS 
transmission gates in complementary form. This means that when c:t>] is at LV, <Pl must 
be at HV and vice versa. The same must be true for ¢2. Each complementary form is 
achieved by the use of an inverter with a buffer in the HV path for delay equalization, if 
necessary. 

10.8 FLIP-FLOP CONVERSION: THE T, JK FLIP-FLOPS AND MISCELLANEOUS 
FLIP-FLOPS 

In Fig. 10.21 a hierarchy for flip-flop design is given with the understanding that the D 
flip-flop is central to such a process. In this text, this is the case, as will be demonstrated 
by the design of the other important types of flip-flops. First, however, certain information 
must be understood. 

To design one flip-flop from another, it is important to remember the following: 

The new fliPllop to be designed inherits the triggering mechanism a/the old (memory) 
flip-flop. 
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(b) 

(3) Moocl and (b) togh; symbol (Of a li';lilious XY (lip-flop derived from a D flip-flop having an 
unspecified trig.Jo:cring mcchani~m. 

This imponant fact can best be understood by considering the fictitious XY Hip-flop shown 
in Fig. 10.36. This fictitious flip -Hop has been derived from a D flip-nop of some arbitrary 
triggering mechanism indicated by the question mark (?) on the cluck input 

The model in Fig. 10.36;1 can be compilIed wilh Ihe basic model in Fig. 10.22 for the 
same fictilious XY flip-flop. where now a D flip-Hop is used as the memory instead of 
basic cells. In either case Ihe XV flip-flop is designed according to the design procedure 
and mapping algorithm presented in Section 10.6, but the characterization of memory is 
different. As will be recalled from Section 10.7, ftip-flops designed by using one or more 
basic cells require Ihat (he memory be characterized by the combined excitation table for 
the basic cell given in fi g. 1O. ISc. Now. for !lip-flop conversion by using a D fl ip-flop as 
the memory. the excitaLion table for the D ftip-ftop in Fig. 10.23c musl be used. 

10,8,1 The T flip-flops and Their Design from D flip-Flops 

AIIlypcS of T flip-flops behavc according to an internationally accepted definition Ihat is 
expressed in one or all of three ways. Prest:llIed in Fig. 10.37 are three ways of defining the 
T flip-flop, all c,r;pressed in positive logic as was (rue in the d..:finition of the D flip-flops . 
Shown in Fig, 1O.37a is lhe operation table for any T flip-flop. it specifies tbat when T is 
ilclive. the device must toggle. meaning Ibal 0 _ I and I _ 0 transi tions occur as long 
as T = I. When T = 0, the T flip-flop must hold in ilS present state. The Slate diagram 
for T nip-flops in Fig. 10.37b is deri ved from the operation table and conveys the same 
infonnation as Ihe operation table. Here. the toggl¢ charaCler of the T flip -flop is easily 
shown 10 lake place between Set and Reset slates when T is active. but holding in these 
states when T is inactive. 

The e,r;citation table presented in Fig. 10.37c is thelhird means of expressing thedefinition 
of T flip-flops. It is easily derived from the state diagram and hence conveys the same 
information regarding T Hip-ftopoperation. This excitation table will be used to characterize 
rhe. memory in the design of FSMs thai require the use ofT flip-flops as the memory elements. 
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State 

f variable Input logic .. '" change value 
variable. a ~~ 

~ - Q,., T 

~ 0 - 0 o Reset Hold o ~ Hold • • 0 - 1 ~ } Toggle 1 ~ Toggle 
1 - 0 

Operation 1 1 0 Set Hold 
Table 

Excitation 

(01 f Table 

Stale (01 
Diagram 

(bl 

fiGURE 10.37 
Generalized T flip-flop definition expressed in terms of the operation table (a), the state diagram (b). 
and lhe excitation table (c). 

Design of the T Flip-Flops from D Flip-Flops Since T tlip-flops are to be designed 
(converted) from 0 flip-flops, the excitation table for the 0 flip-flop must be used to char· 
acterize the memory. This excitation table and the state diagram representing the family of 
T flip-flops must be brought together by using the mapping algorithm sel forth in Section 
10.6, This is done in Fig. 10.38, parts (a), (b). and (c), where the next siale logic for flip-flop 
conversion is found to be 

T 

T 

FSM to be 
designed 

(al 

FIGURE 10.38 
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Q -0. Q,., D 

PSO{~-~ 

PS 1 { ~ - 0 

o 
1 Set 

o 
Set Hold 

Excitation Table 
characterizing the 

memory 
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o T 

r:-
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D=T$Q 

NS Function 

(01 

Design of the T flip-flops. (a) The state diagram for any T flip-flop. (b) E)(cilation table for the D 
flip-flop memory. (e) NS K-map and NS function resulting from the mapping algorithm. 
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(a). (b) Implementation of Eq. (10. 10) and logic circuil symbol f01 a 'f flip-flop of arbitrary triggering 
mechanism. (c) Logic symbol and timing diagram for an RET T (lip-flop showing toggle and hold 
modcs of operation. 

Implementation of the NS function given in Eq. (10. 10) is shown in Fig. 1O.3911lOgelher 
with the symbol for the T Hip-flop in Fig. 1O.39b. which as yet has not been assigned a 
triggering mechanism - the designer's choice indicated by the question mark (?) on the 
clock input. Remember that the new FSM (in this case a T flip-flop) inherits the triggering 
mechanism of the memory fli p-flop (in this case a D flip-flop) . Shown in Fig. 1O.39c is the 
logic circuit symbol and timing diagram for an RET T flip-flop. the resuh of choosi ng an 
RET 0 flip-flop as the memory. The timing diagram clearly indicates the tog.gle and hold 
modes of operation of the T flip-flop . For the sake of simplicity no account is taken of the 
propagation delays through the logic. 

Were it desirable to produce an MS T flip-flop, the memory element in Fig. 10.39a would 
be chosen to be a MS D flip-flop. The timing diagram for an MS T flip-flop would be similar 
to that of Fig. 1O.39c, except the output from the slave stage would be delayed from the 
master stage by a time period 1cj; /2. This is so because the slave slage picks up the output 
from the master Slage only on the falling edge of CK, that is. the two stages are triggered 
antiphase to one another. 

10.8.2 The JK Flip-Flops and Their Design from D Flip-Flops 

The Hip-flops considered previously are single data input flip-Hops . Now. consideration 
cenlers on a type of nip-flop that has two data inputs. J and K . TIle members of the 
JK flip-flop family conform to the internationally aecept'ed definition expressed in terms 
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Generalized JK flip-flop definition expressed in terms of the operation table (a), the state diagram (b), 
and the excitation table (c). 

of an operation table, a state diagram, or an excitation table provided in Fig. 10040. The 
operation table in Fig. lOAOa reveals the four modes of JK flip-flop operation: Hold, 
Reset, Set, and Toggle. Thus, it is seen that the JK type flip-flops operate in all the modes 
common to SR, T, and D type flip-flops, though SR flip-flops (clocked SR latches) are 
yet to be discussed. For this reason the JK flip-flops are sometimes referred to as the 
universal flip-flops. The state diagram in Fig. lOAOb is best derived from the operation 
table. For example, the Set (0 -+ 1) branching condition follows from the Boolean sum 
(Set + Toggle) = J k + J K = J, and the Reset (1 -+ 0) branching condition results from the 
sum (Reset + Toggle) = J K + J K = K. The Set-Hold and Reset-Hold conditions result 
from the sums J k + J k = k and J K + J k = J, respectively. However, given the set 
and reset branching conditions, the sum rule in Eq. (10.3) can and should be used to obtain 
the two hold conditions. 

The excitation table for the JK flip-flops in Fig. lOAOc is easily derived from the state 
diagram in (b). For example, the Reset-Hold branching path requires a branching condition 
J that places a 0 and a ¢ in the J and K columns of the excitation table. A ¢ is used for 
unspecified inputs in branching conditions. Similarly, a 1 and ¢ are placed in the J and 
K columns for the Set branching condition J. Notice that this excitation table bears some 
resemblance to that of the combined excitation table for the basic cells in Fig. lO.l5c, but 
with two additional don't cares. The excitation table for the JK flip-flops will be used rather 
extensively to characterize the memory in the design of FSMs that require JK flip-flops as 
memory elements. 

Design of the JK Flip-Flops from the D Flip-Flops The process used previously in the 
design of T flip-flops from D flip-flops is now repeated for the case of the JK flip-flops 
defined in Fig. 10040 in terms of the operation table, state diagram, and excitation table. 
Shown in Fig. 10A1a is the state diagram representing the family of JK flip-flops, the FSMs 
to be designed. Since a D flip-flop is to be used as the memory element in the design, its 
excitation table must be used to characterize the memory and is provided in Fig. 1004 lb. 
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Design of the JK flip-flops. (a) Stale cliagram for any JK flip-flop. (bl Excitation ttlble for the D 
flip-flop memory. (c) NS K-map and NS runction required for flip-flop convef~ion . 

By using the mapping algorithm in Section 10.6 together with the state diagram for a JK 
flip-flop and the excitalion table for the memory D flip-Ilop. there results the NS logic 
K-map and NS fonning logic shown in Fig. WAle. Notice that only the Set and Set Hold 
branching paths produt:e non-null entries in the NS K-map for D_ a fact that is always true 
when applying the mapping algorithm to D flip-flop memory elements. 

The minimum NS logic function extracted from the K-map is 

(10.11) 

and is shown implemented in Fig. 1O.42a with a D flip-flop of an arbitrary triggering 
mechanism as the memory. Its circuit symbol is given in Fig. 1O.42b, also with a question 
mark (?) jncticating an arbitrary lriggering mechanism determined from the D flip-flop 
memory element. In Fig. IOA2c is shown the circuit symbol and timing diagram for an FET 
JK flip-flop that has been derived from an FET D flip~nop. The timing diagram illustrates 
the four modes of JK flip-flop operation: Hold (Reset or Sel), Reset. Set, and Toggle. Notice 
that once a set condition is sampled by clock, that condi tion is maintained by the flip-flop 
until either a reset or toggle condition is sampled by the falling edge of the clock waveform. 
Similarly. once a reset condition is executed by clock. that condition is maintained until 
either a set or toggle condition is initiated. As always. the toggle mode results in a divide
by-two of the clock frequency. 

Equation (10.1 1) has application beyond Ihat of convening a 0 flip-flop to a J K flip-flop . 
It is also the basis for converting D K-maps to JKK-maps and vice versa. K-map conversion 
is very useful in FSM design and analysis since it can save time and reduce the probability 
for error_ The subject of K-map conversion will be explored in detail later in this chapter. 

10_8.3 Design of T and 0 Flip·flops from IK Flip-Flops 

The procedures for converting D flip-flops 10 T and JK flip-flops. used in the preceding 
subsections. will now be used for Other flip-flop conversions. The conversions JK-to-T and 
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FIGURE 10.42 
(a) Implementation ofEq. ( 10.11). and (b) logic circuit symbol for aJK flip-flop of arbitrary triggering 
mechanism. (c) Logic symbol and timing diagram for an FET JK fl ip-flop designed from an FET 0 
flip-flop showing all four modes of operation indicated by the operation table in Fig. 10.40a. 

lK-to-O are imponant because they emphasize the universality of the JK flip-flop types. 
Pre~nted in Fig. 10.43, for JK-to-T flip -Hop conversion. are the state diagram for the T 
flip-flops (a), the excitation table characterizing the JK memory (b), and the NS K-maps 
and NS functions for J and K (c). Plotting the NS K-maps follows directly form application 
of the mapping algorithm given earlier in Section 10.6. Notice that the ¢'s in the NS K
maps resuh from summing of the branching condition values relative to the brancbing 
paths of a particular prescnt state (PS). For ex.ample. in PS state I. a ¢ is placed in cell 
1 of the J K-map. since ¢T + q,T = q, as required by the I -4 0 and 1 -4 1 branching 
paths, respectively. By using the don 't cares in this manner, the minimum cover (onhe NS 
fune-lions is 

J = K = T. (10.12) 

Thus. La conVel1 any JK Hip-flop to a T Hip-Hop of the same triggering character, all that 
is necessary is to connect the J and K input terminals together to become the T input. as 
indicated by the logic circuit symbols in Fig. l0.43d. Equation (10.12) will also be useful 
(or converting JK K~maps to T K-maps and vice versa. 

The conversion of JK flip· Hops 10 D flip-Hops follows in a similar manner 10 that just 
described for converting JK to T flip-flops. Presenled in Fig. 10.44 are the state diagram 
faT the family of 0 flip-flops (a). the excitation table for the memory JK flip-flop (b), and 
the NS K-maps and conversion logic extracted from the K-maps (c). The minimum NS 
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Design of the T flip-flops from the JK flip-Hops. (a) Slale diagram rcprescnting Ihe family of T flip
Hops. (b) Elicitation table charncterizing the JK memory clement. (c) NS K-maps anu NS functions 
for the flip-flop conversion. (d) Logic circuit and symbol for a T flip-flop of arbitrary triggering 
mechanism. 

functions. as extracted from the NS K-maps. are given by 

J = D and K = D. ( 10.13) 

Shown in Fig. 1O.44d is the logic circuit and its circuit symbol for 0 flip-flop conversion 
from a JK flip-flop of arbitrary triggering mechanism. Clearly_ aUlbat is necessary to canven 
a JK flip-flop 10 a D flip-flop is to connect D to J and D to K via an inverter. 

10.8.4 Review of Excitation Tables 

For reference purposes. the excitation tables for the families of D. T, and JK flip-Hops , 
discussed previously, arc provided in the table of Fig. 10.45. Also shown in the table 
is the excitation table for the family of SR flip-flops and all related SR devices which 
include the basic cells. Notice the similarity between !.he JK and SR excitation tables, 
which leads to the conclusion that J is {ike Sand K is like R. but not exactly. The only 
difference is that there are two more don't cares in the JK excitation table than in the SR 
excitation table. Also observe that the D values are active for Set and Set Hold conditions. 
and that the T values are active only under toggle I ....... 0 and 0 --+ 1 conditions. These facto; 
should serve as a mnemonic means for the reader in remembering these important tables. 
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FIGURE 10.44 
Design of the D flip-flops from the lK flip-flops. (a) State diagram representing the family of D flip
flops . (b) Excitation table characterizing the lK memory element. (c) NS K-maps and NS funct ions 
for the Hip-Hop conversion. (d) The logic circuit and symbol for a 0 flip-flop of arbitrary triggering 
mechanism. 

Eventually, construction of the NS K-maps will become so commonplace that specific 
mention of either the mapping algorithm or the particular excitation table in use will not be 
necessary. 

Any of the excitation tables given in Fig. 10.45 can be used to characterize the flip-flop 
memory for the purpose of applying the mapping algorithm in Section 10.6 to obtain the 
NS forming logic for an FSM. In fact, that is their only purpose. For example. if D flip-flops 
are required as the memory in the design of an FSM, the excitation table for the family of 
D flip-flops is used. Or if lK flip-flops are to be used as the memory. the excitation table 
for the 1K flip-flops is used for the same purpose. etc. 

FIGURE 10.45 
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State diagram derived from (a). (c) Characterization of the D flip-fl op memory. (d) NS K-map and 
NS function for flip-Ilop conversion. (e) Logic circuit and circuit symbol for the FET ST flip -Ilop. 

10.8.5 Oesign of Spedal-Purpose Flip-Flops and Latches 

To emphasize the applicability and versatility of the design procedure and mapping algo
rithm given in Section 10.6, other less common or even "nonsense" flip-flops will now be 
designed. These design examples are intended to further extend the reader's experience in 
design procedures. 

An Unusual (Nonsense) Flip-Flop Suppose it is desirable to design an FET ST (Setl 
Toggle) Hip-flop that is defined according to the operation table in Fig. 10.46a. The state 
diagram for the family of ST Hip-flops. derived from the operation table. is shown in 
Fig. 1O.46b. Also. suppose it is required that this Hip-Hop is to be designed from an RET 
D flip-flop. Therefore. the memory must be characterized by the excitation table for the D 
Hip-Hop presented in Fig. 1O,46c. By using the mapping algorithm. the NS K-map and NS 
forming logic are obtained and are given in Fig. 1O.46d. Implementation of the NS logic 
with the RET D Hip-flop to obtain the FET ST flip-Hop is shown in part (e) of the figure. 
Notice that the external Q feedback is necessary to produce the toggle character required by 
the operation table and state diagram for the family of ST flip -flops . If it had been required 
to design an MS ST flip-Hop, then an MS D Hip-flop would have been used as the memory 
element while retaining the same NS forming logic. 
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The external hardware requirememts in the design of the FET ST flip-flop can be min
imized by using an RET JK flip-flop as the memory in place of a D flip-flop. If the D 
excitation table in Fig. 10.46c is replaced by that for the JK flip-flops in Fig. lO.4Oc. the NS 
functions become J = S + T and K = S, a reduction of one gate. It is left to the reader to 
show the mapping details. 

A 5pecia/·Purpose Clocked SR Latch As used in this text. Ihe tenn larch refers to 
gated or clocked memory elements that do not have data lockout character and that exhibit 
transparency. or that lose their mixed-rail output character under certain input conditions. 
The D latch in Fig . 10.24 is an example. since it exhibits the transparency effect under the 
condition CK(H) = l(H). The family of SR latches also fall into this category. One such 
SR latch is defined by me operation table in Fig. 1O.47a from which the state diagram in 
Fig. 1O.47b is derived. This latch is observed to Sct under the SR branching condition. 
Reset under condition SR, and hold if S,R is eimer 0 ,0 or 1, 1. Notice mat CK is part 
of the input branching conditions, and that the basic cell is to be used as the memory 
chamcterizcd by the excitation table in Fig. 10.47c. Applying the mapping algorithm yields 
the NS K-maps and NS-fonning logic given in part Cd) of the figure. Implememing with a 
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Design of a special-purpose SR latch. (a) Operation table for Ihis fam il )' of SR flip-flops and latches. 
(b) Stale diagram for the special SR lalCh derived from the opemlion table in (a). (c) Characterization 
of thc basic cell memory. (d) NS K-maps and NS-forming logic. le) Logic circuit and circuit symbol. 
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FIGURE 10.48 
TIle D data lockout Rip-flop. (a) All edge triggered flip-Hop variety. (b) Same as (a) ucept with an 
FET 0 latch as the slave stage. 

rcsel-dmninanl basic cell yields the logic circuit and circuit symbol ~hown in Fig. W,47e. 
Clearly. an S,R = I , I condition cannot be delivered (a the basic cell output stage. But there 
is a panialu-ansparency effect. For example, a change sft _ S R while in state 0 with eK 
active (eK = I) will cause a transition to state I where Q is issut':d. Thus, Q follows S in 
Ihis case. which is a transparency effect. Similarly. a change SR _ SR while in state I 
when CK is active causes a transition I _ 0 with an accompanying deactivation of Q. 
Again, this is a transparency effect, si nce Q tracks R when CK = I . 

The Data Lockout MS Flip-Flop The dara lockout MS flip-flop is a Iype of master
s/ave Rip-flop whose two stages are composed of edge-triggered ftip-Hops or are an edge
triggered/latch combination . Only the: master stage must have the data lockout character 
(hence musl be edge triggered). Shown in Fig. 10.48a is a Ddata lockout flip-Ropcomposed 
of an RET 0 fl ip-fl op milster slage and an FET D flip -flop slave siage. and in (b) an RET 0 
flip-Oop master with an FET D hItch as the slave stage. The design in Fig. I0.48b needs less 
hardware than that in (a) because of the reduced logic requirements of the D latch. Another 
possibility is to use JK fl ip- flops in place of the 0 flip-flops in Fig. 1O.48a, thus creating a 
JK data lockout Rip-Rop. But the JK flip-flops require more logic than do the D flip-ftops. 
making the JK data lockout llip-flop less attractive. In any case. there is little advantage to 
using a data lockout flip-flop ex.cept when it is necessary to operate peripherals antiphase 
off of the two stage outputs. Q.II and Q , in Fig. 10 .48. 

10.9 LATCHES AND FLlp·FLOPS WITH SERIOUS TIMING PROBLEMS, 
A WARNING 

With very few ex.c~ptions, two-state fl ip-flops have serious timing problems that preclude 
their use as memory elements in synchronous state machines. Presented in Fig. 10.49 
are fo ur examples of two-stale latches that have timing problems - none have the data 
lockout feature . The RET D latch (a) becomes transparent to the input data when eK == I , 
causing flip-Rap action to cease. The three remaining exhibit even more severe problems. 
For ex.ample, the FET T latch (b) will oscillate when T . CK = 1. and the RET JK latch 
(e) will oscillate when JK· CK == I, requiring that J = K = eK = I, as indicated 
in the figure . Notice that the branching conditions required to cause any of the latches to 
oscillate is found ~imply by ANDing the 0 _ 1 and 1 _ 0 branching conditions. Any 

O(H) 

O(l ) 
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nonzero result is the branching condition that will cause oscillation. Thus, the FET ST latch 
in Fig. 1O.49d will oscillate under the condition (S + ns . CK = ST . eK = I, that is if 
S = CK = 0 and T = I. The reason fortheosci llation in these latches is simply that CK no 
longer controls the transition between states since the branching condition between Ihc two 
states is logic I. These FSMs are asynchronous. as are all flip-flops and latches. and if the 
transitions are unrestricted by eK. they will oscillate. Thus. none of these two-slate latches 
should ever be considered for use as memory elements in the design of synchronous FSMs. 
The one exception is the IK latch, which can be used as a memory element providing that 
J and K are never active at the same lime - Ihus. operaling as an SR latch. 

There is an MS flip-flop that is particularly susceptible to timing problems. It is the MS 
JK Hip-flop defined by the two state diagrams shown in Fig. 1O.50a and implemented in (b). 
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An MS JK flip-flop that exhibits the error catching problem. (a) State diagrams for the MS JK flip-Hop 
which exhibit a handshake configurat ion. (b) Logic circuit derived from the state diagrams in (a). 
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Here, a handshake configuration exists between the master and slave stages. A handshake 
configuration occurs when the output of one FSM is the input to another and vice versa. This 
FSM is susceptible to a serious error catching problem: In the reset state, if CK is active 
and a glitch or pulse occurs on the J input to the master stage, the master stage is irreversibly 
set, passing that set condition on to the slave stage input. Then when CK goes inactive, the 
output is updated to the set state. This is called I's catching and is an unrecoverable error, 
since the final set state was not regulated by CK. Similarly, in the set state, if CK is active 
and a glitch or pulse occurs on the K input, the master stage is irreversibly reset, passing 
that reset condition on to the slave stage input. Then when CK goes inactive, the output is 
updated to the reset state. This is called O's catching and is also an unrecoverable error. 

Because of the error catching problem just described, the MS JK flip-flop in Fig. 10.SOb, 
derived from the "handshake" state diagrams in Fig. 1O.50a, should never be considered 
for application as a memory element in a synchronous state machine. If an MS JK flip-flop 
is needed as the memory element, it is best designed by using Eq. (l 0.11) and Fig. lOo42a 
for conversion from an MS D flip-flop that has no error catching problem. Also, because 
the MS D flip-flop can be implemented by using transmission gates and inverters, as in 
Fig. 10.35, the conversion to a MS JK can be accomplished with a minimum amount of 
hardware. 

10.10 ASYNCHRONOUS PRESET AND CLEAR OVERRIDES 

There are times when the flip-flops in a synchronous FSM must be initialized to a logic 0 or 
logic I state. This is done by using the asynchronous preset and clear override inputs to the 
flip-flops. To illustrate, a D latch is shown in Figs. 1O.51a and 1O.51b with both preset and 
clear overrides. If the flip-flop is to be initialized a logic 0, then a CL(L) = I (L) is presented 
to NAND gates I and 4, which produces a mixed-rail reset condition, Q(H) = O(H) and 
Q(L) = O(L) while holding PR(L) = O(L). Or to initialize a logic 1, a PR(L) = I(L) is 
presented to NAND gates 2 and 3, which produces a mixed-rail set condition, Q(H) = I(H) 
and Q(L) = I(L), but with CL(L) held atO(L). Remember from Subsection 100404 thatS(L) 
and R(L) cannot both be I (L) at the same time or else there will be loss of mixed-rail output. 
Thus, the CL,PR = I, I input condition is forbidden for this reason. The following relations 
summarize the various possible preset and clear override input conditions applicable to any 
flip-flop: 

I 
CL(L) = I(L) 

Initialize 0 
PR(L) = O(L) 

CL(L) = O(L) 
Normal Operation 

PR(L) = O(L) 

CL(L) = O(L) I Initialize 1 
PR(L) = I(L) 

CL(L) = I(L) 
Forbidden 

PR(L) = I(L) 

(10.14) 

The timing diagram in Fig. 1O.51c best illustrates the effect of the asynchronous preset 
and clear overrides. In each case of a PR(L) or CL(L) pulse, normal operation of the latch 
is interrupted until that pulse disappears and a clock triggering (rising) edge occurs. This 
asynchronous override behavior is valid for any flip-flop regardless of its type or triggering 
mechanism, as indicated in Fig. 10.52. For all flip-flops, these asynchronous overrides act 
directly on the output stage, which is a basic celL 
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FIGURE 10.51 
Asynchronous preset and clear overrides applied to the D latch. (a) Logic circuit for the D latch 
showing the active low preset and clear connections. tb) Logic circuit symbol with act ive low preset 
and clear inpUis indicated. (c) Timing diagram showing effects of the asynchronous overrides on the 
flip-flop output. 
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Clock voltage wavefonns showing sampling interval (I," + Ih) during which time the data inputs must 
remain stable at their proper logic levels . (a) Rising edge of the clock waveform. (b) Falling edge of 
the clock wavefonn. 

10.11 SETUP AND HOLD· TIME REQUIREMENTS OF FLlP·FLOPS 

Rip-flops will operate reliably only if the data inputs remain stable at their proper logic levels 
just before. during, and just afler Ihe lriggering edge of the clock wavcfonn. To put thi s in 
perspective, the data inputs must meet the setup and hold-time requirements established by 
clock, the sampling variable for synchronous FSMs. The selup and hold-time requirements 
for a flip-flop are illustrated by voltage wavefonns in Fig. 10.53, where both rising and 
fall ing edges of the clock signal are shown. The sampling interval is defined as 

Sampling illlerval = (/'" + th) , (10. 15) 

where f,,, is the setup rime and th is the hold rime. It is during the sampling interval that the 
data inputs must remain fixed at their proper logic level if the outcome is to be predictable. 
This fac t is best understood by considering the defi nitions of setup and hold times: 

• Setup time r,u is the time interval preceding the active (or inticti"e) transition 
point (/,,) of the triggering edgc ofCK during which all data inputs must remai n 
stable to ensure thar the intended transition will be initi ated . 

• Hold time th is the time intcrval following the active (or inactive) transition point 
(I tr ) of the triggering edge ofCK during which all dala inputs must remain stable 
to ensure that the intended transition is successfully completed. 

Failure to meet the setup and hold-time requirements of the memory flip- nops in an FSM 
can cause improper sampling of the data that could, in tum, produce erroneous transitions, 
or even metastability. as discussed in the nexl chapter. A change of the data input at the 
time CK is in its sampling interval can produce a rum plllse. a pulse that barely reaches 
me switchi ng threshold. An incompletely sampled runt pulse may cause erroneous FSM 
behavior. As an example of proper and improper sampling of an input, consider a portion 
of the resolver state diagram for an RET 0 fli p-flop shown in Fig. 1O.54a. Assuming mal 
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FIGURE 10.54 
Examples or proper and improper sampling of the data input. (a) Portion of Ihe resolver ~tale diagram 
for an RET D flip-flap_ (b) Yohage waveforms showing proper and improjX'f sampling of the 0 
waveform during Ihe sampling interval of CK. 

Ihe FSM is in state a and that the rising edge of CK is to sample the D input waveform, two 
sampling possibilities are illustrated by the voltage waveforms for CK and D in Fig, 10.54b. 
Proper sampling occurs when the data inpUi D is stable at logic level I in advance of the 
rising edge of CK and maintained during the sampling interval. Improper sampling results 
when D changes during the sampling interval. 

The setup and hold-time intervals are imponant design parameters for which manufac~ 
lurers will normally provide worst-case data for their Hip-Hops. Awareness and proper use 
of thi s data is vital to good state machine design practice. Ignoring this data may lead to state 
machine unpredictability or even failure. The means to deal with this problem is discussed 
laler in Section 11.4. 

10.12 DESIGN OF SIMPLE SYNCHRONOUS STATE MACHINES WITH 
EDGE-TRIGGERED FLIP-flOPS: MAP CONVERSION 

Where nearly ideal. high-speed sampling is required. and economic considerations are not 
a factor. edge-triggered Hip-Hops may be the memory elements of choice . The setup and 
hold-time requirements for these flip-flops are the least stringent of all, and they possess 
none of the problems associated with either the latches or MS fl ip-fl ops discussed earlier. In 
this section two relatively simple FSMs will be designed to demonstrate the methodology 
10 be used. The emphasis will be on the procedure required to obtain the next state and 
output functions of the FSM. This procedure will involve nothing new. Rather. it will be the 
continued application of the design procedure and mapping algorithm discussed in Section 
10.6. and an extension of the flip-flop conversion examples covered in Section 10.8 but now 
applied to K-map conversion and FSM design. 

10.12.1 Design of a Three-Bit Binary Up/Down Counter: D-to-T 
[(-map Conversion 

In Fig. 10.2d a bidirectional binary sequence of slates is used to represent a Mealy machine. 
Now. that same binary sequence of states will be completed in the fonn of a three-bit binary 
up/down counter as shown by the eight-state stale diagram in Fig. 1O.55a. It is this counter 
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FIGURE 10.55 
Design of a three-bit up/down binary counter by u~ing D 1lip-nop~ . (a) State diagram for the thn:c· 
bit up/down counter with a conditional (Mealy) OUiput, Z. (b) Excitation table characterizing Ihe 
o flip-flop memory. (c) NS K-maps plolted by using the mapping algorithm showing Be domain 
subfunctions indicated wilh shaded loops . 

that will be designed with D flip-flops. Using me mapping algorithm, the excitation tahle 
for D flip-flops in Fig. IO.55b is combined with the state diagrllm in (a) 10 yield lhe entered 
variable (EV) NS K-maps shown in Fig. 1O.55c. 

Theexlraclion of gate-minimum cover from the EV K-maps in Fig. 10.55c is sufficiently 
complex as to warrant some explanation . Shown in Fig. 10.56 are the compressed EV K
maps for NS functions VA and D Il, which arc appropria te for use by the CRMT method, 
discussed atlengEh in Section 5.7. to ex tract multilevel gate minimum fonos. The second· 
order K-maps in Fig. IO.S6 arc obtained by entering the BC subfun<:tioll forms shown by 
the shaded loops in Fig. 1O.55c. For D,... fhe CRMT coefficients 81 arc easily seen to be 
go = A m ex and 8J = (A $ eX) $ (A $ ex) = CX $ ex. as obtained from the 
fi rst-order K-maps in Fig. 1O.56b. Similarly. for Ds IheCRMT coeffi ciems m go = B $ X 
and g l = L When combined with me f coefficiems. the gate minimum becomes 

I 
D, = ~ Ell hCX Ell BCX I 
Dg= B $C$ X 

Vc= C . 

Z=AHCX 

110.16) 
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Compressed EV K·maps requi rcd to cxtract a multilevel logic minimum for NS funClions DA and 
DB of Fig. 10.54. (a) Second-order EV K· maps, (b) Firsl·order EV K-maps. 

which is a three- level result (due to D~) with an overall gate/input tally of 7/ 18, excluding 
inveners. The nex t siale function for Dc is obtained by inspection of the thi rd-order K-map 
in Fig. 1O.55c. and the output Z is read dircctly off of the state diagram. Note that the 
expressions for DA and DB in Eqs. (10.16) can be obtained directly from the first-order 
K-maps in Fig. iO.56b by applying the mapping methods discussed in Section 5.2. The 
minimum cover is indicated by the shaded loops. 

Toggle character is inherent in the binary code. Thi s is evident from an inspection o f the 
state d iagram in Fig. 1O.55a. State variable C toggles with each transitioTl. state variable 
B toggles in pairS of states. and state variable A toggles in £roups of four stales. Thus. it 
is expected that the T flip-flop design of a binary counter will lead to a logic minimum, 
and this is the casco Shown in Pig. 10.57 is the design of the binary up/down counter by 
using T flip-flops as the memory represcnted by the excitation table in Fig. I0.57b. The NS 
K-maps. shown in (c) of the figure, are ploued by using the mapping algorithm. Extracting 
minimum cover from these K-maps (see shaded loops) yields the two·level results 

I
T, ~ ~~x +SeXl 
Ts=CX +CX 

Tc=X+X= I 

Z =ABCX 

(10.17) 

with an overall gate input tally 7118 excludi ng inverters. Although the gate/input tally is 
the same as that produced by tbe three- level result given by Eqs. (10.16), the two-level 
resuh is expected to be fasler and. of course. amenable to implt'mentation by tWO-level 
programmable logic devices (e.g., PLAs). 

Implementation of Eqs. (10. 17) is shown in Fig, 10.5&3. where. the NS fonning logic. 
memory and output forming logic arc indicated. The present state is read from the Hip-flop 
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outputs A(H), B(H), and C(H), where QA = A, QB = B, and Qc = C, and the Mealy 
output Z is issued from the AND gate in state 111 but only when input X is active, i.e., 
only when the counter is in an up-count mode. The block symbol for this counter is shown 
in Fig. 1O.58b. 

D K-map to T K-map Conversion Once the NS D K-maps have been plotted, it is 
unnecessay to apply the mapping algorithm a second time to obtain the NS T K-maps. All 
that is necessary is to use the D ~ T flip-flop conversion equation, Eq. (10.10), but written 
as 

D = Q EB T = QT + Qt. (10.18) 

Applied to the individual state variables in a D ~ T K-map conversion process, Eq. (10.18) 
takes on the meaning 

(10.19) 

In Fig. 10.59 are the D and T K-maps for the three-bit binary up/down counter reproduced 
from Figs. 10.55 and 10.57. The heavy lines indicate the domain boundaries for the three 
state variables A, B, and C. An inspection of the K-maps together with Eqs. (10.19) results 
in the following algorithm for D-to-T K-map conversion: 

00 01 11 10 
Be 

A 00 01 11 10 00 01 11 

- -
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FIGURE 10.59 
D and T K-maps for the three-bit binary up/down counter showing the domain boundaries for state 
variable bits A, B, and C. 
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Algorithm 10. I:D ... T K~map Conversion (Refer to Eq. 10.19) 

( I) For all that is NOT A in Ihe D" K-map, transfer il to the T~ K-map directly (ATA ). 

(2) For allihal is A in Ihe DA K-map, transfer it to Ihe T .... K~map complemented (At A). 
(3) Repeat steps (I) and (2) for the DB ... TH and Dc ... Teo etc., K-map conversions. 

Notice that Ihe word "complemented," liS used in the map conversion algorithm. refers 10 
the complementation of the contents of each cell in the domain indicaled. 

10.12.2 Design of a Sequence Recognizer: D·lo-JK K·map Conversion 

It is required to design a sequence recognizer that will issue an output any time an overlap
ping sequence .. . 01 101 . .. is detected as indicated in Fig . 10.60a. To do Ihi s a choice is 
made belween the Moore or Mealy constructions shown in Figs. IO.60b and I O.6Oc. respec
tively. For the purpose of this example. the Mealy construction is chosen. Let the eXlemal 

x 

CK 

Sequence 
Recognizer 

X · · · Oll0110100 

~ ~ 
z z 

<a) 

FIGURE 10.60 

z 

Mealy version 

Moore version 

(b) (e) 

A simple sequence recognizer foran overlapping sequence· . ·011 OJ · . '. (a) Blockdiagram and sample 
overlapping S(."qucnce. (bl Moore FSM n:presentation. (c) Mealy FSM representation. 
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FIGURE 10.61 

X(H) 

CK 

Q Q 

Z(H) --+--i---i---i---' 

Q Q 

Timing diagram for the Mealy version of the sequence recognizer in Fig. lO.60c. 

input X be synchronized antiphase to clock, meaning, for example, that X is synchronized 
to the rising edge of clock when the memory is FET flip-flops. An overlapping sequence 
is one for which a given sequence can borrow from the latter portions of an immediately 
preceding sequence as indicated in Fig. 1O.60a. The loop . ··d -+ e -+ f -+ d··· in 
the Moore construction or the loop· ··c -+ d -+ e -+ c··· in the Mealy construction 
illustrates the overlapping sequence. A nonoverlap ping sequence requires that each se
quence of pulses be separate, i.e., independent of any immediately preceding sequence. 
Note that the Mealy state diagram is constructed from the Moore version by merging 
states e and f in Fig. 1O.60b, and by changing the unconditional output to a conditional 
output. 

The timing diagram showing the sequence of states leading to the conditional (Mealy) 
output is presented in Fig. 10.61, where the state identifiers and state code assignments are 
indicated below the Z waveform. Notice that input X is permitted to change only on the 
rising edge of the clock waveform and that the arrows indicate a FET flip-flop memory. 
Thus, when the FSM enters state e on the falling edge of clock. an output is issued when 
X goes active, and is deactivated when the FSM leaves state e. Any deviation from the 
sequence ... 01101 ... would prevent the sequence recognizer from entering state e and no 
output would be issued. Also, once in state e the overlapping loop· . ·e -+ c -+ d -+ e· .. 
would result in repeated issuance of the output Z. 

Consider that the Mealy version of the sequence recognizer is to be designed by using D 
flip-flops. Shown in Fig. 10.62 are the excitation table and the resulting D K-maps obtained 
by applying the mapping algorithm. The shaded loops reveal the minimum covers for the 
output and NS functions, which are easily read as 

I
DA. =BCX 1 
DB = ~cx_+ ex . 
Dc=X+BC+A 

Z=AX 

(10.20) 

Notice that the term BC X is a shared PI since it appears in two of the three NS functions. 

D K-map to JK K-map Conversion Assuming it is desirable to design the sequence 
recognizer of Fig. 1O.60c by using JK flip-flops instead of D flip-flops. the process of 
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o K' llll1p construction for the Mealy vo:rs ion of the sequt:ncc rccogni7.er in Fig. iO.6Oc. (a) Excitation 
table for D flip-flops. (b). (e) Output K' m(lp IInu NS 0 K·maps showing minimum cover. 

obtaining the NS JK K-maps can be expedited by K· map conversion. It will be recalled 
from Eq. ( 10.11 ) that D _ 1 K nip-flop conversion logic is given by 

D = QJ + QK . 

When this equalion is applied to the individual state variables in a 0 _ 1 K K-map con
version, Eq. (10.11 ) takes the meaning 

(10.2 f ) 

Shown in Fig. 10.63 are the JK K-maps converted from the 0 K-maps. From these K-maps 
the minimum cover is easil y observed to be 

I 
J, = BtX 
18 == ex 
Jc == X 

(1 0.22) 

which ft'presenls a gate/input tally of 4110 compared to 511 2 for the NS functions in 
Eq. (10.20). all exclusivc of possiblc inveners. 
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FIGURE to.63 
D-to-IK K-map cooversion for the sequence recognizer of Fig. IO.6Oc. snowing domain boundaries 
for stale variables A, /J, and C, und minimum cover for the JK K·maps. 

Implementation of Eqs. ( 10.22) is provided in Fig. 10,64. together with the output
forming logic given in Eqs. ( 10.20). Notice Ihal NORIXORllNV logic is used for this 
purpose and that notation for the present state follows established practice in this telt!, 
namely Q" = A, QB = B. and Qc = C. The clock: symbol CK(L) simply indiC3les FET 
memory elements. 

An inspection of the D ~ J K K-mapconversion in Fig. 10 .63 together with Eqs. (10.21) 
evokes the fo llowing algorithm: 

Algori thm 10.2: D ... 1 K K-map Conversion ["Refer to Eq. ( 10.2 1)] 

(I) For all that is Nar A in the D" K-map. transfer itlo the l " K-map direclly (A lII )' 
(2) For all that is A in the D ... K-map. transfer it to the K ... K-mapcomplementcd (A K ... ). 
(3) Fill in empty cells with don' t cares. 
(4) Repeat steps (I). (2), and (3) for the DB ... l B, K B and Dc """'" l e. Kc . elC., K-map 
conversions. 

It is important to nOle thai the "fill_in" of the empty cells with don't cares is a result of the 
don'l cares that exist in the excitation table for JK flip ,fl ops. The reader should verify that 
the JK K-map results in Fig. 10.63 are also obtained by directly applying the JK exci tation 
table and lhe mapping algorithm to the Mealy form of the sequence recogni1..er given in 
Fig. IO.6Oc. In do ing so, it will become apparenllhal the D _ 1 K K-map conversion 

/ K. 
10 

¢ 

¢ 

/ K c 
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X(H) S{L) 

{ 
AIH) 

NS forming CIL) C(H) 

logic Output 
I(H) forming 

CK(L) logic 

Me m", { 

J K J K J K ~ 

A B C A(L)~ 
X(L) Z(H) 

0 0 0 0 0 0 

A(H) All) S(H) S(l) CIHJ C(l) 

FIGURE 10,64 
Implementation of Eqs. (10.22) for the sequence recognizer of Fig. 10.6Oc showing the NS,forming 
logic, memory. and output-fanning logic. 

method is quicker and easier than the direct method by using the excitation table for JK 
flip-flops. FurthemlOre, the K-map conversion approach permits a comparison between, 
say, a D flip-flop design and a JK K-map design, one oflen producing a more optimum 
result than the other. For these reasons the K-map conversion approach to design will be 

emphasized in this text. 

Missing-State Analysis To this point no mention has been made of the missing (don't 
care) states in Fig. IO.6Oc. Mjssing are the states 100, 101 . and 110. which do exist but are 
not part of the primary routinc expressed by the state diagram in Fig. 10.6Oc. Each don't 
care stale goes to (-+) a stale in the state diagram as indicat.erl in Fig. 10.65. For example. 
100 _ 001 unconditionally. bul 110 _ ) II if X or 110 -+ 001 if X. etc. The NS values 
are determined by substituting the present state values A. B. and C into the NS functions 
given in Eqs. (10.20). 

The missing state analysis gives emphasis to the fact that FSMs, such as the sequence 
recognizer in Fig. 10.60, must be initialized into a specific state. On power-up. the sequence 
recognizer of Fig. 10.64 could initialize into any state, including a don't care state. For 

Present Ne'" 
State State 

ABC DAD Dc Conclusion 

1 0 0 o 0 1 100 - 001 

1 0 1 o X 1 1 0 1 ...E.... 001 0' 1 0 1 .l5.... o 1 1 

110 X X 1 1 1 0 .l5.... 111 or 110 .l5.... 001 

FIGURE 10.65 
Missing state analysis for the Mealy version of the sequence recognizer given in Fig. IO.6Oc. 
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example, if the FSM should power up into don't care state 110 with X inactive (X), it 
would transit to state IlIon the next clock triggering edge and would falsely issue an 
output Z if X goes active. Ideally, on power-up, this FSM should be initialized into state 
000 to properly begin the sequence. Section 11.7 discusses the details by which this can be 
accomplished. 

10.13 ANALYSIS OF SIMPLE STATE MACHINES 

The purpose of analyzing an FSM is to determine its sequential behavior and to identify 
any problems it may have. The procedure for FSM analysis is roughly the reverse of the 
procedure for FSM design given in Section 10.6. Thus, in a general sense, one begins with 
a logic circuit and ends with a state diagram. There are six principal steps in the analysis 
process: 

1. Given the logic circuit for the FSM to be analyzed, carefully examine it for any 
potential problems it may have and note the number and character of its flip-flops, its 
inputs, and its outputs (Mealy or Moore). 

2. Obtain the NS and output logic functions by carefully reading the logic circuit. 

3. Map the output logic expressions into K-maps, and map the NS logic expressions into 
K-maps appropriate for the flip-flops used. If the memory elements are other than D 
flip-flops, use K-map conversion to obtain D K-maps. 

4. From the D K-maps, construct the Present StatelInputsfNext State (PSINS) table. 
To do this, observe which inputs control the branching, as indicated in each cell, 
and list these in ascending canonical word form together with the corresponding NS 
logic values. Ascending canonical word form means the use of minterm code such as 
X y Z, X Y Z, X y Z, etc., for branching dependency on inputs X, Y, and Z relative to 
a given K-map cell. 

5. Use the PSINS table in step 4 and the output K-maps to construct the fully documented 
state diagram for the FSM. 

6. Analyze the state diagram for any obvious problems the FSM may have. These 
problems may include possible hang (isolated) states, subroutines from which there 
are no exits, and timing defects (to be discussed in Chapter 11). Thus, a redesign of 
the FSM may be necessary. 

A Simple Example To illustrate the analysis procedure, consider the logic circuit given 
in Fig. 1O.66a, which is seen to have one input X and one output, Z, and to be triggered 
on the falling edge of the clock waveform. Also, the external input arrives from a negative 
logic source. Reading the logic circuit yields the NS and output logic expressions 

JB=AX 

KB=A 

Z = Aiix, 

(10.23) 

where A and B are the state variables. These expressions are mapped into JK K-maps and 
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converted to D K-maps as shown in Fig. 1O.66b. Here, use is made of Algorithm 10.2 for 
the reverse conversion process, that is, for the JK-to-D K-map conversion. Notice that the 
domain boundaries are indicated by heavy lines as was done in Fig. 10.63. 

Step 4 in the analysis procedure, given previously, requires the construction of the PS/NS 
table from the D K-maps that are provided in Fig. IO.66b. This is done in Fig. 1O.67a, from 
which the state diagram follows directly as shown in Fig. 1O.67b. 

There are no serious problems with this FSM other than the potential to produce an output 
race glitch (ORG) as a result of the transition 10 _ 01 under branching condition X. The 
problem arises because two state variables are required to change during this transition, but 
do not do so simultaneously. The result is that the FSM must transit from state 10 to 01 via 
one of two race states, 00 or 11. If the transition is by way of state 00, Z will be issued as a 
glitch that could cross the switching threshold. A detailed discussion of the detection and 
elimination of output race glitches is presented in Section 11.2. 

A More Complex Example The following NS and output expressions are read from a 
logic circuit that has five inputs, U, V, W, X, and Y, and two outputs, LOAD (LD) and 
COUNT (CNT): 

JB AX + AY 

KA=BX+XY KB=A(X+Vy) (10.24) 

LD = ABX CNT ABXY. 

Presented in Fig. 10.68 are the JK-to-D K-map conversions for the NS functions given in 
Eqs. (10.24). As in the previous example, Algorithm 10.2 is used for the reverse conversion 
from JK to D K-maps. The domain boundaries are again indicated by heavy lines. 

The PS/NS table for the NS functions, shown in Fig. 1O.69a, is constructed from the D 
K-maps in Fig. 10.68. Notice that only the input literals indicated in a given cell of the D 
K-maps are represented in the PS/NS table as required by step 4 of the analysis procedure 
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FIGURE 10.69 
(a) PS/NS table obtained from the D K-maps in Fig. 10.68 and (b) the resulting state diagram for the 
FSM represented by Eqs. (10.24). 

given previously in this section. Representation of these literals in canonical form ensures 
that the sum rule is obeyed - all possible branching conditions relative to a given state are 
taken into account. 

The state diagram for the Mealy FSM represented by Eqs. (10.24) is derived from 
the PSINS table in Fig. 1O.69a and is shown in Fig. 1O.69b. Both Mealy outputs are de
duced directly from the output expressions in Eqs. (10.24). This FSM has the potential 
to form an output race glitch (ORG) during the transition from state 11 to state 00 under 
branching condition KY. Thus, if state variable A changes first while in state 11, the FSM 
could transit to state 00 via race state 01, causing a positive glitch in the output CNT, 
which is issued conditional on the input condition KY. No other potential ORGs exist. 
A detailed discussion of ORGs together with other kinds of logic noise is provided in 
Chapter 11. 
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10.14 VHDl DESCRIPTION OF SIMPLE STATE MACHINES 

An introduction to VHDL description of devices is given in Section 6.10. There, certain key 
words are introduced in bold type and examples are given of the behavioral and structural 
descriptions of combinational primitives. In Section 8.10, VHDL is used in the description of 
a full adder to illustrate three levels of abstraction. In this section, the behavioral descriptions 
of two FSMs (a flip-flop and a simple synchronous state machine) are presented by using 
the IEEE standard package std_logicl164. 

10.14.1 The VHDL Behavorial Description of the RET D Flip-flop 

(Note: Figure 10.51a provides the symbol for the RET D flip-flop that is being described 
here.) 

library IEEE; 

use IEEE.stdJ.ogicll64.all; 

entity RETDFF is 

generic (SRDEL, CKDEL: Time); 

port (PR, CL, D, CK: in bit; Q, Qbar: out bit); -- PR and CL are active low inputs 

endRETDFF; 

architecture behavioral of RETDFF is 

begin 

begin 

process (PR, CL, CK); 

if PR = '1' and CL = '0' then -- PR = '1' and CL = '0' is a clear condition 

Q <= '0' after SRDEL; -- '0' represents LV 

Qbar <= '1' after SRDEL; --' l' represents HV 

elseif PR = '0' and CL = '1' then -- PR = '0' and CL = '1' is a preset condition 

Q < = '1' after SRDEL; 

Qbar <= '0' after SRDEL; 

elseif CK' event and CK = '1' and PR = '1' and CL = '1' then 

Q <= Dafter CKDEL; 

Qbar <= (not D) after CKDEL; 

end if; 

end process; 

end behavioral; 

In the example just completed, the reader is reminded that the asynchronous overrides 
are active low inputs as indicated in Fig. 10.51a. However, VHDL descriptions treat the '1' 
and '0' as HV and LV, respectively. Therefore, it is necessary to apply Relations (3.1) in 
Subsection 3.2.1 to properly connect the VHDL description to the physical entity. 
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x 

FIGURE 10.70 
A simple FSM that is used for a VHDL description. 

10.14.2 The VHDL Behavioral Description of a Simple FSM 

Shown in Fig. 10.70 is the state diagram for a two-state FSM having one input, X, and one 
output, Z. It also has a Sanity input for reset purposes. 
The following is a VHDL behavioral description of the FSM in Fig. 10.70: 

library IEEE; 

use IEEE. std-.logic 1 1 64.all; 

entity FSM is 

port (Sanity, CK, X: in bit; Z: out bit); -- Sanity is an active low reset input 

end FSM; 

architecture behavorial of FSM is 

type statetype is (stateO, statel); 

signal state, NS : state type stateO; 

begin 

sequence-IJrocess: process (state, X); 

begin 

case state is 

when stateO = > 

if X = '0' then 

NS statei; 

Z <= 'I'; 

else NS <= stateO; 

Z '0'; 

end if; 

when statel=> 

else NS 

end if; 

end case; 

if X '1' then 

NS < = stateO; 

Z<='O'; 

state I; 

Z <= '1'; 

end process sequence_process; 
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CK_process: process; 

begin 

wait until (CK'event and CK = '1'); 

if Sanity = '0' then -- '0' represents LV 

state <= stateO; 

else state <= NS; 

end if; 

end process CK_process; 

end behavorial; 

In this example the effect of the Sanity input is presented at the end of the behavioral 
description. But it could have been placed in front of the sequence_process. Also, a keyword 
not encountered in all previous examples is type. This keyword is used to declare a name and 
a corresponding set of declared values of the type. Usages include scalar types, composite 
types, file types, and access types. References on the subject of VHDL are cited in Further 
Reading at the end of Chapter 6. 

10.15 FURTHER READING 

Nearly all texts on the subject of digital design offer coverage, to one extent or another, of flip
flops and synchronous state machines. However, only a few texts approach these subjects by 
using fully documented state (FDS) diagrams, sometimes called mnemonic state diagrams. 
The FDS diagram approach is the simplest, most versatile, and most powerful pencil-and
paper means of representing the sequential behavior of an FSM in graphical form. The text 
by Fletcher is believed to be the first to use the FDS diagram approach to FSM design. Other 
texts that use FDS diagrams to one degree or another are those of Comer and Shaw. The 
text by Tinder is the only text to use the FDS diagram approach in the design and analysis 
of latches, flip-flops, and state machines (synchronous and asynchronous). Also, the text 
by Tinder appears to be the only one that covers the subject of K-map conversion as it is 
presented in the present text. 

[1] D. J. Comer, Digital Logic and State Machine Design, 3rd ed. Saunders College Publishing, Fort 
Worth, TX, 1995. 

[2] W. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs, 
NJ, 1980. 

[3] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993. 
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs, 

NJ,1991. 

The subjects of setup and hold times for flip-flops are adequately treated in the texts by 
Fletcher (previously cited), Katz, Taub, Tinder (previously cited), Wakerely, and Yarbrough. 

[5] R. H. Katz, Contemporary Logic Design. BenjaminiCommings Publishing, Redwood City, CA, 
1994. 
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[6] H. Taub, Digital Circuits and Microprocessors. McGraw-Hill, New York, 1982. 
[7] J. F. Wakerly, Digital Design Principles and Practices, 2nd ed. Prentice-Hall, Englewood Cliffs, 

NJ,1994. 
[8] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/St. 

Paul, MN, 1997. 

With the exception of texts by Katz and Taub, all of the previously cited references cover 
adequately the subject of synchronous machine analysis. The texts by Fletcher, Shaw, and 
Tinder in particular, present the subject in a fashion similar to that of the present text. Other 
texts that can be recommended for further reading on this subject are those by Dietmeyer 
and by Nelson et aI., the former being more for the mathematically inclined. 

[9] D. L. Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Inc., Boston, MA, 
1978. 

[10] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and 
Design. Prentice Hall, Englewood Cliffs, NJ, 1995. 

For detailed information on the subject ofVHDL, the reader is referred to Further Reading 
at the end of Chapter 6. 

PROBLEMS 

10.1 (a) Complete the timing diagram in Fig. PlO.l for the set-dominant basic cell shown 
in Figs. 1O.18a and 1O.18b. To do this, sketch the resulting waveforms, taking into 
account the path delay through a NAND gate represented by Tp. 

(b) Test the results of part (a) by simulating the circuit. 

10.2 (a) Complete the timing diagram in Fig. PIO.2 for the reset-dominant basic cell 
shown in Figs. lO.l8c and d. To do this, sketch the resulting waveforms, taking into 
account the path delay through a NOR gate represented by Tp. 

(b) Test the results of part (a) by simulating the circuit. 

10.3 The set-dominant clocked basic cell (also called a gated basic cell or gated SR latch) 
is represented by the expression 

Qr.J.] = SCK + Qr(RCK), 

S(L) ~ ___ ----,nL ________ ---' 

R(L) ~ ________ ---,nL--___ ---' 

Q(H) 0-

Q(L) ~ __ 

FIGURE Pl0.l 
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S(H) ~ ________________ ~nL-______ ~ 

R(H) ~ _____ -----'n'-__________________ ----' 

Q(H) 1--
o 

Q(L) 1-
o 

FIGURE Pl0.2 

where Q t+ I is the next state, Q t is the present state, CK is the clock input, and Sand 
R are the set and reset inputs, respectively. 
(a) From the preceding expression, plot the first-order EV K-map for this device 
showing minimum cover. Follow the example in Fig. 10.11 b. 

(b) From the expression for Qt+l, construct the NAND logic circuit for the gated 
basic cell. Thus, show that it consists of four two-input NAND gates (nothing else), 
which includes a set-dominant basic cell represented as two "cross-coupled" NAND 
gates as in Fig. 1O.1Sa. 

(c) By using the logic circuit in part (b), complete the timing diagram shown in 
Fig. PlO.3. Neglect the path delays through the NAND gates, and note that the 
arrows indicate rising edge triggering by clock. [Hint: The logic waveforms for 
Q(H) and Q(L) can be deduced qualitatively from the equation for Qr+I'] 

(d) Test the results of part (c) by simulating the circuit of part (b) with a logic 
simulator. 

10.4 (Note: This problem should be undertaken only after completing Problem 10.3.) 
The state diagram for the set-dominant basic cell is shown in Fig. 1O.12a. 
(a) Add CK to this state diagram in Fig. 1O.12a to create the state diagram for the 
rising edge triggered (RET) set-dominant SR latch of Problem 10.3 in a manner 
similar to the state diagram given in Fig. 1O.47b. (Hint: If this is properly done, 
Fig. 1O.12a will result when CK = 1.) 

CK 1 
o 

S(H) ~----.lI ________ ---J 

R(H) ~ __________ ---' 

Q(H) ~ __ 

Q(L) ~ __ 

FIGURE Pl0.3 

~ __ ~n,-________ __ 
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(b) Redesign the gated basic cell of Problem 10.3 by using the set-dominant basic 
cell as the memory. To do this, follow the examples in Figs. 10.24, 10.25, and 10.47 
by plotting EV K-maps for Set and Reset. Thus, it is necessary to combine the 
information in the state diagram of part (a) with the excitation table in Fig. 10.15c 
via the mapping algorithm given in Section 10.6. 

(c) Construct the NANDIINV logic circuit from the results of part (a). In what way 
does it differ from that constructed in part (b) of Problem 10.3? What can be said 
about the S, R = 1, I condition relative to these two designs? (Hint: Only one 
inverter is used.) 

(d) Read this circuit and write a single expression similar to that given in Problem 
10.3. Then construct a first-order EV K-map from this result. Compare the K-map 
with that in part (a) of Problem 10.3. Are these two K-maps the same? Explain your 
answer. 

(e) Complete the timing diagram in Fig. PlO.3 for this design. What do you conclude 
relative to the S, R = 1, 1 condition? 

(f) Test the results of part (d) by simulating the circuit of part (b) with a logic 
simulator. 

10.5 (a) By using Eq. (l0.5), implement the set-dominant basic cell by using one 2-to-1 
MUX and one AND gate (nothing else). [Hint: Plot Eq. (10.5) in a first-order K-map 
of axis S, and remember that the Sand R inputs are introduced active low into the 
basic cell.] 
(b) Construct the logic circuit for the design of part (a). To do this, construct the logic 
circuit for the 2-to-l MUX and provide both active high and active low outputs as 
in Fig. 6.4d. Qualitatively, discuss how the mixed-rail output response of this design 
compares with that of Fig. 10.18a. 

10.6 (a) Convert an RET D flip-flop to a set-dominated RET SR flip-flop. To do this, use 
minimum extemallogic and assume that the Sand R inputs arrive active high. 

(b) Complete the timing diagram in Fig. PI 0.3 by simulating this flip-flop. Is mixed
rail output response preserved in this flip-flop? Explain your answer. 

10.7 Shown in Fig. PI0.4 are the operation tables for four unusual (perhaps nonsense) 
flip-flops. 
(1) Construct the two-state state diagram and excitation table for each of these. To 
do this, follow the example of the JK flip-flop in Fig. 10.40. 

L N °t+t S p °t+l A B °t+l 

:it' 0 0 0 0 0 0 0 0 

o 0t 0 °t 0 0 1 

1 1 0 Ot 0 Ot 0 

0 1 °t 

(a) (b) (c) (d) 

FIGURE Pl0.4 
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Qt--+ Qt+l F G Qt--+ Qt+l p K Qt--+ Qt+l S F Qt--+ Qt+l R M 

0--+0 tP 0 0--+0 1 0 0--+0 1 0 0--+0 {$ g} 
0--+1 tP 0--+1 {~ ~} 0--+1 {~ ~} o --+ 1 

1 --+ 0 1 0 1--+0 tP 1--+0 {~ b} 1 --+ 0 0 0 

1 --+ 1 {~ ~} 1 --+ 1 0 tP 1 --+ 1 {~ ~} 
1 --+ 1 {J ~} 

(a) (b) (c) (d) 

FIGURE P10.5 

(2) Find the gate-minimum logic circuit required to convert any type D flip-flop to 
each of these flip-flops. To do this, follow the model in Fig. 10.36 and assume that 
all inputs arrive active high. 

10.8 Shown in Fig. PlO.5 are four excitation tables for unusual (perhaps nonsense) flip
flops. 
(1) Construct the two-state state diagram and operation table for each of these. 

(2) Find the gate-minimum logic circuit required to convert any type of JK flip-flop 
to each of these flip-flops. To do this, follow the model in Fig. 10.36 and assume that 
all inputs arrive active high. 

10.9 Find the gate-minimum logic circuit required for the following flip-flop conversions. 
To do this, use the excitation tables in Fig. PlO.5. 
(a) Convert an MS D flip-flop to a MS FG flip-flop with inputs active low. 

(b) Convert an RET T flip-flop to an FET PK flip-flop with inputs peL) and K(H). 

(c) Convert an RET D flip-flop to an RET RM flip-flop with inputs active high. 

10.10 (a) Draw the two-state state diagram that describes the operation of an RET JK flip
flop that has an active low synchronous clear input - one that takes effect only on 
the triggering edge of the clock signal. 

(b) Find the gate-minimum logic circuit required to convert an RET D flip-flop to 
the JK flip-flop of part (a) by using NANDIINV logic only. Assume that the inputs 
arrive active high. 

10.11 Given the circuit in Fig. PI 0.6, complete the timing diagram to the right and determine 
the logic function F. (Hint: Construct a truth table for Q], Q2, and Z.) 

10.12 The results of testing an FSM indicate that when its clock frequency fCK exceeds 25 
MHz the FSM misses data. The tests also yield the following data: 

!fF(max) = 15 ns 

i'NS(max) = 13 ns, 

where i'FF(max) is the maximum observed delay through the memory flip-flops, and 
i'NS(max) is the maximum observed delay through the next-state-forrning logic, both 
given in nanoseconds. 
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X(H) 

CK 

I- Z(H) Z(H)----.J U r-
QI(H)_ 

Q2(H)_ 

(a) Calculate the minimum setup time t.u(n~n) from the forego ing information. Note 
that the hold lime plays no significant role here. 

(b) On a sketch of the voltage waveform for clock, illustrate the relative values for 
TFFl'rnlll). lNS(mu).I,u{min). and To: . 

10.13 Shown in Fig. PIO.7 are three relatively ~imple FSMs. First, check each state diagram 
for compliance with the sum rule and mutually exclusive requirement. Then, for thi ~ 
problem, design each of these FSM:<o by using RET 0 flip-l1ops a~ the memory. To do 
this use a gate-minimum NS and output logic and assume that the inputs and outputs 
are all active high. 

10.14 Repeat Problem 10.13 by using RET JK flip-flops as the memory. 
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10.15 Design the FSM in Fig. PlO.7b by using PK flip-flops that are characterized by the 
excitation table in Fig. PIO.5b. To do this, find the gate-minimum logic required for 
the NS- and output-forming logic. Do not implement the result. Thus, the infonnation 
in Figs. PlO.7b and PlO.5b must be brought together via the mapping algorithm in 
Section 10.6. (Hint: The easiest approach to this problem is to obtain the NS K-maps 
for a D flip-flop design and then apply the conversion logic for D-to-PK K-map 
conversion. See Subsection 10.12.2 for assistance if needed.) 

10.16 (a) Construct a Jour-state state diagram for an FSM that samples (with clock) a 
continuous stream of data on an input X. The FSM is to issue an output Z any time 
the sequence ... 1001 ... occurs. Consider that the sequence can be overlapping as, 
for example •.. .J 00100100 .... 

(b) By using two state variables, give this state diagram any valid state code assign
ment. 

10.17 Repeat Problem 10.16 for a nonoverlapping sequence ... 0101. ... 

10.18 Construct the state diagram for an FSM that samples (with clock) a continuous 
stream of data on an input X. The FSM is to issue an output Z any time the sequence 
.. .10110 ... occurs. Consider that the sequence can be overlapping as, for example, 
.. .lOlOlOllOI 1010 .... where an output is issued twice in this series. The state 
diagram must conform to the following representations: 
(a) A Moore FSM representation with six states. 

(b) A Mealy FSM representation with five states. 

10.19 (a) Design a serial 2 's complementer logic circuit by using two RET D flip-flops and 
a gate-minimum NS and output forming logic. To do this, follow Algorithm 2.6 in 
Subsection 2.6.2 and the ASM chart in Fig. 13.29b. The inputs are Start and Bin (fOf 
binary), and the output is T (for two's complement), all active high. (Hint: There 
are at least three states and the process is unending.) 

(b) Test the design of the serial 2's complementer by simulation and compare the 
results with the timing diagram in Fig. 13.30. 

(c) Repeat part (a), except use two RET JK flip-flops. Which design is more optimum? 
Explain. 

10.20 Shown in PlO.8 is the logic circuit for an FSM that has two inputs, X and r, 
and two outputs, P and Q. Analyze this FSM to the extent of constructing a fully 
documented state diagram. To do this, follow the examples in Section 10.13. 

10.21 Presented in Fig. PlO.9 is the logic circuit for a two-inputfone-output FSM that is 
to be analyzed. To do this, construct a fully documented state diagram by following 
the example in Figs. 10.66 and 10.67. Indicate any possible branching problems this 
FSM may have. Such problems may include states for which there is no entrance as, 
for example, don't care states. 

10.22 In PlO.lO is the logic circuit for a single-inputfsingle-output FSM. Analyze 
this FSM by constructing a fully documented state diagram. Indicate any possible 
branching problems this FSM may have. Such problems may include states for which 
there is no entrance. 
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10.23 (1) Shown in the following are the NS- and output-forming logic expressions for five 
FSMs. Analyze these FSMs to the extent of constructing a fully documented state 
diagram for each. To do this follow the examples in Section 10.13. Note that the 
state variables are, as always, A, B, and C, and the outputs are P and Q. All other 
literals are inputs. For FSM (d), use the excitation table in Fig. 1O.5a to characterize 
the FG flip-flop memory. (Hint: For FSM (d), convert D K-maps to FG K-maps to 
obtain the NS logic.) 

(2) Indicate any possible branching problems that may exist in each of the FSMs. 
Such branching problems may include states for which there is no entrance and that 
might be don't care states. 

JA =BXY+XY 

KA = BXY + BXY 

JB=AX+XY 

KB=XY 

TA = ABXY + AXY 

TB = ABXY + BY 

P =ABX+AB 

JA = BXY + BXY 

KA=BX+XYZ 

JB =A(X + Z) 
KB=AY 

Q =ABX + BX 

(a) 

FA=XY 

GA=BXY+AY 

FB=XY +AX 

GB=XY+BX+AY 

P=BX+A 

(d) 

Q = BXY + ABY 

(b) (c) 

DA=ABClV+ACN 

DB =ACXY + AB + BC 

Dc =ABCS + ABCY + BCH + ABN 
+ABT +ABC 

P = BCSY + ABC 

Q=ACN 

(e) 

10.24 (a) Prove that ifEq. (10.4) is satisfied, Eq. (10.3) is also satisfied. 
(b) Prove that the mutually exclusive requirement is uniquely satisfied in Fig. 10.8 if 

for all i and k, where i =I- k. Here i, j, and k are integers with values 0, 1,2,3, .... 

10.25 At the discretion of the instructor, simulate by using EXL-Sim2002 any problem in 
this chapter where simulation is appropriate and where it is not already required. 
For example, an assignment 1O.25110.13c would require simulating the FSM in 
Fig. P1O.7c designed by using D flip-flops with a gate-minimum NS and output 
forming logic, and with active high inputs and output. 



CHAPTER 11 

Synchronous FSM Design 
Considerations and Applications 

11.1 INTRODUCTION 

A number of design considerations and problem areas were purposely avoided in the pre
vious chapter. This was done to focus attention on the basic concepts of design and anal
ysis. These design considerations and problem areas include logic noise in the output 
signals; problems associated with asynchronous inputs, metastability, and clock distribu
tion; and the initialization and reset of the FSM. It is the purpose of this chapter to discuss 
these and other subject areas in sufficient detail so as to develop good, reliable design 
practices. 

11.2 DETECTION AND ELIMINATION OF OUTPUT RACE GLITCHES 

Improper design of an FSM can lead to the presence of logic noise in output signals, and 
this noise can cause the erroneous triggering of a next stage switching device to which the 
FSM is attached. So it may be important that FSMs be designed to issue signals free of 
unwanted logic transients (noise) called glitches. 

There are two main sources of output logic noise in an FSM: 

• Glitches produced by state variable race conditions 

• Glitches produced by static hazards in the output logic 

In this and the following section, both types of logic noise will be considered, with emphasis 
on their removal by proper design methods. 

A glitch that occurs as a result of two or more state variable changes during a state
to-state transition is called an output race glitch or simply ORG. Thus, an ORG may be 
regarded as an internally initiatedfunction hazard (see Section 9.4), since two or more state 
variables try to change simultaneously but cannot. A glitch is an unwanted transient in an 
otherwise steady state signal and may appear as either a logic 0-1-0 (positive glitch) or as 

491 
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a logic 1-0-1 (negative) glitch, as indicated by the following : 

0-1-0 
Positive (+) glitch 

1-0-1 

Negative (-) glitch 

As a voltage transient an ORO may not develop to an extenl (hat it crosses the switching 
threshold of a next-stage device. Even so, the wise designer must expect that the ORG might 
cross lhe switching threshold and take corrective measures to eliminate il. 

By definition. a race condition is any state-tQ-state transition involving a change in two 
or more state variables. Thus, race conditions do nol exisl between logically adjacent states. 
The fact is that there are n! possible (altemative) race paths for slate-lo-stale transitions 
involving a change in n state variables. Forexample, a change in two state variables requires 
two alternative race paths, while achange in three state variables allows for 3! = 6 alternative 
race paths. But since the specific, real-time alternative race path thatan FSM may take during 
a state-.to-state transition is not usually predictable. all possible alternative race paths must 
be analyzed jf corrective action is to be laken. It is on tbis premise that the following 
discussion is based. 

An ORG produced by a transition involving the change of two state variables is illustrated 
in Fig. IUa by a portion of a state diagram. Here, two race paths, associated with the 
transition from state 011 to state 110. are indicated by dashed lines. One race path is by 
way of race state 010 and the other via race state Ill, a don't care state. Notice that the 

. ' x 

(a) 

FIGURE 11.1 

Use;1asaOorXinZ 
K-map else (+) glitch. 

Racepath2~ 

Q . "-

Origin ~" '. Destination 
S aX b 

lale 011 110 State 
" .~ , . 

, . 
~ZJtifX 

Racepath~ 
(+) Glitch 

(b) 

Illuslration of an ORG caused by a transition from state 011 to Slate I JO involving a change in two 
state variables. (a) Portion of a state diagram showing the two altermltive race paths associated with 
the transi tion. (h) Simplified diagram showing the origin and destination states, the race paths and 
possible ORGs. 
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OutputZ 0 

Race path 1 

FIGURE 11.2 

011---+010---+110 

3 2 

(a) 

6 

Output Z 0 ___ -' L __ _ 

Race path 2 011---+ 111---+ 110 

3 

(b) 
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Logic sketches of the ORGs that can be produced by the state diagram segment in Fig. 11.1. 
(a) Positive (+) glitch produced in state 0 IO via race path 1. (b) Conditional positive (+) glitch 
produced in don't-care state III via race path 2. 

branching from state a to state b is conditional on X and that this satisfies the conditional 
output Z if X in race state OJ O. The race paths are best shown by the simplified diagram 
in Fig. 11.1 b, where all nonessenti~11 details are removed. Note that neither the origin state 
nor the destination state are output states - an important observation in ORG analysis. 

Should state variable C change first, the transition from state 011 to state 110 will take 
place via race path 1 (race state 010) and the output Z would glitch, as indicated in Fig. II.Ib. 
On the other hand, if state variable A should change first, the transition will occur via race 
path 2 through don't-care state ¢7. In this case the question of whether or not an ORG will 
be produced depends on how ¢7 is used in extracting the cover for Z in the output K-map. 
If ¢7 is used as a 1, state III becomes an unconditional output state and an ORG will be 
produced by race path 2. Similarly, if ¢ 7 is used as an X, state 111 becomes a conditional 
(Mealy) output state that will produce an ORG via race path 2. As indicated in Fig. 11.1 b, a 
choice of ¢7 0 or ¢7 X eliminates the possibility of an ORG in state 111 via race path 
2. That an ORG is an output discontinuity is illustrated by the logic sketches in Fig. 1] .2. 
which represents the ORGs produced by the state diagram segment in Fig. 11.1. Notice that 
in both cases, the ORGs are (+) glitch discontinuities in the Z output. which should have 
been maintained as a steady-state logic 0 signal during the transition 0 11 ~ 110. The ORG 
shown in Il.2b is said to be conditional because its production depends on how ¢ 7 is 
used in the K-map for Z, as discussed previously. 

Given that ORGs are present in the FSM segment of Fig. 1).1, corrective action must 
be taken to eliminate them, assuming it is necessary to do so. The easiest corrective action 
involves changing the state code assignments to eliminate the race condition that caused 
the ORGs. When state codes 110 and 010 in Fig. II.la are interchanged, the race condition 
disappears together with the ORGs. A simple alteration of the state code assignments is not 
always possible, but should be one of the first corrective measures considered. 

Another example is presented that demonstrates the use of other methods for eliminating 
a possible ORG. Shown in Fig. Il.3a is a three-state FSM that has one input X, two outputs, 
Y and Z, and a possible ORG produced during the transition 00 ~ 11. To help understand 
the ORG analysis of this FSM, only the essential features of Fig. 11.3a are presented 
in Fig. 11.3b. Here, it is easily seen that if state variable A is caused to change first, the 
transition from state 00 to state 11 will take place via race path I through race state to 
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Origin Slate 

Destinallon 
r---'r-' .. Slate AS 

Use "'I as a 0 or X in Z K-map 
else (+) glitch In Z. 
Choice in Y K-map 

~acepath2 

0 91 

a 
00 

, ' 

, -, , 

x YII 

, 

" ' ''''C'''\;'YII if X 
~ZIT 
~acepalhl 

{+) glitch in Z 
Early activation of Y 

(b) 

Example of an ORO in a 5imple Ihn:e-state FSM with two outputS, Y and Z. and (,Inc input X . (a) Slate 
diagram showing the two alternative race paths for a transition from Slate a to Siale b. (b) Simplified 
Siale diagra.m segment showing only the essemial details of the race paths and ORG possibililies. 

causing an ORG in output Z. but not in output Y. This can be understood by noting thaI the 
output Z is not issued in the origin state 00 31\he time the Irnnsilion lakes p lace. Nor is 
Z issued in the destination stare I I at (he time of arrival. 8U1 Z is issued unconditionally 
in race state 10, thereby causing a discontinui ty in the Z signal via race path I -an ORG, 
Output Y. on the other hand. is issued conditionally o n X in race stale [0 and unconditionally 
in me destination Siale II , As a resull. only early activation of Y is possible by way of race 
path I - there is no ORG in Y. 

The do n't-carc state 0 1 can potentially produce an ORO in outpUi Z via race path 2 if 
4>1 is used as a I or as an X in the K-map for output Z , This ORG can be avoided by using 
4>1 as a 0 or X in extracting cover from the Z K-map. If X is used, for example. then the 
output Z in state 01 is condit ional on X . That is. the output is Z f.1. if X. which does not 
satisfy the branching condition X for the IransitioD a ~ b. and no ORG in Z is possible. 
The choice 1/>1 = 0 in the Z K-map clearly makes state 01 a nonoutput stale for Z. In the 
case of output Y. don't care 4> 1 can take on any value in the Y K-map. since only early 
activation of Y is possible should Y be caused to be issued in state 0 I. 

The NS and output K-maps and the resulting minimum covers for the simple F$M of 
Fig. 11 .3a are shown in Figs. II.4a and J l .4b. (Remember that the NS K-maps are plotted 
by using the mapping algorithm in Section 10.6). Notice that tPl is taken to be 0 in the Z 
K-map, in agreement with the requirements indicated in Fig. 11 .3b. Thus. an ORG in Z is 
not possible via race path 2. But dil is used as a I in the Y K-map. which is permissible 
since. by race path 2. only early aclivalion of output Y is possible . Early aclivatio n or late 
deac tivatio n or an outpul is nOI a problem and. in some case .... may even be preferred as a 
means of optimizi ng OUlput logic. 
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FIGURE 11 ,4 
Implementation of the FSM in Fig. 11.3. EV K-maps for the NS and outpUI (um;lions. (b) Logic 
circuit showing two means of gc:nerating output Z. 

Output Z is shown to be generated from both an AND gale and from n NOR gale in 
Fig. I IAc. This has been done to demonstrate that the choice of hardware can influence the 
outcome ofORGs. An examination ofthc mixed-rail o utputs from basic ccll~ in Fig. 10. 18 
wi ll help the reader understand the following discussion and how choice of hardware can be 
used as a means of eliminating ORGs. If the output is taken from the AND gate. ZA"O(If) , 
and if the 0 fl ip-flops arc NAND based, stale variable A will change before B by as much as 
a gate delay. causing the ORG 10 be fonned . However. ifche NOR gale is used 10 generate 
Z. Z"OR{If). and the D Hip-flops are NAND based. no ORG will resuh. Thi s is true since 
state variable B will change before state variable A. forcing the FSM to take race path 2 
during the transition a -+ b. But the use of NOR-based D Hip-Hops has the opposi te effect 
for each of the two cases JUSt stated. In this case. Z",,,o(H) should be used for a glitch-free 
output. 
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11.2.1 ORG Analysis Procedure Involving Two Race Paths 

Certain facts emerge in the ORG discussions that have been presented so far. For reference 
purposes these facts are presented in the following procedure: 

• Notice whether or not the origin and destination states in a given state-to-state 
transition have the same or different output action relative to a given output. If 
the origin and destination states have the same output action relative to a given 
output (that is, both are output states or both are not output states), then check 
to see if a potential ORG exists via the race states. If the origin and destination 
states have different output actions (that is, one is an output state but the other 
is not), no ORG is possible. 

• If a potential ORG exists, corrective action should be taken to eliminate it by 
one of several means - an ORG may erroneously cross the switching threshold 
and trigger a next stage. 

When more than two state variables are required to change during a given state-to-state 
transition, the analysis procedure becomes much more difficult. Recall that for a change of 
n state variables during a transition there are n! possible race paths. 

11.2.2 Elimination of ORGs 

Six methods for eliminating an ORGs are cited here for reference purposes. Three of these 
methods, the first three listed below, have been discussed previously. These six methods 
may be viewed as listed in decreasing order of importance or desirability: 

1. If possible, for a don't-care state that lies in a race path, make proper choice of its 
value in the output K-map to eliminate the ORG. 

2. Change the state code assignment to either remove the race condition that caused 
the ORG, or move the race condition elsewhere in the state diagram where an ORG 
cannot form. 

3. If possible, and with reference to Fig. 10.18 and the flip-flop technology, choose the 
output hardware necessary to eliminate the ORG. 

4. Filter the output logic signal containing the ORG. 

5. Use a buffer (fly) state to remove the race condition that caused the ORG. 

6. Increase the number of state variables to eliminate the race condition that caused the 
ORG. 

An inspection of the state diagram in Fig. 11.3a indicates that a simple change in the 
state code assignment can eliminate the potentially active ORG in output Z just discussed. 
This is demonstrated in Fig. 11.5a and in the state diagram segment of Fig. 11.5b. By using 
the state code assignment shown, all ORGs are eliminated. Now, the conditional branching 
a --+ b in Fig. 11.5a is logically adjacent and cannot cause an ORG. The unconditional 
branching from 10 to 00 (c --+ a) is also logically adjacent and will cause no ORG. The 
only race condition that exists is the conditional branching from state 01 to 10 (b --+ c) and 
for this no ORG is possible, as indicated in Fig. 11.5b. Branching b --+ c via race path 1 
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results in normal deactivation of Y and normal activation of Z . Assigning ¢ .l ;\ logic 1 or X 
in the Y K-map merely results in a late deactivalion of OUipUi Y via race path 2. Or, using 
1J3 as a logic 1 in the Z K·map results in an early activation of output Z vi<l race· path 2. 
Early or late activation or deactivation of an output is of no concern in most cases. In fact, 
il is only under the most stringent of timing conditions that such late or early activation 
or deactivation may become an important consideration. Use of </13 as a logic a results 
in [he normal output response in either casco The following paragraphs offer two simpler 
alternatives for the elimination of all ORGs in the FSM of Fig. I 1.3. alternatives that may 
or may not provide the best solution. 

Shown in Fig. 11 .6 are [wo examples of how a potential ORG can beeliminated by using 
a buffer (fly) slate LO eliminate the race condition causing the ORG. In Fig. 11.6a. don't-care 
state 01 is used to eliminale the ORG in output Z by removing the mce condi tion between 
stale a and b in Fig. 11.3a. In doing this, an additional clock period is introduced for the 
transition from a to b, The use oflhe buffer state in Fig. t 1.6b removes the potential ORG 
in output Y but creates an additional clock period delay for the transition from state c to 
state a. These additional clock period delays caused hy the presence of a buffer slate may 
or may not be acceptable, depending on the design requirements for the FSM. Clearly. the 
best solution to this ORG problem is that indicated in Fig. r 1.5 . 

Another approach to eliminating ORG ... is to filter them. This is easily accomplished 
since ORGs, like all fomls of logic noise, occur immediately following the triggering edge 
of the clock waveform. Shown in Fig, I I .7a is an acceptable fillering scheme involving an 
edge·triggered Hip-flop that is triggered antiphase to the FSM memory Hip-flops. Thus, if 
the memory flip-flops of the FSM are triggered on [he rising edge of [he clock waveform 
(RET), then the D flip-flop filter must be triggered on the falling edge of the clock wavefoml 
(FET) or vice versa. The timing diagram in Fig. 11 .7b iIluslrates the filtering action of the 
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D flip-flop. Notice that one-half of a clock cycle is lost because of the action of the filter. If 
the D flip-flop is triggered in phase with the FSM memory flip-flops, an entire clock cycle 
will be lost in the filtering process. To help understand how the filtering process eliminates 
logic noise such as ORGs, the following is presented for reference purposes: 

Remember: All forms of logic noise (glitches), including ORGs, occur immediately 
following the triggering edge of the clock waveform, and the duration of any logic 
noise pulse will always be much less than one-half the clock period. 

Because logic noise occurs immediately following the triggering edge (RET or FET) of 
the clock waveform, it is very easily filtered. Another type of noise, called analog noise, is 
more difficult to filter since it is usually produced randomly from sources outside the logic 
system. The filtering of analog noise will not be discussed in this text. 

Which Methods Should Be Used to Eliminate a Potential ORC? If possible, make the 
proper choice of don't-care values in output K-maps or change the state code assignments as 
needed to eliminate ORGs. These two reliable methods are least likely to increase hardware 
requirements and slow down FSM operation. Choosing the output hardware in accordance 
with Fig. 10.18 is somewhat "iffy," since this method may depend on a single gate delay 
to force branching along a particular non-ORG race path (see Fig. lIA.). Unlike methods 
I and 2, method 3 does not offer assurance that a given ORG will not form. 

Methods 4 and 5 both involve delays in the performance of the FSM and in most cases 
increase the hardware requirements. The filter method (4) is the most desirable of the two, 
since only a half CK cycle (plus the path delay through the D flip-flop) is involved. The 
filter method also has another advantage. By using a bank of such flip-flops (called an 
output holding register) to filter multiple outputs from an FSM, the outputs can be delivered 
synchronously to the next stage. Use of a buffer state (5) to eliminate a race condition in 
a branching path (one that caused the ORG) introduces an additional clock cycle in that 
branching path, and this may not be an acceptable option. 

Least desirable, usually, is method 6. Although increasing the number of state variables 
may not alter the performance appreciably, this method does require an additional flip-flop 
and additional feedback paths for each state variable that is added. Thus, method 6 usually 
requires additional NS logic and may even require additional output-forming logic. The 
one-hot code method, discussed in Section 13.5, offers some advantages over conventional 
coding methods, but at the expense of requiring as many state variables (hence, also flip
flops) as there are states in the state diagram (see Table 2.11). 

11.3 DETECTION AND ELIMINATION OF STATIC HAZARDS 
IN THE OUTPUT LOGIC 

A detailed treatment of static hazards in combinational logic circuits is provided in Sections 
9.1 and 9.2 and forms the basis for discussion of hazards in the output logic of FSMs 
presented in this section. It is recommended that the reader review these sections before 
continuing on in this section. Unique to state machines is the fact that the static hazards can 
be either externally initiated (as in combinational logic) or internally initiated because of 
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a change in a slale variable. The basic difference between these two types of static hazards 
(s-hazards) is illustrated by the generalized output table for output Z shown in Fig. 11 .8. 
Here. the double arrows represent hazardous transitions for either slatic i-hazards or static 
O-hawrds. Notice that an externally ini tiated s-ha7..ard is created by a change in a single 
external input while all state variables are held constant, meaning that an externally initiated 
s-hazard takes place under a hold condirion. Conversely. an internally initiated s-hazard is 
crealed by a change in a single )".Ialt: variable with all external inputs held constant. But 
in this latter case it will take an input change to initiate the transition thaI produces the 
s-hazard. The following discussions will consider both externally and internally initiated 
s-hazards. 

11 .3.1 Externally Initiated Static Hazards in the Output logic 

Externally iniliated static hazards can occur only in Mealy FSMs. A simple example is 
presented in Fig. 11.9a. which is a resolver state machine configuration similar to Ihat 
shown in Fig. 1O.29a for the RET D flip-flop . This Mealy machine has two inpuls, X and 
Y. and one OUiput. Z . It is the function of this FSM that its output Z remain constant unless 
input Y changes while Ihe FSM is in a resolved Slale. 01 or 10. Thus, a change in Y while 
the FSM is in a resolved state deactivates the output Z. Note that the FSM never enters state 
11, a don 'I-care stale. 

The minimum SOP cover is shown in Fig. 11 .9b. Notice that the coupled variable is 
idemified as the external input Y. Also, observe that the stale variables in the two coupled 
tenns. Ai' and BY. are read in minterm code as A 8 = 00 to indicate thai Ihe hazard is 
produced by a change Y --40 Y in state 00 under Ihe holding condition X. When the SOP 
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consensus law in Eqs. (3. 14) is applied. the ANDcd residue of the coupled terms is simply 
AB. which is the hazard cover (see Section 9.2). Thus. adding the hazard cover 10 the 
minimum SOP expression yields 

(11.1) 
/fll :Pn/(I!ltr 

which ensures that the stat ic I-hazard will not form under any i>el of circumstances. 
The NANDflNV logic and timing diagrams for the Z.\·Ol> func tion Wilh and wi thout 

hazard cover are shown in Fig. 11 . 10. Figure J 1. 10a il1 ustnites the formation of the static 
I-hazard resulling from a I ..... 0 change in external input Y. heHce an externally initiated 
s-hazard. Implememation of Eq. (1 1.1). shown in Figure J I . lOb. illustmtcs the removal of 
the s-hazard as a result of adding hazard cover A iJ to the minimum SOP cover. In this latter 
case the ha7.ard is removed regardless of the activation level of input Y. (H) or (L). and 
regardless of the delay imposed by the inverter. 

To reinforce what has been said in the foregoing discussion. the func tion Zsm. is repre
sented in the output table of Fig. 11 . 11 . The hazardous transition. indicated by an arrow. 
shows that the static l-ha7.ard can be produced only by II I ...,. 0 chlinge in Y assuming 
that input Y arrives active high. The hazard is eli minated by the hazard co\'er. which must 
cover the hazardous transition as indicated in the figure. Notice that the hazardous transition 
occurs in s tate 00 under holding condition X as required by Figs. 11.9a and 11 .9b. 

The minimum POS cover is indicated in Fig. J J .9c. Reading the coupled tertns in 
max term code indicates that a 0...,. I change in Y must occur in Slate I I. which is a don ' t
care slate. Since this FSM never enters s tate II, the sta tic O-hazard never occurs and, 
accordingly. h3U1rd cover is said to be not applicable (NA). 11le gate/input tally for the POS 
expression is 3/6 compared to 4/9 for Eq. ( 11 . 1). both exclusive of inven er count. Thus. 
hardware-wise. a d iscrete logic POS implemtnlution of the output Z is favored over the 
SOP expression in Eq. ( 11 .1). 
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11.3.2 Internally Initiated Static Hazards in the Output of Mealy 
and Moore FSMs 

The following discussion can best be undeThtood by a reexamination afthe mixed-rail output 
responses of the set- and reset-dominant basic cells given in Fig. 10.18. Notice that in both 
ca&es the active portion of the wavefonn from the ANDing operation is symmetrically 
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placed within that from the ORing operation by an amount equal to the path delay through a 
gate. From this information the following conditions for s-hazard formation can be stated: 

• Conditions for static I-hazard (SOP hazard) formation: 

1. A 1 ~ 0 change in the Q output of the flip-flop when Q(H) leads Q(L) 

2. A 0 ~ 1 change in the Q output of the flip-flop when Q(L) leads Q(H) 

• Conditions for static O-hazard (POS hazard) formation: 

3. A 0 ~ 1 change in the Q output of the flip-flop when Q(H) leads Q(L) 

4. A 1 ~ 0 change in the Q output of the flip-flop when Q(L) leads Q(H) 

Note that these four conditions are simi lar to those for combinational logic when considering 
the activation level of the initiating (coupled-variable) input. In Figs. 9.2 and 9.3, for 
example, the coupled-variable inputs to the SOP logic circuits are the external inputs A(H) 
and A(L), respectively. For internally initiated s-hazard formation, the coupled-variable 
input is assumed to be the output from a basic cell, Q(H) and Q(L). This is a valid assumption 
since the output stage of the most common flip-flops is a basic cell with mixed-rail outputs. 

By relating the mixed-rail output response of the basic cells to the conditions for s
hazard formation just stated, two useful conclusions can be drawn. To understand how 
these conclusions come about, it is necessary to revisit Fig. 10.18. Presented in Fig. 11.12 
are the mixed-rail output responses of the' basic cells together with the conditions for s
hazard formation for each, as deduced from conditions 1 through 4 previously stated. An 
inspection of Fig. 11.12a reveals that the mixed-rail output response for the set-dominant 
(SOP) basic cell generates the conditions for POS hazard (static O-hazard) formation. In 
dual fashion, the mixed-rail output response for the reset-dominant (POS) basic cell in 
Fig. 11.l2b generates the conditions for SOP hazard (static I-hazard) formation. That the 
set- and reset-dominant basic cells can be called SOP and POS circuits, respectively, is 
easily deduced from an inspection of Figs. 10.11 a and 1O.13a. 

From Fig. 11.12 and the forgoing discussion, the following two conclusions can be 
drawn, subject to the assumption that the coupled variables in an output expressions are 
state variables produced from the mixed-rail outputs ofthe flip-flops: 

• For flip-flops with NAND-centered (SOP) basic cells, s-hazards produced by 
either a I ~ 0 or a 0 ~ 1 change in the coupled variable are not possible if SOP 
output logic is used . 

• For flip-flops with NOR-centered (POS) basic cells, s-hazards produced by either 
a 0 ~ 1 or a 1 ~ 0 change in the coupled variable are not possible if POS output 
logic is used. 

The ramifications of the forgoing conclusions are important in FSM design. If the output 
logic and that for the basic cell output stage of the flip-flop are matched, that is, both SOP 
or both POS logic, internally initiated s-hazards are not possible in the logic domain. For 
example, if the output logic of an FSM is to be implemented by using an SOP device, such as 
a PLA, the choice of NAND-centered flip-flops avoids the possibility of internally initiated 
s-hazard formation in the output logic of that FSM. On the other hand, if the form of the 
output logic and that for the basic cell ofthe flip-flops are different, one SOP and the other 
POS, s-hazards are possible on either a 1 ~ 0 or a 0 ~ 1 change of the coupled variable (state 
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variable), If such an s-hazard is fonne~j, il will most likely cross the switching threshold 
since lhe delay r in Fig. 11.12 represents all enlire gate delay. 

There is another means by which mixed-rai l Outputs can be produced from a flip-flop. 
Shown in Fig. 11 .13 is an RET 0 flip-flop whose output response is Q(H) from the flip-flop . 
but now Q(L) is taken from 3n inverter. not from the flip -flop. As a consequence. the active 
portion of the Q(L) waveform is skewed in time relative to thlll from QUi). Though the 
delay difference is now only that of an inverter, it does make possible the fonnation of 
a static I-hazard on a I _ 0 change of the coupled variable. or the fOimation of a static 
O-hazard on a 0 _ I change of the coupled variable. Matching the output-forming logic to 
the logic of the flip-flops can no longcrbe used usa possibk means of eliminating internally 
initiated s-hazards in the oUlputlogic. 
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When Is It Necessary to Run a Slatic Hazard Analysis on an FSM? If the output logic 
of an F$M appears to have the potential for s-hazard fo nnat ion, there arises the question of 
when an s-hazard analysis should be run on an FSM. There are specific guidelines one can 
use in deciding this issue. These guiddincs are Slated next. but not in ally particular order 
of importance. A static hazard analysis shou ld be carried out 

I . If it is known that s-hazard production in an output can cause a problem in the next 
stage. 

2. Always following un ORG analysis and any corrective action that may result. 

3. If it is detennined thut the output in question is not to be filte red. 

4. If there is no malch of the output logic character with that of the fl ip-flop output 
stages. 

5. If the logic characler of the flip-flops is unknown. 

Generally. all five guidelines should be considered. but particular notice should be paid to 
guidelines 2 and 3. Hazard analyses should always be carried out following any corrective 
action required by an ORG analysis. 1f, for example. an ORG analysis requires a change in 
the state code assignments or requires the particular use of a specific don't care in an outpul 
K-map. the output logic is certain to change. It is useless to run a hazard analysis before 
the fina l OUlpUI logic is known. 11 is also useless 10 ron either an ORO or a h87.ard analysis 
if it is known that the ourpUI is to be fillered. 

A Simple Example Consider the state diagram forthe Mealy FSM presenlcd in Fig. I 1. 14a. 
ft is shown to have two inpulS. Sand T. and one output. Y. The ORG analysis. which must 
be run before the hazard analysis. is shown in Fig. 11 . 14b. No ORG is possible in this FSM, 
and 4J4 can be used in any way to extract minimum cover for output Y. Notice that late 
deactivation of Y is possible via race state 00 1 if me branching condition from c -+ a is 
5T. but nonnal deactivation if sf. 

Hnard analyses for the FSM in Fig. 11.14 are carried OUI in Fig. 11.15. The hazard 
analysis in Fig. 11.I 5a indttates Ihat a static I-hazard is possible if NOR-based flip-flops 
are used wi th SOP Output logic. and thatlhe hazard cover required in that casc is CST. the 
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ANDed residue of the coupled terms. The final result. after adding hazard cover, is given 

by the following expression: 

YSOp= ACT+AS+BC+ CST . -HIl~llrJ co • .." 
( 11.2) 

Note thai if NAND-based flip-flops are used with the SOP output logic (Ysop ). no s-hazard 
is possible in the logic domain (see Fig. 11 .12a) and no hazard cover should be added. 
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indicated are not mel. Thus. POS hazard cover is not applicable (NAJ. 
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FIGURE 11.16 
Timing diagrams for the static I-hazard (SOP hazard) analysis shown in Fig. 11.15a. ta) Timing 
diagram for Ysop showing a static I-hazard formed during the transition b-to-c assuming the use of 
NOR-based ftip-flops for the memory. (b) Timing diagram for Ysop showing the removal of the static 
1-hazard by addition of hazard cover. 

The timing diagrams for the hazard analysis in Fig. 11.1Sa are presented in Fig. 11.16. 
In Fig. 11.16a a static I-hazard in Ysop is indicated for the transition 001 -+ 101, assuming 
that NOR-centered flip-flops are used for the FSM memory. If NAND-eentered flip-flops 
are used instead, no static I-hazard (SOP hazard) will occur in YsoP. Remember that when 
the logic character of the flip-flops matches that of the output logic, internally initiated 
s-hazards are not possible in the logie domain. In Fig. 11.16b the static I-hazard is shown 
removed because of the presence of static hazard cover CST. In fact, the hazard is removed 
regardless of the magnitude of any asymmetrically located delays associated with the b -+ c 
transition in the logic or physical domain. Notice that account is taken of the gate path delays 
in the timing diagrams of Fig. 11.16. 

The memory and output logic for the FSM of Fig. 11.14 is shown in Fig. 11.17, assuming 
the use of NOR-based flip-flops and SOP output logic. The external inputs are assumed to 
arrive active high, and the shaded NAND gate is the hazard cover, CST. 

The POS hazard analysis in Fig. II.ISb indicates that a static O-hazard is not possible 
under any circumstances. The reason: only the transition OO? -+ 10? = 00 1 -+ 101 is pos
sible and that must take plaee under the branching condition + T sf, which does not 
meet the branching requirements for the b -+ C transition shown in Fig. 11.14a. In any POS 
analysis it must be remembered that the ORed branching condition, as deduced from the 
coupled terms, must be complemented for comparison with the state diagram. This is so 
because the state diagram, like any K-map, is a minterm-code-based graphic. In extracting 
minimum cover from the Ypos K-map, the domains for the state variables (A, B, and C) 
are complemented, but the entered variable inputs are not. 

The output-forming logic for Ypos is provided in Fig. 11.18a where it is assumed that the 
external inputs, Sand T, arrive active high as before. The timing diagram for Ypos, given 
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in Fig. 11.18b, clearly shows that a static O-hazardis not possible for the transition 001 -+ 101. 
This is so because the b -+ C branching condition in Fig. 11.14a requires that input T be 
active, which is contrary to the requirements indicated by the coupled terms, (Sf). Thus, 
independent of whether or not there is a match between the logic character of the flip-flops 
and that of the output logic, no s-hazard is possible in Ypos . Therefore, the addition of 
hazard cover is not applicable (NA) as indicated in Fig. IU5b. Notice that the gate/input 
tallies for YPOs and Ysop are 3/8 and 4/10, respectively, exclusive of inverters and hazard 
cover. If hardware cost is the only consideration, the best choice for output logic would be 
Ypos, as given in Fig. 11.15b. 

11.3.3 Perspective on Static Hazards in the Output Logic of FSMs 

Static hazards in the next-state-forming logic are never a problem in synchronous FSMs 
simply because the memory flip-flops act as a filtering stage for such logic noise. However, 
in the case of s-hazards in the output-farming-logic, the situation is much different. As has 
been discussed, a static hazard in the output function of an FSM can cause malfunction of a 
next-stage logic device to which the output function is an input. But not every s-hazard may 
cross the switching threshold of that next stage device. The problem is that the designer 
cannot afford to gamble on that, and instead should take corrective measures such as adding 
hazard cover or filtering the output to eliminate the hazard. 

Externally initiated s-hazards pose a special dilemma for the designer, since the asym
metric delay is usually caused by an inverter. The previous discussion suggests that if the 
coupled terms require a branching direction opposite to that actually present in the state 
diagram, hazard cover may be ignored. In fact, the s-hazard may still be formed if a delay 
in the alternative path (not through the inverter) is larger than the inverter. Thus, it may 
be desirable to apply the "shotgun approach" to all externally initiated s-hazards in the 
output functions. This means that hazard cover would be assigned to all externally coupled 
terms regardless or whether they represent a 1 -+ 0 change or a 0 -+ 1 change of the cou
pled external variable as indicated by the state diagram. This action would certainly make 
computer-aided corrective action simpler for externally initiated s-hazards. 

There is the remote possibility that internally initiated s-hazards may form even if the 
logic character of the flip-flops matches that of the output-forming logic. For an s-hazard 
to be produced under this condition, a delay larger than that of a basic cell gate would 
have to exist in an alternative path so as to effectively reverse the symmetrical inset of the 
waveforms in Fig. 10.18. Though the probability that this may happen is low, it is something 
of which the designer should be aware. 

The following set of guidelines are offered to help eliminate any confusion the foregoing 
discussion may have caused and to help establish safe and reliable design practices: 

• Add hazard cover for all externally initiated s-hazards in the output logic ex
pressions as required by the coupled terms. There is one exception to this rule: 
If the state in which the externally initiated hazard exists is an extraneous 
state (one that neither exists in the state diagram nor serves as a race state), 
as was the case in Fig. 11.9c, no hazard cover is needed and none should be 
added. 

• If internally initiated s-hazards are present and the goal is to achieve an optimum 
design, match the logic character of the flip-flops with that of the output-forming 
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logic and take no corrective action on these s-hazards. Then, in configuring 
a circuit layout try to minimize parasitic effects by minimizing lead lengths 
between the flip-flops and output logic. If the logic character of the flip-flops is 
unknown, always add hazard cover for all internally coupled terms in the output 
logic for which a valid hazardous transition exists. Note that Fig. 1l.13 applies 
to any PLD in which the internal flip-flops lack Q(L) outputs . 

• If the outputs of FSM A are the inputs to another FSM B, take caution in assuming 
that logic noise (e.g., s-hazards) from FSM A will be filtered by the memory of 
FSM B. Whether or not such logic noise will be filtered by the memory of FSM 
B depends on many factors, including the type of input conditioning circuits that 
exist, the nature of the NS-forming logic, and the character of FSM B itself. If 
this information is unknown or questionable, the safest action is to provide clean 
output signals from FSM A by using the methods described previously. 

11.4 ASYNCHRONOUS INPUTS: RULES AND CAVEATS 

A synchronous input is one that is synchronized with clock to the extent that it cannot 
change its logic level during a sampling interval (see Fig. 10.53). Any input that does not 
meet this requirement is said to be an asynchronous input, defined as follows: 

An asynchronous input is one that can change logic levels at any time, particularly 
during the sampling interval established by the sampling variable, CK. 

As was pointed out in Section 10.11, an input to a synchronous FSM must meet the setup 
and hold-time requirements established by clock (the sampling variable) or proper transi
tions cannot generally be guaranteed. Simply stated, a synchronous FSM may not function 
properly if more than one asynchronous input is present. Remember that clock is, by defini
tion, an asynchronous input. Therefore, CK should be considered to be the only permissible 
asynchronous input controlling the branching from a given state. 

11.4.1 Rules Associated with Asynchronous Inputs 

To reduce the probability for FSM malfunction due to the presence of asynchronous inputs, 
the following two rules should be observed: 

Rule 1 (Branching Dependency Rule): Avoid branching dependency on more 
than one asynchronous input. 

Rule 2 (Conditional Output Rule): Do not attempt to generate an output condi
tional on an asynchronous input. 

These two rules are easily justified by discussing the consequences of their violation. For 
example, if more than one asynchronous input controls the branching from a given state, 
the sequential behavior can become unpredictable, resulting in the malfunction of the FSM. 
Furthermore, an output that is conditional on an asynchronous input can, under certain 
conditions, be no more than an underdeveloped (runt) pulse that may cause problems in 
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(al Improper branching and output generation condi tional on two asynchronous inputs, CK and Y. 
(b) Proper branching and output generation conditional on one asynchronous input. CK. 

the next stage to whic h it is an input. These problems and their proper solutions are now 
considered in more detail. 

Shown in Fig. 11 . 19 is a portion of a common resolver configuration that is used here 
to illustrate the problems associated with asynchronous inputs and violation of rules I and 
2 . There arc three inputs to lhe resolver. X , Y. and CK. thal control the branching from 
state a. wherl.! CK is understood to be the sampling variable and is not included in the state 
diagram. In Fig. 11 .19a both the branching from state a and the output, Z. are conditional 
on two asynchronous inpul.s. Y and CK. which is a violation of both rule I and rule 2. 
Should input Y change during the sampling interval established by CK, the branching and 
output are not predictable. Worse yet, a runt pulse can be produced in the memory Rip-flops 
forcing the FSM into a metastable condition (discussed in Sub.liCction 11.4.4) or possibly 
causing an error transition in the FSM. Funhennore, output. Z. could be generaled as a 
runt pulse that could cause problems in another FSM to which il is an input. This is so 
because the conditional output can be in its development stage at the time tile ftip-flops 
trigger. Remember. it takes longer for the flip-flops to execute a transition tha n it does to 
generate a conditional output by combinational logic from a given state. An output should 
always be presented as a reliably detectable signal to the next stage and never as a pulse of 
unpredictable dumtion. 

In short. the proper solution to the problems implierl by Fig. 11 .1 9a is to synchronize all 
external inputs to the CK wavefonn. as indicated in Fig. 11.19b. Now. input Y will be stable 
at its proper logic level at the time CK goes through its sampling interval ; the sampling 
variable. CK, remai ns the only pcnnissible asynchronous input. Even though output Z is 
issued on an exiting condition in statea. it will nonetheless be generated well in advance of 
tilt: U"ansilioll so as lO be a reliably detectable pullOe by the next stage. TIle important issue 
o f synchronizing inputs is discussed in the following subsection. 

11.4.2 Synchronizing the Input 

A reliable approach to dealing with the problem of asynchronous inputs is to synchronize 
each asynchronous input to the clock wavefolTll before it is introduced into the next state 
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logic section oftne FSM. This is accomplished by using a synchronirer D Hip-nop triggered 
antiphase to the FSM. as shown in Fig. 11 .20a, Here, XVI) is an asynchronous input to the 
FET synchronizer lhal issues a synchronized output, X /(If), 10 the RET FSM. 

The liming diagram. presented in Figure J 1.20(b), illustrates the action of the synchro
nizer. Notice Ihat the FSM can pick up the inpuc X (as the synchronized X' signal) after 
a delay ranging approximately from 1/ 2 to 3/2 of a d ock period depending on when the 
signal X(H) changes relative to CK. and assuming the setup and hold limes are met and are 
much smaller than a dock period. This pickup delay is the price that must be paid to present 
a reliably readable data signal to the FSM. Notice that the arrows on the clock wavefonn 
represent the rising edge triggering of the FSM. Also shown in Fig. 11.20b is a data pulse 
too narrow to be picked up by the synchronizer. The means by which 3 narrow data pulse 
can be read by the FSM is considered next. 

11.4.3 Stretching and Synchronizing the Input 

If it is known that the data can arrive as asynchronous pulses of duration less than tbat of 
the d ock period. a means must be sought 10 slTetch as weU as synchronize the data signals. 
An effective scheme (or accomplishing this is presented in Fig. 11 .21a. lbe narrow asyn
chronous pulse is first stretched by the set-dominant basic cell (stre tcher). then synchronized 
by the synchronizer. The active low output o f the synchronizer is fed back to Ihe R (L) input 
of the stretcher to reset it in readiness (or the next narrow pulse. Notice that the output o f 
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Outputs 

Stretching and synl~hronizing the input (a) Logk circuit showing s(retcher and synchronizer stages. 
(b) Timing diagram illustrating the action of the stretcher cell and synchronizer. and showing caught 
and missed narrow poises. 

the synchronizer. X'(H). is born stretched nnd synchronized. thereby providing a re liably 
detectable signal!o the FSM ~gardless of the pulse duration. If X' must be presented active 
low to the FSM, the Q(L) output from the synchronizer can be used. Also. if the data is 
presented 10 lhe stretcher as X(H), an inverter can be used on the line to the strelcher's 
aClive low input. Alternatively. a doubJecomplemenlation can be used somewhere between 
Ihe X {/f) input 10 the Siretcher and the input 10 the FSM. meaning (H) 10 (L) and (L) to (HJ. 
For eXlmple. QCL) from the streIcher can be used as the input to the synchronizer. Note 
that a re5e1-dominant basic cell cannot be used as the stretcher cell for positive pulse trains, 
since sustai ned po~itive data pulses would be reset by me feedback from me synchronizer 
leading to false data input to the fSM . 

The actions of the stretcher and synchronizer arc illustrated in Fig. 11.21b. Here, it is 
observed thaI nOI aU narrow pulses can be caughl by the synchronizer and presented to 
tlle FS M. If a second pulse appears before the stretcher cell is reset. it canllQ( be picked 
up by the stretcher as a discrete data pulse. Consequently. a secooo narrow pulse having 
a leading edge separated by less than 2Ta from the leading edge of the first pulse cannot 
be guaranteed to be caught by the FSM, and a second leading pulse edge separated by le~s 
than Tel( from the fi rst can never be caught. These limiting conditions are based on the 
assumplion thai the setup and hold times are negligibly small compared to the clock period. 
usually a valid assumption. Again. observe Ihal the arrows on the clock waveform represent 
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the rising edge triggering of the FSM. Thus, for each narrow X(L) pulse that is caughl, 
a stretched X'(H) pulse is picked up by the RET FSM well into the active ponion of the 
pulse. 

11.4.4 Metastability and the Synchronizer 

An important function of the synchronizer is to protect an FSM from the effects of metasta
bility if caused by an input change during the sampling interval of the clock wavefonn. The 
problem is that the synchronizer is itself subject to the effects of metastability caused by data 
input changes occurring during its sampling interval. Metastability is a very low-probability 
eveO!. but it can happen and can be a potential problem in any system with feedback. Just 
as the second law of thennodynamics cannot be violated in attempting to invent a perpet
ual motion machine, no "fix -it" scheme exists that will reduce to zero the probability that 
metastability will occur in a given FSM. But there are synchronizing schemes that can come 
close! Before proceeding with the means by which this can be accomplished, it will be 
helpful to define metastability in qualitative tenns. 

Three qualitative representations of metastability are depicted in Fig. 11 .22. First is the 
mechanical analogue, shown in Fig. 11 .22a, featuring a ball or round disk. metastably situated 
atop a convex surface such that any slight penurbalion would send it to one stable slate or 
another. More appropriate to the needs of PSM design is the electrical representation of the 
metastable state that lies somewhere between a set and a reset condition, say at midsupply, as 
illustrated in Fig. 11.22b. Here, the time that the FSM spends in the metastable state, denoted 
by /).t"" is called the metastable exit time. This is a statistical period of time that cannot 
be predicted. The two double-line regions preceding and following the metastable state 
represent a stable set or reset condition, one or the other. However, it cannot be predicted 
which logic level (sel or reset) will emerge following exit from the metastable state. The 
oscillatory metastable state illustrated in Fig. 11 .22c is also a possibility in some FSMs, 
which if exists, could posc a more serious problem for thc FSM than a simple midsupply 
"hangup." Here again, the logic level (set or reset) following exit from the metastable stale 
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cannot be predicted. But Ihis is probably a mOOl poin!. since an oscillatory condition can 
potenriallly cause far more serious problems than an unpredictable outcome following exit 
from thai state. 

The foregoing discussion applies to any FSM. including Hip-flops. As an example, the 
resolver section o f a 0 flip-fl op shown in Fig. 10.3 13 can go metastable and cause both 
the flip-flop and the FSM in which it is operating to malfunction. Thus, the synchronizer 
in Fig. 11.203 is subject to Ihe metastable condi tion and can pas.~ that metastable Slale on 
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to the FSM it is supposed to protect. A practical solution is illustrated by the two-stage 
synchronizer configuration shown in Fig. 11.23a. The idea depicted here is that in the event 
synchronizer I should go metastable, it would emerge from that metastable state long before 
synchronizer 2 is triggered, as illustrated in Fig. 11.23b. This, in turn, greatly reduces the 
probability that synchronizer 2 will become metastable and cause malfunction of the FSM. 
Of course, it is assumed that the metastable exit time, t...tm , will always be less than TCK , an 
assumption that mayor may not be valid. 

The blown-up region in Fig. 11.23c illustrates one means by which a metastable state 
can be introduced into stage 1 of the synchronizer. If asynchronous input X (8) changes 
during the sampling interval of clock, a runt pulse could form and be introduced into the 
D flip-flop as neither a set nor a reset condition, and this could initiate the metastable state. 
Such a runt pulse could cross the switching threshold but lack the "strength" or duration 
needed to resolve the flip-flop into a set (or reset) condition, and a metastable condition 
could result. 

Experimentally, it is found that the mean time between failures (MTBF) of the single D 
flip-flop synchronizer in Fig. 11.20a is determined by the equation 

{ 
e(TCK-lsII)/T } 

MTBF = in seconds, 
To' fcK' fo 

(11.3) 

where TCK is the clock period in nanoseconds (ns); fCK is the clock frequency in hertz (Hz); 
tsu is the setup time in ns (see Fig. 10.53); fo is the average number of asynchronous data 
input changes per second (data frequency) in Hz; and r (in ns) and To (in seconds, s) are 
empirical constants, provided by the flip-flop manufacturers, that depend on the electrical 
characteristics of the flip-flop and on the physical conditions under which the flip-flop is 
operated. For most applications, it is reasonable to assume that fcK » fo. Note that MTBF 
refers to probabilistic failure caused by a metastable condition when t...tm > TCK - t,u in a 
single D flip-flop synchronizer. 

Clearly, the larger the MTBF, the better is the action ofthe synchronizer flip-flop and vice 
versa. Ideally, an infinite value for MTBF would be the most desirable, albeit impossible 
to achieve with the synchronizing scheme of Fig. 11.23a. A value of 1OIOs = 317 years 
might be achievable, but under what conditions? An important feature of Eq. 01.3) is the 
sensitive inverse dependence of the MTBF on flip-flop clock frequency fCK = 1/ TCK and 
on the empirical r constants To: 

e(fcK·T)-1 
MTBFcx: ---

To' fCK 

Thus, for a high MTBF, it desirable to have a low fCK (high TCK) and low values for rand 
To. To achieve reasonably high values of the MTBF in a single D flip-flop, it is necessary to 
use D flip-flops from a fast technology such as the 74HCnn series or, better yet, the 74Fnnn 
or 74ASnn series (see Subsection 6.1.4 for an explanation of part numbers). For these D 
flip-flops r can be as low as 0.3 ns with values of To down in the microsecond (f.LS = 10-6 s) 
range. When operated at relatively low frequencies MTBF values of 1010 s may be possible, 
but only for small ("'. 

Still, at the high frequencies required by modern technology, a single D flip-flop syn
chronizer is not sufficient, and use must be made of the two-stage synchronizer shown in 
Fig. 11.23 together with counters on the clock inputs to the two stages. By using fast D 



11.5 CLOCK SKEW 517 

flip-flop technology and by creating a large TCK for the synchronizers relative to the FSM, 
large values of the MTBF can be achieved even with high frequencies. Note that use of a 
delay circuit in place of the counter would be worse than having no delay at all. A divide
by-2 counter doubles the clock period (see Subsection 12.3.1). Now, the clock period for 
the two synchronizers is at least double that of the FSM, greatly improving chances for 
2TcK > 11t/11' The divide-by-2 counter should be the slow 74SL74 with a Q(L)~ D(H) 
feedback as indicated in the insert to Fig. 11.23a. If this is not sufficient, there are other 
alternatives. One alternative is to replace the divide-by-2 counter in Fig. 11.23a by a divide
by-4 ripple counter (see Section 12.5 for details). As another alternative, a multiple-stage 
synchronizer scheme can be used with or without a counter on the clock inputs to the stages 
as in Fig. 1l.23. Also, Schmitt triggers can be used on the data lines between stages for 
additional discrimination of a metastable signal. 

All of the synchronizing schemes just mentioned are used at the expense of system 
throughput, the price that must be paid to introduce reliably readable data to the protected 
FSM. Also, it must be remembered that because metastability is a statistical phenomenon 
and is unpredictable, no synchronizer "fix-it" scheme can be devised that will eliminate 
entirely the possible occurrence of the metastable state. All that can be done is to reduce 
the probability for metastability occurrence to acceptable levels for a given application. In 
Chapter 16 an externally asynchronous/internally clocked (EAIC) system will be discussed 
that will deal with the problem in a different and more effective manner. EAIC configurations 
are pausable systems capable of yielding an infinite MTBF value with no required external 
synchronizing logic of the type shown in Fig. 11.23. 

11 .5 CLOCK SKEW 

In synchronous sequential machines the triggering edge of the clock waveform is assumed 
to reach each flip-flop of the memory at approximately the same time. Sometimes, however, 
this does not happen because of the presence of asymmetric path delays caused mainly by 
resistance and parasitic capacitance effects in the clock leads to the memory devices or by 
poor clock buffering methods. When such delays become large enough to cause a shift in 
the triggering edge of one flip-flop relative to another, clock skew is said to exist. Clock 
skew can become a serious problem in digital systems, particularly in complex systems 
operated at very high frequencies. 

illustrated in Fig. 11.24 is one type of problem that can occur as a result of clock skew. 
Shown in Fig. 11.24a are two RET D flip-flops configured in series with delays 11tl and 
11t2 indicated on the clock inputs to flip-flops 1 and 2, respectively. If the delays are equal, 
11t2 = 11tl = 0, no clock skew exists and proper flip-flop output response to a change in 
data input X(H) results, as indicated in Fig. 11.24b. Observe that X(H) is synchronized to 
the falling edge of the CK = CK1 waveform. On the other hand, the condition 11t2 > 11tl 
can result in an erroneous output, as indicated in Fig. 11.24c. Such an error will occur 
in output Q2(H) if D.t2 - D.tl > TfJ, where Tif is the flip-flop propagation delay. Timing 
anomalies of this type can lead to unrecoverable errors in the operation of shift registers 
and other devices. The reverse skew, 11tl > 11t2, on the other hand, will not cause an 
output error in these devices, but will delay the issuance of the outputs by the amount of 
the skew 11tl > 11t2. The subject of shift registers will be discussed in detail in Section 
12.2. Finally, note that if the configuration indicated in Fig. 11.24 is used as a two-stage 
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FIGURE 11.24 
Clock skew illustrated by using two D flip-flops in series. (a) Logic circuit showing delays on the 
clock inputs to the two flip-flops. (b) Timing diagram showing correct response of the flip-flop outputs 
10 a data inpUl change if Ilrl = 1112 = O. (c) Timing diagram showing erroneou~ output response of 
flip-flops due to a dam change when .t.12 ... lH). 

synchronizer under Ihc condition tl/2 - tlt] > rff' little or no protection is provided against 
metastability. 

Another type of dock skew problem can occur when the data are presented in parallel, as 
depicted in Fig. 11 .25. Shown in Fig . 11 .25a arc two D flip-flops configured in parallcl with 
individual delays to the clock inputs and witb idemical data inpUis X(H) synchronized in 
phase with the CK input. For the sake of simplicity the inputs are made identical. Under the 
condition that the delays are equal, .1.'2 = .1./1. correct OUlpU! response results. as indicated 
by the timing diagram in Fig. 11.25b. Here. since X (H) is synchronized to the rising edge 
of the CK waveform, both outputs, QI (H) and Q2(H), must change simultaneously. one 
clock period following the data input change. This, however. may not happen if /!"t2 :> /!,.fl. 

as indicated by the liming diagram in Fig. IJ.25e. In the event that t:.12 - dt] > rtf, X(H) 
can be picked up by flip-flop 2 one clock period in advance of flip-flop 1 as ilIuslrated. This 
is a serious and unrecoverable error in the output signals. Note that because the flip-flops 
are configured in paraJle!, the preceding discussion applies equally well to the reverse skew 
.1.tl :> /!,.[2. 

The clock skew problem demonstrated in Fig. 11.25c SUppOItS the need to synchronize 
the data input X(H) antiphase to the clock triggering edge. in this case the system issues 
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to a datn input change if 6.lt = 612 = O. (c) Timing d iagl1lm showin!! an erroneous output response 
of fl ip·flops due to a data change whcn 6.12 > 6ft. 

outputs separated by no more than the ~kew tllJ. ~ tl/l or .6./ , ~ tl r2. Thi s. of course. can 
become a problem only if rhe skew exceeds the tolerable limits permitted by the design 
specifications. 

The elimination of clock skew in simple synchronous FSMs. c.g. , in shift registers. 
is not usually a difficult task. Providing that the clock skew is stable (Ihat is. nOl time or 
lemperature dependenl). one simply balances the delays by using invener pairs. noninvening 
drivers. and the like. For high-frequency systems, Iran~mission line delays on leads can be 
substantial. and this can cause the balancing procedure to become more difficult. In any 
case, the elimination of clock skew problems can be ensured only if all clock lead delays 
are symmetric or nearly so. 

Clock: skew problems are more difficult to d iagnose and deal with in very complex 
systems operated by a system dock. that must drive many independent devices at high 
frequency. Modern VLSI circuits, WSI circuits, and ASICs are good examples. Other 
examples include the use of FPGAs discussed in Subsection 7.7.3. The bcSI advice thai 
can be given to the designer of such systems is 10 ··think symmetrically" when laying out 
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a circuit or programming the routing paths in FPGAs. Try to avoid obvious sources of 
asymmetric path delays, particularly those associated with the system clock leads. Often, a 
conscious effort in this regard can save much time and expense. 

11.6 CLOCK SOURCES AND CLOCK SIGNAL SPECIFICATIONS 

Various timing problems relative to the clock waveform have been discussed, but no mention 
has been made of the clock signal source and specifications. How, in fact, is a high-frequency, 
highly precise clock waveform produced, and how must it be specified so as to perform 
predictably as the system clock to a synchronous FSM? The answer is not a simple one, 
but it can be dealt with in semiquantitative terms. First, there must be a reference frequency 
source, one that has the following desirable characteristics: 

High-frequency capability 
Frequency stability 
Starting reliability 
Duty cycle control 
Reasonable square-wave output capability 

11.6.1 Clock·Generating Circuitry 

Shown in Fig. 11.26 are two oscillator circuits that possess characteristics suitable for 
rather different applications. Figure 11.26a presents an inexpensive self-starting oscillator 
circuit that is limited to relatively low frequencies that are somewhat adjustable by the RC 
time constant. This particular oscillator circuit has little or no useful application in modern 
sophisticated state machine design. The oscillator circuit in 1 L26b is considerably 
more expensive, but has all of the desirable characteristics mentioned previously except 
duty cycle control. There are oscillator circuits more and less sophisticated than that shown 
in Fig. 11.26b. However, all oscillators capable of delivering a stable high frequency within 

(a) 

FIGURE 11.26 

E=!I--_R.........I 
Quartz 
crystal 

(b) 

Output, fo 

Example of clock oscillator circuits. (a) A simple. inexpensive, self-starting oscillator circuit that is 
frequency limited. (b) A high-frequency, crystal-controIled oscillator with good starting capability 
and frequency stability. 
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0.1 % precision will be crystal controlled. Quartz crystals, which can be cut (dimensioned) 
to oscillate at a specific frequency to a great precision, are an ideal choice for use in a 
crystal-controlled oscillator. Such specific frequencies can be in the megahertz range. 

The duty cycle of a clock waveform is defined by the relation 

TActive . 
Duty cycle == -- x 100 (m percent), 

TCK 
(11.4 ) 

where TActive is the active portion of a clock cycle and TCK is the clock period, both given 
in seconds. Thus, a 50% duty cycle means that the active and inactive portions of the clock 
waveforms are equal. Duty cycle control by an oscillator circuit is important but requires 
additional circuit elements and raises the cost of the device. 

An oscillator, such as that in Fig. 11.26b, provides the reference frequency fo that may 
have to become some multiple of fo to achieve the high frequencies required by modem 
sequential machines. Dividing frequency is easily accomplished by using a counter, as 
explained later in Section 12.3. However, obtaining an integer multiple of the reference 
frequency, nfo, is a much more complex operation. One means of accomplishing this is to 
use a phase-locked loop with a programmable divider in the feedback called a frequency 
synthesizer, the details of which are beyond the scope of this text. Properly designed, the 
frequency synthesizer will provide all of the desirable oscillator characteristics previously 
mentioned. Infonuation on this and related subjects can be obtained in references cited in 
Further Reading at the end of this chapter. 

11.6.2 Clock Signal Specifications 

At some point in the design of a synchronous FSM, the designer must fashion the digital 
electronics of the FSM to a given clock frequency or, perhaps less likely, the reverse. 
In either case, it is necessary to know on what parameters an optimum clock frequency 
depends. A view of Figs. lO.58 and 10.64, which are typical logic circuits for synchronous 
FSMs, indicates that the clock period cannot be less than the propagation delay through 
the flip-flop (including the setup time) plus the delay through the next state-forming logic. 
In mathematical tenus, the minimum clock period is usually evaluated from the maximum 
system cycle time 

(J 1.5) 

or 

= 11fCK, 01.6) 

where iff,no> is the maximum flip-flop propagation delay, i llSm" is the maximum propagation 
delay through the NS forming logic, tsum" is the maximum setup time (defined in Section 
10.11), and /).Ij, is afactor of safety. The factor of safety allows for some variance in the 
values used for the other parameters and for the possibility of clock skew on clock lines 
to the flip-flops. The maximum flip-flop propagation delay is determined from the tphl and 
Iplh parameters, as illustrated for an RET D flip-flop in Fig. 11.27. Thus, the average value 
for iff is obtained by introducing the data from Fig. 11.27 into Eq. (6.1), but it is clear that 
itfm", = iphl in this case. Normally, the manufactures of the flip-flop devices will provide 
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FIGURE 11.27 
Propagation delay data (or an REI' D f1ip-llop from which 1he maximum propagation delay can be 
obtained. 

sufficient information to evaluate Eq. (11.6), providing Ihal acceptable values for T"_,,,,, and 
t:..'b are used. The value for T"., .... , must be obtained with knowledge of the NS logic technol
ogy. which is usually available from the manufacturer. An acceptable value for fl.,!. might 
be 20% of (r/f+ Tm +1.,,,)maH giving TeA = 1 .2('ff + 'PI' + 1",)m>.:< as a safe minimum dock: 
period. Then from lhis, a safe maximum clock frequency fcK = 1/ T CK can be obtained. 

11.6.3 Buffeting and Gating the Clock 

There are other considerations regarding the use of a clock waveform signal in a synchronous 
system. Normally, the system clock signal from Ihe clock-generating circuitry must be 
buffered for fan-out reasons. As used in this lext, the word buffer is synonymous with line 
drj~'er. In larg\: systems where the clock signals must be supplied to a large number of 
ftip-flops, there may be insufficient fan-out to drive the ftip-flops . In this case buffers must 
be used but in a way thai docs not cause clock skew. The best way to buffer the clock signals 
is to use packaged Ie buffers (as opposed to individual buffers or inveners off chip) and to 
do so "symmetrically" 10 minimize clock skew, 

Also, if il is necessary to gate the dock signal~ in addition to buffering them, the best 
choice may be 10 use tn-slale drivers (see Fig. 3.8 for CMOS tri-slale drivers). If it is 
necessary to gale some clock signals but not others, an asymmetric delay may result that 
can produce clock skew problems. The solution 10 this potential problem is to place a delay 
on each nongated clock line that is equal to the delay of the tri-state driver-again, think 
symmetrically. Generally, it is a bad idea 10 gate the clock signals by using discrete gates. 
To do Ihis invites clock skew problems. Jf logic gates must be used for the gating action, 
use les and make certain that all ddays on clock lines are equal or nearly SO-once again, 
think symmetrically. 

11.7 INITIALIZATION AND RESET OF THE FSM: SANITY CIRCUITS 

An important pan of the operation of any sequential machine is thai it be initialized (on 
power-up) into a specific state, or that it be reset into a specific state once in operation. If 
initialization and reset ofthe FSMs were nOI possible. one can imagine the chaos that could 
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result. Take, for example, the cruise control of an automobile. Failure of it to initialize or 
reset into a startup slate could be disastrous. Imagine not being able to initialize or reset 
Ihe controller of one's computer. Equally imponant. no FSM should ever be designed such 
Ihat it can initialize or reset into a "hang" state or subroutine that is not pan of the intended 
sequence. Whether the FSM is the cOnlroller for an elevator or traffic light system, or the 
controller for a robotics or audio playback system, it should be obvious that in itiali7..lltion 
and reset capabililies are vitally important. 

11.7.1 Sanity Circuits 

What is needed for initialization and reset of the FSM is a signal that can be used to drive 
an FSM momentarily inla a specific starting or reference state whenever it is necessary 10 

do so-that is, during power-up to initialize the FSM or during a reset opcralion. Shown in 
Fig. 11 .28 is a sanirycircuit as it is used to power up or reset a three-bit D flip-flop memory 
into the 00 1 state. It is called a sanity circuit because it adds "sanity" to a si tuation that 
could othenvise be chaotic (insane) for the designer. The need for initialization and reset 
was established in Subsection 10.12.2 by the missing state analysis in Fig. 10.65 following 
the design of a sequence recognizer. 

In Fig. 11.28 notice that Sanity(L) is connected to an active low asynchronous dear (eL) 
override to initialize or reset a logic 0, but is connected to an active low asynchronous preset 
(PR) override to initialize or reset a logic I. It is important to observe that only one active 
low asynchronous override per flip-flop can be connected to a sanity line and that all others 
musl be connected to O(L) for nonnal operation of the flip-flop. The reader should review 
the subject of asynchronous preset and clear overrides in Section 10.10 before proceeding 
further 011 this subject. 

Sanity Circuit 
A I I \ CK 

I 
/' Power UpJDn Switch D D 

I 
D 

T 
'", Cl A P 

,.3") 
R r< Cl B PR 

O{,") 
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r 
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Reset -1 

Inverting a a a a a 
- Schmm y y y 

trigger Sanity (l) -
+ R 

X 
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FIGURE 11.28 
Sanity circuit and proper connections required to initialize or reset a three-bit memory into the 00 I 
state. 

a 
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To understand how the sanity circuit works, it is necessary to first focus attention on 
the R-C component of the circuit in Fig. 11.28. Students in electrical engineering will 
recognize this as a first-order R-C circuit, where RC is called the time constant of the 
circuit. With Reset at LV and neglecting the influence of the Schmitt trigger in Fig. 11.28, 
the following approximations for Vx (voltage at node X) result: 

On Power Up at time t = 0 (power UplDn switch connected to the supply voltage + Vs 
with Reset set to LV): 

@t = 0+ Vx ~ OV, therefore X = O(H) = I(L) = Sanity(L) 

@t ~ 5RC Vx ~ Vs , therefore X = I(H) = O(L) = Sanity(L) 

(11.7) 

On Power Down or Reset at time t = 0 (power UplDn switch connected to ground or 
Reset is set to HV, one or the other): 

@t = 0+ Vx ~ Vs , therefore X = I(H) = O(L) = Sanity(L) 

@t > 0 Vx ~ OV, therefore X = O(H) = I(L) = Sanity(L) 

On power up with the Reset input to the NMOS at LV, the capacitor is charged through the 
resistance R since the diode is nonconducting in reverse bias. (Recall that a diode conducts 
in forward bias only, the direction of the "arrow" in its symbol.) The result is Eq. (11.7) 
for the approximate time dependent rise of voltage at node X. In effect, it is these voltage 
values at node X that are presented to the preset and clear overrides of the flip-flops during 
initialization or reset of the memory flip-flops, as in Figure 11.28. In the logic domain this 
means that X(L) = Sanity(L). Notice that power down or reset is abrupt with no significant 
exponential decay in voltage at node X. This is so because the capacitor is discharged to 
ground either through the diode on power down or through the NMOS switch at reset. In 
either case the discharge of the capacitor is extremely rapid. An abrupt power down or reset 
is important during short power interruptions so as to ensure that proper initialization of the 
flip-flops occurs during the power recovery event. 

Thus, for a short period of time, say <3RC, each flip-flop is initialized to either a logic 
o or a logic 1 via the Sanity(L) input to its active low asynchronous clear or preset override. 
Then, beyond a period of about 5RC all flip-flops are free to function normally since their 
active low preset and clear overrides are now at O(L). Typical values for RC may range from 
the millisecond to the microsecond range by adjusting the values for R (in ohms) and C (in 
farads). Values of the time constant that are too short may fail to properly initialize the flip
flops in the memory, and values too large may cause unnecessary delays in the initialization 
process. Therefore, it is worthwhile for the designer to match the RC time constant to the 
logic family of the flip-flop memory. Note that Sanity(H) signals (see Fig. 11.28) are useful 
in initializing asynchronous FSMs as described later in Section 14.11. 

The results of the foregoing discussion are illustrated in Fig. 11.29. Here, YrJU is the 
power-up switching threshold of the Schmitt trigger, and Vpd is the power-down switching 
threshold. Unlike an inverter whose upward and downward bound switching thresholds are 
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V -t characteristic at node X for the sanity circuit in Fig. 11.28 showing power-up (Vpu) and power
down (Vpd) switching thresholds and hysteresis effect of the Schmitt trigger. 

the same at about mid-supply, the Schmitt trigger exhibits a hysterisis effect illustrated in 
Fig. 11.29 and discussed in the following paragraph. Clearly, power up ean occur before V x 
reaches the supply level, Vs, and that is permissible provided that tpu is sufficient time for 
all flip-flops in the memory to be initialized. Proper choice of the RC time constant would 
satisfy this requirement. 

The Schmitt trigger has three important characteristics that make it an ideal choice for use 
in a sanity circuit. It has good fan-out capability, abrupt triggering, and the ability to reject 
unwanted signals, a feature called noise immunity. These characteristics are best understood 
by an inspection of its CMOS implementation and its 110 voltage waveforms shown in Fig. 
11.30. The configuration of the CMOS circuit in Fig. 11 ,30a is that of an inverter with double 
NMOS and PMOS transistors for improved fan-out (compared to a simple inverter), and 
for feedback purposes. The transistors Mp and MN supply the feedback voltages VFP and 
VFN necessary to cause the output from the Schmitt trigger to change abruptly following 
triggering at the dual thresholds, Vpu and Vpd, respectively. The I/O voltage waveforms 
in Fig. 11.30b illustrate these characteristics. The input waveform for VXin shows that 
slow changing voltage ramps become abrupt changes in the output waveform VXOU!' The 
hysteresis effect shown in Fig. 11.30b corresponds to that in Fig. 11.29 and is expressed as 
the difference Vpu V;)d' Both the abruptly changing output waveform and the hysteresis are 
due mainly to the internal feedback. Note that input line noise of amplitude less than that 
of the hysteresis is rejected in the output signal, a feature that can produce clean, noise-free 
outputs from the Schmitt trigger. 

There are variations on the theme for implementing a sanity circuit. For example, the 
Schmitt trigger in Fig. 11.28 can be replaced by an odd number of inverters. The problem 
with this arrangement is that the inverters, which have a hysteresis of approximately zero, 
have virtually no noise immunity and they do not switch abruptly. Another variation of the 
sanity circuit is to replace the electronic NMOS Reset switch with a mechanical switch or 
eliminate the reset feature altogether. Or alternatively, one or more external Master Reset 
lines can be introduced to node X in lieu of or in parallel to the Reset switch, electronic or 
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The inverting Schmitt trigger. (a) CMOS implementation showing feedback voltages. (b) Logic 
symbols, and input and output voltage waveforms showing hysteresis. 

mechanical. In any case, the bank of parallel inverters and/or buffers shown in Fig. 11.28 
must be used to meet fan-out needs. 

11.8 SWITCH DEBOUNCING CIRCUITS 

A common problem in digital system design is to provide human interface to the system. 
The use of push-button switches is a typical example. Asynchronous input signals from 
push-button switches often produce a phenomenon called switch bounce that derives from 
the mechanical structure of the switch and the physical nature of the contact surfaces. 
Multiple open/close transitions may occur immediately following the depression or release 
of a button switch, or any mechanical switch for that matter. Serious problems can result 
in an FSM if a high-frequency clock catches the bounce signals produced by a mechanical 
switch. This is equivalent to the introduction of false data. 

11.8.1 The Single-Pole/Single-Throw Switch 

Shown in Fig. 11.31 a is a simple normally closed single-pole/single-throw (SPST) mechan
ical switch, and in Fig. 11.31 b the contact noise (bounce) that occurs as a result of opening 
or closing the switch. Unfortunately, there is no solution to the problem of debouncing a 
SPST switch other than to provide a delay greater than the bounce periods, tltB. This can 
be accomplished by using an RC circuit of the type shown in Fig. 11.31 c. Here, the delays 
are determined by the choice of the Rand C components together with the hysteresis effect 
of the inverting Schmitt trigger as in Figs. 11.29 and 11.30. The voltage Vx(t) across the 
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Debmmcing Ih~ nonl1ally closed single.polelsingJe.lhrow (SPST) mechanical switch. (a) A non
debouncc:d SPST switch. (b) Tillling diagram showing logic bounce periods for the switch in (a). 
lc) A possible debouncing circuit for the SPST switch . (d) Bounce-free timing diagram for the 
debounced SPST swi\ch. 

capacitor depends on whether the switch is opened or closed and is given approximately by 

Switch opened @t = 0 Vx(t);: Vs fl - e- I/ Il ,,} 

Switch Closed @I = 0 Vx{l);: Vs{e-IIR,C}. 

(11.8) 

(11.9) 

where Eq. ( 11 .9 ) expresses an exponential decay that depcnds on an R2C ,imeconstant. The 
value of R2 is chosen such that R~ «R I • a requirement fOl' rapid discharge of lhe capacitor 
following switch closure. 

The result of the debouncing action is illustrated in Fig. 11.31d. where the delay periods 
are indicated to be greater than the bounce periods 1::.(8. as they must be. The circuit delay 
on switch closure will be less than that (or opening the switch since R2 « R,. Depending 
on how the SPST switch is to be used. the RIC and R]C time constants must be chosen 
so that the circuit delays are always greater thai the worst-case bounce periods for opening 
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Debouncing the single-polcJdouble-throw (SPOT) switcn by using II scl-dominant basic cell. (a) Logic 
cireuil. (b) Logic values for Up". Dn-, lind Off-contacl posi tions of switch , SW. 

and closing the switch, respectively. Thus. it is imponanl lhal R2 nOI be chosen 100 small 
cenainiy not 7.ero if closing the switch can affect the behavior of an FSM. On the other 
hand, if closure orlhe SPST switch can have no clTcct on the behavior of an FSM , R2 can 
be scI to zero. 

11 .8.2 The Single-Pole/Double-Throw Switch 

Unl ike thc si ngle-polc/singlc. throw switch jusl discussed, the si nglc-polcldoublc-throw 
(SPOT) switch can be debounced very easi ly and preci sely by using a basic cell. Shown 
in Fig. I J .32<1 is th~ debouncing circuit for a SPDT switch. Notice that when thc switch 
button is in the up contact posi tion the basic cell is set. and when it is in the down contact 
posi tion it is reset as indicated in Fig . 11 .32b. FurthcmlOr~, in an off-contact position the 
basic cell is forced to hold the previous mixed-rail output (see Fig. 10.16). What this means 
is that the first contact bounce to cross the switChing threshold of the basic cell on an Up 
or On position of the switch will set or reset the basic cell. respectively. All subsequent 
boUnces arc ignored. That is. any contact bounce that is produced following the first can 
do nothing but hold the basic cell in either a set or reset condition. The set-dominant basic 
cell in Fig. 11 .323 can be rcplaced by a reset-dominant basic cell if the + Vs and ground 
terminals are interchanged. The interchange is necessary to maintain the off-contact hold 
requirement. 

The debouncing al'rangcment in Fig. J 1.32 can be used with most any CMOS family, 
but there is a relal ively high price tag for this type of ciJ'('uil. For lOW-budget needs. a 
simpler configuration can suffice under certain conditions. Shown in Fig. 11.33 is a simple 
debouncing circuit for the SPOT switch consisting of two cross-coupled inverters and 
buffers. The circuit functions somewhat the same as that in Fig. 11 .32 with one major 
difference. Upon switching from the Up contact position to the Dn contact position. or vice 

Hold 
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A simple. low-budgel SPOT swilCh debouncing circuli for low-speed CMOS. (a) Logic circuit with 
buffer inverters. (b) Logk values for Up-. Dn-. and Off-positions of SW. 

versa, there is a short lime (approximately the path delay of the feedback loop consisling 
of the two inverters) during which HV is shorted (0 ground. This can give rise 10 swilching 
lransiems thaI can cause problems in the FSM to which the debouncing circuit is connected. 
Furthennore, the relatively high power drain during these periods mayor may not be 
acceptable. Forbesl results the cross-coupled inverters should be implemented with CMOS 
that will not source high current in the active high state. The 74SL04 CMOS inverter appears 
to be a good choice for this purpose. 

As a final Ihoughl. nOl all mechanical switch inputs need to be debounced. Switched 
inpuls that arc set prior 10 the inititltion of a sequential process need not be debounced 
provided that the resulting switch signal is stable at the lime the sequential process is to 
begin. Examples afe the so-called DIP swilches in computers that are preset when the 
computer is nOI in operation . The design oflhe one- to three-pulse generator in Section 11 .9 
illuSifates the difference in dealing with preset switches as opposed to those that are not. 

11.8.3 The Rotary Selector Switch 

A variation on the theme of Fig. 11.32 can be applied to the debouncing of a four-post 
raiary selector switch shown in Fig. 11 .34. Here, each NAND gate receives a feedback 
line from each of the other three NAND gates but not from itself, and each set-dominant 
basic cell serves basically the same purpose as in the debouncing of the SPDT switch. 
Together. the basic cells and the feedback inputs to the NAND gates permit the output logic 
levels for all switches to be maintained during lin off-contact bounce. The first selector
post cOnlaet that crosses the switching threshold of the basic cell sets that switch and resets 
the other switches via the feedback paths. All subsequent bounces cause the inpuls to the 
basic cell of that s.witch to fluctuate between the set and hold conditions. The resetting 
of the other basic eells occurs after about one gale delay following the first threshold 
contact. 

There are alternative means of debouncing a rotary switch that mayor may not be 
recommendable depending On how the rotary switch is to be used. One alternative for 
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low-budget needs is to replace each basic cell in Fig. 11.34 with cross-coupled invert
ers as in Fig. 11.333. Another alternative applies to the case of a large number of posts 
where fast throughput of the illpUi signal is imponant and where fan-in limitations become 
a problem when using CMOS NAND gates. Here. the debouncing circuit in Fig. [1.34 
can best be implemented with NOR gales, reset-dominant basic cells and with the rotary 
switch ground replaced by the supply voltage, + Vs. In this case the NOR gates can be 
configured as in Fig. 8.46 with no fan-in limitations. Note thai it is not recommended that 
the bask cells be removed in any of these debouncing circuits. To do this would allow 
bounce transients to occur over a period of at least two gate delays before the circuit stabal
izes - lhere are no RC components present that can produce delays to outlast the bounce 
periods. 

11.9 APPLICATIONS TO THE DESIGN OF MORE COMPLEX STATE MACHINES 

The design of FSMs in Section 10. \2 was limited to relatively simple st:ue machines for 
which few problems existed . However. the design of the sequence recognizer in Subsection 
IO. J2.2did point to the need for initial i7.a tion . one of several design considerations covered 
in this chapter. Now. il is necess.ary to move on 10 more complex FSM s so as 10 apply some 
of these design considerations. 

11.9.1 Design Procedure 

For reference purposes, a seven-pan design procedure is presented here. Although nOI every 
dc. .. ign consider.uion is included. the procedure is complete enough to serve as a guideline 
for most FSM designs. This procedure is intended to be an augmentation of the unee-step 
procedure given in Section 10.6 and should be used in a manner dictated by the nature 
and complexity of the design project. For example. only portions of this procedure need 
be used for the design of relatively simple FSMs. On the other hand, very complex design 
problems might require going beyond the coverage of this procedure. The re.ader !>hould 
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review the contents Section 10.6, in particular the mapping algorithm, before continuing in 
this section. 

Part I. Understand the Problem 

1. Develop a thorough understanding of the functional requirements and I/O specifica
tions of the FSM to be designed. The construction of block diagrams can be helpful 
in this regard. 

2. Note any specific timing constraints that must be met. Not all information regarding 
timing constraints and timing problems may be apparent initially and may have to be 
gathered as the design proceeds. 

Part II. Construct a State Diagram 

1. Choose a model (e.g., a Moore or Mealy model) and construct a fully documented 
state diagram that meets the requirements of the algorithm and timing constraints 
of the FSM. Use flowcharts and timing diagrams if necessary. Several attempts at 
constructing a state diagram may be necessary in obtaining the one best suited to the 
design. 

The use of algorithmic state machine (ASM) charts and state tables can be very 
useful in arriving at a suitable state diagram. Section 11.10 discusses ASM chart 
nomenclature and the use of state tables together with their relationship to the state 
diagram and to a hardware description language such as VHDL. 

2. If asynchronous inputs are present, make certain that the branching dependency and 
conditional output rules, given in Subsection 11.4.1, are obeyed. Decide at this point 
if any or all of the asynchronous inputs are to be synchronized - usually, they will 
have to be synchronized. 

Part III. Obtain the Output Functions 

1. Choose the NS and output logic hardware and memory devices to be used and then 
obtain the output functions. Knowing how the output functions are to be implemented 
and the character of the flip-flops to be used can influence the design strategy with 
regard to static hazards in the output, as discussed in Section 11.3. 

2. Iflogic noise is determined to be a problem in the output signals of the FSM, corrective 
action must be taken. 

(a) If output race glitches (ORGs) are present, eliminate them by using one or more 
of the methods considered in Subsection 11.2.2. 

(b) If static hazards exist in the output functions, eliminate them by adding hazard 
cover to the output functions as discussed in Section 11.3. or use the filtering 
method illustrated in Fig. 11.7. If one or more of the s-hazards are of the intemall y 
initiated type, a proper choice of flip-flops can be used to eliminate them, as 
indicated in Subsection 11.3.2. 

Part IV. Obtain the Next-State Functions Plot the NS K-maps by using the mapping 
algorithm given in Section 10.6 and then extract minimum or reduced cover for the NS 
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functions. Implement these results by using discrete logic as in Section 10.12, or by using 
a PLD as discussed later in Section 13.2. If a ROM is to be used to implement the NS and 
output logic, program the ROM directly from the state diagram (also discussed in Section 
13.2). If a shift register or counter is used as the memory, obtain the NS logic according to the 
procedure discussed later in Sections 13.3 and 13.4. For one-hot designs, the NS and output 
logic functions are read directly from the state diagram or ASM chart (see Section 13.5). 

Part V. Select the Circuits Necessary for I/O Conditioning and Initialization/Reset 

1. Select the appropriate input debouncing and synchronizing/stretching circuits and the 
output filtering hardware to be used, if any. Refer to Sections 11.2, 11.4, and 11.8 for 
assistance in making the proper choice. Make certain that all timing requirements are 
met. 

2. Select the initialization/reset hardware (sanity circuit) appropriate for the design as 
discussed in Section 11.7. 

Part VI. Construct the Logic Circuit Construct a complete logic circuit of the FSM, 
preferably in mixed-logic notation, and make any necessary comments for future reference. 
Avoid the use of unusual logic symbols unless accompanied by appropriate labels. 

Part VII. Test the Logic Circuit Simulate the logic circuit to ascertain whether or not it 
operates correctly in the logic domain. Use both gate-level and SPICE-level simulations, in 
that order, if possible. The final test, of course, is that in real time by using testing equipment 
such as a waveform analyzer. 

11.9.2 Design Example: The One- to Three-Pulse Generator 

The problem is to design a pulse generator that will issue one, two, or three clean, discrete 
pulses or no pulses depending on the settings of two switches, SW, and SWo. A general 
description of the pulse generator is provided by the block diagram in Fig. 11.35a and by 
the operation table in Fig. 11.35b. It is required that each pulse issued by this FSM be of 
the same active duration as clock, and that the two switches SW, and SWo be preset well 
in advance of the start switch S command. Thus, SW J and SWo need not be debounced or 
synchronized. It is also required that these two preset switches remain fixed at their proper 
logic level for a period of time exceeding that required for a pulse generating sequence. It is 
further required that the pulse generator be initialized into a non-output state, and that the 
start signal S be returned to the inactive condition following a pulse-generating sequence 
and before initiating another pulse sequence. 

The switch inputs S, SW J, and SW 0 are asynchronous inputs. However, only the start 
switch S is required to be debounced and synchronized. It is best to synchronize S anti
phase to the FSM memory, which is arbitrarily chosen to be FET flip-flops, as indicated 
in Fig. 11.35a. The timing diagram in Fig. 11.35c illustrates the operation of the pulse 
generator by showing one- and three-pulse generations in agreement with the operation 
table in Fig. 11.35b. Notice that the first pulse of a sequence is issued with the next active 
portion of the clock following an active Start command and the sampling of the preset 
switch logic levels. 
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Description and operalio n oflhc one· to three.pulse generator. (a) Bloc!:. diagram. (h ) Operation tllble. 
(c) Timing diagram ~howing one- and three.pulse gene ra.tion ~. 

The flowchart that satisfie s the algorithm and timing requiremellls of the one- to three
pulse generator is provided in Fig. I l .36a. The now chart is a "thinking tool" Ihal is used 
in connection witb the operation table to assist in the cQnstruction of the state diagram 
shown in Fig. 11 .36b. The shaded action squares in the flow chart are the same a'i the oval 
state symbols in a state diagmm. Notice how much more v ivid ly the sequential behavior is 
represented by the state diagram than by the now chart. The slate diagram has five states 
thai require the use of three stale variables named Q ... Qs Qc = A BC. Each state is seen to 
satisfy Ihe sum rule given by Eq. (1 0.3) and illustrated in Fig. 10.7. 

The next step in the design of the one- Io three-pulse generator is to run an ORG analysis 
followed by a hazard analysis. This is done in Fig. 11.37 . where it is seen that no ORG 
exists if 412 is taken to be either 0 or CK in the K-map for P. Keep in mind that none 
of the outputs P if eK are issued immediately on entrance into a given statc, since each 
state-- to-slatc transition occurs on the fa lling edge of CK, that is. on CK. NOlI! that if ~ = I 
in the P K-map. an ORO is possible via the 000 -+ 010 -+ OIl race patb. F inally. si nce 
there are no coupled tenns in the output function P == A(CK) + B( CK). there are no static 
hazards possible . From these resul ts it is concluded that Ihere arc no restric tions placed 0 11 
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Sequential description of the onc- to three-pulse generator. (a) Flow chart (b) State diagram derived 
from the now chan showing a suitable state code assignment. 

the technology of the memory flip-Oops. as discussed in Seelion 11.3, and that no fi ltering 
of the OUlput signal is necessary. 

Having run the ORO and hazard analyses, all that remains is to map the NS functions. ex
tract minimum cover. and construcllhe logic circuit with the appropriate input conditioning 



000 

11 .9 APPLICATIONS TO THE DESIGN OF MORE COMPLEX STATE MACHINES 535 

Use;t "'OorCK 
in P K-map 

else (+) glitch 

~ 
,B.~2 

PUifCK 

011 111 

PlIifCK 

" ,B.~~: ifeK 

SW )-----'=L-----<.( 00 1 

A 
8 C 

00 01 11 

0 0 0 eK 

1 [~ eK eK 

10 

;=e, 

; 
/ 

/p 

P = A(CK) + 8ICK) 

lal Ibl 

FIGURE 11.37 
(a) Output race g litch (ORO) analysis showing conditions for II race-glitch·free output. (b) The output 
K-map and tht minimum hazard-free output function. 

and initialization circuits. Presented in Fig. 11.38 are the NS K-maps for one- to thrte-pulse 
generator of Fig. 11 .36 assuming the use of 0 flip-flops. The resulting minimum NS and 
output functions are easily seen to be 

I 
D, ~ ABISW,)+ABISW,) I 
DB = AB(SWtJ + CS(SW1)+CS(SWo) , 

Dc=S + A+B 
P = A(CI<) + B(CI<) 

(11.10) 

which represent a total gate/input tally of 10/26 in two-level logic. Notice the shared PI, 
AB(SlV1), in the expressions for DA and DB . 

Implementation of Eqs. (11.10) by using discrete logic is shown in Fig. 11.39. Also 
shown are the debouncing. synchronizing and initialization (sanity) circuits. Notice that 
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FIGURE 11.38 
Next slate K-maps showing minimum cover for the one· to three·pulse generator of Fig. 11.36b. 
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fiGURE 11 .39 
Implementation or Eqs. (11 . 10) for the one- 10 three-pulse generator showing the debouncing. syn
chronizing, and initial ization circuits. 

Sanity(L) is connected 10 the active low asynchronous clear overrides of the flip-flops for 
initialization or reset into the 000 state. Also note that only one RET D flip-Rop is used 
for the synchronizing stage of the sian switch input . S. A more robust synchronizing stage 
would be one such as that illustrated in Fig. 11.23a. 

Although discrete two-level logic is used in Fig. 11.39 for the NS- and output-forming 
logic. there exists a variety of other alternatives. These include the use ofMUXs. decoders, 
and array logic devices. Also, the memory can be made up of other devices such as shift 
registers and counters. These and OIher alternative approaches 10 FSM design are considered 
in Chapter 13. 

11 .10 ALGORITHMIC STATE MACHINE CHA.RTS AND STATE TABLES 

In Subsection 11.9.1 a design procedure is laid oul followed by the design of a relatively 
si mple FSM, the one- to three-pulse generator, In thi s design procedure, it is implied that the 
final goal in describing the sequential behavior of a state machine is to arrive at a suitable 

P(H) 
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state diagram from which the design can be completed following (he indicatcd procedure. 
In Ihis text, the fully documented state diagram is me easiest to work with in carrying OUI 

the design of relatively simple FSMs. There are. however, other useful means of expressing 
the sequential behavior of state machines. These other means include the use of algorithmic 
state machille (ASM) charts and state tables. The usc of these as an aid in constructing me 
state diagram will now be explored. 

11.10.1 ASM Charts 

Just as the flowchart functions as a useful thinking tool in the construction of the state 
diagram. so also does the ASM chart serve as a useful thinking tool. In fact. the two are 
very similar, the ASM chan being the more useful in creating VHDL FSM descriptions. 
Shown in Fig. 11.40 are the symbols used in the construction of ASM charts. The state 
block symbol in Fig. 11.40a is used to give the state identifier. the state code assignment (if 
known), and a listing of all unconditional (Moore) outputs associated with that state. The 
decision symbol in Fig. I IAOb contains the input conditions on which depend the branching 
from a given state. To a~sist in creating a VHDL description of the FSM. a separate symbol 
is provided for conditional (Mealy) outputs. as indicated in Fig. 11.4Oc. A conventional 
fl ow chart representation would combine all outputs. unconditional and conditional. into 
the state block symbol. as was done in Fig. 11 .36a. where only Mealy outputs exist. The 
entry path to the conditional omput symbol of Fig. 11.4Oc is always fro m a decision symbol, 
but its exit path can be either to a state block symbol or to another decision symbol. Notice 
that in comparing flowchart and ASM char1 notation. the following interchangeability of 
symbols applies: 

1_ True _ Yes 

0.........-+ False +---+ No 

All of these are based on positive logic, as is true for any logic graphic. including state 
diagrams. 

Slate entry 
path Unconditional 
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"'~ 

(Mooro) output 
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""" path 

lal 

FIGURE 11 .40 
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Traditional ASM chart symbology. (a) State block 1;ymbol and lisl ofutlconditional (Moore) OUtputs. 
(b) Decision symbol showing true and falr.e ell:it condition paths. (c) Conditional output symbol and 
list of Mealy outputs. 
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FIGURE 11.41 
A$M chan lind Stale diagram (or II resolver configuration having two inpu LS and having both condi
tional and unconditional outputs. (a) ASM chan by using symbols in Fig. 11 .40. lb) The equivalent 
fully documented State diagram for the ASM chan in (a). 

An example of the appliclltion of ASM chart nOlation is presented in Fig. 11.41 a. IOgether 
with its state diagram equivalent in Fig. 11041 b. This is seen to be a three-state resolver scg
menl having Iwoinputs, X und >" and both conditional (Mealy) and unconditional (Moore) 
outputs. Notice Ihe manner in which the conditional output RES must be represented in the 
ASM charI. A conventional flowchart representation would have combined the condilional 
outpUi Rl:S, indicaled as RES if y, wilh the unconditional output FIN in slate c. Notice 
also how much easier it is 10 read the Siale diagram Ihan Ihe ASM chart. Imagine how 
difficult it would be to oblain the NS-fonning logic by using the ASM chart. Clearly, the 
fully documemed stale diagram is much more suitable for this purpo~. This leads 10 Ihe 
following guidelines regarding the use of ASM chans vs the use of stale diagrams: 

For state machines of up to moderate complexity, the ASM chart. like thc flow chart. 
should be used as a "thinking too\"' in the construction of a fully documented Slale 
diagram. Extracting the NS- and o utput-fonning logic from fully documented slale 
diagrams is much simpler for such FSMs than the use of ASM charts. It is mre in mod
em times Ihat ASM charts are used in the design of state machines. Rather. it is more 
likely thaI experienced designers will design modem complex. state machines by using 
a hardware description language suc h as VHDL or Veri log. The ASM chart or fl ow 
chart can be useful in obtaining a VHDL or Vcrilog description of a given state ma* 
chine, but will not likely be used to design it. The one notable exeption 10 this is Ihe use 
of the OOC*hOl code method in slate machine design. as described later in Section 13.5. 
1bere, Ihe ASM chart is shown to be useful in writing the NS and oulPUI functions 
directly from the ASM chart without the need for K-maps o r minimization algorithms. 
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FIGURE 11.42 
Representation of a fictitious five-state FSM having two external inputs and two outputs. (a) State 
diagram representation. (b) The equivalent state table for the FSM in (a). 

11.10.2 State Tables and State Assignment Rules 

The tabular representation of the state diagram is called the state table, or next state table if 
output data is excluded. Shown in Fig. 11.42 are two representations for a Mealy FSM hav
ing two inputs Sand T, and two outputs P and Q. The state diagram for this FSM, lacking 
only a suitable state code assignment, is given in Fig. 11.42a, and its equivalent state table 
representation is presented in Fig. 11.42b. In both representations, literals (a, b, c, d , e) are 
used for state identification. On the vertical axis of the state table they represent the present 
state (PS), and within the state table they represent the next state (NS). The encircled state 
identifiers indicate a holding condition for which PS = NS. Thus, in state a the FSM must 
hold on input condition S + T, so the identifier a is encircled in row a for STinput values 01, 
11, and 10, meaning ST + ST + sf = S + T. The state identifiers that are not encircled in 
the state table represent unstable conditions. For instance, in state a under holding condition 
ST, a transition to state b takes place if input T changes 1 ---+ 0, as indicated by the two 
transition paths. Or in state b, holding on sf, a transition to state e will occur if input 
S changes 0 ---+ 1. The FSM cannot transit from state b to state c without changing both 
inputs simultaneously, a condition that should be avoided if possible. Clearly, the state table 
presents all features of the state diagram and is, therefore, the tabular equivalent of the state 
diagram or ASM graphic representation. But the sequential behavior of the FSM is much 
more easily grasped from the state diagram than from the state table. Furthermore, given a 
suitable state code assignment, it should be obvious that the state diagram is far easier to use 
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o 
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for a "pencil-and-paper" design of an FSM than is the state table. There are, however, several 
important usages of state tables, among them being their use for CAD purposes explored in 
Section 11.11. 

The state table provides a relatively simple means of obtaining the state code assignments 
required for the optimum or near-optimum NS and output logic of an FSM by using D flip
flops as the memory. There are three state assignment rules by which this can achieved, 
listed in descending order of priority: 

Rule 1 (The "into rule"): Make logically adjacent assignments to present states 
that branch "into" a common next state, provided that their input conditions are 
the same. 

Rule 2 (The "from rule"): Make logically adjacent assignments to states that 
are the next states "from" a common present state, provided that their input 
conditions are logically adjacent. 

Rule 3 (The output rule): Make logically adjacent assignments to states having 
the same outputs. Rule 3 is relatively unimportant except where large numbers 
of outputs are involved. 

In Fig. ll.43a use is made of the next state table in applying rules 1 and 2 to the FSM 
of Fig. 11.42. Here, rule 1 has the highest priority and is applied to state adjacency sets in 
columns under constant input conditions. Thus, by rule 1, states within the set {abc} should 
be made logically adjacent, and those within set {de} should be made adjacent, both sets be
ing under the same input condition 10 = sf. Similarly, states within sets {ae} and {bd}, under 
input condition 1\ = ST, should be made logically adjacent, etc. Rule 2, of lesser priority, 
is applied to the rows of the state table as indicated in Fig. 11.43a. Now the input conditions 
must be logically adjacent. For example, in present state d, states with sets {de}, {cd}, and 
{ce} should be made logically adjacent. State sets that appear in both rule 1 and rule 2 are 
given the highest priority and are indicated in dashed boxes. These are followed in priority by 
those that appear only in rule 1. Those of least priority appear only in rule 2. Notice that not 
all sets appearing in rules I and 2 can be accommodated, hence the reason to prioritize, as just 
discussed. For example, it is not possible to include set {ce} together with the higher priority 
sets. 

By incorporating rules I and 2, as indicated in Fig. 11.43a, there results the following 
three-bit state assignments: 

a = 000, b = 001, c = all, d = WI, and e = 100. 

These assignments are used in the state diagram of Fig. ll.43b and will generate an optimum 
or near-optimum set of next-state functions, but only in three bits. It is possible, albeit 
unlikely, that a four-bit set could result in a more optimum set of next-state functions. 
However, no attempt will be made to explore this possibility. Note that ORGs are possible 
in both P and Q. 

The NS K-maps are plotted from the state diagram in Fig. 11.43b, assuming the use 
of D flip-flops, and are given in Fig. 11.44 together with the output K-maps. Also 
shown are the minimum covers for the K-maps that yield the following NS and output 
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functions: 

DA = cst + BCST + ACS + At 

DB=CST+BT 

Dc=ASt+CT 

P=ACSt 

Q = ACS + BCST + ABC 

(11.11) 

These results represent a total gate/input tally of 14/40, excluding possible inverters. 
Eqs. (11.11) will be compared with the results generated by using the array algebraic 
approach to design discussed next in Section 11.11. 

11.11 ARRAY ALGEBRAIC APPROACH TO LOGIC DESIGN 

Results similar to those of Eqs. (11.11) can be obtained by using what is called the array 
algebraic approach to state machine design. This approach is applicable to any FSM for 
which each state-to-state transition ends in a holding condition, and each state obeys the 
sum rule. Thus, the FSM in Fig. 11.36 would not be suitable for this method since there are 
states without holding conditions. 

The array algebraic approach can be used for the computer automated design (CAD) of 
either synchronous or asynchronous FSMs, and without the need to use either state diagrams 
or K-maps. Furthermore, the array algebra that is used bears a close resemblance to matrix 
algebra, but there are some important differences. To properly launch this subject and to 
minimize the difficulty index, the various matrix arrays and equations will be given using 
the FSM in Fig. 11.43 as an example. In this way, the reader can follow the operations with 
little difficulty. 

Given the state code assignments that are generated by using the next-state table in 
Fig. 11.43a, 

a = 000, b = 001, c = 011, d = 101, and e = 100, 

the state matrix S is defined as 

bOO 1 a [0 0 0] 
S = cOl 1 = State matrix. 

d 1 0 1 
e 100 

Also obtained from the next-state table in Fig. 11.43a is the destination matrix D, given by 

10 II h h 

a [ a 
ae a 

1] D = b abc 0 0 
= Destination matrix. 

c 0 c bcd 
d 0 bd 0 
e de 0 e 
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The D matrix is formed by combining all states in a given column that are associated with 
a holding condition. For example, state set {abe} is associated with the holding condition b 
in the 10 column. Similarly, state set {de} is associated with holding condition e in the same 
column. Notice that all state set entries involving two or more states in the D matrix are an 
expression of rule I, as indicated in Fig. 11,43a. Single literals appear when a present state 
identifier is associated exclusively with a holding condition, as in row 1 columns 3 and 4 
or in row 5 column 3 of Fig. 1 L43a. A zero appears when there is no next state associated 
with the present state. 

By taking the transpose of the S matrix (st) and Boolean multiplying it with the D matrix 
there results the function matrix FNS given by 

[0 a, 
a 

1] [0 0 0 1 I] abc 0 0 
FNS = StD= 0 0 1 o 0 0 e bed (11.12) 

o 1 1 1 0 0 bd 0 
de 0 e 

[ d, 
bd e bcd, ] 

== 0 e bed ~ = Function matrix. 
abe bed bed 

Notice how sets combine in array algebra. For example, bed in column 2. row 3 of the func
tion matrix results from an implied matrix operation e T bd. This is one of the peculiarities 
of array algebra. Thus. bed results from the Boolean product e . bd. 

Now it is necessary to evaluate the function matrix F in terms of the state variables. 
This can be accomplished in either of two ways. For an automated design approach, the 
tabular representation of the state assignment in Fig. 11,45a can be used in connection with 
a minimization algorithm such as that of Quine-McCluskey (Q-M) discussed in Subsection 
4.8. L Alternatively, a K-map representation of the state assignments, as in Fig. 11,45b, can 
be used. In either case, if all state identifiers are present in a given state adjacency set, that 
set becomes, logic 1. State identifiers not part of a set are assigned a logic O. Remember 
that in the case of the Q-M algorithm, don't cares are treated as minterms and therefore 

FIGURE 11.45 
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take logic 1. For K-map evaluations, the don't cares are treated as don't cares. However 
evaluated, the results for the six state adjacency sets in the function matrix are 

de = Lm(4, 5, 6, 7) = A, bd = Lm(1, 5) = BC, e = Lm(4, 6) = AC, 

e = Lm(2, 3, 6, 7) = B 

abc = Lm(O, 1,2,3) = A, bed = Lm(1, 3,5, 7) = C, 

bede = Lm(1, 3,4,5,6,7) = A + C, 

all of which must be substituted into Eq. (11.12) before proceeding. Again, to use the Q-M 
algorithm in evaluating the six adjacency sets just presented, care must be taken to include 
the three don't cares </>(2,6, 7) as minterms m(2, 6, 7) in each set, if they are not already 
included. Thus, for use with the Q-M algorithm, the adjacency sets become 

de = L m(2, 4, 5, 6, 7), bd = L m(1, 2,5,6,7), e = L m(2, 4, 6, 7), 

e = Lm(2, 3, 6, 7) 

abc = L m(O, 1,2,3,6,7), bed = L m(1, 2, 3, 5, 6,7), 

bede = L m(l, 2, 3,4,5,6,7), 

which will yield the same results as given previously. Because of the simplicity of the 
adjacency set minimization process, the Q-M algorithm is quite suitable for CAD purposes 
even for relatively complex state machines. However, most any minimization algorithm is 
suitable for this purpose as, for example, BOOZER bundled with this text. 

After making the appropriate substitutions into Eq. (11.12), the next-state functions can 
be evaluated. This is done by multiplying the function matrix FNS by the input matrix I to 
yield the following next-state function matrix NS: 

[

A BC AC (A + C)] 
NS = F NsI = ~ B C 0 

A C C 0 

By carrying out the indicated matrix multiplication, there result the NS equations 

DA = Ala + BCh + ACh + (A + C)h 

= ASt + BCST + ACST + ASt + cst 

DB=BII+Ch 

=BST+CST 

Dc = Ala + C II + C h 

=ASt + CT, 

(11.13) 
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which compare closely with theNS functions in Eqs. (lLl1). Notice that ASt +ASt = At 
in D A . 

The output functions can be obtained by following the same procedure. Now, however, 
the state matrices for the outputs are those obtained directly from the state table in Figure 
11.42(b). When this is done, the following results are obtained for outputs P and Q: 

[ 0 

ae a a 
abc 0 0 0 

Fp = ptD= [0 0 0 0 st] ~ e bed 0 
bd 0 0 

de 0 e bede 

= [de 0 e bede]St, 

or 
Fp = ptD= [ASt 0 ACSt (A + C)st] 

Then, by multiplying Fp by the input matrix I, the output P is found to be 

p ~ FpI ~ [AST 0 AtSt (A + C)st J [iJ 
=ASt+CSt, 

1 

where 10 = st, II = ST, h = ST, and h = st. Similarly, for output Q there results 

and 

FQ = QtD = [0 lOST S]D 

= [(abc + deS) bdST eS bedeS] 

=[(A+S) BCST ACS (A+C)S] 

Q = FQI = ASt + BCST + ACST + ASt + cst 

Altogether the NS and output functions generated from the array algebraic approach are 

DA = ASt + BCST + ACST + ASt + cst 

DB =BST + CST 

Dc =ASt +CT 

P =ASt + cst 

Q = ASt + BCST + ACST + ASt + cst 

(11.14) 

which represent a total gate/input tally of 14/44 compared to 14/40 for the standard K-map 
approach of Eqs. (11.11), all excluding possible inverters. Observe that all p-terms in the 
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output expressions of Eqs. (11.14) are covered by the D A expression. In fact, it is char
acteristic of the array algebraic approach that most, if not all, of the p-terms in the output 
functions will be shared PIs. This is so because the output functions are obtained by using 
the same form of the function equation F = zt . D, where Z is any output function matrix 
and D is the destination matrix used in obtaining the NS functions. Notice that reducing 
the expression for DA by factoring the terms AST + AST = AT results in a gate/input 
tally of 14/41, only a very minor improvement. Generally, in using the array algebraic ap
proach to design, significant savings in hardware can result by considering all of the factor
ing/reduction possibilities that exist, particularly within the NS logic expressions. However, 
account must also be taken of the shared PIs that might be lost in the factoring/reduction 
process. 

An inspection of the Q output function in Eqs. (11.14) reveals an externally initiated 
static hazard in the coupled terms AC ST +AST. This s-hazardcan occur on a I ~ o change 
in input T while in state 100 under holding condition S (see Fig. 1l.43b). As indicated in 
Section 11.3, this hazard can be eliminated either by adding the hazard cover AC S or by 
filtering. Note that the p-term ACST can be replaced by ACS in the expression for Q, 
thereby requiring no hazard cover. This results from the simplification AC ST + AST = 
AC S + AST after applying the absorptive law. Note that no hazards exist in the output 
functions P or Q of Eqs. (11.11). In any case, since ORGs are possible in both outputs, 
they should be filtered thereby eliminating all logic noise - hence no hazard analysis is 
needed. 

In attempting to automate the design of state machines by the array algebraic method, 
the most difficult part, the "bottleneck," is to obtain the state adjacency sets of function 
matrix F in terms of the state variables. Fortunately, these problems break up into single
output minimization problems, as is indicated by the example given earlier, and often can 
be easily handled by tabular minimization algorithms such as that of Q-M. But a given 
minimization problem can be cyclical in the sense that more than one minimum is possible. 
Petrick's algorithm (see Further Reading) can be used to solve simple to moderately complex 
problems. On the other hand, an optimum solution may not be necessary, and one of the 
minimum solutions for an adjacency set can be arbitrarily chosen on the basis of some 
criterion built into the CAD algorithm. Full-blown heuristic-type minimization algorithms 
are usually not required for this purpose. However, if needed, none are better for very 
large minimization problems than the Espresso-II algorithm briefly discussed in Section 
4.8. Included on the CD-ROM bundled with this text is the CAD software called ADAM 
(for Automated Design of Asynchronous Machines). This software can also automate the 
design of synchronous FSMs with D flip-slops. For more information see Appendix B. 

Before leaving this subject, one final thought is worth mentioning. The array algebraic 
approach is perfectly general. It can be applied to any FSM, synchronous or asynchronous 
that meet the minimum requirements mentioned at the beginning, and to any set of state code 
assignments that is used. The results mayor may not be optimum, but will be at least near 
optimum depending, of course, on the choice of state code assignments. In this section, 
the array algebraic method is used to design a synchronous state machine, of moderate 
complexity, whose state assignments are obtained by applying state assignment rules I and 
2 given previously. However, applications of rules 1 and 2 do not eliminate ORGs. 

In Section 14.12 the array algebraic method is again used, but to design the fastest 
asynchronous FSMs possible, called single-transition-time (SIT) machines. For these FSMs 
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the state code assignments are chosen by using special partitioning methods that avoid 
ORGs and other serious timing problems. These partitioning methods, not involving state 
assignment rules 1 and 2, are used to construct the state table from which the S matrix is 
derived. These methods are also applicable to synchronous D flip-flop designs, but with an 
increased number of state variables required - the price of avoiding ORGs. 

11.12 STATE MINIMIZATION 

Formal state minimization procedures are available that involve state tables, implication 
charts, merger graphs, and the like. Further Reading at the end of this chapter cites references 
on this subject. However, such procedures are rarely used in modem state machine design. 
For state machines of up to moderate complexity, a minimum or near minimum number of 
states can be obtained simply by visual inspection of the state diagram or state table. In fact, 
it may not be desirable to obtain a minimum number of states for a particular FSM. There 
are occasions where a nonminimum number of states may lead to a more optimum set of 
NS and output functions for a state machine. Furthermore, if the state machine is relatively 
complex and if it is to be implemented, say, with an FPGA or PAL, it really doesn't matter 
whether or not a minimum number of states exist. In cases where hardware capability far 
exceeds the state machine requirements, it is only necessary to make certain that the FSM 
performs its tasks properly - hardware limitation is not a factor. 

In this section, a visual method is used to demonstrate how states can be merged to 
produce a more optimum design of relatively simple state machines. Consider the require
ments for the pulse width adjuster (PWA) in Fig. 11.46, which has a single input X and a 
single output P. It is required that X be synchronized in phase with the RET D flip-flops 
of the memory. The PWA is to function according to the operation table in Fig. 11,46a, 
where the pulse widths are adjusted to one, two, or three clock periods, TCK, as indicated. 
The timing diagram in Fig. 11.46b illustrates the pulse width relationship between the in
put pulse waveform X and the output waveform P relative to seven states a, b, c, d, e, f, 
andg. 

The state diagram that corresponds to the requirements of the PWA set forth in Fig. 11.46 
is shown in Fig. 11.47a. An inspection of the seven states in the state diagram and in the 
state table of Fig. 11.47b indicates that two merging operations are possible. If states c and 
d are merged to form state c', and if states e, f, and g are merged to form state d', there 
results the much simplified state diagram of Fig. 11,47c. This four-state PWA, functions 
the same as the seven-state PWA, but at a significant reduction in hardware cost. There 
are other advantages to state reductions. For example, in the case of the four-state PWA 
in Fig. 11.47c, it can be coded in Gray code so as to eliminate any possibility of ORGs 
occurring in the output. However, state reductions alone mayor may not eliminate static 
hazards in the output. 

Notice how easy it is to recognize the merging patterns of the states in Fig. 11.47. Such 
visual approaches to the state-merging process can be carried out even on much more 
complex FSMs. Usually it is not necessary to apply formal techniques to this process. The 
point is that, if the FSM is to be implemented with an array logic device, such as a ROM, 
PLA, FPGA, or PAL, it may not matter whether or not a state-minimum design exists. What 
is more important is the correct operation of the FSM. Of course, if the FSM is to be 
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designed on chip to be manufactured by the millions, an optimum design may be necessary 
(hardware-wise and/or speed-wise), but with or without a minimum number of states. 

FURTHER READING 

Few texts cover the subject of output race glitches (ORGs). The known sources on this 
subject are the texts of Fletcher, Shaw, and Tinder. and of these the last is by far the most 
comprehensive. It is equally difficult to find further reading on the subject of static hazards 
in the outputs of synchronous FSMs. The reason for this is not exactly clear. Again the best 
source appears to be the text by Tinder. 

[I] W. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs. 
NJ,1980, 

[2] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993, 
[3] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall. Englewood Cliffs, 

NJ, 1991. 

The subjects of asynchronous inputs, synchronizers and their failure. and metastability 
appear to be covered to one extent or another by most texts in the field and in many journal 
articles. Perhaps the best coverage for further reading on these subjects is found in the 
text by Wakerly, with others by Fletcher, Tinder (both previously cited), Daniels, Katz, 
McCluskey, and Unger all being a distant second choice. 

The texts ofWakerly and Daniels cover the subject of mean time between failure (MTBF) 
of synchronizer flip-flops and are recommended for further reading on this subject. 

[4] J. D. Daniels, Digital Design/rom Zero to One. John Wiley & Sons, New York, 1996. 
[5J R. H. Katz, Contemporary Logic Design. Benjamin/Cummings Publishing, Redwood City, CA. 

1994. 
[6] E.1. McCluskey, Logic Design Principles. Prentice Hall. Englewood Cliffs, NJ, 1986. 
[7J S. H. Unger, The Essence 0/ Logic Circuits. Prentice Hall, Englewood Cliffs, NJ, 1989. 
[8J J. F. WakerIy, Digital Design PrinCiples and Practices, 2nd. ed. Prentice-Hall, Englewood Cliffs, 

NJ,1994. 

Of the journal articles on metastability and the synchronizer, none are more important 
than those by Chaney, who has over many years established himself as a leading authority 
on the metastability problem in synchronizers. In Chaney's article will be found measured 
data on the MTBF of a variety of common flip-flops. Also, there are the earlier works of 
Chaney et aI., Stoll, and Veedrick that are worth reading for a more complete grasp of the 
synchronizer problem. The advanced reader may find the theoretical work of Kleeman and 
Cantoni more contributive to an understanding of the problem. 

[91 T. J. Chaney. "Measured Flip-Flop Responses to Marginal Triggering," IEEE Trans. Comput. 
C·32(12), 1207-1209 (1983). 

[to] T. J. Chaney, S. M. Ornstein, and W. M. Littlefield, "Beware the Synchronizer," Dig. COMPCON, 
San Francisco, Sept. 1972,pp. 317-319. 

[II] L. Kleeman and A. Cantoni, "On the Unavoidability of Metastable Behavior in Digital Systems," 
IEEE Trans. on Comput. C-36( I), 109-112 (1987). 
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[12] P. A. Stoll, "How to Avoid Synchronization Problems," VLSI Design, Nov.-Dec., pp. 56-59 
(1982). 

[13] H. J. M. Veedrick, "The Behavior of Flip-Flops Used as Synchronizers and Prediction of their 
Failure Rate," IEEE Journal of Solid State Circuits SC·15(2), 169-176 (1980). 

Adequate treatments of clock skew are found in the texts of Fletcher, McCluskey, 
Tinder, and Wakerly, all previously cited. Excellent coverage of clock generating circuitry 
is provided in the text by Fletcher. Discussions on clock signal specifications, buffering, 
and gating can be found in the text by Wakerly. For the advanced reader needing infor
mation on the techniques for generating high-frequency clock waveforms from frequency 
synthesizers, the texts by Best, Egan, and Rhode are recommended. 

[14] R. G. Best, Phase-Locked Loops - Theory, Design and Applications. McGrawcHill, New York, 
1984. 

[15] W. F. Egan, Frequency Synthesis by Phase Lock. Wiley Interscience, New York, 1981. 
[16] U. L. Rhode, Digital PLL Frequency Synthesizers Theory and Design. Prentice Hall, Englewood 

Cliffs, NJ, 1983. 

Further reading on the subject of initialization (sanity) circuits is best found in the text 
by Langdon and that by Tinder (previously cited). On the subject of debouncing circuits 
the texts by Langdon, Tinder, and Wakerly are recommended, although the subject is to 
one degree or another covered in other texts such as those by Daniels, Katz, and Unger, all 
previously cited. 

[17] B. G. Langdon, Jr., Computer Design. Computeach Press, Inc., San Jose, CA, 1982. 

References covering the uses of ASMs, state tables, and state assignment rules in state 
machine design are numerous. Good examples of all three of these subjects are found in 
the texts by Hayes, Nelson et al., Roth, Wakerly (previously cited), and Yarbrough. The 
text by Comer uses a unique graphical representation of sequential machines that appears 
to draw from a combination of ASM chart notation and state diagram notation. Of the 
journal articles on optimal state assignments, that by De Micheli et al. is perhaps the most 
authoritative available. 

[18] D. J. Comer, Digital Logic and State Machine Design, 3rd ed. Saunders College Publishing, Fort 
Worth, TX, 1995. 

[19] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli, "Optimal State Assignment for 
Finite State Machines," IEEE Trans. on CADIICAS CAD·4(3), 269-284 (1985). 

[20] J. P. Hayes, Introduction to Digital Design. Addison-Wesley, Reading, MA, 1993. 
[21] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and 

Design. Prentice Hall, Englewood Cliffs, NJ, 1995. 
[22] c. H. Roth, Fundamentals of Logic Design, 4th ed. West, St. Paul, MN, 1992. 
[23] J. M. Yarbrough, Digital Logic Applications and Design, West, Minneapolis/St. Paul, MN, 

1997. 

The formal approach to state reduction is nicely covered by numerous texts, includ
ing those of Hayes, Katz, McCluskey, Nelson et al., and Yarbrough, all previously cited. 
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For the more theoretically inclined, the texts by Dietmeyer, De Micheli, and Kohavi, are 
recommended. 

[24] D. L. Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Inc., Boston, MA, 
1978. 

[25] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York, 1994. 
[26] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, New York, 1978. 

There are no known simple references on the subject of the array algebraic approach to 
logic design of synchronous state machines. The advanced reader may find the treatment 
by Dietmeyer (previously cited) helpful, but some background in array Boolean algebra 
notation is needed. For references covering Petrick's algorithm and related subjects, the 
reader is referred to the texts by Hayes, Nelson et at., and Roth, all previously cited. 

PROBLEMS 

11.1 Inspect all three state diagrams in Figure PlO.7 for possible output race glitches 
(ORGs) and static hazards. If any exist, indicate their origin and type following 
the examples in Sections 11.2 and 11.3. 

11.2 Shown in Fig. Pll.l are the state diagrams for two fictitious FSMs. 

x 
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Plt if X 
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FIGURE P11.1 
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(1) Run a complete output race glitch (ORG) analysis on each FSM. To do this, 
follow the examples in Section 11.2. Thus, if ORGs exist, indicate their origin 
and type (+ or - ). Do not alter the state diagram in any way. 

(2) In consideration of part (1), run a complete static hazard analysis on each of 
these FSMs. To do this, follow the examples in Section 11.3. Assume that 
each FSM is to be implemented with NAND-based flip-flops, and indicate 
whether an existing static hazard is externally or internally initiated. Consider 
both SOP and POS output-forming logic and give the gate/input tally for each, 
including static hazard cover (if any). Do not alter the state code assignment 
and do not construct a logic circuit for the FSM. 

11.3 Shown in Fig. Pll.2 are the state diagrams for two fictitious FSMs. 

x 

(1) Run a complete output race glitch (ORG) analysis on each FSM. To do this, 
follow the examples in Section 11.2. Thus, if ORGs exist, indicate their origin 
and type (+ or -). Do not alter the state diagram in any way. 

(2) In consideration of part (l), run a complete static hazard analysis on each of 
these FSMs. To do this, follow the examples in Section 11.3. Assume that the 
FSM is to be implemented with NOR-based flip-flops, and indicate whether an 
existing static hazard is externally or internally initiated. Consider both SOP 
and POS output-forming logic and give the gate/input tally for each, including 
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static hazard cover (if any). Do not alter the state code assignment and do not 
construct a logic circuit for the FSM. 

11.4 The FSM in Figure Pll.3 has two inputs, Sand T and one output, P. 
(a) Run a complete output race glitch (ORG) analysis on this FSM. To do this, 

follow the examples in Section 11.2. Thus, if ORGs exist, indicate their origin 
and type ( + or -). Do not alter the state diagram in any way. 

(b) In consideration of part (a), run a complete slatic hazard analysis on this 
FSM. To do this. follow the examples in Section 11.3. However, it is not 
known whether to use NAND- or NOR-based flip-flops for its design. Consider 
both SOP and POS output-fonning logic and give the gate/input tally for 
each (including any static hazard cover). Based on this information, make a 
selection as to the type of flip-flop (NAND- or NOR-based) that will yield 
the most optimum design. Do not alter the state code assignment and do not 
construct a logic circuit for the FSM. 

11.5 Carry out complete ORG and static hazard analyses on the FSM in Fig. 11.43b. 
To do this, use may be made of the NS and output expressions in Eqs. (11.11). If 
any of these timing defects exist in the output signals, indicate the best means of 
eliminating them. (Hint: See Subsection 11.2.2.) 

11.6 Suppose it is desirable to estimate the mean time between failures (MTBF) for 
a synchronizing system that is required to protect a hypothetical FSM operated 
at 200 MHz when the asynchronous data change at an average rate of 10 kHz. 
By experiment, the average setup time tSlt is 1 nanosecond (ns) for the high-speed 



554 CHAPTER 11 I SYNCHRONOUS FSM DESIGN CONSIDERATIONS 

D flip-flops to be used for the synchronizer. Consider that at 200 MHz, it is 
necessary to use a synchronizing scheme of the type shown in Fig. 11.23a for 
which a divide-by-4 counter is used in the diagram. 
(a) Calculate the MTBF (in seconds, days and years) if T = 0.5 ns and To = 

1 x 10-6 seconds. [Hint: Use Eq. (11.3) and take into account the cumulative 
effects of both stages.] 

(b) Repeat part (a) if a divide-by-two counter is used in the diagram. Calculate 
the MTBF in seconds for comparison with the result in part a. 

11.7 It is desired to find a safe operating clock frequency for a given FSM. The following 
data is collected relative to the operation of the FSM: 

Flip-flop parameters fplh = 6 ns; fphl = 9 ns 
Maximum delay through the NS logic TNS = 7 ns 
Maximum flip-flop setup time (,u = 3 ns 

Calculate a safe operating clock frequency fCK based on a 15% safety factor. 

11.8 Derive the expressions for Vx(t) in Eqs. (11.8) and (11.9) relative to Fig. 11.31c. 
Assume that Rl » R2 and that the switch is opened (or closed) at time t = 0 only 
after steady-state conditions are reached. State any simplifying assumptions that 
are made relative to the Schmitt trigger and inverter. (Note: This exercise involves 
solving a first-order RC circuit.) 

11.9 Presented in Fig. P 11.4 is the state diagram for a one-bit serial adder. The operand 
bits, a and b, are introduced serially and are synchronized antiphase to the clock 
triggering edge. The outputs are S (sum) and Co (carry-out). Assume that the FSM 
is initialized (reset) after each addition operation. 
(a) Complete the state diagram by giving it a state code assignment that is free of 

ORGs. 

FIGURE Pl1.4 
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(b) Design this serial adder by using two RET D flip-flops and a gate-minimum 
NS and output logic. To do this, use XOR patterns where appropriate. Initialize 
into the 00 state and show the sanity circuit and connections. Assume that all 
inputs and outputs are active high. 

(c) Test the one-hot serial adder by using the EXL-Sim2002 simulator bundled 
with this text on CD-ROM. Remember to initialize the flip-flops. To do this, 
include all four addition operations as indicated in the truth table of Fig. 8.1 c. 

11.10 Shown in Fig. PIl.5 is the state diagram representing a serial BCD-to-XS3 con
verter. A synchronous BCD waveform is presented on the X input, and a syn
chronous XS3 waveform is issued on the Z output. Note that all output signals are 
issued on an exciting condition, and that the BCD code arrives serially LSB first. 
(a) Use RET D flip-flops for an optimum logic circuit design of this converter. 

To do this, use XOR patterns for the output function. Assume that input X is 
synchronized to the falling edge of the clock waveform and that both X and 
Z are active high. Initialize the FSM into the 000 state and show the sanity 
circuit and its connections to the converter. 

(b) Determine if ORGs or static hazards are present in the output. If they ex
ist, then take the necessary steps to eliminate them and alter the logic cir
cuit accordingly. Otherwise, do nothing. In any case, do not alter the state 
diagram. 

(c) Construct the timing diagram for the BCD-to-XS3 converter by introduc
ing a BCD waveform equivalent to decimal 2 followed by decimal 7 (both 
introduced LSB first). Thus, include waveforms for X(H), CK, A(H), B(H), 
C(H), and Z(H). Use a clock waveform with a 50% duty cycle. Explain the 
difference in active durations of the input and output pulses. (Hint: On the 
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timing diagram, the four BCD code bits will appear in reverse order since they 
are introduced LSB first.) 

(d) Verify the timing diagram of part (c) by simulating the logic circuit of part (a). 

11.11 A 3-bit serial odd-parity detector is to be designed that will issue an active output 
pulse POdd Det(L) any time a series of three clock periods samples an odd number 
of active pulses (one or three, in any order) on an input pulse string X. The output 
must be issued only when clock is active. 
(a) Construct an optimum state diagram and state table for this detector. To do 

this, make effective use of the "from rule" discussed in Subsection 11.10.2 
and initialize into the 000 state to begin the process. Remember that the 
FSM must issue an output on the active portion of the clock waveform. 
(Hint: This is a Mealy machine of five, six, or seven states depending on the 
design.) 

(b) Design the logic circuit for this detector by using three FET JK flip-flops and 
a gate-minimum NS and output logic. To do this consider using XOR patterns 
where appropriate. Assume that X arrives active high from a mechanical 
switch, and that it must be debounced and synchronized antiphase to the clock 
triggering edge. Show all input conditioning circuitry and their connections 
to the FSM. Plan to use a SPDT debouncing circuit of the type shown in 
Fig. 11.32a. [Hint: If Part (a) is done correctly, two to four gates will be 
required for the NS and output logic.] 

11.12 An FSM is to be designed that will issue an output according to the following 
requirements: 

If clock samples S active with both X and Y inactive, then Z is issued on 
Y following XY or X following .KY, provided that these events are spaced 
one clock period apart. If these conditions are not met (an EQV condition), 
then Z will not be issued, and the FSM must wait for S to be sampled 
inactive before the FSM can return to the initial state and start the process 
over again. The output Z must be issued for only one clock period, after 
which the FSM must return unconditionally to the initial state. 

Construct a state diagram and state table for this FSM and give it a glitch-free state 
code assignment. Plan to initialize the FSM into the 000 state. (Hint: Properly 
done, the state diagram will have only six states.) 

11.13 Shown in Fig. P11.6 is a state diagram for an FSM that has two inputs, X and Y, 
and one output, Z. 
(a) Given the state code assignment indicated, use the array algebraic approach 

to obtain the NS expressions for this FSM. To do this, first construct the 
state table to obtain the state matrix S and destination matrix D. Then find 
the function matrix F NS and the next matrix NS by following the exam
ple in Section 11.11. End with an optimum set of logic equations for D A 

and DB. 
(b) Repeat the array algebraic approach to obtain the output function for Z. 
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FIGURE Pl1.6 

(c) From the results of parts (a) and (b), analyze this FSM by constructing the 
revised state diagram. To do this, follow the examples in Section 10.13. Are 
ORGs now possible? Are they possible in the state diagram of Fig. Pll.6? 

11.14 Shown in Fig. Pl1.7 is a state diagram for an FSM that has two inputs, X and Y, 
and three outputs, P, Q, and R. 
(a) Given the state code assignment indicated, use the array algebraic approach to 

obtain the NS expressions for this FSM. To do this, first construct the state table 
to obtain state matrix S and the destination matrix D. Then find the function 
matrix F NS and the next matrix NS by following the example in Section 11.11. 
End with an optimum set of logic equations for D A, DB, and Dc. 

x 

y 

FIGURE Pll.7 
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(b) Repeat the algebraic approach to obtain the output functions for P, Q, and R. 
Are static I-hazards present? If so, indicate whether they are internally ini
tiated or externally initiated, and give the hazard cover required to eliminate 
them. 

(c) From the results of parts (a) and (b), analyze this FSM by constructing the 
revised state diagram. To do this, follow the examples in Section 10.13. Are 
ORGs possible? Are they possible in the original state diagram of Fig. Pll.7? 

(d) Noticing that none of the principal states are used as race states, obtain each 
output function in terms of the three variables of the state in which the output is 
issued. Now comment on the presence or absence of ORGs and static hazards. 
Is this a valid set of output function expressions and, if so, is this a special 
case? Which is best, the results of (b) or those of (d)? 

11.15 Presented in Fig. PII.8 is the state table for an FSM having two inputs, X and Y, 
and two outputs, P and Q. Notice that it follows the format given in Fig. 11.43a 
and that the best compliance possible is made of the state assignment rules for 
three state variables. (See state assignment rules 1 and 2 in Subsection 11.10.2.) 
(a) Given the state code assignment indicated, use the array algebraic approach 

to obtain the NS expressions for this FSM. To do this, first obtain the state 
matrix S and destination matrix D. Then find the function matrix F;\/s and 
the next matrix NS by following the example in Section 11.11. End with an 
optimum set of logic equations for D A , DB, and Dc. Thus, some function 
minimization is necessary. 

(b) Repeat the algebraic approach to obtain the output functions for P and Q. Are 
static I-hazards present? If so, indicate whether they are internally initiated 
or externally initiated, and give the hazard cover required to eliminate them. 

(c) It will be observed that the array algebraic approach eliminates ORGs but 
typically creates redundant output states. Use the results of part (b) to find an 
optimum set of output functions that will still eliminate ORGs but that will no 
longer require hazard cover. Keep in mind that the array algebraic approach 
tends to maximize the number of shared PIs in the output functions, but often 
at the expense of creating static I-hazards. 

FIGURE Pl1.8 
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(d) Prove that the results of parts (a) and (c) are valid sets of NS and output 
expressions by constructing a state diagram for this FSM. To do this. it will be 
necessary to create a PSINS table from the EV K-maps that derive from parts 
(a) and (b). Compare this state diagram with that generated directly from the 
state table in Fig. PII.S. Are ORGs possible in the original FSM? 

11.16 Collapse the redundant state diagram (for a serial adderlsubtractor) in Fig. PI 1.9 
into one of three states. It is required that outputs CLCRY and PSCRY accompany 
the USR mode control outputs S 1. So = 1. 1, and that each of the two sets of mode 
control outputs shown in the figure be assigned to separate states. It is further 
required that the Start signal be active for a period greater than one clock period 
and that it must go inactive before CNT and FIN signals can be issued. Assume 
that any ORGs that occur after the three-state process is complete have no effect 
on the proper operation of the FSM. 

11.17 At the discretion of the instructor. use the CAD software ADAM included on the 
CD-ROM bundled with this text to work any of the following design problems: 
11.13, 11.14, and 11.15. A readme. doc accompanying this software explains the 
use of the software. Thus. an assignment 11.17111.15a would require the use of 
ADAM to work Part (a) of Problem 11.15. 
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CHAPTER 12 

Module and Bit-Slice Devices 

12.1 INTRODUCTION 

In Chapter 10 use was made of both the basic cell and the flip-flop as the memory in the de
sign of relatively simple state machines such as other flip-flops and a sequence recognizer. In 
Section 11.9 use was again made of flip-flops as memory devices in the design of a more com
plex FSM, the one- to three-pulse generator. In this chapter, devices such as shift registers 
and counters are considered. Registers and counters constitute two very important classes 
of FSMs that are functionally different, and that are commonly used in the following ways: 

As stand-alone devices 
As data path devices in a controlled system 
As memory devices in controller design 

As will become evident, there is a variety of different types of shift registers and even a 
greater variety of counters, some relatively simple and some relatively complex. Where 
applicable, use will be made of the modular approach to register and counter design, 
meaning that the modules can be cascaded into larger units. After completing this chapter the 
reader will be familiar with the design and operation of almost any shift register or counter. 

12.2 REGISTERS 

For reference purposes, there are four modes of bitwise register operation: 

True Hold a logic 0 or logic 1 
Shift Right a logic 0 or logic 1 
Shift Left a logic 0 or logic 1 
Parallel Load a logic 0 or logic 1 

Not all shift registers are designed to operate in all four modes. The simplest register, one 
that can neither shift nor true hold, is called the storage (holding) register. The condition 
whereby a device can sustain any set of logic output values over any number of clock cycles 
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independent of its input logic status is called true hold. The most complex shift register and 
one that is designed to operate in all four modes just listed is called the universal shift register. 
These and other shift registers will be considered in some detail during the discussions that 
follow. Here, the modular approach to register design is emphasized, featuring the design 
of a I-bit slice, the J th stage, which can be cascaded to form a register of any size. After 
completing this section, the reader will be familiar with most any shift register available 
commercially. 

Registers are used in a wide variety of digital systems. They are used in the temporary 
storage of binary data, in data transmission, in arithmetic operations, in counter design, in 
accumulators, and in a host of other specialized applications. Registers are even used as 
memory elements in FSM design. 

12.2.1 The Storage (Holding) Register 

A register whose only function is to store information is called a storage register and is some
times referred to as a parallel-inlparallel-out or PIPO register. It is, of course, the simplest 
of all registers, since it consists of nothing more than an array of synchronously triggered 
D flip-flops with independent data inputs. Shown in Figs. 12.1 a and 12.1 b are the state 
diagram and NS K-map for the Jth stage of a storage register. Notice that the NS function 
D j obtained from the K-map is trivial since it can be easily deduced from the state diagram. 

Storage (holding) registers are commonly used in the output stage of FSMs to filter out 
logic noise. A one-bit holding register is featured in Fig. 11.7, where it is used to filter the 
logic noise in output Z from the FSM. Storage registers are also used to provide ordered 
delivery of parallel data. For example, combinational adders, subtractors, multipliers, di
viders, and arithmetic logic units all require the data to be introduced in an ordered and 
parallel fashion, an operation that is easily accomplished by using storage registers. A four
bit adder/subtractor of the type shown in Fig. 8.9 would require two four-bit PIPO registers, 
one for word A and the other for word B. The sums may also require such a register. 

12.2.2 The Right Shift Register with Synchronous Parallel load 

The operation table for the Jth stage of a unidirectional shift register that can operate in 
only two modes, right shift and parallel load, is given in Fig. 12.2a. It is the function of 
this shift register that when the mode control S is inactive (S = 0) the register must shift 
right one bit on each triggering edge of clock, and when S is active (S = 1) it must parallel 
load synchronously. Synchronous parallel load means that the load values appearing on the 
input to the register will be loaded into the register's flip-flops by the action of clock, not 
via the flip-flop's asynchronous preset and clear overrides. 

Shown in Fig. 12.2b is the state diagram for the shift register as derived from the operation 
table in Fig. 12.2a. Notice that the branching condition Jab is obtained by ANDing the mode 
control logic (in the S column of the operation table) with the corresponding next state action 
parameter (in the NSJ column) for each operation that can introduce a set condition (0 ~ I) 
into the register, and then ~Ring the results. Thus, both a right shift QJ+I or a parallel 
load P j operation can produce a set condition, hence Jab = SQJ+I + SP j . The set hold 
branching condition, Jb, must contain all that is in Jab, hence Jb = Jab, as is true for the D 
flip-flop in Fig. IO.23b. The other two branching conditions follow from the sum rule but 
need not be specified in plotting the K-map for D j , given in Fig. 12.2c. The NS logic for 
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FIGURE 12.1 
Design of the storage (PlPO) register. (a) State diagram and (b) NS K-map for the Jth stage. (c) Circuit 
diagram and (d) circuit symbol for a four-bit storage register. 

the Jlh module is easily seen to be 

DJ = SQJ+I + SP" (12.1) 

which can be read directly from either the operation table or state diagram. 
The next-state logic, as given by Eq. (12.1), can be implemented by using discrete 

logic or by using a 2-10-1 MUX - Ihe logic is the same. For this design the latter is 
cho~en _ Shown in Figs. [2.3a and 12.3b are the MUX K-map for the J th stage, and the 
connections for the (J + i)th, Jth. and (J - l}th stages. Here. S is the mode control 
and R is the serial input (Sl) for right shifting, The serial out (SO) is taken from the least 
significant Q output bit, which in this case is Q j - l' Notice that this shift register has PlPO. 
pamllcl-inlserial-out (PISO), serial-iniparalJeI-oul (SIPO), and serial-inlserial-out (SISO) 
capability_ But it can only shift right and parallel load. It does not have true hold. meaning 
that it cannOI hold infonnation over any number of c lock periods independent of the parallel 
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PL RO RO RO RO RO R1 R1 RO RO CL 

Timing diagram for the parallel loadable right shift register of Fig. 12.3c showing a parallel load of 
1010 and subsequent right shifts for R values of 0, 1 and 0, and asynchronous clear. 

load logic values. For true hold to exist, each module would have to feed its output back 
to itself on command of the mode control, which cannot happen in the shift register of 
Fig. 12.3. 

Presented in Fig. 12.4 is the timing diagram for the four-bit, parallel loadable, right 
shift register represented by the block symbol in Fig. 12.3c. As indicated, a parallel load 
of P A PB Pc PD = 10 10 is introduced followed by right shifts for serial inputs set at 0, 1 
and 0, and ending with an asynchronous clear CL(L) = I (L). For the sake of simplicity, no 
account is taken of the propagation delay through the logic. 

Variations of the shift register in Fig. 12.3 are possible. By connecting the Q output of 
each flip-flop to the 10 MUX input of the next most significant bit (MSB) stage, a parallel 
loadable left-shift register results. The 8-bit version of this shift register is equivalent to the 
commercial 74xxl66 shift register. Or by eliminating the MUX of each module in Fig. 12.3b 
and by connecting each flip-flop output to the D input of the next MSB or next LSB stage, 
a simple left or right shift register results but, of course, without the parallel load feature. In 
the subsection that follows, a shift register having all these features and more is discussed 
in detail. 

12.2.3 Universal Shift Registers with Synchronous Parallel Load 

A shift register that possesses all four bitwise modes of operation, given at the beginning 
of this section, is called the universal shift register (USR). Its operation table in Fig. 12.5a 
indicates that the USR requires two mode control inputs, SI and So, for the four modes of 
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Design of a I·bit slice universal shift register (USR). (a) Operation table for the Jib stage. (b) Slate 
diagram for the llh slage. (e) NS logic Komap plotted from (b) assuming the use of D Hip-flops, 
(d) MUX K-map for D J • 

operalion . The stale diagram for the Jth Siage, shown in Fig. 12.5b. is obtained directly from 
the operation table. For example, the branching condition fdh is the Boolean sum of allre! 
producing conditions, each fonned by ANDing the mode controls with its corresponding 
NS action parameter. Thus, since asel condition can be introduced by a shift right operation. 
the tenn 5 I So · QJ+I must be included in the expression for J~b . Because a left shift or a 
paraUel load can also introduce a set condition into the register, two more terms are added 
for a tOlal of three ANDed tenns in the expression fab as indicatcd. S imilarly, the set hold 
condition f l} must include S [SO' QJ (the tcue hold condition) as well as all the set terms in 
f ab. The two remaining bmnehing conditions. f "" and fa. can be found from the sum rule, 
but are irrelevant for a D flip-flop design. 

The minimum NS logic for the Jlh stage is obtained from the K-mapin Fig. l 2.5c. which 
is ploUed from the Slale diagram in Fig. 12.5b, assuming the use ofD flip-flops. The logic 
expression for DJ , as read from the K-map, is 

- -
D, = S ISOQ , + SISOQJ+ ! + SISOQ / _I + S,SoPj • (12.2) 
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which is juslilie set hold condition in the state diagram. Equation (12.2) can be implemented 
either with discrete logic or by using a 4-10-1 MUX. Forthis example. the latter is chosen and 
its MUX K-map representation is given in Fig . 12.5d. From Ihis K-map an II-bit USR can be 
configured. Shown in fig. 12.6a is a 3-bil slice USR given for stages J + I. J . and J - I, all 
deduced from the MUX K-map in Fig. 12.5<1. Notice that for this 3-bit USR . the serial input 
for right shifting. R. replaces the MUX inpul Q j+2 from the next MSB stage. Similarly. 
the serial input for left shifting, L, replaces the MUX input Qj-1 from the ne Kt LSB stage. 
The nature of the true hold mode is evident by obselVing that the output of each stage is fed 

°iH) 0 J.,(H} ° J-2( H) 

° M(H) 0 J., (H) 0J(H) 0,,(1 °rl 0 J.,(H) 

I, I, I , I, I, I, I, I, I, I, I, 
S, 

J+1 MUX 
,- S, 

J MUX 
r- S, 

J-1 MUX 
S, S, S, 

Y Y Y 

I 
v 0 v 0 0 

CL J+1 CL J CL J-1 

a a ° ° 0 0 
y y y 

0J. \(H) OJ(H) 

lal 

S, 
PA P, Pc Po 

S, Universal Shifi CL 
Reg ister 

R 0, 0 , °c 0 0 
L 

Ibl 

FIGURE 12.6 
(a) MUX impkmenlation of a J -bit slice univers.al shifl register (USR) §!\owing buffered inputs. 
(b) Block diagram symbol for a 4·bil USR triggered wilh RET D Hlp-flops. 
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FIGURE 12.7 
Block diagram symbols showing two cascaded 4-bir USRs (0 form an S-bil USR. 

back to its own 10 MUX input, a requirement of cell 0 in the MUX K-map of Fig. 12.5d. 
The parallel load inputs for each stage , PJ+1• PJ • and PJ - 1 are the MUX inputs f l . as rc
quired by cell 3 of the MUX K-map. The block diagram symbol for a 4-bit USR is given in 
Fig. 12.6b. 

The USR stages in Fig. 12.6 can be cascaded to fonn a USR of any size. Shown in 
Fig. 12.7 is an S·bi! USR fonned by using Iwo4-bil USRs. The external serial inputs, Rand 
L . for right and left Shift ing. are the MSB stage MUX I I input and the LSB stage MUX 12 
input, respecti\'cl y, of the cascaded system. The SO outputs are taken from the Q Ol.llputs 
at thc extreme opposite ends of the two cascaded USRs a.<; shown. Also, note that mode 
control inputs. S I and So. and the dock input CK must be buffered for fan-out purposes. 
as indicated in Figs. 12.6 and 12.7. Proper buffering o f such signals is important to avoid 
the introouCllon of degraded signals to the various components of the USR (see Section :t5 
and Subsectio n 11 .6.3). Individually and in ca.'icadc. but with FETD fl ip-fl ops. the USR s in 
Fi g. 12.7 arc equivalent to the 4-bit74xx1 94 and to the 8-bi l 74:u;299 commercial USRs, 
respectively. 

12.2.4 Universal Shift Registers with Asynchronous Parallel load 

The un!vcrsal shift regiSlers in Figs. 12.6 and 12.7 are par.tllel loaded synchronously as 
required by the operation table given in Fig. 12.5a. USRs can be parallel loaded as)' /1 -

c1lronously by removing the parallel load mode of o penn ioo from Ihe operation table and 
by implementi ng it via the asynchronous preset and dear o'lerrides of the Rip-flops. When 
this is done, the [leW operation table. Slale diagram, NS K-map. and NS function DJ for lhe 
Jlh module become those shown in Figs. 12.8a. b. and c. respectively. The resulting logic 
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Design of a l·bit slice uni .... ersal shift register (USR) with asynchronous parallel load cllpability. (a) 

Operation table for the Jth stage. (b) Stale diagram for thc Jlh Stage. (c) NS logic K. map plotted 
from (b), and minimum cover for NS function assuming the u~e of D Hip.Hops. 

expression for D J is 

( 12.3) 

which can be implemented by using either discrete logic or an 5S1 device such as a 4,10-1 
MUX. Clearly, usc of a MUX would not be the mOst efficient use of the logic. since there are 
only three terms, not fo ur as in Eq. ( 12.2). Recal l from Section 6.2 that fuJI use ofa 2"·t()-1 
MUX as a function generntor requires Ibat 2" unique func tions be generated by Ihe use of 11 

data select inputs. This is not the case in Eq. ( 12.3). However. if optimized use of hardware is 
not required, use of an off· the·shelf MUX to implement Eq. (12.3) can suffice quite nicely. 

The advantage of asynchronous parallel loading is thaI the load values can be introduced 
d irectly imo the register'S mcmory via the preset and clear overrides of the flip-flops and 
that shifting can occur on the rising edge of the clock wavefonn immediately following 
the release of the load command. In comparison, synchronous parallel loading can occur 
only on the triggering edge of the clock. wavefonn. bUllhe exterlUlI/()(Id inputs should b~ 
synchronized to Ihe clock signal. The load inputs for a.<; ynchronous parallel loading do not 
have to be synchronized, 

A combinational logic truth table must be constructed to provide the external logic 
neeessary for theo$ynchronoul' parallel load capability. This truth table is given in Fig. 12.9. 
together wilh the K·maps and minimum cover for the asynchronous PRE and CLR override 
inputs of the flip· flops. The minimum cover yields the following expressions for PRE 
and CLR : 

(12.4) 
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cover for the preset and clear overrides of a flip. flop. 

The second expression for CLR is obtained by complementing the K4 map for PRE. ANDing 
with LD and DRing with CL. as Ihe terms suggest This alremalive expression is the one 
used in this example. 

Shown in Fig. 12.IOa is the logic circuit for the Jlh stage of a USR with asynchronous 
parallclload and asynchronous clear c3p:.ibilily. where usc has been made of Eqs. (12.4). 
Here. the NS-fonning logic for OJ is implemented with discrete logic. and an FET 0 flip
flop is used as the memory. No6ce that the load control input is made active low, LD(L), 
which is commonly done for such devices. The Q J+ I and QJ -I inputs are taken from the 
next MSB and nexl LSB stages, respectively. as was done in Fig, 12.6a. Proper buffering 
of input signals is indicated in Fig. 12, lOa. 

Cascading four identical stages resul ts in a 4-hit USR having the block circu it symbol 
shown in Fig. 12. lOb. Observe that it differs from that in Fig. 12.6b on ly by the presence 
of the W(L) input required for asynchronous parallel load capability. An S-bil USR is 
produced by cascading two 4-bil modu les as was done in Fig. 12.8, bul with the addL'tl 
W(L) input buffered and connected 10 both 4-bit USRs. FUllCtionally, the 4-bit and S-bil 
USRs are equivalent ( 0 the commen::ial 74x;( 194 and 74u299 USRs. respectively, but with 
asynchronously parallel loaded dala inputs. A perspective on synchrooous vs asynchronous 
parallel loading of data is given later in Subsection 12.3.6 following a detailed discussion 
of counters. 

12.2.5 Branching Action of a 4-8il USR 

In Section 13.3 Ihe USR is used as the memory as a fann of allemative architecture in 
the design of state machines. To program the USR in such application s requires that its 
branching action be labeled as illustrated in Fig. 12. 11 for a fictilious slale machine. Here , it 
is assumed that shifting action has priority over parallel load. Notice th:lI for the branching 
action of the USR there are six possibilities: 

H, SLO. SL1 . SRO. SR I. and PL. 

representing hold, shift left 0 or I. shift right 0 or I, and parallel load, respectively. 
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12.3 SYNCHRONOUS BINARY COUNTERS 

Synchronous counters form a class ofFSMs for which each state code assignment of its state 
diagram is taken to be a number in a count sequence. Most simple synchronous counters are 
degenerate Moore machines that obey the basic model of Fig. lO.3c, since their only outputs 
are the state variables. Other synchronous binary counters are those that have control inputs 
and unconditional or conditional outputs, and that adhere to either the Moore or Mealy 
model (Fig. lOA or 10.5). In any case, such binary counters are classified as modulo-N 
counters or as divide-by-N counters, where N is the number of states of the sequence. 
The divide-by-N designation results from the fact that the clock frequency is divided by 
NUCK/ N) if taken from the MSB output of the counter. The up/down binary counter of 
Figs. 10.57 and 10.58 is classified as a modulo-8 (divide-by-8) bidirectional counter. But as 
will soon become evident, it is also a divide-by-8, divide-by-4, or divide-by-2 binary counter 
depending on from which output A, B, or C the count is taken, respectively. Any of these 
counters can be designed with synchronous or asynchronous parallel load capability, which 
means that these counters can begin the synchronous count from the parallel load state. 

The state sequence of a synchronous counter need not conform to a regular binary count, 
up or down. Synchronous counters can be designed to count in any of the codes defined in 
Section 2.10, and in any direction. The most common of these for use in counter design 
are the decimal codes, specifically the BCD code. A BCD counter has 10 states and is 
accordingly called a decade or divide-by-l 0 counter. Still, the count sequence does not have 
to be binary. Counters can be designed to count in a unit distance code sequence of the type 
given in Table 2.12. The most common of these is the Gray code counter that sequences 
through states shown in column (2) of Table 2.12, assuming it to be of four bits. 

Counters discussed so far are classified as synchronous counters because their flip
flops are all triggered simultaneously by the clock signal. Counters whose flip-flops are 
each triggered by the output of the next LSB stage flip-flop are called ripple counters or 
asynchronous counters. Thus, the triggering action of the flip-flops ripples from the LSB 
stage flip-flop, where the external clock enters the counter, to the MSB stage flip-flop. 
Ripple counters can be designed to up count, or down count, or both. These counters will 
be discussed in detail in Section 12.5. 

Finally, there is a broad class of synchronous counters that can be designed by using 
shift registers of the type discussed in Section 12.2. One such counter, called a ring counter, 
sequences through a series of one-hot code states as in column (c) of Table 2.11. Another 
counter in this class of counters is called the twisted ring counter (also called the Johnson 
or Mobius counter), which sequences through a series of creeping code states as in column 
(7) of Table 2.10. Still other counters can be configured with D flip-flops and XOR gates to 
form what are called autonomous linear feedback shift register counters or simply ALFSR 
counters. ALFSR counters are useful in generating pseudo-random sequences of n-bit 
binary numbers, among other uses. 

For future reference, the following lists several members of the rather diverse family of 
synchronous counters: 

Code counters 
Binary divide-by-2n counters 
Decimal counters (e.g., BCD, XS3 counters) 
Gray code counters 
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Bidirectional (up/down) counters 
Multisequence counters (e.g., binary/Gray code counters) 
Shift regiSier counters 

Standard ring counters 
Twisted ring (Johnson or Mobius) counters 
Linear feedback shift register (LFSR) counters 

12.3.1 Simple Divide-by-N Binary Counters 

Although these counters represent some of the simplest state machines discussed thus far, 
their coverage is important to an understanding of some of the basic concepts involved. 

The Divide-by-Z Counter Shown in Fig. 12.12 are the state diagram, K-map. logic cic
euil. and timing diagram for a divide-by-2 (-;-.2 1) binary counter thai has been implemented 
by using an RET 0 flip-flop. Because it exhibits only toggle character, it is also called a tog
gle module. Tht: toggle module is used in the design of ripple counters (Section 12.5). in the 
design of data-triggered counters (Subsection 13.6.2). and as a memory element for pulse
mode state machine design (Chapter 15). Of course. as a divide-by-2 counter. it perfonns 
the simple function of dividing the clock frequency by 2. as indicated in Fig. 12.12d. 

The Divide-by-3 Counter The divide-by-3 connter has just three states. and therefore is 
nOl a divide-by-2" -counter- it does not complete the 22 count, resulting in some interesting 
consequences. Shown in Fig. 12. 13a is the state diagram for a divide-by-3 counter where the 
sequence is binary · .. 00 ~ 01 ~ 10 ....... 00 · . '. The NS K-maps are given in Fig. 12.13b, 
assuming the use of D flip-flops, and the timing diagram is presented in Fig. 12.13c. Notice 
that each of the two outputs from the Rip-flops divides the clock frequency tty 3 (fed3) 
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FIGURE 12.13 
Design of the divide-by-3 binary counter with D fl ip-flops. (a) State diagram. (b) NS K-maps. 
(c) Timing diagram. 

and has a 33 J/.1% dUlY cycle. independent of the clock dUlY cycle. For the sake of brevity, 
no logic circuit is given for this example. 

The Dhdde-by·4 Counter The dividc-by-4 (-:-22) coumer completes the 2" = 22 COUn! 
so thai advantage can be taken of the 108g/e character inherem in a divide-by-2" counter. 
This means that the use of T /lip-flops can be used advantageously in the design of such 
counters. Shown in Fig. 12.14 are the state diagram, NS K-maps, logic circuit for a T 
flip-flop design, and the liming diagram for this rnodulo-4 counter. The toggle character 
is obvious by an inspection of the state diagram: bit A toggles every other bit and bit 8 
toggles on each bit. It is for this reason that the T flip-flop design generates the simplest 
NS logic. Keep in mind. however. that extra logic is required to convert a 0 flip-flop to a 
T flip-flop. as indicated in Fig. 10.39; T flip-flops are not normally available commercially. 
Notice that the outputs each exhibit a duty cycle of 50% independent of the duty cycle of the 
regular clock waveform. Also. observe that the output from the MSB flip-flop (A) divides 
the frequency by 4. whereas the output from the LSB flip-flop (8) divides it by 2. This fael 
will be expanded upon in the discussion that follows . 

Perspective on D;tdde-by-N Counters Before moving on to examples of more complex 
counters, it is worth while to pay attention to some importamcharacteristics of the divide-by
N binary counters. These counters can be divided into two categories: those that are divide
by_2n (modulo 2n) counters and those that are not (N:f- 2"J. The outputs from adivide-by-2M 

binary counter are always of a 50% duty cycle and have frequency division in descending 
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orders of 2n beginning with the MSB flip-flop and end ing with Ihe LSB flip-flop, where 
n ::: 1.2.3, 4· . '. Thus. for a 4-bit binary counter QA is a f eK"+- 2 4 outpul, Qs is a!cK +- 23 

output, Qc a icK -+ 22 outpul, QD a fa +- 21, and are all independent of count direction, 
up or down. In contrast. divide-by-N counters, for which N :F 2n

, do not have frequency 
division in descending orders of2n and do not always have outputs of the same duty cycle. 

There is one funher and impOfL:lnt distinction between these two categories of counters. 
The divide-by-2" binary counters have complete toggle character for which the use ofT flip 
flops yields minimum NS logic. Divide-by-N counlers, for which N =1= 2/1. do nOl complete 
the 2" coun! and consequently do nOI have complete IOggle character. For these counters 
the use of JK flip-flops will most likely yield NS logic of least cost hardware-wise. The 
following ex.ample of a BCD counter is evidence of this laller fac!. 

12.3,2 Cascadable BCD Up<ounters 

The BCD counter is designed 10 sequence states 0000 through 1001 in binary, after which it 
musl start over. A review of the BCD code is provided in Subsection 2.4. 1. In order for the 
BCD counter to be useful in represenling a range of weighted digits ( .. . 100, 10. 1,0, 0.1 . 
0.01 ... ). it is necessary to design cascadingcapabililY into Ihecounter. Shown in Fig. 12.15 
is the slate diagram for a BCD (decade) up-counter that can be ca.~caded to represen! multiple 
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FIGURE 12.15 
Stale diagram for a cal>Cadable BCD up-counter. 

decades. It has 10 states and has an enable (EN) input and an unconditional carryOU! (CO) 
output for cascading purposes. 

The NS K-maps are derived directly from the stale diagram in Fig. 12 . \5 by using the 
mapping algorithm given in Section 10.6 as applied to T flip-flops. The results are giv~n in 
Fig. 12,16 together with the output K-nmp for CO. Also shown are the NS K-maps for a JK 
flip-flop design. which are obtained by K-map conversion. The T-Io-JK K-map conversion 
algorilhm is easily deduced from Eq. (10.12) and by observi ng the domain panitions in the 
K-maps illdicllted wjth heavy lines. The algorithm is stated as follows: 

Algorilhm 12.1 : T -+ JK K· map Conversion rReferlo Eq. (10.12)] 

(I) For allihal is NOT A in the T" K· mup, transfer it to Ihe J" K-map directly. 
(2) For allthm is A in the Til K-map. transfer it 10 the KII K-map directly. 
(3) Fill in the empty cells with don't cares. 
(4) Repent steps (1), (2), and (3) fOrlhe Tn -+ l B, KB and Tc -+ le, Kc. etc .. K-map 

conversions. always by observing the domain partitions. 

Note thm AlgoriThm 12. 1 can be applied in reverse-that is, for JK --1' T K-mapconversion. 
Thus, for domain A. aJllhat is Nar A in the J,. K-map is transferred directly 10 the TA 
K-map, and alilhat is A in the K,. K-map is transferred directly to the TA K-map, etc. 

An inspection o f tile NS K-maps in Fig. 12. 16 indicates that theJK NS logic is simpler 
than that for the T NS logic. This results from the don't cares that are inherent in the 
excitation table for the fantily of JK Hip-Hops given in Fig. 10.45. Because of the simpler 
logic, the cascadablc BCD counter is implemented with FET JK flip-flops , as shown in 
Fig. 12.17a. The 0 flip-Hop implementation of ttlis counter is oot considered bere, but 
would involve considerably more NS logic. 

The liming diagram for the 4-bit BCD counler is given in Fig. 12. I 8 together with 
frequency division and duty cycle information for the four state variable outputs. Notice 
that all but tile D(H) output are divide-by-IO outputs and that the duty cycles vary from 
20% for the A(H) output to 50% for D( H ). Output C(H) has a split duty cycle. Such 
information can be important for some applications. 

The four-bit BCD counter module in Fig. 12 .17a can be cascaded to form any number 
of weighted digits. For example. cascading two 4-bit counters permits a 0 to 99 counl or 
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0.1 to 9 count, etc., depending on how one views the count. Cascading three such modules 
gives a 0 to 999 count. Or generally, cascading k of these modules, as in Fig. 12.17b, forms 
a k-digit BCD counter with a 0 to 10k - 1 count, where k is an integer (k = 0, 1,2,3, ... ). 
The EN input to the LSD stage is, of course, a counter enable control. If EN(H) = I(H), 
the counter is enabled. But if EN(H) = O(H), the counter is disabled and is caused to hold 
in whatever state it is in at the time. The EN input can be replaced by an ANDing operation 
permitting two signals to control the operation of the counter: a count enable input and an 
inhibit input, both performing basically the same function. 

The manner in which a cascaded BCD counter operates is as follows: Each full count of 
the LSD (0) stage sends a CO signal to the next MSD (1) stage which is properly enabled on 
the next rising edge of the clock pulse. Thus, for each full count (0-to-9) of stage (0), stage 
(1) is bumped up l. So after 10 such full counts of stage (0), stage (1) completes its full 
count (0-to-9) and enables the next MSB stage, which is bumped up one on the next rising 
edge of clock. Any output race glitches (ORGs) that occur are of no consequence, since the 
single-output CO can enable the next stage only if is issued for a complete clock period. 
ORG glitches occur immediately following the triggering edge of the clock waveform and 
damp out long before the output CO can be picked up by the next MSB stage. 

12.3.3 Cascadable Up/Down Binary Counters with Asynchronous Parallel Load 

For the most part the design details for this counter have already been established. Equations 
(10.17) in Subsection 10.12.1 give theNS and output logic for a 3-bit (divide-by-23) up/down 
binary counter, assuming the use of T flip-flops. There, a single input, X, controls the 
direction of the count such that if X = 1 the count is Up or if X = 0 the count is Down. 
The state diagram for a 4-bit (divide-by-24) up/down counter is given in Fig. 12.19, where 
two direction controls are used, Up and Dn (down). Clearly, these two direction controls 
can never be active at the same time. Should this happen, the FSM would not know how to 
respond and would malfunction. Notice that all holding conditions are omitted in the state 
diagram of Fig. 12.19. This is permissible since a T flip-flop design is anticipated -a given 
state cannot toggle to itself. 

Equations (10.17) can easily be extended and applied to the 4-bit up/down counter of 
Fig. 12.19 by noting the trend in the equations and by taking X = Up and X = Dn. When this 
is done, there results the following NS and output equations for the cascadable divide-by-24 

BOlT if Dn 

COlT if Up 

FIGURE 12.19 
State diagram for a cascadable up/down binary counter. 
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binary up/down counler: 

T" = BCD.Up +iicb. Dn 

TB=CD· Up + cfJ. Dn 

Tc =D· Up + D' Dn 
TD = Vp+ Dr! 

CO = ABCD· Up 
BO = ABeD· Dn 

(12.5) 

The trend in the NS and output logic having been established, the equations for any size 
bidirectional divide-by-r binary counter can be written directly wilhaUi the need for K
maps or minimization algorithms. 

AU that remains to complete the design of this coumer is to obtain the external logic 
required for the asynchronous parallel load capability. This has already been done in the 
form ofEqs. (12.4) and Fig. 12.10a for the USR with asynchronous parallel load capability 
(see Subsection 12.2.4). Presenled in Fig. 12.20£1 is the logic circuit for the j lh stage. Here, 
it is understood that TJ represents the four different NS functions (TA , Tn. Te, and To) in 
Eqs. (12.5) taken in turn, and that W (L) is the command to paraUelload the value PJ(H). 
Observe thaI when parallel loading, the asynchronous overrides PRE and CLR are never 
active at the same lime. 

The block circuit symbol for the 4-bit paralLel loadable up/down counter is provided in 
Fig. 12.20b. Here. each stage is that of Figure 12.20(a), but with the appropriate NS function 
taken from Eqs. (12 .5). Shown in Fig. 12.2 1 is a 4k-bit parallelloadable up/down binary 
counter consisting of k 4-bit counters in cascade. The output logic, CO and 80, for each 
4-bit counter is given in Fi.g. 12.20a. Notice that the input W(L) is common to all k modules 
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FIGURE 12.21 
Cascading of 4·bit para\lelloadable up/down counters to form a 4k ·bit counter. 

for purposes of introducing the 4k parallel load values to the counter asynchronously via 
the preset and clear overrides of its 4k T flip-flops. 

The operation of the k-stage up/down binary counter in Fig. 12.21 is straightforward. 
Any time LD(L) i& active the counter is parallel loaded asynchronously and the eouAiing 
operation is inlcrrupted. When W(L) becomcs inactive, counting is resumed up or down 
from that parallel load value. The direction of count is detennined by which input, Up( H) 
or Dn(H). is active. Obviously. both cannot be active at the same time. When one of lhe 
k stages has completed its full count. an output (CO or 80) is issued to the next stage 
enabling it on the next triggering edge of clock. lfthe count is up, CO is issued; if the count 
is down. BO is issued. The maximum number of slates through which this k-stage counter 
can sequence is 24k - I. As is true for the counter in Fig. 12.17. any ORG that exist" in the 
CO or 80 outpUI signal di~appears long before the next stage is triggered. 

The advamage of an asynchronous parallel load feature is that the load values are in
troduced directly into the memory without having to be clocked in or synchronized. as in 
the synchronous pardUel load arrangement. An asynchronous parallel load capability can 
be added to any counter that has flip-flops with preset and clear overrides. For example, 
the BCD counters in Fig. 12.17 can be designed wilh this feature if the Rip-flops are given 
both preset and clear input overrides. Considered next are the cascadable up/down binary 
counters with synchronous parallel load and true hold capability. 

12.3.4 Binary Up/Down Counters with Synchronous Parallel load 
and True Hold Capability 

The design of this counter creates a special dilemma. The parallel load must be introduced 
to the counter synchronously. but T flip-flops lack the capability to do this. One approach 
would be 10 design this counter by using 0 Rip-flops with 0 NS logic. However. the NS 
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Design of a 4-bil slice up/down counter with synchronous parallel load and true bold capability. 
(a) Operation table for the Jth stage. (b) State diagram for {he Jlh stage. (e) NS logic K-map and 
minimum cover obtained from (b) assuming the use of DRip-flops. 

logic would be (00 costly (hardware-wise) to justify adesign by this means. A much simpler 
approach is to usc 0 Hip-flops for the parallel load and true hold capability bUI convert them 
to T flip-flops for the up/down count, all on command o f two mooe-conlro\ inputs. This is 
the method that h used in Ihis example. 

Shown in Fig. 12.22 are the operation table, stale diagram, NS K-map, and NS function 
for the lth stage of an up/down counter with synchronous parallel load and lrUe hold 
capability. The NS K-map yields tbe NS function for the ltb stage 0 flip-flop as 

(12.6) 

where SI and So are the mode conlrols for this counter. The NS funclions and output 
functions for the up/down count are given by Eqs. (12.5) and are reproduced here for the 
convenience of the reader: 

TA = BCD · Up + iJCD · Dn 

T8 = CD· Up+ ct;· Dn 

1'c = D ·Up + D · Vn 

TD = Up+ Dn 

CO =ABCD · Up 

BO = ABet; . Vn 

(12.7) 

Thus, TJ in the operation table and slale diagram of Fig. 12.22, and each TJ in Eq. ( 12.6) 

and in Eqs. (12.7), becomes TJ Ee QJ to permit conversion between T and D Rip-nops, as 
explained in the next paragraph. 
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FIGURE 12.23 
Implementation of the cascadable up/down binary cQtlnlcr with synchronous parallel load and lrue 
hold capahilily repr~ted in Fig. 12.22 and by Eqs. (12.6) and (12.7). (a) The 1m »tage show
ing 0·10-T nip-nap con\'ersion logic and output logic. (b) Block diagram symbol for the 4-bil 
counter. 

ImplcmemalionofEqs.(12.6) and (12 .7) is given in Fig. 12.23a for the llh stageofa4-bit 
cascadable up/down binary counter with synchronous parallel load and true hold capability. 
The block circuit symbol for a 4-bit version of thi s coumer is provided in Fig. 12.23b. This 
design requires the U!\e of FET 0 flip-naps. which pennit the counter to parallel loaded or 
hold in a particular state for any number of CK cycles, all depending on the mode controls 
as indicated in Fig. 12.22a. But to count up or down. the 0 flip-flops are converted to T 
flip-flops by Eq. (10. 10) or, in Ihis case, by DJ = T; $ Q; for the Jib stage. This approach 
provides the best of both worlds : D flip·nops for parallel load and true hold capability, andT 
flip·flops for an efficient means o f dealing with the toggle character inhercm in the binary up 
or down count. Counter designs by this mean s :Ire cspet:ially attractive for implementation 
by registered PLO device~. Thcse devices includc V-type PALs (see Section 7.4), or the 
Xilinx FPGAs discussed in Subsection 7.7,3, all of which have edge-triggered D flip-llops 
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with asynchronous preset and clear overrides built into them. Implementation of this counter 
by using FPGA-type devices will require special programming software. 

The cascadahle up/down binary counter in Figs. 12.22 and 12.23 can be designed with 
asynchronous parallel load capability while retaining the true hold fealUre. To do this 
simply requires that the synchronous parallel load feature be removed from the operation 
table ill Fig. 12.22a, and then applied as an asynchronous parallel load via the PRE and 
CLR overrides of each D flip-flop , as is done in Fig. 12.20. Now, only one mode conlrol 
remains (S), permitting the us.e ofa 2-10-1 MUX to implemcnI the new D j function . With 
a few changes, !:he bidirectional 4-bit counter in Fig. 12.23 is equivalent 10 the conunercial 
74xxl69 counter. 

12.3.5 One·Bit Modular Design of Parallelloadable Up/Down 
Counters with True Hold 

A one-bit modular approach will now be used 10 design a binary counter that can count up 
or down, thai can be parallel loaded synchronously. and that has true hold capability. The 
operation table for a I-bit slice counter of this type is presented in Fig. 12.24a. The Wand 
EN inputs are the mode control inputs that determine whether the counter will hold. count 
or parallel load synchronously. The count function CNT represents an up- or down-count 
depending on the count direction parameter DIU introduced in the following discussion. 
The stale diagram, shown in Fig. 12.24b, is constructed directly from Ihe operation table in 
Fig. 12.243. Forexample, the branching condition fab is the Boolean sum of all set producing 
conditions. each formed by ANDing the mode control inputs on the left with the correspond
ing NS action parameter on the right of the operation table. Thus, count and parallel load 
arc the set-producing modes of operation that constitute fa/)' The set hold condition must 
contain the true hold condition as well as fab. The remaining two bnmching conditions can 
be obtained from the sum rule, but are of no consequence when designing for D flip-flops. 

LD EN NSJ 

o 0 OJ True Hold 

o 1 (CNT)J Count 

1 X P
J 

Parallel Load 

LD = Parallel load command 
EN = Count enable command 

(.J 

FIGURE 12.24 
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b 

(b) 

D, 

DJ = LD'EN'QJ + fab 

(0) 

Design of a I-bit slice up/down counter with synchronous parallel load and true hold capability. 
(a) Operation table. (b) State diagram for the lth stage. (c) K-map and minimum cover for the lth 
stage assuming the use of D nip-Hops. 
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Truth table representing the in(.;reml:nt alld decrement operations (or the Jlh stage of the counter. 
(b) K-maps for CNT (~um or difference) ilnd CO (carry-out or borrow-out), 

The NS K-map. shown in Fig. 12.24<:, is obtained from the state diagram in (b) by 
applying the mapping algorithm assuming the use of 0 Hip-flops. The resulting NS equation 
for the J th I-bit slice is given by 

( 12.81 

which can be implemented with discrete logic or by using an SSI de\'ice such as a 4-to--l 
MUX. Use of a MUX. however, would not be an efficient use of the de"ice since not all 
four function lenns are present in the ex.pression. For this example. discrete logic will be 
used to implement Eq. (12.8) . 

All that remains to be done is to find the logic for the CNT parameter representing either 
a count up or a count down. This is accomplished by constructing a combinational logic 
!ruth table for the Jlh stage, as shown in Fig. 12.25a. Notice thai the firsl four rows of 
!he truth t:tble correspond 10 Ihal o f a half adder (HA) for up count while the latter fo ur 
rows correspond to that of a half subtraclor (HS) for down count. Here. a new parameter 
DIU is introduced to indicate count din.'Ction. The carry-out output CO serves as both the 
carry-out for increments and borrow-oul for decrements. Inputs Qj and CI can be thought 
of as A ± B. where A = Q J and B = C/. For a review of adders and subtractors the reader 
is referred to Sections 8.2 and 8.3. 

The CNT and CO outputs for the lth stage are mapped in Fig. 12.2Sb and minimum 
cover is eXlmeted by usi ng XOR patterns to yield the results 

Implementing these equations together with Eq. ( 12.8) gives the logic circuit in Fig. 12.26a 
[or the Jlh I-bit slice. This module can be cascaded tofonn a counter of any number of bits. 

The block circuil symbol for a 4-bil coumerof this Iype is shown in Fig. 12.26b. where it is 
required lhal the CI of lhe LSB siage beset al l (H) so as locnable the AND gate for CO fru m 

C NT, 

co, 
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FIGURE 12.26 
Implementation of Eqs. ( 12.8) and (12.9) fOf the Jlh I-bit counter module with synchronous parallel 
load and true hold. (b) Block circuit symbol for the 4-bit counter implememed by cascading four I-bit 
slices as in (a). 

this stage. The gale/i nput tally for the NS fonning logic to this 4-bit synchronoudy parallel 
laadable counter is 28/68, excluding possible inverters. For comparison, the gate/input tally 
for the 4-bit synchronously parallel laadable up/down counter of Fig. 12.23b is 32186. 
also excluding possible inverters. Thus. by gale lally aJone, the half-adderlhalf-Subtractor 
approach in Fig. 12.26 is fa vored over that of Fig. 12.23. Both designs have three-level NS 
forming logic for each stage. depending on how one views the implementation of the XOR 
gates. A PAL or FPGA design of a paralJelloadable up/down counter would probable favor 
the design of Fig. l2.23b since one fewer XOR gate is involved. Remember that these array 
logic devices arc registered with only D Hip-flops and that the XOR gate must li kely be 
implemented by using the two-level SOP logic of Eq. (3.4) in Section 3.9. However. array 
logic devices such as the XiIinx FPGAs having arithmetic units might be more amenable 
to the half-adderlhalf-s ubtractor approach of fig. 12.26. 

The 4-bit counter in Fig. l2.26b or that in Fig. 12.23b can be cascaded to fonn k 4-bit 
stages thai can sequence through 24k - 1 = 16k - 1 stales. hence a divide-by-24k counter. 

1(H) 
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FIGURE 12.27 
A divide·by_2 1Z( 163) up/down binary I:ounter with synl:hronous parallel IOlld and true hold capability 

fonned by cascading three 4-bil coumers ur lhe type given in Fig. 12.26. 

ShoWI! in Fig. 12.27 is a three-stage counter of the former type thaI clln sequence through 
163 - I :: 4095 states. At any point in the upeMion of thc counter, it can be given the 
command LD(L) = l(L)wparallelload abinary word of 12 bits. Then whenW(L) =:; O<L). 
the coumer can hold that number if ENis also ina~(ive £N(H) = O( H). or it can count up or 
down from that number if EN(H) = I(H). The direction of count, of course, depends on the 
sening of the direction control DIU: DjU(H) = O(H) for Up. and DI U(H ) = I(H) for 
down. Thus, by parallel loadirlg any number between 0 and 4095, any count sequence 
or frequency division in that range can be obtained . For example. by parallel loading 
000100100111 (= 295 10). the counter can count up from 29510 4095. a frequency division 
of la -:- 3800. Or if the counter is sct to count down from that paraUelload. a frequency 
division of In: -:- 295 would resul t. One application of the frequency division aspect of 
counter operation is the production of relatively long periods of time. Thus. by parAllel 
loo.ding 29510. a time T = 3800TcK can be produced by an up count. assuming it complctes 
the count from 295 to 4095. Alternatively. a down count from this value results in lime 
period of 295TcK• assuming that it is the fina l CO signal thai is sensed . Remember thai 
the 12 outpUtS of the counter can be tapped for frequency divisions within the range of the 
complete count, thus aUowing for a wide range of time periods. 

ThccounterofFig. 12.26 can also be design~ wi th asynchronous parallel load capabil ity. 
To do thi s requires only that the para1Jclload feature be removed from the operation table in 
Fig. 12.24a and implemented by using Eqs. (12.4) together with the PREnnd CLR overrides 
of the D flip-flops . Shown in Fig. 12.28are the operation table, MUX K-map for D Hip-flops. 
and logic circuit for the J th I-bit stage of such a counter. This I-bit slice can be cascaded 
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FIGURE 12.28 
Design of an up/down counter with asynchronous pardllel10ad and!JUe hold capability. (a) Operation 
table_ (b) MUX K-map assuming tbe use of D flip-flops. (c) Logic circuit for theJth ' ·bit slice. 

as in Fig. 12 .27, the only difference being that the loading is produced asynchronously and 
that FET 0 flip-flops are used. 

12.3.6 Perspective on Parallel Loading of Counters and Registers : 
Asynchronous vs Synchronous 

As has been mentioned or implied at various points in previous discussions, there are two 
advantages to asynchronously parallel loadi ng data into the memory nip-flops of registers 
and counters. These advantages are as follows: 

I. Introducing the parallel datadifectiy into the memory via the preset and clearovcrrides 
of the flip-flops permits the device to change modes of operation before the next 
triggering edge of clock. ntis can save time and speed up the processing of data 
time can be wasted waiting for the data to be clocked input the memory as is required 
in synchronously loaded data. 

p. 

CL(L) 
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2. Data inputs that are asynchronously loaded never have to be synchronized with clock 
since the loading process interrupts the operation of the flip-flops by temporarily intro
ducing a clear or preset condition into the flip-flops. Data inputs that are synchronously 
loaded should be synchronized with clock for reasons discussed in Subsection 11.4.4. 

Generally, the cost in hardware of asynchronous parallel loading will be somewhat 
greater than that for synchronous parallel loading. Comparing Figs. 12.26a and 12.28c is 
indicative of a small difference in the external logic to the D flip-flop, two gates per stage 
including the 2-to-l MUX. Speedwise there is little difference between the two means of 
parallel loading. The choice of flip-flop type (e.g., T or D or JK) can be a more significant 
factor in both hard ware and speed. However, these factors may be unimportant if the register 
or counter is implemented by using an array logic device such as a V-type PAL or Xilinx 
4000 series FPGA. These devices have built-in D flip-flops, SSI devices, and a host of 
other features of which use can be made. But such devices will usually require the use of 
proprietary software to program them, as discussed in Section 7.8. 

12.3.7 Branching Action of a 4-Bit Parallel Loadable Up/Down Counter 

In Section 13.4 a parallelloadable up/down counter is used as the memory in state machine 
design - an alternative architecture. To program the counter in such applications, it is 
necessary to specify the branching action of the counter for each state-to-state transition in 
the state diagram. The specification of this action is illustrated in Fig. 12.29 for a fictitious 
FSM. Notice that there are just four possibilities for the branching action of a parallel 
loadable up/down counter: 

(H), (I), (D), and (PL), 

representing hold, increment, decrement, and parallel load, respectively. Here, highest 
priority must be given to the count action if efficient use is to be made of the counter as the 
memory in the design of a state machine. If only PL branching were used, the design would 
revert to the use of discrete flip-flops as was the case in the designs of Chapters 10 and 11. 

H 

H 

FIGURE 12.29 
Illustration of the branching action of a 4-bit parallel loadable up/down counter used as the memory 
for a fictitious state machine. 
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12.4 SHIFT-REGISTER COUNTERS 

Shift registers are normally designed to be operated in one or more of the noncyclic "data" 
modes of operation given at the beginning of Section 12.2. However, the flip-flops of a regis
ter can be configured to operate in a "nondata" cyclic fashion with or without external logic 
depending on the desired effect. Registers that are configured to operate in a cyclic fashion 
are called shift-register counters. These counters cycle through a sequence of states that gen
erally conform to one or three types of codes: I-hot code (Table 2.11), creeping code (Table 
2.10), and a pseudo-random code. For future reference, the names of these counters are 

Ring counters 
Twisted ring (Johnson) counters 
Linear feedback shift register (LFSR) counters 

An introduction to these counters is provided in the next few subsections. 

12.4.1 Ring Counters 

A counter that consists of n states and n state variable outputs, such that each output 
corresponds to the integers (decimal values) 0 to n - 1 in i-hot code, is called a ring 
counter - the simplest of the shift-register counters. This, of course, assumes that the 
counter is initially loaded with a binary word having a single "I." A lO-state I-hot code 
is given in column (c) of Table 2.11 in Subsection 2.10.2. This means that a ring counter 
of 10 states would sequence through this I-hot code in cyclical fashion, but would require 
10 flip-flops to accomplish this. In comparison a binary counter having 10 flip-flops would 
sequence through 2 10 = 1024 states. 

Shown in Fig. 12.30a is the state diagram for a simple 4-bitring counter that will sequence 
through a I-hot code of 4 bits. The present-state/next-state (PSINS) table for this counter 
is given in Fig. 12.30b. A brief inspection of the columns in this table yields the NS logic 
expressions, given in Fig. l2.30c, without the need to use K-maps. The nature of the NS 
functions requires that the single 1 be circulated around the counter in cyclic fashion. 

The logic circuit for this ring counter is shown in Fig. 12.30d. Once initialized into the 
0001 state, the "1" will be circulated as illustrated in the state diagram of Fig. 12.30a. 
Actually, any bit pattern can be circulated in this fashion. For example, if two 1 's are 
initialized into the counter to form an even-parity code, that bit pattern would be circulated 
according to the NS functions in Fig. 12.30c. 

The ring counter of Fig. 12.30 must be initialized into one of the I-hot code states. If it is 
not initialized, it could power up into anyone of the five extraneous subroutines, including 
two "hang" states. Even if the counter is properly initialized, there is the possibility that 
one of the extraneous subroutines could be entered because of noise or power fluctuation. 
To avoid this problem the ring counter can be made self-correcting. To accomplish this, a 
missing-state analysis must be made of the 12 don't-care states, as in Fig. 12.3Ia, where 
five extraneous subroutines are discernible by close inspection of the table. The two hang 
states are easily seen to be states 0000 and 1111, since these states branch to themselves. 
Correction follows in Fig. 12.31 b if it is recognized that all present states must be shifted 
left with a 0 except for state 0000, which must be shifted left with a 1. Notice that all 12 
extraneous states eventually transit to a I-hot state, though over varying numbers of clock 
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FIGURE 12.30 
Design of a 4-bit ring counter. (a) State diagram. (b) PSINS table. (c) NS functions. (d) Logic circuit 
configured for left shifting and initialized into the 0001 state. 

cycles. As an example, state 9 transits directly to state 2 (a I-hot state) after one clock cycle. 
But state 13 must transit 13 ...... 10 ...... 4 over two clock cydes and state 7 musl transit 
7 --+ 14 ...... 12 ...... 8 over three clock cycles. Thus. while this counter is self-correcting. 
it may lake up 10 three clock cycles for it to recover to a I-hot state. This facl justifies 
initialization into the 0000 state. which must enter state 0001 on the next triggering edge of 
clocK. If no initialization occurs, the counter can power up into any state, including a slate 
such as 7 that requires three clock pul~s for recovery. 

lnspection of PSINS tables in Figs. 12.30b and 12.31b indicates that only states 0000 
and 1000 must be shifted left with a logic I. The remaining 14 states are shifted left with 
a logic O. Shown in Fig. 12.32a is the K-map for left shifting giving the result L = SCO, 
which makes self-correcting any 4-bit I-hot ring counter. Shown in Fig . 12.32b is a 4-bil 
USR that has been configured to produce a self-corrected ring counter that is initialized into 
the 0000 state. NOIice that it is wired for left shifting according to the operation table for a 
USR given in Fig. 12.5a. 

Ring counters can be expanded to include k states each with k state variables and can 
circulate any binary pattern once parallel loaded into the shift register. As ooe example, the 
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Missing-slate analysis and correction of the 4-bit ring counter in Fig. 12.30 (a) PSINS table (or the 
non-self-<;olTecting counter. (b) PSINS table for the self-corrett ing ring counter showing the I-hot 
code states shaded. 
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ring counter of 12.32b can be expanded to an 8-bit. I-hot ring counter by cascading 
two USRs as in Fig. 12.7. But without parallel loading a I-hot state. the self-correction 
logic becomes L iiCDEFGfl, a fan-in of 7 for a single gate. Thus, self-correction takes 
place within seven clock pulses. Generally. an n-bit ring counter will self-correct within 
n - 1 clock pulses. For such counters and where permitted, the CMOS NOR gate, shown 
in Figure 8.46, is preferred since it operates free of fan-in limitations. Alternatively, any bit 
pattern can be parallel loaded into an n-bit ring counter and circulated with self-correction. 

The advantage of the ring counter is that it provides glitch-free decoded outputs directly 
from the flip-flops. This means that one and only one flip-flop is active for each state of the 
I-hot sequence. This feature can be very useful for timing sequence generation in control 
applications. A down side to the ring counter is that it does not encode its states as efficiently 
as binary counters-one flip-flop must be used for each state. Considered next is a type 
of counter that can generate twice as many states as the ring counter but with only a minor 
increase in overall hardware. 

12.4.2 Twisted Ring Counters 

A counter that circulates a creeping code. such as that in Column (7) of Table 2.10 in 
Subsection 2.10.1, is called a twisted ring counter, or sometimes called a Johnson counter. 
The "twist" aspect of this counter is created simply by interposing an inverter in the feedback 
line of a standard ring counter or by tapping the feedback line off of the active low output 
of the flip-flop. Shown in Fig. 12.33a is the state diagram for a 4-bit twisted ring counter 
together with the required branching action for a USR design of this counter. The PS/NS 
table for this counter, given in Fig. 12.33b, indicates that a left shift of A generates the next 
state for each of the eight states in the sequence. This is shown more vividly in the K-map 
of Fig. 12.33c for L, the left-shift serial input of a USR. Notice that all eight extraneous 
states are assigned a don't-care symbol. 

A USR design of this twisted-ring counter is given in Fig. 12.33d. Notice that it is initial
ized into the 0000 state, which is one of eight states of the creeping code sequence. Thus, 
once initialized the counter will cycle through the creeping code states that is, unless the 
unexpected occurs and the counter is caused to enter an extraneous state. To avoid this po
tential problem, the counter can be made self-correcting. But to do this requires additional 
logic, as was the case for the ring counter of Fig. 12.32b. 

The twisted ring counter of Fig. 12.33d can be made self-correcting by making use of 
the shift left and parallel load capability of the USR. Shown in Figs. 12.34a and 12.34b 
are the K-maps for So and L of the USR. Here, left-shifting of the eight creeping code 
states is the same as in Fig. ] 2.33c, except that state 0 along with states 2. 4. and 6 are 
parallel loaded into the 000 1 state. Also, the remaining fi ve extraneous states (010 [, 1001, 
1010, 1011, and llOI) are shifted left an A eventually to states 2, 4, or 6, where they are 
subsequently parallel loaded into state 0001. Up to n I = 3 clock pulses are necessary 
for the self-correction of this counter shown configured with the USR in Fig. 12.34c. 

Twisted ring counters of any size can be designed. By cascading k 4-bit USRs, a twisted 
ring counter of 4k bits results that will sequence through 8k creeping code states. FOf these 
counters the external logic maintains the same form, namely L A and So = (l,~SB' 
(hSB, for self-correction. If self-correction is neglected, then So 0 as in Fig. 12.33d. 
The advantage of the twisted ring counter over its cousin, the standard ring counter, is 
that 2n states are generated for n flip-flops as opposed to n states for the ring counter. 
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FUl1hcrmore. the creeping code, like me Gray code. is unit distance. meaning thai each 
Slate in the sequence is surrounded by slates that differ by no more than one bit. Because 
o r their simplicity. twisted ring counters can be easi ly used!() pmduce lime delays. 

12.4.3 linear Feedback Shift Register Counters 

A series connection oro nip· nops with feedbnck paths via XOR gates but with no external 
inputs is called nn Glllf}llOmVU.f linear feedback shifT register (ALFSR) counter. If external 
inputs are involved. the counter is u.sually referred to simply as an LFSR counter. The 
ALFSR counter generates p~lLcloranclom test patterns (vectors) that are useful in testing 
both combinational and sequent ial machines. Shown in Fig. 12.35a is an ALFSR counter 
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that is to be analyzed. The D flip-flops are connected in a series for right shifting with 
feedback C E9 D to the MSB stage. Compare this with the ring counter in Fig. 12.30d. The 
sequence of states is easily generated from knowledge of the feedback function, C E9 D, 
and is given in Fig. 12.35b together with the corresponding clock pulse number. Notice that 
this ALFSR counter is initialized into the 1000 state and that it will sequence through 15 
of the 16 states in pseudorandom fashion. The ALFSR counter is not allowed to enter the 
0000 state since that state is a hang state, as indicated in the state diagram of Fig. 12.35c. 
Once in the 0000 state it must remain there indefinitely unless reinitialized. 

The ALFSR counter just described is termed a near-maximum-length ALFSR counter 
since it can sequence through 2" - 1 states, one short of the maximum of 2", where n is 
the number of state variables (or flip-flops). Other feedback functions used for the ALFSR 
counter of Fig. 12.35 may not generate a near-maximum-Iength sequence of pseudorandom 
states. For example, it is easily shown that the B E9 C feedback function can generate only 
eight unique pseudo-random states, and A E9 B only five, each being initialized into the 1000 
state. But other initialization states may be used with similar results. If, for example, the 
ALFSR counter of Fig. 12.35 is initialized into the 1111 state, 8 unique states are generated 
with feedback function B E9 C, 15 unique states result if C E9 D is used, and 5 unique states 
result if A E9 B is used, all as before. Note that for right shifting, all XOR combinations not 
containing D must be avoided if initializing into the 0001. The reason is simply that on the 
second clock pulse the ALFSR counter is caused to enter the hang state 0000, from which 
there is no exit. Thus, a valid feedback function must contain the LSB state variable. 

If a packaged shift register (e.g., a USR) is used to externally configure an ALFSR 
counter, a means must be found to initialize the counter into the 0000 state with the ability 
to cycle through a1l2/l pseudorandom states. Shown in Fig. 12.36a is the new state diagram 
with all 16 states represented, and the K-map for DA is plotted in Fig. 12.36b. Since it is 
known that XOR functions are involved, there is an opportunity to use the Reed-Muller 
(R-M) transformation forms as discussed in Section 5.7. Following the examples given 
there, the following R-M g coefficients become 

go = gl = g4 = g6 = gs = glO = gl2 = gl4 = 1 

g2 = g3 = gs = g7 = g9 = gil = gu = gls = O. 

When these coefficients are introduced into Eq. (5.17) the NS function DA is found to be 

DA = 1 E9 D E9 B E9 BC E9 A E9 AC E9 AB E9 ABC 

= 1 E9 D E9 BC E9 AC E9 ABC 

=1E9DE9BCE9ABC 
- -

= 1 E9 D E9 C(B + AB) 

= 1 E9 D E9 [C(A + B)], 

which yields the gate minimum result 

D;\=DE9(AB+C). (12.10) 
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Here, use has be made of the identities in XOR algebra given in Subsection 3.1 1.2. The 
other NS functions remain the same: that is. DR = A. Dc = B. and DD = C . Figure 12.36c 
shows a USR configured with the corrected feedback function of Eq. ( 12.10). This ALfSR 
counter will initialize into the 0000 state and will sequence through a1l2'1 = 16 ma)l;i mum
length states in cyclic fashion . Without making the correction expressed by Eq. (12. 10). it 
would not be possible to initial ize or parallel load inlo Ihe 0000 state and then sequence 
through all 2" pseudorandom states. 

By altering the logic expressed by Eq. (12. J 0), it is possible to selectively reduce the num
ber of unique pseudorandom states from the maximum length of 16 shown in Fig. 12.36a. 
To do this the following procedure can be applied: 

(I) Select the number of states, S < (2" - [ ), that is desired. 
(2) Find 11 pair of states sep<lrated by {(2" - I) - SI other slates such that the smaller is 

an even digit and I less than the larger. 
(3) Advance 1 state from the larger and draw an arrow. The result is a modified state 

diagram of 5 states from which the new feedback logic for a USR can be obtained. 
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As an example of the application of ,his procedure. suppose il is desired to design a 
decade ALFSR counter from the pseudo-random states in Fig. 12.36a. A pair of states 
separaled by 16 - I - 10 = 5 must be found such that the smaller is even and 1 less than 
the larger. An inspection of the slate diagram in Fig . 12.36a indicates that slates 4 and 5 
satisfy this requirement. By advancing by I slate from stale 5. an arrow is drawn from slale 
4 10 sUite 10. as indicaled by the dashed arrow. This is the IO-siate Siale d iagram for which 
a new DA must be found, the other three NS functions remaining the same. Presented in 
Fig. 12.37a is the NS logic for DA as determined from the new slate diagram in Fig. 12.363. 
Here, the conventional (l's and O's) K. map is convened to an EV K-map, which permits 
the usc of XOR patterns 10 extract gate-minimum logic as discussed in Section 5.2. The 
resuh is expresst:d as 

( 12. 111 

where use has been made of Eqs. (3 .27) and (3. 15). The remainder of the NS functio ns 
remain the same as DB = A, Dc = B, and Do = C. A USR.configured with Eq. (12.1 1), 
is shown in Fig. 12.37b. This counter will ini tiali7.e into !he 0000 state and thereafTer 
sequence in iterative fashion through all 10 pseudordndom slates shown to the left of the 
dashed arrow in Fig. 12.36a. 

1be foregoi ng discussion has dealt with ALFSR counter variatio ns based on a single 
sel of feedback XOR taps. namely C ED D . However. there are numerous possible XOR 
taps thai can be used for the feedback function of a 4-bit ALFS R counter, but not all will 
generate a maximum length ALFSR counter. This is al so true for ALFSR counters having 
a larger number of bits. For example, the feedback function D EB £ $ F Ell H applies 
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Table 12.1 Examples of Feedback Functions for Near-Maximum-Length ALFSR Counters 

Feedback function Near maximum length 
SR size, n-bits Feedback function f( Q) (literal notation) (In nos. of states) 

4 QI ffi Qo CffiD 15 
5 Q2 ffi Qo CffiE 31 
8 Q4 ffi Q3 ffi Q2 ffi Qo DffiEffiFffiH 255 

12 Q6 ffi Q4 ffi Q 1 ffi Qo FffiHffiKffiL 4,095 
16 Q5 ffi Q4 ffi Q3 ffi Qo KffiLffiMffiP 65,535 
24 Q7 ffi Q2 ffi Q I ffi Qo QffiVffiWffiX 16,777,215 
32 Q22 ffi Q2 ttl QI ttl Qo 4,294,967,295 

to an 8-bit near-maximum-Iength ALFSR counter in literal notation. Or for 12- and 16-
bit near-maximum-length ALFSR counters, the feedback functions F $ H $ K $ Land 
K $ L $ M $ P apply, respectively. Shown in Table 12.1 are a few feedback functions that 
apply to right-shifted, near-maximum-Iength ALFSR counters. ::"l'ote that for the numeral 
notation Qo is always the LSB, and that for the literal notation QA A is always the MSB 
of the counter. 

As has been pointed out earlier, ALFSR counters are very useful in generating pseudo
random test vectors suitable for testing a variety of machines, combinational and sequential. 
Take, for example, a 16-bit ALFSR counter. It can sequence through 216 1 65,535 
unique pseudorandom states in iterative fashion if the all-zero state is forbidden, or through 
65.536 states if corrected to include the all-zero state. If a 32-bit ALFSR counter is used for 
testing, a total of 4,294,967,296 unique pseudorandom states are available with correction 
to include the all-zero state. Some large state machines are designed with ALFSR counter 
elements in them to provide a built-in-self-test CBIST) capability. BIST capability facilitates 
and automates testing of these machines without need for an external testing facility. 

Correction for inclusion of the all-zero state in the general case for maximum-length 
ALFSR counters is not trivial. but it is not difficult either. Consider that upon initializing 
into the all-zero state 00000 ... 00 the next transition must be into the 10000· .. 00 state to 
begin the pseudorandom sequence. Then, at the end ofthe 2/1 sequence, in the 00000 ... 0 I 
state, the ALFSR counter must return to the all-zero state. For aU of this to happen, a 
correction function must be found and XORed with the feedback function. ::"l'oting that all 
feedback functions in Table J 2.1 end with Qo. it follows that the correction function must 
be the ANDed complements of all ALFSR counter outputs except Qo. that is, Qn-I . Qn-2' 
.... Q2 . Q I· Here, Qn-I is the MSB and Qo is the LSB. Therefore, the corrected feedback 
function is given by 

f(corrected) = (QII-I' Qn-2· .. ·· Q2' QI)$ fCQ), (12.12) 

where f( Q) is the numeral feedback function in column 2 of Table 12.1. Thus, it follows that 
the corrected feedback functions for 4-bit, 5-bit, and 8-bit ALFSR counters are (Q 3 Q2 Q 1)$ 

QI EEl Qo, (Q4Q3Q2QI)$ Q2 $ Qo, and (Q7Q6QsQ4Q3Q2QI)$ Q4 $ Q3 $ Qz $ Qo, 
respectively. Applying Eq. (12.12) to the 16-state ALFSR counter in Fig. 12.36 yields 
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Eq.02.1O), 

in literal form, which can be proved by applying the laws of XOR algebra in Section 3.11. 
A cursory inspection ofEq. (12.12) and Table 12.1 indicates that the maximum number 

of XOR operations is three, independent of ALFSR counter size, but only after simplifying 
by application of Eqs. 0.25) and (3.13). Fortunately, three XOR operations can be handled 
very easily by a standard four-input. even-parity generator module such as that in Fig. 6.32c. 
The problem is, of course, in dealing with the large number of ANDed complements present 
in the correction functions. If CMOS logic is permitted, the multiple input NOR gate in 
Figure 8.46 can be used to great advantage. It has no fan-in limitations. 

Table 12.1 and Eq. (12.12) apply to right-shifted ALFSR counters that sequence through 
all 2" pseudo-random states and that are initialized into the all-zero state. Table 12.1 and 
Eq. (12.12) can also be applied to left-shifted ALFSR counters if the Qi outputs are in
terpreted in "reverse" fashion such that Qo is the MSB and Qn-I the LSB. The corrected 
feedback function now becomes (01 . 02' ... . . On-d tt1 f(Q!) by omitting Qo, 
where f( Q') is the feedback function in Table 12.1 interpreted in reverse order. For example, 
Qo 8 Ql tt1 Q3 tt1 Q4 = A ED C tt1 D EEl E for n 8 . 

12.5 ASYNCHRONOUS (RIPPLE) COUNTERS 

All counters discussed in Sections 12.3 and 12.4 are classified as synchronous counters 
because the flip-flops, of which the counters are constructed, are all triggered simultaneously 
or very nearly so. Counters composed of T flip-flops that are triggered in series are called 
ripple counters. Each T flip-flop is triggered off of the output from the next LSB flip-flop. 
For this reason, they are classified as asynchronous counters even though the LSB flip-flop 
is triggered by the external CK signaL 

Shown in Fig. 12.38a is a general divide-by-2n ripple counter composed of toggle modules 
of the type shown in Fig. 12.12c, a toggle module being nothing more than a divide-by-2 
counter. Notice that the Q(H) output of each toggle module is the input to the PET clock 
of the next MSB stage. In Fig. 12.38b is the timing diagram for the three LSB stages of 
this ripple counter. The count, taken from outputs Qn-I '" Q2Ql Qo is shown to be in 
ascending binary, an up-count, and that frequency is divided beginning with 2 for 
Qo and ending with fcK -;- 2" for QII-l. A sanity input permits the counter to be initialized 
into the 0 ... 000 state. 

The direction of the count (Dn = I for down count and Dn = 0 for up count) of any 
ripple counter can be altered by making any odd number of changes in the expression 

Dn = RET tt1 QCK tt1 QOUT. (12.13) 

In this equation, RET = I for RET flip-flops or RET = 0 for PET flip-flops, QCK I if 
triggering is from Q(H) of the next LSB stage or QCK = 0 if triggering is from Q(L), and 
QOUT = I if the count is read from Q(H) or QOUT = 0 if read from Q(L). Thus, any odd 
number of changes (parameters or operators) in Eq. (12.13) changes the count direction. 
For example, if RET toggle modules are used in Fig. 12.38a, a down-count occurs. Thus, 
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emenh. (b) Timing diagrnrn showing frequency division and Iran ~i tion delay~ due 10 clock ripple 
effect. 

Eq. (12.13) becomes 

On = I $ I $ I = I = Dmvn-courrr. 

This is easily verified in Fig. 12.38b by shifting in !Urn each of the outputs QI). QI. and Q2 
to the left such that each oUlput change occurs on the rising edge of Ihe nexl LSB output. the 
output Qo being shined 10 the left by one half of a CK period. The same result cou ld have 
been achieved by triggering the FET toggle modules in Fig. 12.38a off of Q(L) from the 
next LSB stage. Now QCK= O so that 011 = 0 $ 0$ I = I = Down -COUIII . But applying 
boLh changes (R £T = I and Q CK = 0) given above wou ld leave Ihe counl unaltered. that 
is. Dn = I $ 0 $ I = 0 = Up- COIiIlf. 

Any mClTIQry element capable of the toggle mode is sui table for use in a ripple counter. 
For reference purposes. three types of flip-flops are shown in Fig. 12.39, all configured 10 

operate in the toggle mode. They are (a) an FET J K flip-flop. (b) an J--cr T fl ip-flop. and 
(e) an RET D flip-flop wired as a toggle module (divide·by· 2 counter). The toggle modu le 
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Three ellamples of memory elements suitable for use in a ripple counter. (a) FET JK flip-flop in toggle 
mode. (b) FET T Hip-flop in toggle mode. tc) RET D flip-fl op wired as a toggle module. 

in Fig. 12.39c is the least costly (hardware-wise) oflhe three and is the one fealUred in the 
ripple counter of Fig. 12.38a, but as an FET loggle module. 

Take Care in Using the Ripple Counter There are two major problems that can arise in 
using ripple counters. The problems aTe staled as follows logelher with some suggeslions 
for proper use: 

• All ripple counters suffer from a progressive noise (glitch) generation problem 
if any auempl is made to decode their outputs. An inspection of the timing 
diagram in Fig. 12.38b shows the transition delays that result from the series 
(ripple) triggering of the flip-flops . If decoding of lhe outputs is not necessary or 
if decoding is used but glitch production can cause no problem, ripple counters 
can be used advantageously -lhey require no external logic for their operation. 
If these conditions cannot be met, no anempt should be made to use ripple 
counters. instead, use should be made of synchronous binary counters whose 
output transitions are synchronous or very nearly so . 

• Ripple counters are inherently slow compared to synchronous counters. This is 
so because the outpul changes must propagate through the counter one flip-flop 
at a time. For an l1 ~bit ripple counter this propagation delay may be expressed as 

(12.14) 

where Tn is the delay through a single flip-flop in the ripple counter. This counter 
delay would be required for completion of a 2" binary count. In comparison, 
the delay of a divide-by-2" synchronous binary counter required to complete the 
count is 

(12.15) 

and is not progressive. In Eq. (12.15) TNS is the propagation delay through the 
next~state~forming logic required in the design of the synchronous counter. 

Therefore, if counter speed is not a consideration and if the outputs are not decoded in 
any way, use of ripple counters can be recommended. In fact. if these conditions apply, 
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ripple counters can be cascaded to any s ize simply by connecting the appropriate output 
from the MSB stage of one counter 10 the LSB clock input another, elc. For CJl:llmple, the 
n-bit ripple counter of Fig. 12.38a can be cascaded to produce a m-bil up-<:ounter by s imply 
connecting its Q,,_ I output to the LSB FET clock input of the other II-bit ripple counter. 
But remember. that ripple counter delay increases in proportion 10 the number of Hip-flops 
in the counter. 

Lt is also possible to design a ripple counter that will count through N < 2" states. This 
is demonstrated in Fig. 12.40 by the design of a decade (divide-by-10) ripple counter that 
is initialized into the 0000 stale. The truth table in Fig. 12.4Oa gives the values of the 
asynchronous preset (PR) and clear (CL) overrides to the flip-flops required to force a series 
of asynchmnous transitions; from the "jump" state 101010 the origin state 0000. Notice Ihal 
the PR and CL override values must be 0 for proper counter operation in the IO-slate coun! 
sequence. All states between state 1010 and 0000 are don 't-care states. 

The state diagram for this decade ripple counter is given in Fig. 12.40b. It illustrates the 
fact that when the cou nter attempts to cnter lhe jump state 1010 (the 11th state) the counter 
will be forced to transition asynchronously through some path 10 the origin state 0000 (see 
looped arrow). The correction logic required to do this is found from the conventional K
map in Fig. 12.4Oc, which yields CL A = CLc = A . C. all other override values being 

Jump state,' - -", 
, 1010 : 
, ' 

- 0 -

A BCD 00 01 

00 0 0 
- 0 1 0 ~ 0 1 0 ; 

0011 0110 
01 0 0 

- ,p -
11 ~ ¢ 

10 0 0 

I 

11 10 

0 0 

0 0 

~, ,,¢ 
¢'- --', 

1 1 

a 0 0 a o 0 o 0 o 0 o 0 Cl ... '" CLc :AC 

(a) (b) (e) 

fiGURE 12.40 
Design of decade ripple up-counter. (a) Truth table showing the values of the PR and CL asynchronous 
o\'crride inputs to the flip-flops. (b) Slate diagram showing jump state 1010. ~c) K-map and minimum 
cover (or the CL inputs. C L", and C Le. 
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FIGURE 12.41 
Implementation of the decade ripple counter of Fig. 12.40 showing correclion and sanity logic. 

logic O. The resull is the logic circuit in Fig. 12.4 1. which shows both the correction logic 
and Ihal required to initialize the cOllnter into Ihe 0000 slale. Here. this logic is configured 
in a manner thai simply clears all memory elements. Thus, when the counter is initialized 
or when it attempts 10 enter the jump state 1010. it will be forced asynchronously into state 
0000 via the extemal logic and the four CLovcrrides of the toggle modules. Notice that the 
asynchronous PR overrides need not be present since they are all set at logic O. 

The decade ripple counter in Fig. 12.41 suffers the same problems described earlier. 
That is. it will exhibit progressive logic noise generation If the Olltputs are decooed. and it is 
inherently slow. In llddition. this counter breaks the 2n counl.lhereby requiring it to undergo 
an asynchronous transition from the 10 I 0 state to the origin state 0000 via the asynchronous 
CL overrides. But this can occur only after a delay through the external and internal logic 
associ:lIed with CL. Consequently. additional liming problems can be created if an attempt 
is made to decode the output signals. lllerefore. as a rule of thumb, it is advisable to usc 
ripple counters in the ab."encc of any output decoding logic. This rule is especially important 
if the decoded signals are used as inpuls to other switching devices. The few exceptions to 
this rule were noted earlier. 

Synchronous unidirectional binary counters. such as the cascadable BCD up-counter in 
Fig. 12. 17a. can be made bidirectional by reading theoutpuL" from 2-10-1 MUXs placed on 
the mixed-raiJ outptltsofits flip-flops . Reading from the Q( L) output" of the RCDcounter in 
Fig. 12.17a has the effect of complementing the OUipUl waveforms in Fig. 12.1S - a down 
count. Ripple counters can also be made bidirectional by reading their outpulS from 2-to-l 
MUXs placed on the mixed-rail outputs of the toggle modules and by applying Eq. ( 12. 13). 
For example. the MUX output for the Jth stage of the ripple counter in Fig. 12.38a 
wou ld be 

(12. 16) 

where X is the direction control. and QJ and Q Jare the active high and active low outputs 
from the Jth stage toggle module. respectively. Thus. the count is up if X = 1 or down if 
X = 0, but only for FET toggle modules. Reading the outputs from Q J instead of QJ has 
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the effect of complementing the waveforms in Fig. l2.38b to give a down count. However, 
to do this does not allow the CK waveform to be used to add an additional bit in the count, as 
it can be in Fig. l2.38b. Note that for RET toggle modules, X and X must be interchanged 
in Eq. (12.16). 

One important precaution must be recognized when using MUXs together with Eq. 
(12.13) for bidirectional ripple counter designs. It is not a good idea to use the 2-to-l MUXs 
for purposes of altering the triggering activation level of the toggle modules by placing the 
MUXs between modules. To do so makes it possible for the counter to change count simply 
by changing the direction control X while the external clock signal is idle. 

FURTHER READING 

Nearly every modem text in digital design covers the subject of shift registers to one extent 
or another. Perhaps the best sources for further reading are the texts by McCluskey, Nelson 
et al., Shaw, Tinder, Wakerly, and Yarbrough. Of these, the texts of Nelson et al., Wakerly, 
and Yarbrough provide the best coverage of commercial MSI registers and their applications. 

[1] E. J. McCluskey, Logic Design Principles. Prentice Hall, Englewood Cliffs, NJ, 1986. 
[2] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and 

Design. Prentice Hall, Englewood Cliffs, NJ, 1995. 
[3] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993. 
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs, 

NJ, 1991. 
[5] J. F. Wakerly, Digital Design Principles and Practices. 2nd ed. Prentice-Hall, Englewood Cliffs, 

NJ, 1994. 
[6] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/St. 

Paul, MN, 1997. 

Again, almost every text will provide some information regarding synchronous binary 
counter design and application. The references just cited regarding registers are good 
examples of this. The texts by Nelson et at., Wakerly, and Yarbrough seem particularly 
strong in their treatment of commercial MSI counters and their applications. Tinder's text 
is the only one that covers the one-bit modular design of counters by using half adders and 
half subtractors. The text by Katz and the lesser-known text by Taub are also worth reading 
on this subject. For the advanced reader the older text by Dietmeyer can be worthwhile. 

[7] D. L Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Boston, MA, 1971. 
[8] R. H. Katz, Contemporary Logic Design. Benjamin/Cummings Publishing, Redwood City, CA. 

1994. 
[9] H. Taub. Digital Circuits and Microprocessors. McGraw-Hill. New York. 1982. 

For further reading on the subjects of ring and twisted ring (Johnson) counters, the texts 
by McCluskey, Nelson et a!., and Wakerly are recommended. Of these three, the text by 
Nelson et al. appears to be the most thorough. 

The subject of linear feedback shift register (LFSR) counters is somewhat esoteric, with 
recommended further reading limited to a few sources. The most important of these devices 
are the autonomous LFSR counters or ALFSR counters. The best treatment on these devices 
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appears to be found in the texts by McCluskey, Nelson et ai., and Wakerly, all previously 
cited. The feedback functions listed in Table 12.1 of this text are generated by primitive 
polynomials that can be found in texts by McClusky, Wakerly, and Golumb. 

[10] S. W. Golumb, Shift Register Sequences. Aegean Park Press, Laguna Hills, CA, 1982. 

The subject of ripple (or asynchronous) counters is somewhat special, and useful infor
mation may be more difficult to find. With the exception of texts by Wakerly and Yarbrough, 
all of those previously cited cover this subject adequately. For the advanced reader, the text 
by Dietmeyer (previously cited) is recommended. 

PROBLEMS 

12.1 The shift registers that are featured in this chapter are all built around edge-triggered 
D flip-flops. Suppose one decided to design a shift register with transparent D latches 
instead of edge-triggered D flip-flops. What are the negative consequences (if any) 
of this design? If this poses a problem, are there any conditions under which such 
a design would be acceptable? Explain. 

12.2 Problem 10.6 in Chapter 10 features the conversion of an RET D flip-flop to an 
RET SR flip-flop. What would be the advantage or disadvantage of using RET SR 
flip-flops in place of RET D flip-flops in the design of a shift register? 

12.3 A four-bit storage (PIPO) register is featured in Fig. 12.1. Reconfigure this register 
so that it is a tri-state register. To do this, use tri-state drivers so that a 1 (L) on either 
oftwo enable inputs, EN] or ENz, enables the active high outputs, and a O(L) on both 
of the two enable inputs disables the active high outputs. (Hint: See Figure 3.8.) 

12.4 (a) Use the four-bit right shift register in Fig. 12.3c and a single OR gate (nothing 
else) to generate the waveform shown in Figure P12.1 from anyone of its four 
outputs QA, QB, Qc, and QD. 

(b) Run a missing state analysis on the resulting FSM and determine whether or not 
it is necessary to initialize it into one of its states. 

12.S A cascadable left-shift register is to be designed. It is to have true hold and asyn
chronous parallel load capability. Also, it is to have asynchronous clear (reset) 
capability. 
(a) Give the operation table and state diagram for the Jth I-bit slice for this register. 

(b) Construct the logic circuit for the J th stage. To do this, use a 2-to-1 MUX and an 
RET D flip-flop together with the extemallogic required for the asynchronous 

--. Time 

FIGURE P12.1 
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parallel load capability. Include all truth tables. K-maps. and logic ex.pressions 
that are used in constructing the logic circuiL 

12.6 Shown in Fig. P1 2.2 is the block diagram for a cascadable n -bit parallel aCCllnlU 

larar. II is the function of this accumulator to add and store (accumulate) with each 
tri ggering edge of clock the numerical data that appears un the B word lines. For 
example. if ACCUM(L) first samples ... 0001 on the first triggering edge. a ... 0001 
will be stored in the fli p-flops and delivered to their outputs. Then. if on the second 
triggering edge. ACCUM(L) samples a ... 0 111 o n the B word lines, a ... 1000 will 
be stored in the flip-flops and delivered to the outputs. 
(a) Design this accumulator by using II fu ll adders and n FEr 0 tlip-ftops. The 

accumulator is to have asynchronous clear. and tri-state output capability such 
Ihallhe OUlpulS are enabled only if EN(H) = I (H). for this pan . disregard the 
Hald(L) inpUi. 

(b) Add uue hold capability to thi s accumulator. meaning that at any time the 
current accumulated sum can be stored and delivered to the outputs for any 
number of clock (AeCUM) cycles. Assume that Ihis occurs under the condition 
He/d(LI ~ I (L). 

12.7 The waveforms for the divide-by-3 counter in Fig. 12.13c show a frequency of 
/ CK /3 and a duty cycle of 33~% for ¢ach of the IWO outputs. What would be the 
frequency and duty cycle for a divide-by-) counter if the state code assignment were 
changed to Gray code, 00 - 0 I - II - 00 - ... ? 

12.8 (a) Construct the waveforms for a divide-by-5 counter by using a hinal)' count 
beginning with 000. From these waveforms determine the frequency and duty 
cycle for euch of the three outputs. 

(b) Repeat part (a) for a Gray code COUnl beginning with 000. 

(c) Repeal part (a) for the pseudo-random count 011 - 001 - III - 101 - 0 10 -
011- .... 

]2.9 Design a 2-bil bidirectional binary/Gray code counter that will operate according to 
the mode control and coon! requirements given in Fig. PI2.3 . To do this. use two 
4-to-1 MUXs. RET D Rip-flops as the memory. a 2-10-4 decoder for the outputs. 
and a gate-mini mum NS logic. Assume that the mode control inputs. X and Y. are 
asynchronous and must be synchronized antiphase to clock, and that al l inputs and 
outputs are active high. 
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On Binary DNBIN 

FIGURE P12.3 

12.10 A counter is to be designed that will count through the following sequence of states 
in three-bit code: 

Sequence I ... 0 -+ 1 -+ 3 -+ 2 -+ O· .. If x 

Sequence II ... 7 +--- 6 +--- 4 +--- 5 +--- 7 . .. If i 

It is required that the counter change sequence at any time beginning with the com
plement of the state in the previous sequence. For example, if x -+ i while in state 2 
of Sequence I, then Sequence II will begin with state 5, that is, 010 -+ 101 and so on. 
(a) Construct the state diagram and state table for this counter. 

(b) Design this counter with RET T flip-flops and a gate-minimum NS forming 
logic. Assume that the input x arrives asynchronously and is active high. (Hint: 
Use XOR patterns.) 

12.11 Design a I-bit slice (lth stage) for a cascadable parallelloadable up-counter by 
using the hardware given below (nothing else). The counter is to have asynchronous 
parallel load and asynchronous clear capability. End with an optimum logic circuit 
showing all inputs and outputs. Block symbols may be used where appropriate for 
the hardware parts listed. 

Allowable Hardware 
One half adder 
One RET D flip-flop 
One 2-to-l MUX 
Gates as needed for the asynchronous parallel load 

12.12 By using the simplest means possible, convert the 4-bit binary counter of Fig. 12.23 
to the following counters such that each will count continuously via a count com
mand CNT(H) = 1 (H). To do this, use LD(L) as the command to parallel load and 
set the CL(L) input to the counter to O(L). 
(a) Divide-by-8 (modulo 8) up-counter beginning with state 0000. 

(b) Divide-by-lO (BCD) down-counter beginning with state 1010. 

(c) Divide-by-ll (modulo 11) down-counter beginning with state 1111. 

(d) Divide-by-1O (XS3) up-counter beginning with state 0011. 

12.13 A psychology student requires a special timer for a research experiment that is being 
performed. Design a timer that will deliver a single pulse after a 45-second period 
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S, Sanity (L) 
Three 8-bit counters S, EN(l) 

45 Second One set-dominant basic cell 
CK Timer Three AND gates 

co Up One NAND gate 
80 On 

One inverter 

45Sec(H) 

FIGURE P12.4 

from a loo-kHz clock on command of an enable pulse EN(L) that is less than 45 
seconds. However, if the enable signal is fixed at EN(L) = I(L ), the timer will is
sue pulses at 45-second intervals. The 45-second perioo must be delivered with an 
accuracy of ± O.S%. Also, the system is to be initialized into the all-zero state from 
which the counl will begin when enabled. Fig. P12.4 gives the block symbol for 
the timer and Ihe permitted hardware to be used. Note that the 8-bit counters are 
constructed of counters shown in Fig. l2.23b. [Hint: Use the NAND gate on the 
most significan t counter siage to generate tbe 45 second pulse and a clear. and use 
the R(L) input to the basic cell for the enable.) 

12.14 A design project require. .. the use of both a universal shift register (USR) and a 
parallelloadable bidirectional counter. devices that must be opcmted interchange
ably with the same SCI of mode controls. II is also required Ihat the carry and 
borTOW outputs be disabled except during counter ope .... .ltion. The problem is that 
limited space requires a compact system. With this infonnation in mind. do the 
following: 
(a) Construct the operation table. state diagram. and MUX K-map for the llh stage 

of the USRlcounter device. Base your decisions on the hardware requirements 
given in Fig. PI2.5a . 

(b) Fromlhe infonn:Uion in part (a), first design the Jlh stage for the USRfcounter. It 
mu~t be cascadable und bi-directional with true hold , asynchronous parallell()ud. 
and clear capability. Then. show how that stage can be cascaded to fonn l.he 4~bit 
device shown in Fig. P 12.5b. (Hint: The counler design should be a combination 
of the counter design examples featured in Subsections 12.3.3 and 12.3.4.) Also. 
no CO or 80 signal is permitted during a true hold or shift operation. 

12.1S (a) Construct lhe complete state diagram fortheself~corrccting twisted ring counter 
featured in Fig. 12.34. 10 doing so. demonstrate thai all extmneous slales even
tually end up in Siale 000 1. 
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FIGURE P12.S 

(b) Are there any stales other than slate 0001 that can be used for parallel loading 
in Fig. 12.341 If so, name them. Can state 0000 be used for parallel loading? 
Explain. 

12.16 (a) Construct a table to indicate the pseudorandom states through which a right 
shifting 5-bit ALFSR counter would sequence. To do this, use Table 12.1 and 
assume Ihal the ALFSR counter has been corrected to indutle the all-zero state. 

(b) Construct the logic circuit for the 5-bit ALFSR counter of part (a). Include the 
gate-minimum correction logic and plan!O initialize this counter imo the aU-tero 
state. 

12.17 Repeat Problem 12.16 for a 4-bit ALFSR counler that is left shifted. 

12.18 Design a 4-bil maximum length ALFSR counter Ihal will right shifl or left stJift as 
determined by a mode control X. Plan 10 inilialize it into the aU-zero state. Thus, 
assume that it possesseii the required correction logic for the right or left shift of a 
universal shjft register (USR). 

12.19 Design a ripple down-counter that will sequence through the following stales: 

III -+ 110 -+ 101 -+ 100 -+ 011 -'jo- 010 -'jo- 111·· · . 

To do this, use FET T flip-flops and take the count from the Q(H) outputs of Ihe 
flip-flops. Initialjze the counter into the 111 state. 

12.20 Shown in Fig. P12.6a is the block symbol for a4-bit (-:-2-') ripple Up/Down counter. 
The count direction is determined by the following: 

Up if X(H) ~ I(H) 

Dn if X(H) = O(H) 
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Regu ired Hardware 

Four FET 0 flip -flops 

Four 2·10-1 MUXs 

(b) 

(a) Construct the slate diagram and slate table for this counter. 

(b) Design this counter by using the hardware indicated in Fig. P12.6b (nothing 
else). and end with a logic diagr.lm. Plan to initialize inlO [he 0000 Slate and 
lake the count from the QUi) outputs. (Hint: Review Fig. 12.39 and read the 
discussion at the end of Section 12.5.) 

(c) Alter the design slightly to provide cascading capability for Ihis counter. 

JZ.21 At the discretion of the instructor, simulate by using EXL-Sim2002 any problem 
in this chapler where simulation is appropriate. Thus. an a.<;signmenl 12.2J /12. J7b 
requires that the resul!ing logic circuit of 12.17 (following Problem 12.16b but now 
for a 4-bit left shift ALFSR counter) be simulated. 
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CHAPTER 13 

Alternative Synchronous 
FSM Architectures 
and System-Level Design 

13.1 INTRODUCTION 

It is in this chapter that an attempt will be made to bring the subjects of Chapters 10 through 
12 together in some meaningful fashion so that useful controller and system-level designs 
can be created. This is, to state it mildly, no simple task, since an almost endless number of 
alternatives are available to the designer. Accordingly, and without apology, the treatment 
will be limited to a few select topics that are representative of some ofthe more popular and 
constructive approaches to state machine and system-level design. The "creativity" aspect 
of the design task is highly valued and should be exercised by the skilled designer whenever 
it is profitable to do so. To a reasonable extent this creativity ethic will be used in this chapter, 
but only if it serves to edify the reader's experience in design without unnecessary effort. 
Cute or novel designs that add little or nothing to an understanding of design fundamentals 
will be left to the reader's imagination. 

13.1.1 Choice of Components to be Considered 

The first thing that must done before proceeding is to list the various devices that should be 
considered for use in a given design architecture. The various components available to the 
designer are divided into the following five categories: 

1. Next state and output-forming logic. Choose from the following: 

Discrete logic (gates mainly) 
MUXs 
Decoders 
ROMs 
PLAs 
Basic I/O PALs 

613 
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2. Memory. Choose from the following: 

Discrete flip-flops (D, IK, or T that are edge-triggered or master/slave) 
Shift registers 
Counters 

3. Registered PLDs for total state machine design. Choose from the following: 

R- and V-type PALs 
FPGAs (e.g., Actel and Xilinx) 
GALs, EPLDs, PLSs, etc. (see Subsection 7.7.4 for definitions) 

4. Input and output conditioning circuits. Choose from the following: 

Synchronizers 
Synchronizer/stretchers 
Debouncing circuits 
Output holding (storage) registers for filtering 

5. Initialization and reset circuits. Choose from the following: 

Sanity circuits 

The preceding list of components may not be exhaustive, but it covers most of the 
components that are commonly used in modem state machine and system-level design. 
Clearly, the choice of components depends on various considerations, including intended 
use, physical realization, programmability, and a host of other factors. For example, if it is 
the intent of the designer to place the state machine on chip, the choice is somewhat limited. 
In this case, a proper choice might include the use of a PLA and discrete flip-flops chosen 
from categories 1 and 2, together with the appropriate input and output conditioning circuits 
and initialization circuit. On the other hand, if the choice is off chip, many more alternatives 
are available, mainly because of the vast numbers of possibilities contained in categories 1, 
2, and 3, perhaps limited only by the imagination of the designer. In the following sections, 
several exemplary design architectures are demonstrated in the design of various FSMs and 
controlled systems. Before proceeding it is recommended that the reader review the design 
procedure laid out in Subsection 11.9.1. 

13.2 ARCHITECTURES CENTERED AROUND NONREGISTERED PLDs 

The model used for designs centered around nonregistered PLDs is shown in Fig. 13.1, 
together with block symbols representing possible input and output conditioning circuits. 
This model is sometimes referred to as the Huffman model. The PLD represents a ROM, a 
PLA, or a basic I/O PAL and is used to generate both the NS- and output-forming logic. The 
memory can be any of the devices listed previously in category 2, namely discrete flip-flops 
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FIGURE 13.1 
MQdeJ used for architectures centered arouud II nQnrcgistered PLD showing block symbols represtlut· 
ing input and output conditioning circuits for the model. 

of some type, a shift register. or a counter. If a shift register or counter is used. the highest 
priority is given to shifts or counts in assigning slale codes so as 10 make the most efficient 
use of that particular memory device. Such devices are assumed to be of the off-the-shelf 
type and should be used in the model shown in Fig. 13.1 only if the sequential nature of the 
FSM is amenable to their use. For some FSMs, it may be advisable to use discrete flip-flops 
as the memory elements of choice - a designer's option. The input and output conditioning 
circuit elements are taken from category 4 in the previous section. 

13.2.1 Design of the One- 10 Three-Pulse Generator by Using a PlA 

For purposes of comparison and for II simple first example, consider the design of the one· 
to three-pulse generator in Fig. 13.2 by using a PLA to generate the NS and output forming 
logic. Figure 13.2a is a reproduction of that in Fig. 11.36b discussed in SubsectioD 11.9.2. For 
a review of PLAs and the aClual programming of MOS-onented PLAs. refer to Section 7.3 . 

Shown in Fig. 13.2b is the p-term table for Eqs. (11.10), which are obtained from the 
K-maps in Fig. 11.38 and which are provided as follows for the convenience of the reader: 

DII = AB(SWd +ABfSWo) 

Ds = AB(SWI ) + CS(SW1) + CS(SWo) 

Dc =S+A + B 
p ~ A(CK) + B(CK) 

(13.1 ) 

Nolice that the p-Ienns are listed in the order of those for D ... , DB. Dc . and output P . It is a 
good idea to organize the p-term table in such manner for ease of future reading. Also, note 
thatthe p-Ierm AB(SWil is a shared PI for next ~tate functions 0 ", and DR and is given only 
once in the p-term li~t. For the AND plane (the decoder portion of the PLA), an existing 
input is represented either as a logic I if uncomplemented or as a logic 0 if complemented 
in the p~term . A dash is used to indicate the absence of an input in the p-term to the left. 

Some explanation of thc CK input to the PLA is necessary. In Section 7.5 the subject 
of active low inputs and outputs relative to PLAs and ROMs is discussed. However, the 
periodic CK signal (wavefonn) is really an "apolar" input to a slate machine and is treated 
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A(CK) -- -- -- 0 

B(CK) 0 

(a) (b) 

FIGURE 13.2 
Design of the one- to three-pulse generator centered around a PLA. (a) State diagram. (b) P-term table 
suitable for programming a 7 x 9 x 4 or larger PLA. 

as such in this text. Thus, a CK wavefonn need not have an activation level, high or low, 
associated with it. In a few cases, CK may be assigned an activation level indicator for 
emphasis or clarification, particular if 110 conditioning circuits are involved. Figure 11.39 
is an example. 

Presented in Fig. 13.3 is an n x p x m = 8 x 16 x 4 FPLA that is programmed to generate 
the NS and output forming logic for the one- to three-pulse generator of Fig. 13.2. Here, the 
symbolism represents the bit position patterns illustrated in Fig. 7.6. The tri-state drivers 
serve to enable the FPLA if EN(L) = l(L) or to disable the FPLAif EN(L) = O(L). Notice 
that all nine p-tenns in Fig. 13.2b are represented and that one, AB(SW]), contributes to 
both the D A and DB NS functions - hence a shared PI, as pointed out previously. Observe 
also that the array of square dots and circles in the OR plane of Fig. 13.3 is the same as the 
PLA output array of l's and O's in the p-term table of Fig. l3.2b. This will always be so for 
the symbolic representations of nonsequential PLDs. Note that the square dots and circles 
store a 1 (L) and O(L), respectively, in agreement with Fig. 7.6. 

Implementation of the programmed FPLA in Fig. 13.3 is illustrated in Fig. 13.4. The 
one- to three-pulse generator is unique in the sense that CK is an input (like any other 
input) to the PLA. This, of course, is required if the output P, shown in Fig. 13.2a, is to 
be conditional on CK. Recall, in Subsection 11.9.2, Fig. 11.35, that the pulses are required 
to be issued only when CK is active. Actually, it is possible to remove the CK input to the 
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+ Input to p-term 

+ Stores a 1(l) 

+ Stores a O(L) 

Symbolic representation of the flL~ lble bit position patterns for an 8)( 16)(4 FPLA that is programmed to 
generate the NS and output forming logic required by the one· 10 I~.pulsc generutor in Figure 13.2. 

PlA provided that the ompul P(H) is ANDed with CK e:ucmally. This would satisfy the 
requirement just mentiont:d while requiring one less inpul to the PLA . Also, notice that 
the aCluaJ debouncing, synchronizing, and initialization circuits fife not shown in Fig. 13.4 
since they are exactly lhe same as those provided in Fig. 11 .39. 

13.2.2 Design of the One- to Three-Pulse Generator by Using a PAL 

Unlike tbe PlA, a PAL device can be programmed only in the AI\'D plane. The OR plane has 
a fixed number of inpUls for each output and is. therefore, non programmable. It is for this 
reason that all p-tenns must be programmed separately into the PAL device-shared Pis 
cannot be used. as in the case of a PlA. Shown in Fig. 13.5 is the symbolic representation 
of the fusible bit position pattems for an 8 x 16 x 4 basic UO PAL that is programmed to 
generate (he NS and OUtput logic required by the olle- to three-pulse generator in Fig. 13.2. 
Notice that all 10 p-terms in Eqs. (I ll ) are programmed into the AND plane and that 
the p-term AB(SW I ) is listed twice and not shared as in the FPLA of Fig. 13.3. In the 
nonprogr<lmmable OR plane, three p-tenn connections lfilled squares each storing I (l)) 
are provided for each oUlput.lf fewer than three p-tenn connections are needed, the unused 
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S(H) - Debouncing and 
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FIGURE 13.4 
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I, 

I, 
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YO P(H) 

Dc(H) C(H) Y, D 
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Y, 
DB{H) 

D 0 I 8(H) 
8 

--( I> CL 0 p-

DA(H) ~H) Y, D 0 
A 

--( > CL 0 0-

Sanity(L) 

Implementation of the one- to three-pulse generator with a PLD such as an FPLA or basic 110 PAL. 
where the debouncing, synchronizing. and initialization circuits are given in Fig. 11.39. 

connections are nOl programmed. This is the case for outputs DA(H) and P(H), each with 
one unused p-tenn. On the other hand, if more ORe<! connections are needed than are 
provided by the fixed OR plane of the PAL, the outputs must be ORed external to a basic 
VO PAL. However, an L-type PAL has feedback paths that could be used for that purpose. 
The lri-state drivers serve the same purpose as in Fig. 13.3. 

The basic 110 PAL in Fig. 13.5 is nonregistered. meaning that it lacks thecapabilily to be 
used to implement a state machine without using external memory elements (flip-flops). The 
R- and V-type PALs, discussed in Section 7.4. are much more versatile devices since they 
can be programmed 10 implement state machines without the need for external memory 
they have built-in flip-flops and feedback paths. Erasable PAls are also available, a feature 
that makes them even more attractive to the designer. The acronym PAL is a registered 
trademark of Advanced Micro Devices, Inc. Therefore, use of this acronym acknowledges 
AMD's right of trademark for all PAIAype devices. 

13.2.3 Design of the One- to Three-Pulse Generator by Using a ROM 

\Vhereas the PAL is programmed in the AND plane. the ROM is programmed only in the OR 
plane. But programming the ROM is simpler in the sense that the canonical ROM program 
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S(H) SW,(H) SWo(H) CK 
13(H) 12(H) I,(H) lo(H) 

Non-programmable OR 
Plane 

rv rv r 

AB(SW,) -+--;I-+-*--*-+-I---+--+--+-4I~-l---I--4---I--I-----*----< 

AB(SW 0) -+--t--"*,-+--3~+--+--+--1I--+--+--l-~t--+--j.!-I----__ -----{}-

FIGURE 13.5 

A 

Symbolic representation of the fusible bit position patterns for an 8 x 16 x 4 basic I/O PAL that 
is programmed to generate the NS- and output-forming logic required by the one- to three-pulse 
generator in Fig. 13.2. PAL is a registered trademark of MID, Inc. 

table is obtained directly from either the state diagram or from the state table. Shown in 
Fig. 13.6a is the state table for the one- to three-pulse generator. An inspection of the state 
table shows it to be the same as the state diagram in Fig. 13.2a with one major exception. 
The outputs P are no longer conditional on CK. This has been done to reduce the number 
of inputs to the ROM, PROM in this case. Recall that ROM size increases by a factor of 
2 for each additional ROM input. Now, however, another means must be found to produce 
a pulse output conditional on CK. This is done by ANDing P with CK as is illustrated 
later. 

The ROM program table is given in Fig. 13.6b. In this case, it is constructed directly 
from the state table in Fig. 13.6a with unconditional P outputs. Notice that the program 
table is canonical (1 's and O's only, as it must be) and that the irrelevant input symbol X is 
used to collapse it to only 11 rows. The fully expanded truth table would require 26 64 
rows of I/O data, which is not necessary to program the ROM. The missing states in the 
program table are all assigned X's on the input side and don't-cares on the output side of 
the table. Remember that an irrelevant input, like a don't care, can be assigned a logic 1 or 

1 



101 

001 

620 CHAPTER 13/ ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES 

ROM Inputs ROM Outputs 
I\.. 

/ 
External 

\ 

PS Inputs NS 
~ ~ 
15 14 13 12 11 10 Y3 Y2 Y1 Yo 
A B C S SW1 SWo DA DB Dc P 

S 
0 0 0 0 x x 0 0 0 0 

SW1 I I 0 0 0 0 0 0 0 0 
I I 

0 0 1 X 0 011 010 110 111 101 100 P 0 0 

011 011 011 001 0 0 0 0 0 0 
------------------.- -- ~---------

111 001 001 0 X 0 X 0 0 

101 101 001 0 X X 
-----------------

001 001 001 001 1 X X 0 0 0 

001 001 001 001 0 1 X X 1 0 
---------------~----

I I 1 0 1 X X X 0 0 1 

o 0 X X 0 0 1 0 
(a) o 0 0 X X 0 0 0 0 

· X's X's </J's · </J's · 
X = Irrelevant input </J = Don't care 

(b) 

FIGURE 13.6 
ROM design of the one- to three-pulse generator in Fig. 13.2, except with CK removed as an input 
to the ROM. (a) State table showing an unconditional output P for states b, C, and d in Fig. 13.2a. 
(b) Collapsed program table for a PROM implementation. 

a logic 0; it doesn't matter. This, of course, is true only if the FSM is properly initialized, 
in this case into the 000 state. Finally, remember that all outputs in a ROM program table 
are indicated relative to the present state (PS), never the NS. 

Presented in Fig. 13.7 is a 2n x m 26 x 4 PROM that is programmed to generate the 
NS- and output-forming logic for the one- to three-pulse generator represented in Fig. 13.6b. 
Here, the filled square dots and circles represent the fusible bit position patterns for storage 
of 1 's and O's shown in the generalized PROM structure of Fig. 7.2. As before, the tri-state 
driver outputs permit the PROM to be enabled if EN(L) = 1 (L) or disabled if EN( L) = O(L), 
according to Fig. 3.8d, assuming CMOS logic. 

Implementation of the one- to three-pulse generator by using a PROM is shown in 
Fig. 13.8. Here, the required dependence of output P on CK is removed from the PROM 
and placed external to it by using an AND gate. Thus, output P' cannot be issued except 
in states OIl, Ill, and 101 ofthe state table, and then only when CK is active, as required 
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V, 

I, V, 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

I, V, 

V, . 0 0 0 0 

S(H) I, 6-10-26 
0 0 0 0 0 

0 0 0 0 0 

PROM V" 
C(H) Dec od er 0 

I, 0 

0 

V" 
9(H) I, V" 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

A(H ) I, V" 

V" 

EN(L ) ~ :7 ~ :7 ~ 7 

FIGURE 13.7 

621 

+Sl0res a I( l ) 

+slores a O(l) 

PROM decoder and symbolic representation of the fu~ible bit pallems required 10 program the one
to three-pulse generator represented ill Fig. 13.6. 

by the design specifications. Note (hal the input debouncing and synchronizing circuits 
are the same as those shown in Fig. 11.39. which was also true for the FPLA design in 
Fig. \3 .4. 

There still remains the question of output race gli tches (ORGs) and static hazards in the 
PROM implementation of the one- to three-pulse generator. First, according to Fig. r 1.37. 
there are no ORGs possible in Ihis FSM. Second, the PROM generates mintenns for output 
P. as illustrated in Fig. 13.9a. The expression for P. obtain .. -d from the K-map in 13.9a or 
from the slate table in Fig. 13.6a. is given in Fig . 13.9b. 11 indicates the possibility of two 
intemally initiated static I-hazards. This can be verified by comparing the coupled terms 
in the logic expression for P with (he state table. The possible hazardous transitions are 
011_ III and I J I ---+ 101. Assuming that the flip-flops are NOR-based. static I-hazards 
will be produced in output P( H) shown in Fig. 13.8. However, these hazards cannot possibly 
appear in the outpUt P'(H), since they are filtered out by the AND gate. Remember that 
aU logic noise is produced immediately following (he triggering edge of the CK waveform. 
Since FET flip-flops are used for the memory and since the pulses P are coincident with 
CK active. the output is filtered by the ANDing operation permitting clean pulses to be 
issued. 
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CK P'(H) 

'N[ll--< " Y, It P(H) 

SW, IHI I, 
Y, 

Dc IH) 
0 ''" c 

IHI I, f-< et° PlD 
SW, 

Del)QunCing Md f-o I, 
(PROM) 

°a(H) ~ synch roni ~lng Ci rcuits Y, o 0 , 
,---. I, f-< et° 

S(H) 

r-' I, D.(H) .&HI 
I, Y, o 0 , 

f-< et° 

Sanity(l) 

FIGURE 1].8 
Implementation of the one~ 10 three-pulse generator with a six-input. (our-output PROM showing the 
eXlcmal logic required 10 generate pulses conditional on CK. 

13.2.4 Oesign of a More Complex FSM by Using a ROM as the PlO 

As a second and more complex example of ROM-centered implemcntalion. consider the 
state diagram for a fictitious FSM in Fig. 13.lOa. This state machi ne features four syn
chronous inputs. one of which is active low. and fou r OUlputS. one of which is a1so active 
low. This machine is interesting be<:ause it possesses up to Ihree-way branching where 
branChing is dependent on all four inputs. and has both conditional and unconditional out~ 
puts. Thus. the ROM program table will be somewhat more complex than that of Fig. 13.6b. 
Though this FSM has only seven states. it is a.<; complex (bTanching~wise) as one is likely 
10 encounter in the field . 

Be 
A 00 01 11 10 

0 0 0 0 ¢ 

1 ¢ 8 8 ¢ 

p ABC + ABC 

j IL_,-er+ 
~11 101 

+ ABC 

I 
/ P 111 011 

la) Ibl 

FIGURE 13.9 
Static hazanianalysis of the PROM implementation of outpul P taken from the state table in Fig. 13.00.. 
(a) K-map showing cover for P required by the PROM. (b) Expression for P showing coupled p-tenns 
and internally initiated hazard transi ti o",~ . 
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ROM Inputs ROM Outputs 
(b) ~ ____ ~A~ ____ ~\ rr----~A~----~\ 

MlT 

Synchronous Inputs 
S(H), T(H), U(L), V(H) 

FIGURE 13.10 

Nlf if V 

Outputs 
M(H), N(L), P(H), Q(H) 

PS 
,---A---.. 

's '5 " '3 '2 " '0 
ABC STU' V 

o 0 0 0 x x x 
000 X X X 

o 0 1 X 0 X 0 

0 0 1 X X X 1 

0 0 1 X 1 X 0 

0 1 0 0 X X 

0 1 0 1 X X 

0 1 1 X X X 

0 X X 1 X 

0 X X 0 X 

1 X X X X 

0 1 0 X 0 X X 

0 1 0 X 1 X X 

0 0 X X X 0 

0 0 X X X 1 

X = 'rrelevant input 

NS 
,---A---.. 
Ys Y5 Y, 

DA Ds Dc 

0 0 0 

0 0 

0 0 1 

0 0 0 

0 1 

0 0 0 
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0 

0 0 

0 1 0 

0 

0 1 0 

0 1 

0 1 

• Indicates an active low input or output 

Y3 Y2 Y, 

M W P 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 1 

1 0 0 

1 0 0 

0 1 0 

0 0 0 

Design of the NS and output logic for a fictitious FSM by using a ROM. (a) State diagram. (b) Coll
apsed ROM program table constructed directly from the state diagram in (a). 

The ROM program table is constructed directly from the state diagram and is given in 
Fig. 13. lOb. As can be seen, this table is a collapsed canonical truth table involving only 
15 rows. Fully expanded, this table would require 27 = 128 rows, which is unnecessary for 
programming purposes. Remember that the irrelevant input X is to inputs as the don't care 
¢ is to outputs. Thus, all input data for state 011 (not shown) take X's and all output data 
relative to this state take don't cares. 

There are other features of this ROM program table that are noteworthy. Active low 
inputs to a ROM can be dealt with by complementing the logic values in columns of those 
active low inputs, or by placing inverters on these inputs to the ROM and not complementing 
the columns. Similarly, active low outputs can be handled by either complementing their 
columns or by placing an inverter on these outputs, but not both actions. The input V (L) and 
the output N(L) are represented by using an asterisk in the ROM I/O table to indicate that 
one of the two actions just stated is necessary to accommodate their active low logic level. 
For this example, only the V input column is complemented in the ROM program table of 
Fig. 13. lOb. This eliminates the need to use an inverter on the input to produce VeL). The 
active low output N (L) will be issued from an output holding register as discussed later in 
this section. Section 7.5 provides a review of this subject. 

One other feature of the ROM program table, mentioned earlier, is important to remem
ber: The outputs are always given relative to the present state, never the next state. The 
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reader can verify this by comparing the ROM program tables in Figs. 13.6b and 13.1Gb 
with their respective stale table and Slale diagram in Figs. 13.63 and 13. IOa. 

The ROM program table in Fig. 13.10b could have been con!>tructed from a slale table. 
However. this approach would have been more difficulr. or at least morc tedious, mainly 
because of the size of Ihe state table needed. Nevenheless. a stale table can be constructed 
by using slate identifiers. thereby permiuing the construction of the ROM program table to 
pnx:eed with little cfTon . Use of a stale tablc for Ihis purpose is the method of choice if a 
CAD approach is used. 

Shown in Fig. \ 3. 11 is an 8. (0-28 EPROM decoder and symbolic representation of the 
fusible bit position patterns in the OR plane required to generate the NS- and output-forming 
logic for the FSM in F ig. 13.10. The meaning of lhe fill ed squares and circles and use of 

VIH) --+I', 
Y,r---~---o--~>---<r---c--~>---<r---<r 

Y,~--+---~--~---<~~>---Q---~--~ · 
UIL) ~<-+i I, 

TIH) - ---+II, 

SIH) --+i', 8-10-2' 
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y"r----t----<>--~o---~~--~----o_--_<}---~ 

Y"r----t--~>_--~--~>_--~--~>_--~--~>_ 
• 
• 
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Y,, ~--1---_t--~~--~--_t--~>_--<r--_¢_ 

YM ~--+---~--~---<~~~~Q_--<r--~ 
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CIH) --+i', 
Oecoder y &4 1----+----+--~>__---1~--_<>----+__--_<}---~ 
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AIH) ----oil, 
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FIGURE 13.11 
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y .. r----t--~~--~--~>_--~--~>_--~--~~ 

~7 PI PI PI ~7 PI PI )7 
I I 

+ Stores a Oil) 

DA(H} D8(H) De(Hl M(Hl N(H) P(H) QIHI 

EPRO~1 decoder and symbolic representation of the fusible bit position pattems in the OR plane 
required 10 program the flctitioos FSM in Fig. 13.10. 
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Implementation of the fictitious FSM in Fig~. 13.10 and 1111 by using an S-input/S-output EPROM. 
and lwo4·bit storage registers. 

the tri·slalc drivers was discussed previously relative to Fig. 13.7. Notice that the array of 
filled squares and circles in Fig. 13.11 is exactly the same as the array of lOs and O's in the 
ROM program table of Fig. 13.IOb. Note that the last 127 minrerms are nO! used. 

Implementation of the fictitious FSM in Fig. 13.10 is shown in Fig. 13.1 2. It follows 
closely that of the one- to three-pulse generator in Figure 13.8, but with some significant 
changes in ROM size and in external logic. In this case use is made of a 28 x 8 EPROM, 
in agreement with Fig. 13.11, though only a 27 x 7 EPROM is necessary. Also different is 
the use of two 4-bit storage registers, one used for the 3-bit memory and the other used as 
a holding register to filter out the ORGs that cnn occur in the four outputs. Notice that the 
OUtput holding (filtering) register is triggered antiphase to the memory register, a necessary 
feature for filtering logic noise, as discussed in Subsection 11.2.2. Static hazards in the 
output logic arc not possible in Ihi s FSM; but if they were possible. they also would be 
filtered oui. The output holding register serves one other function . It can also be used to 
deliver the four outputs synchronously [0 the next stage independent of any logic and routing 
delay differences that can occur within the EPROM. 

Finally, notice that the active low input U(L) and active low output N(L) are pro
perly dealt with in Fig. 13.12. Since the input column for U is to be complemented be
fore the EPROM is programmed, no inverter on this input is necessary. However, since 
the output column for N in the ROM program table is not complemented prior to 
programming, N(L ) must be delivered by the register as indicated in Fig. 13 ,]2. Thus, 



626 CHAPTER T 3 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES 

N(L) must be issued from the Q(L) output of the register's flip-flop. or by an inverter on 
Q(H ). 

13.3 STATE MACHINE DESIGNS CENTERED AROUND A SHIFT REGISTER 

There arc limes when the designer might like to consider using an off-the-shelf universal 
shift regis ter (USR) in the design of a state machine, one thai is amenable to the shifting 
character of the USR. Remember. it makes little sense to use a USR for this purpose if 
most of lhe FSM's state· to-state transitions are parallel load actions. For such an FSM. i1 
would be best to use discrete flip-flops as ha .. been done in all examples up to th is poi nt. 
In maldng the stale cooe assignmentS for an FSM. shifting operatio ns must he given the 
highest priori ty if the most efficient use is 10 be made o f the shifl register. 

Shown in Fig. 13.13a is thc st31c diagram for an FSM that would be considcrt..-d amenable 
to the use of 3 USR as the memory. Notice that il has what could be termed a linear array 

XI") 
Sanity 

(Sl1) X 

S, S, NS , 

(SLO) S, 
S, 

P, P, Pc P, 0 0 (H)··Hold 

0 (SA)··Shlft RighI CO Universal Shift 
CC Reg ister 

0 (Sl )··Shilt lell 
0010 

R C 

(PC ) (Sll ) a, 
x 

a, ae a, 
(Pl)··Paralielload 

(bl (c) 

(SlO) X (Sl1 ) 

1010 ZU 

(a) 

FIGURE 13.13 
State machine design by using the USR as the memory. (a) State diagram for a ficti tious FSM showing 
slate-la-state branching actions of the USR . (b) Block diagram symbol for the USR. (c) Operation 
ruble and branching action for the USR. 
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of states-hence. a linear staTe machille. The branching action required by the USR is 
given for each state-to-slate transition. Notice that only left shifting and parallelloilding arc 

required of the USR. 
In Figs. 1J.13b and (c) are the block ci rcuit symbol and operation table for the USR. 

A view of the logic circuit symbol indicates that logic must be found for inputs SI. So. R. 
L. and the four parallel load inpuTs PI!.. PlJ , Pc . and Pn before the US R can be used in 
the design of this FSM. However, the ex temal logic required to drive the USR through the 
sl!quence of stales in Fig. 13.13a turns OUI to be quilt simple. Shown in Fig. 13. 143 arc the 
K-maps for Ihe IWO mooe controls and the serial input for left shifting. The minimum co\·tr. 
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FIGURE 13.14 
Impiement31ion o f the fictitious FSM in Fig. 13. 13 by using a USR lIS the memory. (a) Mode control 
and serial input K-maps showing minimum co\'er. (b) The USR and eXlemallogic derived rrom (a) 
and from the state diagram. 
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indicated by shaded loops, yields the expressions: 

(13.2) 

where R = 0 or 1 and PA = PB = Pc = PD = 0 by inspection of the state diagram in 
Fig. 13.l3a. The logic for L can also be deduced from an inspection of the state diagram 
since state variable D toggles in complementary fashion with respect to the left shifting 
of l's and O's. Observe that state pairs, 0101 and 1010, are the only two four-bit patterns 
that can be cycled exclusively with either a left shift or a right shift. Knowledge of this 
fact can be useful in state machine designs centered around a shift register, as in this case. 
Implementation of Eqs. (13.2) is shown in Fig. 13.14b, where the Moore output is simply 
Z(H) = A(H), as deduced from the state diagram in Figure 13.13a. 

S 

M!f 

(a) 

FIGURE 13.15 

Synchronous Inputs 
S(H), T(H), U(L), V(H) 

Outputs 
M(H), N(L), P(H), Q(H) 

(PL) 

N!f if V 

S1 So NSJ 

0 0 (H)--Hold 
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Design of the fictitious FSM of Fig. 13. lOa by using a USR as the memory. (a) State diagram with a state 
code assignment amenable to a USR design showing state-to-state branching actions in parentheses. 
(b) Operation table for a USR. 
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A More Complex Example of State Machine Design Centered around a USR It has 
just been demonstrated (hal a " linear state machine" can be well suited to the use of a 
shift register as the memory. However. if this approach is ::lpplicd to an FSM design where 
multiple branchings arc involved. use of a USR as the memory element loses some of its 
appeal . Consider the state machine in Fig. 13.153. which is the FSM of Fig. 13. lOa but 
coded in such a way as to take beller advamagc of the shift ch,lracler of the USR. The 
branching actions of the USR. defined in Fig. 13. ISb. are indicated in parentheses for each 
stale-to-slale transition. As in the previous example. Ihis is very helpful in obtaining the 
required logic external ( 0 Ihe USR. Notice thai the MSB stale variable A is left inactive 
so as to minimize the external logic commitment-its use is nOC needed in this case. 
Deactivation of a state variable in shifl register designs can be done only if care is taken 
to ensure that the shifting and p3rallcl load actions do nOI create problems at Ihis bit 
position. 

The third-order K-maps for the mode control and Ihe parallel load inputs are provided 
in Figs_ 13.16a and 13. 16b. Because the MSB state varillble is inactive. only the remaining 
state variables. B. C. and D. need be used in K-map construction. No minimum cover 
is indicated in the mode cootrol K-maps because MUXs are 10 be uscd to implement 51 

and So-a designer's call. Note that a K-map for p ... is not necessary since. by inspection 
of Ihe srute diagram. it ;s evident that p ... = O. K-maps for serial inputs Land R aTe also 
unnecessary since. by inspection ofthest;,lte diagram, L = I and R =0. That is. all indicated 
shift-left operations are SL I and all indicated shift-right operations are SRO; all others are. 
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of course, don't cares. The composite output K-map in Fig. 13.16c is useful since a state 
decoder is to be used to generate all Moore outputs and to reduce the logic necessary for 
the Mealy outputs. 

Gathering the results so far. the expressions for the serial and parallel load inputs are 

and for the four outputs 

PA =0 

PB = Be = State 7 

Pc = iJS + t = (State 3)· S + State 5 

PD = t = State 5 

{ 

M = (State I). ~ + State 4} 
N = (State 5) . V 

P = State 7 ' 

Q = State 2 

(133) 

(13.4) 

where it is understood that the mode control inputs. SI and So. are to be generated by 
8-to-l MUXs and that a state decoder is to be used to produce the State values given 
in Eqs. (133) and (13.4). It is important for the reader to realize that the State values 
in the parallel load and output equations can be read directly from the state diagram. For 
example, P B = State 7 since the only parallel load involving state variable B is the branching 
0111-+ 0100. Similarly. Pc = (State 3)· S + State 5 is due to the parallel load 0011 -+ 0010 
under branching condition S and the unconditional parallel load transition 0101 -+ 0011. 
Or, in the case of an output, N = (State 5) . V results since N is conditional on V in state 
0101. Thus, the use of a state decoder can save time and reduce the number of external 
gates required for implementation, which, of course, comes at the cost of adding a state 
decoder. 

Shown in Fig. 13.17 is the FSM of Fig. 13.15a centered around a USR and state decoder 
with 8-to-l MUXs used to generate the mode controls, SI and So. Here, the external logic 
to the MUXs is the logic contained in the cells of the mode control K -maps, and the parallel 
load and output logic follow Eqs. (13.3) and (13.4). An output holding register, triggered 
anti-phase to the memory, is necessary since ORGs abound, as can be seen by an inspection 
of the state diagram in Fig. 13.15a. Observe that the shifting and parallel load action re
quired by this FSM presents no problem at the inactive MSB position. A, since that position 
accepts a logic 0 in all cases. 

The use of the state decoder in Fig. 13.17 is to be considered a design convenience, 
and so its presence is arbitrary. A state decoder helps to minimize the parallel load and 
output-forming logic and reduces the overall effort in obtaining this logic. In the absence 
of a state decoder, one can expect a significant increase in the number of gates required to 
implement the parallel load and output logic. For example, without the state decoder, the 
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output-forming logic in Eqs. (13.4) becomes 

{

M = iJ~D~ + BDI 
N=BCDV 

P=BC ' 

Q CD 

(13.5) 

as read from the composite K-map in Fig. 13.16c. This represents an increase of three gates 
over that required by Eqs. (13.4). But again, the price to be paid for convenience and for 
the reduction in external gate logic is the added state decoder hardware. 

13.4 STATE MACHINE DESIGNS CENTERED AROUND A PARAllEL lOADABlE 
UP/DOWN COUNTER 

For purposes of comparison, it will be interesting to design the same FSMs as in Section 13.3 
but now centered around a parallelloadable up/down counter instead of a USR. Shown in 
Fig. 13.l8a is the "linear state machine" of Fig. 13.13a, but now state coded in a count 
sequence. Notice that the MSB state variable is inactive and that only one parallel load 
transition exists, 0011 --+ 0000. 

The counter to be used for this design is that featured in Fig. 12.23. This is a binary 
up/down counter with synchronous parallel load and true hold capability. The logic symbol 
and operation table for this counter are reproduced from Subsection 12.3.4 and are presented 
in Figs. I3.I8b and I3.1Sc for convenience of the reader. An inspection of the logic circuit 
symbol indicates that external logic must be found for inputs SI, So, Up, Dn, and the four 
parallel load inputs PA, PH, Pc, and PD. But, as it turns out, this external logic is quite 
simple. From the K -maps and minimum cover for the mode control and Up I Dn inputs given 
in Fig. 13.19a, there results the external logic given by 

{

SI CDX } 
So=X+B_+C+D, 

Up= B 

Dn= B 

( 13.6) 

where it is understood that PA PH Pc = Pf) = 0 by inspection of the state diagram 
in Fig. 13.1Sa. That is, the parallel load inputs are necessarily all zero because the only 
parallel load branching is from state 0011 to state 0000. Notice that the logic for Up and 
Dn could also have been deduced from the state diagram. 

The resulting logic circuit for the FSM in Fig. 13.18a is shown in Fig. 13.19b. Here, it is 
easily seen from the state diagram that the single Moore output is simply Z(H) = B(H). 
Comparing Fig. 13.19b with Fig. 13.14b indicates that both a USR and parallelloadable 
up/down counter design of this linear state machine result in only minimal external logic. 
Remember that to accomplish these designs it is necessary that the USR and counter have 
both parallel load and true hold capability. 
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A More Complex Example of FSM Des;gn Centered around a Parallel LoadabJe 
Up/Down Counter The previous example demonstrated that the a linear slate machine 
could be favorabl y designed by using a parallel loadable up/down counter as was the case in 
usi ng a USR for the memo ry. But what would be the consequeoce of using such a counleT
ba~d design for a more complex FSM1 The comparison between the various approaches to 
FSM design now continues with the design ofrne FSM in Figs. 13. \0 and 13.15 by using as 
the memory Ihe 4· bit parolJel loadablc upJdown counter with true hold capability featured 
in Fig. 12.26. Shown in Fig. 13 .20a is the state diagram for the FSM with a state code 
assignment suitable to counter desi gn. Clearly. the number and character of its inputs and 
outputs. together with up to three-way brunching. is much more complex than the linear 
FSM of Fig. 13 .18a. Consequently. it is predictable that the external logic required for a 
counter design of this FSM will be considerabl y more complex than that in Fig. 13. 190. In 
fact. an architecture similar to that for the USR design in Fig. 13. 17 is to be expected. 
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An inspection of the logic circuit symbol in Fig. 13.20b indicates that to drive this counter 
through the state sequence in Fig. 13.20a. cxtemallogic must be fou nd for inputs lJ), EN, 
D/O and thcfouf p:Jralid load inputs P". PB' Pc. and PD. The EV K·maps for all external 
inpuis except p ... are shov..-n in Figs. 13.21a and 13.2Ib. together with the minimum cover 
for LD and the three paralic/load inpuls. It follows Ihal P" = 0 since the MSB state variable 
A is inactive as can be seen in the state diagram of Fig. 13.20a. The outputs are reprc~nlcd 

by Ihe composite K-map in Fig. 13.2 Ic. From these K-maps there results the following 
expressions for the inputs: 

I LD ~ lieD ~ "au 21 
PH = S+T 
Pc = ST . 

PD =0 

For the four outputs. a~umi ng the usc of a stale decoder. 

M = (SWfl' I)· ~ +Slale 5) 
N = (State 3)· V 

P= State6 . 

Q = State 4 

(1 3.7) 

(13 .8) 

Inputs £Nand D/U are not included in Eqs. ( 13.7) since the choice is made to U~ MUXs to 
implemem these parameters. In thcc3se of D /U .the oplion o f using either an 8-10- 1 MUX or 
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a 4-to-I MUX is indicated by the compressed EV K-maps in Fig. 13.2Ia. For this example, 
the 8-to-I MUX will be used. Predictably, there is similarity between Eqs. (13.8) and (13.4). 

Shown in Fig. 13.22 is the implementation of the FSM in Fig. 13.20a centered around 
the parallelloadable up/down counter of Fig. 12.26. A state decoder is used primarily to 
reduce the external gate logic required to generate the four outputs. The choice is made to 
implement the count enable and direction controls, EN and D / [;, by using 8-to-I MUXs 
although, in the latter case, discrete logic or a 4-to-I MUX would make more efficient use 
of hardware. An additional gate would be necessary to produce the p-term DV if a 4-to-I 
MUX is used, as indicated in Fig. 13.2Ia. Notice that the external logic to the MUXs is 
exactly that contained in the cells of the EN and D / [; K-maps. As in the USR design of this 
fictitious FSM shown in Fig. 13.17, an output holding register is used to filter the several 
ORGs that are produced in the operation of this FSM. 

The state decoder in Fig. 13.22 can be eliminated, but only at the expense of additional 
external logic. From the K-maps in Fig. 13.21, the change in the external gate commitment 
would be 

W = BCD, M = BCDV+BD, N = CDV, P =BC, Q = BCD, 

which is an increase of four gates over that required with a state decoder. Notice that use of a 
16-to-I MUX to generate EN would eliminate the need for the OR gate shown in Fig. 13.22. 

13.5 THE ONE-HOT DESIGN METHOD 

As evident from the previous examples, designing a state machine to have a minimum 
number of state variables (hence a minimum number of flip-flops) involves a considerable 
effort. Functions often must be mapped and minimized before the design process can be 
completed. Furthermore, for such designs, no direct relation exists between states of the 
FSM and the NS and output functions that result. 

An alternative design architecture exists that greatly reduces the design effort and ends 
with a direct relationship between the states of the FSM and the NS and output logic that 
results. This method is aptly dubbed the one-hot method for state machine design - a single 
"I" per state. But the advantages provided by this method come at a price: one flip-flop 
per state each with NS-forming logic. A lO-bit one-hot code is given in Column (c) of 
Table 2.11 in Subsection 2.10.2. 

A big advantage of the one-hot method is that the NS and output functions are generated 
directly from either the state diagram, state table or from an ASM chart - no specific state 
code assignments are needed! Shown in Fig. 13.23a is a state diagram segment for the jth 
reference state that serves as the model for the one-hot method. Here, it is understood that 
any branching condition h<--j represents the holding condition for the jth state, where j is 
an integer j = 0,1,2, ... , (m - 1). Since only one logic 1 is permitted in each state code, 
the use of D flip-flops make it necessary to know only the branching conditions for states 
that transition into a given reference state. The result is the generalized NS (D j) and output 
(Z,) forming logic for m states and r total outputs presented in Fig. 13.23b. These functions 
are expressed succinctly by 

m-I 

D j = L Qk . h+--k 
k=O 

m-I 

and Z, = L Qj . fJ,,(X), 
j=O 

(13.9) 



1(H) 

T(H) V(H) 

U(l) -<{)-- ,Vi,,"' S(H) T(H) 

V(H) 

T(H)~ 
O(H) 

1(H) 
T T T ( 

7 6 5 4 B 2 t 0 

Y 
7 6 5 4 3 2 1 0 

s:S, State 2(l) ,------- S. 
8-to-1 MUX 

O(H) 
- SI 8·t0-1 MUX 

O(H)l I-S' y 
SoC- I I y 

I Y: LD 
p. Pa Pc Po I 

EN DIU 

CK-~ 
Paralielloadable 
upldown counter Cl p-Sanity(l) 

- CO CI c-1(H) 
.Q. a • a.:- Co 

..J 

2 1 0 
II 3·10-8 State Decoder 

CK 
7 8' 5 4 3 2 1 0 i 

~~a>-
V(H) D M Q-M(H) 

~O- a J-- N(l) 
V(H)-r- D N Q __ 

D P 
QJ-- P(l); 
Q-

P(H) 

D Q 
QJ-- OIL) ;Q(H) 
a-

~ ~ ~ ~ ~ ~ 2- ~ 

Y ;;:: U) "' ~ '" N 0 
OJ '" OJ OJ OJ '" '" '" Sanity(l) 

FIGURE 13.22 
Implementation of the FSM in Fig. 11.20a centered around the parallel loadable upfdown eounler of Fig. 12.26 wilh applicalion of E'ls. (11.7) and (13.8) 
and wilh 8-to-1 MUXs for counl cnahle and direction controls. 



638 

(.) 

FIGURE 13.23 

CHAPTER 13/ ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES 

Do· °0 ' 0.0 . Q t '~, ... a~IO_1 + ... +O"" fO~!""'1 

0 , - OOt1o (I '" 0 ," _1 ~ °2' ,. l + " . ... 0 "', ',_, .... ,, 

(b) 

Model for the one-hol me thod c:~pre~sed by Equations (13.9). (a) Siale diagram segment showing 
"into" bl1lllChing conditions and Mealy Oulput ~ for the jlh rderence Slale. Here. any branching 
condition !i-J is ulKlerstood to rcprcSi:llllhc holding condition for the j lh Slate. (b) Generali7.ed 
one-hot NS· and outpUI-forming logic for D flip-fl op designs by applicmion of Equations ( 13.9) \0 m 
stateS and r total conditional outputS (or unconditional Moore outputs if / j,/ (X) =- 1). 

where !j./(X) represents the jlh function o f extemal inputs X for the Ith OUlpul, the Q's are 
the slate variables, and the integer I =0,1,2 . .. . • (r - 1). Notice that Eqs. ( 13.9) give the 
minimum NS- and omput-fonning logic for a 0 flip-flop design by the one-hot mcthod 
but without the use of K-maps! Moore outputs result fo r any f,.I( X) = I in Eqs . (13.9). 

To illUSlfaie the application of Eqs. (13.9). consider the state diagram and state table in 
Figs. 13.24a and b. which represent the FSM in Fig. 13.13a but with only Slate identifiers 
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indicated for the states. Applying Eqs. (13.9) directly to either the state diagram or state 
table, there results the following NS and output functions: 

Da =aX +dX 
Db=aX 
D(,=b 
Dd=C +e 
De=dX 
Z=e 

(13.10) 

where the assignment of specific one-hot codes is not necessary. If one were to make one-hot 
state code assignments for this FSM, the specific code words would be chosen from the set 
{OOOOI. 00010, 00100, 01000, 100oo} in any order. But to do this is an apparent waste of 
the designer's time and effort, and can even be misleading. All that is important to know is 
that Eqs. (13.10) can be read directly from either the state diagram or state table without 
the assistance of K -maps, and that no specific one-hot state code assignments are required 
or even desired. These are the salient features of the one-hot method that set it apart from 
the alternative approaches. But, of course, the advantages afforded by the one-hot method 
come at the price of an increased hardware commitment. 

One potential problem with the one-hot method for state machine design is the initial
ization into a one-hot state as in Fig. J3.24a. To do this requires that the D flip-flops have 
both preset (PR) and clear (CL) asynchronous overrides, or that one flip-flop have aPR 
override while thc other four have CL overrides. However, many MSI devices, such as 
storage registers, come with only CL asynchronous overrides. To overcome this limitation 
on the use of the one-hot method, a one-hot-plus-z.ero approach can be used, as indicated in 
Fig. J3.24c. Now the FSM can be initialized into the 00000 state with flip-flops having only 
CL asynchronous overrides. But the cost of this convenience is the extra logic required for 
the Do function given by D" aX + dX + abedi? Shown in Figs. 13.25a and 13.25b are 
the logic circuits for the one-hot and one-hat-pi us-zero approaches, respectively, based on 
Eqs. (13.10). To avoid fan-in limitations by the one-hot-plus-zero method, the correction 
for generalized "0" state initialization abedi? .. is best implemented by using the CMOS 
NOR gate shown in Fig. 8.46. 

A More Complex Example of the One-Hot Design Method To further illustrate the 
use ofEqs. (13.9), consider the state diagram and state table for a fictitiousFSM in Fig. 11.42 
that is reproduced in 13.26 for the convenience of the reader. Reading directly from 
the state diagram or state table. Eqs. (13.9) become 

Da as + aT + eST + ahcde 
Db aST + bST + cST 
Dc bST + cT + dST 
Dd bST +dST 
De bST + cST +dT + eS +eT 

P=eST 
Q dST+eS+b 

(13.11) 

where it is understood that a Qa, b Qb, C Qc, d Qd. and e = Qe. To initialize 
this FSM into the 00000 state instead of state a, in agreement with Fig. 13.26a, Da must 
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Implementation of the FSM in Fig. 13. l3a by using the one-hot functions given by Eqs. (13.10). 
(a) External logic required jf FSM is initialized into one-hot state u. (b) Extemallogic required if 
FSM is initialized ioto the 00000 state by using the one-hol-pJus-zcro method implied by Fig. 13.24c. 

include Ihe tenn abede. as indicated in Eqs. (13. 11). This irreversibly directs the FSM inlo 
Slale a on lhe next clock triggering edge following initialization. Note the increased hardware 
required by Eqs. (13.11) compared to that required by Eqs. (11 . 11) in Subsection 11.10.2. 
the extra cost for use of the one-hot method. But ORGs and s-hazards in the output logic 
are not possible, as explained laler in Subsection 13.5.4. 

13.5.1 Use of ASMs in One-Hot Designs 

The one-hot method holds some unique advantages over other approaches to stale machine 
design. Because there is a direct relation between each stale of the FSM and the NS and 
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FIGURE 13.26 
Reproductions of the FSM in Figure 11.42 for use in the one-hot design method. (a) Fully docu
mented state diagram representation showing state identifiers. (b) Equivalent state table represen
tation. 

output functions that result in the one-hot method, a registered PLD can be programmed 
directly from the state table, the ASM chart, or the state diagram. In fact, the ASM chart 
can be thought of as a graphical representation of the one-hot NS and output equations from 
which the 10gic circuit is constructed. 

Consider the state diagram and equivalent ASM segments given in Figs. 13.27a and 
13.27b. From either of these, the one-hot NS and output equations are read directly 
as 

Da =() 
Dh=a+bX 
Dc bX 

M=bX 
P=b 
R c 

(13.12) 

with the resulting logic circuit shown in Fig. 13.27c. Notice how the ASM chart or the state 
equations translate directly to the logic circuit. 

As a second and more complex example of the use of ASMs in logic circuit con
struction by the one-hot method, consider the resolver configuration in Fig. 11.41. Re
produced in Figs. 13.28a and 13.28b are the state diagram and ASM chart for this re
solver, from which the following NS and output functions are derived by application 
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equations. (a) Stale diagram segment. (b) ASM segment equivaJcm to (a), (c) One-hot logic circuit 
derived from the state diagram segment. ASM segment. or from Eqs. (13 .12). 

of Eqs. (13.9): 

ond I 
CLRREG = WCNT = a I 

SlVLY =b 
FIN= c . 

RES=cY 

113. 13) 

Again. notice the case wilh which the onc-hot Eqs. (13 .13) are generated from the state 
diagram. 

The logic ci rcuit for the resolver configuration, shown in Fig. 13.2St. is easily produced 
from the ASM chan in Fig. J3.28b. But the logic circuit is aJ.'\O easily conslructed either 
from Ihe NS and output funclions in Eqs. (13. 13) or from the state diagram. In fact. anyone 
of these (the state diagr.un, the NS and output function , or the ASM chart) ean be used with 
equal ease in constructing the one·hot logic cin:uit. The fully documented slate diagram 
can replace the ASM ehart for thi s purpose if it is recognized that a holding condition is 
a merging path that contributes to the NS (unction according to Eqs. (1 3.9). TIle reader 
can confirm this be comparing the NS functions in Eqs. (1 3.1 3) with the state diagram in 
Fig. 13.28a. 
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FIGURE 13.28 
Resolver configuration of Fig. J 1.41 implemt:nted by Iheone·hot design method. (a) Fullydocumented 
state diagram for the resolver. (b) Equivalent ASM chan. (<.: J One-hot logi<.: circuit <.:onstructed directly 
from the ASM <.:han, state diagram, or from the NS and output functions in Eqs. (13.13). 

13,5.2 Application of the One-Hot Method to a Serial 2's Complementer 

Algorithm 2.6 in Section 2.6 presented a simple "pencil-and-paper" method of obtaining 
the 2's complement of a binary number. As a simple example of the application of the 
one-hot method in state machine design, Algorithm 2.6 will now be implemented. It is 
recommended that the reader revicw and fully undcrstand this algorithm before conti.nuing 
in this subsection. 

Shown in Fig. 13.29a is the block diagram symbol for the serial 2's complementer 
indicating that the binary input (Bill) is introduced LSB first to the complcmenter and 
that the 2's complement output (T) is issued LSB first. The ASM chart and state diagram 
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(d) Logic circuit for the serial 2's complcmentcr derivc:d directly from either the ASM chlln or the 
state diagram. 

expressions of Algorilhm 2.6 are given in Figs. 13.29b and J 3.29c. Notice bow much 
simpler il is 10 read the state diagram representation than it ;s 10 read the ASM chan. From 
either the Siale diagrum or ASM chare there results the fo llowi ng one·hot NS and output 
expressions: 

I D. ~ aBin + (Stan) I 
Db = (IBi1l + b . 
T = aBin + bOin 

(13.14) 

where il follows ahal Db = aBin + bBln + bBin = aBin + b. lhe resuh oblained from the 
Slale diagram. 

T(H) 

Sanity(l) 
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FIGURE 13.30 
Timing diagram for the serial 2's complementer in Fig. 13.29, showing the binary input Bin and the 
2's complement output T together with the initialization and start signals. 

Equations (13.14) are implemented with the one-hot logic circuit shown in Fig. 13.29d. 
Here, it is observed that the FSM is initialized into the 00 state following which a Start signal 
must be applied over at least one clock cycle to begin the process. In effect, the Start signal 
irreversibly forces the FSM into a one-hot state from the 00 state following deactivation 
of the sanity input. Notice also that the sequence is open-ended in the sense that it never 
returns to the initial state a. Thus, the process will continue ad infinitum, or until the circuit 
is reset by the sanity input. 

The results of a logic simulation of the serial 2's complementer is given in Fig. 13.30. 
Here, the serial input Bin is shown synchronized in phase with clock. and the circuit is forced 
into state a by Sanity(L) following initialization. Notice that the Start signal is sampled by 
the triggering edge of the clock waveform immediately following release of the Sanity 
initialization signal. This is necessary to permit the process to begin. 

13.5.3 One-Hot Design of a Parallel-to-Serial Adder/Subtractor Controller 

For this example, consider that two 8-bit USRs, one for word A and the other for word B. 
shift each bit into a single Full Adder (FA) LSB first. The sum is then issued serially from 
the FA LSB first. One bit, say bit B, is introduced to the FA via a controlled inverter (XOR 
gate) for purposes of adding bit B to or subtracting (in 2's complement) bit B from bit A. 
A D flip-flop is used to supply the carry-out of One operation to the carry-in of the next 
bitwise serial operation. The D flip-flop must also have PRE and CLR overrides to preset 
the carry-in (PSCRY) to the FA for the subtraction operation, as required by Eq. (2.14) in 
Subsection 2.6.2, or to clear the carry-in (CLCRY) if addition. An n-bit binary counter is 
used to indicate when the 8-bit addition/subtraction process is complete so that the system 
can be reset for the next 8-bit series of bit-wise operations. 

Shown in Fig. 13.31a is the state diagram representing the sequence of events that must 
take place during the process of serially adding or subtracting two 8-bit operands. Thus, 
this state diagram represents the controller for the process. Notice that use is made of 
the one-hot-plus-zero approach allowing the FSM to be initialized into the 000 state. The 
process begins in state a by loading the counter (LDCNT) in preparation for counting, by 
clearing the registers (CLREG), and by pushing the start button (Start) to begin the process. 
In state b, the external D flip-flop is initialized for either subtraction or addition (PSCRY 
or CLCRy), and the mode controls to the USRs are set to parallel load the 8-bit operands 
(S, = 1, So = 1). Finally, in state c the mode control S, goes inactive for right shifting 
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Design of the paralle1-to-series adderlsubtractor controller by the one-hot method. (a) State diagram 
for the controller initialized into the 000 state by using the one-hot-p1us-zero approach. (b) Symbolic 
representation of the fusible bit position patterns for an FPLA programmed to generate the NS and 
Mealy output logic in Eqs. (13.15). 

(S, = 0); the XOR gate is set to complement (CMPL) operand B if subtraction or not if 
addition, hence CMPL if (Add/Sub); counting is begun (CNY); and a completion signal 
(FIN) is issued at the end of 8 counts, FIN if (CNT = 8). Notice that the mode control So 
is set to logic I throughout the process. 
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From the state diagram in Fig. 13.3la, the one-hot NS and output functions are read 
directly by applying Eqs. (13.9), and the results are 

{ 

Da = aStart + bcStart + c(CNT = 8) I 
Db = aStart + bStart 

Dc = bStart + c(-:;:C:::-'NT=-=---:::-8) 

and 

WCNT = CLREG = a 

PSCRY = b(ifJd/Sub) 

CLCRY = b(Add/Sub) 

S) =b 

CMPL = c(Add/Sub) 

CNT=c 

FIN=c(CNT= 8) 

(13.15) 

where if follows that Do = aStart + iibcStart + c( CNT = 8) = aStart + bcStart + c( CNT = 
8). In the state diagram and in Eqs. (13.15) it is understood that the start signal (Start) must 
be active for a period of time greater than the clock period and that it must be debounced. 
It is not necessary to synchronize Start because of the GOINO-GO configurations that exist 
relative to states a and b. Finally, the exact nature of the counter is not highly relevant at 
this time since its only function is to issue the signal CNT = 8 at the end of the process. 
However, CNT = 8 is necessarily a synchronous output from the counter. 

The one-hot implementation of the parallel-to-series adderlsubtractor controller is illus
trated in Fig. 13.31 b, where an FPLA is programmed to generate the NS and Mealy output 
functions ofEqs. (13.15). The Moore outputs in Eqs. (13.15) are not included because they 
are generated by the outputs from the flip-flops, an important characteristic of the one-hot 
method. Note that with a little care, it is possible to program the FPLA directly from the 
state diagram by application of Eqs. (13.9). For more complex FSMs, however, it is still 
a good idea to construct a p-tenn table from the NS and output equations to help reduce 
programming errors and to establish a record for future use. 

The logic circuit for the adderlsubtractor controller is shown in Fig. 13.32 where an 
FPLA and a 4-bit storage register are used for the implementation. Three individual FET D 
flip-flops could be used in place of the 4-bit storage register, but the 4-bit storage register 
is conveniently available as the 74xx 175 MSI chip. Notice that all four of the Moore 
outputs are issued directly from the flip-flop outputs. The 6 x 10 x 7 FPLA indicated is the 
minimum size required. The actual size of the FPLA may be larger, its choice being left 
to the discretion of the designer. The debouncing circuit is chosen from those discussed in 
Section 11.8. 

13.5.4 Perspective on the Use of the One-Hot Method: Logic Noise and Use of 
Registered PLDs 

The subject of logic noise in the output of one-hot FSMs is conspicuously absent in all 
previous discussions. The reason: No logic noise is possible in the FSMs considered! Since 
the output functions never involve coupled state variables, internally initiated static haz
ards are not possible. Externally initiated static hazards are also not possible since a pro
perly designed one-hot FSM cannot hold in a two-one's race state. Furthennore, if care is 
taken in the use of two-one's race states as output states, ORGs will not be generated (see 
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Section J 1.2 for 3 discussion of ORGs). Remember thaI each state-to-stale transition is 
forced through a unique state having two ones - never through Lhe all zeroes state. The 
reason for this is that the action of the flip-flop in a given state-In-state transition holds 
the "J " of the origin stale active unlil the l1ansilion to the dest ination state is complete. 
Consequently. the use of the one-hot-plus-zero approach presents no problem even if the 
all-zero slate is used as an output slate . 

Registered PLDs. such as the R- and V-type PAls discussed in Section 7.4. are a natural 
choice for the onc-hot implementations of relatively small FSMs with only Moore (uncon
ditional) outputs. As has been pointed out. Moore outputs are generated directly from the 
flip-flop outputs in one-hot designs. The problem encountered in dealing with Mealy (con
d itional) outputs in one-hot designs is that each Mealy output requires an ANDing operation 
between an extemal input and a one-bol Slate variable (Hip-flop output). But PALs with R
Of V-type macroccUs lack the capability of genemting Mealy outputs directly frum internal 
ANDing operations. Therefore. each Mealy output must be generated by an ANDing op
en-IUon external to the PAL. Alternatively. the one-hot state variable can be fed back inlo 
an unused macroceH and ANDed with the external input. But this uses up a macrocell and 
delays that Mealy output by a clock cycle. Remember that in the one-hot method. each state 

CK 

CNT(H) 

S,(H) 

lOCNTI l ) 
CLREG {L) 

Sanity(L ) 



13.6 SYSTEM-LEVEL DESIGN 649 

requires a macrocell and if each Mealy output must also use a macrocell, the capability of the 
PAL can be quickly used up for all but relatively small FSMs. Therefore, as a rule, it is best 
to use registered PAL devices for one-hot-designs of relatively small FSMs with only Moore 
outputs. Used in this manner, registered PAL designs by the one-hot method offer quick, 
convenient and reliable results, and without the need for K-maps or programming soft
ware. See subsection 16.4.4 for information regarding synchronous one-hot programmable 
sequencers. 

If registered PLDs are to be used to implement large Mealy state machines by the one-hot 
method, FPGAs are the best choice. A good example is the use of the 4000 series Xilinx 
FPGAs. As explained in Subsection 7.7.3, these devices are extremely versatile and have 
the capacity to handle very large one-hot state machine designs with both Moore and Mealy 
outputs. The one drawback in the use of these FPGAs is that they require dedicated soft
ware to program them. For all but the experienced user of Xilinx FPGAs, this requirement 
is an impediment to design and may even preclude their use. Xilinx FPGAs accept VHDL 
descriptions of state machines from which the FSM can be synthesized automatically by 
synthesis tools such as AutoLogic VHDL by Mentor Graphics. For more information on 
these subjects see references cited in Further Reading at the end of this chapter. 

There still remains the question of initializing registered PLDs for one-hot designs. 
R-type PAL devices apparently lack initialization capability and are not recommended for 
use in most one-hot designs. The macrocells of V-type PAL devices contain D flip-flops 
with both PRE and CLR asynchronous overrides. Thus, V-type PALs can be initialized 
directly into a one-hot state but are otherwise limited in their use in one-hot applications 
as explained earlier. The configurable logic blocks (CLBs) of all Xlinx FPGAs contain D 
flip-flops with both PRE and CLR overrides and consequently are suitable for one-hot state 
initialization. Generally, registered PLDs having D flip-flops with only CLR overrides can 
be used, but only for the one-hot-plus-zero approach as indicated by previous examples. 

Finally, there is software called A-OPS (for Asynchronous-One-hot Programmable Se
quencers) on the CD-ROM bundled with this text that can be used to automate the design 
of PLA or RAM driven asynchronous and synchronous one-hot state machines. Initializa
tion into the all zero state is possible by using the one-hot-plus-zero approach. For more 
information regarding this software, refer to Appendix B. 

13.6 SYSTEM-LEVEL DESIGN: CONTROLLER, DATA PATH, 
AND FUNCTIONAL PARTITION 

One very common view of a digital system is the use of an FSM as the controller for a set 
of components parts that comprise the controlled system called the data path. This view 
is expressed in Fig. 13.33, where all input and output (I/O) conditioning logic has been 
omitted to focus attention on the main features of this architecture. Here, it is understood 
that the data path devices generally consist of a mixture of both sequential and combinational 
logic machines. Typical among these are registers, counters, ALUs, PLDs of various types, 
decoders, MUXs, shifters, comparators, digital-to-analog (D/A) converters, and the like. 
The architecture represented in Figure 13.33 is the one emphasized in this text. 

All sections in this chapter up to this point have been devoted to various architectures 
that can and should be considered in controller design. Chapters 10, 11, and 12 supply 
the necessary background information needed to build reliable controllers as well as those 
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FSMs that comprise the data path. Chapters 2 through 9 provide the necessary background 
for the design of a wide range of combinational logic devices, many of which are widely 
used in the data path of digital systems. In short, this section may be considered as the 
culmination of all developments necessary to build reliable digital systems. 

The controller for a digital system is an FSM, perhaps like the one in Fig . 13.3 Ia. BUI 
it is also the "brains" of the system. Its function is to coordinate precisely the operation of 
the various components of the dam path so as to perfonn the specific tasks required by the 
system. Thus, the controller must issue instructions (control signals) to the data path unit 
(OPU) based on the external inputs it receives and on the feedback information received 
from the OPU. A configumtion such a.~ this, wherc the output~ of one unit are the inputs to 
another, and vice versa, is called a handshake inteiface. Feedback from the DPU is not a 
requirement for all systems, but is common in most. Note that both the controller and data 
path devices may receive signals from and issue signals 10 the outside world. 

Designing a complex digital system requires a "divide-and-conquer" approach. The 
system must be divided into subsystems Ihat in tum must be broken down into well-defined 
parts that can be implemented with available hardware. The detailed block diagram that 
conveys this information is appropriately called the jUllctional partition ofthe system. Thus. 
the functio nal partition contains a block representation of the controller, all the peri pheral 
devices that constitute the OPU. all inputs from and outputs to the outside world. and the 
110 conditioning circuits. Consequently, the functional partition contains all the informalion 
needed for "hookup" and operation of the system given the details of the control ler design, 
which must be treated as an integral part of the design process. 

The functional partition and a detailed flowchart or ASM char1 for the controller of a 
digital system are usually interdependent and must be developed together. For a complex 
digital system this development process may require two or more attempts at representing 
the functional partition and flowchart or ASM chart before satisfactory representations can 
be found. Simple block diagrams are often useful in this process, since they can provide a 
physical picture of the overall system. The use of timing diagrams is usually a necessary pan 
of the development stages of the design process - in some designs timing considerations 
are of paramount importance. Finally. remember that a flowchart or ASM chart is considered 
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to be only a "thinking tool" for the construction of the state diagram or state table from 
which the controller is designed. 

There may be more than one good design for a given digital system. This is particularly 
true for complex digital systems. The success of the design will usually depend on the 
engineering creativity, intuition, and generally the experience of the digital designer. But 
the manner in which a digital system is to operate in a particular environment can also be an 
important factor. For example, suppose a stepping motor control system is to be designed 
to move a certain mass from one fixed position to another in a smooth, nonjerky fashion. 
Clearly, the design considerations for the stepping motor controller, based on mass, time, 
and distance constraints, are different for the operation of a small robotic arm than for the 
operation of an elevator. The point is that important detailed information regarding timing 
and functional constraints must be factored into the design process from the beginning 
stages if successful designs are to result. 

13.6.1 Design of a Parallel-to-Serial Adder/Subtractor Control System 

A brief description of the parallel-to-serial adderlsubtractor system was given in Subsection 
13.5.3. There, the one-hot-plus-zero approach was used to design the system controller 
shown in Figs. 13.31 and 13.32. Now, it is necessary to construct the functional partition for 
this system. This is done in Fig. 13.34, where block circuit symbols are used to represent the 
controller and data path devices. The data path unit (DPU) consists of two 8-bit USRs, a full 
adder (FA), an RET D flip-flop, a controlled inverter (XOR gate), and a 4-bit parallelloadable 
up/down counter of the type shown in Fig. 12.20. Of course, there are many "variations 
on the theme" in the design of the DPU. For example, right shift registers with parallel 
load capability can replace the USRs, a simple 3-bit binary up counter with asynchronous 
CL can replace the 4-bit parallelloadable up/down counter, and a transparent D latch with 
asynchronous PR and CL overrides (Fig. 10.51) can replace the edge-triggered D flip-flop. 
If operands larger than 8-bits are to be added or subtracted, larger registers must be used. 
Thus, two 8-bit registers can be cascaded in series to accommodate 16-bit operands, or four 
8-bit registers can be cascaded to accommodate 32-bit operands, etc. 

Presented in Fig. 13.35a is a reconstruction of the state diagram for the parallel-to-serial 
adderlsubtractor controller in Fig. 13.3Ia, but now with a state code assignment suitable 
for a conventional design. In Fig. 13.35b is shown the timing diagram for an 8-bit serial 
subtraction operation by the adderlsubtractor system. Notice that the sequence of events 
indicated in the timing diagram are the same as those in the state diagram and that they, 
together with the functional partition in Fig. 13.34, provide a complete stepwise description 
of this system: Following initialization of the adder/subtractor in state a, the controller 
loads a 0000 into the counter and clears the USRs. After the start button Start is pressed 
(for a period of time greater than a clock period) the controller transits from state a to state 
b. In state b the RET D flip-flop and mode control S, are set to logic 1 by the controller 
in preparation for subtraction. The carry-in CI to the FA is now initialized to logic 1, as 
required for subtraction by 2's complement. After the release of the Start switch button 
(hence Start), the controller transits to state c, where counting by the counter is begun. 
During this time, the two 8-bit USRs deliver the operands serially LSB first to the full 
adder (FA) via a controlled inverter on the B line, which is now set to complement B 
[CMPL(H) = I(H)] as required for subtraction. With each clock triggering edge, bitwise 
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Functional partition for the parallel-to-serial adder/subtractor system showing block symbols for the 
controller and data path devices. 

subtraction of operand B from A occurs and continues until all e ight operand bits of A and B 
have been processed. Allhis lime Ihe controller receives Ihe signal eNT= 8, a completion 
signal FIN is issued. and Ihe conlroller relurns 10 slate a in readiness for the next 8-bit 
additionlsubtraclion process. 

All that remains is 10 find an acceptable logic design for the controller. In contrasl to 
the one-hot approach represented by Eqs. (13.15) and implemented in Figs. 13.31 and 
13.32. a minimum result will now be found. Shown in Fig. 13.36 are the K-maps and 
minimum covers for the NS- and output-forming logic as ploued from the state diagram in 
Fig. 13.35a. assumi ng the use of JK flip-flops. The resulting NS and output functions are 

O(H) 

:rOIl) 

/1 

~I 

CNT(H) 
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Design and timing considerations for the parallel-to-serial adderlsubtractor system. (a) State dia
gram suitable for a conventional controller design. (b) Timing diagram for an 8-bit serial subtraction 
operation showing input signals to and output signals from the controller. 

given by 

I :~ -(CNT= 8)} and 
JB = Start 

K8 A(CNT 8) 

LDCNT = CLREG = jj 

PSCRY = AB(Md/Sub) 

CLCRY = AB(Add/Sub) 

SI=AB 

CMPL= A(Add/Sub) 

CNT=A 
FIN = A(CNT = 8) 

(13.16) 

which contain one shared PI, A(CNT = 8). Notice that there are four Mealy outputs and 
four Moore outputs, none of which have static hazards associated with them. 

Equations (13.1 6) are implemented in Fig. 13.37 by using a minimum number of gates 
external to the flip-flops for a total gate/input tally of 6/12 excluding the single inverter. This 
may be compared with the one-hot-plus-zero design given by Egs. (13.15) which represent 
a total gatelinput tally of 13/28 excluding inverters and taking account of the one shared 
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PI, c(CNT = 8). Thus, roughly twice as much external hardware and one extra flip-flop 
are needed by the one-hot approach for the convenience of reading and implementing the 
NS- and output-forming logic directly from the state diagram without the use for K-maps. 
If D flip-flops are used instead of JK flip-flops, it is easily shown by map conversion that 
the NS functions become 

I
DA = A BStart + A(CNT = 8) I 
DB = AStart + A(CNT = 8) + AB ' 

(13.17) 

the output logic remaining the same. This would bring the total gate/input tally for the D flip
flop design to 10/22 exclusive of inverters. Thus, the gap narrows between a conventional 
D flip-flop design and that for the one-hot method. Also shown, by map conversion, is the 
T flip-flop design that falls in between the JK and D designs, yielding 

{
TA =~BStart+A(CNT= 8)} 
TB = BStart + A(CNT = 8) 

for the NS functions, giving a total gate/input tally of 8/19 excluding inverters. 

(13.18) 

There still remains the question of ORGs in the design of this FSM. The transition from 
state 11 to state 00 can result in the production of ORGs if the race path is via the 01 state. 
In Fig. l3.36b it is evident that ¢2 is not used in the K-maps for PSCRY, CLCRY, or S[ and, 
consequently, ORGs are not possible by the 10-race state path. But this discussion is made 
moot by the fact that the 11 --+ 00 transition completes the process and the FSM is brought 
to an initialized condition in state 00. Therefore, it does not matter that ORGs are produced 
during this transition - no logic noise problems exist. This fact can be useful in the design 
of other system controllers. 

13.6.2 Design of a Stepping Motor Control System 

Stepping motors convert a series of pulses into angular motion that permits very accurate 
positioning of the motor's rotor without feedback control. Also, stepping motors are useful 
in systems where there is space only for a small motor to drive a relatively massive part. 
Linear angular accelerations and decelerations of the motor can prevent slippage, chattering, 
or jerky motion that could lead to mechanical failure or adversely affect mechanical opera
tion. Stepping motors exhibit zero steady-state error positioning and can develop torque up 
to 15 Nm (Newton-meters). They are usedin robotics to accurately operate mechanical parts 
in some manner, in fluid control systems for precise adjustment of fluid control valves, in 
wire-wrap processing of circuit boards, and in a variety of other applications too numerous 
to mention here. 

Stepping motors will accept pulse strings in the range of 1500 to 2500 pulses per second. 
The design of the control system required to generate these pulse strings is the subject of 
this subsection. The nature and design of the stepping motor to which the control system 
is attached fall outside the scope of this text and will not be discussed further (see Further 
Reading for information on this subject). 

The overall operational characteristics for the stepping motor control system are provided 
in Fig. 13.38. In Fig. l3.38a are shown the angular velocity/time requirements of the motor. 
The GO command causes a linear angular acceleration of the motor while a HALT command 
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Ol/erall operHtional characteristics of the stepping motor control system. (a) Angular velocity vs ti me 
requiremems of the control system. (b) Physical picture showing input controls, STEP pulse train 
required for linear angular accelerat ion, and register outputs 10 stepping motor. 

produces a linear angular deceleration. The HOLD command cau~s the mOlor to maintain 
the angular velocity that is reached at the lime the HOLD command is given. The motor 
must operate between zero speed and a maximum angular velocity that is set by the number 
of steps in the speed/time characteristic, 16 in the case of Fig. 13.38a. 

The physical picture for the overall system is presented in Fig. 13.38b. Here, the control 
system receives one of the three (nonovcrlapping) asynchronous input signals, GO. HOLD, 
or HALT, and issues a series o f STEP pulses in response 10 that input signal. In the physical 
picture, a GO signal is impl ied, resulting in a STEP pulse series required 10 cause a linear 
angular acceJcration of the motor. Each STEP pulse is received by lhe SlPO register, which, 
in tum, deliver.; a sct o f four phase pulses (4) , . 4>2. 4» . 4>,,) to the power transistors of 
Ihe stepping motor, causing the motor to rotate by a certain amount. The SIPO register is 
triggered by the STEPCK waveform. which is exactly twice the frequency of SYSCK, the 
waveform used to trigger the control system. 

Motor 
shafl 
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FIGURE 13.39 
Acceptable timing relationships between synchronized external inputs and STEP pulse signals to the 
stepping motor. 

An acceptable timing relationship between external inputs, the STEP pUlse, and the 
phase pulse signals to the stepping motor is given in Fig. 13.39. Each STEP pulse width is 
specified to be one period of the STEPCK waveform and to be active coincidentally with 
the active portion of the SYSCK waveform. When a STEP pulse is received by the register, 
that pulse is shifted from the LSB stage toward the MSB stage on each falling edge of the 
STEPCK pulse. Thus, a set of four time-shifted pulses is generated from the shift register 
outputs by each STEP pulse as indicated in Figure 13.39. The maximum rotational velocity 
is set by the frequency of the STEPCK waveform, which is assumed to be low enough to 
match the inertial characteristics of the motor. The maximum rotational velocity (speed) 
is illustrated midway through the timing diagram in Figure 13.39 followed by an angular 
deceleration mode as indicated. Note that the SYSCK waveform can be generated from the 
STEPCK waveform simply by using a divide-by-two counter. Such a counter is shown in 
Fig. 12.12c. 

The functional partition of the stepping motor control system is shown in Fig. 13.40. 
Synchronous, nonoverlapping inputs GO, HOLD, and HALT are introduced to the controller 
from input conditioning circuits. The data path (DPU) devices consist of a parallel-Ioadable 
right shift register, as in Fig. 12.3, but triggered by FET flip-flops; a special parallel-Ioadable, 
up/down data-triggered counter; and a parallel-Ioadable up/down counter, of the type shown 
in Fig. 12.20, set for up-count only and hereafter called the "up-counter." The special data
triggered counter is similar to that in Fig. l2.20, except that the NS functions in Eqs. (12.5) 
are the clock inputs to the FETT flip-flops - hence, data triggered. This counter is triggered 
off of the falling edge of the Up (DECDLy) or Dn (INCDLy) input pulse as indicated by 
its design shown at the end of this subsection in Fig. l3.46. The up-counter is triggered on 
the falling edge of the SYSCK waveform and issues a CO (CNT) signal at the end of count 
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15 that is picked up by the controller on the nexi rising edge of SYSCK. To ease liming 
restrictions, both coonters are designed to be parallel loaded asynchronously viti the PRE 
and CLR overrides on their nip-flops. 

Constructed in coordination with the functional partition is the ASM chart shown in 
Fig. 13.4 1. It is 10 be used as a thinking tool in the construction of the sate diagram from 
which the controller will be designed. The chart expresses lhe basic algorithm involved that 
is physically carried out by the functional partition in Fig. 13.40. Brieny. this algorithm 
requires thaI in the GO mode, and with each successive STEP pulse issued. the up count is 
decreased from a maximum of 15 to a minimum of 0 SYSCK cycles via the parallel load of 
the Up/down data-lriggeredcounter. In the HALT mode this processed is reversed with each 
successive issue of the STEP pulse. And in either case, the acceleration or dec-eleration 
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FIGURE 13.42 
Fully documented state diagram for the stepping motor controller as derived from the ASM chart in 
Fig. 13.41. 

process can be bypassed by a HOLD command. Notice that the ASM chart is that of a 
Mealy machine. 

The state diagram that is derived from the ASM chart is shown in Fig. 13.42. A state code 
assignment has been given that yields no output race glitches (ORGs), provided that the 
don't cares ¢, and ¢2 are not used for minimizing the output logic. The output LDZERO is 
an exception to this requirement, permitting these don't-care states to be used as needed for 
its minimum cover (see transition 000 --i> 011 in the state diagram). Notice how much more 
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vividly the sequential behavior of this FSM is portrayed by the state diagram than by the 
ASM chart. But the ASM chart serves as a better thinking tool than the state diagram when 
used to represent the algorithmic behavior of the FSM while constructing the functional 
partition. Of course, a flowchart can serve the same purpose as the ASM chart in this regard. 

At this point it is decided that the controller is to be designed by using a PLA together 
with RET D flip-flops. To this end the K-maps for the NS and output functions are plotted 
from the state diagram in Fig. 13.42 and are presented in Fig. 13.43. Here, the minimum 
cover is shown by shaded loops, as is customary in this text, and the results are given as 
follows: 

DA = A . MXDLY+ B +C 

DB = C· CNT· GO+ Ii· GO+ B· CNT+ B ·HALT+BC 

Dc = BC . CNT· HALT + ABC· MXDLY + BC . CNT 
+ B C . GO + Ii . GO + Ii C 

LDZERO=lic 

STEP = LDDLY = ABC + ABC 

DECDLY = ABC· MNDLY . HOLD 

INCDLY = ABC· MXDLY· HOLD 

STDLY= ABC +ABC 

(13.19) 

Notice that there are two shared PIs, Ii . GO and Ii C, bringing the p-term count to 19 for 
the combined NS and output functions. The requirement that tP, and tP2 not be used for the 
output functions, other than LDZERO, is evident in the K-map for STDLY. 

The p-term table based on the results given by Eqs. (13.19) is presented in Fig. 13.44. 
Here, two inputs are each marked with a single asterisk and two outputs are each marked 
with a double asterisk to indicate that they are active low. Active low inputs to and active low 
outputs from PLAs are discussed in Section 7.5. Recall from that section that the active low 
inputs can be accommodated by either complementing their columns in the p-term table or 
by using an inverter on their input lines, but not both. Acive low outputs from a PLA-type 
device require the use of inverters. Notice that there are 9 inputs, 8 outputs, and 19 p-terms 
indicated in the p-term table. Thus, the minimum size PLA required for this controller 
has dimensions 9 x 19 x 8, but any larger PLA device can suffice. The use of a ROM to 
implement this FSM would be an inefficient application (an overkill) of the device, since 
only a small fraction of the 29 = 512 minterm capability of the ROM would be utilized. 
For a review of array logic devices and their uses, the reader is referred to Sections 7.2 
through 7.6. 

Having completed the functional partition and the p-term table for the controller, all 
that remains is an overview of the controller architecture. This is done in Fig. 13.45 where 
a 9 x 20 x 8 FPLA is used to generate the NS and output functions and a 4-bit storage 
register is used as the memory. To satisfy the requirement that STEP be issued coinci
dentally with SYSCK, an AND gate is used to AND the SYSCK waveform with the STEP 
signal issued by the FPLA. The input conditioning circuits and SYSCK generating cir
cuits are provided for completeness. Notice that it is a divide-by-2 counter that generates 
SYSCK from a STEPCK input. The input conditioning circuits each consist of debounc
ing and synchronizing stages. If it is known that the input signals are of duration less 
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PLA Inputs 

A B C MNDLY· MXDLY· CNT GO HALT HOLD DA DB Dc 
P-terms 

Is 17 Is 15 14 13 12 I, 10 Y7 

--
A'MAXDLY 1 - - - 0 - - - - 1 

B - 1 - - - - - - - 1 

C - - 1 - - - - - - 1 

C·CNT·GO - - 1 - - 1 1 - - 0 

A'GO 0 - - - - - 1 - - 0 

B'CNT - 1 - - - 0 - - - 0 

B·HALT - 1 - - - - - 0 - 0 

BC - 1 1 - - - - - - 0 

Be ,CNT·HALT - 1 0 - - 1 - 0 - 0 

ABC ·MXDLY 1 0 0 - 0 - - - - 0 
- - - 0 1 - - 0 - - - a BC'CNT 

Be'Go - 0 1 - - - 1 - - 0 

AC 0 - 1 - - - - - - 0 
-- 1 0 0 - - - - - - 0 ABC 

ABC 1 1 1 - - - - - - 0 

ABC, MNDL Y . HOLD 1 1 1 0 - - - - 0 0 

ABC' MXDL Y . HOLD 1 0 0 - 0 - - - 0 0 

ABC 1 0 1 - - - - - - 0 

ABC 1 1 0 - - - - - - 0 

* Indicates an active low input--complement column or use an inverter on the input. 
** Indicates an active low output--must use an inverter on the output. 
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Ihan one clock period, a melcher stage (see Fig. 11.21) must be added to each of these 
circuits. 

The data-triggeriXI up/down counter indicated in the functional partition of Fig. 13.40 
is somewhat different from any counters discussed previously. This counter is triggered on 
the falling edge of either the Up pulse or the Dn input pulse with the strict requirement that 
these pulses never be overlapping. This requirement is necessarily mel by (he controller. An 
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FIGURE 13.46 
ImplemenUition of the 4·bi, data.triggered up/down binary counter with asynchronous paraJlelload. 
(a) Logic circuit for the lth stage showing lhe CO and BO OUlpullogic. where thc NS functions Tj(H) 
are given by Eqs. ( 12.5). (b) Block circuit symbol. 

inspection olthe state d iagram in Fig. 13.42 indicates that DECDLYand /NCDLY, the Upand 
Dn inputs to Ihe counter, can never be active at Ihe same time - they are issued in separate 
slales of the state diagram. Another unique fealUre of this data-lfiggered coutller is that the 
memory of each stage is an l-TI D flip-flop configured as an FET toggle module (a divide
by-2 counter). Thus. the only data inpul 10 each memory element is by way of the clock 
input. where TJ in Fig. 13.463 represents T.~. To. Tt,-. and T/) in Eqs. (12.5). The rET feature 
of the toggle module ensures Ihat triggering will occur on Ihe falling edge of the data pulse. 
a necessary feature of this type of counter. Were triggering \0 occur on thc rising edge of the 
pulse. the nonoverlapping requirement of thc input pulses could nOl generally be assured 
in applications other than the present one. In effect. the data-triggered up/down counter in 
Fig. 13.46 is an asynchronous state machine since it operates indepeooent of a clock signal. It 
is said to operate in the pillsi' mode. An in-depth coverage of this subject and relatcd matters 
is provided in Chapter 15. which deals with the pulse mode design of state machines. 

Just as is truc for the firs t system-level design in Subsection 13.6. 1. there are many 
acceptable variations possible in implementing the stepping motor control system. Some 
of these variations may depend on the type and character of the stcppi ng mOlor itself. But 
aside from that possibility, there exists other suitable variations. Takelhe DPU. foreJ(ample. 
The parallel- Ioadable right shifl register can be replaced by a USR sel for right shifting. 
and both counters can be the paralJelloadable up/down type featured in Subsection 12.3.5 
with the appropriate changes in the functional partition. If this change in counters is made, 
then the up/down (upper) counter shown in the functional partition must be triggered on the 
rising edge of the SYSCK waveform while thc lowe.r up/down counter is set for up CooIII 

and triggered on the falling edge of the SYSCK waveform. In this ca~ the par<ll1e1loading 
is best accomplished asynchronously by using the counter design presented in Fig. 12.28. 

a, 

CL 

Up 
On 
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13.6.3 Perspective on System-Level Design in This Text 

System-level designs can connote a different meaning to different designers. To some, 
system-level design might refer strictly to a combinational system. Or to others, it might 
mean the design of a microprocessor or computer. In the sense used in this text, a system
level design will always imply the presence of a controller unit (CU) and a controlled 
system called the data path unit (DPU). The CU will always be an FSM, which must not 
be confused with the CPU or central processing unit of a microprocessor or computer. 
Commonly, the CPU contains both a CU and a DPU; the DPU (or execution unit, EU) 
typically consists of registers, shifters, and an ALU. The design of microprocessors and 
computers will not be covered in this text. It is the philosophy of the author that digital 
design fundamentals and the design of microprocessors and computers cannot be treated 
effectively within a single text. Further Reading at the end of this chapter cites references 
on the subject of microprocessor and computer design for the reader wishing to develop in 
that direction. 

In system-level designs, the CU and DPU take on an entirely different identity and 
functionality and may differ greatly in their individual hardware requirements. In one case 
the DPU may be far more complex in its hardware makeup than the CU, while in other 
cases the reverse may be true. Two illustrative examples of system-level design have been 
presented in Subsections 13.6.1 and 13.6.2. Both are examples of the case where the DPU 
is more complex hardware-wise than the CU. There are, of course, many more examples 
of system-level design that could be offered in this section, and each could be used to 
illustrate specific facets of the design process and involve system designs both larger and 
smaller than those previously presented. This, however, is not practical given the space 
limitation of a text, and would take up space at the expense of other important subject 
matter. Learning how to design at the system level requires practice, practice, and more 
practice - there is no substitute for practical experience in this field. Threrefore, as an 
alternative, other illustrative system-level design problems are provided in the problem 
section to this chapter. And to help the reader in the decision-making process for these 
problems, a few suggestions are offered regarding hardware, input conditioning, and so on. 
Again, it is emphasized that these problems are all open-ended in the sense that they have no 
single best solution. Consequently, the reader's design skills and engineering intuition can 
be exercised within the limits provided by the description of the problem. But, the instructor 
can also permit greater latitude in arriving at an acceptable solution - all under the heading 
of "variations on the theme." This attitude toward design can be quite rewarding to both 
student and instructor alike. 

13.7 DEALING WITH UNUSUALLY LARGE CONTROLLER 
AND SYSTEM-LEVEL DESIGNS 

In using the model given in Figure 13.1, it is assumed that both the NS- and output-forming 
logic functions for a controller FSM can be handled by a single nonregistered PLD. In 
the event that this is not the case and the controller requirements exceed the limitations 
of a single PLD, separate PLDs of the same or different type can be used to implement 
the NS and output forming logic. The idea here is to invoke the concept of "divide and 
conquer." Such a scheme is shown in Fig. 13.47 for a Mealy FSM together with input and 
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FIGURE 11.47 
Separate PLD approach to the implementation of unusually large Mealy controller FSMs showing 
input and output conditioning circuit blocks. 

output conditioning circuit blocks. funhermore. this scheme can be used for very large 
FSM desi gn even if the PLDs are individually insufficient for the task. Section 7.6 explains 
how multiple PLD schemes can be used to augment input and output capability. but only 
when decoders are used with PLDs having tri ·state enables. There mAy be times when these 
alT'dngemcnts are both expedient and advantageous to the designer. However. for unusually 
large controller and systcm-Ievel designs. there are better options available to the designer 
as explained in the following paragraphs. 

For the complete design of very I argccontroller FS Ms by using regi stered PLDs. excellent 
choices are the Xilinx FPGAs. The Xilinx XC4000E(O.S micron-S \'olt) series, for example, 
offers a wide variation in FPGA capability and felllures ranging from 100 (10 x 10 array) 
configurable logic block.s (CLBs) and 360 flip-flops for the XC4003E to 1024 (32 x 32 
array) CL Bs and 2560 flip-fl ops for the XC4025E. and operating up to 66 MHz. The gale 
eq uivalence for the XC4000E series ranges from 2000 10 45 ,000. AI the 0.25-micron and 
2.S-volt end, Xili nx. offer!> the XC4000XV series. These devices range fro m 4624 (68 x 68 
array) CLDs for the XC40 l ZS to 8454 (92 x 92 array) CLBs for the XC40250 fami ly 
with a gate eq ui valency ranging from 80,000 to 500,000. This series will soon be extended 
to the 2.000.000 gale-equ ivalency level. Xilinx claims that the XC4000XV series FPGAs 
can operate al over 100 MHz. with minimum power consumption by today's standards. 
Quite clearly, these devices He in the VLSI range and are large and versatile enough to 
be used for an enlire system· level design - both combinational and sequential. Their use 
is leading away from on-chip designs for many applications and may even replace 011-

chip microprocessor design for specialized. low-\'olume appl icalions. 1'M: XC402S0XV 
has more lhall 100,000.000 transistors, compared 10 lhe 7,500,000 transistors used in the 
Pentium 11 microprocessor. 

Whether or not it is desirable to use an FPGA. say. for the implementation of the DPU 
devices, is a matter left to thediscretion of the de signer. Abo. the reader must understand that 
to design with these FPGAs requires the usc of sophisticaled software 10 cover all aspects 
of the design, The software. provided by Xilinx Corp .. can be used for schematic capture, 
simulation, and the automatic block placement and roUling of interconnects. Obviously, 

f-+ Outputs 
(OP) 
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considerable knowledge of the use and interpretation of this software is needed before 
reliable designs can result. But even with that knowledge, the designer must still deal 
with a variety of timing problems. In some system-level designs timing is everything and 
improper routing delays can cause malfunction of the system. Fortionately, Xilinx Corp. 
has taken this into account and has provided generous routing resources in their XC4000E 
and XC4000XV series FPGAs and have made them reprogrammab1e an unlimited number 
of times. The section on Futher Reading at the end of this chapter cites relevant sources of 
information on this subject. 

If it is the designer's intent to use a so-called programmable logic sequencer (PLS) for 
total system design, be aware of the limitations of such a device. Although many of these 
devices conform to the model in Fig. 13.47, the number of flip-flops they provide may be 
quite limiting. For example, the Signetics PLS155 provides the equivalent ofa 16 x 45 x 12 
PLA but is equipped with only four edge-triggered flip-flops on chip. Of course, such devices 
can be combined to accommodate larger designs, but compared to what FPGAs can offer, it 
may not seem worthwhile. This is not to say that individual PLSs cannot be useful in simple 
controller designs. Even the Signetics PLS155 can be useful in the design of FSMs having 
four or fewer state variables. Remember that FSMs up to 16 states can be designed by using 
four flip-flops as the memory. But for very large controller- and system-level designs, it is 
advisable to look elsewhere for a suitable PLD. In particular, FPGAs should be considered 
as the ideal choice for such FSMs provided that the appropriate software is available for 
programming. 

FURTHER READING 

To one extent or another, every text on digital design contributes something to the subject 
of alternative architectures in synchronous controller design and, perhaps to a lesser extent, 
to system-level design. Useful sources for further reading on the subject of alternative 
controller designs of state machines can best be found in texts by Fletcher and Tinder, and 
to a lesser extent in the texts by Katz and Roth. The texts by Fletcher and Tinder provide 
extensive coverage of counter- and register-based controller design. The use of MUXs and 
state decoders is also covered in these two references. 

LIJ W. l. Fletcher. An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs, 
NI.1980. 

L2] R. H. Katz, Contemporary Logic Design. Benjamin/Cummings Publishing, Redwood City, CA, 
1994. 

[3] C. H. Roth. Fundamentals oj Logic Design, 4th ed. West Publishing Co., St. Paul, MN, 1992. 
[4] R. F. Tinder, Digital Engineering Design: A Modem Approach, Prentice Hall, Englewood Cliffs, 

NJ.1991. 

Further reading on the subject of controller design centered around nonregistered PLDs, 
mainly ROMs and PLAs, can be found in the four previously cited references. In addition, 
the text of Nelson et at. provides useful further reading on this subject. 

[5] V. P. Nelson, H. T. Nagle, B. D. Carroll, and I. D. Irwin, Digital Logic Circuit Analysis and 
Design. Prentice Hall, Englewood Cliffs, NI, 1995. 
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Good coverage of the use of registered PLDs in digital system design can be found in 
the texts by Bolton, Carter, Katz (previously cited), Lala, Pellerin and Holley, and Wakerly, 
and these are recommended for further reading. For the automatic logic design of digital 
systems, the book by Edwards is recommended. 

[6] M. Bolton, Digital Systems Design with Programmable Logic. Addison-Wesley, Reading, MA, 
1990. 

[7] J. W. Carter, Digital Designing with Programmable Logic Devices. Prentice Hall, Englewood 
Cliffs, NJ, 1997. 

[8] T. K. Edwards, Automatic Logic Synthesis for Digital Systems. McGraw-Hill, New York:, 1992. 
[9] P. K. Lala, Digital System Design Using Programmable Logic Devices. Prentice Hall, Englewood 

Cliffs, NJ. 1990. 
[10] D. Pellerin and M. Holley, Practical Design Using Programmable Logic. Prentice Hall, 

wood Cliffs. NJ, 1991. 
[11] 1. F. Wakerly, Digital Design Principles and Practices, 2nd ed. Prentice-Hall, Englewood Cliffs, 

NJ, 1994. 

The one-hot method in state machine design is apparently offered for significant further 
reading in only two texts, those by Hayes and by Nelson et al. (previously cited). Both 
contribute something different to the subject and are recommended. To a lesser extent this 
subject is covered in the text by Comer. 

[12] D. 1. Comer, Digital Logic and State Machine Design, 3rd ed. Saunders College Publishing, Fort 
Worth, TX, 1995. 

[13] J. P. Hayes, Introduction to Digital Design. Addison-Wesley, Reading, MA. 1993. 

Other sources for further reading on the subject of system-level design where examples 
are provided are found in the texts by Fletcher (previously cited) and Shaw. 

[14] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth. TX. 1993. 

For the reader who wishes to have more information on stepping motors, mentioned in 
this chapter in connection with a stepping motor controller design, the book by Kenjo is 
recommended. 

[15] T. Kenjo, Stepping Motors and Their Microprocessor Controls. Oxford University Press, 1984. 

Finally, it should be noted that for logic system design by using registered PLDs, PLSs, 
and FPGAs, there may be no better sources than the data books published by Advanced 
Micro Devices, Signetics, XiIinx, Actel, and Altera. GAL devices are covered by Lattice 
Semiconductor's data book. For EPLD component specifications and applications. the 
reader will find Intel's data book useful. 

[16] ACT Family Field Programmable Gate Array Databank. Actel Corp., Sunnyvale, CA. 1991. 
[17] Altera Data Book. Altera Corp., San Jose, CA. 1995. 
[18] GAL Data Book. Lattice Semiconductor, Hillsboro, OR. 1992. 
[19] PAL Device Data Book. Advanced Micro Devices, Inc., Sunnyvale, CA. 1992. 
[20] Programmable Gate Array Data Book. Xilinx, Inc., San Jose, CA, 1995. 
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[21] Programmable Logic Data Book, Intel Corp., Santa Clara, CA, 1994. 
[22] Programmable Logic Devices Data Handbook. Signetics Co., Sunnyvale, CA, 1992. 
[23] The Programmable Logic Data Book. Xilinx, Inc., San Jose, CA, 1996. 
[24] XACT. Logic Cell Array Macro Library. Xilinx, Inc., San Jose, CA, 1992. 

Most texts in digital design do not attempt to cover digital design fundamentals together 
with the organization and design of microprocessors (or microcontrollers) and computers. 
Of those that do attempt this and for the reader who is interested in microprocessor and 
computer design but who has had no previous experience in the field, the texts by Hayes 
and Katz (both previously cited) and that by Shaw are given a qualified recommendation. 
Usually the subject of computer organization and design is a challenge to develop in a single 
dedicated text. So one might expect the treatment to be somewhat on the thin side in the 
three texts cited above. Better sources for the beginning reader can be found in the text by 
Mano and Kime, and in that by Pollard. In these last two references the reader will find 
much more detailed information on computer organization and design. However, the reader 
should expect to find only token coverage of digital design fundamentals in these texts. 

[25] A. W. Shaw, Logic Circuit Design. Saunders College Publishing, Fort Worth, TX, 1991. 
[26] M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals. Prentice-Hall, Engle

wood Cliffs, NJ, 1997. 
[27] L. H. Pollard, Computer Design and Architeture. Prentice-Hall, Englewood Cliffs, NJ, 1990. 

PROBLEMS 

13.1 Shown in Fig. Pl3.1 is an FSM that has two inputs, X and Y, and two outputs, P 
and Q. It is to be designed by using RET D flip-flops as the memory, and an FPLA 
for the NS- and output-forming logic. 
(a) Run both output race glitch and static hazard analyses on this FSM and deter

mine the requirements for glitch-free outputs. In doing this, select the type of 

x au if Y 

all 
FIGURE P13.1 
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flip-flop (NAND-based or NOR-based) that should be used. Remember that a 
PLA is an SOP device. 

(b) By using third-order K-maps, obtain an optimal set of expressions for the NS 
functions. 

(c) Construct the p-term table and block diagram for an FPLA design of this FSM. 
To do this, use a 5 x 13 x 5 FPLA (as a block symbol) to design an optimum 
glitch-free logic circuit for this FSM. Plan to filter the output signals only if nec
essary. Do not alter the state diagram. Assume that input X is asynchronous from 
a mechanical switch (switch Down in Fig. 11.32a is the active state), that input Y 
is synchronous, and that both arrive active low. Take the outputs as active high. 

13.2 A counter is to be designed that will drive the seven-segment display in Fig. 6.22a 
directly from its seven state variables, that is, from the flip-flop outputs, A, B, C, 
D, E, F, and G. When the counter is connected to the common cathode LED array 
in Fig. 6.23b, seven-segment Arabic numerals will appear. The FSM must have a 
count-up enable control X and must be cascadable so that numerals greater than 9 
can be displayed. Thus, two such counters in cascade will count with each clock 
cycle, ···0-1-2-3-·· ·-90-0···, but only if enabled. 
(a) Construct the state diagram for this FSM. Plan to initialize it into the decimal 

zero state. 

(b) Assuming the use of D flip-flops, map the state diagram directly into seven 
fourth-order EV K-maps and extract minimum or near minimum cover for 
each of the seven NS functions by using a logic minimizer such as BOOZER. 
(Suggestions: The simplest approach is to use the map format AB/CD II E/FG 
by following the example in Fig. 5.7 as an array of third-order K-maps. Each 
cell of a given fourth-order NS K-map will represent a third-order submap with 
axes E / FG and one entered variable, X. Thus, each NS K-map represents a 
fourth-order compression. It will be helpful to divide each state code assignment 
of the state diagram into two parts, the most significant four bits for the K-map 
axes AB/CD and the least significant three bits for the submaps. Note that the 
use of submaps is necessary only for cells 6, 14 and 15.) 

(c) Use an 8 x 32 x 8 FPLA to implement the NS- and output-forming logic. 
Assume that the inputs and outputs are active high. To do this, construct the 
p-term table and block diagram for this FSM. 

13.3 The state diagram in Fig. P13.2a represents the controller for a candy-bar vending 
machine. The controller has six inputs and four outputs, all of which are defined in 
Fig. P13.2b. 

(a) Construct a minimum size p-term table for implementation of the NS and output 
functions by using an FPLA. To do this, assume that D flip-flops are to be used as 
the memory, and note that only one of the inputs LT, GT, or EQ can be active at 
any given time - they are the outputs from a comparator. Furthermore, assume 
that all inputs and outputs are active high. 

(b) From the results of part (a), construct the logic circuit for the vending machine 
controller. Plan to use RET D flip-flops and to initialize into the 000 state. If 
ORGs are present, take the necessary steps to eliminate them, but do not change 
the state code assignment that is given. Use a block symbol for the PLA and 
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CIR 

RN!T 

DECCNT !T 

(a) 

CIR = Coin in receiver 

L T = Underpayment 

GT = Overpayment 

EQ = Exact payment 

CDR = Candy drop ready 

CCR = Coin changer ready 

DRPC = Drop candy 

CLACCUM = Clear accumulator 

RN = Return nickel 

DECCNT = Decrement counter 

(b) 

FIGURE P13.2 

note that synchronizing of the inputs is not necessary for GOINO-GO branching 
actions. Also, assume that the inputs from the comparator are synchronized by 
the CIR signal. 

13.4 (a) Without altering the state diagram in Fig. P13.2a, construct the ROM program 
table for the candy bar vending machine controller directly from the state dia
gram in Fig. P13.2a. Again, note that only one of the inputs LT, GT, or EQ can 
be active at any given time - they are the outputs from a comparator. 

(b) Repeat part (b) of Problem 13.3. Also, assume that all inputs and outputs are 
active high. 

13.5 Shown in Fig. PI3.3 is the p-term table for an FSM that has five inputs, U, W, X, 
Y, and Z, and four outputs, P, Q, R, and S. 

(a) Obtain the state diagram for this FSM. (Hint: First, construct the NS and output 
K-maps.) 

(b) Run complete ORG and hazard analyses on this FSM. If these timing defects 
exist in any of the outputs, indicate what corrective action is most appropriate 
to eliminate them. 

13.6 The state diagrams for two FSMs are presented in Fig. P13.4. 

(1) Construct the collapsed ROM program table for each of these FSMs directly 
from the state diagram. List the present state, ABC, in ascending binary 
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order, and assume that the activation levels for the inputs and outputs are 
as follows: 

For Fig. PI3.4a- S(L) and T(H); X(H), y(H) and Z(H) 

For Fig. PI3.4b-X(H) and Y(H); peL) and Q(L) 

Note that inverters cannot be used in dealing with an active low input or out
put. For the FSM in Fig. P13.4b, make a clear distinction between the input 
X and the irrelevant input symbol, X, used in the collapsed ROM program 
table. 

(2) Construct the logic circuit for the ROM implementation of each of these FSMs. 
Use a block symbol for the ROM and assume the use of FET D flip-flops. 
Consider that Sand T are synchronous inputs and bounce-free. However, in 
Fig. P13.4b both X and Y are asynchronous inputs, and input X arrives from 
a mechanical switch. Thus, include any input or output conditioning circuits 
that are necessary for a reliable glitch-free operation of the FSM. Initialize as 
indicated in the state diagrams. 

13.7 Construct the collapsed ROM program table for the FSM in Fig. Pl1.3. List the 
present state, ABC, in ascending binary order. List any assumptions made. 

13.8 The ROM program table in Fig. P13.5 represents an FSM having two inputs, Sand 
T, and two outputs, P and Q. 
(a) Construct the state diagram for this FSM directly from the program table. 

Indicate which, if any, are don't-care states. 

(b) Point out any problems or potential problems this FSM may have. 

13.9 Shown in Fig. P13.6 is the state diagram for a sequence recognizer. This FSM is 
the same as that in Fig. 1O.60c, but with a state code assignment best suited for 
a shift register design. Design this FSM by using a universal shift register (USR) 
following the example in Fig. 13.14. Assume that both the input and output are 

A B C S T DA DB Dc P Q A B C S T DA DB Dc P Q 

0 0 0 0 0 0 0 1 0 ,0 0 0 0 X 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 

0 0 0 X 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 X 0 0 0 0 0 

0 0 1 0 0 0 X 0 0 0 

0 0 X X 0 0 0 X 0 0 

0 X X 0 0 X 0 

X = Irrelevant input 

FIGURE P13.5 



PROBLEMS 675 

Zlt if X 
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active high. Use a gate-minimum external logic and plan to initialize the FSM into 
the 0000 state. (Hint: Look for XOR patterns in the S, and So K-maps.) 

13.10 A candy bar vending machine is described in Problem 13.3 and is represented by the 
state diagram in Fig. P13.2. Change the state code assignment in the state diagram 
as follows: 

a -+ 0000 b -+ 0001 c -+ 0011 d -+ 0111 

e -+ 0010 f -+ 0110 g -+ 0101 

Now design this FSM by using a universal shift register (USR) and a state decoder. 
To do this, follow the architecture used for the example in Fig. 13.17. Is an output 
holding register necessary? Explain your answer. 

13.11 In Fig. P13.7 is given the logic circuit for an FSM that is built around a universal 
shift register. This architecture is similar to that used for the example in Fig. 13.17, 
but with neither a state decoder nor an output holding register. 

(a) From the logic diagram, obtain the state diagram for this FSM. Indicate which, 
if any, of the states are don't care states. (Hint: Construct the PS/NS table from 
the K-maps associated with the USR.) 

(b) Analyze the FSM for any possible problems. 

13.12 Shown in Fig. P13.8 is the state diagram for the sequence recognizer in Fig. P13.6, 
but with a state code assignment that is best suited for a design centered around a 
counter. Design this FSM by using a parallelloadable up/down counter following 
the example in Fig. 13 .19. Assume that both the input and output are active high. 
Find a gate-minimum external logic and plan to initialize the FSM into the 0000 
state. (Hint: Look for XOR patterns.) 

13.13 The candy bar vending machine is described in Problem 13.3 and is represented 
by the state diagram in Fig. PI3.2. Alter the state code assignment as indicated 
below and design this FSM by using a parallel loadable up/down counter and a 
state decoder. To do this, follow the architecture used for the example in Fig. 13.22. 
Is an output holding register necessary? Explain your answer. 

a -+ 0000 b -+ 0001 c -+ 0010 d -+ 0101 

e -+ 0100 f -+ 0110 g -+ 0011 
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13.14 Shown in Fig. P13.9 is the logic circuit for an FSM that is built around a parallel 
loadable up/down counler. This architecture is similar to thai used for the example 
in Fig. 13.22. but with neither a state decoder nor an output holding register. 

(a) Obtain the slale diagmm for this FSM. Indicate which. if any. of the stales are 
don't care states. (Hint: Construct the PSINS table from the K-maps associated 
with the counter.) 

(b) Analyze the FSM for any possible problems. 

FIGURE P13.8 
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13.15 The NS and output logic functions for a one-hot FSM are as follows: 

D,,=aXY+cXY 

Db = axr + bX + bY 

D,,= aX+bXY+cX+cY 

Z =bY 

Here. a. b, and c are the state identifiers. X and Yare the external inputs, and Z is 
the output. 

(a) Construct the slate diagram directly from the NS and outpUI functions given 
above. 

(b) Show how the NS function D" must be altered to initialize the FSM inlo the 000 
slale, bul thereafter be driven into the one-hot slale a. Implement the logic for 
D" and connect it to an RET D flip-flop symbol togcther with all other rcquired 
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x s 

Y 

(a) 

FIGURE P13.10 

(b) 

inputs to and outputs from that flip-flop. Do not implement the logic for f1ip
flops band c. 

13.16 Presented in Figure P13.1O are the state diagrams for two FSMs, each with two 
inputs and one output. 

(1) Given the indicated state identifiers, use the one-hot approach to obtain the NS 
and output expressions for each of these FSMs directly from the state diagrams. 
Assume that RET D flip-flops are used as the memory elements. 

(2) Obtain the logic necessary to initialize each FSM into the all-zero state after 
which each must be forced to transit irreversibly into one-hot state a - the 
one-hot-plus-zero approach. 

(3) Construct the logic circuit, including the initialization logic into the all-zero 
state for each one-hot design. 

(4) Comment on the presence or absence of ORGs and s-hazards in the outputs. If 
ORGs are possible, indicate where they exist and by what race path. If they are 
not possible, explain your reasoning. 

13.17 (a) The state diagram for a candy bar vending machine controller is presented in 
Figure P13.2. Given the state identifiers indicated for this FSM, write the one
hot NS and output expressions directly from the state diagram. Plan to initialize 
directly into the one-hot state a. 
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(b) Implement the NS and output functions by using a FPLA and RET D flip
flops. To do this construct the p-tenn table together with a logic circuit and the 
necessary connections for initialization. Assume that the all inputs and outputs 
are active high. Are ORGs possible in this design? Explain your reasoning. 

(c) Is a ROM implementation of the NS and output functions for this one-hot FSM 
a wise choice? Are there FSMs for which the ROM implementation of a one
hot FSM has an advantage over a PLA or PAL implementation? Explain your 
answers to these questions. 

13.18 Shown in Fig. P 13.11 is the p-tenn table for the one-hot design of an FSM that has 
three inputs, Q, K, and M, and one output P. Here, the state identifiers are a, b, c, 
andd. 

(a) Construct the state diagram directly from the p-term table. Pay particular atten
tion to how the FSM is to be initialized. 

(b) Analyze this FSM for possible ORGs and static hazards. 

THE FOLLOWING PROBLEMS ARE TO BE CARRIED OUT AT THE SYSTEM 
LEVEL. 

(Note that typically there is more than one correct solution for each system-level design.) 

13.19 (a) Design a multiple pulse generator that will issue, on the Pulse output, 0 to 
99 clean (glitch-free), evenly spaced pulses with an active duration the same 
as that for the system clock. To do this, it is necessary to design a controller 
and two interconnected BCD down-counters with an active low borrow-out 
(80). Use RET D flip-flops for the counter design and FET D flip-flops for the 
controller, both with Preset and Clear overrides. Thus, state-to-state transitions 
of the controller are made on the falling edge of the system clock. 

A Start signal is required to load the counters and initiate the process. As
sume that the count settings are made by individual switches and are loaded 
asynchronously into the counters via the Preset and Clear overrides prior to 

Dd 
0 

0 

0 

0 

P 

0 

0 

0 

0 

0 

0 
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the Start signal. The count begins at the particular setting of the switches and 
ends when the count reaches zero. The pulses are to be generated with active 
clock by the Pulse output from the controller, and the counters are to count 
with inactive clock on each rising edge of the Count command CNT from the 
controller. An END(L) signal from the counters ends the count process when 
zero has been reached. Make certain that the counters are loaded at least one 
clock period before the CNT and Pulse signals are issued by the controller. Plan 
to use four states for the controller design, and make certain that only one series 
of pulses can be issued on a start command. 

To design the BCD down counters, follow the example in Subsection 12.3.2, 
but for a down count, and with asynchronous preset and clear override capability 
as in Fig. 12.20. Let CNT(H) be the enabling input to the MSD counter, and 
connect the two counters in series by connecting the BO(L) of the MSD counter 
to the EN( H) of the LSD counter. Note that a pulse is never issued in the 0000 
end state, and that any false data setting (1010 to 1111) must not result in pulse 
generation. 

(b) Construct a timing diagram of the results of part a assuming a count of 03. To 
do this, include the waveforms for CK, START(H), LD(L), CNT(H), PULSE(H), 
END(L), and present states A(H) and B(H). 

13.20 An election between two competing candidates for mayor is to be held in a small 
community of 752 registered voters. Design a voter booth tabulation system that 
will tally the vote count on each of two competing candidates. The booth will show 
an "Enter" light when not occupied. When the voter enters the booth and closes the 
door, a Voter-in (VI) signal is sent to the controller, the "Enter" light is turned off, 
and an "Occupied" light is turned on. This is accomplished by a motion detector 
working in coordination with door and light switches (matters of no concern to this 
design problem). Once in the booth with the door closed, the voter pushes one of 
two switches for the candidate of his or her choice. When either button is pressed 
a corresponding counter is incremented, and the door is automatically opened for 
the voter to exit. The current count of each counter is stored in a register as a BCD 
number ready to be presented later as a seven-segment display. If both buttons are 
pressed simultaneously, neither counter is incremented and the door is opened. It 
is not possible for a voter to vote twice while in the booth. Once the door is opened 
and the voter exists the booth (VI), the process is ready to begin again. Assume 
that the entrence to the voter booth is minitored in some way so as to prevent an 
individual from voting more than once. 

The block diagram for the controller is provided in Fig. P13.12(a) and the input 
and output symbology is defined in Fig. P13.12(b). Take all inputs and outputs as 
active high and note that the switch inputs Ba and Bb are presented to the controller 
asynchronously from mechanical switches. 

Design the controller for this system by using the one-hot-plus-zero approach, 
and construct the functional partition for its operation. To do this, use RET D 
flip-flops for the controller FSM, and RET cascaded BCD up-counters for the 
count. In addition to the controller, plan to initialize the counters, registers and 
the appropriate input conditioning circuits. Carefully consider how best to trigger 
the registers relative to the counters and controller. Assume that the lights and 
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door opening mechanisms arc available to the designer. No acknowledge signal 
following an increment is necessary from the counters. Finally, make cenaio that 
all required input conditioning circuits are included. 

13.21 A traffic light control system is to be designed that wil1 operate traffic lights at the 
intersectioo of a main highway and an infrequently used fann road. Traffic sensors 
are placed on hoth the highway and the fann road to indicate when traffic is present. 
If no traffic is sensed on the farm road, traffic on the highway is allowed (0 flow. But 
when a vehicle activates the sensor on the farm road. the highway light signals are 
activated immediately if the traffic sensor on the highway is not active. Otherwise. 
the vehicle on the farm road must wait 30 seconds or until the highway is clear, 
whichever occurs first, before the highway signals are reactivated. Once the farm 
road is clear. the system must activate the farm and highway lights so as to pennit 
highway traffic to flow. but only after a 3D-second time inlervalto allow the farm 
road to clear. 

In designing the control system, two interval timers (counters) must be designed. 
one for the 30 second lime intetval and the other for the 5-sccond yellow light time 
imetvai. These timers accept an input to signal the stan of the lime intetval and 
return an OUlput to indicate the end of the time interval. Upon receiving the count 
enable input signal, the timer begins timing. At the end of the specified time. the 
output signal is activated and remains active until the count enable input signal is 
deactivated. 

Construct a suitable controller Slale diagram and functional partition for the 
traffic light control system. Make any reasonable state code assignment for the 
controller and use an architecture centered around a PLA. as in Figure 13.1. Con
SUllct the p-term table for programming the PLA device and provide a block dia
gram for the controller. Assume that all inputs and outputs are active high. Use the 
abbreviations given next and assume that F and H are asynchronous inputs. 

Controller Inputs: F = Farm road active: H = Highway active: 30 =30 
seconds complete; 5 = 5 seconds complete. 

Sanity 

Voter Booth 
Controller 

(al 

FIGURE P13.12 
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Controller Outputs: FR = Farm Red; FG = Farm Green; FY = Farm 
Yellow; HR = Highway Red; HG = Highway Green; HY = Highway 
Yellow; S30 = Start 30 seconds; S5 = Start 5 seconds; LDCNT 
Load counters 

Use a minimum number of RET D flip-flops and an optimum NS and output 
logic for the controller. Pay particular attention to timer requirements as they per
tain to the handshake interface, counter design, and clock frequency. To do this, 
construct timing diagrams if necessary. Initialize the system properly and deal with 
any asynchronous input requirements. Assume that the clock frequency is 13.1 
kHz. 
lfints and suggestions: 

(1) Six or seven states are adequate for the state diagram. 

(2) Plan to synchronize inputs and filter outputs as needed. 

(2) Use divide-by-164 and divide by 16 parallelloadable binary counters to gen
erate the 5 second and 30 second time intervals. Counters will need to be 
initialized. 

(3) Counter design should follow that in Figs. 12.19, 12.20, and 12.21. 

(4) By law, a green light never changes directly to red, but must first change to 
yellow. 

(5) Assume that mechanisms for light generation exist and that they are unaffected 
by logic noise. 

(6) The output WCNT must be free of logic noise. 

13.22 At the discretion of the instructor, use the software A-OPS (see Appendix B) in
cluded on the CD-ROM bundled with this text to work any of the following one-hot 
approach problems and include their VHDL descriptions: 13.15, 13.16, 13.17, 
13.18. A readme. doc accompanying this software explains its use. Note that an as
signment 13.22113.16a would require the use of the A-OPS software to work only 
circuit (a) of Problem 13.16. If necessary, refer to Section 16.4 for more information 
regarding one-hot programmable sequencers and their use. 



CHAPTER 14 

Asynchronous State Machine 
Design and Analysis: 
Basic Concepts 

14.1 INTRODUCTION 

In Chapters 10 through 13 the emphasis was directed toward synchronous sequential ma
chine design. These chapters developed a rather thorough understanding of the concepts 
necessary for the meaningful and reliable design of these machines. Now, it is necessary 
to move on to another type of sequential machine - the asynchronous FSM. In Fig. 14.1 
is presented an overview of the various types of digital machines. Observe that combina
tional machines are classified as asynchronous because they operate in the absence of a 
clock signal, but they do not have feedback. Combination logic machines were the subjects 
of Chapters 6 through 8. As is indicated in Fig. 14.1, all sequential machines must have 
feedback, but they can be divided into two categories, synchronous and asynchronous. 

The major aim of this chapter is, of course, to develop a working-level understanding of 
asynchronous FSMs, their design and analysis, and to design state machines that operate at 
speeds exceeding those possible for their synchronous FSM counterparts. But the mission 
of this chapter is really broader than that. In the course ofthe various discussions, the reader 
will develop a better understanding of those concepts involved in synchronous machine 
design and analysis. In fact, an understanding of asynchronous sequential machines is 
required before synchronous sequential machines can be fully understood. 

So why has the subject of asynchronous machine concepts and methodologies been 
delayed to this point? The answer is simple. The study of asynchronous FSMs forces one 
to deal with the complexities of sequential machines in greater depth than was required for 
the simpler synchronous machines. Putting it another way, the study of synchronous FSMs 
permitted the reader to develop capabilities sufficient to design and analyze large systems 
without having to deal with the intricacies of asynchronous machine design. Remember 
that all digital machines can eventually be broken down into their component asynchronous 
parts. For example, the synchronous FSMs, studied in Chapters 10 through 13, use memory 
elements (flip-flops) that are themselves asynchronous machines but that are designed to 
operate in a clock-driven environment. 

683 
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FIGURE 14.1 
Breakdown of !.he various clas.~s of digital machines showing chapters in this It-xl pertinent 10 each 
class with emphasiS on asynchronous sequential machines. the subject oflhis and subsequent chaptcrs. 

14.1 .1 Features of Asynchronous FSMs 

All sequential machines have certain characlerislics in common . However. there are feaNres 
owned more or Jess exclusively by asynchronous FSMs: 

• TIle presence of memory in the absence of the familiar clocked flip·Oop 

• The appearance of Ihe asynchronous machine as a combinational logic circuit 
with feedback 

Other more subtle features distinguish asynchronous FSMs from those that are syn
chronous. These featu res include the possible existence of certain timing defects such as 
endless cycles (oscillations). critical races (races that caD produce error transitions). static 
hazards in both the NS and output logic. and essential hazards. Static hazards that are 
generated in the NS-fonning logic of asynchronous FSMs can cause the malfunction of 
these machines. Static ha7..ards that form in thc NS logic of synchronous FSMs are of no 
consequence since they are fihered out by Ihe action of clock in the memory flip-flops. 
Also. in synchronous FSMs slatic hazards thai are produced in the output-fanning logic 
can be filtered OUI by using an o utput holding register. This advantage is also nOI shared 
by asynchronous FSMs, since lhere is no system clock with which 10 trigger a register. In 
short. the benefits of clock, which are laken for gramed in synchronous machine design, 
do not exist in asynchronous FSMs. The reality is Ihat endless cycles. cri tical races, and 
hazards can occur in asynchronous FSMs and, if present. can and do cause the machines to 
malfunction. A detailed study of these and other timing defects and the actions required to 
eliminate them constitute a signific3m portion of this chapter. 
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14.1.2 Need for Asynchronous FSMs 

It is perhaps natural to believe that the data processing in and passage through a sequen
tial machine must be regulated by some periodic sampling (enabling) function, the system 
clock. This, of course, is a requirement of the synchronous sequential machine. But one never 
questions the absence of a clock in the combinational logic circuits covered in Chapters 6, 
7, and 8, yet these circuits are asynchronous machines of a type - those without feed
back (i.e., nonsequential). Why then the concern about the need for a clock to regulate 
synchronous sequential operations? And when is it advantageous, if ever, to perform se
quential operations asynchronously? The complete answers to these questions will be 
forthcoming, but only after most of the contents of this chapter has been considered. For 
now let it suffice to say that it may be desirable to use asynchronous designs for the following 
reasons: 

• The speed requirements of the system may exceed the capability of synchronous 
machines. Properly designed, a synchronous FSM can only approach (not equal) 
the speed of a properly designed asynchronous FSM performing the same se
quential operation(s). There are exceptions to this rule. 

• Use of a system clock to synchronize a given sequential machine may not be pos
sible or even desirable. Clock distribution problems (clock skew) may seriously 
limit the use of synchronous designs, particularly in complex digital systems 
operated at very high frequencies. 

• Since flip-flops and clock oscillator circuits are absent, an asynchronous design 
may occupy less real estate on an IC chip and use less power than an equiv
alent synchronous design. However, this statement may not be true for com
plex asynchronous FSMs, the components of which must communicate through 
handshake configurations. 

• Just as there are some designs that should be carried out synchronously, there are 
other designs that lend themselves quite naturally to asynchronous design. This 
statement may be even more relevant in integrated systems, systems containing 
both synchronous and asynchronous state machines, where maximum speed is 
required. 

Clearly, there is potential for use of asynchronous machines. In fact, it is predictable 
that designers will become more familiar with this type of machine, that asynchronous 
design techniques will improve, and that asynchronous FSM methods will play an impor
tant role in the design of future superhigh-speed microprocessors and computers. It is the 
judgment of many digital designers that the continued upward climb of system size and 
speed will require more integration of asynchronous FSMs into "conventional" system-level 
designs. 

14.2 THE LUMPED PATH DElAY MODELS FOR ASYNCHRONOUS FSMs 

In synchronous FSMs the memory function is formed by using flip-flops. But if asynchro
nous FSMs are characterized by the absence of such devices as flip-flops, how, then, does 
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memol)' manifest itself in these machines? The answer to this question lies in thc fact 
that data transport through an FSM is not instantaneous. Propagation time delays are an 
inherent part of any circuit, and il is Ihese path delays thai constitute the memory siage of 
an asynchronous FSM. Recall that Ihis is precisely the basis for the heuristic development 
of the basic cells presented in Section IDA . It is this heuristic development that provides 
the basis for the genemlized and more fonnal treatment that follows. 

Consider the Mealy model for the asynchronous FSMs shown in Fig. 14.2. This model 
is called the generalized lumped path delay (LPD) model and is applicable to FSMs that are 
operated in the fundamental mode. 

Operation in thejundamental mode requires that 110 external inpurro an FSM may 
change until all imernal signals are stabilized. and that only one input can change at 
a rime. 

The LPD model is characterized by an NS~fonning logic that is treated as ideal (free of path 
delays) for which the propagation lime delays are separated out into a minimum number 
of distinct lumped memory elements ~to. 6.rl , 6.12 . .. . ~t"' _I. each delay element being 
associated with a stale variable. It is these fictitious lumped memory elements . taken in toto, 
that constitute the memory stage for an asynchronous FSM. 
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The model of Fig. 14.2 is the most degenerate (fundamental) form of the Mealy model 
depicted in Fig. 10.5. This model can be broken down into the more rudimentary forms 
similar in appearance to those in the development of the basic model in Fig. 10.3 or to the 
Moore model in Fig. 10.4, but always with a memory stage composed of fictitious LPD 
memory elements. Regarding the memory stage, it will be recalled that the memory for 
the basic model in Fig. 1O.3(c) is interpreted as basic cells in Fig. 10.22 or as a flip-flop in 
the case of Fig. 10.36. In fact, the more general models given in Figs. 13.1 and 13.47 can 
be used in synchronous systems where the memory is interpreted as discrete flip-flops, or 
flip-flops in a register or counter. Now, the reader should consider that memory in all these 
models can be interpreted as anyone of the following forms given in the order of increasing 
degeneracy: 

{Flip-flops ~ BasicCells ~ LPD Memory Elements} 

Thus, if the memory is composed of flip-flops and clocked, the FSM is called synchronous. 
But if the more degenerate forms are used for the memory (e.g., basic cells or LPD memory 
elements) the FSM becomes asynchronous. In this text, the nested cell model is character
ized by the use of basic cells as the memory elements, while the LPD model is characterized 
by the use of fictitious LPD memory elements. 

14.3 FUNCTIONAL RELATIONSHIPS AND THE STABILITY CRITERIA 

The parameters used in Fig. 14.2 are defined by 

Xi = XIl-I, •.• X2, Xl, Xo = Input State (IP) 

Yk = Ym - l , ••. Y2 , Yh Yo Next State (NS) 
(14.1 ) 

Yj = Ym-l,··· Y2, Yl, Yo Present State (PS) 

2, = 2 r - 1, ••• 2 2 , 2 I, 20 = Output State (OP), 

all of which have been arranged in positionally weighted form to represent binary words. 
These parameters are functionally related to each other and to the inputs and outputs by the 
following set of logic equations written in subscript notation: 

or simply 

Yj(t) = y/t + M) 

Yk(t) = Ydxj(t), y/t + M)] 

2/(t) = 2/[xj(t), Yj(t)], 

Y = f(IP, PS) 

2 = f'(IP, PS). 

(14.2) 
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The subscripts in Eqs. (14.2) are assigned the ranges of values 

i = 0, 1, 2, ... , n - 1 

j = 0, 1, 2, ... , m - 1 

k=0,1,2, ... ,m-1 

1= 0,1,2,··" r - I 

The fact that the inputs, Xi, can be multi variable functions implies that one asynchronous 
FSM may be controlled by another asynchronous FSM. 

Inspection of Eqs. (14.2) indicates that corresponding NS and PS variables are separated 
in time by distinct lumped delay memory elements, D..t j. This leads directly to the important 
stability criteria for asynchronous FSMs operated in the fundamental mode: 

Stability Criteria 

If the PS is logically equal to the NS at some point in time, then 

Y/t)=Yj(t) (forallj), (14.3) 

and the asynchronous FSM is stable in that state. 
If the PS and NS are not logically equal at any point in time, then 

(14.4) 

and the asynchronous FSM is unstable in that state and must transit to another state. 

Here, the presence of a lumped memory element for each feedback loop ensures that all 
path delays within the NS forming logic are represented. A much less attractive alternative 
is the distributed path delay model, which requires a memory element for each gate and as 
many state variables. The LPD model has the decided advantage of simplicity - it requires 
a minimum of lumped memory elements and hence a minimum number of state variables. 
Use of the distributed path delay model would be prohibitively difficult for all but the 
simplest state machines. 

14.4 THE EXCITATION TABLE FOR THE LPD MODEL 

The excitation table for the LPD model of Fig. 14.2 and all of its degenerate forms is derived 
directly from the stability criteria given by Eqs. (14.3) and (14.4). The results are shown in 
Figs. 14.3a and 14.3b, where a stable condition exists for Yt = Yt , and an unstable condition 
exists if Yt # Yt . Here, y, ----+ Yt+1 represents a transition from the PS to the NS, implying 
that Yt+1 = Yt = NS. It is important to notice the similarity between the excitation table 
in Fig. 14.3b and that for the D flip-flop in Fig. 14.3c. Thus, it is expected that some LPD 
design methods apply to synchronous D flip-flop designs and vice versa. The excitation 
table for the LPD model is essential to the design of asynchronous FSMs to be operated in 
the fundamental mode and will be used extensively throughout the remainder of this text. 
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FIGURE 14.3 
(a) Excitation rable for the LPD model as derived from Eqs. (14.3) and (14.4). (b) The exdtatioll table 
of (a) arranged in the form familiar for flip-flops. (c) Excilalioll table for llie 0 fllp-flop showll for 
comparisoll. 

14.5 STATE DIAGRAMS, K·MAPS, AND STATE TABLES FOR 
ASYNCHRONOUS fSMs 

This section deals with ~ubject mailer that has been covered in Chapters 10 and 1 I, but now 
applied to asynchronous FSMs. Thus. the concepts involved here are basically the same as in 
synchronous FSM design . Therefore. the reader who is familiar with this subject mailer may 
wish to si mply browse through this shon section for a sufticient understanding of its contents. 

14.5.1 The Fully Documented Stale Diagram 

The sequential bchaviorof any FSM (synchronous or asynchronous) is revealed most effec· 
tively bY:l fu lly documented state diagram representing the sequential behavior of the FSM. 
However, the state diagram itself does not indicate whether the machine is synchronous or 
asynchronous. For example. the state diagram in Fig. 11 .42 could be interpreted as that 
for either an synchronous or asynchronous FSM. BUI once the FSM is declared to be an 
asynchronous FSM and to be oper.lted in the fundamental mode. then the design process can 
begin by applying the model and excitation table of Figs. 14.2 and 14.3b to the state diagram. 

Shown in Fig. 14.4 is a section of a generalized. fully documented state diagram ap
plicable to any FSM. in particular to an asynchronous FSM. The features arc the same as 
those in Fig. 10.6, except that the PS variables are specifically identified as Ym-I ... Y1)'r Yo 
to distinguished them from those for a synchronous FSM QAQIIQCQO ·· · = ABeD ·· ·. 
a.~ used in this text. The branching conditions are given in subscript notation where. for 
example, [ (Jb (X,· ) represents conditional bmnching on inputs Xi frum state (lIn slate h. anJ 
[h(.r ; ) is the holding condition in state b, again a func tion of inputs x,. Also, the output in 
Slale c is conditional on some function of inputs x,. 

Sum Rule and Mutually Exclusive Requirement The sum rule and mutually ~xclusive 
reqlliremem for state diagrams representing asynChronous FSMs are given by Eqs. (10.3) 
and (10.4): the conditions under which they can be violated are discussed in Section 10.3. 
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Fully documented state diagram as interpreted for an asynchronous FSM. 

Thus, there is no difference in the applications of these rules to either synchronous or 
asynchronous FSMs. See Problem 10.24 for more information on the relationship between 
these two rules, and a more direct means of testing for mutually exclusivity of branching 
conditions. 

ASM Charts and Flowcharts Flowcharts were used in Subsection 11.9.2 and ASM charts 
were used in Subsections 11.10.1, 13.5.2, and 13.6.2 as thinking tools in the construction of 
the fully documented state diagrams for synchronous FSM design. So also can these thinking 
tools be used for the purpose of constructing state diagrams for asynchronous FSM design. 
Furthermore, it may be recalled that the ASM chart is used effectively to design a one-hot 
state machine in Subsection 13.5.2, but the fully documented state diagram is shown to be 
equally effective for such a purpose. The point to be made here is that the ASM chart or 
flowchart should be considered only as a thinking tool in the construction of the fully docu
mented state diagrams or state tables. In this text, it is the fully documented state diagram or 
state table that is considered to be the simplest and most effective means of representing the 
sequential behavior of an FSM (synchronous or asynchronous) in preparation for its design. 

14.5.2 Next-State and Output K-maps 

When using the LPD model for asynchronous FSMs, the entered variable (EV) K-maps for 
the NS variables are easily constructed by applying the mapping algorithm in Section 10.6 
to the state diagram and the excitation table for the LPD model in Fig. 14.3b. Thus, this 
NS mapping process for the LPD model is very similar to that used in the D flip-flop 
designs of synchronous FSMs, the only difference being the nomenclature for the PS and 
NS parameters. Shown in Fig. 14.5 are the generalized EV K-maps for the NS and output 
functions as applied to the LPD model of an asynchronous FSM. The K-maps are of the 
mth order with state variables for their axes and inputs as the EVs. It is important for the 
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fiGURE 14.5 
K-maps for asynchronous FSMs. (a) EV K-map for the kth NS state variable. (b) EV K-map for the 
output Z. 

reader to understand that the state variables must always be the K-map axes variables, 
never the K-map EVs. Therefore, for state variables numbering between four and nine, 
K-map formats of the types shown in Fig. 4.38 of Section 4.7 and in Fig. 5.7 of Section 5.9 
are recommended. For larger numbers of state variables, computer-aided design should be 
considered as the only reasonable alternative. 

14.5.3 State Tables 

State tables and NS tables were used previously in connection with the use of state as
signment rules in Subsection 11.10.2 and in the array algebraic approach to synchronous 
FSM design discussed in Section 11.11. State tables are, of course, the tabular equivalent 
of a state diagram. In this chapter state tables will be used in the design of asynchronous 
single-transition-time (STT) state machines by using the array algebraic approach. STT 
machines are the fastest state machines possible but require special state coding procedures 
that were not needed in Section 1l.11. Shown in Fig. 14.6 are the state diagram and state 
table for the FSM in Figs. 11.42 and 11.43 but interpreted as an asynchronous FSM to 
be operated in the fundamental mode. Notice that each cell entry in Fig. l4.6b is a state 
identifier representing the specific state code assignment shown on the vertical axis of the 
state table and in agreement with those in the state diagram of Fig. l4.6a. State variables 
should not be used as cell entries in state tables. 

Recall from the discussion in Subsection 1l.1O.2 that the encircled state identifiers in 
state tables indicate a holding condition. But a holding condition in an asynchronous FSM 
means that Eq. (14.3) of the stability criteria is satisfied and that the FSM is stable in that 
state. So it follows, for example, that in state a = 000 the FSM is stable in that state under 
input conditions S T + ST + sf = S + T. Conversely, if the FSM is unstable in a given state 
according to Eq. (14.4), it must transit to another state. Thus, should the input conditions 
change to sf while in state a, the FSM must transit to state b as indicated by the vertical 
down arrow in the S j column of Fig. Il.6b. To summarize, the encircled state identifiers in 
a state table indicate FSM stability in agreement with Eq. (14.3) while the vertical arrows 
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FIGURE 14.6 
The FSM in Figs. 11.42 and 11.43 interpreted as an asynchronous FSM to be operated in the funda
mental mode. (a) State diagram. (b) State table. 

indicate FSM instability according to Eq. (14.4). Perhaps the most important use of state 
tables is in the designs of FSMs without the use of K-maps. This will be demonstrated later 
in connection with the design of SIT machines. 

14.6 DESIGN OF THE BASIC CELLS BY USING THE LPD MODEL 

The reader who is familiar with Section 10.4 will recall that the set-dominant basic cell 
and the reset-dominant basic cell were developed by a heuristic approach. This was done to 
avoid having to use asynchronous design methods which, at that time, would have caused 
unnecessary delays in the primary goals of that chapter. Now, it is appropriate that the basic 
memory cells be designed from first principles by using the LPD model. The basic cells 
represent two of the simplest asynchronous FSMs that are operated in the fundamental mode. 

14.6.1 The Set-Dominant Basic Cell 

The state diagram for the set-dominant basic cell is shown in Fig. 14.7 a and is a reproduction 
of that given in 1 O.12a. The NS logic for this basic cell is easily found by using the 
mapping algorithm, given in Section 10.6, to combine information contained in the state 
diagram with that contained in the excitation table for the LPD model in Fig. 14.7b. The result 
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Design of the set-dominant basic memory cell by using the LPD model. (a) State diagram. (b) Excita
tion table for the LPD model. (e) NS K-map and minimum cover. (d) Logic circuit showing fictitious 
LPD memory element. (e) Final logic circuit with fictitiuus memory clement removed. 

is the NS K-map and minimum cover shown in Fig. 14.7c. From this there results the NS 
logic function in LPD notation given by 

y = S + Ry . (14.5) 

Except for the difference in PS and NS nomenclature, Eqs. (14.5) and ( 10.5) are identical. 
as they must be. The logic circuit that results from Eq. (14.5) is presented in Fig. l4.7d 
and is seen to be identical (again except for P$ and NS nomenclature) with that given 
in Fig. 10.1 la. Since the lumped path delay element t::.r is fictitious, il may be removed. 
resulting in Ihe familiar "cross-coupled NAND gate" circuit shown in Fig. 14.7e. Recall 
Ihat in Fig. 10.18a this lattercircuil was analyzed as 10 its mixed-rail output response. But 
more infonnation remains on this deceptively simple machine. as discussed in the following 
paragraph. 

If the inputs SeLl and R(L) should undergo a simultaneous I(L) ~ O(L) change. the 
basic cdl may become metastable and either "hang up" in a state that is neither a set nor 
resel. or oscillate. This condition is illustrated in Fig. 14.8, which represents a logic (ideal) 
simulation of the basic cell. The oscillation occurS because the identical cross-coupled 
NAND gates drive each other in antiphase fashion to produce an oscillation of period 2"1"". 
where "I" p is the propagation delay through a NAND gate. Under ideal conditions, oscilla
tory behavior of this type is predictable and indicative of a possible metastable condition. 
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Timing diagram for the set-dominant basic cdl showing loss of mixed-rail outputs for the S. R = I, I 
condition. and the oscillatory behavior that results when Sand R change I -+ 0 simultaneously. 

However, an actual physical test of a basic cell will most likely not yield these same results. 
since metastability is a low-probability condition. But it can occur! In fact. in real-time tests 
of closely maLChed NAND gates, the basic cell is likely to show short-duration instability 
when subjeC!ed to simultaneous teL) _ O(L) of the seLl and R(L) inputs. II is because 
of loss of mixed-mil output character and the possibi lity of metastable behavior that the 
S. R = I, 1 condition is nonnally avoided in using basic cells for FSM design. Remember 
that it is only for mixed-rail conditions that peL) = Q(L). Subsection 10.4.4 discusses the 
importance of mixed-rail character of the basic cell. 

14.6.2 The Reset-Dominant Basic Cell 

The design of the reset-dominant basic cell follows closely Ihal of the set-dominant basic 
cell in the previous section. Shown in Fig. 14.9 are the slate diagram, excitation table for 
the LPD model. the NS K-map and minimum cover, and the logic circuits with and without 
the fictitious LPD memory element. The NS function read in maxterm code from the NS 
K-map is given by 

Y = R(S + y) (14.6) 

and is seen to be identical with that of Eq. (10.7), except for Ihe change in PS and NS 
nolation. 

Simultaneous I (H) -I- O( H) changes ofthe inputs S(H) and R(H) to the reset-dominant 
basic cell can cause timing problems similar to those that can occur in the sCI-dominant 
basic cell . Shown in Fig. 14.10 is a ti ming diagram for the reset-dominant basic cell similar 
to that in Fig. 14.8. As indicated for ideal cross-coupled NOR gates. loss of mixed-rail 
output conditions can lead to oscillatory behavior under simultaneous I --+ 0 changes in 
the inputs. This again supports the need to avoid the S, R = I, I condition when using 
basic cells for design purposes. Although real cross-coupled NOR gates may not oscillate 
as in Fig. 14. 10, they may go logically unstable or may go metastable for a short period of 
time if simultaneous 1 _ 0 input changes art! penniued. 
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Design of the reset-<iominant basic memory cell by using the LPD model . (a) State diagram. (b) Exci· 
tation table for the LPD model. (c) NS K-map and minimu m cover. (d) Logic circuit showing tictitious 
LPD memory clement. (e) Final logic circuit wi th fictitious memory elemen! removed. 

14.7 DESIGN OF THE RENDEZVOUS MODULES BY USING 
THE NESTED CEll MODEl 

A rendezvous module (RMOD) is an asynchronous stale machine who1>e outpUi is issued 
active when all external inputs beeome active and is issued inactive when all external inputs 

S{H) ~:-----c ________ -I------~t ______________ __ 

R(H) 

'-v----''-v-----' 
Loss ot mixed· Osclttation 

rail outputs 

FIG URE 14_10 
Timingdiagram for the reset·dominant basic cell showing loss of mixed-rail outputs for the 5, R = 1. ] 
condition, and the oscillatory behavior that results when 5 and R change I -+ 0 simultaneously. 
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Design of the two-input rendezvous module (RMOD) by using the nested cell model. (a) Slate dia
gram. (b) Excitation .able fOr the basic cell. (c) NS K-maps and minimum NS fum;tiolls. (d), (c) Logic 
circuits with and without the fictitious LPD memory clement for the basic cell. 

become inactive. The RMOD, also known as a majority gale or Muller C (concurrency) 
module, is used in the design of other useful asynchronous circuits. The name C-module 
has also been used for this device. In effect. the RMOD aCls ljke an AND gate in issuing 
an active output but acts like an OR gate in issuing an inactive output. Thus, the external 
inputs must all rende::vous with the same activation level before a change in the output is 
possible. Since the acronym RMOD is easy to remember and seems more descriptive of the 
device's function, it will be retained in this tex!. 

Shown in Fig. 14.lla is the state diagram for a two-input RMOD. Clearly, the transition 
from the inactive state to the aclive state is possible only if both inputs become active - an 
AND funclion. Then. while in the active state. a lfansition to the inactive state is possible 
only ifbolh inputs become inactive - an OR function . Applying the mapping algorithm in 
Section 10.6 to the state diagram together with the excitation table of Fig. IO.15c gives the 
NS K-maps and minimum covers for the nested cell design of the RMOD in Fig. l4. llc. 
From the K-maps there results the NS Sand R functions 

(14.7) 

Y(H) 

VIl) 
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fiGURE 14.12 
Timing diagram for the two· input RMOD showing input conditions for active and inactive mixed-rail 
outputs from the basic cell. 

for external inputs AI and Au. Implementation of Eq. (14 .7) yields the NAND/OR logic 
circuits with and without the fictitious LPD memory element, M . shown in Figs. 14 . lld 
and 14.1 I e. In the stric t sense. the RMOD operates out of the fundame ntal mode since it is 
no longer required that one input "settle in" before another input changes. Notice that the 
OR gales are shaded in these figures. 

The timingdiagrnm for the two-input RMOD is given in Fig. 14 .12. The input conditions 
are shown for active and inactive mixed-rai l outputs. Also shown is a 2rp delay fo llowing 
input active level conjunction and lr" following inactive level conjunction, where r I' is the 
propagation delay through a NAND gate or OR gate. the IwO types of gales being treated 
the same in this case. 

Multiple input RMODs can be designed. Prescfilcd in Fig. 14 .13a is the state diagram 
for an II -input RMOD where the similarity between it and the Iwo~input RMOD is evident. 
Thus, the NS functions for multiple inputs follow in similar fashion to those given in 
Eq. ( 14.7) and arc 

S = A,,_I' ... . A,Ao and R ::=: 04 ,,_., · (14.8) 

which leads to the NORIJNV logic c ircuit g iven in Fig. 14 . 13b. Here. the multiple-i nput 
NOR gates (shown shaded) can be configured as in the specially designed CMOS NOR gate 
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FIGURE 14.13 
The multiple input RMOD. (a) State diagram. (b) Logic circuit based on the nested cell model. 
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of Fig. 8.46 so as to avoid possible fan-in problems. Recall that propagation delay increases 
with increasing number of gate inputs. Notice that a reset-dominant basic cell is used as the 
memory element in this case. 

14.8 DESIGN OF THE RET D FLIP-FLOP BY USING THE LPD MODEL 

The RET D flip-flop was previously designed in Subsection 10.7.2 by using the basic cell 
as the memory. In this section the same flip-flop will be designed by using the LPD model. 
Shown in Fig. 14.14 are the state diagrams for the resolver and set-dominant basic cell 
FSMs, both reproduced from Fig. 10.29 for the convenience of the reader. Note the change 
in the resolver state code assignment. 

Since the set-dominant basic cell has previously been designed in Fig. 14.7, all that 
remains is to design the resolver for the D flip-flop by using the LPD model and then 
connect the two. In Fig. 14.1Sa is the resolver state diagram reproduced from Fig. 14.14(a), 
and in Figs. 14.1S(b) and (c) are the NS and output K-maps with minimum covers indicated 
by shaded loops. The NS K-maps are constructed by combining the information in the state 
diagram with the excitation table in Fig. 14.3b via the mapping algorithm in Section 10.6. 
Reading the minimum cover in the K-maps yields the following results for the NS and 
output functions: 

Y j = YoDCK + YI CK 

= (yoD + yj)CK 

Yo = YoD + YI + CK 

S=YI 

R = .Yo, 

(14.9) 

where factorization has been use so that the term (YoD + YI) appears in both NS functions, 
Y1 and Yo for optimization purposes. 

S 
CK 

CK 

RH SH 

(a) Resolver (b) Basic Cell 

FIGURE 14.14 
The RET D flip-flop as represented by state diagrams. (a) Resolver FSM input stage. (b) Set-dominant 
basic cell output stage. 
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Design of tho: RET D nip-flop resolver by using the LPD model. (a) State diagram. (b) NS K-maps 
and minimum cover. (c) Output K-maps and minimum cover. 

To conncclthe resolver 10 a .~et-dominant basic cell il is necessary that the resolver outputs 
be active low, that is, S(L) = YI(L) and R(L) = yo(L) = Yo(H). Therefore, by applying 
the NS functions in Eqs. (14.9), there results the logic circuit for the RET D flip-flop in 
Fig. 14. 16a, which is shown with the fictitious LPD memory elements indicated in their 
proper positions. Notice that only four NAND gates are necessary to implement the resolver 
circuit, whereas six NAND gates are required in the earlier design shown in Fig. IU.3 1. The 
logic circuit in Fig. 14.1 6b is the same a ... lhal in Fig. 14.16a but with the fictitious memory 
elements removed and showing the asynchronous PR and CL override connections (dashed 
lines). It is equivalent to the 74LS74 RET D flip-flop. An FET D Hip-flop results by adding 
an invencr TO the CK input. 

The fictitious LPD memory elements are removed in Fig. 14.l6b and asynchronous PR 
and CL override connections are added for completeness. Notice that all gates are now 
three-input NAND gate.~. An explanation of the override connections follows closely that 
for the lTansparent D latch in Fig. 10.5 J. A review of the discussion in Section 10. 10 will 
help with an understanding of the reasoning behind these connections. lllc introduction of 
a CL ovcnide signal is straighTforward . With PR(L) = O(L). a, CL(L) = J(L ). force.~ gales 
2 and 6 to issue a O(L), which, in tum, forces gate 5 to issue a O(H ), thereby completing the 
mixed-rail clear output of the flip-flop. Remember that the asynchronous overrides PR and 
CL can never be active at the same time. 

The introduction of a PRovenide signal is a little more involved but still easily explained. 
With CUL) = O{L) = I(H ), introducing a PR(L) = I(L) forces gates I and 5 to issue a 
J(H). which is now the input TO gate 2. Then for gate 610issue a I (L ). as required for II mixed
rail set output, gate 3 must issue a I( H ). This is made possible because a I (H) output from 
gate 3 results directly or indirectly from the CKinput. Thus, if CK{J1) = I(H) = O( L). lhe 
input to gate 3 from gate2 is I(L), forc ing a I(H)flOmgatc3. Or, ifCK(H ) = 0( H ) = I (L ). 

1 ) 

V 
/ R 

Yo 
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Implementation of the RET D flip-flop. (a) Implementation showing the intermediate functions, and 
indicating the proper position of the fictitious LPD memory elements. (b) The same circuit as in (a) 
but with the fictitious LPD memory elements removed and showing the asynchronous PR and CL 
override connections (dashed lines). 

the output from gate 3 is again 1 (H). Since in either case all three inputs to gate 6 are now 
I(H), its output is I(L), thereby completing the mixed-rail set output from the flip-flop. 
In short, it is the CK input that makes possible a mixed-rail set output from this RET D 
flip-flop. 

14.9 DESIGN OF THE RET JK FLIP-FLOP BY FLIP-FLOP CONVERSION 

The conversion of a D flip-flop to a JK flip-flop is illustrated in Fig. 10.42a by using 
Eq. (10.11) for the conversion. So, if the D flip-flop is of the design in Fig. 14.16b, nine 
gates would be required, three for the conversion logic and six for the resolver FSM. The 
conversion can be optimized by introducing Eq. (10.11) into the expression YoDeL) (given 
in Fig. 14.16a) to obtain the following result: 

- -
YoD(L)=yo(QJ + QK)(L) 

- -
= (YoQJ + YoQK)(L) (14.10) 

In fact, the resolver for the RET JK flip-flop can be constructed simply by introducing 
Eq. (10.11) into the D flip-flop resolver in Fig. 14.15a. If gate 4 in Fig. 14.16b is replaced 
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(a) Optimized con \'cr~i on of the RET 0 fl ip-flop in Fig. 14.16b to an RET JK fl ip-flop. (b) Logic 
circuit symbol. 

by the logic of Eq. (14.10), there results the optimized RET JK fli p-flop and logic rircuit 
symbol shown in Figs. 14.17a and 14.17b. This logic circui t is equivalent to the 74LS I09 
JK flip-Hop but with the added PR override . Note thaI an FET JK flip-flop results simply 
by adding an inverter 10 the CK input. 

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS 
IN ASYNCHRONOUS FSMs 

The preceding sections are intended to be only an introduction 10 asynchronous FSM design. 
Much more must be known regarding thecomplexities of asynchronous sequential machines 
before meaningful designs arc possible . TIle subject malter of this section is not only 
essential to the development of good design practices for asynchronous FSMs but should 
improve the reader 's understanding of synchronous FSMs as well. 

In Subsection 14. 1.1. it was indicated thai certain liming defecls such as endless c)'cles 
(oscillations). critical races. static hazards, and essential hazards. can exist in asynchronous 
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Endless cycles in asynchronous FSMs. (a) A segment of a stale diagram m;ed as a model for endlesS" 
cycle analysis. (b) Example of an endless cycle. (c) Elimination of the endless cycle in (b). 

FSMs and can cause the FSMs to malfunction. In Section 10.9. oscillations were shown 
10 exist in some two-state flip-Hops making them useless for most any application. Now 
it is necessary to learn how to detect and eliminate these timing defects, so that reliable 
asynchronous FSM designs can result. 

14.10.1 Endless Cycles 

The transition of an asynchronous FSM from one stable state to another stable state through 
one or more unstable states is called a cycle. When an asynchronous FSM enters a cycle for 
which there is no stable state, an endless cycle or m·cil/arion is said to exist. Although cyclcs 
are necessary 10 Ihe operalion of some asynchronous FSMs, eudless cycles must always be 
avoided. 

Shown in Fig. 14.18a is a segment of a state diagram ror which the branching conditions 
are fpQ and fo/' between two states P and Q . The condition under which an endless cycle 
can exist is expressed by 

(14. 11 ) 

meaning that any residue of this Boolean product fpQ • fQP is the brdnching condition 
for wh.ich. an endless cycle exists. A typical example is presented in Fig. 14.1gb. Here, an 
endless cycle is caused 10 occur under [he branching condition (A ffi 8) . 8 = A 8. If the 
algorithm for this fictitious FSM permits, the endless cycle can be eliminated by making 
the appropriate changes in the branching conditions associated with state P as indicated 
in Fig. 14. 18c. Of course, if the branching condition AB can never exist. no correction 
of this state diagram segment is necessary. Endless cycles, as in Fig. 14.18, need not be 
limited to two states. Although less likely. multiple-stale configurations can also support 
endless cycles. For example, suppose an asynchronous FSM exists having a sequence of 

AB 
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interconnected states P, Q, R, S, P. In this case an endless cycle exists if 

fpQ . fQR . fRS . fsp =1= o. (14.12) 

14.10.2 Races and Critical Races 

The set of alternative cycle paths that lead to the same state is called a race. Recall that this 
subject was discussed in Section 11.2 relative to output race glitches (ORGs) in synchronous 
FSMs. In an asynchronous FSM a race results when the FSM undergoes a transition to a 
next state that differs from the present state by two or more bits. There are n! race paths for 
a race condition involving the change of n state variables. Since no two feedback variables 
can change precisely at the same time, one variable will always change before another, even 
though the time span between the two events may be very small. Thus, the alternative race 
path taken by the FSM will depend on which feedback variable changes first to meet the 
stability criterion ofEq. (14.3), and this is not usually predictable. 

The generalized state diagram segment in Fig. 14.19a serves as a model for detection of 
race and critical race conditions associated with the transition from state P to state Q under 
branching condition fpQ. The noncritical race conditions, given in Fig, 14.19b, indicate that 
a proper transition from the origin state P to the destination state Q requires the following 
conditions: that input condition I pQ be contained in the branching condition fpQ, that I pQ 
be contained in either fQ or fQx, and that a valid branching path be available from the 
race state R and S to state Q. This last condition requires that / PQ be contained in both 
branching conditions IRQ and fSQ. Note that the symbol ~ is standard algebraic notation 
for "is contained in" and a slash through it signifies its negation. 

If, on the other hand, /PQ is contained in either !R or fs, a critical race exists as 
indicated in Fig. 14.19c. Now the FSM can be stuck in either state R or S in attempting 

(a) 

FIGURE 14.19 

Ixx = Input condition 

Non-critical race requirements 

Ipa ~ fpa Ipa 1;. fR 

Ipa ~ fa or fax Ipa 1;. fs 

(b) 

Ipa ~ fRa 

Ipa ~ fsa 

Critical race reqUirements 

fxx = Branching condition (c) 

Races and critical races in asynchronous FSMs. (a) Generalized state diagram segment used as a model 
for detection ofraces and critical races. (b) Requirements for noncritical races. (c) Requirements for 
critical races. 
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A 

FIGURE 14.20 

State 01 provides a cycle 
path for correction 

Correction path 
replacement 

B 

State diagram of an FSM showing a critical race for the 11 --+ 00 transition and its elimination by 
using a correction path. 

the P ~ Q transition. Basically, the requirement for a critical race is that the holding 
condition of any race state contain the input condition for transition from the origin state 
to the destination state. Where only two state variable changes are involved in a given 
state-to-state transition, detection of a critical race is easily accomplished by a cursory 
inspection of the state diagram. Thus, the following procedure should be followed without 
exception: 

• Look for race conditions in the state diagram. If the holding condition for any 
race state contains IpQ, a critical race exists. 

• Make certain that valid branching paths exist between the race states and the 
destination state. 

• Eliminate the critical race by anyone of several means discussed later in this 
subsection. Critical races must never be permitted to exist in any asynchronous 
FSM designed to operate in the fundamental mode. 

As an example, consider the state diagram for an FSM in Fig. 14.20. Shown is a critical 
race during the 11 ~ 00 transition under branching condition A B. Thus, if the race path 
is via state 10 during 11 ~ 00 transition, the FSM will reside stably and improperly in 
state 10 under holding condition B. Thus, lea S; !J which is the requirement for a critical 
race according to Fig. 14.19c. On the other hand, if the race path is via the 01 state, the 
FSM will cycle correctly to state 00. The problem is, of course, that it cannot be predicted 
by which race path the FSM will transit. The critical race is eliminated by replacing the 
11 ~ 00 branching path with the 11 ~ 01 path indicated by the dashed arrow, but under 
the same branching condition A B. Thus, the basic algorithm has not been altered in making 
this correction. State 01 now provides an cycle path from state 11 ~ 01 ~ 00 under the 
same branching condition A B. 

Methods for Eliminating Critical Races The methods for eliminating critical races are 
straightforward and similar to those discussed in Subsection 11.2.2 relative to ORGs in 
synchronous FSMs. The causal race condition can be eliminated by one of the following 
actions given in descending order of importance or desirability: 
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1. Altering the branching path without changing the basic algorithm of the FSM. 

2. Changing the state code assignment to remove all race conditions or move the race 
condition elsewhere in the state diagram without creating any new timing defects. 

3. Adding a buffer (fly) state to remove the race condition without violating critical 
timing constraints. 

4. Adding additional state variables. 

The action of removing the critical race by moving the causal race condition elsewhere in 
the state diagram is complicated by the possible formation of ORGs. Not only must the 
change be scrutinized as to the formation of another critical race, but the formation of static 
hazards and ORGs (not originally present) must be considered. The issue of static hazards 
in the NS-forrning logic will be considered next. Obviously, the safest course of action in 
removing a critical race is to change the state code assignment so as to eliminate all race 
conditions in the FSM. Doing so, eliminates all race-related timing defects automatically. 

14.10.3 Static Hazards in the NS and Output Functions 

Before proceeding with this subsection, the reader should review Sections 9.2 and 11.3 
dealing with static hazards (s-hazards) in combinational circuits and in the output of syn
chronous FSMs, respectively. In Section 11.3, the treatment of s-hazards in the NS-forming 
logic was not an issue since all such timing defects are filtered out by the memory flip-flops. 
Of course, asynchronous FSMs have no such filtering mechanism and are therefore subject 
to the problems that hazards can create in the NS-forming logic. Whereas s-hazards in the 
output-forming logic of asynchronous FSMs cannot cause the parent FSM to malfunction, 
s-hazards in the NS-forming logic can and do cause FSMs to malfunction. This may be 
viewed as yet another complicating timing defect that distinguishes the asynchronous FSM 
from its cousin, the synchronous state machine. 

Static hazards in both the NS and output forming logic of asynchronous FSMs fall 
into two general categories: externally initiated and internally initiated static hazards, as 
illustrated in Fig. 11.8 for s-hazards in the output logic of synchronous FSMs. In fact, 
there is little difference in the methods used for detection and elimination of s-hazards in 
asynchronous and those used for s-hazards in the output functions of synchronous FSMs. 
It is important for the reader to remember the following: 

Any suspect haz.ardous transition found by analyzing the NS and output functions of 
an asynchronous FSM must be verified by inspection of the state diagram - this is 
standard operating procedure for s-hazard analysis in such state machines. 

Since s-hazards in the output-forming logic cannot cause malfunction of the asynchronous 
FSM itself, attention in this subsection will be devoted to these timing defects in the NS 
forming logic. The analysis of static hazards in the output logic of asynchronous FSMs 
follows closely developments in Section 9.2 and in Subsection 11.3.1. 

As the first and simple example, the transparent D latch, discussed in Subsection 10.7.1, 
will be designed by using the LPD model and then analyzed for an s-hazard timing problem. 
Shown in Fig. 14.21a is the state diagram for the D latch reproduced from Fig. 10. 24a. 
By using the mapping algorithm in Section 10.6 to combine the excitation table for the 
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Example of an externally initiated s·ha7..ard in the RET D latch. (a) State diagram. (b) NS K·map 
and minimum covcr based on the LPD model. (cl Logic circuit derived from Eq. (1 4 .13). (d) Timing 
diagram for the D latch without ha~rd rover showing oscillation effect of s-hazard. (e) Timing 
diagram with hazard covcr showing elimination of the hazard. 

LPD model with the state diagram, the NS K-map and minimum cover result as shown in 
Fig. 14.2 Ib. The NS function is easily read to be 

Y = DCK + yCK+ yD , (14.13) 
I t ~ 

o I COver 

which includes hazard cover, the ANDed residue of the coupled tenns. The notation in 
Eq. (14.13) is intended 10 indicate that a static I-hazard occurs on a L ,. 0 change in 
CK in state I when input D is active - hence, an externally initiated s-hazard. The logic 
circuit for the LPD design of the D latch is given in Fig. 14.21 c, where the s-hazard cover 
.rD is indicated by the shaded NAND gate. Thi~ circuit ~hould be compared with chat in 
Fig. IO.25b. where the basic cell is used as the memory- the nested cell design. 

From Eq. (14.13), the timing diagrams are constructed without and with hazard cover as 
shown in Figs. 14.21d and 14.2Ie. respectively. Here. Tp is the path delay for any two- or 
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fiGURE 14_22 
Hazard analysis of a four-stalc FSM. (a) Stmc diagr-.lm. (b) SOP NS K-maps showing minimum cover. 
(c) POS NS K-maps and minimum cover. 

three-inpul NAND gme and 'C/I','V = ~ TI' is the palh delay for an inverter. The oscil\alion, 
shown in Fig . l4 .2 Id. occurs as a result ofthc s-hazard fonnation. When the s-hazard is 
removed by adding hazard cover the D latch functions normally as indicated in Fig. l4.2I e. 
II is lrue thai a real-time test of thi s hazardous Iransilion in Ihe D ialch may not show logic 
instability in the absence of hazard cover. That is, the asymmetric path delay imposed by 
an inverter may not be sufficient 10 cause the fonnatioD of the s-hazard. However. a proper 
design of this FSM would make no such presupposition and would include hazard cover. 
Adding the hazard cover )'D means that the FSM cannot malfunction due to an s-hazard 
even if the inverter crealcs an enonnous delay. In fact, with hazard cover, an s-hazard cannot 
be formed as a result of an a<;ymmctric delay of any magnitude on either path ofCK to the 
output ORing stage. 

As iI second and more complex example, consider the state dillgmm for the fo ur-state 
FSM in Fig. 14.22a. The NS K-maps and minimum cover are given in Figs. 14.22b and 
14.22c for SOP and POS logic. respectively. Remember. it is the mapping algorithm of 
Seclion 10.6 thai is u~ 10 bring IOgether the information in the state diagram with that of 
the LPD excitation wble to construct the NS K-maps. The SOP NS-fonning logic is read 
from the minimum cover in Fig. l4.22b to give the following results: 

(14.141 

&juations (14.14) also includes the hazard analysis following the procedure established 
earlier in Section 9.2 for combinational logic circuits. From these results, it is clear that an 
inrernally iniliated stalic I-hazard (an SOP hazard) may exist in the Yo function. that the 
coupled terms are )'1 Yo and Y I A iJ. and Ihmlhe hazardous (fansilion is from state 11 to state 
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LPD logic circuit diagram derived from Eqs. (14.14) and the state diagram in Fig. 14.22 

01 (a change of I ~ 0 in y,) under constant-input conditions A iJ . An inspection of the 
state diagram indicates thai thi s can occur. thereby validating the eristence o f the s-hazard. 
As indicated in Eqs. (14.14). the s-hazard is eliminated by adding the hazard cover yoA B. 
The removal of the hazard is verified in Fig. 14.24b by the presence of the hazard cover. As 
is always true, the removal of the s-hazard by adding hazard cover eliminates any possibility 
that this hazard will form no matter how large the delay is through the inverter. 

The LPD logic circuit is constructed from the NS functions in Eqs. (14.14) and is 
presented in Fig. 14.23. The LPD memoryelcments, indicated in dashed boxes. are included 
only as a reminder that a fictitious memory stage exists. Hereafter. these fictitious LPD 
memory elements will be excluded in. but implied by, the logic circuit. The shaded gate in 
Fig. 14.23 is the hazard cover that eliminates the s-hazard indicated in Eqs. (14.14). 

Timing diagram verification of the existence of the s-hazard indicated in Eqs. (14.14), is 
given in fig . 14.24. Here. altemion is focused on the 11_ 0 1 transition (see Fig. 14.22a). 
To simplify the timing diagram. certain tenns have been omitted purposely because they are 
logic 0 for thi s transition and, hence, do not contribute to the hazard analysis. Thus. according 
to Eqs. (14.14). Yo = 1. A = 0, and B(I ~ 0). Therefore. it follows that yoA 8 = YIYO = 
Yo A = 0 and need not be included in the timing analysis. These results lead to the following 
simplified NS functions: YI = YI B and Yo = y, iJ + Y,yo when no hazard cover is added. 
Notice in Fig. 14.24 that the delays are given in lenns of 'CI' and rINII, the path delay of a 
NAND gate (two or three input) and that of an inverter. respectively. This is done to help 
the reader trace through the sequence of steps leading to the fonnation of the s~hazard . For 
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B(H) B(H) 

Y1B(Ll 

Y1 B(L) ----.........:.---' 

(a) 
rp+"NV~ 

yoAB(Ll ____ ---' 

(b) 

FIGURE 14.24 
Timing diagrams for the FSM in Fig. 14.23, showing (a) formation of the static I-hazard in YO and 
(b) its elimination by adding hazard cover (see arrow). 

this timing analysis, as in the previous example, the relative delay values are expressed by 
'lNV= ~,p, 

The-formation of the static I-hazard, shown in Fig. I4.24a, occurs as a result of the 
asymmetric path delay imposed by the highlighted inverter shown in Fig. 14.23. Thus, there 
are two alternative paths of the coupled (feedback) variable Yl to output yo: one through 
gate YI Yo and the other through gate Y I A B via the highlighted inverter. The reader can 
follow the sequence of events that lead up to this s-hazard formation shown in Fig. 14.24a 
by noting that the term YI B is the first to change after one NAND gate path delay following 
the change in input B. This is followed by a change in the state variable YI after an additional 
NAND gate path delay. The sequence of events continues as indicated in Fig. I4.24a until 
the static I-hazard is formed after four NAND gate path delays. 

The s-hazard in Fig. 14.24 is eliminated by applying the SOP form of the consensus law, 
given in Eqs. (3.14), to the coupled terms Y lAB and YIYO. When this is done the result is 
the hazard cover term YOA B, which eliminates the s-hazard after a delay of one gate delay 
plus an inverter delay following the change in B well in advance of the hazard, as indicated 
in Fig. 14.24b. This hazard is eliminated regardless of the magnitude of the asymmetric 
delay on either of the alternative paths of Y I to Yo. Notice that the waveforms in Fig. 14.24b 
are identical to those of Fig. 14.24a except for the presence of hazard cover and the absence 
of the s-hazard in Yo. 

The static I-hazard shown in Fig. I4.24a is nondisruptive in the sense that the FSM finally 
resides in the proper 01 state immediately following a brief improper transition to state 00. 
However, there is a short delay in achieving stability in the 01 state, and this could be highly 
disruptive to any next-stage FSM to which Yo is attached if the hazard is sufficiently well 
developed. Also, if it is required that state 00 issue an output signal, an ORG will result that 
could be disruptive depending, of course, on how that output signal is used. 
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A static O-hazard (POS hazard) also exists in the FSM of Fig. 14.22. From the K-maps 
in Fig. 14.22c, the following POS NS functions are read in max term code: 

- - -
Yo = (Yl + A )(y I + B )(y I + Yo + A) . (Yo + A + B). (14.15) 

I t ~ 
00 AB 10 cover 

From these NS expressions, it is clear that an internally initiated static O-hazard exists in 
function Yo and that it occurs on a 00 -+ 10 due to a 0 -+ 1 change in the state variable Yl 

under constant branching conditions (A + B) = A B. Remember that the coupled terms are 
read in max term code and that this requires the input conditions, as read from the coupled 
terms, to be complemented before a comparison can be made with the state diagram, which 
is a minterm-code based graphic. Applying the POS consensus law in Eqs. (3.14) means that 
the hazard co~er is the ORed residue of the coupled terms (YI + in and (y I + Yo + A) given 
by (Yo + A + B), as indicated in Eqs. (14.15). The hazard is eliminated by adding this hazard 
cover, as indicated by the arrow in Fig. 14.25b. The addition of hazard cover (Yo + A + iJ) 
ensures that this hazard can never form regardless of the size of the asymmetric delay 
associated with either alternative path of Yl to the output Yo. This is true for the elimination 
of any s-hazard after adding hazard cover. 

Unlike the static I-hazard in Fig. 14.24a, the static O-hazard in Fig. 14.25a is potentially 
disruptive to the FSM itself. Any time an s-hazard can cause an FSM to go logically unstable 
as in Fig. 14.25a, the potential is there for malfunction. Of course, it is understood that the 
s-hazard must develop to the extent that it is picked up by the NS-forming logic. Since 

A(H) 

--+. ~2rp +rINV 
8(H) 

Y,(H) ___ --,-_-'1 
--+. 4rp+rlNV ~ 

Yo(H) ___ ~ __ ----' 

rp+rINV -! 
(y,+A)(L) ___ -;..--' -

-+:3rp +rINV*-
(y, +B)(L) ___ --,-. __ -'1.-------
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FIGURE 14.25 
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Yo(H) ___ --<-___ ----::: ___ _ 
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(Yo+A+B)(L) 

(b) 

Timing diagrams for the POS NS functions in Eqs. (14.15) showing (a) formation ofthe static O-hazard 
in YO and the resulting oscillation, and (b) elimination of the s-hazard by adding hazard cover (see 
arrow). 
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it is only the delay through an inverter that is the causal effect, there is the possibility 
that the FSM will function properly even without hazard cover. But since this cannot be 
assured, hazard cover must be added. Again, this should be considered as standard operating 
procedure in dealing with static hazards in the NS logic as well as the output logic. 

14.10.4 Essential Hazards in Asynchronous FSMs 

Elimination of all endless cycles, critical races and static hazards from an asynchronous FSM 
operated in the fundamental mode does not ensure proper operation of the FSM. Certain 
noncombinational hazards produced by explicitly located asymmetric path delays in gates 
and/or on leads are guaranteed to cause such FSMs to malfunction. These hazards, called 
essential hazards (E-hazards), are steady-state sequential hazards in the sense that they 
involve the change of two or more state variables in otherwise steady-state output signals. 
The term "essential" does not imply "needed" or "necessary," but rather, refers to the 
fundamental mode of FSM operation. Without exception, E-hazards cannot be eliminated 
by adding redundant cover as can s-hazards. 

General Requirements for E-hazard Formation The general requirements that must 
be met before an E-hazard can form are as follows: 

I. The asynchronous FSM must operate in the fundamental mode. 

2. There must be at least two state (feedback) variables - hence, at least three states -
and at least one external input, designated as the initiator input. 

3. There must be at least two paths of propagation of the initiator to the first invariant 
state variable: one path directly to the first invariant and at least one other indirect 
path to the first invariant via the second invariant state variable. Both the initiator and 
second invariant must meet at a specific gate called the race gate. 

4. An asymmetric path delay must be explicitly located in the direct path of the initiator 
to the first invariant state variable and must be at least of the minimum magnitude to 
cause the E-hazard to form. 

The process of E-hazard formation involves a "critical" race (to the race gate) between 
the initiator and the second invariant state variable. If the race is won by the second invariant, 
an E-hazard is formed. An explicitly located path delay of sufficient duration will ensure 
that the race is won by the second invariant state variable and, consequently, cause the 
E-hazard to form. 

The path delay requirements for the formation of a first-order E-hazard in a two-level 
NS logic system are given in Fig. 14.26. Here, two race gate (RG) types are identified. For 
the case of the first-level race gate in Fig. 14.26a, the path delay requirement for E-hazard 
formation is given by 

04.16) 

and for the second-level race gate in Fig. 14.26b by 

04.17) 
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Illustrations of the path delay requirements for E· hazard formalion in fV,'o-l evel logic showing causal 
delays lill;. initiator input X. first and second invariants. gate delays f, . race gates (RGJ, and correction 
delays to eliminalC' the E-hazard. (a) First·level r:lce gate. (b) St'!cond·level race gate . 

In Doth Eqs. (14 .16) and ( 14.17) the quamity D.1c is the asymmetric path delay. shown in 
Fig. 14.26. Ihat is required to cause the E·hazard to form (Yb wins the race): r, are the path 
delays associated with the gates (including any inverters) and leads. In these equations the 
correction delay D.IlVI"" cr is assumed to be zero. If a counleracting delay D.trorrw is added 
in the indicated feedback path of the 2nd invariant, then the requirements for eliminating 
the E-hazard are given by 

( )4. I S) 

for the fi rst-level Tace gate. and 

()4. )9) 

for the second· level race gale. Thus, if D.t£ is of sufficient magnitude to cause an E
hazard to become activr: according to the requirements of Eqs. (14.16) and (14.17). the 
second invarianr Yb wins the race and the FSM is guaranteed to malfunction. Howr:ver. 
if a counteracting (correcting) delay is added in the feedback path of the 2nd y-variable 
invariant. the inequal ity is reversed, as in Eqs. (14.18) and (14.19). Under this condition. 
the ini tiator X wins the race and the E·hazard is eliminated. 

The minimum requirements for E-bazard fonna tion are sununarized in Fig. 14.27. The 
Slate diagram segment. shown in Fig. 14.27a. specifies the first- and second-level race gate 
SOP terms that must be contained in !he fi rst invariant function Yj before an E-hazard is 
possible. Notice that the first invariant is the second y-variable to change while the second 
invariant is the first 10 change . The minimum requirements for E·hazard formation are 
continued in Fig . 14.27b. where now anO£her type of E·hazard is identified, the d·trio. The 
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Minimum requirements for first-order E-hazard and d-trio formation in two-level SOP logic. (a) State 
diagram segment showing first- and second-level race gate requirements, only one of which will be 
met in the first-invariant function Yj. (b) Minimum requirements for E-hazard and d-trio formation 
indicating assumed input conditions for lab and he. 

d-trio (delay-trio) is a special E-hazard that returns the FSM to the intended state but only 
following a second (error) transition to another state. Thus, the transition path for ad-trio 
is a -+ b -+ c -+ b, while that for a E-hazard is a ~ b -+ c or a -+ b -+ c -+ x, where 
state x lies beyond state c in Fig. 14.27a. The latter E-hazard path is possible if the input 
conditions are such that lab S; fex in addition to those indicated in Fig. 14.27b. Clearly, 
the minimum requirements are the same for the E-hazard and d-trio formation, except the 
E-hazard does not return the FSM to the intended next state. Another important minimum 
requirement for E-hazard and d-trio formation is that the initiator Xi is permitted to have 
only one change in fab and fhr while holding x j and all other inputs constant. 

To summarize, an E-hazard or d-trio can form iff an unintended asymmetric delay I'1tE 
of sufficient magnitude is explicitly located as shown in Fig. 14.26, and if the minimum 
requirements indicated in Fig. 14.27 are met. A cursory check of the state diagram is all that 
is necessary to show whether or not the minimum requirements for E-hazard (and d-trio) 
formation are met. If they are not met, these potential defects cannot form and no further 
analysis is necessary. If the minimum requirements are met, the second stage of the analysis 
is to determine the requirements for the indirect path - that is, the requirements to allow 
the second y-variable invariant to win the race at the race gate. 

Only first-order E-hazards are considered in this text. The reason is that second and higher 
order E-hazards are far less likely to be activated than first-order E-hazards. A second-order 
E-hazard, for example, requires two successive invariants in the indirect path (IP), which 
greatly increases the minimum path delay requirement for activation of the E-hazard. 
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Indirect Path (IP) Requirements (or E-hazdrd and D-trio Formation The firs t-order 
IP requirements are as follows: 

I. The IP must not be inconsistent with !he conditions of the initiating stale a in 
Fig. 14.27a. including ils state variables and all inpulcondi tions other than the initiAtor 
input. 

2. The IP must contain the initiator as Xi or Xi. 

3. The lP must follow a path to the RG that is unobstructed. Thus, IP tenns in !he second 
invariant function Yj must not be incomistenl with any input held constant. 

With reference 10 Fig. 14.27a.lhe 1P must not be inconsistent with · . . ii i. Y j . . . . X j and 
must contain x , or Xi in YJ. 

A SIMPLE EXAMPLE. Consider the Slale diagram for the simple two-input FSM shown 
in Fig. 14.28a. Here. two paths are shown. one for an E-hazard and the other for ad-trio. 
Thc shaded Slates indicate the origin Slates for the potential defecl in question. Thus. the E
hazard path is c: -+ b -. a while that for the d-lrio is tl _ d _ c _ d as indicated by the 
dashed arrows. Notice that there are no endle.'~s cycles or critical race. .. present in this FSM. 

So that the reader can follow the reasoning process involved in analyzing these potential 
defects. the NS functions. read from the K-maps in Fig. 14.28b. are provided in Eqs. (14.20) 
and (14.2 1) and are used for E-hv..ard and d- trio analysis. respectively. In these equations 
RG represents a race gate or a path to a race gate. and IP represents an indirect path term. The 
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E-hazard and d-trio analysis for a simple FSM having two inputs and one unconditional QlItpUI. 

(a) Stale diagram showing paths for an E-hazard and for a d-trio. (b) NS K-maps and minimum cover. 
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subscriplS E and D refer (0 the E-hazard and d-lrio, respectively. Following the procedure 
given in Subsection 14.10.3, a brief inspection of tbese NS functions indicates that they are 
free of s tal ic hazards. 

Y, = JoB + y, A + Y,YO 

IP, 

/"" Path 10 ROE 

YO= Yo A + Y, A + y , B 

'~--~v~--~' 
GRing RG F. 

ANDing RG 0", 

YO= YQA + y, A + y, B 

( 14.20) 

( 14 .2 1) 

Nearly complete information regarding E-hazard and d-Lrio formation can be gleaned 
from Fig. 14.28(a) together with the NS functions given by Eqs. (1 4.20) and (14.21). The 
logic circuit. constructed from these NS functions, is presented in Fig . 14.29 . Here. ATE 
and AT/) aTC the unwanted explici tly located path delays (occuring separately) thaI will 
cause the formation of the E-hazard and d-lrio according 10 Bqs. (14.22) and ( 14.23). The 
race gates, RGE and RGD, are shown shaded. 

f-hazard Analysis With reference 10 the state diagram in Fig. 14.28a and to Eqs. (14.20). 
the following conslitute the minimum requirements for E-hazard formation as set forth in 

Correction path .. _____ ~ Counteracting 
delay 

------ ------ I 
~ _L~~~j-

IP, , ~y,B(L) 
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FIGURE f 4.29 
Logic circllil constructed from the NS runclions of Eqs. ( 14.20) Qr (14.21) showing causal delays 
required to fonn the. E-ha1.ard ord-trio, their respeclive racc gales. aDd the position of lhecouolcracling 
delay required 10 eliminate the E·hazard or d-uio. 
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Fig. 14.27: 

AB ---+ AB, AB = Ieb S; fb = A, AB = ha S; fe = AB, Ieb 1. fab. 

Only a single change in the initiator is indicated in c ---+ band b ---+ a with B held constant. 
Here, state 11 (state c) is the origin state, A is the initiator input, the intended path is 
11 ---+ 01 (c ---+ b) , the E-hazard (error) path is 11 ---+ 01 ---+ 00, Yo is the first invariant, 
and YI is the second invariant. 

The remaining requirements for E-hazard formation in the FSM of Fig. l4.28a are 
obtained from Eqs. (14.20) and Fig. 14.29 in accordance with Fig. 14.27 and the indirect 
path (IP) requirements given previously. 

1. A delay /}.tE placed on the initiator A input to the first invariant Yo causes a critical 
race to the race gate RGE between the initiator A and the second invariant Yl. If /}.tE 

exceeds the minimum path delay requirements, YI wins the race and the E-hazard is 
formed. If /}.tE is not of sufficient magnitude, the initiator input A wins the race and 
no E-hazard will form. 

2. The path to the DRing (2nd level) race gate (RGE) is indicated by the term YoA in Yo, 
as shown in Eqs. (14.20). No ANDing RG is possible according to Figs. 14.27a and 
14.28a. 

3. The indirect path (IPE) must not be inconsistent with B, YI, Yo in YI and must contain 
YI or Y I and A or A in Yo. Therefore. the IP is via the term YI A in Y1• and either YI A 
or YIB in Yo. 

4. Based on the foregoing and with reference to Fig. 14.29. the theoretical minimum 
path delay requirements for E-hazard formation is given by the inequalities 

or 

(14.22) 

where Tp is the path delay through a gate (e.g .• a two- or three-input NAND gate). 
and T/NV = T2 is the path delay through an inverter. Thus. Eq. (14.22) does not take 
into account the gate path delay dependence on fan-in. 

D-trio Analysis With reference to the FSM in Fig. 14.28a and Eqs. (14.21), the following 
constitute the minimum requirements for d-trio formation as set forth in Fig. 14.27: 

A B ---+ A B • A B = lad S; /d = A B , A B = Ide S; fa = B, lad S; fed = A B, 

and only a single change of the initiator is indicted in a ---+ band b ---+ c with A constant. 
In this case state 00 (state a) is the origin state, B is the initiator, the intended path is 
00 ---+ 10 (a ---+ b), the d-trio (error) path is 00 ---+ 10 ---+ 11 ---+ 10, Yo is the first invariant, and 
Y I is the second invariant. 

The remaining requirements for d-trio formation in the FSM of Fig. 14.28a are obtained 
from Eqs. (14.21), from Figs. 14.27 and 14.29, and from the IP path requirements given 
previously. 
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1. A delay !'3..tD placed on the initiator B input to the first invruiant Yo causes a critical race 
to the race gate between the initiator B and the second invariant YI. If !'3..to exceeds 
the minimum path delay requirements, YI wins the race and the d-trio will be formed. 
If !'3..tD is not of sufficient magnitude, the initiator input B wins the race and no d-trio 
will form. Should the d-trio be formed, an output Z will be issued for a duration equal 
to the difference between !'3..to and the minimum path delay requirements for d-trio 
formation. 

2. An ANDing race (RGD) is indicated by the term YI B in Yo, as indicated in Eqs. (14.21). 
No ~Ring RG is possible according to Figs. 14.27a and 14.28a. 

3. The indirect path (IPD) must not be inconsistent with ii, ji I , ji 0 in YI and must contain 
either B or B in YI. Therefore, the IPD is by way of the term jioB in YI. 

4. Based on this information and with reference to Fig. 14.29, the theoretical minimum 
path delay requirement for d-trio formation is given by the inequality 

(14.23) 

where, as previously, Tp is the path delay through a gate (e.g., a two- or three
input NAND gate), and TINY = T is the path delay through an inverter. Accordingly, 
Eq. (14.23) does not take into account the gate path delay dependence on fan-in. 

The corrective action required to prevent the E-hazard or d-trio from forming, is indicated 
in Fig. 14.29 by a counteracting delay in the feedback path of the second-invariant state 
variable YI. Thus, the theoretical corrective action required to eliminate these defects is 
given by the inequalities 

(14.24) 

and 

(14.25) 

Notice that if !'3..tCOrTec/ = !'3..tE, the inequalities ofEqs. 04.24) and (14.25) are easily satisfied. 
Also, observe that the delay !'3..tE is effective in causing the E-hazard to form at any point 
along the path E to F (see the large nodes in Fig. 14.29), including the intervening two-input 
NAND gate. This is characteristic of any ORing race gate, a feature not shared with the 
ANDing race gate. 

Further verification of the results presented so far is provided by the timing diagrams in 
Fig. 14.30. Presented in Fig. 14.30a is the result of E-hazard formation indicating an error 
transition 11-+ 01-+ 00 due to a delay !'3..tE = 5Tp positioned anywhere along the path 
between large nodes E and F (including the intervening NAND gate) shown in Fig. 14.29. 
Recall that under the input change ii B -+ A B from state II the correct transition should 
be 11-+ 01, but because of the unwanted path delay !'3..tE an error transition is forced to 
occur. A path delay of !'3..tE = 5Tp clearly exceeds the minimum path delay requirements 
for E-hazard formation given by Eq. (14.22). 

The formation ofthe d-trio is illustrated by the timing diagram in Fig. 14.30b. Here, a de
lay of !'3..to = 5Tp, positioned as shown in Fig. 14.29, causes an error pulse in state variable 
Yo and output Z of duration 5Tp - (TINY + 2Tp) = 3Tp - TINY. The d-trio has the appearance 
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.6.to = 5Tp 

(YoA=Y ,A=O) 

A(H) A{H) 

8(H) Effect of JI' E-hazard 

B(H) 
Effect of r d-trio 

Ii 

Y,(H) Y, (Hl 

Y(l(H) Yo(H) 

YoB(l) YoB(L) 

-
Y,A{L) Y, YIA(L) 

Y,Yo(l) 

YoA\l) 

Y,A(L) _ ---i--'~L _ _ _ 

y, B(L) 

(a) 

FIGURE 14.30 

Y,Yo(l) 

Yo { Y, B{l) 

Z(H) _---'--__ ---',----,L _ '= Error 
output 

(b) 

Timing diagrams derived from simulator tracings showing error transitions caused by delays of Srp 
located at the positions l!.tE and l!.fJ) indicated in Fig. 14.29. (a) liming diagram showing development 
of the E·hazard consistent with Eq. (14.22). (b) Timing diagl1lm showing development of the d-trio 
consistent with Eq. (14.23). 

of a static O-hazard but with a pulse width proportional to the difference between the delay 
6.tl) and the minimum path delay requirements for d-trio fonnation g iven by Eq. (14.23). 
The proper transition from state 00 under input change AB ...... AB should be 00 ...... 10, 
but because of the explicitly located deJay 6.rD the d-trio transition 00 -+ 10 ...... II ...... lOis 
forced to occur. 

The E-hazard and d-trio featured in Ihis example can be removed simply by adding a 
couOleracting delay of sufficieOl magnilUde in the feedback. path oflhe second invariant slate 
variable as indicated in Fig. 14.29. "When mis is done the requirements of Eqs. ( 14.24) and 
04.25) are meL A safe magnitude for the counteracting delay is usually the magnitude of 
the minimum Iheorelical delay causing the E-hazard ord-trio to form. lithe laner magnitude 
is not known. then a delay of2r/1 wiJI usually suffice. 

14.10.5 Perspective on Static Hazards and E-hazards in Asynchronous FSMs 

Static hazard analyses should always be run and corrective active taken (if needed) prior to 
canying out an E-hazard analysis. The reason for this is simple: Static hazard cover may, 
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in some cases, actually provide an indirect path for E-hazard formation, thereby making 
E-hazard formation possible whereas otherwise it would not be. E-hazards are potential 
defects in the sense that the FSM logic is not "born" with these defects as can be the case 
for static hazards. E-hazards require explicitly located path delays of magnitude exceeding 
the minimum requirements before they can form. However, an active E-hazard is guaranteed 
to cause malfunction of the FSM, whereas active static hazards in the NS logic mayor may 
not be disruptive to the operation of the FSM. Before a static hazard in the NS-forming logic 
can cause malfunction, it must be "strong" enough to cross the switching threshold, but even 
then the hazard may not cause malfunction. However, the designer must assume that the 
static hazard has the potential to cause malfunction of the FSM and must add hazard cover. 
In fact, some designers find it worthwhile to take the "shotgun approach," which means 
adding hazard cover to any pair of coupled terms appearing in the NS logic functions. 

The d-trio is a special case of an E-hazard that causes the FSM to undergo an error 
transition before residing in the intended state. Sometimes this has the effect of only delaying 
the transition from the origin state to the intended state. However, at other times an output 
can be activated erroneously as in Fig. l4.30b. Such an erroneous output can be just as 
disruptive as an active E-hazard would be. For this reason, active E-hazards and d-trios are 
considered equally capable of causing malfunction of an asynchronous FSM and corrective 
action should be taken where warranted. This action usually amounts to nothing more than 
adding a delay in the feedback path of the second invariant state variable, a delay equal to 
about the minimum path delay requirement for E-hazard formation. 

Corrective action to prevent the formation of E-hazards can take the form of carefully 
choosing routing paths in a circuit layout so as to avoid excessive path delays at certain 
critical locations in the circuit. Thus, an E-hazard analysis is of value in this regard, since 
knowledge of the position and magnitude of a causal delay can offer the designer the 
information needed to make an engineering judgment as to possible corrective action. Again, 
it must be remembered that a strongly active E-hazard is guaranteed to cause malfunction of 
the FSM. If the minimum path delay requirements are just barely exceeded, a weakly active 
E-hazard may cause the FSM to become logically unstable or may even permit the FSM 
to operate properly. But the designer should not take a chance except for the case where a 
large minimum path delay requirement is indicated. The E-hazard and d-trio effects given 
in Fig. 14.30 are those of a strongly active E-hazard, since the delay of Sip that is used 
exceeds the minimum requirements by about a factor of 2. A causal delay that just exceeds 
the minimum path delay requirements for an E-hazard, as indicated in Eqs. (14.22), will 
cause the FSM to oscillate when simulated. The same reduction in the causal delay for the 
d-trio only narrows the error pulse. Real circuits, on the other hand, may require causal 
dalays considerably in excess of the theoretical minimum. 

14.11 INITIALIZATION AND RESET OF ASYNCHRONOUS FSMs 

Like synchronous FSMs, most asynchronous FSMs must also be initialized or reset. But 
unlike synchronous FSMs that can be initialized or reset via sanity circuit inputs to PR and 
CL overrides of the flip-flops, asynchronous FSMs must be initialized or reset by using 
sanity circuit inputs to the gates of which the NS logic is configured. The sanity circuit 
shown in Fig. 11.28 presented in connection with synchronous FSMs applies here also. 
Figure 14.31 illustrates the means by which an asynchronous FSM must be initialized or 
reset. Figure 14.31a applies to an active low output from the sanity circuit while Fig. 14.31 b 
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D-D- D-D-
Initializes 0 Initializes 0 

D-D-
Initializes 1 Initializes 1 

(a) (b) 

FIGURE 14.31 
Gate requirements for initializing a logic 0 or a logic 1. (a) Active low output from the sanity circuit. 
(b) Active high output from the sanity circuit. 

applies to an active high output from the sanity circuit. Generally, an ANDing operation is 
required to initialize a logic 0, and an ORing operation is required to initialize a logic 1. 
For example, a Sanity(L) = I(L) = O(H) initializes a logic 0 if it is the input to an AND 
symbol without input active low indicator bubbles, but initializes a logic 1 if it is the input 
to an OR symbol with input active low indicator bubbles, as in Fig. 14.31 a. Conversely, a 
Sanity(H) = I(H) = O(L) initializes a logic 0 ifitis the input to an AND symbol with input 
bubbles, but initializes a logic 1 if it is the input to a OR symbol without the input bubbles, as 
in Fig. 14.31 b. The time tpu is the power-up point beyond which the system can be operated. 

As an example of the initialization methods just discussed, consider the two general
ized two-level SOP circuits shown in Fig. 14.32. In Fig. 14.32a the NAND circuit can be 
initialized a logic 0, whereas in Fig. 14.32b the NAND circuit can be initialized a logic 1, 
both with an input Sanity(L) = I(L) = O(H) required for initialization. The difference is, 
of course, in the way the sanity input is introduced into the circuit. For the former case it is 
introduced in the input ANDing stage and in the latter case it is introduced into the output 
ORing stage. Note that if the NAND logic in Fig. 14.32b is replaced by AND/OR logic, the 
sanity input must be changed to Sanity(H), but no change would be necessary in Fig. 14.32a 
for AND/OR logic. A dual arrangement results in the case of two-level NOR-based POS 
logic for which Sanity(H) is the initializing input. 

14.12 SINGLE-TRANSITION-TIME MACHINES AND THE ARRAY 
ALGEBRAIC APPROACH 

This important section describes a class of asynchronous FSMs that undergo the fastest state
to-state transition times possible and that avoid all race-associated problems, namely critical 
races and ORGs. This class of fundamental mode FSMs is commonly called single transition 
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Initializing two-level NAND SOP logic with a sanity(L) input. (a) Sanity(L) = 1(L) = O(H) used to 
initialize a logic O. (b) Sanity(L) = 1(L) used to initialize a logic 1. 

time (SIT) state machines. The array algebraic approach used here is precisely the same as 
that used in Section 11.11 for synchronous FSM design by using D flip-flops. The reason 
why the same array algebraic approach can be used lies in the fact that the excitation table 
for the LPD model is exactly the same as that for D flip-flop designs. Now, however, state 
code assignments must be found that will eliminate critical races and ORGs and yet yield NS 
functions that represent the fastest transition times possible. As will be demonstrated in this 
and the following section, STT FSMs can be designed by using either the LPD model or the 
nested cell model, both models complying with the requirements of the fundamental mode. 

Procedure for Obtaining an STT State Code Assignment 

I. Construct a state table free of cycles and buffer states, which are strictly forbidden, 
and assign a state identifier to each state. The state table can be constructed very 
easily from the state diagram or ASM chart for the FSM. Note that violation of the 
sum rule can cause critical races. 

2. Identify the state that is to be initialized and assume that it will be an all-zero state 
( ... 000) or an all-one state ( ... 111). This is done to simplify the initialization process 
(see Section 14.11). 

3. Partition the state transitions into groups or sets that eliminate critical races and 
ORGs. These partitions are called n (partial) partitions. The n-partitions result from 
an extension of the "into rule" (rule 1) used to obtain optimum state code assignments 
for D flip-flop designs of synchronous FSMs as discussed in Subsection 11.10.2. If 
present, the state identifier for the initialization state together with all other state 
identifiers associated with that initialization state must be positioned on the left side 
of the n-partitions. This is done so as to organize the n-partitions into a form that 
can be used to obtain a valid SIT state code assignment by following the remaining 
steps of this procedure. 
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4. Collect the n -partitions into partitions that include all states identifiers. These parti
tions are called r (total) partitions. If this is properly done, all r-partitions will begin 
with the state identifier for the initialization state on the left side of the partition. 

5. Find a minimum set of r-partitions that "cover" all Jr-partitions. The number of r
partitions is equal to the number of state variables for the FSM. There may be more 
than one minimum set of r -partitions. If more than one minimum set of r -partitions 
exist, the choice of anyone of the minimum sets will lead to an optimum or near 
optimum SIT design - there is usually little difference in their use. A nonminimum 
set of r -partitions will usually not yield an optimum SIT design, but it can happen. 

6. Select a valid state code assignment from a minimum set of r-partitions. Choose the 
initialization state to be either a .. ·000 state or a ... 111 state, not a mixture. See 
Section 14.11 for rules governing the initialization of asynchronous FSMs. Note that 
for FSMs lacking cross branching the partitioning method defaults to unit distance 
coding of states as in Fig. 14.22. 

At this point the array algebraic approach, discussed in Section 11.11, can be used to 
obtain the NS and output functions for the SIT state machine. The array algebraic approach 
discussed here is actually an extension of the LPn model, since the lumped path delays in 
the NS functions are implied. 

As an example, consider the FSM represented by the state diagram and state table in 
Fig. 14.33, presented here for purposes of designing it as an STT state machine. This figure 
is a reproduction of that presented in Fig. 14.6, exclusive of state code assignments at this 
point. From the state table in Fig. 14.33b, there result the seed sets given by Eqs. (14.26). 

ST 0 1 3 2 
Yo 00 01 11 

~ 
P 

a b 0 0 0 

b ® d c e 0 

c b (£) (£) e 0 

Q 

0 

1 

0 

d e @ c e 0 ST 

e 0 a 0 0 ST 

o Indicates a holding condition 

(a) (b) 

FIGURE 14.33 
Reproduction of state machine in Fig. 14.6 for purposes of designing it as an STT machine. (a) State 
diagram representation. (b) The equivalent state table for the FSM in (a). 

S 
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Seed sets are useful as a aid in establishing the Jr-partitions and may be disregarded for 
simple FSMs. Notice that the branching paths within a given seed set contain just one 
holding condition state identifier and that all branching paths within the set share a common 
branching condition. This is easily seen by comparing each seed set with the state diagram 
in Fig. l4.33a. Normally a single state identifier representing a holding condition will not 
appear singly within a seed set unless it is not otherwise associated with another state 
identifier within the same seed set. 

Seed Set II = {ae, bd, e} S d 

I 

Seed Set 10 = lab, be, de} 1 
ee sets 

Seed Set h = {a, be, ed, e} 
Seed Set h = {a, be, ee, de} 

Seed Set 10 ~ Jrl = abe, de 
Seed Set h ~ Jr2 = ae, bd 
Seed Set II ~ Jr, = ae, e 
Seed Set h ~ Jr4 = bd, e 
Seed Set h ~ Jrs = a, bed 
Seed Set h ~ Jr6 = a, e 
Seed Set h ~ Jr7 = bed, e 
Seed Set h ~ Jrs = a, bede 

Jr -partitions. 

(14.26) 

(14.27) 

The Jr-partitions are derived from the seed sets in Eqs. (14.26) and are given by Eqs. 
(14.27), where state a is taken to be the initialization state in agreement with the state 
diagram in Fig. 14.33a. Observe that when present in a given Jr-partition, state a always 
appears on the left side of the partition (the comma). If it is decided to assign· . ·000 to 
state a, then all state identifiers grouped with a on the left side of the partition must also 
be assigned logic O. Accordingly, this requires that all state identifiers on the right side 
of the partition be assigned a logic 1. For example, from seed set 10 , the Jr-partition is 
Jrl = abe, de for which state identifiers a, band e all take logic 0 while state identifiers d 
and e take logic 1. Notice in particular that the partitions are formed in such a manner that 
no state variable appears on both sides of the partition, a requirement for discreteness of the 
partition. 

Having completed step 3 of the procedure given previously, it is now required by step 4 
that the Jr-partition be collected into T-partitions, each of which must contain all the state 
identifiers. This is done and the results are presented in Eqs. (14.28). Observe that there are 
eight T-partitions of which five are shown, but only four are necessary to cover all eight 
Jr-partitions. The choice of the first four T-partitions is made, which constitutes a minimum 
set thereby completing step 5. Hence, four state variables are required. 

I 
TI = abe, de = Jr(1, 6) I 
T2 = ae, bed = Jr(2, 3, 5, 7) 
T3 = aee, bd = Jr(2, 4) Jr-partitions. 
T4 = a, bede = Jr(5, 6,8) 
T5 = abde, e = Jr(3, 4) 

(14.28) 

The state matrix S can now be established according to step 6 assuming that the initial
ization state a is assigned all zeros, 0000. If an ascending order of T-partitions is chosen, 



724 CHAPTER 14/ ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS 

the S matrix becomes 

Tj T2 T3 T4 

T 
0 0 

i] 
S= b 0 1 1 = State matrix, (14.29) 

c 0 1 0 
d 1 1 1 
e I 0 0 

where Hamming distances of 1, 2, and 3 are required for the STT state-to-state transitions. 
Note that if the initialization of state a is chosen to be 0000, there are 4! 24 ways the 
columns in the state matrix in Eq. (14.29) can be commuted. Therefore, there are 24 possible 
state code assignments for which state a is assigned 0000. If state a can be initialized as 1111 
in addition to 0000, then there are 2 x 4! = 48 possible state code assignments. Generally. 
for nT-partitions there are n! S arrays possible assuming initialization into either a .. ·000 
state or a ... III state. Or, if no restrictions are placed on the initialization state code, the 
number of S arrays is expressed as SA = (2n - 1)!/(2n r)~(n!), where n is the number of 
state variables (T -partitions) and r is the number of states. In the present case, this would 
amount to SA = 1365 possible state code assignments. 

By continuing to follow the procedure described in Section 11.11, the destination matrix 
becomes 

10 II h h 

a [ 0 
ae a 

1] D = babe 0 0 
= Destination matrix, (14.30) 

e 0 c bed 
d 0 bd 0 
e de 0 e 

which is exactly the same as that given in Eq. (l 1.12). Then by taking the transpose of the 
S matrix (st) and by multiplying it with the destination matrix D, there results the function 
matrix F NS given by 

F" ~S'D~ [~ 
0 0 I I] [0 ae 

a 

1] 1 1 1 0 a~c ~ 0 

1 0 
bed 

1 0 0 bd 0 
1 I 1 de 0 e 

[ de 
bd e bc~e] 

= abe bcd bcd 
(14.31) 

abe bd 0 o ' 
1 bed bede bede 

where the entries in the 1<' matrix are called the state adjacency sets. 
The next step is to express the NS function matrix FNS in terms of the state variables 

Y3, Y2, YI, and yo. This can be done by inspection of the state assignment map shown in 
Fig. 14.34a. Noting that all empty cells of this map are don't cares, the state adjacency sets 
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FIGURE 14.34 
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bd = Y1 

bed = Y2 

bede = Yo 

abede = 1 

(b) 
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Evaluation of the state adjacency sets in the F matrix of Eq. (14.31). (a) State assignment map for 
the state matrix of Eq. (14.29). (b) State adjacency sets in terms of the state variables as evaluated by 
inspection of (a). 

are easily expressed in terms of the y-variables as shown in Fig. 14.34b. For example, Y3 
covers all states adjacent to states d and e in the Y3 domain. Similarly, }3 encompasses all 
state adjacencies relative to states a, b, and c in the .Y3 domain. If automated designs are 
required to express the state adjacency sets in terms of the y-variables, tabular methods 
such as that of Quine-McCluskey can be used as discussed in Section 11.11. However, very 
large, complex FSMs may require the use of a minimization algorithm such as Espresso-II 
to accomplish this task. 

After the appropriate substitutions are made into Eq. (14.31), the NS functions can be 
evaluated. This is accomplished by multiplying the function matrix F NS by the input matrix I 
to obtain the following NS function matrix NS: 

or 

[ y, 
YI Y3Y 1 

Y3 Y2 Y2 NS=FNs·I= - 0 Y3 YI 
1 Y2 Yo 

~l [i:l = [f~l' 
Yo h Yo 

(14.32) 

By carrying out the indicated matrix multiplication, there results the NS equations 

I Y3 = Y3~~ + YIST + Y3}IST + yoST I 
Y2 = hST + Y2T 
YI=hST+yIST . 

- - -
Yo = ST + Y2ST + YoS 

(14.33) 
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The output functions are obtained by using the same procedure. As was indicated in 
Section 11.11, the state matrices for outputs P and Q are obtained directly from the state 
table in Fig. 14.33b. By mUltiplying the transpose of the P state matrix in Fig. 14.33b by 
the D matrix and by substituting the appropriate y-variables for the state adjacency sets, the 
P function matrix is found to be 

[ 0 

ae a a 

] 
abc 0 0 0 

Fp = ptD = [0 0 0 0 sf] ~ e bed 0 
bd 0 0 

de 0 e bede 

= [de 0 e bede]ST 

= [Y3 0 Y3Y I Yo]ST 

or 

- II 

[

/

0

] 

YoST] ~~ 

=yoST. 

The results for output Q follows in similar fashion. By multiplying the transpose of the 
state matrix for output Q with the D matrix and by substituting the appropriate y-variables 
for the state adjacency sets, the Q function matrix becomes 

[0 a, 
a 

J] abc 0 0 
FQ = QtD= [0 1 o ST S] 0 e bed 

o bd 0 
de 0 e 

= [(abc + deS) bdST eS bedeS] 

or 

- -
=hST + YIST + Y3y IST + YoST, 

where Y3S .10 = Y3S . ST = 0 has been eliminated. 
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Collectively, the NS and output functions generated from the array algebraic approach 
are 

Y3 = )'3ST + )'IST + Y3y l ST + YOst 
Y2 = Y3ST + Y2 T 

- - -
Yl = Y3ST + )'IST 
Yo = ST + Y2ST + YoS 
P = YoST 
Q = Y3ST + YIST + Y3y l ST + YOst 

( 14.34) 

which represents a gate/input tally of 14/40 taking into account four shared PIs and excluding 
possible inverters. Notice that all five output p-terms are covered by p-terms in the NS logic 
functions owing to the four shared PIs. This is characteristic of the array algebraic approach 
to FSM design since the same form of the function matrix F = ZtD is used for the output 
functions as for the NS functions. 

The NS and output functions in Eqs. (14.34) are guaranteed to be free of critical races 
and ORGs. This is a result of using the array algebraic approach on the state assignment 
matrix of Eq. (14.29), the combination of which is inherently exclusionary of all race related 
problems. However, the result is not expected to be an optimal result. The array algebraic 
approach to FSM design used in this section is attractive from another point of view: It 
offers a method for obtaining the NS and output functions of STT state machines that is 
amenable to computer aided design (CAD). 

Logic minimization methods should rarely, if ever, be used to obtain the NS and output 
functions directly from the state diagrams of STT state machines. The reason is that an SIT 
state code assignment is, by itself, not sufficient to ensure a critical race-free and ORG-free 
design. For example, if an optimal K-map minimization approach is used directly on the 
state diagram in Fig. l4.33a with the STT state code assignments given by Eq. (14.29), a 
result is obtained that cannot be guaranteed to be free of critical races and ORGs. The NS 
and output functions must be "looped out" correctly to avoid race-related problems a 
task performed automatically by the array algebraic approach. 

There remains the question of static hazards in Eqs. (14.34). A static hazard analysis of 
Eqs. (14.34) indicates that there are seven active static I-hazards in the NS functions, three 
in function Y3, one in Y2, and three in function Yo. but all are externally activated. Shown 
in Eqs. (14.35) are the NS functions with hazard cover included for these seven s-hazards. 
Also shown is the hazard cover for the singular externally initiated static I-hazard in the 
output Q. When this hazard cover is included, the gate/input tally for Eqs. (14.35) becomes 
21168. However, there is one potentially active static I-hazard in function Y1 if a delay 
greater than that of an inverter is placed on the noninverter path, that is, on the T line to 
gate Yl ST. There are also two such potentially active s-hazards in output function Q, one 
between coupled terms 'hSt, YJ ST and the other between coupled terms YoST. In 
each of these latter two cases an s-hazard could form if a delay exceeding that of an inverter 
is positioned on the noninverter line of the coupled variable to the coupled term gate. The 
hazard covers for these hazards are not shown in Eqs. (14.35) since they are not likely to 
form, although some designers may include them to ensure proper operation of the FSM. 
The term "potentially active" applies to any hazard that must be activated by an unintended 
delay that is explicitly located along some path in the circuit a delay that cannot always 
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be predicted from an analysis of the logic circuit. 

- - - -
Y3 = Y3ST + YIST + Y3y IST + YoST + Y3Y IS + Y3YoT + Y3YIYOS , , 

Hazard cover 

Hazard cover 

- --
YO = ST + Y2ST + YoS + Y2S + yoT + Y2YoT 

, , 

Hozard cover 

P = YoST 
- -

Q = Y3ST + YIST + Y3y IST + yoST + Y3YIYOS 
~ 

Ha:.ard cover 

(14.35) 

To assist the reader in understanding the analysis by which the hazard cover in Eqs. (14.35) 
is obtained, the hazardous 1 -+ 0 transitions for function Y3 and the states within which they 
occur are indicated in Eq. (14.36). Like all the other s-hazards in the NS functions, these 
are externally initiated static I-hazards that will occur only under the holding condition 
of a given state. The static hazard cover is obtained by consensus, that is, by ANDing the 
residues of the coupled terms involved in the particular hazardous transition. Thus, for this 
s-hazard occurring in state d, the consensus term is Y3YI S, which is the ANDed residue of 
the coupled terms Y3S f and YI ST. This hazard occurs when the FSM begins the transition 
from state 1111 to 1001 (d -+ e) under input change S T -+ sf during which Y3 should 
remain active but instead is forced to undergo a negative glitch caused by the static I-hazard. 
For a review of hazard analyses in two-level combinational logic and in synchronous FSMs, 
see Sections 9.2 and 11.3. 

!'--r&--l-d ---I@I-------, 

(14.36) 

The two-level NANDIINV logic circuit for Eqs. (14.35) is presented in Fig. 14.35 together 
with the shared PIs A, B, C, D, and E that are used to implement the outputs Q and P. Also 
shown are the covers for the seven hazards indicated by shaded gates. Notice that the p-term 
Y3Y I YoS serves as hazard cover for both the externally initiated s-hazard in NS function Y3 
and the internally initiated s-hazard in output Q. Static hazard cover for an output function is 
frequently (but not always) found in an NS logic function, including its hazard cover - that 
is, an output s-hazard cover is frequently a shared PI. Sanity connections are omitted for 
simplicity but can easily be added following the discussion and figures in Section 14.11. 

The results of a logic simulation of the circuit in Fig. 14.35 is shown in Fig. 14.36, 
where the single transition times are clearly indicated by vertical dotted lines. Thus, the 
simultaneous change of the state variables is what is meant by single transition time (STT). 
Clearly, it is easy to understand why race-related timing problems do not exist in such 
FSMs, even in real time. Though not indicated, the time elapsing between a change in an 
external input (S or T) and the resulting simultaneous change in y-variables varies from 
2T p to (2Tp + T/Nv) for the state-to-state transitions shown. Here, as before, T p is the path 
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fiGURE 14.35 
Two-level implementation of the NS and output functions in Eqs. (14.35) showing ha7.ard cover for 
the eight s-ha7.anis (shaded gales) and use of the four shared Pis A, B. C, D. and E to implement 
outputs Pand Q. 

delay through a gate and r/N V is the path delay through an invertcr. where thc relative delay 
values are taken to be flNI' = ~fl" The changes in Q. for Ihe masl pan. occur simultaneously 
with changes in the y-variables. while changes in P occur in the range OfTf/LO ( r p + TINV) 

following an eXlcrnal input change. Changcs in Q may precede changes in the y-variables 
by TJNV. bUI Ihat is the exceplion rathcr than the rule. To assisl the reader in following 
these events, the slale codes and slalc identifiers are provided in Fig. 14.36 following each 
state-la-state transition. 

Hazard analyses. such as that required to arrive at Eqs. (14.35), are not easily carried 
out and can lead 10 serious problems if perfonned incorrectly. Funhermore. as is evident 
in Eqs. (14.35). there is a significalll increase in the hardware commitment required 10 
eliminate the static hazards in complcx FSMs such as SIT mal·hines. However. there exists 
a means by which all s-hazard:::;can oc eliminaled from any fu ndamental mode slate machine 
(meaning also SIT FSMs) without having to add hazard cover. This is the subject of the 
following section in which the basic memory cell is used as the memory element. 
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Results of a simulation for the logic circuit in Fig. 14.35 showing the single transition times of the state 
variables (dashed lines) that are characteristic of STT machines, the state codes and state identifiers 
following each transition, and the output fucntion P and Q. 

14.13 HAZARD-FREE DESIGN OF FUNDAMENTAL MODE STATE MACHINES 
BY USING THE NESTED CELL APPROACH 

Fundamental mode designs of FSMs are fraught with special problems, not the least of 
which is that dealing with static hazards in the NS logic. If an s-hazard exits in a NS logic 
function, it can, under the right conditions, cause the FSM to malfunction. Furthermore, 
the process of identifying and eliminating these hazards is no trivial task, as has been made 
evident from discussions in Subsection 14.10.3 and in Section 14.12. No where is this point 
better illustrated than in Eqs. (14.35), where seven active static I-hazards are identified in 
three of four NS functions. But the processes of identifying and eliminating such hazards 
can be circumvented by using the nested cell model as is done in Fig. 10.30 for the RET 
D flip-flop. The following is one such approach in the use of this model. 

Consider the SIT NS (LPD) logic in Eqs. (14.34), exclusive of hazard cover, which is 
to be converted to nested cell form. Next consider that the LPD-to-SR conversion follows 
similar to that of Eq. (10.11) for converting a D flip-flop to a JK flip-flop and is given by 

(14.37) 

Here, J is replaced by Sand K is replaced by R, while D and Q are replaced by Y and 
y, respectively. To carry out the y -+ SR conversion, use Algorithm 10.2 for D -+ JK 
K-map conversion but with the following change: Instead of filling in with don't cares 
(if>' s), fill in each empty cell with a if> ANDed with the complement of the S or R K-map 
entry having the same cell number. The following demonstrates how this is accomplished 
algebraically. 

With Eq. (14.37) in mind, a theoretical procedure (applicable to CAD with the appro
priate search algorithm) can be devised to execute the conversions directly from the NS 
Yi functions. Consider the K-maps in Fig. IO.30c for the nested cell design of the resolver 

1001 
e 
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FSM. Essential entries in a given domain excludes that domain character from the NS logic 
function being extracted. Consequently, the following Yi --+ Si, Ri conversions can be made 
directly from the Yi functions in Eqs. (14.34): 

Y3 = Y3ST + ylST + Y3y IST + yoST 
S3 = hYIYO(O) + hYIyo(ST) + hYIYo(ST) + Y3YIYO(S E9 T) + Y3 XXcp 

= YIyo(ST) + YIYO(ST) + YIYO(S E9 T) 
=YoST + ylST 

R3 = hXXcp + Y3Y IYo(ST + ST) + Y3YIYO(ST + ST + ST) 

+Y3YIYO(S) + Y3YIYO~ST + ST + ST) 
= Y I Yo(S E9 T) + Y I Yo(ST) + YI yo(S) + YI yo(ST) 
= YIST + ylST + yoST 

. (14.38) 

Here, the results for S3 and R3 are precisely those that would be obtained by a K-map 
conversion of Eqs. (14.34) given the use of Eq. (14.37). Note that XX appearing in the 
terms Y3XXcp and Y3XXcp represents all canonical ANDed forms of YI and Yo, that is, 
Y I Yo, Y I Yo, YI Yo, YI Yo (Y2 is absent in Y3). Similarly, the don't-care symbol cp represents 
all canonical ANDed forms of Sand T(ST, ST, ST, ST). Thus, Y3XXcp in S3 eliminates Y3 
in all p-terms of that function. Similar reasoning is applied to the expression for R3 where 
Y 3XXCP eliminates Y3 from all terms in that function. 

Continuing this procedure yields the following results for the remaining three functions: 

Y2 = hST + Y2T 
S2 = hh(ST) + hY3(O) + Y2 X cp 

=hST 

R2 = Y2Xcp + Y2Y3(S + T) + YZY3(T) 
=hST + Y3T - -
=ST + Y3T 

YI = hST + ylST 
SI =YIY3(ST)+YIY3(O)+y IXcp 

=hST 

RI =YIXcp + YIY3(S) + YJ)'3(ST) 
= hS + Y3(S + T) 
= S + Y3T 

Yo = ST + Y2ST + YoS 
So = Yoyz(ST) + YOYz(S) + YoXcp 

= ST + yzS 

Ro = YoXCP + YoYz(S + T) + YoYz(ST + ST + S) 
= h~T + Yz(O) 
=hST 

(14.38) 

Although the NS functions have been converted from Yi LPD form to hazard-free S,R 
form in Eqs. (14.38), the output functions must remain as given in Eqs. (14.35), including 
the hazard cover term in Q. If the output functions were not retained, ORGs would be 
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generated during several of the transitions. With this in mind, the results are given collec
tively by Eqs. (14.39). The NS and output functions in Eqs. (14.39) represent a gate/input 
tally of 29/69. including the four basic cells and three shared PIs, but not including pos
sible inverters. This may be compared with a gate/input tally of 21168 for Eqs. (14.35), 
including the five shared PIs, but again not including possible inverters. Note that an invalid 
set of SIT NS logic functions would result if the nested cell model were applied directly 
to the state diagram in Fig. 14.33 with the SIT state assignments of Eq. (14.29). How
ever, Yi --* Si, Ri K-map conversions of Eqs. (14.34) will minimize to the NS functions of 
Eqs. (14.39). 

S3 = yoST + YIST 
R3 YIST+YIST+YoST 
S2 hST 
R2 = ST + Y3T 
SJ = Y1ST 
RJ = S + y-;,T 
So = ST + Y2S 
Ro hST 

P =YoST 
Q =Y3ST + YIST + Y3y IST + yoST + 

(14.39) 

Hazard cover 

The logic circuit representing Eqs. (14.39) is given in Fig. 14.37, where reset-dominant 
basic cells are used as memory elements. Here, all sanity inputs have been omitted for 
simplicity. Initialization of this FSM into the 0000 state requires that all R's be initialized 
a logic 1 while all S's be initialized an logic 0 (see Section 14.11). Notice the relative 
simplicity of the NS logic for this "nested cell" model compared to that required by the 
LPD model in Fig. 14.35. The maximum fan-in for this nested-cell implementation is 4, 
compared to 7 for Fig. 14.35, all exclusive of sanity inputs. 

What has not been discussed here is the relative speed of the two types of implementa
tions, that resulting from Eqs. (14.35) and that from Eqs. (14.39). Predictably, the nested-cell 
design will be somewhat slower than the LPD design. This is so because the nested-cell 
design can behave as a three-level implementation whereas the LPD design of Eqs. (14.35) 
represents a two-level implementation provided that it is not necessary to "tree" any of the 
NS functions because of fan-in restrictions. Both designs offer smooth fast operation free 
of critical races and ORGs. But because of the action of the basic cells in the nested cell 
design, no hazard cover is necessary. Shown in Fig. 14.38 are the simulation results for the 
nested-cell logic circuit in Fig. 14.37. An examination of this simulation clearly indicates 
that the y-variable transitions do not necessarily change at the same time as they did in 
Fig. 14.36. In the case of Fig. 14.38, the time elapsing between a change in an extemal 
input and the first y-variable to change varies from 2rp to (3rp +rINv) and the time between 
y-variable changes for a single transition varies from rlNV to 2rp. Also, the outputs may 
precede the first y-variable to change by as much as 2rp. Note that critical races and ORGs 
are still precluded from occurring since the NS logic functions ofEqs. (14.34) are used to 
generate those of Eqs. (14.39) with the output logic and hazard cover remaining the same. 
Here, as before, rp is a gate path delay and rlNV = ~rp. 
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Implementation of Eqs. (1439) by using rtset-dominant basic cells as me mory clements. 
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Which method should be used for STT FSM design, the nested cell approach or 
the LPD approach? Both the nested-cell and the LPD approaches to asynchronous FSM 
design are generally applicable to any fundamental mode FSM. However, for the nested 
cell designs of an STT FSM, special methods must be used. The NS functions must be 
converted from a valid set of Yi fonns that are the result of the array algebraic approach. 
The conversion process can be accomplished by either Yi ---+ Si, Ri K-map conversions from 
the Yi forms or by algebraic means as was demonstrated in this section. Remember that to 
avoid possible critical races and ORGs in an STT FSM design, it is necessary to use both 
the partitioning methods and array algebraic approach that were discussed in Section 14.12. 
Thus, the nested cell design of an STT FSM requires the extra step of converting the NS 
LPD functions to S-R form. Once this is understood, the decision as to which approach 
to use reduces to the following: An LPD STT approach generally results in a faster logic 
circuit compared to a comparable nested cell design. However, an LPD design must deal 
with the static hazard problem in the NS logic, the analysis of which can be complex but 
can also be automated with some effort. For this approach, fan-in may become an important 
consideration, particularly if discrete logic is to be used. In contrast, externally initiated 
s-hazards in the NS logic of a nested cell design cannot affect the operation of the FSM, as 
demonstrated later in Fig. 14.50. And by applying the requirements of Subsection 11.3.2 
to the basic cell, internally initiated s-hazards are also avoided. Powerful software called 
ADAM (see Appendix B) is bundled on CD ROM with this text. This software pennits the 
automated design of either LPD or nested cell designs of FSMs, defect-free. 

14.14 ONE-HOT DESIGN OF ASYNCHRONOUS STATE MACHINES 

The one-hot design of synchronous FSMs is discussed at length in Section 13.5. Table 2.11 
gives a lO-bit one-hot code, a code consisting of a single "1" per state. A model is presented 
in Fig. 13.23 and by Eqs. (13.9) that applies to the one-hot designs of synchronous FSMs 
by using D flip-flops. Since the excitation tables for the LPD model and that for D flip-flop 
designs are the same (see Fig. 14.3), it follows that Eqs. (13.9) also apply to the one-hot 
design of asynchronous FSMs if the notation changes D ---+ Y and Q ---+ yare made. The 
following paragraphs demonstrate this. 

In order to apply Eqs. (13.9) to the design of asynchronous one-hot FSMs, however, 
it is necessary to add another term to the NS function equation. In a synchronous FSM, 
the single active state variable in the origin state remains active until the transition to the 
destination state is complete. This happens as a result of the action of the enabling input, 
clock (CK). But because there is no enabling input such as CK controlling the transitions in 
a fundamental mode FSM, some means must be found to maintain the active state variable 
in the origin state constant (active) until the transition is complete to the destination state. 
This is done by altering the NS functions in Eqs. (13.9) in the following way: 

ttl-I 

Yi = .L Yk . Ii <-k + Yj' Fj 
k=O '-v-

(14.40) 

'-,-' "OUlof" terms 
"Into" lerms 

Here, Fj is the Boolean sum of all active y-variables in states to which the jth state transits. 
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Thus, the first part ("into" tenns) of Eq. (14.40) represents m minimum NS functions as 
derived, say, from K-map cover or from a minimization algorithm. This part is identical to 
that appearing in Eq. (13.9) but with the appropriate symbol changes for the present and 
next state variables. The second part ("out of" terms) of Eq. (14.40) functions to maintain 
the state variable of the origin state active until the transition to the destination state is 
complete. This forces the FSM to transit through a state with two 1 's, a state consisting of 
1 's from the origin and destination states. The r output functions summed over m states are 
similar to those given by Eqs. (13.9) and are represented by 

m-l 

Z, = LYj . /j.,(X), 
j=O 

(14.41) 

where /j.,(X) represents the jth function of external inputs X for the lth output with 
I = 0, 1,2, ... , (r - 1). Note that Moore outputs result for any fJAX) = l. 

Application of Eqs. (14.40) and (14.41) is remarkably simple since, as was pointed out 
in Section 13.5, the NS and output functions can be read directly from the state diagram, 
from an ASM chart or from a state table - and without the need for a state code assignment 
or the use of K-maps. However, there are a few guidelines that must be followed in state 
diagram (or state table) construction and initialization of a one-hot state machine: 

1. Eliminate all buffer ("fly") states - there is no need for them in a one-hot design. 

2. Cycles cause successive transitions between states with two 1 'so This produces an 
overlap in the two 1 's states, resulting in a state variable pulse of short duration, 
which may not be acceptable. Also an intermediate state in a cycle transition should 
not be an output state, since it would create an output glitch. In short, avoid cycles in 
one-hot designs. There is no need for them. 

3. If a static hazard exists in the NS-forming logic, it is formed between the "out of" 
term and an "into" term and is always an internally initiated static I-hazard in SOP 
logic. Hazard cover is provided by the "into" holding condition term, which is usually 
a reduced consensus term. Recall that the consensus term is the ANDed residue of 
the coupled terms, as discussed in Sections 9.2 and 11.3 and in Subsection 14.10.3. 

4. Initialization of one-hot designs must be accomplished according to Fig. l4.32a 
together with a term that meets the requirements of the one-hot-plus-zero approach 
discussed in Section 13.5. Thus, the idea here is to first set all y-variables to logic 0 
and then force the FSM into a one-hot state where thereafter it can transition normally 
from one one-hot state to another. No attempt should be made to initialize according 
to Fig. l4.32b, because to do so will usually result in the activation of more than one 
state on startup. Entrance into the intended one-hot routine of the FSM may not take 
place until the inputs change in some favorable manner. 

5. Use the software A-OPS on the CD-ROM bundled with this text to automate the design 
of any asynchronous one-hot FSM driven by a PLA or RAM. For more information 
regarding the A-OPS software, refer to Appendix B. 

As an example, and for reasons of comparison, consider the state diagram and state table 
in Fig. 14.39, which are reproduced from Figs. 13.26 and 14.33 for the convenience of the 
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S 
ST 

Q k 00 01 11 10 P Q 

a b 0 0 0 0 0 

b ® d c e 0 1 

c b 0 0 e 0 0 

d e @ c e 0 ST 

e 0 a 0 0 ST S 

T 

(a) (b) 

FIGURE 14.39 
Reproductions of the FSM in Fig. 13.26 for use by the asynchronous one-hot-plus-zero FSM design 
method. (a) Fully documented state diagram representation showing only branching conditions and 
state identifiers. (b) Equivalent state table representation. 

reader. For this example, Eqs. (13.11) apply, but with the added "out of" terms required by 
Eq. (14.41). The result is the set of two-level NS and output functions expressed as 

Ya = as + aT + eST + ab + o.bcde 
Yb = aST + bST + cST + bcde 
Yc = bST + cT + dST + cbe 
Yd=bST+dST+dce 
Ye = bST + cST + dT + eS + ef + eO. 

P=eST 
Q =dST + eS + b 

(14.42) 

where it is understood that a = Ya, b = Yin C = Ye, d = Yd and e = Yeo The o.bcde 
term is added to Ya for initialization purposes - the one-hot-plus-zero approach. Notice 
the simplicity of the output expressions compared to those of the SIT design expressed 
by Eqs. (14.34). This simplicity derives from the fact that each NS and output function is 
associated with a specific state. 

The NS functions in Eqs. (14.42) are free of critical races, ORGs, and static hazards due 
to the nature of Eqs. (14.40) and (14.41). The two static I-hazards that would have been 
active in the NS functions are each covered by the "into" holding condition term of the state 
for which the NS function applies. A static hazard in the NS logic of a one-hot design, if 
present, is always an internally initiated static I-hazard that is formed between the "out of' 
term and an "into" term. One internally initiated s-hazard is formed in function Yb between 
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coupled terms cSt and bed e, indicating (c --+ b) under branching conditions sf, but is 
covered by the holding condition "into" term bSt for state b. The other s-hazard exists in 
function Yc and is produced between coupled terms bST and cbe, meaning b --+ c under 
branching conditions ST, with cover provided by the "into" holding condition term cT for 
state c. Thus, hazard cover in the NS logic expression of one-hot designs is provided by 
a reduced consensus term, which turns out to be the "into" holding condition term of the 
state for which the NS function applies. If left active, s-hazards in the NS logic can cause 
malfunction of the FSM. No s-hazard is possible in the Q output function of Eqs. (14.42), 
since the coupled terms eS and dST indicate an externally initiated static I-hazard that 
must occur in a two 1 's state under a holding condition T that is clearly not possible in a 
one-hot design. 

The logic circuit for the one-hot FSM represented by Eqs. (14.42) is given in Fig. 14.40. 
Here, itis understood that a = Ya, b = Yb, C = Ye, d = Yd, ande = Ye, as indicated earlier. 
Observe that this one-hot FSM is initialized into the 00000 state and that two shared PIs are 
used in the output function Q. Unlike the case of SIT FSMs, which make maximum use 
of shared PIs in the output expressions, one-hot designs may have few if any shared PIs in 
their output functions. 

The circuit in Fig. 14.40 initializes into state a by first setting all state variables to 
zero and then forcing the FSM into state a by using the one-hot-plus-zero approach de
scribed in Section 13.5 and applied here as follows: The initialization process begins with 
a Sanity(L) = I(L) = O(H) input to each of the NAND gates in Fig. 14.40 by following 
the initializing scheme shown in Fig. 14.32a. Then, when Sanity goes low, that is, when 
Sanity(L) = O(L) = I(H), all inputs to the shaded NAND gate in Fig. 14.40 are set to 
I(H), which introduces a I(L) into the ORing NAND gate for state a and initializes the FSM 
into that state. Because use is made of the "all-zero" state in the initialization process, this 
state should normally not be chosen as an output state. Furthermore, no attempt should be 
made to initialize a logic one directly into state a by using the scheme shown in Fig. 14.32b. 
This approach usually results in the activation of more than one state on startup. For a large 
number of states, it is recommended that the CMOS NOR gate configuration in Fig. 8.46 
together with an inverter be used in place of the shaded NAND gate in Fig. 14.40, but with 
complementary changes in the activation levels of the inputs. 

The results of a simulation of the logic circuit in Fig. 14.40 is shown in Fig. 14.41. 
Vertical dashed lines are placed at specific changes in an external input to emphasize the 
overlap effect of the "out of" terms in Eqs. (14.42). These terms serve to maintain the 
y-variable of the origin state active until the transition to the destination state is complete. 
This, in tum, requires the FSM always to transit through a state of two 1 's, one from 
the origin state and the other from the destination state - the FSM can never transit through 
the all-zero state. This is easily seen from an inspection of the timing diagram in Fig. 14.41. 
An analysis of this simulation reveals that the time elapsing between an external variable 
change and the first y-variable to change is 2Tp and that the overlap of the y-variables 
amounts to (2Tp + TINV) in all cases. Here, as in all cases previously, no account is taken 
of fan-in effects. The relative delay values are TINV = ~ T P' where T p is the delay through 
any NAND gate. Changes in the outputs P and Q follow a change in the external input 
by amounts ranging from Tp to (2Tp + TINV) but fall within the overlap of the y-variable. 
Thus, the speed of the one-hot design is comparable to that of the LPD STT design in 
Fig. 14.36. 
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14.15 PERSPEClIVE ON STATE CODE ASSIGNMENTS Of 
FUNDAMENTAL MODE FSMs 

Before the subject of Slate code assignments can be properly considered. it is nece.~sary 10 

clear up any confusion the reader may have regarding the types of asynchronous FSMs that 
have been considered. All asynchronous FSMs considered 10 this point have been r.hose 
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fiGURE 14.41 
Results of a simulation foe the one-hot SSM of Fig. 14.40 showing effect of the "out of" terms in Eqs. 
(14.42), which hold each origin state y-vanable active until the transition is complete (see dashed 
lines), and showing the outputs P and Q. 

that are said to operate in the fundamental mode. Any fundamental mode FSM requires 
that no external input to the FSM may change until all internal signals have been stabilized 
within the FSM and that only one input can change at a time. This requirement holds for 
SIT and one-hot FSMs, both of which can be considered as obeying the LPD model, since 
fictitious memory elements are always implied. Even the nested cell design of SIT FSMs, 
or the design of flip-flops for that matter, results in state machines that must operate in the 
fundamental mode. Recall that the basic cell is itself a fundamental mode FSM. 

So what really distinguishes one fundamental mode FSM from another? The answer 
to this question is quite simple. It is the state code assignment as it affects the manner in 
which the state-to-state transitions occur that ultimately distinguishes one type of funda
mental mode FSM from another. Consider that an SIT state code assignment is so chosen 
that critical races and ORGs are eliminated. To do this, the state code assignment may in
volve multiple y-variable changes during any given state-to-state transition. This introduces 
the concept of distance, i.e., Hamming distance. Two adjacent states are said to be unit
distance coded, or to have a Hamming distance of 1. An STT design will default to unit
distance coding for FSMs lacking cross branching. The FSM in Fig. 14.22a is one such 
example, since the same unit distance code assignment could have been derived by using the 
partitioning methods described in Section 14.12. Furthermore, a change of ny-variables 
during a state-to-state transition involves a Hamming distance of n. The FSM discussed 
in Section 14.12 possesses several cross branchings and must undergo Hamming distance 
transitions ranging from 1 to 3 as indicated by the timing diagram in Fig. 14.36. The de
signer of SIT state machines must take extra care to ensure that the sum rule holds for each 
state in the state diagram or state table and that no cycle paths are present. Failure to meet 
the sum rule requirement will cause critical races to form. 

In comparison, the one-hot approach fixes the Hamming distance at 2, as shown by 
the timing diagram in Fig. 14.41. Both the SIT and the one-hot techniques accomplish 
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the same thing: they both eliminate critical races, but by entirely different approaches to 
state coding. For the SIT design the goal is to arrive at an FSM whose transitions take 
place simultaneously or nearly so. However, the one-hot design method (for synchronous 
or asynchronous machines) forces the FSM to cycle through states having exactly two 1 's, 
one from the origin and the other from the destination state. The one-hot approach has the 
added advantage that static hazards are automatically covered by the holding conditions. 
Thus, cycle paths must be avoided and the sum rule must always hold in the state diagrams 
for both STT and one-hot FSMs. Critical races and ORGs are automatically eliminated 
in SIT designs and can easily be avoided in one-hot designs. Associating each output 
exclusively with its host state automatically eliminates ORGs. If minimization methods are 
used in one-hot designs. great care must be exercised in using the two-} 's race states as 
output states to avoid ORGs. Finally. recall that static hazards are also eliminated by the 
one-hot approach to design, an advantage not shared by the SIT method. 

The alternative to SIT or the one-hot approach to state code assignments is to "eyeball" 
a state code assignment that will eliminate all critical races and ORGs. This usually means 
making all state-to-state transitions logically adjacent (unit distance coded) by using buffer 
states where needed to accomplish the task, but all of this is at the expense of speed and the 
inability to use either the SIT or the one-hot method. Dealing with FSMs having complex 
cross branchings often becomes too arduous and dangerous a task to warrant the use of any 
method other than an STT or one-hot approach. It is for this reason that these techniques 
are covered at length in this chapter. 

14.16 DESIGN OF FUNDAMENTAL MODE FSMs BY USING PLDs 

The rules pertaining to implementation of fundamental mode state machines by using 
programmable logic devices (PLDs) are not much different than those for synchronous 
FSMs. However, there are a few important, if not cardinal, rules that must be followed 
when implementing an asynchronous FSM by using certain types of PLDs. These rules 
apply to all fundamental-mode FSMs, including SIT and one-hot designs. The rules are as 
follows: 

I. ROMs should never be used to implement the NS and output logic. They are "noisy," 
and there is no compelling reason to use them. The logic noise that ROMs can generate 
in the NS logic of fundamental mode FSMs can cause them to malfunction. This was 
not the case for synchronous FSMs where the memory flip-flops served as a filters. 
Of course, it is possible to attach capacitors to the outputs of the NS logic functions 
from ROMs to filter out the logic noise. But this distorts the signal, which can cause 
other undesirable effects. There are much better alternatives than to use ROMs! 

2. PLAs and PALs are appropriate choices to implement the NS and output functions of 
fundamental mode FSMs. However, it must be remembered that PALs cannot accept 
shared PIs and are limited to a fixed number of p-terms within any given Y function. 
No such restriction is placed on the use of PLAs. PALs (registered trademark of 
AMD, Inc.) with L-type macrocells are attractive choices because they can come 
equipped with feedback paths suitable for asynchronous designs. Registered PALs 
with internal flip-flops such as the R- and V-types should be avoided for fundamental 
mode FSM design unless the designer is very knowledgeable in their use for such 
purposes. 
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3. Both PLA and PAL implementations can be initialized into an all-zero state by adding 
a sanity input to each p-term as shown in Fig. 14.32a. If it is necessary to initialize 
a PLA or PAL into an all one state, introduce each y-variable as a separate p-term 
and connect Sanity(H) to it. Obviously, it is easier to initialize 1 's than O's in a 
NAND-centered PLD. The reverse is true for a NOR-centered PLD. 

4. Whereas FPGAs are attractive PLDs for synchronous FSM design, they can be 
a source of almost limitless consternation to the designer if used carelessly for 
fundamental mode FSM design. The reason for this lies in the fact that routing delays 
can seriously alter the timing behavior of asynchronous state machines (see Subsec
tion 7.7.3). While endless cycles, critical races and static hazards may be designed 
out of a given FSM, routing delays can cause essential hazard formation that will 
most certainly cause malfunction. It is recommended that only the most skilled user 
of FPGAs attempt to use them to implement asynchronous state machines. 

As an example, consider the PLA implementation of the NS and output functions given by 
Eqs. (14.35) and representing the STT FSM in Fig. 14.33a. The Sanity(L) input initializes 
or resets the FSM into the 0000 state as required by Fig. 14.33a. Notice that all terms 
in Eqs. (14.35) must be accounted for in the p-term table, including hazard cover. Also, 
observe that the outputs P and Q have been initialized via the shared PIs. This is really 
not necessary, but it is convenient. Avoiding initializing the outputs, in this case, would 
require that the p-terms that make up the output functions be listed separately with D's for 
these terms appearing in the Sanity column. A PLA of minimum dimensions 7 x 16 x 6 is 
required by the p-term table in Fig. 14.42. 

Notice that the p-terms for Y1 , P, and Q are not listed separately in the p-term table 
of Fig. 14.42. However, they are there. Because these particular p-terms are covered by 
functions YJ and Y2 (they are shared PIs), they need not be listed separately. This is the 
advantage of PLA implementation over that with a PAL. It may be recalled that because 
PALs are programmed only in the AND plane they cannot accept shared PIs as is done in 
PLA p-term table of Fig. 14.42. It is important for the reader to remember this distinction. 

14.17 ANALYSIS OF FUNDAMENTAL MODE STATE MACHINES 

The procedure for asynchronous FSM analysis is essentially the reverse of that for design. 
The following summarizes the five-step procedure to be used in analyzing fundamental 
mode machines: 

1. Given the circuit to be analyzed, read the circuit to obtain the NS and output logic 
expressions. 

2. Map the NS and output logic functions into EV K-maps that have as their coordinates 
the present state variables, Yi. If the asynchronous FSM has been designed by using the 
nested cell model, the Si and Ri state variables must be converted to Y -variable form 
by using the conversion relation given by Eq. (14.37). For state variables exceeding 
four in number use K-map formats of the type shown in Figs. 4.37, 5.6, and 5.7 all 
with external inputs as the only EVs. 

3. From the Y K-maps, construct the Present StatelInputslNext State (PSINS) table with 
the inputs represented in canonical SOP form. Inclusion of the output data in the PSINS 
table is necessary only if the output-forming logic is complex enough to warrant it. 
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PLA Inputs PLA Outputs 

Ya Y2 Y, Yo S T Sanity* Y3 Y2 Y, Yo P Q 

P-terms 16 15 14 la '2 11 10 Os 04 0 3 02 °1 0 0 

,.. --
yaST 1 - - - 0 0 1 1 0 0 0 0 0 

Y1 ST - - 1 - 0 1 1 1 0 1 0 0 1 

Y3y,ST 1 - 0 - 1 1 1 1 0 0 0 0 1 

Y3 < YoST - - - 1 1 0 1 1 0 0 0 1 1 

· · · · · · · · · 
Y3Y'YOS 1 - 0 1 1 - 1 1 0 0 0 0 1 

'laST 0 - - - 0 0 1 0 1 1 0 0 1 

· · · Y2 · · · 
'l3Y2S 0 1 - - 0 - 1 0 1 0 0 0 0 

I'" --
ST - - - - 0 0 1 0 0 0 1 0 0 

y2ST - 1 - - 0 1 1 0 0 0 1 0 0 

YoS - - - 1 1 - 1 0 0 0 1 0 0 
Yo < · · · · · · · · · 

Y2YoT - 1 - 1 - 1 1 0 0 0 1 0 0 
..... 

* Indicates a sanity(L) input. 

FIGURE 14.42 
P-term table for the PLA implementation of the NS and output functions of the STT FSM expressed 
by Eqs. (14.35) showing a Sanity(L) input as required to initialize into the 0000 state. 

4. Construct a fully documented state diagram from the PSINS table. This diagram 
should be of the general form illustrated in Fig. 14.4. 

5. Analyze the state diagram, together with the NS and output functions, for state con
struction problems and possible timing defects. The state construction problems may 
include violations of the sum rule, the mutually exclusive rule, and the initialization 
requirements. The timing defects include endless cycles, critical races, and static 
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FIGURE 14.43 
Logic circuits for the pulse synchronizer module (PSM) used as an analysis example. (a) Mixed-logic 
circuit without the fictitious LPD memory elements. (h) Logic circuit showing the two fictitious LPD 
memory elements. 

hazards in both the NS and output functions. A complete timing analysis should 
include essential hazards, though these timing defects are only potentially active de
pending on the existence of certain unintended path delays at specific locations in 
the logic circuit. Although this was not mentioned earlier, the nature of the external 
inputs must also be considered. Signals from mechanical switches must usually be 
debounced. Nowhere can bounce periods be more disruptive to the operation of a 
sequential FSM than in asynchronous state machine operation. These bounce periods 
may last into the millisecond range with amplitudes that may cross the switching 
thresholds tens to thousands of times. Finally, make certain tbe initialization circuitry 
is functionally correct. 

AN EXAMPLE Consider the logic circuit in Fig. 14.43a representing an FSM called the 
pulse synchronizer module or PSM. The PSM has three inputs E (for pulse enable), C (for 
clock), and M (for mode), and one output P (for pulse). It is the goal of this analysis to 
determine how the PSM functions and to identify any problems or potential problems it 
may have. First, it is required to obtain the NS and output functions. To do this, the circuit 
in Fig. 14.43b, which includes the fictitious LPD memory elements, is read as follows: Let 
X yoE M and X = Yo + E + Nt. Then, after simplification, 

(14.43) 

where a single shared PI, YI C, is seen to exist in both NS functions and in the output 
function. A hazard analysis of the NS and output functions in Eqs. (14.43) indicates that 

Yl(H) 
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FIGURE 14.44 
Next state and output K-maps as plotted from Eqs. (14.43). 

the two externally initiated static l..:-hazards that would have been active in function Y1 are 
covered by terms YIYoE and YI EM. Thus, there are no active static hazards present in the 
PSM. The positions E I, D I, E2 and D2 shown in Fig. 14.43a are used later in connection 
with E-hazard analyses. 

The next step is to map the NS and output functions ofEqs. (14.43) as shown in Fig. 14.44. 
Notice that up to three EVs control the branching of the PSM, and that the shared PI YI C 
is readily discernible in the YI domain of each of the three K-maps. 

The final step is to construct the PSINS table from the K-maps in Fig. 14.44 and then use 
the PSINS table to construct the state diagram as is done in Figs. 14.45a and 14.45b. This, of 

NS PS NS 

Y1Yo Inputs Y1 YO Y1YO Inputs Y1YO 
E+C 

o 0 

o 1 

EC 0 0 EC 1 1 

EC 0 0 EC 0 0 
EC 

1 0 
EC 0 0 1 1 

EC 1 0 EC 1 0 
------------------- -------------------------------

ECM o 0 ECM 1 1 
EC 

ECM o 0 ECM 1 1 

ECM o 0 ECM o 0 

ECM o 0 ECM o 0 
1 1 

ECM ECM o 0 

ECM 0 1 ECM 1 1 

ECM 1 0 ECM 1 0 C 
ECM o 1 ECM o 1 

(a) (b) 

FIGURE 14.45 
(a) PSINS table obtained from the Y K-maps in Fig. 14.44 and (b) the state diagram for the FSM 
represented by the logic circuit in Fig. 14.43 as derived from the PSINS table in part (a) and the output 
K-map in Fig. 14.44. 
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course, follows the same procedure as used in the analysis of synchronous FSMs discussed 
in Section 10.13. Remember that the PS/NS table is, in reality, a tabular representation of 
the state diagram, one that can be read by a computer. 

An inspection of the state diagram in Fig. 14.45b indicates that no endless cycles or critical 
races exist in the PSM. Notice that the race conditions from 01 -+ 10 and from 11 -+ 00 are 
properly dealt with in the state diagram. In each case the requirements for noncritical race 
conditions are satisfied in agreement with Figs. 14.19a and 14.19b. Furthermore, a cursory 
inspection of the state diagram reveals that no GRGs are present. Thus, the PSM is free of 
any apparent timing problems, including any active static hazards. 

There still remains the problem of determining the function of the pulse synchronizer 
module. Again, an inspection of the state diagram provides the information needed. As 
can be seen from the state diagram, an output P can be generated only in state 10 and 11 
and then only under the input condition C. A transition 10 -+ 11 must produce an output 
since the condition C is satisfied. However, the output in state 10 during this transition 
is of little or no consequence since C is an exiting condition from this state. If the FSM 
enters state 11 and then exits from that state to state 00 on EC or to state 01 on ECM, 
only one pulse is issued. If, on the other hand, the PSM is caused to cycle with the C 
waveform between states 10 and 11 under condition E if, then a pulse is issued with each 
falling edge of the C input. Thus, multiple pulses are possible only under the cyclical con
dition ECM ++ ECM, whereas a single pulse is issued from state 11 under input conditions 
EC -+ ECM or EC -+ EC. This assumes that C and E are never permitted to change at the 
same time in exiting either from state 10 or from state 11. This information is confirmed 
by the timing diagram shown in Fig. 14.46, which is the result of a logic simulation of the 
logic circuit in Fig. 14.43a. 

As has been previously stated, there are no active timing defects present in the PSM -
this FSM will operate as predicted. However, essential hazards can become active if unin
tended asymmetric delays, exceeding certain magnitudes, occur at specific locations in the 
logic circuit. Following the minimum requirements for E-hazard and d-trio formation given 

E(H} ---I 

e(l} 

M(H} 

Y 1 (H) --..r-I"--___ ---' 

yo(H} __ ...... 

P(H} __ ...... 

FIGURE 14.46 
Simulation results of the PSM logic circuit in Fig. l4.43(a) verifying the pulse P dependence on 
inputs E, C and M, and showing no critical races, OROs, or static hazards, all as predicted from 
Eqs. (14.43) and Fig. 14.45b. 
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in Fig. 14.27 and considering the indirect path requirements listed in Subsection 14.10.4, 
the possible E-hazards and d-trios can be easily determined. However, before continuing 
in this section, the reader should review the E-hazard analysis of FSMs as discussed in 
connection with Figs. 14.28, 14.29, and 14.30. With reference to the various gate numbers 
and delay positions (EI, D 1, E2, D2) in Fig. 14.43a, the following summarizes the ideal 
requirements for activation of the E-hazards and d-trios in the PSM: 

1. The EI-hazard path is 00 --* 10 --* 11 --* 01 for input conditions ECM --* ECM while 
in origin state 00 with a theoretical activation delay of !'It£t > (TI + T2 + T6) on the 
C input to ANDing race gate 4 (YI C) in Yo at position EI, as indicated in Fig. 14.43a. 
Note that the indirect path is indicated by the inequality which includes an inverter 
TI = T/NV. Here, the indirect path must contain the initiator as either C or C, must not 
be inconsistent with E, M, and must not be inconsistent with state a = 00 meaning 
Y 1 Yo. This requires that the indirect path be via gate ECX (gate 2) representing yoEC 
in YI. 

2. The DI-trio path is 00 --* 10 --* 11 --* 10 for input conditions ECM --* ECM while 
in origin state 00 with a theoretical delay of !'ltDt > (TI + T2 + T6) on the C line to 
ANDing race gate 4 at position D 1 shown in Fig. 14.43a. This d-trio causes a glitch in 
P. The indirect path for the DI-trio must contain C or C and must not be inconsistent 
with E, M (they are constant) or with state 00. Thus, the indirect path and minimum 
path delay required for activation of the D)-trio are the same as that for the EJ-hazard 
just discussed. 

3. The E2-hazard path is 10 --* 11 --* 01 for input conditions ECM --* ECM while in 
origin state 10 with a theoretical activation delay !'It£2 > (T7 + T5 + T3) on the C 
input to gate 4 (YI C) at position E2, the path to GRing race gate 6 in YI. Here, the 
indirect path must contain C or C and must not be inconsistent with E, M (which 
are constant) or with the initiating state 10 meaning YIYo.lt follows that the indirect 
path must be via Yo through gates 7,5, and 3. 

4. The D2-trio path is 01 --* 00 --* 10 --* 00 for input conditions ECM --* ECM while 
in origin state 01 with a theoretical activation delay of !'ltDt > T5 on the E input to 
ANDing race gate 2 (ECX contains yoEC) at position Dz to Y I. In this case the indirect 
path must contain E or E and must not be inconsistent with constant inputs C, M or 
with the initiating state 01 meaning y I Yo. Note that this d-trio causes a glitch in YJ 
but not in P. However, the transition 01 to 00 is delayed by the d-trio path. 

Again it is emphasized that E-hazards and d-trios are potential timing defects that can 
occur only if the minimum requirements are met, which includes an explicity located path 
delay that exceeds the minimum required to produce the defect. Thus, potential defects 1 and 
2 require delays exceeding 2 T p + T/NV to activate them, whereas potential defect 3 requires a 
delay exceeding 3T p. Therefore, all three are very unlikely to be activated. However, defect 4 
requires only a delay exceeding T p and, consequently, is more easily activated. Defects 1, 2, 
and 3 are guaranteed to cause malfunction of the PSM if activated, but defect 4 will cause 
only a delay in the 01--* 00 transition if activated. A counteracting delay of2Tp +TINV on the 
YI feedback line essentially eliminates any possibility of defects 1 and 2 from occurring. A 
counteracting delay of 3T p on the Yo feedback line safely eliminates defect 3 from occurring. 
To virtually eliminate the D2-trio, a counteracting delay of magnitude Tp should be placed 
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OD the X feedback. lioe 10 ANDing race gate 2. As in previous analyses. f r is used here 
to represem the path delay through any gale in Fig. 14.43 irrespective of the number of 
inputs. 

High-le\'c1 (ideal) simulation results (not shown) verify the Iheorelical minimum path 
delay requirementS for activation of the E-hazard and d-lrio defects I through 4 previously 
discussed. For purposes o( simulation. the invener delay is set at t iNY = i r p. which is the 
value used Ihroughout this chapter. 11 is left as an exercise (or Ihe reader to run simulations 
on the PSM and verify again its operation and the requiremems for E-hazard and d-trio 
formation. 

A SECOND i:!:XAMPLE. Now consider the nested ceU logic circuit shown in Fig. 14.47. 
Notice that this FSM has three state variables)'2 . YJ. and )'0. two external i npuL~ A and 8. and 
three Moore o utPUtS W . X and Z, all active high. The basic cells are all of the set-dominant 
type. and use is made o f the mixed-rail o utputs fro m these basic cells to gener(lle the state 
variable feedback signals, Also. the mi xed logic external inputs A(H ). A(L ). B( H ), and 
B(L ) are generated by the use o f inverters at the appropriate places in the circuit (bm nOI 
shown) and arc assumed to be bounce-free, Note thullhe circuit has the sanity connections 
required (or initial ization into the 000 state, aU according 10 Fig. 14.32. 
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Reading the circuit in Fig. 14.47 results in the following NS and output functions exclu
sive of sanity inputs: 

S2=AB+YoB 
R2 = AB + yoA 
SI AB 
RJ =AB 
SO YtAB + YtAB + Y2 AB 
Ro = YtAB + YtAB + YzAB 

W = YzYIYO 
X =Y2YIYO 
z = Y2Y1YO 

(14.44) 

In order to analyze this FSM with little difficulty, it is necessary to convert the nested cell 
NS functions in Eqs. (14.44) to LPD form. This is accomplished by reversing LPD-to-SR 
conversion expressed by Eq. (14.37), that is, by Y = Y S + yR. As it is applied to design by 
the mapping algorithm in Section 10.6, the LPD-to-SR K-map conversion expressed by this 
equation is exactly the same as that for D-to-JK K-map conversion given by Algorithm 10.2 
in Subsection 10.12.2. Thus, J and K are replaced by Sand R, D and Q are replaced by 
Y and y, and subscripts A, B, and C are replaced by 3,2, and 1, respectively. With these 
changes, the S, R functions in Eqs. 04.44) are mapped and converted to LPD K-map form 
as shown in Fig. 14.48. 

01 11 10 Y2 
Y JYO 00 01 11 10 

Y Y 
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1 0
00 01 11 

-B 0 AB A A AB a B AB AB 
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a B B A A 0 B A AS 
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/ V 
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FIGURE 14.48 
SR-to-LPD K-map conversion for the NS functions in Eqs. (14.44). 
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PS Ext. NS PS Ext. NS 

Y2Y1YO Inputs Y2Y1YO Y2Y1YO Inputs Y2Y1YO 

AB 000 AB 1 o 1 

000 AB 1 o 1 100 AB 1 o 1 

AB 000 AB 000 
AB 1 1 0 AB 1 1 0 

------------------ ------------------
AB 000 AB 1 o 1 

001 AB 1 o 1 101 AB 1 o 1 
AB 000 AB 000 
AB o 1 1 AB o 1 1 A 

------------------ ---------------_. 

AB 000 AB 1 0 1 

010 AB 1 1 0 110 AB 1 1 0 

AB o 1 1 AB o 1 1 

AB 1 1 0 AB 1 1 0 
------------------ ------------------

AB 000 AB 101 B 
AB 1 1 0 AB 1 1 0 

011 111 
AB o 1 1 AB o 1 

AB o 1 AB o 1 1 

(a) (b) 

FIGURE 14.49 
(a) PSINS table derived from the K-maps of Fig. 14.48. (b) State diagram for the FSM in Fig. 14.47 
as derived from the PSINS table in (a), but excluding the four don't-care states. 

In Fig. 14.49 the PSINS table is constructed directly from the three Y K-maps in 
Fig. 14.48. This follows exactly the same procedure as was used for the analyses of syn
chronous FSMs in Section 10.13. Recall that the excitation table for the LPD model is the 
same as that for D flip-flops, thereby permitting the analyses for both the synchronous and 
asynchronous FSMs to proceed in exactly the same fashion. Observe that four of the states 
in the PS/NS table (001, 010, 100, and Ill) have no entrance from any other state and are 
therefore don't-care states. The remaining states are those that contribute to the sequential 
behavior as indicated by the state diagram in Fig. 14.49b, which is derived directly from 
the PSINS table in Fig. 14.49a and from the output functions in Eqs. (14.44). Notice also 
that each state-to-state transition invol ves a Hamming distance of 2, meaning that two state 
variables must change during the transition. 

Having constructed the state diagram representing the FSM in Fig. 14.47, it can now 
be analyzed for the existence of timing defects and certain other problems it may have. A 
cursory inspection of the state diagram clearly indicates that no endless cycles exist. An 
inspection of the state diagram and PSINS table indicates that none of the four states of the 
state diagram are used as race states, that each state-to-state transition has a valid branching 
path to the destination state according to Fig. 14.19, and that each of the three outputs is 
associated with a specific state in the state diagram. Therefore, no race-related problems 
exist, meaning that critical races and ORGs do not form. This indicates that this FSM is 



750 CHAPTER 14/ ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS 

an SIT state machine for which there are six different state code assignments possible by 
commuting columns of the state matrix S defined in Section 14.12. Note that the race states 
are the four don't-care states mentioned in the previous paragraph. 

By analyzing the NS functions in Eqs. (14.44) together with the state diagram in Fig. 
14.49b, it is found that one externally initiated static I-hazard exists in each of the functions, 
So and Ro. However, these s-hazards are of no consequence since basic cell 0 in Fig. 14.47 
effectively filters them out - an important advantage of the nested cell approach to asyn
chronous FSM design. This is demonstrated by the simulation results shown in Fig. 14.50. 
Notice that the static I-hazards that are formed in the So and Ro NS functions have no 
effect on the output Yo because of the filtering action of the basic cell. From the simulation 
results it is found that the first y-variable to change in response to an external input change 
varies from 2Tp + TINV to 4Tp, and that the second y-variable change for a given transi
tion may be delayed by as much as 2Tp relative to the lower limit of the first y-variable 
change. This means that the SIT feature of the LPD design, as illustrated by the timing 
diagrams in Fig. 14.36, is lost when the nested cell design is used - a conclusion arrived at 
in Section 14.13 by comparing the simulation results in Fig. 14.38 with those in Fig. 14.36. 
Nevertheless, the nested cell design of the FSM in Fig. 14.47 is hazard-free and operates 
reliably with only minor delays in the y-transitions. As with other simulation results given 
in this chapter, TINV = ~Tp, where Tp is the path delay through any gate in Fig. 14.47, 
including the NAND gates in the basic cells. 

Were they present in the nested cell design just described, internally initiated s-hazards 
would not form since the basic cells are of the set-dominant (NAND) type used with 
SOP output-forming logic, which in this case is the same as POS logic. The reader may 
verify these statements by reviewing the subject matter in Subsection 11.3.2. Although 
Subsection 11.3.2 deals with synchronous FSMs, the conclusions arrived at here are, nev
ertheless, valid for asynchronous nested cell designs. 

Although there are no active timing problems associated with static hazards in the FSM 
of Fig. 14.47, there is the potential for FSM malfunction due to the formation of essential 
hazards (E-hazards), as will now be discussed. However, before beginning the E-hazard 
analysis of this FSM, the reader should review the contents of Subsection 14.10.4. 

By following the minimum requirements for E-hazard formation given in Fig. 14.27 and 
by noting the requirements for indirect E-hazard paths listed in Subsection 14.10.4, one 
can easily determine the minimum path delays required to activate any potential E-hazard 
that may exist in this FSM. Thus, an inspection of the state diagram in Fig. 14.49b together 
with Eqs. (14.44) and Fig. 14.47 indicate that two E-hazards can be activated under the 
following conditions: 

1. The EI-hazard path is a -+ c -+ d for input conditions AS -+ AB while in state a 
with a theoretical minimum activation delay of (~tEI + TlNV) > (T7 + TCelll) on the 
B line to ANDing race gate 11 (YI AS) in Yo at position EI indicated by an enlarged 
node in Fig. 14.47. Here, the indirect path must be via state variable Yt. must not 
be inconsistent with origin state a = 000 (meaning Y2Y lYO) or with input A (which 
is constant), and must contain the initiator as either B or B. Thus, the indirect path 
must be via gate 7 CAB) and basic cellI in Yl. Note that TCell = 2Tp, where Tp is the 
path delay through a gate, a two-input NAND gate in this case. From this information 
one deduces that the theoretical minimum delay required to active 
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FIGURE 14.50 
Simulation results of the logic circuit in Fig. 14.47 showing the NS and output response to input change; also shown are the presence of two externally 
initiated static I-hazards in the NS functions, which are filtered out by the basic cell and never affect thc state variables or outputs. 
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the E)-hazard is !:ltEJ > (3Tp - T,NV) = 1fT, where T,NV = ~Tp as in previous 
examples. Note that for EI-hazard the first and second y-invariants are and Yo and YI, 
respectively. 

2. The predicted Erhazard path is b -+ d -+ C for input conditions AB -+ AB while in 
state b with a theoretical activation delay of (!:It E, + TIN V ) > (T7 + TCell, ) on the A line 
to ANDing race gate 15 (YI A B) in Yo at position E2 indicated by the enlarged node 
in Fig. 14.47. Again, the indirect path must be via state variable YJ, but now must 
contain the initiator as A or A and must not be inconsistent with the requirements of 
state b = 101 (meaning Y2Y I Yo) or with input B, which is constant. Thus, the indirect 
path must again be via gate AB (7). Therefore, the minimum path delay required to 
activate the E2-hazard is exactly the same as that required to active the EI-hazard, 
and the first and second y-invariants are Yo and YI as before. 

From the results of a high-level (ideal) simulation on the E-hazard problem, the the
oretical minimum activation delays for the two E-hazards and their corresponding error 
transition paths are as predicted in the forgoing discussion. A counteracting delay of 
!:ltcorrect :::: (3Tp - TINV) = 1fT placed on the YI feedback line reduces the probabil
ity for E-hazard formation to near zero. This delay is a conservative, usually safe value. 
However, delays less than !:ltEJ can also be effective as long as they meet the require
ments of Eq. (14.18). It is left as an exercise for the reader to verify these results by 
simulation. 

The important point to be made here is that E-hazards can form in any FSM of three 
or more states operated in the fundamental mode. This includes FSMs designed by using 
either the LPD model or the nested cell model. Since both STT and one-hot FSMs fall into 
this category, they are also subject to E-hazard formation. The following third example 
illustrates the point. 

A THIRD EXAMPLE. As a third and final example, the logic circuit in Fig. 14.51 is 
to be analyzed. It is a one-hot FSM having four state variables (Y3, Y2, YI and yo), two 
external inputs (A and B), and three outputs (W, X, and Z). It is basically the same 
FSM as in Fig. 14.47, except designed to operate as a one-hot FSM. This is done to 
compare performance and E-hazard formation between the two design methodologies. 
Notice that this one-hot FSM is initialized into the 0001 state via the one-hot-plus-zero 
circuitry, as discussed in Section 13.5 and used in the design an asynchronous FSM in Section 
14.14. 

Reading the logic circuit in Fig. 14.51 yields the NS and output logic given in Eqs. (14.45). 
Here, each NS function is separated into the "into" terms and one "out of" term following 
Eq. (14.40). The "out of" term, it will be recalled, is necessary to maintain the state variable 
of the origin state active until the transition to the destination state is complete. Each set 
of "into" terms includes a holding condition term that functions as the hazard cover for the 
internally initiated s-hazard that is formed between the "out of" term and an "into" term 
as indicated in Eqs. (14.45). For example. an s-hazard in Y3 is formed between coupled 
terms Y3YzYO and Y2AB for which the holding condition term Y3A is the minimum hazard 
cover, since it contains the consensus term Y3ioAB. Similarly. the s-hazard in Y1 is formed 
between the "out of" term YI.YJYO and the "into" term YOAB where the holding condition 
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NS and output logic for a one-hot asynchronous FSM to be analyzed, where the polarized external 
inputs, A and B, are assumed to be produced by the use ofinverters. 

tenn YI A serves as the hazard cover. Thus, no s-hazards exist in this FSM. 

"Into" terms 

Y3 = Y2AB + ylAB + Y3 A + 
Y2 = YJ1~B + YoAB + Y2 B + 
YI = Y2A B + yoA B + YI A + YI 
Yo = Y3A B + ylAB + yoB 

w =Yo 
X Yl 
Z Y3 

-,-' 
Ha;. 
em: 

terms 

(14.45) 
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FIGURE 14.52 
Analysis of the logic circuit in Fig. 14.51. (a) NS K-maps plotted from Eqs. (14.45). (b) PSINS table 
derived from the the K-maps in (a) showing only the necessary logic for the four one-hot states (1,2, 
4 and 8). 

The NS K-maps are easily plotted from Eqs. (14.45) and are shown in Fig. 14.52a. Notice 
that each K-map contains two a's and two l's and that a zero always appears in state 0000. 
Thus, state 0000 is never used as a race state, since a properly designed one-hot FSM is 
forced to cycle through a state having two 1 's, one "I" from the origin state and the other 
from the destination state. 

The PSINS table for this FSM can be constructed from the K-maps in Fig. 14.52a. This 
is done in Fig. 14.52b, where only the one-hot states are represented. It is not necessary 
to represent the cycle states (those with two l's), since they are easily deduced from the 
PSINS table knowing the present and next state and the nature of one-hot FSM operation. 
All other states are irrelevant. The one-hot-plus-zero path is also excluded from the PSINS 
table, although it is easily deduced from the logic circuit, where it is clear that initialization 
takes place into the 0001 state as discussed in Section 14.14. 

Finally, the state diagram is constructed from the PSINS table and is shown in Fig. 14.53a, 
where only the four one-hot states are represented. As expected, this state diagram is 
identical to that in Fig. 14.49b with one exception. The cycle states (those with two 1 's) are 
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Analysis of the logic circuit in Fig. 14.51 (contd.). (a) State diagram derived from the PS/NS table in 
Fig. 14.52b, including no cycle paths but showing the 0000 state as required by the one-hot-plus-zero 
initialization method. (b) Cycle paths for transitions a-to-c and c-to-d. (c) Cycle paths for transitions 
b-to-d and d -to-c. 

deliberately omitted even though they are an integral part of the state diagram - remember, 
the FSM is force to cycle through these states in transit from one one-hot state to another. 
Shown in Fig. 14.53b is a set of two such cycle paths, one for the a --+ c transition and 
the other for the c --+ d transition. A similar set for transitions b --+ d and d --+ c is given 
in Fig. 14.53c. These two sets of cycle paths will later be used for the E-hazard analysis 
of this FSM, but also will be useful for comparing timing perfonnance with the previous 
nested cell design of this FSM given in Fig. 14.50. Notice that the state diagram includes 
the 0000 state required by the one-hot-plus-zero initialization method applied earlier in 
Section 14.14. Also, note that no endless cycles, critical races, ORGs, or s-hazards exist in 
this FSM. 

The timing perfonnance of the one-hot FSM is best represented by using timing diagrams 
taken from simulation results. This is done in Fig. 14.54, where the NS and output response 
to input change begins following initialization into the 0001 state. From an inspection of 
these wavefonns the cycle paths are easily established. In each case, the destination state 
overlaps the origin state meaning the FSM is forced to cycle through a state with two 1 's. 
This is accomplished via an "out of' tenn together with feedback. Thus, the transition 
OOOI-to-OOlO requires that state variable y, go active via the YoAB term, which in turn 
causes the "out of" tenn YaY 1512 to go inactive, followed by the state variable Yo, thereby 
completing the transition. The active response of state variable y, (L) to a 0 --+ I change in 
B takes a theoretical time 2T p + T/NV, as can be seen from the logic circuit in Fig. 14.51. To 
deactivate state variable Yo requires an additional period of2Tp . Therefore, a given transition 
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FIGURE 14.54 
Simulation results of the logic circuit in Fig. 14.51 showing the NS and output response to input 
change for comparison with Fig. 14.50. 

can be completed in no less time than 4T" + TINV. The vertical dashed lines in Fig. 14.54 are 
placed for the convenience of the reader to show semiquantitatively these response times 
and to make it easy to observe the cycle states required for each transition. As in all previous 
examples, T" is the path delay through any gate regardless of its type or number of inputs. 

A performance comparison can nOW be made between the one-hot and nested cell design 
of this FSM. From the simulation results it is concluded that the nested cell design of this 
FSM is at best only slightly faster on the average than the one-hot design. The nested cell 
design will complete a given transition in the theoretical time range of (2T" + TINv) to 
(4T" + Tl!vV), whereas the one-hot design will complete a transition in nO less time than 
(4T" + TINV). The outputs for the one-hot design, On the other hand, change concurrently 
with the state variables, as indicated in the timing diagram of Fig. 14.54. In contrast, the 
output response to input change for the nested cell design falls in the theoretical range of 
(3T" + TINv) to (5T" + TIN V ) which, on the average, is no faster than the output response for 
the one-hot design. 

Both designs require NS logic for initialization purposes in accordance with Fig. 14.32. 
However, there is one exception. The nested cell design can be implemented with gated 
basic cells equipped with PR and CL overrides, the use of which permits initialization of 
a logic 1 or logic O. A gated basic cell is nothing more than a basic cell with the Sand 
R inputs introduced into a basic cell via ANDing gates with PR and CL overrides inputs 
connected as in Fig. 1O.51a. Clearly, no CK input is necessary or desired. If gated basic 
cells are available in chip form, the CK input can be set active, which makes the ANDing 
gates transparent to the Sand R inputs. 

The E-hazard analysis of this one-hot FSM is carried out in accordance with Subsection 
14.10.4 and Figs. 14.26 and 14.27. Thus, two E-hazard paths are identified, one a ---+ c ---+ d 
and the other b ---+ d ---+ c, both of which satisfy the minimum requirements for E-hazard 
formation given in Fig. 14.27. As expected, these E-hazard paths are identical to those for 
the nested cell design since the state diagrams in Figs. 14.49b and 14.53a are the same. 
Now however, the cycle states must be taken into account in determining the race gate and 
indirect path. The following summarizes the conditions under which these two E-hazards 
can be activated: 

I. The predicted E,-hazard path is a ---+ c ---+ d for input conditions AS ---+ AB with 
cycle paths shown in Fig. 14.53b. Here, the initiator is B, and the first and second 
invariants are Y3 and Y2, respectively. Note that y, remains inactive (logic 0). From this 
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infonnation and the cycle paths, it is clear that the ANDing race gate must be Y2AB in 
Y3. If the E]-hazard is to fonn, a delay I'1tE, of sufficient magnitude must occur on the 
B line to Y3 such that Y2 wins the race with B at the race gate. The indirect path (IP) 
must not be inconsistent with the initiating state a (h, h, Y J, Yo) or with A (which 
is constant) and must contain the initiator as B or B, all in Y2. Thus, the indirect path 
must be via the p-term Yo AB in Y2. Now, the minimum path delay requirement to form 
the E-hazard can be easily calculated to be (I'1tEI +T/NV) > 2Tp. In this expression 2Tp 

derives from the YoAB gate and the ~Ring of terms in Y2; T,NV on the left side results 
from the presence of a presumed inverter on the B line to the ANDing race gate, 
Y2AB in Y3 . If now T/NV = ~TP is introduced into this inequality, there results the 
minimum path delay requirement I'1t E, > ~ Tp, where T p is propagation delay through 
any gate, as in previous examples. Once sufficiently activated, simulation results show 
that the EJ-hazard error transition path is a ~ 0101 ~ 1100, not the expected path 
a ~ 0101 ~ c ~ llOO ~ d, and that the FSM remains stably in state 1100 (a cycle 
path state) - it never enters and stabilizes into the intended destination state 0100. 
Clearly, a serious malfunction of the FSM results. 

2. The predicted Erhazard path is b ~ d ~ c for input conditions AB ~ AB with cycle 
paths indicated in Fig. 14.53c. In this case the initiator is A, the first and second 
invariants are Y2 and Y3, respectively, and Yo stays inactive. Given this information 
and the cycle paths, the ANDing race gate is found to be Y3AB in Y2. To cause this 
E-hazard to form, a delay of at least I'1t£, must exist on the A line to Y2, thereby 
allowing Y3 to win the race with A at the race gate. The indirect path must not be 
inconsistent with the initiating state b (h, h, YJ, Yo) or with B (which is constant) 
and must contain the initiator as A or A, all in Y3. Therefore, it follows that the indirect 
path must be via the p-term yJAB in Y3• From this information, it is concluded that 
the minimum path delay requirement to form the Erhazard is (I'1tE, + TlNV) > 2Tp 

or I'1tE, > (2Tp - TlNV), which is exactly the same as that calculated for the EJ-hazard 
fonnation. If sufficiently activated, simulation results indicate that the error transition 
path caused by Erhazard is b ~ 1010 ~ 1100, where again the FSM resides stably 
in the cycle state 1100, an obvious malfunction of the FSM. 

The results of ideal simulations indicate that these two E-hazards begin to fonn under 
precisely the minimum path delay conditions predicted by the forgoing analyses. Comparing 
the minimum path delay requirements to activate E-hazards in the two designs, nested cell 
and one-hot, it is concluded that E-hazard activation is easier in the one-hot design than in 
the nested cell design by a gate delay Tp. That is, to activate either of the E-hazards in the 
one-hot design requires a minimum path delay of I'1tE > ~Tr' whereas for the nested cell 

design a delay of I'1tE > ¥Tp is required. Here, it is assumed that TlNV = ~TP and that Tp 

is the path delay through any gate. 

Remember, E-hazards are only potential timing defects that may never be activated under 
nonnal operation of a real FSM - even if the theoretical minimum path delay requirements 
are just exceeded. However, should these timing defects be sufficiently activated, malfunc
tion of the FSM is guaranteed. By the expression "sufficiently activated" is meant that an 
asymmetric delay of sufficient magnitude must exist on a specific path (noted in the analy
sis) to cause the E-hazard to form. In a real circuit this may require exceeding the theoretical 
minimum path requirement to a significant extent before malfunction occurs. Nevertheless, 



758 CHAPTER 14/ ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS 

the designer might be prudent to include some counteracting delay on specific feedback 
lines to further ensure that these timing defects will never occur. Modem logic circuits are 
now commonly constructed of very high-speed logic. If, for example, gate propagation de
lays exist in the subnanosecond range, it does not take much of a lead delay in a specific path 
to activate an E-hazard. Such delays may be caused by parasitic capacitance and resistance, 
by buffers, or by gates that have abnormally large path delays. 

FURTHER READING 

Unfortunately, significant reference material in the area of asynchronous state machines 
design and analysis is limited to a few text sources. Only the texts of Comer, Dietmeyer, 
Fletcher, Kohavi, Nelson et al., Roth, Tinder, and Yarbrough devote one or more chapters to 
this subject. However, some of these texts provide only a superficial treatment. Though of 
an older vintage, the text of Unger is devoted entirely to this subject and still stands as one 
of the better sources of information on asynchronous FSMs. However, the reader will find 
this text, like those of Dietmeyer and Kohavi, somewhat difficult to grasp on first reading. 
Unger's text, for example, is theorem and lemma based. 

[11 D. J. Comer, Digital Logic and State Machine Design, 3rd ed. Saunders College Publishing, Fort 
Worth, TX, 1995. 

[2] D. L. Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Inc., Boston, Mass, 
1978. 

[3] w. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs, 
NJ,1980. 

[4] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hili, New York, 1978. 
[5] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and 

Design. Prentice Hall, Englewood Cliffs, NJ, 1995. 
[6] C. H. Roth, Fundamentals of Logic Design, 4th ed. West Publishing Co., St. Paul, MN, 1992. 
[7] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs, 

NJ, 1991. 
[8] S. H. Unger, The Essence of Logic Circuits. Prentice Hall, Englewood Cliffs, NJ, 1989. 
[9] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/ 

St. Paul, MN, 1997. 

Perhaps the most frequently cited reference on the SIT approach to asynchronous FSM 
design is the article by Tracey. Other than that only the texts by Dietmeyer and Unger 
(previously cited) appear to be worthy of mention with regard to published work on this 
subject. 

[10] J. H. Tracey, "Internal State Assignments for Asynchronous Sequential Machines," IEEE Trans. 
on Electronic Computers, Vol. EC-15, Aug. 1966, pp. 551-560. 

The one-hot method in state machine design is apparently offered for significant further 
reading in only two texts, those by Hayes and by Nelson et al. (previously cited). Both 
contribute something different to the subject and are recommended. To a much lesser extent 
this subject is covered in the texts by Comer, Dietmeyer, and Unger (all previously cited). 

[11] 1. P. Hayes, Introduction to Digital Design, Addison-Wesley, Reading, MA. 1993. 
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PROBLEMS 

14.1 Problem 10.3 of Chapter 10 deals with the clocked set-dominant basic cell. There, 
questions are asked based on an expression that is provided without explanation of 
its origin. This exercise provides the basis for this expression together with that for 
the clocked reset-dominant basic cell. 

Shown in Figs. P14.1a and p14.1b are the state diagrams for the clocked set
and reset-dominant basic cells, respectively. Notice the similarities with the state 
diagrams in Figs. 14.7a and 14.9a. 
(1) Use the lumped path delay (LPD) model to obtain an optimum design for 

each of these asynchronous FSMs. (Hint: For the reset-dominant basic cell use 
maxterrn code to extract minimum cover from the EV K-map.) 

(2) Implement the clocked set-dominant basic cell by using four NAND gates 
(nothing else), and let the inputs be active high. Implement the clocked reset
dominant basic cell by using two NOR gates and two AND gates (nothing else), 
and let the inputs be active high. 

(3) Complete the waveforms in Fig. P14.1c for each FSM by following the examples 
in Figs. 14.8 and 14.10. Keep in mind the action of clock and the nature of the 
set- and reset-dominant behavior of these clocked basic cells. Verify your results 
by using a simulator. 

14.2 In Section 14.7 the two-input rendezvous module (RMOD) is designed by using 
the nested cell modeL 
(a) Given the state diagram for the two-inputRMOD in Fig. 14.11, design thisFSM 

by using the LPD model. End with an optimum logic circuit that will generate 
both y(H) and y(L), as is done in Fig. 14.11 e. 

(b) In what way does the LPD design of the two-input RMOD differ from that of 
the nested cell design? Use the waveforms for y(H) and y(L) in Fig. 14.12 to 
support your explanation. 
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(c) Write a generalized expression for an n-input RMOD that is designed by the 
LPD model. 

14.3 Presented in Fig. P14.2 are the state diagrams for the FET D flip-flop. Given the 
state code assignment indicated, design this flip-flop by using the LPD model. To 
do this, follow the example in Figs. 14.15 and 14.16 for the RET D flip-flop. End 
with an optimum logic circuit by using six NOR gates and a single inverter (nothing 
else). (Hint: Avoid using the don't care in the NS K-maps.) 

14.4 In Fig. 12.12, a D flip-flop is used to design a toggle module (a divide-by-2 counter). 
Shown in Fig. P14.3 are the state diagrams for the toggle module. 
(a) Design this flip-flop by using the LPD model and end with a logic circuit 

consisting of six NAND gates (nothing else). To do this follow the design of 
the RET D flip-flop in Section 14.8. 

(b) Is this design the same as that in Fig. 12.12? Explain your answer. 

(c) Demonstrate the operation of the toggle module by simulating the logic circuit 
of part (a). 

CK 
S 

CK CK 

R!T S!T 

FIGURE P14.3 
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14.5 An asynchronous FSM that has two inputs, A and B, and one output, operates 
as follows: Whenever B = I, then Z = O. But if B = 0 and Z = 0, a change in 
A causes Z to be Z = I. The output Z cannot change to Z 0 until B changes to 
B 1. 
(a) Construct the state diagram for this FSM. Make certain that it is free of endless 

cycles, critical races, and ORGs. (Hint: The state diagram should be one of 
four states.) 

(b) Use the LPD model to obtain the NS and output logic that is free of static haz
ards. End with a gate-minimum NORIINV logic circuit for this FSM. Assume 
that the inputs and output are all active high. 

14.6 In Fig. P14A is a three-state FSM that is to be operated in the fundamental mode. 
(a) Analyze this FSM for possible endless cycles and critical races. If either of 

these timing defects exists, indicate how it can be eliminated. 

(b) Design this FSM by using the LPD model. To do this, find an optimum set of 
SOP NS and output logic expressions. Analyze the NS logic for possible static 
I-hazards. If any exist, indicate their type (internally initiated or externally ini
tiated) and add the necessary hazard cover to the original NS expressions. To 
do this, follow the examples in Subsection 14.10.3. 

(c) Repeat part (b) for an optimum set of pas NS logic expressions and analyze 
them for possible static O-hazards. 

(d) Based on the results of part (b), construct an optimum NANDIINV logic circuit. 
Assume that the inputs arrive active high and that the output is active low. 

(e) Analyze this FSM for potential essential hazards (E-hazards) and d-trios. If any 
exist, give the direct and indirect paths, race gates, branching conditions, and 
the theoretical minimum path delay requirements for their formation. Use a 
timing diagram to illustrate their formation. On the logic circuit, show where 
the counteracting delay must be placed to reduce the probability of E-hazard 
formation. To accomplish all of this, follow the example in Subsection 14.1004. 

14.7 Repeat parts (b), (d) and (e) of Problem 14.6 for the design ofthe FSM in Fig. Pl4A 
by using the nested cell model. Thus, design this FSM by using two set-dominant 
basic cells as the memory. To do this, follow the example in Fig. 14.11, but now with 
two state variables YJ and Yo. What conclusion do you come to with regard to the 
presence of static hazards in the NS functions? Explain. If your results indicate that 
E-hazards are possible in the nested cell design of this FSM, explain why this is so. 
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14.8 The state diagram for the resolver of an RET D flip-flop is shown in Fig. 14.1Sa, and 
the resulting NS and output expressions are given by Eqs. (14.9). Two potentially 
active d-trios exist in this FSM. 
(a) Run a complete d-trio analysis of this FSM. To do this, give the direct and 

indirect paths, race gates, branching conditions, and theoretical minimum path 
delay requirements for their formation. Also, indicate what problems they could 
cause should they become active. 

(b) On the logic circuit, show where the counteracting delays must be placed to 
reduce the probability of d-trio formation. 

(c) Use timing diagrams to verify the results of part (a). Simulate if necessary. 

14.9 The FSM represented by the state diagram in Fig. P14.4 is to be designed by using 
the SIT array algebraic approach. Change to state identifiers: 00 -+ a, 01 -+ b, 
and 11 -+ c. To accomplish this, refer to Section 14.12 and do the following: 
(a) Construct the state table (including the output) for this FSM. From the state 

table, obtain the state matrix S and the destination matrix D. 

(b) Given the state code assignment indicated, use the array algebraic approach to 
obtain the next-state logic expressions for Y1 and Yo. Are static hazards possible 
in the NS expressions? If so, give the hazard cover for any hazard that may exist. 

(c) Repeat the array algebraic approach to obtain the output function, Z. Prove that 
ORGs are not possible and that no static I-hazard is associated with the output. 

(d) Run a complete E-hazard analysis on this FSM (a logic circuit is not neces
sary). If an E-hazard or d-trio exists, give the direct and indirect paths, race 
gates, branching conditions, and the theoretical minimum path delay require
ments for its formation. Also, if one of these potential defects exists, indi
cate the magnitude of the counteracting delay and the position where it must 
be placed to reduce the probability of E-hazard or d-trio formation to near 
zero. 

14.10 In Fig. P14.S is the state table for an FSM that has two inputs and three outputs. 
(a) Design this FSM by using the SIT array algebraic approach. To do this, follow 

the example in Section 14.12. Note that the FSM, as it stands, has two cycles 
that must be eliminated, while retaining the algorithm, before the SIT approach 
can be applied. Plan to initialize the FSM into state a = 000· . '. It is also a 
requirement that state d have a state code assignment of 11 .. '. Remove any 

AB 
Y m.l ••• Y lYO 00 01 11 10 R S T 

a b b a a 0 0 B 

b b c a b A 0 0 

c a c d c 0 0 0 

d b d d a 0 A 0 

FIGURE P14.5 
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static hazards that may be present in the NS and output logic. End with a valid 
optimized set of NS and output expressions for the array algebraic method. Do 
not implement the circuit. (Hint: The state diagram or state table for an FSM 
is useful in identifying and eliminating cycles.) 

(b) Use EV K-maps and a logic minimizer (e.g., BOOZER) to obtain the NS and 
output functions directly from the state diagram for this FSM. To do this, use 
the LPD model together with the STT state code assignment, and include any 
static hazard cover that may be necessary. Use the gate/input tally (exclusive 
of inverters) to compare these results with those obtained in part (a). Are crit
ical races and ORGs possible in either design when using the STT state code 
assignments? Explain. 

(c) Run a complete E-hazard and d-trio analysis on the results of part (a). If any 
are present, give the direct and indirect paths, race gates, branching conditions, 
and theoretical minimum path delay requirements for their formation. To do 
this, follow the example in Subsection 14.10 but without a logic circuit. Also, if 
E-hazards or d-trios exist, indicate the location and magnitude of the counter
acting delays that will reduce the probability of their formation to near zero. 

14.11 Note: This problem should be undertaken only after completing Problem 14.10. 
(a) Use the one-hot approach to design the FSM represented by the state table in 

Fig. P14.S, but only after removal ofthe cycles, as in Problem 14.10. End with a 
set ofNS and output functions as read directly from the corrected state diagram 
or corrected state table obtained in Problem 14.1O(a). Use the gate/input tally 
to compare the results of the one-hot design with the STT design in parts (a) 
and (b) of Problem 14.10. 

(b) Analyze this FSM for possible static I-hazards and ORGs . If any exist, indi
cate their origin and the means by which they can be eliminated. Are E-hazards 
possible in a one-hot design? Explain. 

(c) Discuss the factors that affect the relative FSM speeds of the two designs (STT 
and one-hot). Which of the two designs is expected to be the faster, if either? 

14.12 Presented in Fig. P14.6 is the state diagrams for an FSM with two inputs and four 
outputs. 
(a) Construct the state table for this FSM and include the outputs. 

(b) Use the SIT array algebraic approach to design this asynchrono~s FSM. To 
do this, find an STT state matrix S that satisfies the partial state assignment 
indicated and follow the example in Section 14.12. End with a complete set of 
NS and output logic expressions. Assuming that the transition a -+ b cannot 
occur, comment on its function in the design of this problem. 

(c) Analyze the FSM for static I-hazards and eliminate any that exist. If hazard 
cover is required, first check for redundant terms then eliminate the hazards. 
Assume that the inputs arrive active high. Also, prove that no ORGs exist. 

(d) Construct a logic circuit for the results of parts (b) and (c), and initialize the 
FSM into the 111 state as required by the state diagram. For initialization, refer 
to Section 14.11. 

(e) Verify the proper operation of this FSM by simulation. 
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14.13 The state diagram for an FSM having two inputs and three outputs is shown in 
Fig. PI4.7. 
(a) Construct the state table for this FSM. 

(b) Design this FSM by using the SIT approach. To do this, find an SIT state 
matrix S that satisfies the partial state codes indicated and follow the example 

-
A 

B 

FIGURE P14.7 
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in Section 14.12. End with a complete set of NS and output logic expressions. 
(Hint: This FSM can be designed by using five state variables.) 

(c) Analyze the FSM for static I-hazards and eliminate any that exist. Also, prove 
that no ORGs exist. Assume that the external inputs arrive from positive logic 
sources. 

(d) Construct a logic circuit for the results of part (b), and initialize the FSM into 
the all zero state as required by the state diagram. For initialization, refer to 
Section 14.1l. 

(e) Verify the proper operation of this FSM by simulation. 

14.14 In Fig. P14.8 is the state diagram for an FSM that has two inputs and four outputs, 
and that is to be operated in the fundamental mode. 
(a) Design this FSM by using the one-hot method. End with a valid set of NS and 

output expressions. The design must be free of critical races, ORGs, and static 
hazards. To do this, follow the example in Section 14.14. 

(b) Run a complete E-hazard analysis on this FSM. If any are present, give the direct 
and indirect paths, race gates, branching conditions, and theoretical minimum 
path delay requirements for their formation. Also, if E-hazards or d-trios exist, 
indicate the location of the counteracting delays that will reduce the probability 
of their formation. 

(c) What are the advantages and disadvantages to the one-hot method. 

(d) Without constructing a logic circit, explain how this FSM can be initialized into 
the 00001 state (state a). 

14.15 Shown in Fig. P14.9 are the state diagrams for two FSMs, each with two inputs and 
two outputs, that are to be operated in the fundamental mode. 
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(1) Design each ofthese FSMs by using the one-hot-plus-zero method as in Section 
14.14. Thus, obtain a complete set of NS and output expressions free of critical 
races, ORGs and static hazards. 

(2) Construct the logic circuit for each FSM assuming that the inputs and outputs 
are all active high. 

(3) Verify the proper operation of each design by simulation. 

14.16 Presented in Fig. P14.10 is the state diagram of an asynchronous FSM that has two 
inputs and four outputs. 
(a) Design this FSM by using the one-hot code method. End with a valid set of logic 

equations for the NS and output functions that are free of critical races, ORGs, 
and static hazards. Plan to use the one-hot-plus-zero approach to initialization 
such that the next transition is into state a. 

(b) Construct the p-term table for this FSM that is suitable for a PLA implementa
tion. Assume that the inputs are active high. Take the outputs as peR), Q(R), 
R(L), and S(L). What are the minimum dimensions for the PLA? Can (or 
should) a ROM be used to implement this FSM? Explain. 

14.17 (a) Construct the state table for the asynchronous FSM in Fig. PI4.1O. 

P!i if XY 
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(b) Find the minimum number of state variables required to design the FSM in 
Fig. P14.10 by the SIT array algebraic approach. (Hint: Fewer than eight 
state variables are required.) Given this result, which approach to design of this 
FSM (the one-hot or SIT) would appear to be the most practical? Base your 
answer on the hardware commitment that is expected for each of these design 
methods. 

(c) Obtain a suitable state matrix S and the corresponding destination matrix D 
from the results of parts (a) and (b). 

(d) Obtain a complete set of NS and output functions from the results of parts 
(a), (b) and (c). What size PLA would be required to implement these results? 
(Hint: For the state assignment map use the format Y6Y5/Y4Y3IiYz/YIYO, similar 
to that used in Fig. 5.7 except with third-order submaps.) 

14.18 The following NS and output logic is read from an FSM that is designed to operate 
in the fundamental mode. Here, the inputs are A and B and the outputs are X and Z. 

Y2=Y2AB +AB 

Y1 = ylAB + AB + YIYoAB 

Yo = Y2AB + AB + YoAB + AB 

X = Y2AB + YIYoAB 

Z = ylAB + YIYoAB 

(a) Construct the state diagram and state table for this FSM. Identify any don't-care 
states that are associated with it. 
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(b) From the ~tate diagram. determine if this FSM has any obvious transition or 
output problems. Does it satisfy the basic rules for the proper operdtion of a 
fundamental mode FSM? 

(c) Check the FSM for possible endless cycles. critical races. and static hazards in 
both the NS and output logic. If any exist, indicate their origin. 

(d) What typeofFSM (LPD, STI or one-hot) is this FSM ? 

14.19 Shown in Fig. P14.11 is the logic circuit for a fundamcnt<l.l mode FSM that has 
been designed by using the nested cell model. 
(a) Analyze this FSM. To do this, first construct its state diagr.tm by following the 

example in Figs. 14.47, 14.48. and 14.49. Analyze this FSM for cri tical races. 
ORGs. and slatic hazards. Ifany exist. indicate their type. origin. and the means 
to eliminate them. 

(b) Run complete E-hazard and d-trio analyses on Ihis FSM.1f allY are present, give 
the direct and indirect paths. race gates, branching conditions. and minimum 
path delay requirements for their formation. and indicate the location of the 
counteracting delays that will reduce the probability of their fonnnlion . 

14.20 The following NS and output logic is read from an FSM that is designed to oper
ate in the fundamental mode. Here. the inputs are A and B and the outputs are P 
and Q. 

Y3=nAB + JoAB +}':lY2Y . + YJB 

Y2= Y3A B +),.A B + }'oAB +YZ:YJoYI + )'2 .48 + Y1 AB 

Y. = nA iJ + YIA B + }'oA B + )' • .Y3ro + y. iJ 
Yo= yl AB + YoYlY. + YoAB 

P =Y2AB+YI 

Q =)'JA + )'2 AB 
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c 

c 
FIGURE P14.12 

(a) Analyze this FSM by constructing its state diagram. What approach to FSM 
design is this? Check for any timing problems it may have. If any exist, indicate 
their type and origin. 

(b) Run a complete E-hazard analysis following the example in Figs. 14.51 through 
14.53. 

14.21 The state diagram in Fig. P14.12 represents the selector module. It is the function 
of this module to steer input signals, C, to either the H (high) or L (low) output, 
depending on the activation level of input D. 

(a) Use both the LPD model and nested cell model to obtain an optimal set of NS 
and output functions for the selector module that are free of static hazards. Is 
this also a valid SIT design? Explain. 

(b) Analyze this FSM for possible E-hazards and d-tios. What do you conclude 
from this analysis? 

(c) Construct the logic circuit from the results of part (a). Assume that the inputs 
arrive from positive logic sources and that the outputs are issued active high. 
Initialize the FSM into the 00 state as indicated. 

(d) Verify the proper operation of this FSM by simulation. 

14.22 An asynchronous FSM is to be designed that will detect the direction of rotation of a 
circular shaft as indicated in Fig. PI4.13. Two light beams are caused to fall incident 
on the end surface of the shaft half of which is reflecting and half nonreflecting. Two 
photocells, A and B, are located at the proper angle of reflection relative to the two 
beams so that whenever a beam strikes a reflecting surface the photocell receiving 
the reflected beam will generate a voltage signal. For the shaft position shown in 
Fig. P 14.13, the logic input to the FSM is A B = 01. It is a requirement of this FSM 
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Reflecting surface 

FIGURE P14_13 

Light beams 

Non-reflecting surface 

B 

Asynchronous 
FSM 

~ Photooell, 

CCW(H) 

that the output CCW be active any time the shaft is rotating counterclockwise. and 
be inactive if rotating clockwise (CW) . Note that the direction of rotation is taken 
with respect to the front face of the shaft. 
(a) Use the LPn model to design an optimum logic circuit for thi s FSM that is 

free of endless cycles, critical races, ORGs. and static hazards. (Hint: Only 
four states are required. Also, the output CCW must be issued from each state 
conditional on a single input variable resulting in a two-level output function 
to which hazard cover must be added.] 

(b) Di!'.Cuss the limits of this design relative to shaft oscillation sensitivity. To do 
this. sketch the shaft face orientations that have the least and mostiight beam 
sensitivity to possible rotational oscillations. 

(c) Analyze this FSM for possible E-hazards and d-tnos. If any are present. give 
the direct and indirect palhs. race gates, branching conditions. and minimum 
path delay requirements for their formation. and indicate the location of the 
counteracting delays that will reduce the probability of their formation. If they 
cannot exisl. explain why. 

14.23 The block diagram in Fig. P14.J4 illustrates the handshake interface between a call 
modllle and a digital system. It is the function of the call module to issue a signal. r. 
to the system indicating that an access request signal has been made on one of two 
lines. REQX or REQY, but not on both. Then, if lhe system acknowledges receipt 
of lhe request by sending back a signalACK to the call module while lhe request is 

REQX ~ 
Call Modute ACK 

(subsystem) x System 

~ y REQY 

fiGURE P14.14 



PROBLEMS 771 

active, the call module will steer that access request (either REQX or REQy) to its 
respective output, X or Y. But this can happen only if that the "other" request line 
is inactive at the time A C K is received. Thus, REQX -+ X if r is sent to and ACK is 
received from the system when REQY is inactive. Similarly, REQY -+ Y if r is sent 
to and ACK is received from the system when REQX is inactive. A second request 
can be granted access if ACK is active following withdrawal of the first request. 
(a) Construct the two state diagrams for the call module. (Hint: One version of the 

call module consists of two RMODs of the type shown in Fig. 14.11 together 
with the appropriate NS and output logic.) 

(b) Construct the logic circuit for the call module by using two RMODs, an XOR 
gate, and two NOR gates (nothing else). Assume that the request signals, REQX 
and REQY, arrive active high, and that the ACK input is active low. Let the out
puts be issued active high. 

(c) Design the entire call module as a single two-state FSM. In this version of the 
call module, a repeating contender, REQX or REQY, can be granted access to 
the system without an active ACK signal prior to each grant of access. The call 
module version of parts (a) and (b) requires that an ACK signal be received from 
the protected system before access can be granted during a request. Consider 
both the LPD and nested cell design of this version of the call module. Choose 
the design that yields the simpler implementation of the module. Remember to 
eliminate any static hazards that might exist in either design. 

14.24 (a) Repeat parts (b), (d) and (e) of Problem 14.6 for the design of the FSM in 
Fig. P14.4 by using two RMODs as the memory. (Hint: First design for the 
nested cell model and then convert to the RMOD design. Simple conversion 
logic can be obtained by comparing state transition tables.) What conclusion 
do you come to with regard the presence of static hazards in the NS functions? 
Explain. If your results indicate that E-hazards or d-trios are possible in this 
design, explain why this is so and give the information required by part (e) of 
Problem 14.6. 

(b) Verify the proper operation of this design by simulation. 

14.25 At the discretion of the instructor, use the software ADAM (see Appendix B) in
cluded on the CD-ROM bundled with this text to work any of the fallowing STT 
array a/gebraic approach problems: 14.9,14.10,14.12,14.13,14.17,14.21,14.22. 
A readme.doc accompanying this software explains its use. Note that an assign
ment such as 14.25/14.21a would require the use of ADAM to work only Part (a) 
of Problem 14.21. 

14.26 At the discretion of the instructor, use the software A-OPS (see Appendix B) in
cluded on the CD-ROM bundled with this text to work any of the following one-hot 
approach problems and include their VHDL descriptions: 14.11, 14.14, 14.15, 
14.16. A readme. doc accompanying this software explains its use. Note that an 
assignment 14.26/14.15b would require the use of the A-OPS to work only circuit 
(b) of Problem 14.15. If necessary, refer to Section 16.4. 
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CHAPTER 15 

The Pulse Mode Approach 
to Asynchronous FSM Design 

15.1 INTRODUCTION 

Asynchronous FSMs that are designed to operate with nonoverlapping pulsed inputs and that 
use "data-triggered" memory elements are called pulse mode sequential machines. The pulse 
mode approach offers a simple and reliable means of designing clock-independent FSMs, 
but at the price of greatly restricted input signal conditions. Chapter 14 dealt exclusively with 
asynchronous FSMs that are designed to operate in the fundamental mode. The fundamental 
mode, it will be recalled, is characterized, in part, by overlapping inputs signals and the 
potential to form certain types of timing defects such as endless cycles, critical races, and 
essential hazards, any of which, if present and active, is guaranteed to cause malfunction 
of the FSM. Furthermore, fundamental mode FSMs can also cause malfunction due to 
the presence of static hazards in the NS-forming logic. But like synchronous FSMs and 
unlike fundamental mode FSMs, properly designed pulse mode machines cannot have 
any of these timing defects - no endless cycles, no critical races, no essential hazards. 
Furthermore, pulse mode FSMs cannot malfunction because of static hazards in the NS 
logic. Thus, pulse mode FSMs would seem to have all the advantages of synchronous 
FSMs, but with none of the timing defects of fundamental mode machines. However, this 
apparent advantage is offset by the severe restrictions placed on the input signals. In fact, 
it is for this reason that treatment of the pulse mode approach to FSM design has been 
deferred until this time. 

15.2 PULSE MODE MODELS AND SYSTEM REQUIREMENTS 

The generalized (Mealy) model for pulse-mode FSM design is illustrated in Fig. 15.1. It is 
unique in the sense that its memory stage is composed of data-triggered toggle modules that 
include memory elements of the type featured in Fig. 12.12 or T flip-flops set to the toggle 
mode. Thus, data-triggered toggle modules are, in effect, unclocked memory elements. The 
degenerate forms of this model follow those shown for synchronous FSMs in Figs. 10.3 
and 10.4. 

773 
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Mealy's (general) model for an asynchronous FSM that is designed 10 operate in the pulse modc. 

The inpul .. to pulse mode FSMs must be nonoverlapping pulses (hat are allcaSI minimally 
separated such thallhe leadi ng edge of onc pulse is sufficiently separated from the trailing 
edge of any previous pulse. Examples of such pulses arc shown in Fig. 15.2. Here. the 
positive pulses are shown to have active durations (pulse widths) wilh no upper bound bu. 
with II lower limit sufficient to !rigger lhe flip-flop memory clements and initillte a state 
change. Runt pulses must nOI be permitted since their effect on the flip-flops is unpredictable. 
It should be understood that the "at least minimally scpamted" restriction placed on these 
input pulses is governed by the stability criteria given by Eqs. (14.3) and (14.4). That 
is, it is equivalent to the requirement that a sc~ond input to a fundamental-mode circuit 
not be permiued to cbange until (he stability criteria yJ<t) = Y)(t) (for all j) is satisfied 
following a previous input change. In fact . proper operation of any FSM (synchronous or 
asynchronous) can be ensured only if all memory clements of the FSM achieve stability 
prior to any successive change of an input logic level. The complement of the pulse trains 
shown in Fig. 15.2 are examples of negative pulses that have no upper bound on their 
inactive durations but, nevertheless. must be minim.·dly separated. 

15.2.1 Choice of Memory Elements 

The choice of memory elements for pulse mode FSM design is quite limited. For rea
sons made clear in the subsequent discussions, it is best that triggering occurs on the 
trailing ~ge of the data input pulses. Thus, positive (0-+ 1-+0) pulses of unrestricted 
active duration from positive logic sources require the use of FET toggle modules. whi le 

X,I H) ___ ----.J~L_ _______ --'nL ___ _ 

X,IH) -----.nL _________ ~--L _____ _ 

X,IH) ________ ----'rLII'-______ 11-
FIGURE 15.2 
Examples of nonoverlapping and aT leasT minimally separaTed posiTive pulses having active duralions 
with no upper bound. 
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FIGURE 15.3 
Data·triggered memory elements required for pulse mode FSMs that receive pulses having no upper 
bound on pulse width. (3) FET toggle modules required for positive pul~" from active high sources. 
(b) Rl:! toggle modules required for negative pulses from active low sources. (c) Master/slave memory 
element used for positive puls!;:s from active high sources. 

negaLive (I -+ 0 -+ I) pulses of unrestricted inactive duralioll from negative logic sources 
require RET toggle modules. The various memory elements recommended for use in pulse· 
mode designs are shown in Fig. 15.3. Use of the toggle modules shown in Figs. 15.3a and 
15.3b are the simplest and most reliable memory elements that can be used for this pur
pose. These memory elements require no upper bound on pulse width. As a lower bound, 
the data pulses must be fully developed enough to trigger the flip-Rops and initiate a Slale 
transition - also a requirement for synchronous state machines. 

The master/slave configuration in Fig. 15.3c is an acceptable memory element for pulse
mode designs and. like the toggle modules of Figs. 15 .3a and 15.3b. it triggers on trailing 
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edge of the data pulse. However, use of the master-slave memory element requires a lower 
bound on the data pulse width determined by 

l'.tpulu ~ (NS logic + Master stage). (I5.1) 

Thus, pulses of active duration less than this lower bound may not be picked up. Because 
the master-slave configuration requires more hardware, is slower, and places a significant 
lower bound on pulse width, it is less desirable for use as a memory element Ihan IOggle 
modules. To use the master- slave configuration requires the use of the excitation table for 
the basic cell in Fig. 1O.15c together with the mapping algorithm in Section 10.6 to obtain 
the NS logic in Sand R form. Consequently. the data inputs will be present in both the S 
and R NS logic functions to the master stage and as inputs to slave stage D fl i p~flop via the 
multiple inpUi NOR gate. 

Under certain conditions Ihe basic cell can be used solely as a memory element in pulse 
mode designs. However. it is not a good idea to use a basic cell for this purpose. since 
triggering must occur on the leading edge of the data pulse. This requires that delays be 
placed on the feedback lines and that an upper bound be placed on the active duration of 
the positive data pulses. Exceeding this upper bound risks the activation of more than one 
memory element in response to an input pulse. Sufficient overlap of active memory elements 
in a pulse mode FSM is tantamount to introducing overlapping pulses and. consequently. 
causes the malfunction of that FSM. To use basic cells solely as the memory in pulse-mode 
designs requires the application of the nested cell model as indicated in Fig. 15.4. Here, 
delays are required on aU feedback Jines if activation of more than one basic cell memory 
element is to be avoided. As a conservative limit. the pulse widths are limited to an upper 
bound !::.tpuiU given by 

External 
Inputs 

(IP) 

FIGURE 15.4 

!::.r""iu '::: (!::.rJ + best~case pam delay through the system). 

Next State 
Forming 

-+ Logic 
~ PS Basic 

celis 

L:.., 
'- Required 

feedback delays 

Output 
Forming 

logic ~ 

(15.2) 

Outpuls 
(OP) 

Generalized nested cell modet of a pulse mode FSM for which delays in the feedback lines are required 
to avoid simuilaneous activation of memory elements. 
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where /",.tj represents the feedback delays. The "best case path delay through the system" 
is a quantity that usually falls in the range of 2Tp to 3T p for most systems, where T p is 
an average gate path delay. The lower limit is, as before, the requirement that the pulse 
be of sufficient strength to initiate a state change. This lower limit together with the upper 
limit expressed by Eq. (1S.2) lead to what is called a bounded pulse. The bounded pulse 
requirement places a severe restriction on the pulse widths that a nested cell design can 
properly accept without malfunction. It is for this reason that the nested cell approach to 
pulse mode FSM design is of little or no practical importance. Should the nested cell model 
be used for this purpose, the NS functions must be generated by combining the excitation 
table for the basic cell given in Fig. 1O.1Sc with the state diagram for the FSM by using 
the mapping algorithm in Section 10.6. Remember that for such designs, Eq. (1S.2) must 
always be satisfied. 

To summarize, all memory elements in a pulse mode design require nonoverlapping pulse 
waveforms of sufficient width to initiate a state transition and that are at least minimally 
separated. But it is only the memory elements in Fig. IS.3 that require no upper bounds to 
the pulse width. Both the toggle module and master/slave memory elements are triggered 
on the trailing edge of the data pulse and require no delays in the feedback lines. In contrast, 
the basic cells in Fig. IS.4 are triggered on the rising edges of the data pulses and require 
feedback delays and bounded data pulse widths. All pulse mode designs require that the data 
pulse widths be of sufficient duration as to cause a state change. Because of the bounded 
data pulse width requirement placed on the use of the nested cell model, this model is 
not recommended for use in the design of pulse mode FSMs. Furthermore, master-slave 
memory elements are significantly slower, require more hardware, and place a larger lower 
bound on the data pulse width than toggle modules. Consequently, the toggle modules of 
Figs. IS.3a and IS.3b are the memory elements of choice. The examples and discussions 
presented in this chapter will justify this fact. The examples will also utilize positive data 
pulse trains exclusively. 

15.3 OTHER CHARACTERISTICS OF PULSE MODE FSMs 

There are a number of interesting and advantageous pulse mode characteristics that result 
from the use of data-triggered toggle modules as memory elements: 

1. Branching conditions in a pulse mode state diagram consist of single variables or 
ORed single variables that are always uncomplemented (for positive pulses) or always 
complemented (for negative pulses)-never mixed! Unconditional branching in a 
state diagram is strictly forbidden for obvious reasons. 

2. Any state coding scheme will suffice, but, since toggle modules are used, a binary 
sequence is preferred where possible to minimize the NS logic. Recall the design of 
binary counters in Section 12.3. 

3. The NS logic is obtained by combining the excitation table for the T flip-flop in 
Fig. 1O.37c with the pulse mode state diagram by using the mapping algorithm in 
Section 10.6. 

4. Since states in a toggle module design cannot toggle to themselves, only outgoing 
single variable or ORed single variable (e.g., X + Y) branching conditions need be 
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considered in mapping the NS logic. Thus, holding conditions should not be indicated 
in a state diagram or state table. 

5. The sum rule in Eq. (10.3) is never observed-it has no meaning in the state diagram 
for a pulse-mode FSM. However, the mutually exclusive requirement is uniquely 
satisfied by the nonoverlapping inputs requirement (see Problem 10.24). 

6. When it is appropriate to do so, outputs should be made conditional on the excit
ing branching variable. Use of conditional (Mealy) outputs results in two important 
benefits involving exclusively those outputs (explanations are given later) in which 

(a) Output race glitches (ORGs) are not possible. 

(b) Static hazards in the output forming logic are not possible. 

These benefits are not guaranteed if unconditional (Moore) outputs are used. 

7. As stated earlier, pulse mode designs cannot have endless cycles, critical races, or 
essential hazards, and cannot have problems due to static hazards in the NS logic 
functions. 

8. Initialization methods are exactly the same as those for synchronous FSMs discussed 
in Section 11. 7. 

9. Debouncing of inputs from switches is absolutely necessary since pulse-mode circuits 
are highly sensitive to transient signals of sufficient duration and strength. 

10. The inputs to pulse mode FSMs need not be synchronized since the requirement of 
nonoverlapping data pulses, at least minimally separated, is a form of synchronization. 

11. Properly designed and operated pulse mode FSMs cannot go metastable and hence 
have an infinite MTBF, assuming that the data pulses are of sufficient duration and 
strength (not runt pulses). 

The 11 characteristics of pulse mode FSMs just given should seem impressive when 
compared to those of synchronous state machines and asynchronous FSMs that are operated 
in the fundamental mode. In fact, it appears that pulse mode FSMs have all the benefits 
of synchronous and asynchronous fundamental mode machines, but with none of their 
problems. This is true! However, the price to be paid for this "perfection" is the severe 
restrictions that are placed on the input signals - they must be nonoverlapping pulses that 
are at least minimally separated. 

The reason why pulse mode FSMs with toggle modules and Mealy outputs cannot have 
either ORGs or static hazards in the output logic is because triggering occurs on the trailing 
edge of the data pulse. This means that the requirements for ORG and static hazard formation 
cannot be met, since all data inputs are inactive at the time the transitions occur, assuming 
positive data pulses. Remember that to initiate an externally or internally activated static 
hazard, the data variable must be active for positive pulses. But since the data variable 
is always inactive immediately following a transition, externally initiated s-hazards are 
unconditionally eliminated and internally initiated s-hazards cannot form if Mealy outputs 
are used. Using the same argument, ORGs are not possible for an output conditional on an 
active exciting input since, again, the transition occurs only after the input goes inactive 
(trailing-edge triggering). 

If Moore outputs are used with toggle module memory elements, ORGs and internally 
initiated s-hazards in the output functions are possible. Because of the trailing-edge trigger
ing of the toggle modules, such logic noise (if present) cannot be filtered with D flip-flops 
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as in synchronous FSMs. An existing ORG musl he elintinaled by altering the slate code 
assignments to remove the mct condition causing the ORG. Static haz..'lJ'ds can be eliminated 
only by adding hazard cover as in Section 11.3. 

15.4 DESIGN EXAMPLES 

In this section three pul se mode FSMs of varying complexity will be designed by using 
toggle modules as memory elements and will feature different implementations of the NS 
and output forming logic. For this purpose use will be made of discrete logic. a ROM . and 
a PLA. 

A SIMPLE PULSE MODE SEQUENCE RECOGNIZER. Consider the slate diagram for a sim 

ple sequence r~cognizer in Fig. 15.5<1 that is suitably documented for a pulse mode design. In 
this case, toggle modules arc to be used as the memory elements. Notice thai the branching 
condilions are sing le uncomplemented variables, as required for nonoverlapping positive 
data pulses, and thai no holding conditions are shown. Holding condilions have 110 relevance 
in a pulse mode design thai uses toggle modules as memory elements. since a given present 
state variable cannot toggle to itself. A ~ing le ou tput exists in Slate 10 and is conditional on 
the exciting condition Y. Shown in Figs. 15.Sb and 15.5<: are the excitation table for a T 
Hip-flop and the resulting NS .md output K-maps. from which me minimum functions are 
found to be 

T .... =BX+A Y, T8 =AX+BY, and Z=AY. ( 15.3) 

The entry in cell I for T8 is X + Y because bit B must toggle in that Slate on the falling 
edge of either an X pulse or a Y pulse. Note thaI the term AY is a shared PI between T ... 
and Z , and that the FSM is initialized inlO the 00 state . 

A B 0 , • A 0 , 
o 0 I rx 0 X X Y 

y , 0 • V 
T • 

• 0 A , 
0 0 0 

, y ; 
z 

(c) 

Design of a simple sequence recognizer by using the pulse mode approach. (a) State diagram applicable 
to a pulse mode design. (bl Exdtalioo tilble for the T flip-flop. (<::) NS andoulpul K-maps and minimum 
cover. 



780 (HAPTER 15/THE PULSE MODE APPROACH 

B(H) Q A(H ) 
X(H) lA(H) 
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A(H) 
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B(H) Q 6(H) 
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B A(L) 
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fiGURE 15.6 
Discrete logic implementation of Eqs. (15.3) representing the pulse mode FSM in Fig. (15.5). 

The logic circui t for the simple pulse mode sequence recognizer of Fig. 15 .5 is shown in 
Fig. 15.6. Here. discrete logic is used to implement the NS and output functions represented 
by Eqs. (\5 .3). The FSM is initialized by a Saniry(L) input to the CL asynchronous overrides 
of the two toggle modules. Notice that the NS logic is presenred active high (0 the FET 
toggle modules, a requirement for trailing-edge uiggering by po~itive pulses. 

The operation oflhis pulse mode FSM is illustrated by the timing diagram in Fig. 15.7, 
which is the result of a simulation. The vertical dashed lines are positioned so that the NS, 
PS . and output responses 10 the data pulses can be easily compared, The results show that 
the time elapsing between input and NS pulses is always 2rp , and that (he rise and fall edges 
of the PS pulses lag the corresponding data input pulse edges by 4rp and Srp, respectively. 

X(H)-----II'---__ -'-L--.JnL ______ ----'JL...f!'---__ 

V(H) __ ---'-_-'nL----i __ i-_~i ji_I----,'------.Jn'----+---+--+~1l...-

{
T'(H)_----:_----'--+_+----fJi rtu,-----t:LI __ --+-Wi~ 

NS T,(H ) ---+--~Wr-"Ti LI _ji~L+_--+___-----!b-n : i 

A(H)--+---+-----i---.+-rt-- iL---i---w-8L 

8(H) ______ ~--~IL ____ ~~----~I+~------~--------~r---~Ll1--
Z(H) ___________ ''r1 -~L _____ ____.:~ 

FIGURE 15.7 
Simulation r<!sults for the pulse mode logic circuit in Fig. 15 .6 showing the PS. NS. and output 
responses to input changes (compare by using vertical dashed lines). 
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Pulse mode design of a digital combinational lock. (a) Block symbol circuit symbol. (b) inpul pulse 
sequence showing outputs. (c) Suilably documented state diagrJ.m. 

The time between input pulse change and output response is always T" and the lower bound 
of input pulse width is 2 r p' Notice that the output pulse width is the same as that of the Y 
pulse causing it. Here, as before. tp is the path delay through any gate. regardless of the 
type or number of inputs. 

A PULSE MOnt: DIGITAL C OM81NATIONAL LOCK. Shown in Fig. 15.8 are the block 
circuit symbol, the input pulse sequence required to open the lock. and a state diagram 
appropriately documented for the pulse-mode design of a digital combinational lock. The 
two inputs, X and Y. are assumed to be nonoverlapping pulses of sufficient strength and 
duration and to amve from po~ilive logic sources. Furthermore. i[ is assumed that these 
inputs are produced by dcbounced, interlocked mechanicaJ swilches that cannot be activated 
simultaneously. Simultaneous activation of Ihe switches would viohlle the fundamenlal 
premise on which Ihe pulse mode is based -that is. lhat the inpul pulses be nonoverlapping 
and al least minimally separated from each other. II is understood thallhe logic used in the 
implemenlation of the digital combination lock is very much faster than the mechanical 
switches delivering Ihe input signal pulses. Another requirement is that the two outpUIS be 
free of all logic noise and be delivered active high to the nellt stage. Finally il is required 
that this FSM be designed by using toggle modules as the memory and by using a ROM 10 
implement t.he NS· and output-forming logic, 

The ROM program table for Ihis pulse mode FSM is given in Fig. 15.9. Notice that the 
X, Y = I, I condi tions are absent in this table, since they arc irrelevant in a pulse-mode 
design -the pulses are ncver permitted 10 overlap. Also, observe thai don't-care states 101. 
1 10 and 1 I I arc presented as nonoutput slates to avoid possible ORGs. The input conditions 
for these states are arbitrari ly taken 10 be logic 0 although they are actually irrelevant as are 
the corresponding NS function values. The minimum ROM size required for this FSM is 
2s x 5. 

Implementation of the ROM program table is shown in Fig. 15. lOa by using Ihree toggle 
modules and a ROM of the minimum required dimensions. The outputs arc de livered directly 
from Ihe ROM free of logic noise. The operation oflhis digital combination lock is il lustrated 
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ROM Inputs ROM Outputs ROM Inputs ROM Outputs 
A 

/ " \ " I 
A. 

PS NS PS NS 
~ ~ ~ ~ 

14 

A 

0 

0 

0 

0 

13 12 I, 10 Y4 Y3 Y2 Y, Yo 14 13 12 I, 10 Y4 Y3 Y2 Y, 
B C X Y TA Ts Tc LOCK OPEN A B C X Y TA Ts Tc LOCK 

0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 1 1 0 1 0 0 0 0 
--- ----- --- ---

0 0 0 0 1 0 0 0 ¢ ¢ ¢ 0 

0 0 0 0 0 0 0 0 0 ¢ ¢ ¢ 0 

0 0 0 0 0 0 ¢ ¢ ¢ 0 
--- --- --- ---

0 0 0 0 0 0 0 ¢ ¢ ¢ 0 

0 0 0 0 0 0 0 ¢ ¢ ¢ 0 

0 0 0 0 0 0 0 ¢ ¢ ¢ 0 
----- --- --- --- --- ---

0 0 0 0 0 0 ¢ ¢ ¢ 0 

0 0 0 0 0 0 0 ¢ ¢ ¢ 0 

1 0 0 0 0 0 0 ¢ ¢ ¢ 0 

FIGURE 15.9 
ROM program table obtained directly from the state diagram in Fig. 15. 8c showing all input conditions 
except the X, Y = 1, 1 conditions, which are irrelevant in a pulse-mode design. 

in Fig. 15.lOb for a sequence of input pulses leading to the output OPEN. For simplicity, no 
logic delays are shown. Vertical dashed lines are placed on the trailing edges of the input 
pulses for the convenience in reading the timing diagram. Notice that the output LOCK 
is maintained active until OPEN is activated as required by the ROM program table. This 
is important only if it is assumed that the LOCK/OPEN mechanisms are such that one or 
the other of the two outputs must be active at all times, but never both inactive or both 
active. 

DESIGN OF A CANDy-BAR VENDING MACHINE. As a third and final example, a candy
bar vending machine controller is designed by using the pulse mode approach. The candy 
bars each cost 40 cents (a bargain these days) and are dispensed automatically by the ma
chine after correct change has been inserted. The vending machine accepts nickels (N), 
dimes (D), and quarters (Q) only. It consists of a controller (CONTROLLER), a coin re
ceiver (CR), an electromechanically operated coin changer (CC) for nickel return (RN), 
a 4-bit accumulator (ACC), a 4-bit parallel loadable down counter (CNT), a comparator 
(COMP) to keep account of the coin exchange, an electromechanically operated candy 
bar drop mechanism (CBD), and a price strapping unit (PSU) to set the price of the 
candy. These components and their interconnections are illustrated in the block diagram of 
Fig. 15.11 
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XIHI----"------1l ___ J-, __ _ 

yIHI--;--i----',----lc.-----i-.J1"""l

AIHI_~_~ __ -'-_ ___!r-L 
BIHI_---+_-t-i--IL' -i-
C(H) __ j----L __ j-----!_-!!_ 

l OCKIHI-----------'--,U-

OPENIHI __________ -'~ 

Ibl 

[a) ROM implementation of the pulse mode FSM represented by the program table in Fit:. 15.9. 
(b) TIming diagram leading to 1m output OPEN and excluding ROM and memory delays. 

Only the controller is designed in this chapter. This will be accomplished by using FET 
toggle modules as the memory and by using a PLA to implement the NS and output logic. 
The controller must accept di~retc nonoverlapping pulses gencrmed by coin insertion and 
must generate well-developed OUiput signals that are free of logic noisc. The controller 
must be initialized into an origin Slate and must return to that state once the exact payment 
has be!en received by the vending machine! and a candy bar has been dispensed to the 
customer. 

TIle state diagram for the controller of the candy-bar vending machine is provided in 
Fig. 15.12 together with the meanings of the abbreviations used In the Slale diagmm and in 
the block diagram of Fig. 15. 11 . Notice that the exiling condition from state b is CFR not 
CIR. CFR. meaning coin free of receiver. is 3 positive pulse in keeping with the requirement 
of 3 positive pulse mode des ign. Except for thc output RN. all outputs arc conditional 
(Mealy )outptlts that. with the state assignment given. ensure that no ORGs will be produced. 
The controller is 10 be initialized iOlo the 000 stale by using a sanity circuit of the typ; shown 
in Fig. 11.28. 

Though the details of the data p:uh devices arc nol needt!d at this time. it is important 10 
have a general understanding of their fllnction withi n the system so that the controller can 
be properly designed. With reference to Figs. 15. 11 and 15 .12.lhc following provides this 
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fiGURE 15.11 
Block diagram for u cundy-bar vending machine showing controller and datlL path dcvic.:cs. 
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InpulS 

CIR .. Coin in receiver 

CFA _. Coin lree 01 !eCelyer 

c40« -. Underpayment 

~40« -. Ov.rp.yment 

.. 40¢ .. EUCI payme nt 

CCRDY -- COin ellanger 'tidy 

CBDRDY .. Canlly bar drop rUdy 

QuI puts 
DCB _. OIOP candy bar 

DECACC .. DfCrtment accumulator 

CLRACC .. CIIBI accumulator and countar 

RN .. Reluln nick,1 

Slal~ diagram and delini lions for the pulse mode design of the candy-bar vending ITUChinc cootroller 

s hown in F ig. 15.11. 
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general understanding: 

• Coins are placed in the slots of the coin receiver (CR) and the 4-bit adder in the 
accumulator is automatically updated. 

• Each quarter (Q), dime (D), or nickel (N) that is inserted into the coin receiver 
(CR) is encoded according to the number of nickels: N = 0001, D = 0010, and 
Q = OlOl. 

• The accumulator's PIPO register stores the current coinage count and the 4-bit 
counter is parallel loaded only after each coin has cleared the receiver (CFR). 
Thus, the register is triggered and the counter is parallel loaded on the trailing 
edge of the CFR pulse. 

• The counter should be a data-triggered up/down binary counter with asyn
chronous parallel load as detailed in Fig. 13.46, but set for down count with 
Up = OCR). 

• The output of the counter is compared in the comparator (COMP) with the value 
of a candy bar set by the price strapping unit (PSU), and the result «40<t, 
=40<t or >40<t) is sent to the controller and to the accumulator's adder. In this 
case the PSU is set at 40 cents = 1000 (eight nickels). 

• If an underpayment «40<t) signal is received by the controller, the system 
awaits the insertion another coin. If overpayment (>40<t) is received, a nickel 
is returned (RN) to the coin changer (CC) and the accumulator is decremented 
(DECACC) when the CC is ready (CCRDY); and this process is repeated until 
the exact amount is reached. When the exact amount (= 40<t) is received by the 
controller, a candy bar is dropped (DCB) and no nickel is returned. 

• Immediately following the dispensing of a candy bar and after the candy bar 
drop is ready (CBDRDY), the accumulator and counter are cleared (CLRACC) 
and the controller is returned to the initialization state, 000. The controller is 
now ready to repeat the process. 
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In Fig. 15.13 are given the NS and output logic K-maps and minimum cover for the 
pulse-mode FSM represented by the state diagram in Fig. 15.12. It is the plan to implement 
the NS and output logic of this FSM by using a PLA so that a comparison can be made with 
the previous two examples where discrete logic and a ROM are used for the NS and output 
logic. Recall that it is strongly advisable, but not mandatory, to use minimum or reduced 
cover for a PLA implementation of the NS and output logic. ROMs must use canonical 
(minterm) data but not PLAs as discussed in Sections 7.2 and 7.3. From the K-maps in 
Fig. 15.13 the NS and output functions are easily read to be 

TA = ABC(>40<t) + A(CCRDy) 

Tn = BC(CFR) + ABC«40<t) + BC(CBDRDy) 

Tc = BC(CIR) + ABC( <40<t) + ABC(= 40<t) 

DCB = ABC( = 40<t) 

CrACC = BC(CBDRDy) 

RN=A 

DECACC = A(CCRDy) 

(15.4) 
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NS and outpUi K.maps for the pulse mode FSM in Fig. 15. 12 showing minimum NS and outpullogic 
cover. 

Here. four shared PIs are indicated, A(CCRDD. ABC«40cenIS), BC(CBDRDy), and 
ABC(=40 cents). which brings the total number of p-Ienns to eight for the combined NS 
and output functions . II i~ not uncommon for a relatively large number of shared PIs to exist 
in a pulse mode design Ihal has several outputs. each of which is conditional on an exiting 
condition. Characteristic 6 in Section 15.3 makes the point that Mealy outputs should be 
used whenever possible so as to avoid ORGs and static hazards in the output functions. 
Obviously, another advantage in using Mealy outputs is that they tend to maximize the 
number of shared PIs, but add more input variables to the output functions . Notice that the 
single Moore output RNis stale variable A and that noORG results from il. Note also that in 
cell 3 of the Te K-map, (>40 cents) must notbe used in placeof(>40 cents) + (=40 cenrs). 

To do so would cause the FSM to malfunction. since a basic principle of this pulse mode 
design would have been violated - that is, all nonoverlapping pulses must be positive 
pulses, never a mixture of positive and negative pulses. 

The p-tenn table for the PLA implementation of the candy-bar vending machine con
troller is constructed directly from Eqs. (15.4). It can be seen that there are 10 PLA inputs, 
7 outputs. and 8 p-terms (including four shared PIs), which requires a PLA of minimum 
dimensions 10 x 8 x 7. This p-tenn table is provided in Fig. 15.14 following the formal 
given in Section 7.3. RecaJl that a dash ( - ) in the AND plane indicates the absence of 
all input variable in a p-term. and hence no connection for that input. Clearly. the use of a 
ROM 10 implement the NS and outpullogic for this FSM would be a gross overkill, since 
a ROM of 10 inputs requires 210 minterms. Compared to only eight p-tenns required by a 
PLA, il is obvious that a ROM would be a poor choice for such applications. 

Shown in Fig . 15.15 is the block diagram for the PLA implementation of the candy-bar 
vending machine rcpresente<! by the p-Ienn table in Fig. 15.14. Observe that the NS functions 

T , 
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A(CCRDY) 
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BC(GBDRDY) 

BC(CIR) 
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/ PS 

~ , 
NS 
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~ ~ 
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0 1 1 - 1 0 1 0 0 0 

- 1 0 - 1 0 1 0 0 0 

0 0 0 0 0 0 0 

0 1 0 0 0 0 

- - - 0 0 0 0 0 

FIGURE 15.14 
P-tcrm tablc for implementation of the pulse mode candy-bar vending machinc cODlroller represented 
by the NS and output functions in Eqs. (15.4). 
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CIR(H) ~,---________ --,n,-__________________ _ 
CFR(H)_-+ __ ~n~ ______________ ~--~n,----------------_ 
<40~(H) __ ~ ____ ~ ____ ~r--l,--____ ~ ____ ~ ________________________________ __ 

=40~(H)_~ __ ~ ____ ~--~--~-------~r--l,-------
>40~(H) __ ~ ____ ~ ________ ~ ____ ~ ____ ~ ____ ~r--l~ ______ ~ __ _+----------_ 

CCRDY(H)_-+ ____ ~------~----~----~--------r_~r-l'-~--~---------
CBDRDY(H) __ -+ ____ ~------~----~----~--------~~--r-~~----~ 

A(H)_~--~----~--~--~---~ 
B(H)_~:--~:Ir-------~:~1 __ +-__ ~:rl --------~--~~~--~---+~:~ 
C(H) ~r-------------.:..,'__ __ ____'· 1 i ~I __ ---'-_____ _ 

DCB(H) _____________________________ ~~_+,~~~--_+~---

CLACC(H) ____________________________________ -+ __ ~+i·~: ______ ~:~ 
RN(H) ____________________ ~ ::,_1 _______ _ 

DECACC(H) _____________________ --'r-l'-______________ _ 
FIGURE 15.16 
Simulation results of the candy-bar vending machine controller by using the discrete logic expressed 
by the NS and output functions in Eqs. (15.4). 

TA , TE , and Tc are introduced active high to the PET toggle modules, a requirement for 
positive data pulses. Note also that no input or output conditioning circuits are necessary 
for this FSM. 

The sequential behavior of the candy-bar vending machine is revealed by the simulation 
results in Fig. 15.16. which were produce by using discrete logic for the NS and output 
functions of Eqs. (15.4). Vertical dashed lines are provided to facilitate reading of the various 
responses to data pulses. The time elapsing between input and NS function pulses is always 
r p (not shown); the rising and falling edges of the present state pulses (A, B. and C) lag 
the corresponding falling edges of the data input pulses by 4rp , and 5rp • respectively. The 
output response time to input pulse change is r p. and the lower bound of input pulse width 
is 2rp. As always, rp is the propagation delay of a gate regardless of its type or number of 
inputs. The FET toggle modules are designed by using the D flip-flops as given in Fig. 12.12. 
but with inverters on the CK inputs. 

15.5 ANALYSIS OF PULSE MODE FSMs 

The procedure used to analyze pulse mode FSMs is basically the same as that used to analyze 
synchronous and asynchronous (fundamental mode) FSMs discussed in Sections 10.13 and 
14.17. The NS and output functions are read from a logic circuit and the results are plotted 
in K-maps. The K-maps are converted to D form and the PSINS table is constructed. It is 
at this point that the analyses of pulse mode FSMs differ from those of synchronous and 
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FIGURE 15.17 
Analysis of a pulse mode FSM. (a) logic circuit. (b) NS lind output K-maps as ploued from Eqs. (15.5). 

fundamental mode FSMs. The following corrections 10 the PSINS table are necessary for 
positive pulse mode FSMs having more than one external input: 

Line our (disregard) all elllries in the PSINS table that are assucitJted lVith either all 
inactive data inputs or that are associated lVith more than one active data input. Thus, 
only one active inpul is permitted fi)r each entry. 

The state diagram for the pulse mode FSM is then constructed from the corrected PSINS 
table and the result is analyzed for possible problems. For pulse mode FSMs that are 
designed to operate with negative pulses, valid entries in the PS/NS table must include only 
those having one inactive input. 

A SIMPU: EXAMPLE. Shown in Fig. 15.17a is the logic circuit for a pulse mode FSM 
that is 10 be analyzed. This FSM is seen to have two external inputs, X and Y. two state 
variables, and a single output, Z. Prom the logic circuit the NS and output functions are 
easily read and found 10 be 

I
T"'=AY+~Y+ABXI 
TB = AY + BY + BX . 

Z =ABY 

(15.5) 
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Analysis of the pulse mode FSM in Fig. 15.17 (contd.). (a) PSINS table constructed from the D 
K-maps in 15.17b. (b) State diagram derived from the PSINS table in (a) and from (15.5). 

Mapping Eqs. (15.5) yields the results shown in Fig. 15.17b, where map conversion is used 
to present the NS functions in D form. 

The PSfNS table is now easily constructed from the D K-maps in Fig. 15.17b and is 
presented in Fig. 15.18a. Here, entries that are associated with either all inactive inputs or 
two active inputs are lined out and disregarded. Thus, entries with only one active input are 
considered. From the PSfNS table there results the state diagram given in Fig. 15.1Sb. The 
sanity input and output Z are not indicated in the PSfNS table but are known by inspection 
of Fig. 15.17 and Eqs. (15.5) and are shown in the state diagram. 

The sequential behavior is easily deduced from the state diagram. Keeping in mind that 
the output Z is issued coincidentally with data pulse Y, it is clear that this FSM recognizes 
and issues an output only after three consecutive Y pulses. Interposition of one or more X 
pulses before three consecutive Y pulses occur requires the FSM to begin the Y sequence 
again. Notice that the Y sequence can be initiated from either the initiation state 00 or from 
state 10. 

No ORG is possible from state 11 during the 10 ---+ 01 transition, since the transition is 
executed on the trailing edge of the positive Y pulse. This means that Y is inactive at the time 
the transition occurs, making it impossible for output Z to be issued. This fact together with 
the proper operation of the FSM is verified by the simulation result provided in 15.19. 
Here, as in many examples given previously, dashed vertical lines are provided to facilitate 
the reading of the various transitional events. Also, as in Fig. 15.16, the rise and fall edges 
of the present state pulses (now A and B) lag the corresponding falling edges of the data 
pulses by 4Tp and Sip, respectively; the output response time to input pulse change is 
Although there is no upper bound of data pulse width, there still remains a lower bound at 

where i p is the path delay through a gate regardless of type of number of inputs. Note 
that any number of X pulses while in state 00 retain the FSM in that state, since a Y pulse is 
required to initiate a transition from state 00 to state 0 I, as indicated in the state diagram of 
Fig. 15.18b. 
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FIGURE 15.1 9 
Simulation re~uJt~ of the logic circuit in Fig. 15.17:., verifying its proper operalion including the 
ab~nce of any ORGs. 

A SIMPLE NESTED CELL EXAMPLE. Consider the logic circuit in Fig. 15.20 representing 
a pulse mode desib'll by using the nested cell model of Fig. 15.4 but without delays in the 
feedback lines. Thus. all fit J = O. This is done 10 test the validity of the inequality expressed 
in Eq . (15 .2), as well as to reinforce the notion that the nested cell approach to pulse mode 
designs should be avoided except under very special circumstances to be discussed later. 

Reading the logic circuit in Fig. 15.20 yields the following NS and output functions: 

(15.6) 

Also. an inspection of the initialization connections indicate that the FSM will initialize 
into the 10 state. That is, S,,(L) = RB(L) = Sanity(L) with RA(L) = S8(L ) = Sanily(L) 
forces the FSM into state 10 when Sanity(L) = L(L) and preserves the mixed-rail output 
logic values. 
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Logic circuit for the nested cell design of a pulse mode FSM 10 be analyzed showing initialization 
connections. 
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Analysis of the nested cell pulse mode circuit in Fig. 15.20, (a) NS and output K. maps and map 
conversion ploued fmm Eq~ . (15.6). (b) I'SINS table con~lrucled from the NS 0 K-mllps in (8), 

The NS functio ns ;n Eqs. ( 15.6) are plotted in the S, R K-maps shown in Fig. 15,2 Ia. 
where they are convened 10 D form by using Eq. (14.37) with the approprillle change in the 
NS and output notation. lbe PS/NS table can now be easily constructed from t~ 0 K-maps 
as presented in Fig. IS.llb, Notice Ihat the nonessential and invalid enlfies are lined OUI 
and will be disregarded in constructing the sI3te diagram from Ihi~ table. Also. observe tbal 
state I I has no entry from any other state and is, therefore, a don't-care state. Thus, state 
I I can be omitted in the state diagram. 

The state diagram is constructed directly from the PSINS table in Fig. 15.2 1b and is 
presented in Fig. 15.213. Included are the sanity input and conditional output that are not 
shown in the PSINS table bUllhat are easily deduced from the logic circuit The sequential 
behavior is easily discernible from the state diagram, Assuming valid boundcd pulses. as 
discussed in Subsection 15.2.1. the output Z will be issued coincidentally (actually after a 
gate path delay) with the second X pulse in an uninterrupted sequence Y _ X --+ X. The 
proper sequential behavior of this FSM can be verified by simulation of the logic circuit 
in Fig. 15.20. This is done with the result shown in Fig. 15.22b. Here. the pulse widt hs 
are set at 21" (two gale delays). Since no focdback delays are present (ill, = 0). the pulse 
widths mIJst not fall significantly outside the Tallgc Of2T I' to 3 r p for this FSM. as expresSl-'<! 
by the inequality of Eq. (15.2). The simulatio n result in Fig. 15.22c is an example of what 
can happen when the upper bound of permissible pulse width is exceeded. Here. the pulse 
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(a) 

FIGURE 15.22 

AS 

-+. ;.- 2't"p 
X(H) ___ ~n,-___ ~n,-__ -,fl.-fl,--___ ~ 
Y(H)....--fl'--_-i-_--1n'-_...--__ -;-___ ~nl--e__-

A(H) ~'-_--;. __ ....,......-_+_----I-': '""I ----"-L----.; __ 
B(H) _____ ~ ;IL.-.. _____ .....J·r-
Z(H) ___________ ---J·nl_ ______ _ 

(b) 

-+. ;.- 4,p 
____ ~n'_ ____ ~nL_ __ rL-Jl~ ___ ~~ 

A(H) 

B(Hl _____ -.-Jnl_ __ ---InL.. _________ ---JrL 
Z(H) n n L 

(c) 

Analysis of the pulse mode FSM in Fig. 15.20 (eontd.). (a) State diagram as deduced from the 
PSINS table in Fig. 15.2Ib. (b) Simulation result for 2rp pulse widths indicating correct operation. 
(c) Simulation result for 4Tp pulse widths showing malfunction of the FSM by exceeding the upper 
bound for pulse width. 

widths are set at4,p, causing the FSM to malfunction. Since the lower bound of permissible 
pulse width is about 2ip , it is obvious that pulse widths for nested cell designs of this type 
must be restricted to the narrow range of 2ip to 3Tp if malfunction is to be avoided. 

The upper bound problem for nested cell designs of pulse-mode FSMs can be solved in 
one or both of two ways. First, if no feedback delays are used, pulse narrowing circuits, as 
in Fig. lO.28a, can be used as input conditioning stages for all inputs. To do this requires 
that the pulses be set within that narrow range acceptable for proper operation of the FSM. 
But this may not achieve the desired result if output pulses of longer widths are required. 
Use of feedback delays MF offer a partial solution to this problem. However, it may still 
be necessary to limit the width of incoming pulses, pulses that may vary greatly in pulse 
width. In this event, both pulse narrowing circuits and feedback delays are required, as 
indicated in Fig. 15.23. Now, incoming pulses are constrained to a width of Mp. That 
is, pulses introduced to the NS logic of the FSM can be no greater than I1fp, assuming 
that I1fp < 11ft; and incoming pulses less than I1tp will not reach the output of the pulse 
narrowing circuit. This scheme has the advantage that conditional outputs can have pulse 
widths significantly larger than that shown in Fig. 15.22b while allowing proper operation 
of the FSM. Remember that introducing feedback delays alone does not guarantee proper 
operation for incoming pulses of unrestricted pulse width. It is for this reason that pulse 
narrowing circuits are also necessary. If pulse narrowing circuits are used by themselves 
the delay element I1tp must be set such that the pulse widths fall, say, within the range of 
2Tp to 3ip for most nested cell designs. 

DELAY ELEMENTS. The delay elements, I1tp and 11ft', can be realized in any number 
of ways. Small delay elements are easily obtained by cascading gates, buffers, inverters, 
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X(H) -1::@:g;::::[)-I-;:=~ ", 
V(H) -1:j~~;!=)-I-Hi=:;;:f: ", 

X(H) 

FIGURE 15.23 
Logic circuit of Fig. 15.20 with inpul pulse narrowing circuits and feedback delllYs as required for 
incoming data pulses of unrcsuicled upper bound. 

and/or Schmitt triggers in some combination to achieve the desired delay. For larger delays 
inenial elements are needed. Shown in Fig. 15.243 is an inertial delay element composed of 
diodes, resistors, and capacitors and a rendezvous module (RMOD). The (wo· jnput RMOD 
is designed in Fig. 14. 11 by using the nested cell model. 

The inertiaJ delay element in Fig. 15.24a ensures the creation of the delay 6t indi
cated in (he timing diagram provided in Fig. 15.24b. Although the analysis of this circuil 
is complex and beyond the scope of litis text - it is a nonlinear second-order circuit-its 
operation can be understood qualitatively with little difficulty. On the risi ng edge of the 

X input pulse. the RC time constant al node A is smaller than that at node B because 

D, 

X' (H) 

Z(H) 

RMOD X(H)---IlL __ J--'lJiL-_:---
~.L\t-: !-.L\t~ X'(L) 

X' (H) ___ ~_S--'--LL 

D, 
(a) (b) 

FIGURE 15.24 
An inenial delay clement for creation of largc delays. (a) Circuit composed of resiS1on>. R. diode~. 

D. capacitors. C. and a rendezvous module (RMOD). (b) Timing diagram showing fonnatiOfl of the 
delay. til. and the fi lleting action of the R-C circuil. 
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diode DJ is turned ON (with low resistance in forward bias) while diode D2 is OFF (with 
high resistance in reverse bias). As a result, capacitor C J charges up via the low resis
tance of diode DJ allowing node A to reach the high-voltage threshold of the RMOD 
before node B. Assuming that R2 has a greater resistance than diode DJ in forward bias, 
capacitor C2 charges up after a time !1t bringing node B to the threshold voltage of the 
RMOD. When both inputs to the RMOD reach the threshold (i.e., become active), the 
RMOD responds by issuing an active output, X*. The reverse is true for the falling edge 
of the X input pulse. Now diode D2 is ON and DJ is OFF, resulting in a smaller time 
constant at node B than at node A. Thus, node B reaches the low threshold voltage of 
the RMOD before node A since the capacitor C2 can discharge through the low resistance 
of diode D2, now in forward bias. Since capacitor C] must discharge through high re
sistance R], node A reaches the low threshold voltage after a time !1t. Then when both 
inputs to the RMOD reach the low threshold (i.e., go inactive), the RMOD issues an in
active output. In this discussion it is assumed that DJ = D2 , R] = R2, and C] = C2, which 
accounts for the ideal edge delay symmetry indicated in Fig. 15.24b. Actually, the falling 
edge of X*(H) is delayed by !1t + Tp, as can be deduced from the RMOD simulation in 
Fig. 14.12. 

The magnitude of the delay !1t produced by the inertial delay element can be adjusted 
somewhat by altering the values of the R's and C's in the R-C circuit of Fig. 15.24a. The 
larger the time constant, the greater will be the !1t delay. Use of large time constants to 
generate large delays probably necessitates the use of Schmitt triggers on the outputs of the 
RMOD to minimize waveform distortion produced by the R-C components. Notice that the 
narrow input pulses have no effect on the delayed output response because of the low-pass 
filtering action of the Rand C components. This, in effect, sets the lower bound on pulse 
width if the inertial delay element is used in the pulse narrowing circuits. 

15.6 PERSPECTIVE ON THE PULSE MODE APPROACH TO FSM DESIGN 

Clearly, pulse mode asynchronous FSMs have very limited practical application because 
of the stringent requirements placed on the input data signals. That is, the inputs must 
consist of nonoverlapping pulses at least minimally separated and with pulse widths of 
lower bound depending on the logic used. Also, an important distinction is made with 
regard to the memory elements that can or should be used in the design of asynchronous 
pulse-mode FSMs. The use of toggle modules as memory elements requires no upper bound 
on incoming pulse widths and has the advantage of eliminating ORGs and static hazards 
in the output logic by using outputs conditional on exiting pulses. This, of course, is made 
possible because it is a requirement that triggering occurs on the trailing edge of the data 
pulse. The toggle modules can be implemented by using D flip-flops, as in Fig. 15.3, or 
by using T or JK flip-flops operated in the toggle mode. The only down side to the use of 
toggle modules is that output logic noise, if it exists, cannot be filtered out by any of the 
conventional methods discussed so far in this text. This is so because the transitions occur 
on the trailing edges of the data pUlses. However, such timing defects can occur only if 
Moore (unconditional) outputs are used. 

Attempting to use the nested cell model in the design of pulse mode FSMs requires that 
special attention be paid to the bounds of pulse width that can be tolerated by the system. 
Pulse widths exceeding the upper bound limit will cause malfunction of the FSM. The 
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only reliable means of dealing with unrestricted data pulse widths is to use feedback delays 
together with pulse narrowing circuitry as demonstrated in Fig. 15.23. Remember that use 
of inertial delay elements as in Fig. 15.24 may be necessary to generate the large delays 
required by some applications. It is true that without the use of these two types of delay the 
nested cell approach may enjoy a slight speed advantage over an equivalent design using 
toggle modules as the memory. However, safeguarding the nested cell design by adding 
feedback delays and pulse narrowing circuits negates any speed advantage the system may 
have had over a toggle module design. In fact, the logic circuit in Fig. 15.23 is likely to 
be considerably slower that its toggle module counterpart. With these facts in mind, one 
must conclude that there is little or no justification for using the nested cell approach to 
design pulse mode state machines. Therefore, if a pulse mode design is called for, it is 
recommended that toggle modules (or T flip-flops) be the memory elements of choice. The 
rather extensive discussion of this subject in this text is justified on the basis that most of 
the references in Further Reading at the end of this chapter deal with nested cell designs of 
pulse mode FSMs -often without discussing the critical pulse width problem. 

If desirable, the nested cell design of a pulse mode FSM can be easily converted to the 
use of the MS memory elements of the type shown in Fig. 15.3c. Here, the Sand R NS 
functions to the master stage remain the same as in the nested cell design, but now triggering 
occurs on the trailing edges of the data pulses similar to the toggle module approach. Also, 
as with toggle modules, the MS memory elements can be initialized via the asynchronous 
PR and CL overrides of the slave D flip-flops. However, the additional requirements on the 
lower bound of pulse width, expressed by Eq. (15.1), together with the additional hardware 
requirements and slower FSM performance, make this approach to pulse mode design less 
desirable than an equivalent toggle module design. Thus, toggle modules remain the memory 
elements of choice if given the option to use them in the design of pulse mode FSMs. 

By their nature, pulse mode FSMs have limited applicability. But for those applications 
that are appropriate, pulse mode designs can offer the best approach. Sequence recognizers, 
digital combination locks. and vending machines, as described in Section 15.4, are good 
examples of appropriate applications of the pulse mode concept. Actually, the control or 
recognition of individual events of any kind often lend themselves quite naturally to the 
pulse mode design concept. For example, controlling, counting. or recognizing the passage 
or transport of individual people, fish, cans, coins, automobiles. boats, boxes, batteries, 
etc., is easily handled by the pulse mode method. Certain types of mechanical motion 
can also be recognized or controlled by pulse mode machines. Remember that the pulse 
mode approach to design of FSMs requires no clock oscillator circuitry, which can result 
in reduced hardware and power consumption. 

The applications of the pulse mode also extends to counter design. Shown in Fig. 13.46 
is the design of a 4-bit data-triggered up/down binary counter with asynchronous parallel 
load and asynchronous clear. This is a pulse mode design which requires that the Up and 
Dn input pulses never be active at the same time and that they always be at least minimally 
separated. For the counting of individual events, such data-triggered counters may be the 
best choice. 

FURTHER READING 

Unfortunately, few texts treat the subject of asynchronous pulse mode FSMs, and half of 
those give only passing mention to the design and analysis of these state machines. The texts 
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of Kohavi, McCluskey, Nelson et at., Tinder, Unger, and Yarbrough are the exceptions. All 
five of these texts cover the subject to one extent or another, but with different emphases. 
However, based on the subject as it is presented in this text, the texts of Nelson et at. and 
Tinder are the two recommended here for further reading. These two texts cover the use 
of both data-triggered T flip-flops and basic cells as memory elements in the design of 
pulse mode FSMs. Texts by Unger and Yarbrough tend to emphasize the use of basic cells. 
Unger provides a good discussion of the delay element requirements in the use of basic cell 
memory elements and is recommended for further reading. The text of McCluskey, on the 
other hand, provides a broadened definition of the pulse mode and covers different aspects 
of the pulse mode concept, those dealing with both synchronous and asynchronous FSMs. 
However, unless one is familiar with the ANSIIIEEE Standard for logic circuit symbols, 
McCluskey's text will be somewhat difficult to read. It should be mentioned that only 
McCluskey's text and the present text devote an entire chapter to the discussion of pulse 
mode machines. 

[1] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, New York, 1978. 
[2] E. J. McCluskey, Logic Design Principles. Prentice Hall, Englewood Cliffs, NJ, 1986. 
[3] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and 

Design, Prentice Hall, Englewood Cliffs, NJ, 1995. 
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs, 

NJ, 1991. 
[5] S. H. Unger, The Essence of Logic Circuits. Prentice Hall, Englewood Cliffs, NJ, 1989. 
[6] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/St. 

Paul, MN, 1997. 

PROBLEMS 

15.1 A simple digital combination lock (DCL) is to be designed for a vault that is to be 
operated in the pulse mode. It is the function of the DCL to issue a signal OPNVLT 
coincidentally with the last pulse in the pulse sequence··· Y -X-y -y -X",, and 
then return immediately to the initialization state and reissue a LOCK signal. Note 
that the sequence cannot be overlapping. 
(a) Construct the state diagram for the DCL by following the example in Fig. 15.8, 

keeping in mind that the sequence must be a nonoverlapping sequence. Give a 
state code assignment and output assignment that is free of ORGs. 

(b) From the results of part (a), obtain an optimum set ofNS and output functions 
for the DCL. To do this, use T flip-flops as the memory. Plan to use don't cares 
as permitted by the requirements of the design. 

(c) Construct the logic circuit for the DCL. Use discrete logic for the NS and output 
logic and PET T flip-flops as the memory. Plan to initialize into the all-zero state. 

(d) Verify the correct operation of the DCL by simulating the logic circuit of part (c). 

15.2 Shown in Fig. PIS. 1 are the state diagrams for two FSMs that are to be operated in 
the pulse mode. These two FSMs are adaptations of those in Fig. P13.4 used earlier 
for synchronous FSM design. 



798 

Z!i if S 

X!i ifT 

(a) 

CHAPTER 15/ THE PULSE MODE APPROACH 

P!i if X 
Q!i ifY 

(b) 

FIGURE P15.1 

(1) Obtain an optimum set of NS and output functions for each of these pulse mode 
FSMs. Plan on using toggle modules as the memory. Indicate any problem these 
FSMs may have. 

(2) Based on part (1). construct the logic circuit for each of these FSMs. To do this, 
use FET toggle modules as the memory and a PLA for the NS and output logic. 
Thus, construct the p-term table for the PLA. Initialize as indicated in the state 
diagrams, and assume that all inputs and outputs are active high. 

15.3 The state diagram in Fig. P15.2 represents a pulse mode FSM. 

zn ilX 

FIGURE P15.2 
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(a) Design this FSM by using the nested cell model. Thus, obtain an optimum set 
of NS and output equations appropriate for using basic cells as the memory. 
To do this, use T -* S, R, K-map conversion. (Hint: Refer to Algorithm 12.1, 
in Subsection 12.3.2, and Figs. 10.43 and 10.45. Thus, K-map conversions 
T ++ S, Rand T ++ J, K are similar except in the way that don't cares are 
used.) 

(b) Construct the logic circuit for the results of part (a). Assume that the inputs and 
output are all active high. Indicate the bounds of permissible pulse widths that 
can be used by this FSM. Plan to initialize into the 00 state. (Hint: To initialize 
a zero, force the basic cell into a reset condition.) 

(c) Verify the proper operation of this FSM by simulating the results of part (b). 
Show the consequence of exceeding the upper bound in pulse width. 

(d) State the algorithm (sequential function) for this FSM. 

15.4 The following NS and output logic is read from an FSM that is designed to operate 
in the pulse mode. Here, the inputs are C and D, and the outputs are Hand L. 
Initialization occurs via the active low PR and CL overrides to the two toggle 
modules, A and B. 

TA = ABC +AD +BD 

TB=C +D 

H = D(A ffi B) 

L=AC 

Sanity(L) = PRA(L) = CLB(L) 

(a) Construct the state diagram for this FSM. Follow the example in Figs. 15.17 
and 15.18. 

(b) From the state diagram determine the sequential function of this FSM (its 
algorithm). Does this FSM satisfy all the requirements for operation in the 
pulse mode? Explain. 

(c) Verify the results of parts (a) and (b) by simulating the circuit. (See Fig. 15.19 
as an example.) 

15.5 In Fig. PI5.3 is the p-term table for a PLA implementation of an FSM that is 
designed to operate in the pulse mode. Here, X and Yare the inputs and P and Q 
are the outputs. The FSM is initialized via its PR and CL overrides according to the 
following: Sanity(L) = CLA(L) = CLn(L) = CLcCL). 
(a) Construct the state diagram for this FSM by following the example in Figs. 15.17 

and 15.18. 

(b) Does this FSM satisfy all requirements for operation in the pulse mode? What 
limitations are placed on the pulse width limits? Are ORGs and static I-hazards 
present in the output logic? Justify your answers to these questions. If ORGs 
and static hazards cannot be present, explain why that is so. 

(c) Verify the proper operation of this FSM by simulating the circuit. 
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P-term A B C X Y TA Te Te p Q 

Bex 0 1 - 1 0 0 1 0 
BCY 1 1 0 0 1 0 

ABY 1 0 1 1 0 0 0 0 
ACX 1 - 1 1 0 0 1 0 
ACY 0 1 1 0 1 0 0 0 
ABX 0 0 1 0 0 0 
ACX - 0 0 1 0 0 0 

CX 0 0 0 1 0 0 

BY - I 0 0 1 0 0 
CY 1 0 0 1 0 0 
AX 0 0 1 0 0 

AY I 0 0 0 0 1 

FIGURE P15.3 

15.6 The following NS and output logic is read from a pulse mode FSM that has been 
designed by using the nested cell model. Here, X, Y, and Z are the inputs, and P 
and Q are the outputs. The logic circuit is initialized into the 00 state following the 
example in Fig. 14,47. 

SA = AX + AZ, SB ABX + ABY + ABZ 

R ... = ABX +AY, RB =ABX +ABY + AX + AZ 

P = X(A ffi B) 

Q =ABY+ ABZ 

(a) Construct the state diagram for this FSM. To do this, follow the example in 
Figs. 15.21 and 15.22. 

(b) Does this FSM satisfy all requirements for operation in the pulse mode? What 
limitations are placed on the pulse width limits? Are OROs and static I-hazards 
possible in the output logic? Justify your answers to these questions. If upper 
and lower bounds of pulse width exist for this FSM, quantify them. 

(c) Verify the proper operation of this FSM by simulating the logic circuit. Follow 
the example in Fig. 15.22. Thus, show the consequence of exceeding the upper 
bound of pulse width. 

(d) Indicate on the logic circuit how the circuit can be altered to accommodate 
pulses of greater widths than that specified in part (b). 

15.7 A pulse mode asynchronous FSM is to be designed that functions as a controller for a 
security area shown in Fig. PI5,4. It is required that when occupied the security area 
must be occupied by just two people, no more and no less. Access to the security 
area is through an outer door (D 1) one person at time, along a narrow corridor 
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fiGURE P15.4 

and through an inner door (02), as shown in the figure. The corridor is equipped 
with two narrow (planar) light beams, X and y, thai fall incident on phOiodeteclOr 
cells on the opposite wall . When the second person passes the Y check beam, the 
inner door (nonnally locked) is unlocked and the outer door (nonnally unlocked) 
is locked. The system pennits one or both of the people in the access corridor to 
change their mind~ at any time and e;<;it the corridor, However, any allempl by a 
third person to pass through the check beam X once two occupants have passed 
both check beams will set off an alarm (ALARM). 

A red occupancy light (LT) is monitored on a remote control panel. It is initially 
OFF (LTOFF) and remains OFF umil the second person passes the Y check beam 
on entering, at which time it is turned ON (LTON). 111ereafter it remains ON until 
the second person passes the X check beam on exiting the corridor, at which time 
it is tumed OFF. 
(a) Construct a state diagram for the contrOller FSM that has no more than six 

states. Make certain it is free of ORGs and plan to initialize into the 000 state. 
(Hint: Use Gray code, and UM! conditional outputs only where necessary.) 

(b) Construct the ROM program tablt: directly from tht: state diagram in part (a). 
To do this, follow the example in Figs. 15.8 and 15.9. Assume that the inputs 
are all active high. Let all outputs be active high except those of LTON and 
LTOFF, which are issued active low to an LED display. 

(c) Construct the logic circuit for the security area access controller. Use a block 
symbol for the ROM and assume the use of FET T flip-flops as the memory. 
Are stalic hazards and ORGs possible in the output logic from the ROM? IT so, 
explain the consequences of their presence. 

15.8 One severely Iimiling aspect to pulse mode FSM design is the requirement of 
nonovcrlapping input pulses. Many applications of the pulse mode approach to 
design are prohibited because the inputs arrive as overlapping wavefonns. Funher
more, if a nested cell design is to be used, funher restrictions are placed on the 
upper and lower bounds of nonoverlapping pulses. Some of these problems can be 
solved by the use of a bus arbiter. which is the subject of this problem. 

Shown in Fig. PI5.S are two basic two-input bus arbiter modules. Each con
sists of a mUlual exclusion element (ME) and the external logic as shown. The 
ME is composed of a special basic cell and two line drivers. II is the function of 
the bus arbiter to arbitrate between two com~ting requests Rx and Ry and grant 
access to a protected system based on a "first-inlfirst-out" principle. Thus, only one 
grant signa] (G x or G r ) is active al any given time. even though the inpul<; may be 



Rx(H) 

Ry(H) 

R)(L) 

Ry{L) 

, 

802 CHAPTER 15/ THE PULSE MODE APPROACH 

Gx{H) 
R)(H) NAND Cell 
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NAND Cell Arbiter 

Mutual Exclusion Gain elements 
(Drivers) Elements 

G)(H) 

- F(HI 
R)(l) NOR Cell 

Ry(L) Bus Arbiter 

Gy(H) 

Logic Symbol , NOR Cell Arbiter v 
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fiGURE P1 5.5 

overlapping. If the inputs are overlapping at some point in time, a second access 
is granted only after the first request goes inactive. Should bOlh input requests go 
active at the same time. me ME must arbitrate a "winner" and grant access to that 
input. It is the specially built basic cell together with the gain elements and XOR 
gale that perfonn the arbi tration funclion . 
(a) Simulate each circuit in Fig. PI 5.5 as a logic circuit. To do this. omit the gain 

elements and treatlhe remainder as simple logic. Monilor all inputs and outputs 
shown, including the F(L) and F(H ) outputs. From the simulation, determine 
the throughput response and the pulse width of the grant signals in each case. 

(b) MUltiple inputs can be handled by a mUltiple-input bus arbiter. Use a sufficient 
numberofNOR cell bus arbiter modules (in Fig. PI5 .5)togetherwith a sufficient 
number of Rl\10Ds to design a three-input bus arbiter. lei the three inputs be 
R I. Rz• and R] , and assume that all inputs are active low and outputs are active 
high. Consider that the number of bus arbiter modules required is detennined 
by the number of combinations of n inputs taken q al a time given by 

( 
n! ) 

Nn = q l(n _ q)! . 

Plan to provide an asynchronous clear capability to the bus arbiter. To do this. 
use the LPD RMOD design of Problem 14.2 and follow Fig. 14.32a. End with 
a logic circuit by using logic (block) symbols for each bus arbi ter module and 
each RMOD. 

Gx(H) 

Gy(H) 

G~(H) 

Gy(H) 
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(c) Verify the proper operation of the three-input bus arbiter of part (b) by simu
lating the actual arbiter circuit. To do this, present the inputs to the arbiter as 
overlapping waveforms that do not change in close proximity to one another. 

(d) Repeat part (b) for a four-input bus arbiter. (Hint: Use three-input RMODs 
designed by the LPD model.) How many bus arbiter modules and RMODs are 
required for five-input and six input bus arbiters, and how many inputs must 
each RMOD have? 

15.9 Use the two-input NAND cell bus arbiter module in Fig. P15.5 to design the pulse 
mode FSM in Fig. P15.2 if it is assumed that the inputs, X and Y, arrive as over
lapping waveforms. 
(a) Obtain an optimum set ofNS and output functions for this FSM by using toggle 

modules as the memory. 

(b) Use the results of part (a) to construct the logic circuit for this FSM. Include the 
arbiter module and assume that the inputs and output are all active high. Plan 
to initialize into the 00 state. 

(c) By using the logic circuit for the two-input NAND cell bus arbiter module, show 
how the pulse widths from the arbiter module can be augmented for use in pulse 
mode FSMs by using two identical delays. Recall that permissible pulse widths 
often fall in the range of 2rp to 3rp for most nested cell designs, but that they 
must be greater than 2rp for pulse mode designs that use toggle modules as the 
memory. 

(d) By using the EXL-Sim2002 simulator included on the CD-ROM bundled with 
this text, simulate the logic circuit of part (b) by making use of part (c). To do 
this, use the logic equivalent of the arbiter module (exclusive of drivers) and 
apply the input waveforms given as follows: 

XY 00-10-11-01-00-01-11-10-00--01-11-10-11-01-11-10-

00--10-00--01-00. 

Make certain that the input waveform changes are sufficiently separated. An 
ideal logic simulator cannot arbitrate between two competing request signals 
that are changing in close proximity to one another. 

15.10 (Note: This problem should be performed after completing Problem 15.9). Repeat 
parts (a), (b) and (d) of Problem 15.9 by using the NOR cell bus arbiter module 
in Fig. PI5.5. Disregard any reference to part (c) of Problem 15.9. To perform the 
simulation, use the EXL-Sim2002 simulator. Compare this simulation with that of 
Problem 15.9 as to output (grant) response to input (request) change. 
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CHAPTER 16 

Externally Asynchronous/ 
Internally Clocked (Pausable) 
Systems and Programmable 
Asynchronous Sequencers 

16.1 INTRODUCTION 

Externally asynchronous/internally clocked (EAIC) systems represent a compromise be
tween the synchronous and asynchronous design methodologies. While functioning asyn
chronously with respect to the external world, the EAIC system is controlled by a single 
internally generated clock signal that is produced when valid outputs exist from each mem
ory element. In this scheme. input synchronizing registers and memory registers coordinate 
to generate the internal clock. The internal clocking of an EAIC system causes it to be free 
of critical races, essential hazards, and errors due to static hazards. In addition, the memory 
modules of an EAIC system are protected against errors due to metastability and, hence, are 
an integral part of apausab/e system - one that is capable of an infinite MTBF. The speed of 
the internal clock is limited only by the actual logic delays within the system, rather than by 
the typical worst-case delay of synchronous systems, and can operate in excess of 400 MHz 
for state-of-the-art submicron CMOS designs. The EAIC memory elements are constructed 
of either static or dynamic domino logic, and each is protected by a unique metastable de
tection stage that prohibits any metastable condition from reaching the output. The internal 
clock generating circuitry is shown to be delay insensitive when operated within specified 
bounds. 

This chapter concludes with the detailed development of two unique and important 
classes of asynchronous programmable sequencers that are designed to operate in the fun
damental mode. These sequencers can be driven by discrete logic or by PLDs (e.g., PLAs or 
PALs) free of the numerous timing defects that can cause fundamental mode FSMs to fail. 
Furthermore, by multiplexing PLDs to drive a single sequencer, it is possible to instantly 
switch between radically different asynchronous FSMs. By this means multiple controllers 
can be operated asynchronously, on a time-shared basis, by the same sequencer. The PLDs 
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thai drive the sequencer are easily programmed directly from a state diagram or slate tahle, 
or from K-maps plotted from the slate diagram. 

16.2 EXTERNAllY ASYNCHRONOUS/INTERNAllY CLOCKED 
SYSTEMS AND APPLICATIONS 

The genel"',d (Mealy) model for an EAIC system is shown in Fig. 16.1. It consists ofinpul 
(synchroni7..alion) and memory Df'LOP registers of either the static logic (SL) or dynamic 
logic (DL) type. next-state-fonning logk. and d ock-generating circuitry. On the rising edge 
of each clock cycle. the inpuls are stored in the input regi!;lcr and a new Siale is stored in 
the memory register as detennined by the next-Slale logic during the previous clock cycle. 
As each DFLOP resolves. a data-ready ( R) signal is issued to the majority gate (NOR gate) 
which. in tum, issues the falling edge of the clock when all DFLOPs have resolved. On 
the falling edge of the clock, the DFLOPs return to their unresolved Slate. causing the R 
signals to be deasserted and a new rising clock edge (0 be issued by me clock generating 
circuitry. 

The memory element of an internally cloc.ked system is called a DFLOP module. It 
functions in a manner similar to an edge-triggered 0 flip-flop. but with all added OUtput that 
signals when the DFLOP is resolved and ready for a deactivating clock edge. This added 
output signal is required for proper operation of the DFLOP within the EAIC system. In 
ndditioll. each DFLOP contains mu{Ual-exciusioll circuitry that protects the output stage of 

INPUTS L. - r- ..... ... .. '+ 
Q NEXT Q OUTPUT .. 0 ~ STATE 0 ~ Q 
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.J ----.R Tri-Stale 
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fiGURE 16.1 
General arcbitecture (Mealy model) for the EAIC system ~howin8 DROP input and memory registers 
and clock-generating circuitry with tri·state enable. 
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MuhipJe·input NOR gate specilically designed to minimize fan-in limitations and propagation delay. 
(a) Generalized CMOS circuit required ror application in EAIC sy~tem5. (b) Generalized NOR gate 
symbol and input logic level requirements for EAIC system operation. 

the DFLOP from errors caused by any meta<;illble conditio n that may develop in the input 
siage. The design details of the DFLOPs are discussed later in Subsel;tion 16.2.1. 

The NOR gate shown in Fig. 16.1 is an important part of the clock generating system. 
As is poi nted out in Section 8.9. the pcrfonnance of a conventional CMOS NOR gate 
diminishes with increasing fan-in. Since the NOR gate ill an EAIC system must be able to 
accommodate a large number of inputs, it is necessary to use a specially designed CMOS 
gale structure. Shown in Fig . \6.2 is the multiple input NOR gate featured in Fig. 8.46. but 
specifil;ally labeled for use in an EAIC system. The number of permissible inputs up 10 
about eight will have neglig ible effect on the gate path delay. Thus. it retains essentially the 
same path delay of a two-input NOR gate regardless of the number of inputs. The output 
of this gaEe goes to high voltage (H V) only if all inputs arc at low voltage (LV). If anyone 
or more of the inputs go to HV, the output goes to ground level (LV). To work com edy, 
it is neces.'iaJ)' that the PMOS be specialJy designed so that the drain-la-source resistance 
(actually impedance) remains sufficiently rugh so as to minimize drain current when o ne 
or mo re NMOS are turned ON. Note that the specially built PMOS can be replaced by a 
depiction-mode NMOS permitting the NOR gate of Fig. 16.2 to be replaced by the NMOS 
technology of Fig. A.I in Appendix A. 

16.2,1 Static logic DFlOP Design 

The general slfUcture for 11 DFLOP is shown with block symbols in Fig. 16.3. lis structure is 
similar to that of a convcntional D flip-flop eXl;ept the DFLOP is equipped with a metastable 
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Block diagram for a DFLOP showing the static logic CMOS metastable detection stage and the NAND 
gate required [0 generate the data-valid signal (R). 

detection stage (MDS) and data-ready (R) circuillY It is the function of the MDS to detect 
any metastable condition in the resolver and block it from entering the output bask cell 
stage. The manner in which thi s is done is discussed latcr in this seclion . 

The details required for the design of the static logic (SL) DFLOP are provided in 
Fig. 16.4. The resolver stale diagram shown in Fig. 16.4a is similar 10 thai for the RET D 
nip-Hop given in Fig. 14.14a. The state code assignment differs from tbal of Ibe D flip-flop 
because of !he need for logic symme!ry when connecling the resolver 10 the MDS logic 
shown in Fig.16.4b. The stale diagram for the sel-dominant basic cell in Fig. 16.4c is the 
same as that given in Fig. 14.14b, except forlhe branching condition labels that derive from 
Ihe MDS outputs. 

On the rising edge of clock (CK), the static-logic DFLOP (SL-DFLOP) resolver stores 
the value of the input data 0 and issues an output R via the MDS (see Fig. 16.3) indicating 
that it has resolved the data. Once the resolver has entered a resolved state (eitherOI or 10), 
further changes in the input data D cannot affect the stored value until the nex! rising CK 

CK CK 

(a) Resolver 

FIGURE 16.4 

CK 

"Il) ~~ I t ,,'Il) 

~ ~ t Yo'(L) 
"Il) 

(b) MDS Stage 

y' 

y, ' + Yo' 

(e) Basic Cell 

Design of tbe DFLOP for EAIC systems exclusive of preset and clear circuitry. (a) State diagram for 
the resolver FSM input ~tage. (b) Metastable detection stage (MDS) indicating raised t t) and towered 
(~) thresholds for i nverter~ and gates. (el Stale diagram for the set-dominant basic cell. 
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FIGURE 16.5 
EY K·maps for the resolver of a DFLOP as plotted from the ~tate diagram in Fig. 16.4a. 

edge. This, of course, is the data lockout character of a D Hip-flop . Only when CK goes 
inactive will the resolver return to the unresolved 00 state where it awaits another active 
CK signal. 

The next-slale (NS) K-maps arc obtained directly from the resolver state diagram in 
Fig. 16.4a and are presented in Fig. 16.5. To obtain the activation levels and logic symmetry 
needed to interface with the MDS, an apparent nonoptimum cover is chosen as indicated 
by the shaded loops. Thus, the don't care in each K-map is ignored. From these K-maps the 
resulting NS logic expressions are found to be 

I YI :::: .'t'o~CK + YlYoCK = (~ + YI) . SoCK j. 
Yo = yl DCK + YIYoCK = (D + Yo)· YICK 

(16. 1 ) 

where factoring is used to oplimi7.e the logic and for purposes of interfacing with the MDS 
stage. 

The Set and Reset branching conditions of the set-dominant basic cell in Fig. 16.4c are 
ea<;ily defined in tenns of the present state variables oflhe resolver. Recalling the connections 
shown in Fig. 16.3. these branching conditions are given by 

Set condition j 
Reset condition . 

(16.2) 

Clearly, the Set condition results from the resolver entering a resolved state 10. whereas the 
Reset cond ition is caused when the resolver enters the 0 1 state. 

The complete logic circuit for the SL-DFLOP is constructed from Figs. 16.3. 16.4. and 
16.5 and from Eqs. (16.1) and is presented in Fig. 16.6, where the MDS is highlighted for 
emphasi s. lncluded are the preset (PR) and clear (CL) overrides, which are necessary for 
initialization and reset of the DFLOPs. The active low inputs to the MDS are provided by the 
outputs from the two four-input NAND gates of the resolver. This represents the logic level 
compatibility and logic symmetry mentioned earlier. In order to correctly implement the 
preset ;md clear functions, it is necessary to set the state of the resolver FSM as well as that 
of the output basic cell. Because extra time is necessary for the effect of the preset or clear 
s ignal to propagate through the MDS stage to the outputs. the duration of either the PR(L) 
or CL(L) signal to the DFLOPs must be long enough to a<;sure that the correct mixed-rail 
outputs have time to propagate through the next state logic (indicated in Fig. 16.1) before 
the occurrence of the next clock event. 
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FIGURE 16.6 
logic circuit for the stalic logic SL·DFLOP as constructed from Figs. 16.3, 16.4, and 16.5 together 
with Bqs. (16.1) showing PR and CL override connections. 

It is a basic cell output stage of the SL-OFLOP that stores the set or reset output from 
the resolver via its MDS circuit. The data-ready (R) signal issued by one of the resolved 
states of the resolver is formed by the logical OR of the set and reset conditions from the 
MOS. An active R signal indicates that the DFLOP outputs have been updated and signals 
a readiness of (he resolver to receive a falling CK edge. Since the basic cell output stage 
is protected from any possible metastable conditions in the resolver. the Q(H) and Q(L) 
outputs will be error free and logically stable. 

The Metastable Detection Stage Each SL·DFLOP used in the EAIC system employs a 
metastability detection stage (MDS) of the type shown in Fig. 16.6. The MDS operates as a 
mutual exclusion element to prevent a possible metastable state in the resolver from being 
passed on to the basic cell output FSM: If either Yl or )'0 is active (not both active). the 
corresponding y; (set condition) Of Yo (reset condition) becomes active. signaling that the 
resolver has resolved into a logically definable state. Under any other set of input conditions. 
the outputs y; and Yo are always deactivated -they drop low! 

The simulated PSPICE response of the static logic MDS in Fig. 16.4b to a variety of 
input conditions is shown in Fig. 16.7. Correct operation of the resolver is simulated in the 
first input sequence (0-30 ns), where the MDS outputs Y; and Yo follow the inputs Yl and Yo 
as the resolver transits between resolved and unresolved states. Worst-case conditions exisl 
in the next segment (30-100 ns) where the inputs are introduced as a damped sine-wave 
oscillation with a phase difference of 90 degrees causing the maximum difference between 
the inputs Yl and Yo to approach 2.5 volts. As can be seen. the straddling of the MDS 
switching threshold (Vlh = 1. 1 V) by Yl and Yo causes the beginning of pulse fonnalioD 
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FIGURE 16.7 
PSPICE simulation of the static logic MDS circuit in Fig. 16.4b. 

on the MDS outputs. y; and Yb. However, the formation of these erroneous output pulses is 
very small and directly dependent on the frequency of oscillation. An increase in oscillation 
frequency results in a decrease in straddling time and consequently permits the MDS to 
correctly filter the metastable condition. In addition, because a valid output pulse can only 
be generated if the inputs straddle the adjusted switching threshold, any input activity above 
the threshold of 1.1 volts cannot result in output pulses regardless of the frequency and phase 
difference of the input signals. 

The metastable voltage V", tends to lie in the range of mid-supply (see references in 
Further Reading), which in this case is taken to be 2.5 volts for a 5.0-volt supply, as indicated 
in Fig. 16.7. Consequently, shifting the switching threshold of the MDS away from the 
predicted voltage of Vm can reduce the probability to zero that a metastable state will occur 
and cause an erroneous output signal to be generated. To shift the threshold of the MDS 
circuit shown in Fig. 16.4b, the switching thresholds of the MDS gates (including inverters) 
are adjusted in the following way: A PMOS-to-NMOS width ratio of wp/wn = 0.25 is 
used in the MOSFETs of the low-threshold (t) gates, shifting their switching threshold 
to approximately 1.1 volts. For the high-threshold inverters (t), a PMOS-to-NMOS width 
ratio of wp/wn = 8 is used to raise their switching threshold to approximately 3.0 volts. 
By using these adjusted gates and inverters, the switching threshold of the entire MDS in 
Fig. 16.4b is lowered to approximately 1.1 volts. As a result, only cleanly asserted signals 
can pass through the MDS circuit, while a metastable input condition will cause the MDS 
outputs to drop low. For sub-micron CMOS technology with wp/wn ratios remaining the 
same, Vm and the thresholds will be altered approximately in proportion to the supply 
voltage ratio, VDD /5.0. 

140 
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Should the resolver enter a metastable state, the logic state of the outputs would be 
undefined and a fatal error would result if the metastable state were permitted to propagate 
to the external system. Consequently, it is essential that the outputs of the resolver be stably 
resolved before the result is permitted to propagate to the output stage of the DFLOP. It is, 
of course, the MDS that performs this function within the DFLOP. Studies of the metastable 
condition relevant to this subject are cited in Further Reading at the end of this chapter. In a 
fully protected EAIC system, any pause in the issuance of the R signal due to metastability 
in the resolver of a DFLOP will result in a corresponding pause in the internal clock. 
Therefore, such an EAIC system can be categorized as a pausable-clock system. 

A frequently reported study of the metastable state in the cross-coupled NAND gates 
is cited in Further Reading at the end of this chapter. With this study in mind, and since 
the signal rise/fall time tends to dominate the propagation delay of simple CMOS gates, 
it is reasonable to assume that a metastable condition in the DFLOP resolver would be 
characterized by an output voltage Vm and not by oscillatory behavior. However, an os
cillatory metastable condition must be considered as possible. Therefore, the oscillation 
frequency and phase difference of any oscillatory metastable condition that is passed to the 
MDS circuit is important in evaluating the total performance of the MDS. Although most 
previous work supports the in-phase nature of metastable oscillation, little has been said 
about possible phase differences. The symmetrical nature of the cross-coupled NAND gates 
in the DFLOP resolver supports the assumption of minimal phase difference in oscillatory 
behavior. Thus, should a metastable oscillatory condition occur, any actual phase difference 
would be much less than the 90 degrees difference used in the simulation of Fig. 16.7, al
lowing the detection circuit to fully protect the outputs from any possible metastable input 
conditions. 

16.2.2 Domino logic DFlOP Design 

Dynamic domino CMOS logic, or simply domino logic (DL), can be used advantageously 
in the design of DFLOP modules. Domino logic gates are noninverting and are fast, but 
require reasonably high clocking frequencies to control the precharge and evaluate phases 
of the dynamic operation. Low-frequency operation is excluded because of leakage current 
effects. Since an EAIC system provides a fast and regular clock signal, the DFLOP is ideally 
suited for implementation with dynamic domino logic - possibly the best usage of the DL 
technology. For this purpose, the resolver for the domino logic DFLOP (DL-DFLOP) must 
be designed to accommodate the requirements of domino logic. References on domino logic 
are cited in Further Reading at the end of this chapter. The following subsection provides 
an introduction to domino CMOS logic. 

Represented in Fig. 16.8 are the essential components of the DL-DFLOP' Included are 
the state diagram for the DL-DFLOP resolver FSM, the DL MDS stage, and the familiar set
dominant basic cell as the output FSM. The dashed branching paths for CK andCK shown 
in the state diagram are used to indicate that the CK signal does not act directly to force a 
state-to-state transition but does so via the precharge and evaluate stages of dynamic domino 
logic operation. The asterisk (*), placed within a gate symbol, identifies a domino CMOS 
logic structure. Except for this notable difference, the resolver FSM for the DL-DFLOP 
operates the same as that for the SL-DFLOP in Fig. 16.6. 

Presented in Fig. 16.9 are the NS K-maps for the DL-DFLOP resolver FSM. Again, the 
use of don't cares is avoided so to yield the proper logic level and symmetry characteristics 
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Design of the domino logic DL-DFLOp for £Ale systems exclusive of the preset and clear circuitry. 
(a) Slale diagram for the resolver inpUi FSM. (b) Metastable detection stage (MDS) indicating lowered 
(,0 and raised (P Ihresholds for inverters and gates, and dynamic domino logic AND gates ( 0). (c) 

State diagram fOf" the set-dominant basic cell OUlput FSM. 

needed to interface with the DL MDS stage. The K-maps are plotted as though the CK 
and CK branching paths in Fig. 16.8a were absent. The resulting NS functions for the 
DL-DFLOP. as read directly from the K-maps, aTe 

I Yl =YoD+ Yl}'O = (D + YI ) · 5'0 ) 
Yo =yID+ YI)'O = (D + )'0)·)'1 • 

(16.3) 

which are the same as those for the SL-DA..OP but with the CK input missing. The Set and 
Reset branching conditions for the basic cell output FSM are the same as those g iven by 
Eqs, (16.2). 

As pointed out previously, domino logic is noninverting. This means that AND and 
OR gate fo rms are used in configuring the DL-DFLOP. The resuWng logic circuit for the 
DL-DA..OP is easily constructed from Eqs. (16.3) and Figs . 16.8 and 16.9. and is shown 
in Fig. 16.10. As before, the gates (or inverters) with lowered switching thresholds are 
indicated with a down arrow 0.) and those with raised switching thresholds are identified 
with an up-arrow (t). Because of the opposite oriented adjusted thresholds and the opposite 
activation levels of the inputs from the resolver, the switching threshold for the DL MDS 

y y y y • 0 1 , • 0 1 , 
0 0 0 0 [ 0 11D 

1 1 ¢ 1 0 ¢ 

FIGURE 16_9 
EV K-maps for the domino logic resolver of a DL-DA..QP as plotted from the stale diagram in 
Fig. 16.8a. 
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FIGURE 16.10 
Logic I;ircuit for the DL-DFLOP based on Figs. 16.8 and 16.9 Ilnd on Eqs. ( 16.3) showin~ PR and 
CL override c(mncc(ions. 

circuit in Fig. 16.10 is raised to approximately 3.3 valls and no. lowered as in the ca!\e of the 
SL MOS. Again, the asterisk symbol e) indicates dynamic domino CMOS logic . Notice 
that DL logic us used for both resolver and MDS circuit. This helps to improve performance 
of the DL-DFLOP. 

16.2.3 Introduction to CMOS Dynamic Domino Logic 

Conventional CMOS gates of the general structure shown in Fig. 3.5 can be characterized 
as having a pull-up part (the PMOS) and a pull-down part (lhe NMOS) that are positioned 
[0 make the best use of the MOSFETs. The PMOS transistors are placed on the supply 
end (high side) because they pass HV well but not LV; the NMOS transistors are placed 
on the ground end (low side) because they pass LV well but not HY. Thus, conventional 
CMOS can be viewed as having to realize the same logic function twice in complementary 
fashion. once for the pull-up part and once for the pull-down pal1. The dynamic CMOS 
logic eliminates this redundancy by using one clocked pull-up PMOS (Tp) to precharge 
the output high, and one clocked pull-down NMOS (TN) to evaluate low the intervening 
NMOS logic between these two transistors. Domino CMOS logic (OL) adds an in\'ener to 
the output of the dynamic structure. This can best be understood by viewing the gener-tliud 
DL logic configuration shown in Fig. 16.11a. Here, the symbol ¢t represents a single phase 
clock signal whose logic values have the followi ng meaning: 

¢I = 0 (LV) ?recharge 

¢I = I (HV) Evaluate. 



16.2 EXTERNAllY ASYNCHRONQUS/lNTERNALLY CLOCKED SYSTEMS 815 

<1> -,---<j I 

logic --H>I 
Inputs 

NMOS 
Logic 

Passes 
'--~I TN lV well 

'--V-' 
Dvnamic oart 

(a) Generalized domino 
CMOS logIc configuration 

FIGURE 16.11 

z 

c -+-11 

(b) Three·lnput AND 
gate 

z 

A 

B -+-+--1 

(e) Two-Input OR 
g8te 

EX:'ImpJes of domino CMOS logic (DL) structurts suitable for usc in an EA IC system. (a) Generalized 
DL configunll ion. (b) Three-input AND gllte. (e) Two·input O R gate. 

During the precharge stage, Tp is turned ON while TN is turned OFF, bringing Z high 
and Z low. Thus. a single PMOS is required to pass HV during the precharge stage, which 
it does well . Then during the evaJUllie stage, the logic values of Z and Z depend on the 
intervening NMOS logic. The three-input DL AND gate example in Fig. 16.11 b may help 
the reader better understand Ihe evaluate stage. If all inputs to this gate are at HV during 
the evaluate stage. Z is forced to ground potential (low) while Z goes high. Thus. the node 
at Z is discharged 10 ground. a fast process. If, on the other hand. one or more of the three 
inputs are at LV. then Z remains at its previous precharge level (by stored charge in !.he 
capacitance of the system). So to prevent significant leakage current and :'>tatic (quiescent) 
power dissipation during this precharge-hoJd state, (he precharge/tvaluate process must be 
driven at high frequency. The same arguments apply 10 the DL OR gale in Fig. 16.11 c, and 
10 all other DL gate structures. 

The dynamic pan of domino CMOS logic tends to be noisy because of switching tran
sients. This problem is eliminated by adding the inverter (bulfer) to the dynamic part as 
indicated in Fig. 16.11 . It is because of the presence of the inverter buffer that DL logic is 
basically nooinvcrting. Without the invener, the gates in Figs. 16. llb and J6.1 1c would be 
a three· input NAND gate and a two-input NOR gate. respectively. But these gates should 
ncver be configured in that manner. If a three-input NAND gate is required, an inverter must 
be added to the DL AND gate in Fig. 16.llb. Similarly, an invener must be added 10 the 
DLOR gate in Fig. 16. ll c to form a NOR gate. 

z 
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For relatively few inputs, domino logic requires more transistors than for static logic. 
However, as the number of inputs increases, a crossover point is reached beyond which 
domino logic has fewer transistors than static logic. With reference to Figs. 3.10 through 
3.19, l6.1Ib, and l6.1Ic, the number of transistors (N) as a function of number of inputs 
(I) for dynamic logic (DL) and for static logic (SL) is given by the following equations: 

DLANDorOR N = (I +4) 

DLNAND or NOR N = (I + 6) 

SL NAND or NOR N = 2I 

SL AND or OR N = 2I + 2 

Clearly, beyond four inputs, the DL AND or OR gate requires fewer inputs than the SL 
AND or OR gate. However, for NAND or NOR gates the crossover point is at six inputs. 

Domino CMOS logic is fast if operated correctly. However, it is difficult to make a valid 
comparison of the relative speeds of the DL and SL technologies. It is true that in DL gates, 
only a single PMOS needs to be precharged, which it does over a very short period of time. 
In SL gates, the complementary configuration of PMOS is required to pass HV (a charging 
process), which it does well but over period of time that depends on the complexity of the 
complementary logic. It is likely that precharging a single PMOS as in the DL case takes 
less time that does the charging process in SL gates. This difference may be especially 
significant for OR or NOR gates of the two technologies. 

16.2.4 EAIC System Design 

The general architecture for the EAIC system is illustrated in Fig. 16.1. The operation of this 
system centers mainly on the manner in which the internal clock is generated and the events 
that take place in triggering the DFLOPs of the input and memory registers. Otherwise the 
operation of the EAIC system is quite similar to the operation of a synchronous FSM that 
uses D flip-flops as the memory. In fact, the design and analysis of EAIC FSMs is exactly 
the same as the design and analysis of synchronous FSMs that use D flip-flops, as described 
in Sections 10.12 and 10.13. What must be done next is to discuss the details ofthe timing 
constraints and throughput characteristics for an EAIC system. 

Next-State Logic and Input Pulse Constraints In order to guarantee the proper operation 
of an EAIC system, certain timing constraints must be observed. Within the bounds of these 
constraints, the EAIC system may be classified as completely delay-insensitive. To optimize 
throughput it is necessary that the updated Q outputs from the input register propagate 
through the next-state fonning logic before the next rising-edge clock event. Consequently, 
it is required that 

(16.4) 

where 8NS is the propagation delay through next-state logic, 28NOR is the propagation delay 
through the external portion of the clock-generating circuitry (NOR gate plus driver), and 
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ODFWP is the propagation delay through DFLOP. There is a little more than about three or 
four (maximum) gate delays through a DFLOP, and one gate delay through the NOR gate. 
Consequently, the propagation delay through the next-state logic should not exceed five 
gate delays, if optimum and reliable results are to be achieved. This allows a good margin 
for error when two-level next-state logic is used. Exceeding the next-state logic constraint 
can cause error only in the outputs of some Mealy machines. Also, the minimum input pulse 
width must be greater than the period of the internal clock, guaranteeing that each input 
state will last long enough to be clocked into the input register. 

Frequency and Throughput Characteristics of the EAIC System An inspection of 
the general EAIC architecture in Fig. 16.1 indicates that the internal clock generating path 
involves the propagation delay through the DFLOP registers combined with that of the NOR 
gate. Tracing this path beginning and ending at the NOR gate output provides the following 
expression for the internal clock frequency: 

(16.5) 

With the gate delay equivalents given earlier, the internal clock period is estimated to lie 
in the range of 8 to 10 gate delays, but will depend on the fan-in of these gates. Given the 
propagation delays of modem state-of-the-art CMOS gates, frequencies in excess of 400 
MHz can be expected for EAIC systems that employ this technology. 

Throughput may be defined as the elapsed time between an external input change and 
a resulting output response from the DFLOP memory register. For an EAIC system, the 
throughput will normally be in the range 

(16.6) 

with a minimum exceeding the clock period by ODnop, or approximately three to four gate 
delays. The ranges expressed by Eq. (16.6) result from introducing Eqs. (16.4) and (16.5) 
into the minimum and maximum throughputs given by (20DFLOp +ONS) and (30DFWp+ 28Ns), 
where the latter quantity is the minimum plus the feedback delay of (OllFWI' + ONS). 

16.2.5 System Simulations and Real-Time Tests 

Shown in Fig. 16.12 are the state diagram, and NS and output K -maps for a simple two-inputJ 
one-output sequence recognizer that is used to test the EAIC system. The minimum NS and 
output functions, as read from the K-maps, are 

IDA = ~X~ + BXY + AB} 
Dn=AXY+BXY . 

Out ABXY 

(16.7) 

The Mealy output is issued only in state 10 and then only under the input conditions XY. It 
is possible for this FSM to transit (cycle) with CK through states 10 and 00 under branching 
conditions Xl' without issuing an output and without holding in either state. This is done 
deliberately to test throughput 
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FIGURE 16.12 
Design of a simple sequence recognizer for usc in testing the EAIC system. (a) State diagram. (b) 
Next-state and output K-maps. 

The EAIC circuit is constructed by using Eqs. (16.7) and is shown in Fig. 16.13. Notice 
thallwo DFLOPs are used for input register and two for the memory register. and that all four 
issue a data ready ( R) signal that are part ofthe clock generating circuitry. All four R signals 
must be inactive and must rendezvous at the NOR gale before an active CK(H) signal is 
issued. Then, on the rising edge of CK(H), all four DFLOPs are triggered simultaneously. At 
this time the inputs arc stored in the input register and delivered to the memory register via the 
NS logic and, at the same time, the new state is stored in the memory register as determined 
by the NS logic during the previous clock cycle. When the four DFLOPs are triggered, 
the four R signals become active, which deactivates CK(H) at the NOR gate. When the 
DFLOPs receive the falling edge of CK(H), the MDS outputs go low, which deactivates 
the R signals while retaining the current input values in the basic cell output stages. The 
inactive R signals cause CK to go aetive again and the process just described is repeated. 

The EAIC system in Fig. 16.13 was simulated by using PSPICE (Level 3), with I.Ort 
n-well MQSFET transistor models obtained from MOSIS fabrication runs. The I /.L model 
provides a suitable reference point between old and new industrial standards. All gales were 
designed by using CMOS technology. with the goal of optimizing for size while setting an 
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arbitrary rise/fall time ceiling at approximalely 0.5 ns for both 1.011 static and domino logic 
gates. In the simulations, the parasilicelfecls of line resis tance, capacitance. and inductal1<."e 
were assumed 10 be: negligible. a reasonable assumption with the possible exception of line 
capacitive effects. (See FUr1her Reading for reference on this worlc) 

PSPICE simulations were perfomled on both SL-DFLOP and OL-DFLOP designs of 
the sequence recognizer in Fig. 16.13. A typical resuU is shown in Fig. 16.14, which is 
thai for a DL-OFLOP design with a conventional CMOS NOR gate in the clock-generating 
circuiU')'. TIle measured internal frequency for this design is 280 MHz with a minimum 
and maximum throughput of 4.9 and 8.5 ns. respectively. ihe maximum allowable NS 
logic delay for this design is found to be 2.3 ns. Simulations perfonned on SL-OFLOP 
design of the sequence recognizer yield an internal frequency of 220 MHz and minimum 
and maximum throughpUis of 7.6 and 12.1 ns. respectively. with a maximum allowable NS 
logic delay o f 3.2 ns. 

fn order 10 test the functionality of a static logic EAIC system in real time and make com
parisons withlhe simulations results. (he sequence recognizer of Fig. 16.13 was fabricated 
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PSPICE simulation tracing of the EAIC circuit in Figure 16.13 using DL-DFLOPs and a conventional 
CMOS NOR gate in the clock generating circuitry. 

by using a 2M n-well CMOS process. The chips were tested by using a laboratory test rig and, 
more extensively, by using the HP 82000 test station with a 0.5-ns resolution, both monitor
ing the internal frequency directly. The chips were found to operate correctly and revealed 
variable internal clock frequencies in the range of 25-35 MHz. The lower frequencies, which 
were observed by the test station, fell well below the predicted PSPICE value of 38 MHz for a 
2M design. However, frequency measurements on a laboratory test rig accounted for frequen
cies up to about 35 MHz, very close to the predicted PSPICE value. The frequency differ
ences are believed to be due mainly to capacitive loading effects by the measurement leads. 

16.2.6 Variations on the Theme 

A very interesting aspect of the EAIC approach to FSM design is that nearly all D flip-flop 
synchronous design considerations, methods, and associated alternative architectures are 
applicable to EAIC systems. This should not be surprising since the only difference between 
the two design methods is the way in which the clock is generated - internally in the EAIC 
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system, externally for the conventional approach. For reference purposes, the following are 
examples of the overlap between the two approaches: 

1. DFLOPs can be converter to either TFLOPs or JKFLOPs, as is done for D flip-flops 
in Section 10.8. 

2. The design and analysis of FSMs by using the EAlC system follows the discussion 
for synchronous FSMs in Sections 10.12, 10.13, and 11.9. 

3. Logic noise (including ORGs and static hazards) in the output functions of EAlC 
FSMs can be filtered by using conventional edge triggered D flip-flops as discussed 
in Subsection 11.2.2. In contrast to synchronous FSMs, the filtering D flip-flops should 
be triggered in phase to the internal clock. 

4. Sanity circuits and debouncing circuits can and should be used in EAIC systems 
following Sections 11.7 and 11.8. 

5. The array algebraic approach to FSM design and the one-hot design method, as 
discussed in Sections 11.11 and 13.5, also apply to EAIC system designs. 

6. Any shift register or counter discussed in Chapter 12 can be designed by using 
DFLOPs or TFLOPs in place of D flip-flops or T flip-flops. 

7. All alternative architectures and system-level design methods discussed in Chapter 13 
are also applicable to EAIC system design. Thus, ROMs. PLAs, nonregistered PALs, 
etc., are all applicable to EAIC system design. Data path FSMs in a given system can 
be controlled by the internal clock of the controller. 

8. As in synchronous FSM design, endless cycles, critical races and essential hazards 
cannot exist in EAIC systems - an advantage that both synchronous and EAIC FSMs 
have over fundamental mode FSMs. 

Although there are several features of the EAIC system that are in common with conven
tional synchronous systems, sharply distinct differences exist as discussed in the following 
subsection. 

16.2.7 How EAIC FSMs Differ from Conventional Synchronous FSMs 

• Perhaps the most important difference between the EAIC approach and the 
synchronous approach is the fact that EAIC systems are inherently protected 
from metastability and require no other synchronizing scheme. The reason why 
this is so rests with the nature of DFLOP and the clock generating circuitry in 
the EAIC system. A properly designed EAIC system is pausable in the sense 
that if anyone or more of the DFLOPs should go metastable, the system is 
held up (paused) until those DFLOPs exit from the metastable state and issue a 
clean set or reset. Thus, a properly designed EAIC system cannot fail because 
of metastability and its MTBF becomes infinite. In contrast, to achieve a large 
(but not infinite) MTBF for a synchronous FSM, synchronizing schemes of the 
type discussed in Section 11.4 must be applied. Application of such schemes to 
synchronous systems WOUld, in many cases, lower the performance well below 
that of a comparable EAIC system. 
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• A second important distinction between the two approaches is that clock skew 
is not possible within a properly designed EAIC system consisting of both con
troller and data path FSMs that coordinate to produce the internal clock. Clock 
skew is always a potential problem in synchronous system-level designs. 

• A third important difference is that EAIC systems are delay insensitive when op
erated within the bounds given in Subsection 16.2.4. To this extent, unexpected 
delays in the NS logic have no effect on the operation of the EAIC system. 
Even asymmetric delays in the one or more of the DFLOPs or in any part of the 
clock-generating circuitry, including clock skew, will not cause malfunction
the system simply performs more slowly if such delays exist. The same claims 
cannot be made with regard to synchronous FSMs. Asymmetric delays in fun
damental mode FSMs are likely to cause malfunction of the FSM as discussed 
in Chapter 14. 

• Other differences exist that are also advantages of the EAIC system. The internal 
clock frequency can be easily lowered by simply adding a delay (or counter) 
to the output of the external clock generating circuitry. Furthermore, the EAIC 
FSM's internal clock can be paused at any time by use of a tri-state enable/driver 
in the clock-generating circuit as indicated in Fig. 16.1. This can result in a 
savings of power during periods when the EAIC system must remain idle. 

16.2.8 Perspective on EAIC Systems as an Alternative Approach to FSM Design 

The EAIC system offers the designer an innovative alternative to synchronous and asyn
chronous (fundamental mode) approaches to FSM design. The EAIC approach has the 
advantages of high speed, operational reliability, low power consumption, and relatively 
low real estate commitment, all in the absence of an external clock oscillator circuit, as 
required for a comparable synchronous design. The EAIC system appears to have most 
all the benefits of the synchronous system and none of the disadvantages of asynchronous 
fundamental mode machines - the best of both worlds. Also, it may offer one of the most 
effective and appropriate applications of domino CMOS technology. The high-frequency 
internal clock seems ideally suited to the precharge/evaluate rates required by domino logic. 
Because of its pausable nature, the EAIC is essentially immune to clock distribution prob
lems (clock skew) within a closed system, that is, within one controlled by a single internal 
clock. So why is the EAIC system not the approach of choice of designers for most modem 
applications? The answer to this question is explored in the following paragraphs. 

The EAIC system designs are not without their drawbacks. One potential drawback to the 
EAIC approach to large system-level design is the fact that multiple controllers within a large 
system must communicate by means of handshake signals. Interfacing two independent 
clocked systems is never a simple task. But it is necessary since each controller establishes 
its own clock frequency independent of the others. In contrast, a fully synchronous system, 
consisting of multiple controllers, can operate on a single system clock. However, such 
a synchronous system is definitely subject to clock skew problems which may require 
handshake interfacing as well. 

Another disadvantage to the EAIC system is due to the fact that the internal clock is 
not precise. That is, its frequency may vary slightly depending on a variety of factors in
cluding temperature effects. Also, duty cycle cannot generally be altered. Crystal-controlled 
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oscillator circuits, of the type used in high-quality synchronous designs, are precise and have 
a number of desirable characteristics not found in the internal clock-generating circuits of 
the EAIC system. These desirable characteristics are discussed in Section 11.6, 

16.3 ASYNCHRONOUS PROGRAMMABLE SEQUENCERS 

In Chapter 14. it is made clear that any FSM that is designed to operate in the fundamental 
mode must be free of certain timing defects that would otherwise cause the FSM to fail. 
Such timing defects include endless cycles, critical races, static hazards in the NS logic, and 
essential hazards. Normally, it is not difficult to eliminate these defects. but the task can be 
tedious and does require a fair understanding of asynchronous FSM design methods. The 
EAIC system, presented in the first portions of this chapter, offers one means of avoiding 
these problems. and does so by operating from an internally generated clock. somewhat 
similar to a synchronous FSM. But the EAIC system cannot be used as a programmable 
sequencer owing to the mechanism required to generate the internal clock. In this section a 
distinctive. versatile, and highly reliable class of asynchronous programmable sequencers 
is considered in detail. 

16.3.1 Microprogrammable Asynchronous Controller Modules 
and System Architecture 

A unique family of high-speed asynchronous programmable sequencers is now described 
that combine fundamental mode operation with the programmability power ofPLDs. These 
sequencers have been dubbed microprogrammable asynchronous controller (MAC) mod· 
ules. Shown in Fig. 16.15 is the generalized architecture for a fully programmable system 
capable of operating as anyone of 2K asynchronous controllers that operate by means of a 
single n-bit (2"-state) MAC module. The basic components are a 2" bank ofPLDs (ROMs, 
PLAs, nonregistered PALs, or any combination thereof), a k-to-2k decoder for PLD selec
tion, an interfacing and deactivate inputs (01) stage. and the n-input MAC module with 
initialization and enable inputs. If several PLDs are used to drive the MAC module, the 
interfacing and DI stage should be a bank of n 2k-input MUXs, one MUX for each input 
to the MAC module. If only two PLDs are used to drive the MAC module, the decoder is 
reduced to a simple inverter. Also, if one PLD is used, the interfacing and DI stage is simply 
composed of discrete logic. These and other related subjects will be explored more fully in 
later sections. 

The DI signal, which is introduced into the interfacing logic from the MAC module, as 
shown in Fig. 16.15, plays an essential role in the operation of the MAC module. Following 
each successful transition of the FSM, all inputs to the MAC module must be deactivated 
for a short time by the DI signal so as to make ready for the next transition as deter
mined by the PLD program driving the system. A handshake mechanism involving two 
fundamental-mode state machines within the MAC module coordinates this process so that 
each transition is guaranteed to occur in an orderly and reliable fashion, even if cycles 
exist under conditional or unconditional branching. The handshake process guarantees that 
endless cycles. critical races, static hazards in the NS functions. and essential hazards can
not cause the MAC module operation to fail. Furthermore, ORGs are not possible, since 
every state-to-state transition must be logically adjacent. In short. the operation of the MAC 
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module cannot fai l by any timing defect common 10 fundamental mode FSMs. and clean 
outputs are guaranteed to be issued. 

16.3.2 Architecture and Operation of the MAC Module 

Shown in Fig. 16. 16 are the two fundamental mode FSMs of which an n-bit MAC module 
is composed. One FSM represents a 2" state array machine (SAM for short) with n-way 
branching capability. The other is II liming control machine or TCM. TIle two machines 
coordinate the handshake process that pennits the MAC module tooper-ile correctly. Notice 
that five outputs of the SAM are the inputs to the TCM. These are the select palllmeters, 
$e and So, parity parameters EP and OP. and Re.ft/. Completing the handshake, the inputs 
to the SAM received from the TCM are the transition enable parameters. Te and To. 1bc 
SAM issues n present state signals (yn - I, ... , )'2. Y I. yO) \0 the PLDs and back to itself 

puts 
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as feedback . In retunt , the SAM receives from the selected PLO (via the interface and DI 
stage) one of n programmed NS instructions. In - I, ... • 12, II, or 10. Thi s is the one bit 
that must change to produce the required SAM transition, but only when the transi tion i ~ 

enabled by a transi tion enable parameter (Te or To) from the TCM. After the transi tion is 
complete, the TCM issues the OJ signal to the interfacing and Dl stage, thereby deactivating 
the NS inslruclion input so that the proccss can begin all over again. 

The SAM consists of an alTa), of States such that any given reference state in the array 
has transitions paths to states that are logically adjacent and. hence. of opposite pari ty to 
the reference stale. Thus. a transi tion from any state to another (adjacent) slate involves a 
change of only one state variable and a change in parity Lodd parity (OP) to even pari ty (EP) 
or vice versa], The structure of the SAM is best illustrated by example. Shown in Fig. 16.17a 
is the 2 )( 4 stale SAM required by a 3- input (2J -state) MAC module. This SAM can be 
used to operate any 2-. 4~. 6-, orS-state controller FSM -an odd number of states is strictly 
forbidden in any MAC module controller design. Notice that the states arc coded in 3-bit 
Gray code and that Ihere is three-way branching from each state, permitti ng it 10 transition 
to anyone of three logically adjacent states. The br.lIlching condition for each transition 
path is the Boolean product of a transition enable parameter (Te or To) and a single NS 
instruction input (via the interfacing and 0 1 stage) given by 12. II , or /0. The specific 
NS instruction input represents lhe positional weight 22 , 21, or 211 of the bit programmed 
to change during a given transition. For example, a transition from even parity (EP) state 
101 to odd parity (OP) state OOl will occur only if T~ · 12 is valid (active). The holding 
conditions in the SAM Slale diagram are those required to maintain the SAM in a given 
even or odd parity slate during the time that the inputs are deactivated. 

The outpulS Se , So, and Reset from Ihe 2J -s1ate SAM in Fig. 16.17a are the inputs to the 
TCM. These outputs arc issued conditionally on the functions 10 which they are equated. 
For example, Se is issued in an even-parity state (EP active) when To is inactive and when 
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the holding conditions and outputs separately. (b) Timing control machine (TCM). 

one of the NS instruction inputs (/2, 1 IorIO) is active. The parity parameters EP and OP 
are defined by the relations 

OP = y2 EB yl EB yO = Odd parity 

EP = OP = Even parity. (16.8) 

The output Reset is issued to the TCM from any state of the SAM provided that the NS in
structioninputs are all in the deactivated condition such that 12 + 1 1+ 10 = 12· IT· 10 = I. 
It is important that all inputs be in the deactivated state after each successful transition and 
before the NS instruction is received by the MAC module. Thus, the intermediate interfac
ing and DI stage is ideally suited for this purpose. However, the inputs can be deactivated 
either by the DI signal or by the PLD, whichever action occurs first. 

The TCM, shown in Fig. 16.17b, is a resolver FSM. When Reset is active, meaning 
that I2 . IT . 10 = I, the TCM must reside in the unresolved 00 state for as long as both 
select inputs from the SAM are inactive (Se . So). When one of the select inputs becomes 
active, the TCM must transit to a resolved state (0 I or 10) and must issue a transition enable 
command (Te or To) to the SAM. Then, when the SAM successfully transits and parity is 
changed, a DI signal is issued to the interfacing and DI stage thereby deactivating the NS 
instruction input that caused the transition. This, in tum, causes the SAM to issue an active 
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Reset signal which forces the TCM back to the unresolved 00 state ready to receive the next 
active select input, Se or So. 

The operation of the MAC module can best be understood by following the sequence 
of steps leading to a state-to-state transition of a controller FSM that is implemented with 
the 23 -state MAC module shown in Figs. 16.16 and 16.17. To begin with, assume that the 
MAC module (hence the controller also) is initialized into the 000 (EP = 1) state, that all 
NS instruction inputs to the SAM are inactive, and that the TCM is in the unresolved 00 
state where both Te and To are inactive. Now, assume that the PLD issues one of three NS 
instructions (/2, II, or 10) to the SAM, which in turn issues the conditional output Se to the 
TCM. The TCM receives the Se signal and transits to the 01 state where the output Te is issued 
to the SAM (Te = 1 and To = 0). After receiving the Te signal, the SAM transits from the 
000 state to an OP state (l00, 0 10, or 001) under one of the branching conditions Tel2, Tell, 
or TelO, respectively. When the SAM successfully completes the transition, parity changes 
requiring that OP = y2 EEl y 1 EEl yO = 1, and the TCM issues the conditional output DI to 
the interfacing and DI stage, which deactivates the single NS instruction input that caused 
the SAM transition (now all instructions are deactivated). This causes the SAM to issue the 
output Reset, which forces the TCM to transit from state 01 to the unresolved 00 state where 
Te = To = O. Then when one of the NS instruction inputs from the PLD goes active, the 
SAM issues an So signal to the TCM. This forces the TCM to transit to the 10 state where To 
is issued to the SAM (To = I and Te = 0). The To signal is received by the SAM, causing it 
to transit from an OP state to an EP state, changing the parity back to EP = 1. The DI signal 
is again issued by the TCM which, in turn, causes the SAM to issue a Reset command that 
forces the TCM back to the 00 state (Te = To = 0), allowing the process to be repeated. 

It is important to understand that the DI signal maintains strict control over all state
to-state transitions. This is especially important when cycles occur in the controller's state 
diagram, or when buffer states must be added to the controller's state diagram to satisfy 
the state logic adjacency requirement of the MAC module. Clearly any alteration of a state 
diagram or state table must be done prior to programming the PLD. Because of the handshake 
between the TCM and SAM, no SAM transition (and hence no controller transition) can 
take place until a sequence of events occurs leading to the deactivated state of all inputs. 
This fact alone eliminates any possibility of essential hazard or d-trio formation. Thus, a 
transition via a cycle or buffer state is treated no differently from any other state-to-state 
transition in the MAC module - oscillatory endless cycles, for example, are not possible. 

16.3.3 Design of the MAC Module 

Presented in Fig. 16.18 are the NS K-maps for the 3-input SAM as plotted from Fig. 16.17a. 
Optimum two-level results for the NS-forming logic of the SAM are easily read directly 
from these K-maps and are given by the following equations: 

Y2 = )'2 -yI yO Te 12 + y2 YT yO To 12 + y2y lyO Te 12 + y2y 1 yO To 12 
+ y2Yl yO To + y2y 1 yO Te + y2y lyO To + y2 y lyO Te + y2l2 

Y1 = y2 YT yO Te II + y2 YlyO Toll + y2-yI yO Toll + y2y1yO Te II 
+ y2y1yO Te + y2y1yO To + y2y1yO To + y2y1yO Te + yIlT 

YO = y2 y1 yO Te 10 + y2y1 yO ToIO + y2YT yO To 10 + y2y1yO Te 10 

+ y2 -yI yO To + y2y1yO Te + y2YlYO Te + y2y1yO To + yO 10 

(16.9) 
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FIGURE 16.18 
NS K-maps plotted from the state diagram for the 3-input SAM in Fig. 16.17a. 

Notice that there are a total of22 p-terms for these three expressions, including four shared 
PIs. Thus, the PLA required by Eqs. (16.9) must have minimum dimensions of8 x 22 x 3. 
It is important to note that because of the nature of the state code assignments together with 
the NS instructions, static hazards are not possible in the optimized expressions for Y2, Y 1, 
and YO functions given by Eqs. (16.9). 

Alternative approaches to the implementation of the NS-forming logic of the SAM are 
possible. A nonregistered 8 x 27 x 3 PAL can be used for this purpose, but the shared PIs 
must be treated as separate p-terms. Use of an 8-input ROM would not be a good choice 
since it would be an "overkill" when compared to the more efficient use of a PLA or PAL. 
A more interesting alternative design of the SAM can be obtained by making use of the 
XOR patterns that exist in the NS K-maps (see Section 5.2). Again, reading the K-maps 
directly leads to the following multilevel expressions: 

Y2 = y2 Te /2(y I G! yO) + y2 To 12(y I G! yO) + y2 To(y I G! yO) 
+ y2Te(yl G! yO) + y212 

Y I = YT Te 11 (y2 G! yO) + YT To 11 (y2 G! yO) + y 1 To(y2 G! yO) 
+ ylTe(y2 G! yO) + yilT 

YO = yO Te 10(y2 G! yl) + yO To 10(y2 G! yl) + yOTo(y2 EB y I) 
+ yOTe(y2 G! yl) + yOlO 

(16.10) 

Use ofthese expressions has two advantages over the two-level function ofEqs. (16.9): Re
duced fan-in for discrete logic implementation, and use of the parity expression in Eq. (16.8) 
to generate one of the three required XOR terms. As is true for Eqs. (16.9), static hazards 
are not possible in the NS functions of Eqs. (16.10). 

The TCM is best designed by using the nested cell model. The NS- and output-forming 
logic for the TCM can be deduced directly from the state diagram in Fig. 16.17 without the 
need for K-maps. When this is done the results become 

Sl =So 

RI = Reset 

To = yl' 

Te = yO! 

DI = y l'EP + yO'OP 

= ToEP+TeOP 

So =Se 

Ro = Reset 

(16.11) 

10 

TolO 

TelO 
1/ 

/y o 
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FIGURE 16.19 
Logic diagrams for the SAM and reM ~eclions of a 3-inplll (8-stalc) MAC module. 

where the subscripts I and 0 refer 10 basic cells I and O. The optimized NS logic resulls for 
S I and 5V thaI are given in Eqs. (J 6. 11) are a resu!! of me internal handshake configuration 
used by the MAC module - all cells of the K-maps (not shown) for these functions are 
don't cares excepc for cell 00, which contai ns So and St'. respectively. 

Putting it alilogether, there results the logic circuits for the 3-inpul MAC module shown 
in Fig. 16.19. Here, the optimal resuhs for the TCM given by Eqs. ( 16.1 J) arc implemented . 
and the two XOR gates represent the parity logic ~xpresscd by Eqs. (16.8). The SAM is 
presented as a block diagram since its implementation is a mauerof choice by the designer. 

The TCM logic shown in Fig. 16.19 remains the same regardless of the SAM dimensions, 
which can be or any 2" slale size. A general ization oflhl! r-state SAM issbown in Fig. 16.20. 
as required by an ,,·inpuI MAC module. Here. each transilion pafh into ao EP stale is from 
an OP Slate. and eoch transi tion path OUI of an EP slale must go to an OP stale. Similarly. 
each tmnsilion palh into and OUI of an OP Slate is from and 10 an EP Siale. respectively. 
Notice that a 2" -SIale a SAM has up 10 noway out-branching capability of anyone of its 
stales 10 a logically adjacem state of opposite parity. Thus. a 22-state SAM is a 2 x 2 array 
with up to 2-way out-branching capability. a 2J -state SAM is a 2 x 4 array with up to 3-way 

Ol (l) 
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(In·l)(To) 

Te + (tn-1 - .. . -12'11-10) 

(In·l)(Te) 

(In·l)(Te) 

(In.l)(To) 

FIGURE 16.20 

(12)(To) (11)(To) 

EP State 
yn-1 ... y2y1yO 

(12)(Te) (11 )(Te) 

(12)(Te) (I1)(Te) 

OP State 
yn-1 ... y2ylyO 

(12)(To) (I1)(To) 

(IO)(To) 

Selt if To (In-1 .. ... .. 12" 11 + IO)'EP 

ReseW if (In-1 .. ... .. 12 + 11 .. 10) 

(IO)(Te) 

(IO)(Te) 

SolT If Te (In-l + ... .. 12 + 11 + to)'OP 

ReseW if (In-1 + ... + 12 + 11 + 10) 

(IO)(To) 

Generalized trJ.llsition conditions lind outputs for th~ EP lind OP statt':s of a 2n Slate SAM with noway 
out·br"m;hing. 

out-br:lOchi ng capability, a 2"·stalc SAM is either a 4 x 4 array or a 2 x 8 array, both with 
up to 4-way out-branching capability. and so on. Clearly. it is not necessary that all II-way 
branching pOssibili ties be used in any state-IO-state U"aIlsition. But it is required that for any 
FSM design. thc SAM transition paths indude an even number of slates- never an odd 
number. Thus. a 4 x 4 array SAl\1 can be used to design any controller FSM with states 
numbering 2. 4. 6 ..... elc .. up to J6 states. Jf, for l!Kample. as-state FSM is to bedesigned, 
one or an odd number of buffer states must be added so that either a 2 x 4 or 4 x 4 SAM 
array (meaning a 3- or 4-inpul MAC I000Uh:) l:an be ulilizctl in the design. Initialization of 
any SAM array requires that the procedures discussed in Section 14.11 be followed. 

16.3.4 MAC Module Design of a Simple FSM 

Perhaps the most suingent lest oflhe MAC module's capabili ties is its use in the design of 
an unrestrained Gray code counler. This is done for the 3-bit Gray code counter slmwn in 
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FIGURE 16.21 
MAC module design Of;l simple 3-bit Graycode up-counter. (a) Statc diagram for thecounter. (b) Logic 
diagram showing the block symbol for the MAC module program lo~ic chosen from Eqs. (16.12), 
the 01 stage, ami the block symbol for the 23_~latc MAC module. 

Fig. 16.21. To determine the program logic required 10 drive the 2)-statc MAC module in 
Fig. 16.21b, it is only necessary to read tbe state diagram in Fig. 16.21a for the changing 
y-variable bits. As an example, the Y2 bit changes only in transitions from states 010 and 
100, hence 5'2YI )'11 + Y25'1)'0. Continuing with bits .VI and yo there results the following NS 
instruction equations in both two-level and multilevel fonn: 

12 = 5'2YI5'0 + )'lYl}'O 

= YO(Y2 EB )'1) 

il = .Yl.VI Yo + Y2)'1)'0 

= )'o(y~ 0 )'1) 

10 = S'2YI5'0 + YzYIYO + )'2}"1)'0 + )'2)'15'0 

= 5'1 (),2 0 YO) + YI (Y2 \£I YO) 

=)'2 EB)'I 0 Yo 

(16.12) 

Shown in Fig. 16.22 is the mixed logic simulation for the MAC module design of the 
3-bi! Gray code counter in Fig. 16.21b. This is done by using the two-level NS instructions 
functions in Eqs. (16.12) to drive the 3-inplll MAC module presented in Fig. 16.19. The 
results show that the y-variable response to an i -instruction change occurs following a time 
period that varies berween 4rp and 5Tp. where Tp is the average gate propagation delay. 
Also. the results indicate that the average time period between y-variab\e changes is abom 

I--

~ 
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12(H) ________ ---'~'--_______ -----'~ 

11(H) __ ...... 

IO(H) 

DI(L) _.;.-----' 

y2(H) __________ ---' 

y1(H) ____ --' 

yO(H)~r---------.'__ _____ ---' 

FIGURE 16.22 
Mixed logic simulation results for the MAC module design of the 3-bit Gray code counter in Fig. 
16.21a when the two-level forms ofEqs. (16.12) are used as transition instructions to a 23-state MAC 
module. 

12-rp. These time periods are predictable, given the logic circuits for the SAM and TCM of 
the MAC module. 

The additional pulses observed in the /2,11, and 10 waveforms of Fig. 16.22 are a 
consequence of the unrestrained nature of the state-to-state transitions in the Gray code 
counter together with the action of the DI input. However, as can be seen from the simulation 
results, these additional pulses have no effect on the state variables. It is the strict control 
maintained by the MAC's internal handshake mechanism and the action of the DI signal 
that ensures reliable transitions of the FSM even under these severe operating conditions. 

16.3.5 Cascading the MAC Module 

Cascading two 23 -state MAC modules of the type indicated in Fig. 16.19 increases the 
state capacity of the system to 23 x 23 = 64 states with six state variables and up to 
6-way branching capability. Shown in Fig. 16.23 is such a cascading arrangement where 
the Ol stage is properly placed on the outputs of the PLO. With this arrangement, the NS 
instruction logic (the PLD) must provide a separate set of three NS instruction inputs to the 
SAM of each MAC module for a total of six, as indicated in Fig. 16.23. Also, two DI inputs 
are needed, but these must not be ORed to the Ol stage. Thus, immediately following the 
completion of a transition involving a change in a state variable y5, y4, or y3, the DI output 
of MAC module 1 goes active while the DI output of MAC module 0 remains inactive. The 
reverse is true for a change in a state variable y2, y I, or yO of MAC module O. It is important 
to understand that since these modules are cascaded in parallel, speed and reliability are not 
compromised. 

A second approach to cascading MAC modules makes use of the EN(L) inputs to multi
plex the MAC modules so that only one is enabled at any given time. This cascading method 
requires that the proper multiplexing instructions be programmed into the NS instruction 
logic of the PLO. Of the two cascading methods, the one illustrated in Fig. 16.23 is likely 
to be the simpler for most applications. 

Multiple MAC modules can be cascaded for greatly enhanced capability. For example, 
cascading three 23 -state MAC modules increases the state capacity to (23)3 = 29 512 states 
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with nine state variables and up to 9-way branching capability. Cascading three 24 -state 
MAC modules results in a system having (2~) ] = 212 = 4096 states with 12 state variables 
and up to 12-way branching capability. Gener.tlly, MAC modules having SAMs with state 
variables numbering I. m, n, ... can be cascaded to produce a system slale capacity of 
21 x 2'" x 2n x .. . with up to (I +m +n + ... )-way branching capability. Since the modules 
are cascaded in parallel. speed and reliability are not compromised. Cascading n 2-bit MAC 
modules to produce larger systems having state capacities of (22)" is an altractive alternative 
for improved speed capability. This is so because use can be made of a single XOR gate 
(e.g .• y I $ yO) for the parity circuit of each 2-bit module. Remember, that the internal 
handshake mechanism depends on the parity parameters EP and OP. where for an n-input 
MAC module OP = yn - I i:ll . . . i:ll y2 i:ll yl EEl yO. Therefore. the larger the state capacity 
of a MAC module. the slower will be its response time. 

16.3J; Programming the MAC Module 

To begin with, it is necessary that each state-to-state transition of the controller FSM be 
logically adjacent. If this is not the case initially, then either buffer stales must be added or 
the number of state variables must be increased to accomplish Ihis. State code assignments 
of Hamming distances greater than 1 cannot be used in any MAC module controller design. 
After the state logic adjacency requirement is satisfied and before progmmming a MAC 
module. there still remains one imponant requisite that must be satisfied. The conditions for 
an endless cycle. as defined in Subsection \4.10.1. must never exist in the state diagram for 
the controller. Such conditions lead to the formation of static hazards in the NS instruction 
logic -defects thm can cause MAC module failure. 

" I' 
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Once the requirements just mentioned have been met, programming the NS instruction 
and output logic (hence, the PLD) for the MAC module design of a controller is easily 
accomplished with an I/O table obtained directly from either the state diagram or state table 
for the controller. To do this, the state variables (yn - 1, ... , y2, yl, yO) are placed on 
the input side, and the NS instruction inputs (/ n - 1, ... , 12, Il, /0) and the controller 
outputs are placed on the output side of the 110 table. Then, one simply places the branching 
conditions for any given transition in the appropriate output column. Thus, programming 
the MAC module does not require reference to the state array of the SAM since the position 
of the changing bit in the state diagram or state table for the controller indicates the required 
PS-to-NS transition in the SAM. 

The NS instruction inputs can be mapped from the I/O table and then minimized for 
discrete logic or PLA (or PAL) implementation. Alternatively, the I/O table can be read 
directly in canonical form for ROM implementation. In any case, the NS instruction logic 
will be free of static hazards. Static hazards produced in the output-forming logic of a PLA 
device can be eliminated by either adding static hazard cover or by using an output holding 
register (D flip-flops) triggered by the DI signal. If the PLD is a ROM, an output holding 
register must be used since redundant cover for hazard elimination is not possible. 

16.3.7 Metastability and the MAC Module: The Final Issue 

The MAC module is a programmable asynchronous sequencer that is designed to operate in 
the fundamental mode. When used in the design of one or more asynchronous controllers, 
the MAC module will not fail by any of the timing defects common to fundamental mode 
machines. However, there is the possibility that a MAC module-designed controller could 
go metastable because of a runt pulse, or be forced into irregular behavior if the setup and 
hold times requirements are not met by the external inputs - problems that can occur in 
any fundamental mode FSM. To avoid possible metastable behavior, the MAC module con
troller should be protected by using a bus arbiter on its inputs. Such an arbiter is described 
logically in Problem 15.8 and is available commercially as the Signetics fast (7 ns) 74F786 
asynchronous bus arbiter. This commercial arbiter is designed with a metastable detection 
stage and should be used on the output of the interfacing and DI stage shown in Fig. 16.15, 
or in place of the DI state located on the output of the PLD shown in Fig. 16.23. When this 
is done, a highly reliable and robust system results that will not fail under any set of input 
conditions. 

16.3.8 Perspective on MAC Module FSM Design 

Interchanging PLDs or reprogramming an existing PLD permits the PLDIMAC module 
system to be easily converted from one asynchronous FSM to another radically different one 
without the need to run timing defect analyses on either FSM. This is a very attractive feature, 
given all that is required to ensure the proper and reliable operation of each asynchronous 
FSM. Endless cycles, critical races, static hazards in the NS logic, and potentially active 
essential hazards are all automatically eliminated in a MAC module design. By multiplexing 
PLDs, any number of asynchronous controllers can be operated reliably on a time-shared 
basis and without clock skew problems within any given controller. Also, MAC modules 
can be cascaded in parallel to greatly enhance state machine capacity without compromising 
either speed or reliability, another important feature of the MAC module approach. 
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Of course, the one major drawback to MAC module FSM design is the fact that each 
state-to-state transition must involve one, and only one, state variable change. Thus, the 
controller state machine must be composed of an even number of states that are unit
distance coded. When this is not the case, the logical adjacency requirement must be met by 
either adding buffer states or by increasing the number of state variables. Adding a buffer 
state mayor may not be acceptable, since it does introduce a delay in executing a given 
transition. Adding state variables may require increasing the size (capacity) of the MAC 
module. As an example, the vending machine controller in Fig. P13.2 would require three 
state variables and two properly positioned buffer states to satisfy the logical adjacency 
requirement. In this case the code for state g would be changed to 010. But there are some 
FSMs whose branching paths may not be amenable to MAC module design. The FSMs in 
Figs. P14.6 and P14.10 would appear to fall into this category. 

16.4 ONE-HOT PROGRAMMABLE ASYNCHRONOUS SEQUENCERS 

One-hot asynchronous programmable sequencers can be designed by applying Eqs. (14.40) 
for all possible branching conditions in an n-state FSM. This type of asynchronous pro
grammable sequencer enjoys some attractive advantages over the MAC module approach 
discussed in the previous section. The one-hot approach requires only a state array machine 
and can support any state-to-state transition in an FSM that is void of cycle conditions, 
including, in particular, endless cycles. Because of the one-hot coding, a timing control 
machine is not needed. That is, no parity detection or deactivation of inputs is required. 
Furthermore, the programming of a one-hot sequencer is exceedingly simple since it is only 
necessary to provide the sequencer with the branching condition for each I-hot state-to-state 
transition as read from a state table or state diagram of the FSM to be designed. 

16.4.1 Architecture for One-Hot Asynchronous Programmable Sequencers 

Shown in Fig. 16.24 is the generalized architecture for an n-state asynchronous programm
able one-hot sequencer. Here, it is seen that 2k PLDs representing 2k different asynchronous 
FSMs can be selected by a decoder to drive the sequencer on a time-shared basis. This, of 
course, is no different than in the case of the MAC module architecture in Fig. 16.15. What 
is different is the interfacing logic which, in the case of the one-hot approach, is nothing 
more than an array of OR gates. 

An inspection of Fig. 16.24 indicates that an n-state one-hot sequencer requires specifi
cation of n2 inputs, one for each branching condition in an n x n state array. As indicated 
in Fig. 16.25, each kth state of a completely specified /1-state one-hot sequencer requires /1 
input branching paths, including the required holding condition - hence, n-way branching 
capability to and from each state. Thus, for /1 states, /1 2 branching conditions must be 
specified in a one-hot sequencer that contains all possible branching paths. This can be 
viewed as a significant down side to one-hot sequencer design and application. For example, 
consider that a lO-state sequencer requires that 100 branching conditions be specified for 
a given FSM design, though many of these branching conditions are set to logic 0 if their 
corresponding branching paths do not exist in the FSM. However, this seemingly impractical 
requirement of dealing with n2 outputs from PLDs can be handled by using the output 
augmentation scheme shown in Fig. 7.16. For a large number of ORing operations in the 
interfacing logic of Fig. 16.24, it is recommended that the CMOS NOR gate form in Fig. 8.46 
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Sanity 

FIGURE 16.26 
State diagram for a 4-state I-hot sequencer that will initialize into the 0001 state (state a). 

be used with the appropliate changes in activation levels of the inputs. This can avoid costly 
fan-in delays or delays due to possible OR tree fonns. Finally, for a large n-state one-hot 
sequencer, the NS-forming logic is best implemented by using a PLD, preferably a PLA. 
Further discussion on this and other related subjects is included in Subsection 16.4.4. 

16.4.2 Design of a Four-State Asynchronous One-Hot Sequencer 

To illustrate the design of a one-hot sequencer, consider the state array for a fully specified, 
4-state, one-hot sequencer shown in Fig. 16.26. Notice that each state requires specification 
of four branching conditions. Once this sequencer is designed, its programming for use in 
the design of an asynchronous FSM requires specification of 16 branching conditions many 
of which may be zero if those branching paths are nonexistent. The design of this sequencer 
is straightforward. By using Eqs. (14.40) together with the one-hot-plus-zero approach, 
there results the following set of four NS logic equations given in array form: 

(16.13) 

Here, eachfij tenn in the 4 x 4 state array represents the branching condition from the ith 
state "into" the jth state. Also, the four leading diagonal (holding conditon) tennsfii, when 
ANDed with Yi to give fiiYi, provide the cover required to eliminate the static I-hazards that 
develop between an "into" tenn and the single "out of' tenn in each NS function. Notice 
that initialization into state a follows the one-hot-plus-zero method discussed in Section 
14.14. In this case, however, the "out of" tenn combines with the "one-hot-plus-zero" tenn 
to give Y"YbYc Yd + YaYbYcYd = YbYcYd for initialization into state a via the 0000 state. Any 
outputs associated with the sequencer design of an FSM are generated from the PLD or 
discrete logic by applying Eqs. (14.41). 

Another important advantage of the one-hot sequencer approach to FSM design is the 
fact that the NS logic equations for any size fully specified sequencer can be written down 
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directly without the aid of a state table or state diagram. The generalized NS equations are 
put into tensor notation form as 

(16.14) 

where an additional term YoY, Y2Y3 ... y,,_, must be added to a specific Y; for use with the 
one-hot-plus-zero approach. Eqs. (16.14) are of importance for CAD purposes in dealing 
with relatively large sequencers, particularly if a PLD is to be used to implement the NS 
functions. An inspection of Eqs. (16.14) reveals how this can be easily accomplished. Any 
n-state sequencer would require an n x n non-symmetrical matrix offij branching condition 
terms, n state variables, and n2 inputs. The "out of" term for each NS function is a p
term consisting of the uncomplemented state variable for that function ANDed with the 
complement of each of the remaining state variables. For initialization purposes, the one
hot-plus-zero approach requires that a term of ANDed complements of all state variables 
(exclusive of that for the initialization state) be added to the specific Y; variable into which 
the FSM is to be initialized. When the initialization term is combined with the "out of" term 
for that initialization state, the result is a reduced p-term consisting of the complement of 
all state variables exclusive of that for the initialization state, as in Eqs. (16.13). Once the 
one-hot-plus-zero implementation is complete, the sanity circuit can be used to drive all 
state variables initially and momentarily into the inactive state. 

16.4.3 Design and Operation of a Simple FSM by Using a Four-State 
One-Hot Sequencer 

To demonstrate the application of a one-hot sequencer, consider the state diagram for the 
FSM of Figure PI4.8, which is reproduced in Fig. 16.27 for the convenience of the reader. 

Sanity 

A B 

FIGURE 16.27 
State diagram for the FSM to be designed by using the four-state one-hot sequencer of Fig. 16.26. 
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Notice that there are 12 in-branching paths including the four holding conditions. Thus, 
4 of the 16 branching conditions are set to zero. From the state diagram, the information 
required for programming the state array in Fig. 16.26 is easily deduced by inspection to 
be the following: 

AB = /da = feb A =fbb 

AB =fah =/de A =/dd 

AB = fba = fed B =faa 

AB =fae =fbd B =fce 

W = Ya 

X = Yb 

Y = Yc· A 

Z = Yd· B 

fad = 0 

fhe = 0 

fea = 0 

fdb = 0 
(16.15) 

From this information it is clear that only six two-input gates and two inverters are needed 
to program the sequencer. Notice that any given Moore output is a one-hot state variable 
and that any given Mealy output is a one-hot state variable ANDed with the input condition 
on which it depends. 

The logic circuit for the one-hot sequencer design of the FSM in Fig. 16.27 is shown 
in Fig. 16.28 where all 16 branching conditions and outputs are implemented by using 
discrete logic. When Sanity(L) = l(L), the sequencer is forced into the 0000 state. Then, 
when Sanity(L) = O(L), the sequencer initializes into state a, after which normal operation 
of the FSM can occur. 

The operation of the one-hot sequencer design of the FSM in Figs. 16.27 and 16.28 is 
best represented by the simulation results provided in Fig. 16.29. For simplicity, only the 
external inputs, outputs, and state variables are represented. An analysis of the simulation 
results indicate that the time elapsing between an input change and an output response 
(response time) varies from Tp to 5Tp + T/NV, where Tp is the average path delay through a 
gate and T/NV is the path delay of an inverter, both in keeping with the usage in this text. The 
time spent in a state having two l's during the transition between one-hot states is found 
to be 2Tp + TINV, or about half the maximum response time. Comparing the response times 
of the one-hot sequencer and the MAC module indicates that the two sequencers operate at 
approximately the same speed, but which will vary for some applications because of their 
inherently different design features. 

16.4.4 Perspective on Programmable Sequencer Design and Application 

Obviously, the most serious problem in using a fully specified n-state one-hot sequencer is 
in dealing with n 2 inputs. If the FSM to be implemented by the sequencer has relative few 
inputs and its branching conditions are relative simple, the problem is easily manageable 
with discrete logic. The example shown in Fig. 16.28 is a case in point. For FSMs having 
a large number of states with fairly complex branching conditions, the n 2 requirement 
for one-hot sequencer design most likely will require a CAD approach. Included on the 
CD-ROM bundled with this text is the CAD software called A-OPS. This software permits 
the automated design of any asynchronous (or synchronous) one-hot FSM of 10 or fewer 
states. See Appendix B for more information. 
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The main advantage in using a programmable one-hot sequencer is the ease with which 
it can be designed and the relative simple means by which it can be programmed. True, the 
hardware commitment is substantial. But if the objective is to use a single machine to reliably 
operate as any number of asynchronous controller FSMs on a time-shared basis, then the 
one-hot sequencer approach should be considered as a viable option. With the large PLDs 
that are available and with the software provided by the vendors to program them, the design 
and programming of a one-hot sequencer can be carried out with little difficulty. For large 
sequencers, the use of an FPGA is recommended, provided that care is taken in selecting 
the routing paths, a precaution that is essential in dealing with any asynchronous FSM. 
Obviously, none of the flip-flops in an FPGA can be used in the design of an asynchronous 
one-hot sequencer, but they can and should be used in the design of a one-hot synchronous 
sequencer. The genalized NS equations for a synchronous one-hot sequencer are obtained 
from Eqs. (16.14) exclusive of the "out of" terms expressed by the second portion of 
Eqs. (16.14). Remember that it is the action of the flip-flop that maintains the state variable 
of the origin state active until the transition to the destination state is complete. 

Thus, a synchronous programmable one-hot sequencer can be designed by applying 
Eqs. (13.9) in much the same way that Eqs. (16.14) are applied to the design of an asyn
chronous one-hot sequencer. Actually, if the y-variables are fed back externally in the design 
of a one-hot sequencer, there is the option of converting from an asynchronous design to 
one that is synchronous. With feedback and output-forming logic taken from the flip-flop 
outputs, a synchronous one-hot sequencer results. To do this, however, requires that the 
"out of" terms be disabled. With this information in mind, Fig. 16.24 is applicable to the 
design of a generalize one-hot sequencer. 

At this point, it is interesting to compare the two asynchronous sequencers that have been 
considered in this chapter. Both the MAC module sequencer and the one-hot sequencer op
erate in the fundamental mode and can be programmed by a bank of PLDs or by discrete 
logic. Both types make use of a fixed-state array machine, both are immune to most of 
the asynchronous timing problems, and both may need arbiter protection on the relatively 
few external inputs. However, the similarity stops here. The MAC module can be cascaded 
to produce modules of much greater capacity without compromising speed and reliability. 
In contrast, a one-hot sequencer cannot be cascaded because of the branching character 
between one-hot states. Whereas the MAC module approach requires that all state-to-state 
transitions be logically adjacent, which, in tum, requires that an even number of states be 
used in the controller design, the one-hot approach has no such requirement. The MAC mod
ule sequencer requires n inputs and is limited to n-way branching capability for a 2"-state 
array, but the one-hot sequencer requires n 2 inputs and has n-way branching for an n-state ar
ray. Also, recall that the MAC module sequencer requires the use of a timing control machine 
to complete the required handshake configuration with the state array machine. A one-hot 
sequencer, on the other hand, requires no timing control machine for its proper operation. 

Continuing this comparison, it is known that a one-hot sequencer should not be used 
to implement an FSM with cycles. An endless cycle condition between two states causes 
the one-hot sequencer to stick in the intervening state with two 1 's. In contrast, the MAC 
module permits, and sometimes requires, cycle conditions, but never between adjacent states 
(see subsection 16.3.6). For example, a one-hot sequencer could not be used to design a 
ring counter as in Fig. 12.30, but the MAC module can easily be used to design the Gray 
code counter in Fig. 16.21. Both of these counters are examples of FSMs with continuous 
cycles. 
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The two types of asynchronous programmable sequencers that are discussed in this 
chapter are each, by their nature, unique approaches to multiple controller design. Beyond 
these two approaches there are no other prospects. The one feature that accounts for the 
success of an asynchronous programmable sequencer is the fact that each state-to-state 
transition is predictable in some unique way. For the MAC module, it is a parity shift 
between logically adjacent states, whereas for the one-hot approach it is a logic 1 shift 
between one-hot coded states. 

The applications of asynchronous programmable sequencers to mUltiple controller use 
on a time-shared basis may appear to be highly specialized and somewhat limited. And to 
some extent this is so. However, with greater need for high-speed processing void of internal 
clock skew, there are some applications for which asynchronous programmable sequencers 
are better suited than conventional synchronous controller designs. The response times 
characteristic of asynchronous sequencer controllers will be considerably less than those 
associated with conventional clock-driven (synchronous) controllers of the same technol
ogy. Also, it is asserted here that as modern synchronous systems become more complex and 
are operated at increasingly higher sPeeds, failure due to clock distribution problems (clock 
skew) becomes more probable. Use of asynchronous programmable sequencers offers a 
practical means of avoiding such problems while meeting the demands for greater speeds. 
Communication between multiple asynchronous sequencer control1ers operated simultane
ously within a given system can be accomplished reliably by using appropriate handshake 
interfaces, again avoiding clock skew problems. 

16.5 EPILOGUE TO CHAPTER 16 

It is hoped that the subject matter presented in this chapter will serve to stimulate new ideas in 
both teaching and research. It is the author's position that teaching and research are closely 
interrelated and that innovation often arises from a spirit of inquiry. Upon completing a 
second-level course in digital design, students should be left with the notion that it is proper 
to challange "old" ideas and to seek new and innovative approaches to logic design. If this 
text can engender these concepts and instill in the reader the spirit of inquiry, then it has 
accomplished an important feat. To accept without question work of the past and present is 
to surrender to a future of stagnant technology and lackluster innovation. 

FURTHER READING 

A variety of systems have been studied that utilize both internally fixed and pausable 
clocks, but for various reasons are inherently more complex and slower than the EAIC 
system described in this text. In further contrast, these systems offer little or no protection 
from metastable effects - an important feature of the EAIC approach. The six selected 
references that follow are typical of these studies. 

[1] W. Lim, "Design Methodology for Stoppable Clock Systems," hoc. lEE 133E, 65-69 (1986). 
[2] M. Afghahi and C. Svensson, "Performance of Synchronous and Asynchronous Schemes for 

VLSI Systems," IEEE Trans. Comput. 41(7), 858-872 (1992). 
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[3] W. Lim and J. R. Cox, "Clocks and the Perfonnance of Synchronizers;' Proc.IEE 130E, 57-64 
(1983). 

[4] A. B. Hayes, "Stored State Asynchronous Sequential Circuits," IEEE Trans. Comput. C·30(8) 
596-600 (1981). 

[5] H. Y. H. Chuang and S. Das, "Synthesis of MUltiple-Input Change Asynchronous Machines 
using Controlled Excitation and Flip-Flops," IEEE Trans. Comput. C-22(12) (1973). 

[6] S. M. Nowick and D. L. Dill, "Automatic Synthesis of Locally-Clocked Asynchronous State 
Machines," Proc. ICCAD-1991, pp. 318-321. 

Closely related to this chapter is the work of Rosenberger et aI., who describe the design 
and analysis of Q-ftops in an internally clocked configuration. The Q-ftops are designed 
with an internal handshaking mechanism that ensures that the inputs are not stored until 
the input stage is ready to accept them and the outputs are not updated until the input stage 
has fully resolved and is stable in its new state. This allows the design of sequential delay
insensitive modules that require fewer delay constraints than other functionally equivalent 
design methodologies. Tinder provides a logic interpretation and discussion of Q-ftops in 
EAIC systems. 

[7] E U. Rosenberger, C. E. Molnar, T J. Chaney, and T Fang, "Q-Modules: Internally Clocked 
Delay-Insensitive Modules," IEEE Trans. Comput.37(9), 1005-1018 (1988). 

[8] R. E Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs, 
NJ,1991. 

Extensive studies have been conducted on the effects of the metastable state in D latches 
and synchronizers. Typical among these are the works of Jackson and Albicki and those 
of Pechoucek. Other studies relevant to the subject of metastability and to this chapter are 
those of Kacprzak and Albicki and of Chaney and Molner, the latter notable for work on 
metastability in cross-coupled NAND gates (the set-dominant basic cell). 

[9] T. A. Jackson and A. Albicki, "Analysis of Metastable Operation in D Latches," IEEE Trans. on 
Circuits and Systems 36(11),1392 (1989). 

[10] M. Pechoucek. "Anomalous Response Times of Input Synchronizers," IEEE Trans. Comput. 
C·25(2), 133-139 (1976). 

[11] T. Kacprzak and A. Albicki, "Analysis of Metastable Operation in RS CMOS Flip-Flops," IEEE 
1. Solid-State Circuits SC-22(l), 57-64 (1987). 

[12} T. J. Chaney and C. E. Molnar, "Anomalous Behavior of Synchronizer and Arbiter Circuits," 
IEEE Trans. Comput. C-22, 421-422 (1973). 

A number of texts cover the subject of CMOS domino logic. Among these the texts of 
Fabricius, Mavor et al.. and Weste and Eshraghian are recommended. 

[131 E. D. Fabricius, Introduction to VLSI Design. McGraw-Hill, New York, 1990. 
[14] J. Mavor, M. A. Jack, and P. B. Denyer, Introduction to MOS LSI Design. Addison-Wesley, 

Reading, MA, 1983. 
[15] N. Weste and K. Eshraghian, Principles o/CMOS VLSI Design. Addison-Wesley, Reading, MA, 

1985. 

The portions of this chapter dealing with the EAle system are based in part on the work 
of VanScheik and Tinder, which includes additional studies not mentioned in this chapter. In 
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this reference, a comparison is made between the EAIC system featured in this chapter and 
the Q-Flops described in the article by Rosenberger et al. (cited previously). The part of this 
chapter, describing a unique class of asynchronous sequencers (MAC modules), is based in 
part on the work of Tinder, Klaus, and Snodderley, cited below. There is no known previous 
work on the subject of one-hot programmable asynchronous sequencers. For information 
on one-hot asynchronous FSM design, refer to Further Reading at the end of Chapter 14. 

[16] W. S. VanScheik and R. F. Tinder, "High Speed Externally AsynchronouslInternally Clocked 
Systems," IEEE Trans. Computers 46(7), 824-829 (1997). 

[17] R. F. Tinder, R. I. Klaus, and J. A. Snodderley, "High Speed Microprogramrnable Asynchronous 
Controller Modules," IEEE Trans. Computers 43(10), 1226-1232 (1994). 

PROBLEMS 

16.1 (a) Convert the SL-DFLOP in Fig. 16.6 to a static logic JKFLOP by using the flip-flop 
conversion given by Eq. (14.10) and illustrated in Fig. 14.17. Use conventional 
gates and inverters for the MDS - that is, keep the conversion at the gate level 
only. 

(b) Test the JKFLOP by simulation. To do this plan to use the logic input waveforms, 
including CK, similar to those of Fig. 10.42c. Include Q(L) in the simulation. 

16.2 (a) Construct the logic circuit for the three-bit binary up/down counter of Fig. 1O.55a 
by using the general architecture for EAIC system given in Fig. 16.1. To do this, 
use TFLOPs for the input and memory registers, and use Eqs. (10.17) for the NS 
and output logic. Convert the DFLOPs to TFLOPs as in Fig. 10.39. 

(b) Predict how the D-to-TFLOP conversion logic will affect the NS logic con
straints, and the frequency and throughput characteristics, given by Eqs. (16.4), 
(16.5), and (16.6), for the up/down counter of part (a). 

(c) Test by simulation at the gate level the up/down counter in part (a) by using both 
an up-count and a down-count. Keep in mind that this is an ideal simulation. This 
means that input conditions that might lead to metastability in a real-time test of 
the EAIC system cannot be resolved by the simulator program-the MDS in a 
real EAIC system is part analog and part digital. As a result, the simulation will 
likely show momentary oscillation at certain nodes in the circuit. 

16.3 (a) Repeat all parts of Problem 16.2 by using Eqs. (10.16) for the NS and output 
functions. Replace part (b) in Problem 16.2 with the following: 

(b) Predict how the multilevel logic of Eqs. (10.16) will affect the NS logic con
straints, and the frequency and throughput characteristics, given by Eqs. (16.4), 
(16.5), and (16.6), for the up/down counter. 

16.4 (a) Construct the logic circuit for the two-inputltwo-output FSM in Fig. 11.43b by 
using the general architecture for EAIC system given in Fig. 16.1. Plan to use 
Eqs. (11.11) for the NS and output logic and to initialize into the 000 state. 

(b) Test the logic circuit of part (a) by simulation. To do this, set the input conditions 
necessary to traverse the state diagram in the following way: 

a-+b-+c-+b-+d-+c-+e-+a 
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Keep in mind that this is an ideal simulation. This means that input conditions that 
might lead to metastability in a real-time test of the EAIC system cannot be resolved 
by the simulator program - the MDS in a real EAIC system is part analog and part 
digital. As a result, the simulation will likely show momentary oscillation at certain 
nodes in the circuit. 

16.5 (a) Design the rotation detector in Problem 14.22 by using the EAIC system. Imple
ment the NS and output function with discrete logic. Plan to use the two-level 
SOP expression for CCWoutput and then use an edge-triggered D flip-flop to 
filter out any logic noise that is generated by static hazards. 

(b) Address the issues of endless cycles, critical races, ORGs, static hazards, and 
E-hazards as they relate to the EAIC design of the rotation detector. 

(c) Simulate the results of part (a) to verify the proper operation of the rotation 
detector EAIC design. 

16.6 Design and test the 2-input (22-state) MAC module as follows: 
(a) Construct the fully documented state diagrams for the SAM and TCM by fol

lowing the example in Subsections 16.3.2 and 16.3.3. Include all branching 
conditions and outputs. 

(b) Obtain an optimum set of NS and output functions for the SAM and TCM, and 
end with a complete logic circuit by using these results. 

(c) Use the 2-input MAC module to design a 2-input Gray code counter by following 
the example in Subsection 16.3.4. 

(d) Test the design in part (c) by simulation. Thus, initialize the system into the 00 
state and then cycle the counter through all four states in a manner similar to that 
shown in Fig. 16.22 for the 3-bit Gray code counter. 

16.7 The FSM in Fig. P14.4 (see Problems at the end of Chapter 14) is to be designed by 
using the 2-input MAC module of Problem 16.6. 
(a) Construct the state diagram for the FSM that is appropriate for a MAC module 

design. 

(b) Obtain the NS instructions from the state diagram. (Hint: First construct the 
K-maps for the instruction inputs.) 

(c) Construct a complete logic diagram for this MAC module design. Include all 
branching conditions and outputs. Note: Block symbols may be used for the 
2-input MAC module. 

(d) Test the design of part (c) by simulating the logic circuit. To do this, initialize the 
FSM into the 00 state and then cause it to transit through all state-to-state paths. 

16.8 Repeat Problem 16.7 for the design ofthe FSM in Fig. 16.12a. Note: When simulating 
the logic circuit, include the cycle from state 11 to state 01 under input conditions 
XY as one of the tests. 

16.9 Obtain the NS instruction functions for the FSM in Fig. PI4.l2 assuming the use 
of the 3-input MAC module, presented in Fig. 16.17, as the sequencer. (Hint: First 
assign a 3-bit state code to the FSM in Fig. P14.12 by adding a 0 (zero) to each state 
code in the MSB position. 
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16.10 Obtain the NS instruction functions for the FSM in Fig. P13.4a required to drive the 
3-input MAC module of Fig. 16.17 as the sequencer. 

16.11 Design and test by simulation the one-hot asynchronous sequencer design of the 
FSM in Fig. P14.9a by using the programmable sequencer discussed in Subsection 
16.4.2. To do this, use discrete logic for both the sequencer design and the external 
logic required to program it. 

16.12 By following the example in Subsection 16.4.2, write the NS functions for a fully 
specified, six-state, one-hot asynchronous sequencer by using the one-hot-plus-zero 
approach to initialization. To do this, use the form of Eqs. (16.13) and assume that 
initialization is to occur into state a. 

16.13 (a) Write the program logic required to operate the one-hot sequencer of Problem 
16.12 as the FSM represented by the state diagram in Fig. PI4.10. To do this, 
follow the format of Eqs. (16.14) and (16.15). 

(b) Construct the logic circuit for this design in a manner similar to that used to 
represent the sequencer design shown in Fig. 16.28. 

16.14 At the discretion of the instructor, use the software A-OPS included on the CD-ROM 
bundled with this text to work any of the following design problems: 16.11, 16.12, 
16.13. Write the VHDL descriptions for each. To do all ofthis, follow the instructions 
in the readme. doc that accompanies the software. 

EAIC System Design Projects at the Advanced level 

For projects at the advanced level, more complex EAIC device and system designs can be 
carried out together with simulations of those designs. The projects that can be used for 
this purpose are extensive in number and really limited only by one's imagination. A few 
examples are as follows: 

Device Category Examples 

Four-bit parallelloadable shift register 
Four-bit parallelloadable up/down binary counter 
Four-bit autonomous linear feedback shift register (ALFSR) counter 
Four-bit ripple counter by using toggle modules as memory elements 
One-hot EAIC design of a serial2's complementer (see Subsection 13.5.2) 

System Category Example Four-bit parallel-to-serial adderlsubtractor system. Follow 
the design in Subsection 13.6.1, but use the parallelloadable right shift registers designed 
in Subsection 12.2.2. 

Notes 

I. Remember that it is not necessary to add external synchronizing circuitry to an EAIC 
system since the input register serves to synchronize the inputs. 

2. To correctly design an EAIC system containing both controller and data path devices, 
it may be necessary to generate the internal clock with data ready (R) signals from 
controller and data path devices of the same triggering edge, e.g., RET. 
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3. For simulation purposes, it will be necessary to use a conventional NOR gate in the 
clock generating circuit. For large number of inputs, a NOR tree configuration similar 
to the OR tree in Fig. 4.49 may be necessary. 

Asynchronous Programmable Sequencer Design Projects at the Advanced Level 

Advanced designs with MAC module and one-hot sequencers are, of course, required to 
operate in the fundamental mode. Keeping this in mind, the following devices and system 
designs are examples that can be undertaken at the advanced level with simulations included. 
Designing and testing with VHDL should be considered as an option. 

Device Category Examples 

A 4-bit MAC module with preset, clear, and enable inputs. 
A 4-bit Gray code up/down counter by using two 2-input MAC modules. 
The rotation detector of Problem 14.22 designed by using the four-state one-hot 

programmable asynchronous sequencer. 
A 6-state one-hot programmable sequencer and its use to implement the 5-state 

FSM in Fig. P14.7. 

System Category Example A four-bit parallel-to-serial adder/subtractor system similar 
to the eight-bit parallel-to-serial adder/subtractor in Subsection 13.6.1. To do this, use a 
2-input (22-state) MAC module for the controller, and trigger the appropriate data path 
devices with the DI signal. 

An asynchronous one-hot design of the voter booth system of Problem 13.20 that will 
tabulate continuously the individual count of the contestants and give, on command, the 
difference in the count at any point in the voting period. It is required that a parallel-to-serial 
adderlsubtractor be used, one similar to that in Subsection 13.6.1 but enlarged to handle 
the number of voters that may vote. (Hint: To generate a periodic triggering signal for use 
with the adderlsubtractor, consider activating a very simple one-hot "cycle" FSM properly 
initialized. ) 

A one-hot time-slice system of four controllers by using a six-state asynchronous pro
grammable sequencer and a 2-to-4 decoder according to the architecture in Fig. 16.24. 
To do this, use the software ADAM bundled with this text. Assume that switching be
tween the controller FSMs (via the decoder) requires initialization of the "new" controller. 
Demonstrate the proper operation of this time-slice system with simulations. 

Notes 

1. In most cases, it will be necessary to use minimized functions in these designs. There
fore, except for the one-hot design, use of a logic minimizer is highly recommended. 

2. Since fundamental mode FSMs are involved, avoid external input changes in near 
proximity to one another when simulating the designs. 

3. In the system-level design problem that uses the 2-input MAC module for the con
troller, pay particular attention to the timing of events when triggering the peripherals 
with the DI signal. 
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APPENDIX A 

Other Transistor Logic Families 

A.l INTRODUCTION TO THE STANDARD NMOS LOGIC FAMILY 

Though CMOS is currently the most important member of the MOS family, NMOS still 
occupies a significant position is modem technology. Shown in Fig. A.I is the generalized 
NMOS logic configuration similar to that for CMOS given by Fig. 3.5. The depletion
mode NMOS serves a similar purpose as the PMOS in CMOS logic - it produces a 
high resistance (impedance) when the enhancement-mode NMOS logic (NL) is evalu
ated (shorted to ground), but becomes a low resistance otherwise. Thus, the CMOS NOR 
gate in Fig. 8.46 could be replaced by a NOR gate built with the NMOS technology of 
Fig. A.i. 

Figure A.I implies that NL can represent a variety of logic devices. Four simple examples 
of NMOS logic gates are presented in Fig. A.2. The AND and OR gates are implemented 
by adding inverters to the NAND and NOR gates, as is done in CMOS (see Figs. 3.16 
and 3.17). 

The relative simplicity of NMOS logic compared to CMOS is illustrated by the examples 
in Fig. A.3. Here, the comparison is made between AND-OR-invert (AOI) gates of the two 
MOS families. These circuits and those of Fig. A.2 are classified as static logic. Dynamic 
domino CMOS logic is discussed in Subsection 16.2.3. Dynamic domino NMOS logic 
is similar to dynamic domino CMOS logic except that in dynamic domino NMOS logic 
the depletion mode NMOS is replaced by an enhancement mode NMOS transistor for the 
precharge stage. 

The main advantage of CMOS logic over NMOS logic is in power dissipation. For exam
ple, when the input to an NMOS inverter is at low voltage (LV) no DC power is dissipated. 
However, when the input goes to HV, the depletion mode NMOS draws a saturation current 
which causes "quiescent" power dissipation. When the packing density of NMOS gates 
reaches into the hundred of thousands (small by modem standards), Joule heat dissipation 
becomes a problem. This heat must be sinked; otherwise it could accelerate chip failure 
due to impurity and dopant diffusion. Remember that diffusion processes are exponentially 
temperature dependent. 
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A.2 INTRODUCTION TO THE TIL LOGIC FAMilY 

The standard transistor- transistor logic (TTL) family is composed mainly of bipolar junc
tion transistors (BJTs) and resistors. Shown in Fig. A.4 arc three examples of standard 
TIL gates. In these figures B is the base, E is the emitter, and C is the collector. The phe
nomenological operation of lhesc gates can be easily understood by first consideri ng the 
inverter. Qualitatively. the TIL inverter operates as follows : When X in is al LV (E = LV). 
(fans/storTI forces transistorT2 to be turned OFF, thereby bringing X~t 10 Vee level. hence 
X mt1 = HV . 8U1 when Xin goes to HV (E = HV), T r causes TJ to be lurned ON. which 
brings XOU1 to ground level , hence, X"", = LV . Thus. this behavior obeys the physical truth 
table in Fig. 3.6b. In a sense, a BIT is turned ON when E = HV and is turned OFF when 
E = LV. which is similar to the behavior of an NMOS transislor when these voltages are 
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applied to the gate, G. The resistors in the inverter of Fig. A.4 are called "pull-up" resistors 
and serve basically the same function as the depletion mode NMOS in Fig. A.2 - they 
are current-limiting elements. The symbol Vee is internationally accepted to represent the 
supply voltage to the bipolar logic families. 

The operation of the two-input BJT NAND gate in Fig. A.4 follows directly from the de
scription of the inverter. Here, T t is a dual-emitter BJT, the operation of which is not unlike 
that ofT t for the inverter. Thus, any time either input X or Y (or both) is at LV, T2 is turned 
OFF, causing Z to go to HV. Only when both X and Yare at HV is T2 turned ON, bringing 
Z to LV. This behavior is, of course, expressed by the truth table in Fig. 3.10b. The number 
of inputs to a TIL NAND gate can be increased by increasing the number of emitter con
nections. However, this usually limited to eight or fewer for technological reasons. Standard 
TIL AND gates are produced by attaching TIL inverters to the NAND gate outputs. 

The operation of the two-input NOR gate can be explained in a similar manner. If either 
input X or Y (or both) is at HV, T3 or T4 (or both) is turned ON and the output Z goes to 
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ground (Z = LV). Only when both X and Yare at LV will the output Z be at HY. This is 
the same physical behavior expressed by the truth table in Fig. 3.12b. Standard TTL OR 
gates are produced by attaching TIL inverters to the NOR gate outputs. 

The presentation here does not do justice to the field of TIL devices, which is extensive 
and requires much more time and space than is permitted here. The TTL family is actually 
divided into several subfamilies. These include Schottky TIL (S), low-power Schottky (LS), 
and advanced low-power Schottky (ALS). Also belonging to the bipolar group of families 
is the emitter-coupled logic (ECL) family. Further Reading at the end of this appendix cites 
several sources that will carry the reader well beyond the present treatment. 

A.3 PERFORMANCE CHARACTERISTICS OF IMPORTANT IC LOGIC FAMILIES 

All members of the TTL family suffer from high power consumption in comparison to 
the MOS family, and especially in comparison to CMOS. The one advantage that bipolar 
logic families may have over MOS is speed. Generally, all members of the TIL family of 
gates are faster than either NMOS or CMOS. However, modern high-speed CMOS (HC) 
has closed the gap in speed somewhat. Of the bipolar logic families, ECL is the fastest 
but suffers from high power consumption. It is because of its speed that the ECL family is 
currently the fourth important logic family next to CMOS, NMOS, and TIL, CMOS being 
the most important. Members of the MOS family have the lowest power consumption of 
any of the logic families, with CMOS logic having the lowest. 

Any summary of logic family performance characteristics is risky because the relative 
assessments change, sometimes rapidly, with technological developments and because these 
assessments often have to be qualified to be valid. Nevertheless, an attempt is made in 
Table A.I to present a qualitative assessment of these characteristics for some of the more 
important logic families. 

Not included in Table A.I are several other logic families that are important for certain 
specialized applications. The families include integrated injection logic (I2L), low voltage 
injection logic (LVIL), gallium arsenide logic (GAL), and silicon-on-sapphire CMOS 
(CMOS/SOS) logic. Also, there are the rather esoteric optical and superconducting families 
that appear to have relatively little use. 

FURTHER READING 

To one extent or another, every text in digital design or digital electronics contributes 
something to the subject of logic families and their characteristics. Some are technology 

Table A.l Characteristics of commonly used IC logic families 

Parameter TIL ECL NMOS CMOS 

Switching speed Very good Excellent Fair Good 
Power dissipation Medium High Low Very low 
Noise immunity Very good Fair Good Very good 
Fan-out Fair Fair Very good Excellent 
Packing density Medium Low High High 
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dependent and some are not. The text of McCluskey is recommended for its technology
dependent coverage of TIL, diode-transistor logic (DTL), and integrated injection logic 
(I2L) logic. Another technology-oriented coverage of the TIL logic family is found in the 
text by Wakerly. Other texts that cover TTL and DTL to a lesser extent include those by 
Katz and Tinder. Good electronics-oriented coverage of the integrated logic families are 
provided in the texts of Jones and Tocci. For CMOS logic, the VLSI text of Fabricius and 
that of Weste and Eshraghian are recommended. Another source of information on the 
characteristics of the most commonly used logic families is The Electrical Engineering 
Handbook, R. C. Dorf, Editor-in-Chief. 

[1] R. C. Dorf, Editor-in-Chief, Electrical Engineering Handbook, 2nd ed. CRC Press, Boca Raton, 
FL, 1997, pp. 1769-1790. 

[2] E. D. Fabricius, Introduction to VLSI Design. McGraw-HilL New York, 1990. 
[3] L. D. Jones, Principles and Applications of Digital Electronics. Macmillan, New York, 1986. 
[4J R. H. Katz, Contemporary Logic Design. Benjamin/Cummings Publishing, Redwood City, CA, 

1994. 
[5] E. J. McCluskey. Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986. 
[6] R. F. Tinder. Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs, 

NJ. 1991. 
[7] R. J. Tocci, Digital Systems, Principles andApplicr.ltions, 4th ed. Prentice Hall, Englewood Cliffs, 

NJ,1988. 
[8] J. F. Wakerly, Digital Design Principles and Applications. Prentice Hall, Englewood Cliffs, NJ. 

1994. 
[9] N. H. E. Weste, and K. Eshraghian, Principles of CMOS VLSI Design. Addison-Wesley, Reading, 

MA,1985. 
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APPENDIX B 

Computer-Aided Engineering Tools 

B.l PRODUCTIVITY TOOLS BUNDLED WITH THIS TEXT 

Five important productivity tools are available on the CD-ROM bundled with this text for 
use in combinational logic, synchronous and asynchronous machine design and analysis: 

1. EXL-Sim2002 logic simulator 

2. BOOZER logic minimizer 

3. ESPRESSO 11 logic minimizer 

4. ADAM CAD software 

5. A-OPS CAD software 

Complete instructions are included for the use of each of these software tools. All but 
EXL-Sim2002 require the use of a text editor. 

EXL-Sim2002 is an outstanding gate-level, interactive, schematic-capture and simulation 
program that can be used at either the beginning or advanced level of logic design. It is 
the student version of a more powerful advanced-level program. EXL-Sim2002 is unique 
for its intuitive approach, yet it is powerful enough to handle any problem associated 
with this text. Its features include a drag-and-drop capability, rubber banding, mixed and 
positive logic capability. primitive (gate) libraries, macro generation capability, library 
development, project management, individual or global delay assignments, a connection 
feature that eliminates the need for wire connections, unrestricted timing intervals. multiple 
zoom levels, simple editing and labeling capability, multiple windows, waveform zooming 
and scrolling, a variety of printout capabilities, and a host of other features. EXL-Sim2002 
operates in the Windows environment and requires relatively little computer memory. For 
information regarding EXL-Sim2002 and periodic updates, visit EXL-Sim2002's home page 
at http://www.tbdgroup.com. 

BOOZER (for BOOlean ZEro-one Reduction) is an excellent software minimization tool 
and is highly recommended for use with this text. It can accept entered variable (EV) or 
canonical data from K -maps or tables with or without don't cares and can return an optimal or 
near optimal single or multiple output SOP solution. These features are especially important 
in synchronous and asynchronous FSM design of relativel y large systems as presented in this 
text. The program operates in the DOS mode on PCs operated in a Windows environment, 
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and the computer memory requirements are minimal. See Further Reading at the end of this 
appendix for more information about BOOZER and its basic algorithm. 

ESPRESSO II is a well known software tool used widely for minimization of large 
Boolean functions. It is also available through the University of California, Berkeley, 
1986 VLSI tools distribution. It supports advanced algorithms for minimization of two-level, 
multi-output Boolean functions but does not accept EVs. The algorithms for ESPRESSO 
are described in an article by Rudell cited in Further Reading at the end of this appendix. 

ADAM (for Automated Design of Asynchronous Machines) is a unique, versatile and 
powerful software tool that permits the automated design of very complex asynchronous 
state machines free of all timing defects, and provides output files for direct PLA program
ming by using the Berkeley format. The input file is a state table for the desired state machine. 
ADAM also allows the designer to design synchronous state machines, timing-defect-free. 
The options include the LPD model or NESTED CELL model for asynchronous FSM de
signs, and the use of D FLIP-FLOPs for synchronous FSM designs. For more information 
about ADAM, see Further Reading at the end of this appendix. 

A-OPS stands for Asynchronous One-hot Programmable Sequencer designs of asyn
chronous and synchronous state machines. This software generates a PLA (or PAL) output 
file (in Berkeley format), a RAM output file, or the VHDL code for the automated timing
defect-free designs of the following: (a) Any I-Hot programmable sequencer up to 10 states. 
(b) The I-Hot design of multiple asynchronous or synchronous state machines driven by 
either PLDs or RAM. The input file is a state table for the desired state machine. This 
software can be used to design systems with the capability of instantly switching between 
radically different controllers on a time-shared basis, all defect-free. For more information 
about A-OPS, see Further Reading at the end of this appendix. 

B.2 OTHER PRODUCTIVITY TOOLS 

There are other schematic capture and simulation software available for logic design at the 
student level. Examples include Beige Bag V3.0 for Windows (http://www.beigebag.com). 
LogicWorks from Capilano Computing for either PCs or Macs (http://www.logic 
works.com), and the student edition of Workview Office by VIEWlogic for Windows 
(http://www.prenhall.comlworkview). These three offer similar features, which are given 
at their respective Web sites. 

At the professional level, Workview Office (V 7 .31A or higher) is one of the most powerful 
tools available. It includes such features as front-end and project-management tools, project 
navigation and library maintenance, design entry and schematic capture, PLD and FPGA 
design entry, digital/analog simulation, timing analysis, synthesislFPGA design, netlisting, 
graphical analysis and editing, and PCB layout. Workview Office operates in the Windows 
environment, and its memory requirements are substantial. Information about this program 
can be obtained on Viewlogic's home page: http://www.viewlogic.com. 

A quality CAD tool, called Cedes (C++ Engine for Discrete Event Simulator), is avail
able to students and professionals. Cedes is an affordable, efficient, object-oriented design 
tool for mod~ling and simulation of digital systems. The program permits use of the MS 
graphical user interface (GUI) to describe a design in schematic format and can automat
ically generate a simulation program based on the schematic drawing. The user can click 
icons to run the simulation, make changes to the diagram as needed, and then rerun the 
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simulation. Cedes is VHDL and Verilog compatible in netlist formats. Custom libraries can 
be generated that support local design environments. Information regarding this program is 
available on its Web site: http://www.tbeedle.com. 

The three best-known professional tools for schematic capture, simulation, VLSI chip 
design, and circuit board layout are Mentor Graphics, Cadence, and OrCad. Since these 
three CAD tools provide essentially the same features and since more detailed information 
can be obtained from their Web sites, only a brief description is given of Mentor Graphics' 
features. Mentor Graphics permits a variety of inputs into ModelSim, perhaps the world's 
most powerful simulation engine. These inputs include schematic capture, VHDL or Veri log 
description, state table representation, and Quicksim. Cell and FPGA libraries can be gener
ated from the VHDL description, as can circuit board layout files. ModelSim (Elite Edition) 
is used for ASIC systems on UNIX, while ModelSim (Personal Edition) is targeted toward 
FPGA designs on PCs operating in the Windows environment. To obtain further infor
mation on these powerful professional tools, see their Web sites: http://www.mentor.com; 
http://www.cadence.com; and http:/www.orcad.com. 

FURTHER READING 

The algorithm for the original BOOZER program is discussed in Fletcher. The program 
has since been revised to include entered variables. The basic algorithms of Espresso are 
described in an article by Rudell. The CAD software ADAM and A-OPS are based on the 
MS theses of G. Murphy and A. Boen, respectively, as cited below. 

[I] W. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs, NJ, 
1980. 

[2) R. Rudell, "Espresso-MV: Algorithms for Multiple-Valued Logic Minimization," Proc. Int. Circ. 
Corif-, May 1985. 

[3] G. Murphy, "Computer Aided Design of Glitch-Free Single Transition Time Asynchronous State 
Machines," MS Thesis, School of Electrical Engineering and Computer Science, Washington 
State University, Pullman WA, 2002. 

[4J A. Boen, "Automated Design of Defect-Free Asynchronous Programmable One-Hot Sequencers 
and Micro-controllers." MS Thesis, School of Electrical Engineering and Computer Science, 
Washington State University, Pullman WA, 2002. 
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APPEND/XC 

IEEE Standard Symbols 

C.l GATES 

The standard ANSIIIEEE Std. 91-1984 is extensive and will not be covered in its entirety in 
this appendix. Shown in Fig. C.la is the basic logic gate rectangle used in the standard gate 
library, and in Fig. C.l b are the most commonly used standard and nonstandard qualifying 
logic operation symbols that are placed in the open box at the top of the standard rectangle. In 
Fig. C.lc are the qualifying input/output (110) symbols that are used as logic level indicators 
on the inputs and outputs of the standard rectangle. 

Presented in Fig. C.2 are three circuit representations ofthefunction F = AB + CD + E. 
Here, the distinctive shape symbols are used in Fig. C.2a and is compared with two IEEE 
standard representations of the same circuit in Figs. C.2b and c. Clearly, the identity of the 
gates (NAND or AND/OR) is lost in the compact IEEE format of Fig. C.2c. 

C.2 COMBINATIONAL lOGIC DEVICES 

Several types of dependency are used in the IEEE standard symbols of combinational and 
sequential MSI devices. A truncated list is provided as follows: 

O-AND 
Z - Interconnection 
EN -Enable 

V-OR 
C -Control 
M-Mode 

N - Negate (Exclusive-OR) 
Sand R - Set and Reset 
A-Address 

Shown in Fig. C.3 are MSI combinational devices that are represented as IEEE standard 
symbols. The meaning of the symbol G ~ is somewhat self-explanatory. For example, the 
8-to-l MUX shows a grouping of three data select inputs that steer one of eight (O-to-
7) data inputs to the output. Hence, G~ indicates AND dependency with signals given 
in the range 0 to 7. The symbol 04 EN in the dual I-to-4 DMUX is an enable input 
affecting four outputs such that when 04 is inactive-low the outputs are inactive-low and 
vice versa. 
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C.3 FLIP-FLOPS, REGISTERS, AND COUNTERS 

An explanation of the IEEE standard symbology for sequential machines is somewhat 
more involved. Shown in Fig. CA are five examples. The symbology for the two fJi p-Hops 
is straightforward. Single data and clock inputs are indicated by ID and C l. respectively. 
The active low asynchronous preset and clear inputs are given the symbols Sand R for set 
and reset. 

The symbology used for {he MSJ devices in Fig. CA is more complex. although that for 
the storage register appears 10 be self-evident. The four-bit universal shift register (USR) 
uses M~ to indicate the mode control inputs that set the FSM for true hold. shift right. 
shift left. or parallel load: hence. four mode dependencies (0-to-3). Inputs DO-D3 are 
subject to simultaneous dynamic control by the clock input. The 3 in the symbol 3,40 
indicates that the input is enabled for parallel loading (M = 3). The dynamic (clock) symbol 
C4. I -? /2 +- on the clock input simply means that when M = I the USR shifts right (-? ) 
and when M = 2 it shifts left (+-). and that the 40 inputs arc controlled by clock at input 
C4. The label SRG4 indicates a four-input shift register. 

For the 4-bit up-counter, the symbol cr means "content" and has a somewhat different 
meaning when applied to an input vs an outpUI. For example. in this counter 5CT = 0 
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represents a synchronous clear, meaning that a clear command must be clocked into the 
FSM. The output symbol3CT = 15 means that an output signal becomes active only at the 
count of 15 when G3 is active. In this counter, symbols G3 and G4 are dual count enable 
inputs, such that both must be active before the counter will count up. Thus, the dynamic 
input symbol C5j2, 3, 4+ signifies that clock input C5 controls inputs 5D and that the 
counter will count up only if M2, G3, and G4 are active. An up/down counter would have 
two dynamic input strings, one ending in plus (+) and the other in minus (-). The label 
CTRDIV16 simply indicates a 4-bit (-;-16) counter. 

The IEEE standard symbol forms are not for everyone and certainly not for the beginning 
student in the subject area. As can be seen from these examples, the standard language is 
complicated and should not be used by anyone but the most experienced user. Thus, for 
pedagogical reasons, this text has avoided the use of the standard forms in favor of the 
more traditional symbols. The main advantage of the IEEE standard symbology seems to 
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be that it is, in fact, a standard that professionals can adhere to. The problem is that not all 
of industry uses the standard, which leads to a mix of notation and symbology. The new 
ANSIIIEEE Std 91-1984, IEEE Standard Graphic Symbols for Logic Functions, is based on 
the International Electrotechnical Commission (1EC) standard 617, and its use is required 
by the U.S. Department of Defense (DOD). For those wishing more information on the 
IEEE standard, the references cited in Further Reading should be helpful. 

FURTHER READING 

Perhaps the best way to begin to learn the IEEE standard symbology is to read those texts 
that either emphasize its use or have included a detailed summary of it. Such texts include 
those of McCluskey, Nelson et at., Wakerely, and Yarbrough and are recommended. For 
a more complete treatment of this symbology the reader should visit the original IEEE 
documentation cited here. 

[1] Standard Graphic Symbols for Logic Functions, IEEEIANSI Standard 91-1984. Institute of Elec
trical and Electronics Engineers, Inc., IEEE Standards Office, 345 East 47th St. New York, NY 
10017, 1984. 

[2] E. J. McCluskey, Logic Design Principles. Prentice Hall, Englewood Cliffs, NJ, 1986. 
[3] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and 

Design. Prentice Hall, Englewood Cliffs, NJ, 1995. 
[4] J. F. Wakerly, Digital Design Principles and Practices, 2nd ed. Prentice-Hall, Englewood Cliffs, 

NJ,1994. 
[5] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/St. 

Paul, MN, 1997. 
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A 
ABEL, 329 
Absolute minimum expressions, 198 
Absorptive Laws 

AND/OR forms, 108 
EQVIXOR forms, 112 

Accumulator, parallel design, 607 
Actel FPGAs, 319-32l 

Act-l family, 320-321 
Activation level indicators 

Active high, active low, 80 
Active state, 79 
Active transition point, 465 
ADAM CAD software, xxv, 855 
Adders 

Binary, 335-340 
Binary coded decimal (BCD), 386-387 
Carry look-ahead, 345-349 
Carry-save, 349-350 
Excess 3 (XS3), 387 
Full, 337-338 
Half, 336 
Ripple-carry, 338-340 

Adder/subtractors 
Binary, 342-388 
Binary coded decimal (BCD), 387 
Excess 3 (XS3), 387-388 
Parallel-to-serial, 645-651, 651-655 
Ripple-carry, 342-345 

Addition 
Binary, 52-53 
Binary coded decimal (BCD), 62-63 
Excess 3 (XS3), 75 
Floating point, 64-65 
Hexadecimal, 75 

Adjacent XOR patterns, 198-206 
Algorithmic state machine (ASM) charts 

In one-hot FSM designs, 640-645 
Symbology, 537-538 
Vs state diagrams, 538, 642-644, 659-660 

Algorithms 
BCD addition, 63 
BCD subtraction (10's complement), 63-64 
BCD-to-binary conversion, 260 
Binary addition, 52 

Binary division, restoring, 59 
Binary multiplication, 56 
Binary-to-BCD conversion, 261 
Booth's, 57-58 
Carry-save addition of multiple integers, 349 
D-to-JK K-map conversion, 474 
D-to-T K-map conversion, 471 
Diminished radix complement, 48 
Direct quadratic convergence, nomestoring, 62 
Floating point mUltiplication/division, 67 
Fraction conversion, 41 
Mapping, 440 
Positive integer conversion, 38, 39 
Radix complement, 46 
Round off for fraction conversion, 42 
T-to-JK K-map conversion, 576 
Two's complement, 46 
Two's complement multiplication, 57-58 
Two's complement subtraction, 54 

Alternative race paths 
In analysis of ORGs, 492 
In analysis of races and critical races, 703 

Alternative synchronous FSM architecture 
Choice of components, 613-614 
One-hot method, 636-649 
Parallelloadable up/down counters as the 

memory, 632-{i37 
Universal shift registers as the memory, 626-632 
Use of ROMs, PLAs, and PALs, 614-{i26 

Analysis of finite state machines (FSMs) 
Asynchronous, 741-758,788-795 
Synchronous, 476-479 

Analysis of synchronous FSMs 
Examples, 476-479 
Procedure, 476 
PSINS table, use of, 476 

AND 
Definition, 87 
Logic circuit symbols, 88, 92-94 
Operator symbols, 87 

AND array, 301 (see also AND stage) 
AND function, 94 
AND gate 

Conjugate gate symbols, 92-94 
CMOS, 92 
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AND gate (cant.) 

Domino logic configuration, 815 
Mixed logic interpretations, 92 
Multiple inputs, 93 
Physical truth table, 92 

AND laws, 106 
AND operator, 87 
AND-OR-Invert (AOI) gate 

CMOS, 317-318, 851 
Logic equivalent circuits, 318, 319 
NMOS, 851 
Truth tables, 318 
Use of in ALU design, 364 

AND stage (plane or section) 
In PLDs, 297-298, 301-303, 307-309 

ANSIlIEEE Standard gate symbology, 859-860 
ANSIlIEEE Std91-1984 Standard, 859-862 
Antiphase triggering 

Of output holding registers, 497, 498 
Of synchronizers, 512, 513, 515 

A-OPS CAD software, xxv, 855 
Apolar input, 615 
Arbiters 

Bus, 801-803 
Arithmetic and logic units (ALUs), 357-380 

Carry look-ahead configurations, 361-363, 
378-380 

Dedicated and with CLA capability, 358-363 
Dual-rail systems with completion signals, 

369-380 
MUX approach for VLSI application, 

363-369 
Arithmetic codes 

Binary coded decimal (BCD), 34-36 
Excess 3 (XS3), 35-36,49 
Nine's complement, 48 
One's complement, 47, 48 
Signed-magnitude, 44-45 
Ten's complement, 45-46, 48 
Two's complement, 45-47 
Unsigned binary, 33 
V s difficulty of arithmetic operations, 68 

Arithmetic combinational devices, 335-380 
Adders, 335-340, 345-349, 349-350, 

386--387 
Adder/subtractors, 342-345, 387-388 
Arithmetic and logic units, 357-380 
Comparators, 265-272 
Dividers, 353-357 
Multipliers, 350-353, 389-390 
Subtractors, 340-342 
VHDL description of a full adder, 381-382 

Array algebraic approach to logic design 
Asynchronous FSMs, 720-730 
Partitioning methods for state code assignments, 

721-724 

INDEX 

Single transition time (SIT) FSMs, 720-730, 
734, 738-740 

Synchronous FSMs, 542-547 
ASCII character code, table, 71 
ASICs, 238 
ASMs, 536--538, 640-644, 659 (see also 

Algorithmic state machine charts) 
Associative laws 

AND/OR forms, 108 
EQV IXOR forms, 111 

Associative XOR patterns, 198-204 
Asynchronous binary counters 

Data triggered, 664-665 
Ripple counters, 600-605 

Asynchronous FSM analysis 
Critical races, 703-705 
Endless cycles, 701-793 
Essential hazards, 711-719, 746, 750, 752, 

756--757 
Examples, 741-758 
LPD model FSMs, 743-747 
Nested cell model FSMs, 747-752 
One-hot FSMs, 752-757 
Procedure, 741-742 
Static hazards in the NS and output logic, 

705-711 
Asynchronous FSM design 

Array algebraic approach (SIT FSMs), 720-711 
Call module, 770-771 
Flip-flops, 438-461, 698-701 
Fundamental mode, defined, 686 
Hazard-free FSMs by using the nested cell model, 

730-734 
Initialization, 719-720 
Latches, 441-444, 460-464 
LPD model, 686 
Lumped path delay (LPD) approach, 692-695, 

698-700,705-710,714-715 
One-hot approach, 734-740,835-842 
Nested cell approach, 441-448, 460-461, 

695-700,730-734 
Perspective on state code assignments, 738-740 
Rendezvous module (RMOD), 695-698 
Rotation detector, 769-770 
Rules for use of PLDs, 740-741 
Selector module, 769 
Use ofPLDs, 740-742 

Asynchronous inputs, 510-517 
Branching dependency rule, 510 
Conditional output rule, 510 
Definition, 510 
Mean time between failures (MTBF), 516--517 
Metastability and the synchronizer, 514-517 
Multiple stage synchronizers, 515-517 
Stretching and synchronizing the inputs, 512-514 
Synchronizing the inputs, 511-517 
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Asynchronous preset and clear overrides, 463-464 
Asynchronous parallel loading 

Counters, 579-581, 588-589 
Shift registers, 568-570, 588-589 

Asynchronous programmable sequencers 
Microprgrammable asynchronous controller 

modules, 823-835 
One-hot programmable modules, 835-839 

Asynchronous state machines 
Analysis, 741-758 
Array algebraic approach to the design, 720-730 
Design examples, 695-698, 698-701, 720-733, 

734-738,740-741 
Detection and elimination of timing defects, 

701-719 
Excitation table for the LPD model, 688-{)89 
Features, 684 
Fully documented state diagrams, 689-690 
Fundamental mode, defined, 686 
Hazard-free design, 730-7:'4, 734-740, 837-839 
Initialization and reset, 719-720 
Lumped path delay (LPD) model, 685-689 
Models,439,685-687,773-774 
Nested cell model, 439, 776 
Need for clock-independent FSMs, 685 
Pausable system approach to the design, 806-823 
Perspective on state code assignments of 

fundamental mode FSMs, 738-740 
Programmable sequencer systems, 823-835 
Pulse mode approach, 773-796 
One-hot approach to design, 734-738, 835-842 
Single transition time (SIT) machines, 720-730 
Stability criteria, 688 
State tables, use of, 691-{)92 
Timing defects, 701-719 

AutoLogic VHDL, 649 
Autonomous linear feedback shift register (ALFSR) 

counters, 594-600 
Correction for all zero state, 596-600 
Decade, 598 
Maximum length, 596-600 
Near maximum length, 596, 599 
Table of near maximum length, 599 

A word of warning, 5 

B 
Barrel shifter, 275 
Base (radix) of a number, 32 
Basic (memory) cells 

Circuit symbols, 436 
Combined excitation table, 433 
EV K-maps, 429, 431 
Excitation tables, 430, 432, 433 
Logic circuits, 434, 435, 436 
Mixed-rail output response, 436 
Mixed-rail outputs, 434-435 
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Operation tables, 429, 431 
Reset-dominant, 431-433, 435, 436, 694-695 
Set-dominant, 428-431, 434, 436, 692-{)94 
Timing diagrams (examples), 430, 432, 436, 694, 

695 
Basic model, 422 
BCD addition, algorithm, 63 
BCD mUltiplier, 390 
BCD representation, 34-35 

Negative, 47-48 
BCD subtraction 

Algorithm, 63-{)4 
Ten's complement, 63 

BCD-to-creeping code converter, 625 
BCD-to-decimal conversion 

Polynomial representation, 35 
Positional weight representation, 35 
Table, 35 

BCD-to-seven-segment display converter, 261-265 
Biased-weighted codes 

Excess, 127,49,51 
Offset, 49 
XS3,35,49,68 

Bi-directional counters, 466-469, 579-588 
Binary adders 

Carry look-ahead, 345-349 
Carry save, 349-350 
Full,337-338 
Half, 336-337 
Ripple-carry, 338-340 

Binary addition, 52-53 
Algorithm, 52 

Binary arithmetic, 52-67 
Addition, 52-53 
Algorithms, 52, 54, 56, 57-58, 59,62,63-64, 

67 
BCD,62-64 
Division, 58-62 
Division by direct quadratic convergence, 59-62 
Floating point, 64-67 
Multiplication, 55-58 
Subtraction, 53-55 
Two's complement, 53-54 

Binary coded decimal (BCD) code, 34-35 
Binary codes 

BCD,34 
Biased-weighted, 68 
Decimal codes, 68 
Error detection, 69 
Gray, 70, 140 
One-hot, 70 
Reflective, 70 
Unit distance, 70, 71 
Unweighted,69 
Weighted, 69 
XS3, 68, 69 
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Binary coded hexadecimal (BCH), 36-37 
Binary coded octal (BCO), 36-37 
Binary decision diagrams (BDDs), 405, 407-408, 

410-411 
Binary derived radices, 37 
Binary digit (bit), 33 
Binary division, 58-62 

Algorithms, 59. 62 
Direct quadratic convergence, 59-62 
Restoring type, 58 

Binary number system, 33-34 
Binary multiplication, 55-58 

Algorithms, 56, 57-58 
Two's complement, 56-58 

Binary state terminology. 79-81 
Activation level indicators, 80 
Logic domain Vs the physical domain, 

80-81 
Mixed logic notation, 80-81 
Negative logic, 81 
Positive logic, 81 

Binary subtraction, 53-55 
Algorithm, 54 
Direct, 53 
One's complement, 54-55 
Two's complement, 53-54 

Binary subtractors, 340-342 
Binary-to-2's complement conversion, 45-47 

Algorithm, 46 
Negation. 47 

Binary-to-BCD conversion, 260-261 
Algorithm, 261 
Converter, 292 

Binary-to-decimal conversion, 32-34 
Method of positional weights, 33 
Polynomial, 32-33 
Table, 34 

Bipolar junction transistors (BITs), 850-852 
Biquinary code, 70 
BIST,599 
Bit, 33 
Bit slice, 8 
Bond set, 210 
Boolean algebra, 105-116 

Absorptive laws, 108-112 
AND laws, 106 
Associative laws, 108, 111 
Commutative laws, 108, III 
Consensus laws, 108, 112 
Corollaries, 114 
DeMorgan's laws, 110, 112 
Distributive laws, 108, 112 
Duality, 107 
EQV laws, III 
Factoring laws, 108, 112 
OR laws, 107 

Useful identities, 115 
Worked examples. 118-120 
XOR algebra 

Boolean product, 87 
Boolean sum, 87 
BOOZER logic minimizer, xxv, 855 
Borrow-in, 340, 341 
Borrow-out, 340, 341 
Bounded pulse, 777 

INDEX 

Branching action of registers and counters, 570, 
589 

Branching conditions (BCs), 425, 690 
Branching dependency rule, 510 
Branching paths, 425, 690 
Buffer, 87, 94 
Buffering and gating the clock, 522 
Buffer (fly) state, 496, 498, 835 
Built-in-self-test (BIST), 599 
Bus arbiters, 801-803 
Bus arbiter modules, 801-802 
Bus lines, 274, 313 

C 
CAD, 552, 554, 838, 839, 856 
Cadence, 329, 856 
CAD help in programming PLDs, 328-329 

ABEL,329 
Mentor Graphics design architecture, 329 
ORCAD's SDT, 329 
PALASM (PAL assembler), 329 
XACT (Xilinx automated CAE tools), 329 
X-BLOX, 329 
Xilinx-ABEL,329 

CAE, 329 (see also computer aided engineering 
design) 

Call module, 770-771 
Candy bar vending machine design 

Pulse mode approach, 782-788 
Canonical forms 

Produce-of-sums, 135, 136 
Sum-of-products, 132, 133 

Canonical truth tables, 133, 136 
Capacitors 

In debouncing circuits, 526-527 
In inertial delay elements, 794-795 
In sanity circuits, 523-524 

Cardinality of a function, 151-152 
Carry generate/propagate (CGP) networks, 346 
Carry-in, carry-out, 337. 338, 339 
Carry look-ahead (CLA) adders, 345-349 

Carry generate/propagate network, 346 
CLA module, 346 
Group CLA, 348 
Logic circuits, 346-348 

Carry overflow, 53, 54 
Carry propagate, 345 
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Carry-save (CS) adders, 349-350 
Algorithm, 349 
Logic circuit, 350 

Cascadable binary counters, 575--588 
Cedes, 856 
Cell coordinates, 138. 140, 143 
Character codes, 70-72 

ASCn,71 
EBCDIC, 72 

Chips classification, 238 
Clear asynchronous overrides 

In flip-flops. 463-464 
Clock buffering and gating, 522 
Clock frequency, 437,521 
Clock generating circuitry, 520-521 
Clock logic waveforms, 437 
Clock Period, 437, 521 
Clock signal specifications, 521-522 

Factor of safety, 521-522 
Clock skew, 517-520, 685. 822 

Examples, 518, 519 
Clock sources 

Clock oscillator circuits, 520-521 
Duty cycle. 521 

C-module, 696 (see also rendezvous module) 
CMOS, definition, 82 
CMOS domino logic. 814--816 

DFLOPdesign.812-814 
Gates, 815 
Generalized configuration, 815 

CMOS gate configurations, generalized, 82-83 
CMOS terminology and symbology, 82-83 

Ideal equivalent circuits, 82 
NMOS, 82 
PMOS. 82 

Code conversion between number systems, 37-43 
Fractions, 40-43 
Integers, 38-40 

Code converters, 257-265 
Algoritbms for binarylBCD conversion, 260, 261 
BCD-Io-binary, 261-263 
BCD-to-creeping code, 292 
BCD-to-seven-segmenl display, 261-265 
BCD-lo-XS3, 258-260 
Binary-to-BCD, 260-261, 292 
Binary-to-2's complement, 291-292. 643-645 
Gray-BCD, 291 
Gray-to-binary, 257-258 
Procedure. 257 

Codes. See binary codes 
Combinational logic devices, non-arithmetic 

Building blocks, 237-238 
Classification of chips. 238 
Code converters, 257-265 
Decoders/Demulliplexers, 248-254 
Design procedure, 241-242 

Encoders, 254-256 
Magnitude comparators. 265-272 
Multiplexers (MUXs), 242-248 
Parity generators and detectors, 273-275 
Part numbering systems. 241 
Performance characteristics, 238-241 
Shifters, 275-278 
Steering logic, 278-279 
VHDL description, 279-287 

Combinational shifters, 275-278 
Common anode LED configuration, 263, 265 
Common cathode LED configuration, 263,265 
Commutative laws 

AND/OR forms, 108 
EQV IXOR forms, 111 

Comparators, 265-272 
Complementary MOSFET (CMOS) switching 

circuits, 82-83 
Complementation, 95 
Composite output maps. 629, 635 
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Compressed entered variable (EV) truth table, 242, 
244 

Compllter aided engineering (CAE) design 
Logic minimization tools, 329. 855 
Schematic capture, simulation and timing 

analysis tools, 329, 855-857 
Conditional branching. 492, 496 
Conditional outputs, 424, 425 
Conditional output rule, 510-511 
Conjoint terms, 114,209 
Conjugate mixed logic gate symbols 

AND, 92. 93, 94 
Buffer. 94 
EQV, 101, 103 
Inverter, 84, 94 
NAND, 88, 89, 94 
NOR, 90, 91, 94 
OR, 93, 94 
Summary, 94, 103 
Tri-state driver, 86 
XOR.lOO, 103 

Connectives 
AND, 87 
EQV, 98 
OR. 87 
XOR.98 

Consensus laws 
AND/OR.108 
EQVIXOR, 112 

Construction of mixed-logic circuits, 97-98 
Contracted Reed-Muller transformation (CRMT) 

minimization, 209-229 
Heuristics, 217-218 
Incompletely specified functions, 218-228 
Multiple output functions with don't cares, 

222-228 
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Contracted Reed-Muller transformation (cont.) 

Perspective, 229 
Subfunction partitioning, 225-228 

Controlled inverters. See controlled logic level 
conversion 

Controlled inversion, 103 
Controlled logic level conversion, 103-104 

Adder/subtractor designs, 342-343 
ALU designs, 374-375 
BCD adder/subtractor designs, 387 
Binary counter designs, 586--587 
Mixed logic interpretation, 103-104 
Overflow error detection circuits, 344 
Positive logic interpretation, 104 
XS3 adder/subtractor designs, 387-388 

Controlled system, 349 
Data path unit (DPU), 650 

Controller 
In system-level design, 649-650 

Conventional K-maps, 137-158. 167 
Conversion between flip-flops. 450-461 (see also 

flip-flop conversion) 
Conversion between number systems 

Algorithms, 38, 39,41 
Fractions, 40-43 
Integers. 38-40 
Rounding off, 42--43 
Summaries, 39, 41 

Conversion of fractions. 40-43 
Algorithms, 41. 42 
Rounding off, 42 
Table. 41 

Conversion of integers, 38--40 
Algorithms, 38, 39 
Table, 39 

Corollaries in XOR algebra, 114, 204 
Counteracting delay 

Elimination of essential hazards, 712, 715 
Counters, 572-605 

Asynchronously parallelloadable, 579-581, 
587-589,664-665 

Bi-directional, 579-588, 664-665 
Binary, 572-605 
Binary up/down. See bi-directional 
Branching action of a parallelloadable up/down, 

587-590 
Cascadable BCD, 575-579 

Cascadable binary, 579-588, 664-665 
Cascadable up/down, 579-584 
Data triggered, 664-665 
Johnson (twisted ring), 593-594 
Linear feedback shift register (LFSR), 

594-600 
Multimode, 607-608 
One-bit modular design, 584-588 
Parallel loading, a perspective, 588-589 

Ripple (asynchronous), 600-605 
Ring, 590-593 
Shift register, 590-600 

INDEX 

Synchronous parallelloadable, 581-587, 588-589 
True hold capability, 581,582,584,589 
Twisted ring (Johnson), 593-594 

Coupled term, definition. 392 
Coupled variable, definition, 392 
Cover, definition, 10 

Minimum POS, examples, 146--148 
Minimum SOP, examples, 146--148 

CPLDs, 328 
Creeping code, 69 
Critical races, 703-705 
CRMT coefficients, 210-212 
CRMT forms, 210-216 
CRMT minimization, heuristics for, 217-218 
Cross branching, definition, 10 

Relative to STT designs, 740 
Cube representation, 173 
Cycles (In asynchronous FSMs), 702 

D 
Data path (In system-level design), 649, 650 
Data bus, 274 
Data lockout character of flip-flops, 445 
Data selector, 242 (see also multiplexer) 
Data-triggered counters, 664-665 
Data-triggered memory elements, 773-775 

Toggle modules, 573, 774-775 
Debouncing circuits, 526--530 
Decade counters, 575-579, 598, 603-604 
Decimal codes, 68 

BCD, 34-35, 69 
Table, 69 
Weighted and unweighted, 68-69 
XS3, 36, 49, 69 

Decimal-to-BCD conversion. See BCD-to-decimal 
Decoders/demultiplexers, 248-254 

Design, 248-251 
Mixed logic inputs, 252 
Stacked configurations, 251 
Steering logic implementation, 279-280 
Use in Combinational logic design, 251-253 

Decomposition (Shannon's expansion theorem), 
177-180 

D flip-flops, 440-450 
Analysis of FSMs with D flip-flops, 476--480 
Conversion from JK flip-flops, 456--458 
Conversion to SR flip-flops, 485 
Conversion to T flip-flops, 452--453 
Data lockout, 461 
Edge triggered, 444-448, 698-700 
Excitation table, 441. 458 
Logic circuit symbols, 443, 444, 448, 449 
Master/slave, 448--450 
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Operation table, 441 
State diagrams, 441, 442, 444, 445-446, 449, 698 
Timing diagrams, 443, 448, 449 
Use as a filter for logic noise, 497-499 
Use as a synchronizer, 511-517 
VHDL behavioral description, 480 

Delay elements, 794--795 
DeMorgan relations, 95 
DeMorgan's laws 

AND/OR forms, 110--111 
EQV/XOR forms, 112 

Demultiplexers/decoders, 248-254 (see also 
Decoders/demultiplexers) 

Depletion mode NMOS, 378, 807, 849-850 
Design area V s performance, 180-181 
Design of synchronous FSMs with edge triggered 

flip-flops 
Design procedure, 530--532 
One-to-three pulse generator, 532-536, 615-622 
More complex FSM, 622-626 
Sequence recognizer, 471-476 
Three-bit binary up/down counter, 466-471 

Design procedure (general) 
Combinational logic, 241-242 
Finite state machines (FSMs), 530--532 

Destination matrix, 542-543, 724 
Destination and origin states (in ORG analysis), 

492-493 
DFLOPs 

Dynamic logic design, 812-814 
State diagrams, 808, 813 
Static logic design, 807-810 
Use of Metastable detection stages, 807-808, 

810--812 
Use in EAIC systems, 806--807, 816--820 

Diagonal XOR patterns, 198-199, 201-203 
Digital combination lock (DCL), 781-782, 797 
Digital machines, an overview, 684 
Diminished radix complement representation, 48 
Diodes 

In inertial delay elements, 794--795 
In Sanity circuits, 523-524 

Diode-transistor logic (DTL), 853 
Distributed path delay model, 688 
Distributive laws 

AND/OR forms, 108 
EQV/XOR forms, 112 

Divide-by-N binary counters 
Divide-by-2,573 
Divide-by-3,573-574 
Divide-by-4,574 
Perspective on divide-by-N, 574--575 

Dividers 
Parallel (fast), 353-357 

Division (binary) 
Algorithms, 59, 62 

By direct quadratic convergence, 59-62 
Restoring, 58-59 

D-Iatch 
Design, 441-444, 705-707 
Logic circuit, 443, 444 
Logic circuit symbol, 443, 444 
Next state functions, 443, 706 
State diagram, 443, 706 
Timing diagrams, 443, 706 
Transparency character, 443-444 

DL-DFLOPs 
Design, 812-814 
State diagrams, 8 i3 
Use in EAIC systems, 819-820 

DMUX (demultiplexer/decoder), 248-254 
Domain boundary, 814--816 
Domino logic 

CMOS, 815 
Gate examples, 815 
Generalized gate configuration, 815 
Precharge and evaluate stages, 814--815 
Use of in DFLOP design, 812-814 

Don't cares, 150--158 (see also incompletely 
specified functions) 

As entered variables, 164 
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As nonessential minterms or maxterms, 150, 151 
In canonicalforms, 150, 151 
Rules in multiple-output minimization, 153 

DPU (data path unit), 650 
Drivers 

Buffers, 87, 94 
Tri-state, 85-87 

D-trios (see also essential hazards) 
Analysis and elimination, 716--718 
Requirements for formation, 711-714 

Dual-emitter BJT, 851 
Dual-rail systems 

ALUs with completion signals, 369-380 
Duality, definition of, 107 

Dual forms of Boolean laws, 107-116 
Duty cycle, 521 

In counters, 574, 578 
Dyad groups oflogic adjacencies, 145 
Dynamic hazards 

In multilevel XOR-type functions, 409-411 
Use of binary decision diagrams (BDDs), 411 
Use of lumped path delay diagrams (LPDDs), 

410 
Dynamic power dissipation, 239-240 

E 
EAIC systems, 806--823 (see also externally 

asynchronous/internally clocked systems) 
Edge-triggered flip-flops 

Conversion between, 450-459 
D,444-448 
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Edge-triggered flip-flops (cont.) 

JK,454-456 
T,452-453 
Used in the design of FSMs, 466-476. 530-536, 

562-605. 617--666 
Unusual types, 459-460.461 

EEPROYIS. 298 
E-hazards, 711-719 (see also Essential hazards) 
Electronically erasable PROMs (EEPROMs), 

298-299 
Floating gate NMOS transistors, 299 

Emitter-coupled logic (ECL), 852 
Encoders 

Priority, 254-256, 291 
Stacked, 256 

Endless cycles. 702-703 
Enhancement mode NMOS logic. 849 
Entered variable (EV) K-map minimization, 

158-169.198-207 
Don't cares as EVs, 164 
Five or more variables. 165-169 
Map compressions. 158-169 
Map Key, 160 
Subfunction rules, 164. 165 
Use of submaps, 159, 163, 164, 182. 184. 187 
Worked examples, 181-188 
XOR patterns, 198-207 

Entered variables (EV s) 
In K-maps, 158-169, 198-207 
In truth tables. 183.244,246.268,269,358,361, 

372,374 
In XOR-type patterns. 198-207 

Epilogue to Chapter 16,842 
EPI,149 
EPROMs, 298-299 
EQPOS functions, 208-209 
EQPOSIPOS functions, 225, 228 
Equivalence. See EQV 
EQV function 

Defining relations, 101 
Definition, 99 
Logic circuit symbols, 101, 103 
Multiple gate realizations, 101-102 
Operator symbol, 98 

EQV gate 
CMOS, 101 
Conjugate logic circuit symbols, 101. 103 
Effect of active low inputs. 102 
In controlled logic level conversion, 103-104 
Mixed-logic interpretations, 101 
Physical truth table. 101 
Tree forms for multiple inputs, 99 

EQV laws, III 
Erasable programmable read-only memory 

(EPROM), 298-299 
Error catching in MS JK fiip-fiops, 462-463 

Error checking systems, 274-275 
Error checking circuits 

Parity circuits, 273-274 
Error detection codes, 69-70 

Even and odd parity. table, 70 
Espresso. xxv, 173, 855 
Espresso algorithm (reference), 855 

Qualitative description, 173-174 

INDEX 

Essential hazards in fundamental mode FSMs, 
711-718 

Analysis examples, 714-718, 743-758 
Counteracting delays, 712, 715 
D-trios,712-713, 714, 716-717 
General requirements for formation, 711 
Indirect path requirements. 714 
In LPD FSMs, 743-747 
In nested cell FSMs. 747-752 
In one-hot FSYls, 752-758 
Minimum requirements for formation, 

712-713 
Perspective, 718-719 
Timing diagrams, 718 

Essential prime implicants (EPIs), 149-150 
EV K-maps, 158-169, 198-207 

Worked examples, 181-188 
Exact minimum expression, 198 
Excess representations, 49 
Excitation table for the LPD model, 688--689 

Comparison with the D fiip-flop. 689 
Excitation tables for basic (memory) cells 

Combined form, 433 
Reset-dominant, 432, 433 
Set-dominant, 430, 433 

Excitation tables for flip-flops and latches 
D,441 
JK,454 
SR,433 
Summary of, 457-458 
T,452 

EXL-Sim2000. 855-856 
EXSOP functions, 207-208 
EXSOP/SOP, 226-227 
Externally asynchronous/internally clocked (EAIC) 

systems 
DFLOP conversion, 821 
Domino logic DFLOP design, 812-814 
EAIC system architecture, 806 
Features. 805-807, 816-817 
Memory elements, 806-814 
Metastable detection stage, 810-812 
Models, 806, 808 
MTBF, 805, 821 
Pausable systems, 805 
Perspective, 822-823 
Real time tests, 819-820 
Simple sequence recognizer example. 817-820 
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F 

System simulations, 819-820 
Static logic DFLOP design, 807-812 
Timing constraints, 816-817 
Variations on the theme, 820--821 
V s conventional synchronous FSMs, 821-823 

Factoring law 
AND/OR,108 
EQVIXOR, 112 

Fcctorization, 175-176 
Factor of safety for clock signals, 521-522 
Falling edge-triggering (PET) 

Defined, 437-438 
In flip-flops, 432 

False carry rejection, 359, 362, 364 
False data rejection (FOR) 

In ALU design, 358-359, 366 
In code converter design, 257, 259-260 

Fan-in, fan-out, 240--241 
FOR. See false data rejection 
Feedback delays 

Counteraction E-hazard formation, 712, 715 
Nested cell designs of pulse mode FSMs, 

776-777,793-794 
Feedback paths 

In models for FSMs, 423-424, 439, 686, 774 
In PLDs, 309-310 

PET. See falling edge triggering 
Field programmable gate arrays (FPGAs), 319-329 

Actel,319-321 
Configurable logic blocks (CLBs), 321-327 
I/O blocks (lOBs), 321-326 
Logic cell arrays (LCAs), 328 
Xilinx, 321-328 

Field programmable logic arrays, 301-306 (see also 
Programmable logic arrays) 

Fill bit, in combinational shifters, 275-278 
Finite state machines (FSMs), 421 
Fixed-point numbers, 32 
Hip-flop conversions, 450-460 

D-to-JK, 454--456 
D-to-T,452-453 
D-to-unusuaI flip-flops, 459--460 
lK-to-D,456--458 
lK-to-T, 455-457 
Model for conversion from D, 451 

Hip-flop design, general, 438-440 
Mapping algorithm, 440 
Models, 439, 451 
Procedure, 440 

Flip-flops (FFs) 
0,440-450,698-700 
Data lockout, MS, 461 
Edge triggered, 437-438 
Hierarchical flow chart, 439 

JK,454--456,700-701 
Master slave, 448--450, 462-463 
Models, 439, 451 
SR,485 
T, 451--453 
Unusual, 459-460 

Floating gate NMOS transistors, 298-299 
Floating point addition, 64-65 
Floating point arithmetic, 64--67 
Floating point division 

Algorithm, 67 
Quadratic convergence, 66--67 

Floating point multiplication 
Algorithm, 67 
Signed-magnitude, 65-66 

Floating point number (FPN) systems, 49-52 
IEEE standard, 50--51 
Normalized, 50 

Floating point subtraction 
Two's complement, 65 

Flow charts, 533-534 
FPGAs 

Actel,319-321 
Xilinx,321-328 
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FPLAs, 302 (see also Programmable logic arrays) 
Fraction conversion, 40-43 

Algorithms, 41, 42 
Rounding off and error bounds, 41--43 
Summary of methods, 41 

Free set 
In CRMT minimization method, 210 

Frequency division 
In binary counters, 572-575 
In ripple counters, 600-601 

Frequency synthesizers, 521 
"From rule", 540 
FSM. See finite state machine 
Full adders (FAs) 

Design of, 337-338 
In adder/subtractor design, 342-345 
In carry-save adder design, 349-350 
In mUltiplier design, 350--353 
In parallel-to-serial adder/subtractor design, 

651-652 
In ripple-carry adder design, 338-340 

Full subtractors (FS) 
Design, 340--342 
Use of in parallel divider design, 354-355 

Fully documented state (FOS) diagrams, 425 
Features, 424--425,689-690 
Mutually exclusion requirement, 46--428, 490, 

686-690 
Sum rule, 426, 689-690 

Functional partition 
In system-level design, 650, 652, 658 

Function generators, 245 
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Function hazards 
Combinational,412 
Internally initiated in FSMs, 491 (see also output 

race glitches) 
Function matrix, 543-546, 724--727 
Function minimization 

Cube notation, 173 
CRMT method, 210-229 
Decomposition (Shannon's expansion theorem), 

177-180 
Factorization, 175-176 

K-map, 144--169 
Perspective on, 181 
Reed-Muller transformation, 207-209 
Re-substitution, 176--177 
Tabular (Quine-McCluskey algorithm), 

169-172 
Worked EV K-map examples, 181-188 
XOR-type patterns, 198-204 

Fundamental Mode FSMs 
LPD model, 685-{i87 
Nested cell model, 687,696,730,776 
Requirements for operatioQ, 686 
Stability criteria, 688 

Fuse map, 329 
Fusible links 

G 

In FPLAs, 302-303 
In PROMs, 297 
On transistors, 297-298 
On diodes (bipolar form), 297, 298-299 

Gain element, 100 
Gates (CMOS) and symbols 

AND, 92, 93, 94 
AND-OR-invert (ADI), 317-319 
EQV, 100--101, 103 
CMOS configuration, generalized, 83 
IEEE standard symbols, 859-860 
Inverter, 83-84, 94 
NAND, 88-89, 94 
NOR, 89-90, 91, 94 
OR, 93, 94 
OR-AND-invert(OAI),317-319 
XOR, 100, 103 

Gate/input tally, 151-152 
Minimum, 198 
Vs cardinality, 151-152 

Gated basic cell, 483--485 
Gate-minimum cover, 198 
Gate propagation time delay, defined, 239 
General-purpose PLDs 

Erasable programmable logic devices (EPLDs), 
328 

Field programmable gate arrays (FPGAs), 
317-328 

INDEX 

Field programmable logic sequencers (FPLSs), 
328 

Generic array logic (GAL) devices, 328 
Programmable array logic (PAL) devices, 

307-310 
Programmable logic arrays (PLAs), 301-306 
Read-only memories (ROMs), 295-301 

Glitches, types 
Negative, 391, 492 
Output race glitches (ORGs), 491--492 
Positive, 391, 492 
Static hazards, 391-392 

Glossary of terms, expressions and abbreviations, 
5-29 

GOINO-GO configuration, 647 
Gray code, 140 

H 
Half adder (HA), 336-337 
Half-adderlhalf-subtractor counter design, 584--588 
Half subtractor, 341-342 

Use of in a I-bit modular counter design, 585 
Hamming distance 

In state code assignments of fundamental mode 
FSMs,739-740 

Handshake interface 
In system-level design, 650 

Hardware description languages (HDLs) 
Verilog, 856 
VHDL, 279, 288, 380, 480, 856 

Hazard cover, 392 
Effect on stuck-at faults, 412--413 
Static I-hazards (SOP hazards), 393-394, 

397-398,401--402,501-502,505-509 
Static O-hazards (POS hazards), 394--396, 398, 

402--403,499-501,506 
Hazard-free design of asynchronous FSMs, 730-734 
Hazards 

Dynamic, 392, 409--411 
Essential, 711-718 
Function, 412, 491 
Static 0 (POS hazard), 391 
Static 1 (SOP hazard), 391 

HDLs, 279 
Hexadecimal addition, 75 

Table, 77 
Hexadecimal multiplication, 75 

Table, 77 
Hexadecimal number system, 36--37 

Fraction conversion to/from radix r, 40 
Integer conversion to/from radix r, 38 

Holding condition, 425 
Holding (storage) register 

Applications, 499, 614-{i15, 625, 63Q-{j31, 
636-{i37,664 

Design, 562-563 
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Hold time, 495 
Hybrid fOflI1J5 

I 

&~D/OR, 175-180 
XORISOP/EQVIPOS, 225-228 

IEEE standard graphic symbols for logic functions, 
859-862 

Combinational logic devices, 859-860 
Flip-flops, registers and counters, 860-862 
Gates, 860 

Inactive state, 80 
Inactive transition point 465 
Incompatibility and complementation, 95-96 
Incompatibility slash, 95 
Incompletely specified functions, 150-152 (see also 

don't cares) 
Rules for use in EV K-maps, 164 
Rules in multiple output minimization, 153 
Use in canonical forms, 150, 151 

Inertial delay element~, 794-795 
Initialization and reset of the FSM 

Asynchronous FSMs, 719-720 
Sanity circuits, 523-526 
Synchronous FSMs, 523 

Initiator input in E-hazard analysis, 711 
In-phase triggering 

In EAIC systems, 821 
In filtering out logic noise, 499 

Input matrix, 544, 725 
Inputlstate map, 425, 426 
Internally pausable clocked systems, 806-823 (see 

also externally asynchronous/internally 
clocked systems) 

Intersection, 87 (see also Boolean product) 
"Into rule", 540 
Introductory remarks and glossary, 1-29 

Automatic control systems, 2 
Communications, 2 
Computing, I 
Entertainment, 2 
Glossary, 5-29 
Information retrieval, 1-2 
Instrumentation, 2-3 
What is so special about digital systems?, 1-3 
Word of warning, 5 
Year 2000 and beyond?, 3-4 

Invariant state variable in E-hazard analysis, 711 
Inverters 

CMOS, 83-84 
Circuits, 84, 850. 851 
Conjugate logic circuit symbols. 84.94 
Mixed logic interpretations, 84 
NMOS, 850 
Physical truth table, 84 
TIL,851 

Involution, 106 
Irredundant cover, 173-174 
Irrelevant input, 249 

J 
JEDEC, 17,329 
lK flip- flops 

Analysis of FSMs with JK flip-flops, 
476-479 

Conversion from edge triggered D flip-flops, 
454-455, 700-701 

Conversion to D flip-flops, 456-458 
Conversion to T flip-flops, 456-457 
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Design of FSMs with JK flip-flops, 471-475. 
562-564 

Excitation table, 454, 458 
Master-slave, 462-463 
Operation table, 454 
PR and CL overrides, 70 I 
State diagram, 454 
Timing diagram for edge triggered, 456 

Jump state, 603 

K 
Kamaugh maps (K-maps) 

Domain boundaries, 145 
Entered variable (EV), 158-169 
First-order, 138 
Forbidden groups of minterms or maxterms, 

145-146 
Fourth-order, 143 
Loop-out protocol, 145 
Map key, 160 
POS extraction procedure, 145 
Reduction rule, 145 
Second-order, 138 
Third-order, 140 

K-map conversion 
Algorithms, 471,474,576 
D-to-JK,473-474 
D-to-T,470-471 
lK-to-D, 477, 478 
lK-to-T, 576, 577 

K-map minimization 
Conventional (I 's and O's), 138-158 
Entered variable (EV), 158-169 
XOR patterns, 198-207 

K-maps. See Karnaugh maps 
K-map subfunction partitioning, 225-228 
Keywords in VHDL. 281 

L 
Large-scale integrated circuits (LSI), 238 
Latch 

D,441-444,464.705-707 
JK, 461-462 
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Latch (cont.) 

SR, 460-461, 483-484 
T.461-462 

Laws of Boolean algebra, 105-116 (see also 
Boolean algebra) 

LED 
In seven-segment display designs, 265 

Least significant bit (LSB), 33 
Linear Feedback shift register (LFSR) counters, 

594-600 
Line drivers 

Buffers, 87 
Tri-state. 84-87 

Linear state machine. 627, 632 
Logic adjacency 

In cube notation, 173 
In Espresso algorithm, 173 
In K-maps, 145 
In Quine-McCluskey algorithm. 170 
Requirement for in the MAC module, 825-826 

Logic cell 
Configurable logic block (CLB). 321 

Logic circuit symbols 
Summary of conjugate mixed logic symbols. 94, 

103 
Logic compatibility. 95, 96 
Logic domain, 80 
Logic function graphics. See Karnaugh maps 
Logic instability 

By E-hazard fonnation, 719 
By s-hazard formation, 705-706,710--711 
Due to endless cycles in asynchronous FSMs. 

702-703 
Due to metastability. 514-515 
In basic ceils, 694. 695 

Logic level conversion, 83-84 
Controlled inverter, 103-104 
Inverter. 83 
Logic circuit symbols, 84 
NAND gate. 90--92 
NOR gate, 90--92 

Logic level incompati bility, 95-96 
Complementation, 95 
Examples, 96 
Incompatibility indicator slash, 95, 96 

Logic minimization tools 
BOOZER, 855, 857 
Espresso, 173-174. 329. 855, 857 

Logic noise 
Filtering, 497-499 
Output race glitches (ORGs), 491-499 
Static hazards, 499-510. 705-711 

Logic simulators. See simulators, logic 
Logic state, definition, 421 
Logic waveforms, 105 (see also timing 

diagrams) 

Look-ahead-carry (LAC) adder 
Same as carry look-ahead adder, 345-349 

Loop-out pn>tocol, 145 
LPD modeL See Lumped path delay model 
LPD-to-SR conversion, 730--732 
Lumped path delay (LPD) model, 685-687 

Excitation table, 688-689 

M 

Functional relationships, 687-688 
Stability criteria, 688 

Magnitude comparators, 265-267 
Cascadable, 265-272 
Non-cascadable, 388 

Majority functions. 116,293 
Majority gate, 696 
Map key 

Use in EV K-map minimization, 160 
Mapping algorithm for FSM design, 440 
Master/Slave D flip-flop 

Circuit symbol, 449 
CMOS implementation. 450 
Conversion to MS JK flip-flops, 463 
Logic circuit, 449 
State diagrams, 449 
Timing diagram. 449 

Maxtenn, 134 
Maxtenn code 

Defined, 134 
Table, 135 

Mealy machine. 422 
Mealy output, 424, 426 
Mealy's (general) model 

For fundamental mode (LPD) FSMs, 686 

INDEX 

For nested cell designs of pulse mode FSMs. 776 
For pulse mode FSMs with toggle modules. 774 
For synchronous FSMs. 424 

Mean time between failures (MTBF), 516-517,805, 
821 

Infinite MTBF, 805, 821 
Medium-scale integrated (MSI) circuits, 238 
Memory cells. 428-436 

Set-dominant basic cell, 428-431 
Reset-dominant basic cell, 431-433 

Memory elements 
In EAIC system design, 806 
In fundamental mode (LPD) FSM design, 686 
In nesled cell designs, 687 
In pulse mode FSM design, 774 
In synchronous FSM design, 438 

Mentor Graphics, 329, 856 
Merging of states 

State minimization, 547-549 
Metastability 

And the synchronizer, 514-517 
Mean time between failures (MTBF), 516-517 
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Metastable exit time, 514 
Practical solutions to the synchronizer problem, 

515-517 
Metastable detection stage in EAIC systems, 808 

Domino logic design, 812-813 
Simulation, 810--811 
Static logic design, 810--812 

Metastable exit time, 514 
Microprogrammable asynchronous controller 

(MAC) modules 
Application to a Gray code counter design, 

830--832 
Architecture, generalized, 823-825 
Cascading, 832-833 
Components of an n-input, 824--825, 829-830 
Design of a 3-input MAC module, 827-829 
Features, 823-824, 834--835 
Metastability considerations, 834 
Perspective, 834--835 
Programming, 833-834 
Simulation results, 831-832 
State array machine (SAM), 824--827, 829-830 
Timing control machine (TCM), 824--827 

Minimization algorithms 
Espresso, 173-174 
Quine-McCluskey, 169-172 

Minimization, degrees of, 198 
Minimization, logic function 

Contracted Reed-Muller transformation (CRMT), 
209-229 

CRMT,210--218 
EV K-map, 158-169, 198-207 
Decomposition, 177-180 
Factorization, 175-176 
Multiple output, 152-158,222-229 
Reed-Muller transformation, 207-209 
Tabular (Quine-McCluskey), 169-172 
XOR pattern, 198-204 

Minterm, defined, 132 
Minterm code 

Defined,132 
Table, 133 

Missing state analysis, 475-476 
Mixed-logic inputs and outputs 

ROMs, PLAs and PALs, 310-311 
Mixed logic notation, 81 
Mixed-mode design entry, 329 
Mixed-rail outputs 

Basic cells, 434-435 
Combinational logic circuits, 105 
Flip-flops, 451 

Mobius counter, 573 
Models for sequential machines 

Asynchronous FSMs, 686, 774, 776 
Basic model, 422, 439 
EAIC systems, 806 

Mealy's model, 424, 686, 774 
Moore's model, 423 
Pulse mode FSMs, 773-774, 776 
Synchronous FSMs, 421-424 

ModelSim, 856 
Modular and bit slice devices 

Registers, 561-572 
Counters, 572-605 

Modular approach to design, 561, 562 
Modulo-N counters, 572 
Moore machine, 422 
Moore's model, 423 
Moore output, 422 
MOS 

CMOS, 82-83,814--816, 849-851,852 
NMOS, 82,849-851, 852 
PMOS, 82, 849 

MOSFET,82 
MTBF, 516-517, 805, 821 
Muller C module, 696 (see also Rendezvous 

module) 
Multilevel logic minimization forms 

Due to CRMT methods, 210--229 
Due to factorization, resubstitution, or 

decomposition, 174-179 
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Due to Reed-Muller transformations, 207-209 
Due to use of XOR K-map patterns, 198-207 

Multiple number addition 
Carry-save adder, 349-350 

Multiple output functions, 152-158,222-227 
Multiple output minimization 

CRMT approach, 222-225 
Examples, two-level, 154--158 
Maxterm ~Ring rules, 153 
Minterm ANDing rules 153 

Multiple PLD schemes, 312-316 
Input augmentation, 312-315 
Output augmentation, 313-316 
Partitioned program tables, 315 
Use of tri-state enables, 312 

Multiple pulse generator system, 679-680 
Multiple stage synchronizers, 515-517 
Multiplexers (MUXs), 242-248 

As function generators, 245 
Design, 242-245 
Mixed logic inputs, 247 
Steering logic implementation, 278-279 
Use in combinational logic design, 245-248, 

363-365 
Use in FSM design, 563-564,567,587-588 

Multiplicand and multiplier, 55-57, 351 
Multiplication 

Algorithms, 56, 57-58, 67 
Binary, 55-57 
Floating point number (FPN), 65-66 
Two's complement, 56-58 
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Multipliers 
BCD,389-390 
Binary, 350-353 
Four-by-four bit, 350-353 
Iterative carry-save with CLA, 352-353 
XS3,39O 

Mutual exclusion elements 
Bus arbiters, 801-802 

Mutuaily conjoint terms. 114, 207 
Mutually disjoint terms, 114, 207 
Mutually exclusive requirement, 426-428, 490 

Defined, 427 
Exceptions, 428 

MUX approach 
ALU design. 363-365 

N 
NAND gate 

CMOS,88 
Conjugate gate symbols, 88, 94 
Logic level converter, 90-91 
Mixed logic interpretations, 88, 89 
Multiple inputs. 89 
NMOS, 850 
Physical truth table. 88 
TIL. 851 

Natural binary, 33 
Nested cell designs 

Conversion from LPD designs. 730 
Flip-flops, 444--448 
Hazard-free design of fundamental mode FSMs, 

730-734 
Latches, 441-444,460-461 
Pulse mode FSMs, 776-777, 791-794 
Rendezvous modules (R.\fODs), 695-698 
STI FSMs, 730-734 
V s the LPD approach for STI FSM design, 734 

Nested cell model, 445, 730, 747, 776, 791 
Nested inverse radix, 40 
Nested radix form, 38 
Next state, 421, 422 
Next state function matrix, 543, 724 
Next state (NS) function, 423 
Next state table and the state assignment rules, 

539-542 
NMOS 

Ideal equivalent circuits, 82 
Simplified circuit symbol, 82 

NMOS logic family, 849-851 
Gate examples, 850 
Generalized configuration, 850 
NMOS AOI gate Vs CMOS AOI gate, 851 

Noise immunity, 525 
Noise margins, 81, 240 
Non-restoring logic 

Steering logic, 278-279 
Non-arithmetic combinational logic, 237-279 

Building blocks, 237-238 
Code converters, 257-265 
Combinational shifters, 275-278 
Decodersfdemultiplexers, 248-253 
Design procedure, 241-242 
Encoders, 254-256 
Multiplexers, 242-248 
Magnitude comparators, 265-272 
Part numbering systems, 241 

INDEX 

Parity generators and error checking systems, 
273-275 

Steering logic and tri-state applications, 278-279 
VHDL description, 279-287 

Nonessential minterrns and maxterms, 150-151 (see 

also don't cares) 
Nonoverlapping se~uences, 472 
NOR gates 

CMOS, 90, 91 
Configurations that eliminate fan-in problems, 

377-378,849 
Conjugate gate symbols, 90, 94 
In EAIC system design, 807 
In one-hot programmable sequencer design, 

835-837 
Logic level converter. 90-91 
Mixed logic interpretations. 90, 91 
Multiple inputs. 94, 377-378, 807, 849 
NMOS, 850 
Physical truth table, 90 
TIL,851 

NaT function, 106 
Number systems 

BCD,34-36 

o 

Biased weighted representation, 35 
Binary, 33-34 
Binary coded hexadecimal (BCH), 37 
Binary coded octal (BCO), 37 
Conversion of fractions, 40-43 
Conversion of integers, 38-40 
Diminished radix complement, 48 
Excess (offset) representation, 49 
Fixed-point, 32 
Floating point. 49-52 
Important characteristics, 31 
Positional and polynomial representations, 32 
Radix complement, 45-48 
Signed binary, 43-48 
Signed magnitude, 44-45 
Ten's complement, 45-46 
Two's complement, 46-47 
Unsigned binary, 33-43 
XS3,35-36 

Octal system, 36-37 
Odd parity BCD code, 70 
Offset patterns, 198-203 
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One-bit modular counter design, 584-588 
One-hot code, 70 
One-hot design and analysis of asynchronous FSMs 

Analysis, 752-758 
Guidelines for design, 735 

One-hot-plus-zero approach, 735-738 
Perspective, 738-740 
Programmable sequencers, 835-840 

One-hot design of FSMs 
Asynchronous. 734-740, 835-840 
Synchronous, 636-649, 841 

One-hot design of synchronous FSMs 
One-hot-plus-zero initialization, 639-640 
Parallel-to-serial adder/subtractor controller, 

645-648 
Perspective, logic noise and use of PLDs, 

647-649 
Serial2's complementer, 643-645 
Use of ASM charts Vs state diagrams, 640-644 

One-hot programmable asynchronous sequencers, 
835-840 

Application to a 4-state FSM, 838-840 
Architecture, generalized, 835-837 
Design of a four-state sequencer, 837-838 
NS equations, generalized, 387-838 
Perspective on programmable sequencer design 

and applications, 839-842 
Simulation results, 839-840 

One-hot programmable synchronous sequencers, 
841 

One's complement subtraction, 54-55 
One-to-three pulse generator designs, 532-536, 

615-622 
Operation tables 

Flip-flops, 441,452,454,459 
For counters, 582, 584, 588 
For shift registers. 564, 566, 569 

OR 
Definition, 87 
Logic circuit symbols, 88, 93, 94 
Operator symbols, 87 

OR-AND-Invert (OAI) gate 
CMOS, 319 
Logic equivalent circuit, 319 
Truth tables. 319 

OrCad, 839, 856 
ORGs. See Output race glitches 
OR gate 

CMOS, 93 
Conjugate gate symbols, 93, 94 
Domino logic configuration, 815 
Logic interpretations, 93 
Multiple inputs, 94 
Physical truth table, 93 

Origin and destination states, 493-494, 496 
Output discontinuity, 493 
Output forming logic, 423, 424, 686, 774 
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Output holding register 
Filtering of logic noise. 625, 630-631, 63(H)37 

Output K-maps (tables) 
In asynchronous FSM design, 690-691 
In static hazard analysis, 500-502, 621-622 
In synchronous FSM design, 472-473, 535 

Output race glitches (ORGs) 
Analysis procedure, 496 
As an internally initiated function hazard, 491 
Elimination, 496-499 
Examples, 492-495 
In asynchronous FSMs, 705, 721, 727. 739-740 
In synchronous FSMs, 491-499 

Overflow error detection circuits, 343-345 
Overlapping sequence, 472 

p 

P-term tables 
In programming PLAs and PALs, 304-305, 

317 
Packing density, 239 
PAL, 307-3 IO (see also Programmable array logic 

devices) 
PALUs, 363-380 (see also Programmable 

arithmetic and logic units) 
Parallel accumulator, 607 
Parallel adders, 338-340 
Parallel dividers, 353-357 

Subtractor modules, 354-356 
Parallelloadable up/down counters 

Asynchronous parallel loading, 579-581, 
587-588,664-665 

Branching action, 589 
Cascadable, 575-588 
Data triggered, 664-665 
One-bit modular design, 584-588 
Operation tables, 582, 584, 588 
Perspective on parallel loading, 588-589 
State diagrams, 579, 582. 584 
Synchronous parallel loading, 581-584, 

584-587 
With true hold, 581-588 

Parallelloadable shift registers 
Operation tables, 564, 566, 569 
Right shift register with synchronous parallel 

loading, 562-565 
State diagrams, 564, 566, 569 
Timing diagrams, 565 
Universal shift register with asynchronous 

parallel loading, 568-570 
Universal shift register with synchronous parallel 

loading, 565-568 
Parallel loading of counters and registers, 

perspective, 588-589 
Parallel-Io-serial adder/subtractor controller 

Conventional design with JK flip-flops, 652-655 
One-hot design, 645-647 
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Parallel-to-serial adder/subtractor system 
Controller, 645-648, 652-{555 
Design, 651-655 
Functional partition, 651-{552 
Timing diagram, 653 

Parity bit, 273 
Parity generators and detectors 

Design, 273-274 
Use of in error checking systems, 274-275 

Partitioning method for state code assignments, 
721-723 

Procedure, 721-722 
11" -partitions, 721-722 
Seed sets, 722-723 
r -partitions, 722 

Part numbering systems 
CMOS and TI'L logic families, 241 
ECL logic family, 241 

Parasitic capacitance effects, 517 
Passive switching devices, 84, 278 
Pass transistor switches, 84-85 (see also 

transmission gates) 
Pausable clock systems 

Externally asynchronous/internally clocked 
(EAIC) systems, 806-823 

PDP, 240 (see also Power-delay product) 
Performance characteristics of IC logic families 

Table, qualitative assessments, 852 
Performance characteristics of switching devices, 

238-241 
Cost, 241 
Fan-in and fan-out. 240-241 
Noise margins, 240 
Packing density. 239 
Power-delay product, 240 
Power dissipation, 239-240 
Propagation delay (switching speed), 239 

Phase-locked loops, 521 
PLAs. See Programmable logic arrays 
PLDs. See Programmable logic devices 
PMOS 

Ideal equivalent circuit, 82 
Simplified circuit symbol, 82 

Polarized mnemonics, 80, 81 
Polynomial representations 

Binary numbers, 33 
Number of radix r, 32 

POS hazards (see also static hazards) 
In asynchronous FSMs, 710-711 
In combinational logic circuits, 394-396, 398 
In synchronous FSMs, 501, 506-507 

POS representation, 134 
Canonical form, 135-137 
Expansion of reduced forms, 135-136 
Use of max term code, 134-137 

Positional representation of a number, 32 

Positional weight, 33, 35 
Power-delay product (PDP), 240 
Power dissipation 

Dynamic, 240 
Static (quiescent), 815, 849 

Powers of 2. table, 76 
Present state/next state (PSINS) table 

INDEX 

Use of in analysis of FSMs, 476, 741-742 
Preset asynchronous overrides 

In flip-flops, 463-464 
Prime implicants, 148-150 

Essential, 149 
Optional, 149 
Redundant, 149 

Priority encoders 
Cascadable, 254-256 
Collapsed truth tables, 255 
Logic circuits, 255-256 
Noncascadable, 256 

Product-of-sums (POS) representation, 134 
Canonical forms, 135-137 
Use of max term code, 134-137 

Programmable array logic (PAL) devices, 
307-310 

Applications, 617-619 
Basic UO type, 309 
L-type, 309 
Mixed logic inputs and outputs, 310-311 
R-type, 309 
Symbolic representation, 308 
V-type, 310 

Programmable logic arrays (PLAs) 
Applications, 302-306 
Architecture, 30 I, 303 
Dimensions, 301 
FPLAs, 302 
Fusible links, 304 
Mixed logic inputs and outputs, 310-311 
NMOS connections (switches), 302-303 
Programming, 302-304 
P-term tables, 304-305 
Symbolic representation, 306 
Types, 302 

Programmable logic devices (PLDs) 
FPGAs, 319-328 
EPLDs, 328 
FPLSs,328 
GALs, 328 
PALs, 307-310 
PLAs, 302-306 
ROMs, 295-301 

Programmable read-only memories (PROMs) 
Application, 299-301 
Bipolar, 298 
Dimensions, 296 
Fusible links, 297 



INDEX 

MOS architecture, 297 
Symbolic representation, 300 

Progranunable sequencers, 823-842 
Microprogrammable asynchronous controller 

(MAC) modules, 823-835 
One-hot, 835-839 
Perspectives, 834-835, 839--842 

PROMs, See Programmable read-only memories 
Propagation delay, 239 

Levels of, 197-198 
Pulse mode FSMs 

Analysis, 788-794 
Candy bar vending machine system, 782-788 
Characteristics, 777-778 
Design examples, 779-788 
Digital combinational lock, 781-783 
Feedback delays for nested cell designs, 793-794 
Inputrequirements,774-775 
Memory elements, 774-777 
Models, 774, 776 
~ested cell approach, 776, 791-794 
Perspective, 795-796 
Pulse narrowing circuits for nested cell designs, 

793 
Security area controller, 800-801 
Sequence recognizer, 779-781 
Simulations, 780, 788, 791, 793 

Pulse narrowing circuits, 444 
Pulse synchronizer module, 743-747 
Pulse width adjuster, 547-549 

Q 
Quad, groupings of logic adjacencies, 145 
Quadratic convergence 

Algorithm, 62 
In fast binary division, 59-62 

Quiescent power dissipation, 815, 849 
Quine-McCluskey algorithm, 169-173 

Applications, 170-172 
Notation, 170 

R 
Race conditions 

In critical race analysis, 703-704 
In E-hazard analysis, 711-713 
In ORG analysis, 492-494 
Race gate, 711 

Radix complement representation 
Algorithms, 46 
Radix, r,45 
Table for 2', complement, 47 
Ten's complement. 45-47 
Two's complement, 46-47 

Radix divide method, 38 
Radix multiply method, 41 
Reading mixed-logic circuits, 97-98 

Read only memories (ROMs), 295-301 
Applications, 299-301, 618-626 
Architecture, 296, 297 
Dimensions, 296 
EEPROMs, 298 
EPROMs, 298-299 
Fusible links, 297 
Mixed logic inputs and outputs, 310, 311 
NMOS connections, 297 
Programming, 297-299 
PROMs, 297 
Symbolic representation, 300 
UVEPROMs, 298 

Redundant cover (see a/so static hazard cover) 
As used to eliminate s-hazards. 392 

Redundant prime implicant, 149 
Reed-Muller coefficients, 207 
Reed-Muller transformations, 207-209 

Minimum function extraction, 209-217 
POS-to-EQPOS, 208-209 
SOP-to-EXSOP,207-208 

Reflective codes 
Gray, 70.71 
XS3 gray, 71 

Registered PLDs 
FPGAs, 321-328 
General purpose, 328 
R-type PALs, 307, 309 
V-type PALs, 307, 309-310 

Registers, 561-572 (see a/so Shift registers) 
Shift, 562-572 
Storage, 561··-563 

Rendezvous modules (RMODs) 
As memory elements in asynchronous FSM 

design, 771 
In bus arbiters, 802-803 
Logic circuits, 696, 697 
Logic circuit symbol, 794 
LPD design, 759-760 
Nested cell design, 695-698 
Timing diagram, 697 
Use in delay circuit design, 794-795 

Reset-dominant basic cell 
EV K-maps for, 431, 433 
Excitation table, 432, 433 
Logic circuit, 431, 435, 436,695 
Mixed-rail output response, 436 
Mixed-rail outputs, 435 
~ext state function, 432, 694 
Operation table, 43\ 
State diagram, 432, 695 
Timing diagrams, 432, 436, 695 

Residue 
In finding static hazard cover, 392 

Restoring (active) switching devices, 84 
Re-substitution method, 176-J 77 
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RET, 437-438 (see also Rising edge triggering) 
RET D flip-flop, 444-448, 698-700 
RET JK flip-flop, 454-456, 700-701 
Reverse bias 

In diodes of inertial delay elements, 794-795 
In diodes of sanity circuits, 524 

Ring counters, 590-593 
Ripple counters, 600-605 

Bi-directional, 604-605 
Decade, 603-{504 
Design, 600-605 
Choice of memory elements, 600, 60l-{502 
Logic circuits, 601, 604 
Propagation delay, 602 
State diagram, 603 
Timing diagram, 60 I 

Rising edge triggered D flip-flop 
Design, 444-448, 698-700 
Logic circuits, 448, 700 
Logic circuit symbol, 448 
Next state and output functions, 447,698 
NS and output K-maps, 446, 699 
State diagrams, 445, 446, 698, 699 
Timing diagram, 449 
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