Frrﬂgmmmor to |J!'U§~.’,rdrﬂrﬂvr:"'

Professmnal

ADO.NET 2

Programming with SQL Server-
2005, Oracle; and MySQL

Wallace B. McClure, Gregory A. Beamer, John). Croft IV, J. Ambrose Little, Bill Ryan,
Phil Winstanley, David Yack, Jeremy Zongker

Wrox:

Updates, source code, and Wrox technical support at www.wrox.com

Professional ADO.NET 2
Programming with SQL Server 2005,
Oracle®, and MySQL®

Wallace B. McClure
Gregory A. Beamer
John J. Croft IV
J. Ambrose Little
Bill Ryan
Phil Winstanley
David Yack
Jeremy Zongker

WILEY

Wiley Publishing, Inc.

Professional ADO.NET 2
Programming with SQL Server 2005,
Oracle®, and MySQL®

Professional ADO.NET 2
Programming with SQL Server 2005,
Oracle®, and MySQL®

Wallace B. McClure
Gregory A. Beamer
John J. Croft IV
J. Ambrose Little
Bill Ryan
Phil Winstanley
David Yack
Jeremy Zongker

WILEY

Wiley Publishing, Inc.

Professional ADO.NET 2 Programming with SQL Server
2005, Oracle®, and MySQL®

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN-13: 978-0-7645-8437-4
ISBN-10: 0-7645-8437-5

Manufactured in the United States of America

10987654321

1B/RW/RR/QV/IN

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355 or
online at http: //www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. Linux is a registered trademark
of Linus Torvalds. MySQL is a registered trademark of MySQL AB A Company. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.wiley.com

About the Authors
Wallace B. McClure

Wallace B. McClure graduated from the Georgia Institute of Technology in 1990 with a bachelor of
science degree in electrical engineering. He continued his education there, receiving a master’s degree in
the same field in 1991. Since that time, he has done consulting and development for such companies as
Coca-Cola, Bechtel National, Magnatron, and Lucent Technologies, among others. Products and

services have included work with ASP, ADO, XML, and SQL Server, as well as numerous applications in
the Microsoft .NET Framework. Wally McClure specializes in building applications that have large
numbers of users and large amounts of data. He is a Microsoft MVP and an ASPInsider, and a partner in
Scalable Development, Inc. You can read Wally’s blog at http: / /weblogs.asp.net/wallym/.

Gregory A. Beamer

Gregory A. Beamer is a solutions architect specializing in Microsoft Internet technologies. Greg got
involved in programming in the early 1990s with Visual Basic 3 and has stayed on the leading edge of
Microsoft Internet technologies since the Denali beta (ASP 1.0). Greg first worked with .NET with the
PDC 2000 beta and has been on both the SQL Server 2005 and .NET 2.0 betas since spring 2003. When
Greg is not working, he spends his time with his wife, Tiffany, and their four daughters, Rebecca, Emily,
Annabelle, and Miranda.

John J. Croft IV

John J. Croft IV graduated from the Georgia Institute of Technology in 1991, receiving a bachelor’s
degree in mechanical engineering. He then spent five years consulting for large companies, including
Coca-Cola, BellSouth, and MCI. Work at these companies primarily involved C and C++ programming
and object-oriented systems analysis. His various clients have included both Fortune 100s and small
startup companies. Their problems have ranged drastically, from large databases and executive informa-
tion systems to lithotripter control and satellite telemetry. Croft has completed projects with Java, XML,
and, recently, C# and .NET applications. He is a partner in Scalable Development, Inc.

J. Ambrose Little

Ambrose is the editor-in-chief of the ASPAlliance, an ASPInsider, and a Microsoft ASPNET MVP who
currently works as a Web architect for a large credit union in Tampa, Florida. Previously, he worked as a
consultant at Verizon, creating XML Web Services and middle-tier components, and for BOK Financial’s
Web Services department creating ASPNET applications for their intranet. His pre-.NET programming
experience consists mostly of developing Web applications using ASP and VB COM/DCOM for several
years. He has a bachelor’s degree in medieval European history, which remains an interest. Apart from
developing software, he enjoys movies, reading, writing, foosball, chess, tennis, badminton, and spend-
ing time with his wonderful family.

About the Authors

Bill Ryan

Bill currently works as a senior software developer for TiBA Solutions in Greenville, SC. He is also a
Windows Embedded MVP, has served on Macromedia’s Flash Advisory Board, and helps run two
popular .NET Focused Web sites (www.devbuzz.com and www . knowdotnet . com) and his blog

www . msmvps . com/WilliamRyan. After earning his master’s degree in business administration, Bill
began work as a statistical analyst, but quickly realized that his true love was programming. He has
worked in multiple industries, including financial services/securities, manufacturing, health care, phar-
maceuticals, and, currently, consulting. Bill is a frequent speaker at user’s group meetings, has spoken at
multiple Microsoft Code Camps, and has hosted multiple MSDN Webcasts. Although technologically
related things consume most of his time, Bill’s other interests include cult films, economics,
Freemasonry, cuckoo clocks, and, most important, his girlfriend, Kim, and her daughter, Sarah.

Phil Winstanley

Phil Winstanley is a Web applications developer working for Portfolio Europe, located in Manchester,
England. He has been involved with ASP.NET since its inception, and has developed a deep understand-
ing of the platform. As a Microsoft MVP (Most Valuable Professional), member of the ASPInsiders,
co-owner of Microsoft Web Developers UK, and the North West England Regional Director for the NET
Exchange, Phil is deeply embedded in the development community and works closely with the Web
Platforms team at Microsoft, regularly visiting the developers in Redmond, Washington.

David Yack

David is the president of Colorado Technology Consultants, Inc. He is a hands-on technology

consultant with solid management experience in privately held and Fortune 500 companies and has over
15 years of experience in the IT industry. David is currently responsible for leading Colorado Technology
Consultants’ focus on Microsoft .NET technologies. David is an active participant in the Microsoft
development community, ranging from the Denver .NET user group to Microsoft’s Public Communities,
such as www.asp.net and http://aspalliance.com. David is the leader of the South Colorado .NET
user group. David is recognized by Microsoft as a NET MVP (Most Valuable Professional).

Jeremy Zongker

Vi

Jeremy Zongker is a software development manager who works primarily on data-driven ASP.NET
applications with Microsoft SQL Server databases. He is a Microsoft Certified Solutions Developer for
.NET and a 2004 MVP for ASP.NET. Jeremy is the founder and senior developer for Trilitech, LLC, a
Broken Arrow, Oklahoma, software development company.

Acquisitions Editor
Bob Elliott

Development Editor
Gabrielle Nabi

Production Editor
William A. Barton

Technical Editor
Wiley - Dreamtech India Pvt Ltd

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Vice President and Publisher
Joseph B. Wikert

Credits

Project Coordinator
Michael Kruzil

Graphics and Production Specialists

Carrie Foster
Denny Hager
Jennifer Heleine
Alicia B. South

Quality Control Technicians
Amanda Briggs
John Greenough

Media Development Specialists
Angela Denny

Kit Malone

Travis Silvers

Proofreading and Indexing
TECHBOOKS Production Services

For my wife, Ronda, my two children, Kirsten and Bradley, and the rest of my family.
—Wallace B. McClure

To my loving wife and four daughters, and to God, without whom the aforementioned miracles would
not be possible.
—Greg Beamer

To my wife, Valerie, for her support, and to my boys, Jack and Conor, for their patience on the weekends
while I was writing.
—John J. Croft IV

To my mom and stepfather, for putting up with me all of these years and always being there. To my
girlfriend, Kim, and her daughter, Sarah, for always being able to make me smile.
—Bill Ryan

For my wife, Julie, and my two great kids, Drew and Jacqueline.
—David Yack

For my wife, Jeanette, for her support, patience, and understanding during the many hours I worked on
this book.
—Jeremy Zongker

To my caring father and mother, my loving brother, and to the Almighty, for giving me the power to
work every day.
—Anand Narayanaswamy,
Technical Editor

Acknowledgments

The initial planning and thinking about this book began during a discussion of SQL Server futures in
July 2001. The discussion was with Rob Howard during a trip to Microsoft to discuss the first book I was
working on at that time. After that, I stayed involved in what was happening in ADO.NET by going to
the SQL Server Yukon Technical Preview in Bellevue, Washington, in February 2002 and by working
with the ASPNET and SQL Server teams at Microsoft since July 2003.

Shortly after the excitement of talking with Bob Elliott at Wiley about this book wore off, it became
apparent that I would need to put together an author team that knew about the problems Microsoft was
trying to solve with ADO.NET Version 2. It is fortunate that I had recently been named a Microsoft MVP
and an ASPInsider. Based on memberships in those groups, I was able to work with and gain the respect
of Jeremy Zongker, Ambrose Little, and Phil Winstanley. From that group, I was able to meet David
Yack, William (Bill) Ryan, and Gregory Beamer. Adding these six people to John Croft and myself, we
created a really good group to work with. I want to thank them for working together very well, for
working quickly, and for examining the new features that are provided by ADO.NET 2 that are of partic-
ular interest to developers and readers of this book.

Personally, I would like to thank Bob Elliott for keeping me focused on what was going on and working
with us to develop this book. Our thanks also go out to the editorial staff at Wiley. Their help keeping us
on track as “life happened” was appreciated. The work of our technical editor, Anand Narayanaswamy,
was impressive, and his attention to detail was great. Many other people behind the scenes have worked
hard on the book. By pulling this group together, Wiley created a team that was dedicated to creating the
best possible book on ADO.NET Version 2. For that, we are truly appreciative.

— Wallace B. McClure and the author team

Contents

Acknowledgments xi
Contents Xiii
Introduction XXV
What This Book Is About XXV
Who Should Buy This Book XXV
How to Use This Book XXvi
What This Book Covers Xxvi
Providing Feedback XXvii
Chapter 1: History of Data Access 1
The Early Days 2
CODASYL 2
IMS 3
Relational Databases 3
The Birth of Universal Data Access 4
oDBC 4
OLE-DB 5
Data Access Consumers 6
DAO 6
RDO 7
ADO 8
ADO.NET 10
ADO.NET 2.0 11
Summary 12
For More Information 12
Chapter 2: Standardized Database Objects and Design 13
Creating Databases 13
Naming Conventions 15
Tables 15
Stored Procedures 17
Primary Keys 19
Foreign Keys 20

Indexes 22

Contents

Xiv

Views 22
Help with Normalization 22
Enforcing Security 23
Creating Compiled Views of Data (Reports) 23

Normalizing 24
Why Normalize Data? 24
Types of Normalization 25
Designing a Normalized Database 26
Ensuring Quality Data 26
Making a Flat Database Normalized 28
A Black Cloud on the Horizon 30

Working with Someone Else’s Database 30
Don’t Make It Worse 31
Using Views for Database Abstraction 31
Using ADO.NET to Create a Normalized View of the Data 32
Building Strongly Typed Business Objects 33
Bringing Them Together 34

To Delete or Not to Delete . . . 35

Getting at the Data from Your Code 35

Summary 37

For More Information 37

Chapter 3: ADO.NET Essentials 39

Not Another ADO Release! 39
No Revolutions 40
Obsolete APIs 40
APls in Their Twilight Months 41

The Generic Factory Model 42
Providers 43
ADO.NET to the Rescue 44
DbProviderFactories 46

Generic Factory versus Specific Providers 47
Pros 47
Cons 47

Writing a Helper Class 48

Data Sources 51

Connection Strings 53
Connection String Collection 54
Intelligent Connection Strings 54
Provider-Specific Connection Strings 55

Contents

Conditionally Adding Connection String Parameters 57
Provider-Specific Connection String Parameters 57
Connections 60
Opening a Connection (and Making Sure It's Open) 60
Closing a Connection (and Making Sure It's Closed) 61
Managing Exceptions 62
Provider-Specific Features 66
Schema Metadata 67
Available Information 68
Restrictions 73
Reserved Words 75
Source of the Schema Information 76
Uses for Schema Metadata 77
Commands 77
DbCommand from a Factory 77
DbCommand from a DbConnection 78
Provider-Specific Commands 78
Quoteldentifier and Unquotedldentifier 78
Adding DbParameters to a DbCommand 79
Parameters Are Not Generic 80
ExecuteNonQuery 81
ExecuteReader 81
ExecuteScalar 83
Output Parameters, Return Codes, Scalars, and DataReaders 84
DataSet 88
Manually Populating a DataSet 89
Using DataAdapters 89
Using DataReaders 90
DataTable 90
RowState 21
DataView 91
Serialization 92
DataTableReader 93
Streaming 93
Namespace Qualified Tables 94
Indexing Engine 94
DataSet, DataTable, DataReader, or an Object? 95
Showing Data to Users without Any Manipulation 95
Editing Data That Lives in One Table 95
Editing Data Spread across More Than One Table 95

XV

Contents

Editing Continuously Updated Data for Which the Chance of Collisions Is High 96
Getting One Value from a Database 96
Summary 96
For More Information 96
Chapter 4: Standard Data Types 97
Data Types in SQL Server 98
CHAR (CHARACTER) 98
VARCHAR (CHAR VARYING or CHARACTER VARYING) 98
TEXT and VARCHAR(MAX) 99
National Character Storage 99
INT (INTEGER) 99
BIGINT 100
SMALLINT 100
TINYINT 100
DATETIME (TIMESTAMP) 100
SMALLDATETIME 100
REAL (FLOAT(24)) and FLOAT (FLOAT and DOUBLE PRECISION) 101
NUMERIC and DECIMAL (DEC and DEC(p,s)) 101
MONEY and SMALLMONEY 102
BINARY, VARBINARY, IMAGE, and VARBINARY(MAX) (BINARY VARYING) 102
Using BINARY to Store Flags 103
BIT 107
TIMESTAMP 107
SQL_VARIANT 107
UNIQUEIDENTIFIER 108
XML 108
TABLE and CURSOR 108
Data Types in ADO.NET and .NET 109
SqlTypes 109
Other Alternatives 113
Mapping SQL Server Data Types to .NET 114
Summary 116
For More Information 116
Chapter 5: ADO.NET Integration with XML 117
What This Chapter Covers 118
Where XML Is Today 119
Data Exchange 119
XML Web Services 119

Xvi

Contents

Configuration Files 120
Text Markup 120
Design Goals for System.Xml 2.0 120
XmlIReader and XmIWriter 121
Factory Methods 121
Easier Object Serialization 122
Conversion between XML Types and Framework Types 123
Other XmIReader Enhancements 124
Designer Enhancements 124
XML Designer 124
XSL Debugging 125
XSD Enhancements 126
Security 127
XPathDocument 128
Editing 128
Validation 131
Change Notification 133
XSLT Improvements 134
Performance 134
Where XML Is Heading 135
XPath 2.0 135
XSLT 2.0 and XQuery 135
XML Views 136
ObjectSpaces 136
Summary 137
For More Information 137
Chapter 6: Transactions 139
Basic Concepts 139
A.C.I.D 140
Transaction Types 141
Isolation Levels 142
Creating a Local Transaction 143
Distributed Transactions 145
Distributed Transactions in ADO.NET 2.0 146
Monitoring Transactions and Their Performance 149
How Does This Affect Local Data? 150
Nested Transactions 153
Transactions in Web Services 155
Flow-Through Transactions 156

Xvii

Contents

Getting System.Transactions to Work Correctly 156
Summary 157
For More Information 157
Chapter 7: Data Binding 159
Windows Forms versus Web Applications 159
The Concept of Data Binding 160
Options for Getting the Data 160
One-Way Binding versus Two-Way Binding 163
Data Binding in ASP.NET 163
Benefits of the Data Source Concept 164
Data Source Controls Provided with ASENET 2.0 164
Passing Parameters to Data Source Controls 165
Validation of Parameter Data 166
Data Source Caching 167
The ASENET Ul Controls 169
SQLDataSource Control 170
Beware of Provider-Specific Syntax 175
ObjectDataSource Control 176
Table Adapter and Typed DataSets 185
Generating DataSource Controls 189
Windows Forms Applications 191
Where Did My Data Components Go? 192
Dragging and Dropping a Table 192
Data Sources 192
The Windows Form Ul Controls 197
Summary 199
For More Information 199
Chapter 8: Building a Custom ADO.NET Data Provider 201
A Brief Overview 202
AdsConnection 203
AdsConnectionStringBuilder 209
AdsCommand 211
AdsDataReader 219
User Properties versus Active Directory Properties 221
Other AdsDataReader Members 226
AdsDataAdapter 228
AdsFactory 231

xviii

Contents

Getting Ready for Use 233
Summary 233
For More Information 234
Chapter 9: T-SQL Language and Enhancements 235
An In-Depth Look at T-SQL 238
Structured Exception Handling 240
OUTPUT 249
Top X 250
Common Table Expressions 252
PIVOT 254
UNPIVOT 256
Ranking 256
Summary 264
For More Information 264

SQL Server and ADO.NET 265
Asynchronous Commands in ADO.NET 266
BeginExecuteNonQuery 267
BeginExecuteReader 269
BeginExecuteXMLReader 271
Asynchronous Operations in ASP.NET 272
IAsyncResult 275
Final Words of Warning with Asynchronous Operations 276
Multiple Active Result Sets 276
What Is MARS Useful For? 277
Technical Issues with MARS 277
Enumerating SQL Servers 278
Connection Pooling 279
Password Management 280
Building a SQL Connection with the SqlConnectionStringBuilder Class 281
SQL Server Types (SqlTypes) 283
Structures 284
Using SqlTypes 287
Using SqlDbType 290
Bulk Copy with SQL Server 291
Provider Statistics 292
SqlCacheDependency 293

Xix

Contents

Chapter 11: SQL Server 2005 Server-Side Programming

Extended Stored Procedures
CLR Objects

XX

SqglCacheDependencyAdmin
SqlDependency

Summary
For More Information

Set-Based Programming
Procedural Programming

Using CLR Objects

Creating CLR Objects

SQL Server Projects

Assemblies and CLR Object Tables/Functions
Triggers

SqlTriggerContext

Updating Columns

EventData for DDL Triggers
Sample Code

Stored Procedures

Functions

User-Defined Types

User-Defined Sample Code
Manually Creating Tabular Results
SqlContext

The Context Connection

SQL CLR Architecture

Placing Business Logic
When to Use T-SQL and CLR Objects

SQL Server Management Objects

General Design

Referencing Objects through URN

Creating Objects

Creating a Database

Creating a Table, Its Columns, and an Index
Creating a User

Creating a Foreign Key

Creating a Backup

Scripting with SMO

XML Web Services Processing in the Database

297
297
300
300

301

301
302
302
303
303
304
306
310
311
311
313
313
314
318
319
324
324
326
327
327
328
328
329
329
330
331
331
332
334
336
337
338
341
343

Contents

Creating an Endpoint 344
Summary 346
For More Information 346
Chapter 12: Notification Services 347
Major Components 348
Subscription Management Application 348
Event Provider 349
Generator 349
Distributor 350
Instances and Applications 350
Configuring the Instance 350
The Application Definition File 352
Adding the SQL NS Instance 356
Building the Subscription Management Application 357
Retrieving a List of Subscribers 357
Adding/Removing a Subscriber 358
Device List 360
Device Edit 361
Subscription List 363
Subscription Edit 364
Firing an Event 367
Summary 368
For More Information 368
Chapter 13: Service Broker 369
An Introduction to Service Broker 369
Working with Service Broker: A Simple Example 371
Processing Messages 381
Technical Bits 394
Queues 394
Service Broker Catalog Views 396
Making It Easier 399
Summary 400
For More Information 401
Chapter 14: Full-Text Searching 403
What Is Full-Text Searching? 403
Terminology 404

XXi

Contents

How Does Full-Text Indexing Work? 405
Microsoft Full-Text Engine for SQL Server Service 405
What Does a Full-Text Index Look Like? 405
How Is a Full-Text Index Populated? 406

Predicates, Programming, and the Results 412
Queries 412
Multi-Column Queries 418
Language Settings 418
Ranking 419

Searching XML and BLOBs 422
XML 422
BLOBs 422

Extending Full-Text Search with Filters 425

Summary 426

For More Information 426

Chapter 15: Reporting 427

An Introduction to Reporting 428
Scenario 428
Implementation 428
Web Application, or “Look Ma, No Code ...” (Part One) 430

Reporting Services 432
Our Simple Report in Reporting Services, or “Look Ma, no Code ...” (Part 2) 432
A Brief Primer on Report Definition Language 436
Using the Reporting Service Server 438
Building Report Models, or How to Slough Some of the Work off on the Biz Guys! 460

Summary 464

For More Information 465

Chapter 16: ADO.NET 2 and Open-Source Databases 465

Open Source and Licensing 465

Databases 466
MySQL 466
MaxDB (formerly SAPdb) 477
Firebird 485
Ingres 492
PostgreSQL 497
BerkeleyDB 502
SQLite 508

Summary 512

For More Information 513

xXii

Contents

Chapter 17: Oracle and ADO.NET 515
Choosing an Oracle Data Provider 515
Common Provider Classes 516
Microsoft Oracle Provider 517
Oracle Data Provider for .NET (ODPNET) 518
Oracle Developer Tools for Visual Studio .NET 519
Common Oracle Errors 533
Using Tracing to Find Problems 534
Understanding Packages 535
Regular Expression Support 536
Database Change Notification 538
Using the BFile Type 543
Oracle Services for Microsoft Transaction Server 543
Oracle Database Extensions for .NET 544
Installation of the Database Extensions 544
Building a .NET Stored Procedure 544
Summary 548
For More Information 548
Appendix A: Constants/Enums in ADO.NET 549
Index 585

xxiii

Introduction

Thank you for purchasing Professional ADO.NET 2. We know you have a lot of options when selecting a
programming book and are glad that you have chosen ours. We're sure you will be pleased with the
relevant content and high quality you have come to expect from the Wrox Press line.

What This Book Is About

A few years ago, Microsoft released the 1.0 Framework of ADO.NET and revolutionized the way we
access data. It was a drastic change that took some getting used to, but for the most part, developers
who made the switch love it. It's now over three years later, and ADO.NET 2.0 is here. It provides all the
same features that we’ve come to love in ADO.NET 1.0 and adds some new ones to provide even more
functionality and make repetitive, mundane tasks much simpler. Throughout this book, we dig deeply
into many of these new features.

As you start reading, you’ll notice that several chapters go beyond ADO.NET, focusing more on
Microsoft SQL Server 2005. This is because the two are very tightly related. Many of the new features in
ADO.NET 2.0 are designed to be used with Microsoft SQL Server 2005, and many of the new features
found in SQL 2005 require ADO.NET 2.0 to get the most benefit from them. It wouldn’t be practical to
speak strictly about ADO.NET without providing some basic working knowledge about what’s new in
SQL 2005. Most people will likely move to both technologies around the same time, so this additional
information should be very beneficial.

Who Should Buy This Book

As mentioned previously, this book contains information about both ADO.NET 2.0 and Microsoft

SQL Server 2005. It is useful for a wide variety of people, including IS managers, project managers,
developers, database administrators, system architects, business analysts, and software testers. Of
course, because it focuses on developing applications using ADO.NET, software developers will benefit
most from it.

Because this book focuses primarily on the new features of ADO.NET 2.0, prior knowledge of ADO.NET
1.0, general .NET development, and Microsoft SQL Server is assumed. In order to completely use the
information in this book, you will need a copy of Visual Studio 2005 and Microsoft SQL Server 2005.

Introduction

How to Use This Book

To provide consistency throughout the book and help you quickly identify important pieces of
information, several standards have been used. We recognize that many developers have their own
naming conventions. However, we are using the naming conventions recommended by Microsoft, at
http://msdn.microsoft.com/library/en-us/cpgenref/html/cpconnamingguidelines.asp,
which should also be compatible with the default rules in Fx Cop.

We have employed a standard format for highlighting code. Any time a code example is presented for
the first time, it appears with a gray background, like this:

Private Sub HelloWorld()
Response.Write("Hello World")
End Sub
Any time a section of code is presented again, it appears without the gray background:
Private Sub HelloWorld()
Response.Write("Hello World")

End Sub

We highlight important information by having it appear in a box, like this:

This is an important fact.

Notes or tips appear in italics, like this:

This is a note.
Because this is a book written by programmers for programmers, it includes a lot of code samples. If you
want to download these samples, you can do so from our Web site, at www . wrox. com. The code samples
in the book are provided in VB.NET, but C# samples are also available for download from the Web site.
We tried our best to ensure that this book was error-free, but every once in a while, errors slip through.

To keep you informed of necessary corrections, you can find the complete errata on our Web site. If you
discover an error that hasn’t been reported yet, please let us know by going to www.wrox . com.

What This Book Covers

The following list provides a breakdown of the topics covered in each chapter:
Q Chapter 1—A brief history of data access technologies so you can see why some of the

features are needed. It also touches on the major design goals of ADO.NET 2.0 and highlights
what is covered in the rest of the book.

XXVi

Introduction

Chapter 2—Basic database design concepts, primarily in Microsoft SQL Server 2005. It also cov-
ers creating databases, tables, and views following third normal form and the importance of pri-
mary and foreign keys. It shows you how to optimize performance using indexes and other
methods, and in general provides you with a solid foundation for developing database-driven
applications.

Chapter 3—The basics of creating a connection, executing a query, and returning a result. It also
digs deeply into many of these areas, showing best practices and techniques for optimizing
your code. It covers scenarios for which it may or may not be appropriate to use features such
as DataSets and DataViews. It also covers the various options for persisting data back to a
database, and introduces new techniques in ADO.NET 2.0. Finally, it introduces the new APIs
available for schema discovery and connection pooling.

Chapter 4—Delves into the new data types available in the 2.0 Framework, and discusses the
appropriate situations in which to use them.

Chapter 5—Covers many of the new features available for XML integration. It offers a brief
overview of how XML evolved, the numerous designer enhancements and new features avail-
able in XmlIReader and XmlWriter, and introduces the XPathDocument as the new standard for
storing XML documents. It details new validation features and highlights many of the perfor-
mance gains available in this framework, and provides a roadmap to where XML technologies
are heading.

Chapter 6—Looks into the new transactional capabilities available in the ADO.NET 2.0
Framework and how to integrate them with Microsoft SQL Server 2005 and other data sources.
It covers locking, replication, and other design issues.

Chapter 7—Covers the details of data binding. It shows how to use the ADO.NET 2.0 design

time programmability features in Visual Studio.NET. It also shows off the new TableAdapters
and DataConnectors. You will see how you can data bind not only to database queries, but to
Web services, business objects, and other sources.

Chapter 8—In this chapter, you learn how to create a custom ADO.NET managed provider. Step
by step, you'll create your own provider, including the various interfaces for creating connec-
tions, commands, readers, and adapters.

Chapter 9—Shows the new TSQL language enhancements available in Microsoft SQL Server
2005. It also covers how these new features tightly integrate with the ADO.NET 2.0 Framework.

Chapter 10—Covers the details of integrating the new Microsoft SQL Server 2005 features into a
client application using ADO.NET 2.0. In this chapter, you learn about the new asynchronous
support features, the capability to return multiple result sets from a query, and how to initiate
bulk copies. You also learn how to use the new caching features, create your own user-defined
data types, and explore various new APIs for working with Microsoft SQL Server 2005.

Chapter 11—Shows how to use many of the new CLR capabilities of Microsoft SQL Server 2005.
You'll learn how to create CLR code in stored procedures, how to use CLR objects for data
types, and how to debug your CLR code in Microsoft SQL Server 2005.

Chapter 12—Provides a detailed description of how to create a Notification Services application
in Microsoft SQL Server 2005. It starts from the beginning, assuming no prior experience with
notification services, and shows how to create an application from the ground up, including
how to interface with that application from custom .NET code.

Xxvii

Introduction

a

Chapter 13—Shows off the message queuing functionality in the .NET 2.0 Framework by intro-
ducing the Service Broker. It covers the feature set and the various options and describes how to
use them to develop scalable applications.

Chapter 14—Displays how to use the full text search capabilities of Microsoft SQL Server 2005.
It provides a background on full text searches, covers the new features available and how to
enable them, and describes the best practices for using them.

Chapter 15—Many tools are available for retrieving data and presenting it in various ways. This
chapter covers some of the most common tools, such as Crystal Reports, Microsoft SQL
Reporting Services, OLAP, and other business analysis tools, and shows how to best use them
with Microsoft SQL Server 2005.

Chapter 16—MySQL is an option for data storage that is rapidly growing in popularity. In this
chapter, you examine the new provider available for MySQL and learn how to best utilize it to
maximize performance and scalability.

Chapter 17—Shows how to best use Oracle in the ADO.NET Framework. It shows off the fea-
tures specific to the Oracle Managed provider in ADO.NET 2.0. It covers topics such as blobs,
clobs, bfiles, packages, and transactions.

Providing Feedback

This book wouldn’t have been possible without the hard work of many people. We know our readers
work hard for their money and have high expectations regarding the quality of the books they purchase.
We have strived to exceed those expectations, but are always looking for ways we can improve. We would
love to hear your feedback. If you would like to report an error, let us know what you did and did not like
about various sections, or suggest what you’d like to see in future versions, please contact us via our Web
site, at www . wrox . com. Once again, thank you for your purchase and we hope you enjoy the book.

XXViii

History of Data Access

Over the years, many APIs have been released, all of which work toward the goal of providing
universal data access. Universal data access is the concept of having a single code base for accessing
data from any source, from any language.

Having universal data access is important for four reasons: First, developers can easily work on
applications targeting different data stores without needing to become experts on each one. Second,
developers can have a common framework for data access when switching between programming
languages, making the transition to new languages easier. This is especially important in the NET
Framework, in which developers are expected to be able to easily switch between VB.NET and C#.
Third, it enables developers to more easily write a single application that can be deployed against
multiple data stores. Finally, it provides a level of abstraction between the application and direct
communication to the database to simplify the code the average developer needs to write.

Microsoft has conducted surveys to determine which key factors companies are looking for in a
data access layer. They came back with four main points, which they have tried to implement in
their databases and data access components:

Q High performance — As any developer knows, performance can make or break almost
any application. No matter how much a data access layer may simplify accessing the data,
it absolutely must perform nearly as well or better than the alternatives before it becomes
a viable solution for the majority of applications.

Q High reliability —If a component consumed by an application is buggy or occasionally
stops working, it is perceived by the users as an error in that application. In addition to
being a liability and annoyance to the company that implemented the application, it also
reflects very poorly on the developer(s) who wrote the application. Any issues, such as
memory leaks, that cause unreliable results are unacceptable to the development community.
It’s also very important to the support personnel that it be fairly maintenance-free. No one
wants to have to reboot a server on a regular basis or constantly apply patches just to keep
an application running.

Chapter 1

QO Vendor commitment— Without the widespread buy-in of vendors to build drivers/providers
for their products, any universal data access model wouldn’t be universal. Microsoft could
provide the drivers for some of the most common vendor products, but it really takes an open,
easily extensible model in order to gain widespread acceptance. No matter how much companies
try to avoid it, almost all of them become “locked-in” to at least a handful of vendors. Switching
to a vendor that supports the latest data access components is not really an option, so without
widespread buy-in from vendors, a data access model cannot succeed.

Q Broad industry support— This factor is along the same lines as vendor commitment, but
includes a wider arena. It takes more than the data access model to be able to easily create good
applications with it; it also requires good tools that can work with the data access model.
Furthermore, it requires backing by several big players in the industry to reassure the masses. It
also requires highly skilled people available to offer training. Finally, of course, it requires willing
adoption by the development community so employers can find employees with experience.

Steady progress has been made, improving databases and universal data access over the last few
decades. As with any field, it’s important to know where we’ve come from in database and data access
technologies in order to understand where the fields are heading. The following section looks at some
early achievements.

The Early Days

In the 1950s and early 1960s, data access and storage was relatively simple for most people. While more
advanced projects were under development and in use by a limited number of people, the majority of
developers still stored data in flat text files. These were usually fixed-width files, and accessing them
required no more than the capability to read and write files. Although this was a very simple technique
for storing data, it didn’t take too long to realize it wasn’t the most efficient method in most cases.

CODASYL

As with the Internet, databases as we know them today began with the U.S. Department of Defense. In
1957, the U.S. Department of Defense founded the Conference on Data Systems Languages, commonly
known as CODASYL, to develop computer programming languages. CODASYL is most famous for the
creation of the COBOL programming language, but many people don’t know that CODASYL is also
responsible for the creation of the first modern database.

On June 10, 1963, two divisions of the U.S. Department of Defense held a conference titled
“Development and Management of a Computer-Centered Data Base.” At this conference, the term
database was coined and defined as follows:

A set of files (tables), where a file is an ordered collection of entries
(rows) and an entry consists of a key or keys and data.

Two years later, in 1965, CODASYL formed a group called the List Processing Task Force, which later
became the Data Base Task Group. The Data Base Task Group released an important report in 1971 out-
lining the Network Data Model, also known as the CODASYL Data Model or DBTG Data Model. This data
model defined several key concepts of a database, including the following:

History of Data Access

Q Asyntax for defining a schema
0 Asyntax for defining a subschema

0 Adata manipulation language

These concepts were later incorporated into the COBOL programming language. They also served as a
base design for many subsequent data storage systems.

IMS

During the same period CODASYL was creating the Network Data Model, another effort was under
way to create the first hierarchical database. During the space race, North American Rockwell won the
contract to launch the first spacecraft to the moon. In 1966, members of IBM, North American Rockwell,
and Caterpillar Tractor came together to begin the design and development of the Information Control
System (ICS) and Data Language/I (DL/I). This system was designed to assist in tracking materials
needed for the construction of the spacecraft.

The ICS portion of this system was the database portion responsible for storing and retrieving the data,
while the DL/I portion was the query language needed to interface with it. In 1968, the IBM portion of
this system (ICS) was renamed to Information Management System, or IMS. Over time, the DL/I portion
was enhanced to provide features such as message queuing, and eventually became the transaction
manager portion of IMS. IMS continued to evolve and was adopted by numerous major organizations,
many of which still use it today.

Relational Databases

Both the Network Data Model from CODASYL and IMS from IBM were major steps forward because
they marked the paradigm shift of separating data from application code, and they laid the framework
for what a database should look like. However, they both had an annoying drawback: They expected
programmers to navigate around the dataset to find what they wanted — thus, they are sometimes
called navigational databases.

In 1970, Edgar Codd, a British computer scientist working for IBM, released an important paper called
“A Relational Model of Data for Large Shared Data Banks” in which he introduced the relational model.
In this model, Codd emphasized the importance of separating the raw, generic data types from the
machine-specific data types, and exposing a simple, high-level query language for accessing this data.
This shift in thinking would enable developers to perform operations against an entire data set at once
instead of working with a single row at a time.

Within a few years, two systems were developed based on Codd’s ideas. The first was an IBM project
known as System R; the other was Ingres from the University of California at Berkeley. During the course
of development for IBM’s System R, a new query language known as Structured Query Language (SQL)
was born. While System R was a great success for proving the relational database concept and creating
SQL, it was never a commercial success for IBM. They did, however, release SQL /DS in 1980, which was
a huge commercial success (and largely based on System R).

Chapter 1

The Ingres project was backed by several U.S. military research agencies and was very similar to System R
in many ways, although it ran on a different platform. One key advantage that Ingres had over System R
that led to its longevity was the fact that the Ingres source code was publicly available, although it was later
commercialized and released by Computer Associates in the 1980s.

Over the next couple of decades, databases continued to evolve. Modern databases such as Oracle,
Microsoft SQL Server, MySQL, and LDAP are all highly influenced by these first few databases. They
have improved greatly over time to handle very high transaction volume, to work with large amounts of
data, and to offer high scalability and reliability.

The Birth of Universal Data Access

At first, there were no common interfaces for accessing data. Each data provider exposed an API or other
means of accessing its data. The developer only had to be familiar with the API of the data provider he
or she used. When companies switched to a new database system, any knowledge of how to use the old
system became worthless and the developer had to learn a new system from scratch. As time went on,
more data providers became available and developers were expected to have intimate knowledge of
several forms of data access. Something needed to be done to standardize the way in which data was
retrieved from various sources.

oDBC

Open Database Connectivity (ODBC) helped address the problem of needing to know the details of each
DBMS used. ODBC provides a single interface for accessing a number of database systems. To accom-
plish this, ODBC provides a driver model for accessing data. Any database provider can write a driver
for ODBC to access data from their database system. This enables developers to access that database
through the ODBC drivers instead of talking directly to the database system. For data sources such as
files, the ODBC driver plays the role of the engine, providing direct access to the data source. In cases
where the ODBC driver needs to connect to a database server, the ODBC driver typically acts as a
wrapper around the API exposed by the database server.

With this model, developers move from one DBMS to another and use many of the skills they have
already acquired. Perhaps more important, a developer can write an application that doesn’t target a
specific database system. This is especially beneficial for vendors who write applications to be consumed
by multiple customers. It gives customers the capability to choose the back-end database system they
want to use, without requiring vendors to create several versions of their applications.

ODBC was a huge leap forward and helped to greatly simplify database-driven application development.
It does have some shortfalls, though. First, it is only capable of supporting relational data. If you need to
access a hierarchical data source such as LDAP, or semi-structured data, ODBC can’t help you. Second, it
can only handle SQL statements, and the result must be representable in the form of rows and columns.
Overall, ODBC was a huge success, considering what the previous environment was like.

History of Data Access

OLE-DB

Object Linking and Embedding Database (OLE-DB) was the next big step forward in data providers, and it
is still widely used today. With OLE-DB, Microsoft applied the knowledge learned from developing
ODBC to provide a better data access model. OLE-DB marked Microsoft’s move to a COM-based API,
which made it easily consumable by most programming languages, and the migration to a 32-bit OS
with the release of Windows 95.

As with any code, ODBC became bulky through multiple revisions. The OLE-DB API is much cleaner and
provides more efficient data access than ODBC. Oddly enough, the only provider offered with its initial
release was the ODBC provider. It was just a wrapper of the ODBC provider and offered no performance
gain. The point was to get developers used to the new API while making it possible to access any existing
database system they were currently accessing through ODBC. Later, more efficient providers were
written to access databases such as MS SQL Server directly, without going through ODBC.

OLE-DB Providers

OLE-DB is also much less dependent upon the physical structure of the database. It supports both rela-
tional and hierarchical data sources, and does not require the query against these data sources to follow
a SQL structure. As with ODBC, vendors can create custom providers to expose access to their database
system. Most people wouldn’t argue with the belief that it is far easier to write an OLE-DB provider than
an ODBC driver. A provider needs to perform only four basic steps:

1. Open the session.

2. Process the command.

3. Access the data.

4. Prepare a rowset.

OLE-DB Consumers
The other half of the OLE-DB framework is the OLE-DB consumer. The consumer is the layer that speaks

directly to the OLE-DB providers, and it performs the following steps:
1. Identify the data source.
2. Establish a session.
3. Issue the command.

4, Return a rowset.

Figure 1-1 shows how this relationship works.

Chapter 1

Application
OLE-DB OLE-DB
Consumer Provider
Data Source
Data Store Specific API
Figure 1-1

Data Access Consumers

Developers who use languages that support pointers —such as C, C++, V]++, and so on —can speak
directly to the ODBC and OLE-DB APIs. However, developers using a language such as Visual Basic
need another layer. This is where the data access consumers such as DAO, RDO, ADO, and ADO.NET
come into play.

DAO

With the release of Visual Basic 2.0, developers were introduced to a new method for accessing data,
known as Data Access Objects (DAO). This was Microsoft’s first attempt to create a data consumer APIL
Although it had very humble beginnings, and when first released only supported forward-only opera-
tions against ODBC data sources, it was the beginning of a series of libraries that would lead developers
closer to the ideal of Universal Data Access. It also helped developers using higher-level languages such
as Visual Basic to take advantage of the power of ODBC that developers using lower-level languages
such as C were beginning to take for granted.

DAO was based on the JET engine, which was largely designed to help developers take advantage of the
desktop database application Microsoft was about to release, Microsoft Access. It served to provide
another layer of abstraction between the application and data access, making the developer’s task sim-
pler. Although the initial, unnamed release with Visual Basic 2.0 only supported ODBC connections, the
release of Microsoft Access 1.0 marked the official release of DAO 1.0, which supported direct communi-
cation with Microsoft Access databases without using ODBC. Figure 1-2 shows this relationship.

DAO 2.0 was expanded to support OLE-DB connections and the advantages that come along with it. It
also provided a much more robust set of functionality for accessing ODBC data stores through the JET
engine. Later, versions 2.5 and 3.0 were released to provide support for ODBC 2.0 and the 32-bit OS
introduced with Windows 95.

History of Data Access

Application
DAO
JET Engine
A
ODBC
\ A
MS Access Data Store
DB
Figure 1-2

The main problem with DAO is that it can only talk to the JET engine. The JET engine then communicates
with ODBC to retrieve the data. Going through this extra translation layer adds unnecessary overhead
and makes accessing data through DAO slow.

RDO

Remote Data Objects (RDO) was Microsoft’s solution to the slow performance created by DAO. For talk-
ing to databases other than Microsoft Access, RDO did not use the JET engine like DAO; instead, it com-
municated directly with the ODBC layer. Figure 1-3 shows this relationship.

Removing the JET engine from the call stack greatly improved performance to ODBC data sources. The JET
engine was only used when accessing a Microsoft Access Database. In addition, RDO had the capability to
use client-side cursors to navigate the records, as opposed to the server-side cursor requirements of DAO.
This greatly reduced the load on the database server, enabling not only the application to perform better,
but also the databases on which that application was dependant.

RDO was primarily targeted toward larger, commercial customers, many of whom avoided DAO due to
the performance issues. Instead of RDO replacing DAO, they largely co-existed. This resulted for several
reasons: First, users who developed smaller applications, where performance wasn’t as critical, didn’t
want to take the time to switch over to the new API. Second, RDO was originally only released with the
Enterprise Edition of Visual Basic, so some developers didn’t have a choice. Third, with the release of

7

Chapter 1

ODBCDirect, a DAO add-on that routed the ODBC requests through RDO instead of the JET engine, the
performance gap between the two became much smaller. Finally, it wasn’t long after the release of RDO
that Microsoft’s next universal access API was released.

Application
A
DAO
A
ODBC
A
JET Engine
.
MS Access Non-
DB Access DB
Figure 1-3

ADO

Microsoft introduced ActiveX Data Objects (ADO) primarily to provide a higher-level API for working
with OLE-DB. With this release, Microsoft took many of the lessons from the past to build a lighter,
more efficient, and more universal data access API. Unlike RDO, ADO was initially promoted as a
replacement for both DAO and RDO. At the time of its release, it (along with OLE-DB) was widely
believed to be a universal solution for accessing any type of data— from databases to e-mail, flat text
files, and spreadsheets.

ADO represented a major shift from previous methods of data access. With DAO and RDO, developers
were expected to navigate a tree of objects in order to build and execute queries. For example, to execute
a simple insert query in RDO, developers couldn’t just create an rdoQuery object and execute it. Instead,
they first needed to create the rdoEngine object, then the rdoEnvironment as a child of it, then an
rdoConnection, and finally the rdoQuery. It was a very similar situation with DAO. With ADO,

History of Data Access

however, this sequence was much simpler. Developers could just create a command object directly, pass-
ing in the connection information and executing it. For simplicity and best practice, most developers
would still create a separate command object, but for the first time the object could stand alone.

As stated before, ADO was primarily released to complement OLE-DB; however, ADO was not limited
to just communicating with OLE-DB data sources. ADO introduced the provider model, which enabled
software vendors to create their own providers relatively easily, which could then be used by ADO to
communicate with a given vendor’s data source and implement many of the optimizations specific to
that data source. The ODBC provider that shipped with ADO was one example of this. When a devel-
oper connected to an ODBC data source, ADO would communicate through the ODBC provider instead
of through OLE-DB. More direct communication to the data source resulted in better performance and
an easily extensible framework. Figure 1-4 shows this relationship.

Application

ADO

ODBC] OLE DB

Data Store

Figure 1-4

In addition to being a cleaner object model, ADO also offered a wider feature set to help lure developers
away from DAO and RDO. These included the following:

Q Batch Updating — For the first time, users enjoyed the capability to make changes to an entire
recordset in memory and then persist these changes back to the database by using the
UpdateBatch command.

Q Disconnected Data Access — Although this wasn’t available in the original release, subsequent
releases offered the capability to work with data in a disconnected state, which greatly reduced
the load placed on database servers.

Q Multiple Recordsets — ADO provided the capability to execute a query that returns multiple
recordsets and work with all of them in memory. This feature wasn’t even available in
ADO.NET until this release, now known as Multiple Active Result Sets (MARS).

Chapter 1

In addition to all of the great advancements ADO made, it too had some shortcomings, of course. For
example, even though it supported working with disconnected data, this was somewhat cumbersome.
For this reason, many developers never chose to use this feature, while many others never even knew it
existed. This standard practice of leaving the connection open resulted in heavier loads placed on the
database server.

The developers who did choose to close the connection immediately after retrieving the data faced
another problem: having to continually create and destroy connections in each method that needed to
access data. This is a very expensive operation without the advantages of connection pooling that
ADO.NET offers; and as a result, many best practice articles were published advising users to leave a
single connection object open and forward it on to all the methods that needed to access data.

ADO.NET

10

With the release of the NET Framework, Microsoft introduced a new data access model, called ADO.NET.
The ActiveX Data Object acronym was no longer relevant, as ADO.NET was not ActiveX, but Microsoft
kept the acronym due to the huge success of ADO. In reality, it's an entirely new data access model
written in the NET Framework.

ADO.NET supports communication to data sources through both ODBC and OLE-DB, but it also offers
another option of using database-specific data providers. These data providers offer greater performance
by being able to take advantage of data-source-specific optimizations. By using custom code for the data
source instead of the generic ODBC and OLE-DB code, some of the overhead is also avoided. The original
release of ADO.NET included a SQL provider and an OLE-DB provider, with the ODBC and Oracle
providers being introduced later. Many vendors have also written providers for their databases since.
Figure 1.5 shows the connection options available with ADO.NET.

Application
A
ADO.NET
A
OLE DB > ODBC
.
«——
v
Data Store
v
Figure 1-5

History of Data Access

With ADO.NET, the days of the recordset and cursor are gone. The model is entirely new, and consists of
five basic objects:

0 Connection —The Connection object is responsible for establishing and maintaining the
connection to the data source, along with any connection-specific information.

QO Command — The Command object stores the query that is to be sent to the data source, and any
applicable parameters.

0 DataReader—The DataReader object provides fast, forward-only reading capability to quickly
loop through the records.

0 DataSet—The DataSet object, along with its child objects, is what really makes ADO.NET
unique. It provides a storage mechanism for disconnected data. The DataSet never communicates
with any data source and is totally unaware of the source of the data used to populate it. The best
way to think of it is as an in-memory repository to store data that has been retrieved.

QO DataAdapter —The DataAdapter object is what bridges the gap between the Dataset and the
data source. The DataAdapter is responsible for retrieving the data from the Command object
and populating the DataSet with the data returned. The DataAdapter is also responsible for
persisting changes to the DataSet back to the data source.

ADO.NET made several huge leaps forward. Arguably, the greatest was the introduction of truly discon-
nected data access. Maintaining a connection to a database server such as MS SQL Server is an expensive
operation. The server allocates resources to each connection, so it’s important to limit the number of
simultaneous connections. By disconnecting from the server as soon as the data is retrieved, instead of
when the code is done working with that data, that connection becomes available for another process,
making the application much more scalable.

Another feature of ADO.NET that greatly improved performance was the introduction of connection
pooling. Not only is maintaining a connection to the database an expensive operation, but creating and
destroying that connection is also very expensive. Connection pooling cuts down on this. When a
connection is destroyed in code, the Framework keeps it open in a pool. When the next process comes
around that needs a connection with the same credentials, it retrieves it from the pool, instead of
creating a new one.

Several other advantages are made possible by the Dataset object. The DataSet object stores the data
as XML, which makes it easy to filter and sort the data in memory. It also makes it easy to convert the
data to other formats, as well as easily persist it to another data store and restore it again.

ADO.NET 2.0

Data access technologies have come a long way, but even with ADO.NET, there’s still room to grow. The
transition to ADO.NET 2.0 is not a drastic one. For the most part, Microsoft and the developers who use
ADO.NET like it the way it is. In the 2.0 Framework, the basic design is the same, but several new features
have been added to make common tasks easier, which is very good for backward compatibility. ADO.NET
2.0 should be 100% backwardly compatible with any ADO.NET 1.0 code you have written.

With any 2.0 product, the primary design goal is almost always to improve performance. ADO.NET 1.0

does not perform poorly by any means, but a few areas could use improvement, including XML serial-
ization and connection pooling, which have been reworked to provide greater performance.

11

Chapter 1

In the 2.0 Framework, Microsoft has also been able to improve performance by introducing several new
features to reduce the number of queries that need to be run and to make it easier to run multiple
queries at once. For example, the bulk insert feature provides the capability to add multiple rows to a
database with a single query, instead of the current method of inserting one at a time. This can greatly
reduce the amount of time it takes to insert a large number of rows.

Another example is the capability to be notified when data changes and to expire the cache only when
this happens. This eliminates the need to periodically dump and reload a potentially large amount of
data just in case something has changed. The introduction of Multiple Active Result Sets (MARS) provides
the capability to execute multiple queries at once and receive a series of results. Removing the back and
forth communication that is required by executing one query at a time and waiting for the results greatly
improves the performance of an application that needs this functionality. If you prefer to do other work
while waiting for your data to return, you also have the option of firing an asynchronous command.
This has been greatly simplified in the 2.0 Framework.

Another major design goal is to reduce the amount of code necessary to perform common tasks. The buzz
phrase we all heard with the release of NET Framework 1.0 was “70 percent less code” than previous
methods. The goal with the NET 2.0 Framework is the same: to reduce the amount of code needed for
common tasks by 70% over .NET 1.0. We’ll leave the decision as to whether this goal was met or not to you,
but after reading this book and using ADO.NET for awhile, you should notice a significant decrease in the
amount of code needed to write your application.

The rest of the enhancements are primarily new features. For example, there is now a database discovery
API for browsing the schema of a database. Also offered is the option of writing provider-independent
database access code. This is very beneficial if you sell applications to customers who want to run it against
numerous data sources. Keep in mind that the queries you write still must match that provider’s syntax.

Summary

Now that you know some of the history behind how technologies such as ADO.NET and Microsoft SQL
Server have evolved, you should have a clearer vision of where these technologies are heading.
Throughout this book, we will cover the new features of these technologies in great depth and lay out
the roadmap describing where many of them are heading. This release is just another major stepping-
stone on the path to efficient universal data access.

For More Information

12

To complement the information in this chapter, take a look at the following resources:

Q Funding a Revolution: Government Support for Computing Research, by the Computer Science
and Telecommunications Board (CSTB), National Research Council. Washington, D.C.: National
Academy Press, 1999. www .nap . edu/execsumm/0309062780.html

0 Network (CODASYL) Data Model (Course Library) —http://coronet.iicm.edu/
wbtmaster/allcoursescontent/netlib/library.htm

QO “Technical Note—IMS Celebrates 30 Years as an IBM Product,” by Kenneth R. Blackman.

www.research.ibm.com/journal/sj/374/blackman.html.

|

Standardized Database
Objects and Design

Database design is probably one of the most misunderstood areas of database work. It’s also one of
the most vital. In this chapter, we’ll share our experiences and the lessons we’ve learned working
with both large and small projects. We'll cover the basics of maintainable, normalized design,

and offer general guidelines, including useful tips and tricks. You won't find much code in this
chapter —just a lot of very useful advice.

Creating Databases

Before you delve into your favorite database editor and start banging out tables left, right, and
center, it’s important to understand the job at hand. If you’ve reached the stage in application
development where you're ready to start building the databases, then you already have a good
idea of what the job entails. This section explains how you should go about initially laying out
your tables once you understand the structure of your applications and their requirements.

In an ideal world, every database would be fully normalized, optimized for speed, and designed
to make security integral to the structure. Of course, we don’t live in an ideal world. Many of the
databases out there are slow, unmanageable lumps of goo. Never fear. Together, we can make
the world a better place by designing resilient databases that easily cope with the evils of feature
creep, the inane promises of our marketing teams, and the abysmal quality of the data that many
users seem to think is production-ready.

The key to keeping your life simple is to do the work up front. Because the database is usually the
most vital part of any application, it’s important to set it up correctly now —to avoid heartache
later. Trying to make changes to a long-standing database is incredibly difficult and usually results
in breaking other systems. Once a database is in production use, it becomes very difficult to change.
In other words, any mistakes made during design will be there weeks, months, and even years
down the line, which doesn’t do much for the original developer’s reputation.

Chapter 2

Before you start work on a database, make sure you possess all of the facts regarding the applications
that will be using it. The more information you can gather about the uses for the database, the better you
can design it to suit those needs. Here are some of the questions you should ask before proceeding:

Do you understand all of the logical units (objects) of the applications using the database?

What are the ways in which people will want to query/manage the data now?

Does the data structure support all of the functionality needed in your applications?

0O 0 0O O

Where are the applications going in their next versions, and do you need to make provisions for
that now?

Once you have the answers to these questions, you'll be nearly ready to jump in and run some CREATE
commands against your database server. First, though, you should lay out all the logical units (objects)
of your solution on paper to show how they will be represented as objects in your applications and
tables in your database. You'll learn more about this in greater detail later, in the section called
“Normalizing.”

Figure 2-1 shows a portion of the table structure for the Northwind database, which ships with SQL
Server 2000, viewed as a Database Diagram.

Suppliers Orders
Products e[7 SupplierlD | | OrderlD 4] Customers
| [ProductiD | _|CompanyName || CustomerlD Al | % CustomerlD
|| ProductName || contactName - grr*;z':gaegD | gznmtgg:zgs]rze
N i:f:glfrrylfg] 222223'“6 |__|RequiredDate || contactTitle
B i i I |ci ShippedDate C Address
QuantityPerUnit | [City L 2TPPE | {AC
|| unitPrice | _|Region || Shl_lea - C|ty_
|| unitsinStock |_|PostalCode | {Freight | [Region
|| UnitsOnOrder | |Country - 22!922:6 | |PostalCode
| | ReorderLevel | __|Phone | Sh!pC' ress | _|Country
Discontinued Fax || ShipCity | |Phone
— o ([T HomePage | | ShipRegion v | |Fax
T OrderDetalls CustomerCustomerDer
ot oj| #{OrderlD £ | customerID
= By ame ProductD CustomerTypelD
| | Description ™ Unitprice
| |Picture] Quantity

|| Discount

Figure 2-1

By first creating the design on paper, you'll be able to identify and solve numerous problems and
challenges. Then, after you have the design, run through the preceding questions again to ensure that
you have covered all the bases.

14

Standardized Database Objects and Design

Naming Conventions

Just as important as a solid database design is the naming of your tables, views, and stored procedures.
Misnaming or poorly naming your database objects can result in a lot of heartache for both yourself and
anyone who has to maintain your applications later.

While choosing a naming convention is a personal decision, we’ll show you the conventions we use and
explain why we use them. That way, you can make an informed decision about which convention to
adopt. Keep in mind, however, that the most important rule in naming conventions is consistency. In the
following sections, we’ll go into detail about naming tables and stored procedures; for now, however,
here are a few general rules regarding all database objects:

Q Do use Pascal Case.

Q Don't let the name get too long. Remember: You'll have to read it and type it.

Q Don't use Hungarian notation —in other words, don’t prefix objects such as tables with “tbl”.
Q

Don’t abbreviate or use acronyms.

Tables

Naming your tables can be very difficult, and if it’s not done correctly, it can result in much confusion
down the line. Always use Pascal Case when naming your tables. This means that the first letter of each
word is capitalized (for example, CustomerOrders and IntranetUsers). This is the best way to
differentiate between SQL keywords such as SELECT, UPDATE, and DELETE in your SQL statements and
your table names, which will always be in Pascal Case, and it makes all your queries very easy to
understand at a glance.

Hungarian notation should not be used when naming your tables. It’s easy to discover what type an object
represents in your database server —for example, a table can only be a table, so why bother to name it as
such? Tables should be named with plurals, such as Orders instead of Order. Treat each row of a table as
an individual thing, such as an order. The table is the bucket for all these individual rows, so it’s named
plurally. When a table has multiple words, only the last word should be plural. For example, OrderItems
is preferable to OrdersItems, as the table contains a list of Order Items, not a list of Orders Items.

All tables should be named in relation to their scope. This is especially important if the tables are located
in a shared database. Name your tables so they relate to the application in which they will be used or to
the functionality that they control. For example, a table of users for an intranet should be named
IntranetUsers.

Table names should never contain numbers. If you find yourself considering the creation of a table with
numbers in the name, it’s likely your design is not normalized; consider moving the “number” into a
new column within the table itself. A good example of this would be a table listing sales items, which
could be grouped together by year. The wrong way to do this would be to name the tables sales2003,
Sales2004, and so on. Instead, a column should be added to a generic Sales table called Year, and the
values 2003 and 2004 should be placed against the relevant records.

15

Chapter 2

Ensure that no underscores or spaces find their way into your table names. Using Pascal Case for your
tables negates the need for underscores in table names, and spaces are only supported by some database
servers, so they should be avoided at all costs. Observing these rules will enable you to easily move your
entire database schema among many different relational database management servers (just in case you
ever get bored).

The following few sections will walk you through naming conventions for every part of a table’s structure
and its associated objects. Just to clarify what we're talking about, here’s the CREATE script for a table in
SQL Server:

CREATE TABLE [Customers] (

[CustomerId] [int] IDENTITY (1, 1) NOT FOR REPLICATION NOT NULL ,
[CustomerName] [nvarchar] (50) COLLATE SQL_Latinl_ General_ CPl1_CI_AS NULL ,
[CustomerAddress] [nvarchar] (50) COLLATE SQL_Latinl_General_CPl_CI_AS NULL
CONSTRAINT [PK_CustomersFirstForm] PRIMARY KEY CLUSTERED

(

[CustomerId]

) ON [PRIMARY]
) ON [PRIMARY]
GO

Columns

16

When naming the columns in your tables, keep in mind that the columns already belong to a table, so it
is not necessary to include the table name within the column names.

That said, the primary keys in any table should be the only exception to the preceding rule of not includ-
ing the table name in a column. If your table is IntranetUsers, then the primary key column should
be named IntranetUsersId. This helps avoid any ambiguity in any queries written subsequently.

The location of Id in your column name can appear at either the beginning or the end of the name, so
IdIntranetUsers would also be acceptable. Use whichever you prefer —just remember to be
consistent throughout your entire database schema.

Foreign keys should match the column they’re referencing exactly, so if you had a column in your
IntranetUserSettings table that referred to the primary key IntranetUsersIdin the
IntranetUsers table, then you would name it IntranetUsersId. Carefully consider the naming of
other columns that just store data and not keys.

Any Boolean fields should pose a question, such as IsPhotographed or HasOwnTeeth, to which True
or False provides a clear answer. (We'll ignore NULL because that’s just awkward.)

DateTime fields should contain the word DateTime, so a field for storing the Created DateTime for a row
should be called CreatedDateTime. If a column is only storing a Time, then it should be named appro-
priately (CreatedTime, for example).

It is not necessary to use the word “number” in columns of type integer and other numeric columns,
as their data type should show this. This rule can be ignored if names seem ambiguous within the scope
of your table. In addition, string columns should not have “string” or “text” in their name.

Columns storing ambiguous data such as time periods or speeds should also contain within the name
the measurements used for the units, such as PriceUSDollars, SpeedMilesPerHour, Or
LeaveRemainingInDays.

Standardized Database Objects and Design

It's important to take into account not only the names of the columns, but also the
data type assigned to them. Only use what’s nessesary. If you're storing smaller
numbers in SQL Server, use the tinyint or smallint data types instead of the int
data type.

Triggers

Triggers should always have a prefix to distinguish them from stored procedures and tables. Choose a
self-explanatory prefix you're comfortable with, such as Trig.

All trigger names should include both the table name they’re referencing and the events on which
they’re fired. For example, a trigger on the IntranetUsers table that needs to be fired on both an
INSERT and a DELETE would be called TrigIntranetUsersInsertDelete:

CREATE TRIGGER TrigIntranetUsersInsertDelete
ON IntranetUsers
FOR INSERT, UPDATE, DELETE
AS
EXEC master..xp_sendmail 'Security Monkey',
'Make sure the new users have been added to the right roles!'
GO

Here is a reference table you can use to check your triggers for conformance to the naming conventions.

Table Insert Update Updatelnsert

Customers TrigCustomers TrigCustomer TrigCustomers
Insert Update UpdatelInsert

IntranetUsers TrigIntranet TrigIntranet TrigIntranetUsers
UsersInsert UsersUpdate Updatelnsert

Stored Procedures

Everyone likes to do things their own way, and the practice of naming stored procedures is no different.
Still, there are some things to keep in mind when naming stored procedures. Use the following questions
to create the best possible stored procedure names:

O Will the name be easy to find within the database, both now and when there are a lot more
procedures?

If the procedure is specific to the application that’s using it, then it’s in the right place and doesn’t

need to be named specifically. However, if the procedure is in a general or shared database, then it
should be named with respect to the application it’s related to by prefixing the procedure with the
name of the application, such as ReportingSuite, Ecommerceliebsite or Intranet

17

Chapter 2

18

QO Does the name relate to the object on which the actions are being performed?

The scope of the procedure is the most vital part of its name. If the procedure is adding
customers to a table, then it should contain the word Customer in its name. If the procedure is
referring to invoices, then it would include the name Invoice.

0 Has the procedure been named in a way in which its action can be identified?

Whether the stored procedure is performing a simple SELECT, INSERT, UPDATE, or DELETE, or
whether it’s performing a more complicated task, you need to pick a name for the action it’s
performing.

For example, if you're inserting rows into the Customer table, you would use, say, 2dd or
Insert. However, if the procedure is performing a more complicated task, such as validating a
username and password, then it would include the word validate in its name.

A procedure that would insert a new record into the Customers table via the Intranet
application should be called IntranetCustomerAdd or CustomerAdd depending on whether
it’s inside the Intranet database or in a shared/generic database. The procedure to validate the
username and password of an intranet user should be called IntranetUservalidate.

A procedure that’s selecting a specific customer from the intranet should be called
IntranetCustomerSelect or IntranetCustomerGet, depending on your preferences.

If you were to write a procedure for the Accounting application that needed to return a report
of all the invoices for a certain customer, it should be called IntranetCustomerInvoiceGet, as
shown in the following example:

CREATE PROC [IntranetCustomerInvoiceGet]

(
@CustomerId Int

)

AS

SELECT *

FROM CustomerInvoices

WHERE CustomerId = @CustomerId
GO

If you're working in a multicompany environment, it can also be a good idea to prefix all of your stored
procedures with the name of your company, such as BadgerCorp_IntranetCustomerAdd (this is one
of the few circumstances in which underscores could be used).

If you're using SQL Server, do not prefix your stored procedures with “sp_" or “xp_"
as this is what SQL Server uses for its internal stored procedures. Not only will this
make it difficult to differentiate your custom stored procedures from the database-
generated ones, but it will also slow down your applications, as SQL Server checks
inside the “Master” database for anything prefixed with “sp_" or “xp_" before
looking inside the specified database. If you're using another database server, make
sure your procedure names will not clash with any system-specific names.

Standardized Database Objects and Design

The following list provides some examples of well-named procedures. These are some of the stored
procedures from the ASP.NET 2.0 SQL Server Provider. Although they violate some of the rules
mentioned earlier (there’s a rather liberal use of underscores, for example), they do show how clarity can
easily be achieved when simple rules are followed in even the most complicated of schemas:

aspnet_Membership_ChangePasswordQuestionAndAnswer
aspnet_Membership_CreateUser

aspnet_Membership_ FindUsersByEmail
aspnet_Membership_ FindUsersByName
aspnet_Membership_GetAllUsers

aspnet_Membership_ GetNumberOfUsersOnline
aspnet_Membership_GetPassword
aspnet_Membership_GetUserByEmail
aspnet_Membership_GetUserByName
aspnet_Membership_ResetPassword
aspnet_Membership_SetPassword

aspnet_Membership_ UpdatelLastLoginAndActivityDates
aspnet_Membership_UpdateUser
aspnet_Roles_CreateRole

aspnet_Roles_DeleteRole

aspnet_Roles_GetAllRoles

aspnet_Users_CreateUser

aspnet_Users_DeleteUser

The following table provides a quick reference for the naming conventions of stored procedures.

Table Select Insert Delete Update Custom

Customers Customer CustomerAdd Customer CustomerUp Customer
Get date Delete Custom

IntranetUsers Intranet Intranet IntranetUser IntranetUser Intranet
UserGet UserAdd Delete Update UserCustom

Primary Keys

Every table has a primary key (or at least should have one). A primary key enables each row to be
uniquely identified by a column or combination of columns.

As already stated, a primary key identifies a row of data in a table, but it does more than that. It also
enforces constraints upon the table, enabling checks to be made by the database server to ensure that the
data in a row is unique among the other rows in the table by having a different primary key.

The primary key can be defined on just one column or across several and can be set on different data
types. Primary keys are usually assigned a numeric data type, although some people also use unique
identifiers such as GUIDs. To create a primary key, take a look at the following code sample:

CREATE TABLE jobs

(
job_id smallint
IDENTITY (1,1)

19

Chapter 2

PRIMARY KEY CLUSTERED,
job_desc varchar (50) NOT NULL

DEFAULT 'New Position - title not formalized yet',
min_lvl tinyint NOT NULL

CHECK (min_1vl >= 10),
max_1lvl tinyint NOT NULL

CHECK (max_1vl <= 250)

Here’s a sample for creating a GUID primary key on a table:

CREATE TABLE Globally Unique_Data
(guid uniqueidentifier

CONSTRAINT Guid_Default

DEFAULT NEWID()
Employee_Name varchar (60),
CONSTRAINT Guid_PK PRIMARY KEY (Guid)
)

When the primary key is only on one column, then things are quite straightforward. It’s not possible to
have two rows with the same value within the primary key column.

If the primary key is made up of multiple columns, it’s the combination of values in each column
defined as a primary key on the row that make up the unique key. It’s possible for values to be repeated
within the same primary key column; however, the combination of values across all the primary key
columns has to be unique.

Try to avoid using GUIDs within your primary keys; they are slower to search for
than numeric fields such as Int. GUIDs are primarily used in replication scenarios in
which an identity must remain unique so that data may be merged successfully.
Moreover, it’s easier to remember to type 1 than it is to remember to type
77B3E758-36D1-4890-A4A7-130A71FA07D5.

Foreign Keys

When you have multiple tables in a database, it’s more than likely that they’re related in some way, and
databases control relationships between tables with foreign keys. A foreign key normally matches a
primary key in a table. The table of the primary key can be a different table or the same table.

Here’s an example of a primary key/foreign key relationship. Suppose you have two tables, Customers
and CustomerPets, and inside the Customers table is a column named CustomerId, which is a numeric
data type and is set as the primary key of the Customers table. Inside the CustomerPets table is a
CustomerPetId column, which is the primary key of that table, but there is also a CustomerId column.
The CustomerId column in the CustomerPets table is joined to the Customers table via a relationship,
with the primary key being in Customers and the foreign key being in CustomerPets, as shown in
Figure 2-2.

20

Standardized Database Objects and Design

CustomerPets
7 Pets

CustomerPetID
o'
CustomerID }i PetIQ
Species

PetID

Customers

%[CustomeriD
Forename
Surname

Figure 2-2

Unlike single-column primary keys, it's possible for foreign key columns to have duplicate entries;
this enables the formation of one-to-many relationships, and enables us, as in the previous example, to
associate a customer with more than one pet.

As stated previously, it’s possible for a foreign key to reference the primary key in the same table. This is
especially useful when your table lists parent/child relationships. For example, it would be quite simple
to build a family tree from a single table of People that has a primary key of PersonId and two foreign
keys of Mother1d and FatherId, as shown in Figure 2-3.

People
—— 271 §|PersoniD
Forename
Lastname
fe— MotherID
[— o FatherlD

Figure 2-3

If you normalize your databases, you will already have many foreign keys; they are, if you'll excuse the
pun, the key to normalization.

Creating a foreign key is very simple. This code shows how to create a key between Customers and
CustomerPets:

ALTER TABLE Customers

ADD CONSTRAINT fk_customer

FOREIGN KEY (CustomerId)

REFERENCES CustomerPets (CustomerId)
GO

21

Chapter 2

Indexes

While indexes are not essential to database design, they are something worth considering. Indexes
enable the database server to quickly scan your tables for information, making search operations much
faster than the same tables without indexes.

When designing your tables, you need to think about how they will be used, especially which tables will
be heavily searched or joined into extensively. Once you've worked this out, it’s relatively easy to go into
the tables and assign indexes to the columns that are heavily used.

Indexes enable the database to search only a small part of the data, rather than the entire table. Thus,
they make searching tables much faster, and the benefits can be huge in terms of performance. Keep in
mind that tables with indexes will be slower when calling the INSERT, UPDATE, and DELETE statements,
so indexes should only be added to tables that really need fast access.

The columns that should have indexes are those referenced in JOIN or WHERE statements. Primary keys
in SQL Server automatically have indexes assigned to them, but not on foreign keys, so you'll need to
assign these manually. When you're ready to optimize your current or new systems, always try to apply
some indexes to your tables. You could well see dramatic increases in performance.

Views

More often than not, you'll be working with a normalized database schema; and when working with a
normalized schema, one of the major drawbacks is the complexity of queries. Views are a great way to
hide that complexity by presenting your code with clean, tidy result sets.

Views enable you to look at a table, or a number of tables, in whatever way you want. They act like
tables in terms of running CRUD operations against them, but the underlying data might not actually
exist in the format in which it’s represented. Views enable you to easily abstract your data from the real
database layout or to present compiled views of data.

Views also enable you to encapsulate complex queries across many tables and return just the data you
need, which can be very useful when you have a fully normalized database and wish to retrieve data
that’s ready for the presentation layer (after all, you don’t need all those primary and foreign keys if
you're just showing some search results).

Help with Normalization

22

You can use Views to normalize data that’s all mashed together in the same tables, such as using a
SELECT DISTINCT on a textual column of a table that’s not normalized to give you a lookup table of the
values within:

Create View AllCustomerTypes
As

Select Distinct CustomerType
From Customers

Go

Standardized Database Objects and Design

Performing a select on all of the columns in the A11CustomerTypes query returns a normalized list of
all possible Customer Types:

CustomerType

Adored
Beloved
Tolerated

Enforcing Security

By only allowing access to your database with views, you can completely control the data that your
users are allowed to see, while hiding the real data and database schema from them. An example of this
might be allowing your sales assistants to see what type of pets someone has, but not the customer’s
address:

Create View ViewCustomersListPets
As
Select CustomerId, P.PetName
From CustomerPets CP

Join Pets P

On P.PetId = CP.PetId

Go

In this example, anyone searching for information on the customer can only gain access to the view and
thus only the information exposed by the view. The salespeople can only run queries like this:

Select CustomerId, PetName
From ViewCustomersListPets
Where CustomerId = 1

The query would return data like the following:

CustomerId PetName

As you can see, views can be used to lock down the kind of access you provide to your applications,
making your database a much safer environment to let users loose on.

Creating Compiled Views of Data (Reports)

Views are great for creating compiled sets of data from your database. For example, if you wish to know
the percentage of your customers that have a cat, then it’s quite easy to throw a query together to do
this, but there’s no need to repeat this SQL in every statement that needs the percentages:

23

Chapter 2

Create View CustomerPetPercentages
As

Select PetName, (Convert (Numeric(5,2),Count (PetName))/ (Select
Convert (Numeric(5,2),Count (PetName)) From Pets)) * 100 AS 'Percentage'
From dbo.CustomerPets CP
Join dbo.Pets P
On P.PetId = CP.PetId
Group By PetName

Go

Running a SELECT on the view returns a compiled “View” of the data in both the Customerpets table
and the Pets table. It also performs some calculations, and it’s all wrapped up in the view:

PetName Percentage
Badger 20.00000000
Dog 20.00000000
Giraffe 20.00000000
Rat 40.00000000

In conclusion, views can be very useful for encapsulating business logic and compiling data to make it
more user-friendly in a reusable fashion. They can be used liberally with no impact on your database
schema in terms of a small performance hit.

Normalizing

This is a topic that is often overcomplicated, but is actually quite simple when you understand it. The
best way to describe normalizing a database is think of it as breaking your data down to its logical units,
i.e., the smallest possible objects that make up your data. Then, for each one of them, you need to make
sure that it lives in it’s own table, that the data is not replicated, and that the table in some way relates to
other tables where appropriate.

Why Normalize Data?

24

Normalization isn’t just a fad —it’s probably the most important part of database design. Without it, you
can get into a real mess —if not right now, when you need to make changes to your schema by adding
more functionality or by fixing design flaws.

Data should be normalized to remove repeated or redundant data. Doing this instantly reduces the
amount of space your databases need to occupy, as well as speeds up scans of your tables — with the
free bonuses of gaining increased maintainability and scalability.

By reducing the amount of repeated data, the chance of finding errors in your data is dramatically
decreased simply because there is less data to contain errors.

Standardized Database Objects and Design

Types of Normalization

There are many different degrees of normalization in both academic and real-world settings. In most
cases, the different levels of normalization are linear — for example, there are the nth Normal Forms,
whereby First Normal Form is the simplest, and the Third Normal Form is more complicated.

There are four main forms of normalization. Each one represents a different level of normalization —
from not normalized at all to the nirvana of normalization.

First Normal Form

With the first form, the goal is to remove any repeated groups of data from any tables. That’s an easy
concept to grasp: If you've got the same few text labels appearing in a table, then they need to be normalized
into their own table, and a foreign key should be added to the table that is storing your data. In addition,
if you have multiple columns in a table storing the same type of information, this should also be hived off
to a separate table. Remove repeated groups of data.

Second Normal Form

Using the second form, all rows containing the same information should have that information hived
out to separate tables with foreign keys linking the data.

Third Normal Form

When trying to achieve the third normal form, all columns in the table that are not directly dependant
on the primary key should be removed and placed in their own tables, with foreign keys creating relation-
ships between the tables.

Domain\key Normal Form

This form is the nirvana of normalization. As mentioned previously, databases cannot be more normalized
than they are when they’re in the Domain\key normal form. Each row of every table has its own
identifying column.

Real-world Normalization

Outside of the academic world, there is one form of normalization: The one that works for you for the
current project in the allowed time frame.

If you're a masochist and have been given enough time to use the Domain\key model, give it a whirl.
However, if your boss is breathing down your neck with a mandate to finish the application yesterday,
sometimes it’s better to just go with what works with the least amount of effort, and deal with the
consequences later.

In 99 percent of the cases, the Second Normal Form is the level you should try to achieve in your
projects. It offers the best level of maintenance without too much of a compromise on performance.

25

Chapter 2

Designing a Normalized Database

To create a normalized database, you first need to understand the applications that will be using your
database and how they need to work, their feature sets, and any further modifications or features that
are to be implemented with future releases. Once you understand the applications, you can begin to
map out the database structure.

First, write down a list of all the “things” in your applications, be they customers, pets, products or
countries — each of these items will need their own table. Second, work out the different ways in which
you need to pull all the data together to provide the kind of information you will need. For example,

if you want to know which of your customers in England have a pet badger and bought your kitten
warmers, you must have a Purchases table. If you don’t, you'll need to add one. Third, map out all of
your tables on paper or using a database design tool, such as the diagram tool in SQL Server 2000
Enterprise Manager. Fourth, sit down with each of the application-specification documents again, going
through each of the features you require and making sure your database can provide it. If you identify
any feature that the database can’t fulfill, rethink your design so that it can. Once you've gone through
the fourth step a few times, you should be ready to start creating your tables, so dive in, remember the
rules, and follow your design.

Ensuring Quality Data

26

While the primary focus of this chapter has been on the physical structure of database schemas, it’s
equally important to ensure that the data you're storing is of as high a quality as possible, and that the
data you're storing is what you actually need (or will need in the future) — the schema is just a way of
holding it.

If you're at the beginning of a project and you're about to start putting the database together, look carefully
at your application design document (if there is one that bears any relation to the actual application, and not
just the sales teams’ interpretation), and make sure you understand the functionality required inside out.

Run through each feature and try to visualize the database; you'll soon see where you need one-to-many
relationships, where you'll need fast tables to search, and where you'll need to version your records. All of
this needs to be factored into your schema before you dive in and put the database together.

Validating the quality of your data is probably the most important aspect of database design after the
layout of your tables. If your data is corrupted or has invalid values, then all of the applications running
off the database are susceptible to unknown outcomes, and potentially could crash.

We once wrote a Web application that was built on top of a company’s existing product database. The
application worked perfectly for months until all of a sudden errors started to occur whenever a search
was run against the database server. It became apparent that one of the products on the system had been
entered with a ridiculous price of several billion dollars, and the search query (which was doing a bit of
price manipulation) didn’t like it one bit.

The erroneous data took the application down. If that data had been validated before it went into the
database, the crash would never have occurred; and a site would not have been offline for several hours.
You know that validation is important, but how can you go about mapping out the validation routines?
Basically, you need to ask questions about every column in the database that isn’t a primary or foreign key.

Standardized Database Objects and Design

Consider some hypothetical examples: Could you let someone put any type of date into a Purchases
table? (Were you selling computers in 1930?) Could you have sold them in the future? (Do your cus-
tomers own a time machine?)

Similarly, what are the realistic prices for your product range if you have one. Would you really sell one of
your supercomputers for $29.99? (You may have seen the “bargains” on Amazon occasionally when the
odd electrical item is accidentally priced at less than a dollar, causing panic buying and much merriment
among the technology community.)

You should perform similar checks against data in the e-mail address column. (For example, you shouldn’t
have an address without the “@” character in them.) All of these checks and more should be built into your
applications, but they should also be in your database server. Check constraints can enforce any business
rule you like on whatever columns you like in your tables.

For example, in the following table of products, we don’t want any products on the database that are
priced less than $10,000 or greater than $1,000,000. You can see the check constraint called
CK_ProductPrice that shows this business rule:

CREATE TABLE [Products] (
[ProductId] [int] IDENTITY (1, 1) NOT NULL ,
[ProductName] [nvarchar] (50) COLLATE SQL_Latinl_General_ CP1_CI_AS NULL ,
[ProductPrice] [money] NULL ,
CONSTRAINT CK_ProductPrice CHECK (ProductPrice >= 10000 And ProductPrice <=
100000),
CONSTRAINT [PK_Products] PRIMARY KEY CLUSTERED
(
[ProductId]
) ON [PRIMARY]
) ON [PRIMARY]
GO

Now suppose someone tried to insert a row into the database that doesn’t pass our check constraint,
such as the following:

Insert Into Products
(ProductName, ProductPrice)
Values

('My Socks',5)

The database will very helpfully throw out a check constraint conflict error message, preventing those
socks from ever appearing in the products list:

INSERT statement conflicted with COLUMN CHECK constraint 'CK_ProductPrice'. The
conflict occurred in database 'ADO.NET', table 'Products', column 'ProductPrice’'.

The statement has been terminated.
To summarize, the database should be designed around the data and required functionality of your

applications. That way, you'll get the database that you need, and your boss will shower you with lavish
praise.

27

Chapter 2

Making a Flat Database Normalized

28

More often than not, you'll find databases or portions of a database that are not normalized and which
look a lot more like a spreadsheet than something on which you’d base your company’s future.

If it’s possible to change the way in which the database is structured without seriously affecting the
applications that depend on it, and it’s cost-effective, then you can reap the benefits of converting a flat
design to a relational design.

Be aware that migrating database schemas is a very expensive operation to
undertake, especially if nothing is currently broken.

Before any migration is even considered, consider the popular adage “If it’s not
broken, don’t fix it.”

Not only do you have to design the new schema, you also need to migrate any old
data, in addition to redesigning, deploying, and testing dependant applications.

Migration is no small or easy job.

So where do you begin with the conversion? It all depends on the circumstances. Some designs can be
easily changed over if they’re not used by other applications, whereas others will be tightly integrated
with applications, which will need all their data access operations abstracted away from the database
itself before you can make any changes.

When there are no dependent applications sucking the data out of your database, then changing the way
your tables are structured is quite easy. You can create a new schema and have it run in parallel to your
existing design, or you can migrate the existing design over to a new schema.

When running in parallel, you'll need to duplicate the changes in the one database to ensure that they
are reflected in the other.

Abstracting away from your databases is the best way in which a parallel system can be managed. One
way in which this can be achieved is by creating stored procedures for all of your data access methods and
having those stored procedures feed in to both of your databases at the same time, thereby abstracting from
the actual tables. In other words, you can have the legacy applications continue to work fine with the old
database until you have the time to migrate them to the new database, while any new applications can take
advantage of the new database schema and all the loveliness it provides.

Figure 2-4 shows this system design.
Migrating from one schema to another is much more difficult to achieve successfully because not only
do you have to ensure that the schema is spot-on, you also have to ensure that all of the applications

dependant on your database are happy living on the new schema and that they work as expected.

While migrating the schema can be very challenging, it’s nothing compared to reshaping your data,
which is very difficult.

Standardized Database Objects and Design

Old API
Old DB
New API P New
DB

Figure 2-4

Performing data migration requires an explicit knowledge of the data within your database. Once you
understand all the ways in which the data is used, you can begin to work out the best way to migrate it
to any new schema. Keep in mind that dependencies might exist on data that you don’t think relevant at
the time, so proceed carefully and begin the migration with the most important (top-level) tables first,
and then work your way down.

The easiest way to perform the migration is to write a SELECT statement for each of the “objects” in your
new schema that extracts the existing data from the current database, enabling you to easily drop it into
your new schema:

Insert Into NewDatabase.Customers

(Id, FirstName, LastName)

Select CustomerId, Firstname, Lastname -Other 50 columns not needed in new schema!
From OldDatabase.Customers

Some other ways in which this can be done include using Data Transformation Services (DTS) or the
Bulk Copy Program (BCP). Once you've decided how you want to perform the migration, it’s a good
idea to script it all up so that the process can not only be automated, but also tested heavily.

The basic rules are as follows:

1. Define all of the objects in your application(s) design.

2 Create a normalized schema from your object list to represent the new database.
3. Migrate data from the old database to the new database.
4

Create a clean set of stored procedures to access your new schema, with the option of simultan-
eously maintaining the data in your old schema if it’s needed.

5. Test until your fingers are bleeding and your applications squeak with glee.

To summarize our brief tour of migration, keep in mind that it is difficult, and often costs more than
sticking with what you’ve got.

29

Chapter 2

A

Black Cloud on the Horizon

While you're normalizing your tables, it’s a good idea to keep performance in the back of your mind. For
every table you normalize, you'll be adding overhead to your queries and slowing down any applications
that will use your database.

You should Draw the line at a few things. For example, there’s little point to normalizing data that is
incidental to the rows in which it’s stored. An example of this is the AddressLine2 column in the
Customers table. It could be moved out into its own table, and just referenced with a foreign key in

the Customers table. This would make the table more normalized, but at a cost: Every time you need to
get the full address of a customer, you have to reference two tables instead of just one, so the gain is too
small to justify normalizing it.

After you've normalized your database, there is a performance hit, but that can be worked around with
some clever trickery. One thing you can do is have denormalized versions of your data in separate
tables, using triggers on the normalized tables to maintain (insert, update, and delete) records in the
denormalized table.

Add all the indexes that are appropriate and search directly against the denormalized table to get the Ids
for the records you need. It’s also useful to only keep “live” data in the denormalized table. This way,
your working set (what's in the table) is smaller, which will make searching against the table much faster.

This may not be the most “normalized” way of designing databases, but in the real world, performance
is typically much more important than academic design principals. This way, you get the best of both
worlds.

In short, normalize where it makes sense, denormalize if you need performance, and don’t be afraid to
play around with indexes on your tables — they will give you massive increases in performance for
many of your tables.

Working with Someone Else’s Database

30

More often than not, you won't be able to choose the database structure you're using, so you need to be
able to make the best of a bad situation. We recently worked on a project for which we were hired to
develop a fully interactive Web site on top of an existing database. Upon receiving some samples of the
database tables, we were horrified to realize that there was no schema —not a bad one, but none at all.

One of the tables had over 260 columns. It even had multiples of some columns inside the same table. This
is an extreme example, but tables are often allowed to grow larger over time with no thought given to
maintenance or the amount of data, and thus, hard disk space, they are using up. In this case, it was almost
as though someone had taken an Excel sheet and placed it into a database server, hoping for the best.

The following sections explain some of the ways you can get around bad database design and ensure
that your applications don’t creak in the same way that the database might.

Standardized Database Objects and Design

Don’t Make It Worse

It’s easy to fall in to the trap of “going along” with what’s already in place —in fact, sometimes you
might not have a choice, but if do have any control over the shape of the data your working with and the
objects within a database, try not to compound the problem.

As tempting as it might be to just add one more column, think long and hard before doing so. Before you
know it, you'll have a table like the monstrosity described in the preceding section, with hundreds of
columns, all just added on as “one more column.”

One very simple way you can avoid making this mistake is by making sure the structure you're adding
is going into its own normalized tables where appropriate, using the primary key in the “bad” tables (if
it’s got one) to join into your normalized tables.

Abstraction is the way to get around making things any worse. Leave the database alone if you can and
move outside of the database server and into your code. Views, DataSets, and custom business objects
all help achieve this, as described in the following sections.

Using Views for Database Abstraction

Views are provided to enable subsets or compiled pages of data. They can be used to return whatever
“schema” you wish from the existing schema.

By placing views that impersonate a highly normalized schema between your applications and a
badly designed database, you gain all of the benefits of normalization with an almost insignificant
performance cost.

An example of this would be combining the “CustomerPet1” and “CustomerPet2” columns from the
“Customers” table to retrieve a distinct list of all of the Pets on the database:

Create View CustomerPets
As

Select DISTINCT CustomerPetl As PetName
From dbo.Customers

Where Not CustomerPetl Is Null

Union

Select DISTINCT CustomerPet2 As PetName
From dbo.Customers

Where Not CustomerPet2 Is Null

Go
Running a SELECT on the CustomerPets view would return a ResultSet something like this:

PetName

Dog
Giraffe
Kitten
Llama

31

Chapter 2

As you can see, you've gained a normalized view of the data without a normalized database —it’s
cheating, but sometimes it’s the only way to get what you want.

Using ADO.NET to Create a Normalized View of the Data

The ADO.NET DataSet is a very powerful object that can be used to create a full in-memory representation
of your database schema, or any database schema you wish. This enables you to abstract a poor database
design into a tidy normalized in-memory DataSet.

Creating a DataSet with multiple tables and relationships is achieved by using DataRelation objects
with constraints enforced by UniqueConstraint and ForeignKeyConstraint objects, enabling you to
build a fully relational database, all in-memory. Figure 2-5 shows the structure of a DataSet.

DataSet |

DataRelationCollection ”J

ExtendedProperties |JJ

DataTableCollection |JJ

|—| DataTable |

ilDataRowCoIIection HJ

-| DataView

| |—| DataRow |

| ChildRelations

)
‘|IParentReIations ”J
)

1 Constraints

iDataCqumnCoIIection UJ

1 ExtendedProperties ”J |—| DataColumn |

-| PrimaryKey |

L‘ ExtendedProperties |U

Figure 2-5

By using ADO.NET DataSets, not only do you get a normalized version of your data, you also get loads
of other cool features, which are covered in depth throughout Chapter 3.

In ADO.NET 1.0 and 1.1, the DataSet is very large and slow. For ADO.NET 2.0, many optimizations
have been added under the hood to make the DataSet a real contender in the framework for both speed
and features, including a new indexing engine and the option to use binary serialization. You can find
more detailed explanations of using the new ADO.NET 2.0 DataSet features in Chapter 3.

32

Standardized Database Objects and Design

Building Strongly Typed Business Objects

It will often be the case that you'll have no control over the database, meaning the only area of the
applications that you can edit is the code itself. Other times, changes may be planned for the database
but are not yet in place, so all you can do is prepare from them.

By using strongly typed business objects, you can build a consistent, highly normalized schema for your
data, no matter what data source it’s originating from. In addition, you can enforce a structured API to
work against, as well as house all the business rules inside your objects.

As the business objects exist separately from the databases from which their data is being retrieved, they
can take any form of schema you wish — they can match the database exactly or be completely different.

For example, you may have a flat table in the database with two columns containing a pet. However,
your object model can represent the data in a different way; for example, there would be nothing to stop

your Customers from having a Collection of Pet objects.

Figure 2-6 shows a denormalized table.

i Data in Table '0OldCustomers' in ‘P -0 x|
OldCustomerId Firsthame LastMarne |Pet1 |Petz |
1 Fhil winstanley Cat Badger
2 Drawid Penton Diag <MLL
3 wally MoClure Frog Monkey
| /
Figure 2-6

It’s quite simple to expand this denormalized design into a fully normalized in-code representation of
the objects as so:

'This is the Representation of our Customers
Public Class Customer

'Our Customers can have as many pets as they like in
'"this pet collection
Private _Pets As PetCollection
Public Property Pets() As PetCollection
Get
Return _Pets
End Get
Set (ByVal value As PetCollection)
_Pets = value
End Set
End Property

End Class

'Here is the Pet object, even though there isn't one in
'the database

33

Chapter 2

Public Class Pet

Private _Name As String
Public Property Pets() As String
Get
Return _Name
End Get
Set (ByVal value As String)
_Name = value
End Set
End Property

End Class

'This is a collection for the Pets
Public Class PetCollection
Inherits System.Collections.CollectionBase

Public Overridable Function Add(ByVal value As Pet) As Integer
MyBase.List.Add (value)
End Function

Default Public Overridable Property Item(ByVal index As Integer) As Pet

Get
Return DirectCast (MyBase.List.Item(index), Pet)
End Get
Set (ByVal value As Pet)
MyBase.List.Item(index) = value
End Set

End Property

End Class

Bringing Them Together

34

Once you have your custom Views feeding data into the ADO.NET DataSet(s), from which your business
objects are then reading their data via a well-structured API, you can forget that underneath all your code
there’s a mess lurking in the darkness (the Database from Heck), or rather, you can forget about it for now.

Going back to the database from Hades introduced at the beginning of this section, we used the methods
outlined in this chapter to normalize the single table into 14 separate tables. This was achieved by taking
the data in its raw format, parsing it out, placing the values into a custom business object (with all of the
business rules in place to validate the data), and then injecting them into the clean database schema.

By abstracting away from the database itself, you achieve a level of separation that lends itself to N-Tier
design. After all, what’s the good of a perfectly normalized database without applications that can talk to it?

Your ultimate goal when working around bad database design is to make it as easy as possible to
migrate the old design to a new design with as little impact as possible on your applications. Ideally, you
should not have to change your applications, other than switching their connection strings or data
sources to a normalized version of your database when the time arises.

Standardized Database Objects and Design

As hard as a job might look, you can normalize anything, given enough time and enough effort. It's usu-
ally worth it for the sake of your sanity if nothing else.

To Delete or Not to Delete . . .

When a record is deleted, it’s clear that the data it represents is irretrievably lost without the use of
restoring database backups. In many circumstances, it’s not a problem that the data has been removed,
but as soon as you're asked to report on data that is no longer there, you'll be in a pickle.

Some laws require that certain types of data be stored indefinitely, and other laws require aspects of data
to be deleted when it’s no longer relevant. Be sure to check with your appropriate departments if there is
any risk of running afoul of the law.

There are several ways in which you can ensure that you never delete your records, thereby ensuring
that they're always available to be reported on and queried.

Archiving the data into a different database is a simple way to ensure your current working sets of data
are kept clean by only storing the most recent data. By maintaining another database with the same
schema as your current set, you can easily transfer data across and maintain it for full reporting and
queries.

Compiling your data into statistics where appropriate and just storing the compiled statistics instead of
the raw data is another very easy way to ensure that all of your data is kept intact as you remove old
information from the live tables.

Other ways in which you can preserve data is by versioning records, via version numbers, Boolean (bit)
fields indicating the current row, or by using date spans that indicate a range of dates in which the data

is valid. This method can be somewhat cumbersome because your tables never actually shrink in size;
nothing is ever deleted, not to mention the fact that you have extra columns storing versioning information.

Getting at the Data from Your Code

There is one additional area that needs to be covered before we close this chapter: how your applications
should access the databases and schemas you've slaved over.

Don’t lock your applications into specific databases if you don’t have to— you never know when you
might be forced to switch to Oracle, DB2, or even ... Progress(!).

Luckily, ADO.NET 2.0 offers some fantastic new features that enable you to write database-independent
code, meaning that you can get on with writing your applications while the Oracle guy can work out its
oddities and the DB2 girl can decipher the ways of that Database server; your code needn’t care.

Using the Abstract Factory model to write your code instantly decouples your applications from the
database they’re talking to with next to no cost. This completes the “good design” model that you're

implementing within your databases and extends it into your business logic tiers.

The interfaces in ADO.NET 2.0 are shown in the following table with their Sqglclient implementations.

35

Chapter 2

SqlClient Class Base Class Generic Interface
SglConnection DbConnection IDbConnection
SglCommand DbCommand IDbCommand
SglDataReader DbDataReader IDataReader/IDataRecord
SglTransaction DbTransaction IDbTransaction
SglParameter DbParameter IDbDataParameter
SglParameterCollection DbParameterCollection IDataParameter
Collection
SglDataAdapter DbDataAdapter IDbDataAdapter
SglCommandBuilder DbCommandBuilder
SglConnectionStringBuilder DbConnectionStringBuilder
SglPermission DBDataPermission

Using interfaces in your code means that you're decoupling from the data source. However, a slight cost
is incurred, and that cost is one of changing the way you write any ADO.NET code — for example, this
SqlClient code:

Dim Conn As SglConnection = New SglConnection ("connstring")
Dim Comm As SglCommand = New SqglCommand(Conn, "commandtorun")
Comm.Connection = Conn

Comm.CommandText = "commandtorun"

Comm.CommandType = CommandType.StoredProcedure

Dim DS As DataSet = New DataSet ()

Dim SglDataAdapter DA = New SglDataAdapter (Comm)
Conn.Open ()

DA.Fill (DS)

Conn.Close()

Conn.Dispose

After being rewritten to take advantage of the Abstract Factory approach, it would look like the following:

Dim Conn As IDbConnection = GetConnection()
Dim Comm As IDbCommand = New IDbCommand ()
Comm.Connection = Conn

Comm.CommandText = "commandtorun"
Comm.CommandType = CommandType.StoredProcedure
Dim DS As DataSet = New DataSet ()

Dim IDbDataAdapter DA = New IDbDataAdapter (Comm)
Conn.Open ()

DA.Fill (DS)

Conn.Close()

Conn.Dispose

36

Standardized Database Objects and Design

The second example doesn’t use any classes from the System.Data.SglClient namespace, meaning
it’s completely generic and can be pointed at any database server just by changing what connection is
loaded up from the GetConnection () method. we cover this in much more detail in Chapter 3.

Summary

This chapter has covered a very large area, so it has necessarily sacrificed depth for breadth. The infor-
mation contained here should provide the building blocks you need to meet your own design chal-
lenges. As you do more research to determine which methodologies and techniques best suit your own
situation, keep the following points in mind:

Q

U 00 0

Only use the advice in this chapter if it’s relevant to you and your business needs. The rules out-
lined here are only general guidelines. You need to work out what is best suited for your business.

Be consistent in whatever you do, be it naming conventions or schema design.
Once you pick a direction, you'll be stuck with it, so think long and hard before you do anything.
If it’s not broken, don’t fix it. Rather, if it’s not going to break, don’t fix it!

Remember that you're not (usually) paid to write good code but to write code within the deadline.

Now that the design is out of the way;, it’s time to get your hands dirty and write some code. Chapter 3 is
a whistle-stop tour of all the basic ADO.NET features out there and how to best use them.

For More Information

To complement the information in this chapter, take a look at the following resources:

a

Q

MSDN library, “Normalization” —http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/createdb/cm_8_des_02_20oby.asp

Wikipedia, “Normalization” —http://en.wikipedia.org/wiki/Database_normalization

Database Knowledge Base, “Database Design” —http://database.ittoolbox.com/nav/
t.asp?t=349&p=349&h1=349

37

ﬂ

ADO.NET Essentials

In this chapter, we delve into the essential ADO.NET features and explore the best practices
surrounding them. We do all of this in a provider-independent way; the code and principles
covered here should work for SQL Server, Access, Oracle, MySQL and a whole host of other
database servers.

As you move through the chapter, you'll be taken through the code to build a basic Data Access
Layer, or Helper, before you actually move on to implementing many ADO.NET features.

Each point in this chapter is presented to you in the form of a self contained method. Each method
not only shows you how to do something, it also proves to you that it works, and it even lets you
change the settings to point to your own databases and providers to test the sample code against
them. This chapter should be worked through in a linear manner, as the initial base classes need to
be built to provide a platform on which all of the other methods reside.

As you read this chapter, you may notice that we stray somewhat from the subject of ADO.NET.
This is because development as a whole needs to be taken into consideration when creating
ADO.NET code.

Your code can still be specific to the provider you are using. The code in this chapter
has been written in a provider-independent way so it can be applied to any of the
providers. You don’t have to switch all your code around!

Not Another ADO Release!

Autumn (or fall, depending on which side of the Atlantic you live on) 2005 marks the arrival of the
.NET Framework 2.0. In the past, new releases of ADO meant immense amounts of hair-tearing,
tears, and murderous thoughts at the prospect of uprooting your existing code and rewriting it in
the new format.

Chapter 3

Never fear, this release of ADO.NET won't force you to rewrite anything. Your old code should work
under the new Framework (unless you're still using any of the bugs they’ve fixed —but you wouldn’t
do that . . . would you?).

No Revolutions

The new ADO.NET API is the same as before; it hasn’t been turned upside down. In fact, the existing
API has been carefully extended so that the code and applications you've written in 1.0 or 1.1 should
continue to work without any change.

All of the features introduced in ADO.NET 2.0 can be used incrementally. In other words, if you want to
use one of the new features, all you need to do is add on to your existing code; you don’t have to switch
to a whole new API model. In general, you can preserve your existing code base, only adding the things
you need for one particular feature in one part of your application.

We're telling the truth — the API still works!

Obsolete APIs

40

With every release of .NET, Microsoft has a bit of a spring clean, and this release is no different. They’ve
killed off a few of the methods, types, and properties. What we said earlier still applies, however: Any
old code you have with methods or types that have been deprecated or made obsolete will continue to
run under ADO.NET 2.0, even if it has references to APIs that have been removed in .NET Framework
2.0. There is one catch: You can’t recompile those applications with obsolete APIs under .NET 2.0 with
the references remaining.

For example, take something simple, such as this Console application, which was originally built in
NET 1.0 under Visual Studio 2002. It instantiates the System.Data.0leDb.0leDbPermission class
with a blank constructor, which was made obsolete in .NET 1.1 and remains obsolete in .NET 2.0:

namespace DotNetHosting

{
Sub UseObcoleteClass

Dim ODP As New System.Data.OleDb.OleDbPermission

End Sub
}

The preceding code compiled (and still compiles) in .NET 1.0 without any problems. If, however, you
attempt to compile the same code under .NET 1.1 or 2.0, the compiler will not be particularly nice to
you, presenting you with a rather colorful compilation error:

'Public Sub New()' is obsolete: 'OleDbPermission() has been deprecated. Use the
OleDbPermission (PermissionState.None) constructor.

When you run into that kind of exception and you want to compile your application under that version of
the Framework, you must change your code to bypass the compiler errors. In the case of the preceding
example, you can see that the compiler error that was thrown also describes the fix you should perform.

ADO.NET Essentials

This issue only exists, however, if you wish to recompile your applications. You don’t need to recompile
them, of course, just to have them run under a new version of the Framework. In fact, if you've already
installed .NET 2.0, it’s likely that many of your .NET applications are already running under it. (You can
confirm this by checking the value of System.Environment.Version.ToString (). It will tell you the
version of the Framework under which your applications are running.)

As long as you don’t recompile your applications, they will continue to work fine under any version of
the Framework. You can force an application to run under a specific version of the Framework very easily
with the addition of an entry to the application’s configuration file (app . config/web.config) that
defines the version of the Framework the application is to run under:

<startup>
<supportedRuntime version="v1.1.4322" />
</startup>

In short, you don’t need to recompile your existing applications to take advantage of the 2.0 release of
the NET Framework. In fact, you're probably already running existing applications that were developed
in NET 1.0 and 1.1 under .NET 2.0. Moreover, if you need to recompile your existing applications in
NET 2.0, you'll have to clean up anything that has been removed from the Framework.

Try your applications under .NET 2.0. You might find they work flawlessly and that you can take complete
advantage of the performance increases in both ADO.NET 2.0 and the Framework in general at no cost.

We can’t guarantee your code will work. Microsoft says it should, but of course, we
all know their track record on that point— it means they may be writing some
future notes of their own.

APIs in Their Twilight Months

As well as dealing with types and methods that have been removed in .NET 2.0 or previous incarnations of
the Framework, .NET 2.0 introduces changes of its own, marking many types and methods as obsolete —
in other words, they won’t work in future versions of the Framework.

In the past, Microsoft has dealt harshly with the deprecation of members and types. In the transition
between .NET 1.0 and .NET 1.1, types and members marked as obsolete would not compile under 1.1.
With .NET 2.0, types and methods that have the mark of death placed on them by the Microsoft Grim
Reaper are not being blocked outright. Rather, the compiler will provide warnings, informing developers
of the API's impending death.

What this means for you, the developer, is that you can continue to use the APIs that have been placed
on death row. However, you already know that the code won’t compile in .NET 2.0, so be forewarned.

A full list of all the changes between all versions of the NET Framework can be found at www.gotdotnet
.com/team/changeinfo/default.aspx.

41

Chapter 3

As an example of this deprecation and warning system, take a look at the following code, which uses the
SglParameterCollection.Add (string, string) method signature that has been marked as obsolete
in .INET 2.0:

Sub SglSglCommandAddParameter ()
Dim SglComm As New System.Data.SglClient.SglCommand
SglComm.Parameters.Add("@Socks", "Smelly");

End Sub

By default, the code will compile and run without any issues under .NET 2.0, but the compiler will
output a warning that indicates the method signature has been marked as obsolete. The warning looks
like this:

'Public Function Add(parameterName As String, value As Object) As
System.Data.SglClient.SglParameter' is obsolete: 'Add(String parameterName, Object
value) has been deprecated. Use AddWithvValue (String parameterName, Object value).

Think of the warning as a death knoll ringing on the APIs that have been marked as obsolete.

To be completely accurate, the preceding code may or may not compile, depending on the settings of your
build environment and whether warnings are treated as errors. If it doesn’t compile cleanly, you'll need to
change the code to use new or alternative methods suggested by the compiler in the error message.

If you find yourself receiving compiler warnings, change your code. It’s not worth the hassle down the
line after you've forgotten all about the code and then find yourself needing to change its functionality or
fix a bug (not that our code ever has any. . .), or discovering that it won’t even compile on future versions
of NET.

The Generic Factory Model

42

If you don’t know what the Generic Factory Model is and you develop against different database servers,
then you're in for a real treat. Microsoft has outdone themselves with ADO.NET 2.0 and come to the
rescue of all multiplatform database developers.

One day you might be developing against a SQL server; the next you might be developing against an
Oracle server. It's possible down the line you'll be asked to develop against a fridge freezer. Whatever your
data source, ADO.NET 2.0 gives you a provider-agnostic platform on which to build your applications,
meaning you can write your code once and have it work on any data source you wish.

The Generic Factory Model is an architecture that enables access to any database, from one set of code.
ADO.NET 2.0 has that architecture plumbed right into the Framework, so you can use it too.

Inside the System. Data.Common namespace are some lovely new classes that enable us to make
platform-independent code very easily, but before we get our hands dirty, we'll quickly run through the
Generic Factory Model.

ADO.NET Essentials

Providers

During the Dark Ages (when our only Framework was .NET 1.0), there were three providers in the form
of the following namespaces:

a System.Data.SglClient
a System.Data.Odbc

0 sSystem.Data.OleDb

In those days, we were encouraged by samples all across the Internet, in books, and by our peers to
directly use the most appropriate set of classes from the correct namespace. Doing this was problematic,
however, because after a specific provider such as SqlClient was hard-coded into the application, the
code could no longer be used to look at an Oracle database server using the OracleClient provider. In
other words, we were locked into a single provider, and when our bed was made — as the saying goes —
we had to lie in it.

If you wanted to write platform-agnostic code in the olden days (nearly three long years ago), you'd
have to use a bit of black magic, interfaces, and a switch statement:

Public ReadOnly Property Connection() As System.Data.IDbConnection
Get
Select Case OldGenericFactoryHelper.Provider
Case "SglClient"
Return New System.Data.SglClient.SglConnection
Case "Odbc"
Return New System.Data.Odbc.0OdbcConnection
Case "SglClient"
Return New System.Data.OleDb.OleDbConnection
Case Else
Return Nothing
End Select
End Get
End Property

As you can see, the method returns an interface of type IDbConnection, which is a generic implementa-
tion of the Connection class that all provider-specific classes implement (SglConnection,
OdbcConnection, and so on). This approach enabled you to code against the interfaces, rather than the
specific providers, but it always felt a little dirty.

Any application employing this approach had a design that was completely platform-independent. The
data access architecture is shown in Figure 3-1.

43

Chapter 3

Your Application

T

//' IDbConTneCtion ‘\\

Switch Statement

SqlConnection OdbcConnection ShoeBoxConnection
A A
OleDbConnection OracleConnection
A A
SqlClient OleDb Odbc Oracle Shoe Box
Figure 3-1

One of the main problems with this model was that each time a provider was added to the system, the
switch statement had to be altered. The fun didn’t stop there, though. You also needed switch statements
for all of the other provider-specific classes, such as those that implement IDbCommand, so that your
applications could retrieve the right Command class (SglCommand, 01eDbCommand, OdbcCommand,

and so on).

Although this wasn’t a massive problem, and the approach generally worked well, the ADO.NET 2.0
team at Microsoft came up with a much better solution, called the Generic Factory Model, described in
the next section.

ADO.NET to the Rescue

ADO.NET 2.0 solves the aforementioned problem by introducing Factories into the Framework. Just like a
real factory, a Factory takes in raw materials and produces fully working products. In this case, the raw
materials are the providers we want to use, and the products are the provider-independent classes we need.

The provider-independent classes include DbConnection, DbCommand, and DbParameter, as well as a
whole host of other classes. The way they are used is very similar to the way they were used in the old

model, but they come from a Factory built into the Framework — you don’t have to write the code yourself.

The new architecture is shown in Figure 3-2.

44

ADO.NET Essentials

Your Application

A

IDbConnection

A

DbConnection

A

Provider Factory

A

SqlConnection

OdbcConnection

ShoeBoxConnection

L

A

OleDbConnection

3

A

OracleConnection

A

SqlClient OleDb

Odbc

Oracle

Shoe Box

Figure 3-2

In other words, you no longer have to code any switch statements. Better yet, the NET Framework will
do all the hard work for you. For example, if you want a SqlClient connection object, all you need is the

following:

Public Shared Function GetConnection (ByVal providerName As String)

Return

System.Data.Common.DbProviderFactories.GetFactory (providerName) .CreateConnection ()

End Function

If you want a command object, then it’s as simple as calling CreateCommand () on the Factory returned
by GetFactory (). This code is much cleaner and self-maintaining. You never have to modify it, even to
use new providers — they just appear to your code automatically.

See how all of this makes life easier? We're speaking one language only, that of the provider-agnostic

class implementations. Now let’s go into a little more detail regarding the real-world implementation of

ADO.NET 2.0 Provider Factories.

45

Chapter 3

DbProviderFactories

46

The Factory is the key to the Generic Factory Model; without it, there would be no model. It’s the creator
of all of your classes, and it’s the place where all of the real work happens.

The .NET Framework is shipped with a bundle of Factory implementations in the box. They’re defined
in the machine.config file inside the Framework folders. You can access the machine.config file and take
a look for yourself:

C: \WINDOWS\Microsoft .NET\Framework\v2.0.50727\CONFIG\machine.config
There are five providers out of the box, but as with everything else in the .NET Framework, this is

customizable — you can easily add your own providers to extend the list on any machine with the
Framework installed. The five built-in providers are listed in the following table.

Name Invariant Type

Odbc Data Provider System.Data.Odbc System.Data.0Odbc
.OdbcFactory

OleDb Data Provider System.Data.OleDb System.Data.OleDb
.OleDbFactory

OracleClient Data Provider System.Data.OracleClient System.Data
.OracleClient

.OracleClientFactory

SqlClient Data Provider System.Data.SglClient System.Data
.SglClient
.SglClientFactory
SQL Server CE Data Provider Microsoft.SglServerCe Microsoft.SglServerCe
.Client .Client.SglCeClient
Factory

As mentioned previously, it’s very easy to add your own providers. There are various places where you
can define a provider so it can be used, including the machine.config, app.config, and web.config files.
Just add a small section to one of the configuration files (and have the provider installed on the
machines in question!):

<DbProviderFactories>

<add name="Odbc Data Provider" invariant="System.Data.Odbc" description=".Net
Framework Data Provider for Odbc" type="System.Data.Odbc.OdbcFactory, System.Data,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />
</DbProviderFactories>

Extensibility is the operative word here. The Generic Factory Model is easy to use, easy to implement,
and very easy to justify.

ADO.NET Essentials

Generic Factory versus Specific Providers

Decisions, decisions. The new features thrown at the feet of .NET developers in ADO.NET 2.0 are exten-
sive and formidable, so in order to help you decide if the shift is worth it, we'll briefly run through the
pros and cons of the Generic Factory Model (in comparison to directly accessing a provider such as

SqlClient).
Pros
Here are some reasons to use the Generic Factory Model:

Q Evenif you just use one provider today, your code can be moved to another provider without
any effort later, saving you and your company both time and money.

Q The potential market for your applications is massively increased. Some shops will only use
Oracle or DB2, for example. By giving your client the option of any provider, you widen your
scope to customers that are currently outside your reach.

0 You and your development team only need to know one API; the specifics of each provider can
be abstracted away, enabling you and your colleagues to concentrate on the applications. Plus,
using the Generic Factory Model will leave loads of room in your head to watch Internet Flash
animations relating to woodland creatures and fungi.

Cons
Of course, there are always some disadvantages too:

Q There’s a good chance you already know your data provider inside out. If you work with SQL
Server, you'll know the sqlclient namespace. If you decide to move to the provider model,
you'll have to learn an entirely new data access API.

Q If your current applications contain data access code that is not provider-agnostic (generic) and
you decide to go the generic provider route, you'll have to either rewrite all your existing data
access code or maintain both the old provider-specific code and any new provider-generic code.

Q While the majority of your data Access code in ADO.NET 2.0 can be provider-agnostic, huge

swathes of your applications are still not generic. For example, any exception thrown from a
database server will still be specific to the provider from which it’s been thrown, meaning you
have to deal with all the “special cases” for every provider manually.

Applications can be weighed against one another in terms of maintainability, security, and performance.
For some people, maintainable code is more important than secure code, whereas for others, security is
the primary concern. For the majority of developers, however, performance is the only thing they need
to worry about—in other words, the only thing the boss will notice.

47

Chapter 3

Writing a Helper Class

48

While it’s perfectly possible to add data access code everywhere you need to access the database server in
your applications, it’s much better practice to encapsulate all of your data access code inside some form of
Data Access Layer, which we will explore by building a Helper class for all of our data access code.

Beginning with this section, proceed in a linear fashion through the chapter. The Helper Class created in
this section is used throughout the rest of the chapter to illustrate many aspects of ADO.NET 2.0.

If you don’t like the idea of reading the code in this section, download the source code from the Web site
and load the Chapter 3 solution into Visual Studio. Then play to your heart’s content.

The first thing we need to do is create a class to store our Generic Factory Helper. Ours is called
GenericFactoryHelper and it started out in life looking just as shown here:

Imports System
Imports System.Data
Imports System.Data.Common

Namespace CodeSamples
Public Class GenericFactoryHelper
End Class

End Namespace

Our Generic Factory is designed to run through static properties and methods, meaning that applications
need not instantiate our Factory to gain access to its functionality. In addition, you may notice that the
class has included the System.Data . Common namespace. This is where all the generic functionality is
encapsulated in the .NET Framework.

The following property returns a list of all the possible Factories as defined in the Machine and
Application configuration files:

Public Shared ReadOnly Property AllFactories() As DataTable
Get
Return DbProviderFactories.GetFactoryClasses ()
End Get
End Property

As you can see, the type of data that this returns is a data table. Inside that data table are several
columns.

While it’s nice to be able to retrieve a list of the available providers, it’s much more useful to retrieve an
instantiation of a Generic Factory from a specific provider. The following property gets the current
Factory. At the moment, this is specified (hard-coded) in the property as a string. However, it could be
fed from a configuration entry somewhere, or even from the user interface, enabling users to specify the
type of database system to which they wish to connect.

Public Shared ReadOnly Property CurrentFactory() As String
Get
Return "System.Data.SglClient"

ADO.NET Essentials

End Get
End Property

The next method combines the CurrentFactory property we’ve already created with a call to
DbProviderFactories.GetFactory (). This method actually returns the Factory for use in our
applications —in this case, an instance of the SqlClientFactory:

Public Shared ReadOnly Property Factory() As DbProviderFactory
Get
Return DbProviderFactories.GetFactory (CurrentFactory)
End Get
End Property

In addition to the preceding method, we offer a way to create a specific Factory from a provider name,
like this:

Public Shared ReadOnly Property GetFactory(ByVal providerName As String) As
DbProviderFactory
Get
Return DbProviderFactories.GetFactory (providerName)
End Get
End Property

Having an instance of a Factory is all well and good, but we need more from our Factory Helper. We
need it to produce connections, commands, parameters, and many more objects. Luckily for us, it’s just a
simple matter of calling the correct method on the Factory to retrieve an instantiated, fully functional
provider generic class.

To retrieve an instance of DbConnection, which is actually just a wrapper for our provider-specific
connection class (SglConnection), we can create a method that enables us to specify a provider name
and returns the appropriate DbConnection class:

Public Shared ReadOnly Property GetConnection (ByVal proverName As String)
As DbConnection
Get
Return
GenericFactoryHelper.GetFactory (proverName) .CreateConnection ()
End Get
End Property

The next method call is simply used to return a provider-specific DbConnectionStringBuilder class.
It returns this from the factory specified in CurrentFactory:

Public Shared ReadOnly Property ConnectionStringBuilder() As
DbConnectionStringBuilder
Get
Return Factory.CreateConnectionStringBuilder ()
End Get
End Property

49

Chapter 3

As you'll see, the next method we implement does something a little bit more interesting than just
returning an instantiated class. It actually returns the correct connection string for the provider we're
using.

Because each database server likes its connection strings its own way, the following method uses the
type of the Factory class currently being used to determine which connection string to return via a
switch statement. It then uses a provider-specific DbConnectionStringBuilder from the preceding
method to create a connection string.

For more information on connection string builders, see the section entitled “Intelligent Connection
Strings.”

For each of the providers you wish to support, add your connection details where appropriate. The
following section of code shows a Property that dynamically returns the correct connection string, based
on the Provider being used.

For more information on connection strings, see the section entitled “Connection
Strings.”

Public Shared ReadOnly Property ConnectionString() As String
Get
Dim Csb As New DbConnectionStringBuilder
Select Case Factory.ToString()

Case "System.Data.SglClient.SglClientFactory"
Csb.Add("Server", "localhost")
Csb.Add("Integrated Security", "SSPI")

Case "System.Data.Odbc.OleDbFactory"

Csb.Add ("Provider", "sgloledb")
Csb.Add("Data Source", "localhost")
Csb.Add("User Id", "myUsername")
Csb.Add ("Password", "myPassword")

Case Else

Throw New System.NotImplementedException ("The Provider was
not catered for, try adding your provider into the switch.")
End Select
Return Csb.ToString()
End Get
End Property

Once we have our Factory, we can start using it to get all the operation-specific classes. The following
method uses the Factory to return a new instantiated DbConnection class:

Public Shared ReadOnly Property Connection() As DbConnection
Get
Return Factory.CreateConnection ()
End Get
End Property

What good is a connection if we can’t send commands to it? The following method uses the Factory to
return a provider-generic DbCommand object:

50

ADO.NET Essentials

Public Shared ReadOnly Property Command() As DbCommand
Get
Return Factory.CreateCommand ()
End Get
End Property

Occasionally, we’ll need to populate a DataSet using a DataAdapter, or save data to a database via a
DataAdapter. This method returns a generic DbDataAdapter from the Factory to be used in your
applications:

Public Shared ReadOnly Property DataAdapter () As DbDataAdapter
Get
Return Factory.CreateDataAdapter ()
End Get
End Property

It’s also quite useful to have a CommandBuilder for dynamically building commands:

Public Shared ReadOnly Property CommandBuilder () As DbCommandBuilder
Get
Return Factory.CreateCommandBuilder ()
End Get
End Property

Of course, any command worth its salt needs parameters. This method returns a generic DbParameter
object back to the application:

Public Shared ReadOnly Property Parameter () As DbParameter
Get
Return Factory.CreateParameter ()
End Get
End Property

Data Sources

It’s all well and good knowing we can connect to whatever platform we desire with only the flick of a
switch, but we really need to know what we can connect to—what’s on the network around us.

Using some of the new features baked into ADO.NET 2.0 — specifically, the GetDataSources method —
we can get a full listing of all the data sources available to us.

At the moment, the only provider that actually implements GetDataSources () is
the sqlClientFactory. Implementations for OdbcFactory, OleDbFactory, and
OracleFactory are currently not available.

On a machine with the SQL Server client tools, you can manually list all the SQL Server instances on the
network, like this:

51

Chapter 3

C:\>osqgl -L

Servers:
(local)
Badger\BadgerBadger
Mushroom

C:\>

While that’s useful, keep in mind that you can’t guarantee that a user will have the SQL Client tools
installed on his or her machine. Thus, the ADO.NET team has come up with a way for you to get this
information directly from the Framework, using the DbDataSourceEnumerator.

It’s quite simple to get a list of all the available data sources for each provider by using the
DbDataSourceEnumerator. In the following example, we run through each of the Factories and then,
for each one, we print out all the available data sources:

Sub EnumerateSources ()

Dim Dt As DataTable = CodeSamples.GenericFactoryHelper.AllFactories
Dim Dr As DataRow

For Each Dr In Dt.Rows
Try

Dim Dbp As DbProviderFactory =
DbProviderFactories.GetFactory (Dr ("InvariantName") .ToString())

Debug.WriteLine (Dr ("InvariantName") .ToString())
If Dbp.CanCreateDataSourceEnumerator Then

Dim Dse As DbDataSourceEnumerator =
Dbp.CreateDataSourceEnumerator ()

Dim DataSources As DataTable = Dse.GetDataSources ()

Dim DataSource As DataRow

Dim source As String = String.Empty

For Each DataSource In DataSources.Rows

source = DataSource ("ServerName") .ToString ()
If Not DataSource ("InstanceName") Is Nothing Then
source = source & "\" &
DataSource ("InstanceName") .ToString ()

End If
If Not DataSource("Version") Is Nothing And Not
DataSource ("Version") .ToString() = String.Empty Then
source = source & " - Version " &
DataSource ("Version") .ToString ()
End If

52

ADO.NET Essentials

Debug.WriteLine (source)

Next
End If
Catch ex As Exception
End Try
Next

End Sub

What this shows on our network is a list of all the different SQL Servers. Of course, what you see will
depend on the makeup of your network. You may see nothing, or you may see hundreds of database
server instances:

System.Data.Odbc

System.Data.0leDb
System.Data.OracleClient
System.Data.SglClient
Badger\BadgerBadger - Version 8.00.194
Mushroom\ - Version 8.00.194

Snake\

Why is it useful to know the different database servers?

You can use the preceding code to create a “poor man’s cluster,” whereby you can check each of the
entries in a specific provider, looking for a database server that is online or contains the information
you're looking for, enabling your applications to be resilient to servers being taken offline.

You could also build a server selection into your applications. For example, you may have development
and live servers. By giving your test team the capability to quickly change the database servers they’re

connected to, they can look after themselves without the necessity of developer involvement.

Enumeration for SQL Server 2005 is turned off by default. For more information, check out the section
covering Server Enumeration in Chapter 10.

Connection Strings

Everybody needs connection strings at one time or another, and while they're incredibly simple to construct
and use, they’re also often misunderstood.

ADO.NET offers three ways to create your connection strings. First, you can specify a simple string, like this:

Dim ConnectionString As String = "server=localhost;uid=Phil;pwd=ItsASecret;Initial
Catalog=MyDb"

The second way is by using the new ConnectionStringBuilder classes built into each of the

providers (the rest of this section focuses on this topic). The third way is to use the
ConnectionStringCollection and the ConnectionStrings section of ConfigurationSettings.

53

Chapter 3

Before moving on, it’s important to understand the different options open to you regarding the connection
strings for your provider. Familiarize yourself with the documentation for your chosen provider.

A very comprehensive list of connection strings is available from the following Web site: wuw
.carlprothman.net/Default.aspx?tabid=81.

Connection String Collection

With .NET 2.0, there’s a new way to store and use your connection strings in the Framework. Microsoft
has brought together the configuration files (app.config and web.config), as well as the managed
System.Configuration API to give us a really neat way of loading our connection strings.

Under the Configuration section in the config files is a new element called connectionStrings. This is
where all the connection strings for your applications can live:

<connectionStrings>
<add name="UserDatabase"
providerName="SglClient"
connectionString="server=1localhost;uid=myuser;pwd=mypassword"
/>
</connectionStrings>

Once your connection strings are stored inside the configuration files, it’s simple to actually get at them.
The following line of code shows the retrieval of a connection string:

ConfigurationManager.ConnectionStrings ("UserDatabase") .ToString ()
The ConfigurationManager class lives inside the System.Configuration namespace.

Remember: Before you create another entry in the appSettings section of your configuration files, if
you're adding a connection string, create it in the connectionStrings section.

Always try to encrypt your connection strings. That way, if someone does manage to take a peek inside
your configuration files, they still have to decrypt the strings before they can be used.

Intelligent Connection Strings

The first thing to remember with the ConnectionStringBuilder classes is that they do their own
thing. What you tell them you want is not necessarily what you get.

This disobedience can be demonstrated quite easily with a small amount of code. In the following
listing, three parameters are passed into the ConnectionStringBuilder for the SqlClient class:
"Server", "uid", and "pwd". What actually comes out of the ConnectionStringBuilder, however,
are "Data Source", "User ID", and "Password", respectively:

54

ADO.NET Essentials

Sub ShowStringBuilderManipulation ()

If CodeSamples.GenericFactoryHelper.CurrentFactory.ToString() <>
"System.Data.SglClient" Then

Throw New Exception("This test requires the Factory to be running from the
System.Data.SglClient provider, it's currently running as " +
CodeSamples.GenericFactoryHelper.CurrentFactory)

End If

Dim Csb As DbConnectionStringBuilder =
CodeSamples.GenericFactoryHelper.ConnectionStringBuilder

Csb.Add("Server", "localhost")
Csb.Add("uid", "myUsername")
Csb.Add ("pwd", "myPassword")

Dim actual As String = Csb.ConnectionString
Dim expected As String = "Data Source=localhost;User
ID=myUsername; Password=myPassword"

If expected <> actual Then
Throw New Exception("The expected does not match the actual!")
End If

End Sub

This happens because the ConnectionStringBuilder for the SglCclientFactory knows which
parameters are optimal for its performance, and it changes the values we used, converting them to the
right version.

Provider-Specific Connection Strings

Each database server allows connections in different ways, and while they all share common features
such as “username” and “password,” the way those features are implemented varies among providers.
Some common examples of differences for the four main providers are listed in the following table.

Odbc OleDb SqlClient OracleClient

Database Server Server Data Source Server or Server or “Data
“Data Source” Source”

Username UID User ID UID or User ID User ID

Password PWD Password PWD or Password Password

Should Integrated ~ Trusted_ Integrated Trusted_Connection Integrated

Security Be Used? ~ Connection Security or “Integrated Security
Security”

Table continued on following page

55

Chapter 3

Odbc OleDb SqlClient OracleClient
Database/Catalog Database Initial Catalog Database or Initial
to Connect to Catalog
Use Connection OLE DB
Pooling Services Pooling Pooling

Table courtesy of http://msdn.microsoft.com/library /en-us/dnvs05/html/vsgenerics.asp?frame=true#vsgene_topicé.

If you need to support multiple providers from the same code base, it’s a pretty simple procedure to
have code dynamically build the appropriate connection string for your providers, as shown here:

Public Shared Function LoadTheRightConnectionString() As String

Dim Actual As String = String.Empty

Dim Expected As String = String.Empty

Dim Csb As DbConnectionStringBuilder =
CodeSamples.GenericFactoryHelper.ConnectionStringBuilder

Select Case CodeSamples.GenericFactoryHelper.Factory.ToString()
Case "System.Data.SglClient.SglClientFactory"

Csb.Add("Server", "localhost")

Csb.Add ("uid", "myUsername")

Csb.Add("pwd", "myPassword")

Expected = "Data Source=localhost;User
ID=myUsername; Password=myPassword"

Case "System.Data.OleDb.OleDbFactory"
Csb.Add ("Provider", "sgloledb")

Csb.Add("Data Source", "localhost")
Csb.Add("User Id", "myUsername")
Csb.Add("Password", "myPassword")
Expected = "Provider=sqgloledb;Data

Source=localhost; Password=myPassword;User ID=myUsername"
Case Else

Throw New Exception("The provider is not supported!")

End Select
If Expected <> Actual Then

Throw New Exception("The Value does not match that which was expected.")

56

ADO.NET Essentials

End If

Return Nothing

End Function

Conditionally Adding Connection String Parameters

It’s quite common to want to dynamically construct the connection string, and it’s simple to do using the
ConnectionStringBuilder, as shown in the following example:

Public Sub ConditionallyAddParameters ()
Dim Csb As System.Data.Common.DbConnectionStringBuilder =
CodeSamples.GenericFactoryHelper.ConnectionStringBuilder

If Csb("Initial Catalog") .ToString = String.Empty Then
Csb.Add("Initial Catalog", "Northwind")
End If

Dim actual As Boolean = (Csb.ContainsKey("Initial Catalog") AndAlso
(Csb("Initial Catalog").ToString = "Northwind"))

Dim expected As Boolean = True

If expected <> actual Then
Throw New Exception ("Did not return the expected value.")
End If
End Sub}

As you can see by using a conditional statement and the Add method, it’s a trivial matter to add any
parameters that you require, combining the flexibility of a dynamically constructed connection string
with the power and intelligence of the ConnectionStringBuilder classes.

Provider-Specific Connection String Parameters

In the previous section, you saw how parameters can be conditionally added to your stored procedures.
It's worth noting, however, that the individual providers have sets of parameters that are added by
default and cannot be removed at runtime. This can be seen in the following code sample, which builds
on top of our Factory Helper class.

The following method clears all of the parameters from the ConnectionStringBuilder and manually
removes both the pwd and password parameters. The ContainsKey method is then called against pwd,
which has not been added, but explicitly removed. However, the value still returns true.

Public Sub ShowDefaultParametersAlwaysExist ()

If Not (CodeSamples.GenericFactoryHelper.CurrentFactory =
"System.Data.SglClient") Then

57

Chapter 3

Throw New Exception("This test requires the Factory to be running from the
System.Data.SglClient provider, it's currently running as " +
CodeSamples.GenericFactoryHelper.CurrentFactory)

End If

Dim Csb As System.Data.Common.DbConnectionStringBuilder =
CodeSamples.GenericFactoryHelper.ConnectionStringBuilder

Csb.Clear ()

Csb.Remove ("pwd")

Csb.Remove ("Password")

Dim actual As Boolean = Csb.ContainsKey ("pwd")
Dim expected As Boolean = True

If expected <> actual Then
Throw New Exception("Did not return the expected value.")
End If
End Sub

The reason why the preceding code always returns true is because the SqlClient Connection-
StringBuilder has some default parameters that are always available. You can easily produce a full list
of these default parameters using our Factory Helper and the following code:

Public Sub PrintAllDefaultParameters ()
Dim Dt As System.Data.DataTable = CodeSamples.GenericFactoryHelper.AllFactories

For Each Dr As System.Data.DataRow In Dt.Rows
Dim Dbp As System.Data.Common.DbProviderFactory =
System.Data.Common.DbProviderFactories.GetFactory (Dr ("InvariantName") .ToString)

Dim Csb As System.Data.Common.DbConnectionStringBuilder =
Dbp.CreateConnectionStringBuilder
Console.WriteLine (Dbp.ToString)

For Each Key As String In Csb.Keys
Console.WriteLine(Key + " = " + Csb(Key))
Next
Next
End Sub

For your convenience, the following table lists all of the default parameters and values for each of the
Factories shipped with ADO.NET 2.0.

SqlClientFactory OracleClientFactory

Data Source Data Source

Failover Partner Persist Security Info False
AttachDbFilename Integrated Security False
Initial Catalog User ID

Integrated Security False Password

58

ADO.NET Essentials

SqlClientFactory OracleClientFactory
Persist Security Info False Enlist True
User ID Pooling True
Password Min Pool Size 0
Enlist True Max Pool Size 100
Pooling True Unicode False
Min Pool Size 0 Load Balance Timeout 0
Max Pool Size 100 Workaround Oracle Bug 914652 False
Asynchronous Processing ~ False
Connection Reset True OleDbFactory
MultipleActiveResultSets True File Name
Replication False Provider
Connect Timeout 15 Data Source
Encrypt False Persist Security Info False
Load Balance Timeout 0 OLE DB Services -13
Network Library
Packet Size 8000 OdbcFactory
Application Name .Net SqlClient Data Dsn

Provider
Current Language Driver
Workstation ID
User Instance False
Context Connection False

Because of the provider-specific implementations of the ConnectionStringBuilder, you can’tjust add
any old rubbish to the connection string. If you do, it will complain bitterly:

Public Sub AddIllegalParameters ()

Dim Csb As System.Data.Common.DbConnectionStringBuilder =
CodeSamples.GenericFactoryHelper.ConnectionStringBuilder

Dim ExpectedError As String = String.Empty

Dim ActualError As String = String.Empty

Try
Csb.Add("My", "Socks")
Catch Ex As System.ArgumentException
ActualError = Ex.Message
ExpectedError = ("Keyword not supported: 'My'.")

59

Chapter 3

End Try

If ExpectedError <> ActualError Then
Throw New Exception("The error thrown was not one we expected.")
End If
End Sub

Alas, our socks are rejected from the database connection string and cast into cyber-oblivion.

Connections

The first code sample in this section should probably be called “Hello Database” because that’s essentially
what you're doing when you open a connection to a database — you're introducing yourself, shaking
hands, and preparing for a lengthy discussion.

ADO.NET enables you to make introductions to the databases around you in a very easy manner,
regardless of what they are.

Opening a Connection (and Making Sure It’s Open)

Before you do any database work, it’s likely you'll need to open a connection to the database in question.
Here’s how to do it:

Public Sub OpenConnection ()
Dim Conn As System.Data.Common.DbConnection =
CodeSamples.GenericFactoryHelper.Connection
Dim actual As System.Data.ConnectionState
Using Conn

Try
Conn.ConnectionString =
CodeSamples.GenericFactoryHelper.ConnectionString
Conn.Open ()
actual = Conn.State
Conn.Close()
Finally
End Try

End Using
Dim expected As System.Data.ConnectionState = System.Data.ConnectionState.Open
If expected <> actual Then

Throw New Exception("Did not return the expected value.")

End If

End Sub

60

ADO.NET Essentials

When you're doing any database work, it’s important to only have the connection open as long as it’s
absolutely necessary so that it can be used by others when needed. Get in, do your stuff, and get right
out again.

Closing a Connection (and Making Sure It’s Closed)

Many developers don’t give a thought to closing their connections, but closing a connection is just as
important — if not more so— than opening one. If your code for closing connections is buggy or faulty,
you might run out of available connections and your applications can grind to a halt under heavy use.

A bug in .NET 1.0 affected the calling of . Dispose () on the Connection object: It
did not always internally call the .Close () method. This meant that applications
that were not explicitly calling .Close () were leaving open connections left, right,
and center. Fortunately, the bug was eradicated in .NET 1.1 and has not resurfaced in
.NET 2.0.

The following code example does its utmost to ensure that a connection is closed, returned to the
connection pool (where it’s in use), and has its managed and unmanaged resources released so that
the garbage collector can do its thing:

Public Sub CloseConnection()
Dim Conn As System.Data.Common.DbConnection =
CodeSamples.GenericFactoryHelper.Connection
Dim actual As System.Data.ConnectionState = System.Data.ConnectionState.Closed
Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Using Conn

Try
Try
Conn.Open ()

If Conn.State <> System.Data.ConnectionState.Open Then
Throw New Exception ("Connection nott opened")
End If

Catch Ex As System.Data.Common.DbException
Throw New Exception (Ex.Message)
Finally
If Not (Conn.State = System.Data.ConnectionState.Closed) Then
Conn.Close ()
actual = Conn.State
End If
End Try

Finally
End Try

End Using

Dim expected As System.Data.ConnectionState =
System.Data.ConnectionState.Closed

61

Chapter 3

If expected <> actual Then
Throw New Exception("Did not return the expected value.")

End If
End Sub

The preceding code creates a Connection object and assumes everything went well with that creation,
and then moves into a using () statement, which ensures that the object specified will be disposed

of when we are finished with it. Once inside the using () statement, the code is wrapped with a
Try...Catch...Finally... statement, which enables us to catch any errors that might have occurred
and enforce the closing of the connection.

Even if you don’t do anything else, always make sure that you close and dispose of your connection
objects when you're finished with them; this will return the connections to a pool (if one’s being used)
and release any unmanaged resources the instance is using. As we’ve just shown, the easiest way to do
this is by employing a Using statement that will call Dispose () when we're finished with the objects in
question.

If you employ the Using object statement, the NET Framework will ensure that the object is
disposed of even if an exception is thrown inside the Using object statement, meaning your instance
will always be cleaned up.

Managing Exceptions

62

Yes, they happen, even in your code.

When using ADO.NET, it’s possible to get errors from all over the place, especially from your databases,
so it’s very important to have robust and extensive error reporting built into your applications.

Each provider in the Framework offers its own set of information. For example, the SqlException
offers the Procedure property, which gives you the Sql that has been run that caused the exceptions.

In the following example, you can see how it’s possible to collect detailed error information from the
SglException class (take particular note of the bold section):

Public Sub HandleAProviderException ()
Dim Conn As System.Data.Common.DbConnection =
CodeSamples.GenericFactoryHelper.Connection
Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Dim Comm As System.Data.Common.DbCommand = Conn.CreateCommand

Comm.CommandText = ("NORTHWIND.dbo.RaiseAnError")
Comm.CommandType = System.Data.CommandType.StoredProcedure
Conn.Open ()

Dim Dt As System.Data.DataTable = New System.Data.DataTable
Try

Dt .Load (Comm.ExecuteReader)

Catch Ex As System.Data.SglClient.SglException
Dim ExceptionDetails As String = String.Empty
Console.WriteLine("Class: " + Ex.Class)
Console.WriteLine("Data: ")

For Each Key As String In Ex.Data.Keys

ADO.NET Essentials

Console.WriteLine(Key + " = " + Ex.Data(Key) .ToString)
Next
Console.WriteLine ("ErrorCode: " + Ex.ErrorCode)
Console.WriteLine ("Procedure: " + Ex.Procedure)
Console.WriteLine("Server: " + Ex.Server)
Console.WriteLine("State: " + Ex.State)
Console.WriteLine ("Message: " + Ex.Message)
Console.WriteLine ("HelpLink: " + Ex.HelpLink)

End Try
Conn.Close()

End Sub

The preceding code calls a stored procedure that is primed to throw an exception, as shown here:

CREATE PROCEDURE [dbo].[RaiseAnError] AS

RAISERROR('This is an Exception', 16, 1)

GO

On encountering a SglException, the code inspects the SglException and pulls out all the details it
can from inside the exception:

Class:

Data:

16

HelpLink.ProdName = Microsoft SQL Server
HelpLink.Prodver = 08.00.0194

HelpLink.EvtSrc = MSSQLServer

HelpLink.EvtID = 50000

HelpLink.BaseHelpUrl = http://go.microsoft.com/fwlink
HelpLink.LinkId = 20476

ErrorCode: -2146232060

Procedure: RaiseAnError

Server:
State:

localhost

Message: This is an Exception
HelpLink:

The Cclass property shows how valuable this information can be; it exposes information that enables the
application to give users more detailed error messages.

The following table shows the varying levels of severity at which errors can occur in SQL Server.

Severity Level Connection Is Closed Generates SqlException = Meaning

10 and below No No Informational messages

that do not necessarily
represent error
conditions.

Table continued on following page

63

Chapter 3

Severity Level Connection Is Closed Generates SqlException = Meaning

No Yes Errors that can be
corrected by the user —
for example, by retrying
the operation with
amended input data.

No Yes Resource or system errors

Yes Yes Fatal system errors
(including system errors)

Table courtesy of http:/ /msdn.microsoft.com/library /default.asp?url=/library/en-us/dnbda/html/daag.asp.

When you're using the Generic Factory approach, you have two options when catching exceptions: Either
you can make do with a generic exception class, which enables you to step into the provider-specific
exception layers via the InnerException property of the Exception class, or you can interact directly
with the provider-specific exceptions, as shown here:

64

Public Sub CatchAGenericException ()

Dim Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection

Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Dim Comm As System.Data.Common.DbCommand = Conn.CreateCommand
Comm.CommandText = ("SELECT * FROM NORTHWIND.dbo.TableDoesntExist")
Comm.CommandType = System.Data.CommandType.Text
Conn.Open ()
Dim Dt As System.Data.DataTable = New System.Data.DataTable
Try

Dt .Load (Comm.ExecuteReader)
Catch Ex As System.Data.Common.DbException

Throw New Exception("A DbExeption was thrown with the message '" +

Ex.Message + "'")

Catch Ex As System.Exception
Throw New Exception("An Exception was thrown with the message '" +

Ex.Message + "'")

End Try
Conn.Close()

End Sub

While the exception might be of type DbException, it still contains all the information you would
expect from the provider-specific exception. An example that shows this is detailed here:

Public Sub CatchAGenericExceptionInDetail ()

Dim Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection

Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Dim Comm As System.Data.Common.DbCommand = Conn.CreateCommand
Comm.CommandText = ("SELECT * FROM NORTHWIND.dbo.TableDoesntExist")
Comm.CommandType = System.Data.CommandType.Text

Conn.Open ()

Dim Dt As System.Data.DataTable = New System.Data.DataTable

ADO.NET Essentials

Try
Dt .Load (Comm.ExecuteReader)

Catch Ex As System.Data.Common.DbException
Console.WriteLine (Ex.GetType.ToString)
Console.WriteLine (Ex.Message)
Console.WriteLine (Ex.StackTrace)
Console.WriteLine (String.Empty)

Catch Ex As System.Exception
Throw New Exception ("An Exception was thrown with the message '" +

Ex.Message + "'")
End Try
Conn.Close()

End Sub

What this generates is very detailed error information directly from the provider, but wrapped up in a
neat little package, DbException:

System.Data.SglClient.SqglException
Invalid object name 'NORTHWIND.dbo.TableDoesntExist'.

at System.Data.SglClient.SglConnection.OnError (SqlException exception, Boolean
breakConnection)

at System.Data.SglClient.SglInternalConnection.OnError (SqlException exception,
Boolean breakConnection)

at System.Data.SglClient.TdsParser.ThrowExceptionAndWarning (TdsParserStateObject
stateObj)

at System.Data.SglClient.TdsParser.Run(RunBehavior runBehavior, SglCommand
cmdHandler, SglDataReader dataStream, BulkCopySimpleResultSet bulkCopyHandler,
TdsParserStateObject stateObj)

at System.Data.SglClient.SglDataReader.ConsumeMetaData ()

at System.Data.SglClient.SglDataReader.get_MetaData ()

at System.Data.SglClient.SglCommand.FinishExecuteReader (SglDataReader ds,
RunBehavior runBehavior, String resetOptionsString)

at System.Data.SglClient.SqglCommand.RunExecuteReaderTds (CommandBehavior
cmdBehavior, RunBehavior runBehavior, Boolean returnStream, Boolean async)

at System.Data.SglClient.SglCommand.RunExecuteReader (CommandBehavior
cmdBehavior, RunBehavior runBehavior, Boolean returnStream, String method,
DbAsyncResult result)

at System.Data.SglClient.SglCommand.RunExecuteReader (CommandBehavior
cmdBehavior, RunBehavior runBehavior, Boolean returnStream, String method)

at System.Data.SglClient.SglCommand.ExecuteReader (CommandBehavior behavior,
String method)

at System.Data.SglClient.SqglCommand.ExecuteDbDataReader (CommandBehavior
behavior)

at System.Data.Common.DbCommand.ExecuteReader ()

at CodeSampleTests.Exceptions.CatchAGenericExceptionInDetail ()

As the preceding code is quite generic, it might not give you what you need when trapping exceptions,
s0 it’s important to note you can still catch provider-specific exceptions before falling back on generic
methods. The following code briefly details the way in which you can build a comprehensive exception
trap for exceptions that originate from each of the providers you want to support.

The importance of this can’t be underestimated; oftentimes, you get very similar sorts of errors occurring

on different database systems, and it’s very handy to group them together so your front-end users see a
neat, consistent error regardless of the provider they’re using. Here’s the code:

65

Chapter 3

Public Sub CatchAProviderSpecificException ()
Dim Conn As System.Data.Common.DbConnection =
CodeSamples.GenericFactoryHelper.Connection
Dim Comm As System.Data.Common.DbCommand = Conn.CreateCommand
Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Comm.CommandText = ("SELECT * FROM NORTHWIND.dbo.TableDoesntExist")
Comm.CommandType = System.Data.CommandType.Text
Conn.Open ()
Dim Dt As System.Data.DataTable = New System.Data.DataTable
Try
Dt .Load (Comm.ExecuteReader)
Catch Ex As System.Data.SglClient.SqglException
Throw New Exception("A SglException was thrown with the message '" +
Ex.Message + "'")
Catch Ex As System.Exception

Throw New Exception("An Exception was thrown with the message '" +
Ex.Message + "'")
End Try
Conn.Close()
End Sub

Trapping exceptions can be quite easy, and developers find them vital for debugging applications
throughout the development cycle. Remember, however, that most users won’t know what the excep-
tions mean, so it’s generally best to hide them from end users unless you know they’re qualified to deal
with them.

Provider-Specific Features

66

We know we have a connection and we’ve introduced ourselves. Now we want a little bit more informa-
tion. We're using the Provider Model, though, so we don’t actually know what we’re dealing with. We
can, however, by using a little forethought, build a degree of intelligence into our code so that any
provider-specific functionality is still available to us:

Public Sub GetSglConnectionStatistics()

If Not (CodeSamples.GenericFactoryHelper.CurrentFactory =
"System.Data.SglClient") Then

Throw New Exception("This test requires the Factory to be running from the

System.Data.SglClient provider, it's currently running as " +
CodeSamples.GenericFactoryHelper.CurrentFactory)

End If

Dim SglConn As System.Data.SglClient.SglConnection =
CType (CodeSamples.GenericFactoryHelper.Connection,
System.Data.SglClient.SglConnection)

Dim Stats As System.Collections.Hashtable

Using SglConn

SglConn.ConnectionString =
CodeSamples.GenericFactoryHelper.ConnectionString

SglConn.Open ()

Stats = CType(SglConn.RetrieveStatistics, System.Collections.Hashtable)

SglConn.Close()

For Each Key As String In Stats.Keys

ADO.NET Essentials

Console.WriteLine(Key + " = " + Stats(Key).ToString)
Next

End Using

Dim actual As Integer = Stats.Count
Dim expected As Integer = 18

If actual <> expected Then
Throw New Exception ("Did not return the expected value.")
End If

End Sub
The output of this method looks something like this:

NetworkServerTime = 0
BytesReceived = 0
UnpreparedExecs
SumResultSets =
SelectCount = 0
PreparedExecs =
ConnectionTime = 0
ExecutionTime = 0
Prepares = 0
BuffersSent = 0
SelectRows = 0
ServerRoundtrips = 0
CursorOpens = 0
Transactions = 0
BytesSent = 0
BuffersReceived = 0
IduRows = 0

IduCount = 0

0

What's really cool about this is that while you can generally use a provider-generic solution, there’s
nothing to stop you from using provider-specific code within your generic application so long as you
understand that it might not work with all providers. Obviously, the preceding code is just a sample. The
possibilities are endless — from exception trapping all the way to using database-specific object types.

For more provider-specific code, check out Chapters 9, 10, 11, 16, and 17.

Schema Metadata

While it’s possible to directly access many database servers and check the schema (layout) of their
databases, each database server —be it Oracle or SQL Server — gets information in different ways. The
ADO.NET schema metadata system provides the application developer with easy access to the schemas
with a consistent provider-agnostic API.

67

Chapter 3

This section covers schema information in great detail, describing the different types of information you
can retrieve and showing some ways in which it can best be used.

Available Information

68

There is a good deal of variation between the different providers, both in how they implement T-SQL
and how they fit together. With the schema metadata system, you can query for schema information and
interrogate the different database servers regarding their layout.

The metadata information available depends entirely on the way each provider has been implemented. In
SQL Server, for example, it’s possible to get quite a bit of information, ranging from the structure of tables
(columns and data types) to the reserved words for the Server. In other providers, you can get similar
information, but it might not be in the same format. The thing to remember with schema metadata is that
it can very well be different for each provider.

To produce a list of what is available for all the providers installed on your system, you can run the
following code in conjunction with the GenericFactoryHelper defined previously. What this code
does is run through each provider, querying the schema metadata, retrieving the list of metadata
collections that are available, and then displaying them to the console:

Public Sub SchemasAvaliable()
Dim Dt As System.Data.DataTable = CodeSamples.GenericFactoryHelper.AllFactories
For Each Dr As System.Data.DataRow In Dt.Rows
Dim Dbp As System.Data.Common.DbProviderFactory =
System.Data.Common.DbProviderFactories.GetFactory (Dr ("InvariantName") .ToString)
Try
Dim Conn As System.Data.Common.DbConnection = Dbp.CreateConnection
Dim Schema As System.Data.DataTable
Using Conn

Conn.ConnectionString =
CodeSamples.GenericFactoryHelper.ConnectionString
Conn.Open ()
Schema =
Conn.GetSchema (System.Data.Common.DbMetaDataCollectionNames.MetaDataCollections)
Conn.Close()

End Using

Console.WriteLine (Dbp.ToString)

For Each SchemaRow As System.Data.DataRow In Schema.Rows
Console.WriteLine (SchemaRow (0) .ToString)

Next

Catch Ex As Exception
Console.WriteLine("Failed for " + Dbp.ToString + " - " + Ex.Message)
End Try
Next
End Sub

Here you can see the list that the SglclientFactory returns. The items listed can be queried individually
to reveal more information about the data to which they pertain.

ADO.NET Essentials

SqlClientFactory

MetaDataCollections
DataSourceInformation
DataTypes
Restrictions
ReservedWords

Users

Databases

Tables

Columns

Views

ViewColumns
ProcedureParameters
Procedures
ForeignKeys
IndexColumns

Indexes

This table shows all the top-level information that is available for the SqglCclientFactory provider. As
you can see, there is a wealth of information. The following sections describe some areas you might find
useful.

DataTypes

The mapping for each data type is stored in the metadata, too, with all of the properties that the
Framework and database servers need to translate between .NET-specific types and provider-specific

types.

DataSourcelnformation

Inside this section of the schema, you'll find information used by the provider-specific DbCommandBuilder
to construct T-SQL (Transact-SQL) commands and add parameters to queries. Other information can also
be contained within this section, but for now we’ll just cover the default information returned by the main
providers and briefly discuss what each one means.

CompositeldentifierSeparatorPattern

This represents the separator when referencing the different objects on the server —for example, a table
called Publishers owned by Phil in a database called Northwind on a server called Badger on SQL
Server is expressed like this:

69

Chapter 3

Badger .Northwind.Phil.Publishers

u

The separator pattern identifies the “.” used to break up the individual elements. The entry for this value
inside the SQL Server schema is as follows:

<CompositelIdentifierSeparatorPattern>\.</CompositeIdentifierSeparatorPattern>

DataSourceProductName

This is more of a label than anything that’s actually used; it contains what you expect it to — the name of
the type of server to which you're connected. The SQL Server entry is as follows:

<DataSourceProductName>Microsoft SQL Server</DataSourceProductName>

GroupByBehavior

This is a direct reflection of the System.Data.Common.GroupByBehavior enumerator. The possible
values are shown in the following table.

ExactMatch 4
MustContainAll 3
NotSupported 1
Unknown 0
Unrelated 2

The SqlClient Provider defaults to Unrelated, as shown here:
<GroupByBehavior>2</GroupByBehavior>

IdentifierCase

The case sensitivity of identifiers is controlled by this property and it maps straight into the enumerator
System.Data.Common.IdentifierCase, whose values are shown in the following table.

Insensitive 1
Unknown 0
Sensitive 2

The default value for Sql Client is as follows:

<IdentifierCase>1l</IdentifierCase>

70

ADO.NET Essentials

IdentifierPattern

This is a regular expression that specifies the pattern to which the provider requires its identifiers to
conform.

The SQL Server provider has a regular expression that looks like this:

<IdentifierPattern>("\[\p{Lo}\p{Lu}\p{L1l}_€#] [\p{Lo}\p{Lu}\p{L1}\p{Nd}@$#_]1*$) | ("\I[
[ANINOT [NINTH+NTS) | (A\"[~\"\O] [\"\"+\"$)</IdentifierPattern>

OrderByColumnsinSelect

This is a normal Boolean value that signifies whether SELECT statements should also perform an ORDER
BY, which mirrors each of the values in the SELECT statement. For example, a SELECT with
OrderByColumnsInSelect set to true might look like this:

SELECT Badger, Mushroom, Snake
FROM Internet
ORDER BY Badger, Mushroom, Snake

The default behavior in the SQL Server provider is false:
<OrderByColumnsInSelect>false</OrderByColumnsInSelect>

ParameterMarkerFormat

This is a string that identifies a mask for parameters:

<ParameterMarkerFormat>@{0}</ParameterMarkerFormat>

ParameterMarkerPattern

Each database server prefixes its parameters in a specific way; this regular expression checks the
parameter name with its prefix attached (an “@” character in the case of the SQL Server provider):

<ParameterMarkerPattern>@[\p{Lo}\p{Lu}\p{L1}\p{Lm}_@C#] [\p{Lo}\p{Lu}\p{L1}\p{Lm}\p{N
A}\uff3f_@#\$]* (?=\s+|$)</ParameterMarkerPattern>

ParameterNameMaxLength

This does exactly what you’d expect it to do from its name. The default SQL Server value for this one is
as follows:

<ParameterNameMaxLength>128</ParameterNameMaxLength>

ParameterNamePattern

This is another regular expression that tells the DbCommandBuilder the format in which parameter
names must appear. For SQL Server, the default is as follows:

<ParameterNamePattern>" [\p{Lo}\p{Lu}\p{L1}\p{Im}_@#] [\p{Lo}\p{Lu}\p{L1}\p{Lm}\p{Nd}
\uff3f_@#\$]1*(?=\s+|$)</ParameterNamePattern>

71

Chapter 3

QuotedldentifierPattern

Yep — another regular expression. This one confirms that the identifiers inside the DbCommandBuilder
conform to the format the provider needs. In the case of SQL Server, this is [Identifier] and is
expressed like this:

<QuotedIdentifierPattern>(([*\[]|\]1\])*)</QuotedIdentifierPattern>

QuotedldentifierCase

The case sensitivity of parameters is controlled by this property and maps straight into the enumerator
System.Data.Common.IdentifierCase, where all the values are as follows:

Insensitive 1
Unknown 0
Sensitive 2

The default value for Sql Client is shown here:
<QuotedIdentifierCase>1</QuotedIdentifierCase>

StatementSeparatorPattern

Almost all database servers enable the user to execute multiple statements in the same execution. This

option lets the command builder split those individual statements in a larger execution. SQL Server uses

the semicolon (;) character, as shown here:
<StatementSeparatorPattern>;</StatementSeparatorPattern>

StringLiteralPattern

Literal strings are required all over the place. For example, they make this query work and distinguish
between operators and strings:

Select Badger From Internet Where Annoyance = 'Massive’
On SQL Server, this is expressed with apostrophes and enforced with the following regular expression:
<StringLiteralPattern>'(([A‘]|")*)‘</StringLiteralPattern>

SupportedJoinOperators

This translates into one of the values for the System.Data.Common . SupportedJoinOperators enu-
merated type, which has several options:

FullOuter 8
Inner 1
LeftOuter 2

72

ADO.NET Essentials

None 0

RightOuter 4

The value for SQL Server is 15, which means it’s a combination of the enumerated types above (8 + 1 +2 +
0 + 4), as shown here:

<SupportedJoinOperators>15</SupportedJoinOperators>

Restrictions

While having the metadata is useful, it’s pointless if you can’t search it. With restrictions, you can query
the schema information, searching for specific entries just as you would search for data in your database
tables.

Each object type in the database has different items you can search against. To get a full list of each type
and its associated number, run the following code:

Public Sub ListAllRestrictionsAvaliable()
Dim Dt As System.Data.DataTable = CodeSamples.GenericFactoryHelper.AllFactories
For Each Dr As System.Data.DataRow In Dt.Rows
Dim Dbp As System.Data.Common.DbProviderFactory = Nothing
Try
Dbp =
System.Data.Common.DbProviderFactories.GetFactory (Dr ("InvariantName") .ToString)
Dim Conn As System.Data.Common.DbConnection = Dbp.CreateConnection
Dim Schema As System.Data.DataTable
Using Conn

Conn.ConnectionString =
CodeSamples.GenericFactoryHelper.ConnectionString
Conn.Open ()
Schema =
Conn.GetSchema (System.Data.Common.DbMetaDataCollectionNames.Restrictions)
Conn.Close()

End Using

Console.WriteLine (Dbp.ToString)
For Each Column As System.Data.DataColumn In Schema.Columns
Console.Write (Column.ColumnName)
Console.Write("" & Microsoft.VisualBasic.Chr(9) & "")
Next
Console.WriteLine (String.Empty)
For Each SchemaRow As System.Data.DataRow In Schema.Rows
For Each Column As System.Data.DataColumn In Schema.Columns
Console.Write (SchemaRow (Column.ColumnName) . ToString)
Console.Write("" & Microsoft.VisualBasic.Chr(9) & "")
Next
Console.WriteLine (String.Empty)
Next
Catch Ex As Exception
If Not (Dbp Is Nothing) Then

73

Chapter 3

Console.WriteLine("Failed for " + Dbp.ToString + " - " +
Ex.Message)
End If
End Try
Next
End Sub

This code returns a lot of information, but we’ll focus on just one piece of it for the moment. Following
are the results for tables in the Sql Server Provider, detailing the columns available to us for querying.

RestrictionName RestrictionDefault RestrictionNumber
Catalog TABLE_CATALOG 1
Owner TABLE_SCHEMA 2
Table TABLE_NAME 3
TableType TABLE_TYPE 4

74

As you can see from the results produced in the preceding table, we can query the database in which
tables are stored (TABLE_CATALOG), the owner of the table (TABLE_SCHEMA) and the table name
(TABLE_NAME), as well as the table type (TABLE_TYPE), be it user or system created.

We don’t actually write a SELECT statement to do this. Rather, we change the way in which we call the
GetSchema () method to tell it what we’re looking for and which objects to search by, passing in a string
array of appropriate restrictions. For example, if we want to determine whether the pubs database
contains a table called publishers, we’d set up a string array, like this:

Dim Restrictions(4) As String

Restrictions(0) = "pubs" 'TABLE_CATALOG
Restrictions(l) = Nothing 'TABLE_SCHEMA
Restrictions(2) = "publishers" 'TABLE_NAME
Restrictions(3) = Nothing 'TABLE_TYPE

The indexes of the string array directly relate to the RestrictionNumber shown in the preceding table
(+1, as we're in 0-based arrays).

Once we have the string array, we can actually run the query, but our GetSchema () method call has
changed slightly to include the keyword “Tables”, which could easily be replaced by any of the items
returned from SchemasAvailable () above:

Schema = Conn.GetSchema ("Tables",Restrictions)
What this then returns is a list of every table that matches our restrictions. In this case, there’s only one:

TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE_TYPE

pubs dbo publishers BASE TABLE

ADO.NET Essentials

What happened behind the scenes was that the Framework actually queried the SQL Server with the
following:

select TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE from
INFORMATION_SCHEMA.TABLES where TABLE_CATALOG = 'pubs' and TABLE_SCHEMA =
TABLE_SCHEMA and TABLE NAME = 'publishers' and TABLE_TYPE = TABLE_TYPE

Notice how for each of the restrictions we specified, the SQL was added; and for the ones we ignored,
the default value was used instead, due to some intelligence baked into the Framework. The .NET
Framework takes the query specified in the Schema Metadata file, as shown below, and converts it into
the desired query, as shown above. If you inspect the following query, you'll see that the parameters are
specified as {n}, which is why it’s important to pass in your restrictions in the right order:

select TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE from
INFORMATION_SCHEMA.TABLES where TABLE_CATALOG = {0} and TABLE_SCHEMA = {1} and
TABLE_NAME = {2} and TABLE_TYPE = {3}

If you don’t care about a particular item in the query, you can just set its parameter to null. If it follows
the highest number you do care about, just omit it completely. For example, if you wanted only the
tables in the pubs database, your restrictions could look like this:

Dim Restrictions(1l) As String
Restrictions(0) = "pubs" 'TABLE_CATALOG

To summarize, if you ever need to query the schema information, it’s a good idea to use restrictions to
limit your results to only what you need.

Reserved Words

All database languages have words that are operational or expressional. A very small sample of the
reserved words in SQL Server includes the following:

EXCEPT
PERCENT
ALL

EXEC

PLAN
ALTER
EXECUTE
PRECISION
EXISTS

Yawn! There are a lot of these. Using the schema metadata, you can query the reserved words to identify
which ones should not be used when constructing queries or picking names for your database provider.
To query the data, it's a simple matter of taking the preceding code and changing the query request to
the following;:

Schema = Conn.GetSchema ("ReservedWords")

This query has already been written for you and can be found in the sample code called
“AllReservedWords”.

75

Chapter 3

Source of the Schema Information

The schema information is pulled directly from the database server to which the provider you're using is
pointing. The queries are tucked away inside the provider itself, enabling information to be looked up
from the database server.

The .NET providers for SqlClient, OleDb, and ODBC have these queries and other information embedded
as resources inside the System.Data.dll stored in C:\WINDOWS\Microsoft. NET\Framework\v2.0.50215.
OracleClient information is inside the System.Data.OracleClient.dll in the same location.

Each provider has its own XML file inside its associated assembly, which details how all the schema
information is retrieved from the database server:

Q System.Data.SqlClient.SqlMetaData.xml

Q System.Data.OleDb.OleDbMetaData.xml
Q System.Data.Odbc.OdbcMetaData.xml
a

System.Data.OracleClient.OracleMetaData.xml

The following table shows the queries sent to the different servers to get both a list of tables and a list of
views for each provider.

SqlMetaData.xml OracleMetaData.xml
Tables select TABLE_CATALOG, SELECT OWNER, TABLE_NAME,

TABLE_SCHEMA, DECODE (OWNER, 'SYS', 'System',
'"SYSTEM', 'System', 'SYSMAN',

TABLE_NAME, 'System', 'CTXSYS',
'System', 'MDSYS',

TABLE_TYPE 'System', 'OLAPSYS', 'System’,
"ORDSYS', 'System', 'OUTLN',

from INFORMATION_SCHEMA .TABLES 'System', 'WKSYS',

where TABLE_CATALOG = {0} and 'System', 'WMSYS', 'System', 'XDB',

TABLE_SCHEMA = {1} and 'System', 'ORDPLUGINS',

TABLE_NAME = {2} and 'System', 'User') AS Type FROM

TABLE_TYPE = {3} ALL_TABLES WHERE OWNER={0} AND
TABLE_NAME={1} ORDER BY OWNER,
TABLE_NAME

Views select TABLE_CATALOG, SELECT * FROM ALL_VIEWS WHERE

TABLE_SCHEMA, TABLE_NAME, OWNER={0} AND VIEW_NAME = {1}

CHECK_OPTION, IS_UPDATABLE

from INFORMATION_SCHEMA .VIEWS

where TABLE_CATALOG = {0} and

TABLE_SCHEMA = {1} and

TABLE_NAME = {2} order by

TABLE_CATALOG, TABLE_SCHEMA,

TABLE_NAME

76

ADO.NET Essentials

As you can see, different providers are configured to return similar data, but in a very different structure.
When using the schema information, it’s important to understand that the different providers offer
different levels and quality of information.

It's always a good idea when using Get Schema () to cache your results where
possible. That way, you can greatly increase the performance of your applications.

Uses for Schema Metadata

Schema information offers many possible uses, from custom reporting solutions to object relationship
mappers.

It's now possible in a platform-independent way to query the layout of databases and then use the
information to build visual representations of that data either as reports or by constructing user interface
elements.

You can also use the schema information to discover the constraints applied to columns of data, such as
the allowed length and data format, to automatically validate data in your user interface before even
attempting to pass it through to the database.

Commands

Once you have an open connection to the database server of your choice, the next step is to simply run
some SQL against the server. To do this, as you're probably aware, you need to use Command objects.

Commands are the vehicle by which the majority of your database work happens, so it’s worth getting
very familiar with them. The following sections go through the basics of getting a Command object and
then using it, and detail some of the modifications made to the Command object in ADO.NET 2.0.

DbCommand from a Factory

When using the Factory Model, it’s important to get the right Command object, and the simplest way to
do that is to call the CreateCommand () object, which will return a DbCommand:

Public Sub CheckCommandFromProvider ()

Dim actual As String = CodeSamples.GenericFactoryHelper.Command.ToString

Dim expected As String =
CodeSamples.GenericFactoryHelper.GetFactory (CodeSamples.GenericFactoryHelper.Curren
tFactory) .CreateCommand.ToString

If expected <> actual Then

Throw New Exception ("The values do not match")

End If

End Sub

77

Chapter 3

DbCommand from a DbConnection

It’s also possible to create a Command object directly from a DbConnection object, meaning you can get a
provider-specific implementation of a Command object while keeping the provider-agnostic approach
and references:

Public Sub CheckCommandFromConnection ()

Dim actual As String =
CodeSamples.GenericFactoryHelper.Connection.CreateCommand.ToString

Dim expected As String =
CodeSamples.GenericFactoryHelper.GetFactory (CodeSamples.GenericFactoryHelper.Curren
tFactory) .CreateCommand.ToString

If expected <> actual Then

Throw New Exception("Did not return the expected value.")

End If

End Sub

Make sure you use this approach to create a command when you have a connection available.

Provider-Specific Commands

If you're not using the Factory Model, it’s perfectly possible to grab a Command object from the provider
of your choice — for example, the SqlCommand if you're using the SqlClient provider:

Public Sub GetCommandFromProvider ()
Dim Comm As System.Data.SglClient.SglCommand = New
System.Data.SglClient.SglCommand
If Comm Is Nothing Then
Throw New Exception ("The Command object was null.")
End If
End Sub

While it’s easy to do this, please try to avoid it if possible and use the provider-independent (Generic
Factory Model) approach.

Quoteldentifier and UnquotedIdentifier

Quoted identifiers help database servers know when you're talking about objects, such as tables and
columns, and when you're talking about literal strings.

In SQL Server, there are two types of quoted identifier: [Square Brackets] and “Quotation Marks.” The
quotation marks are used differently depending on whether QUOTED_IDENTIFIER is set to On or Off.
When set to On, anything inside quotation marks is treated as an object, such as a table or column; when
set to Off, characters inside quotation marks are treated as literal strings, such as “Phil”.

Why does this matter to you as a developer? Well, depending on the settings of your queries, you may

need to quote any objects so that they’re not mixed up with their literal string representations. ADO.NET
2.0 provides a couple of methods that hang off the Command object to enable you to do this.

78

ADO.NET Essentials

Hidden away in the Schema Metadata files for your provider, buried within the bataSourceInformation
section, there is an entry for QuotedIdentifierPattern. In the case of the SqlServer provider, this is
(([*\[1|\I\1)*), aregular expression specifying that the string passed in to it should be surrounded by
[square brackets]. What the QuoteIdentifier method does is take in our string "Phil" and use the
regular expression to output a properly formatted string:

Public Sub UseQuoteIdentifier ()

Dim CommB As System.Data.Common.DbCommandBuilder =
CodeSamples.GenericFactoryHelper.CommandBuilder

Dim actual As String = CommB.QuoteIdentifier ("Phil")

Dim expected As String = ("[Phil]")

If expected <> actual Then

Throw New Exception("Values do not match")

End If

End Sub

As well as being able to quote identifiers, it’s also possible to remove any quote mark characters from
the identifiers, meaning that you can translate both ways (Database — UI and UI — Database) for any
parameters or keywords you wish to use:

Public Sub UseUnquoteIdentifier()

Dim CommB As System.Data.Common.DbCommandBuilder =
CodeSamples.GenericFactoryHelper.CommandBuilder

Dim actual As String = CommB.UnquoteIdentifier (" [Phil]")

Dim expected As String = ("Phil")

If expected <> actual Then

Throw New Exception("Values do not match")

End If

End Sub

Using QuoteIdentifier and UnquoteIdentifer enables you to dynamically build compliant SQL
statements with very little effort. What use they have outside the world of dynamic SQL, however, is not
yet known.

Adding DbParameters to a DbCommand

Creating and adding parameters using the Factory Model is relatively simple. It’s just a matter of calling
the Createparameter () method on the Command object and then assigning the parameters any relevant
values before appending it to the Parameters collection on the Command object:

Public Sub CreateAndAddParameter ()
Dim Comm As System.Data.Common.DbCommand =
CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Dim Prm As System.Data.Common.DbParameter = Comm.CreateParameter
Prm.ParameterName = CodeSamples.GenericFactoryHelper.FormatParameter ("Socks")
Prm.Value = ("Smelly")
Comm.Parameters.Add (Prm)
Dim expectedCount As Integer = 1
If expectedCount <> Comm.Parameters.Count Then
Throw New Exception ("Did not return the expected count.")
End If
Dim expectedValue As String = ("Smelly")

79

Chapter 3

If expectedValue <> Comm.Parameters(0).Value Then
Throw New Exception("Did not return the expected value.")
End If
End Sub

You might think it’s odd that this section has been included in the book, but it’s important to understand
how ADO.NET and specifically adding parameters has changed with .NET 2.0.

When adding a parameter now, you should never add it through the Add (string, object) signature.
That method has been deprecated. Instead, add parameters to a ParameterCollection object via the
Add (DbParameter) overload.

Parameters Are Not Generic

Different providers take their parameters in different ways, and coding for each eventuality can be quite
difficult.

The providers use each database’s native syntax and positioning information for laying out their
parameters. Some are positional (that is, the index to which they are added in the Parameters collection
directly correlates to where in the SQL statement they will be used), and others are named (a named
parameter goes to a specific place).

The following table lists each of the default providers, with positioning and marker information.

Provider Named/Positional Parameter Marker
SqlClient Named @parmname

OracleClient Named :parmname (or parmname)
OleDb Positional ?

Odbc Positional ?

Table courtesy of http://msdn.microsoft.com/library/en-us/dnvs05/html/vsgenerics.asp?frame=true#vsgene_topic4.

When you are writing a system that should be database-independent, it’s important to remember the
preceding table. You have to code for these differences in parameters.

Fortunately, it’s very easy with the schema information for a provider to format the parameter automati-
cally. The parameter marker is stored inside the ParameterMarkerFormat field of the
DataSourceInformation section.

Here is a method that demonstrates automatically formatting a parameter with the correct marker:
Public Shared Function FormatParameter (ByVal ParameterName As String) As String
Dim Conn As DbConnection = Connection

Conn.ConnectionString = ConnectionString
Dim ParameterMarkerFormat As String

80

ADO.NET Essentials

Using Conn

Conn.Open ()
ParameterMarkerFormat =
Conn.GetSchema ("DataSourceInformation") .Rows (0) ("ParameterMarkerFormat") .ToString
Conn.Close ()
End Using
Return String.Format (ParameterMarkerFormat, ParameterName)
End Function

An example showing the exact use of the preceding code follows. Here, you can see a parameter name
being passed into FormatParamater, and a string delimited with @ being returned from it:

Public Sub ProviderSpecificParameter ()
Dim Comm As System.Data.Common.DbCommand =
CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Dim Prm As System.Data.Common.DbParameter = Comm.CreateParameter
Prm.ParameterName = CodeSamples.GenericFactoryHelper.FormatParameter ("Socks")
Prm.Value = ("Smelly")
Comm.Parameters.Add (Prm)
Dim expectedCount As Integer = 1
If expectedCount <> Comm.Parameters.Count Then
Throw New Exception ("Did not return the expected count.")
End If
Dim expectedvValue As String = ("Smelly")
If expectedValue <> Comm.Parameters(0).Value Then
Throw New Exception ("Did not return the expected value.")
End If
End Sub

As you can see, by using the built-in Schema Metadata, we can infer the marker and actually place it into
our parameters dynamically at runtime, depending on the provider we're using.

Now that markers have been dealt with, we turn to the positional side of things. There’s just one simple
rule to follow here: Make sure the order of the parameters never changes and that all of the positional
SQL you write takes parameters in the same order.

ExecuteNonQuery

While much of your ADO.NET code will be retrieving data from data sources, it’s also quite useful to be
able to push data into the database in the form of inserts and updates. This is exactly what
ExecuteNonQuery is for.

ExecuteNonQuery can be used in conjunction with output parameters and return codes, as detailed

in the section “Output Parameters, Return Codes, Scalars, and DataReaders,” and it offers the added
functionality of returning the number of rows affected by any commands executed with it.

ExecuteReader

You'll often just need a load of data to display onscreen, such as search results or the items for a
drop-down list; and the ExecuteReader method is meant for such scenarios. It offers the best and

81

Chapter 3

fastest approach for reading large amounts of data. Here is a sample showing the use of
ExecuteReader:

Private Shared Sub DoReader ()
Using Conn As System.Data.SglClient.SglConnection = New
System.Data.SglClient.SglConnection
Using Comm As System.Data.SglClient.SglCommand = New
System.Data.SglClient.SglCommand
Using Reader As System.Data.SglClient.SglDataReader =
Comm. ExecuteReader
While Reader.Read
'Do Stuff
End While
End Using
End Using
End Using
End Sub

Make sure that you're using a Reader and not a DataSet when you just need forward-only read access
to data.

Filling a DataSet or DataTable without a DataAdapter

There is now fantastic support in the Framework for filling DataTables and DataSets directly from
Readers. No longer do you need a DataAdapter just to get information from your SQL Server tables to
an in-memory DataSet.

Here is a brief example showing the population of a DataTable with a Reader:

Private Shared Sub FillDataTable ()
Using Conn As System.Data.SglClient.SglConnection = New
System.Data.SglClient.SglConnection
Using Comm As System.Data.SglClient.SglCommand = New
System.Data.SglClient.SglCommand
Using Reader As System.Data.SglClient.SglDataReader =
Comm. ExecuteReader
Dim Dt As New DataTable
Dt .Load (Reader)
End Using
End Using
End Using
End Sub

System.Data.CommandBehavior

When calling an ExecuteReader, there’s an overload that takes in one of the CommandBehavior
enumerated types and acts accordingly. The different options are described in the following sections.

CloseConnection

When you employ the CloseConnection option on creation of a Reader, you'll ensure the connection is
cleaned up after the Reader has been disposed of, but remember that you need to close your Reader in
order for it to close the connection!

82

ADO.NET Essentials

Default

Surprisingly enough, Default is what you get if you haven’t specified a value. It’s also one of the
options you can choose.

Keylnfo

When KeyInfo is specified, ADO.NET will return all the primary key information, along with the tables
in the Reader.

SchemaOnly

The schemaOnly enumerated type does exactly what it says on the can — it just returns information
about the columns in the tables that are used in the queries.

SequentialAccess

This option should only be selected when reading binary data from databases, as it allows for the
streaming of files from columns in the database.

SingleRow

If you're just bringing one row back from the database, choose this option. Some of the .NET providers
actually optimize the query to take advantage of the low volume of data being moved around.

SingleResult

When this option is specified, just one result set is returned.

ExecuteScalar

Quite commonly, all you'll want is a single value from the database, as when you select a field for a
record based on its identifier. When all you need is one value, use ExecuteScalar.

An object of type System.Object is returned from ExecuteScalar, and you must cast the value out to
the appropriate type (that is, the one you're expecting, such as int or string):

Private Shared Sub ExecuteScalar ()
Using Conn As System.Data.SglClient.SglConnection = New
System.Data.SglClient.SglConnection
Using Comm As System.Data.SglClient.SglCommand = New
System.Data.SglClient.SglCommand
Dim o As Object
o = Comm.ExecuteScalar ()
End Using
End Using
End Sub

Make sure that all single-field, single-row selects use ExecuteScalar when writing your ADO.NET code.

83

Chapter 3

Output Parameters, Return Codes, Scalars, and
DataReaders

More often than not, you want to get something from the database server, be it the ID of a newly added
record or an error code from a statement. Four options are open to you as an ADO.NET developer, and
we’ll run through them in the following sections, detailing where they are best used and where they are
best avoided.

Three of the options — Output, InputOutput, and ReturnCode —are detailed in the System.Data
.ParameterDirection enumerated type. The fourth is the DataReader.

Output Parameters

84

Output parameters act just like normal parameters on the Command object. However, the database can
specify the value to return with them. It’s possible to have multiple output parameters on commands,
and using them precludes the need to return a ResultSet of information (a row of data) from the
database and place it into a DataReader or DataTable to get at the values. Output parameters are best
used to return IDs from newly added rows or to return several values at once where only one row of
data is being referenced. Here’s an example:

Public Sub OuputParameter ()
Dim Comm As System.Data.Common.DbCommand =
CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Comm.CommandType = System.Data.CommandType.StoredProcedure
Comm.CommandText = "Northwind.dbo.AddEmployee"
Dim FirstName As System.Data.Common.DbParameter = Comm.CreateParameter
FirstName.ParameterName =
CodeSamples.GenericFactoryHelper.FormatParameter ("FirstName")
FirstName.Value = ("Phil")
FirstName.Direction = System.Data.ParameterDirection.Input
Comm.Parameters.Add (FirstName)
Dim LastName As System.Data.Common.DbParameter = Comm.CreateParameter
LastName.ParameterName =
CodeSamples.GenericFactoryHelper.FormatParameter ("LastName")
LastName.Value = ("Winstanley")
LastName.Direction = System.Data.ParameterDirection.Input
Comm.Parameters.Add (LastName)
Dim EmployeeID As System.Data.Common.DbParameter = Comm.CreateParameter
EmployeeID.ParameterName =
CodeSamples.GenericFactoryHelper.FormatParameter ("EmployeeID")
EmployeeID.Direction = System.Data.ParameterDirection.Output
Comm.Parameters.Add (EmployeelID)
Using Conn As System.Data.Common.DbConnection =
CodeSamples.GenericFactoryHelper.Connection
Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Comm.Connection = Conn
Comm.Connection.Open ()
Comm. ExecuteNonQuery ()
Comm.Connection.Close()
End Using

Dim ActualObject As Object = Comm.Parameters ("EmployeeID") .Value
Dim ActualValue As Integer = 0

ADO.NET Essentials

If (Not (ActualObject Is Nothing)) Then
ActualValue = CType (ActualObject, Integer)
End If
Dim ValueWeDontWant As Integer = 0
If ValueWeDontWant = ActualValue Then
Throw New Exception ("The values match!")
End If
End Sub

The corresponding SQL looks like this:

Alter Proc AddEmployee
(
@EmployeeID int = Null Output,
@FirstName nVarChar (20),
@LastName nVarChar (20)
)
As
Insert Into Northwind.dbo.Employees
(
FirstName,
LastName
)
Values
(
@FirstName,
@LastName
)
Set @EmployeeID = Scope_Identity ()
Go

Return Codes

Return codes are very similar to output parameters in that they’re accessible via a parameter. However,
there can be only one return code per command, meaning they’re best used to report on the status of an

execution. For example, when updating a record, it would be prudent to have three return codes:

1 = Success
2 = Record Not Found

3 = Unexpected Error

Using the value retrieved by the return code, you can then act accordingly within your applications by

either throwing specific exceptions or alerting the user to what has happened:

Public Sub ReturnCode ()
Dim Comm As System.Data.Common.DbCommand =
CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Comm.CommandType = System.Data.CommandType.StoredProcedure
Comm.CommandText = "Northwind.dbo.UpdateEmployee"
Dim FirstName As System.Data.Common.DbParameter = Comm.CreateParameter
FirstName.ParameterName =
CodeSamples.GenericFactoryHelper.FormatParameter ("FirstName")

85

Chapter 3

86

FirstName.Value = ("Phil")

FirstName.Direction = System.Data.ParameterDirection.Input

Comm.Parameters.Add (FirstName)

Dim LastName As System.Data.Common.DbParameter = Comm.CreateParameter

LastName.ParameterName =
CodeSamples.GenericFactoryHelper.FormatParameter ("LastName")

LastName.Value = ("Winstanley")

LastName.Direction = System.Data.ParameterDirection.Input

Comm.Parameters.Add (LastName)

Dim EmployeeId As System.Data.Common.DbParameter = Comm.CreateParameter

Employeeld.ParameterName =
CodeSamples.GenericFactoryHelper.FormatParameter ("EmployeeId")

EmployeeId.Value = (1)

EmployeelId.Direction = System.Data.ParameterDirection.Input

Comm.Parameters.Add (EmployeeId)

Dim ReturnValue As System.Data.Common.DbParameter = Comm.CreateParameter

EmployeeID.ParameterName =
CodeSamples.GenericFactoryHelper.FormatParameter ("Returnvalue")

EmployeeID.Direction = System.Data.ParameterDirection.ReturnvValue

Comm.Parameters.Add (EmployeeID)

Using Conn As System.Data.Common.DbConnection =
CodeSamples.GenericFactoryHelper.Connection

Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString

Comm.Connection = Conn

Comm.Connection.Open ()

Comm. ExecuteNonQuery ()

Comm.Connection.Close()
End Using

Dim ActualObject As Object = Comm.Parameters ("ReturnvValue").Value
Dim ActualValue As Integer = 0
If (Not (ActualObject Is Nothing)) Then
ActualValue = CType (ActualObject, Integer)
End If
Dim ValueWeDontWant As Integer = 0
If ValueWeDontWant <> ActualValue Then
Throw New Exception("The values don't match")
End If
End Sub

The preceding code executes the following SQL:

Create Proc UpdateEmployee
(

@EmployeeID int,
@FirstName nVarChar (20),
@LastName nVarChar (20)

)

As

--Check for the Records Existence

If Not Exists (Select Null From Employees Where EmployeeID = @EmployeelID)

ADO.NET Essentials

Return 2; -- Record Doesn't Exist!

--Update the record

Update Employees

Set FirstName = @FirstName,
LastName = @LastName

Where EmployeeId = @QEmployeeId

--Make sure it was updated
If @@RowCount = 1
Return 1; -- Success!
--If the Procedure got to here, something went very wrong....
Return 3
Go

Scalars

Scalars are a bit trickier to classify because, unlike output parameters and return codes, they’re not tied
into parameters. Rather, they are actually a single value returned in a result set from the database server
returned from a SELECT statement. The code looks like this:

Public Sub ExecuteScalarSingleValue ()
Dim Comm As System.Data.Common.DbCommand =
CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Comm.CommandType = System.Data.CommandType.StoredProcedure
Comm.CommandText = "Northwind.dbo.ExecuteScalarSingleValue"
Dim ActualObject As Object = Nothing
Using Conn As System.Data.Common.DbConnection =
CodeSamples.GenericFactoryHelper.Connection

Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Comm.Connection = Conn
Comm.Connection.Open ()
ActualObject = Comm.ExecuteScalar
Comm.Connection.Close()
End Using
Dim ActualValue As Integer = 0
If (Not (ActualObject Is Nothing)) Then
ActualValue = CType (ActualObject, Integer)
End If
Dim ValueWeDontWant As Integer = 0
If ValueWeDontWant <> ActualValue Then
Throw New Exception ("The Values don't match")
End If
End Sub

The preceding code runs the following SQL:
CREATE PROC ExecuteScalarSingleValue
As

Select 1
Go

87

Chapter 3

DataReaders

The fourth option available to you is to use a DataReader to return the values. The advantage of
DataReaders is that many developers are familiar with them, although they seem a bit like overkill for
just one or two values:

Public Sub ExecuteReaderSingleValue ()
Dim Comm As System.Data.Common.DbCommand =
CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Comm.CommandType = System.Data.CommandType.StoredProcedure
Comm.CommandText = "Northwind.dbo.ExecuteScalarSinglevValue"
Dim reader As System.Data.Common.DbDataReader = Nothing
Dim ActualValue As Integer = 0
Using Conn As System.Data.Common.DbConnection =
CodeSamples.GenericFactoryHelper.Connection

Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Comm.Connection = Conn

Comm.Connection.Open ()

reader = Comm.ExecuteReader (System.Data.CommandBehavior.SingleRow)

Using reader

While reader.Read
ActualValue = reader.GetInt32(0)
End While
End Using
Comm.Connection.Close()
End Using
Dim ValueWeDontWant As Integer = 0
If ValueWeDontWant <> ActualValue Then
Throw New Exception("The Values don't match")
End If
End Sub

In terms of performance, all of the preceding options operate at a very similar speed, so the choice is not
one of performance but personal preference and appropriateness to the code you're writing.

For more information on performance comparisons, view this guide at MSDN: http://msdn
.microsoft.com/library/en-us/dnbda/html/bdadotnetarch031.asp?frame=
true#bdadotnetarch031_topich

DataSet

The ADO.NET Framework has the DataSet. If you're a hardened .NET developer already, you probably
hate the DataSet, but we implore you to read on. The DataSet is faster, meaner, and an all-around much
nicer chap than it used to be.

When writing code against databases, you'll commonly want to have relationships between tables and

chunks of data. The ADO.NET DataSet enables you to represent data in memory in a rich relational
model, supporting relationships, key constraints, and a whole host of other features.

88

ADO.NET Essentials

In our experience, we’ve seen the DataSet misused more often than not. Keep in mind that it is not meant
for all data usage in the Framework, that it does have some overhead, and that if you just need to pull
data from a database and display it to a user without any form of data manipulation, you do not need to
use the DataSet.

Having a DataSet is all well and good, but you’ve got to put some data inside it to make it useful. In this
section, we briefly discuss the three ways you can populate a DataSet: manually, with DataAdapters,
and with DataReaders.

Manually Populating a DataSet

It’s perfectly possible, although generally ill advised, to populate a DataSet manually by adding
columns and rows to the DataSet tables in code.

An example of when you might want to populate a DataSet manually is a scenario in which no Reader
or DataAdapter is available for the data source. For example, if you're reading values from a custom
hardware device, you may grab values via the serial interface and then need to store them in a bucket
somewhere. The DataSet is a great general bucket for data, so by using the Rows . Add (DataRow)
method, you can use the DataSet to hold your information without any Reader or Adapter:

Public Shared Sub AddRowToDataSet ()
Dim Ds As DataSet = New DataSet
Ds.Tables.Add (New DataTable)
Ds.Tables (0) .Columns.Add (New DataColumn ("Id"))
Ds.Tables (0) .Columns.Add (New DataColumn ("Name"))
Dim Dr As DataRow = Ds.Tables(0) .NewRow

Dr("Id") = 0

Dr ("Name") = "Phil"

Ds.Tables (0) .Rows.Add (Dr)
End Sub

If a DataAdapter or DataReader is available for your data source, don’t add rows manually or we’ll send
the programming police around to arrest you for crimes against common sense.

When you find yourself in a situation that requires you to add rows manually to a DataSet and you
think it would be worthwhile, consider writing your own Data Adapter, which you can reuse.

Using DataAdapters

More often than not, your data sources will operate in a very complex manner, meaning that a level of
translation needs to occur to convert the provider-specific chunks of data into .NET-compatible DataRows
and DataTables. The DataAdapter for a given provider will do all the hard work for you.

Each provider that ships with the .NET Framework has its own DataAdapter, which converts provider-
specific data into a .NET version.

An example of using a DataAdapter to populate a DataSet is shown here:

Public Shared Sub DoAdapter ()
Dim Ds As New DataSet
Using Conn As New System.Data.SglClient.SglConnection

89

Chapter 3

Using Comm As New System.Data.SglClient.SglCommand
Dim Da As New System.Data.SglClient.SglDataAdapter (Comm)
Da.Fill (Ds)
End Using
End Using
End Sub

It’s worth noting that a DataAdapter does much more than simply convert data source mush into a
DataSet; it also hosts a whole range of features for shoving the DataSet back into the provider-specific
mush.

Using DataReaders

A new addition to ADO.NET is the capability to populate DataSets directly from DataReaders. With this
new functionality, the clearly defined lines between using DataReaders and using DataSets have become
somewhat blurred. The best practices to follow when using these objects remains to be seen.

Here is a quick code snippet showing how to populate a DataSet using only a DataReader:

Public Sub LoadFromReader ()

Dim table As New DataTable("Orders")

Using Conn As DbConnection = CodeSamples.GenericFactoryHelper.Connection
Dim Comm As DbCommand = CodeSamples.GenericFactoryHelper.Command
Comm.CommandText = ("Select * From Orders")

Using Reader As DbDataReader =
Comm. ExecuteReader (CommandBehavior.CloseConnection)
table.Load (Reader)
End Using
End Using
End Sub

DataTable

In previous versions of ADO.NET, the DataTable was the “poor relative” of the DataSet, a smaller and less
powerful version with quite a few problems. In ADO.NET 2.0, however, the DataTable is now a first-class
citizen within the Framework. It can operate completely independently of the DataSet.

Most of the time when people are creating DataSets, they’re only populating one table within that
DataSet. It's quite common to only want a flat representation of data, so it didn’t make sense to use a
DataSet every time you needed to grab a flat set of data. Now, under ADO.NET 2.0, you can use the
DataTable all by itself.

Under 1.0 and 1.1, the developer had to jump through rings of fire just to get a DataTable into its simplest
form, XML. The new Framework has made this much easier.

Bear in mind that while you can now expose the DataTable as a parameter, or return a value for a Web
Service, only .NET 2.0 clients will be able to use DataSets with XML serialization.

20

ADO.NET Essentials

RowState

While it goes completely against all best practices and defies most of the rules laid down by the
ADO.NET team, people often want a way to manually set the RowState for specific rows in their
DataTables. In ADO.NET 2.0, new methods have been added to enable this.

You now have explicit control for RowState using the SetaAdded () and SetModified () methods,
meaning you can override the DataRow’s default behavior.

The following example shows this new explicit control and how you can use it:

Public Sub SetModified()
Dim OrigonalTable As System.Data.DataTable = New System.Data.DataTable
OrigonalTable.TableName = "InternetSightings"
OrigonalTable.Columns.Add ("AnimalOrFungiName")
OrigonalTable.Columns.Add ("TimesSpotted")
Dim BadgerRow As System.Data.DataRow = OrigonalTable.NewRow
BadgerRow ("AnimalOrFungiName") = "Badger"
BadgerRow ("TimesSpotted") = "More than you can possibly imagine."
OrigonalTable.Rows.Add (BadgerRow)
OrigonalTable.AcceptChanges ()
If System.Data.DataRowState.Unchanged <> OrigonalTable.Rows (0) .RowState Then
Throw New Exception ("Not Equal")
End If
OrigonalTable.Rows (0) .SetModified ()
If System.Data.DataRowState.Modified <> OrigonalTable.Rows (0).RowState Then
Throw New Exception ("Not Equal")
End If
End Sub

DataView

It’s now possible to take the data from a DataView and convert it directly to a standalone DataTable
object, which reflects exactly the schema and content of the DataView. To achieve this, you use the
ToTable () method of the DataView:

Public Sub ToTable()
Dim OrigonalTable As System.Data.DataTable = New System.Data.DataTable
OrigonalTable.TableName = "InternetSightings"
OrigonalTable.Columns.Add ("AnimalOrFungiName")
OrigonalTable.Columns.Add ("TimesSpotted")
Dim BadgerRow As System.Data.DataRow = OrigonalTable.NewRow
BadgerRow ("AnimalOrFungiName") = "Badger"
BadgerRow ("TimesSpotted") = "More than you can possibly imagine."
OrigonalTable.Rows.Add (BadgerRow)
Dim MushroomRow As System.Data.DataRow = OrigonalTable.NewRow

MushroomRow ("AnimalOrFungiName") = "Mushroom"
MushroomRow ("TimesSpotted") = "Just the twice, normally after spotting
Badgers."

OrigonalTable.Rows .Add (MushroomRow)
Dim SnakeRow As System.Data.DataRow = OrigonalTable.NewRow
MushroomRow ("AnimalOrFungiName") = "Snake"

MushroomRow ("TimesSpotted") = "Just the once, and crikey, what a scare I had!"

91

Chapter 3

OrigonalTable.Rows.Add (SnakeRow)

Dim Dv As System.Data.DataView = New System.Data.DataView

Dv.Table = OrigonalTable

Dv.RowFilter = "AnimalOrFungiName = 'Badger'"

Dim ToTableTable As System.Data.DataTable = Dv.ToTable

Dim expected As Integer = 1

Dim actual As Integer = ToTableTable.Rows.Count

If expected <> actual Then

Throw New Exception ("The number of rows returned was not the number

expected.")

End If

If "Badger" <> ToTableTable.Rows (0) ("AnimalOrFungiName") .ToString Then
Throw New Exception("The AnimalOrFungiName was not the value we expected.")
End If
End Sub

The preceding example shows you how to create a table from a DataView. This, in and of itself, isn’t very
useful, but the table can then be used anywhere else, such as on a Web service or saved to disk.

Serialization

92

The ADO.NET team has finally paid attention to the crying and whimpering of ADO.NET developers
around the world. In ADO.NET 1.0 and 1.1, DataSets would always serialize into an XML text format,
even when you explicitly told them to binary serialize. In ADO.NET 2.0, the Framework now listens to
your demands as a developer and actually binary serializes the DataSets when you tell it to.

The benefits of this serialization format are massive, especially in the areas of remoting and Web services,
where it is quite common to pass DataSets between endpoints across the wire. There is less processing
time at both ends, but the greatest gain is on the receiving end of any transfer, as it does not need to be
parsed and is deserialized directly into memory.

In addition to experiencing reduced processing time, less memory is used both at runtime and when
saving DataSets to disk. This is because the footprint of the DataSet is much smaller when expressed in a
binary format.

Because the DataSet is smaller in its binary serialized format, it will clearly use less bandwidth when it’s
moved over the wire than it would XML Serialization. This is true in almost all real-world scenarios;
however, be aware that this is not always the case.

Binary serialization will actually make the DataSet larger when serialized than with XML Serialization
when you have a single-row, single-table DataSet. The majority of the information that is serialized in
this case is metadata describing the structure of the DataSet and its tables.

In general, using binary serialization makes it possible to get about 80 times the current performance
from the same applications, depending on the amount of data they move across the wire.

Keep in mind that you don’t have to use binary serialization. In fact, the default will still be XML so that
all of your existing .NET 1.0 and 1.1 applications continue to work even when hosted under the .NET 2.0
Framework.

ADO.NET Essentials

Warning: If you try to send a binary serialized DataSet to an application hosted
under .NET 1.0 or .NET 1.1, the process will fail. Those Frameworks cannot
deserialize binary format DataSets!

Here’s an example that shows how to binary serialize a DataSet and then read back the serialized file:

Dim ds As DataSet = New DataSet

Dim FileName As String = ("C:\testbinary.bin")

Dim cs As String = "Data Source=localhost;Integrated Security=SSPI;Initial
Catalog=Northwind"

Dim sgl As String = "SELECT * FROM Employees"

Dim cn As System.Data.SglClient.SglConnection = New
System.Data.SglClient.SglConnection (cs)

Dim cmd As System.Data.SglClient.SglCommand = New
System.Data.SglClient.SglCommand (sgl, cn)

Dim da As System.Data.SglClient.SglDataAdapter = New
System.Data.SglClient.SglDataAdapter (cmd)

da.Fill(ds, "TestTable")

ds.RemotingFormat = SerializationFormat.Binary

Dim myFormatter As System.Runtime.Serialization.IFormatter = New
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter

Dim myStream As System.IO.Stream = New System.IO.FileStream(FileName,
System.IO.FileMode.Create)

myFormatter.Serialize (myStream, ds)

Dim dsl As DataSet = New DataSet

dsl.RemotingFormat = SerializationFormat.Binary

Dim myFormatterl As System.Runtime.Serialization.IFormatter = New
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter

Dim myStreaml As System.IO.Stream = New System.IO.FileStream(FileName,
System.IO.FileMode.Open)

dsl = CType((myFormatterl.Deserialize (myStreaml)), DataSet)

Whenever you need to move large DataSets across the wire, it’s certainly worthwhile to tweak the code a
little so that it moves binary serialized DataSets across and not XML serialized DataSets.

DataTableReader

Microsoft has come up with a little class called the DataTableReader, which is essentially a very thin
object sitting on top of the DataTable; it’s a representation of the table’s data as a DbDataReader, meaning
you can stream data straight out of a DataTable.

Streaming

With the new streaming functionality built into the DataTable, not only can you stream into a DataTable
using the Load (IDataReader) method:

myDataTable.Load (Reader)

but you can also get a DataReader out of a DataTable, enabling you to stream in and out of tables:

93

Chapter 3

Dim Reader As DbDataReader = myDataTable.CreateDataReader ()

There’s no longer a need to use a StreamReader in your code when dealing with DataTables.

Namespace Qualified Tables

In ADO.NET 1.0 and 1.1, it was not possible to add multiple tables with the same name into different
namespaces, even though it should have been. In ADO.NET 2.0, this bug has been fixed, so you can now
perform the operation, like this:

Public Sub NamespaceQualifiedTables ()

Dim Ds As System.Data.DataSet = New System.Data.DataSet

Dim TheTable As System.Data.DataTable = New
System.Data.DataTable ("TheSameTableName")

TheTable.Namespace = ("OneNamespace")

Ds.Tables.Add (TheTable)

TheTable = New System.Data.DataTable("TheSameTableName")

TheTable.Namespace = ("AnotherNamespace")

Ds.Tables.Add (TheTable)

Dim expected As Integer = 2

Dim actual As Integer = Ds.Tables.Count

If expected <> actual Then

Throw New Exception ("The number of tables found was not the number

expected.")

End If
End Sub

If you tried to run the preceding code under .NET 1.1, the Framework would run the following error at
runtime:

A DataTable named 'TheSameTableName' already belongs to this DataSet.
What this means is that you can have many tables with the same name inside the same DataSet as long

as they are all contained in different namespaces. This is useful when dealing with XML, where it’s quite
common to find many instances of the same schema repeated throughout an XML document.

Indexing Engine

94

When using ADO.NET 2.0, you get a warm, fuzzy feeling like something good is about to happen
but you're not quite sure what. You notice this feeling the most when it comes to the speed of your
applications.

One place where performance has been increased is with the indexing engine, which has been completely
rewritten for ADO.NET 2.0. The changes aren’t visible in terms of the API, but you will notice them in
your applications’ speed.

ADO.NET Essentials

You'll see the greatest increase in performance when performing inserts into DataTables. In ADO.NET
1.0 and 1.1, the indexing worked perfectly well for small DataSets, but as larger DataSets were thrown at
the engine, it started to creak a little because the method of indexing didn’t scale very well.

All this has changed in ADO.NET 2.0. The method is now much faster and causes a reduced number of
allocations, meaning you'll see much less garbage collection and less tree allocations through the Garbage
Collector. In addition, memory usage is lower and the amount of information added to the large object
heap has been greatly reduced as the segments are reused to store row and index information.

Other areas in the Framework that have greatly benefited from changes made to the indexing engine
include any tables with constraints and relationships, any tables with primary keys, and DataViews

when sorting.

In all, you should see a significant increase in performance by just hosting your existing 1.0 and 1.1
applications under the .NET 2.0 Framework.

DataSet, DataTable, DataReader,
or an Object?

Use the right tool for the right job —that’s been the mantra in engineering shops for many years, and the
same applies to the world of ADO.NET.

The DataSet is almost always larger than a collection of objects that match the DataSet’s structure in
memory.

To help you choose the right tool for the right job, we’ve drawn up a simple task-oriented guide.

Showing Data to Users without any Manipulation

Use a Reader if all you need to do is bind data up to a grid or show the details of a product. Why bother
with a bulky DataSet? You don’t need relationships, you don’t need state management (changes to
rows), and you certainly don’t need multiple tables. A simple forward-only Reader will do the job in the
most efficient way.

Editing Data That Lives in One Table

This one isn’t quite as clear-cut. If you don’t really need the change management that the DataSet offers,
and usually you won't, then just use a Reader to get the data back from your data source and use
ExecuteNonQuery () to update any data that the user changes.

Editing Data Spread across More Than One Table

Use a DataSet. It’s exactly what it was designed for —managing the complex relationships between
many tables and their respective rows of data.

95

Chapter 3

Editing Continuously Updated Data for Which the Chance
of Collisions Is High

Again, use the DataSet. It has very cool change management and tracking systems built into it. Combine
a DataSet with the DataAdapter and you'll be laughing all the way to the bank.

Getting One Value from a Database

Use an object, employ the use of ExecuteScalar (), or use an output parameter to get your value.
There’s no need for a DataReader or a DataSet. The extra code they both require isn’t worth considering
for a single value, not to mention the fact that DataSets are usually slower.

Basically, don’t use a battering ram when there’s a doorbell!

Summary

You should take away a few key points from this chapter. First, learn the ADO.NET 2.0 API. Make sure
you understand all of the different classes and what they are meant for. If you understand the basics,
then you will be in the right position to use the new features to their fullest.

Second, remember to keep the schema in mind when you are asked to create reports. The simple way in
which you can interrogate the schema means that it’s very easy to build flexible reporting applications.

Last, get to know the Web. While this book delves deeply into many ADO.NET topics, there are always
more out there.

For More Information

To complement the information in this chapter, take a look at the following resources:

O Microsoft Data Access and Storage Developer Center—http://msdn.microsoft.com/data/
U Microsoft DataWorks Blog—http://blogs.msdn.com/dataaccess/

O Angel Saenz-Badillos’ Blog (member of the ADO.NET team at Microsoft) —http://blogs
.msdn.com/angelsb/

QO Microsoft SQL Server FAQ, an online SQL Server community —www.sqglserverfaqg.com/

O SQL Server Community, another great online community —www. sgqlservercentral .com/

96

Standard Data Types

In the course of development, data-oriented programmers, even when they have no formal training
in data types, quickly become familiar with them — or at least an integral subset that they use on a
day-to-day basis. Among these, the most common is by far the string. This is because virtually every
other data type can be expressed in this format, as is easily evidenced in XML. Not far after that
come the integer and the Boolean.

These three data types make up the vast majority of data types used in data-oriented programming.
This is mostly because data-oriented applications are driven by information that is most often
expressed using a human language. Human language, written human language, uses strings of
characters as a medium for communicating information, so it is only natural that a data-driven
computer application would mimic that by storing information as strings of characters.

Integers are a natural runner-up because the most basic applications of mathematics involve
integers — counting, adding, subtracting, and so on. And the Boolean type springs from a basic
fundamental of human existence: truth or non-truth. Similarly, computers again mimic the human
understanding of the world in making use of these core means of expression.

Of course, we are also fascinated by the concept of time; humans started measuring and recording
it early in our history, so we also often need and find ways to represent measurements of time and
date in our applications. In addition to time, we have to deal with a few other kinds of data, some
of which relate to human life and some of which are peculiar to computing.

This chapter describes how these and other data types are handled by Microsoft’s SQL Server,
which is the de facto relational database system for Microsoft programmers. We’ll then consider
the System.Data.SglTypes namespace’s use of data types and compare how standard .NET
data types interact with these and ADO.NET in general to facilitate communication with a data
storage system.

Chapter 4

D

ata Types in SQL Server

First we'll consider the ways in which SQL Server stores character data. There are two basic variations in
this type, fixed-length and variable-length storage, but there is a bit more to it than that. In this and the
following sections, specifications relate to SQL 2005; however, most of the statements hold true for the
existing, equivalent SQL 2000 types. Where available, the equivalent SQL-92 specification synonym is
provided in parentheses next to the SQL Server type.

CHAR (CHARACTER)

The character (CHAR) type indicates fixed-length storage, meaning that the length you specify for it will
be used for all of the values stored in a column or variable of that type. For example, if you specified
CHAR (20), every row in a table containing that column would use 20 characters, regardless of whether
you only specified two characters — the remaining 18 would be stored as blank spaces.

In terms of storage size, each character equates to 1 byte, so if you had 100 rows using the 20-character
column just described, you would be using 4,000 bytes. Usage of this type is specified by cCHAR followed

by an optional length indicator in parentheses. If no length is specified, except in CAST statements,
one-character length is assumed. In CAST statements, 30-character length is assumed. The maximum length
for this type is 8,000.

This column is rarely used except when all of the values for a column are expected to have the same
length. For example, if you had a two-letter code for each row, then you might choose CHAR (2), as is
often done when storing U.S. state abbreviations. In most cases, however, character data is variable, so
you would use the next type.

VARCHAR (CHAR VARYING or CHARACTER VARYING)

98

VARCHAR is probably the most useful type in SQL Server. This is because it stores character data, which can
represent most data, and because it doesn’t waste unnecessary space for data that varies considerably in
length from row to row. As the name suggests, VARCHAR is used when you wish to declare that a column or
variable will contain a variable length of characters.

To use the type, you specify the name followed by the maximum length allowed in parentheses.

For example, VARCHAR (1024) indicates a maximum length of 1,024 characters. It also has the same
presumed length as CHAR does if you omit the length specification. The beauty of VARCHAR, though, is
that it will only use the space actually required by values, instead of padding values with trailing spaces
as CHAR does. This means that, while more difficult to estimate actual storage size, you can optimize the
space used and you won’t have to bother with trimming blank spaces from stored strings when using
the values in code.

“If you store this” in a VARCHAR (50), only 19 bytes would actually be stored. If you're studious, you
might notice that there are only 17 characters in that string. The reason why 19 bytes are used to store it
is because SQL Server uses 2 extra bytes to store the actual length of the row’s data for that column. This
doesn’t mean you can only put 48 characters in the column —it just means that if you fill it up, 52 bytes
will be used, not 50.

VARCHAR, like CHAR, has a maximum length of 8,000, which is good for all but the most verbose of us.
But if you need storage larger than 8,000 characters, you'll have to supersize your type to the one
covered next.

Standard Data Types

TEXT and VARCHAR(MAX)

Traditionally, in SQL Server, the TEXT type is what has been used to handle those potentially very large
bunches of characters that you need to store, such as, for instance, this book (or even this chapter). In cases
where you expect your requisite storage for a single row to exceed 8,000 characters, choose this type.

Of course, to mix things up, the SQL Server team decided to do a switcheroo on us with 2005. For some
reason, perhaps because it makes sense, they’ve created the VARCHAR (MAX) type, which is, for all intents
and purposes, the same thing as the TEXT type. Both are used to store highly variable, potentially large
character data up to 2 GB—well, actually 1 byte less than that (2311, that is, 2,147,483,647 bytes).

In fact, the VARCHAR (MAX) type is intended to replace the TEXT type. This means that, likely in the next
version (after 2005), if applications are still using TEXT, they will not be directly portable without
modification. Keep this in mind while developing new applications on SQL Server 2005.

National Character Storage

If you are a developer who is already familiar with SQL Server, then you are probably wondering why
we have not mentioned national (international, really) character storage. It is usually covered with the
corresponding non-Unicode types. We felt that, since the Unicode (national) types are the same as their
related non-Unicode types, with the one caveat that (owing to the fact that Unicode uses 2 bytes per
character) you are limited to half as many characters as their non-Unicode brethren, there is really no
need to go over them in depth—you can simply look at the non-Unicode types and know that the
Unicode are the same with the caveat just mentioned.

Said another way, NCHAR and NVARCHAR are limited to 4,000 characters, and NTEXT —now NVARCHAR (MAX)
—is limited to about one billion (231, aka 1,073,741,823) characters. Why, oh, why would you want to cut
your storage size in half? The answer is in the SQL-92 synonym:s for these types — the keyword “national.”
These types store characters in Unicode format, which allows sufficient combinations of bits to represent all
written languages’ characters.

As you can see, you will want to use these types when you will be globalizing your application. Some
people recommend always using national types, but sometimes we know that an application is never
going to be globalized, so there really is no reason to over-engineer your application to provide for a
situation that will never happen.

INT (INTEGER)

INT is for numbers what VARCHAR is for characters — that is, it is far and away the most commonly
used numerical type. This is because it serves as an integer (great for counting and other whole-number
operations) and can represent a range of possible numbers that is large enough for most needs and still
small enough to not be a storage problem.

INT is a 32-bit (4-byte) number type. As such, it can represent numbers from negative two billion (-2*!) to
positive two billion (231).

99

Chapter 4

BIGINT

This type is the big brother to all of the other integer types. Being a 64-bit number (8 bytes), it can represent
from about negative nine quintillion to positive nine quintillion (-2 to 2%1). Clearly, you need to use this
type when you expect your integer data to represent integer numbers larger than two billion. If you need
something larger than nine quintillion, well, then you're out of luck. It is hoped that the national deficit
won't grow that big for a while yet.

SMALLINT

If BIGINT is the big brother, SMALLINT is the middle sibling. Being a 16-bit (2-byte) number has its
advantages, but these days, it just seems to get overlooked. Everybody’s always talking about 32-bit this
and 64-bit that, but what about good ol” 16 bit? Unfortunately, the range of numbers for this type is too
restrictive for most applications; at one time, negative to positive 32,000 (-2!° to 2!>1) was considered
plenty, but not anymore.

TINYINT

The baby brother, this 1-byte integer is so small that it is only useful for numbers up to 255. It’s great for
those situations in which you have a well-known, limited number of values, such as, for instance, when
you are storing the numerical representation of constant enumeration values.

DATETIME (TIMESTAMP)

The DATETIME type is another one of those indispensable types you find yourself using in almost every
table, almost certainly every database, if for nothing else but logging purposes. It is obvious how this
type is used. The key thing to note is the difference between this type and its smaller sister, covered next.

DATETIME is stored as two 4-byte integers (that pesky INT shows up again). The first integer accounts for
the number of days before or after the system base date, which is the first of January, 1900. The last 32-bit
number keeps track of the number of milliseconds after zero hundred hours.

Valid dates for this type range from January 1, 1753, all the way to the last day of the year in 9999, and its
tracking of milliseconds gives it an accuracy to 3.33 milliseconds, rounding to increments of .000, .003,
and .007 seconds. When you need to keep accurate time logs or keep dates far into the future or past,
this is the type you need.

SMALLDATETIME

SMALLDATETIME differs from its big sister in two key ways — precision and range. Because it is stored as
two 2-byte integers (so there is a use for 16-bit integers after all!), it only keeps a precision down to the
minute and can only store dates between January 1, 1900 and June 6, 2079. It uses the first 2 bytes to
store the days after 1900 and the latter 2 to watch the minutes after midnight.

You will want to use this type anytime you know its range will not be overshot and when you need

precision to the minute only. As a rule of thumb, opt for the type requiring smaller storage when it
makes sense to do so.

100

Standard Data Types

REAL (FLOAT(24)) and FLOAT (FLOAT and DOUBLE
PRECISION)

REAL and FLOAT are both floating-point data types. As such, any values within their ranges cannot be
represented exactly; hence, they are called approximate numbers. The n in the FLOAT (n) syntax stands
for the number of bits used to store the mantissa of the float number in scientific notation.

In both SQL Server 2000 and 2005, SQL Server uses n to determine storage size. If n is less than or equal
to 24, then SQL Server stores and treats it as a four-byte number, precise up to seven digits. If n is greater
than 24, then it is treated as an 8-byte number with precision up to 15 digits. Because the range of these
numbers is most precisely and easily expressed in scientific notation, they are listed in the following
table.

Type Range
FLOAT -1.79E + 38 to -2.23E - 38, 0 and 2.23E -38 to 1.79E + 38
REAL -1.18E - 38, 0 and 1.18E - 38 to 3.40E + 38

NUMERIC and DECIMAL (DEC and DEC(p,s))

Apart from the name, NUMERIC and DECIMAL are pretty much the same thing, so it is really just a matter of
personal choice, although to more closely resemble the SQL-92 standard, you may want to stick with
DECIMAL. In addition, DECIMAL is what the corresponding types are called in both the SqlTypes
namespace and the .NET primitive.

The syntax for both enables you to specify the precision, which is the total number of digits to the left and
right of the decimal point. The second number you can optionally specify when declaring one of these is
the scale, which is a way to limit the number of digits to the right of the decimal point. The maximum
precision is 38; the maximum value of the scale is limited to the specified precision. Thus, DECIMAL (14,
7) would give a precision of up to 14 digits, only 7 of which can be on the right side of the decimal.

In terms of storage, these types vary based on the precision. Starting with 5 bytes for a precision up to 9,
the storage space increases 4 bytes for every additional nine to ten digits. The range of these numbers is
proportional to the precision as well, being about 10 to the power of the precision, so if we consider the
default value, 18, for the precision and the default scale of zero, that would give you a range of about plus
or minus one quintillion, using 9 bytes to store it. Following is a table showing the relation of precision to
range and storage size:

Precision Maximum Range Storage Size (in Bytes)
1-9 -10M9 +1to 10M9 -1 5

10-19 -10M9 +1to 1079 -1 9

20-28 -10728 + 1 to 10728 - 1 13

29-38 -10738 + 1 to 10738 - 1 17

101

Chapter 4

As you can see, DECIMAL gives you the broadest range of numbers with the greatest degree of accuracy,
but this comes at the price of hefty storage requirements (for a number, anyway). To use this number
type appropriately, you have to consider what you need in terms of precision and scale.

If you are a business developer, you will rarely need this type because for smaller, less precise non-integer
numbers, you can use a small float and save space. For the most part, the only time you really need
precise and accurate decimal storage is when you are dealing with money, in which case you have the
money types that SQL Server provides, which provide a friendly abstraction to the DECIMAL type.

MONEY and SMALLMONEY

Despite the names, the MONEY and SMALLMONEY are just handy exact numeric types. MONEY is roughly
equivalent to DECIMAL (16, 4) in range, precision, and scale, but it does save you a byte in storage and
gives you a friendly way to deal with numbers in that category. Of course, you shouldn’t abuse this type —
only use it when you are storing monetary values to prevent potential confusion.

Having a range that spans negative to positive 9.22 trillion should pretty much cover any monetary
numbers you will come across, unless you are dealing with the U.S. government. Conversely, you would
think that Microsoft would have to up the range with the next release after 2005 or maybe come up with
a BIGMONEY type that roughly corresponds to the BIGINT range.

SMALLMONEY, ironically named, will give you, roughly, a range of plus or minus 215,000, just enough to
buy a license or two of SQL Server. This type would be an adequate salary column for many of us — of
course, you couldn’t keep track of CEOs or senators with it. For both MONEY and SMALLMONEY, SQL
Server keeps track to four decimal places, or to one ten-thousandth of the applicable unit of currency.

BINARY, VARBINARY, IMAGE, and VARBINARY(MAX)
(BINARY VARYING)

Many developers (especially those without a computer science degree) are afraid of binary storage. This is
probably because it is an unknown, at least in terms of standards and readability. If you don’t have a
program that understands the bits, it is just a bunch of numerical gibberish. Put another way, you can’t
open it in NotePad. (Well, you can, but it usually won’t mean much to you unless you're into Kabbalah.)
It is a black box, and you can’t look at it very meaningfully in Query Analyzer or easily pull reports from it.

On the other hand, your computer likes it. The computer doesn’t require any special extra information to
store or process it. It is the lingua franca of computers today, the only thing they speak natively. It's simple
and efficient, and we kind of like it for that reason as well. There are no complicated decisions to make, no
worrying about code pages, globalization, floating points, precision, ranges, or scale. The only decision to
be made is how many bytes to permit.

You see, binary storage isn’t so bad, and it certainly has its place in your computing environment. Probably
the most common use of these types is to store images, Word, and PDF documents. For any scenario in
which you have an application that stores data in a proprietary data format, you can use one of these types
to store it in the database. In fact, if you are feeling particularly obtuse, you could store a string in this type,
but only do that if you don’t care to read it back out easily. The point is that it is the most versatile type
because, ultimately, anything that can be stored in a computer can be stored in this type.

102

Standard Data Types

As you might expect, BINARY and VARBINARY differ only in that the former is a fixed-length type and
the latter is a variable-length type. In that sense, it is exactly like CHAR and VARCHAR. In fact, the analogy
extends further to the IMAGE and VARBINARY (MAX) types. Just like TEXT and VARCHAR (MAX), IMAGE and
VARBINARY (MAX) differ only in name.

For BINARY and VARBINARY, the maximum size is 8,000 bytes. For BINARY, the storage size is exactly the
same as the specified size. For VARBINARY and IMAGE (now VARBINARY (MAX)), the actual storage size will
be the actual number of bytes provided plus 2 bytes to record that length (just like the variable character
data). And, again, use IMAGE/VARBINARY (MAX) in cases where storage will vary to be greater than 8,000
bytes.

Using BINARY to Store Flags

Another handy use for the BINARY type is persisting bit flags, such as a .NET flags enumeration. In case
you're not aware of it, NET enables you to apply the Flags attribute to an enumeration so that developers
can combine different values of the enumeration; without the Flags attribute, enumeration members are
mutually exclusive constants.

Internally, a flags enumeration is stored as a set of bits, where each place in the binary number can be
used as one flag. Because the default underlying type for enumerations is Int32, you can have up to 32
flags for a typical flags enumeration (one flag per bit). Of course, you can use an Int64 if you need more
flags. In any case, you can store these kinds of enumerations directly into a BINARY (4) column in SQL
Server, as that will directly store the value of those 32 bits for you.

A typical enumeration (non-flags) might look something like this:

Public Enum NoFlags
Optionl = 1
Option2 = 2
Option3 = 3

End Enum

A flags enumeration would look something like this:

<Flags()> _
Public Enum FlagsEnum
None = 0
Placel =1
Place2 = 2
Place3 = 4
Placed4 = 8
Place5 = 16
Place6 = 32

Place7 = 64

Place8 = 128

NamedCombo = Placel Or Place2 Or Place3
End Enum

If you were going to store these enumerations in SQL Server, you could use a BINARY (4) column for

the flags enumeration and a VARCHAR (20) for the non-flags enumeration. Here’s some sample code to
illustrate how you might write such values to SQL Server given these options:

103

Chapter 4

Public Sub UpdateEnums ()
Dim recsAffected As Integer = 0
Using conn As New SglConnection (NorthwindConnString)
Using cmd As New SglCommand ()
cmd.Connection = conn
cmd.CommandText = "UPDATE Orders " & _
"SET Flags = @QFlags, SomeOption = @SomeOption " &
"WHERE OrderID = @OrderId"
Dim flags As New SglParameter ("@Flags", SglDbType.Int)
flags.Value = DirectCast (FlagsEnum.Place7 Or _
FlagsEnum.NamedCombo, Int32)
Dim someOption As New SglParameter ("@SomeOption", SglDbType.VarChar)
someOption.Size = 20
someOption.Value = NoFlags.Option2.ToString ()
cmd.Parameters.Add (flags)
cmd . Parameters .Add (someOption)
cmd. Parameters.AddWithValue ("@OrderId", 10262)
cmd.Connection.Open ()
recsAffected = cmd.ExecuteNonQuery ()
End Using
End Using
Console.WriteLine("{0} Records Affected by Enums Update", recsAffected)
End Sub

Note a few things about the preceding code. We’re using the Int SqlDbType, even though the column is
defined as BINARY (4). This is because we’re going to let SQL Server handle the conversion from the INT
value to BINARY.

If you try, for instance, using the BitConverter class to convert the Int32 to bytes, it will work as far as
.NET is concerned, but the value will not be usable in SQL Server itself because the BitConverter.
GetBytes will get a 4-byte array with the bytes in reverse order from how they appear in the
enumeration/integer — that is, byte one will be the rightmost 8 bits, byte two the next rightmost 8 bits,
and so on.

In the previous case, this comes out to be 0x47000000 in SQL Server instead of the correct 0x00000047.
That’s a huge difference because the flags are reversed, so we just pass the value to SQL Server as the
underlying integer value and SQL Server will correctly cast it to BINARY (4) for us. Besides that, it’s less
code this way.

When saving the non-flags enum, we chose to store the string named value instead of the underlying
integer value. This is just to make it easier to understand with database reporting and query tools.
System.Enum overloads the ToString method to return the named value.

Note a few of the new features of .NET 2.0. Visual Basic now has a Using statement that ensures (like the
using statement in C#) that Dispose is called on the objects being “used.” The SqlCommand
.Parameters.Add method has deprecated the overload that takes just the name of the SQL parameter
and a value in favor of a new method called Addwithvalue, so you should use this when you want to
let ADO.NET infer the other details of a parameter.

Figure 4-1 shows what those columns might look like in Query Analyzer after running the preceding code.

104

Standard Data Types

£ SQL Query Analyzer - [Open Table - WPT-VPCWS2003.Northwind.dbo.Orders] B[]
&P File Edit Query Tools Window Help o= o
CE o | T [
| ShipCity ShipRegion|3hipPostalCode |ShipCountry Flags SomeCption| &

13 Eoln 50733 Germany

1% Rio de Janeiro RJ 02389-673 Brazil

15 Albuguercgue N 57110 Ush 0x00000047 Optionz

16 Graz 2010 hustria

17 Bracke 2-844 &7 Sweden

i8 Strashourg &7000 France

19 Oulu 50110 Finland

2o Hunchen 50805 GEEmAanY

21 Caracas orF 1081 Venezuela

22 Seattle LS 98124 Ush

23 Culu 90110 Finland

24 Lander g 82520 Ush

25 Albuguergue ok 87110 JiET

26 Cunewalde 01307 GeErmany

27 Reims 51100 France

28 Bergamo 24100 Italy

20 México D.F. 05033 Mexico

ao Leipzig 04179 Germany

31 Luled 2-958 22 Sweden

3z Frankfurec a.M. 60328 Germany w
< >

WRT-ARC-WS2003 (8.0) WRT-YPC-WS2003Administrator Morthwind B30 rows L 15, Col 1
Connections: 2 NLIM
Figure 4-1

Note how Query Analyzer represents the binary column as a hexadecimal number. In this case, it is
0x00000047, which is 00000000 00000000 00000000 01000111 if we convert this number to its binary
representation (broken down to bytes for readability). This is correct— the flags we set are Placel, Place2,
and Place3 (as the NamedCombo value), and the Place7 value. Remember that the places are read from
right to left.

Unfortunately, there’s no easy way to display the BINARY column values as the actual binary representa-
tion, but you can easily convert hexadecimal (basel6) into binary (base2) using the Windows
Calculator’s scientific functions. Just select the Hex option, enter 47 (in our case), and then select the Bin
option to see the corresponding binary value.

Of course, the key here is that you can work with the Flags column using bitwise operators in SQL
Server as well, not just in .NET. The only difference (apart from syntax, of course) is that in .NET, you'll
have the friendly named values of your flags enumeration to work with. In SQL Server, you'll have to
check the flags by comparing the literal values (in hexadecimal form).

To read these values back out of SQL Server, the following code will suffice:

Public Sub ReadEnums ()

Dim ourFlags As FlagsEnum

Dim ourOption As NoFlags

Using conn As New SglConnection (NorthwindConnString)

Using cmd As New SglCommand ()

cmd.Connection = conn
cmd . CommandText "SELECT CAST (Flags AS INT), SomeOption " &
"FROM Orders " _
"WHERE OrderID = @OrderId"

I°g

105

Chapter 4

cmd.Parameters.AddwWwithvalue ("@OrderId", 10262)
cmd.Connection.Open ()
Dim dr As SglDataReader = cmd.ExecuteReader ()
If dr.Read() Then
ourOption = DirectCast (System.Enum.Parse (GetType (NoFlags), _
dr.GetString(l)), NoFlags)
ourFlags = DirectCast (dr.GetInt32(0), FlagsEnum)
End If
dr.Close ()
End Using
End Using
Console.WriteLine ("Retrieved Option is {0}.", ourOption.ToString())
Console.WriteLine ("NamedCombo is Set: {0}.", _
((ourFlags And FlagsEnum.NamedCombo) <> 0))
Console.WriteLine("Place7 is Set: {0}.", _
((ourFlags And FlagsEnum.Place7) <> 0))
Console.WriteLine("Place8 is Set: {0}.",
((ourFlags And FlagsEnum.Place8) <> 0))
End Sub

Note two things in this code. First, in our SELECT statement, we cast the Flags value as an INT. Again,
we're letting SQL Server do the work of converting the binary value back into the underlying integer that
our enumeration uses. This way, we can simply directly cast that integer value to our flags enumeration.

Second, we use System.Enum. Parse in order to create our non-flags enumeration value from its string
named value. Note that there is an overload of that method that will let you specify case insensitivity.
You might want to use this overload if you are populating that column in SQL Server through other
means that might not get your enumeration values’ cases right.

As you can see, BINARY is a handy way to store flags values. In the examples here, we’ve contrasted it
with how you might choose to store a constants enumeration. In any case, it is fairly easy to persist such
values, and doing so makes them easy to work with both in SQL Server and in .NET.

We should note here that you could simply store the Flags in an INT column. In fact, SQL Server won’t
allow two operands of a bitwise operator to be binary (as strange as that sounds), so you have to cast the
Flags column to an INT anytime you want to use it as part of a bitwise operation. Consider the following:

UPDATE Orders SET Flags = Flags | 0x00000008

This won’t work if Flags is of type BINARY, so you'd have to cast it like so:

UPDATE Orders SET Flags = CAST(Flags AS INT) | 0x00000008

If that’s enough to make you want to make the Flags column an INT, then we’d suggest at least creating
a user-defined type called FLAGS based on the INT type. That way, you can make the purpose of the
column clear by its type while still getting the advantages of not having to cast it to an INT for bitwise
operations. Both options are included in the companion code samples.

Because we usually do more modification and comparison of our flags types in .NET code, we prefer to
store the flags as BINARY in order to make it immediately clear to anyone looking at the data that it is not
just another integer. Furthermore, it could be argued that visually converting hexadecimal into binary is
easier than converting from decimal into binary.

106

Standard Data Types

BIT

Every attempt at categorization needs an “other” category. After all, it just doesn’t do to have a category
that contains only one specific. Accordingly, the next few sections represent our homage to that illustrious
compromise.

A bit is an exact numeric type, but from a programmer’s perspective, it is more of an “other” type because
it is most often used to represent a Boolean value. It could also be categorized under binary storage, as it
is the most basic binary unit. But we put it here to focus on common usage.

Apart from saying it is a very useful type, there’s not a whole lot more to say. Use it whenever you need a
single Boolean, yes/no, or on/off value (consider using flags, as shown previously, if you have multiple
bit values to store). Actually, if you make it nullable, it can serve as a trinary value, but that can cause
some complications when you are using it as a Boolean in your code, so if that is how you are using it,
don’t make it nullable and give it a meaningful default (stick with 0/false, if you are not sure). If you need
more options than a binary digit value provides, use a TINYINT instead.

Not only can these be represented as Booleans in your code outside of SQL Server, SQL Server also lets
you use True and False as symbols to represent 1 and 0, respectively. In addition, as its name implies, the
storage size for BIT is 1 bit, although SQL Server will allocate 1 byte for every eight BIT type columns in
a table (kind of its own internal flags storage).

TIMESTAMP

You may have noticed that the SQL-92 synonym listed for DATETIME in the preceding section is
TIMESTAMP. This is because TIMESTAMP in SQL Server does not comply with the SQL-92 standard; this
may change in the future, but for now just think of TIMESTAMP as simply a row version type. Its purpose is
just to provide a way to further distinguish two potentially identical sets of data, which can be useful in
code if you want to easily provide optimistic concurrency handling.

It is not useful to use as a key. While a primary key is used to identify a set of data as unique, it is also
often used as a foreign key in relationships. Although TIMESTAMP does help with the first purpose, it
greatly obstructs the second because every update to a row requires a corresponding update of all related
records. Therefore, do not use TIMESTAMP as part of a primary key, at least for referential purposes.

Books Online recommends using the synonym ROWVERSION for data type definition statements because
it's possible that the meaning of TIMESTAMP will change in the future. Moreover, ROWVERSION serves the
purpose of the type better. This type uses 8 bytes of storage.

SQL_VARIANT

Simply put, do not use this type. There are very few situations in which it would be useful, far too many
caveats to list, and, ultimately, this type doesn’t offer much more than VARBINARY. If you need something
that functions as a variant that will work in most cases, use VARCHAR or NVARCHAR. After all, what is XML
if not character data? To report on data of this type, you will likely have to cast to VARCHAR anyway (it
shows up as <Binary> in Enterprise Manager if you don’t, for example).

107

Chapter 4

Apart from the various complications of using SQL._VARIANT (fully expounded in Books Online), there is
an ideological objection to using this type. You have numerous great alternatives that are optimized for
specific types of data, so unless you truly need a catch-all column, opt for the more specific type. It will
always be a better choice in the long run.

UNIQUEIDENTIFIER

You have to wonder why they didn’t just call this type GUID. Needless to say, that is exactly what it is,
and GUID is what most computer folks call a type of this definition. In any case, it is a 16-byte type with
32 characters, and we use that term (character) loosely because as you can guess, it obviously isn’t 32
characters in the 8-bit meaning of the word. This is because it is actually 32 hexadecimal digits (0-9, a—f),
each of which is represented by 4 bits.

You can create new values for it within SQL Server by using the NEWID function or by specifying a string
literal consisting of those 32 digits separated into five groups. The first group contains 8 digits, the second
through fourth contain 4 digits each, and the final group contains 12, like so: 3a5d99ef-ab3c-d4e5-f68a-
9203da93921b.

This type works great as an easy-to-use, guaranteed-unique identifier, so it is a good artificial primary key
when you may need to use the same schema in disparate databases and replicate data between them. If
you use an “identity” (or auto-number) integer value as your artificial primary key, you can easily run
into replication issues whereby multiple rows have the same integer value. GUIDs will always be unique,
so you won’t have this problem.

Of course, they’re not quite as friendly to work with in code and do have other drawbacks. First, they are
four times larger than an INT IDENTITY column. Second, they are not efficiently sorted and cannot be used
in a GROUP BY or COUNT DISTINCT. Third, indices on these columns are significantly slower than those on
integers. To summarize, unless you need to ease replication in a distributed situation, you probably ought
to stick with using your typical integer identity column.

XML

A new feature of SQL Server 2005, the XML data type, enables SQL Server to work with XML in a much
more meaningful manner than in previous versions. This new type enables querying and modification
of XML in place in SQL Server. If an XML column has schemas specified, it can efficiently be used in
queries and joined upon. The maximum storage size for items in a column of this type is 2 GB.

TABLE and CURSOR

These last two types are only applicable in the database. Covering them in depth in an ADO.NET book
doesn’t really make sense. Suffice it to say that TABLE is a great type to use in a stored procedure to
temporarily store a result set when you need to, for example, page data on the server side. CURSORs are
useful when you need to loop through a row set on the server, but with 2005, you'll be able to do this
more efficiently using managed code. CURSORs should generally be avoided and used only as a last
alternative.

108

Standard Data Types

Data Types in ADO.NET and .NET

Now that we’ve looked at the types in SQL Server, let’s consider the types available to us in .NET and,
specifically, ADO.NET.

SqlTypes

The types in the Sq1Types namespace are what the SQL ADO.NET provider uses to work with data
within the managed environment. For instance, a SglDataReader will read the bytes from SQL Server
into a Sq1Type when you request a column value from it. These types implement related explicit cast
operators to enable you to convert from, for example, a SglString to a System. String with a state-
ment like this:

myStringVar = DirectCast (dr ("SomeColumn), String)

Because of this capability, some advocate the use of SglTypes in code that works with SQL Server using
ADO.NET. If your code uses SqlTypes, no casting will be needed between ADO.NET and your code, so
it would theoretically increase performance. Whether or not such an increase would be noticeable in
most applications is debatable.

Another feature of these types is that they have a built-in “not set” option, even for those Sq1Types that
correspond to .NET value types. This is made possible by their implementation of the System.Data
.SglTypes.INullable interface. This interface simply specifies that implementers provide a read-only
IsNull property. Ultimately, this means that, for instance, an integer can have a null (not set) value and
that you can check the IsNull property on SqlInt32 in order to determine whether the field has been
set. Taking this approach can reduce confusion when a particular field is nullable in the database but its
corresponding .NET type does not allow for nulls because it is a value type.

The only real objection we have with this approach, apart from the “Sql” name, is that it ties you to types
that are not primitive types in the .NET Framework. Any code for which you use your types would need
to account for that fact, and you’d have to give those types special handling all over the place, instead of
only when you are talking to ADO.NET. For instance, if you try to access the Value property on a
SqglType and the value is null, it will throw a SglNullvalueException, so anywhere you access the
values of your types, you'll need to check the IsNull property first to ensure they’re not null.

Furthermore, the great performance shown by many applications indicates that the performance impact
from converting to and from SqlTypes in your data layer must be negligible. If it really were a problem,
we’d all be using them. Therefore, unless you really need to squeeze that last drop out, we would not
use these types for performance reasons alone.

On the other hand, if your application’s domain types are only used as data transfer objects, and you
want an easy way for value type values to be nullable, using SqlTypes might be a viable option for you.
It really depends on how you plan to use your types and whether you're willing to work with casting
your type members or using the IsNull and Value properties when you need to use them as part of
code that expects .NET primitive types.

To illustrate the differences between using SqlTypes for your domain objects’ type members and using

primitive .NET types, consider the following examples. The first example shows an Order class using
standard, primitive .NET types:

109

Chapter 4

Public Class Order
Private _orderID As Int32
Public Property OrderID() As Int32
Get
Return _orderID
End Get
Set (ByVal value As Int32)
_orderID = value
End Set
End Property

Private _customerID As String
Public Property CustomerID() As String
Get
Return _customerID
End Get
Set (ByVal value As String)
_customerID = value
End Set
End Property

Private _orderDate As DateTime
Public Property OrderDate() As DateTime
Get
Return _orderDate
End Get
Set (ByVal value As DateTime)
_orderDate = value
End Set
End Property

Private _freight As Decimal
Public Property Freight() As Decimal
Get
Return _freight
End Get
Set (ByVal value As Decimal)
_freight = value
End Set
End Property

Private _shipName As String
Public Property ShipName() As String
Get
Return _shipName
End Get
Set (ByVal value As String)
_shipName = value
End Set
End Property
End Class

110

Standard Data Types

Now consider the same class using Sq1Types:

Public Class SglOrder
Private _orderID As SglInt32
Public Property OrderID() As SglInt32
Get
Return _orderID
End Get
Set (ByVal value As SglInt32)
_orderID = value
End Set
End Property

Private _customerID As SglString
Public Property CustomerID() As SglString
Get
Return _customerID
End Get
Set (ByVal value As SglString)
_customerID = value
End Set
End Property

Private _orderDate As SglDateTime
Public Property OrderDate() As SglDateTime
Get
Return _orderDate
End Get
Set (ByVal value As SglDateTime)
_orderDate = value
End Set
End Property

Private _freight As SglMoney
Public Property Freight() As SglMoney
Get
Return _freight
End Get
Set (ByVal value As SglMoney)
_freight = value
End Set
End Property

Private _shipName As SglString
Public Property ShipName () As SglString
Get
Return _shipName
End Get
Set (ByVal value As SglString)
_shipName = value
End Set
End Property
End Class

111

Chapter 4

Not much is different between them. In fact, for the most part, you simply insert Sq1 somewhere into the
type name to work the magic —assuming, of course, that you have imported /used the System.Data
namespace in your file. The one exception, in this case, is Sg1lMoney. There is no money type in .NET, but
you can represent money using the System.Decimal type.

The real differences, however, become apparent when you begin using these types. The following code
illustrates this to some degree:

Sub WriteOrder (ByVal myDataReader As SglDataReader)

Dim order As New Order

order.OrderID = myDataReader.GetInt32(0)

If Not myDataReader.IsDBNull(l) Then _
order.CustomerID = myDataReader.GetString (1)
If Not myDataReader.IsDBNull(2) Then _
order.OrderDate = myDataReader.GetDateTime (2)
If Not myDataReader.IsDBNull(3) Then _
order.Freight = myDataReader.GetDecimal (3)

If Not myDataReader.IsDBNull(4) Then _
order.ShipName = myDataReader.GetString (4)

Console.Write (order.OrderID & vbTab)
Console.Write (order.CustomerID & vbTab)
Console.Write (order.OrderDate.ToShortDateString() & vbTab)
Console.Write (order.Freight.ToString ("f2") & vbTab)
Console.Write (order.ShipName)
Console.WriteLine()

End Sub

In this case, you can see that you have to check for DBNul1l before assigning types that might be null. If
any of these values are DBNull, you simply leave the default value that can be set when the class is
instantiated. For our purposes, these will be the default values for the types used, but you could specify
different ones in your class definitions.

Now look at the same functionality using our Sqlorder class:

Sub WriteSglOrder (ByVal myDataReader As SglDataReader)
Dim order As New SglOrder
order.OrderID = myDataReader.GetSglInt32(0)
order.CustomerID = myDataReader.GetSqglString (1)
order.OrderDate = myDataReader.GetSglDateTime (2)
order.Freight = myDataReader.GetSglMoney (3)
order.ShipName = myDataReader.GetSglString(4)

Console.Write (order.OrderID.Value.ToString() & vbTab)

If Not order.CustomerID.IsNull Then _

Console.Write (order.CustomerID.Value.ToString() & vbTab)
If Not order.OrderDate.IsNull Then _

Console.Write (order.OrderDate.Value.ToString () & vbTab)
If Not order.Freight.IsNull Then _

Console.Write (order.Freight.Value.ToString() & vbTab)
If Not order.ShipName.IsNull Then _

Console.Write (order.ShipName.Value.ToString())
Console.WriteLine ()

End Sub

112

Standard Data Types

Note that we didn’t have to check for DBNull when we got the values from the SglDataReader because
the data reader takes care of that for us. However, now we have to check the IsNull property prior to
using any properties that are nullable in the database. Anywhere that you use these values, you'll need
to check that property beforehand if you want to avoid a possible SglNullvalueException. Granted,
in many cases where a property can validly have a not set value, you'll probably want to do some
special handling in the user interface to display something other than a default value, regardless of
whether or not you are using SqlTypes.

Other Alternatives

Essentially, the advantage that these types offer, apart from easier and faster interaction with the data
layer, is a way to indicate that a value type is not set. You can achieve this same effect using primitive
types and boundary values. Primitive value types have a Minvalue static property that returns the
lower boundary value for that type. In fact, DateTime instances are initialized to this value by default.
You can set your instances of other primitive value types to their respective Minvalue values if you
want them to be not set by default. Then, in your data tier, you simply substitute DBNull.Value for
these when talking to the database.

Some might criticize this approach as the “magic number” approach, but it is reliable if you plan
appropriately. Rarely do you actually need to store the lower boundary value of a type —if you are at
the boundary under normal conditions, you need to upgrade the type. Therefore, the chances of ever
needing this value as a valid value for an instance are virtually non-existent, and even if you do have
unusual cases in which you anticipate that might happen, you can simply add extra handling, such as a
separate Boolean value to indicate whether a variable is set.

In fact, it is this last approach that the C# team is taking with their new support (in v2.0) for what they
call nullable types. They are introducing the capability to make any value type nullable using a new type
modifier (?). You can add this type modifier to any type name to indicate that you want it to be nullable.
Doing so gives it two new properties: HasValue and Value. Like SqlTypes, if you try to access Value
directly when it has not been set, it will throw an exception, but unlike SqlTypes, it is not limited to a
subset of value types and is not designed with SQL Server (or any particular database) in mind.

The C# team has gone to great lengths to create meaningful operator overloads so that using nullable
types is almost as natural as using standard .NET types. One such feature that we particularly see great
use for is the new null coalescing operator, represented by a double question mark (2 ?). This operator
works with reference types, too, so you could, using our previous example, account for null values very
easily, like so:

Console.WriteLine (order.CustomerID ?? "Unspecified");

This is the same as saying if CustomerID is not set, print “Unspecified”; otherwise, print the value of
CustomerID. A similar effect can be achieved by using C#'s 2 : operators or VB’s II£ function, but this
is much more compact. Furthermore, don’t forget that it works with those nullable value types using the
same syntax. Very cool!

If you're not into C#, you can still use nullable types; they’re just not quite as snazzy and are far less easy
to use. Both VB and C# support generics, and the new Nullable<T> generic type in the Framework is
what underpins the new C# language features. The problem is that you'll still have to do a lot of the same
handstands that you have to do with Sq1Types or using the magic number technique, i.e., the constant

113

Chapter 4

checking for HasValue/IsNull/Magic Number before you access the value. C# does nearly all of this
grunt work for you, which is possibly the best practical benefit that C# has going for it. To illustrate fur-
ther, the following code shows how you would use nullable types in VB:

Dim x As New Nullable (Of Integer) (125)

Dim y As New Nullable (Of Integer) (33)

Dim z As Nullable(Of Integer) = _
IIf(x.HasValue And y.HasValue, _

New Nullable(Of Integer) (x.Value + y.Value), _
New Nullable (Of Integer) ())

The same thing in C# would be:

int? x = 125;
int? y = 33;
int? z = X + y;

As usual, VB keeps its reputation for being verbose, while C# keeps its reputation for being compact, even
obscure. Whether or not V3 of VB will come up with a new, more “readable” way to handle nullable types
is an open question. One thing’s for sure: Users who like C# already are going to like it even more because
of these features.

One final alternative for nullable types is an open-source code library called, believe it or not, nullable types
(http://nullabletypes.sourceforge.net/). This library enables nullable type support from V1.0 on;
and, as far as we can determine, it is Common Type Specification—compliant, so you could happily expose
those types in a public API without worrying about the less frequently used languages not being able to
handle them. If that is important to you, this library will definitely remain useful for you even after the
release of .NET 2.0.

Ultimately, your decision as to what types you want to use in your .NET code (for interacting with your
database) depends largely on how you plan to use those types and, to a lesser extent, on whether or not
your database schema even allows for nulls. If you have a database helper layer or an object persistence
layer, the benefits of using SqlTypes over other alternatives are almost non-existent. However, if you're
doing it by hand, it might save you some work to use SqlTypes to avoid dealing with the DBNu11 issue.
If all you are looking for is nullable value types, though, you should consider the other alternatives
given here.

Mapping SQL Server Data Types to .NET

Lastly, we thought it would be useful to provide a table that maps the SQL Server data types to their
NET counterparts to help you choose what to use when writing your ADO.NET code.

SQL Server
Type SqlDbType DbType SqlType .NET Primitive
BIGINT BigInt Sqlint64 Int64
BINARY Binary SqlBinary Byte[]
SqlBytes

114

Standard Data Types

SQL Server
Type SqlDbType DbType SqlType NET Primitive
BIT Bit Boolean SqlBoolean Boolean
CHAR Char AnsiString SqlString String
FixedLength SqlChars Char[]
SqlStreamChars
DATETIME DateTime Date SqlDateTime DateTime
DateTime
Time
DECIMAL Decimal Decimal SqlDecimal Decimal
UInt32
Ulnt64
VarNumeric
FLOAT Float Double SqlDouble Double
IMAGE Image SqlBinary Byte[]
SqlBytes
INT Int Int32 Sqlint32 Int32
Ulntl6
MONEY Money Currency SqlMoney Decimal
NCHAR Nchar StringFixed SqlString String
Length SqlChars Charf]
SqlStreamChars
NTEXT/ Ntext SqlString String
VARBINARY SqlChars Charf]
(MAX) SqlStreamChars
NUMERIC Decimal SqlDecimal Decimal
NVARCHAR NvarChar String SqlString String
SqlChars Char[]
SqlStreamChars
REAL Real Single SqlSingle Single
SMALL-
DATETIME SmallDateTime SqlDateTime DateTime
SMALLINT SmallInt Intl6 Sqlint16 Intl6
SByte
SMALLMONEY SmallMoney SqlMoney Decimal
SQL_VARIANT Variant Object Object Object
SYSNAME NVarchar SqlString String
TEXT/ Text SqlString String
VARCHAR(MAX) SqlChars Char[]

Table continued on following page

Chapter 4

SQL Server
Type SqlDbType DbType SqlType .NET Primitive
TIMESTAMP Timestamp SqlBinary Byte[]
TINYINT TinyInt Byte SqlByte Byte
UNIQUE- Uniqueldentifier ~ Guid 5qlGuid Guid
IDENTIFIER
VARBINARY VarBinary Binary SqlBinary Byte[]
SqlBytes
VARCHAR VarChar AnsiString SqlString String
SqlChars Char(]
XML Xml SqlXml XmlDocument
XmlNode
XmlElement
String
Summary

This chapter described in detail the different types that are available to you in SQL Server, as well as the
various types that you can use within ADO.NET, including the caveats and benefits of different approaches
to dealing with data types in .NET. We looked at the most commonly used types, particularly variable
character, integer, and date time types, but we also looked at less frequently used types. You learned about
using SqlTypes and nullable types and how they can make database development easier. In other
chapters, you'll see in more detail how you can use these data types in your code to work efficiently, both
during design and at runtime.

For More Information

To complement the information in this chapter, take a look at the following resources:

Q SQL Server 2005 Books Online—http://go.microsoft.com/
fwlink/?LinkId=44375

Q0 MSDN article, “System.Data.SqlTypes namespace” —http: //msdn2
.microsoft.com/library/System.Data.SqlTypes

0 MSDN article, “Nullable Types (C# Programmer’s Reference)” —http: //msdn2
.microsoft.com/library/1t3y8s4ds (en-us,vs.80) .aspx

116

ADO.NET Integration
with XML

Extensible Markup Language, usually referred to as XML, is a very simple and flexible format for
defining data and data structures. It has been an important tool for developers for years and is
rapidly becoming the standard for exchanging data between applications and platforms due to its
extreme flexibility and the ease with which it can be consumed by any operating system.

What makes XML so flexible is the fact that it's a metalanguage. Unlike ridged languages such as
HTML that follow a defined format, metalanguages describe the format of another language. By
providing a language to describe the format of the data, XML enables you to create an infinite
number of types of XML documents to store almost any type of data you may have.

In addition to the extremely flexible format, XML has another huge advantage over other data
storage formats: it is not application- or operating-system-specific. XML is typically stored as
seven-character ASCII text that can be interpreted by any platform or application. Compared to
other formats, it is easily readable by humans, and readers usually find that what the data ele-
ments represent is intuitive.

All of these advantages have led to XML being widely integrated into the NET Framework. As

a .NET developer, you see it everywhere. Sometimes you are explicitly working with it, such as
when working with configuration files or performing XSL transformations. Other times, it is being
used by the .NET Framework almost invisibly to you, such as when working with a dataset, or
when writing and calling XML Web Services. Either way, knowing how to work with XML and
how XML integrates with the .NET Framework are important skills and essential building blocks
for understanding how ADO.NET works.

Chapter 5

What This Chapter Covers

This chapter provides a brief overview of what XML features were available in the 1.x Framework.

You will learn about enhancements to the xml1Reader and Xmluriter objects that help simplify and
consolidate much of the functionality in the 1.0 Framework. You will also examine some of the designer
enhancements that help provide a better user experience, and then learn about the XPathDocument,
which is becoming the definitive object for working with and editing XML documents. Finally, you will
learn about the performance gains with the 2.0 Framework and what new features you can expect to see
in future releases of the NET Framework.

You should have previous experience with XML before reading this chapter. In addition, in order to run
the examples provided, you will need a copy of Microsoft Visual Studio 2005. Most of the examples
build from the XML file and XSD schema that follow, which are also available for download from this
book’s Web site at www.wrox.com. The XML file is an XML representation of a few records from the
pubs sample database included with Microsoft SQL Server:

<?xml version="1.0" encoding="UTF-8"?>
<pubs>
<titles name="The Busy Executive's Database Guide" pub_id="1389"
price="19.99">
<authors au_lname="Green" au_fname="Marjorie"/>
<authors au_lname="Bennet" au_fname="Abraham"/>
</titles>
<titles name="Cooking with Computers: Surreptitious Balance Sheets" pub_id="1389"
price="11.95">
<authors au_lname="0'Leary" au_fname="Michael"/>
<authors au_lname="MacFeather" au_fname="Stearns"/>
</titles>
<titles name="You Can Combat Computer Stress!" pub_id="0736" price="2.99">
<authors au_lname="Green" au_fname="Marjorie"/>
</titles>
<publishers pub_id="0736" pub_name="New Moon Books"/>
<publishers pub_id="0877" pub_name="Binnet & Hardley"/>
<publishers pub_id="1389" pub_name="Algodata Infosystems"/>
</pubs>

<?xml version="1.0"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="pubs">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="titles" maxOccurs="unbounded" />
<xsd:element ref="publishers" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="titles">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="authors" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

118

ADO.NET Integration with XML

<xsd:attribute name="pub_id" type="xsd:integer"/>
<xsd:attribute name="price" type="xsd:float"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="publishers">
<xsd:complexType>
<xsd:attribute name="pub_id" type="xsd:integer"/>
<xsd:attribute name="pub_name" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="authors">
<xsd:complexType>
<xsd:attribute name="au_lname" type="xsd:string"/>
<xsd:attribute name="au_fname" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Where XML Is Today

When XML was first introduced to the majority of developers a few years ago, it was promoted as the
solution to every data storage and application interoperability problem. So far, it has fallen short of this
universal solution, but it has still proven itself very useful.

Data Exchange

Since XML was introduced, it has been applied to a wide variety of purposes. Probably the most signifi-
cant of these is a format for exchanging data between applications. Before XML, the standard means of
exchanging disconnected data was either a flat text file or some form of delimited text file such as CSV.
Often it was much worse, such as a propriety binary data format. Over the last few years, the standard
has been shifted to using XML. This greatly simplifies the process of exchanging data between apps by
providing a single standard that is easy to parse and easily human readable. It also provides a means to
easily convert the data from the format of one application to that of another by using stylesheets.

XML Web Services

Providing a standard format for exchanging data was a huge step forward, but that is only half of the
equation. The other half is providing a standard method for easily transmitting this data between appli-
cations. XML Web Services have expanded on these features to provide an easy way for applications

to connect to one another and transfer data. This was very difficult to do before when the calling and
receiving applications were not written in the same programming language or running on the same
operating system. Because XML Web Services are typically run on top of a Web server using HTTP or
HTTPS, it is very easy for businesses to migrate to XML Web Services. They are now the standard means
for transmitting data across the Internet in real time.

The NET Framework has abstracted away the details of calling XML Web Services to the point that you

don’t really even need to know XML to use them. It has done this by automatically generating the proxy
classes that handle all the work. To call a Web service, you simply add a Web reference and refer to it in

119

Chapter 5

code as if you were calling a local DLL. To write a Web service, you just add a few attributes to your
class and methods. This ease of use has made XML Web Services particularly appealing to .NET
developers.

Configuration Files

Another area in which XML has been widely implemented is configuration files. In Windows 3.x, most
configuration settings were stored in flat configuration files. With the release of Windows 95, Microsoft
moved to storing all Windows and application settings in the system registry, enabling it to function as
a single repository that could be accessed via common APIs. Unfortunately, as the registry’s size grows,
the performance degrades; and if the registry became corrupt, it was very difficult to recover. With the
introduction of the NET Framework, Microsoft moved to using XML files as the primary store for con-
figuration settings. This combined the benefits of having an easily deployable, human readable text file
along with the capability to use common APIs to work with the data. It also cleaned up some security
holes by no longer requiring the application that needs to read the configuration files to have access to
the registry.

.NET developers have followed this model, storing their configuration settings as XML. This has been
accomplished in one of two ways. The first method stores them in default configuration files that are
automatically inherited by the application, such as app.config, machine.config, or web.config. The sec-
ond method stores them in separate configuration files that are then read by the application. With either
approach, customizing the application settings is much easier than previous methods.

Text Markup

XML is also commonly used to mark up text designed for display to make it easier to change the display
format. One example common to .NET developers is the use of XML comments, which enable develop-
ers to document their code in a structured format using XML. This XML is extracted during compilation
to produce an XML output file. This output file can be parsed via code or transformed using XSLT to
output the documentation in any format desired. A common tool for doing this is NDOC, an open-
source utility for producing MSDN and other styles of documentation from the XML file.

XML has also become very popular with the recent increase of Web logs, or blogs for short. Bloggers write
log entries that are stored as XML and can be easily presented on a Web site as HTML or consumed and
consolidated with other Web logs and presented in pretty much any format desired.

The preceding examples are just a few of the more popular uses of XML today. There are far too many
uses to list them all, and more are being invented every day. You can see how quickly it has gained pop-
ularity over the last few years and how important it is to understand how to work with it and where it
can be used.

Design Goals for System.Xml 2.0

A wide variety of changes have been made to System. Xml in the 2.0 release of the NET Framework.
Most of these enhancements revolve around just a few design goals, which you'll look at more closely
throughout the chapter:

120

ADO.NET Integration with XML

Improved performance
Improved schema support

Enhanced security

U 00 0

Better usability

XmlIReader and XmlIWriter

The xm1Reader and XmlWriter classes introduced in the 1.0 version of the .NET Framework are
extremely valuable tools to most XML developers. They allow very quick, forward-only reading and
writing of XML files. In the 2.0 Framework, Microsoft has introduced some new features for these classes
that make working with them even easier.

Factory Methods

Some new static creation methods are available for both the Xm1Reader and xmlwWriter classes. These
methods are designed for a number of purposes. One of these is to simplify development by not requir-
ing the developer to know which xmlReader and XmluWriter to use.

Currently, if you want to simply read an XML file with no special options, you don’t create an XmlReader;
you create an XmlTextReader. Similarly, you may create an Xm1NodeReader or XmlValidatingReader.
Each of these xmlReaders are optimized to perform their specific tasks. If the same course is followed as
new optimizations are added, so are more classes, which overcomplicates working with Xm1Readers.
The same is true for the Xmlwriters. The static create methods have greatly simplified this. To read an
XML file from one source and write it to another, your code will now be as simple as this:

Dim reader As XmlReader
Dim writer As XmlWriter

reader = XmlReader.Create ("pubs.xml")
writer = XmlWriter.Create ("output.xml")

While reader.Read()
writer.WriteNode (reader, True)
End While

reader.Close()
writer.Close()

The preceding example is great for replacing the XmlTextReader, but it’s not really optimized for
other tasks such as validation. The create methods are overloaded in order to handle these opti-
mizations. There is an XmlReadersSettings class for setting the options for the Xml1Reader, and an
XmlWriterSettings class for doing the same with the xmlwriter. Both of these have several proper-
ties you can set, ranging from validating the document or filtering out nodes, to simply formatting the
document the way you want it to appear. Following is an example of some of the tasks you can perform
by using these settings classes:

121

Chapter 5

Dim reader As XmlReader
Dim writer As XmlWriter
Dim readerSettings As New XmlReaderSettings ()
Dim writerSettings As New XmlWriterSettings ()

readerSettings.IgnoreComments = True
readerSettings.IgnoreInlineSchema = True
readerSettings.Schemas.Add (Nothing, "pubs.xsd")
readerSettings.XsdvValidate = True

writerSettings.OmitXmlDeclaration = True
writerSettings.Indent = True
writerSettings.NewLineOnAttributes = True

reader = XmlReader.Create("pubs.xml", readerSettings)
writer = XmlWriter.Create("output.xml", writerSettings)

While reader.Read()
writer.WriteNode (reader, True)
End While

reader.Close ()
writer.Close()

This example tells the reader not to process any comments or inline schema information found within
the XML document by setting the corresponding properties. Similarly, it tells the writer not to write the
XML declaration line, to indent all of the XML elements, and to add line breaks for each attribute. Doing
this makes the XML output easier to read by humans, but increases the output size. You can use these
settings in any combination you desire to get the precise output you want.

One of these new settings that is particularly worthwhile is ConformanceLevel. In version 1.0 of the NET
Framework, the xm1Reader and xmluwriter were not conformant to the XML 1.0 standard by default.
With the 2.0 Framework, you can choose the conformance level by setting the ConformanceLevel prop-
erty. You can set this option to document or fragment conformance, or choose auto to have it auto-detect
depending on the nodes encountered.

Easier Object Serialization

Serializing objects to XML and deserializing them has become a lot easier with the introduction of two new
methods on the Xm1Reader and XmlWriter classes. The xmlwriter class now has the WriteFromObject
method, which will build an XML representation of the object. Of course, this can be combined with any of
the xmlwWriter settings to custom format the document or validate it.

Similarly, the Xml1Reader has the ReadAsObject method, which will read a block of XML as an object
once you specify the type. The return type of this method is an object, so usually you'll need to cast it to
the type of object you desire before being able to use it. The following example creates a class of type
Title and sets the values of its properties. It then writes the contents to output.xml, stripping off the
XML declaration with the custom writer settings. Finally, it reads the XML back in to a new object and
casts it back to the type of Title, creating a second copy of the original Title object. This can be very
useful for situations in which you have a class that stores configuration information that you want to
allow the user to change via a config file:

122

ADO.NET Integration with XML

Dim reader As XmlReader

Dim writer As XmlWriter

Dim writerSettings As New XmlWriterSettings ()
Dim titlel, title2 As Title

Dim o As Object

titlel = New Title()
titlel.Name = "The Busy Executive's Database Guide"
titlel.Pub_Id = 1389
titlel.Price = 19.99

writerSettings.OmitXmlDeclaration = True

writer = XmlWriter.Create("output.xml", writerSettings)
writer.WriteFromObject (titlel)

writer.Close()

reader = XmlReader.Create ("output.xml")
reader .Read ()

o = reader.ReadAsObject (GetType (Title))
reader.Close()

title2 = CType(o, Title)

Conversion Between XML Types and Framework Types

Converting between XML schema types and .NET Framework types is a fairly routine task that wasn't as
simple as it could be in the 1.0 Framework. Before, it was necessary to use the xmlvalidatingReader and
XmlConvert in order to perform the conversion. The 2.0 Framework simplifies this task with the introduc-
tion of several new ReadvalueAs... methods. For example, to return the price of a book, you could use
ReadValueAsDouble to return the value without having to later convert it to a double. The following
example shows how you could calculate the total price of all of the books from the XML example provided
at the beginning of the chapter:

Dim reader As XmlReader
Dim totalPrice As Double = 0
reader = XmlReader.Create ("pubs.xml")
While reader.Read()
If reader.IsStartElement() = True And reader.Name = "titles" Then
reader .MoveToAttribute ("price")
totalPrice += reader.ReadValueAsDouble ()
End If
End While

Of course, the same is true when using the Xmlwriter. The Framework now has the capability to con-
vert between CLR data types and XML schema types. The following example shows how you can pro-
grammatically write out an XML document containing attributes of types string and double using the
new WritevValue () method:

Dim writer As XmlWriter

writer = XmlWriter.Create("output.xml")
writer.WriteStartDocument ()
writer.WriteStartElement ("pubs")
writer.WriteStartElement ("titles")

123

Chapter 5

writer.WriteStartAttribute("name")

writer.WriteValue ("The Busy Executive's Database Guide")
writer.WriteEndAttribute ()
writer.WriteStartAttribute("price")

writer.WritevValue(19.99)

writer.WriteEndAttribute ()

writer.WriteEndElement ()

writer.WriteEndElement ()

writer.Close()

Other XmIReader Enhancements

In addition to the items already mentioned, there are several other enhancements to the Xm1Reader.
Most of these aren’t revolutionary, but they will save you some time and are worth mentioning;:

Q

ReadSubTree — This method will return a new XxmlReader instance containing the current
node and all of its child nodes. You can then call the Read method in it to loop through each
child node. Once the new xmlReader has been closed, the original Xml1Reader will advance to
the next node past the results of the subtree.

ReadToDescendant — This method advances the current XmlReader to the descendent node
with the specified name if a match is found. It will also return a Boolean indicating whether the
match was found. This provides a much easier way of quickly getting to a specific node.

ReadToNextSibling — This method provides an easy means for skipping over all of the child
nodes to access the next sibling node with the specified name.

Desigher Enhancements

Several enhancements to the XML designer make it easier to use. These range from simple coloring of
the elements, attributes, and values to fully integrated XSL debugging. In this section, you will learn
how to use these features to work more efficiently.

XML Designer

Figure 5-1 shows many of the features that make working with the XML designer easy. Please note that
the color features mentioned do not appear in this black-and-white figure.

a

Qa

124

XML nodes are now collapsible and expandable, much like .NET code or how Internet Explorer
renders XML.

The open and close tags of the node being edited are bolded, as shown in the last titles node
in the figure.

Any lines changed since the last time the XML document was saved are easily identifiable by
the yellow highlighting to the left of the line. This is indicated on the last titles node shown
in the figure.

Any lines saved since the XML document was opened in the editor are now highlighted in
green. See the first publishers node shown in Figure 5-1.

ADO.NET Integration with XML

bu‘bs.uml" F X

[<?xml version="1.0" encoding="UTF-8"2> ":‘l
=l <pubs xmlnsixsi=rhetes// e, i, or/ 2001/ ANLSchems-instance” x5i:noNamespaceichemalocation="Cy
=] <titles name="The Busy Executivefapos:s Database Guide™ pub id="1389" price=M19,99":

<authors au_lname=MGreen" au_ fname="Marjorie®/:
<authors au_lnsme="Bennet” au_Insme="Abraham'/ >
</ticles>
0l <titles name=MCooking with Computers: Surreptitious Balance Sheets"™ pub_id="1388" price=srFil:
<authors &au_lnasme="0'Leacy” al'._.‘r.;.r:|=="}¥1r:‘r\ael"_-‘>
<authors au_lnsme="NHacFeather" au_fneame="Stearns"/>
“fticles>
Ll <titles nawme="You Can Combat Computer Stress!* pus 1d="0736" rr|-=="2.!=!9")-|
<authors au_lnsme="Green” au_fnawe="Marjorie"/>
</titlea>
<publishers pub_id="0736" pub name="New Hoon Books"/>
<publishers pub_id="0877" pub_name="Binnec samp; Hardley"/>
<publishers pub_id="1385" pub_nsme="ilgodata Infosystems"/>
</ puba>

|
(€] I 2

Figure 5-1

0 You can easily override the schema and stylesheets you wish to use for debugging without
modifying the actual XML document by setting the values in the document properties window.

Q When you have specified a schema document to validate against, you will receive intellisense
indicating which elements and attributes are available.

O Real-time well-formedness checks are available, which indicate any errors with red squiggles
and an error in the error list.

Q Real-time XSD validation is offered, indicating errors with blue squiggles and a warning in the
error list.

0 You now have the capability to quickly jump between start and end XML tags by using CTRL+].

Q Thereis a go to Definition option when right-clicking on a node for quickly hopping to the XSD
Schema.

O You can easily preview the XSL transformations by using the Show XSL Output option from the
XML menu.

XSL Debugging

Because an XSL document is also an XML document, you have all of the features mentioned previously
when working with XSL documents. You also have an extra feature that is very helpful: the capability to
debug XSL transformations.

To begin debugging an XSL document, open it in the designer. Then open the properties window and
specify the values for the input document and output document. After doing so, set a breakpoint in the
XSL document the same way you would in code. Notice in Figure 5-2 that only the xs1:value element
is highlighted. This is because the breakpoints are set at the node level, not the line level.

Once the breakpoint is set, click the Debug XSL option from the XML menu or click the run button from
the XSL toolbar to begin debugging. The debugger will begin running the transformation, showing the
output in a new window opened to the right of the XSL document. You then have the capability to step
into your transformation just as you would with code and see your XSL document as it is forming.

125

Chapter 5

58 KmliTest Dek jing) - Microsoft D log t Environment
Ble Edt Wew Project fuld Debug XML Dats Tools Window Help
=G bl g | % B3]9 - - Sl | b Debug = fny CPU - | =R e e R |
i @ |2 SF (2 | tex | (3 - B Fr Db EE=2 003 aH A0
| pubsslt | pubs. xml T X b ol ¥ X | Properties -~ x
<?xml version="1.0" encoding="UTF-2" 2- :‘ <html> :‘ EML Document -
O <html xmlns:xsl=Mhotp:/ uuw.wd.org/ 1009/ X5L/ Tra, <body><h>Titles
<uls
& <body> <1i>The Busy Executive's Datshase Guide
l <hrTitles</br
 “lirCooking with Computers: Surreptitio
“ulx Encoding Unicode (LTI
L <xslifor-each sslect="/pubs/ticles"> Input pubs.xml
=) <1i: select="fns Cukput ChDocuments
<fxsl:for-each> Schemas C:Program File|
<fulx Stylesheet
</body>
</ html>
Encoding
Characker encoding of the
document,
™ [v]
<] I | [#] |2l | | 3| | Sl soktionE... | Froperties
¢ Call Stack| @ Breakpoints |] Command v"'i'\ﬂ)-'\'...ﬂ Tmmediate Windos :] Oukbput ﬂ Autos, .;j Locals| g5] Watch 1
Ready Ln 13 Col 1 h1 NS
M PETET 60 xitest (Debugging) ... %

Figure 5-2

XSD Enhancements

Just as with XSL, an XSD document is also an XML document, so the designer for XSD documents sup-
ports all of the same features as the XML designer. Other than this, there aren’t any enhancements to
the XSD designer, but several features make working with XSD documents easier. Most of these revolve
around validating the XML document against a schema and were mentioned previously in the section
on XML designer features.

There is one feature we haven’t covered yet, however. You no longer need to manually write the XSD
document. If you already have an XML document but not an XSD, Visual Studio will generate one for
you. To do this, load the XML document in the designer and from the XML menu, choose Create Schema.
This will generate the XSD schema based upon the patterns detected in the XML document and auto-
matically associate the XML document with the newly generated XSD. It may still be necessary to open
the XSD schema and change or add some of the restrictions, but it is definitely a major time saver.
Already have a DTD or XDR schema associated with the document? No problem; it will convert it to
XSD for you.

126

ADO.NET Integration with XML

Security

Security was not a major focus of the 1.0 release of System.Xml. As a result, a few vulnerabilities exist in
the 1.0 Framework. These have been corrected in the 2.0 release.

Denial of Service Attacks

In the 1.0 Framework, it is possible to launch a denial of service attack with DTDs using a method
known as internal entity expansion. This basically refers to performing a recursive definition of an entity,
as in the following example:

<!DOCTYPE myEntity [
<!ENTITY hwO "Hello World">
<!ENTITY hwl "&hwO;&hw0; ">
<!ENTITY hw2 "&hwl;&hwl; ">
<!ENTITY hw3 "&hw?2;&hw2;">

<!ENTITY hw99 "&hw98;&hw98; ">
<!ENTITY hwl00 "&hw99;&hw99; ">
1>
<myEntity>&hwl00;</myEntity>

This will cause the words “Hello World” to be repeated 2100 (1,267,650,600,228,229,401,496,703,205,376)
times, either causing extreme memory usage or completely taking down the server. Nonetheless, this is
a completely legitimate DTD instruction, and any attempt to close this vulnerability would also likely
eliminate needed DTD capabilities. To compensate for this, the XmlReaderSettings class now contains
a ProhibitDTD property for disabling DTD parsing when it is not needed. This fix was released as a
patch for the 1.1 Framework in July 2004, but is now integrated with the 2.0 Framework.

Code Access Security

One of the components that makes the .NET Framework secure is Code Access Security (CAS). It enables
the machine administrator to set policies that define how much access a block of code has to the system,
based upon the source of that code.

CAS works by gathering evidence about the assembly and assigning it to a code group based upon that
evidence. Some examples of this evidence would be where the source document was loaded from — the
local machine, a network share, a URL, and so on. If it was loaded from a URL, another factor would be
that URL. By default, the code group to which an assembly is assigned is based on its security zone: Local

Machine, Local Intranet, Internet, Restricted, or Trusted. You can also define your own code groups.

Each code group is defined by a single membership condition. The zones listed previously are an exam-
ple of a membership condition, but additional ones include the following;:

Q AllCode

Q Application

Q Application Directory

Q Domain Application

QO GAC (Global Assembly Cache)

127

Chapter 5

Hash
Publisher
Site

String Name
URL

U 00 0o

You can also define custom membership conditions. The final step is to define the permission set that the
code group has. This can range widely, from writing to the hard drive, printing, accessing the registry,
accessing the Web, and so on. You can configure these settings through the Framework Configuration
MMC by loading %Systemroot% \Microsoft. NET\Framework\v2.0. XXXXX\Mscorcfg.msc.

All of these same features available for code security are now available for XML security. For example,
when you load an XML document using the XmlReader, an Evidence property is populated with all of
the relevant information about where the document came from. The document is then prevented from
performing any actions that are not defined by the code group to which it is assigned, such as loading
malicious URLs. This evidence is passed up the chain of any classes using the Xml1Reader, ensuring code
access security throughout the XML classes.

XPathDocument

The XPathDocument is not new in version 2.0 of the Framework. It was the preferred data store for XML
data that was to be used to perform XPath queries or XSL transformations. There are several new fea-
tures to the XxPathDocument in the 2.0 Framework, however, and this section covers some of the more
dramatic changes.

Editing
The reason why the xpPathDocument was the preferred data store for XPath queries and XSL transforma-
tions in the 1.0 Framework is because it offered a significant performance gain over the XmlDocument
class. However, it was often necessary to edit the XML document in some way before performing the
transformation. When this situation arose, the best approach was typically to create an Xm1Document,
make the changes, and use it as the store for the query. By doing this, you would lose the performance
benefits associated with using the xPathDocument. This is no longer a problem.

What makes the XxPathDocument so much faster is that is does not have the XML 1.0 serialization con-
straints, so it can treat the document as just data. A new API, the XPathEditableNavigator AP, has
been added to extend cursor-style editing capabilities to the XPathDocument. It does this by reflecting
the data within the XPathDocument to manipulate the XML. By having this separate editor class, the
XPathDocument can continue to not be bound by these constraints, and deliver high performance while
still being fully editable.

This is a different approach from before and it takes some getting used to, but once you see a few examples

it should start to make sense. Let’s start by looking at a very simple example. Let’s rename the publisher
“New Moon Books” to “Full Moon Books”. Start by creating a new XxPathDocument and loading the

128

ADO.NET Integration with XML

pubs.xml file we’ve been using for all of the examples. Use the SelectSingleNode method of this docu-
ment to select the publisher with pub_id of 0736. This query will return an XpathEditableNavigator
object. You can now use the setvalue method of this editor to change the value to “Full Moon Books”.
Finally, call the Save function on the original XPathDocument to save the results to the output file. Your
code should look something like this:

Dim doc As System.Xml.XPath.XPathDocument
Dim editor As System.Xml.XPath.XPathEditableNavigator

doc = New System.Xml.XPath.XPathDocument ("pubs.xml")

editor = doc.SelectSingleNode ("/pubs/publishers[@pub_id='0736"']/@pub_name")
editor.SetValue("Full Moon Books")
doc.Save ("output.xml")

Run the code and you'll notice that the publisher’s name has been replaced. It was possible to do the same
thing with the Xm1Document class in the 1.0 version of the Framework, but you didn’t get the same perfor-
mance benefits. Moreover, the result in this case would have been an xm1Node or xm1NodeList if you used
the selectNodes method, which does not offer all of the functions that the XPathEditableNavigator
does, such as the capability to run another query on the results.

Usually, the changes that need to be made to the XML document are not as simple as swapping out

a value for a single property. For example, you may need to add a new publisher altogether. The
XPathEditableNavigator class makes this easy to do by exposing the AppendNodes method. This
method returns an instance of an Xxmlwriter object for writing new nodes. This is very convenient
because most developers should already be familiar with the xmlwriter, eliminating the need to learn
a second method of writing nodes.

Let’s give it a try. Start out as you did in the previous example by creating a new XxpPathDocument and
loading the pubs.xml file. Again create an editor by calling the SelectSingleNode method, but this
time just select the “/pubs” node. Now call the Appendchild method of the editor object to create an
Xmlwriter instance. With the writer, call the writeStartElement method to create a new publishers
element. Then call the writeAttributeString method to specify the pub_id and pub_name attributes,
and the WriteEndElement method to close the publishers element. Don't forget to call the Close method
of the writer to push the changes back to the editor object. Finally, once again call the Save method of
the document to save the changes to the output file:

Dim doc As System.Xml.XPath.XPathDocument
Dim editor As System.Xml.XPath.XPathEditableNavigator
Dim writer As System.Xml.XmlWriter

doc = New System.Xml.XPath.XPathDocument ("pubs.xml")
editor = doc.SelectSingleNode ("/pubs")

writer = editor.AppendChild()
writer.WriteStartElement ("publishers")
writer.WriteAttributeString ("pub_id", "1234")
writer.WriteAttributeString ("pub_name", "Wrox Press")
writer.WriteEndElement ()

writer.Close()

doc.Save ("output.xml")

129

Chapter 5

If you view the output, you should see the new publisher as the last child of the pubs element. If you
don’t want the new node to be added as the last child, alternatives are available to AppendChild,
including InsertBefore, InsertAfter, and PrependChild

Now that you've learned how to replace a single value or insert a single node, let’s take a look at

how to do a bulk change to a document. The SelectNodes method of the XPathDocument returns an
XPathNodeIterator that contains a collection of XPathNavigator objects, which can be converted to
an XPathEditableNavigator. This sounds more complicated than it is. Basically, it’s as simple as the
for each statement in the following example, which returns an XxPathEditableNavigator for each
result of the original query. With this collection of XPathEditableNavigators, you can easily loop
through the results and make changes throughout the entire document.

That is exactly what the following example demonstrates. It shows how to find all of the titles written
by Marjorie Green, remove any co-authors, and add a new co-author of Stearns MacFeather to each title.
Begin as you did for the other two examples by creating an XPathDocument and loading the pubs.xml
file. Then call the SelectNodes method to execute a query that returns all of the titles written by
Marjorie Green. Wrap a for each statement around that call to return an XpathEditableNavigator for
each result. With this editor, call the SelectSingleNode method to find a co-author that isn’t Green

(if one exists), which will return a new XPathEditableNavigator. Ensure that you received a result
back by checking whether the new editor is null. If so, call the DeleteCurrent method of that editor

to remove the co-author. Now all that is left to do is to add the co-author of Stearns MacFeather to each
title. The original editor is still pointing at the title node, so call the Appendchild as you did in the pre-
vious example to create a new authors node. Set the attributes, close the writer, and save the document.
Your code should like similar to this:

Dim doc As System.Xml.XPath.XPathDocument
Dim editor, editor2 As System.Xml.XPath.XPathEditableNavigator
Dim writer As System.Xml.XmlWriter

doc = New System.Xml.XPath.XPathDocument ("pubs.xml")
doc.SelectNodes (" /pubs/titles[authors/@au_lname='Green']")

For Each editor In doc.SelectNodes ("/pubs/titles[authors/@au_lname='Green']")
editor2 = editor.SelectSingleNode ("authors[@au_lname!='Green']")
If Not IsNothing(editor2) Then
editor2.DeleteCurrent ()
End If

writer = editor.AppendChild ()
writer.WriteStartElement ("authors")

writer.WriteAttributeString("au_lname", "MacFeather")
writer.WriteAttributeString("au_fname", "Stearns")
writer.Close()

Next

doc.Save ("output.xml")
Open the output file and notice that for every title for which Marjorie Green was an author, any

co-authors have been removed and Stearns MacFeather has been added. The other title records were
left untouched.

130

ADO.NET Integration with XML

Validation

Earlier, you learned how easily you can validate an XML document while reading it in by using the
XSDvalidate property of the XmlReaderSettings class. Here, we'll look at how you can validate
an XML document that is being created while it is still in memory. This is accomplished by using the
validate method exposed by the xpPathEditableNavigator class.

XmiISchemaSet

Before we can look at validating XML output, we must first look at another new class in the

2.0 Framework: the xm1SchemaSet class. In the 1.0 Framework, schemas were loaded into an
XmlSchemaCollection, which was used for storing schemas used by the XmlvalidatingReader.

In the 2.0 Framework, both the Xml1SchemaCollection and XxmlvalidatingReader have been retired.
This accomplishes a number of things, including the following:

Q Retiring support for the Microsoft XDR format — The Xm1SchemaSet only supports W3C
XML Schemas now. The xmlSchemaCollection also supported the proprietary XDR format.

Q Improving performance by reducing the number of compiles —The XmlSchemaCollection
would perform a compile after each schema was added. With the XmlSchemaCollection, a
single compile occurs by manually calling the Compile method after all of the schemas have
been added.

Q Elimination of schema islands — The Xml1SchemaCollection improperly handled multiple
schemas by treating them as separate “islands,” making all imports and includes only scoped
to that particular schema. The xmlSchemaSet adds any imported schema to the schema set and
treats the whole set as one logical schema.

0 Support of multiple schemas for a single namespace — With the XmlSchemaCollection, each
namespace could have only one schema. The Xxm1SchemaSet supports multiple schemas for the
same namespace as long as there are not any type conflicts.

Validating Output

Let’s start by loading the code from the previous example. In the declarations section, declare a new
XmlSchemaSet and ValidationEventHandler object. We'll look at the Xm1SchemaSet more closely in
a minute. At the bottom of the Buttonl_click event, add new code to set the editor object to an editor
for the entire XML document by calling doc . CreateEditor. Next, define the XmlSchemaSet object as
a new XmlSchemaSet, add the pubs.xsd schema to it, and compile the Xm1SchemaSet. Point the vali-
dation event handler to a new method called validationCallback. Now call the validate method
of the editor, passing in the xmlSchemaSet and event handler. Finally, create a new method called
ValidationCallback to receive the event and output the message by referencing the Message prop-
erty on the EventArgs. Your code should look like the following;:

Private Sub Buttonl_Click(ByVal sender As Object, ByVal e As EventArgs)
Dim doc As System.Xml.XPath.XPathDocument
Dim editor, editor2 As System.Xml.XPath.XPathEditableNavigator
Dim writer As System.Xml.XmlWriter
Dim schemaSet As System.Xml.Schema.XmlSchemaSet
Dim handler As System.Xml.Schema.ValidationEventHandler

doc = New System.Xml.XPath.XPathDocument ("pubs.xml")

131

Chapter 5

doc.SelectNodes (" /pubs/titles[authors/@au_lname='Green']")

For Each editor In doc.SelectNodes ("/pubs/titles[authors/@au_lname='Green']")
editor2 = editor.SelectSingleNode ("authors[@au_lname!='Green']")
If Not IsNothing(editor2) Then
editor2.DeleteCurrent ()
End If

writer = editor.AppendChild ()
writer.WriteStartElement ("authors")
writer.WriteAttributeString("au_lname", "MacFeather")
writer.WriteAttributeString("au_fname", "Stearns")
writer.Close()

Next

editor = doc.CreateEditor

schemaSet = New System.Xml.Schema.XmlSchemaSet ()

schemaSet .Add (Nothing, "pubs.xsd")

schemaSet .Compile ()

handler = New System.Xml.Schema.ValidationEventHandler (AddressOf _
ValidationCallback)

editor.Validate (schemaSet, handler)

doc.Save ("output.xml")
End Sub

Public Sub ValidationCallback (ByVal sender As Object, ByVal e As _
System.Xml.Schema.ValidationEventArgs)
TextBoxl.Text += e.Message + System.Environment.NewLine

End Sub

If you run this, you'll notice that you receive the exact same results as the previous example. This is
because the document is valid, so the validation callback never gets called. To see the validation in
action, simply change one of the line’s output by the writer to output an invalid value, such as the
author’s last name:

writer.WriteAttributeString("au_lname2", "MacFeather")

Run the code again and you'll see two error messages stating the following: The 'au_lname2'
attribute is not declared

Schema Inference

Validating the XML output of your code is very important in most situations. Unfortunately, you don’t
always have an XSD document to validate against. When this is the case, you can do the next best thing
and allow the Framework to infer an XSD schema from an existing XML document. This is relatively
simple to do now using the Inference class—as simple as replacing the following two lines of code:

schemaSet = New System.Xml.Schema.XmlSchemaSet ()
schemaSet .Add (Nothing, "pubs.xsd")

132

ADO.NET Integration with XML

You need to first declare a new inference object and an xml1Reader. At the location where you remove the
two preceding lines, add a line to load the Xm1Reader from the same pubs . xm1 file the XPathDocument is
reading. Set the inference object to a new instance of the Inference class and populate the schema set by
calling the Inferschema method of the inference object. Close your reader. You now have a schema you
can use to validate your new XML against. You should receive the same results as the previous example
after substituting the following lines:

Dim reader As System.Xml.XmlReader

Dim inf As System.Xml.Schema.Inference

reader = System.Xml.XmlReader.Create("pubs.xml")
inf = New System.Xml.Schema.Inference ()
schemaSet = inf.InferSchema (reader)
reader.Close()

Change Notification

Whenever changes are made to the XPathDocument, events are raised to which you can add handlers to
perform custom actions. Examples might be altering the values of an item being inserted, sending notifi-
cations when an item is deleted, and so on. Six events are provided for handling these scenarios. The
first three are ITtembDeleting, ItemInserting, and ItemUpdating. All three of these fire before the
change has taken place. They are useful for actions such as performing validation of the data before
allowing the change to take place. The other three are TtemDeleted, ItemInserted, and ItemUpdated.
When these events fire, it is too late to modify the data, but they are very useful for actions such as log-
ging. The following code builds upon the preceding example. You need to make the document declara-
tion global and add two new methods: one for ItemDeleted and another for ItemInserted. In each of
these, add a line to display the outerxml of each node that was deleted:

Dim WithEvents doc As System.Xml.XPath.XPathDocument

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles Buttonl.Click
Dim editor, editor2 As System.Xml.XPath.XPathEditableNavigator
Dim writer As System.Xml.XmlWriter

doc = New System.Xml.XPath.XPathDocument ("pubs.xml")
doc.SelectNodes (" /pubs/titles[authors/@au_lname='Green']")

For Each editor In doc.SelectNodes ("/pubs/titles[authors/@au_lname='Green']")
editor2 = editor.SelectSingleNode ("authors[@au_lname!='Green']")
If Not IsNothing(editor2) Then
editor2.DeleteCurrent ()
End If

writer = editor.AppendChild()
writer.WriteStartElement ("authors")

writer.WriteAttributeString("au_lname", "MacFeather")
writer.WriteAttributeString("au_fname", "Stearns")
writer.Close()

Next

doc.Save ("output.xml")

133

Chapter 5

End Sub

Public Sub doc_ItemDeleted(ByVal sender As Object, ByVal e As _
System.Xml.XPath.NodeChangedEventArgs) Handles doc.ItemDeleted
TextBoxl.Text += "Deleted Item: " + e.Item.OuterXml +

System.Environment .NewLine

End Sub

Public Sub doc_ItemInserted(ByVal sender As Object, ByVal e As _
System.Xml.XPath.NodeChangedEventArgs) Handles doc.ItemInserted
TextBoxl.Text += "Inserted Item: " + e.Item.OuterXml + _

System.Environment .NewLine

End Sub

XSLT Improvements

As stated at the beginning of this chapter, one of the major design goals for this release of System.Xml is
improved performance. The Xs1Transform class has been completely rewritten with this goal in mind.
The 1.0 release of this class was written primarily based on MSXML 3.0. It performed pretty well, but
there was still a lot of room for improvement. Since then, MSXML 4.0 has been released, which intro-
duced several new optimizations to improve performance. A new Xs1ltCommand object has been intro-
duced to include these optimizations and a few others.

The primary way it does this is by compiling the XSLT into IL code and using the Just In Time compiler
to compile and run the IL against the XML document. Doing this means it takes a little bit longer to com-
pile the XSLT stylesheet, but it runs much faster. In addition, by explicitly compiling the XSLT stylesheet
and then running it against the source document, you can compile it a single time and run it repeatedly.
This greatly improves performance when you need to transform numerous documents. The following
code shows how to create an Xs1tCommand, compile the stylesheet, and execute the conversion against
an XML document:

Dim xslt As System.Xml.Query.XsltCommand

xslt = New System.Xml.Query.XsltCommand ()
xslt.Compile ("pubs.xslt")
xslt.Execute("pubs.xml", "output.html")

Performance

All of the features we’ve looked at so far have made working with XML much easier, but probably few