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Introduction

Thirty-five years ago, databases were found only in special research laboratories, 
where computer scientists struggled with ways to make them efficient and useful, 

publishing their findings in countless research papers. Today databases are a ubiquitous 
part of the information technology (IT) industry and business in general. We directly and 
indirectly use databases every day—banking transactions, travel reservations, employment 
relationships, website searches, online and offline purchases, and most other transactions 
are recorded in and served by databases.

As is the case with many fast-growing technologies, industry standards have lagged 
behind in the development of database technology, resulting in myriad commercial 
products, each following a particular software vendor’s vision. Moreover, a number 
of different database models have emerged, with the relational model being the most 
prevalent. Databases: A Beginner’s Guide examines all of the major database models, 
including hierarchical, network, relational, object-oriented, and object-relational. This 
book concentrates heavily on the relational and object-relational models, however, 
because these are the mainstream of the IT industry and will likely remain so in the 
foreseeable future.

The most significant challenge in implementing a database is correctly designing the 
structure of the database. Without a thorough understanding of the problem the database is 
intended to solve, and without knowledge of the best practices for organizing the required 
data, the implemented database becomes an unwieldy beast that requires constant attention. 
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Databases: A Beginner’s Guide focuses on the transformation of requirements into a 
working data model with special emphasis on a process called normalization, which 
has proven to be an effective technique for designing relational databases. In fact, 
normalization can be applied successfully to other database models. And, in keeping 
with the notion that you cannot design an automobile if you have never driven one, the 
Structured Query Language (SQL) is introduced so that the reader may “drive” a database 
before delving into the details of designing one.

I’ve drawn on my extensive experience as a database designer, administrator, and 
instructor to provide you with this self-help guide to the fascinating and complex world 
of database technology. Examples are included using both Microsoft Access and Oracle. 
Publicly available sample databases supplied by these vendors (the Microsoft Access 
Northwind database and the Oracle Human Resources database schema) are used in example 
figures whenever possible so that you can try the examples directly on your own computer 
system. A self test is provided at the end of each chapter to help reinforce your learning.

Who Should Read This Book
Databases: A Beginner’s Guide is recommended for anyone trying to build a foundation 
in database design and management, whether for personal or professional use. The book 
is designed specifically for those who are new or relatively new to database technology; 
however, those of you who need a refresher in normalization and database design 
and management will also find this book beneficial. Whether you’re an experienced 
developer, you’ve had some development experience, you’re a database administrator, or 
you’re new to programming and databases, Databases: A Beginner’s Guide provides a 
strong foundation that will be useful to any of you wanting to learn more about database 
technology. In fact, any of the following individuals will find this book helpful when 
trying to understand and use databases:

● The novice new to database design and SQL programming

● The analyst or manager who wants a better understanding of  how to design, 
implement, and access databases

● The database administrator who wants to learn more about database design

● The technical support professional or testing/QA engineer who must perform ad hoc 
queries against SQL databases

● The web developer writing applications that require databases for data persistence
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● The third-generation language (3GL) programmer embedding SQL within an 
application’s source code

● Any other individual who wants to learn how to design databases and write SQL code 
to create and access databases within an RDBMS

No matter which category you fit into, you must remember that the book is geared 
toward anyone wanting to learn standard database design techniques that work on any 
database, not one specific vendor’s product. This lets you apply the skills you learn in 
this book to real-world situations, without being limited to product standards. You will, 
of course, still need to be aware of how the product you work on implements databases, 
particularly dialects of SQL, but with the foundation provided in these pages, you’ll 
be able to move from one RDBMS to the next and still have a solid understanding of 
database design theory. As a result, you’ll find that this book is a useful tool to anyone 
new to databases, particularly relational databases, regardless of the product used. You 
will easily be able to adapt your knowledge to the specific RDBMS.

What the Book Covers
Databases: A Beginner’s Guide is divided into three parts. Part I introduces you to basic 
database concepts and explains how to create and access objects within your database 
using SQL. Part II provides you with a foundation in database development, including 
the database life cycle, logical design using the normalization process, transforming the 
logical design into a physical database, and data and process modeling. Part III focuses 
on database implementation with emphasis on database security, as well as the advanced 
topics of databases for online analytical processing (OLAP) and integrating objects and 
XML documents into the database, allowing you to expand on what you learned in Parts I 
and II. In addition to the three parts, Databases: A Beginner’s Guide contains appendices 
that include answers to the self-test questions and solutions to the Try This exercises that 
appear throughout the book.

Content Description
The following outline describes the contents of the book and shows how the book is 
broken down into task-focused chapters:

Part I: Database Concepts
Part I introduces you to basic database concepts and explains how to create and access 
objects within your database using SQL.

Chapter 1: Database Fundamentals This chapter introduces fundamental concepts 
and definitions regarding databases, including properties common to databases, prevalent 
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database models, a brief history of databases, and the rationale for focusing on the 
relational model.

Chapter 2: Exploring Relational Database Components This chapter explores 
the conceptual, logical, and physical components that make up the relational model. 
Conceptual database design involves studying and modeling the data in a technology-
independent manner. Logical database design is the process of translating, or mapping, 
the conceptual design into a logical design that fits the chosen database model (relational, 
object-oriented, object-relational, and so on). The final design step is physical database 
design, which involves mapping the logical design to one or more physical designs—each 
tailored to the particular DBMS that will manage the database and the particular computer 
system on which the database will run.

Chapter 3: Forms-based Database Queries This chapter provides an overview 
of forming and running database queries using the forms-based query tool in Microsoft 
Access, providing a foundation in database query concepts for the database design theory 
that follows in later chapters.

Chapter 4: Introduction to SQL This chapter introduces SQL, which has become 
the universal language for relational databases that nearly every DBMS in modern use 
supports. The reason for its wide acceptance is clearly the time and effort that went into 
the development of language features and standards, making SQL highly portable across 
different RDBMS products.

Part II: Database Development
Part II provides you with a foundation in database development, including the database 
life cycle, logical design using the normalization process, transforming the logical design 
into a physical database, and data and process modeling.

Chapter 5: The Database Life Cycle This chapter introduces the framework in which 
database design takes place, a useful precursor to the particulars of database design. The 
life cycle of a database (or computer system) is the term we use for all the events that take 
place between the time we first recognize the need for a database, continuing through its 
development and deployment, and finally ending with the day it is retired from service.

Chapter 6: Database Design Using Normalization In this chapter, you will learn 
how to perform logical database design using a process called normalization. In terms of 
understanding relational database technology, this is the most important topic in this book, 
because normalization teaches you how best to organize your data into tables.

Chapter 7: Data and Process Modeling In this chapter, we will look at entity-
relationship diagrams (ERDs) and data modeling in more detail. The second part of the 
chapter includes a high-level survey of process design concepts and diagramming techniques.
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Chapter 8: Physical Database Design This chapter focuses on the database 
designer’s physical design work, which is transforming the logical database design into 
one or more physical database designs.

Part III: Database Implementation
Part III focuses on database implementation with emphasis on database security as well as 
the advanced topics of databases for online analytical processing (OLAP) and integrating 
objects and Extensible Markup Language (XML) documents into the database; this allows 
you to expand on what you learned in Parts I and II.

Chapter 9: Connecting Databases to the Outside World This chapter begins with 
a look at the evolution of database deployment models, meaning the ways that databases 
have been connected with the database users and the other computer systems within the 
enterprise computing infrastructure (the internal structure that organizes all the computing 
resources of an enterprise, including databases, applications, computer hardware, and 
the network). The chapter then explores the methods used to connect databases to 
applications that use a web browser as the primary user interface, which is the way many 
modern application systems are constructed. It concludes with a look at current methods 
for connecting databases to applications, namely using ODBC connections (for most 
programming languages) and various methods for connecting databases to applications 
written in Java (a commonly used object-oriented language).

Chapter 10: Database Security This chapter presents the need for security, the 
security considerations for deploying database servers and clients that access those 
servers, and methods for implementing database access security, concluding with a 
discussion of security monitoring and auditing.

Chapter 11: Deploying Databases This chapter covers some considerations 
regarding the development of applications that use the database system. These include 
cursor processing, transaction management, performance tuning, and change control.

Chapter 12: Databases for Online Analytical Processing This chapter presents the 
concepts of databases for analytical processing, including data warehouses and data marts, 
an overview of data mining and other data analysis techniques, along with the design 
variations required for these types of databases.

Chapter 13: Integrating XML Documents and Objects into Databases This 
chapter explores a number of ways to integrate XML and object content into databases.

Part IV: Appendices
The appendices include answers to the Self Test questions and solutions to the Try This 
exercises that appear throughout the book.



 xviii Databases: A Beginner’s Guide

Appendix A: Answers to Self Tests This appendix provides the answers to the Self 
Test questions listed at the end of each chapter.

Appendix B: Solutions to the Try This Exercises This appendix contains solutions, 
including diagrams and applicable SQL code, for the Try This exercises that appear in 
nearly every chapter of the book.

Chapter Content
As you can see from the outline, Databases: A Beginner’s Guide is organized into 
chapters. Each chapter focuses on a set of key skills and concepts and contains the 
background information you need to understand the concepts, plus the skills required 
to apply these concepts. Each chapter contains additional elements to help you better 
understand the information covered in that chapter:

Ask the Expert
Each chapter contains one or two Ask the Expert sections that provide information on 
questions that might arise regarding the information presented in the chapter.

Self Test
Each chapter ends with a Self Test, a set of questions that test you on the information and 
skills you learned in that chapter. The answers to the Self Tests are included in Appendix A.

Try This Exercises
Most chapters contain one or two Try This exercises that allow you to apply the information 
that you learned in the chapter. Each exercise is broken down into steps that walk you 
through the process of completing a particular task. Where applicable, the exercises include 
related files that you can download from our website at www.mhprofessional.com. Click 
Computing and then click the Downloads Section link on the left side of the page. On the 
downloads page, scroll down to the listing for this book and select the files you wish to 
download. The files usually include the SQL statements or diagrams used within the Try 
This exercise.

To complete many of the Try This exercises in this book, you’ll need to have access to 
an RDBMS that allows you to enter and execute SQL statements interactively. If you’re 
accessing an RDBMS over a network, check with the database administrator to make sure 
that you’re logging in with the credentials necessary to create a database and schema. You 
might need special permissions to create these objects. Also verify whether you should 
include any particular parameters when creating the database (for example, log file size), 
and whether restrictions on the names you can use or other restrictions apply. Be sure to 
check the appropriate documentation before working with any database product.
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Key Skills & Concepts
● Properties of a Database

● Prevalent Database Models

● A Brief History of Databases

● Why Focus on Relational?

This chapter introduces fundamental concepts and definitions regarding databases, 
including properties common to databases, prevalent database models, a brief history of 

databases, and the rationale for focusing on the relational model.

Properties of a Database
A database is a collection of interrelated data items that are managed as a single unit. This 
definition is deliberately broad because so much variety exists across the various software 
vendors that provide database systems. For example, Microsoft Access places the entire 
database in a single data file, so an Access database can be defined as the file that contains 
the data items. Oracle Corporation defines its database as a collection of physical files that 
are managed by an instance of its database software product. An instance is a copy of the 
database software running in memory. Microsoft SQL Server and Sybase Adaptive Server 
Enterprise (ASE) define a database as a collection of data items that have a common 
owner, and multiple databases are typically managed by a single instance of the database 
management software. This can all be quite confusing if you work with multiple products, 
because, for example, a database as defined by Microsoft SQL Server or Sybase ASE is 
exactly what Oracle Corporation calls a schema.

A database object is a named data structure that is stored in a database. The specific 
types of database objects supported in a database vary from vendor to vendor and from 
one database model to another. Database model refers to the way in which a database 
organizes its data to pattern the real world. The most common database models are 
presented in the “Prevalent Database Models” section later in this chapter.

A file is a collection of related records that are stored as a single unit by an operating 
system. Given the unfortunately similar definitions of files and databases, how can we 
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make a distinction? A number of Unix operating system vendors call their password files 
“databases,” yet database experts will quickly point out that, in fact, these are not actually 
databases. Clearly, we need a bit more rigor in our definitions. The answer lies in an 
understanding of certain characteristics or properties that databases possess which are not 
found in ordinary files, including the following:

● Management by a database management system (DBMS)

● Layers of data abstraction

● Physical data independence

● Logical data independence

These properties are discussed in the following subsections.

The Database Management System
The database management system (DBMS) is software provided by the database vendor. 
Software products such as Microsoft Access, Oracle, Microsoft SQL Server, Sybase ASE, 
DB2, Ingres, and MySQL are all DBMSs. If it seems odd to you that the DBMS acronym 
is used instead of merely DMS, remember that the term database was originally written as 
two words, and by convention has since become a single compound word.

The DBMS provides all the basic services required to organize and maintain the 
database, including the following:

● Moves data to and from the physical data files as needed.

● Manages concurrent data access by multiple users, including provisions to prevent 
simultaneous updates from conflicting with one another.

● Manages transactions so that each transaction’s database changes are an all-or-nothing 
unit of work. In other words, if the transaction succeeds, all database changes made by 
it are recorded in the database; if the transaction fails, none of the changes it made are 
recorded in the database.

● Supports a query language, which is a system of commands that a database user 
employs to retrieve data from the database.

● Provides provisions for backing up the database and recovering from failures.

● Provides security mechanisms to prevent unauthorized data access and modification.
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Layers of Data Abstraction
Databases are unique in their ability to present multiple users with their own distinct views 
of the data while storing the underlying data only once. These are collectively called user 
views. A user in this context is any person or application that signs on to the database for 
the purpose of storing and/or retrieving data. An application is a set of computer programs 
designed to solve a particular business problem, such as an order-entry system, a payroll-
processing system, or an accounting system.

When an electronic spreadsheet application such as Microsoft Excel is used, all 
users must share a common view of the data, and that view must match the way the 
data is physically stored in the underlying data file. If a user hides some columns in 
a spreadsheet, reorders the rows, and saves the spreadsheet, the next user who opens 
the spreadsheet will view the data in the manner in which the first user saved it. An 
alternative, of course, is for each user to save his or her own copy in separate physical 
files, but then as one user applies updates, the other users’ data becomes out of date. 
Database systems present each user a view of the same data, but the views can be tailored 
to the needs of the individual users, even though they all come from one commonly stored 
copy of the data. Because views store no actual data, they automatically reflect any data 
changes made to the underlying database objects. This is all possible through layers of 
abstraction, which is shown in Figure 1-1.

The architecture shown in Figure 1-1 was first developed by ANSI/SPARC (American 
National Standards Institute/Standards Planning and Requirements Committee) in 
the 1970s and quickly became a foundation for much of the database research and 
development efforts that followed. Most modern DBMSs follow this architecture, which 
is composed of three primary layers: the physical layer, the logical layer, and the external 
layer. The original architecture included a conceptual layer, which has been omitted here 
because none of the modern database vendors implement it.

Q: I’ve heard the term “data bank” used. What is the difference between a data bank and 
a database?

A: A data bank and a database are the same thing. Data bank is merely an older term that was 
used by the scientists who developed early database systems. In fact, the term data bank is 
still used in a few human languages, such as banco de dados in Portuguese.

Ask the Expert
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The Physical Layer
The physical layer contains the data files that hold all the data for the database. Nearly all 
modern DBMSs allow the database to be stored in multiple data files, which are usually 
spread out over multiple physical disk drives. With this arrangement, the disk drives can 
work in parallel for maximum performance. A notable exception among the DBMSs used 
as examples in this book is Microsoft Access, which stores the entire database in a single 
physical file. While simplifying database use on a single-user personal computer system, 
this arrangement limits the ability of the DBMS to scale to accommodate many concurrent 
users of the database, making it inappropriate as a solution for large enterprise systems. 
In all fairness, Microsoft Access was not designed to be a robust enterprise class DBMS. I 
have included it in discussions in this book not because it competes with products such as 
Oracle and SQL Server, but because it’s a great example of a personal DBMS with a user 
interface that makes learning database concepts easy and fun.

The database user does not need to understand how the data is actually stored within 
the data files or even which file contains the data item(s) of interest. In most organizations, 
a technician known as a database administrator (DBA) handles the details of installing 
and configuring the database software and data files and making the database available to 
users. The DBMS works with the computer’s operating system to manage the data files 
automatically, including all file opening, closing, reading, and writing operations. The database 
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user should not be required to refer to physical data files when using a database, which is 
in sharp contrast with spreadsheets and word processing, where the user must consciously 
save the document(s) and choose file names and storage locations. Many of the personal 
computer–based DBMSs are exceptions to this tenet because the user is required to locate 
and open a physical file as part of the process of signing on to the DBMS. Conversely, 
with enterprise class DBMSs (such as Oracle, Sybase ASE, Microsoft SQL Server, and 
MySQL), the physical files are managed automatically and the database user never needs to 
refer to them when using the database.

The Logical Layer
The logical layer or logical model comprises the first of two layers of abstraction in the 
database: the physical layer has a concrete existence in the operating system files, whereas 
the logical layer exists only as abstract data structures assembled from the physical layer as 
needed. The DBMS transforms the data in the data files into a common structure. This layer 
is sometimes called the schema, a term used for the collection of all the data items stored in 
a particular database or belonging to a particular database user. Depending on the particular 
DBMS, this layer can contain a set of two-dimensional tables, a hierarchical structure 
similar to a company’s organization chart, or some other structure. The “Prevalent Database 
Models” section later in this chapter describes the possible structures in more detail.

The External Layer
The external layer or external model is the second layer of abstraction in the database. 
This layer is composed of the user views discussed earlier, which are collectively 
called the subschema. In this layer, the database users (application programs as well 
as individuals) that access the database connect and issue queries against the database. 
Ideally, only the DBA deals with the physical and logical layers. The DBMS handles the 
transformation of selected items from one or more data structures in the logical layer 
to form each user view. The user views in this layer can be predefined and stored in the 
database for reuse, or they can be temporary items that are built by the DBMS to hold the 
results of a single ad hoc database query until they are no longer needed by the database 
user. An ad hoc query is a query that is not preconceived and that is not likely to be 
reused. Views are discussed in more detail in Chapter 2.

Physical Data Independence
The ability to alter the physical file structure of a database without disrupting existing 
users and processes is known as physical data independence. As shown in Figure 1-1, the 
separation of the physical layer from the logical layer provides physical data independence 
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in a DBMS. It is essential that you understand that physical data independence is not a “have 
or have not” property, but rather one in which a particular DBMS might have more or less 
data independence than another. The measure, sometimes called the degree of physical data 
independence, is how much change can be made in the file system without impacting the 
logical layer. Prior to systems that offered data independence, even the slightest change to 
the way data was stored required the programming staff to make changes to every computer 
program that used the data, an expensive and time-consuming process.

All modern computer systems have some degree of physical data independence. For 
example, a spreadsheet on a personal computer will continue to work properly if copied 
from a hard disk to a floppy disk or a USB thumb drive. The fact that the performance 
(speed) of these devices varies markedly is not the point, but rather that the devices have 
entirely different physical construction and yet the operating system on the personal 
computer will automatically handle the differences and present the data in the file to the 
application (that is, the spreadsheet program, such as Microsoft Excel), and therefore to 
the user, in exactly the same way. However, on most personal systems, the user must still 
remember where he or she placed the file so that it can be located when needed.

DBMSs expand greatly on the physical data independence provided by the computer 
system in that they allow database users to access database objects (for example, tables 
in a relational DBMS) without having to reference the physical data files in any way. 
The DBMS catalog stores the object definitions and keeps track of where the objects are 
physically stored. Here are some examples of physical changes that can be made in a  
data-independent manner:

● Moving a database data file from one device to another or one directory to another

● Splitting or combining database data files

● Renaming database data files

● Moving a database object from one data file to another

● Adding new database objects or data files

Note that I have made no mention of deleting things. It should be obvious, then, that 
deleting a database object will cause anything that uses that object to fail. However, 
everything else should be unaffected, except perhaps availability—some DBMSs will 
require that the database or DBMS service be shut down while making certain physical 
layer changes.
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Logical Data Independence
The ability to make changes to the logical layer without disrupting existing users 
and processes is called logical data independence. Figure 1-1 shows that it is the 
transformation between the logical layer and the external layer that provides logical data 
independence. As with physical data independence, there are degrees of logical data 
independence. It is important that you understand that most logical changes also involve a 
physical change. For example, you cannot add a new database object (such as a table in a 
relational DBMS) without physically storing the data somewhere; hence, a corresponding 
change is made in the physical layer. Moreover, deletion of objects in the logical layer will 
cause anything that uses those objects to fail but should not affect anything else.

Here are some examples of changes in the logical layer that can be safely made thanks 
to logical data independence:

● Adding a new database object

● Adding data items to an existing object

● Making any change in which a view can be placed in the external model that replaces 
(and processes the same as) the original object in the logical layer, such as combining 
or splitting existing objects

Prevalent Database Models
A database model is essentially the architecture that the DBMS uses to store objects 
within the database and relate them to one another. The most prevalent of these models 
are presented here in the order of their evolution. A brief history of relational databases 
appears in the next section to help put things in a chronological perspective.

Flat Files
Flat files are “ordinary” operating system files, in that records in a file contain no 
information to communicate the file structure or any relationship among the records to the 
application that uses the file. Any information about the structure or meaning of the data 
in the file must be included in each application that uses the file or must be known to each 
human who reads the file. In essence, flat files are not databases at all because they do not 
meet any of the criteria previously discussed. However, it is important that you understand 
them for two reasons: First, flat files are often used to store database information. In this 
case, the operating system is still unaware of the contents and structure of the files, but the 
DBMS has metadata that allows it to translate between the flat files in the physical layer 
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and the database structures in the logical layer. Metadata, which literally means “data 
about data,” is the term used for the information that the database stores in its catalog 
to describe the data stored in the database and the relationships among the data. The 
metadata for a customer, for example, might include all the data items collected about the 
customer (such as name, address, and account status), along with the length, minimum and 
maximum data values, and a brief description of each data item. Second, flat files existed 
before databases, and the earliest database systems evolved from the flat file systems that 
preceded them.

Figure 1-2 shows a sample flat file system, a subset of the data for fictional company 
Northwind Traders, a supplier of international food items (and a Microsoft sample 
database). Keep in mind that the column titles (Customer ID, Company Name, and so on) 
are included for illustration purposes only—only the data records would be stored in the 
actual files. Customer data is stored in a Customer file, with each record representing a 
Northwind customer. Each employee of Northwind has a record in the Employee file, and 
each product sold by Northwind has a record in the Product file. Order data (orders placed 
with Northwind by its customers) is stored in two other flat files. The Order file contains 
one record for each customer order with data about the orders, such as the customer ID of 
the customer who placed the order and the name of the employee who accepted the order 
from the customer. The Order Detail file contains one record for each line item on an 
order (an order can contain multiple line items, one for each product ordered), including 
data such as the unit price and quantity.

An application program is a unit of computer program logic that performs a particular 
function within an application system. Northwind Traders has an application program that 
prints out a listing of all the orders. This application must correlate the data between the 
five files by reading an order and performing the following steps:

 1. Use the customer ID to find the name of the customer in the Customer file.

 2. Use the employee ID to find the name of the related employee in the Employee file.

 3. Use the order ID to find the corresponding line items in the Order Detail file.

 4. For each line item, use the product ID to find the corresponding product name in the 
Product file.

This is rather complicated given that we are just trying to print a simple listing of all the 
orders, yet this is the best possible data design for a flat file system.

One alternative design would be to combine all the information into a single data 
file with all the data about the customer, employee, and order combined into a single 
record for each order. Although this would greatly simplify data retrieval, consider the 
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ramifications of repeating all the customer data on every single order line item. You might 
not be able to add a new customer until the customer has an order ready to place. Also, if 
someone deletes the last order for a customer, you would lose all the information about the 
customer. But the worst is when customer information changes because you have to find 
and update every record in which the customer data is repeated. You will explore these 
issues in more detail when I present logical database design in Chapter 7.

Customer File

Product File

Order File

Order Detail File

Employee File

Customer ID
6

26

Company Name
Company F

Company Z

Title
Vice President, Sales

Sales Manager

Sales Representative

Job Title
Purchasing Manager

Accounting Assistant

Contact Last Name
Pérez-Olaeta

Liu

Contact First Name
Francisco

Run

State
WI

FL

City
Milwaukee

Miami

Employee ID
2

5

9

First Name
Andrew

Steven

Anne

Last Name
Cencini

Thrope

Hellung-Larsen

Order ID
51

56

79

Product Code
NWTO-5

NWTDFN-7

NWTCM-40

NWTSO-41

NWTCA-48

NWTDFN-51

Quantity Per Unit
36 boxes

12 - 1 lb pkgs 

24 - 4 oz tins

12 - 12 oz cans

10 pkgs 

50 - 300 g pkgs

Category
Oil

Dried Fruit & Nuts

Canned Meat

Soups

Candy

Dried Fruit & Nuts

Product Name
Northwind Traders Olive Oil

Northwind Traders Dried Pears

Northwind Traders Crab Meat

Northwind Traders Clam Chowder

Northwind Traders Chocolate

Northwind Traders Dried Apples

Product ID
5

7

40

41

48

51

Quantity
15

21

2

20

14

8

Unit Price
$21.35 

$9.65 

$18.40 

$12.75 

$30.00 

$53.00

Product ID
5

41

40

48

7

51

Order ID
51

51

51

56

79

79

Shipping Fee
$60.00

$0.00

$0.00

Shipped Date
4/5/2006

4/3/2006

6/23/2006

Order Date
4/5/2006

4/3/2006

6/23/2006

Employee ID
9

2

2

Customer ID
26

6

6

List Price
$21.35

$30.00

$18.40

$9.65

$12.75

$53.00

Figure 1-2  Flat file order system
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Another alternative approach often used in flat file–based systems is to combine 
closely related files, such as the Order file and Order Detail file, into a single file, with 
the line items for each order following each order header record and a Record Type 
data item added to help the application distinguish between the two types of records. In 
this approach, the Order ID would be omitted from the Order Detail record because the 
application would know to which order the Order Detail record belongs by its position 
in the file (following the Order record). Although this approach makes correlating the 
order data easier, it does so by adding the complexity of mixing different kinds of records 
into the same file, so it provides no net gain in either simplicity or faster application 
development.

Overall, the worst problem with the flat file approach is that the definition of the 
contents of each file and the logic required to correlate the data from multiple flat files 
must be included in every application program that requires those files, thus adding to 
the expense and complexity of the application programs. This same problem provided 
computer scientists with the incentive to find a better way to organize data.

The Hierarchical Model
The earliest databases followed the hierarchical model, which evolved from the file 
systems that the databases replaced, with records arranged in a hierarchy much like an 
organization chart. Each file from the flat file system became a record type, or node in 
hierarchical terminology—but the term record is used here for simplicity. Records were 
connected using pointers that contained the address of the related record. Pointers told 
the computer system where the related record was physically located, much as a street 
address directs you to a particular building in a city, a URL directs you to a particular web 
page on the Internet, or GPS coordinates point to a particular location on the planet. Each 
pointer establishes a parent-child relationship, also called a one-to-many relationship, in 
which one parent can have many children, but each child can have only one parent. This 
is similar to the situation in a traditional business organization, where each manager can 
have many employees as direct reports, but each employee can have only one manager. 
The obvious problem with the hierarchical model is that some data does not exactly 
fit this strict hierarchical structure, such as an order that must have the customer who 
placed the order as one parent and the employee who accepted the order as another. (Data 
relationships are presented in more detail in Chapter 2.) The most popular hierarchical 
database was Information Management System (IMS) from IBM.

Figure 1-3 shows the hierarchical structure of the hierarchical model for the Northwind 
Traders database. You will recognize the Customer, Employee, Product, Order, and Order 
Detail record types as they were introduced previously. Comparing the hierarchical 
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structure with the flat file system shown in Figure 1-2, note that the Employee and Product 
records are shown in the hierarchical structure with dotted lines because they cannot be 
connected to the other records via pointers. These illustrate the most severe limitation 
of the hierarchical model that was the main reason for its early demise: No record can 
have more than one parent. Therefore, we cannot connect the Employee records with the 
Order records because the Order records already have the Customer record as their parent. 
Similarly, the Product records cannot be related to the Order Detail records because the 
Order Detail records already have the Order record as their parent. Database technicians 
would have to work around this shortcoming either by relating the “extra” parent records 
in application programs, much as was done with flat file systems, or by repeating all the 
records under each parent, which of course was very wasteful of then-precious disk space—
not to mention the challenges of keeping redundant data synchronized. Neither of these was 
really an acceptable solution, so IBM modified IMS to allow for multiple parents per record. 
The resultant database model was dubbed the extended hierarchical model, which closely 
resembled the network database model in function, as discussed in the next section.

Figure 1-4 shows the contents of selected records within the hierarchical model design 
for Northwind. Some data items were eliminated for simplicity, but a look back at Figure 1-2 
should make the entire contents of each record clear, if necessary. The record for customer 6 
has a pointer to its first order (ID 56), and that order has a pointer to the next order (ID 79). 
You know that Order 79 is the last order for the customer because it does not have a pointer 
to a subsequent order. Looking at the next layer in the hierarchy, Order 79 has a pointer to 
its first Order Detail record (for Product 7), and that record has a pointer to the next detail 
record (for Product 51). As you can see, at each layer of the hierarchy, a chain of pointers 
connects the records in the proper sequence. One additional important distinction exists 
between the flat file system and the hierarchical model: The key (identifier) of the parent 

Customer

Product

Employee

Order Detail

Order

Figure 1-3  Hierarchical model structure for Northwind
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record is removed from the child records in the hierarchical model because the pointers 
handle the relationships among the records. Therefore, the customer ID and employee 
ID are removed from the Order record, and the product ID is removed from the Order 
Detail record. Leaving these in is not a good idea, because this could allow contradictory 
information to appear in the database, such as an order that is pointed to by one customer 
and yet contains the ID of a different customer.

The Network Model
The network database model evolved at around the same time as the hierarchical database 
model. A committee of industry representatives was formed essentially to build a better 
mousetrap. A cynic would say that a camel is a horse that was designed by a committee, 
and that might be accurate in this case. The most popular database based on the network 
model was the Integrated Database Management System (IDMS), originally developed by 
Cullinane (later renamed Cullinet). The product was enhanced with relational extensions, 
named IDMS/R and eventually sold to Computer Associates.

As with the hierarchical model, record types (or simply records) depict what would 
be separate files in a flat file system, and those records are related using one-to-many 
relationships, called owner-member relationships or sets in network model terminology. 
We’ll stick with the terms parent and child, again for simplicity. As with the hierarchical 
model, physical address pointers are used to connect related records, and any identification 
of the parent record(s) is removed from each child record to avoid possible inconsistencies. 
In contrast with the hierarchical model, the relationships are named so the programmer can 
direct the DBMS to use a particular relationship to navigate from one record to another in 
the database, thus allowing a record type to participate as the child in multiple relationships. 

Customer: 6

(To next customer)

Order: 56

Order: 79

Order Detail:
Product 48

Order Detail:
Product 7

Order Detail:
Product 51

(From previous customer)

Figure 1-4  Hierarchical model record contents for Northwind
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The network model provided greater flexibility, but—as is often the case with computer 
systems—with a loss of simplicity.

The network model structure for Northwind, as shown in Figure 1-5, has all the same 
records as the equivalent hierarchical model structure shown in Figure 1-3. By convention, 
the arrowhead on the lines points from the parent to the child. Note that the Customer 
and Employee records now have solid lines in the structure diagram because they can be 
directly implemented in the database.

In the network model contents example shown in Figure 1-6, each parent-child 
relationship is depicted with a different type of line, illustrating that each relationship has 
a different name. This difference is important because it points out the largest downside of 
the network model—complexity. Instead of a single path that can be used for processing 
the records, now many paths are used. For example, start with the record for Employee 2 
(Sales Vice President Andrew Cencini) and use it to find the first order (ID 56), and you 
land within the chain of orders that belong to Customer 6 (Company F). Although you 
actually land on that customer’s first order, you have no way of knowing that. To find 
all the other orders for this customer, you must find a way to work forward from where 
you are to the end of the chain and then wrap around to the beginning and forward from 
there until you return to the order from which you started. It is to satisfy this processing 
need that all pointer chains in network model databases are circular. Thus, you are able to 
follow pointers from order 56 to the next order (ID 79), and then to the customer record 
(ID 6) and finally back to order 56. As you might imagine, these circular pointer chains 
can easily result in an infinite loop (a process that never ends) should a database user not 
keep careful track of where he is in the database and how he got there. The structure of the 
World Wide Web loosely parallels a network database in that each web page has links to 
other related web pages, and circular references are not uncommon.

 

Customer

Product

Employee

Order Detail

Order

Figure 1-5  Network model structure for Northwind
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The process of navigating through a network database was called “walking the set,” 
because it involved choosing paths through the database structure much like choosing 
walking paths through a forest when multiple paths to the same destination are available. 
Without an up-to-date map, it is easy to get lost, or, worse yet, to find a dead end where 
you cannot get to the desired destination record without backtracking. The complexity of 
this model and the expense of the small army of technicians required to maintain it were 
key factors in its eventual demise.

The Relational Model
In addition to complexity, the network and hierarchical database models share another 
common problem—they are inflexible. You must follow the preconceived paths through 
the data to process the data efficiently. Ad hoc queries, such as finding all the orders 
shipped in a particular month, require scanning the entire database to locate them all. 
Computer scientists were still looking for a better way. Only a few events in the history of 
computer development were truly revolutionary, but the research work of E.F. (Ted) Codd 
that led to the relational model was clearly that.

The relational model is based on the notion that any preconceived path through a 
data structure is too restrictive a solution, especially in light of ever-increasing demands 
to support ad hoc requests for information. Database users simply cannot think of every 

Customer: 6

(To next
customer)

Order: 56

Order: 79

Order Detail:
Product 28

Employee: 2
(Other

Employee
2 Orders)

Order Detail:
Product 7

Order Detail:
Product 51

(From previous
customer)

Figure 1-6  Network model record for Northwind
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possible use of the data before the database is created; therefore, imposing predefined 
paths through the data merely creates a “data jail.” The relational model allows users to 
relate records as needed rather than as predefined when the records are first stored in the 
database. Moreover, the relational model is constructed such that queries work with sets 
of data (for example, all the customers who have an outstanding balance) rather than one 
record at a time, as with the network and hierarchical models.

The relational model presents data in familiar two-dimensional tables, much like 
a spreadsheet does. Unlike a spreadsheet, the data is not necessarily stored in tabular 
form and the model also permits combining (joining in relational terminology) tables to 
form views, which are also presented as two-dimensional tables. In short, it follows the 
ANSI/SPARC model and therefore provides healthy doses of physical and logical data 
independence. Instead of linking related records together with physical address pointers, 
as is done in the hierarchical and network models, a common data item is stored in each 
table, just as was done in flat file systems.

Figure 1-7 shows the relational model design for Northwind. A look back at Figure 1-2 
will confirm that each file in the flat file system has been mapped to a table in the relational 
model. As you will learn in Chapter 6, this one-to-one correspondence between flat files 
and relational tables will not always hold true, but it is quite common. In Figure 1-7, lines 
are drawn between the tables to show the one-to-many relationships, with the single line 
end denoting the “one” side and the line end that splits into three parts (called a “crow’s 
foot”) denoting the “many” side. For example, you can see that “one” customer is related to 
“many” orders and that “one” order is related to “many” order details merely by inspecting 
the lines that connect these tables. The diagramming technique shown here, called the 
entity-relationship diagram (ERD), is covered in more detail in Chapter 7.

In Figure 1-8, three of the five tables have been represented with sample data in 
selected columns. In particular, note that the Customer ID column is stored in both the 

Customer

Product

Employee

Order Detail

Order

Figure 1-7  Relational model structure for Northwind
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Customer table and the Order table. When the customer ID of a row in the Order table 
matches the customer ID of a row in the Customer table, you know that the order belongs 
to that particular customer. Similarly, the Employee ID column is stored in both the 
Employee and Order tables to indicate the employee who accepted each order.

The elegant simplicity of the relational model and the ease with which people can 
learn and understand it has been the main factor in its universal acceptance. The relational 
model is the main focus of this book because it is ubiquitous in today’s information 
technology systems and will likely remain so for many years to come.

The Object-Oriented Model
The object-oriented (OO) model actually had its beginnings in the 1970s, but it did not 
see significant commercial use until the 1990s. This sudden emergence came from the 
inability of then-existing relational database management systems (RDBMSs) to deal with 
complex data types such as images, complex drawings, and audio-video files. The sudden 
explosion of the Internet and the World Wide Web created a sharp demand for mainstream 
delivery of complex data.

An object is a logical grouping of related data and program logic that represents a 
real-world thing, such as a customer, employee, order, or product. Individual data items, 
such as customer ID and customer name, are called variables in the OO model and are 

Customer Table

Order Table

Employee Table

Customer ID
6

26

Company Name
Company F
Company Z

Title
Vice President, Sales
Sales Manager
Sales Representative

Job Title
Purchasing Manager
Accounting Assistant

Contact Last Name
Pérez-Olaeta
Liu

Contact First Name
Francisco
Run

State
WI
FL

City
Milwaukee
Miami

Employee ID
2
5
9

First Name
Andrew
Steven
Anne

Last Name
Cencini
Thrope
Hellung-Larsen

Order ID
51
56
79

Shipping Fee
$60.00
$  0.00
$  0.00

Shipped Date
4/5/2006
4/3/2006

6/23/2006

Order Date
4/5/2006
4/3/2006

6/23/2006

Employee ID
9
2
2

Customer ID
26

6
6

Figure 1-8  Relational table contents for Northwind
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stored within each object. You might also see variables referred to as instance variables 
or properties, but I will stick with the term variables for consistency. In OO terminology, 
a method is a piece of application program logic that operates on a particular object 
and provides a finite function, such as checking a customer’s credit limit or updating a 
customer’s address. Among the many differences between the OO model and the models 
already presented, the most significant is that variables can be accessed only through 
methods. This property is called encapsulation.

The strict definition of object used here applies only to the OO model. The general 
term database object, as used earlier in this chapter, refers to any named item that might 
be stored in a non-OO database (such as a table, index, or view). As OO concepts have 
found their way into relational databases, so has the terminology, although often with less 
precise definitions.

Figure 1-9 shows the Customer object as an example of OO implementation. The 
circle of methods around the central core of variables reminds us of encapsulation. In 
fact, you can think of an object much like an atom with an electron field of methods and a 
nucleus of variables. Each customer for Northwind would have its own copy of the object 
structure, called an object instance, much as each individual customer has a copy of the 
customer record structure in the flat file system.

Company ID
Company Name
Contact Name
Address
City
Country
Phone
...

Add Customer

Update Contact

Update Address

Print
Mailing Label

Change Status

List Customer

Check Credit Limit

Update Contact

Customer Object

Methods
Variables

Figure 1-9  The anatomy of an object
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At a glance, the OO model looks horribly inefficient because it seems that each 
instance requires that the methods and the definition of the variables be redundantly 
stored. However, this is not at all the case. Objects are organized into a class hierarchy 
so that the common methods and variable definitions need only be defined once and then 
inherited by other members of the same class. Variables also belong to classes, and thus 
new data types can be easily incorporated by simply defining a new class for them.

The OO model also supports complex objects, which are objects composed of one 
or more other objects. Usually, this is implemented using an object reference, where one 
object contains the identifier of one or more other objects. For example, a Customer object 
might contain a list of Order objects that the customer has placed, and each Order object 
might contain the identifier of the customer who placed the order. The unique identifier for 
an object is called the object identifier (OID), the value of which is automatically assigned 
to each object as it is created and is then invariant (that is, the value never changes). The 
combination of complex objects and the class hierarchy makes OO databases well suited 
for managing nonscalar data such as drawings and diagrams.

OO concepts have such benefit that they have found their way into nearly every aspect 
of modern computer systems. For example, the Microsoft Windows Registry (the directory 
that stores settings and options for some Windows operating systems) has a class hierarchy, 
and most computer-aided design (CAD) applications use an OO database to store their data.

The Object-Relational Model
Although the OO model provides some significant benefits in encapsulating data to 
minimize the effects of system modifications, the lack of ad hoc query capability has 
relegated it to a niche market in which complex data is required, but ad hoc query ability 
is not. However, some vendors of relational databases noted the significant benefits of the 
OO model, particularly its ability to easily map complex data types, and added object-like 
capability to their relational DBMS products with the hopes of capitalizing on the best 
of both models. Although object purists have never embraced this approach, the tactic 
appears to have worked to a large degree, with pure OO databases gaining ground only in 
niche markets. The original name given to this type of database was universal database, 
and although the marketing folks loved the term, it never caught on in technical circles, so 
the preferred name for the model became object-relational (OR). Through evolution, the 
Oracle, DB2, and Informix databases can all be said to be OR DBMSs to varying degrees.

To understand the OR model fully, you need a more detailed knowledge of the 
relational and OO models. However, keep in mind that the OR DBMS provides a blend 
of desirable features from the object world, such as the storage of complex data types, 
with the relative simplicity and ease-of-use of the relational model. Most industry experts 
believe that object-relational technology will continue to gain market share.
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A Brief History of Databases
Space exploration projects led to many significant developments in the science and 
technology industries, including information technology. As part of the NASA Apollo 
moon project, North American Aviation (NAA) built a hierarchical file system named 
Generalized Update Access Method (GUAM) in 1964. IBM joined NAA to develop 
GUAM into the first commercially available hierarchical model database, called 
Information Management System (IMS), released in 1966.

Also in the mid 1960s, General Electric internally developed the first database based 
on the network model, under the direction of prominent computer scientist Charles W. 
Bachman, and named it Integrated Data Store (IDS). In 1967, the Conference on Data 
Systems Languages (CODASYL), an industry group, formed the Database Task Group 
(DBTG) and began work on a set of standards for the network model. In response to 
criticism of the “single-parent” restriction in the hierarchical model, IBM introduced a 
version of IMS that circumvented the problem by allowing records to have one “physical” 
parent and multiple “logical” parents.

In June 1970, E. F. (Ted) Codd, an IBM researcher (later an IBM fellow), published 
a research paper titled “A Relational Model of Data for Large Shared Data Banks” in 
Communications of the ACM, the Journal of the Association for Computing Machinery, 
Inc. (The publication can be easily found on the Internet.) In 1971, the CODASYL DBTG 
published its standards, which were more than three years in the making. This began five 
years of heated debate over which model was the best.

The CODASYL DBTG advocates argued the following:

● The relational model was too mathematical.

● An efficient implementation of the relational model could not be built.

● Application systems need to process data one record at a time.

The relational model advocates argued the following:

● Nothing as complicated as the DBTG proposal could possibly be the correct way to 
manage data.

● Set-oriented queries were too difficult in the DBTG language.

● The network model had no formal underpinnings in mathematical theory.

The debate came to a head at the 1975 ACM SIGMOD (Special Interest Group on 
Management of Data) conference. Codd and two others debated against Bachman and 



 Chapter 1: Database Fundamentals 23

two others over the merits of the two models. At the end, the audience was more confused 
than ever. In retrospect, this happened because every argument proffered by the two sides 
was completely correct! However, interest in the network model waned markedly in the 
late 1970s. It was the evolution of database and computer technology that followed that 
proved the relational model was the better choice, offering these significant developments:

● Query languages such as the Structured Query Language (SQL) emerged and were not 
so mathematical.

● Experimental implementations of the relational model proved that reasonable 
efficiency could be achieved, although it was never as efficient as an equivalent 
network model database. Also, computer systems continued to drop in price, and 
flexibility was considered more important than efficiency.

● Provisions were added to SQL to permit processing of a set of data using a record-at-
a-time approach.

● Advanced tools made the relational model even easier to use.

● Codd’s research led to the development of a new discipline in mathematics known as 
relational calculus.

In the mid-1970s, database research and development was at full steam. A team of  
15 IBM researchers in San Jose, California, under the direction of Frank King, worked from 
1974 to 1978 to develop a prototype relational database called System R. System R was 
built commercially and became the basis for HP ALLBASE and IDMS/SQL. Larry Ellison 
and a company that later became known as Oracle independently implemented the external 
specifications of System R. It is now common knowledge that Oracle’s first customer was 
the Central Intelligence Agency (CIA). With some rewriting, IBM developed System R into 
SQL/DS and then into DB2, which remains its flagship database to this day.

A pickup team of University of California, Berkeley, students under the direction of 
Michael Stonebraker and Eugene Wong worked from 1973 to 1977 to develop the Ingres 
DBMS. Ingres also became a commercial product and was quite successful. Ingres was later 
sold to Computer Associates, but it emerged again as an independent company in 2005.

In 1976, Peter Chen presented the entity-relationship (ER) model. His work bolstered 
the modeling weaknesses in the relational model and became the foundation of many 
modeling techniques that followed. If Codd is considered the “father” of the relational 
model, then Chen should be considered the “father” of the ERD. ERDs are explored  
in Chapter 7.
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Sybase, which had a successful RDBMS deployed on Unix servers, entered into a 
joint agreement with Microsoft to develop the next generation of Sybase (to be called 
System 10) with a version available on Windows servers. For reasons not publicly known, 
the relationship soured before the products were completed, but each party walked away 
with all the work developed up to that point. Microsoft finished the Windows version and 
marketed the product as Microsoft SQL Server, whereas Sybase rushed to market with 
Sybase System 10. The products were so similar that SQL Server instructors were known 
to use the Sybase manuals in class rather than first-generation Microsoft documentation. 
The product lines have diverged considerably over the years, but Microsoft SQL Server’s 
Sybase roots are still evident in the product.

Relational technology took the market by storm in the 1980s. Object-oriented databases, 
which first appeared in the 1970s, were also commercially successful during the 1980s. 
In the 1990s, object-relational systems emerged, with Informix being the first to market, 
followed relatively quickly by Oracle and DB2.

Not only did the relational technology of the day move around, but so did the people 
involved. Michael Stonebraker left UC Berkeley to found Illustra, an object-relational 
database vendor, and he became chief science officer of Informix when it merged with 
Illustra. He later went on to found Cohera, StreamBase Systems, and Vertica, and he is 
currently a faculty member at MIT. Bob Epstein, who worked on the Ingres project with 
Stonebraker, moved to the commercial company along with the Ingres product. From 
there he went to Britton-Lee (later absorbed by NCR) to work on early database machines 
(computer systems specialized to run only databases) and then to start up Sybase, where 
he was the chief science officer for a number of years, and he is currently involved in 
environmental issues and wearable computers. Database machines, incidentally, died on the 
vine because they were so expensive compared to the combination of an RDBMS running 
on a general-purpose computer system. The San Francisco Bay Area was an exciting place 
for database technologists in that era because all the great relational products started there, 
more or less in parallel with the explosive growth of Silicon Valley. Others have moved on, 
but DB2, Oracle, and Sybase are still largely based in the Bay Area.

Why Focus on Relational?
The remainder of this book focuses on the relational model, with some coverage of 
the OO and object-relational models. Aside from the relational model being the most 
prevalent of all the database models in modern business systems, other important reasons 
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warrant this focus, especially for those of you who are learning about databases for the 
first time:

● Definition, maintenance, and manipulation of data storage structures is easy.

● Data is retrieved through simple ad hoc queries.

● Data is well protected.

● Well-established ANSI (American National Standards Institute) and ISO (International 
Organization for Standardization) standards exist.

● Many vendors offer a plethora of products.

● Conversion between vendor implementations is relatively easy.

● RDBMSs are mature and stable products.

 Chapter 1 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank 
questions. Note that there may be more than one correct response to each question.

 1. The logical layer of the ANSI/SPARC model provides which of the following?

 A Physical data independence

 B Parent-child relationships

 C Logical data independence

 D Encapsulation

 2. The external layer of the ANSI/SPARC model provides which of the following?

 A Physical data independence

 B Parent-child relationships

 C Logical data independence

 D Encapsulation

 3. Which of the following is not true regarding user views?

 A Application programs reference them.

 B People querying the database reference them.

✓
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 C They can be tailored to the needs of the database user.

 D Data updates are shown in a delayed fashion.

 4. The database schema is contained in the ____________ layer of the ANSI/SPARC model.

 5. User views are contained in the ____________ layer of the ANSI/SPARC model.

 6. When application programs use flat file systems, where do the file definitions reside?

 7. Which of the following is true regarding the hierarchical database model?

 A It was first developed by Peter Chen.

 B Data and methods are stored together in the database.

 C Each node may have many parents.

 D Records are connected using physical address pointers.

 8. Which of the following is true regarding the network database model?

 A It was first developed by E.F. Codd.

 B Data and methods are stored together in the database.

 C Each node may have many parents.

 D Records are connected using common physical address pointers.

 9. Which of the following is true of the relational database model?

 A It was first developed by Charles Bachman.

 B Data and methods are stored together in the database.

 C Records are connected using physical address pointers.

 D Records are connected using common data items in each record.

 10. Which of the following is true regarding the object-oriented model?

 A It was first developed by Charles Bachman.

 B Data and methods are stored together in the database.

 C Data is presented as two-dimensional tables.

 D Records are connected using common data items in each record.
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 11. Which of the following is true regarding the object-relational model?

 A It serves only a niche market and most experts believe it will stay that way.

 B Records are connected using physical address pointers.

 C It was developed by adding object-like properties to the relational model.

 D It was developed by adding relational-like properties to the object-oriented model.

 12. According to advocates of the relational model, which of the following describe the 
problems with the CODASYL model?

 A It is too mathematical.

 B It is too complicated.

 C Set-oriented queries are too difficult.

 D It has no formal underpinnings in mathematical theory.

 13. According to advocates of the CODASYL model, which of the following describe the 
problems with the relational model?

 A It is too mathematical.

 B Set-oriented queries are too difficult.

 C Application systems need record-at-a-time processing.

 D It is less efficient than CODASYL model databases.

 14. The ability to add a new object to a database without disrupting existing processes is  
an example of ____________.

 15. The property that most distinguishes a relational database table from a spreadsheet is 
the ability to present multiple users with their own ____________.
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Key Skills & Concepts
● Conceptual Database Design Components

● Logical/Physical Database Design Components

This chapter explores the conceptual, logical, and physical components that make up 
the relational model. Conceptual database design involves studying and modeling the 

data in a technology-independent manner. The conceptual data model that results can be 
theoretically implemented on any database or even on a flat file system. The person who 
performs conceptual database design is often called a data modeler. Logical database 
design is the process of translating, or mapping, the conceptual design into a logical 
design that fits the chosen database model (relational, object-oriented, object-relational, 
and so on). A specialist who performs logical database design is called a database 
designer, but often the database administrator (DBA) performs all or part of this design 
step. The final design step is physical database design, which involves mapping the 
logical design to one or more physical designs, each tailored to the particular DBMS that 
will manage the database and the particular computer system on which the database will 
run. The person who performs physical database design is usually the DBA. The processes 
involved in database design are covered in Chapter 5.

The sections that follow explore the components of a conceptual database design, and 
then the components of logical and physical designs.

Conceptual Database Design Components
Figure 2-1 shows the conceptual database design for Northwind. This diagram is similar to 
Figure 1-7 in Chapter 1, but a few items have been added to illustrate key points. The labeled 
items (Entity, Attribute, Relationship, Business Rule, and Intersection Data) are the basic 
components that make up a conceptual database design. Each is presented in sections that 
follow, except for intersection data, which is presented in “Many-to-Many Relationships.”

Entities
An entity (or entity class) is a person, place, thing, event, or concept about which data is 
collected. In other words, entities are the real-world things in which we have sufficient 
interest to capture and store data about in a database. An entity is represented as a rectangle 
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on the diagram. Just about anything that can be named with a noun can be an entity. However, 
to avoid designing everything on the planet into our database, we restrict ourselves to entities 
of interest to the people who will use our database. Each entity shown in the conceptual 
model (Figure 2-1) represents the entire class for that entity. For example, the Customer entity 
represents the collection of all Northwind customers. The individual customers are called 
instances of the entity.

An external entity is an entity with which our database exchanges data (sending data 
to, receiving data from, or both) but about which we collect no data. For example, most 
businesses that set up credit accounts for customers purchase credit reports from one or 
more credit bureaus. They send a customer’s identifying information to the credit bureau 
and receive a credit report, but all this data is about the customer rather than the credit 
bureau itself. Assuming there is no compelling reason for the database to store data about 

Figure 2-1  Conceptual database design for Northwind
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the credit bureau, such as the mailing address of its office, the credit bureau will not 
appear in the conceptual database design as an entity. In fact, external entities are seldom 
shown in database designs, but they commonly appear in data flow diagrams as a source 
or destination of data. Data flow diagrams are discussed in Chapter 7.

Attributes
An attribute is a unit fact that characterizes or describes an entity in some way. These are 
represented on the conceptual design diagram shown in Figure 2-1 as names inside the 
rectangle that represents the entity to which they belong. The attribute or attributes that 
appear at the top of the rectangle (above the horizontal line) form the unique identifier 
for the entity. A unique identifier, as the name suggests, provides a unique value for each 
instance of the entity. For example, the Customer ID attribute is the unique identifier for 
the Customer entity, so each customer must have a unique value for that attribute. Keep in 
mind that a unique identifier can comprise multiple attributes, but when this happens, it is 
still considered just one unique identifier.

We say attributes are a unit fact because they should be atomic, meaning they cannot be 
broken down into smaller units in any meaningful way. An attribute is therefore the smallest 
named unit of data that appears in a database system. In this sense, Address should be 
considered a suspect attribute because it could easily be broken down into Address Line 1, 
Address Line 2, and perhaps Address Line 3, as is commonly done in business systems. This 
change would add meaning because it makes it easier to print address labels, for example. 
On the other hand, database design is not an exact science and judgment calls must be made. 
Although it is possible to break the Business Phone attribute into component attributes, such 
as Country Code, Area Code, Prefix, Suffix, and Extension, we must ask ourselves whether 
such a change adds meaning or value. There is no right or wrong answer here, so we must rely 
on the people who will be using the database, or perhaps those who are funding the database 
project, to help us with such decisions. Always remember that an attribute must describe or 
characterize the entity in some way (for example, size, shape, color, quantity, location).

Relationships
Relationships are the associations among the entities. Because databases are all about 
storing related data, the relationships become the glue that holds the database together. 
Relationships are shown on the conceptual design diagram (Figure 2-1) as lines connecting 
one or more entities. Each end of a relationship line shows the maximum cardinality of the 
relationship, which is the maximum number of instances of one entity that can be associated 
with the entity on the opposite end of the line. The maximum cardinality may be one  
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(the line has no special symbol on its end) or many (the line has a crow’s foot on the end).  
Just short of the end of the line is another symbol that shows the minimum cardinality, which 
is the minimum number of instances of one entity that can be associated with the entity on 
the opposite end of the line. The minimum cardinality may be zero, denoted with a circle 
drawn on the line, or one, denoted with a short perpendicular line or tick mark drawn across 
the relationship line. Many data modelers use two perpendicular lines to mean “one and only 
one,” as I have done in Figure 2-1.

Learning to read relationships takes practice, and learning to define and draw them 
correctly takes a lot of practice. The trick is to think about the association between the 
entities in one direction, and then reverse your perspective to think about it in the opposite 
direction. For the relationship between Customer and Order, for example, we must ask 
two questions: Each customer can have how many orders? followed by Each order can 
have how many customers? Relationships may thus be classified into three types: one-to-
one, one-to-many, and many-to-many, as discussed in the following sections. Some people 
will say many-to-one is also a relationship type, but in reality, it is only a one-to-many 
relationship looked at with a reverse perspective. Relationship types are best learned by 
example. Getting the relationships right is essential to a successful design.

Q: You stated that relationships in the conceptual design are between one or more 
entities. However, I’ve always been told that relationships in an RDBMS are between 
only two tables. How can this be?

A: A conceptual database design is usually created at a higher level of abstraction than the 
physical database. As you will learn later in this chapter, the referential constraints placed 
in the relational database can support only relationships between two tables, except for a 
special case called recursive relationships that involve only one table. However, nothing 
stops a designer from being more general in a conceptual design and showing a relationship 
between more than two entities. For example, the relationship between Order and Product 
shown in Figure 2-1 might be represented in a conceptual design as one between Order, 
Product, and Shipping Warehouse (the location that stocks the product on the order line 
item). Such a relationship would have to be resolved during logical design, just as the 
intersection data shown in Figure 2-1 must be (it must eventually be stored in a table). Have 
no fear if this seems confusing; it will all become more clear as you learn about database 
design in upcoming chapters. In reality, relationships involving more than two entities are 
reasonably rare, and an advanced topic, so they are not used in this book.

Ask the Expert
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One-to-One Relationships
A one-to-one relationship is an association in which an instance of one entity can be 
associated with at most one instance of the other entity, and vice versa. In Figure 2-1, the 
relationship between the Customer and Account Receivable entities is one-to-one. This 
means that a customer can have at most one associated account receivable, and an account 
can have at most one associated customer. The relationship is also mandatory in both 
directions, meaning that a customer must have at least one account receivable associated 
with it, and an account receivable must have at least one customer associated with it. 
Putting this all together, we can read the relationship between the Customer and Account 
Receivable entities as “one customer has one and only one associated account receivable, 
and one account receivable has one and only one associated customer.”

Another important concept is transferability. A relationship is said to be transferable if 
the parent can be changed over time—or, said another way, if the child can be reassigned to 
a different parent. In this case, the relationship between Customer and Account Receivable 
is obviously not transferable because we would never take one customer’s account and 
transfer it to another customer (it would be horribly bad accounting practice to do so). 
Unfortunately, no widely accepted symbol is available for showing transferability on data 
models, but it is an important consideration in some cases, particularly with one-to-one 
relationships that are mandatory in both directions.

One-to-one relationships are surprisingly rare among entities. In practice, one-to-one 
relationships that are mandatory in both directions and not transferable represent a design 
flaw that should be corrected by combining the two entities. After all, isn’t an account 
receivable merely more information about the customer? We’re not going to collect data 
about an account receivable; instead, the information in the Account Receivable entity is 
simply more data we collect about the customer. On the other hand, if we buy our financial 
software from an independent software vendor (a common practice), the software would 
almost certainly come with a predefined database that it supports, so we may have no 
choice but to live with this situation. We won’t be able to modify the vendor’s database 
design to add customer data of interest to us, and at the same time, we won’t be able to get 
the vendor’s software to recognize anything that we store in our own database.

Figure 2-2 shows a different “flavor” of one-to-one relationship that is optional 
(some say conditional) in both directions. Suppose we are designing the database for an 
automobile dealership. The dealership issues automobiles to some employees, typically 
sales staff, for them to drive for a finite period of time. They obviously don’t issue all 
the automobiles to employees (if they did, they would have none to sell). We can read 
the relationship between the Employee and Automobile entities as follows: “At any 
point in time, each employee can have zero or one automobiles issued to him or her, 
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and each automobile can be assigned to zero or one employee.” Note the clause At any 
point in time. If an automobile is taken back from one employee and then reassigned to 
another, this would still be a one-to-one relationship. This is because when we consider 
relationships, we are always thinking in terms of a snapshot taken at an arbitrary point 
in time. Also, from the preceding description, it is obvious that the relationship is 
transferable.

One-to-Many Relationships
A one-to-many relationship is an association between two entities in which any instance 
of the first entity may be associated with one or more instances of the second, and any 
instance of the second entity may be associated with at most one instance of the first. 
Figure 2-1 shows two such relationships: between the Customer and Order entities, and 
between the Employee and Order entities. The relationship between Customer and Order, 
which is mandatory in only one direction, is read as follows: “At any point in time, each 
customer can have zero to many orders, and each order must have one and only one 
owning customer.”

One-to-many relationships are quite common. In fact, they are the fundamental 
building block of the relational database model in that all relationships in a relational 
database are implemented as if they are one-to-many. It is rare for them to be optional 
on the “one” side and even more rare for them to be mandatory on the “many” side, but 
these situations do happen. Consider the examples shown in Figure 2-3. When a customer 
account closes, we record the reason it was closed using an account closure reason code. 
Because some accounts are open at any point in time, this is an optional code. We read 
the relationship this way: “At any given point in time, each account closure reason code 
value can have zero, one, or many customers assigned to it, and each customer can have 
either zero or one account closure reason code assigned to them.” Let us next suppose 
that as a matter of company policy, no customer account can be opened without first 
obtaining a credit report, and that all credit reports are kept in the database, meaning 

Employee
Employee ID

First Name
Last Name
Job Title

Automobile

VIN
Make
Model
Year
Color
Employee ID (FK)

Figure 2-2  Employee-automobile relationship
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that any customer may have more than one credit report in the database. This makes the 
relationship between the Customer and Credit Report entities one-to-many, and mandatory 
in both directions. We read the relationship thus: “At any given point in time, each 
customer can have one or many credit reports, and each credit report belongs to one and 
only one customer.”

Many-to-Many Relationships
A many-to-many relationship is an association between two entities in which any instance 
of the first entity may be associated with zero, one, or more instances of the second, and 
vice versa. Back in Figure 2-1, the relationship between Order and Product is many-to-
many. We read the relationship thus: “At any given point in time, each order contains zero 
to many products, and each product appears on zero to many orders.”

This particular relationship has data associated with it, as shown in the diamond 
in Figure 2-1. Data that belongs to a many-to-many relationship is called intersection 
data. The data doesn’t make sense unless you associate it with both entities at the same 
time. For example, Quantity doesn’t make sense unless you know who (which customer) 
ordered what (which product). If you look back in Chapter 1 at Figure 1-7, you will 

Account Closure Reason
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Customer
Customer ID
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Address
City
State / Province
Country / Region
Business Phone
Account Closure Reason Code (FK)

Credit Report
Credit Report Number
Report Date
Credit Score
Notes
Customer ID (FK)

Figure 2-3  One-to-many relationships
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recognize this data as the Order Detail table from Northwind’s relational model. So 
why isn’t Order Detail just shown as an entity? The answer is simple: It doesn’t fit the 
definition of an entity. We are not collecting data about the line items on the order; 
instead, the line items on the order are merely more data about the order.

Many-to-many relationships are quite common, and most of them will have 
intersection data. The bad news is that the relational model does not directly support 
many-to-many relationships. There is no problem with having many-to-many relationships 
in a conceptual design, because such a design is independent of any particular technology. 
However, if the database is going to be relational, some changes have to be made as 
you map the conceptual model to the corresponding logical model. The solution is to 
map the intersection data to a separate table (an intersection table) and the many-to-
many relationship to two, one-to-many relationships, with the intersection table in the 
middle and on the “many” side of both relationships. Figure 1-7 shows this outcome, 
with the Order Detail table holding the intersection data and participating in two one-to-
many relationships that replace the original many-to-many relationship. The process for 
recognizing and dealing with the many-to-many problem is covered in detail in Chapter 6.

Recursive Relationships
So far, you’ve learned about relationships between instances of different entities. However, 
relationships can exist between entity instances of the same type. These are called recursive 
relationships. Any one of the relationship types already presented (one-to-one, one-to-many, 
or many-to-many) can be a recursive relationship. Figure 2-4 and the following list show 
examples of each:

● One-to-one If we were to track which employees were married to other employees, 
we would expect each to be married to either zero or one other employee at any one 
point in time.

Employee
Employee ID

Last Name
First Name
Job Title
Spouse Employee ID (FK)

One-to-one: Each
employee can be married
to another employee or not.

Employee
Employee ID

Last Name
First Name
Job Title
Manager Employee ID (FK)

One-to-many: An
employee can manage
other employees.

Part
Part ID
Description

Many-to-many: Each part
can contain other parts;
each part can be a component
of many other parts.

Figure 2-4  Recursive relationship examples
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Try This 2-1

● One-to-many It is common to track the employment “food chain” of who reports to 
whom. In most organizations, people have only one supervisor or manager. Therefore, 
we normally expect to see each employee reporting to zero or one other employee, and 
employees who are managers or supervisors to have one or more direct reports.

● Many-to-many In manufacturing, a common relationship has to do with parts 
that make up a finished product. If you think about the CD-ROM drive in a personal 
computer, for example, you can imagine that it comprises multiple parts, and yet, the 
entire assembly shows as only one item on the parts list for your computer. So any part 
can be made of many other parts, and at the same time any part can be a component of 
many other parts.

Business Rules
A business rule is a policy, procedure, or standard that an organization has adopted. 
Business rules are very important in database design because they dictate controls that 
must be placed upon the data. In Figure 2-1, you can see a business rule that states that 
orders will be accepted only from customers who do not have an overdue balance. Most 
business rules can be enforced through manual procedures that employees are directed 
to follow or logic placed in the application programs. However, each of these can be 
circumvented—employees can forget or can choose not to follow a manual procedure, and 
databases can be updated directly by authorized people, bypassing the controls included 
in the application programs. The database can serve nicely as the last line of defense. 
Business rules can be implemented in the database as constraints, which are formally 
defined rules that restrict the data values in the database in some way. More information 
on constraints can be found in the “Constraints” section later in this chapter. Note that 
business rules are not normally shown on a conceptual data model diagram; the one 
shown in Figure 2-1 is merely for illustration. It is far more common to include them in  
a text document that accompanies the diagram.

  Exploring the Northwind Database
For the remainder of this chapter and all of Chapter 3, I use Microsoft Access 2007  
and the Northwind database to illustrate concepts. In this Try This exercise, you will 
connect to the Northwind sample database, either on your own computer or using 
Microsoft Office Online, and become familiar enough with navigating within Microsoft 
Access to be able to follow along with the examples used in this chapter and in Chapter 3. 
Be aware that Access 2007 has a completely different look and feel compared with  
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prior versions, so you may find it difficult to follow along using an earlier version. 
However, the solution is simple because all you need for Microsoft Office Online is a web 
browser and a reasonably fast Internet connection.

The selection of Microsoft Access for these conceptual illustrations is merely  
a matter of convenience and not an endorsement of this product over any other. In fact,  
as I cover SQL in Chapter 4, I will use other RDMS products for demonstration, 
including Oracle.

Step by Step
 1. If you have Microsoft Access 2007 available, download and install the Northwind 

sample database by following these steps:

 a. Start Access 2007 from your Start menu with no databases open.

 b. On the left side of the Getting Started panel, click Sample under the heading From 
Microsoft Office Online.

 c. Click the Northwind 2007 icon.

 d. In the lower-right corner of the panel, click the Download button and respond to 
any additional prompts.

 e. Once connected to the database, a screen like the one shown in Figure 2-5 will be 
displayed.

 2. If you do not have Microsoft Access 2007 available, you can access it via Microsoft 
Office Online using only your web browser by following these steps:

 a. Type the URL http://office.microsoft.com/en-us/products/ into your browser and 
then press ENTER.

 b. In the center part of the screen, find and click the link that reads Try Office 2007 
Online.

 c. On the next page, click Launch Test Drive and respond to any additional prompts. 
The process of loading the software and establishing your database connection 
may take several minutes.

 d. On the Tutorial Menu page, click Office Access 2007.
(continued)
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 e. On the left margin of the Getting Started panel, click Sample under the heading 
From Microsoft Online.

 f. In the lower-right corner of the panel (you may have to expand your browser to 
full screen to see it), click the Download button and respond to any additional 
prompts. In particular, note the following:

●  You may get one or more messages about running add-ons from the website. 
These will appear near the top of the screen, just below the line with the gold 
star, usually with a light yellow background color (similar to the Security 
Warning message shown in Figure 2-5).

Figure 2-5  Northwind database startup screen
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●  You will have to respond to the Security Warning shown on Figure 2-5. Just 
click the Options button on the message line and choose the option that  
enables the content.

●  When you first open the database, you may be prompted to log in. If this 
occurs, just click the Cancel option.

 g. Once connected to the database, a screen like the one shown in Figure 2-5 will be 
displayed.

 3. On the ribbon (the area along the top of the panel that contains options), click Database 
Tools, and then choose the Relationships option. The Relationships panel is displayed, 
showing 18 tables and the relationships between them. You will see a very busy 
diagram, but if you follow the lines, you can easily see each relationship.

 4. Close the Relationships panel by clicking the X immediately to the right of the 
Relationships tab.

 5. Expand the Navigation Pane (along the left margin of the panel) by clicking the >> icon 
near the top of the pane. The database contains a number of screens, reports, and other 
objects used to demonstrate the programming facilities within Microsoft Access 2007. 
However, we are interested only in the database objects (application programming is 
beyond the scope of this book). Expand the Supporting Objects to see a list of all the 
tables included in the Northwind database. For each table, you can right-click its name 
and select either Open to see the table contents (rows of data) or Design View to see the 
definition of the table. Don’t be concerned if you don’t understand everything you are 
looking at—these panels are described in more detail in upcoming sections.

 6. Close Microsoft Access 2007 (or Office 2007 Online and your browser window).

Try This Summary
You have successfully accessed the Northwind sample database that will be used to 
demonstrate concepts for the remainder of this chapter as well as in the next chapter. 
You navigated to the Relationships panel and to the Supporting Objects list in the 
Navigation Pane.
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Logical/Physical Database Design Components
The logical database design is implemented in the logical layer of the ANSI/SPARC 
model discussed in Chapter 1. The physical design is implanted in the ANSI/SPARC 
physical layer. However, we work through the DBMS to implement the physical layer, 
making it difficult to separate the two layers. For example, when we create a table, we 
include a clause in the create table command that tells the DBMS where we want to place 
it. The DBMS then automatically allocates space for the table in the requested operating 
system file(s). Because so much of the physical implementation is buried in the DBMS 
definitions of the logical structures, I have elected not to try to separate them here. During 
logical database design, physical storage properties (file or tablespace name, storage 
location, and sizing information) can be assigned to each database object as we map them 
from the conceptual model, or they can be omitted at first and added later in a physical 
design step that follows logical design. For time efficiency, most DBAs perform the two 
design steps (logical and physical) in parallel.

Tables
The primary unit of storage in the relational model is the table, which is a two-dimensional 
structure composed of rows and columns. Each row corresponds to one occurrence of 
the entity that the table represents, and each column corresponds to one attribute for that 
entity. The process of mapping the entities in the conceptual design to tables in the logical 
design is called normalization and is covered in detail in Chapter 6. Often, an entity in the 
conceptual model maps to exactly one table in the logical model, but this is not always the 
case. For reasons you will learn with the normalization process, entities are commonly split 
into multiple tables, and in rare cases, multiple entities can be combined into one table. 
Figure 2-6 shows a listing of part of the Northwind Orders table.

You must remember that a relational table is a logical storage structure and usually 
does not exist in tabular form in the physical layer. When the DBA assigns a table to 
operating system files in the physical layer (called tablespaces in most RDBMSs), it is 
common for multiple tables to be placed in a single tablespace. However, large tables can 
be placed in their own tablespace or split across multiple tablespaces, and this is called 
partitioning. This flexibility typically does not exist in personal computer-based RDBMSs 
such as Microsoft Access.

Each table must be given a unique name by the DBA who creates it. The maximum 
length for these names varies a lot among RDBMS products, from as little as 18 characters 
to as many as 255. Table names should be descriptive and should reflect the name of the 
real-world entity they represent. By convention, some DBAs always name entities in the 
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singular and tables in the plural, and you will see this convention used in the Northwind 
database. (I prefer that both be named in the singular, but obviously other learned 
professionals have counter opinions.) The point here is that you should establish naming 
standards at the outset so that names are not assigned in a haphazard manner, as this 
leads to confusion later. As a case in point, Microsoft Access permits embedded spaces 
in table and column names, which is counter to industry standards. Moreover, Microsoft 
Access, Sybase ASE, and Microsoft SQL Server allow mixed-case names, such as 
OrderDetails, whereas Oracle, DB2, MySQL on Windows, and others force all names to 
be uppercase letters unless they are enclosed in double quotes. Because table names such 
as ORDERDETAILS are not very readable, the use of an underscore to separate words, 
per industry standards, is a much better choice. You may want to set standards that forbid 
the use of names with embedded spaces and names in mixed case because such names are 
nonstandard and make any conversion between database vendors that much more difficult.

Figure 2-6  Northwind Orders table (partial listing)
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Columns and Data Types
As mentioned, each column in a relational table represents an attribute from the conceptual 
model. The column is the smallest named unit of data that can be referenced in a relational 
database. Each column must be assigned a unique name (within the table) and a data type. 
A data type is a category for the format of a particular column. Data types provide several 
valuable benefits:

● Restricting the data in the column to characters that make sense for the data type  
(for example, all numeric digits or only valid calendar dates).

● Providing a set of behaviors useful to the database user. For example, if you subtract  
a number from another number, you get a number as a result; but if you subtract a date 
from another date, you get a number representing the elapsed days between the two 
dates as a result.

● Assisting the RDBMS in efficiently storing the column data. For example, numbers 
can often be stored in an internal numeric format that saves space, compared with 
merely storing the numeric digits as a string of characters.

Figure 2-7 shows the table definition of the Northwind Orders table from Microsoft 
Access 2007 (the same table listed in Figure 2-6). The data type for each column appears 
in the second column. The data type names are usually self-evident, but if you find any of 
them confusing, you can view definitions of each in the Microsoft Access help pages.

Q: You have mentioned both files and tablespaces. Are they the same thing?

A: You can think of a tablespace as a logical file that forms a layer of abstraction between the 
physical and logical layers, thereby providing better logical data independence.  
A tablespace has one or more physical files assigned to it. And instead of assigning tables 
to physical files, you assign them to tablespaces. This provides great flexibility in handling 
the physical files that make up the database. For example, when tablespaces begin to fill up, 
one option the DBA has is to add another file on a different device (such as a disk drive).

Ask the Expert
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NOTE
If you compare Figure 2-6 with Figure 2-7, you will notice that the Employee Name and 
Customer Name are shown in Figure 2-6 instead of Employee ID and Customer ID as 
specified in definition in Figure 2-7. This is not an error, but rather a feature of Microsoft 
Access that is explained in the “Referential Constraints” section later in this chapter.

It is most unfortunate that industry standards lagged behind RDBMS development. 
Most vendors did their own thing for many years before sitting down with other vendors 
to develop standards, and this is clearly evident in the wide variation of data type options 
across the major RDBMS products. Today ANSI/ISO SQL standards cover relational 
data types, and the major vendors support all or most of the standard types. However, 
each vendor has its own “extensions” to the standards, largely in support of data types it 

Figure 2-7  Table definition of the Northwind Orders table (Microsoft Access 2007)
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developed before standards existed, but also to add features that differentiate its product 
from competitors’ offerings. One could say (in jest) that the greatest thing about database 
standards is that there are so many  to choose from. In terms of industry standards for 
relational databases, Microsoft Access is probably the least compliant of the most popular 
products. Given the many levels of standards compliance and all the vendor extensions, 
the DBA must have a detailed knowledge of the data types available on the particular 
DBMS that is in use to deploy the database successfully. And, of course, great care must 
be taken when converting logical designs from one vendor’s product to another’s.

Table 2-1 shows data types from different RDBMS vendors that are roughly equivalent. 
As always, the devil is in the details, meaning that these are not identical data types, merely 
equivalent. For example, the VARCHAR type in Oracle can be up to 4000 characters in 
length (2000 characters in versions prior to Oracle8i), but the equivalent MEMO type in 
Microsoft Access can be up to a gigabyte of characters (roughly 1 billion characters)!

Constraints
A constraint is a rule placed on a database object (typically a table or column) that 
restricts the allowable data values for that database object in some way. These are most 
important in relational databases in that constraints are the way we implement both the 
relationships and business rules specified in the logical design. Each constraint is assigned 
a unique name to permit it to be referenced in error messages and subsequent database 
commands. It is a good habit for DBAs to supply the constraint names because names 
generated automatically by the RDBMS are never very descriptive.

Data Type Microsoft Access Microsoft SQL Server Oracle
Fixed-length  
character

TEXT CHAR CHAR

Variable-length  
character

MEMO VARCHAR VARCHAR

Long text MEMO TEXT CLOB or LONG 
(deprecated)

Integer INTEGER or  
LONG INTEGER

INTEGER or  
SMALLINT or TINYINT

NUMBER

Decimal NUMBER DECIMAL or NUMERIC NUMBER

Currency CURRENCY MONEY or SMALLMONEY None, use NUMBER

Date/time DATE/TIME DATETIME or SMALLDATETIME DATE or TIMESTAMP

Table 2-1  Equivalent Data Types in Major RDBMS Products
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Primary Key Constraints
A primary key is a column or a set of columns that uniquely identifies each row in a table. 
A unique identifier in the conceptual design is thus implemented as a primary key in the 
logical design. The small icon that looks like a door key to the left of the Order ID field 
name in Figure 2-7 indicates that this column has been defined as the primary key of the 
Orders table. When you define a primary key, the RDBMS implements it as a primary key 
constraint to guarantee that no two rows in the table will ever have duplicate values in the 
primary key column(s). Note that for primary keys composed of multiple columns, each 
column by itself may have duplicate values in the table, but the combination of the values 
for all the primary key columns must be unique among all rows in the table.

Primary key constraints are nearly always implemented by the RDBMS using an 
index, which is a special type of database object that permits fast searches of column 
values. As new rows are inserted into the table, the RDBMS automatically searches the 
index to make sure the value for the primary key of the new row is not already in use in 
the table, rejecting the insert request if it is. Indexes can be searched much faster than 
tables; therefore, the index on the primary key is essential in tables of any size so that the 
search for duplicate keys on every insert doesn’t create a performance bottleneck.

Referential Constraints
To understand how the RDBMS enforces relationships using referential constraints, you 
must first understand the concept of foreign keys. When one-to-many relationships are 
implemented in tables, the column or set of columns that is stored in the child table (the 
table on the “many” side of the relationship), to associate it with the parent table (the table 
on the “one” side), is called a foreign key. It gets its name from the column(s) copied from 
another (foreign) table. In the Orders table shown in Figure 2-6, the Employee ID column 
is a foreign key to the Employees table, and the Customer ID column is a foreign key to 
the Customers table.

In most relational databases, the foreign key must either be the primary key of the 
parent table or a column or set of columns for which a unique index is defined. This again 
is for efficiency. Most people prefer that the foreign key column(s) have names identical to 
the corresponding primary key column(s), but again there are counter opinions, especially 
because like-named columns are a little more difficult to use in query languages. It is best 
to set some standards up front and stick with them throughout your database project.

Each relationship between entities in the conceptual design becomes a referential 
constraint in the logical design. A referential constraint (sometimes called a referential 
integrity constraint) is a constraint that enforces a relationship among tables in a relational 
database. Enforces means that the RDBMS automatically checks to ensure that each foreign 
key value in a child table always has a corresponding primary key value in the parent table.
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Microsoft Access provides a nice feature for foreign key columns, but it takes a bit 
of getting used to. When you define a referential constraint, you can define an automatic 
lookup of the parent table rows, as was done throughout the Northwind database. In 
Figure 2-7, the third column in the table is listed as Customer ID. However, in Figure 2-6, 
you will notice that the third column of the Orders table displays the customer name and is 
listed as Customer. If you click in the Customer column for one of the rows, a pull-down 
menu appears to allow the selection of a valid customer (from the Customers table) to be 
the parent (owner) of the selected Orders table row. Similarly, the Employee ID column 
of the table displays the employee name. This is a convenient and easy feature for the 
database user, and it prevents a nonexistent customer or employee from being associated 
with an order. However, it hides the foreign key in such a way that Figure 2-6 isn’t very 
useful for illustrating how referential constraints work under the covers. Figure 2-8 lists 
the Orders table with the lookups removed so you can see the actual foreign key values in 
the Employee ID and Customer ID columns.

When we update the Orders table, as shown in Figure 2-8, the RDBMS must enforce 
the referential constraints we have defined on the table. The beauty of database constraints 

Figure 2-8  Northwind Orders table (with foreign key values displayed)
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is that they are automatic and therefore cannot be circumvented unless the DBA removes 
or disables them.

Here are the particular events that the RDBMS must handle when enforcing referential 
constraints:

● When you try to insert a new row into the child table, the insert request is rejected if 
the corresponding parent table row does not exist. For example, if you insert a row 
into the Orders table with an Employee ID value of 12345, the RDBMS must check 
the Employees table to see if a row for Employee ID 12345 already exists. If it doesn’t 
exist, the insert request is rejected.

● When you try to update a foreign key value in the child table, the update request is 
rejected if the new value for the foreign key does not already exist in the parent table. 
For example, if you attempt to change the Employee ID for Order 48 from 4 to 12345, 
the RDBMS must again check the Employees table to see if a row for Employee ID 
12345 already exists. If it doesn’t exist, the update request is rejected.

● When you try to delete a row from a parent table, and that parent row has related 
rows in one or more child tables, either the child table rows must be deleted along 
with the parent row or the delete request must be rejected. Most RDBMSs provide the 
option of automatically deleting the child rows, called a cascading delete. At first, you 
probably wondered why anyone would ever want automatic deletion of child rows. 
Consider the Orders and Order Details tables. If an order is to be deleted, why not 
delete the order and the line items that belong to it in one easy step? However, with 
the Employee table, you clearly would not want that option. If you attempt to delete 
Employee 4 from the Employee table (perhaps because the person is no longer an 
employee), the RDBMS must check for rows assigned to Employee ID 4 in the Orders 
table and reject the delete request if any are found. It would make no business sense to 
have orders automatically deleted when an employee left the company.

In most relational databases, an SQL statement is used to define a referential constraint. 
SQL is introduced in Chapter 4. SQL is the language used in RDBMSs to communicate 
with the database. Many vendors also provide graphical user interface (GUI) panels for 
defining database objects such as referential constraints. In SQL Server, for example, these 
GUI panels are located within the SQL Server Management Studio tool, and in Oracle, a 
tool named SQL Developer has these capabilities. For Microsoft Access, Figure 2-9 shows 
the Relationships panel that is used for defining referential constraints.

For simplicity, only the Orders table and its two parent tables, Employees and Customers, 
are shown in Figure 2-9. The referential constraints are shown as bold lines with the numeric 
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symbol 1 near the parent table (the “one” side) and the mathematical symbol for infinity 
(a sideways figure 8) near the child table (the “many” side). These constraints are defined 
simply by dragging the name of the primary key in the parent table to the name of the foreign 
key in the child table. A pop-up window is then automatically displayed to allow  
the definition of options for the referential constraint, as shown in Figure 2-10.

At the top of the Edit Relationships panel, the two table names appear with the parent 
table on the left and the child table on the right. If you forget which is which, the 
Relationship Type field at the bottom of the panel should remind you. Under each table 

Figure 2-9  Microsoft Access 2007 Relationships panel
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name are rows for selection of the column names that make up the primary key and 
foreign key. Figure 2-10 shows the primary key column ID in the Customers table  
and foreign key column Customer ID in the Orders table. The check boxes provide  
some options:

● Enforce Referential Integrity If this box is checked, the constraint is enforced; 
unchecking the box turns off constraint enforcement.

● Cascade Update Related Fields If this box is checked, any update to the primary 
key value in the parent table will cause automatic corresponding updates to the related 
foreign key values. An update of primary key values is a rare situation.

● Cascade Delete Related Records If the box is checked, a delete of a parent 
table row will cause the automatic cascading deletion of the related child table 
rows. Think carefully here. There are times when you should use this, such as the 
constraint between Orders and Order Details, and times when the option can lead 
to the disastrous unwanted loss of data, such as deleting an employee (perhaps 
accidentally) and having all the orders that employee handled automatically deleted 
from the database.

Intersection Tables
The discussion of many-to-many relationships earlier in this chapter pointed out that 
relational databases cannot implement these relationships directly and that an intersection 
table is formed to establish them. Figure 2-11 shows the implementation of the Order 
Details intersection table in Microsoft Access.

Figure 2-10  Microsoft Access 2007 Edit Relationships panel
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The many-to-many relationship between orders and products in the conceptual design 
becomes an intersection table (Order Details) in the logical design. The relationship is 
then implemented as two, one-to-many relationships with the intersection table on the 
“many” side of each. The primary key of the Order Details table could be formed using 
the combination of Order ID and Product ID, with Order ID being a foreign key to 
the Orders table and Product ID being a foreign key to the Products table. In this case, 
however, the designer chose to add a single unique key value, ID, as the primary key of 
the Order Details table. This arrangement is known as a surrogate key, because the  
so-called natural key has been replaced with another one. Take a moment to examine  

Figure 2-11  Order Details intersection table (Microsoft Access 2007)



 Chapter 2: Exploring Relational Database Components 53

the contents of the intersection table and the two referential constraints. Understanding 
this arrangement is fundamental to understanding how relational databases work. Here are 
some points to consider:

● Each row in the Order Details intersection table belongs to the intersection of one 
product and one order. It would not make sense to include Product Name in this table 
because that name is the same every time the product appears on an order. Also, it 
would not make sense to include Customer ID in Order Details because all line items 
on the same order belong to the same customer.

● Each Products table row may have many related Order Details rows (one for each 
order line item on which the product was ordered), but each Order Details row belongs 
to one and only one Products table row.

● Each Orders table row may have many related Order Details rows (one for each line 
item for that particular order), but each Order Details row belongs to one and only one 
Orders table row.

Integrity Constraints
As mentioned, business rules from the conceptual design become constraints in the logical 
design. An integrity constraint is a constraint that promotes the accuracy of the data in 
the database. The key benefit is that these constraints are invoked automatically by the 
RDBMS and cannot be circumvented (unless you are a DBA) no matter how you connect 
to the database. The major types of integrity constraints are NOT NULL constraints, 
CHECK constraints, and constraints enforced with triggers.

NOT NULL Constraints
As you define columns in database tables, you have the option of specifying whether null 
values are permitted for the column. A null value in a relational database is a special code 
that can be placed in a column that indicates that the value for that column in that row is 
unknown. A null value is not the same as a blank, an empty string, or a zero—it is indeed 
a special code that has no other meaning in the database.

A uniform way to treat null values is specified in the ANSI/ISO SQL Standard. 
However, there has been much debate over the usefulness of the option because the 
database cannot tell you why the value is unknown. If you leave the value for Job Title 
null in the Northwind Employees table, for example, you don’t know whether it is null 
because it is truly unknown (you know employees must have a title, but you do not know 
what it is), it doesn’t apply (perhaps some employees do not get titles), or it is unassigned 
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(they will get a title eventually, but their manager hasn’t figured out which title to use just 
yet). The other dilemma is that null values are not equal to anything, including other null 
values, which introduces three-valued logic into database searches. With nulls in use,  
a search can return the condition true (the column value matches), false (the column value 
does not match), or unknown (the column value is null). The developers who write the 
application programs have to handle null values as a special case. You’ll see more about 
nulls when SQL is introduced in Chapter 4.

In Microsoft Access, the NOT NULL constraint is controlled by the Required option 
on the table design panel. Figure 2-12 shows the definition of the Discount column of the 
Order Details table. Note that the column is required (that is, it cannot be null) because the 
Required option is set to Yes. In SQL definitions of tables, you simply include the keyword 
NULL or NOT NULL in the column definition. Watch out for defaults! In Oracle, if you skip 
the specification, the default is NULL, which means the column may contain null values. 

Figure 2-12  Order Details table definition panel, Discount column
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But in some implementations of DB2, Microsoft SQL Server, and Sybase ASE, it is just the 
opposite: if you skip the specification, the default is NOT NULL, meaning the column may 
not contain null values.

CHECK Constraints
A CHECK constraint uses a simple logic statement to validate a column value. The outcome 
of the statement must be a logical true or false, with an outcome of true allowing the column 
value to be placed in the table, and a value of false causing the column value to be rejected 
with an appropriate error message. In Figure 2-12, notice that <=1 And >=0 appears in the 
Validation Rule option for the Discount column. This rule prevents discounts from being 
greater than 100 percent (input as 1.00) or less than 0 percent. Although the syntax of the 
option will vary for other databases, the concept remains the same. In Oracle SQL, it would 
be written this way:

CHECK (DISCOUNT <=1 AND DISCOUNT >=0)

Constraint Enforcement Using Triggers
Some constraints are too complicated to be enforced using the declarations. For example, 
the business rule contained in Figure 2-1 (Customers with overdue amounts may not book 
new orders) falls into this category because it involves more than one table. We need to 
prevent new rows from being added to the Orders table if the Account Receivable row 
for the customer has an overdue amount that is greater than zero. As mentioned, it may 
be best to implement business rules such as this one in the application logic. However, if 
we want to add a constraint that will be enforced no matter how the database is updated, a 
trigger will do the job. A trigger is a module of programming logic that “fires” (executes) 
when a particular event in the database takes place. In this example, we want the trigger to 
fire whenever a new row is inserted into the Orders table. The trigger obtains the overdue 
amount for the customer from the Account Receivable table (or wherever the column is 
physically stored). If this amount is greater than zero, the trigger will raise a database error 
that stops the insert request and causes an appropriate error message to be displayed.

In Microsoft Access, triggers can be written as macros using the Microsoft Visual 
Basic for Applications (VBA) language. Some RDBMSs provide a special language 
for writing program modules such as triggers: PL/SQL in Oracle and Transact SQL 
in Microsoft SQL Server and Sybase ASE. In other RDBMSs, such as DB2, a generic 
programming language such as C may be used.
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Views
A view is a stored database query that provides a database user with a customized subset 
of the data from one or more tables in the database. Said another way, a view is a virtual 
table, because it looks like a table and for the most part behaves like a table, yet it stores 
no data (only the defining query is stored). The user views form the external layer in the 
ANSI/SPARC model. During logical design, each view is created using an appropriate 
method for the particular database. In many RDBMSs, a view is defined using SQL. 
In Microsoft Access, views are not directly supported. However, Access supports an 
equivalent type of object called a query that is created using the Query panel. Figure 2-13  
shows the Microsoft Access definition of a simple view that lists orders placed by 
customers who live in Washington state.

Figure 2-13  Microsoft Access 2007 view definition: list all orders for customers in 
Washington state
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The view in Figure 2-13 displays only two columns from the Customers table along 
with only three columns from the Orders table. Furthermore, the view specifies the 
matching (joining) of the Customers and Orders tables and filters the rows so that only 
orders for Washington state customers are included by virtue of the value in the Criteria 
property for the State/Province column (=‘WA’). We explore the Microsoft Access Query 
panel in detail in Chapter 3. Figure 2-14 shows the results of the query when it is run 
against the database. Although two customers are located in Washington, only one of 
them has placed orders, and only two such orders appear currently in the table.

Views serve a number of useful functions:

● Hiding columns that the user does not need to see (or should not be allowed to see)

● Hiding rows from tables that a user does not need to see (or should not be allowed to see)

● Hiding complex database operations such as table joins

● Improving query performance (in some RDBMSs, such as Microsoft SQL Server)

Figure 2-14  Results from running the query shown in Figure 2-13
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 Chapter 2 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank questions. 
Note that there may be more than one correct response to each question.

 1. Examples of an entity are

 A A customer

 B A customer order

 C An employee’s paycheck

 D A customer’s name

 2. Examples of an attribute are

 A An employee

 B An employee’s name

 C An employee’s paycheck

 D An alphabetical listing of employees

 3. Which of the following denotes the cardinality of “zero, one, or more” on a relationship 
line? 

 A A perpendicular tick mark near the end of the line and a crow’s foot at the line end

 B A circle near the end of the line and a crow’s foot at the end of the line

 C Two perpendicular tick marks near the end of the line

 D A circle and a perpendicular tick mark near the end of the line

 4. Valid types of relationships in a relational database are

 A One-to-many

 B None-to-many

 C Many-to-many

 D One-to-one

✓
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 5. If a product can be manufactured in many plants, and a plant can manufacture many 
products, this is an example of which type of relationship?

 A One-to-one

 B One-to-many

 C Many-to-many

 D Recursive

 6. Which of the following are examples of recursive relationships?

 A An organizational unit made up of departments

 B An employee who manages other employees

 C An employee who manages a department

 D An employee who has many dependents

 7. Examples of a business rule are

 A A referential constraint must refer to the primary key of the parent table.

 B An employee must be at least 18 years old.

 C A database query eliminates columns an employee should not see.

 D Employees below pay grade 6 are not permitted to modify orders.

 8. A relational table

 A Is composed of rows and columns

 B Must be assigned a data type

 C Must be assigned a unique name

 D Is the primary unit of storage in the relational model

 9. A column in a relational table

 A Must be assigned a data type

 B Must be assigned a unique name within the table

 C Is derived from an entity in the conceptual design

 D Is the smallest named unit of storage in a relational database
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 10. A data type

 A Assists the DBMS in storing data efficiently

 B Provides a set of behaviors for a column that assists the database user

 C May be selected based on business rules for an attribute

 D Restricts characters allowed in a database column

 11. A primary key constraint

 A Must reference one or more columns in a single table

 B Must be defined for every database table

 C Is usually implemented using an index

 D Guarantees that no two rows in a table have duplicate primary key values

 12. A referential constraint

 A Must have primary key and foreign key columns that have identical names

 B Ensures that a primary key does not have duplicate values in a table

 C Defines a many-to-many relationship between two tables

 D Ensures that a foreign key value always refers to an existing primary key value in 
the parent table

 13. A referential constraint is defined

 A Using the Relationships panel in Microsoft Access

 B Using SQL in most relational databases

 C Using the referential data type for the foreign key column(s)

 D Using a database trigger

 14. Major types of integrity constraints are

 A CHECK constraints

 B One-to-one relationships

 C NOT NULL constraints

 D Constraints enforced with triggers
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 15. ____________ tables are used to resolve many-to-many relationships.

 16. An entity in the conceptual design becomes a(n) ____________ in the logical design.

 17. An attribute in the conceptual design becomes a(n) ____________ in the logical design.

 18. Items in the external level of the ANSI/SPARC model become ____________ in the 
logical model.

 19. A relationship in the conceptual design becomes a(n) ____________ in the logical 
design.

 20. A primary key constraint is implemented using a(n) ____________ in the logical design.



This page intentionally left blank



63

Chapter 3
Forms-based  
Database Queries 



 64 Databases: A Beginner’s Guide

Key Skills & Concepts
● QBE: The Roots of Forms-based Queries

● Getting Started in Microsoft Access

● The Microsoft Access Relationships Panel

● Creating Queries in Microsoft Access

With a nod toward the theory that says you cannot design a car if you have never 
driven one, this chapter offers a brief tour of database queries before delving into 

the details of database design. This chapter provides an overview of forming and running 
database queries using the forms-based query tool in Microsoft Access. It is not at all my 
intent to provide a comprehensive guide to Microsoft Access; I am merely using Microsoft 
Access as a vehicle to present database query concepts that will provide a foundation 
for the database design theory that follows later in this book. However, I will attempt to 
provide enough basic information about using Microsoft Access to allow you to follow 
along on your own computer as you explore forms-based queries.

QBE: The Roots of Forms-based Queries
A forms-based query language uses a GUI panel for the creation of a query. The database 
user defines queries by entering sample data values directly into a query template to 
represent the result that the database is to achieve. An alternative query method uses a 
command-based query language, in which queries are written as text commands. SQL is 
the ubiquitous command-based query language for relational databases and is discussed 
in Chapter 4. The emphasis with both forms-based and command-based query languages 
is on what the result should be rather than how the results are achieved. The difference 
between the two is in the way the user describes the desired result—similar to the 
difference between using Microsoft Windows Explorer to copy a file versus using the  
MS-DOS copy command (in the DOS command window) to do the same thing.

The first well-known forms-based query tool was Query By Example (QBE), which 
was developed by IBM in the 1970s. Personal computers, Microsoft Windows, the 
mouse, and many other modern computing amenities were unheard of at this time, but 
the interface was still graphical in nature. A form was displayed, and database users typed 
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sample data and simple commands in boxes, where today they would click an onscreen 
button using a mouse. SQL, also initially developed by IBM, was new in the 1970s.

Experience has shown us that both methods are useful to know. Forms-based queries 
lend themselves well to individuals who are more accustomed to GUI environments than 
to touch-typing commands. However, database users familiar with command syntax 
and possessing reasonable typing skills can enter command-based queries more quickly 
than their GUI equivalents, and command-based queries can be directly used within a 
programming language such as Java or C.

Getting Started in Microsoft Access
The queries used in this chapter all feature the Northwind sample database available from 
Microsoft for use with Access or SQL Server. You will have the best learning experience 
if you try the queries presented in this chapter as you read. Obviously, the sample database 
is required, and you should use Microsoft Access 2007 because substantial differences 
exist between it and its previous versions, including the sample database. Fortunately, 
you’ll find it relatively simple either to download and install the Northwind database (if 
you already have Access 2007 installed) or to connect to Microsoft Access 2007 remotely 
using Microsoft Office Online. Just follow the steps in the Try This exercise in Chapter 2  
(if you have not already done so). Keep in mind that it is easy to update the database 
accidentally when using Microsoft Access, and no simple “undo” function is available. 

Q: You have mentioned both command-based and forms-based queries. It is not clear to 
me which one I should focus on learning.

A: Which one you learn first depends a lot on what you want to do with the database, and you 
may eventually want to know both. Command-based queries are essential if you want to 
embed them in another programming language (you cannot embed a forms-based query 
in another language). However, when forming ad hoc queries, humans generally prefer an 
interactive point-and-click GUI over text commands that require more typing. In the 1970s, 
IBM conducted a controlled study to determine whether QBE or SQL was preferred by 
database users of the day. IBM learned that most users preferred to use the method they 
learned first—human nature, it seems.

Ask the Expert
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However, if this happens, you can just download the database again and then pick up 
where you left off.

When you launch Microsoft Access 2007 (whether locally or using Microsoft Office 
Online), a startup panel similar to the one shown in Figure 3-1 is displayed.

If you have already downloaded and used the Northwind database, it should be listed 
under the Open Recent Database heading on the right side of the panel. Simply click the 
listed file name to open the database. If the database is not listed, you can download it 
by clicking Sample under the From Microsoft Office Online heading on the left side of 
the panel. A panel similar to the one shown in Figure 3-2 will be displayed. Click the 
Northwind 2007 icon to select it, and then click the Download button in the lower-right 
corner of the panel.

You will know that you have successfully connected to the Northwind database when 
you see the main Microsoft Access 2007 panel with the Startup Screen tab for Northwind 
Traders displayed, as shown in Figure 3-3. Before we explore the options available on 
this panel, let’s tidy things up a bit. The sample database comes with application code 

Figure 3-1  Microsoft Access 2007 startup panel
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(Visual Basic macros) that cannot be run until you respond to the security warning that is 
displayed on the panel. You can follow the instructions on the screen to enable the content 
if you wish, but we won’t be using any of the application content in this chapter, so you 
can also simply close the message by clicking the Close button (the X) to the far right 
of the Security Warning message. (Do not click the X at the upper-right corner of your 
screen; that will close Microsoft Access and you will have to start all over.) You can also 
close the Northwind Traders Startup Screen. To do so, click the Close button to the right 
of the Startup Screen tab, or right-click the tab and choose Close. Tidying up the panel 
should make the options available on it that much more apparent.

NOTE
Like most PC-based database tools, Access provides not only a database, but a 
complete programming environment that supports the creation of screens, reports, and 
application logic in the form of macros. The development of applications using Access is 
well beyond the scope of this book. This chapter focuses on those components that are 
directly related to defining data structures and managing the data stored in them.

Figure 3-2  Microsoft Access 2007 sample database panel
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The area along the top of the panel that contains all the options you can use in Access 
is called the ribbon. This user interface is new with Office 2007 (and Access is part of the 
Office suite of applications) and is a radical departure from previous versions that used 
a series of drop-down menus. If you are accustomed to using the old interface, it takes a 
while to adapt to this new one. The Office button in the upper-left corner provides options 
common to all Microsoft Office applications, such as opening and saving files. You can 
click it to get to a drop-down menu of options. On the top line of the ribbon (to the right of 
the Office button) is the Quick Access Toolbar, which has options for Save, Undo, Repeat 
Typing, Print, Print Preview, and Open a Folder. A final option allows you to customize 
the toolbar. The icons are reasonably intuitive, but you can allow your cursor pointer to 
hover over each one for a second or two and see the names of the options. These options 
are also common to all Microsoft Office 2007 applications and, as the name suggests, 
provide a quick way to get to options accessible via the Office button.

Figure 3-3  Microsoft Access 2007 main panel, Home ribbon
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Directly below the Quick Access Toolbar are tabs for the major groupings of ribbon 
options available within Access. In previous versions, these were used to open drop-
down menus; in Office 2007, they are tabs that change the ribbon of options that appears 
immediately below. Figure 3-3 shows the Home ribbon, for example. Many of the Home 
ribbon options are related to building application components within Access (forms, 
reports, and so forth), which are beyond the scope of database work. However, you will 
use the View option often, because it allows you to switch between the Design View, 
which shows the metadata that defines a database object, and the Datasheet View, which 
shows the data that is stored in the database object in rows and columns.

The Create ribbon, shown in Figure 3-4, provides options for creating tables, forms, 
reports, and other types of objects. We won’t be using forms or reports, because these are 
application programming functions rather than database functions. As you can see, the 
Tables group of options allows you to create relational tables using various tools. The 
Other group at the right side of the ribbon contains options for queries. These options 
let you create, run, and store database queries, which closely resemble what most other 
DBMSs and the ISO/ANSI SQL standard call views.

Figure 3-5 shows the External Data ribbon, which contains options for importing and 
exporting to and from external sources, including most of the other Office applications. 
While you will find these options very useful in practice, we won’t need them for this tour 
of features because we are using a sample database that is already populated for us.

The Database Tools ribbon, shown in Figure 3-6, contains various tools that assist in 
managing the database. The most important of these in terms of database design is the 
Relationships option, which you will study in the next section. First, though, we need to 
cover another important navigation feature in Access.

Figure 3-4  Access main panel, Create ribbon
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You might have noticed the Navigation Pane along the left side of the panels we have 
examined thus far. This is an essential feature of Access because it provides a common 
method of organizing, listing, and opening (accessing) the objects stored in the database. 
When you expand it by clicking the double arrowhead (that points to the right), you’ll see 
a panel similar to what is shown in Figure 3-7. 

The default organization of the Navigation Pane categorizes the objects by areas 
within the Northwind Traders application, which isn’t all that useful for database work. If 
you right-click the top of the pane (where the name Northwind Traders appears), and click 
Category and then Object Type, the Navigation Pane will be organized by database object 
type, as shown in Figure 3-8. You can expand any category as needed to view the list 
of objects in that category, and of course minimize the categories that are not of current 
interest.

Figure 3-5  Access main panel, External Data ribbon

Figure 3-6  Access main panel, Database Tools ribbon
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If you have used older versions of Access, the list of object types shown in Figure 3-8  
should look familiar, because it appeared on the main panel of those older versions. 
Briefly, the types shown can be defined as follows:

● Tables Relational tables. These hold the actual database data in rows and columns.

● Queries Stored database queries. These are called views in nearly all other relational 
databases.

● Forms GUI forms for data entry and/or display within Microsoft Access.

● Reports Reports based on database queries.

Figure 3-7  Access main panel with expanded Navigation Pane
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● Macros Sets of actions that each perform a particular operation, such as opening a 
form or printing a report.

● Modules Collections of Visual Basic programming language components that are 
stored as a unit.

As noted earlier, Microsoft Access is not only a database, but also a complete 
development environment for building and running applications. The enterprise-class 
database products that usually run on larger, shared computer systems called servers 
typically do not come with application-development environments. Learning to build 
application programs is well outside the scope of this book, so we will not deal with the 
Forms, Reports, Macros, and Modules types at all. We will focus only on the Tables and 
Queries types in Microsoft Access.

Figure 3-8  Navigation Pane organized by object type
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Maintenance of the objects in the database can be performed from this panel, 
including the following tasks:

● To add a new object, use the Create ribbon and click the appropriate icon. For 
example, you can create a new table by clicking the Table or Table Design icon on the 
Create ribbon.

● To delete an existing object, right-click its name in the Navigation Pane and choose 
the Delete option.

● To open an object, double-click its name in the Navigation Pane.

● To display the definition (design) of an object, right-click its name in the Navigation 
Pane and choose the Design View option.

The Microsoft Access Relationships Panel
Microsoft Access provides the Relationships panel, shown in Figure 3-9, for the definition 
and maintenance of referential constraints between the relational tables. To display this 
panel, click the Edit Relationships option on the Database Tools ribbon.

NOTE
If you are following along with your own copy of the Northwind database, the panel 
will show a lot more tables and relationships. I simplified and reorganized my copy to 
make Figure 3-9 more understandable for the reader. You may also notice the Manager 
ID column in the Employees table in the figure, which I added to illustrate a recursive 
relationship, which is covered later in this chapter.

The Relationships panel graphically displays tables, shown as rectangles, and one-
to-many relationships, shown as lines between the rectangles. Technically, these are 
referential constraints (relationships being only a conceptual term), but because Microsoft 
calls them relationships on this panel, I will also use this term for consistency. The symbol 
1 shows the “one” side of each relationship, whereas the infinity symbol (similar to the 
number 8 laying on its side) shows the “many” side of each relationship. You may also 
notice an arrowhead on the end of some of the lines, which denote relationships that have 
a lookup (as discussed in Chapter 2) defined. 

The relationships can be maintained as follows:

● To add tables that are not displayed, click the Show Table icon  (the table and a bold 
yellow plus sign) on the ribbon, and select the tables from the pop-up window.
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● To remove a table from the display, click it so that it is selected and then press DELETE.  
Note that this does not delete the table or any relationships in which the table 
participates; it merely removes the table from the panel.

● To add a relationship, drag the primary key in one table to the matching foreign key 
in another. For recursive relationships, the table must be added to the display a second 
time, and the relationship must be created between one displayed copy of the table and 
the other. This looks odd at first, but it serves to facilitate the drag-and-drop method 
of creating the relationship. A table shown multiple times on the panel still exists only 
one time in the database.

Figure 3-9  The Microsoft Access Relationships panel
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● To delete a relationship, click the narrow part (the middle section) of its line and press 
DELETE. Selecting relationships can be tricky in Microsoft Access because clicking 
only the narrow part of the line will work, and you might have to stretch short lines by 
moving a table on the panel to expose the narrow part of the line.

● To edit a relationship, double-click the narrow part of its line. A pop-up window 
can be used to change various options about the relationship, including toggling 
enforcement of the relationship as a referential constraint on and off (that is, enabling 
and disabling the constraint). When a constraint is disabled, the DBMS will not 
prevent inserts, updates, and deletes from creating “orphan” foreign key values 
(foreign key values that have no matching primary key values in the parent table). 
The DBMS will not, however, permit a constraint to be enabled if orphan foreign key 
values exist in the child table.

To close the Relationships panel, you can either click the Close button (X) at the 
upper-right corner of the panel or right-click the Relationships tab and choose Close.

The Microsoft Access Table Design View
A table can be selected by double-clicking its name on the Navigation Pane. The default 
display, called the Datasheet View, is shown in Figure 3-10. The data in the table is 
displayed in the familiar tabular form, and the data can be updated if desired, including 
the insertion and deletion of rows. Be careful, because there is no undo feature—once you 
move the cursor from one row to another, any changes you have made cannot be easily 
reversed.

You can get to the Design View, which shows the definition of the table, in two ways. 
You can right-click the tab with the name of the table and choose Design View. Or you 
can select the Home ribbon (if not already selected), click the View icon, and choose the 
Design View option. Figure 3-11 shows the Design View for the Employees table.

The Design View for a table displays information such as the following:

● Field Name The name of the column.

● Data Type The data type for the column.

● Description A description of the column, typically provided by a DBA.

● Field Size A subtype within the data type. For example, Long Integer and Short 
Integer apply to the more general Number data type.
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● Required Indicates whether the column is optional (that is, whether it may have  
null values).

● Indexed Indicates whether the column has an index.

● Primary Key Denoted with a small key icon next to the field name (or names) that 
make up the primary key.

Hopefully, you recognized that everything on this panel is metadata. Many more 
options are available but not noted here, and Microsoft Access is very clever about hiding 
and exposing options so that only the applicable ones are displayed. Notice that help text 
automatically displays in the blue area in the lower-right corner of the panel as you move 
the cursor from one option to another.

Figure 3-10  Datasheet View (Employees table)
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Creating Queries in Microsoft Access
As mentioned, Microsoft Access queries closely resemble what most DBMSs call views, 
because a view is defined in the SQL standard as a stored database query. A key similarity 
is that Access queries, like views, do not store any data; instead, the data is stored in the 
tables. However, Access queries have some capabilities not found in views, such as the 
ability to tailor a query to perform inserts to or updates of data rows in the database. On 
the Navigation Pane, expanding the Queries category lists all the queries stored in this 
database, as shown in Figure 3-12.

Although Microsoft Access offers several ways to create a new query, the Query 
Design option is the easiest for beginners to understand. When you click the Query Design 
icon (in the Other area of the Create ribbon), Access displays the Show Table dialog box, 
as shown in Figure 3-13.

Figure 3-11  Design View (Employees table)
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For every new query, Access opens the Show Table dialog box to allow you to select 
the tables and/or queries on which the query will be based (that is, the tables or queries that 
are to be the source of the data that will be displayed). As tables and queries are added, they 
appear on the Query Design panel, which allows for the entry of the specification for the 
desired query. Figure 3-14 shows the Query Design panel with the Customers table added.

The Query Design panel has the following components:

● In the open area at the top of the panel (light blue background), a graphical representation 
of the query’s source tables, queries, and their relationships for the query are shown. Any 
relationships defined for the tables are automatically inherited here.

Figure 3-12  Northwind database Queries listing

Figure 3-13  Show Table dialog box
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● In the grid area in the lower part of the panel, each column represents a column of data 
that is to be returned in the result set when the query is executed. Rows in the grid area 
define various options to be applied to the corresponding columns. Usage examples 
are provided in the sections that follow:

● Field The specification for the source of the column. This is normally a table 
or query column name, but it can also be a constant or an expression similar to 
calculations used in spreadsheets.

● Table The source table or query name for the column.

● Sort The specification for any sort sequencing for the column (Ascending, 
Descending, or None).

● Show A check box that controls display of the column. If the box is not checked, 
the column can be used in forming the query but does not appear in the query results.

● Criteria The specification that determines which rows of data are to appear in 
the query results. All conditions placed on the same line must be met for a row of 
data to be displayed in the query results. Conditions placed on subsequent lines 
(labeled “or” on the panel) are alternative sets of conditions that will also cause 

Figure 3-14  Query Design panel (with Customers table added)
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a matching data row to be displayed in the results. The usage of these will not 
likely  make sense until you see the examples that follow, but in short, conditions 
placed on one line are connected with a logical AND operator, and each new line 
of criteria is connected using a logical OR operator with all the other lines. Said 
another way, any row that matches the specifications that appear on any one of the 
criteria lines will be displayed in the query results.

The Criteria entry is the most complicated and thus requires a bit more explanation. 
Conditions are usually written using a comparison operator and one or more data values. 
However, the equal to (=) operator may be omitted. For example, if you want to select only 
rows in which a column value is equal to 0, you can enter =0 or just 0. Character values are 
enclosed in either single or double quotes, but if you leave them out, Access will assume 
they are there based on the data type of the column. For example, if you want to select only 
rows containing a column value of M, you can enter the condition in any of the following 
ways: M, ‘M’, “M”, =M, =‘M’, or =“M”. When you enter dates, you might notice that 
Access delimits date values using the pound sign (#), but you need not worry about doing 
so yourself. As you might guess, you can use other comparison operations in addition to 
equal to (=). The following table shows all the supported comparison operators:

Operator Description
= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

<> Not equal to

Once the specification is complete, clicking the Run icon (the exclamation point) runs 
the query and displays the results using the Datasheet View like the one shown in Figure 
3-10. To go back to the Query Design panel, simply click the Design View icon (the ruler, 
pencil, and triangle icon in the Views group of the Home ribbon). For most queries, data 
updates can be entered directly in the Datasheet View table, and they are applied directly 
to the source tables for the query. If a column in the query results cannot be mapped to a 
single table column—perhaps because it was calculated in some way—then it cannot be 
updated in the query results.

If all this seems confusing, that’s because the best way to learn how to create queries 
in Microsoft Access is by trying them for yourself. Therefore, the remainder of this 
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Try This 3-1

chapter will use a series of Try This exercises to demonstrate the powerful features of 
the Microsoft Access Queries tool. To reduce the amount of work required to complete 
each one, these exercises build on one another. Each exercise offers a description of the 
result desired and the steps required to create the specification for the query on the Query 
Design panel. This is followed by a figure containing two screen shots, the first showing 
the completed Query Design panel and the other showing the results when the query is 
executed.

 List All Customers
In this Try This exercise, you will simply list the entire Customers table (all rows and  
all columns).

Step by Step
 1. On the Create ribbon, click Query Design.

 2. Perform the following actions in the Show Table dialog box:

 a. Click Customers to select the Customers table.

 b. Click the Add button.

 c. Click the Close button.

 3. On the Query Design panel, double-click the asterisk in the Customers table template 
(near the top of the panel).

 4. Click the Run icon on the ribbon (the exclamation point) to run your query. The 
completed panel is shown at the top of Figure 3-15 with the query results shown below.

 5. To get ready for the next exercise, do the following on the query results panel (bottom 
of Figure 3-15):

 a. Return to the Query Design panel by clicking the View icon (the triangle, ruler, 
and pencil) just below the Office button.

 b. On the Query Design panel (top of Figure 3-15), clear the existing query 
specification by clicking the slim gray strip just above the field name Customers* 
(which changes the entire column to a black background). Then press DELETE to 
remove the column.

(continued)
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Try This 3-2 Choose Columns to Display
Instead of displaying all columns, here you’ll specify only the ones that you want to see. 
You will list the ID, Company (company name), City, State/Province, and Country/Region 
columns for all customers (all rows in the Customers table).

Step by Step
 1. You should already have the Query Design panel open with the Customers table added 

to the query.

Figure 3-15  Try This 3-1 (List All Customers), query design (top) and query results (bottom)
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 2. For each desired column (ID, Company, City, State/Province, and Country/Region), 
double-click the column name in the table shown at the top of the form. An alternative 
method is to drag-and-drop the column name from the table shown at the top of the 
form to the grid in the lower part of the form.

 3. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-16 with the query results shown below.

 4. To get ready for the next exercise, return to the Query Design panel by clicking the 
View icon (the triangle, ruler, and pencil) just below the Office button.

Figure 3-16  Try This 3-2 (Choose Columns to Display), query design (top) and query  
results (bottom)
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Try This 3-3 Sorting Results
In any RDBMS, rows are returned in no particular order unless you request otherwise. 
Microsoft Access uses the Sort specification to determine the order in which rows 
are returned in query results. You will modify Try This 3-2 so that rows are sorted in 
ascending order by City, State/Province, and Country/Region.

Step by Step
 1. You should already have the Query Design panel open with the query you created in 

Try This 3-2 displayed.

 2. On the Sort row in the City column, click in the blank space and select Ascending from 
the pull-down list (see Figure 3-17).

 3. Do the same for the State/Province column. A simple alternative method is to type A 
(for ascending) in the sort specification and press ENTER.

 4. Do the same for the Country/Region column.

 5. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-17 with the query results shown below.

 6. To get ready for the next exercise, return to the Query Design panel by clicking the 
View icon (the triangle, ruler, and pencil) just below the Office button.
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Try This 3-4 Advanced Sorting
Looking at the results of Try This 3-3, you can see that all the cities are listed in ascending 
sequence and that sorting by State/Province and then by Country/Region had little 
effect and would matter only if two cities with the same name existed in different states/
provinces and countries/regions. Spoken language not always being logically precise, 
this is unlikely to be what we intended when we said we wanted the data sorted by City, 

Figure 3-17 Try This 3-3 (Sorting Results), query design (top) and query results (bottom)

(continued)



 86 Databases: A Beginner’s Guide

State/Province, and Country/Region. Instead, we likely wanted all the rows for a Country/
Region to be together, and for each Country/Region, all the rows in a State/Province to 
be together, and for each State/Province, all the cities to be listed in ascending sequence 
by name. If we had said sort by City within State/Province within Country/Region, our 
intent would have been clearer. Now we need a way to sort by Country/Region first, 
State/Province second, and City last, but City is displayed before State/Province, and 
State/Province before Country/Region. Microsoft Access sorting works on the columns 
in the query from left to right. How can we accomplish our goal? We can place the State/
Province and City columns in the query a second time, use the second copies for sorting, 
but omit them from the query results using the Show check box.

In this Try This exercise, you modify Try This 3-3 so that rows are sorted as discussed.

Step by Step
 1. You should already have the Query Design panel open with the query you created in 

Try This 3-3 displayed.

 2. Remove the sort specifications on the existing City column by doing the following:

 a. Click in the Sort row of the query specification for the column.

 b. Click the downward-facing arrow to display the pull-down menu.

 c. Select the (Not Sorted) option from the list.

 3. Do the same for the State/Province column.

 4. Add the State/Province column to the query specification a second time by double-
clicking its name in the Customers table.

 5. Do the same for the City column.

 6. Add the ascending sort specification to the State/Province and City columns that you 
just added (the ones to the right of the Country/Region column).

 7. Remove the check mark in the Show row for the State/Province and City columns that 
you just added. This will prevent the data in them from displaying a second time in 
your query results.

 8. Since this exercise is a bit complicated, I suggest you compare your Query Design 
panel with the one shown in Figure 3-18 to make sure you did everything correctly.
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 9. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-18 with the query results shown below. Note that most languages 
are read from left to right, so we naturally expect tabular listings to be sorted moving 
from left to right, starting with the leftmost column. It is unusual, and perhaps poor 
human engineering, to sort columns another way. But should you ever need to do so, 
you now know how.

 10. To get ready for the next exercise, do the following:

 a. Return to the Query Design panel by clicking the View icon (the triangle, ruler, 
and pencil) just below the Office button.

 b. To simplify the upcoming Try This exercises, put the query specification back to 
the way it was at the end of Try This 3-3.

Figure 3-18 Try This 3-4 (Advanced Sorting), query design (top) and query results (bottom)

(continued)
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Try This 3-5

 c. Remove the additional State/Province and Country/Regions columns you added to 
the sort specification by clicking the slim gray strip above the field name (which 
changes the entire column to a black background) and pressing DELETE to remove 
the column.

 d. Add the Ascending sort specification to the remaining City and State/Province 
columns by clicking in the Sort row for each, typing the letter A, and pressing 
ENTER. This should add Ascending to each column.

 Choosing Rows to Display
Thus far you have been displaying all 26 rows in the Customers table in every query. If 
you do not want to see all the rows, displaying them could be confusing, and it is wasteful 
of system resources, especially if you are sorting them. Suppose you want to see rows 
only for customers in San Francisco, CA. You can add conditions using the Criteria line 
on the Query Design panel to filter the rows so that only those you want are included. You 
should recall that for a row to be displayed in the results, all the conditions on at least one 
of the Criteria lines needs to evaluate to True. In this case, Northwind has customers in 
both San Francisco and Los Angeles, so it is important to include conditions not only for 
the state, but also for the city. (One could argue that the condition on the State/Province 
column is unnecessary because no other states have a city named San Francisco, but it 
is far better when writing database queries to include additional conditions because they 
often help the DBMS process the query more efficiently; plus they avoid unnecessary 
surprises, should the query be reused later for another purpose, such as selecting a city that 
does not have a unique name.)

In this exercise, you modify the query specification from Try This 3-3 to filter the 
results to include only customers from San Francisco.

Step by Step
 1. You should be starting with a query specification matching the one shown in Figure 3-17.

 2. On the Criteria row in the City column, type San Francisco. Note that Microsoft 
Access pays no attention to the case when selecting data in queries, so you can also 
enter SAN FRANCISCO or san francisco and achieve the same result. Note that 
character constants used in an RDBMS are normally enclosed in quotation marks. 
However, Microsoft Access knows that the City column has a character data type, so it 
will add the quotes automatically, should you leave them out.
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 3. On the same row, type CA in the State/Province column. It is important to enter the 
City and State/Province criteria on the same line because you want rows returned only 
where the City is San Francisco and the State/Province is CA.

 4. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-19 with the query results shown below.

 5. To get ready for the next exercise, simply return to the Query Design panel by clicking 
the View icon just below the Office button.

Figure 3-19 Try This 3-5 (Choosing Rows to Display), query design (top) and query results 
(bottom)
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Try This 3-6 Compound Row Selection
Suppose you now want to select all customers in the state of Washington in addition to 
those in San Francisco. You must add the new criteria on a different line of the Query 
Design panel.

In this Try This exercise, you modify Try This 3-5 to include the additional customers.

Step by Step
 1. You should be starting with the query specification from Try This 3-5, as shown in 

Figure 3-19.

 2. On the Or row, enter WA in the State/Province column. Note that for a row to appear 
in the query results, it must have a value of either CA or WA in the State/Province 
column, and if the state is CA, it must also have a value of San Francisco in the City 
column. Criteria on the same line are connected with a logical AND while the criteria 
lines themselves are connected with a logical OR.

 3. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-20 with the query results shown below.

 4. To get ready for the next exercise, simply return to the Query Design panel by clicking 
the View icon just below the Office button.
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Try This 3-7 Using Not Equal
Thus far we have looked at search criteria that assumes the equal to (=) comparison 
operator. However, several other comparison operators can be used, as shown earlier in 
this chapter. Suppose, for example, you want to list all the customers who are in neither 
California (CA) nor Washington (WA). The easiest way to do this is to use the not equal to 
(<>) operator.

Figure 3-20 Try This 3-6 (Compound Row Selection), query design (top) and query results 
(bottom)

(continued)
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As queries become more complex, you’ll often find that you can write the same 
query specification in multiple ways, and that is the case here. One way is to type <>CA 
AND <>WA in a single State/Province column. Another way is to add the State/Province 
column to the query a second time, unchecking the Show box like you did in Try This 3-4, 
and typing <>CA in one of the State/Province columns and <>WA on the same Criteria 
row in the other State/Province column.

In this exercise, you will modify the query from Try This 3-6 to find all the customers 
who are in neither California (CA) nor Washington (WA).

Step by Step
 1. You should be starting with a query specification matching the one shown in Figure 3-20.

 2. Clear all the existing conditions on the Criteria lines by selecting each one (dragging 
your cursor over them while you hold down the left button on your mouse or other 
pointing device) and then pressing DELETE.

 3. On one of the Criteria rows in the State/Province column, enter this condition: <>CA 
AND <>WA. Note that Access may reformat it somewhat if you select something else 
on the Query Design panel, but the result will still be logically the same.

 4. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-21 with the query results shown below.

 5. To get ready for the next exercise, do the following:

 a. Return to the Query Design panel by clicking the View icon just below the Office 
button.

 b. Click the Customers table at the top of the Query Design panel (the rectangle that 
shows the table name along with a listing of some of the column names) and then 
press DELETE. This will clear out the form so it contains no tables, columns, or criteria.
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Figure 3-21 Try This 3-7 (Using Not Equal), query design (top) and query results (bottom)
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Try This 3-8 Joining Tables
In this exercise, you want to display three columns from the Customers table along 
with three columns from the Orders table for each order the customer has placed with 
Northwind. In relational databases, combining data from more than one table is called 
joining. Because the relationship between orders and customers is one-to-many, whenever 
a customer has multiple orders, the same information about the customer will be repeated 
in the query results for each row returned.

Understanding joins is essential to understanding relational databases. Just as one-
to-many relationships (implemented in the database as referential constraints) are the 
fundamental building blocks for relational databases, joins are the fundamental building 
blocks for relational database queries.

Step by Step
 1. You should be starting with an empty Query Design panel (no tables, columns, criteria, 

and so on, are displayed). If this is not the case, select (click) each table shown and 
press DELETE to remove it from the query.

Q: In Try This 3-7, you typed <>CA AND <>WA when selecting all the customers who 
were neither in California nor Washington. Isn’t OR the correct logical operator here?

A: Using OR in this case is absolutely incorrect! When you’re first starting out writing 
database queries, it might seem odd to use the AND logical operator here, but if you used 
OR instead, you’d end up selecting every row in the Customers table (except those with 
a NULL value in the State/Province column). Here’s why. If the criteria were <>CA OR 
<>WA, then all the Washington rows would be selected because WA is not equal to CA (the 
condition on the left side of the OR would evaluate to True), all the California rows would 
be selected because CA is not equal to WA (the condition on the right side of the OR would 
evaluate to True), and all other rows with a non-null State/Province value would be selected 
because the conditions on both sides of the OR would evaluate to True.

Ask the Expert
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 2. Click the Show Table icon (with the yellow plus sign) to display the Show Table dialog 
box, like the one shown in Figure 3-13.

 3. Select the name of the Customers table, and then click Add to add it to the query.

 4. Do the same for the Orders table, and then close the Add Table dialog box. Notice the 
line connecting the two tables on the Query Design panel. This tells you that Access 
already knows how to match up rows in these two tables (foreign key Customer ID 
in the Orders table matched to primary key ID in the Customers table) based on the 
metadata supplied by the database designer on the Relationships panel. In other words, 
this query inherited the relationship between the two tables from the one specified at a 
much earlier time on the Relationships panel. If the join condition were not included, 
you would get a Cartesian product as a result (every row in one table combined with 
every row in the other—the product of multiplying the two tables together) unless 
you added the condition by dragging your pointer from the foreign key column to the 
primary key column (the method in Access for manually adding a join condition). 
You clearly do not want your query results to look like every customer placed every 
single order, so Microsoft Access has helped you do the right thing by automatically 
inheriting the join condition.

 5. In the Customers table, double-click the ID, Company, City, and State/Province 
columns to add them to the query specification.

 6. In the Orders table, double-click Order Date, Shipped Date, and Shipping Fee to add 
these columns to the query specification. Notice that you don’t have to select the 
Customer ID column even though the join criteria will use it to find the matching row 
in the Customers table.

 7. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-22 with the query results shown below. Note the record count at the 
bottom of the query results. Even though only 29 customers exist, the results contain 
48 rows. This is because 48 orders have been placed. When a customer places multiple 
orders, the company ID, name, city, and state/province is repeated on each order. And 
customers who have no orders are not included at all because, by default, this query 
uses an inner join—where only matched rows are displayed. You’ll try an outer join, 
where unmatched rows are included, in Try This 3-10.

 8. To get ready for the next exercise, simply return to the Query Design panel by clicking 
the View icon just below the Office button.

(continued)
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Figure 3-22 Try This 3-8 (Joining Tables), query design (top) and query results (bottom)
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Try This 3-9 Limiting Join Results
In Try This 3-8, you joined the Customers and Orders tables, but the results contain 
all orders and all customers who have orders. However, if you don’t want to see all 
the orders, you can use conditions to limit the rows in the query results, just as you 
did in earlier exercises. In this Try This exercise, you will limit the rows to include 
only customers in California (CA) and only orders with an order date of April 1, 2006, 
(4/1/2006) or later. As in Try This 3-8, you will use an inner join, meaning that California 
customers who have no orders on or after April 1, 2006, will not appear in the results.

Step by Step
 1. You should be starting with the query specification from Try This 3-8, as shown in 

Figure 3-22.

 2. On the Criteria row, enter CA in the State/Province column.

 3. On the same Criteria row, enter >=4/1/2006 in the Order Date column. You might 
notice that Access changes the condition by enclosing the date value in pound signs 
(>=#4/1/2006#). This is merely the way Access delimits a date value—most RDBMSs 
use single quotes around both character strings and date values, so this is atypical 
behavior.

 4. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-23 with the query results shown below.

 5. To get ready for the next exercise, return to the Query Design panel by clicking the 
View icon just below the Office button.

(continued)
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Try This 3-10  Outer Joins
As described in Try This 3-9, the join technique you have used thus far is the inner 
join. Note that some customers in California have placed no orders, so data for those 
customers did not appear in the Try This 3-9 results. If you want to include all customers 
in California in the results, regardless of whether they have placed orders or not, you must 
use an outer join (also called an inclusive join). An outer join returns all rows from one 
(or both) of the tables, regardless of whether matching rows are found in the joined tables. 
Any data to be displayed from the table where no matching row is found is set to NULL in 
the query results. (For Microsoft Access, NULL columns appear blank.) For example, for 

Figure 3-23 Try This 3-9 (Limiting Join Results), query design (top) and query results (bottom)
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the customer who has no orders, all the columns from the Orders table would be NULL 
in the results. Keep in mind that the returned data rows are still filtered by other search 
criteria (for example, only customers from California; only orders with order dates greater 
than or equal to 4/1/2006), but whether the filtering occurs before, during, or after the 
join operation is immaterial, so long as the unwanted rows are eliminated from the query 
results. Remember, you only describe the result you want, not how it is achieved.

Three types of outer joins can be used, and, unfortunately, the industry has settled on 
potentially confusing names for them:

● Left Outer Join An outer join for which all rows are returned from the left-hand 
table in the join, and data from any matching rows found in the right-hand table is  
also returned.

● Right Outer Join An outer join for which all the rows are returned from the right-
hand table in the join, and data from any matching rows found in the left-hand table is 
also returned.

● Full Outer Join An outer join for which all rows are returned from both tables, 
regardless of whether matching data is found between them. Microsoft Access does 
not currently support this type of join.

The confusion mentioned comes from the use of left and right in the names of the 
join types. All you have to do is reverse the order of the tables in any existing query, and 
you are essentially switching it from a left outer join to a right outer join, or vice versa. 
However, Microsoft Access does not make this distinction, so all its joins are simply 
called outer joins. Instead, Access uses a dialog box named Join Properties, shown in 
Figure 3-24, to specify the type of join you want to use, with an inner join as the default.

Figure 3-24 Join Properties dialog box

(continued)
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In this Try This exercise, you will change the query from Try This 3-9 into an outer 
join so that all California customers are displayed, regardless of whether they have 
ordered since 4/1/2006.

Step by Step
 1. You should be starting with the query specification from Try this 3-9, as shown in 

Figure 3-23.

 2. To access the Join Properties dialog box (shown in Figure 3-24), double-click 
somewhere in the middle of the line between the two tables displayed on the Query 
Design panel, or as an alternative, right-click the line. As with the Relationships panel, 
it can be tricky to get the cursor pointer in exactly the right place on the line, but 
practice and a bit of patience always prevails.

 3. In the Join Properties dialog box, select the options Include ALL Records From 
‘Customers’ And Only Those Records From ‘Orders’ Where The Joined Fields Are 
Equal. It is most likely option 2, but if you added the tables to the query in the reverse 
order, it could have ended up as option 3. Click OK to close the dialog box.

 4. Since you have a condition on Order Date from the Orders table, you need to change it 
to allow for null values. For customers who have no orders, the value in the Order Date 
column will be NULL. Add the condition OR IS NULL (which can also be written as 
Or Is Null) to the condition on the Order Date column.

 5. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-25 with the query results shown below. Notice the arrow on the line 
between the two tables that points toward the Orders tables. This is the way Access 
alerts you to the fact that the join is an outer join.

 6. To get ready for the next exercise, return to the Query Design panel by clicking the 
View icon just below the Office button.
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Try This 3-11  Microsoft Access SQL
SQL is discussed in Chapter 4; however, since Microsoft Access automatically generates 
SQL for queries defined on the Query Design panel, a quick preview of SQL is in order. In 
this Try This exercise, you will display the SQL for the query created in Try This 3-10.

Figure 3-25 Try This 3-10 (Outer Joins), query design (top) and query results (bottom)

(continued)
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Step by Step
 1. You should be starting with a query specification from Try This 3-10, as shown in 

Figure 3-25.

 2. On the Query Design panel, click the arrow below the View icon (under the Office 
button) to expand the options. Select the SQL View option, as shown in the top of 
Figure 3-26. Or you could click the SQL icon on the status bar at the lower-right corner 
of the panel. One of the new features of Office 2007 is the addition of zoom and view/
window switching functions to the status bar that appears at the bottom of the various 
application panels.

 3. The SQL for the current query will be displayed as shown in the lower part of  
Figure 3-26. The SELECT keyword is followed by a list of the columns to be 
displayed in the query results. The FROM keyword is followed by the two tables 
and their outer join condition. And last is the WHERE keyword, followed by the 
conditions that limit rows to California customers and order dates that are either 
NULL or 4/1/2006 or later. This is a great product feature because you can use it not 
only to help you learn SQL, but once you know SQL, you can work back and forth 
between the Query Design View and the SQL View to develop your queries quickly. 
(Incidentally, Access SQL is the least standards-compliant of all the modern RDBMSs 
because object names can have embedded spaces.)

 4. To get ready for the next exercise, do the following:

 a. Return to the Query Design panel by clicking the View icon below the Office 
button.

 b. Clear all the selected columns and criteria by dragging your mouse pointer over the 
slim gray strips above each column (just above the Field: label). The columns will 
display as black (reverse video) as they are selected. Then press DELETE to remove 
them from the query.

 c. Change the join between the Customers and Orders tables back to an inner join. 
To do this, double-click the thin part of the line between the two tables displayed 
on the Query Design panel to display the Join Properties dialog box. Then select 
option 1 and click OK.
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Try This 3-12  Multiple Joins and Calculated Columns
When you need information from more than two tables in the same query result, you can 
simply add more tables, and therefore more join operations, to the query. The beauty of 
relational databases is that you need not be concerned with which join is best processed 
first and other such implementation details. You can trust the RDBMS to make those 
decisions for you.

Figure 3-26 Try This 3-11 (Microsoft Access SQL), query design (top) and generated SQL 
query (bottom)

(continued)
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For this Try This, consider another scenario: You want to know the total value in 
dollars of items ordered by Florida customers. Looking at the tables you have available, 
you realize that you need the Customers table, so you can filter by the State/Province 
column, and the Order Details table, because it contains the data you need to calculate 
the total value of each item ordered—namely, the quantity ordered and the unit price of 
each item. However, there is no way to join these tables directly in a meaningful way. If 
you look at the Relationships panel (see Figure 3-9), the solution becomes obvious: you 
need the Orders table as well. Then you can use the Customers table to find the Florida 
customers, join those rows to the Orders table matching the ID column (the primary key) 
with the Customer ID column in the Orders table (the foreign key) to find the orders for 
Florida customers, and finally join those rows to the Order Details table to find the line 
items on those orders. (Of course, there is no guarantee the RDBMS will actually process 
the joins in this sequence, but the end result will be the same regardless.) It should be 
clear from this example that an overall diagram of all your tables and relationships is an 
essential document because it gives you the roadmap you need when forming queries.

This example also requires a calculated column (also called a derived column), which 
is formed by multiplying the values in the Unit Price and Quantity columns in each 
row. Just about any formula that you can use in a spreadsheet can be used in a relational 
database query.

Step by Step
 1. You should be starting with a query specification that joins the Customers and Orders 

tables with a join specification (a line between them) and not other conditions, like the 
one shown in Try This 3-8 (Figure 3-22). Be certain that the join between Customers 
and Orders is an inner join and that no columns are currently included in the query 
specification.

 2. Add the Order Details table to the query by clicking the Show Table icon and selecting 
the table from the list in the Show Table dialog box.

 3. In the Customers table, add the Company and State/Province columns to the query by 
double-clicking their names. Alternatively, you can drag-and-drop the column’s name 
to the columns in the query specification.
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 4. In the Order Details table, add Unit Price and Quantity columns to the query.

 5. To add the calculated column, enter the following into the Field row of the empty 
column to the right of the Quantity column: Extended Price: [Unit Price] * Quantity. 
The first part of the entry is a label for the new column. Every column in your results 
must have a unique name, and if you don’t name it, Microsoft Access will. Default 
column names are usually not very meaningful and sometimes are just plain ugly, so 
it is always best to supply a column label (name) for calculated columns. Note that 
the spaces on each side of the multiplication operator (*) in field specifications do not 
matter, so you could have left them out. However, you must leave the space as is in the 
Unit Price column because that is the actual column name and, as a result, must also 
enclose the column name in square brackets as shown because of the embedded space. 
Chances are that Microsoft Access will rewrite your column specification by removing 
the spaces and placing square brackets around the other column name, so don’t be 
surprised if you see what you entered change on the panel when you move the cursor to 
another location.

 6. To limit the query only to customers in Florida (FL), enter FL in the Criteria row for 
the State/Province column.

 7. Add an ascending sort to the Company column either by typing the letter A in the Sort 
row for the column and pressing ENTER, or by clicking in that location and selecting 
Ascending from the list.

 8. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-27 with the query results shown below.

 9. To get ready for the next exercise, return to the Query Design panel by clicking the 
View icon just below the Office button.

(continued)
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Try This 3-13  Aggregate Functions
In reviewing the Try This 3-12 results, you probably noticed that seven rows were 
returned covering orders for two different customers in Florida. All the details are here, 
but at a glance, it is difficult to easily get a sense of the total amount that each customer 
has ordered from Northwind. What you really need to do is sum up the Extended Price 
column for each customer. In relational databases, this is done with the SUM function.

Figure 3-27 Try This 3-12 (Multiple Joins and Calculated Columns), query design (top) and 
query results (bottom)



 Chapter 3: Forms-based Database Queries 107

A function is a special type of program that returns a single value each time it is 
invoked, named for the mathematical concept of a function. Because you will use the 
function to operate on a column, it will be invoked for each row and therefore return a 
single value for each row the query handles. Sometimes the term column function is used 
to remind you that the function is being applied to a table or view column. An example of 
an ordinary column function is ROUND, which can be used to round numbers in various 
ways. Special classes of functions that combine multiple rows together into one row 
are called aggregate functions. The following table shows aggregate functions that are 
commonly used in relational databases:

Function Name Description
AVG Calculates the average value for a column

COUNT Counts the number of values found in a column

MAX Finds the maximum value in a column

MIN Finds the minimum value in a column

SUM Sums (totals up) the values in a column

If you use an aggregate function by itself in a query, you get one row back for the 
entire query. This makes sense, because there is no way for the RDBMS to know what 
other result you might want. So, if you want the aggregate result to be for groups of rows 
in the query, you need to include a GROUP BY specification to tell the RDBMS to group 
the rows by the values in one or more columns, and to apply the aggregate function to 
each group. This is much like asking for subtotals instead of a grand total for a list of 
numbers. 

For this exercise, you want the RDBMS to provide a total of the calculated column 
Extended Price for each customer. In other words, you want to group the rows by 
customer, and for each group, display a single row containing the company name, state or 
province, and total order dollar amount.

The state/province is actually unnecessary because only Florida customers are 
included in the query. However, it remains here to illustrate an important concept that 
most newcomers to relational databases have a difficult time understanding: If you select 
the Company, State/Province, and calculated Total Price columns, telling the RDBMS 
the formula for calculating the total price and asking it to group the rows in the result by 
Company, there is a hidden logic problem that will cause an error to be returned by the 
RDBMS. You have essentially asked the RDBMS to return the value of State/Province 
for every row in the query results, but, at the same time, to aggregate rows by Company 

(continued)
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and provide the calculated total for each aggregate. It is illogical to ask for some rows 
to be aggregated and others not. To make matters worse, the resulting error message is 
rather cryptic. Small wonder that we often hear aggregate functions called “aggravating” 
functions. Remember this rule: Whenever a query includes an aggregate function, then 
every column in the query results must either be formed using an aggregate function or 
be named in the GROUP BY column list. In Microsoft Access, the Totals icon (the Greek 
letter Sigma) on the ribbon toggles (hides and exposes) a line called Total on the Query 
View panel. It is the total line that lets you specify aggregate functions and groupings for 
our query.

Step by Step
 1. You should be starting with a query specification from Try This 3-12 as shown in 

Figure 3-27.

 2. Remove the Unit Price and Quantity columns by clicking in the slim gray strip above 
the field name and pressing DELETE.

 3. Change the label on the Extended Price column to Total Price. This column name will 
make more sense in the results.

 4. Click the Totals icon on the ribbon to expose the Total line in the query specification. 
By default, each column will initially have Group By specified on that line.

 5. In the Total Price column, click in the Total line and use the pull-down list to select the 
Sum function.

 6. Click the Run icon on the ribbon to run your query. The completed panel is shown at 
the top of Figure 3-28 with the query results shown below.

 7. To complete this exercise, close the Query Design panel either by clicking the Close 
button in the upper-right corner of the panel (being careful not to click the button at 
the upper-right of your Microsoft Access screen, because that will completely close 
the Access database), or right-clicking the tab that shows the query name (most likely 
Query1) and choosing Close. When asked about saving the query, click NO.
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Try This 3-14  Self-Joins
When tables have a recursive relationship built in to them, you must use a self-join 
(joining a table to itself) to resolve the relationship. Unfortunately, the 2007 version of the 
Northwind database does not have a recursive relationship built in, so you will add one to 
help facilitate a demonstration of this important concept.

Figure 3-28 Try This 3-13 (Aggregate Functions), query design (top) and query results 
(bottom)

(continued)
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In this Try This exercise, you will first add a Manager ID column in the Employees 
table. Next you will add some data to the column so that all employees except the one at 
the top of the management hierarchy have the manager’s ID assigned in the Manager ID 
column. Finally, you will create a query that lists the ID, first name, last name, and job 
title for each employee along with the manager’s name. To get the manager’s name, you 
will have to join the Employees table to itself so that Access can match the Manager ID 
(foreign key) to the row in the Employees table that contains the manager’s name.

Step by Step
 1. To add the Manager ID to the Employees table, do the following:

 a. Open the Design View panel for the Employees table, shown in Figure 3-11. To do 
so, expand the Navigation Pane along the left edge of the Access main panel, find 
the Employees table in the list of objects, right-click its name, and click Design 
View on the pop-up menu.

 b. Scroll down through the field definitions (the rows in the upper part of the Design 
View panel) until you reach the first one where the Field Name is blank. Enter 
Manager ID in the Field Name column and select Number from the drop-down 
list in the Data Type column. The completed entry should look like the one shown 
in Figure 3-29.

Figure 3-29 Employees table (design view) with Manager ID column added
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 2. To populate the newly added Manager ID column with data, do the following:

 a. Click the View icon in the ribbon to display the rows and columns of data in the 
Employees table, similar to the one shown in Figure 3-10.

 b. Scroll to the right using the scroll bar at the bottom of the panel so that the 
Manager ID column is visible. It should be the next to last one. (You may notice 
that the rightmost column displayed is for adding a new field [column] to the table. 
You could have added the new Manager ID column using this facility, but I very 
much prefer using the Design View to make table definition changes because many 
more options are available.)

 c. Type in the data values in the Manager ID column, as shown in Figure 3-30. Notice 
that no values are included in the second and last rows on the panel. The second 
row is for Sales Vice President Andrew Cencini, who is the most senior manager 
currently in the table (his manager is not currently in the table so you leave his 
manager’s ID blank, which is actually a null value). The last row is for adding new 
employees to the table, and since you are not adding new employees, but merely 
updating the existing ones, you must leave all values in this last row blank.

Figure 3-30 Employees table (Datasheet View) with Manager ID values added

(continued)
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 3. You could (and probably should) use the Relationships panel to add the relationship 
from the Manager ID column to the primary key column to define Manager ID as a 
foreign key, but since the column was added simply for the sake of a demonstration, 
you can skip that step.

 4. Create a new query by opening the Create ribbon and then clicking the Query  
Design icon.

 5. When the Show Table dialog box opens, add the Employees table to the query twice. 
This may seem odd at first, but this is the only way to tell Microsoft Access that you 
want to match each row in the Employees table with a different row (the manager’s 
row) in the same table. Note that the tables are named Employees and Employees_1 on 
the panel, even though both are really two representations of the exact same table.

 6. You can minimize the Navigation Pane and close the Employees table (Design View) if 
you want (to reduce the visual clutter on the screen).

 7. In the Employees table (on the left), scroll down until the Manager ID column is 
visible. Click its name and (while holding down the mouse button) drag-and-drop the 
name on to the ID column in the Employees_1 table. This tells Access how to join the 
Employees table to itself. The table on the left represents the employees and the one on 
the right is where you will find each employee’s manager. Don’t be overly concerned 
if this still seems confusing—we will revisit recursive relationships in subsequent 
chapters in this book.

 8. You want Andrew Cencini’s row to display, but since he has no manager in the table, 
you need to change the join to an outer join to see his row. Double-click in the line 
between the two tables, select Option 2 in the Join Properties dialog box, and click OK.

 9. From the Employees table, select the ID, First Name, Last Name, and Job Title 
columns by double-clicking each.

 10. From the Employees_1 table, select the Last Name column by double-clicking its name.

 11. At this point, you have two columns in the query named Last Name. You need to 
change one of them to avoid confusion and to comply with the RDBMS principal that 
every column has a unique name. In the Last Name column from the Employees_1 
table (the rightmost column in the query specification), click just to the left of the 
column name and enter Manager:, which assigns an alias name to the query column.

 12. Click the Run icon on the ribbon to run your query. The completed panel is shown 
at the top of Figure 3-31 with the query results shown below. Your results should be 
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similar, but since you didn’t specify a sort order, the order of rows in your results may 
be different.

 13. To complete this exercise, close the Query Design panel by either clicking on the Close 
box in the upper-right corner of the panel, or right-clicking the tab that shows the query 
name (most likely Query1) and choosing Close. When asked about saving the query, 
click NO. You can then close Microsoft Access if you want.

Figure 3-31 Try This 3-14 (Self-Joins), query design (top) and query results (bottom)

(continued)
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Try This Summary
In the 14 Try This exercises in this chapter, you explored Microsoft Access queries in a 
manner intended to demonstrate the basic features that you will use the most. Obviously 
there are many more features to explore. But it is time to move on to SQL, the topic of the 
next chapter.

 Chapter 3 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank questions. 
Note that there may be more than one correct response to each question.

 1. A forms-based query language

 A Was first developed by IBM in the 1980s

 B Describes how a query should be processed rather than what the results should be

 C Resembles SQL

 D Uses a GUI (graphical user interface)

 E Was shown to be clearly superior in controlled studies

 2. The object types in Microsoft Access that relate strictly to database management  
(as opposed to application development) are

 A Tables

 B Queries

 C Forms

 D Macros

 E Modules

 3. When a table is deleted from the Microsoft Access Relationships panel, what happens next?

 A It is immediately deleted from the database.

 B It remains unchanged in the database and is merely removed from the 
Relationships panel.

✓
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 C It remains in the database, but all data rows are deleted.

 D Relationships belonging to the table are also deleted.

 4. Relationships on the Microsoft Access Relationships panel represent ____________ in 
the database.

 5. A column in the results of a Microsoft Access query can be formed from

 A A table column

 B A query column

 C A constant

 D A calculation

 E All of the above

 6. When a query with no criteria included is executed, the result is

 A An error message

 B No rows being displayed

 C All the rows in the table being displayed

 D None of the above

 7. When sequencing (sorting) of rows is not included in a database query, the rows 
returned by the query are in ____________ order.

 8. In a query, the search criteria REGION NOT = “CA” OR REGION NOT =“NV” will 
display

 A An error message

 B All the rows in the table

 C Only the rows in which Region is equal to “CA” or “NV”

 D All the rows in the table except those in which Region is NULL

 E All the rows in the table except those in which the Region is “CA” or “NV”

 9. Criteria on different lines in a Microsoft Access query are connected with the ________ 
logical operator.
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 10. The join connector between tables in a Microsoft Access query may

 A Be manually created by dragging a column from one table or view to a column of 
another table or view

 B Be inherited from the metadata defined on the Relationships panel

 C Be altered to define left, right, and full outer joins

 D Cause a Cartesian product if not defined between two tables or views in the query

 E All of the above

 11. When an outer join is used, column data from tables (or views) in which no matching 
rows were found will contain ____________.

 12. An aggregate function

 A Combines data from multiple columns together

 B Combines data from multiple rows together

 C May be applied to table columns but not to calculated columns

 D Requires that every column in a query be either an aggregate function or named  
in the GROUP BY list for the query

 E All of the above

 13. Self-joins in a query are a method of resolving a ____________.

 14. The column name of a calculated column in the query results is ____________ when 
not provided in the query definition.

 15. Tables may be joined

 A Using only the primary key in one table and a foreign key in another

 B Using any column in either table (theoretically)

 C Only to themselves

 D Only to other tables

 E Only using the Cartesian product formula
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Key Skills & Concepts

● A Brief History of SQL

● Getting Started with Oracle SQL

● Where’s the Data?

● Data Query Language (DQL): The SELECT Statement

● Data Manipulation Language (DML) Statements

● Data Definition Language (DDL) Statements

● Data Control Language (DCL) Statements

This chapter introduces Structured Query Language (SQL), which has become the 
universal language for relational databases in that nearly every DBMS in modern use 

supports it. The reason for this wide acceptance is clearly the time and effort that went 
into the development of language features and standards, making SQL highly portable 
across different RDBMS products.

In this chapter I use Oracle and its sample HR (Human Resources) schema to demonstrate 
SQL. A schema is the collection of database objects that belong to a particular database user 
(the HR user in this case). Oracle Database 10g Express Edition (10g XE), which requires 
no license fee, can be downloaded at no charge from www.oracle.com/technology/software/
products/database/index.html. Oracle 10g XE includes a human resources (HR) sample 
schema that I use in the examples and Try This exercises in this chapter. You will learn more 
if you try the SQL statements yourself, so it should be well worth your effort to download and 
install the software. Documentation specific to 10g XE can be found at www.oracle.com/pls/
xe102/homepage.

NOTE
Because Oracle provides 10g XE without charging a license fee, significant restrictions 
are imposed regarding how the product may be used. If you plan to use it for purposes 
beyond merely learning SQL and trying out Oracle, you should carefully read the 
licensing information provided with the product.

Except as noted, every command and feature demonstrated in this chapter meets 
current SQL standards and therefore should work correctly in any DBMS that supports SQL. 
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However, without the Oracle HR sample schema, you will have to create sample tables 
like the ones Oracle provides and populate them with data to run the exact statements 
included in this chapter. By convention, all the SQL statements are shown in uppercase. 
However, Oracle is not case sensitive for either SQL commands or database object names, 
so you can type the commands in uppercase, lowercase, or mixed case as you follow 
along on your own computer. But do keep in mind that data in Oracle is case sensitive, so 
whenever you type a data value that is to be stored in the database or is to be used to find 
data in the database, you must type it in the proper case.

NOTE
Oracle has released Database 11g. However, as of this writing, the Express Edition (XE) 
is available only in the Database 10g version, and that is the version available on the 
Oracle Database Software Downloads web page. If a newer version of XE becomes 
available, you may find it listed on the web page, and it will most likely work just fine 
for the purposes of following along with the examples and Try This exercises in this 
book—although, of course, the user interface might be different.

As stated in the previous chapter, SQL is a command-based language. SQL statements are 
formed in clauses using keywords and parameters. The keywords used are usually reserved 
words for the DBMS, meaning they cannot be used for the names of database objects. 
The clauses usually have to appear in a prescribed sequence. SQL statements should be 
terminated with a semicolon (;). The program you use to connect to the database and interact 
with it is called an SQL client. Other clients are available from Oracle, including SQL*Plus, 
iSQL*Plus, and SQL Developer, but I use Oracle Application Express in this chapter because 
it comes with Oracle 10g XE and therefore is ready for use as soon as 10g XE is installed.

Some SQL clients will not run an SQL statement unless it ends with a semicolon or a 
slash (the slash being an Oracle extension to the standard). But, most of the GUI or web-
based clients such as Oracle Application Express do not require a termination character, 
because a button or icon is clicked to tell the client when you are ready to run the 
statement. Beyond the restrictions I have mentioned, SQL is freeform, with one or more 
spaces separating language elements and line breaks permitted between any two elements 
(but not in the middle of an element).

SQL statements can be divided into the following categories:

● Data Query Language (DQL) Statements that query the database but do not alter 
any data or database objects. This category contains the SELECT statement. Not all 
vendors make a distinction here; many lump DQL into DML, as defined next.

● Data Manipulation Language (DML) Statements that modify data stored in 
database objects (that is, tables). This category contains the INSERT, UPDATE,  
and DELETE statements.



 120 Databases: A Beginner’s Guide

● Data Definition Language (DDL) Statements that create and modify database 
objects. Whereas DML and DQL work with the data in the database objects, DDL 
works with the database objects themselves. In other words, DDL manages the data 
containers whereas DML manages the data inside the containers. This category 
includes the CREATE, ALTER, and DROP statements.

● Data Control Language (DCL) Statements that manage privileges that database 
users have regarding the database and objects stored in it. This category includes the 
GRANT and REVOKE statements.

Representative statements in each of these categories are presented in the sections that 
follow. But first, we’ll cover a little bit of the history of the language.

A Brief History of SQL
The forerunner of SQL, which was called QUEL, first emerged in the specifications for 
System/R, IBM’s experimental relational database, in the late 1970s. However, two other 
products, with various names for their query languages, beat IBM to the marketplace 
with the first commercial relational database products: Relational Software’s Oracle and 
Relational Technology’s Ingres. IBM released SQL/DS in 1982, with the query language 
named Structured English Query Language (SEQUEL). However, when IBM learned 
that SEQUEL was a trademark owned by Hawker Siddeley Aircraft Company of the UK, 
the name was changed to SQL. As a result of the name change, you will hear the name 
pronounced both as a word (sequel) and as a string of letters (S-Q-L), and while the later is 
generally preferred, both are considered correct.

SQL standards committees were formed by ANSI (American National Standards 
Institute) in 1986 and ISO (International Organization for Standardization) in 1987. Two 
years later, the first standard specification, known as SQL-89, was published. The standard 
was expanded three years later into SQL-92, which weighed in at roughly 600 pages. The 
third generation, published in 1999, was called SQL-99, or SQL3. Additional revisions 
were published in 2003 (SQL:2003) and 2006 (SQL:2006), and work continues on the 
SQL standard. The revisions published in 1999 and later incorporate many of the object 
features required for SQL to operate on an object-relational database, as well as language 
extensions to make SQL computationally complete (adding looping, branching, and case 
constructs) and additional features such as Extensible Markup Language (XML). Most 
current RDBMS products comply with the standard to one degree or another.

Nearly every vendor has added extensions to SQL, partly because they wanted 
to differentiate their products, and partly because market demands pressed them into 
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implementing features before standards existed for them. One case in point is support 
for the DATE and TIMESTAMP data types. Dates are highly important in business data 
processing, but the developers of the original RDBMS products were computer scientists 
and academics, not business computing specialists, so such a need was unanticipated. As 
a result, the early SQL dialects did not have any special support for dates. As commercial 
products emerged, vendors responded to pressure from their biggest customers by 
hurriedly adding support for dates. Unfortunately, this led to each doing so in its own way. 
Whenever you migrate SQL statements from one vendor to another, beware of the SQL 
dialect differences. SQL is highly compatible and portable across vendor products, but 
complete database systems can seldom be moved without some adjustments.

Getting Started with Oracle SQL
As mentioned, Oracle provides several different client tools (SQL clients) for managing 
the formation and execution of SQL statements and the presentation of results. These are 
called client tools because they normally run on the database user’s workstation and are 
capable of connecting remotely to databases that run on other computer systems, which 
are often shared servers. It is not unusual for the client tools also to be installed on the 
server alongside the database for easy administration, allowing the DBA logged in to the 
server to access the database without the need for a client workstation. However, for the 
Personal and Express editions of Oracle, the database itself, along with the client tools, is 
installed on an individual user’s workstation or handheld device.

The examples and Try This exercises in this chapter focus on Oracle. However, if you 
use a different RDBMS, client tools will be available for it as well, usually provided by 
the RDBMS vendor. For example, Microsoft SQL Server has both a GUI tool (SQL Server 
Management Studio) and a command-line tool (OSQL) available. Most commercial 
DBMS products have express editions that you can install and use without purchasing 
a license, and open source products, such as MySQL and PostgreSQL (a derivative of 
Ingres) also exist. However, as mentioned, if you use a different product, you will be on 
your own to create tables resembling the Oracle HR sample schema and to populate them 
with data.

Once you have installed Oracle 10g XE, you can start Application Express by 
choosing Start | Programs | Oracle Database 10g Express Edition | Go To Database Home 
Page. (If you are using Windows Vista, the Programs option will appear as All Programs.) 
Your default web browser (usually Microsoft Internet Explorer, but you may have another 
default such as Mozilla Firefox) will launch and a login page like the one shown in  
Figure 4-1 will be displayed.
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Figure 4-1  Oracle Application Express Login page

Try This 4-1 Unlock the HR Account and Log in as HR
The HR user account is locked by default, so you will need to log in as SYSTEM (the 
master account for an Oracle database) and unlock it before you can use it. You will need the 
password you provided when you installed Oracle 10g XE in order to log in as SYSTEM. 
Keep in mind that while Oracle user accounts are not case sensitive, Oracle passwords are. 
In this Try This exercise you will unlock the HR account and assign a password to it, and 
then log in as the HR user.

Step by Step
 1. If you do not already have Oracle Application Express running, launch it from your 

Start menu.

 2. Enter SYSTEM in the Username field on the Login page.

 3. In the Password field, enter the password you chose for the SYSTEM account when 
you installed 10g XE.

 4. Click the Login button to open the main Application Express page, shown in Figure 4-2. 
The options available are explained later in this section.
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 5. Click the arrow next to the Administration icon and choose Database Users. The list 
of current database user accounts will display next, and in all likelihood, the only one 
listed will be HR.

 6. Click the icon for the HR user to display the Manager Database User page for that 
account, as shown in Figure 4-3.

 7. Choose a password for the HR account and enter it in the Password and Confirm  
Password fields.

 8. Using the pull-down menu in the Account Status field, choose Unlocked.

Figure 4-2  Application Express main page

(continued)
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 9. Click the Alter User button. You will be returned to the previous page (the list of user 
accounts) with a confirmation message displayed across the page in a gray box.

 10. Click the Logout link near the upper-right corner of the page. A page confirming  
the logout will be displayed.

 11. Click the Login link to return to the Login page shown in Figure 4-1.

 12. Enter the Username (HR) and the password you selected in the appropriate fields and 
click the Login button. The Applications Express main page, shown in Figure 4-2, will 
again be displayed.

Figure 4-3  Manage Database User page
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Try This Summary
In this Try This exercise you unlocked the HR user account that came with your Oracle 
10g XE database, assigned a password to it, and then logged in as the HR user. You are 
now prepared to use the HR sample schema to explore SQL.

On the Application Express main page (Figure 4-2), you should see four (or perhaps 
five) icons, each of which provides a set of functions. Here is a brief overview of each 
option:

● Administration This option provides tools for administering the DBMS (including 
storage and memory settings), for managing user accounts (as you already used in 
unlocking the HR account), and for monitoring the database to identify and deal with 
performance issues.

● Object Browser This option provides tools to create and browse database objects 
(tables, views, indexes, and so forth). The Object Browser is used in the next topic in 
this chapter to explore the objects in the HR schema.

● SQL The SQL option provides three SQL tools: SQL Commands, which is used 
extensively in this chapter to edit and submit SQL statements and view the results; 
SQL Scripts, which lets you edit, save, and execute scripts containing multiple SQL 
commands; and Query Builder, a graphical query tool similar in concept to the Access 
Query tool that was discussed in detail in Chapter 3.

● Utilities This option provides tools for moving data between database tables and 
external files, generating DDL statements for existing database objects, generating 
a variety of reports, and managing the recycle bin that 10g XE provides for dropped 
database objects.

● Application Builder This option is not shown in Figure 4-2 because it is not 
available to all users. However, it has been enabled for the HR user, so you will likely 
see it on the main page. The Application Builder provides tools for the development 
and management of web-based applications that use the database. Since this option 
is about application programming instead of database management, it is beyond the 
scope of this book.

Of all the tools provided in 10g XE, the SQL Commands tool is used almost 
exclusively in this chapter. From the main page, select the arrow next to the SQL icon 
and then choose SQL Commands to open the page shown in Figure 4-4. The page is quite 
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simple to use. You type SQL commands in the empty area in the upper half of the page, 
click the Run button and the query results are displayed in the lower half of the page.

You should, however, be aware of some other options on the page:

● The Autocommit check box (above the area where SQL commands are entered) 
determines whether or not changes to the database are automatically committed. 
Autocommit is covered in more detail in the “Transaction Support (COMMIT and 
ROLLBACK)” section later in this chapter.

● The Display setting (next to the Autocommit box) determines the maximum number 
of rows that will appear in the result sets displayed in the lower half of the page. The 
default is 10, which means you will see only the first 10 rows of the results of any 
SQL command that you run. You will need to set this value higher for some of the 
examples presented later in this chapter.

● The Save button allows you to save a query, giving it a name that can be used to find it 
at a later time when you want to reuse it.

Figure 4-4  Oracle 10g XE SQL Commands page
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● The Explain option provides an explanation of how the SQL engine will run the query. 
We will look at it further in the “Performance Tuning” section in Chapter 11.

● The Describe option tells you how to use the Oracle DESCRIBE command to 
view the definition of objects stored in the database. The next section looks at the 
DESCRIBE command.

● The Saved SQL option allows you to find and retrieve SQL commands that you stored 
using the Save button.

● The History option provides a list of SQL statements you have previously run, 
allowing you to select one of them for reuse.

Where’s the Data?
Although the focus of this chapter is SQL, you cannot write SQL statements without 
having at least a basic understanding of the tables that hold the data you want to access. 
When using a graphical query tool such as the Access Query tool or the Oracle 10g XE 
Query Builder, database objects and definitions are presented to you graphically as you 
create the query. However, when you are using SQL commands and you need to reference 
the database object definitions, you must do so using a separate tool. The basic methods 
for doing this are either by using catalog views (special views provided by the RDBMS 
that present database metadata that documents the database contents), or by using a 
graphical tool specifically designed to present the database metadata. I discuss each of 
these in the sections that follow.

Finding Database Objects Using Catalog Views
Oracle provides a comprehensive set of catalog views that can be queried to show the 
names and definitions of all database objects available to a database user. Most other 
RDBMSs have a similar capability, but of course the names of the views vary. By issuing 
a SELECT statement against any of these views, you can display information about your 
database objects. For complete information on the available catalog views, consult the 
Oracle 10g Database Reference, available via the “Reference” link at www.oracle.com/
pls/db102/homepage. Here are the most useful views:

● USER_TABLES Contains one row of information for each table in the user schema. 
This view contains a lot of columns, but the one of most interest, TABLE_NAME, 
is the first column in the view. Once you know the table names, the DESCRIBE 
command can be used on each to reveal more information about the table definitions. 
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Figure 4-5 shows an example of selecting everything from the USER_TABLES view. 
Here is the SQL statement:

SELECT * 
  FROM USER_TABLES;

NOTE
The SQL SELECT statement, shown in Figure 4-5, is described in more detail a little 
further along in this chapter.

● USER_TAB_COLUMNS Contains one row of information for each column of the 
tables contained in the current user schema. Like the USER_TABLES view, it contains 
a lot of columns, but the most useful ones are TABLE_NAME, COLUMN_NAME, 
DATA_TYPE, DATA_LENGTH, DATA_PRECISION, DATA_SCALE, NULLABLE, 
and DATA_DEFAULT. If you read the discussion of data types in Chapter 2, the 
contents of these columns should be self-evident based on their names.

Figure 4-5  Selecting all columns from USER_TABLES
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● USER_VIEWS Contains one row of information for each view in the user schema, 
containing, among other things, the name of the view and the text of the SQL 
statement that forms the view. Note that catalog views are not included because they 
belong to a different schema called SYS.

As an alternative to wading through the USER_TAB_COLUMNS view to find the 
definition of an individual table or view, Oracle provides the DESCRIBE command. The 
syntax is very simple: just type the keyword DESCRIBE followed by the table or view name 
and run the command. This command is particular to Oracle, but it works on all of Oracle’s 
SQL clients. Figure 4-6 shows the DESCRIBE command run (using the SQL Commands 
page) for the EMPLOYEES table in the HR schema. The command is very simple:

DESCRIBE EMPLOYEES

Figure 4-6  DESCRIBE command run for the EMPLOYEES table



 130 Databases: A Beginner’s Guide

Try This 4-2

Viewing Database Objects Using the Object Browser
For those less inclined to type SQL commands, Oracle provides several GUI tools, including 
the Object Browser included in 10g XE’s Application Express. For other editions of Oracle, 
the SQL Developer product provides similar capabilities, and a number of tools are also 
available from third-party software vendors. Most other RDBMS vendors also provide 
graphical tools, such as the SQL Server Management Studio from Microsoft.

  Using the Application Express Object 
Browser

In this Try This exercise, you will use the Object Browser in Application Express.

Step by Step
 1. If you do not have Application Express running, start it and log in to the HR user 

account; if you do already have it running, click the Home link near the upper-right 
corner of the page to go to the main page.

 2. Click the Object Browser icon on the main page. You can also use the arrow next to 
the icon to activate the pull-down menu and select the Browse and Tables options. 
(Browsing tables is the default when you simply click the icon.)

 3. The tables defined in the current schema (HR) are listed along the left margin. Click 
the EMPLOYEES table. The metadata for the table is retrieved from the catalog views 
by the Object Browser and graphically displayed in the main part of the page, as shown 
in Figure 4-7. Note all the options displayed above the table metadata that permit an 
authorized user to alter the table definition or to look at the data contained in the table.

 4. Click the Home link (near the upper-right corner of the page) to return to the main page.

Try This Summary
In this Try This exercise, you used the Application Express Object Browser to view the 
definition of the EMPLOYEES table (the same table for which the DESCRIBE command 
was shown in Figure 4-6). Keep in mind that the Object Browser is designed primarily 
for displaying and allowing changes to object definitions (the metadata) rather than the 
actual data stored in the database tables. In the next section, we will look at the SELECT 
statement in detail and how it can be used to view the data stored in database tables.
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Data Query Language (DQL):  
The SELECT Statement

The SELECT statement retrieves data from the database. Following are the clauses of  
the statement, which are demonstrated in the following sections:

● SELECT Lists the columns that are to be returned in the results

● FROM Lists the tables or views from which data is to be selected

Figure 4-7  Application Express Object Browser with EMPLOYEES table metadata displayed
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● WHERE Provides conditions for the selection of rows in the results

● ORDER BY Specifies the order in which rows are to be returned

● GROUP BY Groups rows for various aggregate functions

Although it is customary in SQL to write keywords in uppercase, this is not necessary 
in most implementations. The RDBMS SQL interpreter will usually recognize keywords 
written in uppercase, lowercase, or mixed case. In Oracle SQL, all database object names 
(tables, views, synonyms, and so on) may be written in any case, but Oracle automatically 
changes them to uppercase during processing because all Oracle database object names 
are stored in uppercase in Oracle’s metadata unless the names are enclosed in double-
quotes. Be careful with other versions of SQL, however. For example, both Sybase ASE 
and Microsoft SQL Server can be set to a case-sensitive mode, where object names 
written in different cases are treated as different objects. Also, MySQL is case-sensitive 
on platforms that are case-sensitive, such as Unix and Linux. In case-sensitive mode, the 
following would be considered different tables: EMPLOYEES, Employees, employees.

The topics that follow provide descriptions and examples of ways to use the SELECT 
statement to retrieve data from the database. This is not intended to be an exhaustive 
survey of the capabilities of the SELECT statement, but rather an overview to acquaint 
you with its extensive capabilities. The figures used to illustrate the examples all use the 
Oracle 10g XE HR sample schema and the SQL Commands option within Application 
Express. SQL is best learned by trying it, so I urge you to try these examples as you read.

Listing All Rows and Columns
The asterisk (*) symbol may be used in place of a column list to select all columns in a 
table or view. This is a useful feature for listing data quickly, but it should be avoided in 
statements that will be reused, because any new column will be automatically selected 
the next time the statement is run, which compromises logical data independence. Note 
also that in SQL syntax, tables, views, and synonyms (an alias for a table or view) are 
all referenced in the same way. This is because the names of these come for the same 
namespace, meaning that a name of a table, for example, must be unique among all tables, 
views, and synonyms defined in particular schema. Figure 4-8 shows an SQL statement 
that uses the SELECT * clause to list all rows and columns in the EMPLOYEES table 
along with part of the query results. Here is the SQL statement:

SELECT * 
  FROM EMPLOYEES;
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This is the simplest form of the SELECT statement, using only the SELECT and 
FROM clauses. Note that I changed the Display setting on the SQL Commands page 
from the default of 10 to a much higher value (100,000) because the EMPLOYEES table 
contains 107 rows and, using the default, only the first 10 rows would appear in the query 
results. No computer screen is large enough to show a result set this large, so you’ll have 
to use the scroll bar along the right edge of the page to scroll through all the rows in the 
result set.

Limiting Columns to Display
To specify the columns to be selected, provide a comma-separated list following the 
SELECT keyword instead of an asterisk. Keep in mind that the list in the SELECT 
clause actually provides expressions that describe the columns desired in the query results, 
and although many times these expressions are merely column names from tables or views, 

Figure 4-8  Using SELECT * to list all rows and columns of the EMPLOYEES table
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they may also be any constant or formula that SQL can interpret and form into data values 
for the column. Examples later in this chapter show you how to use formulas and constants 
to form query columns. Figure 4-9 shows the SQL for selecting the LAST_NAME, 
FIRST_NAME, HIRE_DATE, and SALARY columns from the EMPLOYEES table along 
with partial query results. Here is the SQL statement:

SELECT LAST_NAME, FIRST_NAME, HIRE_DATE, SALARY 
  FROM EMPLOYEES;

Sorting Results
Just as with Microsoft Access queries, with SQL there is no guarantee as to the sequence 
of the rows in the query results unless the desired sequence is specified in the query. In 
SQL, providing a comma-separated list following the ORDER BY keyword does this. 

Figure 4-9  Selecting four columns from the EMPLOYEES table
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Figure 4-10 shows the SQL from the preceding example with row sequencing added. Here 
is the SQL statement:

SELECT LAST_NAME, FIRST_NAME, HIRE_DATE, SALARY 
  FROM EMPLOYEES 
 ORDER BY LAST_NAME, FIRST_NAME;

Note the following points:

● Ascending sequence is the default for each column, but the keyword ASC can be 
added after the column name for ascending sequence, and DESC can be added for 
descending sequence.

● The column(s) named in the ORDER BY list do not have to be included in the query 
results (that is, the SELECT list). However, this is not the best human engineering.

Figure 4-10  EMPLOYEES table query with ORDER BY clause added



 136 Databases: A Beginner’s Guide

● Instead of column names, the relative position of the columns in the results can be 
listed. The number provided has no correlation with the column position in the source 
table or view, however. This option is frowned upon in formal SQL because someone 
changing the query at a later time might shuffle columns around in the SELECT 
list and not realize that, in doing so, they are changing the columns used for sorting 
results. In this example, another ORDER BY clause can be used to achieve the same 
query results: ORDER BY 1,2.

Choosing Rows to Display
SQL uses the WHERE clause for the selection of rows to display. Without a WHERE 
clause, all rows found in the source tables and/or views are displayed. When a WHERE 
clause is included, the rules of Boolean algebra, named for logician George Boole, are 
used to evaluate the WHERE clause for each row of data. Only rows for which the 
WHERE clause evaluates to a logical true are displayed in the query results.

As you will see in the examples that follow, individual tests of conditions must 
evaluate to either true or false. The conditional operators supported are the same as 
those presented in Chapter 3 (=, <, <=, >, >=, and <>). If multiple conditions are tested 
in a single WHERE clause, the outcomes of these conditions can be combined together 
using logical operators such as AND, OR, and NOT. Parentheses can be (and should be) 
added to complex statements for clarity and to control the order in which the conditions 
are evaluated. A rather complicated order of precedence is used when multiple logical 
operators appear in one statement. However, it is far simpler to remember that conditions 
inside a pair of parentheses are always evaluated first, and to include enough sets of 
parentheses so there can be no doubt as to the order in which the conditions are evaluated.

A Simple WHERE Clause
Figure 4-11 shows a simple WHERE clause that selects only rows where SALARY is 
equal to 11000. The SQL statement used is

SELECT LAST_NAME, FIRST_NAME, HIRE_DATE, SALARY 
  FROM EMPLOYEES 
 WHERE SALARY = 11000 
 ORDER BY LAST_NAME, FIRST_NAME;

The BETWEEN Operator
SQL provides the BETWEEN operator to assist in finding ranges of values. The end 
points are included in the returned rows. Figure 4-12 shows the use of the BETWEEN 
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operator to find all rows where SALARY is greater than or equal to 10000 and SALARY 
is less than or equal to 11000. Here is the SQL statement:

SELECT LAST_NAME, FIRST_NAME, HIRE_DATE, SALARY 
  FROM EMPLOYEES 
 WHERE SALARY BETWEEN 10000 AND 11000 
 ORDER BY LAST_NAME, FIRST_NAME;

Here’s an alternative way to write an equivalent WHERE clause:

        WHERE SALARY >= 10000 
          AND SALARY <= 11000

The LIKE Operator
For searching character columns, SQL provides the LIKE operator, which compares the 
character string in the column to a pattern, returning a logical true if the column matches the 
pattern, and false if not. The underscore character (_) can be used as a positional wildcard, 
meaning it matches any character in that position of the character string being evaluated.  
The percent sign (%) can be used as a nonpositional wildcard, meaning it matches any 

Figure 4-11  SELECT with a simple WHERE clause
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number of characters for any length. Note that Microsoft Access uses a similar feature, 
but the wildcard characters are different (they match those in DOS and Visual Basic): 
The question mark (?) is the positional wildcard, and the asterisk (*) is the nonpositional 
wildcard. The following table provides some examples:

Pattern Interpretation
%Now Matches any character string that ends with Now

Now% Matches any character string that begins with Now

%Now% Matches any character string that contains Now (whether at the beginning, 
the middle, or the end)

N_w Matches any string of exactly three characters, where the first character is N 
and the third character is w

%N_w% Matches any string that contains the character N followed by any character, 
which is in turn followed by the character w and continues with any number 
of characters

Figure 4-12  SELECT using the BETWEEN operator
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Figure 4-13 shows the use of the LIKE operator to display only rows where the 
FIRST_NAME column starts with the text Pete. Here is the SQL statement:

SELECT LAST_NAME, FIRST_NAME, HIRE_DATE, SALARY 
  FROM EMPLOYEES 
 WHERE FIRST_NAME LIKE 'Pete%' 
 ORDER BY LAST_NAME, FIRST_NAME;

Compound Conditions Using OR
As stated earlier, multiple conditions can be combined using the OR operator. Figure 4-14 
shows a WHERE clause that selects rows having either a FIRST_NAME column beginning 
with Pete or a SALARY column that is between 10000 and 20000 inclusive. The SQL 
statement is:

SELECT LAST_NAME, FIRST_NAME, HIRE_DATE, SALARY 
  FROM EMPLOYEES 

 WHERE FIRST_NAME LIKE 'Pete%' 
    OR SALARY BETWEEN 10000 AND 11000 
 ORDER BY LAST_NAME, FIRST_NAME;

Figure 4-13  SELECT using the LIKE operator
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Note that in the preceding example, three rows were returned when we searched only 
on names beginning with Pete. However, because we used the OR operator in the latest 
example, we get not only the three rows matching Pete but also eight more rows that 
match the salary range provided but not the Pete criteria.

Figure 4-15 changes the OR operator in the preceding example (Figure 4-14) to the 
AND operator. Note that only one row is returned now, because both conditions must be 
true for a row to appear in the query results, and there is only one such row in the table. 
The SQL statement is:

SELECT LAST_NAME, FIRST_NAME, HIRE_DATE, SALARY 
  FROM EMPLOYEES 

 WHERE FIRST_NAME LIKE 'Pete%' 
   AND SALARY BETWEEN 10000 AND 11000 
 ORDER BY LAST_NAME, FIRST_NAME;

Figure 4-14  SELECT with compound conditions using the OR operator
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The Subselect
A very powerful feature of SQL is the subselect (or subquery), which, as the name 
implies, refers to a SELECT statement that contains a subordinate SELECT statement. 
This can be a very flexible way of selecting data.

Let’s assume that we want to list all employees who work in sales. The dilemma 
is that the DEPARTMENTS table in the sample HR schema contains several sales 
departments, including Sales, Government Sales, and Retail Sales. We could place 
literals for those three department names or their corresponding department IDs in 
the WHERE clause of our SELECT statement. However, the problem we then face 
is maintenance of the query if a sales-related department is subsequently added or 
eliminated. A safer approach is to use an SQL query to find the applicable department 
IDs when the query is run and then use that list of IDs to find the employees. The query 
to find the department IDs is simple enough:

SELECT DEPARTMENT_ID 
  FROM DEPARTMENTS 
 WHERE DEPARTMENT_NAME LIKE '%Sales%';

Figure 4-15  SELECT with compound conditions using the AND operator
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If we place the preceding SELECT statement in the WHERE clause of a query that 
lists the employee information of interest, we arrive at the query shown in Figure 4-16. 
Note that SQL syntax requires the subselect to be enclosed in a pair of parentheses:

SELECT LAST_NAME, FIRST_NAME, HIRE_DATE, SALARY 
  FROM EMPLOYEES 
 WHERE DEPARTMENT_ID IN 
       (SELECT DEPARTMENT_ID 
          FROM DEPARTMENTS 
         WHERE DEPARTMENT_NAME LIKE '%Sales%') 
 ORDER BY LAST_NAME, FIRST_NAME;

The statement used in this example is said to contain a noncorrelated subselect 
because the inner SELECT (that is, the one inside the WHERE clause) can be run first and 
the results used when the outer SELECT is run. There also is such a thing as a correlated 

Figure 4-16  SELECT with a subselect
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subselect (or subquery), where the outer query must be invoked multiple times—once for 
each row found in the inner query. Consider this example:

SELECT LAST_NAME, FIRST_NAME, SALARY, DEPARTMENT_ID 
  FROM EMPLOYEES A 
 WHERE SALARY > 
        (SELECT AVG(SALARY) 
           FROM EMPLOYEES B 
          WHERE A.DEPARTMENT_ID = B.DEPARTMENT_ID);

This query finds all employees whose salary is above the average salary for their 
department. The inner SELECT finds the average salary for each department. The outer 
SELECT is then executed for each row returned from the inner SELECT (that is, for each 
department) to find all employees for that department whose salary is above the average 
for that department. You may recognize the AVG function, which was introduced back in 
Chapter 3. We will review using aggregate functions in an upcoming SQL example.

Joining Tables
As you learned in Chapter 3, you need to join tables (or views) whenever you need data 
from more than one table in your query results. In SQL, you specify joins either by listing 
the tables or views to be joined in a comma-separated list in the FROM clause of the 
SELECT statement or by using the newer JOIN clause in conjunction with the FROM 
clause. In this section, you will explore those options in detail.

The Cartesian Product
When specifying joins, it is important to tell the RDBMS how to match rows in the tables 
(or views) being joined. However, SQL does not remind you to do so. If you forget,  

Q: Are any performance issues associated with subselects?

A: Yes, performance issues can be associated with subselects. In general, the more rows the 
inner SELECT returns, the higher the risk of a performance problem. This is especially true 
with correlated subselects because the outer SELECT must be run for every row returned 
by the subselect.

Ask the Expert
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you will get a Cartesian product (named for French mathematician René Descartes), as 
shown in this SQL statement and Figure 4-17:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, DEPARTMENT_NAME 
  FROM EMPLOYEES, DEPARTMENTS;

Whenever you write a new query, you should apply a “reasonableness” test to the 
results. The SQL query in Figure 4-17 looks fine on the surface, but if you scroll to  
the bottom of the result set, you will see that 2889 rows are returned by the query. When 
you consider that there are only 107 employees, you realize something is horribly wrong. 
How could the query possibly result in 2889 rows simply by joining employees and 
departments? The answer: this query failed to include a join specification in either the 
WHERE clause or JOIN clause, so the RDBMS created a Cartesian product, joining each 
employee with every department, and 27 departments times 107 employees yields 2889 
(27 * 107) rows. Oops!

Figure 4-17  Join resulting in a Cartesian product
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The Inner Join of Two Tables
Figure 4-18 shows the correction, which involves adding a WHERE clause that tells the 
DBMS to match the DEPARTMENT_ID column in the EMPLOYEES table (the foreign 
key) to the DEPARTMENT_ID column in the DEPARTMENTS table (the primary key). 
The corrected SQL statement is shown here:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, DEPARTMENT_NAME 
  FROM EMPLOYEES, DEPARTMENTS 
 WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID;

This gets a much more reasonable result, with 106 rows. If you scroll through the 
results, you can see that each employee is only listed once. You may notice that one row is 
missing, since 107 employees exist. The reason for this and the modification to the query 
so that all 107 employees are displayed is covered in next topic, “The Outer Join.”

Figure 4-18  Inner join of two tables using the WHERE clause
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Placing the join condition in the WHERE clause was the original join method in SQL. 
However, a JOIN clause has been added to the SQL standard and is now the preferred 
method for writing join conditions. The JOIN clause not only improves readability by 
separating the join condition from conditions intended to filter unwanted rows out of the 
result set, but it is also more flexible, as you will see in upcoming examples. Figure 4-19 
shows the SQL statement from Figure 4-18 rewritten to use the JOIN clause. Note that the 
query results are exactly the same. Here is the modified SQL statement:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, DEPARTMENT_NAME 
  FROM EMPLOYEES JOIN DEPARTMENTS 
    ON EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID;

The Outer Join
The queries shown in Figures 4-18 and 4-19 returned only 106 employees, and yet 107 rows 
exist in the EMPLOYEES table. This result is because we performed an inner join. Rows 
were returned only when a matching department row was found for an employee—and 

Figure 4-19  Inner join of the two tables using the JOIN clause
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there is one employee (Kimberely Grant) who is not assigned to a department. We can 
correct this problem by changing our inner join to an outer join. Using an outer join, we 
can retrieve all rows from the EMPLOYEES table, even if no matching row is found in the 
DEPARTMENTS table for some employees.

The syntax for outer joins can be a little confusing, because three variations exist: left, 
right, and full outer joins. However, if you remember that the modifier merely indicates 
which table in the JOIN clause is to have all rows returned (regardless of whether there 
are matching rows in the other table), you will no longer be confused. A left outer join (the 
most common form) returns all rows from the table named to the left of (before) the JOIN 
keyword; a right outer join returns all rows from the table named to the right of (after) 
the JOIN keyword; and a full outer join returns all rows from both tables. Figure 4-20 
shows the join used in Figure 4-19 changed into a left outer join so that all employees are 

Figure 4-20  Left outer join of the EMPLOYEES and DEPARTMENTS tables
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included in the results, including those for which no department has been assigned using 
this SQL statement:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, DEPARTMENT_NAME 
  FROM EMPLOYEES LEFT OUTER JOIN DEPARTMENTS 
    ON EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID;

Limiting Join Results
The WHERE clause can be easily used to add conditions to limit rows returned from  
a query that also involves joins. Figure 4-21 shows a modification to the query from 
Figure 4-20 such that only employees who work in departments with Sales in the 
department name are returned. Here is the modified SQL:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, DEPARTMENT_NAME 
  FROM EMPLOYEES LEFT OUTER JOIN DEPARTMENTS 
    ON EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID 
 WHERE DEPARTMENT_NAME LIKE '%Sales%';

Q: I have seen Oracle SQL with an outer join specified in the WHERE clause using a plus 
sign enclosed in parentheses. Why was the SQL written that way?

A: This is Oracle proprietary syntax for outer joins. Like most vendors, Oracle was forced by 
market demand to add outer join support before syntax was included in the SQL standard. 
Oracle added support for the SQL standard’s OUTER JOIN syntax in Oracle 9i Release 2. 
Prior to that release, the only way to specify an outer join was by using proprietary syntax 
that required the symbol (+) to be added to the join condition (on the right side for a left 
outer join and on the left side for a right outer join). The outer join in the previous example 
would thus be written this way:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, DEPARTMENT_NAME 
  FROM EMPLOYEES, DEPARTMENTS 
 WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID(+);

Not only should you no longer be writing new SQL statements using this syntax because 
it works only with Oracle SQL, but you also should make every effort to convert existing 
SQL to standard OUTER JOIN syntax because it is only a matter of time before Oracle 
drops support for the proprietary syntax. As a case in point, SQL Server’s proprietary outer 
join syntax (using an asterisk to the left or right of the equal sign in the join condition) was 
deprecated as of SQL Server 2005, causing lots of problems for those wanting to convert to 
the newer release, unless they ran the new database in compatibility mode.

Ask the Expert
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The Self-Join
When a table has a recursive relationship, you need to join the table to itself in order 
to follow the relationship in your query results. The EMPLOYEES table has such a 
relationship in that the MANAGER_ID column contains the EMPLOYEE_ID value of the 
employee to whom each employee reports. In our example, every employee has a manager 
in the table except for the owner of the company (Steven King), so the query is written 
using an outer join, as shown in Figure 4-22. By the way, it is very common in recursive 
relationships for some rows not to have parents; otherwise, you would never be able to 
insert the first row into the table. Here is the SQL statement:

SELECT A.EMPLOYEE_ID, A.LAST_NAME, A.FIRST_NAME, 
       B.FIRST_NAME || ' ' || B.LAST_NAME AS MANAGER_NAME 
  FROM EMPLOYEES A LEFT OUTER JOIN EMPLOYEES B 
       ON A.MANAGER_ID = B.EMPLOYEE_ID;

Figure 4-21  Outer join with WHERE clause condition added
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Note that we added another wrinkle to this example by concatenating the first and last 
names of the manager with a space in between to form the MANAGER_NAME column 
in the results. The SQL standard concatenation operator is ||, but SQL Server requires 
+ instead. The column name is assigned using the keyword AS followed by the desired 
name. (Actually the keyword AS is optional in Oracle SQL, so you can just leave a space 
after the column expression and add the desired column name. However, it’s better to 
include it always, because some SQL implementations require it.) If a column name were 
not assigned in this manner, the RDBMS would have to make one up (every column in the 
result set must have a valid column name), so it is better to assign one any time a column 
in a query is formed using an expression instead of a simple column name.

Aggregate Functions
As you will recall from Chapter 3, aggregate functions combine the values in multiple 
rows. In this section, you will explore them in detail.

Figure 4-22  SELECT containing a self-join
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Simple Aggregate Functions
In Figure 4-23, aggregate functions are used to find the minimum, maximum, and average 
salaries for all employees along with a count of the total number of employees. Here is the 
SQL statement used:

SELECT MIN(SALARY), MAX(SALARY), AVG(SALARY), COUNT(*) 
  FROM EMPLOYEES;

Because no GROUP BY clause is used to group rows, the entire table is considered 
one group, so only one row is returned in the result set. You may have noticed the value 
returned by the AVG(SALARY) function—the SQL engine does not round results unless 
you ask it to, so a ROUND function is added to it in the next example to improve the 
readability of the results.

Mixed Aggregate and Normal Columns (Error)
If you add DEPARTMENT_ID to the query without adding a GROUP BY clause, the 
query returns an error message, as shown in Figure 4-24, (not a single-group group 
function) which is rather cryptic. What it is trying to point out is that the query contains 
only a single group (the entire table) because there is no GROUP BY clause, and it also 

Figure 4-23  SELECT with simple aggregate functions
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includes at least one column expression that is not a group function. In this case, it is 
telling you that DEPARTMENT_ID is the one that is not a group function.

Note that I added a ROUND function to the AVG(SALARY) column to round the 
average to two decimal places to make the results more readable than those shown in 
Figure 4-23. The ROUND function is not an aggregate function—it merely rounds a 
single column value. However, it is perfectly acceptable to apply a function to the results 
of another function, which is known as nesting functions. There seems to be no limit to 
the clever things we can do with SQL:

SELECT DEPARTMENT_ID, MIN(SALARY), MAX(SALARY),  
       ROUND(AVG(SALARY),2), COUNT(*) 
  FROM EMPLOYEES;

Aggregate Functions with GROUP BY
The query in Figure 4-24 is illogical, because it essentially asks the RDBMS to display 
every value of DEPARTMENT_ID but, at the same time, display only one row containing 
the values for the other columns (those columns being formed with aggregate functions). 
To remedy the situation, we must tell the RDBMS that we want to group the rows by 
DEPARTMENT_ID, and for each group display the DEPARTMENT_ID along with 

Figure 4-24  Error caused by mixing aggregate functions and normal columns without 
grouping
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the aggregate column results (the minimum, maximum, and average salaries for the 
department and the count of the number of employees in the department). The corrected 
query is shown here and in Figure 4-25:

SELECT DEPARTMENT_ID, MIN(SALARY), MAX(SALARY),  
       ROUND(AVG(SALARY),2), COUNT(*) 
  FROM EMPLOYEES 
 GROUP BY DEPARTMENT_ID;

The GROUP BY clause returns only one row per department, but those rows will 
not necessarily be in department ID sequence—and looking at Figure 4-25, you can see 
that the rows are not in any particular sequence. The lesson here is always to include 
an ORDER BY when you want the rows in the query results returned in a particular 
sequence.

Figure 4-25  SELECT with aggregate functions and a GROUP BY clause
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Data Manipulation Language (DML)
The Data Manipulation Language (DML) statement types in SQL are INSERT, UPDATE, 
and DELETE. These commands allow you to add, change, and remove rows of data in  
the tables. Before you look at each of these statement types, you need to understand  
the concept of transactions and how the RDBMS supports them.

Transaction Support (COMMIT and ROLLBACK)
In terms of the RDBMS, a transaction is a series of one or more SQL statements that are 
treated as a single unit. A transaction must completely work or completely fail, meaning that 
any database changes a transaction makes must be made permanent when the transaction 
successfully completes. On the other hand, these changes must be entirely removed from the 
database if the transaction fails before completion. For example, you could start a transaction 
at the beginning of a process that creates a new order, and then, at the end of the process 
when all the order information has been entered, complete the transaction. It is important 
that other database users do not see fragments of an order until it has been completely 
entered and confirmed.

SQL provides support for transactions with the COMMIT and ROLLBACK statements. 
Some variation occurs in the syntax and handling of these commands across different 
RDBMS vendors. Most vendors require no argument with the COMMIT or ROLLBACK 
statement, so the statement is simply the keyword followed by the semicolon that ends 
every SQL statement.

Q: I recall that the ORDER BY clause provides a list of column names to be used in 
sequencing the rows in a query’s result set. Can I use it to sort on columns formed 
using functions and other expressions?

A: Yes, you can use result set columns formed using expressions in the ORDER BY clause. 
Simply repeat the entire expression in the ORDER BY clause. For example, if you wanted 
to change the query shown in Figure 4-25 to display the rows in descending sequence by 
the maximum salary in the department, you can do so by adding this ORDER BY clause:

ORDER BY MAX(SALARY) DESC

Ask the Expert
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In Oracle, a transaction is implicitly started for a database user session as soon as 
the user submits a statement that changes any data (that is, an INSERT, UPDATE or 
DELETE statement, but not a SELECT statement). At any time, the database user can 
issue a COMMIT, which makes all the database changes completed up to that point 
permanent and therefore visible to any other database user. The user can also issue  
a ROLLBACK, which reverses any changes made to the database. The COMMIT and 
ROLLBACK statements not only end one transaction, but they also set the stage for  
a new one. There is one more wrinkle to remember: In Oracle, an automatic commit 
occurs when the user disconnects from the database and before any DDL statement 
(covered later in this chapter).

An alternative to implicit transactions is autocommit mode, which essentially puts 
each SQL statement in its own transaction. When autocommit is active, any statement 
that modifies data is automatically committed as soon as the statement is successfully 
completed. Earlier in the chapter I described the Autocommit check box in the Application 
Express client that toggles the database session in or out of autocommit mode. Another 
way to change the mode in Oracle is by running the SET AUTOCOMMIT ON and 
SET AUTOCOMMIT OFF commands. However, these commands are not supported in 
the Oracle Application Express client, presumably because of explicit support using the 
Autocommit check box.

By contrast, in Sybase ASE and Microsoft SQL Server, autocommit is the default 
mode. The database user must issue a BEGIN TRANSACTION statement to explicitly 
start a transaction. Once a transaction is started, changes made to the database can be 
made permanent with a COMMIT TRANSACTION statement or they can be reversed 
using a ROLLBACK TRANSACTION statement. Some RDBMSs, such as Microsoft 
Access and MySQL, do not provide transaction support at all.

The INSERT Statement
The INSERT statement in SQL is used to add new rows of data to tables. An INSERT 
statement can also insert rows via a view, provided the following conditions are met:

● If the view joins multiple tables, the columns referenced by the INSERT statement must 
all be from the same table. Said another way, an INSERT can affect only one table.

● The view must include all the mandatory table columns in the base table. If columns 
with NOT NULL constraints do not appear in the view, it is impossible to provide 
values for those columns and therefore impossible to use the view to perform  
an INSERT.
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The INSERT statement takes two basic forms: one where column values are provided 
in the statement itself, and the other where values are selected from a table or view using  
a subselect. Let’s have a look at those two forms.

INSERT with VALUES Clause
The form of the INSERT statement that includes the VALUES clause can create only one 
row each time it is run, because the values for that one row of data are provided in the 
statement itself. Figure 4-26 shows an example that adds a new row to the EMPLOYEES 
table. Here is the SQL statement:

INSERT INTO EMPLOYEES 
  (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE, 
   JOB_ID, SALARY, COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID) 
VALUES (921, 'Werdna', 'Leppo', 'leppo@whatever.com', null, SYSDATE, 
        'IT_PROG', 15000, 0.0, 103, 60);

Note the column list following the INSERT keyword. This comma-separated list is 
optional, but if provided, it must always be enclosed in a pair of parentheses. If you omit 
the list, the column values must be provided in the correct order (that is, the same as the 
order in which the columns are physically ordered in the table), and you cannot skip any 

Figure 4-26  INSERT using the VALUES clause
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column values. The statement may malfunction if anyone adds columns to the table, even 
optional ones, so it is always a good idea to provide the column list, even though it is 
more work to create one. Following the column list is the keyword VALUES and then a 
list of the values for the columns. This comma-separated list must also be enclosed in a 
pair of parentheses. The items in the VALUES list have a one-to-one correspondence with 
the column list (if one was provided) or with the columns defined in the table or view (if 
a column list was not provided). The keyword null (or NULL) may be used to assign null 
values to columns in the list. SYSDATE is a pseudo-column provided in Oracle databases 
that always contains the current date and time.

INSERT with Subquery
The form of INSERT statement that includes a subquery creates one row in the target table 
for each row retrieved from the source table or view. A subquery is used to retrieve the 
information that will be inserted. In the example that follows, rows in an imaginary table 
called EMPLOYEE_INPUT are used to insert data into the EMPLOYEES table:

INSERT INTO EMPLOYEES 
    (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, 
     HIRE_DATE, JOB_ID) 
       SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME,  
              EMAIL, PHONE_NUMBER, SYSDATE, JOB_ID 
         FROM EMPLOYEE_INPUT;

If you want to try this INSERT statement, you can find the statements used to create 
the EMPLOYEE_INPUT table in the “Data Definition Language (DDL) Statements” 
section a bit further along in this chapter.

The UPDATE Statement
The UPDATE statement in SQL is used to update the data values for table (or view) 
columns listed in the statement. A WHERE clause can be included to limit the scope of 
the statement to rows matching its conditions; otherwise, the statement attempts to update 
every row in the table (or view) named in the statement. Figure 4-27 shows an example 
of the UPDATE statement that changes the phone number for employee 921. Here is the 
SQL statement:

UPDATE EMPLOYEES 
   SET PHONE_NUMBER = '301.555.1212' 
 WHERE EMPLOYEE_ID = 921;

For each column to be updated, a SET clause is used to name the column and the 
new value for the column. The new value provided can be a constant, another column 
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name, or any other expression that SQL can resolve to a column value. If the SET clause 
references multiple columns, the column names and values must be in a comma-separated 
list. The UPDATE statement may include a WHERE clause to limit the rows affected by 
the statement. If the WHERE clause is omitted, the UPDATE statement will attempt to 
update every row in the table (or view). If you forget this key point, remember our friend 
the ROLLBACK statement, which can back out the results of the update (unless you are 
in autocommit mode, of course).

The DELETE Statement
The DELETE statement removes one or more rows from a table. The statement can also 
reference a view, but only if the view is based on a single table (in other words, views 
that join multiple tables cannot be referenced). A DELETE statement does not reference 
columns because the statement automatically clears all column data for any rows deleted. 
A WHERE clause can be included to limit the rows affected by the DELETE statement;  
if the WHERE clause is omitted, the statement attempts to delete all the rows in  

Figure 4-27  UPDATE statement for the EMPLOYEES table
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the referenced table. Figure 4-28 shows an example of a DELETE statement that deletes 
employee 921 from the EMPLOYEES table. Here is the SQL statement:

DELETE FROM EMPLOYEES 
 WHERE EMPLOYEE_ID = 921;

Data Definition Language (DDL) Statements
Data Definition Language (DDL) statements define the database objects but do not insert 
or update any data stored within those objects. (DML statements serve that purpose.) In 
SQL, three basic commands are used within DDL:

● CREATE Creates a new database object of the type named in the statement

● DROP Drops (destroys) an existing database object of the type named in the statement

● ALTER Changes the definition of an existing database object of the type named  
in the statement

Figure 4-28  DELETE statement for the EMPLOYEES table
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The sections that follow examine the most commonly used DDL statement types. You’ll 
find a lot of variety in DDL statements available across RDBMS vendors, so consult the 
vendor’s documentation for more details.

The CREATE TABLE Statement
The CREATE TABLE statement adds a new table to the database. Here is an example 
that creates the EMPLOYEE_INPUT table with the same column definitions as the 
EMPLOYEES table:

CREATE TABLE EMPLOYEE_INPUT ( 
  EMPLOYEE_ID     NUMBER(6)     NOT NULL, 
  FIRST_NAME      VARCHAR2(20)  NULL, 
  LAST_NAME       VARCHAR2(25)  NOT NULL, 
  EMAIL           VARCHAR2(25)  NOT NULL, 
  PHONE_NUMBER    VARCHAR2(20)  NULL, 
  HIRE_DATE       DATE          NOT NULL, 
  JOB_ID          VARCHAR2(10)  NOT NULL, 
  SALARY          NUMBER(8,2)   NULL, 
  COMMISSION_PCT  NUMBER(2,2)   NULL, 
  MANAGER_ID      NUMBER(6)     NULL, 
  DEPARTMENT_ID   NUMBER(4)     NULL) 
 ;

Note that a comma-separated list of columns is provided, along with the data type 
and NULL or NOT NULL specification for each. You may recall from Chapter 2 that a 
wide variety of data types is supported across RDBMS vendors. The data types shown 
here apply to Oracle. Be careful with NULL and NOT NULL specifications. In most 
RDBMSs, including Oracle, NULL is the default. However, in others, the default might 
be NOT NULL. It is therefore safer, but of course more work, always to specify either 
NULL or NOT NULL. Incidentally, most RDBMSs require that primary key columns 
be specified as NOT NULL. You’ll see how to create a primary key constraint on the 
EMPLOYEE_ID column of this table in the “Primary Key Constraints” section a little 
further along in this chapter.

Many vendor extensions to the CREATE TABLE statement exist beyond the basic 
column list used in our example. For example, in Oracle, the STORAGE clause can be 
included to specify the amount of physical space that is to be allocated to the table,  
and a TABLESPACE clause can be included to specify the tablespace that will hold  
the table’s data.
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The ALTER TABLE Statement
The ALTER TABLE statement can be used to change many aspects of the definition of a 
database table. Again, a wide variation in implementation exists across RDBMS vendors, 
but generally speaking, the following types of changes can be made using the ALTER 
TABLE statement:

● Adding columns to the table

● Removing columns from the table

● Altering the data type for existing table columns

● Changing physical storage attributes of the table

● Adding, removing, or altering constraints

Because the implementation of constraints is the way we enforce business rules in 
the database, we will take a closer look at them here. It is important that you name the 
constraints, because in most SQL implementations the names appear in the error messages 
generated when constraint violations take place.

Referential Constraints
Here is an example of a referential constraint definition using the ALTER TABLE statement:

ALTER TABLE EMPLOYEE_INPUT 
  ADD CONSTRAINT EMP_INPUT_DEPT_FK 
      FOREIGN KEY (DEPARTMENT_ID) 
      REFERENCES DEPARTMENTS (DEPARTMENT_ID);

In this example, a referential constraint named EMP_DEPT_FK is added to the 
EMPLOYEES table to define the DEPARTMENT_ID column as a foreign key to the 
primary key column (DEPARTMENT_ID) of the DEPARTMENTS table. This is the way 
you implement the relationships you’ve identified in the logical database design.

Primary Key Constraints
Primary key constraints ensure that the column(s) designated as the primary key for  
the table never have duplicate values. Most RDBMSs, Oracle included, create  
a unique index to assist in enforcement of primary key constraints. An index is a 
special database object containing the key value from one or more table columns 
and pointers to the table rows that match the key value. Indexes can be used for fast 
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searching of a table based on the key value. Here is the definition of the primary key 
constraint for the EMPLOYEES table:

ALTER TABLE EMPLOYEE_INPUT 
  ADD CONSTRAINT EMPLOYEES_PK 
      PRIMARY KEY (EMPLOYEE_ID) 
      USING INDEX;

Unique Constraints
In addition to enforcing primary keys, you can force uniqueness of other column(s) in a table 
using a unique constraint. A table may have only one primary key constraint, but in addition 
it may have as many unique constraints as necessary. Most RDBMSs, including Oracle, use a 
unique index to assist with the enforcement of unique constraints. For example, you can use  
a unique constraint to ensure that no two employees have the same e-mail address as follows:

ALTER TABLE EMPLOYEE_INPUT 
  ADD CONSTRAINT EMPLOYEES_UNQ_EMAIL 
      UNIQUE (EMAIL);

The same constraint can be removed using this statement:

ALTER TABLE EMPLOYEE_INPUT 
 DROP CONSTRAINT EMPLOYEES_UNQ_EMAIL;

Check Constraints
Check constraints can be used to enforce any business rule that can be applied to a single 
column in a table. The condition included in the constraint must always be true whenever 
the column data in the table is changed or else the SQL statement fails and an error message 
is displayed. The following example implements a check constraint that ensures that the 
SALARY column in the EMPLOYEES table is always greater than zero:

ALTER TABLE EMPLOYEES 
  ADD CONSTRAINT EMPLOYEES_CHK_SALARY_MIN 
      CHECK (SALARY > 0);

The same constraint can be removed with this statement:

ALTER TABLE EMPLOYEES 
 DROP CONSTRAINT EMPLOYEES_CHK_SALARY_MIN;

The CREATE VIEW Statement
Because a view is merely a stored query, any query that can be run using a SELECT 
statement can be saved as a view in the database. View names must be unique among all 
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the tables, views, and synonyms in the database schema. In Oracle, the OR REPLACE 
option can be included so that an existing view of the same name will be replaced.  
The following example creates a view for the query shown in Figure 4-21:

CREATE OR REPLACE VIEW SALES_EMPLOYEES AS 
   SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, DEPARTMENT_NAME 
     FROM EMPLOYEES LEFT OUTER JOIN DEPARTMENTS 
          ON EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID 
    WHERE DEPARTMENT_NAME LIKE '%Sales%';

Running the following SQL statement will select the data from the view, which will 
yield the exact same results as those shown in Figure 4-21:

SELECT *  
  FROM SALES_EMPLOYEES;

The CREATE INDEX Statement
The CREATE INDEX statement creates an index on one or more table columns. 
As mentioned, indexes provide fast searching of a table based on one or more key 
columns. Indexes on foreign keys can also greatly improve the performance of joins. 
The RDBMS automatically maintains the index when rows are added to or deleted 
from the database, or when indexed column values are updated. However, indexes 
take storage space and their maintenance takes processing resources. The following 
example creates an index on the DEPARTMENT_ID column in the EMPLOYEE_
INPUT table:

CREATE INDEX EMPLOYEE_INPUT_IX_DEPT_ID 
    ON EMPLOYEE_INPUT (DEPARTMENT_ID);

If the column values in the index will always be unique, the UNIQUE keyword can 
be placed between the CREATE and INDEX keywords. As an alternative, a unique 
constraint can be added to the table, which indirectly creates the unique index. Unique 
indexes are usually more efficient than nonunique ones.

The DROP Statement
The DROP statement is used to remove database objects from the database when they 
are no longer necessary. For table deletions, the CASCADE CONSTRAINTS clause 
(shortened to CASCADE in some SQL implementations) can be added to remove 
automatically any referential constraints in which the table participates. When a table is 
dropped, most objects depending on the table (indexes and constraints) are also dropped. 
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In most RDBMSs, however, views dependent on a dropped table remain but are marked 
invalid so they cannot be used until the table is re-created. Here are the DROP statements 
that remove the objects created in the preceding examples:

DROP VIEW SALES_EMPLOYEES; 
DROP INDEX EMPLOYEE_INPUT_IX_DEPT_ID; 
DROP TABLE EMPLOYEE_INPUT CASCADE CONSTRAINTS;

NOTE
You may find that you have to run these statements one at a time. This appears to be a 
quirk in the Oracle XE client.

Data Control Language (DCL) Statements
A database privilege is the authorization to do something in the database. The database 
user granting the privilege is called the grantor, and the database user receiving the 
privilege is called the grantee. Privileges fall into two broad categories:

● System privileges Permit the grantee to perform a general database function, such 
as creating new user accounts or connecting to the database

● Object privileges Permit the grantee to perform specific actions on specific objects, 
such as selecting from the EMPLOYEES table or updating the DEPARTMENTS table

To reduce the tedium of managing privileges, most RDBMSs support storing a group 
of privilege definitions as a single named object called a role. Roles may then be granted 
to individual users, who inherit all the privileges contained in the role. RDBMSs that 
support roles also typically come with a number of predefined roles. Oracle, for example, 
has a role called DBA that contains all the high-powered system and object privileges a 
database user needs in administering a database.

The GRANT Statement
Privileges are given to users in SQL using the GRANT statement. The following examples 
show the syntax for granting a system privilege and an object privilege to database 
users. The user account granting the privilege must possess the privilege, so many of the 
examples here will not run unless you are connected to the database using the SYSTEM 
account.
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The following statement grants the CREATE VIEW privilege to user HR:

GRANT CREATE VIEW TO HR;

The following statement grants the select, insert, and update privileges on the 
EMPLOYEES table in the HR schema to user HR_ADMIN. Note that you must qualify 
the table name with the schema name if you are logged in as a different user, such as 
SYSTEM. You must always qualify objects that belong to another schema (user) when 
you reference them in SQL. Here’s the statement:

GRANT SELECT, INSERT, UPDATE  
   ON HR.EMPLOYEES TO HR_ADMIN;

NOTE
User account HR_ADMIN must exist for this statement to run. If you want to try it out, 
you may use the Administration icon on the main page and choose Database Users | 
Create User to create the account. I do not cover creating user accounts in this chapter 
because no standard SQL syntax exists for doing so, which means that every vendor 
offers a proprietary solution.

Most RDBMSs that support privileges also allow for giving the grantee permission to 
grant the privilege to others. In Oracle, the clause for doing so is WITH ADMIN OPTION 
for system privileges and WITH GRANT OPTION for object privileges. However, I 
strongly recommend against doing so. It is simply too easy to lose control of privileges 
when you allow people who have a privilege to in turn grant it to others.

The REVOKE Statement
Granted privileges can be withdrawn using the REVOKE statement. For object privileges, 
if WITH GRANT OPTION is exercised by the user, the revoke cascades and everyone 
downstream loses the privilege as well. This is not necessarily true for system privileges—
consult your RDBMS manuals for details. Better yet, if you never use WITH GRANT 
OPTION and WITH ADMIN OPTION, you will never have to worry about this problem. 
The privileges shown in the preceding section can be revoked with these commands:

REVOKE CREATE VIEW FROM HR; 
 
REVOKE SELECT, INSERT, UPDATE  
    ON HR.EMPLOYEES FROM HR_ADMIN;
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 Chapter 4 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank questions. 
Note that there may be more than one correct response to each question.

 1. SQL may be divided into the following subsets:

 A Data Selection Language (DSL)

 B Data Control Language (DCL)

 C Data Query Language (DQL)

 D Data Definition Language (DDL)

 2. SQL was first developed by ____________.

 3. A program used to connect to the database and interact with it is called a(n) _________.

 4. A SELECT without a WHERE clause

 A Selects all rows in the source table or view

 B Returns no rows in the result set

 C Results in an error message

 D Lists only the definition of the table or view

 5. In SQL, row order in query results

 A Is specified using the SORTED BY clause

 B Is unpredictable unless specified in the query

 C Defaults to descending when sequence is not specified

 D May be specified only for columns in the query results

 6. The BETWEEN operator

 A Includes the end-point values

 B Selects rows added to a table during a time interval

 C Can be rewritten using the <= and NOT = operators

 D Can be rewritten using the <= and >= operators

 7. The LIKE operator uses ____________ as positional wildcards and ____________ as 
nonpositional wildcards.

✓
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 8. A subselect

 A May be corrugated or noncorrugated

 B Allows for the flexible selection of rows

 C Must not be enclosed in parentheses

 D May be used to select values to be applied to WHERE clause conditions

 9. A join without a WHERE clause or JOIN clause

 A Results in an error message

 B Results in an outer join

 C Results in a Cartesian product

 D Returns no rows in the result set

 10. A join that returns all rows from both tables whether or not matches are found is known 
as a(n) ____________.

 11. A self-join

 A Involves two different tables

 B Can be either an inner or outer join

 C Resolves recursive relationships

 D May use a subselect to further limit returned rows

 12. An SQL statement containing an aggregate function

 A Must contain a GROUP BY clause

 B May also include ordinary columns

 C May not include both GROUP BY and ORDER BY clauses

 D May also include calculated columns

 13. A(n) ____________ causes changes made by a transaction to become permanent.

 14. An INSERT statement

 A Must contain a column list

 B Must contain a VALUES list
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 C May create multiple table rows

 D May contain a subquery

 15. An UPDATE statement without a WHERE clause

 A Results in an error message

 B Updates no rows in a table

 C Updates every row in a table

 D Results in a Cartesian product

 16. A DELETE statement with a column list

 A Results in an error message

 B Deletes data only in the listed columns

 C Deletes every column in the table

 D Can be used to delete from a view

 17. A CREATE statement

 A Is a form of DML

 B Creates new user privileges

 C Creates a database object

 D May be reversed later using a DROP statement

 18. An ALTER statement

 A May be used to add a constraint

 B May be used to drop a constraint

 C May be used to add a view

 D May be used to drop a table column

 19. The ____________ mode causes each SQL statement to commit as soon as it completes.

 20. Database privileges

 A May be changed with an ALTER PRIVILEGE statement

 B May be either system or object privileges

 C Are best managed when assembled into groups using GROUP BY

 D Are managed using GRANT and REVOKE



Part II
Database Development
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Key Skills & Concepts
● The Traditional Life Cycle

● Nontraditional Life Cycles

● The Project Triangle

Before delving into the particulars of database design, you’ll find it useful to understand 
the framework in which the design takes place. The life cycle of a database (or 

computer system) comprises all the events that occur from the time you first recognize the 
need for a database, through its development and deployment, and finally ending with the 
day the database is retired from service.

Most businesses that develop computer systems follow a formal process that ensures 
that development runs smoothly, that it is cost effective, and that the outcome is a complete 
computer system that meets expectations. Databases are never designed and implemented 
in a vacuum—other components of the complete system are always developed along with 
the database, such as the user interface, application programs, and reports. All the work 
to be accomplished over the long term is typically divided into projects, with each project 
having its own finite list of goals (sometimes called deliverables), an expected timeframe 
for completion, and a project manager or leader who will be held accountable for delivery of 
the project. To understand the database life cycle, you must also understand the life cycle of 
the entire systems-development effort and the way projects are organized and managed. This 
chapter takes a look at both traditional and nontraditional systems-development processes.

Not all databases are built by businesses using formal projects and funding. However, 
the disciplines outlined in this chapter can assist you in thinking through your database 
project and asking the tough questions before you embark on an extended effort.

The Traditional Life Cycle
The traditional method for developing computer systems follows a process called the 
system development life cycle (SDLC), which divides the work into the phases shown in 
Figure 5-1. There are perhaps as many variations of the SDLC as there are authors, project 
management software vendors, and companies that have elected to create their own 
methodologies. However, they all have the basic components, and in that sense, are all 
cut from the same cloth. I could argue the merits of one variation versus another, but that 
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Figure 5-1  Traditional system development life cycle (SDLC)
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would merely confuse matters when all you need is a basic overview. A good textbook 
on systems analysis can provide greater detail should you need it. Figure 5-1 shows 
the traditional SDLC steps in the left column, the basic project activities in the middle 
column, and the database steps that support the project activities in the right column. Each 
step is explored further in the sections that follow. Note that the process is not always 
unidirectional—at times, missing or incomplete information is discovered and requires 
that you to go back one phase and adjust the work done there. The dotted lines pointing 
back to prior phases in Figure 5-1 serve as reminders that a certain amount of rework is 
normal and expected during a project following the SDLC methodology.

Planning
During the planning phase, the organization must reach a high-level understanding of 
where they currently are, where they want to be, and a reasonable approach or plan for 
getting from one place to the other. Planning often occurs over a longer time period than 
any one individual project, and the overall information systems plan for the organization 
forms the basis from which projects should be launched to achieve the overall objectives. 
For example, a long-range objective in the plan might be “Increase profits by 15 percent.” 
In support of that objective, a project to develop an application system and database to 
track customer profitability might be proposed.

Once a particular project is proposed, a feasibility study is usually launched to 
determine whether the project can be reasonably expected to achieve (or help achieve) 
the objective and whether preliminary estimates of time, staff, and materials required 
for the project fit within the required timeframe and available budget. Often a return 
on investment (ROI) or similar calculation is used to measure the expected value of the 
proposed project to the organization. If the feasibility study meets management approval, 
the project is placed on the overall schedule for the organization and the project team 
is formed. The composition of the project team will change over the life of the project, 
with people added and released as particular skill and staffing levels are needed. The one 
consistent member of the project team will be the project manager (or project leader), who 
is responsible for the overall management and execution of the project.

Many organizations assign a database specialist (database administrator or data 
modeler) to projects at their inception, as shown in Figure 5-1. In a data-driven approach, 
where the emphasis is on studying the data in order to discover the processing that must 
take place to transform the data as required by the project, early assignment of someone 
skilled at analyzing the data is essential. In a process-driven approach, where the emphasis 
is on studying the processes required to discover what the data should be, a database 
specialist is less essential during the earliest phases of the project. Industry experience 
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suggests that the very best results are obtained by applying both a process-driven and a 
data-driven approach. However, there is seldom time and staff to do so, so the next-best 
results for a project involving databases come from the data-driven approach. Processes 
still need to be designed, but if we study the data first, the required processes become 
apparent. For example, in designing our customer profitability system, if we have customer 
sales data and know that customers who place fewer, larger orders are more profitable, then 
we can conclude that we need a process to rank customers by order volume and size. On 
the other hand, if all we know is that we need a process that ranks customers, it may take 
considerably more work to arrive at the criteria we should use to rank them.

The database activities in this phase involve reviewing DBMS options and determining 
whether the technologies currently in use meet the overall needs of the project. Most 
organizations settle on one, or perhaps two, standard DBMS products that they use for 
all projects. At this point, the goals of the project should be compared with the current 
technology to ensure that the project can  reasonably be expected to be successful using 
that technology. If a newer version of the DBMS is required, or if a completely different 
DBMS is required, the planning phase is the time to find out, so the acquisition and 
installation of the DBMS can be started.

Requirements Gathering
During the requirements-gathering phase, the project team must gather and document a 
high-level, yet precise, description of what the project is to accomplish. The focus must 
be on what rather than how; the how is developed during the subsequent design phases. It 
is important for the requirements to include as much as can be known about the existing 
and expected business processes, business rules, and entities. The more work that is done 
in the early stages of a project, the more smoothly the subsequent stages will proceed. On 
the other hand, without some tolerance for the unknown (that is, those gray areas that have 
no solid answers), analysis paralysis can occur, wherein the entire project stalls while 
analysts spin their wheels looking for answers and clarifications that are not forthcoming.

From a database design perspective, the items of most interest during requirements 
gathering are user views. Recall that a user view is the method employed for presenting 
a set of data to the database user in a manner tailored to the needs of that person or 
application. At this phase of development, user views take the form of existing or 
proposed reports, forms, screens, web pages, and the like.

Many techniques can be used in gathering requirements. The more commonly used 
techniques are compared and contrasted here: conduct interviews, conduct survey, 
observation, and document review. No particular technique is clearly superior to another, 
and it is best to find a blend of techniques that works well for the particular organization 
rather than rely on one over the others. For example, whether it is better to conduct a survey 
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and follow up with interviews with key people, or to start with interviews and use the 
interview findings to formulate a survey, is often a question of what works best given the 
organization’s culture and operating methods. With each technique detailed in the following 
subsections, some advantages and disadvantages are listed to assist in decision-making.

Conduct Interviews
Interviewing key individuals who have information about what the project is expected to 
accomplish is a popular approach. One of the common errors, however, is to interview 
only management. If you do not include those who are actually going to use the new 
application(s) and database(s), the project may end up delivering something that is not 
practical, because management may not fully understand all the details of the requirements 
necessary to run the business of the organization. In particular, you need to start a dialog 
with one or more subject matter experts (SMEs)—professionals who have expertise in the 
field of the application but who usually do not have technical computer system knowledge.

The advantages of requirements gathering using interviews include the following:

● The interviewer can get answers to questions that were not asked. Side topics often 
come up that provide additional useful information.

● The interviewer can learn a lot from the body language of the interviewee. It is far 
easier to detect uncertainty and attempts at deception in person rather than in written 
responses to questions.

The disadvantages include the following:

● Interviews take considerably more time than other methods.

● Poorly skilled interviewers can “telegraph” the answers they are expecting by the way 
they ask the questions or by their reactions to the answers received.

Conduct a Survey
Another popular approach is to write a survey seeking responses to key questions 
regarding the requirements for a project. The survey is sent to all the decision-makers and 
potential users of the application(s) and database(s) the project is expected to deliver, and 
responses are analyzed for items to be included in the requirements.

The advantages of requirements gathering using surveys include the following:

● A lot of ground can be covered in a short time. Once the survey is written, it takes 
little additional effort to distribute it to a wider audience if necessary.

● Questions are presented in the same manner to every participant.
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The disadvantages include the following:

● Surveys typically have very poor response rates. Consider yourself fortunate if  
10 percent respond without having to be prodded or threatened with consequences.

● Unbiased survey questions are much more difficult to compose than you might imagine.

● The project team does not get the benefit of the nonverbal clues that an interview 
provides.

Observation
Observing the business operation and the people who will be using the new application(s) 
and database(s) is another popular technique for gathering requirements.

The advantages of requirements gathering using observation include the following:

● Assuming you watch in an unobtrusive manner, you get to see people following 
normal processes in everyday use. Note that these may not be the processes that 
management believes are being followed, or even those in existing documentation. 
Instead, you may observe adaptations that were made so that the processes actually 
work or so they are more efficient.

● You may observe events that people would not think (or dare) to mention in response 
to questionnaires or interview questions.

The disadvantages include the following:

● If the people know they are being watched, their behaviors change, and you may not 
get an accurate picture of their business processes. This is often termed the Hawthorne 
effect after a phenomenon first noticed in the Hawthorne Plant of Western Electric, 
where production improved not because of improvements in working conditions but 
rather because management demonstrated interest in such improvements.

● Unless enormous periods of time are dedicated to observation, you may never see the 
exceptions that subvert existing business processes. To bend an old analogy, you end 
up paving the cow path while cows are wandering on the highway on the other side of 
the pasture due to a hole in the fence.

● Travel to various business locations can add considerably to project expense.

Document Review
This technique involves locating and reviewing all available documents for the existing 
business units and processes that will be affected by the new program(s) and database(s).
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The advantages of requirements gathering using document review include the following:

● Document review is typically less time consuming than any of the other methods.

● Documents often provide an overview of the system that is better thought out 
compared with the introductory information you receive in an interview.

● Pictures and diagrams really are worth a thousand words each.

The disadvantages are the following:

● The documents may not reflect actual practices. Documents often deal with what 
should happen rather than what really happens.

● Documentation is often out of date.

Conceptual Design
The conceptual design phase involves designing the externals of the application(s) 
and database(s). In fact, many methodologies use the term external design for this 
project phase. The layout of reports, screens, forms, web pages, and other data entry 
and presentation vehicles are finalized during this phase. In addition, the flow of the 
external application is documented in the form of a flow chart, storyboard, or screen flow 
diagram. This helps the project team understand the logical flow of the system. Process 
diagramming techniques are discussed further in Chapter 7.

During this phase, the database specialist (DBA or data modeler) assigned to the 
project updates the enterprise conceptual data model, which is usually maintained in the 
form of an entity-relationship diagram (ERD). New or changed entities discovered are 
added to the ERD, and any additional or changed business rules are also noted. The user 
views, entities, and business rules are essential for the successful logical database design 
that follows in the next phase.

Logical Design
During logical design, the bulk of the technical design of the application(s) and database(s) 
included in the project is carried out. Many methodologies call this phase internal design, 
because it involves the design of the internals of the project that the business users will 
never see.

The work to be accomplished by the application(s) is segmented into modules 
(individual units of application programming that will be written and tested together), 
and a detailed specification is written for each unit. The specification should be complete 
enough that any programmer with the proper programming skills can write the module 
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and test it with little or no additional information. Diagrams such as data flow diagrams 
or flow charts (an older technique) are often used to document the logic flow between 
modules. Process modeling is covered in more detail in Chapter 7.

From the database perspective, the major effort in this phase is normalization, a 
technique developed by E.F. (Ted) Codd for designing relational database tables that are 
best for transaction-based systems (that is, those that insert, update, and delete data in the 
relational database tables). Normalization, the single most important topic in this entire 
book, is covered in great detail in Chapter 6. Once normalization is completed, the overall 
logical data model for the enterprise (assuming one exists) is updated to reflect any newly 
discovered entities.

Physical Design
During the physical design phase, the logical design is mapped or converted to the actual 
hardware and systems software that will be used to implement the application(s) and 
database(s). From the process side, little or nothing needs to be done if the application 
specifications were written in a manner that can be directly implemented. However, much 
work is required to specify the hardware on which the application(s) and database(s) will 
be installed, including capacity estimates for the processors, disk devices, and network 
bandwidth on which the system will run.

On the database side, the normalized relations that were designed in the prior logical 
design phase are implemented in the relational DBMS(s) to be used. In particular, 
Data Definition Language (DDL) is coded or generated to define the database objects, 
including the SQL clauses that define the physical storage of the tables and indexes. 
Preliminary analyses of required database queries are conducted to identify any additional 
indexes that may be necessary to achieve acceptable database performance. An essential 
outcome of this phase is the DDL for creation of the development database objects that the 
developers will need for testing the application programs during the construction phase 
that follows. Physical database design is covered in more detail in Chapter 8.

Construction
During the construction phase, the application developers code and test the individual 
programming units. Tested program units are promoted to a system test environment, 
where the entire application and database system is assembled and tested from end to 
end. Figure 5-2 shows the environments that are typically used as an application system 
is developed, tested, and implemented. Each environment is a complete hardware and 
software environment that includes all the components necessary to run the application 
system. Once system testing is completed, the system is promoted to a quality assurance 
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(QA) environment. Most medium- and large-size organizations have a separate QA 
department that tests the application system to ensure that it conforms to the stated 
requirements. Some organizations also have business users test the system to make sure 
it also meets their needs. The sooner errors are found in a computer system, the less 
expensive they are to repair. After QA has passed the application system, it is promoted 
to a staging environment. The staging environment must be as near a duplicate of the 
production environment as possible. In this environment, stress testing is conducted to 
ensure that the application and database will perform reasonably when deployed into live 
production use. Often final user training is conducted here as well, because it will be most 
like the live environment users will soon use.

The major work of the DBA is already complete by the time construction begins. 
However, as each part of the application system is migrated from one environment to 
the next, the database components needed by the application must also be migrated. 
Hopefully, a script is written that deploys the database components to the development 
environment, and that script is reused in each subsequent environment. However, 
complications can occur when an existing database is being enhanced or an older data 
storage system is being replaced, because data must be converted from the old storage 
structures to the new. Data transcends systems. Therefore, data conversion between old 
and new versions of systems is quite commonplace, ranging from simply adding new 
tables and columns to complex conversions that require extensive programming efforts in 
and of themselves.

Implementation and Rollout
Implementation is the process of installing the new application system’s components 
(application programs, forms or web pages, reports, database objects, and so on) into 
the live system and carrying out any required data conversions. Rollout is the process 
of placing groups of business users on the new application. Sometimes a new project 
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Figure 5-2  Development hardware/software environments
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is implemented cold turkey, meaning every user starts on the new version at the same 
time. However, with more complicated applications or those involving large numbers of 
users, a phased implementation is often used to reduce risk. The old and new versions of 
the application must run in parallel for a time while groups of users—often partitioned 
by physical work location or by department—are trained and migrated over to the new 
application. This method is often humorously referred to as the chicken method (in 
contrast to the cold turkey method).

Ongoing Support
Once a new application system and database have been implemented in a production 
environment, support of the application is often turned over to a production support team. 
This team must be prepared to isolate and respond to any issues that may arise, which 
could include performance issues, abnormal or unexpected results, complete failures, 
or the inevitable requests for enhancements. With enhancements, it is best to categorize 
and prioritize them and then fold them into future projects. However, genuine errors 
found in the existing application or database (called bugs in IT slang) must be fixed more 
immediately. Each bug fix becomes a mini-project, where all the SDLC phases must 
be revisited. At the very least, documentation must be updated as changes are made. As 
noted in Figure 5-2, the staging environment provides an ideal place for the validation 
of errors and their fixes and makes it possible to fix errors in parallel with the next major 
enhancement to the application system, which may have already been started in the 
development environment.

Assuming no gross errors were made during database design, the database support 
required during this phase is usually minor. Here are some of the tasks that may be required:

● Patches must be applied when the problems turn out to be bugs in the vendor’s 
RDBMS software.

● Performance tuning, such as moving data files or adding indexes, may be necessary to 
circumvent performance problems.

● Space must be monitored and storage added as the database grows.

● Some application bug fixes may require new table columns or alterations to existing 
columns. If testing was done well, gross errors that require extensive database changes 
simply do not occur. Some application changes are required by statutory or regulatory 
changes beyond the control of the organization, and those changes can lead to 
extensive modifications to application(s) and database(s).
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Nontraditional Life Cycles
In response to the belief that SDLC projects take too much time and consume too many 
resources, some nontraditional methods have come into routine use in some organizations. 
The two most prevalent of these are prototyping and Rapid Application Development (RAD).

Prototyping
Prototyping involves rapid development of the application using iterative sets of design, 
development, and implementation steps as a method of determining user requirements. 
Extensive business user involvement is required throughout the development process. 
In its extreme form, the prototyping process starts with a meeting conducted during the 
business day to review the latest iteration of the application, followed by the development 
team working through the evening and often late into the night. The next iteration is then 
reviewed during the following workday.

Some prototyping techniques carry all the way through to a production version of the 
application and database. In this variation, iterations have increasing levels of detail added 
to them until they become completely functional applications. If you choose this path, 
keep in mind that prototyping never ends, and even after implementation and rollout, any 
future enhancements fall right back into more prototyping. The most common downside to 
this implementation technique is development team burnout.

Q: I’ve been hearing about the Rational Unified Process (RUP) lately. How does that fit in 
with SDLC?

A: The Rational Unified Process is an iterative software development process framework 
originally developed by the Rational Software Corporation, which became a division of 
IBM in 2003. Organizations that use the Rational toolset for application development 
usually also use the companion process framework. RUP is intended to be tailored by the 
organization using it, so no two implementations are the same. Unlike an SDLC, RUP has 
iterations designed into the framework. While the phases in RUP (Inception, Elaboration, 
Construction, and Transition) have somewhat different names than SDLC phases, the tasks 
are categorized into six engineering disciplines that align nicely with the classic SDLC 
(Business Modeling, Requirements, Analysis and Design, Implementation, Test, and 
Deployment).

Ask the Expert
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Another variation of prototyping restricts the effort to the definition of requirements. 
Once requirements and the user-facing parts of the conceptual design (that is, user views) 
are determined, a traditional SDLC methodology is used to complete the project. IBM 
introduced a version of this methodology called Joint Application Design (JAD), which 
was highly successful in situations where user requirements could not be determined 
using more traditional techniques. The biggest exposure for this variant of prototyping 
is in not setting and maintaining expectations with the business sponsors of the project. 
The prototype is more or less a façade, much like a movie set where the buildings look 
real from the front but have no substance beyond that. Nontechnical audiences have no 
understanding of what it takes to develop the logic and data storage structures that form 
the inner workings of the application, and they become most disappointed when they 
realize that what looked like a complete, functional application system was really just an 
empty shell. However, when done correctly, this technique can be remarkably successful 
in determining user requirements that describe precisely the application system the 
business users want and need.

Rapid Application Development
Rapid Application Development (RAD) is a software development process that allows 
functioning application systems to be built in as little as 60 to 90 days. Compromises are 
often made using the 80/20 rule, which assumes that 80 percent of the required work can 
be completed in 20 percent of the time. Complicated exception handling, for example, can 
be omitted in the interest of delivering a working system sooner. If the process is repeated 
on the same set of requirements, the system is ultimately built out to meet 100 percent of 
the requirements in a manner similar to prototyping.

RAD is not useful in controlling project schedules or budgets, and in fact it requires 
a project manager who is highly skilled at managing schedules and controlling costs. It is 
most useful in situations for which a rapid schedule is more important than product quality 
(measured in terms of conforming to all known requirements).

The Project Triangle
The motivation behind the growth of nontraditional development processes is pressure 
from business management to develop better business applications more quickly and 
at less expense. Said simply, they want fast delivery of high quality and inexpensive 
application software systems. However, despite the claims of some of the vendors selling 
development tools and methodologies, all three objectives simply cannot be maximized.
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Try This 5-1

Figure 5-3 shows a graphical representation of the dilemma using the project triangle. 
The three points of the triangle represent the three objectives: quality, delivery time, 
and cost (often known as good, fast, and cheap). The lines between the points remind us 
that the objectives are interrelated. In fact, most experts agree only two of the objectives 
can be optimized, and when they are, the third objective always suffers. The commonly 
understood rule is that you must pick two and optimize your project accordingly. It has 
also been generally proven that the rule applies to human endeavors and not to matters 
of pure technology. For example, you can create a new video format that renders higher 
quality images faster and less expensively. However, if you launched a project to design 
such a new format, the project tasks could not be optimized for all three objectives.

This rule didn’t start with the software industry. In fact, some claim that it is an old 
Hollywood maxim about filmmaking. While every producer wants a high-quality film, 
made quickly, and finished on budget, it simply cannot be done. A good movie made 
quickly isn’t cheap. A movie made quickly and cheaply won’t be good. And a movie that 
is good and cheaply made can’t be made quickly. Applying the analogy to application 
development projects, three choices emerge:

● Design and develop the system quickly and to a high standard, but expect higher costs.

● Design and develop the system quickly while minimizing costs, but expect the 
outcome to meet a lower standard of quality.

● Design and develop the system to a high standard while minimizing costs, but expect 
the project to take much longer.

 Project Database Management Tasks
In this Try This exercise, you will assign typical project management database management 
tasks to SDLC project phases. You may have to do a little research on your own to understand 
the particulars of one or more tasks, but that will only enhance your learning experience.

Delivery 
TimeCost

Quality

Figure 5-3  The project triangle
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Step by Step
 1. Make a list of the SDLC project phases:

 a. Planning

 b. Requirements Gathering

 c. Conceptual Design

 d. Logical Design

 e. Physical Design

 f. Construction

 g. Implementation and Rollout

 h. Ongoing Support

 2. Using what you learned in this chapter along with what you are able to find out using 
other sources, assign each of the following tasks to one of the project phases. Note that 
some may apply to more than one phase. Also, methodologies are usually tailored to 
fit the organization in which they are used, so there are no absolute correct or incorrect 
answers for some of the tasks.

 a. Normalization.

 b. Add foreign keys to the database.

 c. Specify the physical placement of database objects on storage media.

 d. Specify the unique identifier for each relation.

 e. Specify the primary key for each table.

 f. Determine the views required by the business users.

 g. Remove data that is easily derived.

 h. Resolve many-to-many relationships.

 i. Define views in the database.

 j. Modify the database to meet business requirements.

 k. Denormalize the database for performance.

 l. Specify a logical name for each entity and attribute.

 m. Specify a physical name for each table and column.

 n. Add derivable data to improve performance.

(continued)
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 o. Specify database indexes.

 p. Translate the conceptual data model into a logical model.

 q. Document business rules that cannot be represented in the data model.

 r. Identify the attributes required by the business users.

 s. Identify the relationships between the entities.

 t. Identify and document business data requirements.

 u. Ensure that user data requirements are met.

 v. Tune the database to improve performance.

 w. Evaluate available DBMS options.

Try This Summary
In this Try This exercise, you assigned project tasks to SDLC phases using information in 
this chapter, as well as independent research. My solution can be found in Appendix B, 
but as already stated, there is no single correct solution to this exercise.

 Chapter 5 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank questions. 
Note that there may be more than one correct response to each question.

 1. The phases of a systems development life cycle (SDLC) methodology include which of 
the following?

 A Physical design

 B Logical design

 C Prototyping

 D Requirements gathering

 E Ongoing support

 2. During the requirements phase of an SDLC project,

 A User views are discovered.

 B The quality assurance (QA) environment is used.

 C Surveys may be conducted.

✓
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 D Interviews are often conducted.

 E Observation may be used.

 3. The advantages of conducting interviews are

 A Interviews take less time than other methods.

 B Answers may be obtained for unasked questions.

 C A lot can be learned from nonverbal responses.

 D Questions are presented more objectively compared to survey techniques.

 E Entities are more easily discovered.

 4. The advantages of conducting surveys include

 A A lot of ground can be covered quickly.

 B Nonverbal responses are not included.

 C Most survey recipients respond.

 D Surveys are simple to develop.

 E Prototyping of requirements is unnecessary.

 5. The advantages of observation are

 A You always see people acting normally.

 B You are likely to see lots of situations in which exceptions are handled.

 C You may see the way things really are instead of the way management and/or 
documentation presents them.

 D The Hawthorne effect enhances your results.

 E You may observe events that would not be described to you by anyone.

 6. The advantages of document reviews are

 A Pictures and diagrams are valuable tools for understanding systems.

 B Document reviews can be done relatively quickly.

 C Documents will always be up to date.

 D Documents will always reflect current practices.

 E Documents often present overviews better than other techniques can.
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 7. Application program modules are specified during the SDLC ____________ phase.

 8. A feasibility study is often conducted during the ____________ phase of an SDLC project.

 9. Normalization takes place during the ____________ phase of an SDLC project.

 10. DDL is written to define database objects during the ____________ phase of an  
SDLC project.

 11. Program specifications are written during the ____________ phase of an SDLC project.

 12. During implementation and rollout,

 A Users are placed on the live system.

 B Enhancements are designed.

 C The old and new applications may be run in parallel.

 D Quality assurance testing takes place.

 E User training takes place.

 13. During ongoing support,

 A Enhancements are immediately implemented.

 B Storage for the database may require expansion.

 C The staging environment is no longer required.

 D Bug fixes may take place.

 E Patches may be applied if needed.

 14. When requirements are sketchy, ____________ can work well.

 15. Rapid Application Development develops systems rapidly by skipping ____________.

 16. The three objectives depicted in the application triangle are __________, __________, 
and ____________.

 17. The database is initially constructed in the ____________ environment.

 18. Database conversion is tested during the ____________ phase of an SDLC project.

 19. User views are analyzed during the ____________ phase of an SDLC project.

 20. The relational database was invented by ____________.
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Key Skills & Concepts
● The Need for Normalization

● Applying the Normalization Process

● Denormalization

In this chapter, you will learn how to perform logical database design using a process 
called normalization. In terms of understanding relational database technology, this is the 
most important topic in this book, because normalization teaches you how best to organize 
your data into tables.

Normalization is a technique for producing a set of relations (data represented 
logically in a two-dimensional format using rows and columns) that possesses a certain 
set of properties. You’ll remember from previous chapters that E.F. (Ted) Codd is the 
father of the relational database, and that he developed the process in 1972, using three 
normal forms. The name was a bit of a political gag at the time. President Nixon was 
“normalizing” relations with China, so Codd figured if you could normalize relations with 
a country, you should be able to “normalize” data relations as well. Additional normal 
forms were added later, as discussed toward the end of this chapter.

The normalization process is shown in Figure 6-1. On the surface, it is quite simple 
and straightforward, but it takes considerable practice to execute the process consistently 
and correctly. Briefly, we take any relation and choose a unique identifier for the entity 
that the relation represents. Then, through a series of steps that apply various rules, we 
reorganize the relation into continuously more progressive normal forms. The definitions 
of each of these normal forms and the process required to arrive at each one are covered in 
the sections that follow.

Throughout the normalization process, I consistently use the logical terms whenever 
possible. The only exception is the term primary key, which I use in lieu of unique 
identifier for consistency with current industry practice. Beginners may find it easier 
to think in terms of the physical objects that will eventually be created from the logical 
design. This is because learning to think of databases at the conceptual and logical levels 
of abstraction instead of the physical level is, in fact, a very difficult discipline for your 
mind to master. If you find yourself thinking of tables instead of relations, and columns 
instead of attributes, you need to break the habit as soon as possible. Those who think 
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only physically while attempting to normalize tables run into difficulties later, because a 
one-to-one correspondence does not necessarily exist between normalized relations and 
tables. In fact, it is physical database design that transforms the normalized relations into 
relational tables, and there is some latitude in mapping normalized relations to physical 
tables. The following table may help you remember the correspondence between the 
logical and physical terms:

Logical Term Physical Term

Relation or Entity Table

Unique identifier Primary key

Attribute Column

Tuple Row

NOTE
Relation was Codd’s original name for a data structure made of rows and columns, 
and it is the basis for the name relational database. However, over time the term entity 
became more popular, even though the definitions of the two are not exactly the same. 
Be careful not to confuse relation (a data structure) with relationship (how one structure 
is related to another). If fact, it may be this confusion that has driven people away from 
using the term relation.

Figure 6-1  The normalization process

Unnormalized 
relation

Remove repeating and 
multivalued attributes

First normal 
form relation

Remove partially 
dependent attributes

Second normal 
form relation

Remove transitively 
dependent attributes

Third normal 
form relation

Apply additional 
normal forms (?)

Fully normalized 
relation
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The Need for Normalization
In his early work with relational database theory, Codd discovered that unnormalized 
relations presented certain problems when attempts were made to update the data in them. 
He used the term anomalies for these problems. The reason we normalize the relations is to 
remove these anomalies from the data. It is essential that you understand these anomalies, 
because they also tell you when it is acceptable to bend the rules during physical design by 
“denormalizing” the relations (covered later in this chapter). It makes sense that in order to 
bend the rules, you need to understand why the rules exist in the first place.

Figure 6-2 shows an invoice from Acme Industries, a fictitious company. The invoice 
contains attributes that are typical for a printed invoice from a supply company. Conceptually, 
the invoice is a user view. We will use this invoice example throughout our exploration of the 
normalization process.

Insert Anomaly
The insert anomaly refers to a situation in which you cannot insert a new tuple into  
a relation because of an artificial dependency on another relation. (A tuple is a collection of 
data values that form one occurrence of an entity. In a physical database, a tuple is called 
a row of data.) The error that has caused the anomaly is that attributes of two different 
entities are mixed into the same relation. Referring to Figure 6-2, we see that the ID, name, 
and address of the customer are included in the invoice view. Were you merely to make  
a relation from this view as it is, and eventually a table from the relation, you would soon 

Figure 6-2  Invoice from Acme Industries

Acme Industries 
INVOICE

Customer Number: 1454837 
Customer: W. Coyote 
  General Delivery 
  Falling Rocks, AZ 84211 
  (599) 555-9345

Terms: Net 30 
Ship Via: USPS 

Order Date: 12/01/2008

Description

Super Strength Springs 
Foot Straps, leather 
Deluxe Crash Helmet 
Rocket, solid fuel 
Emergency Location Transmitter

Extended Amount

$48.00 
$5.00 
$67.88 

$128,200.40 
**FREE GIFT** 

$128,321.28

Quantity

2 
2 
1 
1 
1

Unit Price

24.00 
2.50 
67.88 

128,200.40 
79.88

Product No.

SPR–2290 
STR–67 
HLM–45 
SFR–1 
ELT–1 

TOTAL ORDER AMOUNT:
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discover that you could not insert a new customer into the database unless the customer had 
bought something. This is because all the customer data is embedded in the invoice.

Delete Anomaly
The delete anomaly is the opposite of the insert anomaly. It refers to a situation wherein 
a deletion of data about one particular entity causes unintended loss of data that 
characterizes another entity. In the case of the Acme Industries invoice, if we delete 
the last invoice that belongs to a particular customer, we lose all the data related to that 
customer. Again, this is because data from two entities (customers and invoices) would be 
incorrectly mixed into a single relation if we merely implemented the invoice as a table 
without applying the normalization process to the relation.

Update Anomaly
The update anomaly refers to a situation in which an update of a single data value requires 
multiple tuples (rows) of data to be updated. In our invoice example, if we wanted to 
change the customer’s address, we would have to change it on every single invoice 
for the customer. This is because the customer address would be redundantly stored 
in every invoice for the customer. To make matters worse, redundant data provides a 
golden opportunity to update many copies of the data but miss a few of them, resulting in 
inconsistent data. The mantra of the skilled database designer is this: For each attribute, 
capture it once, store it once, and use that one copy everywhere.

Applying the Normalization Process
The normalization process is applied to each user view collected during earlier design 
stages. Some people find it easier to apply the first step (choosing a primary key) to each 
user view, and then to apply the next step (converting to first normal form), and so forth. 
Other people prefer to take the first user view and apply all the normalization steps to it, 
and then the next user view, and so forth. With practice, you’ll know which process works 
best for you, but whichever you choose, you must be very systematic in your approach, 
lest you overlook something. Our example has only one user view (the Acme Industries 
invoice), so this may seem a moot point, but two practice problems toward the end of the 
chapter contain several user views each, so you will be able to try this out soon enough. 
Using dry-erase markers or chalk on a wall-mounted board is most helpful because you 
can easily erase and rewrite relations as you go.

Start with each user view being a relation, which means you represent it as if it is a  
two-dimensional table. As you work through the normalization process, you will be 
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rewriting existing relations and creating new ones. Some find it useful to draw the relations 
with sample tuples (rows) of data in them to assist in visualizing the work. If you take this 
approach, be certain that your data represents real-world situations. For example, you might 
not realize that two customers have exactly the same name in the invoice example—as a 
result, your normalization results might be incorrect. Therefore, you should always think of 
as many possibilities as you can when using this approach. Figure 6-3 shows the information 
from the invoice example (Figure 6-2) represented in tabular form. Only one invoice is 
shown here, but many more could be filled in to show examples of multiple invoices per 
customer, multiple customers, the same product on multiple invoices, and so on.

You probably noticed that each invoice has many line items. This will be essential 
information when we get to first normal form. In Figure 6-3, multiple values are placed in 
the cells for the columns that hold data from the line items. These are called multivalued 
attributes because they have multiple values for at least some tuples (rows) in the relation. 
If you were to construct an actual database table in this manner, your ability to use a 
language such as SQL to query those columns would be limited. For example, finding all 
orders that contain a particular product would require you to parse the column data with 
a LIKE operator. Updates would be equally awkward because SQL was not designed to 
handle multivalued columns. Worst of all, a delete of one product from an invoice would 
require an SQL UPDATE instead of a DELETE because you would not want to delete the 
entire invoice. As you consider the first normal form later in this chapter, you will see how 
to mitigate this problem.

Figure 6-4 shows another way a relation could be organized using the invoice shown 
in Figure 6-2. Here, the multivalued column data has been placed in separate rows and 
the other columns’ data has been repeated to match. The obvious problem here is all the 

Figure 6-3  Acme Industries invoice represented in tabular form
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repeated data. For example, the customer’s name and address are repeated for each line 
item on the invoice, which is not only wasteful of resources, but also exposes you to 
inconsistencies whenever the data is not maintained uniformly (for example, if you update 
the city for one line item but not all the others).

Rewriting user views into tables with representative data is a tedious and time-
consuming process. For this reason, you can simply write the attributes as a list and 
visualize them in your mind as the two-dimensional tables they will eventually become. 
This takes some practice and some training of the mind, but once you master it, you’ll find 
it considerably faster to visualize the data rather than writing out exhaustive examples. 
Here is the list for the invoice example from Figure 6-2:

INVOICE: Customer Number, Customer Name, Customer Address, 
         Customer City, Customer State, Customer Zip Code, 
         Customer Phone, Terms, Ship Via, Order Date, 
         Product Number, Product Description, Quantity, 
         Unit Price, Extended Amount, Total Order Amount

For clarity, a name for the relation has been added, with the relation name in uppercase 
letters and separated from the attributes with a colon. This is the convention I will use for the 
remainder of this chapter. However, if another technique works better for you, by all means 
use it. The best news of all is that no matter which representation you use (Figure 6-3,  
Figure 6-4, or the preceding list), if you properly apply the normalization process and its 
rules, you will create a comparable database design.

Figure 6-4  Acme Industries invoice represented without multivalued attributes
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Choosing a Primary Key
As you normalize, you consider each user view as a relation. In other words, you 
conceptualize each user view as if it is already implemented in a two-dimensional 
table. The first step in normalization is to choose a primary key from among the unique 
identifiers you find in the relation.

Recall that a unique identifier is a collection of one or more attributes that uniquely 
identifies each occurrence of a relation. In many cases, a single attribute can be found. In 
our example, the customer number on the invoice uniquely identifies the customer data 
within the invoice, but because a customer may have multiple invoices, it is inadequate as 
an identifier for the entire invoice.

When no single attribute can be found to use for a unique identifier, you can 
concatenate several attributes to form the unique identifier. You will see this happen with 
our invoice example when we split the line items from the invoice as we normalize it. 
It is very important to understand that when a unique identifier is composed of multiple 
attributes, the attributes themselves are not combined—they still exist as independent 
attributes and will become individual columns in the table(s) created from our normalized 
relations.

In a few cases, no set of attributes in a relation can reasonably be used as the 
unique identifier. (You will find that many practitioners use the terms identifier and key 
interchangeably.) When this occurs, you must invent a unique identifier, often with values 
assigned sequentially or randomly as you add entity occurrences to the database. This 
technique (some might say “act of desperation”) is the source of such unique identifiers as 
Social Security numbers, employee IDs, and driver’s license numbers. Unique identifiers 
that have real-world meaning are called natural identifiers, and those that do not (which 
of course includes those we must invent) are called surrogate or artificial identifiers. In 
our invoice example, there appears to be no natural unique identifier for the relation. You 
could try using the customer number combined with the order date, but if a customer has 
two invoices on the same date, this would not be unique. Therefore, it would be much 
better to invent an identifier, such as an invoice number.

Whenever you choose a unique identifier for a relation, you must be certain that the 
identifier will always be unique. If even one case exists to render the identifier not unique, 
you cannot use it. People’s names, for example, make lousy unique identifiers. You may 
have never met someone with exactly your name, but there are people out there with 
completely identical names. As an example of the harm poorly chosen unique identifiers 
cause, consider the case of the Brazilian government when it started registering voters 
in 1994 to reduce election fraud. Father’s name, mother’s name, and date of birth were 
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chosen as the unique identifier. Unfortunately, this combination is unique only for siblings 
born on different dates, so as a result, when siblings born on the same date (twins, triplets, 
and so on) tried to register to vote, the first one that showed up was allowed to register 
and the rest were turned away. Sound impossible? It’s not—this really happened. And to 
make matters worse, citizens are required to vote in Brazil and sometimes have to prove 
they voted in order to get a job. Someone should have spent more time thinking about the 
uniqueness of the chosen “unique” identifier.

Sometimes a relation will have more than one possible unique identifier. When this 
occurs, each possibility is called a candidate. Once you have identified all the possible 
candidates for a relation, you must choose one of them to be the primary key for the 
relation. Choosing a primary key is essential to the normalization process because all the 
normalization rules reference the primary key. The criteria for choosing the primary key 
from among the candidates is as follows (in order of precedence, most important first):

● If only one candidate is available, choose it.

● Choose the candidate least likely to have its value change. Changing primary key 
values once you store the data in tables is a complicated matter because the primary 
key can appear as a foreign key in many other tables. Incidentally, surrogate keys are 
almost always less likely to change compared with natural keys.

● Choose the simplest candidate. The one that comprises the fewest number of attributes 
is considered the simplest.

● Choose the shortest candidate. This is purely an efficiency consideration. However, 
when a primary key can appear in many tables as a foreign key, it is often worth it to 
save some space with each one.

For our invoice example, we have elected to add a surrogate primary identifier called 
Invoice Number. This gives us a simple primary key for the Acme Industries invoices that 
is guaranteed unique, because we can have the DBMS automatically assign sequential 
numbers to new invoices as they are generated. This will likely make Acme’s accountants 
happy at the same time, because it gives them a simple tracking number for the invoices. 

Many conventions can be used for signifying the primary key as you write the 
contents of relations. Using capitalized names causes confusion because most of us  
tend to write acronyms such as DOB (date of birth) that way, and those attributes are not 
always the primary key. Likewise, underlining and bolding the attribute names can be 
troublesome because these may not always display in the same way. Therefore, I use the 
letters PK enclosed in parentheses following the attribute name(s) of the primary key.  
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Rewriting the invoice relation in list form with the primary key added provides the 
following:

INVOICE: Invoice Number (PK), Customer Number, Customer Name, 
         Customer Address, Customer City, Customer State, 
         Customer Zip Code, Customer Phone, Terms, 
         Ship Via, Order Date, Product Number, 
         Product Description, Quantity, Unit Price, 
         Extended Amount, Total Order Amount

First Normal Form: Eliminating Repeating Data
A relation is said to be in first normal form when it contains no multivalued attributes—that 
is, every intersection of a row and column in the relation must contain at most one data 
value (saying “at most” allows for missing or null values). Sometimes, you will find  
a group of attributes that repeat together, as with the line items on the invoice. Each 
attribute in the group is multivalued, but several attributes are so closely related that their 
values repeat together. This is called a repeating group, but in reality, it is just a special case 
of the multivalued attribute problem.

By convention, I enclose repeating groups and multivalued attributes in pairs of 
parentheses. Rewriting our invoice in this way to show the line item data as a repeating 
group, we get this:

INVOICE: Invoice Number (PK), Customer Number, Customer Name, 
         Customer Address, Customer City, Customer State, 
         Customer Zip Code, Customer Phone, Terms, 
         Ship Via, Order Date, (Product Number, 
         Product Description, Quantity, Unit Price, 
         Extended Amount), Total Order Amount

It is essential that you understand that although you know that Acme Industries has 
many customers, only one customer exists for any given invoice, so the customer data 
on the invoice is not a repeating group. You may have noticed that the customer data for 
a given customer is repeated on every invoice for that customer, but this problem will 
be addressed when we get to third normal form. Because there is only one customer per 
invoice, the problem is not addressed when we transform the relation to first normal form.

To transform unnormalized relations into first normal form, you must move 
multivalued attributes and repeating groups to new relations. Because a repeating group is 
a set of attributes that repeat together, all attributes in a repeating group should be moved 
to the same new relation. However, a multivalued attribute (individual attributes that have 
multiple values) should be moved to its own new relation rather than combined with other 
multivalued attributes in the new relation. As you will see later, this technique avoids 
fourth normal form problems.
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The procedure for moving a multivalued attribute or repeating group to a new relation 
is as follows:

 1. Create a new relation with a meaningful name. Often, it makes sense to include all or 
part of the original relation’s name in the new relation’s name.

 2. Copy the primary key from the original relation to the new one. The data depends on 
this primary key in the original relation, so it must still depend on this key in the new 
relation. This copied primary key now becomes a foreign key to the original relation. As 
you apply normalization to a database design, always keep in mind that eventually you 
will have to write SQL to reproduce the original user view from which you started. So 
the foreign keys used to join things back together are nothing less than essential.

 3. Move the repeating group or multivalued attribute to the new relation. (The word move 
is used because these attributes are removed from the original relation.)

 4. Make the primary key (as copied from the original relation) unique by adding attributes 
from the repeating group to it. If you move a multivalued attribute, which is basically 
a repeating group of only one attribute, that attribute is added to the primary key. 
This will seem odd at first, but the primary key attribute(s) that you copied from the 
original table is a foreign key in the new relation. It is quite normal for part of a primary 
key also to be a foreign key. One additional point: It is perfectly acceptable to have a 
relation in which all the attributes are part of the primary key (that is, where there are 
no “non-key” attributes). This is relatively common in intersection tables.

 5. Optionally, you can choose to replace the primary key with a single surrogate key 
attribute. If you do so, you must keep the attributes that make up the natural primary 
key formed in Steps 2 and 4.

For our Acme Industries invoice example, here is the result of converting the original 
relation to first normal form:

INVOICE: Invoice Number (PK), Customer Number, Customer Name, 
         Customer Address, Customer City, Customer State, 
         Customer Zip Code, Customer Phone, Terms, 
         Ship Via, Order Date, Total Order Amount 
 
INVOICE LINE ITEM: Invoice Number (PK), Product Number (PK), 
         Product Description, Quantity, Unit Price, 
         Extended Amount
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Note the following:

● The Invoice Number attribute was copied from INVOICE to INVOICE LINE ITEM 
and Product Number was added to it to form the primary key of the INVOICE LINE 
ITEM relation.

● The entire repeating group (Product Number, Product Description, Quantity, Unit 
Price, and Extended Amount) was removed from the INVOICE relation.

● Invoice Number is still the primary key in INVOICE, and it now also serves as a 
foreign key in INVOICE LINE ITEM as well as being part of the primary key of 
INVOICE LINE ITEM.

● There are no repeating groups or multivalued attributes in the relations, so they are 
therefore in first normal form.

Note an interesting consequence of composing a natural primary key for the 
INVOICE LINE ITEM relation: You cannot put the same product on a given invoice 
more than one time. This might be desirable, but it could also restrict Acme Industries. 
You have to understand their business rules to know. If Acme Industries wants the option 
of putting multiple line items on the same invoice for the same product (perhaps with 
different prices), you should make up a surrogate key instead. Moreover, there are those 
who believe that primary keys composed of multiple attributes are undesirable, along 
with software products that simply do not support them. The alternative is to make up a 
surrogate primary key for the INVOICE LINE ITEM relation. If you choose to do so, the 
relation can be rewritten this way:

INVOICE LINE ITEM: Invoice Line Item ID (PK), 
                   Invoice Number, Product Number, 
                   Product Description, Quantity, 
                   Unit Price, Extended Amount

We are going to use the previous form (the one with the compound primary key made 
up of Invoice Number and Product Number, often called the natural key) as we continue 
with normalization.

Second Normal Form: Eliminating  
Partial Dependencies
Before you explore second normal form, you must understand the concept of functional 
dependence. For this definition, we’ll use two arbitrary attributes, cleverly named “A” 
and “B.” Attribute B is functionally dependent on attribute A if at any moment in time no 
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more than one value of attribute B is associated with a given value of attribute A. Lest 
you wonder what planet I lived on before this one, I’ll try to make the definition more 
understandable. First, suppose that attribute B is functionally dependent on attribute 
A; this is also saying that attribute A determines attribute B, or that A is a determinant 
(unique identifier) of attribute B. Second, let’s look again at the first normal form relations 
in our Acme Industries example:

INVOICE: Invoice Number (PK), Customer Number, Customer Name, 
         Customer Address, Customer City, Customer State, 
         Customer Zip Code, Customer Phone, Terms, 
         Ship Via, Order Date, Total Order Amount 
 
INVOICE LINE ITEM: Invoice Number (PK), Product Number (PK), 
         Product Description, Quantity, Unit Price, 
         Extended Amount

In the INVOICE relation, you can easily see that Customer Number is functionally 
dependent on Invoice Number because at any point in time, there can be only one value  
of Customer Number associated with a given value of Invoice Number. The very fact that 
the Invoice Number uniquely identifies the Customer Number in this relation means that, 
in return, the Customer Number is functionally dependent on the Invoice Number.

In the INVOICE LINE ITEM relation, you can also say that Product Description is 
functionally dependent on Product Number because, at any point in time, there is only one 
value of Product Description associated with the Product Number. However, the fact that 
the Product Number is only part of the key of the INVOICE LINE ITEM is the very issue 
addressed by second normal form.

A relation is said to be in second normal form if it meets both the following criteria:

● The relation is in first normal form.

● All non-key attributes are functionally dependent on the entire primary key.

Look again at Product Description, and it should be easy to see that Product Number 
alone determines the value. Said another way, if the same product appears as a line 
item on many different invoices, the Product Description is the same regardless of the 
Invoice Number. Or you can say that Product Description is functionally dependent on 
only part of the primary key, meaning it depends only on Product Number and not on the 
combination of Invoice Number and Product Number.

It should also be clear by now that second normal form applies only to relations where 
we have concatenated primary keys (that is, those made up of multiple attributes). If a 
primary key is composed of only a single attribute, as is the case with the first normal 
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form version of the Invoice relation, and the primary key is atomic (that is, has no subparts 
that make sense by themselves), as all attributes should be, then it is simply not possible 
for anything to depend on part of the primary key. It follows, then, that any first normal 
form relation that has only a single atomic attribute for its primary key is automatically  
in second normal form.

Looking at the INVOICE LINE ITEM relation, however, second normal form 
violations should be readily apparent: Product Description and Unit Price depend only on 
the Product Number instead of the combination of Invoice Number and Product Number. 
But not so fast! What about price changes? If Acme decides to change its prices, how could 
you possibly want that change to be retroactive for every invoice you have ever created? 
After all, an invoice is an official record that you must maintain for seven years, per current 
U.S. tax laws. This is a common dilemma with fast-changing attributes such as prices. 
Either you must be able to recall the price at any point in time or you must store the price 
with the invoice so you can reproduce the invoice as needed (that is, when the friendly tax 
auditors come calling). 

For simplicity, let’s store the price in two places—one being the current selling 
price and the other being the price at the time the sale was made. Because the latter is 
a snapshot at a point in time that is not expected to change, there are no anomalies to 
this seemingly redundant storage. An alternative would be to store a date-sensitive price 
history somewhere that you could use to reconstruct the correct price for any invoice. 
That is a practical alternative here, but you would never be able to do that with stock or 
commodities market transactions, for example. The point is that while the sales price looks 
redundant, there are no anomalies to the additional attribute, so it does no harm. Notice 
that the attribute names are adjusted so their meaning is abundantly clear.

Once you find a second normal form violation, the solution is to move any attributes 
that are partially dependent to a new relation where they depend on the entire key instead 
of part of the key. Here is our invoice example rewritten into second normal form:

INVOICE: Invoice Number (PK), Customer Number, Customer Name, 
          Customer Address, Customer City, Customer State, 
          Customer Zip Code, Customer Phone, Terms, 
          Ship Via, Order Date, Total Order Amount 
 
INVOICE LINE ITEM: Invoice Number (PK), Product Number (PK), 
          Quantity, Sale Unit Price, Extended Amount 
 
PRODUCT:  Product Number (PK), Product Description, 
          List Unit Price
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The improvement from the first normal form solution is that maintenance of the 
Product Description now has no anomalies. You can set up a new product independent of 
the existence of an invoice for the product. If you want to change the Product Description, 
you may do so by merely changing one value in one row of data. Also, should the last 
invoice for a particular product be deleted from the database for whatever reason, you 
won’t lose its description (it will still be in the row in the Product relation). Always 
remember that the reason you are normalizing is to eliminate these anomalies.

Third Normal Form: Eliminating  
Transitive Dependencies
To understand third normal form, you must first understand transitive dependency. An 
attribute that depends on another attribute that is not the primary key of the relation is said 
to be transitively dependent. Looking at our INVOICE relation in second normal form, 
you can clearly see that Customer Name is dependent on Invoice Number (each Invoice 
Number has only one Customer Name value associated with it), but at the same time 
Customer Name is also dependent on Customer Number. The same can be said of the rest 
of the customer attributes as well. The problem here is that attributes of another entity 
(Customer) have been included in our INVOICE relation.

A relation is said to be in third normal form if it meets both the following criteria:

● The relation is in second normal form.

● There is no transitive dependence (that is, all the non-key attributes depend only on the 
primary key).

To transform a second normal form relation into third normal form, simply move any 
transitively dependent attributes to relations where they depend only on the primary key. 
Be careful to leave the attribute on which they depend in the original relation as a foreign 
key. You will need it to reconstruct the original user view via a join.

If you have been wondering about easily calculated attributes such as Extended 
Amount in the INVOICE LINE ITEM relation, it is actually third normal form that 
forbids them, but it takes a subtle interpretation of the rule. Because the Extended 
Amount is calculated by multiplying Sale Unit Price × Quantity, it follows that Extended 
Amount is determined by the combination of Sale Unit Price and Quantity and therefore 
is transitively dependent on those two attributes. Thus, it is third normal form that tells 
you to remove easily calculated attributes. And in this case, they are simply removed. 
Using similar logic, you can also remove the Total Order Amount from the INVOICE 
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relation because you can simply sum the INVOICE LINE ITEM relation to reproduce the 
value. A good designer will make a note in the documentation specifying the formula for 
the calculated attribute so that its value can be reproduced when needed. Another highly 
effective alternative is to write the SQL that reproduces the original views when you 
complete a normalization process. It’s an excellent way to test your normalization because 
you can use the SQL to prove that the original user views can be easily reproduced.

Here is the Acme Industries invoice data rewritten into third normal form:

INVOICE: Invoice Number (PK), Customer Number, Terms, 
         Ship Via, Order Date 
 
INVOICE LINE ITEM: Invoice Number (PK), Product Number (PK), 
         Quantity, Sale Unit Price 
 
PRODUCT: Product Number (PK), Product Description, 
         List Unit Price 
 
CUSTOMER: Customer Number (PK), Customer Name, 
         Customer Address, Customer City, Customer State, 
         Customer Zip Code, Customer Phone

Q: In the CUSTOMER entity you just illustrated, aren’t City and State transitively 
dependent on the Zip Code?

A: Not really. Even if you always have the complete nine-digit ZIP code (called “ZIP Plus 4” 
by the U.S. Postal Service), there is no absolute guarantee that the ZIP code will always 
contain only one city, county, and state. Yes, the Postal Service publishes a ZIP code list that 
provides a city, county, and state for each ZIP code, but that only tells you the location of 
the post office building that serves the ZIP code; it does not indicate that all the addresses 
within that ZIP code are in the listed city, county, and state. In the past, some ZIP codes 
in the United States have actually crossed state lines. Moreover, thousands of examples 
exist of different cities and towns sharing the same ZIP codes. Nor can you use ZIP codes 
to determine the county within the state—roughly 20 percent of U.S. five-digit ZIP codes 
contain parts of more than one county. So be careful when you assume things. The Postal 
Service will be the first to tell you that it is not responsible for aligning its zoning system 
with political boundaries. The only 100 percent reliable way to assign city, county, and state 
to a U.S. address is to use the complete street address in a ZIP code table that includes street 
names and ranges of street (building) numbers that apply to that ZIP code. By the way, ZIP is 
actually an acronym for Zoning Improvement Program, introduced in 1963. But I digress….

Ask the Expert
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NOTE
Here is an easy way to remember the rules of first, second, and third normal form: In a 
third normal form relation, every non-key attribute must depend on the key, the whole 
key, and nothing but the key, so help me Codd.

Beyond Third Normal Form
Since the original introduction of normalization, various authors have offered advanced 
versions. Third normal form will cover well over 90 percent of the cases you will see in 
business information systems, and it’s considered the “gold standard” in business systems. 
Once you have mastered third normal form, additional normal forms are worth knowing.

Should you then make a Zip Code relation and normalize the City and State out of all 
your addresses? Or would that be considered overdesign? The question can be answered by 
going back to the anomalies, because removal of the insert, update, and delete anomalies is 
the entire reason you normalize data in the first place:

● If a new city is formed, do you need to add it to the database even if you have no 
customers located there? (This is an insert anomaly.)

● If a city is dissolved, do you have a need to delete its information without losing 
other data? (This is a delete anomaly.)

● If a city changes its name (this rarely occurs, but it has happened), is it a burden to 
you to find all the customers in that city and change their addresses accordingly?

If you answered yes to any of the above, you should normalize the City and State 
attributes into a table with a primary key of Zip Code. (Note that the city and state names 
assigned will be the ones for the post office that serves the ZIP code, which are the names 
the post office prefers, but they may not be the ones preferred by those receiving the mail.) 
In fact, you can purchase ZIP code data on a regular basis from the U.S. Postal Service or 
other sources, or you can subscribe to an address cleansing service that will standardize 
addresses and provide accurate ZIP codes for each one. Furthermore, if you maintain other 
data by ZIP code, such as shipping rates, you have all the more reason to normalize it. But 
if not, the Zip Code example is a valuable lesson in why we normalize (or not) and when it 
may not be as important.

Another argument for not normalizing the Zip Code data is that the data is not stable. 
The post office is constantly adding and splitting ZIP codes, and whenever cities acquire 
new territory, the ZIP code list for the city can change. Common sense must prevail at  
all times.
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Boyce-Codd Normal Form
Boyce-Codd Normal Form (BCNF) is a stronger version of third normal form. It addresses 
anomalies that occur when a non-key attribute is a determinant of an attribute that is part 
of the primary key (that is, when an attribute that is part of the primary key is functionally 
dependent on a non-key attribute).

As an example, assume that Acme Industries assigns multiple product support specialists 
to each customer, and each support specialist handles only one particular product line. 
Following is a relation that assigns specialists to customers. In reality, Customer ID and 
Support Specialist (Employee) ID could be used instead of the customer and support 
specialist names, but their names are used here for better illustration of the issue.

Customer Product Line Support Specialist
W. Coyote Springs R.E. Coil

W. Coyote Straps B. Brown

W. Coyote Helmets C. Bandecoot

W. Coyote Rockets R. Goddard

USAF Rockets R. Goddard

S. Gonzalez Springs R.E. Coil

S. Gonzalez Straps B. Brown

S. Gonzalez Rockets E. John

L. Armstrong Helmets S.D. Osborne

In this example, you must concatenate the Customer and Product Line attributes 
to form a primary key. However, because a given support specialist supports only one 
product line, it is also true that the Support Specialist attribute determines the Product 
Line attribute. If you had chosen a surrogate primary key instead of combining Customer 
and Product Line for the primary key, the third normal form violation—a non-key 
attribute determining another non-key attribute (Support Specialist determining Product 
Line in this case)—would be obvious. However, you masked the normalization error by 
making Product Line part of the primary key. This is why BCNF is considered a stronger 
version of third normal form.

The BCNF has two requirements:

● The relation must be in third normal form.

● No determinants exist that are not either the primary key or a candidate key for the 
table. That is, a non-key attribute may not uniquely identify (determine) any other 
attribute, including one that participates in the primary key.
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The solution is to split the unwanted determinant to a different table, just as you would 
with a third normal form violation. The BCNF version of this relation is shown here:

SUPPORT SPECIALIST ASSIGNMENT: CUSTOMER ID (PK), 
                               SUPPORT SPECIALIST ID 
 
SUPPORT SPECIALIST SPECIALTY: SUPPORT SPECIALIST ID (PK), 
                              PRODUCT LINE

In tabular form, the relations and data look like this (again, names have been 
substituted for the IDs to make the data easier to visualize):

Customer Support Specialist
W. Coyote R.E. Coil

W. Coyote B. Brown

W. Coyote C. Bandecoot

W. Coyote R. Goddard

USAF R. Goddard

S. Gonzalez R.E. Coil

S. Gonzalez B. Brown

S. Gonzalez E. John

L. Armstrong S.D. Osborne

Support Specialist Product Line
B. Brown Straps

C. Bandecoot Helmets

E. John Rockets

R.E. Coil Springs

R. Goddard Rockets

S.D. Osborne Helmets

Fourth Normal Form
Once in BCNF, remaining normalization problems deal almost exclusively with relations 
where every attribute is part of the primary key. One such anomaly surfaces when two or 
more multivalued attributes are included in the same relation. Suppose, for example, you 
want to track both office skills and language skills for our employees. You might come up 
with a relation such as this one:
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Employee ID Office Skill Language Skill
1001 Typing, 40 wpm Spanish

1001 10 key French

1002 Spreadsheets Spanish

1002 10 key German

You can form a primary key for this relation by choosing the combination of either 
Employee ID and Office Skill, or Employee ID and Language Skill. That leaves you with 
either of these two alternatives for third normal form relations:

EMPLOYEE SKILL: EMPLOYEE ID (PK), OFFICE SKILL (PK), 
                LANGUAGE SKILL 
 
EMPLOYEE SKILL: EMPLOYEE ID (PK), LANGUAGE SKILL (PK), 
                OFFICE SKILL

Both the alternatives shown are in third normal form, and both pass BCNF as well. The 
problem, of course, is that an implied relationship exists between office skills and language 
skills. Does the first tuple for employee 1001 imply that he or she can type only in Spanish? 
And does the second tuple imply that he or she can work only on a French 10 Key pad?

Relations such as these are rare in real life because when experienced designers resolve 
multivalued attribute problems to satisfy first normal form, they move each multivalued 
attribute to its own relation rather than combining them as shown here. So, with some strict 
interpretation of first normal form procedures, this can be avoided altogether. Also, if you 
are going to apply the rules of fifth normal form, it covers the anomalies addressed by 
fourth normal form in terms that are much easier to understand, so you can skip this step 
altogether. However, should you encounter a fourth normal form violation, the remedy is 
simply to put each multivalued attribute in a separate relation, such as these:

EMPLOYEE OFFICE SKILL: EMPLOYEE ID (PK), OFFICE SKILL (PK) 
 
EMPLOYEE LANGUAGE SKILL: EMPLOYEE ID (PK), LANGUAGE SKILL (PK)

Fifth Normal Form
Fifth normal form is very easy to understand. You simply keep splitting relations, stopping 
only when one of the following conditions is true:

● Any further splitting would lead to relations where the original view cannot be 
reconstructed with joins.

● The only splits left are trivial. Trivial splits occur when resulting relations have a 
primary key consisting only of the primary key or candidate key of the other relation.
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While fifth normal form seems to forbid all three-way relationships, some of these 
are legitimate. Problems arise only when the entities can be split into simpler, more 
fundamental relationships.

To most practitioners, fifth normal form is synonymous with fully normalized. However, 
in recent years, database management guru C.J. (Chris) Date has proposed a sixth normal 
form that deals with temporal and interval data. It remains to be seen whether or not it will 
be widely adopted.

Domain-Key Normal Form (DKNF)
Ron Fagin introduced domain-key normal form (DKNF) in a research paper published 
in 1981. The theory is that a relation is in DKNF if and only if every constraint on 
the relation is a result of the definitions of domains and keys. Although Fagin was 
able to prove that relations in DKNF have no modification anomalies, he provided no 
procedure or step-by-step rules to achieve it. The dilemma then is that designers have 
no solid indication of when DKNF has been achieved for a relation. Nor is the notion 
that constraints are a consequence of keys obvious. This is likely why DKNF is not in 
widespread use and is not generally expected in the design of databases for business 
applications. Academic interest in it has also faded.

Denormalization
As you have seen, normalization leads to more relations, which translates to more 
tables and more joins. When database users suffer performance problems that cannot 
be resolved by other means, such as tuning the database or upgrading the hardware 
on which the RDBMS runs, denormalization may be required. Most database experts 
consider denormalization a last resort, if not an act of desperation. With continuous 
improvements in hardware and RDBMS efficiencies, denormalization has become far 
less necessary than in the earlier days of relational databases. The most essential point 
is that denormalization is not the same as not bothering to normalize in the first place. 
Once a normalized database design has been achieved, adjustments can be made with the 
potential consequences (anomalies) in mind.

Possible denormalization steps include the following:

● Recombining relations that were split to satisfy normalization rules

● Storing redundant data in tables

● Storing summarized data in tables

Note also that normalization is intended to remove anomalies from databases that are 
used for online transaction-processing systems. Databases that store historical data used 
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Try This 6-1

solely for analytical purposes are not as subject to insert, update, and delete anomalies. 
Chapter 12 offers more information on databases that hold historical information.

Practice Problems
This section includes two practice problems (in the form of Try This exercises) with 
solutions so you can try normalization for yourself. These are very narrow, scaled-down 
case problems that most readers should be able to solve in about an hour each. As you 
work them, you will be more successful if you focus just on the views presented and 
don’t worry about other business processes and data that might be needed. For each case 
problem, the intent is for you to produce third normal form relations that support the 
views presented and then draw an entity-relationship diagram (ERD) for the normalized 
relations. As you draw the ERDs, keep in mind that they are quite easy to create once 
normalization is complete—you simply create a rectangle for each normalized relation 
and then draw relationships everywhere a primary key in one relation is used as a foreign 
key in another (or the same) relation. These should all be one-to-many relationships, and 
the foreign key must always be on the many side of the relationship. My solution for each 
problem appears in Appendix B.

 UTLA Academic Tracking
The University of Three Letter Acronyms (UTLA) is a small academic facility offering 
undergraduate and continuing adult education. Most of the recordkeeping is either manual 
or done by individuals using personal tools such as spreadsheets. A modernization effort is 
underway, which includes building integrated application and database systems to perform 
basic business functions.

The User Views
UTLA wishes to construct a system to track its academic activities, including course 
offerings, instructor qualifications for the courses, course enrollment, and student grades. 
The following illustrations show the desired output reports with sample data (these are the 
user views that should be normalized).
 Student report:

Student Report:

Mailing Address

127 Essex Drive  Hayward CA 94545 
P.O. Box 45   Oakland CA 94601 
South Hall #23   Berkeley CA 94623

Home Phone

510–555–2859 
510–555–9403 
510–555–8742

ID

4567 
4953 
6758

Name

Helen Wheels 
Barry Bookworm 
Carla Coed



 Chapter 6: Database Design Using Normalization 211

Course report:

Course Report:

Prerequisite Courses

None 
X100 
X301 
X301 
X301, X422

Description

This course... 
Students learn... 
Continuation of... 
Introduction to... 
The main focus...

ID

X100 
X301 
X302 
X422 
X408

Title

Concepts of Data Proc. 
C Programming I 
C Programming II 
Systems Analysis 
Concepts of DBMS

No. Credits

4 
4 
6 
6 
6

Instructor report:

Instructor Report:

Home Phone

510–555–1234 

510–555–1010 

510–555–2829

Office Phone

x–7463 

x–5328 

408–555–2047

ID

756 

795 

801

Name

Werdna Leppo

Cora Coder 

Tillie Talker

Home Address

12 Main St. 
Alameda  CA  94501 

32767 Binary Way 
Abend  CA  21304 

123 Forms Rd. 
Paperwork  CA  95684

Courses

X408, X422 

X301, X302 

X100, X422 

Section report:

Section Report:

Year: 2008 Semester: Spr Building: Evans Room: 70 Day(s): Tu Time(s): 7–10

Instructor: 756, Werdna Leppo Course: X408 Credits: 6

Year: 2008 Semester: Spr Building: SFO Room: 7 Day(s): We Time(s): 7–10

Instructor: 756, Werdna Leppo Course: X408 Credits: 6

Year: 2008 Semester: Spr Building: Evans Room: 70 Day(s): M,Fr Time(s): 7–9

Instructor: 801, Tillie Talker Course: X100 Credits: 4

Student ID
4567 
6758

Student Name
Helen Wheels 
Carla Coed

Grade
A 
B+

Student ID
4973 
6758

Student Name
Barry Bookworm 
Carla Coed

Grade
B+ 
A–

Student ID Student Name Grade

(continued)
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You cannot design a database without some knowledge of the business rules and 
processes of an organization. Here are a few such items to keep in mind:

● Only one mailing address and one contact phone number are kept for each student.

● Each course has a fixed number of credits (that is, no variable credit courses are offered).

● Each course may have one or more prerequisite courses. The list of all prerequisites 
for each course is shown in the Course report.

● Only one mailing address, one home phone number, and one office phone number are 
kept for each instructor.

● A qualifications committee must approve instructors before they are permitted to 
teach a particular course. The qualifications (that is, the courses that the committee has 
determined the instructor is qualified to teach) are then added to the instructor’s records, 
as shown in the Instructor report. The list of qualified courses does not imply that the 
instructor has actually taught the course but only that he or she is qualified to do so.

● Based on demand, any course may be offered multiple times, even in the same year 
and semester. Each offering is called a “section,” as shown in the Section report.

● Students enroll in a particular section of a course and receive a grade for their 
participation in that course offering. Should they take the course again at a later time, 
they receive another grade, and both grades are part of their permanent academic record.

● Although the day, time, building, and room for each section is noted in the Section 
report, this is done merely to facilitate registering students. The scheduling of classrooms 
is out of scope for this project.

● The day(s) and time(s) attributes on the Section report are merely text descriptions of 
the meeting schedule. The building of a meeting calendar for sections is out of scope 
for this project.

As a convenience, here are the attributes rewritten using the relation listing method, 
with repeating groups and multivalued attributes enclosed in parentheses:

STUDENT REPORT: ID, STUDENT NAME, STREET ADDRESS, CITY, STATE, 
                ZIP CODE, HOME PHONE 
 
COURSE REPORT: ID, TITLE, NUMBER OF CREDITS, 
               (PREREQUISITE COURSES), DESCRIPTION 
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INSTRUCTOR REPORT: ID, INSTRUCTOR NAME, STREET ADDRESS, 
                   CITY, STATE, ZIP CODE, HOME PHONE, 
                   OFFICE PHONE, (QUALIFIED COURSES) 
 
SECTION REPORT: YEAR, SEMESTER, BUILDING, ROOM, DAYS, 
                TIMES, INSTRUCTOR ID, INSTRUCTOR NAME, 
                COURSE ID, NUMBER OF CREDITS, 
                (STUDENT ID, STUDENT NAME, GRADE)

Step by Step

 1. Study each of the user views in the preceding description, along with the business rules. 
You may have to make some assumptions if you have questions that the description 
does not answer.

 2. Apply the normalization process described in this chapter, normalizing each view to 
relations that are in at least third normal form. Be careful to consolidate the normalized 
relations you develop as you go. For the purposes of this exercise, no two relations 
should share the same primary key. (Exceptions to this rule are covered in subsequent 
chapters.)

 3. Clearly indicate the primary key of each relation. Remember that a primary key can be 
one or more attributes within the relation.

 4. Draw an ERD with one entity (rectangle) for each of your normalized relations and 
appropriate relationship lines with cardinality clearly noted. This should be quite easy 
to do once normalization is complete: simply draw a line from each foreign key to 
the matching primary key and mark the foreign key end of the line as “many” and the 
primary key end as “one.”

Try This Summary
In this Try This exercise, you normalized four user views and drew an ERD of your design. 
My solution appears in Appendix B.
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Try This 6-2 Computer Books Company
The Computer Books Company (CBC) buys books from publishers and sells them to 
individuals via mail and telephone orders. They are looking to expand their services by 
offering online ordering via the Internet, and in doing so CBC has a compelling need to 
build a database to hold its business information.

The User Views
Throughout these user views, “sale” and “price” are references to the retail sale of a book 
to a CBC customer, whereas “purchase” and “cost” are references to the purchase of books 
from a publisher (CBC supplier). Each user view is described briefly with a list of the 
attributes in the view following each description. Per our convention, multivalued attributes 
and repeating groups are enclosed in parentheses.

The Book Catalog lists all the books that CBC has for sale. Each book is uniquely 
identified by the International Standard Book Number (ISBN). Although an ISBN uniquely 
identifies a book, it is essentially a surrogate key, so there is no way to tell the edition of a 
particular book simply by looking at the ISBN. When new editions come out, CBC typically 
has leftover stock of prior editions and offers them at a reduced price. The previous edition 
ISBN in the Book Catalog is intended to help the buyer find the prior edition, if one exists. 
Books are organized by subject, with each book having only one subject. Any book can have 
multiple authors. (Although the catalog shows only author names, keep in mind that people’s 
names are seldom unique, and nothing would stop two people with the same name from 
writing two different books.) 

Here is the information in the Book Catalog:

BOOK CATALOG: SUBJECT CODE, SUBJECT DESCRIPTION, BOOK TITLE, 
              BOOK ISBN, BOOK PRICE, PREVIOUS EDITION ISBN, 
              PREVIOUS EDITION PRICE, (BOOK AUTHORS), 
              PUBLISHER NAME

The Book Inventory Report helps the warehouse manager control the inventory in 
the warehouse. The Recommended Quantity is the reorder point, meaning when on-hand 
inventory falls below the recommended quantity, it is time to order more books of  
that title.

INVENTORY REPORT: BOOK ISBN, BOOK EDITION CODE, COST, 
                  SELLING PRICE, QUANTITY ON HAND, 
                  QUANTITY ON ORDER, RECOMMENDED QUANTITY
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The Customer Book Orders view shows orders placed by CBC customers for 
purchases of books:

CUSTOMER BOOK ORDERS: CUSTOMER ID, CUSTOMER NAME, 
                      STREET ADDRESS, CITY, STATE, 
                      ZIP CODE (ISBN, BOOK EDITION CODE, 
                      QUANTITY, PRICE), ORDER DATE, 
                      TOTAL PRICE

CBC bills customers as books are shipped, so an unshipped order won’t have an invoice. 
An invoice is created for each shipment. (An order can have zero, one, or more invoices, but 
each invoice belongs only to one order.) The Book Sales Invoice looks like this:

BOOK SALES INVOICE: SALES INVOICE NUMBER, CUSTOMER ID, 
                    CUSTOMER NAME, CUSTOMER STREET ADDRESS, 
                    CUSTOMER CITY, CUSTOMER STATE, 
                    CUSTOMER ZIP CODE, (BOOK ISBN, TITLE, 
                    EDITION CODE, (BOOK AUTHORS), QUANTITY, 
                    PRICE, PUBLISHER NAME), 
                    SHIPPING CHARGES, SALES TAX

The Master Billing Report helps the Collections and Customer Service departments 
manage customer accounts. A system for recording customer payments against invoices 
is out of scope for the current project, but the CBC project sponsors do want to keep a 
running balance showing what each customer owes CBC. As invoices are generated,  
a database trigger will be used to add invoice totals to the Balance Due. As payments are 
received, the CBC staff will manually adjust the Balance Due. The Master Billing Report 
attributes are as follows:

MASTER BILLING REPORT: CUSTOMER ID, CUSTOMER NAME, STREET ADDRESS, 
                       STREET ADDRESS, CITY, STATE, ZIP CODE, 
                       PHONE, BALANCE DUE

Each time CBC buys books from a publisher, the publisher sends an invoice to 
CBC. To assist in managing inventory cost, CBC wishes to store the Purchase Invoice 
information and report it using this view:

PURCHASE INVOICE: PUBLISHER ID, PUBLISHER NAME, 
                  STREET ADDRESS, CITY, STATE, ZIP CODE, 
                  PURCHASE INVOICE NUMBER, INVOICE DATE, 
                  (BOOK ISBN, EDITION CODE, TITLE, 
                  QUANTITY, COST EACH, EXTENDED COST), 
                  TOTAL COST

Note that Extended Cost is calculated as Cost Each times Quantity.

(continued)
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Step by Step
 1. Study each of the user views in the preceding description, along with the business rules. 

You might have to make some assumptions if you have questions that the description 
does not answer.

 2. Apply the normalization process described in this chapter, normalizing each view to 
relations that are in at least third normal form. Be careful to consolidate the normalized 
relations you develop as you go. For the purposes of this exercise, no two relations should 
share  the same primary key. (Exceptions to this rule are covered in subsequent chapters.)

 3. Clearly indicate the primary key of each relation. Remember that a primary key can be 
one or more attributes within the relation.

 4. Draw an ERD with one entity (rectangle) for each of your normalized relations and 
appropriate relationship lines with cardinality clearly noted. This is actually quite 
easy once normalization is complete: simply draw a line from each foreign key to the 
matching primary key and mark the foreign key end of the line as “many” and the 
primary key end as “one.”

Try This Summary
In this Try This exercise, you normalized six user views that were more complicated than 
the previous Try This exercise and drew an ERD of your design. My solution appears in 
Appendix B.

 Chapter 6 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank 
questions. Note that there may be more than one correct response to each question.

 1. Normalization

 A Was developed by E.F. Codd

 B Was first introduced with five normal forms

 C First appeared in 1972

 D Provides a set of rules for each normal form

 E Provides a procedure for converting relations to each normal form

✓
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 2. The purpose of normalization is

 A To eliminate redundant data

 B To remove certain anomalies from the relations

 C To provide a reason to denormalize the database

 D To optimize data-retrieval performance

 E To optimize data for inserts, updates, and deletes

 3. When implemented, a third normal form relation becomes a(n) ____________.

 4. The insert anomaly refers to a situation in which

 A Data must be inserted before it can be deleted.

 B Too many inserts cause the table to fill up.

 C Data must be deleted before it can be inserted.

 D A required insert cannot be done due to an artificial dependency.

 E A required insert cannot be done due to duplicate data.

 5. The delete anomaly refers to a situation in which

 A Data must be deleted before it can be inserted.

 B Data must be inserted before it can be deleted.

 C Data deletion causes unintentional loss of another entity’s data.

 D A required delete cannot be done due to referential constraints.

 E A required delete cannot be done due to lack of privileges.

 6. The update anomaly refers to a situation in which

 A A simple update requires updates to multiple rows of data.

 B Data cannot be updated because it does not exist in the database.

 C Data cannot be updated due to lack of privileges.

 D Data cannot be updated due to an existing unique constraint.

 E Data cannot be updated due to an existing referential constraint.
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 7. The roles of unique identifiers in normalization are

 A They are unnecessary.

 B They are required once you reach third normal form.

 C All normalized forms require designation of a primary key.

 D You cannot normalize relations without first choosing a primary key.

 E You cannot choose a primary key until relations are normalized.

 8. Writing sample user views with representative data in them is

 A The only way to normalize the user views successfully

 B A tedious and time-consuming process

 C An effective way to understand the data being normalized

 D Only as good as the examples shown in the sample data

 E A widely used normalization technique

 9. Criteria useful in selecting a primary key from among several candidate keys are

 A Choose the simplest candidate.

 B Choose the shortest candidate.

 C Choose the candidate most likely to have its value change.

 D Choose concatenated keys over single attribute keys.

 E Invent a surrogate key if that is the best possible key.

 10. First normal form resolves anomalies caused by ____________.

 11. Second normal form resolves anomalies caused by ____________.

 12. Third normal form resolves anomalies caused by ____________.

 13. In general, violations of a normalization rule are resolved by

 A Combining relations

 B Moving attributes or groups of attributes to a new relation

 C Combining attributes

 D Creating summary tables

 E Denormalization
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 14. A foreign key in a normalized relation may be

 A The entire primary key of the relation

 B Part of the primary key of the relation

 C A repeating group

 D A non-key attribute in the relation

 E A multivalued attribute

 15. Boyce-Codd Normal Form deals with anomalies caused by ____________.

 16. Fourth normal form deals with anomalies caused by ____________.

 17. Fifth normal form deals with anomalies caused by ____________.

 18. Domain key normal form deals with anomalies caused by ____________.

 19. Most business systems require that you normalize only as far as ____________.

 20. Proper handling of multivalued attributes when converting relations to first normal 
form usually prevents subsequent problems with ____________.
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Key Skills & Concepts
● Entity Relationship Modeling

● Process Models

● Relating Entities and Processes

As you saw in Chapter 5, data and process modeling are major undertakings that are 
part of the logical design stage of an application system development project. You 

have already seen the rudiments of data modeling when you used entity relationship 
diagrams (ERDs) in preceding chapters. In this chapter, we will look at ERDs and data 
modeling in more detail. Process modeling, on the other hand, is less important to a 
database designer because application processes are designed by application designers 
and seldom directly involve the database designer. However, because the database 
designer must work closely with the application designer in gathering data requirements 
and in supplying a database design that will support the processes being designed, the 
database designer should at least be familiar with the basic concepts. For this reason, the 
second part of this chapter includes a high-level survey of process design concepts and 
diagramming techniques.

Entity Relationship Modeling
Entity relationship modeling is the process of visually representing entities, attributes, and 
relationships to produce the ERD. The process is iterative in nature because entities are 
discovered throughout the design process. The chief advantage of ERDs is that they can 
be understood by nontechnical people while still providing great value to technical people. 
Done correctly, ERDs are platform independent and can even be used for nonrelational 
databases if desired.

ERD Formats
Peter Chen developed the original ERD format in 1976. Since then, vendors, computer 
scientists, and academics have developed many variations, all of them conceptually the same. 
You should understand the most commonly used variations because you are likely to encounter 
them in active use in IT organizations. Here are the elements common to all ERD formats:
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● Entities are represented as rectangles or boxes.

● Relationships are represented as lines.

● Line ends (or symbols next to them) indicate the maximum cardinality of the 
relationship (that is, one or many).

● Symbols near the line ends (in most ERD formats) indicate the minimum cardinality 
of the relationship (that is, whether participation in the relationship is mandatory or 
optional).

● Attributes may be optionally included (the format for displaying attributes varies quite 
a bit).

Chen’s Format
For simplicity, we’ll use the normalized solution for the Acme Industries invoice 
application from Chapter 6 for the examples in this chapter. Figure 7-1 shows the ERD 
using Chen’s format.

Here are the particulars of the Chen format:

● Relationship lines contain a diamond in which is written a word or short phrase that 
describes the relationship. For example, the relationship between Invoice and Product 
may be read as “An invoice contains many products.” Some variations permit another 
word or phrase to be used in reading the relationship in the other direction, separated 
with a slash. If the diamond read “Contains/Appears on,” then the relationship from 
Product to Invoice would be read as “A product appears on many invoices.”

● For many-to-many relationships that require an intersection table in an RDBMS, such 
as the one between Invoice and Product, a rectangle is often drawn around the diamond.

● Maximum cardinality of each relationship is shown using the symbol 1 for “one” or M 
for “many.”

Figure 7-1  Acme Industries logical ERD format in Chen’s format
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● Minimum cardinality is not shown.

● Attributes, when shown, appear in ellipses (elongated circles), connected to the entity 
or relationship to which they belong with a line.

In practice, Chen ERDs are cumbersome for complicated data models. The diamonds 
take up a lot of space on the diagrams for the little added value they provide. Also, any ERD 
that includes many attributes becomes very difficult to read. Notwithstanding, we owe Chen 
a lot for his pioneering work, which laid the foundation for the techniques that followed.

The Relational Format
Over time, an ERD format known generically as the relational format evolved. It is 
available as an option in several of the better-known data modeling software tools, 
including PowerDesigner from Sybase and ER/Studio from Embarcadero Technologies, 
and in popular general drawing tools such as Visio from Microsoft. Figure 7-2 shows 
the ERD from Figure 7-1 converted to the relational format. In this example, the ERD is 
represented at a physical level, meaning that physical table names are shown instead of 
logical entity names, and physical column names are shown instead of logical attribute 
names. Also, intersection tables are shown to resolve many-to-many relationships. As the 
logical data model is transformed into a physical database design, it is essential to have 
a physical ERD that the project team can use in developing the application system. The 
beginnings of the physical model are shown here to help make that point.

Figure 7-2  Acme Industries physical ERD, relational format
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Here are the particulars of the relational ERD format:

● Relationship cardinality is shown with an arrowhead on the line end to signify “one” 
and nothing on the line end to signify “many.” This will seem odd at first, but it aligns 
nicely with object diagrams, so this format is favored by object-oriented designers and 
developers.

● Attributes are shown inside the rectangle that represents each entity.

● Unique identifier attributes are shown above a horizontal line within the rectangle and 
are usually also shown with PK in bold type (for primary key) in the margin to the left 
of the attribute name.

● Attributes that are foreign keys are shown with FK and a number in the margin to the 
left of the attribute name.

The Information Engineering Format
The information engineering (IE) format was originally developed by Clive Finkelstein 
in Australia in the late 1970s. In the early 1980s he collaborated with James Martin to 
publicize it in the United States and Europe, including co-authoring the Savant Institute 
Report titled Information Engineering, published in 1981. Martin went on to be highly 
associated with the format and, in collaboration with Carma McClure, published a book 
on the subject in 1984 (Diagramming Techniques for Analysis and Programmers, Prentice-
Hall). Finkelstein later published his own version in 1989 (An Introduction to Information 
Engineering, Addison-Wesley), which has some minor notation variations compared with 
Martin’s version. Figure 7-3 shows our sample ERD converted to IE notation. You will 
notice that except for relationship lines, it is strikingly similar to the relational format.

Here are some of the ways that IE notation varies from the relational format:

● Identifying relationships Shown with a solid line, are those for which the foreign 
key is part of the child entity’s primary key. 

● Non-identifying relationships Shown with a dotted line, are those for which the 
foreign key is a non-key attribute in the child entity. In Figure 7-3, the relationship 
between PRODUCT and INVOICE_LINE_ITEM is identifying, but the one between 
CUSTOMER and INVOICE is non-identifying.

● Maximum relationship cardinality Shown with a short perpendicular line across 
the relationship near its line end to signify “one” and a “crow’s foot” on the line end 
to signify “many.” This is best understood in combination with minimum cardinality, 
described next.
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● Minimum relationship cardinality Shown with a small circle near the end of 
the line to signify “zero” (participation in the relationship is optional) or a short 
perpendicular line across the relationship line to signify “one” (participation in the 
relationship is mandatory). Figure 7-3 notes a few combinations of minimum and 
maximum cardinality. For example:

● A PRODUCT May have zero to many associated INVOICE_LINE_ITEM 
occurrences (shown as a circle and a crow’s foot); an INVOICE_LINE_ITEM 
must have one and only one associated PRODUCT (shown as two vertical bars).

● An INVOICE Must have one or more associated INVOICE_LINE_ITEM 
occurrences (shown as a vertical bar and a crow’s foot); an INVOICE_LINE_ITEM 
must have one and only one associated INVOICE (shown as two vertical bars).

● Dependent entities Shown with the corners of the rectangle rounded, have an 
existence dependency on one or more other entities (that is, those that cannot exist 
without the existence of another). For example, the INVOICE_LINE_ITEM entity 
depends on both the PRODUCT and INVOICE entities. Therefore, you cannot delete 
either an invoice or a product unless you somehow deal with any related invoice line 
items. This is valuable information during physical database design because you must 
consider the options for handling situations when the application attempts to delete 
table rows when dependent entities exist.

The IE format is by far the most popular. Therefore, I use it for the majority of the 
diagrams in this book.

Figure 7-3  Acme Industries physical ERD, IE format
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The IDEF1X Format
The Computer Systems Laboratory of the National Institute of Standards and Technology 
released the IDEF1X standard for data modeling in FIPS Publication 184, first published 
in December 1993. The standard covers both a method for data modeling as well as 
the format for the ERDs produced during the modeling effort. It is widely used and 
understood across the information technology industry and the mandatory standard for 
many branches of the U.S. government. Thanks to its underlying standard, it has few 
variants. Figure 7-4 shows our sample ERD converted to the IDEF1X standard format.

The differences between IE and IDEF1X notation are largely isolated to relationships. 
Unlike other formats, relationship symbols in IDEF1X are asymmetrical. Each set of 
symbols describes a combination of optionality and cardinality, and thus the symbols used 
for optionality vary depending on the cardinality of the relationship. Said another way, 
optionality is shown differently for the “many” and “one” sides of a relationship. Here are 
some key points:

● Like the IE format, a solid line indicates that the foreign key is part of the dependent 
entity’s primary key, while a broken line indicates that the foreign key will be a non-
key attribute.

● A solid circle next to an entity generally means zero, one, or more occurrences of that 
entity as shown on the “many” end of the line between PRODUCT and INVOICE_
LINE_ITEM. However, there are exceptions:

Figure 7-4  Acme Industries physical ERD, IDEF1X format
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● Adding the symbol P near the solid circle makes the relationship mandatory, 
signifying that the cardinality must be one or more. In Figure 7-4, the relationship 
from INVOICE to INVOICE_LINE_ITEM is one-to-many and mandatory, 
meaning that every invoice must have at least one line item.

● Adding the symbol 1 also makes the relationship mandatory. However, this changes 
the cardinality of the relationship to one. Said another way, it changes the meaning 
of the solid circle from “may be one or more” to “must be one and only one.”

● Absence of a solid circle at the end of the relationship line means that only one 
occurrence of the entity is involved. For example, the absence of any symbol on the 
end of the line next to CUSTOMER means “one and only one.” It may be modified 
for optionality as well:

● If no symbol appears next to the entity at that end of the line, the entity is mandatory 
in the relationship. Therefore, an INVOICE_LINE_ITEM must be related to one and 
only one PRODUCT.

● If a small diamond symbol appears next to the entity, the entity is optional. Were 
we to add a diamond next to the CUSTOMER end of the relationship between 
INVOICE and CUSTOMER, it would mean that each INVOICE may have zero or 
one related CUSTOMER occurrences.

Entity Relationship Modeling with Unified Modeling Language
With the rising popularity of object programming languages, the Unified Modeling Language 
(UML) has also become more popular. UML is a standardized visual specification language 
for object modeling that includes a graphical notation used to create an abstract model of 
a system, which is known as a UML model. The Rational Unified Process (RUP), which I 
briefly introduced in Chapter 5, uses UML exclusively. UML has 13 types of diagrams that 
can be used to model the behavior and structure of the system. However, the one of interest 
to data modelers is the class diagram. Figure 7-5 shows our sample model converted to a 
UML class diagram.

While the differences in notation are strikingly obvious, an individual skilled in 
reading ER diagrams can easily adapt. I have used so-called camelcase names in the 
diagram, meaning names with the first letter of each word capitalized and no delimiters 
between words, because nearly all UML modelers do so. Here are some key points 
regarding modeling entities using UML class diagrams:

● Each entity is shown as an object class in a rectangle. The symbol <<Entity>> is 
included with the class name to denote the type of class.
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● Unique identifiers (primary keys) are not shown in class diagrams; they are specified 
elsewhere within the UML model.

● Foreign keys are not shown because they are not used in object-oriented systems. I 
discuss object-oriented technology in Chapter 13.

● Attributes are shown with a name and a type (separated with a colon). The type is very 
much like a relational data type. Attributes in entities are preceded by the symbol +, 
which means they are public (visible throughout the entire model).

● Relationships are shown with lines.

● Cardinality and optionality are shown with a combined symbol near the end of the 
line. Available symbols include those shown in the following table:

Symbol Meaning
1 One and only one

* Zero, one, or more

1..* One or more

x..y Between x and y occurrences. Also 
· x can be 0 or any positive integer 
· y can be any positive integer or * to denote “or more” 
· y must be greater than x (if y and x are the same, then y is simply omitted)

Figure 7-5  UML class diagram for Acme Industries
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● The diamond symbol on the end of a relationship line, as shown in Figure 7-5 on the 
“one” end of the two relationships connected to InvoiceLineItem, denotes what UML 
calls an aggregation. An aggregation is a dependency between two entity types that is 
required for the existence of the dependent entity. In this case, a line item cannot exist 
without both the product and the invoice. If the dependency is always a single entity, 
the diamond is shown as a solid diamond instead of a hollow one.

● Generalization and specialization (super types and subtypes) are denoted using a line 
between the two entities with a hollow arrow pointing toward the general class (the 
super type). 

Super Types and Subtypes
Some entities can be broken down into more specific categories or types. When this 
occurs, we call the more detailed entities subtypes and the more general entity to which 
they belong a super type. In object terminology, the super type is called a super class or 
base class and the subtypes are called subclasses of the super class. It is essential that 
you understand that subtypes break down entities by type rather than by state, meaning 
their mode or condition. An easy way to distinguish between the two is to realize that 
existing entities can change state, but they seldom, if ever, change type. For example, a 
motor vehicle entity can logically be broken down by type into automobile, bus, truck, 
motorcycle, and so on. However, the distinction between vehicles that are new or used, or 
between those that are operable or inoperable, is one of state rather than type because new 
vehicles become used once they are sold, and vehicles change between inoperable and 
operable states as they break down and are subsequently repaired.

The decisions involved in which entities should be broken down into subtypes and 
how detailed the subtypes should be revolve around the tradeoff between specialization 
and generalization. Unfortunately, there are no firm rules for resolving the tradeoff. 
Therefore, generalization versus specialization becomes one of the topics that prevent 
database design from becoming an exact science. The general guideline to follow (in 
addition to common sense) is that the more the various subtypes share common attributes 
and relationships, the more the designer should be inclined to combine the subtypes into 
the super type. The physical design tradeoffs involved are addressed in Chapter 8. Here 
we will focus on the logical design tradeoffs.

Let’s look at an example. Assume for a moment that the database design shown in 
Figure 7-3 has been implemented, and now the Customer Service Department at Acme 
Industries has requested database and application enhancements that will allow it to 
record and track more information about customers. In particular,  the department is 
interested in knowing the type of customer (such as individual person, sole proprietorship, 
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partnership, or corporation) so that correspondence can be addressed appropriately for 
each type. Figure 7-6 shows the logical data model that was developed based on the new 
requirements.

In IE notation, the type or category is shown using a symbol that looks like a circle 
with a line under it. Therefore, you know that Individual Customer and Commercial 
Customer are subtypes of Customer because of the symbol that appears in the line that 
connects them. Also note that they share the exact same primary key and that in the 
subtypes, the primary key of the entity is also a foreign key to the super type entity. This 
makes perfect sense when you consider the fact that an Individual Customer entity is a 
Customer, meaning that any occurrence of the Individual Customer entity would have a 
tuple in the Customer relation as well as a matching tuple in the Individual Customer entity.  

Figure 7-6  Customer subclasses
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Usually an attribute in the super type entity indicates which subtype is assigned to each 
entity occurrence (tuple). Once this is implemented in tables, database users can use 
the type attribute to know where to look for (that is, which subtype table contains) the 
remainder of the information about each entity occurrence (each row). Such an attribute is 
called the type discriminator and is named next to the type symbol on the ERD. Therefore, 
Customer Type is the type discriminator that indicates whether a given Customer is an 
Individual Customer or a Commercial Customer. Similarly, Company Type is the type 
discriminator that indicates whether a given Commercial Customer is a sole proprietorship, 
partnership, or corporation.

As you might imagine, this IE notation is not the only format used in ERDs for super 
types and subtypes. However, it is the most commonly used method. Another popular 
format is to draw the subtype entities within the super type entity (that is, subtype entity 
rectangles drawn inside the corresponding super type entity’s rectangle). Although this 
format makes it visually clear that the subtypes really are just a part of the super type, it 
has practical limitations when the entities are broken down into many levels.

As mentioned, finding the right level of specialization is a significant database 
design challenge. In reviewing the logical design as proposed in Figure 7-6, the database 
design team noticed something: The only difference among the Sole Proprietorship, 
Partnership, and Corporation subtypes is in the way that the names of key people in 
those types of companies appear as attributes. Moreover, the use of two nearly identical 
attributes for the names of the co-owners in the Partnership subtype could be considered 
a repeating attribute, and therefore a first normal form violation. The design team elected 
to generalize these names into the Commercial Customer entity, but in doing so, they 
recognized the first normal form problems and decided to place them into a separate 
relation called Commercial Customer Principal. This led to the ERD shown in Figure 7-7.

Clearly this is a simpler design that will result in fewer tables when it is physically 
implemented. It offers a very big win, because not only is there no loss of function when 
you consolidate the subtypes into the super type, but you actually have more function 
available because you can add as many names as you want to any type of commercial 
customer.

Further study by the design team helped them realize the similarity between the name 
attributes now contained in the Commercial Customer Principal entity and those contained 
in the Individual Customer entity. In discussing options further with the Customer Service 
Department, the design team uncovered a few cases for which it would be desirable for 
multiple contact names to be recorded for individual customers as well as for commercial 
customers. For example, customers that have legal disputes often request that all contact 
go through an attorney. With that information, the design team decided to generalize 
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these names and move Commercial Customer Principal up to be a child of Customer and 
name it Customer Contact so that it could be used to hold the information about either a 
principal (owner, co-owner, partner, officer) of the customer or any other contact person 
for the customer that the Customer Service Department might find useful. The design 
team further realized that contact names would be more useful if a phone number was 
included. The Phone attribute was left in the Customer entity because it is intended to hold 
the general phone number for the customer. The phone number in the Customer Contact 
entity is intended to hold the phone for an individual contact person. The resultant logical 
design is shown in Figure 7-8.

Figure 7-7  Customer subtypes, version 2
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The fact that all three of the designs presented (Figures 7-6, 7-7, and 7-8) are workable 
should underscore the generalization versus specialization dilemma: No one “right” 
answer exists. The art to database design, then, is to arrive at the design that best fits what 
is known about the expected uses of the database. This is best done by comparing the 
relative strengths and weaknesses of each alternative design. And there is no better vehicle 
for communicating the alternatives than the ERD.

Q: In the discussion of UML in the chapter, you mentioned that generalization is shown 
using lines and arrows. How would you convert the super type and subtypes in  
Figure 7-8 to UML notation?

A: First, you remove the existing symbols (the lines, type symbol, and discriminator attribute 
name). Then you draw a line between each subtype and its super type, placing a hollow 
arrowhead on the super type end of the line, pointing toward the super type entity. Figure 7-9 
shows the same model as Figure 7-8, but in UML notation.

Ask the Expert

Figure 7-8  Customer subtypes, version 3
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Guidelines for Drawing ERDs
Here are some general guidelines to follow when constructing ERDs:

● Do not try to relate every entity to every other entity. Entities should be related only 
when the entire primary key in one entity appears as a foreign key in another.

● Except for subtypes, avoid relationships involving more than two entities. Although 
drawing fewer lines might seem simpler, it is far too easy to misinterpret relationships 
drawn from one parent entity to multiple child entities using a single line.

● Be consistent with entity and attribute names. Develop a naming convention and stick 
with it.

● Use abbreviations in names only when absolutely necessary, and in those cases, use a 
standard list of abbreviations.

● Name primary keys and foreign keys consistently. Most experts prefer that the foreign 
key have exactly the same name as the primary key.

● When relationships are named, strive for action words, avoiding nondescriptive terms 
such as “has,” “belongs to,” “is associated with,” and so on.

Figure 7-9  Customer subtypes, version 3, converted to UML

<<Entity>>
Customer

+ CustomerNumber : Integer 
+ CustomerType : String 
+ Address : String 
+ City : String 
+ ZipCode : String 
+ Phone : String

<<Entity>>
CustomerContact

+ CustomerContactID : Integer 
+ FirstName : String 
+ MiddleInitial : String 
+ LastName : String 
+ Title : String 
+ Phone : String

<<Entity>>
Individual Customer

+ DateOfBirth : Date 
+ AnnualHouseholdIncome : Number

<<Entity>>
Commercial Customer

+ CompanyName : String 
+ TaxIdentificationNumber : Integer 
+ Address : String 
+ AnnualGrossRevenue : Number 
+ CompanyType : String

1 ∗
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Process Models
As mentioned, process design is seldom the responsibility of the database designer 
or DBA, but understanding the basics helps the DBA communicate with the process 
designers and ensure that the database design supports the process design. Therefore, this 
section presents a brief survey of common process model diagram techniques. If you want 
more detail about these or other process model techniques, find a good book on systems 
analysis and design.

Throughout this section, the Acme Industries order-fulfillment process, a very simple 
business process, is used as an example. This process has the following steps:

 1. Find all unshipped orders in the database.

 2. For each order, do the following:

● Check for available inventory. If sufficient inventory for the order is not available, 
skip to the next order.

● Check the customer’s credit to make sure they are not over their credit limit and 
do not have some other credit problem, such as overdue payments. This would 
typically occur at the time the order is entered, but it needs to occur again here 
because a customer’s credit status with Acme Industries can change at any time. If 
a credit problem is found, skip to the next order.

● Generate the documents required to pack and ship the order (packing slip, shipping 
labels, and so on) and route them to the shipping department.

● When the shipping department has finished with the order, create the invoice for 
the order and bill the customer accordingly.

Obviously, this process could be a lot more complicated in a large company, but here it 
has been reduced to the basics so that it is easier to use for illustration of process models.

The Flowchart
The flowchart (or structure chart) is probably the oldest form of computer systems 
documentation. Some believe that flowcharts existed when dinosaurs still roamed 
our planet, and therefore anyone who still uses flowcharts is a dinosaur. Levity aside, 
flowcharts are often considered outmoded, but they still have much to offer in certain 
circumstances and are still widely used. Figure 7-10 shows the flowchart for our sample 
order-fulfillment process.
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Here are the basic components of the flowchart:

● Process steps are shown with rectangles.

● Decision points are shown with diamonds. At each decision point, the logic branches 
are based on the outcome of the decision. For example, a decision might be “Is today 
Friday?” with a “Yes” outcome going in one direction and a “No” outcome going in 
another.

● Lines with arrows show the flow of control through the diagram. When one process 
completes, it hands over control to the next process or decision point.

Figure 7-10  Flowchart of Acme Industries order-fulfillment process
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● Start and end points are shown with either ellipses or rounded rectangles. Flowcharts 
can be used to show perpetual processes that have no start and no end, but more often 
they are used to show finite processes with specific beginning and ending points.

● Connector symbols that look like home plates on a baseball diamond (not shown in 
Figure 7-10) can be used to connect lines to processes or decision points, on the same 
or another page. Usually these are given a reference letter with a control flow line 
assumed between any two connectors that have the same reference letter.

Figure 7-10 shows a very straightforward loop process flow. It begins with a process 
step that gets the next unshipped order from the database. A decision is added after it 
to stop the loop (end the flow) if we don’t find an unshipped order. If we do find the 
order, the process continues with decision points that check for available inventory and 
acceptable customer credit, with a “No” outcome either going back to the top of the loop 
(the Get Next Unshipped Order process), which essentially skips the order and moves on 
to find the next one. If we get a “Yes” outcome from all the decision points, the “Pack 
and ship order” process is invoked next, followed by “Create invoice.” After the “Create 
invoice” process completes, control goes back to “Get next unshipped order,” at the top of 
the loop. The loop continues until no more unshipped orders are found.

Flowcharts have the following strengths:

● Procedural language programmers find them naturally easy to learn and use. A 
procedural language is a programming language by which the programmer must 
describe the process steps required to do something, as opposed to a nonprocedural 
language, such as SQL, with which the programmer merely describes the desired 
results. The most commonly used procedural language today is probably C and its 
variants (C++, C#, and so on), but others, such as FORTRAN and COBOL, still see 
some use. Also, specialized procedural languages for relational databases, including 
PL/SQL for Oracle and Transact SQL for Sybase ASE and Microsoft SQL Server, are 
heavily used.

● Flowcharts are applicable to procedures outside of a programming context. For 
example, flowcharts are often used to walk repair technicians though troubleshooting 
procedures for the equipment they service.

● Flowcharts are useful for spotting reusable (common) components. The designer can 
easily find any process that appears multiple times in the flowcharts for a particular 
application system.

● Flowcharts may be easily modified and can evolve as requirements change.
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On the other hand, flowcharts present these weaknesses:

● They are not applicable to nonprocedural or object-oriented languages.

● They cannot easily model some situations, such as recursive processes (processes that 
invoke themselves).

The Function Hierarchy Diagram
The function hierarchy diagram, as the name suggests, shows all the functions of a particular 
application system or business process, organized into a hierarchical tree. Figure 7-11 shows 
this type of process model diagram from our sample order-fulfillment process.

Because the function hierarchy for a single process makes little sense out of 
context, two other processes have been added to the hierarchy: Order entry and History 
management. To be effective, a function hierarchy must contain all the processes required 
to carry out the function it describes. Figure 7-11 attempts to show all the processes 
required for the Order management function at Acme Industries. Order entry is intended to 
cover all the process steps involved in a customer placing an order and having it recorded 
in Acme’s database. History management is intended to cover all the steps required to 
archive and purge old (historical) orders and any required reporting on order history. Both 
of these processes need to be expanded by adding process steps below them (as was done 
with Order fulfillment) to make this a complete diagram. Under Order fulfillment, the four 
main process steps involved in fulfilling orders have been added.

Figure 7-11  Function hierarchy of the Acme order-fulfillment process

Order Management

Order Entry Order Fulfillment

Check Inventory Check Customer Credit

Pack and Ship Order Create Invoice

History Management
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The strengths of function hierarchy diagrams are as follows:

● They are quick and easy to learn and use.

● They can quickly document the bulk of the function (they get to 80 percent of the 
processes quickly).

● They provide a good overview at high and medium levels of detail.

And here are the weaknesses of function hierarchy diagrams:

● Checking quality is difficult and subjective.

● They cannot handle complex interactions between functions.

● They do not clearly show the sequence of process steps or dependencies between steps.

● They are not an effective presentation tool for large hierarchies or at very detailed levels.

The Swim Lane Diagram
The swim lane diagram gets its name from the vertical lanes in the diagram, which 
resemble the lanes in a swimming pool. Each lane represents an organizational unit such 
as a department, with process steps placed in the lane for the unit that is responsible for the 
step. Lines with arrows show the sequence or control flow of the process steps. Figure 7-12 
shows the swim lane diagram for our sample order-fulfillment process.

Strengths of the swim lane diagram include:

● It has the unmatched ability to show who does what in the organization.

● It’s excellent for identifying inefficiencies in existing processes and lends itself well to 
business process reengineering efforts.

Its weaknesses include:

● It does not represent complicated processes (those with many steps or with complex 
step dependencies) well.

● It does not show error and exception handling.

The Data Flow Diagram
The data flow diagram (DFD) is the most data-centric of all the process diagrams. 
Instead of showing a control flow through a series of process steps, it focuses on the data 
that flows through the process steps. By combining diagrams hierarchically, the DFD 
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combines the best of the flowchart and the function diagram. DFDs became immensely 
popular in the late 1970s and early 1980s, largely due to the work of Chris Gane and Trish 
Sarson. Each process on a DFD can be broken down using another complete page until the 
desired level of detail is reached. Figure 7-13 shows one page of the DFD for the Acme 
Industries order-fulfillment process.

The components of a DFD are simple:

● Processes are represented with rounded rectangles. Processes are typically numbered 
hierarchically. The first page of a DFD might have processes numbered 1, 2, 3, and 4.  
The next page might break down process number 1 and would have processes 
numbered 1.1, 1.2, and so forth. If process 1.2 were broken down on yet another page, 
the processes on that page would be numbered 1.2.1, 1.2.2, and so forth.

● Data stores are represented with an open-ended rectangle. A data store is a generic 
representation of data that is made persistent through being stored somewhere, such as 
a file, database, or even a written document. The term was chosen so that no particular 
type of storage is implied. Because we already have an ERD for our example, we 
should closely align the data stores with the entities we have already identified.

Figure 7-12  Swim lane diagram for the Acme Industries order-fulfillment process
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● Sources and destinations of data (external entities in relational terminology) are shown 
using squares. Figure 7-13 shows the Customer as the destination of the invoice 
data flow (in addition to a local data store that will hold the invoice data). Try not to 
confuse data flows with material flows. Yes, the invoice is printed and mailed to the 
customer, but the data flow is attempting to show that the data is sent to the customer 
with no regard for the medium used to send it.

Figure 7-13  Data flow diagram page for the Acme Industries order-fulfillment process
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● Flows of data are shown using lines with arrowheads indicating the direction of 
flow. Above each flow, words are used to describe the content of the data being sent. 
Bidirectional flows are permissible but are usually shown as separate flows because 
the data is seldom exactly the same in both directions.

The strengths of the data flow diagram are as follows:

● It easily shows the overall structure of the system without sacrificing detail (details are 
shown on subsequent pages that expand on the higher level processes).

● It’s good for top-down design work.

● It’s good for presentation of systems designs to management and business users.

And here are the weaknesses of the data flow diagram:

● It’s time-consuming and labor-intensive to develop for complex systems.

● Top-down design has proved to be ineffective for situations in which requirements are 
sketchy and continuously evolving during the life of the project.

● It’s poor at showing complex logic, but the lowest level diagrams can easily be 
supplemented with other documents, such as narratives or decision tables.

Q: Doesn’t UML have process diagrams?

A: Yes, but that’s only part of the story. As mentioned, UML 2.x offers 13 different diagrams, 
6 of which are structure diagrams that emphasize what things must be in the system being 
modeled, and 7 of which are behavior diagrams that emphasize what must happen in the 
system being modeled. Of these, the class diagram is covered earlier in this chapter. There’s 
not enough space in this book to cover them all, 

Ask the Expert

(continued)
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but you’ll find lots of information on the Internet and in books on the subject. The 
following table provides a summary description of each UML diagram:

Note that some references show a subtype of Interaction Diagram under Behavior 
Diagram, containing the Sequence, Interaction Overview, Communication, and Timing 
diagrams.

Type Name Description

Structure Class diagram Shows a collection of static model elements such as classes 
and types, their contents, and their relationships

Structure Component diagram Depicts the components that make up an application, system, 
or enterprise

Structure Composite structure 
diagram

Depicts that the internal structure of a classifier, (such as a class, 
component, or use case), including the classifier’s interaction 
points to other parts of the system (added in UML 2.x)

Structure Deployment diagram Shows the execution architecture of systems, including nodes, 
hardware/software environments, and the middleware that 
connects them

Structure Object diagram Depicts objects and their relationships at a point in time

Structure Package diagram Shows how model elements are assembled into packages as 
well as the dependencies between packages

Behavior Activity diagram Depicts high-level business processes, including data flow

Behavior State machine diagram Describes the states an object or interaction may be in, and 
the transitions between states

Behavior Use case diagram Shows actors, use cases, and their interactions

Behavior Communication 
diagram

Shows instances of classes, their interrelationships, and the 
message flow between them

Behavior Interaction overview 
diagram

A variant of an activity diagram that depicts an overview of 
the control flow within a system or business process (added 
in UML 2.x)

Behavior Sequence diagram Depicts the time ordering of messages between classifiers, 
essentially showing the sequential logic of the system

Behavior Timing diagram Depicts the change in state or condition of a classifier 
instance or role over time (added in UML 2.x)
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Relating Entities and Processes
Once the database designer has completed logical database design and an ERD for the 
proposed database and, in parallel, the process designers have completed their process 
model, how can we have any confidence that the two will be able to work together in 
solving the business problem the new project is supposed to address? Part of the answer 
lies in a charting technique intended to show how the entities and processes interact, 
known as the CRUD matrix.

Fortunately, CRUD is not slang for a lousy design but rather an acronym formed from 
the first letters for the words Create, Read, Update, and Delete, which are the letters used 
in the body of the diagram. The concept of the CRUD matrix is very simple:

● One axis of the matrix represents the major processes of the application system.

● The other axis represents the major entities used by the application system.

● In each cell of the matrix, the appropriate combination of letters is written:

● C, if the process creates new occurrences of the entity

● R, if the process reads information about the entity from a data source

● U, if the process updates one or more attributes for the entity

● D, if the process deletes occurrences of the entity

Here is a sample CRUD matrix for the order management function at Acme Industries, 
following the major processes shown in the function hierarchy diagram (refer to Figure 7-11). 
To be effective, only high-level processes and super-type entities should be shown in the 
matrix. Too much detail clouds the effect of the diagram.

ENTITY: 
Product Order Customer Invoice

PROCESS: 
Order Entry

R CRU RU

Order Fulfillment RU RU R C

History Management RD R

The CRUD matrix is valuable for verifying the consistency of the process and data 
(entity) designs. At a glance, one can find the following potential problems:

● Entities that have no Create process

● Entities that have no Delete process
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Try This 7-1

● Entities that are never updated

● Entities that are never read

● Processes that delete or update entities without reading them

● Processes that only read (no Create, Delete, or Update actions)

Our example has multiple problems, which only proves that our process design is 
incomplete (that is, we are probably missing some key processes for the application 
system). At the conclusion of the logical design phase of a project, the CRUD matrix is an 
excellent vehicle for a final review of the work completed. The next step in the database 
life cycle is to complete the physical database design, which is discussed in Chapter 8.

  Draw an ERD in Information Engineering 
(IE) Format

In this Try This exercise, you will draw an ERD that demonstrates most of the concepts 
presented thus far, including entities (tables), relationships, recursive relationships, 
and super types and subtypes. You may draw this as either a logical or physical model. 
However, my solution is in the form of a physical model, and therefore the instructions 
will use physical model terms (such as table and column).

Step by Step
 1. Draw a table for PERSON with columns PERSON_ID (primary key), FIRST_NAME, 

LAST_NAME, BIRTH_DATE, and GENDER. Leave room for two more columns, 
which you will be adding in the next step.

 2. Draw two one-to-many recursive relationships: one for the person’s father and one 
for the person’s mother. Remember that recursive relationships have the same table as 
both the parent and the child. In this case, the relationships should be optional in both 
directions because you won’t have every person’s parents in the database and not all 
persons have children. The PERSON table will need two foreign keys to support the 
recursive relationships: one for the father’s person ID and another for the mother’s 
person ID.

 3. Draw a dependent table called MARRIAGE with columns PERSON_ID_1, PERSON_
ID_2, MARRIAGE_DATE, and END_DATE. The primary key must be composed 
of the first three columns to be unique under all circumstances. PERSON_ID_1 and 
PERSON_ID_2 will be the foreign keys for the two people who are married.
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 4. Draw two one-to-many relationships from PERSON to MARRIAGE—one where 
PERSON_ID_1 is the foreign key and the other where PERSON_ID_2 is the foreign 
key. These relationships are mandatory-optional (every marriage must have two people, 
but some people were never married).

 5. Draw an EMPLOYEE table with columns PERSON_ID (primary key), EMPLOYEE_ID, 
HIRE_DATE, and TERMINATION_DATE.

 6. Draw a CUSTOMER table with columns CUSTOMER_NUMBER (primary key), 
NAME, ADDRESS, CITY, STATE, ZIP_CODE, and PHONE.

 7. Draw a CUSTOMER_CONTACT table with columns PERSON_ID (primary key) and 
CUSTOMER_ID.

 8. Draw the lines and symbol(s) necessary to make EMPLOYEE and CUSTOMER_
CONTACT subtypes of PERSON.

 9. Draw a one-to-many mandatory-optional relationship from CUSTOMER to 
CUSTOMER_CONTACT, making CUSTOMER_ID in CUSTOMER_CONTACT the 
foreign key.

Try This Summary
In this Try This exercise, you created five tables and five relationships (two of them 
recursive), and you made two tables subtypes of another table. My solution appears in 
Appendix B.

 Chapter 7 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank 
questions. Note that there may be more than one correct response to each question.

 1. Why is it important for a database designer to understand process modeling?

 A Process design is a primary responsibility of the DBA.

 B The process model must be completed before the data model.

 C The data model must be completed before the process model.

 D The database designer must work closely with the process designer.

 E The database design must support the intended process model.

✓
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 2. Peter Chen’s ERD format represents “many” with ____________.

 3. The diamond in Chen’s ERD format represents a(n) ____________.

 4. The relational ERD format represents “many” with ____________.

 5. The IDEF1X ERD format

 A Was first released in 1983

 B Follows a standard developed by the National Institute of Standards and Technology

 C Has many variants

 D Has been adopted as a standard by many U.S. government agencies

 E Covers both data and process models

 6. The IDEF1X ERD format shows

 A Identifying relationships with a solid line

 B Minimal cardinality using a combination of small circles and vertical lines shown 
on the relationship line

 C Maximum cardinality using a combination of small vertical lines and crow’s feet 
drawn on the relationship line

 D Dependent entities with squared corners on the rectangle

 E Independent entities with rounded corners on the rectangle

 7. A subtype

 A Is a subset of the super type

 B Has a one-to-many relationship with the super type

 C Has a conditional one-to-one relationship with the super type

 D Shows various states of the super type

 E Is a superset of the super type

 8. Examples of possible subtypes for an Order entity super type include

 A Order line items

 B Shipped order, unshipped order, invoiced order
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 C Office supplies order, professional services order

 D Approved order, pending order, canceled order

 E Auto parts order, aircraft parts order, truck parts order

 9. In IE notation, subtypes

 A May be shown with a type discriminator attribute name

 B May be connected to the super type via a symbol composed of a circle with a line 
under it

 C Have the primary key of the subtype shown as a foreign key in the super type

 D Usually have the same primary key as the super type

 E May be shown using a crow’s foot

 10. When subtypes are being considered in a database design, a tradeoff exists between 
____________ and ____________.

 11. In a flowchart, process steps are shown as ____________, and decision points are 
shown as ____________.

 12. The strengths of flowcharts are

 A They are natural and easy to use for procedural language programmers.

 B They are useful for spotting reusable components.

 C They are specific to application programming only.

 D They are equally useful for nonprocedural and object-oriented languages.

 E They can be easily modified as requirements change.

 13. The basic components of a function hierarchy diagram are

 A Ellipses to show attributes

 B Rectangles to show process functions

 C Lines connecting the processes in order of execution

 D A hierarchy to show which functions are subordinate to others

 E Diamonds to show decision points
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 14. The strengths of the function hierarchy diagram are

 A Checking quality is easy and straightforward.

 B Complex interactions between functions are easily modeled.

 C It is quick and easy to learn and use.

 D It clearly shows the sequence of process steps.

 E It provides a good overview at high and medium levels of detail.

 15. The basic components of a swim lane diagram are

 A Lines with arrows to show the sequence of process steps

 B Diamonds to show decision points

 C Vertical lanes to show the organization units that carry out process steps

 D Ellipses to show process steps

 E Open-ended rectangles to show data stores

 16. The data flow diagram (DFD)

 A Is the most data centric of all process models

 B Was first developed in the 1980s

 C Combines diagram pages together hierarchically

 D Was first developed by E.F. Codd

 E Combines the best of the flowchart and the function diagram

 17. In a DFD, data stores are shown as ________, and processes are shown as __________.

 18. The strengths of the DFD are

 A It’s good for top-down design work.

 B It’s quick and easy to develop, even for complex systems.

 C It shows overall structure without sacrificing detail.

 D It shows complex logic easily.

 E It’s great for presentation to management.
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 19. The components of the CRUD matrix are

 A Ellipses to show attributes

 B Major processes shown on one axis

 C Major entities shown on the other axis

 D Reference numbers to show the hierarchy of processes

 E Letters to show the operations that processes carry out on entities

 20. The CRUD matrix helps find the following problems:

 A Entities that are never read

 B Processes that are never deleted

 C Processes that only read

 D Entities that are never updated

 E Processes that have no create entity
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Key Skills & Concepts
● Designing Tables

● Integrating Business Rules and Data Integrity

● Designing Views

● Adding Indexes for Performance

As introduced in Chapter 5 (Figure 5-1), once the logical design phase of a project is 
complete, it is time to move on to physical design. Other members of a typical project 

team will define the hardware and system software required for the application system. 
We will focus on the database designer’s physical design work, which is transforming 
the logical database design into one or more physical database designs. For situations in 
which an application system is being developed for internal use, it is normal to have only 
one physical database design for each logical design. However, if the organization is a 
software vendor, for example, the application system must run on all the various platform 
and RDBMS versions that the vendor’s customers use, and that requires multiple physical 
designs. This chapter covers each of the major steps involved in physical database design.

Designing Tables
The first step in physical database design is to map the normalized relations shown in the 
logical design to tables. The importance of this step should be obvious, because tables are 
the primary unit of storage in relational databases. However, if adequate work was put into 
the logical design, then translation to a physical design is much easier. As you work through 
this chapter, keep in mind that Chapter 2 contains an introduction to each component in the 
physical database model, and Chapter 4 contains the SQL syntax for the Data Manipulation 
Language (DML) commands required to create the various physical database components 
(tables, constraints, indexes, views, and so on). Briefly, the process goes as follows:

 1. Each normalized relation becomes a table. A common exception to this occurs when 
super types and subtypes are involved, as discussed in the next section.

 2. Each attribute within the normalized relation becomes a column in the corresponding 
table. Keep in mind that the column is the smallest division of meaningful data in the 
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database, so columns should not have subcomponents that make sense by themselves. 
For each column, the following must be specified:

● A unique column name within the table. Generally, the attribute name from the 
logical design should be adapted as closely as possible. However, adjustments may 
be necessary to work around database reserved words and to conform to naming 
conventions for the particular RDBMS being used. You might notice some column 
name differences between the Customer relation and the CUSTOMER table in 
the example that follows. The reason for this change is discussed in the “Naming 
Conventions” section later in this chapter.

● A data type, and, for some data types, a length and perhaps a precision. Data types 
vary from one RDBMS to another, so this is why different physical designs are 
needed for each RDBMS to be used.

● Whether column values are required or not. This takes the form of a NULL or 
NOT NULL clause for each column. Be careful with defaults—they can fool 
you. For example, when this clause is not specified, Oracle assumes NULL, but 
Sybase ASE and Microsoft SQL Server assume NOT NULL (although this default 
behavior can be changed for an instance or database). It’s always better to specify 
such things and be certain of what you are getting.

● Check constraints. These may be added to columns to enforce simple business 
rules. For example, a business rule specifying that the unit price on an invoice 
must always be greater than or equal to zero can be implemented with a check 
constraint, but a business rule requiring the unit price to be lower in certain 
states cannot use a check constraint. Generally, a check constraint is limited to  
comparison of a column value with a single value, a range or list of values, or 
other column values in the same row of table data.

 3. The unique identifier of the relation is defined as the primary key of the table. Columns 
participating in the primary key must be specified as NOT NULL, and in most RDBMSs, 
the definition of a primary key constraint causes automatic definition of a unique index 
on the primary key column(s). Foreign key columns should have a NOT NULL clause if 
the relationship is mandatory; otherwise, they may have a NULL clause.

 4. Any other sets of columns that must be unique within the table may have a unique 
constraint defined. As with primary key constraints, unique constraints in most 
RDBMSs cause automatic definition of a unique index on the unique column(s). 
However, unlike primary key constraints, a table may have multiple unique constraints, 
and the columns in a unique constraint may contain null values (that is, they may be 
specified with the NULL clause).
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 5. Relationships among the normalized relations become referential constraints in the 
physical design. For those rare situations for which the logical model contains a one-to-
one relationship, you can implement it by placing the primary key of one of the tables 
as a foreign key in the other (do this for only one of the two tables) and placing a unique 
constraint on the foreign key to prevent duplicate values. For example, Figure 2-2 in 
Chapter 2 shows a one-to-one relationship between Employee and Automobile, and 
we chose to place EMPLOYEE_ID as a foreign key in the AUTOMOBILE table. We 
should also place a unique constraint on EMPLOYEE_ID in the AUTOMOBILE table 
so that an employee may be assigned only to one automobile at any point in time.

 6. Large tables (that is, those that exceed several gigabytes in total size) should be 
partitioned if the RDBMS being used supports it. Partitioning is a database feature 
that permits a table to be broken up into multiple physical components, each stored 
in separate data files, in a manner that is transparent to the database user. Typical 
methods of breaking tables into partitions use a range or list of values for a particular 
table column (called the partitioning column) or use a randomizing method known 
as hashing that evenly distributes table rows across available partitions. The benefits 
of breaking large tables into partitions include easier administration (particularly 

Q: For a one-to-one relationship, why should we place a foreign key in only one of the  
two tables?

A: The problem with placing a foreign key on both sides of a one-to-one relationship is that 
it would actually establish two relationships (one for each foreign key) and the redundant 
relationship could easily lead to data inconsistency. In the Employee–Automobile example, 
if we place EMPLOYEE_ID in the AUTOMOBILE table and VIN in the EMPLOYEE 
table, the DBMS cannot guarantee that the foreign key values will always be consistent. 
For example, the row for employee 125 might contain the VIN for a particular vehicle, but 
when you look at the row for that vehicle, it might contain a different employee, say 206.

Q: I see. Does it then matter which of the two tables in the one-to-one relationship has the 
foreign key defined in it?

A: Assuming a unique index (or unique constraint) is placed on the foreign key column, there 
really isn’t a performance difference. However, there may be a slight advantage to putting 
the foreign key in the table that is accessed more frequently.

Ask the Expert
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for backup and recovery operations) and improved performance, achieved when the 
RDBMS can run an SQL query in parallel against all (or some of the) partitions and 
then combine the results. Partitioning is solely a physical design issue that is never 
addressed in logical designs. After all, a partitioned table is still one table. There is 
wide variation in the way database vendors have implemented partitioning in their 
products, so you need to consult your RDBMS documentation for more details.

 7. The logical model may be for a complete database system, whereas the current project 
may be an implementation of a subset of that entire system. When this occurs, the 
physical database designer will select and implement only the subset of tables required 
to fulfill current needs.
Here is the logical design for Acme Industries from Chapter 6:

PRODUCT: Product Number (PK), Product Description, 
         List Unit Price 
 
CUSTOMER: Customer Number (PK), Customer Name, 
          Customer Address, Customer City, Customer State, 
          Customer Zip Code, Customer Phone 
 
INVOICE: Invoice Number (PK), Customer Number, Terms, 
         Ship Via, Order Date 
 
INVOICE LINE ITEM: Invoice Number (PK), Product Number (PK), 
                   Quantity, Sale Unit Price

And here is the physical table design we created from the logical design, shown in 
the form of SQL Data Definition Language (DDL) statements. These statements are 
written for Oracle and require some modification, mostly of data types, to work on other 
RDBMSs. If you want to run these on your own Oracle database, I suggest you create 
a new user account just for this purpose so that the new tables are created in their own 
schema rather than mixed in with something else in the database. In other RDBMSs 
such as MySQL and SQL Server, you should create a new database and run these in 
that database. On databases other than Oracle, you will likely have to adjust data types 
somewhat. Finally, you may have to run the statements one at a time or in small batches, 
all depending on the SQL client that you use.

CREATE TABLE PRODUCT 
 (PRODUCT_NUMBER       VARCHAR(10)   NOT NULL, 
  PRODUCT_DESCRIPTION  VARCHAR(100)  NOT NULL, 
  LIST_UNIT_PRICE      NUMBER(7,2)   NOT NULL); 
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ALTER TABLE PRODUCT 
  ADD CONSTRAINT PRODUCT_PK_PRODUCT_NUMBER 
      PRIMARY KEY (PRODUCT_NUMBER); 
 
CREATE TABLE CUSTOMER 
 (CUSTOMER_NUMBER      NUMBER(5)     NOT NULL, 
  NAME                 VARCHAR(25)   NOT NULL, 
  ADDRESS              VARCHAR(255)  NOT NULL, 
  CITY                 VARCHAR(50)   NOT NULL, 
  STATE                CHAR(2)       NOT NULL, 
  ZIP_CODE             VARCHAR(10)); 
 
ALTER TABLE CUSTOMER 
  ADD CONSTRAINT CUSTOMER_PK_CUST_NUMBER 
      PRIMARY KEY (CUSTOMER_NUMBER);  
 
CREATE TABLE INVOICE 
 (INVOICE_NUMBER       NUMBER(7)     NOT NULL, 
  CUSTOMER_NUMBER      NUMBER(5)     NOT NULL, 
  TERMS                VARCHAR(20)   NULL, 
  SHIP_VIA             VARCHAR(30)   NULL, 
  ORDER_DATE           DATE          NOT NULL); 
 
ALTER TABLE INVOICE 
  ADD CONSTRAINT INVOICE_PK_INVOICE_NUMBER 
      PRIMARY KEY (INVOICE_NUMBER); 
 
ALTER TABLE INVOICE 
  ADD CONSTRAINT INVOICE_FK_CUSTOMER_NUMBER 
      FOREIGN KEY (CUSTOMER_NUMBER) 
      REFERENCES CUSTOMER (CUSTOMER_NUMBER); 
 
CREATE TABLE INVOICE_LINE_ITEM 
 (INVOICE_NUMBER    NUMBER(7)      NOT NULL, 
  PRODUCT_NUMBER    VARCHAR(10)    NOT NULL, 
  QUANTITY          NUMBER(5)      NOT NULL, 
  SALE_UNIT_PRICE   NUMBER(7,2)    NOT NULL); 
 
ALTER TABLE INVOICE_LINE_ITEM 
  ADD CONSTRAINT INVOICE_LI_PK_INV_PROD_NOS 
      PRIMARY KEY (INVOICE_NUMBER, PRODUCT_NUMBER); 
 
ALTER TABLE INVOICE_LINE_ITEM 
  ADD CONSTRAINT INVOICE_CK_SALE_UNIT_PRICE 
      CHECK (SALE_UNIT_PRICE >= 0); 
 
ALTER TABLE INVOICE_LINE_ITEM 
  ADD CONSTRAINT INVOICE_LI_FK_INVOICE_NUMBER 
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      FOREIGN KEY (INVOICE_NUMBER) 
      REFERENCES INVOICE (INVOICE_NUMBER); 
 
ALTER TABLE INVOICE_LINE_ITEM 
  ADD CONSTRAINT INVOICE_LI_FK_PRODUCT_NUMBER 
      FOREIGN KEY (PRODUCT_NUMBER) 
      REFERENCES PRODUCT (PRODUCT_NUMBER);

Implementing Super Types and Subtypes
Most data modelers tend to specify every conceivable subtype in the logical data model. 
This is not really a problem, because the logical design is supposed to encompass not only 
where things currently stand, but also where things are likely to end up in the future. The 
designer of the physical database therefore has some decisions to make in choosing to 
implement or not implement the super types and subtypes depicted in the logical model. 
The driving motivators here should be reasonableness and common sense. These, along 
with input from the application designers and business users about their intended uses of 
the database, will lead to the best decisions.

Looking back at Figure 7-8 in Chapter 7, you will recall that we ended up with two 
subtypes for our Customer entity: Individual Customer and Commercial Customer. You 
have basically three choices for physically implementing such a logical design, and we 
will explore each in the subsections that follow.

Implementing Subtypes As Is
This is called the “three table” solution because it involves creating one table for the super 
type and one table for each of the subtypes (two in this example). This design is most 
appropriate when many attributes are particular to individual subtypes. In our example, 
only two attributes are particular to the Individual Customer subtype (Date of Birth and 
Annual Household Income), and four are particular to the Commercial Customer subtype. 
Figure 8-1 shows the physical design for this alternative.

This design alternative is favored when many common attributes (located in the 
super type table) as well as many attributes particular to one subtype or another (located 
in the subtype tables) are used. In one sense, this design is simpler than the other 
alternatives because no one has to remember which attributes apply to which subtype. 
On the other hand, it is also more complicated to use, because the database user must 
join the CUSTOMER table either to the INDIVIDUAL_CUSTOMER table or the 
COMMERCIAL_CUSTOMER table, depending on the value of CUSTOMER_TYPE. 
The data-modeling purists on your project team are guaranteed to favor this approach, but 
the application programmers who must write the SQL to access the tables may take  
a counter position.
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Implementing Each Subtype as a Discrete Table
This is called the “two-table” solution because it involves creating one table for each 
subtype and including all the columns from the super type table in each subtype. At first, 
this may appear to involve redundant data, but in fact no redundant storage exists, because 
a given customer can be only one of the two subtypes. However, some columns are 
redundantly defined. Figure 8-2 shows the physical design for this alternative.

CUSTOMER

CUSTOMER_NUMBER

CUSTOMER_TYPE
ADDRESS
CITY
STATE
ZIP_CODE
PHONE

COMMERCIAL_CUSTOMER

CUSTOMER_NUMBER (FK)

COMPANY_NAME
TAX_IDENTIFICATION_NUMBER
ANNUAL_GROSS_REVENUE
COMPANY_TYPE

INDIVIDUAL_CUSTOMER

CUSTOMER_NUMBER (FK)

DATE_OF_BIRTH
ANNUAL_HOUSEHOLD_INCOME

Figure 8-1  Customer subclasses: three-table physical design

INDIVIDUAL_CUSTOMER

CUSTOMER_NUMBER

ADDRESS
CITY
STATE
ZIP_CODE
PHONE
DATE_OF_BIRTH
ANNUAL_HOUSEHOLD_INCOME

COMMERCIAL_CUSTOMER

CUSTOMER_NUMBER

ADDRESS
CITY
STATE
ZIP_CODE
PHONE
COMPANY_NAME
TAX_IDENTIFICATION_NUMBER
ANNUAL_GROSS_REVENUE
COMPANY_TYPE

Figure 8-2  Customer subclasses: two-table physical design
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This alternative is favored when very few attributes are common between the subtypes 
(that is, when the super type table contains very few attributes). In our example, the 
situation is further complicated because of the CUSTOMER_CONTACT table, which is 
a child of the super type table (CUSTOMER). You cannot (or at least should not) make 
a table the child of two different parents based on the same foreign key. Therefore, if 
we eliminate the CUSTOMER table, we must create two versions of the CUSTOMER_
CONTACT table—one as a child of INDIVIDUAL_CUSTOMER and the other as a child 
of COMMERCIAL_CUSTOMER. Although this alternative may be a viable solution in 
some situations, the complication of the CUSTOMER_CONTACT table makes it a poor 
choice in this case.

Collapsing Subtypes into the Super Type Table
This is called the “one-table” solution because it involves creating a single table that 
encompasses the super type and both subtypes. Figure 8-3 shows the physical design for 
this alternative. Constraints are required to enforce the optional columns. As columns 
that are mandatory in subtypes are consolidated into the super type table, they usually 
must be defined to allow null values because they don’t apply for all subtypes. For 
the CUSTOMER_TYPE value that signifies “Individual,” DATE_OF_BIRTH and 
ANNUAL_HOUSEHOLD_INCOME would be allowed to (or required to) contain values, 
and COMPANY_NAME, TAX_IDENTIFICATION_NUMBER, ANNUAL_GROSS_
INCOME, and COMPANY_TYPE would be required to be null. For the CUSTOMER_
TYPE value that signifies “Commercial,” the behavior required would be just the 
opposite.

CUSTOMER

CUSTOMER_NUMBER

CUSTOMER_TYPE
ADDRESS
CITY
STATE
ZIP_CODE
PHONE
COMPANY_NAME
TAX_IDENTIFICATION_NUMBER
ANNUAL_GROSS_REVENUE
COMPANY_TYPE
DATE_OF_BIRTH
ANNUAL_HOUSEHOLD_INCOME

Figure 8-3  Customer subclasses: one-table physical design
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NOTE
The constraints mentioned here might be implemented in the database using check 
constraints or triggers, discussed later in this chapter, or in application logic. The 
decision of which method to use depends a lot on the capabilities of the DBMS.

This alternative is favored when relatively few attributes are particular to any given 
subtype. In terms of data access, it is clearly the simplest alternative, because no joins are 
required. However, it is perhaps more complicated in terms of logic, because you must 
always keep in mind which attributes apply to which subtype (that is, which value of 
CUSTOMER_TYPE in this example). With only two subtypes, and a total of six subtype-
determined attributes between them, this seems a very attractive alternative for this example.

Naming Conventions
Naming conventions are important because they help promote consistency in the names 
of tables, columns, constraints, indexes, and other database objects. Every organization 
should develop a standard set of naming conventions (with variations as needed when 
multiple RDBMSs are in use), publish it, and enforce its use. The conventions offered 
here are suggestions based on current industry best practices.

Table Naming Conventions
Here are some suggested naming conventions for database tables:

● Table names should be based on the name of the entity they represent. They should be 
descriptive, yet concise.

● Table names should be unique across the entire organization (that is, across all databases), 
except where the table is an exact duplicate of another (that is, a replicated copy).

● Some designers prefer singular words for table names, whereas others prefer plural 
names (for example, CUSTOMER versus CUSTOMERS). Oracle Corporation 
recommends singular names for entities and plural names for tables (a convention I 
have never understood). It doesn’t matter which convention you adopt as long as you 
are consistent across all your tables, so do set one or the other as your standard.

● Do not include words such as “table” or “file” in table names.

● Use only uppercase letters, and use an underscore to separate words. Not all RDBMSs 
have case-sensitive object names, so mixed-case names limit applicability across 
multiple vendors. Many RDBMS products, including Oracle and DB2, support mixed-
case names in SQL but fold all of them into uppercase when they are processed. 
The names in the catalog metadata are stored in uppercase, and when you look at 
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them later with one of the popular DBA or developer tools, they become difficult to 
decipher. For example, a table created with the name EmpJobAsmtHistory would be 
displayed as EMPJOBASMTHISTORY.

● Use abbreviations when necessary to shorten names that are longer than the RDBMS 
maximum (typically 30 characters or so). Actually, it is a good idea to stay a few 
characters short of the RDBMS maximum to allow for suffixes when necessary. 
All abbreviations should be placed on a standard list and the use of nonstandard 
abbreviations discouraged.

● Avoid limiting names such as WEST_SALES. Some organizations add a two- or 
three-character prefix to table names to denote the part of the organization that owns 
the data in the table. However, this is not considered a best practice because it can lead 
to a lack of data sharing. Moreover, placing geographic or organizational unit names 
in table names plays havoc every time the organization changes.

Column Naming Conventions
Here are some suggested naming conventions for table columns:

● Column names should be based on the attribute name as shown in the logical data 
model. They should be descriptive, yet concise.

● Column names must be unique within the table, but, where possible, it is best if 
they are unique across the entire organization. Some conventions make exceptions 
for common attributes such as City, which might describe several entities such as 
Customer, Employee, and Company Location.

● Use only uppercase letters, and use an underscore to separate words. Not all RDBMSs 
have case-sensitive object names, so mixed-case names limit applicability across 
multiple vendors.

● Prefixing column names with entity names is a controversial issue. Some prefer 
prefixing names. For example, in the CUSTOMER table, they would use column 
names such as CUSTOMER_NUMBER, CUSTOMER_NAME, CUSTOMER_
ADDRESS, CUSTOMER_CITY, and so forth. Others (including me) prefer to prefix 
only the primary key column name (for example, CUSTOMER_NUMBER), which 
leads easily to primary key and matching foreign key columns having exactly the 
same names. Still others prefer no prefixes at all, and end up with a column name such 
as ID for the primary key of every single table.

● Use abbreviations when necessary to shorten names that are longer than the RDBMS 
maximum (typically 30 characters or so). All abbreviations should be placed on a 
standard list and the use of nonstandard abbreviations discouraged.
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● Regardless of any other convention, most experts prefer that foreign key columns 
always have exactly the same name as their matching primary key column. This helps 
other database users understand which columns to use when coding joins in SQL.

Constraint Naming Conventions
In most RDBMSs, the error message generated when a constraint is violated contains the 
constraint name. Unless you want to field questions from database users every time one of 
these messages shows up, you should name the constraints in a standard way that is easily 
understood by the database users. Most database designers prefer a convention similar to 
the one presented here.

Constraint names should be in the format TNAME_TYPE_CNAME, where:

● TNAME is the name of the table on which the constraint is defined, abbreviated if 
necessary.

● TYPE is the type of constraint:

● PK for primary key constraints.

● FK for foreign key constraints.

● UQ for unique constraints.

● CK for check constraints.

● CNAME is the name of the column on which the constraint is defined, abbreviated 
if necessary. For constraints defined across multiple columns, another descriptive 
word or phrase may be substituted if the column names are too long (even when 
abbreviated) to make sense.

Index Naming Conventions
Indexes that are automatically defined by the RDBMS to support primary key or unique 
constraints are typically given the same name as the constraint name, so you seldom have 
to worry about them. For other types of indexes, it is wise to use a naming convention so 
that you know the table and column(s) on which they are defined without having to look 
up anything. The following is a suggested convention.

Index names should be in the format TNAME_TYPE_CNAME, where:

● TNAME is the name of the table on which the index is defined, abbreviated if necessary.

● TYPE is the type of index:

● UX for unique indexes.

● IX for non unique indexes.
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● CNAME is the name of the column on which the index is defined, abbreviated if 
necessary. For indexes defined across multiple columns, another descriptive word or 
phrase may be substituted if the column names are too long (even when abbreviated) 
to make sense.

Any abbreviations used should be documented in the standard abbreviations list.

View Naming Conventions
View names present an interesting dilemma. The object names used in the FROM 
clause of SQL statements can be for tables, views, or synonyms. A synonym is an alias 
(nickname) for a table or view. So how does the DBMS know whether an object name 
in the FROM clause is a table or view or synonym? Well, it doesn’t until it looks up 
the name in a metadata table that catalogs all the objects in the database. This means, 
of course, that the names of tables, views, and synonyms must come from the same 
namespace, or list of possible names. Therefore, a view name must be unique among all 
table, view, and synonym names.

Because it is useful for at least some database users to know whether they are 
referencing a table or a view, and as an easy way to ensure that names are unique, it is 
common practice to give views distinctive names by employing a standard that appends 
VW to the beginning or end of each name, with a separating underscore. Again, the exact 
convention chosen matters a lot less than choosing one standard convention and sticking 
to it for all your view names. Here is a suggested convention:

● All view names should end with _VW so they are easily distinguishable from table names.

● View names should contain the name of the most significant base table included in the 
view, abbreviated if necessary.

● View names should describe the purpose of the views or the kind of data included in 
them. For example, CALIFORNIA_CUSTOMERS_VW and CUSTOMERS_BY_
ZIP_CODE_VW are both reasonably descriptive view names, whereas CUSTOMER_
LIST_VW and CUSTOMER_JOIN_VW are much less meaningful.

● Any abbreviations used should be documented in the standard abbreviations list.

Integrating Business Rules and Data Integrity
Business rules determine how an organization operates and uses its data. Business rules 
exist as a reflection of an organization’s policies and operational procedures and because 
they provide control. Data integrity is the process of ensuring that data is protected 
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and stays intact through defined constraints placed on the data. We call these database 
constraints because they prevent changes to the data that would violate one or more 
business rules. The principal benefit of enforcing business rules using data integrity 
constraints in the database is that database constraints cannot be circumvented. Unlike 
business rules enforced by application programs, database constraints are enforced no 
matter how someone connects to the database. The only way around database constraints 
is for the DBA to remove or disable them. On the other hand, developers often prefer to 
control the rule enforcement themselves rather than relegating them to a DBA, and some 
rules are best tested before sending the data to the database for processing. In rare cases, 
usually involving the most important business rules, you might even want to enforce 
them in both places—in the database, because the rule cannot be circumvented, and in the 
application, so the user gets fast feedback when he or she violates the rule.

Business rules are implemented in the database as follows:

● NOT NULL constraints

● Primary key constraints

● Referential (foreign key) constraints

● Unique constraints

● Check constraints

● Data types, precision, and scale

● Triggers

The subsections that follow discuss each of these implementation techniques and 
the effects of the constraints on database processing. Throughout this discussion, the 
following table definition (in Oracle SQL) is used as an example. A comment (a statement 
beginning with two hyphens) appears above each component to help you identify it. Note 
that the INVOICE table used here has a column difference—TERMS is replaced with 
CUSTOMER_PO_NUMBER, which is needed to illustrate some key concepts. A DROP 
statement is included to drop the INVOICE table in case you created it when following 
previous examples.

--  Drop Invoice Table (in case there already is one) 
DROP TABLE INVOICE CASCADE CONSTRAINTS; 
--  Create Invoice Table 
CREATE TABLE INVOICE 
 (INVOICE_NUMBER       NUMBER(7)     NOT NULL, 
  CUSTOMER_NUMBER      NUMBER(5)     NOT NULL, 
  CUSTOMER_PO_NUMBER   VARCHAR(10)   NULL, 
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  SHIP_VIA             VARCHAR(30)   NULL, 
  ORDER_DATE           DATE          NOT NULL); 
 
-- Create Primary Key Constraint 
ALTER TABLE INVOICE 
  ADD CONSTRAINT INVOICE_PK_INVOICE_NUMBER 
      PRIMARY KEY (INVOICE_NUMBER); 
 
-- Create Referential Constraint 
ALTER TABLE INVOICE 
  ADD CONSTRAINT INVOICE_FK_CUSTOMER_NUMBER 
      FOREIGN KEY (CUSTOMER_NUMBER) 
      REFERENCES CUSTOMER (CUSTOMER_NUMBER); 
 
-- Create Unique Constraint 
ALTER TABLE INVOICE 
  ADD CONSTRAINT INVOICE_UNQ_CUST_NUMB_PO 
      UNIQUE (CUSTOMER_NUMBER, CUSTOMER_PO_NUMBER); 
 
-- Create CHECK Constraint 
ALTER TABLE INVOICE 
  ADD CONSTRAINT INVOICE_CK_INVOICE_NUMBER 
      CHECK (INVOICE_NUMBER > 0);

NOT NULL Constraints
As you have already seen, business rules that state which attributes are required translate 
into NOT NULL clauses on the corresponding columns in the table design. In fact, the 
NOT NULL clause is how we define a NOT NULL constraint on table columns. Primary 
keys must always be specified as NOT NULL. (Oracle will automatically do this for you, 
unlike most other RDBMS products.) And, as already mentioned, any foreign keys that 
participate in a mandatory relationship should also be specified as NOT NULL.

In our example, if we attempt to insert a row in the INVOICE table and fail to provide 
a value for any of the columns that have NOT NULL constraints (that is, the INVOICE_
NUMBER, CUSTOMER_NUMBER, and ORDER_DATE columns), the insert will fail 
with an error message indicating the constraint violation. Also, if we attempt to update any 
existing row and set one of those columns to a NULL value, the update statement will fail.

Primary Key Constraints
Primary key constraints require that the column(s) that make up the primary key contain 
unique values for every row in the table. In addition, primary key columns must be defined 
with NOT NULL constraints. A table may have only one primary key constraint. Most 
RDBMSs will automatically create an index to assist in enforcing the primary key constraint.
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In our sample INVOICE table, if we attempt to insert a row without specifying a 
value for the INVOICE_NUMBER column, the insert will fail because of the NOT 
NULL constraint on the column. If we instead try to insert a row with a value for the 
INVOICE_NUMBER column that already exists in the INVOICE table, the insert will 
fail with an error message that indicates a violation of the primary key constraint. This 
message usually contains the constraint name—which is why it is such a good idea to 
give constraints meaningful names. Finally, assuming the RDBMS in use permits updates 
to primary key values (some do not), if we attempt to update the INVOICE_NUMBER 
column for an existing row and we provide a value that is already used by another row in 
the table, the update will fail.

Referential (Foreign Key) Constraints
The referential constraint on the INVOICE table defines CUSTOMER_NUMBER as 
a foreign key to the CUSTOMER table. It takes some getting used to, but referential 
constraints are always defined on the child table (that is, the table on the “many” side of 
the relationship). The purpose of the referential constraint is to make sure that foreign 
key values in the rows in the child table always have matching primary key values in the 
parent table.

In our INVOICE table example, if we try to insert a row without providing a value 
for CUSTOMER_NUMBER, the insert will fail due to the NOT NULL constraint on 
the column. However, if we try to insert a row and provide a value for CUSTOMER_
NUMBER that does not match the primary key of a row in the CUSTOMER table, the 
insert will fail due to the referential constraint. Also, if we attempt to update the value of 
CUSTOMER_NUMBER for an existing row in the INVOICE table and the new value 
does not have a matching row in the CUSTOMER table, the update will fail, again due to 
the referential constraint.

Always keep in mind that referential constraints work in both directions, so they can 
prevent a child table row from becoming an “orphan,” meaning it has a value that does 
not match a primary key value in the parent table. Therefore, if we attempt to delete a row 
in the CUSTOMER table that has INVOICE rows referring to it, the statement will fail 
because it would cause child table rows to violate the constraint. The same is true if we 
attempt to update the primary key value of such a row. However, many RDBMSs provide 
a feature with referential constraints written as ON DELETE CASCADE, which causes 
referencing child table rows to be automatically deleted when the parent row is deleted. 
Of course, this option is not appropriate in all situations, but it is nice to have when you 
need it.
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Unique Constraints
Like primary key constraints, unique constraints ensure that no two rows in the table have 
duplicate values for the column(s) named in the constraint. However, unique constraints 
have two important differences:

● Although a table may have only one primary key constraint, it may have as many 
unique constraints as necessary.

● Columns participating in a unique constraint do not have to have NOT NULL 
constraints on them.

As with a primary key constraint, an index is automatically created to assist the 
DBMS in efficiently enforcing the constraint.

In our example, a unique constraint is defined on the CUSTOMER_NUMBER 
and CUSTOMER_PO_NUMBER columns, to enforce a business rule that states that 
customers may use a PO (purchase order) number only once. You should realize that the 
combination of the values in the two columns must be unique. Many invoices can exist 
for any given CUSTOMER_NUMBER, and multiple rows in the INVOICE table can 
have the same PO_NUMBER (we cannot prevent two customers from using the same PO 
number, nor do we wish to). However, no two rows for the same customer number may 
have the same PO number.

As with the primary key constraint, if we attempt to insert a row with values for 
the CUSTOMER_NUMBER and PO_NUMBER columns that are already in use by 
another row, the insert will fail. Similarly, we cannot update a row in the INVOICE table 
if the update would result in the row having a duplicate combination of CUSTOMER_
NUMBER and PO_NUMBER.

Q: You mentioned that ON DELETE CASCADE is not appropriate in all situations. When 
would it be appropriate?

A: ON DELETE CASCADE is appropriate when the child table rows cannot exist without the 
parent table rows, a situation known as an existence dependency. For example, a line item 
on an invoice cannot exist without the invoice itself, so it is logical to delete the line items 
automatically when an SQL statement attempts to delete the invoice. However, this option can 
be dangerous in other situations. For instance, it would be dangerous to set up the database 
so that invoices were deleted automatically when someone attempted to delete a customer; 
because invoices are financial records, it would be safer to force someone first to explicitly 
delete the invoices. Naturally, these are business rule decisions that depend on requirements.

Ask the Expert
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Check Constraints
Check constraints are used to enforce business rules that restrict a column to a list or range 
of values or to some condition that can be verified using a simple comparison to a constant, 
calculation, or a value of another column in the same row. Check constraints may not 
be used to compare column values between different rows, whether in the same table or 
not. Check constraints are written as conditional statements that must always be true. The 
terminology comes from the fact that the database must always “check” the condition to 
make sure it evaluates to true before allowing an insert or update to a row in the table.

In our example, a check constraint requires the INVOICE_NUMBER to be greater 
than 0. This enforces a business rule that requires positive invoice numbers. Keep in 
mind that the condition is checked only when we insert or update a row in the INVOICE 
table, so it will not be applied to existing rows in the table (should there be any) when the 
constraint is added. With the constraint in force, if we attempt to insert or update a row 
with an INVOICE_NUMBER set to zero or a negative number, the statement will fail.

Data Types, Precision, and Scale
The data type assigned to the table columns automatically constrains the data to values 
that match the data type. For example, anything placed in a column with a date format 
must be a valid date. You cannot put non-numeric characters in numeric columns. 
However, you can put just about anything in a character column.

For data types that support the specification of the precision (maximum size) and scale 
(positions to the right of the decimal point), these specifications also constrain the data. 
You simply cannot put a character string or number larger than the maximum size for the 
column into the database. Nor can you specify decimal positions beyond those allowed for 
in the scale of a number.

In our example, CUSTOMER_NUMBER must contain only numeric digits and 
cannot be larger than 99,999 (five digits) or smaller than –99,999 (again, five digits). Also, 
because the scale is 0, it cannot have decimal digits (that is, it must be an integer). It may 
seem silly to allow negative values for CUSTOMER_NUMBER, but no SQL data type 
restricts a column only to positive integers. However, it is easy to restrict a column only to 
positive numbers using a check constraint if such a constraint is required.

Triggers
As you may recall, a trigger is a unit of program code that executes automatically based 
on some event that takes place in the database, such as inserting, updating, or deleting data 
in a particular table. Triggers must be written in a language supported by the RDBMS. For 
Oracle, this is either a proprietary extension to SQL called PL/SQL (Procedural Language/
SQL) or Java (available in Oracle8i or later). For Sybase ASE and Microsoft SQL Server, 
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the supported language is Transact-SQL. Some RDBMSs have no support for triggers, 
whereas others support a more general programming language such as C. Trigger code 
must either end normally, which allows the SQL statement that caused the trigger to fire to 
end normally, or it must raise a database error, which in turn causes the SQL statement that 
caused the trigger to fire to fail as well.

Triggers can enforce business rules that cannot be enforced via database constraints. 
Because they are written using a full-fledged programming language, they can do just about 
anything that can be done with a database and a program (some RDBMSs do place some 
restrictions on triggers). Deciding whether a business rule should be enforced in normal 
application code or through the use of a trigger is not always easy. Application developers 
typically want control of such things, but on the other hand, the main benefit of triggers 
is that they run automatically and cannot be circumvented (unless the DBA removes or 
disables them), even if someone connects directly to the database, bypassing the application.

A common use of triggers in RDBMSs that do not support ON DELETE CASCADE 
in referential constraints is to carry out the cascading delete. For example, if we want 
invoice line items to be automatically removed from the INVOICE_LINE_ITEM table 
when the corresponding invoice in the INVOICE table is deleted, we could write a trigger 
that carries that out. The trigger would be set to fire when a delete from the INVOICE table 
occurs. It would then issue a delete for all the child rows related to the parent invoice (those 
matching the primary key value of the invoice being deleted) and then end normally, which 
would permit the original invoice delete to complete (because the referencing child rows 
will be gone by this time, the delete will not violate the referential constraint).

Designing Views
As covered in Chapter 2, views can be thought of as virtual tables. They are, however, 
merely stored SQL statements that do not themselves contain any data. Data can be 
selected from views just as it can from tables, and with some restrictions, data can be 
inserted into, updated in, and deleted from views. Here are the restrictions:

● For views containing joins, any DML (that is, insert, update, or delete) statement 
issued against the view must reference only one table.

● Inserts are not possible using views where any required (NOT NULL) column has 
been omitted.

● Any update against a view may reference only columns that directly map to base table 
columns. Calculated and derived columns may not be updated.

● Appropriate privileges are required (just as with base tables).

● Various other product-specific restrictions apply to view usage, so the RDBMS 
documentation should always be consulted.
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Views can be designed to provide the following advantages:

● In some RDBMSs, views provide a performance advantage over ordinary SQL 
statements. Views are precompiled, so the resources required to check the syntax of the 
statement and prepare it for processing are saved when views are repeatedly referenced. 
However, there is no such advantage with RDBMSs that provide an automatic SQL 
statement cache, as Oracle does. Moreover, poorly written SQL can be included in a 
view, so putting SQL in a view is not a magic solution to performance issues.

● Similarly, in some RDBMSs, stored procedures can outperform views. (A stored 
procedure is a program that is written in a language supported by the RDBMS and 
stored in the database. They are invoked with an SQL statement and can optionally 
return a result set much as a view does.) Stored procedures can do a lot more data 
manipulation than can be accomplished in a view.

● Views may be tailored to individual department needs, providing only the rows and 
columns needed, and perhaps renaming columns using terms more readily understood 
by the particular audience.

● Because views hide the real table and column names from their users, they insulate 
users from changes to those names in the base tables.

● Data usage can be greatly simplified by hiding complicated joins and calculations 
from the database users. For example, views can easily calculate ages based on birth 
dates, and they can summarize data in nearly any way imaginable.

● Security needs can be met by filtering rows and columns that users are not supposed 
to see. Some RDBMS products permit column-level security, where users are granted 
privileges by column as well as by table, but using views is far easier to implement 
and maintain. Moreover, a WHERE clause in the view can filter rows easily.

Once created, views must be managed like any other database object. If many 
members of a database project are creating and updating views, it is very easy to lose 
control. Moreover, views can become invalid as maintenance is carried out on the 
database, so their status must be reviewed periodically.

Adding Indexes for Performance
Indexes provide a fast and efficient means of finding data rows in tables, much like the 
index at the back of a book helps you to quickly find specific references. Although the 
implementation in the database is more complicated than this, it’s easiest to visualize 
an index as a table with one column containing the key value and another containing a 
pointer to where the row with that key value physically resides in the table, in the form of 
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a row ID or a relative block address (RBA). For nonunique indexes, the second column 
contains a list of matching pointers.

Indexes provide faster searches than scanning tables for two reasons: First, index 
entries are considerably shorter than typical table rows, so many more index entries fit per 
physical file block than the corresponding table rows. Therefore, when the database must 
scan the index sequentially looking for matching rows, it can get a lot more index entries 
with a single read to the file on disk than a corresponding read to the file holding the table. 
Second, index entries are always maintained in key sequence, which is not at all true of 
tables. The RDBMS software can take advantage of this by using binary search techniques 
that remarkably reduce search times and the resources required for searching.

There are no free lunches, however, and indexes come with a price—they take up 
space and must be maintained. Storage space seems less of an issue with every passing 
day, because storage devices keep getting cheaper. However, they still cost something, and 
they require maintenance and must be backed up. Most RDBMS vendors provide tools to 
help calculate the storage space required for indexes. These will assist you in estimating 
storage requirements. The more important consideration is maintenance of the index. 
Whenever a row is inserted into a table, every index defined on that table must have a new 
entry inserted as well. As rows are deleted, index entries must also be removed. And when 
columns that have an index defined on them are updated, the index must be updated as 
well. It’s easy to forget this point because the RDBMS does this work automatically, but 
every index has a detrimental effect on the performance of inserts, updates, and deletes 
to table data. In essence, this is a typical tradeoff, sacrificing a bit of DML statement 
performance for considerable gains in SELECT statement performance.

Here are some general guidelines regarding the use of indexes:

● Keep in mind that most RDBMSs automatically create indexes on key columns in 
primary key constraints and unique constraints.

● Indexes on foreign keys can markedly improve the performance of joins.

● Consider using indexes on columns that are frequently referenced in WHERE clauses.

● The larger the table, the less you want any database query to have to scan the entire 
table (in other words, the more you want every query to use an index).

● The more a table is updated, the fewer the number of indexes you should have on the 
table, particularly on the columns that are updated most often.

● For relatively small tables (less than 1000 rows or so), sequential table scans are 
probably more efficient than indexes. Most RDBMSs have optimizers that decide 
when an index should be used, and typically they will choose a table scan over an 
index until at least a few hundred rows exist in the table.
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Try This 8-1

● For tables with relatively short rows that are most often accessed using the primary key, 
consider the use of an index organized table (on RDBMSs that support such a table), 
where all the table data is stored in the index. This can be a highly efficient structure for 
lookup tables (tables containing little more than code and description columns).

● Consider the performance consequences carefully before you define more than two or 
three indexes on a single table.

  Mapping a Logical Model to a Physical 
Database Design

Implementing subtypes and super types in relational databases is perhaps the most challenging 
part of physical database design. This Try This exercise gives you an opportunity to 
practice this essential skill. Illustration 8-1 shows part of the logical model for part of an 
HR (human resources) application. The steps in this exercise walk you through converting 
this model to a physical data model.
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Step by Step
 1. Given that the Salaried Employee and Hourly Employee entities have so few attributes, 

it seems best to collapse them into the Employee relation. Move the Annual Salary and 
Hourly Rate attributes to Employee.

 2. On further analysis, you notice that both the Employee and Contractor entities have an 
Hourly Rate attribute. Therefore, you need to move Hourly Rate to the Worker entity.

 3. After discussion with the business analysts working on your project, you conclude that 
Hours Per Week can easily be derived from the FTE (Full Time Equivalency) Ratio in 
the Worker entity. For example, an FTE of 0.5 means the person works 20 hours per 
week (40 * 0.5 = 20). This was simply missed in earlier analysis passes because Hours 
Per Week was two layers down the subtype hierarchy from FTE Ratio. You can simply 
remove Hours Per Week from the model.

 4. After discussion regarding the Employee and Contract subtypes, you conclude that they 
should remain as separate entities (tables) in the physical model. Too many distinct 
attributes exist between the two subtypes to consider combining them into the Worker 
entity. At the same time, pushing the Worker super type into the two subtypes is not an 
attractive option because the many-to-many relationship between Worker and Project 
applies to both subtypes and therefore would have to be redundantly (and awkwardly) 
implemented if the Worker entity were eliminated. Create one-to-one relationships 
between Worker and Employee and between Worker and Contractor.

Try This Summary
In this Try This exercise, you stepped through the considerations that are typical in 
converting a logical model containing super types and subtypes to a physical model. My 
solution is shown in Appendix B.

You may have noticed that this particular design does not handle storage of historical 
data. For example, if a contract employee finished a contract and then returned some 
time later for another contract, you could not hold both contracts in the database at the 
same time, because you have only one set of start and end dates per employee. Similarly, 
if an employee leaves for a time and is rehired at a later time, you cannot hold both 
employment engagements in the database at the same time. This is typical of modern 
OLTP (online transaction processing) databases, where you expect to have a different 
database such as a data warehouse to hold the historical data. Data warehouses and other 
data structures for OLAP (online analytical processing) are covered in Chapter 12.
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 Chapter 8 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank 
questions. Note that there may be more than one correct response to each question.

 1. Business rules are implemented in the database using ____________.

 2. Two key differences between unique constraints and primary key constraints  
are ____________ and ____________.

 3. Relationships in the logical model become ____________ in the physical model.

 4. Constraint names are important because ____________.

 5. When you’re designing tables,

 A Each normalized relation becomes a table.

 B Each attribute in the relation becomes a table column.

 C Relationships become check constraints.

 D Unique identifiers become triggers.

 E Primary key columns must be defined as NOT NULL.

 6. Super types and subtypes

 A Must be implemented exactly as specified in the logical design

 B May be collapsed in the physical database design

 C May have the super type columns folded into each subtype in the physical design

 D Usually have the same primary key in the physical tables

 E Apply only to the logical design

 7. Table names

 A Should be based on the attribute names in the logical design

 B Should always include the word “table”

 C Should use only uppercase letters

 D Should include organization or location names

 E May contain abbreviations when necessary

✓
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 8. Column names

 A Must be unique within the database

 B Should be based on the corresponding attribute names in the logical design

 C Must be prefixed with the table name

 D Must be unique within the table

 E Should use abbreviations whenever possible

 9. Referential constraints

 A Define relationships identified in the logical model

 B Are always defined on the parent table

 C Require that foreign keys be defined as NOT NULL

 D Should have descriptive names

 E Name the parent and child tables and the foreign key column

 10. Check constraints

 A May be used to force a column to match a list of values

 B May be used to force a column to match a range of values

 C May be used to force a column to match another column in the same row

 D May be used to force a column to match a column in another table

 E May be used to enforce a foreign key constraint

 11. Data types

 A Prevent incorrect data from being inserted into a table

 B Can be used to prevent alphabetic characters from being stored in numeric columns

 C Can be used to prevent numeric characters from being stored in character format 
columns

 D Require that precision and scale be specified also

 E Can be used to prevent invalid dates from being stored in date columns
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 12. View restrictions include which of the following?

 A Views containing joins can never be updated.

 B Updates to calculated columns in views are prohibited.

 C Privileges are required in order to update data using views.

 D If a view omits a mandatory column, inserts to the view are not possible.

 E Any update involving a view may reference columns only from one table.

 13. Some advantages of views are

 A Views may provide performance advantages.

 B Views may insulate database users from table and column name changes.

 C Views may be used to hide joins and complex calculations.

 D Views may filter columns or rows that users should not see.

 E Views may be tailored to the needs of individual departments.

 14. Indexes

 A May be used to assist with primary key constraints

 B May be used to improve query performance

 C May be used to improve insert, update, and delete performance

 D Are usually smaller than the tables they reference

 E Are slower to sequentially scan than corresponding tables

 15. General rules to follow regarding indexes include which of the following?

 A The larger the table, the more important indexes become.

 B Indexing foreign key columns often helps join performance.

 C Columns that are frequently updated should always be indexed.

 D The more a table is updated, the more indexes will help performance.

 E Indexes on very small tables tend not to be very useful.



Part III
Database Implementation
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Key Skills & Concepts
● Deployment Models

● Connecting Databases to the Web

● Connecting Databases to Applications

This chapter begins with a look at the evolution of database deployment models—the 
ways that databases have been connected with database users and other computer 

systems within the enterprise computing infrastructure (the internal structure that 
organizes all the computing resources of an enterprise, including databases, applications, 
computer hardware, and the network). We then explore the methods used to connect 
databases to applications that use a web browser as the primary user interface; this is 
the way many modern application systems are constructed. Finally, we look at current 
methods for connecting databases to applications, namely using ODBC connections 
(for most programming languages) and various methods for connecting databases to 
applications written in Java (a commonly used object-oriented language).

Deployment Models
The history of the information technology (IT) industry is a very interesting study, because 
it clearly proves the old adage that history repeats itself. Nowhere is this truer than in the 
ways that we have deployed databases, and computer systems in general, on enterprise 
networks. The subsections that follow outline the major deployment models that have 
been used. Most of these models are still in active use.

Centralized Model
The centralized model, shown in Figure 9-1, was the original method used to connect 
databases to the enterprise computing infrastructure. Database users were originally 
equipped with “dumb terminals” that offered very little processing power or intelligent 
programming. The terminals’ only functions were to present screens of data that came 
across the network, move the cursor around the screen, and capture user keystrokes, which 
were sent back across the network. On the other end of the network was a mainframe or 
other large centralized server that housed all the other functions, including the business 
logic (in application programs), the database, and any advanced presentation features, 
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such as the ability to compose graphs and charts and select colors to display (if color 
terminals were connected).

Compared to the technology that is prevalent today, this arrangement might seem 
primitive, but keep in mind that personal computers had not been invented yet. When PCs 
came on the scene, some of their first uses were to replace the dumb terminals, giving 
computer users a desktop device that they could at least use for other purposes, such as 
word processing (or perhaps playing those early computer games). Programs on the early 
PCs, called terminal emulators, took care of the network connection in such a way that the 
mainframe still thought it was connected to the original dumb terminal.

The centralized model enjoyed the following benefits:

● Easy administration Upgrades and maintenance were straightforward, because all 
the application logic and the database were centralized.

● Lower development labor costs Fewer specialists were required, because 
everything ran on one platform.

● Potentially higher data input productivity Studies have shown that the fancy 
GUI screens that appeared later actually slowed down experienced users who were 
performing repetitive tasks. Many an experienced Windows user can perform some 
tasks much more quickly using the command prompt (DOS window) instead of 
the available GUI tools. Much of this is due to the time required to move one hand 
between keys used for typing and the pointing device (mouse, trackball, and so on). 
If we all had a third hand, or if we could somehow use something else to control the 
pointing device (for example, eye movements or our feet), perhaps this could  
be overcome.

Business Logic
Database
Presentation (advanced)

Presentation (basic)

Terminal Terminal Terminal Terminal

Mainframe/Central
Server

Database

Figure 9-1  The centralized deployment model
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Here are the drawbacks:

● The mainframe or centralized server provided a single point of failure.

● Graphical displays were quite primitive, limiting the user interface.

● Until the advent of the PC, the dumb terminal took up a lot of desktop space for the 
limited purposes it served.

Distributed Model
As computer networks became more readily available in the late 1970s and early 
1980s, the IT industry became enamored with the concept of distributed databases and 
distributed applications. In this case, distributed means the partitioning (dividing up) of 
the application and/or database into parts and the placement of different parts on different 
computing devices, all connected by a network. When done correctly, this distribution is 
transparent to the users, meaning that the system hides the distribution details from the 
users, making everything appear to be coming from a single source. Figure 9-2 shows a 
simple distributed model using two centralized servers.

Unfortunately, the marketing hype attached to the initial appearance of the distributed 
model never played out due to high costs and performance and reliability issues. Among 
other things, network technology was not mature enough to handle the load. In many 
ways, the early versions were solutions in need of problems to solve. Much like the 
Ford Edsel, these new ideas were simply ahead of their time. This architecture has 
reappeared since the advent of more advanced networks, including the Internet, and is 
now successfully used for backup data centers, data warehouses, departmental computer 
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Figure 9-2  The distributed deployment model
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systems, and much more. In some object-oriented architectures, an agent known as an 
object request broker manages objects distributed across a network so applications can 
access objects without regard to their location. Moreover, the current trends in grid 
computing (virtual super-computers composed of a clusters of networked, loosely-coupled 
computers) can be easily seen as extensions to the original distributed model. History 
really does repeat itself.

The benefits of the distributed deployment model are as follows:

● Fault tolerance was improved, because any component deployed on more than one 
device is no longer a single point of failure.

● Potential performance was improved by placing data and application logic closer to 
the users that need them (that is, departmental computer systems).

Here are the drawbacks:

● It is much more complicated than the centralized model.

● There are potential performance issues related to synchronizing data updates for any 
redundantly stored data.

● It is far more expensive than the centralized model.

● There is a lack of guidelines and best practices for how to partition data and 
applications across the available computing devices.

Client/Server Model
The client/server model involves one or more shared computers, called servers, that are 
connected by a network to the individual users’ workstations, called clients. Client/server 
computing arrived in the 1980s, riding a wave of marketing hype from hardware and 
software vendors the likes of which had never before been seen in the IT industry. The 
original model used is now called the two-tier client/sever model, which later evolved into 
what we call the three-tier client/server model, and finally into the N-tier client/server 
model, which is also known as the Internet computing model. Each of these is discussed in 
the following subsections.

Two-Tier Client/Server Model
The two-tier client/server model, shown in Figure 9-3, is almost the opposite of the 
centralized model in that all the business and presentation logic is placed on the client 
workstation, which typically is a high-powered personal computer system. The only thing 
remaining on a centralized server is the database.
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The two-tier model intended to take advantage of the superior presentation and user 
interface capabilities of the modern workstation. However, the marketing hype of the late 
1980s and early 1990s promised faster development of better application systems at a 
lower cost. It didn’t pan out this way, and it’s impossible to do so, as discussed in “The 
Project Triangle” section back in Chapter 5. However, the vendors were offering a “silver 
bullet” solution, and business managers of the day were far too willing to believe them.

The white lie of the day was in cost comparisons between mainframes and central 
servers and workstations. The vendors typically showed cost comparisons in dollars per 
millions of instructions per second (MIPS). The problem was that a given instruction on the 
personal computers of the day did far less than a given instruction on a mainframe or high-
powered server. So it really was comparing apples and oranges. Cynics of the day defined 
MIPS as “meaningless indicator of processor speed,” and they were not far wrong. The other 
factor that was largely ignored was that personal computers did not read from and write to 
their disks at anywhere near the rates achieved by mainframes and high-powered servers. 
So although moving all the application programs (business logic) to the client workstations 
appeared to be a much less expensive solution, it was, in fact, a false economy.

Nearly every two-tier client/server project finished late and well over budget. 
Moreover, there were sobering failures. For example, the California Department of Motor 
Vehicles spent $44 million on a vehicle-registration system that ended up being far slower 
and less functional than the centralized model system that it was supposed to replace. It 
was eventually scrapped at a total loss—even the hardware was so specialized that it could 
not be used for any other purpose, so it too went on the junk pile. There were some client/
server project successes, however. For example, PeopleSoft built a two-tier client/server 
human resources system that was successfully deployed by many large enterprises. In the 
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Figure 9-3  The two-tier client/server deployment model
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years that followed, incidentally, PeopleSoft (now owned by Oracle) migrated to the  
N-tier client/server model (described later in this chapter) with no code running on the 
client workstations aside from a standard web browser, which grew into a full-fledged 
enterprise resource planning (ERP) suite of applications.

The benefits of the two-tier client/server model include the following:

● It greatly improved the user interface compared with systems using dumb terminals.

● It offered the potential for improved performance because the workstation processor 
did all the work and did not have to be shared with anyone else.

Here are the drawbacks:

● Very expensive client workstations were required because all the application logic 
ran on the client. Client workstation costs in the $10,000 to $20,000 range were not 
unusual. In fairness, hardware prices were considerably higher at that time.

● Administrative nightmares mounted because the application was installed on every client 
workstation, and all had to be updated with a new software release at the same time.

● Much more complicated (and often more expensive) development resulted because the 
database server and the client workstation were almost always completely different 
platforms that required a different set of skills.

Three-Tier Client/Server Model
The many failures of the two-tier client/server model led to some serious rethinking. The 
result was the three-tier client/server model, which essentially moved the application 
logic from the client workstation back to a centralized server, now dubbed the application 
server. Figure 9-4 shows this architecture, which proved very workable.

The benefits of the three-tier client/server model include the following:

● It solved the administrative issues of the two-tier model by centralizing application 
logic on the application server.

● It improved scalability because multiple application servers could be added as needed. 
(The same could be done with database servers, but that required distributed database 
technology to synchronize any data updates across all copies of the data.)

● It retained the user interface advantages of the two-tier model.

● The client workstations were far less expensive (standard personal computers could 
easily do the job).
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Here are the drawbacks:

● It was still more complicated compared with the centralized model.

● Custom presentation methods and logic added to expense and limited portability 
across client platforms.

The N-Tier Client/Server (Internet Computing) Model
As web browsers became ubiquitous, business computer systems migrated to using web 
pages as the primary presentation method. The N-tier client/server model (which some 
call the Internet computing model) is shown in Figure 9-5.

The evolution from three-tier to N-tier involved adding a web server to handle 
responding to client requests and the rendering (composing) of web pages, as well as 
swapping proprietary display logic on the workstation to a standard web browser. The 
interaction between the client and the web server goes something like this:

 1. Using the web browser, the client submits a request in the form of a URL (Uniform 
Resource Locator).

 2. The web server processes the request, assembles the requested web page, and sends it 
to the client.

Business Logic

Presentation

Database

Workstations Workstations Workstations Workstations

Application Server

Database Server

Database

Figure 9-4  The three-tier client/server deployment model
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 3. The user at the client workstation works with the web page and eventually submits  
a new request to the web server, and the cycle repeats.

This architecture has been wildly successful in deployment of modern business 
systems. The benefits of the N-tier client/server model are as follows:

● It offers an industry-standard presentation method using web pages.

● The same architecture can be used for internal (intranet) and external (Internet) 
applications.

● It retains all the benefits of the three-tier client/server model.

● Client workstations can be scaled all the way down to so-called network computing 
devices that do not have a disk drive—a “smart” version of the original “dumb” 
terminals, if you will. 
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Figure 9-5 The N-tier client/server (Internet computing) deployment model



 290 Databases: A Beginner’s Guide

Here are the drawbacks of the N-tier client/server model:

● Security challenges exist because the Internet and World Wide Web were not designed 
with security in mind.

● It potentially necessitates larger development project teams because each layer 
requires a specialist.

● It potentially requires more hardware. It is possible to combine some of the servers 
onto common devices, but this is seldom a recommended approach because separation 
by function improves security.

Connecting Databases to the Web
An extensive “technology stack” is required to deploy an application system and 
corresponding database on the Internet. The basic components are shown in Figure 9-6. 
For completeness, we’ll review each component. However, our focus is on the database, 
so you may wish to consult other publications for more details on other components.

Introduction to the Internet and the Web
The Internet is a worldwide collection of interconnected computer networks. It began 
in the late 1960s and early 1970s as the U.S. Department of Defense (DoD) ARPANET, 
intended as a way of connecting DoD facilities with the colleges and universities that 
received DoD research grants. Transmission Control Protocol/Internet Protocol (TCP/IP) 
was adopted as a standard in 1982. Other protocols include File Transfer Protocol (FTP), 
Simple Mail Transfer Protocol (SMTP), Telnet (remote login protocol), Domain Name 
System (DNS), and Post Office Protocol (POP).

An intranet is a segment of a network, including a website or group of websites, that is 
accessible only to members of an organization. An extranet is an intranet that is accessible 
to authorized outsiders. Both are typically protected by a firewall, which is a dedicated 
network gateway that applies security precautions such that only network traffic that 
meets certain criteria is allowed to pass through.

The World Wide Web is a hypermedia-based system that provides a simple “point-and-
click” means of browsing information on the Internet using hyperlinks. Hyperlinks allow 
users to navigate pages in a nonsequential manner. Clients use a web browser to present 
pages. The web server hosts (stores and renders) pages and responds to client requests. 
Web pages may be static (always the same) or dynamic (changeable and custom built 
for a particular request). Dynamic pages are of a special interest in the database world 
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because they are the vehicles for sending requested data from the database to the business 
user. Typically, a dynamic page has a static portion (title, help text, data field labels) and 
a dynamic portion in the form of placeholders where current and applicable data content 
(for example, customer number and customer name) will be placed when serving a 
specific request from the client.

The URL (Uniform Resource Locator) is a string of alphanumeric characters that 
represents the location or address of a resource on the Internet and how the resource 
should be accessed. It ultimately must translate to an IP address, port, and a protocol (for 
example, HTTP). The general format of a URL is

<protocol>://<host>[:<port>]/<absolute path> [?arguments]

In most browsers, the protocol is understood to be HTTP if omitted. The host can be 
an IP address, but it is more commonly a host name (for example, www.Microsoft.com) 
that is resolved by looking up the corresponding IP address for the host using DNS. The 
port generally defaults to 80 (the standard port for HTTP) if omitted. The absolute path 
identifies the specific page (or other resource) requested, and the web server selects a 
default if the path is omitted. Arguments are variables passed to the web server and are 
considered optional.

Hypertext Transfer Protocol (HTTP) is used to transfer web pages through the 
Internet. It uses a request-based paradigm that is “stateless,” meaning that each request 
is treated as an independent transaction. Statelessness makes it difficult to support the 
concept of a session, which is essential to basic DBMS transactions. Typically, data must 
be hidden in the web page or in arguments in the URL for the page to assist the web and 
application servers in distinguishing between pages from one user session versus another.

Hypertext Markup Language (HTML) is the document formatting language used to 
design most web pages. The HTML system for marking up, or tagging, a document for 
publication on the Web was derived from the Standardized General Markup Language 
(SGML), a 1986 ISO standard.

Extensible Markup Language (XML) is a general-purpose specification for creating 
custom markup languages. While HTML describes presentation using a fixed set of tags, 
XML describes content and allows developers to create their own tags. Although XML 
and HTML are not at all the same language, some refer to XML as “HTML on steroids.” 
Among the features of XML is the ability to define an XML schema, which allows data to 
be stored in a hierarchical tree of XML tags within the XML document. Various RDBMS 
vendors now directly support XML as a data type, and several proprietary XML databases 
are also on the market. However, businesses have been reluctant to abandon relational 



 Chapter 9: Connecting Databases to the Outside World 293

databases and undergo a major paradigm shift in the way they organize and store data. So, 
thus far, XML is most widely used for exchanging data between organizations in industry-
standard XML formats. Standards committees are working on standard XML vocabularies 
(that is, data tags, schema structures, and conventions for using them) for specific data 
areas, such as HR-XML Consortium, Inc., which works solely on human resources (HR) 
data. XML is covered in more detail in Chapter 13.

Components of the Web “Technology Stack”
Here’s a list of the components shown in Figure 9-6 and what they do:

● The client workstation runs a web browser and communicates on the Internet using 
HTTP over TCP/IP.

● The website sits behind a router, which forwards packets between networks, and a 
firewall. The router makes decisions on which packets are transferred between the 
Internet and the subnetwork on which the web server resides. Although some routers 
perform rudimentary filtering, the additional firewall protection is considered the best 
way to protect the web server from intruders.

● The web server is responsible for hosting and rendering web pages.

● URLs handled by the web server may cause transactions to be run on the application 
server (more on this in the next section). The application server typically resides 
between a pair of firewalls to isolate it from both the web server and the intranet, 
where the database server typically resides. This area is commonly called the DMZ 
(demilitarized zone), a term borrowed from buffer zones between countries in dispute.

● The application server submits SQL (or similar language) requests to the database 
server when data from the database is required.

Invoking Transactions from Web Pages
Information in a web request received by the web server can invoke a transaction on 
the application server in several ways. These methods are detailed in the following 
subsections.

Common Gateway Interface
Common Gateway Interface (CGI) is a specification for transferring information between 
a web server and a CGI program. The CGI program (often called a CGI script) runs on 
either the web server or application server. CGI defines how scripts communicate with 
web servers. The URL points to the CGI script, and the server launches it. The actual 
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script can be written in a variety of languages, such as Perl, C, or C++. In essence, instead 
of the URL in the incoming request pointing directly to an HTML document, it points to a 
script. This script is run, and the output from the script is an HTML document that is then 
returned to the client in response to the request.

The advantages of CGI include the following:

● Simplicity

● Language and web server independence

● Wide acceptance

Here are the disadvantages:

● Web server is always between the client and the database.

● No transaction support (stateless).

● Not intended for long exchanges.

● Each CGI execution spawns a new process (or thread), which presents resource issues.

● CGI is not inherently secure.

Server Side Includes
Server Side Includes (SSI) has commands embedded in the document that cause the web 
server to execute a program (as with CGI) and incorporate the output into the document. 
Essentially, SSI is in an HTML macro. The URL in the request points to an HTML 
document, but the web server parses the document and handles any SSI commands before 
returning the document to the requesting client. SSI solves some of the CGI performance 
issues, but it offers few other advantages or disadvantages.

Non-CGI Gateways
Non-CGI gateways work like CGI gateways, except that each is a proprietary extension 
to a specific vendor’s web server. The two most popular choices during the “dot-com” 
era were the Netscape Server API and Active Server Pages (ASP), part of the Microsoft 
Internet Information Services (IIS) API. The Netscape Server API was subsequently 
acquired by Sun Microsystems and incorporated into its product line.

The advantages of non-CGI gateways include the following:

● Improved performance over CGI

● Additional features and functions

● Execution in the server address space instead of as new processes or threads
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Here are the disadvantages:

● Proprietary solution that is not portable to another vendor’s web server

● Potential instability

● Much more complex compared with CGI

Connecting Databases to Applications
Now that you have seen how the web layer interacts with the application server layer, you 
need to understand how applications on the application server connect to and interact with 
the database. Most connections between the application server and remote databases (that is, 
those running on another server) use a standard application programming interface, or API.

An API is a set of calling conventions by which an application program accesses services. 
Such services can be provided by the operating system or by other software products such 
as the DBMS. The API provides a level of abstraction (a layer of generalization that hides 
implementation details) that allows the application to be portable across various operating 
systems and vendors.

Connecting Databases via ODBC
Open Database Connectivity (ODBC) is a standard API for connecting application 
programs to DBMSs. ODBC is based on a Call Level Interface (CLI), a convention that 
defines the way calls to services are made, which was first defined by the SQL Access 
Group and released in September 1992. Although Microsoft was the first company to 
release a commercial product based on ODBC, it is not a Microsoft standard, and in fact 
versions are now available for Unix, Macintosh, and other platforms.

ODBC is independent of any particular language, operating system, or database 
system. An application written to the ODBC API can be ported to another database or 
operating system merely by changing the ODBC driver. It is the ODBC driver that binds 
the API to the particular database and platform, and a definition known as the ODBC data 
source contains the information necessary for a particular application to connect with a 
database service. On Windows systems, the most popular ODBC drivers are shipped with 
the operating system, as is a utility program to define ODBC data sources (found on the 
Control Panel or Administrative Tools Panel, depending on the version of Windows).

Most commercial software products and most commercial databases support ODBC, 
which makes it far easier for software vendors to market and support products across a 
wide variety of database systems. One notable exception is applications written in Java. 
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They use a different API known as Java Database Connectivity (JDBC), which is covered 
in the Connecting Databases to Java Applications section later in this chapter.

A common dilemma is that relational database vendors do not handle advanced 
functions in the same way. This problem can be circumvented using an escape clause that 
tells the ODBC driver to pass the proprietary SQL statements through the ODBC API 
untouched. The downside to this approach, of course, is that applications written this way 
are not portable to a different vendor’s DBMS (and sometimes not even to a different 
version of the same vendor’s DBMS).

Connecting Databases via OLE DB
OLE DB (Object Linking and Embedding, Database—sometimes written as OLE-DB or 
OLEDB) is an API designed by Microsoft for accessing different types of data stored in 
a uniform manner. It is intended to be a higher level replacement for ODBC that supports 
connections to a wide variety of nonrelational databases and files such as object databases 
and spreadsheets. Although its name includes OLE, the only similarity between OLE and 
OLE DB is that they both have interfaces that use the Common Object Model (COM). 

Connecting Databases to Java Applications
Java started as a proprietary programming language (originally named Oak) that was 
developed by Sun Microsystems. It rapidly became the de facto standard programming 
language for web computing, at least in non-Microsoft environments. Java is a type-safe, 
object-oriented programming language that can be used to build client components (applets) 
as well as server components (servlets). It has a machine-independent architecture, making it 
highly portable across hardware and operating system platforms.

You may also run across the terms JavaScript and JScript. These are scripting 
languages with a Java-like syntax that are intended to perform simple functions on client 
systems, such as editing dates. They are not full-fledged implementations of Java and are 
not designed to handle database interactions, but they can perform the same function as a 
CGI script if desired.

Java Database Connectivity
JDBC is an API, modeled after ODBC, for connecting Java applications to a wide 
variety of relational DBMS products. Some JDBC drivers translate the JDBC API to 
corresponding ODBC calls, and thus connect to the database via an ODBC data source. 
Other drivers translate directly to the proprietary client API of the particular relational 
database, such as the Oracle Call Interface (OCI). As with ODBC, an escape clause is 
available for passing proprietary SQL statements through the interface. 



 Chapter 9: Connecting Databases to the Outside World 297

Try This 9-1

The JDBC API offers the following features:

● Embedded SQL for Java The Java programmer codes SQL statements as string 
variables, the strings are passed to Java methods, and an embedded SQL processor 
translates the Java SQL to JDBC calls.

● Direct mapping of RDBMS tables to Java classes The results of SQL calls are 
automatically mapped to variables in Java classes. The Java programmer may then 
operate on the returned data as native Java objects.

Java SQL
Java SQL (JSQL) is a method of embedding SQL statements in Java without having 
to create special coding to put the statements into Java strings. It is an extension of the 
ISO/ANSI standard for SQL embedded in other host languages, such as C. A special 
program called a precompiler is run on the source program that automatically translates 
the SQL statements written by the Java programmer into pure Java. This method can save 
a considerable amount of development effort.

Middleware Solutions
Middleware can be thought of as software that mediates the differences between an application 
program and the services available on a network, or between two disparate application 
programs. In the case of Java database connections, middleware products such as Java 
Relational Binding (JRB) from O2 Technology (acquired by Unidata in 1997) can make the 
RDBMS look as though it is an object-oriented database running on a remote server. The Java 
programmer then accesses the database using standard Java methods, and the middleware 
product takes care of the translation between objects and relational database components.

 Exploring the World Wide Web
In this Try This exercise, you will explore some aspects of the World Wide Web, 
observing concepts that were described in this chapter.

Step by Step
 1. Access several of your favorite websites, particularly those for which you have an 

account that lets you review dynamic information such as transactions, travel reward 
points, auction items, and so forth.

 2. Notice which parts of the pages are static and which are dynamic (changing based on 
your input or the options you select).

(continued)
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 3. Notice which parts are data listings that likely come from a database. Some of the 
largest databases in the world support websites for banking, online auctions, and 
similar functions. However, you probably cannot tell which vendor’s DBMS is behind 
the site by looking at the web pages.

 4. Observe the URL displayed by your browser as you navigate pages. Can you spot any 
arguments (parameters starting with a question mark)? Can you spot any URLs that 
point to content other than HTML pages (files types such as JSP, PHP, and CGI)? If 
you see file types that you don’t recognize, you can use your favorite search engine to 
look them up.

Try This Summary
In this Try This exercise, you used the World Wide Web to observe some of the concepts 
presented in this chapter.

 Chapter 9 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank 
questions. Note that there may be more than one correct response to each question.

 1. In the centralized deployment model,

 A A web server hosts all web pages.

 B A “dumb” terminal is used as the client workstation.

 C Administration is quite easy because everything is centralized.

 D There are no single points of failure.

 E Development costs are often very high.

 2. In the distributed deployment model,

 A The database and/or application is partitioned and deployed on multiple computer 
systems.

 B Initial deployments were highly successful.

 C Distribution can be transparent to the user.

✓
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 D Costs and complexity are reduced compared with the centralized model.

 E Fault tolerance is improved compared with the centralized model.

 3. In the two-tier client/server model,

 A All application logic runs on an application server.

 B A web server hosts the web pages.

 C The client workstation handles all presentation logic.

 D The database is hosted on a centralized server.

 E Client workstations must be high-powered systems.

 4. In the three-tier client/server model,

 A All application logic runs on an application server.

 B A web server hosts the web pages.

 C The client workstation handles all presentation logic.

 D The database is hosted on a centralized server.

 E Client workstations must be high-powered systems.

 5. In the N-tier client/server model,

 A All application logic runs on an application server.

 B A web server hosts the web pages.

 C The client workstation handles all presentation logic.

 D The database is hosted on a centralized server.

 E Client workstations must be high-powered systems.

 6. The Internet

 A Began as the U.S. Department of Education’s ARPANET

 B Dates back to the late 1960s and early 1970s

 C Always used TCP/IP as a standard



 300 Databases: A Beginner’s Guide

 D Is a worldwide collection of interconnected computer networks

 E Supports multiple protocols, including HTTP, FTP, and Telnet

 7. A URL may contain

 A A protocol

 B A host name or IP address

 C A port

 D The absolute path to a resource on the web server

 E Arguments

 8. An intranet is available to ____________.

 9. An extranet is available to ____________.

 10. The World Wide Web uses ____________ to navigate pages.

 11. HTTP does not directly support the concept of a session because it is ____________.

 12. XML is extensible because ____________ can be defined.

 13. Middleware solutions for Java connections made the RDBMS look like a(n) ________.

 14. The web “technology stack” includes

 A A client workstation running a web browser

 B A web server

 C An application server

 D A database server

 E Network hardware (firewalls, routers, and so on)

 15. The advantages of CGI are

 A Statelessness

 B Simplicity

 C Inherently secure
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 D Widely accepted

 E Language and server independent

 16. Server Side Includes (SSI)

 A Are commands embedded in a web document

 B Are non-CGI gateways

 C Are HTML macros

 D Solve some of the CGI performance issues

 E Are inherently secure

 17. The advantages of a non-CGI gateway are

 A Known for stability

 B Proprietary solution

 C Improved security over CGI solutions

 D Simpler than CGI

 E Runs in server address space

 18. ODBC is

 A A standard API for connecting to DBMSs

 B Independent of any particular language, operating system, or DBMS

 C A Microsoft standard

 D Used by Java programs

 E Flexible in handling proprietary SQL

 19. JDBC is

 A A standard API for connecting to DBMSs

 B Independent of any particular language, operating system, or DBMS

 C A Microsoft standard
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 D Used by Java programs

 E Flexible in handling proprietary SQL

 20. JSQL is

 A A Sun Microsystems standard

 B A method of embedding SQL statements in Java

 C An extension of an ISO/ANSI standard

 D A middleware solution

 E Independent of any particular language, operating system, or DBMS
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Key Skills & Concepts

● Why Is Security Necessary?

● Database Server Security

● Database Client and Application Security

● Database Access Security

● Security Monitoring and Auditing

Security has become an essential consideration in modern systems. Nothing can be more 
embarrassing to an organization than a media story regarding sensitive data or trade 

secrets that were electronically stolen from its computer systems. This chapter discusses 
the need for security, the security considerations for deploying database servers and clients 
that access those servers, and methods for implementing database access security. It 
concludes with a discussion of security monitoring and auditing.

Why Is Security Necessary?
Murphy’s Law states that anything that can go wrong will go wrong. Seasoned IT security 
professionals will tell you that Murphy was an optimist. Servers placed on the Internet 
with default configurations and passwords have been compromised within minutes. 
Default database passwords and common security vulnerabilities are widely known. 
In early 2003, the Slammer worm infected tens of thousands of Microsoft SQL Server 
databases that had been set up with a default SA (system administrator) account that had 
no password. Oddly, the worst damage was the loss of service when infected computers 
sent out hundreds of thousands of packets on the network in search of other computers on 
the network to infect. If you think this cannot happen to you, think again. 

Here are some reasons why security must be designed into your computer systems:

● Databases connected to the Internet, or to any other network, are vulnerable to malicious 
hackers and other criminals who are determined to damage or steal the data. These 
include the following:

● Spies from competitors that are after your secrets

● Hackers interested in a sense of notoriety from penetrating your systems
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● Individuals interested in whatever they can obtain that has economic value

● Disgruntled employees—it seems odd that we never hear of gruntled employees 
(gruntle means “to make happy”), only disgruntled ones

● Zealots interested in making a political statement at the expense of your organization

● The emotionally unbalanced, and just plain evil people

● Employees (or others) may attempt to commit fraud. Any bank auditor will tell you 
that 80 percent of fraud is committed by employees. Don’t assume your system is 
immune just because the database is not accessible from the Internet.

● Honest mistakes by authorized users can cause security exposures, loss of data, and 
processing errors.

● Security controls keep people honest in the same way that locks on homes and offices do.

Database Server Security
This section focuses on the security considerations for the database server. When you’re 
considering security, you should start at one end of the network or the other (at either 
the database user’s client workstation or at the database server) and work systematically 
through all the components in the path. This is the only way you can be sure you don’t 
miss something. In our case, we’ll start with the database server and work out from there.

Physical Security
Physically securing the server is an essential ingredient. The server should be located in a 
locked room, where only authorized personnel have access. Nothing is more embarrassing 
than having a database server or the disk drives that store the database information stolen 
or vandalized. Once a thief has made off with the hardware, he has all the time in the world 
and all the secrecy he needs to crack away at the system until he is able to access  
the data. Moreover, systems are easier to compromise using the server console than remotely; 
therefore, “hands-on” access to servers must be tightly controlled. Depending on the 
sensitivity of the data in the database, the following additional measures might be needed:

● Video surveillance system can be installed.

● “Token” security devices, which administrators must possess to gain access, can 
be used. These range from cards or keys that must be inserted into the server to gain 
access, to crypto devices where a PIN must be entered to obtain a password. Some of 
these devices are synchronized with satellites and change the encryption key used for 
generating passwords every minute or so.
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● Biometric devices can be installed, which require administrators to pass a fingerprint 
or retinal scan to obtain access.

● Policy provisions can be created that require at least two employees be in the room 
whenever anyone is locally logged on to the server.

● Policy provisions regarding removal of hardware and software from the workplace 
can be created. Here’s a real-world example: I once worked at a financial institution 
where employees were searched whenever they left the premises. The removal of any 
hardware or materials, such as computer listings, microfilmed documents, or media 
such as tapes and disks, was strictly prohibited. However, there was a laughable 
loophole. You could put anything in an envelope addressed to your home (or anywhere 
else) and drop it in the outbound mail bins. Not only would the envelope be sent out 
without inspection, but the firm would even pay the postage, no questions asked. 
Before you get the wrong idea, the only time I saw this technique used was to send 
computer games offsite, but the security exposure was enormous.

Network Security
It should be obvious that physical security is not enough when the database server is 
accessible via a network. Intruders who manage to obtain a network connection to the 
server can work from outside the server room or, for servers connected to the Internet, 
from anywhere in the world. Moreover, because clients or other servers (such as the 
application server) are able to connect to the database server, you must take a holistic 
approach to network security and not only ensure that the network is secure but also that 
every computer system attached to that network is equally secure.

Complete details on how to secure a network are well outside the scope of this book. 
However, the sections that follow comprise a summary of the network security issues that 
must be considered. Note that the term enterprise network is used here to mean the private 
network that connects the computing resources for the business enterprise.

Isolate the Enterprise Network from the Internet
If the enterprise network is connected to the Internet, it must be isolated so that malicious 
hackers on the Internet cannot see the internals of the enterprise network or easily gain 
access to it. Measures to consider include the following:

Configure the Router The router that connects the enterprise network to the Internet 
must be properly configured. Recall that a router is a device that forwards data packets 
between networks using rules contained in a routing table. A packet is merely a piece of a 
message that is transmitted over a network. Network devices divide messages into uniformly 
sized packets for efficient handling. The router must be configured so that only appropriate 
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packets of data are routed from the Internet to the local network. Some routers can perform 
limited filtering of packets, but typically they do not look at the contents of data packets 
beyond the destination IP address, contained in the packet header, making decisions on the 
best way to route the packet based on the destination address and the routing table.

Use a Firewall Each layer in the enterprise network should be protected by a firewall, 
with the security rules applied by the firewall getting progressively tighter with each layer. 
Figure 9-6 in Chapter 9 shows this arrangement. A firewall can be implemented using 
software on a general-purpose computer or a specialized hardware device that comes with 
its own operating system and filtering software. The purpose of the firewall is to prevent 
unauthorized access to the network segment that it protects (that is, computer resources 
connected to the part of the network that is inside the firewall). All data packets passing 
from the network outside the firewall to the network segment (often called a subnet) 
inside the firewall must pass the security criteria imposed by the firewall or they are 
simply rejected. The firewall can use the following methods:

● Packet filtering The contents of each packet entering or leaving the network 
are inspected to make sure user-defined rules are met. Although packet filtering is 
effective, it is subject to IP spoofing, where a hacker masquerades as a legitimate user 
by planting a legitimate IP address that is acceptable to the firewall in an otherwise 
illegitimate message. To prevent your network from being used to launch so-called 
zombie attacks, your firewall should always be configured to reject outbound packets 
that have return IP addresses that are not legitimate for the enterprise network.  
A zombie attack occurs when an intruder plants a rogue program on one of your 
servers, which at an appointed time, wakes up and starts sending hundreds or thousands 
of packets per minute at a target system, typically the website of an enterprise against 
which the attacker has some grudge, in an attempt to clog the attacked system, 
rendering it useless. This type of attack is called a denial of service (DoS) attack.

● Application gateway Different network applications (HTTP, FTP, Telnet, and so on) 
use different default ports. For example, HTTP uses port 80 as a default. Ports that are 
not needed should be shut down. Always configure firewalls to open only the ports that 
are absolutely required for your normal business.

● Circuit-level gateway For efficiency, this feature applies security mechanisms 
when a connection is established; then, after the connection is established, it allows 
packets to flow freely for that established connection. A firewall should normally 
be configured so that connections can be established only from inside the firewall—
attempts made from outside the firewall to establish connections with resources inside 
the firewall (other than those specifically authorized) should be rejected.
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● Proxy server Firewalls can translate all the IP addresses used in the protected 
network into different addresses as packets pass through, typically assigning each a 
different port so that any responses to those packets can be sorted out and passed back 
to the originator. This feature, known as network address translation (NAT), hides the 
internal network from the outside world.

Provide Secure Connections for Employees Working Offsite These workers 
present a special risk. If they are connected to a broadband Internet service such as DSL 
or cable, they essentially reside on a local area network (LAN) with many other users of 
that particular service. Therefore, if these employees merely plug their personal computers 
directly into the DSL or cable modem without other precautions, any shared devices 
they may have (disk drives, printers, and so forth) are automatically shared by all their 
neighbors on the same LAN. All that the intruder has to know is how to click Network 
Neighborhood and then Entire Network, and all the unprotected systems on the LAN will 
be there, ripe for picking. Often attackers are only one password away from accessing 
everything on a target system. Two precautions can circumvent the problem.

A security device, typically a combination router/network switch/firewall, should be 
placed between the DSL or cable modem and any computers used in the home. A side 
benefit here is that the user can connect multiple computers to the high-speed service 
while paying for only one IP address with the Internet service provider (ISP) (note 
that some ISPs forbid this practice). The device automatically “NATs” any IP address 
inside the home network to the single IP address assigned by the ISP for the broadband 
connection, using different ports to differentiate between different connections. I have 
such a device on my home Internet cable service and have seen firsthand attempts by 
hackers to scan ports and to ping resources inside my home network. A port scan is a 
technique commonly used by hackers: they launch a special program that tries every 
conceivable port on an IP address, recording which ones are active so they can try to use 
the active ports to break into the target system. Intrusion attempts occur with alarming 
frequency, sometimes several times in a single hour. If you install an unprotected home 
network, your network will likely be penetrated within hours of it being activated. Note 
that Microsoft Windows XP and Vista come with a built-in configurable software firewall. 
However, most security experts prefer an external firewall on a dedicated hardware device 
because it offers better protection.

In addition, a secure network technique known as a virtual private network (VPN) 
can be used when connecting from the Internet to the enterprise network. This approach 
encrypts all data packets and applies other measures to make sure that the packets are 
useless to any unauthorized party that intercepts them, and that they cannot be altered  
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and retransmitted by hackers. Usually, this technique is implemented using special 
software from a commercial software vendor in concert with a small device that the 
remote user employs to generate a unique password each time he connects remotely to  
the enterprise network. Without the device in his possession (and typically a PIN that goes 
with the device), the would-be hacker has no chance of penetrating the enterprise network 
using the VPN.

Secure Any Wireless Network Access
Wireless access points are network devices that receive radio signals from computer 
devices equipped with wireless network adapters, connecting them to the wired network 
in the office. Most wireless networks adhere to a version of the network standard protocol 
known as 802.11. Wireless access points have become inexpensive (less than $100), and 
therefore prolific, because people like to be able to move around their home or office 
freely, without having to drag a network cable with them. However, wireless access points 
require special attention, because an intruder can access a wireless network from outside 
your premises without going through the routers and firewalls that you have carefully set 
up to prevent such an intrusion. Horror stories abound in IT trade publications about an 
unknowing user bringing an unauthorized wireless access point into an office, plugging 
it into the nearest network jack, and giving everyone within 75 to 150 feet or more open 
access to the network. By default, many of these devices have absolutely no encryption 
or other access controls enabled, thus providing access to anyone with a wireless-capable 
computer in a neighboring office, out in the parking lot, or even in a building across the 
street. Worst of all, once the intruder connects, he can access the intranet, completely 
inside all the firewalls and other controls you so carefully implemented to protect your 
network from intruders.

If you think this cannot happen to you, following are just a few real-life examples:

● On a recent trip to a medical office, my laptop, which is equipped with an 802.11g 
wireless network adapter, automatically connected to a wireless network in an 
adjoining doctor’s office. I didn’t look to see what I might have been able to get to 
in terms of computers, shared disks, files, and the like, but the office staff was totally 
unaware that anyone could connect to their wireless network. They didn’t understand 
that walls don’t stop wireless networks. Incidentally, a quick look at the wireless 
adapter’s site survey showed two other vulnerable networks accessible from the same 
waiting room. One of those even had the default network name that comes with the 
wireless access point, so the password to the router was probably also the factory 
default. An intruder could reconfigure their entire network before they knew what 
happened.
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● On a recent drive down Market Street in San Francisco, the wireless adapter in 
the same laptop detected an average of three wireless networks in every block, a 
surprising number of them wide open to anyone who would want to connect.

● An IT manager reported that after she discovered her company’s network had been 
inappropriately accessed from an unauthorized wireless access point, she went hunting 
for it, failing to find it in several attempts. Finally, she brought in a consultant who had 
a device to track down the rogue signal. (Believe it or not, a potato chip tube covered 
with aluminum foil makes an excellent directional antenna for “sniffing out” wireless 
access points.) The consultant found it hidden in the suspended ceiling of a conference 
room. The person who installed it knew it was against the rules, but he just didn’t want 
to bother to cable-connect his laptop to a nearby jack. Needless to say, that person lost 
his job, but who knows what the intruders got before the unauthorized access point 
was shut down.

Establish a Wireless Security Policy Your organization’s security policy should 
address wireless connections, forbidding anyone other than trained network administrators 
from installing them, and setting standards for their proper installation.

Mandate Encryption Standards should mandate that encryption be enabled on every 
wireless access point. All the access points on the market have encryption capability built 
into them, and it takes only a few minutes to enable the feature and to input a pass phrase 
that any device trying to connect must supply in order to gain access to the network.

Limit Access Using a MAC Address List Every network device currently 
manufactured has a unique Media Access Control (MAC) address assigned to it by the 
manufacturer. Most wireless access points permit the entry of a MAC address list that 
restricts network access only to the devices that appear in the list. Alternatively, the MAC 
address list can list devices that are not allowed to connect.

System-Level Security
Once the network is as secure as you can make it, the next area of focus is the system that 
will run the DBMS. A poorly secured database server can provide many unchecked paths 
for intruders to use. Here are some measures worth considering:

Install Minimal Operating System Software Install only the minimal software 
components required to get the job done, especially on a production server. Avoid default 
or “typical” installation options and use the “custom” installation option to choose only 
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the components needed. For example, on production Unix servers, you should be in 
the habit of removing the “make” utility and C language compilers after you complete 
an installation. Hackers have a difficult time installing things when the tools needed to 
perform software installations do not exist on the server.

Use Minimal Operating System Services Shut down or remove operating system 
services that are not required. In particular, communications services such as FTP should 
not be running unless they are expressly required. On Windows systems, it’s a good idea 
to set Startup Type to Disabled for services that are not required. This makes it impossible 
to start these services unless you have Administrator privileges.

Install Minimal DBMS Software The fewer the features of the DBMS that you have 
installed, the less exposure you’ll have to problems such as buffer overflow vulnerabilities. 
The DBA should work with the application developers to create a consolidated list of the 
DBMS functions needed. Once you have the list, use the custom installation option for the 
DBMS and perform only minimal installations.

Apply Security Patches in a Timely Manner Establish a program wherein security 
alerts are reviewed as they are announced and countermeasures, including patches  
and workarounds, are applied in a timely manner. Patches should be shaken down in  
a development environment for a finite period of time before application to a production 
environment.

Change All Default Passwords Default passwords should be changed to new 
passwords that are difficult to guess or discover via brute force, a method that repeatedly 
tries possibilities until access is finally achieved.

Database Client and Application Security
A database client is any computer system that signs on directly to the database server. 
Therefore, the application server is nearly always a database client, along with the client 
workstation of any person in the organization who has sign-on privileges for the database. 
Typically, the DBMS requires installation of client software on these systems to facilitate 
communication between the database client and the DBMS using any specialized 
communications mechanisms required by the DBMS.

Login Credentials
Every database user who connects to the database must supply appropriate credentials  
to establish the connection. Typically this is in the form of a user ID (or login ID)  
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and a password. Use care to establish credentials that are not easily compromised. Here 
are some considerations:

● Credentials must not be shared by multiple database users.

● Passwords should be selected that are not easy to guess. A security policy should 
establish minimum standards for password security, including minimum length, the 
mixture of uppercase/lowercase letters, numbers and special characters, and avoiding 
words that can be found in a dictionary.

● Passwords should be changed on a regular basis, such as every 30 or 45 days. There is 
some disagreement among security experts as to the effectiveness of periodic password 
changes, but most IT auditors insist on this practice.

● Any exposed password should be immediately changed.

● Passwords should never be written down and must be encrypted whenever they are 
electronically stored.

Data Encryption
Encryption is the translation of data into a secret code that cannot be read without the use 
of a password or secret key. Unencrypted data is called plain text, whereas encrypted data 
is called cipher text.

Some encryption schemes use a symmetric key, which means that a single key is used both 
to encrypt plain text and to decrypt cipher text. This form is considered less secure compared 
with the use of asymmetric keys, where a pair of keys is used—a public key and a private key. 
What the public key encrypts, the private key can decrypt, and vice versa. The names come 
from the expected use of the keys: the public key is given to anyone with which an enterprise 
does business, and the private key remains confidential and internal to the enterprise.

Here are some guidelines to follow regarding encryption:

● Encryption keys should be a minimum of 128 bits in length. The longer the key, the 
more secure it is considered to be (within reason). However, longer keys lengthen  
the decryption process, so there is a tradeoff.

● The loss of an encryption key should be treated with the same seriousness as the loss 
of the data that it was used to encrypt.

● Sensitive data should be encrypted whenever it is permanently stored. Which  
data is considered sensitive is a judgment call that should be made by the business 
people who own the data, not by the DBA. In general, however, any personal data 
(such as Social Security numbers and birthdates) that can be used for identity theft 
should be considered sensitive.
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● All data not considered public knowledge should be encrypted whenever transported 
electronically across network connections that are not otherwise encrypted. For example, 
if a company sends a purchase order file to a trading partner via FTP, the file should be 
encrypted. There is no guarantee that the bad guys are not monitoring public networks.

● E-mail is not considered secure, so any sensitive information to be sent via e-mail 
should be in an encrypted attachment instead of the main body of the e-mail message. 
Alternatively, some e-mail systems support encrypted and signed messages.

Other Client Considerations
Database clients require special scrutiny in terms of security precautions, because if 
compromised, they provide an easy pathway for the intruder to gain access to data in  
the database. Here are some additional client considerations:

Web Browser Security Level Modern web browsers allow the setting of a security 
level for the browser. For Microsoft Internet Explorer, the security settings are controlled 
using the Security tab on the Internet Options panel, which is accessible using the Tools 
option on the main toolbar. This security level should be set to the highest possible level 
that still permits normal use of the database applications. Two considerations are related to 
the web browser:

Cookies provide the ability for the web browser to store textual information on the 
client, which can be automatically retrieved later by the web browser and sent to the 
web server that requested them. Cookies are not very secure and can be used to spy on 
users of the client system. Furthermore, there is no guarantee that unauthorized persons 
and software will have no access to information in cookies. The organization’s security 
policy should address this issue and set a clear standard for cookie use, which is one 
of the facilities controlled by the web browser’s security level. Also, it is not wise to 
design application systems that require cookies, because they are not supported by all 
web browsers and not permitted by all users. In Microsoft Internet Explorer, options for 
cookies are controlled using the Privacy tab on the Internet Options panel.

Scripting languages such as VBScript, JavaScript, and JScript provide nice features 
for assisting with a user’s interaction with a web page. However, they can and have been 
used for injecting malicious code into systems, so you should be careful when allowing 
such languages to be used on the client. VBScript is especially notorious for its misuse 
and has been used to transport viruses in e-mail attachments.

Minimal Use of Other Software Software that is not required for the normal 
functioning of the client should not be installed. Security policies should forbid employees 
from installing unauthorized software.
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Virus Scanner All computer systems running operating systems that are susceptible 
to computer viruses should have appropriate virus-scanning software installed. Virus 
scanners that automatically update their virus profiles on a regular basis offer the most 
effective protection.

Test Application Exposures Web-based applications should be thoroughly tested 
using a client configured just the way your real business users’ client workstations will 
be configured. Hacker tricks such as the following should be attempted to verify that the 
exposures do not exist:

● SQL injection SQL commands are entered into normal data fields in web pages in 
such a way that the application server or web server hands them off to the database 
for processing. Application programs should include precautions against such attacks, 
such as using stored procedures for all updates or testing for and rejecting any input 
fields that contain control characters such as semicolons, ampersands, and backslashes 
that can be used to format escape sequences necessary for SQL injection.

● URL spoofing The URL in the web browser is manually overtyped in such a 
way that unauthorized data is revealed. Designs in which session IDs are assigned 
sequentially by the application server and then passed back to the web browser as 
an argument in the URL are especially susceptible to this approach. If you can guess 
another user’s session ID, you can hijack the user’s session just by overtyping the 
session ID in the URL.

● Buffer overflows Published exposures such as buffer overflows should be thoroughly 
tested once the vendor’s patch has been installed to ensure that the problem really 
was corrected. A buffer overflow is a condition in which a process attempts to store 
data beyond the boundaries of a fixed-length buffer. The result is that the extra data 
overwrites adjacent memory locations. The overwritten data can include malicious 
code that can then be used to compromise security controls.

Database Access Security
With the confidence that our clients, servers, and network are now secure, we can focus 
on database access. The goal here is to determine precisely the data that each database 
user needs to conduct business, and what the user is permitted to do with the data (that is, 
select, insert, update, or delete). Each database user should be given exactly the privileges 
required—nothing more and nothing less. Recall that an application program with 
database access is a database user, as is an employee who directly queries the database. 
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In terms of database security, all database users should be treated in the same way (that is, 
the same standards should be applied to all), whether the database user is software or 
“liveware.” In this section, we will explore the options and challenges related to securing 
access to the database and its data.

Database Security Architectures
For DBAs who support databases from multiple vendors, one of the challenges is that, with 
the exception of Microsoft SQL Server and Sybase Adaptive Server Enterprise (ASE), no 
two databases have the same architecture for database security. And of course, this is a side 
effect of the overall database architectures being different. The only reason that Microsoft 
SQL Server and Sybase ASE have such similar architectures is that the former was derived 
from the later.

Because Microsoft SQL Server/Sybase ASE and Oracle are among the most popular 
databases today, let’s have a quick look at how each implements database security.

Database Security in Microsoft SQL Server and Sybase ASE
With Microsoft SQL Server and Sybase ASE, once the DBMS software is installed on 
the server, a database server is created. “Server” is a confusing term, of course, because 
we call the hardware a “server.” In this case, the term SQL server is a copy of the 
DBMS software running in memory as a set of processes (usually installed as services 
in Windows environments) with related control information that is stored in a special 
database on the database server. We will use the term SQL server to mean the DBMS 
software and the term database server to mean the hardware platform on which the 
database is running. In this architecture, each SQL server manages many databases, with 
each database representing a logical grouping of data as determined by the database 
designer. Figure 10-1 shows a simplified view of the security architecture for Microsoft 
SQL Server and Sybase ASE.

Login A user account on the SQL server, a login is also called a user login. This is 
not the same as any operating system account the user may have on the database server. 
However, on database servers running Microsoft Windows, the login can use Windows 
authentication, meaning the Windows operating system stores the credentials (login name 
and password) and authenticates users when they attempt to connect to the SQL server. 
An obvious advantage to Windows authentication is that user access to the various SQL 
servers in the enterprise can be centrally managed through the Windows account, rather 
than locally managed on each SQL server. Note that once a login is defined in the SQL 
server, the database user may connect to the SQL server, but a login alone does not  
give the user access to any database information. There is, however, a master login  
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called sa (system administrator) that, similar to root in Unix and Administrator in Microsoft 
Windows, has full privileges to everything in the SQL Server environment. Figure 10-1 
shows only one user login, called Mgr125.

Database A database is a logical collection of database objects (tables, views, indexes, 
and so on) as defined by the database designer. Figure 10-1 shows two databases: Employees 
and Products. You must understand that a login is allowed to connect to a database only after 
it has been granted that privilege by an administrator. (See the “User” topic that follows.)  
In addition to databases holding system data, some special databases are created when the 
SQL server is created (not shown in Figure 10-1) and are used by the DBMS to manage  
the SQL server. Among these are the following databases:

● master The master database contains system-level information, initialization settings, 
configuration settings, login accounts, the list of databases configured in the SQL server, 
and the location of primary database data files.

● tempdb The tempdb database contains temporary tables and temporary stored 
procedures.

● model The model database contains a template for all other databases created on  
the system.

● msdb In Microsoft SQL Server databases only, the msdb database contains 
information used for scheduling jobs and alerts.

SQL Server Dev1

Login Mgr125

Grant Access

Grant A
cce

ss

Database Employees

User A

User B

User C

Grant Object
Privileges

Grant Object
Privileges

User D

Table T1

Table T2

Table T3

Table T4

Database Products

Figure 10-1  Security in Microsoft SQL Server and Sybase ASE
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User Each database has a set of users assigned to it. Each database user maps to a login, 
so each user is a “pseudo-account” that is an alias to an SQL Server login account. User 
accounts do not necessarily have to have the same user name as their corresponding login 
accounts. When an administrator grants access to a database for a particular login account, 
the user account corresponding to the login account is created by the DBMS. In Figure 
10-1, the Mgr125 login corresponds to User A in the Employees database and to User D 
in the Products database. These privileges permit the login to connect to the database(s), 
but they do not give the user any privileges against objects in those databases. How this 
happens is covered in the next topic.

Privileges Each user account in a database may be granted any number of privileges 
(also called permissions). System privileges are general privileges applied at the database 
level. Microsoft SQL Server divides these into server privileges, which include such 
permissions as starting up, shutting down, and backing up the SQL server, and statement 
privileges, which include such permissions as creating a database and creating a table. 
Object privileges allow specific actions on a specific object, such as allowing select 
and update on table T1. Figure 10-1 contains arrows that show the granting of object 
privileges on Table T1 to User A in the Employees database, and on Table T4 to User D in 
the Products database. These privileges work in much the same way across all relational 
databases, thanks to ANSI standards, and are therefore covered in the “System Privileges” 
and “Object Privileges” sections a little later in this chapter.

Database Security in Oracle
Oracle’s security architecture, shown in Figure 10-2, is markedly different compared 
to that of Microsoft SQL Server and Sybase ASE. The differences between the two are 
highlighted as each component is introduced:

Instance This is a copy of the Oracle DBMS software running in memory. Each instance 
manages only one database.

Database This is the collection of files managed by a single Oracle instance. Taken 
together, the Oracle instance and database make up what Microsoft SQL Server and 
Sybase ASE call the SQL server. Figure 10-2 depicts the Dev1 database.

User Each database account is called a user. As with Microsoft SQL Server and Sybase 
ASE, the user account may be authenticated externally (that is, by the operating system) 
or internally (by the DBMS). Each user is automatically allocated a schema (defined 
next), and this user is the owner of that schema, meaning the user automatically has full 
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privileges over any object in the schema. The following predefined users are created 
automatically when the database is created (not shown in Figure 10-2):

● The SYS user is the owner of the Oracle instance and contains objects that Oracle uses 
to manage the instance. This user is equivalent to the sa user in Microsoft SQL Server 
and Sybase ASE.

● The SYSTEM user is the owner of the Oracle database and contains objects that Oracle 
uses to manage the database. This user’s schema is similar to the master database in 
Microsoft SQL Server and Sybase ASE.

● Many Oracle database options create their own user accounts when those options  
are installed.

Schema The schema is the collection of database objects that belong to a specific 
Oracle user. The Oracle schema is equivalent to what Microsoft SQL Server and Sybase 
ASE call a database. Figure 10-2 shows the Employees, Products, and Mgr125 schemas, 
which are owned by the Employees, Products, and Mgr125 users, respectively. Schema 
and user names are always identical in Oracle. Mgr125 is a workaround to a special 
challenge we face with Oracle’s security architecture, as discussed in the “Schema Owner 
Accounts” section that follows.

Figure 10-2  Database security in Oracle
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Privileges As with Microsoft SQL Server and Sybase ASE, privileges are divided into 
system and object privileges. These are covered in the “System Privileges” section a bit later.

Schema Owner Accounts
With all databases, you should avoid giving database users more privileges than they need 
to do their job. This not only prevents errors made by humans (including those contained 
in the application programs and database queries they write) from becoming data 
disasters, but it also keeps people honest.

In Microsoft SQL Server and Sybase ASE, database users should not be allowed to 
connect as the sa user. You should create database logins that have the minimal privileges 
required. Sadly, this is often not done, and applications connect as sa or to a database with 
a user account that has the DBO (database owner) or DBA (database administrator) role. 
Roles are collections of privileges and are discussed in an upcoming section. Whether it 
occurs due to a lack of understanding or because of laziness, this practice represents a huge 
security exposure that should be forbidden as a matter of policy.

In Figure 10-2, note that the Mgr125 user owns no tables but does have some 
privileges granted to it by the Employees and Products users. This is to work around a 
fundamental challenge with Oracle’s security architecture. If we allowed a database user 
to connect to the database using a user such as Employees or Products, the user would 
automatically have full privileges to every object in the schema, including insert, delete, 
and update against any table, and the user would also be able to create and alter tables 
without restriction. This is fundamentally the same issue as allowing use of the sa user 
or the DBO and DBA roles in Microsoft SQL Server and Sybase ASE. The Mgr125 user 
mimics the behavior of the login with the same name, as shown in Figure 10-1. With the 
right system privileges, we can prevent the Mgr125 user in Oracle from being able to 
create any tables of its own.

You may have noticed the synonyms for user Mgr125 in Figure 10-2. A synonym is 
merely an alias or nickname for a database object. Synonyms are for the convenience of 
the user so that names do not have to be qualified with their schema name. To select from 
the T1 tables in the Employees schema directly, user Mgr125 would have to refer to the 
table name as Employees.T1 in the SQL statement. This is not only inconvenient, but it 
can also cause seemingly endless problems if we ever decide to change the name of the 
Employees user. By creating a synonym called T1 in the Mgr125 schema that points to 
Employees.T1, the user may now refer to the table as just T1. Incidentally, you may recall 
that all user and object names in Oracle are case-insensitive, so the use of mixed case here 
is only for illustration. The syntax for creating this synonym is as follows:

CREATE SYNONYM T1 FOR EMPLOYEES.T1;
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System Privileges
System privileges are general permissions to perform functions in managing the server 
and the database(s). Hundreds of permissions are supported by each database vendor, 
with most of those being system privileges. As with object privileges, system privileges 
are granted using the SQL GRANT statement and rescinded using the SQL REVOKE 
statement. Some of the most commonly used privileges are listed in the sections that 
follow. Complete details can be found in vendor-supplied documentation.

Microsoft SQL Server System (Server and Statement) Privilege Examples
Here are some commonly used Microsoft SQL Server system privileges:

● SHUTDOWN Provides the ability to issue the server shutdown command.

● CREATE DATABASE Provides the ability to create new databases on the SQL server.

● BACKUP DATABASE Provides the ability to run backups of the databases on  
the SQL server.

Oracle System Privilege Examples
Here are some commonly used Oracle system privileges:

● CREATE SESSION Provides the ability to connect to the database.

● CREATE TABLE Provides the ability to create tables in your own schema. Similar 
privileges exist for other object types, such as indexes, synonyms, procedures, and so on.

● CREATE ANY TABLE Provides the ability to create tables in any user’s schema. 
Similar privileges are available for other object types, such as indexes, synonyms, 
procedures, and so on.

● CREATE USER Provides the ability to create new users in the database.

Object Privileges
Object privileges are granted to users with the SQL GRANT statement and revoked with 
the REVOKE statement. The database user (login) who receives the privileges is called 
the grantee. These statements are also covered in Chapter 4. The GRANT statement may 
include a WITH GRANT OPTION clause that allows the recipient to grant the privilege 
to others. If the privilege is subsequently revoked, a cascading revoke takes place if this 
user has, in turn, granted the permission to any other user. I do not recommend use of the 
WITH GRANT OPTION clause because it is far too easy to lose control over who has 
which privileges.
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The general syntax of the GRANT and REVOKE statements are shown here, along 
with some examples:

GRANT <privilege list> ON <object> TO <grantee list> 
   [WITH GRANT OPTION]; 
GRANT SELECT, UPDATE, INSERT ON T1 TO Mgr125; 
GRANT SELECT ON T2 TO User1, User2, User3;

REVOKE <privilege list> ON <object> FROM <grantee list>; 
REVOKE SELECT, UPDATE, INSERT ON T1 FROM Mgr125; 
REVOKE SELECT ON T2 FROM User1, User2, User3;

Roles
A role is a named collection of privileges that can, in turn, be granted to one or more 
users. Most RDBMS systems have predefined roles that come with the system, and 
database users with the CREATE ROLE privilege may create their own. Roles have  
the following advantages:

● Roles may exist before user accounts do. For example, you can create a role that 
contains all the privileges required to work on a particular development project. When 
a new hire joins the project team, one GRANT statement gives his or her new user 
account all the required permissions.

● Roles relieve the administrator of a lot of tedium. Many privileges can be granted (or 
revoked) with a single command when a role is used.

● Roles survive when user accounts are dropped. If the DBA must drop and re-create a 
user account, it can be a lot of work to reinstate all the privileges, which is simplified 
if all the privileges are assembled into one role.

For administrators, a common role is DBA, which conveys a lot of powerful privileges 
(more than 125 separate privileges in Oracle). Obviously, such a high-powered privilege 
must be granted judiciously.

Views
One of the common security issues to be addressed is how to allow database users access 
to some rows and columns in a table while preventing access to other rows and columns. 
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Views are an excellent way to accomplish this. Here are some of the benefits of using views 
to accomplish security objectives:

● Columns that a database user does not require may be omitted from the view. Assuming 
the user has been granted access to the view rather than the underlying table, this 
method totally prevents the user from seeing the information in the columns that were 
omitted from the view.

● A WHERE clause may be included in the view to limit returned rows. Joins may be 
included to match to other tables as a way of limiting rows. For example, the view 
could limit Product table rows only to those products for a Division ID that matches 
the division in which the employee works.

● Joins to lookup tables can be used to replace code values in a table with their 
corresponding descriptions. A lookup table typically contains a list of code values  
(for example, department codes, transaction codes, status codes) and their descriptions, 
and it’s used to “look up” the descriptions for the codes. Although this is a minor 
point, employees trying to hack database records during fraud attempts have a much 
more difficult time if they cannot see the codes used to categorize the transactions. 
Furthermore, employees trying to do their best usually have a better time reading and 
understanding code descriptions than the corresponding code values.

Security Monitoring and Auditing
Security policies and controls are typically not enough to ensure compliance. A monitoring 
system must also be in place to detect security breaches so that corrective measures can be 
taken. Multiple intrusion-detection tools are on the market and are capable of monitoring 

Q: I haven’t noticed any SQL statements to create user accounts. Isn’t some SQL available 
to do so?

A: Yes and no. Some SQL implementations such as Oracle provide a CREATE USER 
statement. However, others, such as SQL Server and Sybase ASE, do not and rely instead 
on vendor-supplied stored procedures and GUI tools for the creation of user accounts. The 
ANSI/ISO SQL Standard provides no standard syntax for creating user accounts, so each 
vendor is free to implement the function as it sees fit.

Ask the Expert
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Try This 10-1

a server and detecting unauthorized changes to files stored in the file system. Also, all the 
major RDBMS products have provisions for setting up auditing so that selected actions in 
the database are silently logged, typically into audit tables that can subsequently be used  
for reporting. Consult your RDBMS documentation for a full description of these  
auditing features.

It is also a good idea to have an independent auditor review your organization’s 
security policies and procedures when they are initially written and at periodic intervals 
thereafter. Furthermore, it is wise to have your auditors, or a consultant who specializes 
in information systems security, perform an onsite audit, including testing the site for 
vulnerabilities that have not yet been addressed. System intrusions, including fraud, can 
cost you many times more than a system audit, which may save you any embarrassment 
before your employees and customers.

  Database Object Privileges
In this Try This exercise, you will try out the SQL statements that grant and revoke 
database privileges, including performing some tests to demonstrate that privileges are 
properly granted.

Step by Step

 1. Two user accounts are needed for this exercise: one that will own the database object 
and another that will be given privileges on that database object. Create an account 
named Data1 and another named User1. Use database authentication instead of 
operating system authentication. If you are working in SQL Server or Sybase ASE, you 
will also need to create a database, make the Data1 account the owner of the database, 
grant User1 account access to the database, and make the new database the default 
database for both accounts when they connect. Each RDBMS product supports user 
account creation in a unique way, so if you are unfamiliar with this function in your 
RDBMS, consult your documentation.

 2. Grant accounts Data1 and User1 any system privileges required for connecting to the 
database and creating database objects. In Oracle, the CONNECT and RESOURCE 
roles should be granted to them. In SQL Server and Sybase ASE, the steps you 
performed in Step 1 should suffice.

 3. Connect to the database using account User1. (continued)
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 4. Objects must exist before privileges may be granted for them. We will use a simple 
Department table that holds department codes and names. Create the DEPARTMENT 
table by running the following SQL statement. In SQL Server and Sybase ASE, make 
sure you create the table in the database you created in Step 1 of this exercise.

CREATE TABLE DEPARTMENT 
  (DEPARTMENT_CODE    CHAR(3), 
   DEPARTMENT_NAME    VARCHAR(50));

 5. Use the following SQL statement to grant the SELECT and INSERT privileges on the 
DEPARTMENT table to User1:

GRANT SELECT, INSERT ON DEPARTMENT TO USER1;

 6. Connect to the database as User1.

 7. Use the following statement to insert a row for Department 001 into the table:

INSERT INTO DATA1.DEPARTMENT 
VALUES ('001','Executive');

NOTE
In this step and in steps 8–10, for SQL Server and Sybase ASE, the table name should 
not be qualified with DATA1.

 8. Retrieve the row you just inserted using the following statement:

SELECT * FROM DATA1.DEPARTMENT 
 WHERE DEPARTMENT_CODE = '001';

 9. Attempt to delete the row you just inserted using the following statement. The delete 
should fail because account User1 does not have delete privileges on the object.

DELETE FROM DATA1.DEPARTMENT 
 WHERE DEPARTMENT_CODE = '001';

 10. Attempt to drop the table using the following statement. The drop should fail because 
account User1 does not have drop privileges on the object.

DROP TABLE DATA1.DEPARTMENT;

 11. Connect as account Data1 (the account that owns the DEPARTMENT table).

 12. Drop the table using the following statement (note that this time it does not have to be 
qualified with DATA1 because you are connected as that account):

DROP TABLE DEPARTMENT;

 13. To finish the cleanup task, drop user accounts Data1 and User1, and any database you 
created for this Try This exercise.
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Try This Summary
In this Try This exercise, you created two user accounts. Then you created a table in one 
of the accounts and granted some privileges on the table to the other count. Next, you 
tried various SQL statements on the table to demonstrate that lack of proper privileges 
prevented some of the statements from working. Finally, you dropped the table and user 
accounts you created to put the data back to where it was when you started.

 Chapter 10 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank questions. 
Note that there may be more than one correct response to each question.

 1. A collection of privileges that can be granted to multiple users is called a ____________.

 2. Privileges are rescinded using the SQL ____________ command.

 3. For database servers connected to a network, physical security alone is ____________.

 4. Employees connecting to the enterprise network from home or another remote work 
location should have a ____________ between the computer and their cable or DSL 
modem.

 5. When login credentials are stored in the computer system, they must always be ______.

 6. Network security

 A Can be handled by routers alone

 B Can be handled by firewalls alone

 C Must include provisions for remotely located employees

 D Should be mandatory for all computer systems connected to any network

 7. Firewall protection may include

 A Packet filtering

 B Packet selection using a routing table

 C Network address translation

 D Limiting ports that may be used for access

 E IP spoofing

✓
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 8. Wireless networks need to be secured because

 A Inexpensive wireless access points are readily available.

 B Anyone with a wireless network adapter can connect to an unprotected network.

 C Employees may use the wireless network to communicate secretly with hackers.

 D Radio waves penetrate walls to adjoining offices.

 E Radio waves may carry to public roads outside the building.

 9. Components of wireless access point security include

 A Network address translation

 B The organization’s security policy

 C Encryption

 D Virtual private networks

 E MAC address lists

 10. System-level security precautions include

 A Installing the minimal software components necessary

 B Granting only table privileges that users require

 C Applying security patches in a timely manner

 D Changing all default passwords

 E Using simple passwords that are easy to remember

 11. Encryption

 A Should be used for all sensitive data

 B Should use keys of at least 28 bits in length

 C Should be used for sensitive data sent over a network

 D Can use symmetric or asymmetric keys

 E Should never be used for login credentials

 12. Client security considerations include which of the following?

 A MAC address lists

 B Web browser security level
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 C Granting only database table privileges that are absolutely necessary

 D Use of a virus scanner

 E Testing of application exposures

 13. In Microsoft SQL Server, a login (user login)

 A Can connect to any number of databases

 B Automatically has database access privileges

 C Can use Windows authentication

 D Can be authenticated by Microsoft SQL Server

 E Owns a database schema

 14. In Microsoft SQL Server, a database

 A Is owned by a login

 B May have one or more users assigned to it

 C May contain system data (for example, master) or user (application) data

 D May be granted privileges

 E Is a logical collection of database objects

 15. In Oracle, a user account

 A Can connect (log in) to any number of databases

 B Automatically has database privileges

 C Can use operating system authentication

 D Can be authenticated by the Oracle DBMS

 E Owns a database schema

 16. In Oracle, a database

 A Is owned by a user

 B May have one or more user accounts defined in it

 C May contain system data (for example, system schema) and user (application) data

 D Is the same as a schema

 E Is managed by an Oracle instance
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 17. System privileges

 A Are granted in a similar way in Oracle, Sybase ASE, and Microsoft SQL Server

 B Are specific to a database object

 C Allow the grantee to perform certain administrative functions on the server, such 
as shutting it down

 D Are rescinded using the SQL REMOVE statement

 E Vary across databases from different vendors

 18. Object privileges

 A Are granted in a similar way in Oracle, Sybase ASE, and Microsoft SQL Server

 B Are specific to a database object

 C Allow the grantee to perform certain administrative functions on the server, such 
as shutting it down

 D Are rescinded using the SQL REMOVE statement

 E Are granted using the SQL GRANT statement

 19. Using WITH GRANT OPTION when granting object privileges

 A Allows the grantee to grant the privilege to others

 B Gives the grantee DBA privileges on the entire database

 C Can lead to security issues

 D Will cascade if the privilege is subsequently revoked

 E Is a highly recommended practice because it is so convenient to use

 20. Views may assist with security policy implementation by

 A Restricting the table columns to which a user has access

 B Restricting the databases to which a user has access

 C Restricting table rows to which a user has access

 D Storing database audit results

 E Monitoring for database intruders
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Key Skills & Concepts

● Cursor Processing

● Transaction Management

● Performance Tuning

● Change Control

This chapter covers considerations regarding the development of applications that 
use the database system. These include cursor processing, transaction management, 

performance tuning, and change control.

Cursor Processing
Before we embark on transaction management, which includes a discussion of the locking 
mechanisms required to support concurrent updates of the database, we must explore the 
way application programs handle database queries. The collection of rows returned by  
the execution of a database query is called the result set. When you’re selecting data from 
the database, application programming languages such as C and Java present a dilemma 
when the result set contains multiple rows of data. These programming languages are 
designed to handle one record at a time (one object instance at a time in the case of Java). 
So a mismatch occurs, which must be addressed.

To overcome the mismatch, most relational databases support the concept of a cursor, 
which is merely a pointer to a single row in the result set. In Oracle, cursor support is 
included in a SQL extension called PL/SQL (Procedural Language/SQL), and similarly in 
Transact-SQL for Sybase ASE and Microsoft SQL Server. The examples in this chapter 
use Oracle, so some of them may require minor modification before they will work on 
other RDBMS products. The use of a cursor parallels the use of a traditional flat file in 
that the cursor must be defined and opened before it may be used, it may be read from  
by fetching rows in a programming loop, and it should be closed when the program no 
longer needs it.

Following is an example of a cursor declaration. For clarity, all the keywords are shown 
in uppercase and database object names in lowercase. In Oracle, this makes no difference 
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because all database object names are case-insensitive. You may, however, have a different 
experience with other RDBMS products.

DECLARE CURSOR ny_customers AS 
   SELECT customer_number, name, address, city, zip_code 
     FROM customer 
    WHERE state = 'NY';

NOTE
The cursor handling statements shown in this section are intended to be embedded in 
application programs. They generally cannot be run using an interactive SQL client.

You may recognize the customer table from Chapter 8. If you ignore the first line, 
the statement looks like any ordinary SQL query—it selects some columns from a table 
and, in this case, has a WHERE clause that limits the rows returned to those from New 
York state. This is very nice, because it means we can test the query using any interactive 
SQL client tool before we paste it into a program and turn it into a cursor declaration. 
The DECLARE CURSOR clause defines the cursor for us, which has been named ny_
customers. Cursor declarations are not executable statements, meaning that when they are 
processed by the RDBMS, they do nothing but set up a definition that can be subsequently 
referenced. The declaration is checked for syntax and some other internal details, but the 
database does not need to access any table rows until the cursor is opened.

The cursor must be opened before it can be used. In this example, the RDBMS may 
not have to retrieve any rows when we open the cursor, but for efficiency, it might decide 
to retrieve some number of rows and place them in a buffer for us. A buffer is merely an 
area of computer memory used to hold data temporarily. It is far more efficient to use a 
buffer to hold some number of prefetched rows rather than going to the database files for 
every single row, because computers can access memory so much faster than files in the 
file system. In some cases, however, the RDBMS must fetch all the rows matching a query 
and sort them before the first row can be returned to the application program. You may 
have guessed that these are queries containing an ORDER BY to sequence the returned 
rows. If there is no index on the column(s) we use for sequencing, then the RDBMS must 
find and sort all of them before it knows which one is the correct one to return as the first 
row (the one that sorts first in the requested sequence). 

Although a lot goes on when we open a cursor, the statement itself is quite simple. 
Here is the OPEN CURSOR statement for our example:

OPEN CURSOR ny_customers;
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Each time our program requires a new row from the result set, we simply issue a 
FETCH command against the cursor. This is very much like reading the next record from 
a file in an older flat file system. Remember that the cursor is merely a pointer into the 
result set. Every time a FETCH is issued, the row currently pointed to is returned to the 
calling program (that is, the program that issued the FETCH), and the cursor is advanced 
one row to point to the next row to be returned. If no more rows exist in the result set, 
a code is returned to the calling program to so indicate. Another detail handled by the 
FETCH is mapping the columns returned to programming language variables (called 
host language variables, or just host variables). This is done with the INTO clause, and 
naturally the syntax of the variable names will vary from one programming language to 
another. Our example uses very simple names to stay away from programming language 
issues, but in real life you would want the names to be as descriptive as possible. It’s also 
good programming practice to use names that are not exactly the same as the database 
column names, so as to avoid confusion when someone else reads the program. The 
variable names in this example are prefixed with v_ (for variable) for this reason. Here is 
the fetch of the ny_customers cursor:

FETCH ny_customers 
 INTO v_customer_number, v_name, v_address, v_city, 
      v_zip_code;

Notice that the FETCH statement refers only to the cursor name and the host variables. 
The cursor declaration ties the cursor to the table(s) and column(s) being referenced. As 
stated, you should always close the cursor when the program no longer needs it because 
this frees up any resources the cursor has used, including memory for buffers. The CLOSE 
statement is as simple as the OPEN statement:

CLOSE ny_customers;

The topic of cursor processing has been introduced before the discussion of 
transaction management because cursors play a key role in some transaction events.

Transaction Management
To support the database users successfully, the DBMS must include provisions to manage 
the transactions carried out by the application systems using the database.

What Is a Transaction?
A transaction is a discrete series of actions that must be either completely processed or not 
processed at all. Some call a transaction a unit of work as a way of further emphasizing its 
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all-or-nothing nature. Transactions have properties that can be easily remembered using 
the acronym ACID (Atomicity, Consistency, Isolation, Durability):

● Atomicity A transaction must remain whole. That is, it must completely succeed or 
completely fail. When it succeeds, all changes that were made by the transaction must 
be preserved by the system. Should a transaction fail, all changes that were made by 
it must be completely undone. In database systems, we use the term rollback for the 
process that backs out any changes made by a failed transaction and the term commit 
for the process that makes transaction changes permanent.

● Consistency A transaction should transform the database from one consistent state 
to another. For example, a transaction that creates an invoice for an order transforms 
the order from a shipped order to an invoiced order, including all the appropriate 
database changes.

● Isolation Each transaction should carry out its work independent of any other 
transaction that might occur at the same time.

● Durability Changes made by completed transactions should remain permanent, 
even after a subsequent shutdown or failure of the database or other critical system 
component. In object terminology, the term persistence is used for permanently stored 
data. The concept of permanence here can be confusing, because nothing ever seems 
to stand still for long in an online transaction processing (OLTP) database. Just keep 
in mind that permanent means the change will not disappear when the database is shut 
down or fails—it does not mean that the data is in a permanent state that can never be 
changed again.

DBMS Support for Transactions
Aside from personal computer database systems, most DBMSs provide transaction 
support. This includes provisions in SQL for identifying the beginning and end of each 
transaction, along with a facility for logging all changes made by transactions so that a 
rollback can be performed when necessary. As you might guess, standards lagged behind 
the need for transaction support, so support for transactions varies a bit across RDBMS 
vendors. As examples, let’s look at transaction support in Microsoft SQL Server and 
Oracle, followed by discussion of transaction logs.

Transaction Support in Microsoft SQL Server
Microsoft SQL Server supports transactions in three modes: autocommit, explicit, and 
implicit. All three modes are available when you’re connected directly to the database using a 
client tool designed for this purpose. However, if you plan to use an ODBC or JDBC driver, 
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you should consult the driver’s documentation for information on the transaction support it 
provides. Here are descriptions of the three modes:

● Autocommit mode In autocommit mode, each SQL statement is automatically 
committed as it completes. Essentially, this makes every SQL statement a discrete 
transaction. Every connection to Microsoft SQL Server uses autocommit until either 
an explicit transaction is started or the implicit transaction mode is set. In other words, 
autocommit is the default transaction mode for each SQL Server connection.

● Explicit mode In explicit mode, each transaction is started with a BEGIN 
TRANSACTION statement and ended with either a COMMIT TRANSACTION 
statement (for successful completion) or a ROLLBACK TRANSACTION statement 
(for unsuccessful completion). This mode is used most often in application programs, 
stored procedures, triggers, and scripts. The general syntax of the three SQL statements 
follows:

BEGIN TRAN[SACTION] [tran_name | @tran_name_variable] 
 
COMMIT [TRAN[SACTION] [tran_name | @tran_name_variable]] 
 
ROLLBACK [TRAN[SACTION] [tran_name | @tran_name_variable | 
           savepoint_name | @savepoint_name_variable]]

● Implicit mode Implicit transaction mode is toggled on or off with the command 
SET IMPLICIT_TRANSACTIONS {ON | OFF}. When implicit mode is on, a new 
transaction is started whenever any of a list of specific SQL statements is executed, 
including DELETE, INSERT, and UPDATE, among others. Once a transaction is 
implicitly started, it continues until the transaction is either committed or rolled back. 
If the database user disconnects before submitting a transaction-ending statement, the 
transaction is automatically rolled back.

Microsoft SQL Server records all transactions and the modifications made by them 
in the transaction log. The before and after image of each database modification made 
by a transaction is recorded in the transaction log. This facilitates any necessary rollback, 
because the before images can be used to reverse the database changes made by the 
transaction. A transaction commit is not complete until the commit record has been 
written to the transaction log. Because database changes are not always written to disk 
immediately, the transaction log is sometimes the only means of recovery when there is  
a system failure.



 Chapter 11: Deploying Databases 335

Try This 11-1

Transaction Support in Oracle
Oracle supports only two transaction modes: autocommit and implicit. As with Microsoft 
SQL Server, support varies when ODBC and JDBC drivers are used, so the driver vendor’s 
documentation should be consulted in those cases. Here are descriptions of these two 
modes in Oracle:

● Autocommit mode As with Microsoft SQL Server, each SQL statement is 
automatically committed as it completes. Autocommit mode is toggled on and off 
using the SET AUTOCOMMIT command, as shown here, and is off by default:

SET AUTOCOMMIT ON 
SET AUTOCOMMIT OFF

● Implicit mode A transaction is implicitly started when the database user connects to 
the database (that is, when a new database session begins). This is the default transaction 
mode in Oracle. When a transaction ends with a commit or rollback, a new transaction 
is automatically started. Unlike Microsoft SQL Server, nested transactions (transactions 
within transactions) are not permitted. A transaction ends with a commit when any of the 
following occurs: the database user issues the SQL COMMIT statement, the database 
session ends normally (that is, the user issues an EXIT or DISCONNECT command), 
or the database user issues an SQL Data Definition Language (DDL) statement (that 
is, a CREATE, DROP, or ALTER statement). A transaction ends with a rollback when 
either of the following occurs: the database user issues the SQL ROLLBACK statement, 
or the database session ends abnormally (that is, the client connection is canceled or the 
database crashes or is shut down using one of the shutdown options that aborts client 
connections instead of waiting for them to complete).

  SQL Transaction Support
In this Try This exercise, you will explore transaction support statements in your RDBMS.

Step by Step
 1. Use the same Department table that was used in Try This 10-1. If you have already created 

one, drop it and re-create it so your query results in this exercise will be predictable. Run 
the following statements (the DROP statement is unnecessary if the table does not exist):

DROP TABLE DEPARTMENT; 
 
CREATE TABLE DEPARTMENT 
  (DEPARTMENT_CODE    CHAR(3), 
   DEPARTMENT_NAME    VARCHAR(50));

(continued)
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 2. Set the database in implicit transaction mode. For Oracle, this is the default, provided 
you have not set autocommit mode on. Consult your RDBMS documentation for how 
this is done. If you are using SQL Server, use the following statement:

SET IMPLICIT_TRANSACTIONS ON

 3. Insert one row into the table using the following statement, but do not commit  
the change:

INSERT INTO DEPARTMENT 
VALUES ('001','Executive');

 4. Run a SELECT statement to confirm that the row exists:

SELECT * FROM DEPARTMENT;

 5. If you know how to connect to the database a second time in a different client session, 
do so and run the select query from Step 4 in it. You should not be able to find the row 
because it is uncommitted data, and it is therefore available only in the session that 
created it. Depending on how your DBMS handles locking, it may appear as if this 
query is stalled while the SQL client waits for the DBMS to return the row (particularly 
in SQL Server). Locking is covered in the next section of this chapter.

 6. Run a ROLLBACK statement as follows:

ROLLBACK;

 7. Run the SELECT from Step 4 again. Notice that the row is now gone.

 8. Run the INSERT from Step 3 again, followed by a commit:

INSERT INTO DEPARTMENT 
VALUES ('001','Executive'); 
 
COMMIT;

 9. Run the SELECT from Step 4 again to confirm that the row is there.

 10. Run a ROLLBACK as you did in Step 6. In SQL Server, you may get an error that 
tells you that no transaction is in progress (the previous commit ended your implicit 
transaction).

ROLLBACK;

 11. Try the SELECT one more time. Notice that the row is still there. A ROLLBACK has 
no effect on data that has already been committed to the database.
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 12. Drop the Department table to return your database (schema in Oracle) to where you 
started. In Oracle, DDL statements are never part of transactions, but they are in SQL 
Server, so you will need to run a COMMIT after the DROP statement in SQL Server:

DROP TABLE DEPARTMENT; 
COMMIT;

Try This Summary
In this Try This exercise, you used the implicit transaction mode along with INSERT, 
SELECT, COMMIT, and ROLLBACK statements to demonstrate transaction  
support in SQL.

Locking and Transaction Deadlock
Although the simultaneous sharing of data among many database users has significant 
benefits, a serious drawback can cause updates to be lost. Fortunately, database vendors 
have worked out solutions to the problem. This section presents the concurrent update 
problem and various solutions.

The Concurrent Update Problem
Figure 11-1 illustrates the concurrent update problem that occurs when multiple database 
sessions are allowed to concurrently update the same data. Recall that a session is created 
every time a database user connects to the database, which includes the same user 
connecting to the database multiple times. The concurrent update problem happens most 
often between two different database users who are unaware that they are making conflicting 
updates to the same data. However, database users with multiple connections can trip 
themselves up if they apply updates using more than one of their database sessions.

Figure 11-1  The concurrent update problem
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The scenario presented features a fictitious company that sells products and creates an 
invoice for each order shipped, similar to Acme Industries in the normalization examples 
from earlier chapters. Figure 11-1 illustrates user A, a clerk in the shipping department who is 
preparing an invoice for a customer, which requires updating the customer’s data by adding 
to the customer’s balance due. At the same time, user B, a clerk in the accounts receivable 
department, is processing a payment from the very same customer, which requires updating 
the customer’s balance due by subtracting the amount the customer paid. Here is the exact 
sequence of events, as illustrated in Figure 11-1:

 1. User A queries the database and retrieves the customer’s balance due, which is $200.

 2. A few seconds later, user B queries the database and retrieves the same customer’s 
balance, which is still $200.

 3. In a few more seconds, user A applies her update, adding the $100 invoice to the 
balance due, which makes the new balance $300 in the database.

 4. Finally, user B applies his update, subtracting the $100 payment from the balance due he 
retrieved from the database ($200), resulting in a new balance due of $100. He is unaware 
of the update made by user A and thus sets the balance due (incorrectly) to $100.

The balance due for this customer should be $200, but the update made by user A has 
been overwritten by the update made by user B. The company is out $100 that either will 
be lost revenue or will take significant staff time to uncover and correct. As you can see, 
allowing concurrent updates to the database without some sort of control can cause updates 
to be lost. Most database vendors implement a locking strategy to prevent concurrent 
updates to the exact same data.

Locking Mechanisms
A lock is a control placed in the database to reserve data so that only one database session 
may update it at any one time. When data is locked, no other database session can update 
the data until the lock is released, which is usually done with a COMMIT or ROLLBACK 
SQL statement. Some DBMSs also block attempts to read locked data. Any other session 
that attempts to update locked data will be placed in a lock wait state, and the session will 
stall until the lock is released. Some database products, such as IBM’s DB2, will time 
out a session that waits too long and return an error instead of completing the requested 
update. Others, such as Oracle, will leave a session in a lock wait state for an indefinite 
period of time.
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By now it should be no surprise that there is significant variation in how locks are 
handled by different vendors’ database products. A general overview is presented here 
with the recommendation that you consult your database vendor’s documentation for 
details on how locks are supported. Locks may be placed at various levels (often called 
lock granularity), and some database products, including Sybase ASE, Microsoft SQL 
Server, and IBM’s DB2, support multiple levels with automatic lock escalation, which 
raises locks to higher levels as a database session places more and more locks on the 
same database objects. Locking and unlocking small amounts of data requires significant 
overhead, so escalating locks to higher levels can substantially improve performance. 
Typical lock levels are as follows:

● Database The entire database is locked so that only one database session may apply 
updates. This is obviously an extreme situation that should not occur very often, but it 
can be useful when significant maintenance is being performed, such as upgrading  
to a new version of the database software. Oracle supports this level indirectly when  
the database is opened in exclusive mode, which restricts the database to one user 
session only.

● File An entire database file is locked. Recall that a file can contain part of a table, 
an entire table, or parts of many tables. This level is less favored in modern databases 
because the data locked can be so diverse.

● Table An entire table is locked. This level is useful when you’re performing a table-
wide change, such as reloading all the data in the table, updating every row, or altering 
the table to add or remove columns. Oracle calls this level a DDL lock, and it is used 
when DDL statements (CREATE, DROP, and ALTER) are submitted against a table or 
other database object.

● Block or page A block or page within a database file is locked. A block is the smallest 
unit of data that the operating system can read from or write to a file. On most personal 
computers, the block size is called the sector size. Some operating systems use pages 
instead of blocks. A page is a virtual block of fixed size, typically 2K or 4K, which is 
used to simplify processing when multiple storage devices support different block sizes. 
The operating system can read and write pages and let hardware drivers translate the 
pages to appropriate blocks. As with file locking, block (page) locking is less favored 
in modern database systems because of the diversity of the data that may happen to be 
written to the same block in the file.

● Row A row in a table is locked. This is the most common locking level, with 
virtually all modern database systems supporting it.
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● Column One or more columns within a row in the table are locked. This method 
sounds terrific in theory, but it’s not very practical because of the resources required to 
place and release locks at this level of granularity. Very sparse support for it exists in 
modern commercial database systems.

Locks are always placed when data is updated or deleted. Most RDBMSs also 
support the use of a FOR UPDATE OF clause on a SELECT statement to allow locks 
to be placed when the database user declares an intent to update something. Some locks 
may be considered read-exclusive, which prevents other sessions from even reading 
the locked data. Many RDBMSs have session parameters that can be set to help control 
locking behavior. One of the locking behaviors to consider is whether all rows fetched 
using a cursor are locked until the next COMMIT or ROLLBACK, or whether previously 
read rows are released when the next row is fetched. Consult your database vendor’s 
documentation for more details.

The main problem with locking mechanisms is that locks cause contention, meaning 
that the placement of locks to prevent loss of data from concurrent updates has the side 
effect of causing concurrent sessions to compete for the right to apply updates. At the least, 
lock contention slows user processes as sessions wait for locks. At the worst, competing 
lock requests can stall sessions indefinitely, as you will see in the next section.

Deadlocks
A deadlock is a situation in which two or more database sessions have locked some data 
and then each has requested a lock on data that another session has locked. Figure 11-2 
illustrates this situation.

Figure 11-2  The deadlock
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This example again uses two users from our fictitious company, cleverly named A and 
B. User A is a representative in the customer service department and is attempting to correct 
a payment that was credited to the wrong customer account. He needs to subtract (debit) the 
payment from Customer 1 and add (credit) it to Customer 2. User B is a database specialist 
in the IT department, and she has written an SQL statement to update some of the customer 
phone numbers with one area code to a new area code in response to a recent area code 
split by the phone company. The statement has a WHERE clause that limits the update to 
those customers having a phone number with certain prefixes in area code 510 and updates 
those phone numbers to the new area code. User B submits her SQL UPDATE statement 
while user A is working on his payment credit problem. Customers 1 and 2 both have phone 
numbers that need to be updated. The sequence of events (all happening within seconds of 
each other), as illustrated in Figure 11-2, takes place as follows:

 1. User A selects the data from Customer 1 and applies an update to debit the balance due. 
No commit is issued yet because this is only part of the transaction that must take place. 
The row for Customer 1 now has a lock on it due to the update.

 2. The statement submitted by user B updates the phone number for Customer 2. The 
entire SQL statement must run as a single transaction, so there is no commit at this 
point, and thus user B holds a lock on the row for Customer 2.

 3. User A selects the balance for Customer 2 and then submits an update to credit the balance 
due (same amount as debited from Customer 1). The request must wait because user B 
holds a lock on the row to be updated.

 4. The statement submitted by user B now attempts to update the phone number for 
Customer 1. The update must wait because user A holds a lock on the row to be updated.

These two database sessions are now in deadlock. User A cannot continue due to a 
lock held by user B, and vice versa. In theory, these two database sessions will be stalled 
forever. Fortunately, modern DBMSs contain provisions to handle this situation. One 
method prevents deadlocks. Few DBMSs have this capability due to the considerable 
overhead this approach requires and the virtual impossibility of predicting what an 
interactive database user will do next. However, the theory is to inspect each lock request 
for the potential to cause contention and not permit the lock to take place if a deadlock 
is possible. The more common approach is deadlock detection, which aborts one of the 
requests that caused the deadlock. This can be done either by timing lock waits and giving 
up after a preset time interval or by periodically inspecting all locks to find two sessions 
that have each other locked out. In either case, one of the requests must be terminated and 
the transaction’s changes rolled back to allow the other request to proceed.
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Performance Tuning
Any seasoned DBA will tell you that database performance tuning is a never-ending 
task. Something always needs to be tweaked to make the database run more quickly 
and/or efficiently. The key to success is managing your time and the expectations of the 
database users, and setting the performance requirements for an application before it is 
even written. Simple statements such as “every database update must complete within 
4 seconds” are usually the best. With that done, performance tuning becomes a simple 
matter of looking for things that do not conform to the performance requirement and 
tuning them until they do. The law of diminishing returns applies to database tuning, and 
you can put lots of effort into tuning a database process for little or no gain. The beauty of 
having a standard performance requirement is that you can stop when the process meets 
the requirement and then move on to the next problem.

Although components other than SQL statements can be tuned, these components 
are so specific to a particular DBMS that it is best not to attempt to cover them here. 
Suffice it to say that memory usage, CPU utilization, and file system I/O all must be tuned 
along with the SQL statements that access the database. The tuning of SQL statements is 
addressed in the sections that follow.

Tuning Database Queries
About 80 percent of database query performance problems can be solved by adjusting 
the SQL statement. However, you must understand how the particular DBMS being used 
processes SQL statements before you can know what to tweak. For example, placing SQL 
statements inside stored procedures can yield remarkable performance improvements in 
Microsoft SQL Server and Sybase ASE, but the same is usually not true in Oracle.

A query execution plan is a description of how a DBMS will process a particular query, 
including index usage, join logic, and estimated resource cost. It is important to learn how 
to use the “explain plan” utility in your DBMS, if one is available, because it will show 
you exactly how the DBMS will process the SQL statement you are attempting to tune. In 
Oracle, the SQL EXPLAIN PLAN statement analyzes an SQL statement and posts analysis 
results to a special plan table. The plan table must be created exactly as specified by Oracle, 
so it is best to use the script Oracle provides for this purpose. After running the EXPLAIN 
PLAN statement, you must retrieve the results from the plan table using a SELECT 
statement. Fortunately, Oracle tools such as SQL Developer have a GUI version available 
that makes query tuning a lot easier. The Query tool contained in Microsoft SQL Server 
Management Studio (SQL Server 2005 and 2008) has buttons labeled Display Estimated 
Execution Plan and Include Actual Execution Plan that graphically display how the SQL 
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statement will be executed. These options are also accessible from the Query menu. In 
older versions of Microsoft SQL Server, these options (with different names) can be found 
in the Query Analyzer tool.

Following are some general tuning tips for SQL that apply to most implementations. You 
should consult a tuning guide for the particular DBMS you are using, because techniques, 
tips, and other considerations vary by DBMS product.

Avoid table scans of large tables. For tables larger than 1000 rows or so, scanning 
all the rows in the table instead of using an index can be expensive in terms of resources 
required. And, of course, the larger the table, the more expensive table scans become. Full 
table scans occur in the following situations:

● The query does not contain a WHERE clause to limit rows.

● None of the columns referenced in the WHERE clause match the leading column of an 
index on the table.

● Index and table statistics have not been updated. Most RDBMS query optimizers use 
statistics to evaluate available indexes, and without statistics, a table scan may be seen 
as more efficient than using an index.

● At least one column in the WHERE clause does match the first column of an available 
index, but the comparison used obviates the use of an index. These cases include the 
following:

● Use of the NOT operator (for example, WHERE NOT CITY = 'New York'). In 
general, indexes can be used to find what is in a table, but they cannot be used to 
find what is not in a table.

● Use of the NOT EQUAL operator (for example, WHERE CITY <> 'New York').

● Use of a wildcard in the first position of a comparison string (for example, 
WHERE CITY LIKE '%York%').

● Use of an SQL function in the comparison (for example, WHERE 
UPPER(CITY) = 'NEW YORK').

Create indexes that are selective. Index selectivity is a ratio of the number of distinct 
values a column has, divided by the number of rows in a table. For example, if a table has 
1000 rows and a column has 800 distinct values, the selectivity of the index is 0.8, which is 
considered good. However, a column such as gender that has only two distinct values (M 
and F) has very poor selectivity (.002 in this case). Unique indexes always have a selectivity 
of 1.0, which is the best possible. With some RDBMSs such as DB2, unique indexes are so 
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superior that DBAs often add otherwise unnecessary columns to an index just to make the 
index unique. However, always keep in mind that indexes take storage space and must be 
maintained, so they are never a “free lunch.”

Evaluate join techniques carefully. Most RDBMSs offer multiple methods for joining 
tables, with the query optimizer in the RDBMS selecting the one that appears best based 
on table statistics. In general, creating indexes on foreign key columns gives the optimizer 
more options from which to choose, which is always a good thing. Run an explain plan 
and consult your RDBMS documentation when tuning joins.

Pay attention to views. Because views are stored SQL queries, they can present 
performance problems just like any other query.

Tune subqueries in accordance with your RDBMS vendor’s recommendations.
Limit use of remote tables. Tables connected to remotely via database links never 

perform as well as local tables.
Very large tables require special attention. When tables grow to millions of rows in size, 

any query can be a performance nightmare. Evaluate every query carefully, and consider 
partitioning the table to improve query performance. Table partitioning is addressed in 
Chapter 8. Your RDBMS may offer other special features for very large tables that will 
improve query performance.

Q: I often don’t know what case was used in the database for proper names such as 
city names. You mentioned that using a function such as UPPER in the predicate (for 
example, WHERE UPPER(CITY) = 'NEW YORK') obviates the use of an index on that 
column. Are there any workarounds for this?

A: I can think of several. First, if you use a DBMS that supports case-insensitive comparisons, 
such as SQL Server, Sybase ASE, or Microsoft Access, the function isn’t needed because it 
doesn’t matter what case you use in the WHERE predicate. Second, if the DBMS supports 
what is known as a function-based index, you can create an index on an expression such as 
UPPER(CITY) and then predicates that use the same function on the same column can use 
the index. Oracle supports this feature. Third, you can store the data in two columns: one 
as entered by the user, and the other folded either to uppercase or lowercase for searching. 
While this is not a great idea in a transaction-processing database, it is a common technique 
in data warehouses and data marts, where the redundant data typically doesn’t lead to any 
data consistency issues. (These types of databases are discussed in detail in Chapter 12).

Ask the Expert
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Tuning DML Statements
Data Manipulation Language (DML) statements generally produce fewer performance 
problems than query statements. However, there can be issues.

INSERT statements have two main considerations:

● Ensuring adequate free space in the tablespaces to hold new rows Tablespaces 
that are short on space present problems as the DBMS searches for free space to 
hold rows being inserted. Moreover, inserts do not usually put rows into the table in 
primary key sequence because free space isn’t usually available in exactly the right 
places. Therefore, reorganizing the table, which is essentially a process of unloading 
the rows to a flat file, re-creating the table, and then reloading the table, can improve 
both insert and query performance.

● Index maintenance Every time a row is inserted into a table, a corresponding entry 
must be inserted into every index built on the table (null values are never indexed, 
however). The more indexes, the more overhead every insert will require. Index free 
space can usually be tuned just as table free space can.

UPDATE statements have the following considerations:

● Index maintenance If columns that are indexed are updated, the corresponding index 
entries must also be updated. In general, updating primary key values has particularly 
bad performance implications, so much so that some RDBMSs prohibit it.

● Row expansion When columns are updated in such a way that the row grows 
significantly in size, the row may no longer fit in its original location, and sufficient 
free space around the row may not be available for it to expand in place (other rows 
might be right up against the one just updated). When this occurs, the row must either 
be moved to another location in the data file where it will fit or be split with the 
expanded part of the row placed in a new location, connected to the original location 
by a pointer. Both of these situations are not only expensive when they occur but 
are also detrimental to the performance of subsequent queries that touch those rows. 
Table reorganizations can resolve the issue, but it is better to prevent the problem by 
designing the application so that rows tend not to grow in size after they are inserted.

DELETE statements are the least likely to present performance issues. However, a 
table that participates as a parent in a relationship that is defined with the ON DELETE 
CASCADE option can perform poorly if there are many child rows to delete.
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Change Control
Change control (also known as change management) is the process used to manage 
the changes that occur after a system is implemented. A change control process has the 
following benefits:

● It helps you understand when it is acceptable to make changes and when it is not.

● It provides a log of all changes that have been made to assist with troubleshooting when 
problems occur.

● It can manage versions of software components so that a defective version can be 
smoothly backed out.

Change is inevitable. Not only do business requirements change, but new versions 
of database and operating system software and new hardware devices eventually must 
be incorporated. Technologists should devise a change control method suitable to the 
organization, and management should approve it as a standard. Anything less leads to 
chaos when changes are made without the proper coordination and communication. 
Although terminology varies among standard methods, they all have common features:

● Version numbering Components of an application system are assigned version 
numbers, usually starting with 1 and advancing sequentially every time the component 
is changed. Usually a revision date and the identifier of the person making the change 
are carried with the version number.

● Release (build) numbering A release is a point in time at which all components 
of an application system (including database components) are promoted to the next 
environment (for example, from development to system test) as a bundle that can be 
tested and deployed together. Some organizations use the term build instead. Database 
environments are discussed in Chapter 5. As releases are formed, it is important to 
label each component included with the release (or build) number. This allows you to 
tell which version of each component was included in a particular release.

● Prioritization Changes may be assigned priorities to allow them to be scheduled 
accordingly.

● Change request tracking Change requests can be placed into the change control 
system, routed through channels for approval, and marked with the applicable release 
number when the change is completed.
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● Check-out and check-in When a developer or DBA is ready to apply changes to 
a component, he should be able to check it out (reserve it), which prevents others 
from making potentially conflicting changes to the same component at the same time. 
When work is complete, the developer or DBA checks the component back in, which 
essentially releases the reservation.

A number of commercial and freeware software products can be deployed to assist with 
change control. However, it is important that you establish the process before choosing 
tools. In this way, the organization can establish the best process for their needs and find 
the tool that best fits that process rather than trying to retrofit a tool to the process.

From the database perspective, the DBA should develop DDL statements to implement 
all the database components of an application system and a script that can be used to invoke 
all the changes, including any required conversions. This deployment script and all the 
DDL should be checked into the change control system and managed just like all the other 
software components of the system.

 Chapter 11 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank questions. 
Note that there may be more than one correct response to each question.

 1. A cursor is ____________.

 2. A result set is ____________.

 3. The I in the ACID acronym stands for ____________.

 4. Before rows may be fetched from a cursor, the cursor must first be

 A Declared

 B Committed

 C Opened

 D Closed

 E Purged

 5. A transaction

 A May be partially processed and committed

 B May not be partially processed and committed

✓
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 C Changes the database from one consistent state to another

 D Is sometimes called a unit of work

 E Has properties described by the ACID acronym

 6. Microsoft SQL Server supports the following transaction modes:

 A Autocommit

 B Automatic

 C Durable

 D Explicit

 E Implicit

 7. Oracle supports the following transaction modes:

 A Autocommit

 B Automatic

 C Durable

 D Explicit

 E Implicit

 8. The SQL statements (commands) that end a transaction are

 A SET AUTOCOMMIT

 B BEGIN TRANSACTION (in SQL Server)

 C COMMIT

 D ROLLBACK

 E SAVEPOINT

 9. The concurrent update problem

 A Is a consequence of simultaneous data sharing

 B Cannot occur when AUTOCOMMIT is set to ON

 C Is the reason that transaction locking must be supported

 D Occurs when two database users submit conflicting SELECT statements

 E Occurs when two database users make conflicting updates to the same data
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 10. A lock

 A Is a control placed on data to reserve it so that the user may update it

 B Is usually released when a COMMIT or ROLLBACK takes place

 C Has a timeout set in DB2 and some other RDBMS products

 D May cause contention when other users attempt to update locked data

 E May have levels and an escalation protocol in some RDBMS products

 11. A deadlock

 A Is a lock that has timed out and is therefore no longer needed

 B Occurs when two database users each request a lock on data that is locked by  
the other

 C Can theoretically put two or more users in an endless lock wait state

 D May be resolved by deadlock detection on some RDBMSs

 E May be resolved by lock timeouts on some RDBMSs

 12. Performance tuning

 A Is a never-ending process

 B Should be used on each query until no more improvement can be realized

 C Should be used only on queries that fail to conform to performance requirements

 D Involves not only SQL tuning but also CPU, file system I/O, and memory  
usage tuning

 E Should be requirements based

 13. SQL query tuning

 A Can be done in the same way for all relational database systems

 B Usually involves using an explain plan facility

 C Always involves placing SQL statements in a stored procedure

 D Applies only to SQL SELECT statements

 E Requires detailed knowledge of the RDBMS on which the query is to be run
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 14. General SQL tuning tips include which of the following?

 A Avoid table scans on large tables.

 B Use an index whenever possible.

 C Use an ORDER BY clause whenever possible.

 D Use a WHERE clause to filter rows whenever possible.

 E Use views whenever possible.

 15. SQL practices that obviate the use of an index are

 A Use of a WHERE clause

 B Use of a NOT operator

 C Use of table joins

 D Use of the NOT EQUAL operator

 E Use of wildcards in the first column of LIKE comparison strings

 16. Indexes work well at filtering rows when

 A They are very selective.

 B The selectivity ratio is very high.

 C The selectivity ratio is very low.

 D They are unique.

 E They are not unique.

 17. The main performance considerations for INSERT statements are

 A Row expansion

 B Index maintenance

 C Free space usage

 D Subquery tuning

 E Any very large tables that are involved
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 18. The main performance considerations for UPDATE statements are

 A Row expansion

 B Index maintenance

 C Free space usage

 D Subquery tuning

 E Any very large tables that are involved

 19. A change control process

 A Can prevent programming errors from being placed into production

 B May also be called change management

 C Helps with understanding when changes may be installed

 D Provides a log of all changes made

 E Can allow defective software versions to be backed out

 20. Common features of change control processes include which of the following?

 A Transaction support

 B Version numbering

 C Deadlock prevention

 D Release numbering

 E Prioritization
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Key Skills & Concepts
● Data Warehouses

● Data Marts

● Data Mining

Starting in the 1980s, businesses recognized the need for keeping historical data and 
using it for analysis to assist in decision making. It was soon apparent that data 

organized for use by day-to-day business transactions was not as useful for analysis. 
In fact, storing significant amounts of history in an operational database (a database 
designed to support the day-to-day transactions of an organization) could have serious 
detrimental effects on performance. William H. (Bill) Inmon pioneered work in a concept 
known as data warehousing, in which historical data is periodically trimmed from the 
operational database and moved to a database specifically designed for analysis. It was 
Inmon’s dedicated promotion of the concept that earned him the title “father of data 
warehousing.”

The popularity of the data warehouse approach grew with each success story. In 
addition to Inmon, others made significant contributions, notably Ralph Kimball, who 
developed specialized database architectures for data warehouses (covered in the “Data 
Warehouse Architecture” section, later in this chapter). E.F. (Ted) Codd added his 
endorsement to the data warehouse approach and coined two important terms in 1993:

● Online transaction processing (OLTP) Systems designed to handle high volumes 
of transactions that carry out the day-to-day activities of an organization

● Online analytical processing (OLAP) Analysis of data (often historical) to identify 
trends that assist in making strategic decisions regarding the business

Up to this point, the chapters of this book have dealt almost exclusively with OLTP 
databases. This chapter, on the other hand, is devoted exclusively to OLAP database 
concepts.
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Data Warehouses
Using Inmon’s definition, a data warehouse is a subject-oriented, integrated, time-variant, 
and nonvolatile collection of data intended to support management decision making. Here 
are some important properties of data warehouses:

● They are organized around major subject areas of an organization, such as sales, 
customers, suppliers, and products. OLTP systems, on the other hand, are typically 
organized around major processes, such as payroll, order entry, billing, and so forth.

● They are integrated from multiple operational (OLTP) data sources.

● They are not updated in real time, but periodically, based on an established schedule. 
Data is pulled from operational sources as often as needed, such as daily, weekly, 
monthly, and quarterly.

The potential benefits of a well-constructed data warehouse are significant, including 
the following:

● Competitive advantage

● Increased productivity of corporate decision makers

● Potential high return on investment as the organization finds the best ways to improve 
efficiency and/or profitability

However, there are significant challenges to creating an enterprise-wide data 
warehouse, including the following:

● Underestimation of the resources required to load the data

● Hidden data integrity problems in the source data

● Omitting data, only to find out later that it is required

● Ever-increasing end user demands (each new feature spawning ideas for even more 
features)

● Consolidating data from disparate data sources

● High resource demands (huge amounts of storage; queries that process millions of rows)

● Ownership of the data

● Difficulty in determining what the business really wants or needs to analyze

● “Big bang” projects that seem never-ending
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OLTP Systems Compared  
with Data Warehouse Systems
Data warehouse systems and OLTP systems are fundamentally different. Here is a 
comparison:

OLTP Systems Data Warehouse Systems
Hold current data Hold historic data

Store current data Store detailed data along with lightly and highly 
summarized data

Data is dynamic Data is static, except for periodic additions

Database queries are short-running and 
access relatively few rows of data

Database queries are long-running and access many 
rows of data

High transaction volume Medium to low transaction volume

Repetitive processing; predictable usage 
pattern

Ad hoc and unstructured processing; unpredictable 
usage pattern

Transaction driven; support day-to-day 
operations

Analysis driven; support strategic decision making

Process oriented Subject oriented

Serve a large number of concurrent users Serve a relatively low number of managerial users 
(decision makers)

Data Warehouse Architecture
Two schools of thought reign as to the best way to organize OLTP data into a data 
warehouse: the summary table approach and the star schema approach. The following 
subsections take a look at each approach, along with the benefits and drawbacks of each.

Summary Table Architecture
Inmon originally developed the summary table data warehouse architecture. This data 
warehouse approach involves storing data not only in detail form, but also in summary 
tables so that analysis processes do not have to summarize the same data continually. 
This is an obvious violation of the principles of normalization, but because the data is 
historical—and therefore is not expected to change after it is stored—the data anomalies 
(insert, update, and delete) that drive the need for normalization simply don’t exist.  
Figure 12-1 shows the summary table data warehouse architecture.

Data from one or more operational data sources (databases or flat file systems) 
is periodically moved into the data warehouse database. A major key to success is 
determining the appropriate level of detail that must be carried in the database and 
anticipating the necessary levels of summarization. Using Acme Industries as an example, 
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if the subject of the data warehouse is sales, it may be necessary to keep every single 
invoice, or it may be necessary to keep only those invoices that exceed a certain amount—
or perhaps only those that contain certain products. If requirements are not understood, 
it is unlikely that the data warehouse project will be successful. Failure rates of data 
warehouse projects are higher than most other types of IT projects, and the most common 
cause of failure is poorly defined requirements.

In terms of summarization, we might summarize the transactions by month in 
one summary table and by product in another. At the next level of summarization, we 
might summarize the months by quarter in one table and the products by department in 
another. An end user (the person using the analysis tools to obtain results from the OLAP 
database) might look at sales by quarter and notice that one particular quarter doesn’t look 
quite right. The user can expand the quarter of concern and examine the data for months 
within it. This process is known as “drilling down” to more detailed levels. The user may 
then choose a particular month of interest and drill down to the detailed transactions for 
that month.
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Figure 12-1  Summary table data warehouse architecture
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The metadata (data about data) shown in Figure 12-1 is very important and, unfortunately, 
often a missing link. Ideally, the metadata defines every data item in the data warehouse, 
along with sufficient information so its source can be tracked all the way back to the 
original source data in the operational database. The biggest challenge with metadata is 
that, lacking standards, each vendor of data warehouse tools has stored metadata in its own 
way. When multiple analysis tools are in use, metadata must usually be loaded into each 
one of them using proprietary formats. For end-user analysis tools (also called OLAP tools 
or business intelligence tools), not only are tools embedded in major relational database 
products such as SQL Server and Oracle, but literally dozens of specialized commercial 
products are available, including Business Objects (now owned by SAP), Cognos (an IBM 
company), Actuate, Hyperion (now owned by Oracle), and many more.

Star Schema Data Warehouse Architecture
Kimball developed a specialized database structure known as the star schema for storing 
data warehouse data. His contribution to OLAP data storage is significant. Red Brick, the 
first DBMS devoted exclusively to OLAP data storage, used the star schema. In addition, 
Red Brick offered SQL extensions specifically for data analysis, including moving 
averages, this year versus last year, market share, and ranking. Informix acquired Red 
Brick’s technology, and later IBM acquired Informix, so IBM now markets the Red Brick 
technology as part of its data warehouse solution. Figure 12-2 shows the basic architecture 
of a data warehouse using the star schema.

The star schema uses a single detailed data table, called a fact table, surrounded by 
supporting reference data tables called dimension tables, forming a starlike pattern. Compared 
with the summary table data warehouse architecture, the fact table replaces the detailed data 
tables, and the dimension tables logically replace the summary tables. Aside from the primary 
key, each attribute in the fact table must be either a fact (a metric that can be summarized) 
or a foreign key to a dimension table. Keep in mind that facts must be additive, such as 
quantities, scores, time intervals, and currency amounts. A new star schema is constructed 
for each additional fact table. Dimension tables have a one-to-many relationship with the fact 
table, with the primary key of the dimension table appearing as a foreign key in the fact table. 
However, dimension tables are not necessarily normalized because they may have an entire 
hierarchy, such as layers of an organization or different subcomponents of time, compressed 
into a single table. The dimension tables may or may not contain summary information, such 
as totals, but they generally should not contain facts.

Using our prior Acme Industries sales example, the fact table would contain the 
invoices from the table, and typical dimension tables would be time (days, months, 
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Figure 12-2  Star schema data warehouse architecture

Q: I’ve heard that star schemas can be very difficult to use when analysis requires 
combining data from multiple fact tables. Is there a way around these issues?

A: Yes, indeed, but the solution is to design the dimensions correctly rather than employing 
workarounds after the data warehouse is implemented. If, for example, the time dimension 
in one schema uses calendar months, and another uses fiscal months, it may be impossible 
to combine them unless individual days are somehow available. The trick is to use what 
Kimball calls conformed dimensions, which are dimensions that have identical structure, 
attributes, domain values, definitions, and concepts. Following that tenet, every time 
dimension in the database would be identically defined, perhaps by calendar day, which can 
easily be rolled up to calendar or fiscal weeks, months, and quarters.

Ask the Expert
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quarters, and perhaps years), products, and organizational units (departments, divisions, 
and so forth). In fact, time and organizational structure appear as dimensions in most 
star schemas. As you might guess, the keys to success in star schema OLAP databases 
are getting the fact table right and using only conformed dimensions. Here’s a list of the 
considerations that influence the design of the fact table:

● The required time period (how often data will be added and how long history must 
remain in the OLAP database)

● Storing every transaction versus statistical sampling

● Columns in the source data table(s) that are not necessary for OLAP

● Columns that can be reduced in size

● The best uses of intelligent (natural) and surrogate (dumb) keys

● Partitioning of the fact table

Over time, some variations of the star schema emerged:

● Snowflake schema A variant in which dimensions are allowed to have dimensions 
of their own. The name comes from the entity-relationship diagram’s resemblance to a 
snowflake. If you fully normalize the dimensions of a star schema, you end up with a 
snowflake schema. For example, the time dimension at the first level could track days, 
with a dimension table above it to track weeks, one above that to track months, one 
above that one to track quarters, and so forth. Similar arrangements could be used to 
track the hierarchy of an organization (departments, divisions, and so on).

● Starflake schema A hybrid arrangement containing a mixture of (denormalized) 
star and (normalized) snowflake dimensions.

Multidimensional Databases
Multidimensional databases evolved from star schemas. They are sometimes called 
multidimensional OLAP (MOLAP) databases. A number of specialized multidimensional 
database systems are on the market, including Oracle Express, Microsoft SQL Server 
Analysis Services, and Oracle Essbase. MOLAP databases are best visualized as cubes, 
where each dimension forms a side of the cube. To accommodate additional dimensions, 
the cube (or set of cubes) is simply repeated for each.

Figure 12-3 shows a four-column fact table for Acme Industries. Product Line, Sales 
Department, and Quarter are dimensions, and they would be foreign keys to a dimension 



 Chapter 12: Databases for Online Analytical Processing 361

table in a star schema. Quantity contains the number of units sold for each combination of 
Product Line, Sales Department, and Quarter.

Figure 12-4 shows the multidimensional equivalent of the table shown in Figure 12-3.  
Note that Sales Department, Product Line, and Quarter all become edges of the cube, 
with the single fact Quantity stored in each grid square. The dimensions displayed may be 
changed by simply rotating the cube.

When the dimensions contain data that mutates over time, such as a product being moved 
from one product family to another, we call this a slowly changing dimension. These present 

Product Line Sales Department Quarter Quantity
Helmets Corporate Sales 1 2250

Helmets Corporate Sales 2 2107

Helmets Corporate Sales 3 5203

Helmets Corporate Sales 4 5806

Helmets Internet Sales 1 1607

Helmets Internet Sales 2 1812

Helmets Internet Sales 3 4834

Helmets Internet Sales 4 5150

Springs Corporate Sales 1 16283

Springs Corporate Sales 2 17422

Springs Corporate Sales 3 21288

Springs Corporate Sales 4 32768

Springs Internet Sales 1 12

Springs Internet Sales 2 24

Springs Internet Sales 3 48

Springs Internet Sales 4 48

Rockets Corporate Sales 1 65

Rockets Corporate Sales 2 38

Rockets Corporate Sales 3 47

Rockets Corporate Sales 4 52

Rockets Internet Sales 1 2

Rockets Internet Sales 2 1

Rockets Internet Sales 3 6

Rockets Internet Sales 4 9

Figure 12-3  Four-column fact table for Acme Industries
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a special challenge when designing multidimensional schemas. Several solution methods, 
known as types of slowly changing dimensions, are listed in the following table:

Method Type Description
1 Old data is overwritten with new data, so no tracking of history occurs.

2
A new row is created every time any data in the dimension changes, which 
provides unlimited history. A version number or effective dates are included in 
each row to record the sequence of the changes.

3

Multiple columns are provided for each attribute for which changes must be 
tracked, with each new value written into the next available column for the 
attribute. Naturally, the amount of history is limited to the number of columns 
provided.

4 Current data is kept in one table, and a history table is used to record some or 
all of the previous data values.

You can find more information on slowly changing dimensions in the many articles 
published on the Internet.
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Figure 12-4  Three-dimension cube for Acme Industries
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Data Marts
A data mart is a subset of a data warehouse that supports the requirements of a particular 
department or business function. In part, data marts evolved in response to some highly 
visible multimillion-dollar data warehouse project failures. When an organization has little 
experience building OLTP systems and databases, or when requirements are very sketchy, 
a scaled-down project such as a data mart is a far less risky approach. Here are a few 
characteristics of data marts:

● Focus on one department or business process

● Do not normally contain any operational data

● Contain much less information than a data warehouse

Here are some reasons for creating a data mart:

● Data may be tailored to a particular department or business function.

● Overall costs are lower than that of a full data warehouse.

● Project is lower risk than a full data warehouse project.

● A limited number of end-user analysis tools (usually just one) allow data to be tailored 
to the particular tool to be used.

● For departmental data marts, the database may be placed physically near the 
department, reducing network delays.

Three basic strategies can be used to build data marts:

● Build the enterprise-wide data warehouse first, and use it to populate data marts. The 
problem with this approach is that you will never get to build the data marts if the data 
warehouse project ends up being canceled or put on indefinite hold.

● Build several data marts and build the data warehouse later, integrating the data marts 
into the enterprise-wide data warehouse at that time. This is a lower risk strategy, 
at least in terms of delivery, because it does not depend on completion of a major 
data warehouse project. However, it may cost more because of the rework required 
to integrate the data marts after the fact. Moreover, if several data marts are built 
containing similar data without a common data warehouse to integrate all the data, the 
same query may yield different results depending on the data mart used. Imagine, for 
example, the finance department quoting one revenue number and the sales department 
another, only to find they are both correctly quoting their data sources.
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● Build the data warehouse and data marts simultaneously. This sounds great on paper, 
but when you consider that the already complex and large data warehouse project 
now has the data marts added to its scope, you begin to appreciate the enormity of the 
project. In fact, this strategy practically guarantees that the data warehouse project 
will be the never-ending project from hell.

Data Mining
Data mining is the process of extracting valid, previously unknown, comprehensible, 
and actionable information from large databases and using it to make crucial business 
decisions. The biggest benefit is that it can uncover correlations in the data that were 
never suspected. The caveat is that it normally requires very large data volumes in order to 
produce accurate results. Most commercial OLAP/business intelligence (BI) tools include 
some data-mining features.

One of the commonly cited stories of an early success with data mining involves an 
NCR Corporation employee who produced a study for American Stores’ Osco Drugs in 
1992. The study noted a correlation between beer sales and diaper sales between 5 P.M. 
and 7 P.M., meaning that the two items were found together in a single purchase more 
often than pure randomness would suggest. This correlation was subsequently mentioned 
in a speech, and the “beer and diapers” story quickly became a bit of an urban legend in 
data warehouse circles. Countless conference speakers have related the story of young 
fathers sent out for diapers who grab a six-pack at the same time, often embellished well 
beyond the facts. However, the story remains an excellent example of how unexpected the 
results of data mining can be.

Once you discover a correlation, the organization must decide the best action to take to 
capitalize on the new information. In the “beer and diapers” example, the company could 
either strategically place the diaper display near the beer chillers for that quick impulse 
sale or perhaps place coupon dispensers for beer near the diaper display, strategically 
locating the beer and diapers products at opposite corners of the store in hopes of more 

Q: Are data marts built using summary tables or star schemas?

A: Data marts are built almost exclusively using star schemas. This is most likely because 
almost all the popular end-user analysis tools expect star schemas, including pivot tables 
supported by spreadsheet tools such as Microsoft Excel.

Ask the Expert
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Try This 12-1

impulse buys as the shopper picks up one item and heads across the store for the other.  
For the newly found information to be of benefit, the organization must be agile enough  
to take some action, so data mining itself isn’t a silver bullet by any measure.

   Design Star Schema Fact and 
Dimension Tables

In this Try This exercise, you will design a star schema fact for the BOOK table for the 
Computer Books Company schema from Try This 6-2, along with its associated dimension 
tables. For easy reference, here are the normalized OLTP tables that need consideration:

BOOK: ISBN (PK), BOOK TITLE, SUBJECT CODE, PUBLISHER ID, 
      EDITION CODE, EDITION COST, SELLING PRICE, 
      QUANTITY ON HAND, QUANTITY ON ORDER, 
      RECOMMENDED QUANTITY, PREVIOUS EDITION ISBN 
 
SUBJECT: SUBJECT CODE (PK), DESCRIPTION 
 
AUTHOR: AUTHOR ID (PK), AUTHOR NAME 
 
BOOK-AUTHOR: AUTHOR ID (PK), ISBN (PK) 
 
PUBLISHER: PUBLISHER ID (PK), PUBLISHER NAME, STREET ADDRESS, 
      CITY, STATE, ZIP CODE, AMOUNT PAYABLE

Step by Step
 1. Design the fact table: 

 a. Identify the facts that will go in your fact table. For the BOOK table, the only 
attributes that can be facts are EDITION COST, SELLING PRICE, QUANTITY 
ON HAND, QUANTITY ON ORDER, and RECOMMENDED QUANTITY.

 b. Among the remaining attributes in the BOOK table, identify those that are foreign 
keys to dimension tables. These are SUBJECT CODE and PUBLISHER ID.

 c. The remaining attributes are BOOK TITLE and PREVIOUS EDITION ISBN. 
What can be done with these? One choice is simply to eliminate them for your star 
schema. But another is to make a dimension out of them, called something like 
BOOK TITLE. The fact table can then be joined with the dimension using ISBN 
when you want to include the title or previous edition ISBN in our query results.

 d. List the contents of the fact table.
(continued)
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 2. Design the dimension tables:

 a. From Step 1.c, design a dimension table to hold BOOK TITLE and PREVIOUS 
EDITION ISBN.

 b. SUBJECT becomes a dimension just as it is.

 c. AUTHOR and BOOK_AUTHOR pose a small challenge because they form a 
hierarchy. However, if you collapse them into a single table, they form a dimension 
that lists every author for every book. The dimension table will include a second 
normal form violation (AUTHOR NAME will depend only on the AUTHOR ID), 
but you need not be concerned about such things in star schemas. In fact, were it 
not for the possibility of two different authors having the same name, you could 
remove AUTHOR ID from the dimension altogether.

 d. PUBLISHER looks straightforward enough, but there is a minor issue with 
AMOUNT PAYABLE. It’s a fact, and facts don’t belong in dimension tables. So 
you should eliminate it from this star schema. It may be useful when the fact table 
is about publisher purchases or something like that, but it has no bearing on our 
book inventory.

 e. List the contents of each dimension table.

Try This Summary
In this Try This exercise, you designed a fact table and several dimension tables. My 
solution is in Appendix B.

 Chapter 12 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank 
questions. Note that there may be more than one correct response to each question.

 1. OLTP databases are designed to handle ____________ transaction volumes.

 2. OLAP queries typically access ____________ amounts of data.

 3. Compared with OLTP systems, data warehouse systems tend to have ____________ 
running queries.

 4. Data warehousing was pioneered by ____________.

✓
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 5. The process of moving from more summarized data to more detailed data is known as 
____________.

 6. The snowflake schema allows dimensions to have ____________.

 7. The starflake schema is a hybrid containing both ____________ and ____________ 
dimensions.

 8. A data warehouse is

 A Subject oriented

 B Integrated from multiple data sources

 C Time variant

 D Updated in real time

 E Organized around one department or business function

 9. Challenges with the data warehouse approach include

 A Updating operational data from the data warehouse

 B Underestimation of required resources

 C Diminishing user demands

 D Large, complex projects

 E High resource demands

 10. The summary table architecture

 A Was originally developed by Bill Inmon

 B Includes a fact table

 C Includes dimension tables

 D Includes lightly and highly summarized tables

 E Should include metadata

 11. The star schema

 A Was developed by Ralph Kimball

 B Includes a dimension table and one or more fact tables
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 C Always has fully normalized dimension tables

 D Was a key feature of the Red Brick DBMS

 E Involves multiple levels of dimension tables

 12. Factors to consider in designing the fact table include

 A Adding columns to the fact table

 B Reducing column sizes between the source and fact tables

 C Partitioning the fact table

 D How often it must be updated

 E How long history must remain in it

 13. Multidimensional databases

 A Use a fully normalized fact table

 B Are best visualized as cubes

 C Have fully normalized dimension tables

 D Are sometimes called MOLAP databases

 E Accommodate dimensions beyond the third by repeating cubes for each additional 
dimension

 14. A data mart

 A Is a subset of a data warehouse

 B Is a shop that sells data to individuals and businesses

 C Supports the requirements of a particular department or business function

 D Can be a good starting point for organizations with no data warehouse experience

 E Can be a good starting point when requirements are sketchy

 15. Reasons to create a data mart include

 A It is more comprehensive than a data warehouse.

 B It is a potentially lower risk project.

 C Data may be tailored to a particular department or business function.
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 D It contains more data than a data warehouse.

 E The project has a lower overall cost than a data warehouse project.

 16. Building a data warehouse first, followed by data marts

 A Will delay data mart deployment if the data warehouse project drags on

 B Has lower risk than trying to build them all together

 C Has the lowest risk of the three possible strategies

 D Has the highest risk of the three possible strategies

 E May require a great deal of rework

 17. Building one or more data marts first, followed by the data warehouse

 A May delay data warehouse delivery if the data mart projects drag on

 B Has the potential to deliver some OLAP functions more quickly

 C Has the lowest risk of the three possible strategies

 D Has the highest risk of the three possible strategies

 E May require a great deal of rework

 18. Building the data warehouse and data marts simultaneously

 A Creates the largest single project of all the possible strategies

 B Has the potential to take the longest to deliver any OLAP functions

 C Has the lowest risk of the three possible strategies

 D Has the highest risk of the three possible strategies

 E May require a great deal of rework

 19. Data mining

 A Creates a scaled-down data warehouse

 B Extracts previously unknown data correlations from the data warehouse

 C Can be successful with small amounts of data

 D Is most useful when the organization is agile enough to take action based on the 
information

 E Usually requires large data volumes in order to produce accurate results
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 20. Properties of data warehouse systems include

 A Holding historic rather than current information

 B Long-running queries that process many rows of data

 C Support for day-to-day operations

 D Process orientation

 E Medium to low transaction volume
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Key Skills & Concepts
● Learn the Basics of XML

● Learn About SQL/XML

● Object-Oriented Applications

● Object-Relational Databases

Along with the explosive growth in the use of databases, particularly relational 
databases, the need to store more complex data types has increased sharply. This 

is especially true for databases that support websites that render images and formatted 
documents as well as sound and video clips. Furthermore, as the use of object 
programming languages such as C++ and Java has grown, so has the need to store the 
objects that these languages manipulate. (Objects were briefly introduced in Chapter 1.)  
In this chapter, we’ll look at a number of ways to integrate such content into databases.

Learn the Basics of XML
The Extensible Markup Language (XML) is a general-purpose markup language used to 
describe data in a format that is convenient for display on web pages and for exchanging 
data between different parties. In 2003, the specifications for storing XML data in SQL 
(relational) databases were added to the ANSI/ISO SQL Standard as Part 14, named  
SQL/XML. Part 14 was expanded further in 2006.

NOTE
SQL/XML is not at all the same as Microsoft’s SQLXML, which is a proprietary 
technology used in SQL Server. As you can imagine, the unfortunately similar names 
have caused much confusion. Microsoft participated in the standards proceedings for 
SQL/XML but then chose not to implement it.

To understand SQL/XML, you must first understand the basics of XML. While a 
complete explanation of XML is well beyond the scope of this book, I’ll provide a brief 
overview. You can find a lot more information by searching on the Internet.

You may already be familiar with HTML, the markup language used to define web 
pages. If so, the syntax of XML will look familiar. This is because both are based on the 
Standard Generalized Markup Language (SGML), which itself is based on Generalized 
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Markup Language (GML), developed by IBM in the 1960s. A markup language is a set 
of annotations, often called tags, that are used to describe how text is to be structured, 
formatted, or laid out. The tagged text is intended to be human-readable. One of the 
fundamental differences between HTML and XML is that HTML provides a predefined 
set of tags, while XML allows the author to create his or her own tags.

Let’s look at a sample XML document that contains the results of an SQL query. 
Figure 13-1 shows a DEPARTMENT table containing two departments and a COURSE 
table containing five educational courses offered by those departments. As you learned in 
Chapter 4, the two tables can be easily joined using an SQL SELECT statement like  
this one:

SELECT a.DEPT_NAME, b.COURSE_TITLE, b.COURSE_ID 
  FROM DEPARTMENT a JOIN COURSE b 
       ON a.DEPT_ID = b.DEPT_ID 
 ORDER BY a.DEPT_NAME, b.COURSE_TITLE;

Note that I used the ORDER BY clause to specify the order of the rows in the result 
set. The query results should look something like this:

DEPT_NAME               COURSE_TITLE                      COURSE_ID 
----------------------  --------------------------------  ---------  
Business                Accounting 101                    101 
Business                Concepts of Marketing             102 
Information Technology  C Programming I                   401 
Information Technology  C Programming II                  402 
Information Technology  Introduction to Computer Systems  400

The query results are well suited for display or printing, but they are not in a form that 
would be easy to display on a web page or to pass to another computer application for 

COURSE_ID

102

401

400

402

COURSE_TITLE

101

Concepts of Marketing

Introduction to Computer Systems

Accounting 101

C Programming II

C Programming I

DEPT_ID

BUS

IT

IT

IT

BUS

Information Technology

Business

DEPT_ID DEPT_NAME

BUS

IT

COURSEDEPARTMENT

Figure 13-1  The DEPARTMENT and COURSE tables
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further processing. One way to make this easier is to convert the query results into XML, 
as shown here:

<departments> 
   <department name="Business"> 
      <courses> 
         <course title="Accounting 101"><id>101</id></course> 
         <course title ="Concepts of Marketing"> 
            <id>102</id></course> 
      </courses> 
   </department> 
   <department name="Information Technology"> 
      <courses> 
         <course title="C Programming I"><id>401</id></course> 
         <course title="C Programming II"><id>402</id></course> 
         <course title="Introduction to Computer Systems"> 
            <id>400</id></course> 
      </courses> 
   </department> 
   <!-- Additional departments available soon --> 
</departments>

As you can see in the code listing, tags are enclosed in angle brackets, and each start tag 
has a matching end tag that is identical, except for the slash (/) used in the end tag. (HTML 
uses an identical convention; however, HTML is a lot more forgiving if you do something 
like omit an end tag.) For example, the tag <departments> starts the list of academic 
departments, while the end tag </departments> ends it. Within the list of departments, 
the information for each individual department begins with the <department> tag, which 
includes a data value for the name attribute, and ends with the </department> tag. It is 
customary (and considered a best practice) to name a list using the plural of the tag name 
used for each item in the list. Comments can be added using a special tag that begins with 
<!-- and ends with -->, as shown in the next to last line of the example.

Data items and values, such as those that would be stored in a relational table column, 
can be coded as name and value pairs in one of two ways. The first way is using an XML 
attribute, by naming the attribute inside another tag, followed by the equal sign and the 
data value enclosed in double quotation marks, such as I did with the name and title 
attributes. The second way is using an XML element, by creating a separate tag for the 
data item with the data value sandwiched between the start and end tags, such as I did 
with the id attribute within the course tag. The question of which form to use has been 
the subject of much debate among XML developers. However, the general consensus is to 
use elements whenever the data item might later be broken down into additional elements, 
such as splitting a person’s name into first name and last name, or dividing a single data 
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element containing a comma-separated list of prerequisite course names into a list of 
elements. An additional consideration is whether you want to allow the XML processor to 
ignore insignificant whitespace, as it would do for attributes, but not for elements.

You likely noticed that, unlike the SQL result set, XML can show the hierarchy of 
the data. In this case, the list of courses offered by each department is nested within 
the information about the department. I have indented the XML statements to make the 
nesting more obvious. And while indentation of nested tags is a best practice, it is not 
significant, because whitespace between tags is ignored when the XML is processed.

XML coding can be quite tedious. Fortunately, tools are available to help you convert 
between XML and plain text, and SQL/XML functions (covered later in this chapter) to 
convert relational database data into XML. For a time, specialized databases for storing 
and retrieving XML were gaining popularity, but the major relational database vendors 
added features to permit native XML to be stored directly in their databases. At the same 
time, the SQL standard was expanded to include provisions for XML data, as I discuss in 
the next section of this chapter.

Q: Is there a standard for the XML language itself?

A: While ISO does not currently publish a standard for XML, ISO 8879 provides a standard 
for SGML, and XML is based on SGML. More importantly, the World Wide Web 
Consortium (W3C) publishes XML specifications that make up the standard that is 
generally accepted throughout the IT industry.

Q: You mentioned that XML is a convenient way for different parties to exchange 
information. Does that mean that two companies can freely exchange data without 
having to create elaborate interface software so long as they both use XML?

A: Well, not exactly. XML provides only a standard way to format the data. For one company 
to correctly interpret the XML data that another company has sent them, the receiving 
company must know the names and definitions of the tags the sending company formatted 
for them, particularly the elements and attributes that contain the data. Fortunately, a 
number of industry standards can help. For example, HR/XML provides a standard 
for exchanging human resources (HR) data, so that a company can, for example, send 
employee data to a vendor that provides medical insurance for those employees. In some 
industries, XML is beginning to replace an older standard known as EDI (Electronic Data 
Interchange).

Ask the Expert
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Learn About SQL/XML
As mentioned, XML is commonly used to represent data on web pages, and that data 
often comes from relational databases. However, as you have seen, the two models in 
use are quite different, in that relational data is stored in tables where neither hierarchy 
nor sequence have any significance, while XML is based on hierarchical trees in which 
order is considered significant. The term forest is often used to refer to a collection of 
XML tree structures. XML is used for web pages because its structure so closely matches 
the structure that would be used to display the same data in HTML. In fact, many web 
pages are a mixture of HTML for the static portions and XML for the dynamic data. 
It is perhaps this widespread implementation that has led many of the major vendors, 
including Oracle, Microsoft, and IBM, to support XML extensions. However, only 
Oracle and IBM’s DB2 UDB support the SQL/XML commands covered in this topic—
the Microsoft SQL Server XML extension is markedly different, and I have not included 
it in this book because it is proprietary.

SQL/XML can be divided into three main parts: the XML data type, SQL/XML 
functions, and SQL/XML mapping rules. I cover each of these as the major topics in the 
remainder of this chapter.

The XML Data Type
The XML data type is handled in the same general way as all the other data types discussed 
in Chapter 2. Storing data in XML format directly in the database is not the only way to 
use SQL and XML together. However, it is a very simple way to get started, because it is a 
logical extension of the earliest implementations where SQL developers simply stored the 
XML text in a column defined with a general character data type such as CHARACTER 
VARYING (VARCHAR). It is far better to tell the DBMS that the column contains XML, 
and the particular way the XML is coded, so that the DBMS can provide additional features 
tailored to the XML format.

The specification for the XML data type has this general format:

XML ( <type modifier> {( <secondary type modifier> )} )

The type modifier is required and must be enclosed in a pair of parentheses as shown, 
while the secondary type modifier is optional, and in fact is not supported for all type 
modifiers. The standard is not specific about how a particular SQL implementation should 
treat the various types, but some conventions and syntax rules are specified. The valid 
type modifiers are as follows:
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● DOCUMENT The DOCUMENT type is intended for storage of text documents 
formatted using XML. In general, the data values are expected to be composed of 
human-readable characters such as letters, numbers, and symbols as they would 
appear in an unstructured text document.

● CONTENT The CONTENT type is intended for more complex data that can include 
binary data such as images and sound clips.

● SEQUENCE The SEQUENCE type is intended for XQuery documents, which are 
often called XQuery sequences. XQuery is an advanced topic that is beyond the scope 
of this book.

The secondary type modifier, used only with the DOCUMENT and CONTENT 
primary type modifiers, can have one of these values:

● UNTYPED The XML data is not of a particular type.

● ANY The XML data is of any of the types supported by the SQL implementation.

● XMLSCHEMA The XMLSCHEMA type refers to a registered XML schema that 
has been made known to the database server. The three most common are shown in the 
following table:

Common Prefix Target Namespace URI (Uniform Resource Identifier)
Xs www.w3.org/2001/XMLSchema

Xsi www.w3.org/2001/XMLSchema-instance

Sqlxml standards.iso.org/iso/9075/2003/sqlxml

For SQL implementations that do not support the secondary type modifier, ANY is 
assumed as a default.

NOTE
Because SQL/XML is a relatively new standard, vendor implementation support varies. 
Oracle supports a XMLType data type instead of the XML type, but it applies at the table 
level so that the entire table is stored as XML. IBM’s DB2 UDB supports an XML type, 
but without the type modifiers. As mentioned, Microsoft SQL Server supports XML and 
an XML data type, but in a manner a bit different from the SQL/XML standard. As of 
version 5.0, MySQL provides no support for XML, but it is expected to be included in a 
future release.

Suppose we want to add the course syllabus to our course table that can be displayed 
on a web page. If the syllabus could come from several different sources, and thus be 
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formatted differently depending on the source, XML might be a good way to store the data 
in our course table. In the following example, I have added the column to the definition of 
the COURSE table that appears in Figure 13-1:

CREATE TABLE COURSE 
( COURSE_ID        INT, 
  COURSE_TITLE     VARCHAR(60), 
  DEPT_ID          CHAR(3), 
  COURSE_SYLLABUS  XML(DOCUMENT(UNTYPED)) );

NOTE
Although the ISO/ANSI SQL Standard specifies an XML data type in the form shown 
here, no major SQL implementations seem to support this syntax. However, the standard 
is quite new, so hopefully this syntax will be supported in the near future.

SQL/XML Functions
An SQL/XML function (also called an XML value function) is simply a function that 
returns a value as an XML type. For example, a query can be written that selects non-
XML data (that is, data stored in data types other than XML) and formats the query results 
into XML suitable for inclusion in an XML document that can be displayed on a web page 
or transmitted to some other party. In other words, SQL/XML does not always format 
complete documents—sometimes additional elements must be added to wrap the XML 
returned by the DBMS into a complete document. Table 13-1 shows the basic SQL/XML 
functions.

More functions exist than are listed here, and all these SQL/XML functions can be 
used in combinations to form extremely powerful (if not complicated) queries. Also, the 
functions available vary across SQL implementations. Let’s look at a simple example to 
clarify how these functions can be used. This example lists the courses for the Business 
department using the DEPARTMENT and COURSE tables shown in Figure 13-1. Here is 
the SQL statement, using the XMLELEMENT and XMLFOREST functions:

SELECT XMLELEMENT("DepartmentCourse", 
       XMLFOREST(a.DEPT_NAME as Department, a.DEPT_ID, b.COURSE_ID,  
                 b.COURSE_TITLE)) 
  FROM DEPARTMENT a JOIN COURSE b 
       ON a.DEPT_ID = b.DEPT_ID 
 WHERE a.DEPT_ID = 'BUS' 
 ORDER BY b.COURSE_ID;
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The results returned should look something like this:

<DepartmentCourse> 
  <Department>Business</Department> 
  <DEPT_ID>BUS</DEPT_ID> 
  <COURSE_ID>101</COURSE_ID> 
  <COURSE_TITLE>Accounting 101</COURSE_TITLE> 
</DepartmentCourse> 
<DepartmentCourse> 
  <Department>Business</Department> 
  <DEPT_ID>BUS</DEPT_ID> 
  <COURSE_ID>102</COURSE_ID> 
  <COURSE_TITLE>Concepts of Marketing</COURSE_TITLE> 
</DepartmentCourse>

Notice that the XML element names are taken from the column names, in uppercase 
with underscores as is customary in SQL. However, using the column alias, as I did for 
the DEPT_NAME column, you can change the column names to just about anything you 
want. Keep in mind that the result set is not necessarily a complete document (an XML 

Function Value Returned
XMLAGG A single XML value containing an XML forest formed by combining (aggregating) 

a collection of rows that each contain a single XML value

XMLATTRIBUTES An attribute in the form name=value within an XMLELEMENT

XMLCOMMENT An XML comment

XMLCONCAT A concatenated list of XML values, creating a single value containing an XML 
forest

XMLDOCUMENT An XML value containing a single document node

XMLELEMENT An XML element, which can be a child of a document node, with the name 
specified in the name parameter

XMLFOREST An XML element containing a sequence of XML elements formed from table 
columns, using the name of each column as the corresponding element name

XMLPARSE An XML value formed by parsing the supplied string without validating it

XMLPI An XML value containing an XML processing instruction

XMLQUERY The result of an XQuery expression (XQuery is a sublanguage used to search XML 
stored in the database; it is beyond the scope of this book)

XMLTEXT An XML value containing a single XML text node, which can be a child of a 
document node

XMLVALIDATE An XML sequence that is the result of validating an XML value

Table 13-1  SQL/XML Functions
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developer would say the XML may not be “well formed”). To turn the XML in the last 
example into a complete document, at the very least a root element is needed, along with 
its corresponding end tag. If we were to add the element <DepartmentCourses> at the 
beginning of the results and </DepartmentCourses> at the end of the results, we would 
have a well-formed document.

SQL/XML Mapping Rule
Thus far I have not discussed how SQL values are translated and represented as XML 
values and vice versa. The SQL standard describes in detail how SQL values can be 
mapped to and from XML values. This topic contains an overview of the SQL/XML 
mapping rules.

Mappings from SQL to XML
The mappings in this topic apply to translating data in SQL data types to XML.

Mapping SQL Character Sets to Unicode Unicode is an industry standard that 
allows computer systems to consistently represent (encode) text characters expressed in 
most of the world’s written languages. XML is often encoded as Unicode characters to 
allow for text in multiple languages. SQL character data is stored in whatever character set 
is specified when the table or database is created, and while most SQL implementations 
support Unicode, many other character sets can also be used. The SQL standard requires 
that each character in an SQL character set have a mapping to an equivalent Unicode 
character.

Mapping SQL Identifiers to XML Names It is necessary to define a mapping of 
SQL identifiers, such as table and column names, to XML names, because not all SQL 
identifiers are acceptable XML names. Characters that are not valid in XML names are 
converted to a sequence of hexadecimal digits derived from the Unicode encoding of 
the character, bracketed by an introductory underscore and lowercase x and a trailing 
underscore. For example, a colon (:) in an SQL identifier might be translated to _x003A_ 
in an XML name.

Mapping SQL Data Types to XML Schema Data Types This is perhaps the 
most complicated of the mapping forms. For each SQL type or domain, the SQL 
implementation is required to provide a mapping to the appropriate XML schema type. 
Detailed mapping of standard SQL types to XML schema data types is provided in the 
standard in exhaustive detail. I summarize them in Table 13-2.
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Table 13-2  Mapping of SQL Data Types to XML Schema Types

SQL Type XML Schema Type Notes
CHARACTER,  
CHARACTER VARYING, 
CHARACTER LARGE OBJECT

xs:string The XML facet xs:length is used to specify 
length for fixed length strings. (A facet is an 
element used to define a property of another 
element.)

NUMERIC 
DECIMAL

xs:decimal Precision and scale are specified using XML 
facets xs:precision and xs:scale.

INTEGER 
SMALLINT 
BIGINT

xs:integer This mapping is listed as implementation-
defined, meaning it is optional.

FLOAT 
REAL 
DOUBLE PRECISION

xs:float, xs:double For precisions up to 24 binary digits (bits) and 
an exponent between –149 and 104 inclusive, 
xs:float is used; otherwise xs:double is used.

BOOLEAN xs:Boolean

DATE xs:date The xs:pattern facet is used to exclude the use 
of a time zone displacement.

TIME WITH TIME ZONE 
TIME WITHOUT TIME ZONE

xs:time The xs:pattern facet is used to exclude or 
specify the time zone displacement, as 
appropriate.

TIMESTAMP WITH TIME 
ZONE; TIMESTAMP 
WITHOUT TIME ZONE

xs:dateTime The xs:pattern facet is used to exclude or 
specify the time zone displacement, as 
appropriate.

Interval types xdt:
yearMonthDuration, 
xdt:dayTimeDuration

Row type XML schema complex 
type

The XML document contains one element for 
each field of the SQL row type.

Domain XML schema data 
type

The domain’s data type is mapped to XML  
with an annotation that identifies the name of 
the domain.

SQL distinct type XML schema simple 
type

SQL collection type XML schema complex 
type

The complex type has a single element  
named element.

XML type XML schema complex 
type
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Mapping Values of SQL Data Types to Values of XML Schema Data Types For 
each SQL type or domain, with the exception of structured types and reference types, is a 
mapping of values for the type to the value space of the corresponding XML schema type. 
Null values are representing either using absence (skipping the element) or using the facet 
xsi:nil="true" to explicitly set the null value.

Mapping an SQL Table to an XML Document and an XML Schema 
Document The SQL standard defines a mapping of an SQL table to one or both of two 
documents: an XML schema document that describes the structure of the mapped XML, 
and either an XML document or a sequence of XML elements. This mapping applies only 
to base tables and viewed tables, and only columns visible to the database user can be 
mapped. The implementation may provide options for the following:

● Whether to map the table to a sequence of XML elements or as an XML document 
with a single root name derived from the table name

● The target namespace of the XML schema to be mapped

● Whether to map null values as absent elements or elements marked with facet  
xsi:nil="true"

● Whether to map the table into XML data, an XML schema document, or both

Mapping an SQL Schema to an XML Document and an XML Schema 
Document The SQL standard defines the mapping between the tables of an SQL 
schema and either an XML document that represents the data in the tables, an XML 
schema document, or both. Only tables and columns visible to the database user can be 
mapped. The implementation may provide options for the following:

● Whether to map each table as a sequence of XML elements or as an XML document 
with a single root name derived from the table name

● The target namespace of the XML schema to be mapped

● Whether to map null values as absent elements or elements marked with facet  
xsi:nil="true"

● Whether to map the schema into XML data, an XML schema document, or both

Mapping an SQL Catalog to an XML Document and an XML Schema 
Document The SQL standard defines the mapping between the tables of an SQL 
catalog and either an XML document that represents the data in the catalog’s tables 
or an XML schema document, or both. However, this part of the standard specifies no 
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Try This 13-1

syntax for invoking such mapping because it is intended to be used by applications or 
referenced by other standards. Only schemas visible to the SQL user can be mapped. The 
implementation may provide options for the following:

● Whether to map each table as a sequence of XML elements or as an XML document 
with a single root name derived from the table name

● The target namespace of the XML schema and data to be mapped

● Whether to map null values as absent elements or elements marked with facet  
xsi:nil="true"

● Whether to map the catalog into XML data, an XML schema document, or both

Mappings from XML to SQL This topic contains two mappings from XML back to SQL.

Mapping Unicode to SQL Character Sets As with the mapping of SQL character 
sets to Unicode, the SQL standard requires that there be an implementation-defined 
mapping of Unicode characters to the characters in each SQL character set supported by 
the SQL implementation.

Mapping XML Names to SQL Identifiers This is the reverse of the mapping of SQL 
identifiers to XML names, where characters that were converted because they were not 
valid in XML names are converted back to their original form. So, if a colon in an SQL 
identifier was converted to _x003A_ when translating the SQL identifier into XML, it 
would be converted back into a colon when the process was reversed. The SQL standard 
further recommends that the SQL implementation use a single algorithm for translation in 
both directions.

  Using SQL/XML Functions
In this Try This exercise, you will use XML functions to select XML formatted data 
from the Oracle HR sample schema used in Chapter 4. Obviously, if you chose to use a 
different RDBMS, your SQL implementation has to provide XML support in order for 
you to complete the exercise, and, as usual, you may have to modify the code included 
in this exercise to run it on your DBMS. As of this writing, Oracle and DB2 UDB are the 
only other DBMSs that support SQL/XML. For SQL Server, some recoding is required to 
use the Microsoft proprietary FOR XML clause instead of the SQL/XML functions. You 
can download the Try_This_13.txt file from the website (details in Appendix B), which 
contains not only the SQL statement used in this Try This exercise (with an alternative 

(continued)
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statement for use with SQL Server), but also the statements required to create the 
EMPLOYEES table and populate it with the data required for this exercise (in case you 
are not using the Oracle HR sample schema).

Step by Step
 1. Open the client application for your RDBMS.

 2. If you are not using an Oracle database that already has the HR sample schema 
installed, do the following to create a schema with the EMPLOYEES table and data 
needed to complete this exercise:

 a. If you are using Oracle, create a user named HR (this will create a schema with the 
same name). Consult Oracle documentation if you don’t know how to do this. Note 
that many of the GUI client tools such as SQL Developer have functions built in 
for creating new users.

 b. If you are using SQL Server or DB2, create a database called HR. (In these 
products, a database is the logical equivalent of a schema in Oracle.) Consult 
vendor documentation if you need help with this step.

 c. Connect to the schema (or database) that you just created. Many of the GUI tools 
provide a simple drop-down menu of available schemas for this purpose.

 d. Copy and paste the CREATE TABLE statement and the three INSERT statements 
from the Try_This_13.txt file into your SQL client and run them as a script.

 3. If you have not already done so, connect to the HR schema (Oracle) or database (SQL 
Server, DB2, and others).

 4. You are going to create an SQL query that uses three SQL/XML functions to 
format XML that contains an element for each employee of Department 90 in the 
EMPLOYEES table. Each element will include the ID of the employee, followed 
by separate elements containing the first name, last name, and phone number of the 
employee. Enter and execute the following statement (or copy and paste if from the 
Try_This_13.txt file). For SQL Server, the Try_This_13.txt file contains an alternative 
version that includes the Microsoft proprietary FOR XML clause.

SELECT XMLELEMENT("Employee", 
       XMLATTRIBUTES(EMPLOYEE_ID AS ID), 
       XMLFOREST(FIRST_NAME AS "FirstName", 
                 LAST_NAME AS "LastName", 
                 PHONE_NUMBER AS "Phone")) 
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  FROM EMPLOYEES 
 WHERE DEPARTMENT_ID = 90 
 ORDER BY EMPLOYEE_ID;

 5. The output produced should look something like the following. Note that the XML for 
each employee is output as a single line in the result set—I added the line breaks and 
indentation to make the results more understandable.

<Employee ID="100"> 
   <FirstName>Steven</FirstName> 
   <LastName>King</LastName> 
   <Phone>515.123.4567</Phone> 
 </Employee> 
<Employee ID="101"> 
   <FirstName>Neena</FirstName> 
   <LastName>Kochhar</LastName> 
   <Phone>515.123.4568</Phone> 
 </Employee> 
   <Employee ID="102"> 
   <FirstName>Lex</FirstName> 
   <LastName>De Haan</LastName> 
   <Phone>515.123.4569</Phone> 
 </Employee>

 6. Close the client application.

Try This Summary
In this Try This exercise, the SQL SELECT statement used three SQL/XML functions to 
format data from the EMPLOYEES table into XML. The XMLELEMENT function was 
used to create an element for each Employee. The XMLATTRIBUTES function was used 
to include the EMPLOYEE_ID value with the name ID as a value within the Employee 
element. Finally, the XMLFOREST function was used to create elements for the FIRST_
NAME, LAST_NAME, and PHONE_NUMBER columns.

Object-Oriented Applications
This section assumes that you have read and understood the section “The Object-Oriented 
Model” in Chapter 1. You may want to review it before continuing.

Object-oriented (OO) applications are written in an object-oriented programming 
language. These OO languages usually come with a predefined object class structure 



 386 Databases: A Beginner’s Guide

and predefined methods—but, of course, the developers can create their own classes 
and methods. Some come with a complete development environment that includes not 
only the language elements, but also an integrated OO database. It is important for you 
to understand that OO applications can be created without an OO database, and an OO 
database can exist (at least in theory) without an OO application to access it.

Object-Oriented Programming
Object-oriented programming uses messages as the vehicle for object interaction. A 
message in the OO context is composed of the identifier of the object that is to receive the 
message, the name of the method to be invoked by the receiving object, and, optionally, 
one or more parameters. You will recall from Chapter 1 that a method is a piece of 
application program logic that operates on a particular object and provides a finite 
function. The notion that all access to an object’s variables is done via its methods is 
essential to the OO paradigm. Therefore, OO programming involves writing methods that 
encompass the behavior of the object (that is, what the object does) and crafting messages 
within those methods whenever an object must interact with other objects. OO application 
development includes object and class design in addition to the aforementioned 
programming tasks.

The OO paradigm also supports complex objects, which are objects composed 
of one or more other objects. Usually, this is implemented using an object reference, 
where one object contains the identifier for one or more other objects. For example, a 
Customer object might contain a list of Order objects that the customer has placed, and 
each Order object might contain the identifier of the customer who placed the order. The 
unique identifier for an object is called the object identifier (OID), the value of which 
is automatically assigned to each object as it is created and is then invariant (that is, the 
value never changes).

Object-Oriented Languages
Let’s have a look at three of the most popular OO programming languages: Smalltalk, 
C++, and Java.

Smalltalk
The pioneering OO system was Smalltalk, developed in 1972 by the Software Concepts 
Group at the Xerox Palo Alto Research Center (PARC), led by Alan Kay. It was Kay 
who coined the term “object-oriented.” Smalltalk includes a language, a programming 
environment, an “image file system” to store objects and methods (more or less a 
database), and an extensive object library. Smalltalk’s innovations include a bitmap 
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display, a windowing system, and the use of a mouse. In an interesting twist of history, 
Xerox funded and owned the first commercial OO programming environment, the original 
windowing system, the mouse, and many other technical computing innovations. Yet, 
Xerox never figured out how to market any of them, so the company’s innovations fell 
into other hands over time and were eventually “introduced” into the market by other 
companies. Although not nearly as popular as it once was, Smalltalk is still around today, 
and you can find much more about it at www.smalltalk.org.

C++
As the name suggests, C++ is based on the C programming language. In fact, ++ is the 
operator in C that increments a variable by 1, so C++ literally means “C plus 1.” This 
superset of C was developed primarily by Bjarne Stroustrup at AT&T Bell Laboratories 
in 1986. Classes are implemented as user-defined types—a struct (structure) in C syntax. 
Methods are implemented as member functions of a struct. Object purists frown upon 
C++, claiming it’s not an OO language because programmers can ignore the object 
paradigm when they choose to and do such things as manipulating data directly using 
C language commands. C++ aficionados, on the other hand, see this as a huge benefit 
because it gives them a great deal of flexibility.

Java
Java is a simple, portable, general-purpose OO language that was developed by Sun 
Microsystems around 1995. It took the market by storm immediately after its introduction, 
largely because of its support for Internet programming in the form of platform-independent 
“applets.” Another advantage of Java is that it can run on very small computers due to the 
small size of its interpreter. Unlike Smalltalk and C++, Java is an interpretive language, 
which means that each statement is evaluated at runtime instead of being compiled ahead of 
time. A compiler is a program that converts a computer program from the source language 
the programmer used to write it to the machine language of the computer on which it is to 
be run. Initially, the interpreter hampered performance compared with compiled languages, 
but recent innovations, such as just-in-time compilers, which compile statements just prior to 
their execution, have helped enormously.

Object Persistence
Persistence is the OO property that preserves the state of an object between executions of 
an application and across the shutdown and startup of the computer system itself. In most 
cases, a database is used to store objects permanently, so it is the database that implements 
persistence. Objects must be loaded into memory for an application to access them, and 
any changes must be saved back to persistent storage when they are no longer required. 
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Object loading into memory is an indirect process, which means the application does not 
specifically request that an object be loaded—the application environment works with 
the database environment to load objects into memory automatically whenever they are 
accessed by an application. This access is usually in the form of a message that is sent 
to the object, but, as discussed in the next subsection, it may also occur when an object 
contains a reference to another object.

Let’s look at two methods for implementing object persistence using a database—the 
OO database and the relational database. In the next section, we explore a hybrid approach 
that combines features of both object-oriented and relational databases.

Persistence Using an OO Database
Figure 13-2 shows the retrieval of an object from persistent storage in an OO database. 
For the purposes of illustration, the specific components that execute each of the 
illustrated steps have been omitted, thereby showing what happens without worrying 
about how it happens. This is actually a very good way to think about OO databases, 
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because a common property of OO systems is to hide implementation details. As shown 
in Figure 13-2, the database contains persistent copies of objects A1, A2, A3, B1, and C1. 
Assume that the first letter denotes the object class to which the objects belong. Note that 
object B1 references object C1 as illustrated, using a broken line to connect them. This is 
a typical arrangement in which one object, such as an order, contains the object ID (OID) 
of a related object, such as the customer who placed the order. In an equivalent relational 
database, this relationship would be implemented using a foreign key in the order.

As shown in Figure 13-2, the sequence of events that takes place when an object is 
first referenced by the application is as follows:

 1. A request to retrieve the object is sent to the OO database, typically because a message 
in the application environment referenced the object. The OODBMS retrieves the 
object from persistent storage and passes it to the application environment. If the object 
contains references to other objects, the OODBMS may also automatically retrieve 
those objects, depending on the architecture of the OODBMS.

 2. If an object contains references to other objects, those references must be changed into 
memory addresses when the objects are loaded into memory. This process is known as 
swizzling the references. (The origin of the term swizzle is unknown, but it may have 
been derived from swizzle sticks that are used to stir drinks.) In persistent storage, the 
OID can be used as the reference because other storage structures similar to indexes 
can be used by the OODBMS to locate the related objects. For example, object B1 
contains the OID of object C1, and the OODBMS has no difficulty using the OID to 
locate the related object in the database’s persistent storage. However, the OID is of 
little use in locating the related object once the objects are loaded into memory because 
objects are loaded into any available memory location, which means there is no simple 
way to know the locations they occupy. Therefore, the OID is translated (swizzled) into 
the actual address that the related object occupies in memory to allow direct access of 
the related object in memory. The original OID is retained within the object because it 
will be needed when the object is stored back into the database.

 3. The object is made available to the application environment. That is, it is placed in a 
memory location, and any messages addressed to the object are routed to it. Usually, 
this also involves registering the object with the application environment so it can 
easily be found in memory the next time it is referenced.

The reverse process of storing an object back into the OO database when the application 
no longer needs to access it is exactly that—a reverse of the original process. The conditions 
that trigger moving the object back to persistent storage vary from one OODBMS to another 
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but typically involve a least recently used (LRU) algorithm. The LRU algorithm is a process 
that is invoked when space must be freed up for the loading of more objects into memory 
locations. The algorithm finds the objects that were accessed the longest time ago (that 
is, least recently), and it removes those objects from memory. And, of course, a request to 
shut down the database requires that every object in memory be made persistent before the 
database is shut down. The sequence of events to move an object from memory to persistent 
storage is as follows:

 1. The object is removed from its memory location, and any registration of the object in 
the application environment is deleted.

 2. Any memory addresses added to the object when references were swizzled are 
removed.

 3. If the object was modified while it was in memory, it is sent back to the OODBMS, 
which stores the new version.

Persistence Using a Relational Database
When the object data is stored in a relational database, some important differences are 
the result. First, everything in a relational database must be stored in a table. Therefore, 
objects must be translated to and from relational tables. Typically, each class is stored in a 
different relational table, with the rows in the tables representing object instances for the 
corresponding classes. Second, relational tables cannot store objects in their native format, 
because objects are composed of methods and a class hierarchy along with the data itself. 
The methods and class hierarchy are usually not stored in the relational database at all, 
but rather are maintained in a file system location (directory) that is managed by the 
application environment. Figure 13-3 illustrates this arrangement.

Take note of the differences between Figures 13-2 and 13-3. First, in the latter 
figure, the object data is stored in the database in tables. Second, an additional step is 
required when retrieving objects and making them available in memory—the data from 
the relational database must be mapped to object classes and variables. This can be 
accomplished in many different ways. A common approach with applications written in 
Java is to issue the relational SQL directly from a Java method using a Java Database 
Connectivity (JDBC) driver (introduced in Chapter 9), and within the same method, to 
relate the results returned by the JDBC driver to one or more objects. This is a manual 
and very labor-intensive approach for Java programmers. Fortunately, more automated 
solutions are available, wherein an application server or middleware product handles 
all the details of persistently storing objects in the relational database, including the 
translation between relational tables and objects. Figure 13-3 has been simplified to 
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show the steps required to assemble an object stored in a relational database and make 
it available in the application environment without any details as to which components 
handle the various steps.

As illustrated in Figure 13-3, here is the sequence of events required to assemble an 
object from data stored in a relational database:

 1. An SQL query is sent to the RDBMS to retrieve the table data (typically one row) from 
the database. The query is executed by the RDBMS and the resultant data sent to the 
application environment.

 2. The table data is mapped to the object. Typically, this involves assigning the table 
data to a class and the individual columns to variables within that class, along with 
retrieving the methods defined for the class from wherever they are stored in the file 
system. This mapping step is the proverbial Achilles heel of this architecture—it is 
expensive in terms of resources, and it requires design compromises because object 
data cannot always be perfectly represented in relational database tables.
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 3. As with Figure 13-2, any object references are swizzled.

 4. As with Figure 13-2, the object is placed in a memory location and registered with the 
application environment, making it available to the application.

When an object is no longer needed in memory, it must be placed back into persistent 
storage. The sequence of events is as follows:

 1. The object is removed from memory, and any registration with the application 
environment deleted. If the object was not modified while it was in memory, no other 
action is necessary; otherwise the sequence continues with the next step.

 2. Any memory addresses added for object references are removed.

 3. The data in the object is mapped back to the relational table row(s) from which it came. 
One or more SQL statements (INSERT, UPDATE, or DELETE) are formed to change 
the relational database data to match the object data. For efficiency, this often involves 
comparing before and after versions of the object (if available) so that only variables 
that changed in some way need to be referenced in the generated SQL statement(s). 
There is no need to do anything with the class structure or methods because they do 
not change when the object is used in the application environment. These components 
change only when a new version of the application is installed.

 4. The SQL statement(s) is (are) passed to the relational DBMS to be processed. If the 
object was not changed while it was in memory, this step is not required.

Object-Relational Databases
This section assumes you have read and understood the section “The Object-Relational 
Model” in Chapter 1. You may wish to review it before continuing. The object-relational 
DBMS (ORDBMS) evolved in response to the difficulties of mapping objects to relational 
databases and to market pressure from OODBMS vendors. Relational database vendors, 
such as Informix (subsequently acquired by IBM) and Oracle, added object extensions 
in hopes of preventing any loss of market share to the OODBMS vendors. To a large 
degree, this tactic appears to have worked, with pure OO databases gaining ground only 
in niche markets. Moreover, the lack of ad-hoc query capability in pure OO databases has 
certainly not helped it in the marketplace. The ORDBMS provides a blend of desirable 
features from the object world, such as the storage of complex data types, with the relative 
simplicity and ease of use of the relational model. Most industry experts believe that 
object-relational technology will continue to gain market share.
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The advantages of an object-relational database are as follows:

● Complex data types (that is, data types formed by combining other data types) are 
directly supported while preserving ad-hoc query capability.

● The DBMS may be extended to perform common functions (methods) centrally, 
which improves program logic reuse compared with a pure relational DBMS.

● Storing object functions (methods) in the database makes them available to all 
applications, which improves object sharing compared with a pure relational DBMS.

● Ad-hoc query capability is fully supported, which is a feature that is not supported in 
pure OO databases.

Here are the disadvantages of the object-relational approach:

● The combination is more complex than either pure relational or pure OO databases, 
leading to increased development costs.

● Objects are table-centric, meaning that all persistent objects must be stored within a table.

● Relational purists argue that the essential simplicity of the relational model is clouded 
by the object extensions.

● Object purists are not attracted to the extension of objects into relational databases, 
arguing that the ORDBMS is little more than a relational database with user-defined 
data types added.

● Current ORDBMSs lack the class structure and inheritance that are at the foundation 
of OODBMSs.

● Object applications are not as data-centric as relational applications, and therefore 
pure OO databases may better serve the needs of object applications.

In terms of deciding which database model is the best fit for a given application, 
consider the following points:

● Simple data with no requirement for ad-hoc query capability, such as static web pages, 
can be adequately stored in ordinary file system files.

● Simple data that requires ad-hoc query capability, such as customer data, fits well into 
a relational database.

● Complex data that does not require ad-hoc query capability, such as images, maps, and 
drawings, fits well into an object-oriented database.

● Complex data that requires ad-hoc query capability, such as purchase orders stored as 
composite data types, fits well into an object-relational database.
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 Chapter 13 Self Test
Choose the correct responses to each of the multiple-choice and fill-in-the-blank 
questions. Note that there may be more than one correct response to each question.

 1. XML is ____________.

 2. How do SQL databases and XML documents vary in terms of data structure?

 3. If two organizations are both using XML, does that mean that they have a standard way 
of exchanging data without having to create interface software?

 4. The valid secondary type modifiers for the SEQUENCE type modifier are __________.

 5. The ____________ XML schema type is mapped from the SQL NUMERIC data type.

 6. The ____________ XML schema type is mapped from the SQL DATE data type.

 7. The two ways that null values from the database can be represented in SQL/XML are 
____________ and ____________.

 8. Which of the following are common uses of XML?

 A Display database data on a web page

 B Create static web pages

 C Transmit database data to another party

 D Enforce business rules on documents

 9. Which of the following are valid type modifiers for the XML data type?

 A DOCUMENT

 B SEQUENCE

 C SQLXML

 D CONTENT

 10. Which of the following SQL/XML functions creates an element based on a table column?

 A XMLQUERY

 B XMLELEMENT

 C XMLFOREST

✓
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 D XMLDOCUMENT

 E XMLPARSE

 11. Object-oriented programming

 A Uses messages as a vehicle for object interaction

 B Allows an object to directly access the variables in a related object

 C Uses methods to define the behavior of an object

 D Requires objects to have a primary key

 E Supports the use of complex objects

 12. Object-oriented (OO) applications

 A Require the use of an OO database

 B Are written in an OO language

 C Use development environments that usually come with predefined classes

 D Use development environments that usually come with predefined methods

 E May be written in the C programming language

 13. Smalltalk

 A Was developed by Linus Torvalds

 B Was developed in 1972

 C Was developed at the Xerox PARC facility

 D Is based on the C programming language

 E Was the first OO programming language to include a windowing system and use of 
a mouse

14. C++

 A Was developed by Alan Kay

 B Was developed in 1976

 C Was developed at AT&T Bell Laboratories

 D Is based on the Java programming language

 E Allows programmers to ignore the object paradigm if they wish
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 15. Java

 A Was developed by Sun Microsystems

 B May be run only on large systems with lots of memory

 C Was developed around 1995

 D Is an interpretive language

 E Is a general-purpose OO language

 16. Object persistence

 A Preserves the state of an object between executions of an application

 B Preserves the state of an object across the shutdown and startup of the computer 
system

 C Loads objects into memory to preserve them permanently

 D Occurs when the application requests that an object be saved

 E Can be accomplished only with an OO database

 17. The events necessary to retrieve an object from an OO database include

 A A message is sent to the object, so the object must be loaded into memory.

 B A request to retrieve the object is sent to the OO database.

 C Object references are swizzled into memory addresses.

 D Relational data is assigned to an object class.

 E The object is made available to the application environment.

 18. The advantages of object-relational databases include

 A Objects are stored within tables.

 B Complex data types are supported.

 C Ad-hoc query capability is fully supported.

 D Class structures and inheritance are fully supported.

 E Centrally stored functions (methods) improve reuse.



 Chapter 13: Integrating XML Documents and Objects into Databases 397

 19. The disadvantages of object-relational databases include

 A The combination is more complex than either pure object-oriented or pure 
relational databases.

 B Ad-hoc query capability is limited.

 C Objects are table-centric.

 D Neither relational purists nor object purists are enamored with this combination.

 E Object applications are not as data-centric as relational ones.

 20. When considering the selection of a database model, which of the following facts 
should be taken into account?

 A Ordinary file system files can handle simple data, provided there are no ad-hoc 
query requirements.

 B Relational databases can handle simple data that has ad-hoc query requirements.

 C Object-oriented databases are best at handling complex data.

 D Object-relational databases can handle complex data that has ad-hoc query 
requirements.

 E Object-oriented databases can handle complex data, provided there are no ad-hoc 
query requirements.
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Chapter 1: Database Fundamentals
 1. The logical layer of the ANSI/SPARC model provides which of the following?

A. Physical data independence

B. Parent-child relationships

C. Logical data independence

D. Encapsulation

A is the correct answer.

 2. The external layer of the ANSI/SPARC model provides which of the following?

A. Physical data independence

B. Parent-child relationships

C. Logical data independence

D. Encapsulation

C is the correct answer.

 3. Which of the following is not true regarding user views?

A. Application programs reference them.

B. People querying the database reference them.

C. They can be tailored to the needs of the database user.

D. Data updates are shown in a delayed fashion.

D is the correct answer.

 4. The database schema is contained in the ____________ layer of the ANSI/SPARC model.

logical

 5. User views are contained in the ____________ layer of the ANSI/SPARC model.

external

 6. When application programs use flat file systems, where do the file definitions reside?

In the application programs

 7. Which of the following is true regarding the hierarchical database model?

A. It was first developed by Peter Chen.

B. Data and methods are stored together in the database.
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C. Each node may have many parents.

D. Records are connected using physical address pointers.

D is the correct answer.

 8. Which of the following is true regarding the network database model?

A. It was first developed by E.F. Codd.

B. Data and methods are stored together in the database.

C. Each node may have many parents.

D. Records are connected using common physical address pointers.

C and D are correct answers.

 9. Which of the following is true of the relational database model?

A. It was first developed by Charles Bachman.

B. Data and methods are stored together in the database.

C. Records are connected using physical address pointers.

D. Records are connected using common data items in each record.

D is the correct answer.

 10. Which of the following is true regarding the object-oriented model?

A. It was first developed by Charles Bachman.

B. Data and methods are stored together in the database.

C. Data is presented as two-dimensional tables.

D. Records are connected using common data items in each record.

B is the correct answer.

 11. Which of the following is true regarding the object-relational model?

A. It serves only a niche market and most experts believe it will stay that way.

B. Records are connected using physical address pointers.

C. It was developed by adding object-like properties to the relational model.

D. It was developed by adding relational-like properties to the object-oriented model.

C is the correct answer.

 12. According to advocates of the relational model, which of the following describe the problems 
with the CODASYL model?

A. It is too mathematical.

B. It is too complicated.
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C. Set-oriented queries are too difficult.

D. It has no formal underpinnings in mathematical theory.

B, C, and D are correct answers.

 13. According to advocates of the CODASYL model, which of the following describe the problems 
with the relational model?

A. It is too mathematical.

B. Set-oriented queries are too difficult.

C. Application systems need record-at-a-time processing.

D. It is less efficient than CODASYL model databases.

A, C, and D are correct answers.

 14. The ability to add a new object to a database without disrupting existing processes is an 
example of ____________.

logical data independence

 15. The property that most distinguishes a relational database table from a spreadsheet is the 
ability to present multiple users with their own ____________.

views of the data

Chapter 2: Exploring Relational Database Components
 1. Examples of an entity are

A. A customer

B. A customer order

C. An employee’s paycheck

D. A customer’s name

A, B, and C are correct answers.

 2. Examples of an attribute are

A. An employee

B. An employee’s name

C. An employee’s paycheck

D. An alphabetical listing of employees

B is the correct answer.
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 3. Which of the following denotes the cardinality of “zero, one, or more” on a relationship line? 

A. A perpendicular tick mark near the end of the line and a crow’s foot at the line end

B. A circle near the end of the line and a crow’s foot at the end of the line

C. Two perpendicular tick marks near the end of the line

D. A circle and a perpendicular tick mark near the end of the line

B is the correct answer.

 4. Valid types of relationships in a relational database are

A. One-to-many

B. None-to-many

C. Many-to-many

D. One-to-one

A, C, and D are correct answers.

 5. If a product can be manufactured in many plants, and a plant can manufacture many products, 
this is an example of which type of relationship?

A. One-to-one

B. One-to-many

C. Many-to-many

D. Recursive

C is the correct answer.

 6. Which of the following are examples of recursive relationships?

A. An organizational unit made up of departments

B. An employee who manages other employees

C. An employee who manages a department

D. An employee who has many dependents

B is the correct answer.

 7. Examples of a business rule are

A. A referential constraint must refer to the primary key of the parent table.

B. An employee must be at least 18 years old.

C. A database query eliminates columns an employee should not see.

D. Employees below pay grade 6 are not permitted to modify orders.

B and D are correct answers.
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 8. A relational table

A. Is composed of rows and columns

B. Must be assigned a data type

C. Must be assigned a unique name

D. Is the primary unit of storage in the relational model

A, C, and D are correct answers.

 9. A column in a relational table

A. Must be assigned a data type

B. Must be assigned a unique name within the table

C. Is derived from an entity in the conceptual design

D. Is the smallest named unit of storage in a relational database

A, B, and D are correct answers.

 10. A data type

A. Assists the DBMS in storing data efficiently

B. Provides a set of behaviors for a column that assists the database user

C. May be selected based on business rules for an attribute

D. Restricts characters allowed in a database column

A, B, C, and D are correct answers.

 11. A primary key constraint

A. Must reference one or more columns in a single table

B. Must be defined for every database table

C. Is usually implemented using an index

D. Guarantees that no two rows in a table have duplicate primary key values

A, C, and D are correct answers.

 12. A referential constraint

A. Must have primary key and foreign key columns that have identical names

B. Ensures that a primary key does not have duplicate values in a table

C. Defines a many-to-many relationship between two tables

D. Ensures that a foreign key value always refers to an existing primary key value in the parent table

D is the correct answer.
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 13. A referential constraint is defined

A. Using the Relationships panel in Microsoft Access

B. Using SQL in most relational databases

C. Using the referential data type for the foreign key column(s)

D. Using a database trigger

A and B are correct answers.

 14. Major types of integrity constraints are

A. CHECK constraints

B. One-to-one relationships

C. NOT NULL constraints

D. Constraints enforced with triggers

A, C, and D are correct answers.

 15. ____________ tables are used to resolve many-to-many relationships.

Intersection

 16. An entity in the conceptual design becomes a(n) ____________ in the logical design.

table

 17. An attribute in the conceptual design becomes a(n) ____________ in the logical design.

column

 18. Items in the external level of the ANSI/SPARC model become ____________ in the logical model.

views

 19. A relationship in the conceptual design becomes a(n) ____________ in the logical design.

referential constraint

 20. A primary key constraint is implemented using a(n) ____________ in the logical design.

index

Chapter 3: Forms-based Database Queries
 1. A forms-based query language

A. Was first developed by IBM in the 1980s

B. Describes how a query should be processed rather than what the results should be

C. Resembles SQL
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D. Uses a GUI (graphical user interface)

E. Was shown to be clearly superior in controlled studies

D is the correct answer.

 2. The object types in Microsoft Access that relate strictly to database management (as opposed to 
application development) are

A. Tables

B. Queries

C. Forms

D. Macros

E. Modules

A and B are correct answers.

 3. When a table is deleted from the Microsoft Access Relationships panel, what happens next?

A. It is immediately deleted from the database.

B. It remains unchanged in the database and is merely removed from the Relationships panel.

C. It remains in the database, but all data rows are deleted.

D. Relationships belonging to the table are also deleted.

B is the correct answer.

 4. Relationships on the Microsoft Access Relationships panel represent ____________ in the database.

referential constraints

 5. A column in the results of a Microsoft Access query can be formed from

A. A table column

B. A query column

C. A constant

D. A calculation

E. All of the above

E is the correct answer.

 6. When a query with no criteria included is executed, the result is 

A. An error message

B. No rows being displayed

C. All the rows in the table being displayed
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D. None of the above

C is the correct answer.

 7. When sequencing (sorting) of rows is not included in a database query, the rows returned by the 
query are in ____________ order.

no particular

 8. In a query, the search criteria REGION NOT = “CA” OR REGION NOT =“NV” will display

A. An error message

B. All the rows in the table

C. Only the rows in which Region is equal to “CA” or “NV”

D. All the rows in the table except those in which Region is NULL

E. All the rows in the table except those in which the Region is “CA” or “NV”

D is the correct answer.

 9. Criteria on different lines in a Microsoft Access query are connected with the ____________ 
logical operator.

OR

 10. The join connector between tables in a Microsoft Access query may

A. Be manually created by dragging a column from one table or view to a column of another table or view

B. Be inherited from the metadata defined on the Relationships panel

C. Be altered to define left, right, and full outer joins

D. Cause a Cartesian product if not defined between two tables or views in the query

E. All of the above

E is the correct answer.

 11. When an outer join is used, column data from tables (or views) in which no matching rows were 
found will contain ____________.

null values

 12. An aggregate function

A. Combines data from multiple columns together

B. Combines data from multiple rows together

C. May be applied to table columns but not to calculated columns

D.  Requires that every column in a query be either an aggregate function or named in the GROUP BY 
list for the query



 410 Databases: A Beginner’s Guide

E. All of the above

B and D are correct answers.

 13. Self-joins in a query are a method of resolving a ____________.

recursive relationship

 14. The column name of a calculated column in the query results is ____________ when not 
provided in the query definition.

automatically assigned by Microsoft Access

 15. Tables may be joined

A. Using only the primary key in one table and a foreign key in another

B. Using any column in either table (theoretically)

C. Only to themselves

D. Only to other tables

E. Only using the Cartesian product formula

B is the correct answer.

Chapter 4: Introduction to SQL
 1. SQL may be divided into the following subsets:

A. Data Selection Language (DSL)

B. Data Control Language (DCL)

C. Data Query Language (DQL)

D. Data Definition Language (DDL)

B and D are correct answers.

 2. SQL was first developed by ____________.

IBM

 3. A program used to connect to the database and interact with it is called a(n) ____________.

SQL client

 4. A SELECT without a WHERE clause

A. Selects all rows in the source table or view

B. Returns no rows in the result set

C. Results in an error message
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D. Lists only the definition of the table or view

A is the correct answer.

 5. In SQL, row order in query results

A. Is specified using the SORTED BY clause

B. Is unpredictable unless specified in the query

C. Defaults to descending when sequence is not specified

D. May be specified only for columns in the query results

B is the correct answer.

 6. The BETWEEN operator

A. Includes the end-point values

B. Selects rows added to a table during a time interval

C. Can be rewritten using the <= and NOT = operators

D. Can be rewritten using the <= and >= operators

A and D are correct answers.

 7. The LIKE operator uses ____________ as positional wildcards and ____________ as 
nonpositional wildcards.

underscores (_), percent signs (%)

 8. A subselect

A. May be corrugated or noncorrugated

B. Allows for the flexible selection of rows

C. Must not be enclosed in parentheses

D. May be used to select values to be applied to WHERE clause conditions

B and D are correct answers.

 9. A join without a WHERE clause or JOIN clause

A. Results in an error message

B. Results in an outer join

C. Results in a Cartesian product

D. Returns no rows in the result set

C is the correct answer.

 10. A join that returns all rows from both tables whether or not matches are found is known as a(n) 
____________.

full outer join
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 11. A self-join

A. Involves two different tables

B. Can be either an inner or outer join

C. Resolves recursive relationships

D. May use a subselect to further limit returned rows

B, C, and D are all correct responses.

 12. An SQL statement containing an aggregate function

A. Must contain a GROUP BY clause

B. May also include ordinary columns

C. May not include both GROUP BY and ORDER BY clauses

D. May also include calculated columns

B and D are correct answers.

 13. A(n) ____________ causes changes made by a transaction to become permanent.

COMMIT

 14. An INSERT statement

A. Must contain a column list

B. Must contain a VALUES list

C. May create multiple table rows

D. May contain a subquery

C and D are correct answers.

 15. An UPDATE statement without a WHERE clause

A. Results in an error message

B. Updates no rows in a table

C. Updates every row in a table

D. Results in a Cartesian product

C is the correct answer.

 16. A DELETE statement with a column list

A. Results in an error message

B. Deletes data only in the listed columns

C. Deletes every column in the table
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D. Can be used to delete from a view

A is the correct answer.

 17. A CREATE statement

A. Is a form of DML

B. Creates new user privileges

C. Creates a database object

D. May be reversed later using a DROP statement

C and D are correct answers.

 18. An ALTER statement

A. May be used to add a constraint

B. May be used to drop a constraint

C. May be used to add a view

D. May be used to drop a table column

A, B, and D are correct answers.

 19. The ____________ mode causes each SQL statement to commit as soon as it completes.

autocommit

 20. Database privileges

A. May be changed with an ALTER PRIVILEGE statement

B. May be either system or object privileges

C. Are best managed when assembled into groups using GROUP BY

D. Are managed using GRANT and REVOKE

B and D are correct answers.

Chapter 5: The Database Life Cycle
 1. The phases of a systems development life cycle (SDLC) methodology include which of the following?

A. Physical design

B. Logical design

C. Prototyping

D. Requirements gathering

E. Ongoing support

A, B, D, and E are correct responses.
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 2. During the requirements phase of an SDLC project,

A. User views are discovered.

B. The quality assurance (QA) environment is used.

C. Surveys may be conducted.

D. Interviews are often conducted.

E. Observation may be used.

A, C, D, and E are correct responses.

 3. The advantages of conducting interviews are

A. Interviews take less time than other methods.

B. Answers may be obtained for unasked questions.

C. A lot can be learned from nonverbal responses.

D. Questions are presented more objectively compared to survey techniques.

E. Entities are more easily discovered.

B and C are correct responses.

 4. The advantages of conducting surveys include

A. A lot of ground can be covered quickly.

B. Nonverbal responses are not included.

C. Most survey recipients respond.

D. Surveys are simple to develop.

E. Prototyping of requirements is unnecessary.

A is the correct response.

 5. The advantages of observation are

A. You always see people acting normally.

B. You are likely to see lots of situations in which exceptions are handled.

C.  You may see the way things really are instead of the way management and/or documentation 
presents them.

D. The Hawthorne effect enhances your results.

E. You may observe events that would not be described to you by anyone.

C and E are correct responses.
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 6. The advantages of document reviews are

A. Pictures and diagrams are valuable tools for understanding systems.

B. Document reviews can be done relatively quickly.

C. Documents will always be up to date.

D. Documents will always reflect current practices.

E. Documents often present overviews better than other techniques can.

A, B, and E are correct responses.

 7. Application program modules are specified during the SDLC ____________ phase.

conceptual design

 8. A feasibility study is often conducted during the ____________ phase of an SDLC project.

planning

 9. Normalization takes place during the ____________ phase of an SDLC project.

logical design

 10. DDL is written to define database objects during the ____________ phase of an SDLC project.

physical design

 11. Program specifications are written during the ____________ phase of an SDLC project.

logical design

 12. During implementation and rollout,

A. Users are placed on the live system.

B. Enhancements are designed.

C. The old and new applications may be run in parallel.

D. Quality assurance testing takes place.

E. User training takes place.

A, C, and E are correct responses.

 13. During ongoing support,

A. Enhancements are immediately implemented.

B. Storage for the database may require expansion.

C. The staging environment is no longer required.

D. Bug fixes may take place.

E. Patches may be applied if needed.

B, D, and E are correct responses.
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 14. When requirements are sketchy, ____________ can work well.

prototyping

 15. Rapid Application Development develops systems rapidly by skipping ____________.

20 percent of the requirements

 16. The three objectives depicted in the application triangle are ____________, ____________, and 
____________.

Quality, cost, delivery time (or good, fast, and cheap)

 17. The database is initially constructed in the ____________ environment.

development

 18. Database conversion is tested during the ____________ phase of an SDLC project.

implementation and rollout

 19. User views are analyzed during the ____________ phase of an SDLC project.

requirements gathering

 20. The relational database was invented by ____________. 

E.F. (Ted) Codd

Chapter 6: Database Design Using Normalization
 1. Normalization

A. Was developed by E.F. Codd

B. Was first introduced with five normal forms

C. First appeared in 1972

D. Provides a set of rules for each normal form

E. Provides a procedure for converting relations to each normal form

A, C, D, and E are correct answers.

 2. The purpose of normalization is

A. To eliminate redundant data

B. To remove certain anomalies from the relations

C. To provide a reason to denormalize the database

D. To optimize data-retrieval performance

E. To optimize data for inserts, updates, and deletes

B and E are correct answers.
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 3. When implemented, a third normal form relation becomes a(n) ____________.

table

 4. The insert anomaly refers to a situation in which

A. Data must be inserted before it can be deleted.

B. Too many inserts cause the table to fill up.

C. Data must be deleted before it can be inserted.

D. A required insert cannot be done due to an artificial dependency.

E. A required insert cannot be done due to duplicate data.

D is the correct answer.

 5. The delete anomaly refers to a situation in which

A. Data must be deleted before it can be inserted.

B. Data must be inserted before it can be deleted.

C. Data deletion causes unintentional loss of another entity’s data.

D. A required delete cannot be done due to referential constraints.

E. A required delete cannot be done due to lack of privileges.

C is the correct answer.

 6. The update anomaly refers to a situation in which

A. A simple update requires updates to multiple rows of data.

B. Data cannot be updated because it does not exist in the database.

C. Data cannot be updated due to lack of privileges.

D. Data cannot be updated due to an existing unique constraint.

E. Data cannot be updated due to an existing referential constraint.

A is the correct answer.

 7. The roles of unique identifiers in normalization are

A. They are unnecessary.

B. They are required once you reach third normal form.

C. All normalized forms require designation of a primary key.

D. You cannot normalize relations without first choosing a primary key.

E. You cannot choose a primary key until relations are normalized.

C and D are correct answers.
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 8. Writing sample user views with representative data in them is

A. The only way to normalize the user views successfully

B. A tedious and time-consuming process

C. An effective way to understand the data being normalized

D. Only as good as the examples shown in the sample data

E. A widely used normalization technique

B, C, and D are correct responses.

 9. Criteria useful in selecting a primary key from among several candidate keys are

A. Choose the simplest candidate.

B. Choose the shortest candidate.

C. Choose the candidate most likely to have its value change.

D. Choose concatenated keys over single attribute keys.

E. Invent a surrogate key if that is the best possible key.

A, B, and E are correct responses.

 10. First normal form resolves anomalies caused by ____________.

multivalued attributes

 11. Second normal form resolves anomalies caused by ____________.

partial dependencies

 12. Third normal form resolves anomalies caused by ____________.

transitive dependencies

 13. In general, violations of a normalization rule are resolved by

A. Combining relations

B. Moving attributes or groups of attributes to a new relation

C. Combining attributes

D. Creating summary tables

E. Denormalization

B is the correct answer.

 14. A foreign key in a normalized relation may be

A. The entire primary key of the relation

B. Part of the primary key of the relation
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C. A repeating group

D. A non-key attribute in the relation

E. A multivalued attribute

A, B, and D are correct answers.

 15. Boyce-Codd Normal Form deals with anomalies caused by ____________.

determinants that are not primary or candidate keys

 16. Fourth normal form deals with anomalies caused by ____________.

multivalued attributes

 17. Fifth normal form deals with anomalies caused by ____________.

join dependencies

 18. Domain key normal form deals with anomalies caused by ____________.

constraints that are not the result of the definitions of domains and keys

 19. Most business systems require that you normalize only as far as ____________:

third normal form

 20. Proper handling of multivalued attributes when converting relations to first normal form 
usually prevents subsequent problems with ____________.

fourth normal form

Chapter 7: Data and Process Modeling
 1. Why is it important for a database designer to understand process modeling?

A. Process design is a primary responsibility of the DBA.

B. The process model must be completed before the data model.

C. The data model must be completed before the process model.

D. The database designer must work closely with the process designer.

E. The database design must support the intended process model.

D and E are correct answers.

 2. Peter Chen’s ERD format represents “many” with ____________.

the symbol M placed near the end of the relationship line

 3. The diamond in Chen’s ERD format represents a(n) ____________.

relationship
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 4. The relational ERD format represents “many” with ____________.

a crow’s foot 

 5. The IDEF1X ERD format

A. Was first released in 1983

B. Follows a standard developed by the National Institute of Standards and Technology

C. Has many variants

D. Has been adopted as a standard by many U.S. government agencies

E. Covers both data and process models

B and D are correct answers.

 6. The IDEF1X ERD format shows

A. Identifying relationships with a solid line

B.  Minimal cardinality using a combination of small circles and vertical lines shown on the 
relationship line

C.  Maximum cardinality using a combination of small vertical lines and crow’s feet drawn on the 
relationship line

D. Dependent entities with squared corners on the rectangle

E. Independent entities with rounded corners on the rectangle

A is the correct answer.

 7. A subtype

A. Is a subset of the super type

B. Has a one-to-many relationship with the super type

C. Has a conditional one-to-one relationship with the super type

D. Shows various states of the super type

E. Is a superset of the super type

A and C are correct answers.

 8. Examples of possible subtypes for an Order entity super type include

A. Order line items

B. Shipped order, unshipped order, invoiced order

C. Office supplies order, professional services order

D. Approved order, pending order, canceled order
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E. Auto parts order, aircraft parts order, truck parts order

C and E are correct answers.

 9. In IE notation, subtypes

A. May be shown with a type discriminator attribute name

B. May be connected to the super type via a symbol composed of a circle with a line under it

C. Have the primary key of the subtype shown as a foreign key in the super type

D. Usually have the same primary key as the super type

E. May be shown using a crow’s foot

A, B, and D are correct answers.

 10. When subtypes are being considered in a database design, a tradeoff exists between __________ 
and ____________.

generalization, specialization

 11. In a flowchart, process steps are shown as ________ and decision points are shown as ________.

rectangles, diamonds

 12. The strengths of flowcharts are

A. They are natural and easy to use for procedural language programmers.

B. They are useful for spotting reusable components.

C. They are specific to application programming only.

D. They are equally useful for nonprocedural and object-oriented languages.

E. They can be easily modified as requirements change.

A, B, and E are correct answers.

 13. The basic components of a function hierarchy diagram are

A. Ellipses to show attributes

B. Rectangles to show process functions

C. Lines connecting the processes in order of execution

D. A hierarchy to show which functions are subordinate to others

E. Diamonds to show decision points

B and D are correct answers.

 14. The strengths of the function hierarchy diagram are

A. Checking quality is easy and straightforward.

B. Complex interactions between functions are easily modeled.



 422 Databases: A Beginner’s Guide

C. It is quick and easy to learn and use.

D. It clearly shows the sequence of process steps.

E. It provides a good overview at high and medium levels of detail.

C and E are correct answers.

 15. The basic components of a swim lane diagram are

A. Lines with arrows to show the sequence of process steps

B. Diamonds to show decision points

C. Vertical lanes to show the organization units that carry out process steps

D. Ellipses to show process steps

E. Open-ended rectangles to show data stores

A, C, and D are correct answers.

 16. The data flow diagram (DFD)

A. Is the most data-centric of all process models

B. Was first developed in the 1980s

C. Combines diagram pages together hierarchically

D. Was first developed by E.F. Codd

E. Combines the best of the flowchart and the function diagram

A, C, and E are correct answers.

 17. In a DFD, data stores are shown as ____________ and processes are shown as ____________.

open-ended rectangles, rounded rectangles

 18. The strengths of the DFD are

A. It’s good for top-down design work.

B. It’s quick and easy to develop, even for complex systems.

C. It shows overall structure without sacrificing detail.

D. It shows complex logic easily.

E. It’s great for presentation to management.

A, C, and E are correct answers.

 19. The components of the CRUD matrix are

A. Ellipses to show attributes

B. Major processes shown on one axis
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C. Major entities shown on the other axis

D. Reference numbers to show the hierarchy of processes

E. Letters to show the operations that processes carry out on entities

B, C, and E are correct answers.

 20. The CRUD matrix helps find the following problems:

A. Entities that are never read

B. Processes that are never deleted

C. Processes that only read

D. Entities that are never updated

E. Processes that have no create entity

A, C, and D are correct answers.

Chapter 8: Physical Database Design
 1. Business rules are implemented in the database using ____________.

constraints

 2. Two key differences between unique constraints and primary key constraints are ____________ 
and ____________.

a table may have only one primary key constraint; columns referenced in primary key constraints 
must be defined as NOT NULL

 3. Relationships in the logical model become ____________ in the physical model.

referential constraints

 4. Constraint names are important because ____________.

they appear in error messages

 5. When you’re designing tables,

A. Each normalized relation becomes a table.

B. Each attribute in the relation becomes a table column.

C. Relationships become check constraints.

D. Unique identifiers become triggers.

E. Primary key columns must be defined as NOT NULL.

A, B, and E are correct answers.
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 6. Super types and subtypes

A. Must be implemented exactly as specified in the logical design

B. May be collapsed in the physical database design

C. May have the super type columns folded into each subtype in the physical design

D. Usually have the same primary key in the physical tables

E. Apply only to the logical design

B, C, and D are correct answers.

 7. Table names

A. Should be based on the attribute names in the logical design

B. Should always include the word “table”

C. Should use only uppercase letters

D. Should include organization or location names

E. May contain abbreviations when necessary

C and E are correct answers.

 8. Column names

A. Must be unique within the database

B. Should be based on the corresponding attribute names in the logical design

C. Must be prefixed with the table name

D. Must be unique within the table

E. Should use abbreviations whenever possible

B and D are correct answers.

 9. Referential constraints

A. Define relationships identified in the logical model

B. Are always defined on the parent table

C. Require that foreign keys be defined as NOT NULL

D. Should have descriptive names

E. Name the parent and child tables and the foreign key column

A and D are correct answers.

 10. Check constraints

A. May be used to force a column to match a list of values

B. May be used to force a column to match a range of values
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C. May be used to force a column to match another column in the same row

D. May be used to force a column to match a column in another table

E. May be used to enforce a foreign key constraint

A, B, and C are correct answers.

 11. Data types

A. Prevent incorrect data from being inserted into a table

B. Can be used to prevent alphabetic characters from being stored in numeric columns

C. Can be used to prevent numeric characters from being stored in character format columns

D. Require that precision and scale be specified also

E. Can be used to prevent invalid dates from being stored in date columns

B and E are correct answers.

 12. View restrictions include which of the following?

A. Views containing joins can never be updated.

B. Updates to calculated columns in views are prohibited.

C. Privileges are required in order to update data using views.

D. If a view omits a mandatory column, inserts to the view are not possible.

E. Any update involving a view may reference columns only from one table.

B, C, D, and E are correct answers.

 13. Some advantages of views are

A. Views may provide performance advantages.

B. Views may insulate database users from table and column name changes.

C. Views may be used to hide joins and complex calculations.

D. Views may filter columns or rows that users should not see.

E. Views may be tailored to the needs of individual departments.

A, B, C, D, and E are correct answers.

 14. Indexes

A. May be used to assist with primary key constraints

B. May be used to improve query performance

C. May be used to improve insert, update, and delete performance

D. Are usually smaller than the tables they reference



 426 Databases: A Beginner’s Guide

E. Are slower to sequentially scan than corresponding tables

A, B, and D are correct answers.

 15. General rules to follow regarding indexes include which of the following?

A. The larger the table, the more important indexes become.

B. Indexing foreign key columns often helps join performance.

C. Columns that are frequently updated should always be indexed.

D. The more a table is updated, the more indexes will help performance.

E. Indexes on very small tables tend not to be very useful.

A, B, and E are correct answers.

Chapter 9: Connecting Databases to the Outside World
 1. In the centralized deployment model,

A. A web server hosts all web pages.

B. A “dumb” terminal is used as the client workstation.

C. Administration is quite easy because everything is centralized.

D. There are no single points of failure.

E. Development costs are often very high.

B and C are correct answers.

 2. In the distributed deployment model,

A. The database and/or application is partitioned and deployed on multiple computer systems.

B. Initial deployments were highly successful.

C. Distribution can be transparent to the user.

D. Costs and complexity are reduced compared with the centralized model.

E. Fault tolerance is improved compared with the centralized model.

A, C, and E are correct answers.

 3. In the two-tier client/server model,

A. All application logic runs on an application server.

B. A web server hosts the web pages.

C. The client workstation handles all presentation logic.

D. The database is hosted on a centralized server.
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E. Client workstations must be high-powered systems.

C, D, and E are correct answers.

 4. In the three-tier client/server model,

A. All application logic runs on an application server.

B. A web server hosts the web pages.

C. The client workstation handles all presentation logic.

D. The database is hosted on a centralized server.

E. Client workstations must be high-powered systems.

A, C, and D are correct answers.

 5. In the N-tier client/server model,

A. All application logic runs on an application server.

B. A web server hosts the web pages.

C. The client workstation handles all presentation logic.

D. The database is hosted on a centralized server.

E. Client workstations must be high-powered systems.

A, B, C, and D are correct answers.

 6. The Internet

A. Began as the U.S. Department of Education’s ARPANET

B. Dates back to the late 1960s and early 1970s

C. Always used TCP/IP as a standard

D. Is a worldwide collection of interconnected computer networks

E. Supports multiple protocols, including HTTP, FTP, and Telnet

B, D, and E are correct answers.

 7. A URL may contain

A. A protocol

B. A host name or IP address

C. A port

D. The absolute path to a resource on the web server

E. Arguments

A, B, C, D, and E are correct answers.
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 8. An intranet is available to ____________.

authorized internal members of an organization

 9. An extranet is available to ____________.

authorized outsiders

 10. The World Wide Web uses ____________ to navigate pages.

hyperlinks

 11. HTTP does not directly support the concept of a session because it is ____________.

stateless

 12. XML is extensible because ____________ can be defined.

custom tags

 13. Middleware solutions for Java connections made the RDBMS look like a(n) ________.

object-oriented database

 14. The web “technology stack” includes

A. A client workstation running a web browser

B. A web server

C. An application server

D. A database server

E. Network hardware (firewalls, routers, and so on)

A, B, C, D, and E are correct answers.

 15. The advantages of CGI are

A. Statelessness

B. Simplicity

C. Inherently secure

D. Widely accepted

E. Language and server independent

B, D, and E are correct answers.

 16. Server Side Includes (SSI)

A. Are commands embedded in a web document

B. Are non-CGI gateways

C. Are HTML macros



 Appendix A: Answers to Self Tests 429

D. Solve some of the CGI performance issues

E. Are inherently secure

A, C, and D are correct answers.

 17. The advantages of a non-CGI gateway are

A. Known for stability

B. Proprietary solution

C. Improved security over CGI solutions

D. Simpler than CGI

E. Runs in server address space

C and E are correct answers.

 18. ODBC is

A. A standard API for connecting to DBMSs

B. Independent of any particular language, operating system, or DBMS

C. A Microsoft standard

D. Used by Java programs

E. Flexible in handling proprietary SQL

A, B, and E are correct answers.

 19. JDBC is

A. A standard API for connecting to DBMSs

B. Independent of any particular language, operating system, or DBMS

C. A Microsoft standard

D. Used by Java programs

E. Flexible in handling proprietary SQL

A, D, and E are correct answers.

 20. JSQL is

A. A Sun Microsystems standard

B. A method of embedding SQL statements in Java

C. An extension of an ISO/ANSI standard

D. A middleware solution

E. Independent of any particular language, operating system, or DBMS

B and C are correct answers.
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Chapter 10: Database Security
 1. A collection of privileges that can be granted to multiple users is called a ___________.

role

 2. Privileges are rescinded using the SQL ____________ command.

REVOKE

 3. For database servers connected to a network, physical security alone is ____________.

inadequate

 4. Employees connecting to the enterprise network from home or another remote work location 
should have a ____________ between the computer and the cable or DSL modem.

firewall

 5. When login credentials are stored in the computer system, they must always be ______.

encrypted

 6. Network security

A. Can be handled by routers alone

B. Can be handled by firewalls alone

C. Must include provisions for remotely located employees

D. Should be mandatory for all computer systems connected to any network

C and D are correct responses.

 7. Firewall protection may include

A. Packet filtering

B. Packet selection using a routing table

C. Network address translation

D. Limiting ports that may be used for access

E. IP spoofing

A, C, and D are correct responses.

 8. Wireless networks need to be secured because

A. Inexpensive wireless access points are readily available.

B. Anyone with a wireless network adapter can connect to an unprotected network.

C. Employees may use the wireless network to communicate secretly with hackers.

D. Radio waves penetrate walls to adjoining offices.
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E. Radio waves may carry to public roads outside the building.

A, B, D, and E are correct responses.

 9. Components of wireless access point security include

A. Network address translation

B. The organization’s security policy

C. Encryption

D. Virtual private networks

E. MAC address lists

B, C, and E are correct responses.

 10. System-level security precautions include

A. Installing the minimal software components necessary

B. Granting only table privileges that users require

C. Applying security patches in a timely manner

D. Changing all default passwords

E. Using simple passwords that are easy to remember

A, C, and D are correct responses.

 11. Encryption

A. Should be used for all sensitive data

B. Should use keys of at least 28 bits in length

C. Should be used for sensitive data sent over a network

D. Can use symmetric or asymmetric keys

E. Should never be used for login credentials

A, C, and D are correct responses.

 12. Client security considerations include which of the following?

A. MAC address lists

B. Web browser security level

C. Granting only database table privileges that are absolutely necessary

D. Use of a virus scanner

E. Testing of application exposures

B, D, and E are correct responses.
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 13. In Microsoft SQL Server, a login (user login)

A. Can connect to any number of databases

B. Automatically has database access privileges

C. Can use Windows authentication

D. Can be authenticated by Microsoft SQL Server

E. Owns a database schema

A, C, and D are correct responses.

 14. In Microsoft SQL Server, a database

A. Is owned by a login

B. May have one or more users assigned to it

C. May contain system data (for example, master) or user (application) data

D. May be granted privileges

E. Is a logical collection of database objects

B, C, and E are correct responses.

 15. In Oracle, a user account

A. Can connect (log in) to any number of databases

B. Automatically has database privileges

C. Can use operating system authentication

D. Can be authenticated by the Oracle DBMS

E. Owns a database schema

B, C, D, and E are correct responses.

 16. In Oracle, a database

A. Is owned by a user

B. May have one or more user accounts defined in it

C. May contain system data (for example, system schema) and user (application) data

D. Is the same as a schema

E. Is managed by an Oracle instance

B, C, and E are correct responses.

 17. System privileges

A. Are granted in a similar way in Oracle, Sybase ASE, and Microsoft SQL Server

B. Are specific to a database object
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C.  Allow the grantee to perform certain administrative functions on the server, such as shutting it down

D. Are rescinded using the SQL REMOVE statement

E. Vary across databases from different vendors

A, C, and E are correct responses.

 18. Object privileges

A. Are granted in a similar way in Oracle, Sybase ASE, and Microsoft SQL Server

B. Are specific to a database object

C. Allow the grantee to perform certain administrative functions on the server, such as shutting it down

D. Are rescinded using the SQL REMOVE statement

E. Are granted using the SQL GRANT statement

A, B, and E are correct responses.

 19. Using WITH GRANT OPTION when granting object privileges

A. Allows the grantee to grant the privilege to others

B. Gives the grantee DBA privileges on the entire database

C. Can lead to security issues

D. Will cascade if the privilege is subsequently revoked

E. Is a highly recommended practice because it is so convenient to use

A, C, and D are correct responses.

 20. Views may assist with security policy implementation by

A. Restricting the table columns to which a user has access

B. Restricting the databases to which a user has access

C. Restricting table rows to which a user has access

D. Storing database audit results

E. Monitoring for database intruders

A and C are correct responses.

Chapter 11: Deploying Databases 
 1. A cursor is ____________.

a pointer into a result set

 2. A result set is ____________.

the collection of rows returned by a database query
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 3. The I in the ACID acronym stands for ____________.

isolation

 4. Before rows may be fetched from a cursor, the cursor must first be

A. Declared

B. Committed

C. Opened

D. Closed

E. Purged

A and C are correct responses.

 5. A transaction

A. May be partially processed and committed

B. May not be partially processed and committed

C. Changes the database from one consistent state to another

D. Is sometimes called a unit of work

E. Has properties described by the ACID acronym

B, C, D, and E are correct responses.

 6. Microsoft SQL Server supports the following transaction modes:

A. Autocommit

B. Automatic

C. Durable

D. Explicit

E. Implicit

A, D, and E are correct responses.

 7. Oracle supports the following transaction modes:

A. Autocommit

B. Automatic

C. Durable

D. Explicit

E. Implicit

A and E are correct responses.



 Appendix A: Answers to Self Tests 435

 8. The SQL statements (commands) that end a transaction are

A. SET AUTOCOMMIT

B. BEGIN TRANSACTION (in SQL Server)

C. COMMIT

D. ROLLBACK

E. SAVEPOINT

C and D are correct responses.

 9. The concurrent update problem

A. Is a consequence of simultaneous data sharing

B. Cannot occur when AUTOCOMMIT is set to ON

C. Is the reason that transaction locking must be supported

D. Occurs when two database users submit conflicting SELECT statements

E. Occurs when two database users make conflicting updates to the same data

A, C, and E are correct responses.

 10. A lock

A. Is a control placed on data to reserve it so that the user may update it

B. Is usually released when a COMMIT or ROLLBACK takes place

C. Has a timeout set in DB2 and some other RDBMS products

D. May cause contention when other users attempt to update locked data

E. May have levels and an escalation protocol in some RDBMS products

A, B, C, D, and E are correct responses.

 11. A deadlock

A. Is a lock that has timed out and is therefore no longer needed

B. Occurs when two database users each request a lock on data that is locked by the other

C. Can theoretically put two or more users in an endless lock wait state

D. May be resolved by deadlock detection on some RDBMSs

E. May be resolved by lock timeouts on some RDBMSs

B, C, D, and E are correct responses.

 12. Performance tuning

A. Is a never-ending process

B. Should be used on each query until no more improvement can be realized
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C. Should be used only on queries that fail to conform to performance requirements

D. Involves not only SQL tuning but also CPU, file system I/O, and memory usage tuning

E. Should be requirements based

A, C, D, and E are correct responses.

 13. SQL query tuning

A. Can be done in the same way for all relational database systems

B. Usually involves using an explain plan facility

C. Always involves placing SQL statements in a stored procedure

D. Applies only to SQL SELECT statements

E. Requires detailed knowledge of the RDBMS on which the query is to be run

B and E are correct responses.

 14. General SQL tuning tips include which of the following?

A. Avoid table scans on large tables.

B. Use an index whenever possible.

C. Use an ORDER BY clause whenever possible.

D. Use a WHERE clause to filter rows whenever possible.

E. Use views whenever possible.

A, B, and D are correct responses.

 15. SQL practices that obviate the use of an index are

A. Use of a WHERE clause

B. Use of a NOT operator

C. Use of table joins

D. Use of the NOT EQUAL operator

E. Use of wildcards in the first column of LIKE comparison strings

B, D, and E are correct responses.

 16. Indexes work well at filtering rows when

A. They are very selective.

B. The selectivity ratio is very high.

C. The selectivity ratio is very low.

D. They are unique.
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E. They are not unique.

A, B, and D are correct responses.

 17. The main performance considerations for INSERT statements are

A. Row expansion

B. Index maintenance

C. Free space usage

D. Subquery tuning

E. Any very large tables that are involved

B and C are correct responses.

 18. The main performance considerations for UPDATE statements are

A. Row expansion

B. Index maintenance

C. Free space usage

D. Subquery tuning

E. Any very large tables that are involved

A and B are correct responses.

 19. A change control process

A. Can prevent programming errors from being placed into production

B. May also be called change management

C. Helps with understanding when changes may be installed

D. Provides a log of all changes made

E. Can allow defective software versions to be backed out

B, C, D, and E are correct responses.

 20. Common features of change control processes include which of the following?

A. Transaction support

B. Version numbering

C. Deadlock prevention

D. Release numbering

E. Prioritization

B, D, and E are correct responses.



 438 Databases: A Beginner’s Guide

Chapter 12: Databases for Online Analytical Processing
 1. OLTP databases are designed to handle ____________ transaction volumes.

high

 2. OLAP queries typically access ____________ amounts of data.

large

 3. Compared with OLTP systems, data warehouse systems tend to have ____________ running 
queries.

longer

 4. Data warehousing was pioneered by ____________.

Bill Inmon

 5. The process of moving from more summarized data to more detailed data is known as ________.

drilling down

 6. The snowflake schema allows dimensions to have ____________.

dimensions of their own

 7. The starflake schema is a hybrid containing both ____________ and ____________ dimensions.

normalized, denormalized

 8. A data warehouse is

A. Subject oriented

B. Integrated from multiple data sources

C. Time variant

D. Updated in real time

E. Organized around one department or business function

A, B, and C are correct answers.

 9. Challenges with the data warehouse approach include

A. Updating operational data from the data warehouse

B. Underestimation of required resources

C. Diminishing user demands

D. Large, complex projects

E. High resource demands

B, D, and E are correct answers.
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 10. The summary table architecture

A. Was originally developed by Bill Inmon

B. Includes a fact table

C. Includes dimension tables

D. Includes lightly and highly summarized tables

E. Should include metadata

A, D, and E are correct answers.

 11. The star schema

A. Was developed by Ralph Kimball

B. Includes a dimension table and one or more fact tables

C. Always has fully normalized dimension tables

D. Was a key feature of the Red Brick DBMS

E. Involves multiple levels of dimension tables

A and D are correct answers.

 12. Factors to consider in designing the fact table include

A. Adding columns to the fact table

B. Reducing column sizes between the source and fact tables

C. Partitioning the fact table

D. How often it must be updated

E. How long history must remain in it

B, C, D, and E are correct answers.

 13. Multidimensional databases

A. Use a fully normalized fact table

B. Are best visualized as cubes

C. Have fully normalized dimension tables

D. Are sometimes called MOLAP databases

E. Accommodate dimensions beyond the third by repeating cubes for each additional dimension

B, D, and E are correct answers.

 14. A data mart

A. Is a subset of a data warehouse

B. Is a shop that sells data to individuals and businesses
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C. Supports the requirements of a particular department or business function

D. Can be a good starting point for organizations with no data warehouse experience

E. Can be a good starting point when requirements are sketchy

A, C, D, and E are correct answers.

 15. Reasons to create a data mart include

A. It is more comprehensive than a data warehouse.

B. It is a potentially lower risk project.

C. Data may be tailored to a particular department or business function.

D. It contains more data than a data warehouse.

E. The project has a lower overall cost than a data warehouse project.

B, C, and E are correct answers.

 16. Building a data warehouse first, followed by data marts

A. Will delay data mart deployment if the data warehouse project drags on

B. Has lower risk than trying to build them all together

C. Has the lowest risk of the three possible strategies

D. Has the highest risk of the three possible strategies

E. May require a great deal of rework

A and B are correct answers.

 17. Building one or more data marts first, followed by the data warehouse

A. May delay data warehouse delivery if the data mart projects drag on

B. Has the potential to deliver some OLAP functions more quickly

C. Has the lowest risk of the three possible strategies

D. Has the highest risk of the three possible strategies

E. May require a great deal of rework

B, C, and E are correct answers.

 18. Building the data warehouse and data marts simultaneously

A. Creates the largest single project of all the possible strategies

B. Has the potential to take the longest to deliver any OLAP functions

C. Has the lowest risk of the three possible strategies

D. Has the highest risk of the three possible strategies
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E. May require a great deal of rework

A, B, and D are correct answers

 19. Data mining

A. Creates a scaled-down data warehouse

B. Extracts previously unknown data correlations from the data warehouse

C. Can be successful with small amounts of data

D. Is most useful when the organization is agile enough to take action based on the information

E. Usually requires large data volumes in order to produce accurate results

B, D, and E are correct answers.

 20. Properties of data warehouse systems include

A. Holding historic rather than current information

B. Long-running queries that process many rows of data

C. Support for day-to-day operations

D. Process orientation

E. Medium to low transaction volume

A, B, and E are correct answers.

Chapter 13: Integrating XML Documents  
and Objects into Databases
 1. XML is ____________.

a general-purpose markup language used to describe data

 2. How do SQL databases and XML documents vary in terms of data structure?

XML defines sequence and a hierarchical tree structure, while SQL does not.

 3. If two organizations are both using XML, does that mean that they have a standard way of 
exchanging data without having to create interface software?

Not necessarily. The two organizations must use a common definition for the elements within the 
XML documents to be exchanged before they can process them without the need to perform any 
interpretation or conversion.

 4. The valid secondary type modifiers for the SEQUENCE type modifier are __________.

The SEQUENCE type modifier cannot have a secondary type modifier.
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 5. The ____________ XML schema type is mapped from the SQL NUMERIC data type.

xs:decimal

 6. The ____________ XML schema type is mapped from the SQL DATE data type.

xs:date

 7. The two ways that null values from the database can be represented by SQL/XML are ________ 
and ____________.

Absent element, xsi:nil="true"

 8. Which of the following are common uses of XML?

A. Display database data on a web page

B. Create static web pages

C. Transmit database data to another party

D. Enforce business rules on documents

A and C are correct answers.

 9. Which of the following are valid type modifiers for the XML data type?

A. DOCUMENT

B. SEQUENCE

C. SQLXML

D. CONTENT

A, B, and D are correct answers.

 10. Which of the following SQL/XML functions creates an element based on a table column?

A. XMLQUERY

B. XMLELEMENT

C. XMLFOREST

D. XMLDOCUMENT

E. XMLPARSE

C is the correct answer.

 11. Object-oriented programming

A. Uses messages as a vehicle for object interaction

B. Allows an object to directly access the variables in a related object

C. Uses methods to define the behavior of an object



 Appendix A: Answers to Self Tests 443

D. Requires objects to have a primary key

E. Supports the use of complex objects

A, C, and E are correct answers.

 12. Object-oriented (OO) applications

A. Require the use of an OO database

B. Are written in an OO language

C. Use development environments that usually come with predefined classes

D. Use development environments that usually come with predefined methods

E. May be written it the C programming language

B, C, and D are correct answers.

 13. Smalltalk

A. Was developed by Linus Torvalds

B. Was developed in 1972

C. Was developed at the Xerox PARC facility

D. Is based on the C programming language

E. Was the first OO programming language to include a windowing system and use of a mouse

B, C, and E are correct answers.

 14. C++

A. Was developed by Alan Kay

B. Was developed in 1976

C. Was developed at AT&T Bell Laboratories

D. Is based on the Java programming language

E. Allows programmers to ignore the object paradigm if they wish

C and E are correct answers.

 15. Java

A. Was developed by Sun Microsystems

B. May be run only on large systems with lots of memory

C. Was developed around 1995

D. Is an interpretive language

E. Is a general-purpose OO language

A, C, D, and E are correct answers.
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 16. Object persistence

A. Preserves the state of an object between executions of an application

B. Preserves the state of an object across the shutdown and startup of the computer system

C. Loads objects into memory to preserve them permanently

D. Occurs when the application requests that an object be saved

E. Can be accomplished only with an OO database

A, B, and D are correct answers.

 17. The events necessary to retrieve an object from an OO database include

A. A message is sent to the object, so the object must be loaded into memory.

B. A request to retrieve the object is sent to the OO database.

C. Object references are swizzled into memory addresses.

D. Relational data is assigned to an object class.

E. The object is made available to the application environment.

A, B, C, and E are correct answers.

 18. The advantages of object-relational databases include

A. Objects are stored within tables.

B. Complex data types are supported.

C. Ad-hoc query capability is fully supported.

D. Class structures and inheritance are fully supported.

E. Centrally stored functions (methods) improve reuse.

B, C, and E are correct answers.

 19. The disadvantages of object-relational databases include

A. The combination is more complex than either pure object-oriented or pure relational databases.

B. Ad-hoc query capability is limited.

C. Objects are table-centric.

D. Neither relational purists nor object purists are enamored with this combination.

E. Object applications are not as data-centric as relational ones.

A, C, D, and E are correct answers.
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 20. When considering the selection of a database model, which of the following facts should be 
taken into account?

A. Ordinary file system files can handle simple data, provided there are no ad-hoc query requirements.

B. Relational databases can handle simple data that has ad-hoc query requirements.

C. Object-oriented databases are best at handling complex data.

D. Object-relational databases can handle complex data that has ad-hoc query requirements.

E. Object-oriented databases can handle complex data, provided there are no ad-hoc query requirements.

A, B, C, D, and E are correct answers.
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Try This 5-1

This appendix contains my solutions to the Try This exercises contained in various chapters. 
In any design endeavor, many solutions are possible. Database design is no different in 

this regard; it is not an exact science, and therefore there is some latitude for alternative 
solutions. If your solution is different from mine, that does not necessarily mean that your 
solution is incorrect, provided your solution meets the requirements stated in the exercise.

The source files for these solutions may also be downloaded from the McGraw-Hill 
Professional website. Follow these steps to download the files:

 1. Open your web browser and go to www.mhprofessional.com.

 2. In the Search box, near the top of the page, type Databases A Beginner’s Guide and 
click SEARCH.

 3. Click on the displayed image of the book to display the book’s information page.

 4. Find the download links under the image of the book along the left margin. Select 
the files you want and either click to open them or right-click to save them to your 
personal computer.

  Solution: Project Database  
Management Tasks

Project Phase Task
Planning w. Evaluate available DBMS options

Requirements Gathering f. Determine the views required by the business users

r. Identify the attributes required by the business users

t. Identify and document business data requirements

Conceptual Design l. Specify a logical name for each entity and attribute

q. Document business rules that cannot be represented in the data model

s. Identify the relationships between the entities

Logical Design a. Normalization

b. Add foreign keys to the database

d. Specify the unique identifier for each relation

g. Remove data that is easily derived

h. Resolve many-to-many relationships

l. Specify a logical name for each entity and attribute

p. Translate the conceptual data model into a logical model
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q. Document business rules that cannot be represented in the data model

s. Identify the relationships between the entities

Physical Design c. Specify the physical placement of database objects on storage media

e. Specify the primary key for each table

j. Modify the database to meet business requirements

m. Specify a physical name for each table and column

o. Specify database indexes

Construction i. Define views in the database

u. Ensure that user data requirements are met

Implementation and Support k. Denormalize the database for performance

n. Add derivable data to improve performance

v. Tune the database to improve performance

Ongoing Support j. Modify the database to meet business requirements

k. Denormalize the database for performance

n. Add derivable data to improve performance

u Ensure that user data requirements are met

v. Tune the database to improve performance

 Solution: UTLA Academic Tracking
Here are the normalized relations for Try This 6-1, with (PK) denoting primary key attributes:

COURSE: COURSE ID (PK), TITLE, DESCRIPTION, NUMBER OF CREDITS 
 
INSTRUCTOR: INSTRUCTOR ID (PK), INSTRUCTOR NAME, HOME ADDRESS STREET, 
            HOME ADDRESS CITY, HOME ADDRESS STATE,  
            HOME ADDRESS ZIP CODE, HOME PHONE, OFFICE PHONE 
 
COURSE SECTION: SECTION ID (PK), CALENDAR_YEAR, SEMESTER, COURSE ID, 
                BUILDING, ROOM, MEETING DAY, MEETING TIME, 
                INSTRUCTOR ID 
 
STUDENT: STUDENT ID (PK), STUDENT NAME, HOME ADDRESS, 
         HOME ADDRESS CITY, HOME ADDRESS STATE,  
         HOME ADDRESS ZIP CODE, HOME PHONE 
 
STUDENT SECTION: STUDENT ID (PK), SECTION ID (PK), GRADE 
 
COURSE PREREQUISITE: COURSE ID (PK), PREREQUISITE COURSE ID (PK) 
 
COURSE INSTRUCTOR QUALIFIED: INSTRUCTOR ID (PK), COURSE ID (PK)
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A few notes on this particular solution are in order:

● No simple natural key exists for the Course Section relation, so a surrogate key was added.

● The Course Prerequisite relation can be quite confusing. This is the intersection 
relation for a many-to-many recursive relationship. A course can have many 
prerequisites, which may be found by joining COURSE ID in the COURSE relation 
with COURSE ID in the COURSE PREREQUISITE relation. At the same time, 
any course may be a prerequisite for many other courses. These may be found by 
joining COURSE ID in the COURSE relation with PREREQUISITE COURSE ID 
in the COURSE PREREQUISITE relation. This means that two relationships exist 
between the COURSE and COURSE PREREQUISITE: one in which COURSE 
ID is the foreign key and another in which PREREQUISITE COURSE ID is the 
foreign key. Comparing the upcoming illustrations for the COURSE and COURSE_
PREREQUISITE tables should help make this point clear.

To assist you in visualizing how all this works, the following illustrations show each 
of the tables as implemented in a Microsoft Access database, each loaded with the data 
from the original user view (report) examples. The last illustration shows the ERD for the 
solution, using the Microsoft Relationships panel as the presentation media.
COURSE table:

INSTRUCTOR table:
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COURSE_SECTION table:

STUDENT table:

STUDENT_SECTION table:

COURSE_PREREQUISITE table:
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Try This 6-2

COURSE_INSTRUCTOR_QUALIFIED table:

ERD for TLA University:

 Solution: Computer Books Company
Here are the normalized relations for Try This 6-2, with primary keys noted with (PK):

BOOK: ISBN (PK), BOOK TITLE, SUBJECT CODE, PUBLISHER ID, 
      EDITION CODE, EDITION COST, SELLING PRICE, 
      QUANTITY ON HAND, QUANTITY ON ORDER, 
      RECOMMENDED QUANTITY, PREVIOUS EDITION ISBN 
 
CUSTOMER ORDER: CUSTOMER ORDER NUMBER (PK), CUSTOMER ID, 
      ORDER DATE 
 
CUSTOMER ORDER BOOK: CUSTOMER ORDER NUMBER (PK), ISBN (PK), 
      QUANTITY, BOOK PRICE 
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SUBJECT: SUBJECT CODE (PK), DESCRIPTION 
 
AUTHOR: AUTHOR ID (PK), AUTHOR NAME 
 
BOOK-AUTHOR: AUTHOR ID (PK), ISBN (PK) 
 
CUSTOMER: CUSTOMER ID (PK), CUSTOMER_NAME, STREET ADDRESS, CITY, 
      STATE, ZIP CODE, PHONE NUMBER, BALANCE DUE 
 
PUBLISHER: PUBLISHER ID (PK), PUBLISHER NAME, STREET ADDRESS, 
      CITY, STATE, ZIP CODE, AMOUNT PAYABLE 
 
SHIPPED ORDER (RECEIVABLE): SALES INVOICE NUMBER (PK), 
      CUSTOMER ORDER NUMBER, SALES TAX, SHIPPING CHARGES 
 
SHIPPED ORDER BOOK: SALES INVOICE NUMBER (PK), ISBN (PK), 
      PRICE_AT_SALE, QUANTITY 
 
PURCHASE (PAYABLE): PURCHASE INVOICE NUMBER (PK), PUBLISHER_ID, 
      INVOICE DATE, INVOICE AMOUNT 
 
PURCHASE BOOK: PURCHASE INVOICE NUMBER (PK), ISBN (PK), QUANTITY, 
      COST EACH

Here is an ERD that shows the complete design, implemented in Microsoft Access:
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Try This 7-1  Solution: Draw an ERD in Information 
Engineering (IE) Format

The following illustration shows my solution to Try This 7-1:

PERSON

PERSON_ID

FIRST_NAME 
LAST_NAME 
BIRTH_DATE 
GENDER 
FATHER_PERSON_ID (FK) 
MOTHER_PERSON_ID (FK)

MARRIAGE

PERSON_ID_1 (FK) 
PERSON_ID_2 (FK) 
MARRIAGE_DATE

END_DATE

EMPLOYEE

PERSON_ID (FK)

EMPLOYEE_ID 
HIRE_DATE 
TERMINATION_DATE

CUSTOMER

CUSTOMER_NUMBER

NAME 
ADDRESS 
CITY 
STATE 
ZIP_CODE 
PHONE

Spouse 1

Reachable via

works for

CUSTOMER CONTACT

PERSON_ID (FK)

CUSTOMER_ID (FK)

Spouse 2

Father
Mother
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Try This 8-1

Try This 10-1

  Solution: Mapping a Logical Model  
to a Physical Database Design

The following illustration shows my solution to Try This 8-1:

  Solution: Database Object Privileges
Here are the SQL statements used in Try This exercise 10-1:

CREATE TABLE DEPARTMENT 
  (DEPARTMENT_CODE    CHAR(3), 
   DEPARTMENT_NAME    VARCHAR(50)); 
 
 
GRANT SELECT, INSERT ON DEPARTMENT TO USER1;
 
INSERT INTO DATA1.DEPARTMENT 
VALUES ('001','Executive'); 
 
SELECT * FROM DATA1.DEPARTMENT 
 WHERE DEPARTMENT_CODE = '001';
 
DELETE FROM DATA1.DEPARTMENT 
 WHERE DEPARTMENT_CODE = '001';
 

ADDRESS
CITY
STATE

WORKER

WORKER_ID

WORKER_TYPE 
FIRST_NAME 
LAST_NAME 
FTE_RATIO 
HOURLY_RATE

CONTRACTOR

WORKER_ID (FK)

START_DATE 
END_DATE

EMPLOYEE

WORKER_ID (FK)

EMPLOYEE_TYPE 
HIRE_DATE 
TERMINATION_DATE 
REINSTATEMENT_DATE 
PAY_GRADE 
ANNUAL_SALARY

PROJECT_ASSIGNMENT

WORKER_ID (FK) 
PROJECT_ID (FK)

START_DATE 
END_DATE 
FTE_RATIO

PROJECT

PROJECT_ID

PROJECT_NAME
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Try This 11-1

Try This 12-1

DROP TABLE DATA1.DEPARTMENT;
 
DROP TABLE DEPARTMENT;

  Solution: SQL Transaction Support
Here are the SQL statements used in Try This exercise 11-1:

DROP TABLE DEPARTMENT; 
 
CREATE TABLE DEPARTMENT 
  (DEPARTMENT_CODE    CHAR(3), 
   DEPARTMENT_NAME    VARCHAR(50));

SET IMPLICIT_TRANSACTIONS ON 
 
INSERT INTO DEPARTMENT 
VALUES ('001','Executive'); 
 
SELECT * FROM DEPARTMENT; 
 
ROLLBACK; 
 
INSERT INTO DEPARTMENT 
VALUES ('001','Executive'); 
 
COMMIT; 
 
ROLLBACK; 
 
SELECT * FROM DEPARTMENT; 
 
DROP TABLE DEPARTMENT; 
COMMIT;

   Solution: Design Star Schema Fact  
and Dimension Tables

Here are the fact and dimension tables designed in Try This exercise 12-1:

BOOK (FACT):  ISBN (PK), SUBJECT CODE(FK), PUBLISHER ID(FK), 
      EDITION COST, SELLING PRICE, QUANTITY ON HAND, QUANTITY ON ORDER, 
      RECOMMENDED QUANTITY 
 
BOOK TITLE (DIMENSION):  BOOK TITLE, EDITION CODE, PREVIOUS ISBN 
SUBJECT (DIMENSION):  SUBJECT CODE (PK), DESCRIPTION 
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Try This 13-1

AUTHOR (DIMENSION):  ISBN (PK), AUTHOR ID (PK), AUTHOR NAME 
 
PUBLISHER (DIMENSION): PUBLISHER ID (PK), PUBLISHER NAME, STREET ADDRESS, 
      CITY, STATE, ZIP CODE

  Solution: Using SQL/XML Functions
If you are not using an Oracle database with Oracle’s HR sample schema, here is the SQL 
code to create an Employees table with the necessary columns and populate it with the 
three rows needed for this exercise:

CREATE TABLE EMPLOYEES 
  (EMPLOYEE_ID   NUMBER(6)  NOT NULL, 
   FIRST_NAME    VARCHAR(20), 
   LAST_NAME     VARCHAR(20), 
   PHONE_NUMBER  VARCHAR(20), 
   DEPARTMENT_ID NUMBER(4)); 
 
INSERT INTO EMPLOYEES 
  VALUES(100,'Steven','King','515.123.4567',90); 
INSERT INTO EMPLOYEES 
  VALUES(101,'Neena','Kochhar','515.123.4568',90); 
INSERT INTO EMPLOYEES 
  VALUES(102,'Lex','DeHaan','515.123.4569',90); 
COMMIT;

Here is the SQL statement used in Try This 13-1:

SELECT XMLELEMENT("Employee", 
       XMLATTRIBUTES(EMPLOYEE_ID AS ID), 
       XMLFOREST(FIRST_NAME AS "First Name", 
                 LAST_NAME AS "Last Name", 
                 PHONE_NUMBER AS "Phone")) 
  FROM EMPLOYEES 
 WHERE DEPARTMENT_ID = 90 
 ORDER BY EMPLOYEE_ID;
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Index

* (asterisk), 132–133, 138, 148
|| (concatenation operator), 150
! (exclamation point), 80
* (multiplication operator), 105
% (percent sign), 137–138
+ (plus sign), 148, 150
# (pound sign), 80
? (question mark), 138
_ (underscore), 137, 138
; (semicolon), 119
[ ] (square brackets), 105
= (equal to) operator, 80
> (greater than) operator, 80
>= (greater than or equal to) operator, 80
< (less than) operator, 80
<= (less than or equal to) operator, 80
<> (not equal to) operator, 80, 91–94
( ) parentheses, 136, 156, 157
80/20 rule, 183

A
Access. See Microsoft Access
access security, 314–322

ACID (Atomicity, Consistency, Isolation, 
Durability), 333

ACM SIGMOD (Special Interest Group on 
Management of Data) conference,  
22–23

Acme Industries example, 192–209
Active Server Pages (ASP), 294
Actuate product, 358
ad hoc queries, 8, 17, 21, 65, 392–393
Administration option, 125
aggregate functions

SQL, 150–154
“Try This” exercise, 106–109

aggregation, 230
aliases. See synonyms
ALTER command, 159
ALTER TABLE statement, 161–162
American National Standards Institute  

(ANSI), 120
American National Standards Institute/

Standards Planning and Requirements 
Committee (ANSI/SPARC), 6

analysis paralysis, 175
AND operator, 94, 140–141
anomalies, 192–193
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ANSI (American National Standards  
Institute), 120

ANSI/SPARC (American National Standards 
Institute/Standards Planning and 
Requirements Committee), 6

answers, to self-tests, 401–445
ANY type, 377
API (application programming interface), 295
Application Builder option, 125
Application Express. See Oracle  

Application Express
application gateway, 307
application programming interface (API), 295
application programs, 8, 11, 13, 38, 72
application server, 287–297
applications. See also Oracle  

Application Express
bug fixes, 181
building, 72
connecting databases to, 295–297
described, 6
Java, 295, 296–297
minimal use of, 313
object-oriented, 385–392
Rapid Application Development, 183
security guidelines, 311–314
testing exposures, 314

ARPANET, 290
artificial identifiers, 196
AS keyword, 150
ASP (Active Server Pages), 294
asterisk (*), 132–133, 138, 148
asymmetric keys, 312
atomic quality, 32
atomicity, 333
Atomicity, Consistency, Isolation, Durability 

(ACID), 333
AT&T Bell Laboratories, 387
attributes

atomic, 32
described, 32
multivalued, 194, 195, 199, 207–208
relational databases, 32
as “unit fact,” 32
XML, 374

auditing systems, 322–323
autocommit mode, 155, 334, 335
Autocommit option, 126

automatic commit, 155
AVG function, 107, 143

B
Bachman, Charles W., 22–23
BACKUP DATABASE privilege, 320
base class, 230
BCNF (Boyce-Codd Normal Form), 206–207
BEGIN TRANSACTION statement, 334
behavior diagrams, 243
behaviors, 386
BETWEEN operator, 136–137
blocks, 339
Boyce-Codd Normal Form (BCNF), 206–207
Britton-Lee, 24
browsers. See Object Browser; web browsers
brute force attacks, 311
buffer overflows, 314
buffers, 331
bug fixes, 181
bugs, 181
build numbering, 346
business intelligence tools, 358
Business Objects, 358
business rules, 38, 265–271

C
C language, 387
C++ language, 387
calculated columns, 103–106
Call Level Interface (CLI), 295
candidates, 197
cardinality, 32–33
Cartesian products, 95, 143–144
CASCADE CONSTRAINTS clause, 163
cascading deletes, 49
catalog views, 127–129
CBC (Computer Books Company) exercise, 

214–216
Central Intelligence Agency (CIA), 23
centralized model, 282–284
CGI (Common Gateway Interface), 293–294
CGI scripts, 293–294
chains, pointer, 14, 16
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change control process, 346–347
change management, 346–347
change request tracking, 346
check constraints, 55, 162, 270
check-out/check-in, 347
Chen, Peter (Dr.), 23, 222, 223–224
Chen’s format, 223–224
“chicken” method, 181
child rows, 49
child/parent relationships, 15
CIA (Central Intelligence Agency), 23
cipher text, 312
circuit-level gateway, 307
class hierarchy, 21
CLI (Call Level Interface), 295
client tools, 121
clients

described, 285, 311
security guidelines, 311–314
SQL, 119, 121

client/server model, 285–290
CLOSE statement, 332
CODASYL (Conference on Data Systems 

Languages), 22
Codd, E.F. (Ted), 17, 22–23, 179, 190, 354
Cognos product, 358
Cohera, 24
“cold turkey” implementation, 181
column functions, 107
columns. See also tables

adding, 161–162
calculated, 103–106
constraints, 255
derived, 104
described, 44
foreign key, 47–48, 51
guidelines for, 255
hiding/showing, 57
labels, 105
listing all, 81–82
listing all (SQL), 132–133
locking, 340
names, 105, 255
naming conventions, 263–264
NULL, 98–99
omitting from views, 322
partitioning, 256
primary key, 47
relational databases, 44–46

removing, 161–162
selecting for display, 82–83
selecting for display (SQL), 133–134
updating, 157–158

COM (Common Object Model), 296
command-based queries, 64, 65
command-based query languages, 64, 65
comments, 266
commit, 333
COMMIT statement, 154–155
COMMIT TRANSACTION statement, 334
Common Gateway Interface (CGI), 293–294
Common Object Model (COM), 296
comparison operators, 80
compilers, 311, 387
complex objects, 21, 386
compound row selection, 90–91
Computer Associates, 23
Computer Books Company (CBC) exercise, 

214–216
concatenation operator (||), 150
conceptual database design, 30–41, 66–73, 178
concurrent updates, 337–340
conditional operators, SQL, 136–141
conditional relationships, 34–35
Conference on Data Systems Languages 

(CODASYL), 22
conformed dimensions, 359
connections. See database connections
consistency, 333
constraints

business rules as, 38
check, 55, 162, 270
column, 255
described, 38, 46, 266
dropped tables and, 163
enforcing with triggers, 56
foreign key, 47, 268
integrity, 53–55
names, 46
naming conventions, 263–264
NOT NULL, 53–55, 267
primary key, 47, 161–162, 267–268
referential, 47–51, 75, 161, 268
relational databases, 46–55
unique, 162, 269

construction phase, 179–180
CONTENT type, 377
contention, 340
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cookies, 313
correlated subselects, 142–143
COUNT function, 107
CREATE ANY TABLE privilege, 320
CREATE command, 159
CREATE DATABASE privilege, 320
CREATE INDEX statement, 163
Create ribbon, 69
CREATE ROLE privilege, 321
CREATE SESSION privilege, 320
CREATE TABLE privilege, 320
CREATE TABLE statement, 160
CREATE USER privilege, 320
CREATE USER statement, 322
CREATE VIEW statement, 162–163
credentials, login, 311–312
Criteria option, 79–80
“crow’s foot” methodology, 18
CRUD matrix, 245–246
cursor, 330
cursor declarations, 330–332
cursor processing, 330–332

D
data

complex, 19
encrypted, 309, 310, 312–313
intersection, 36–37
locking, 338–341
logical data independence, 10
physical data independence, 8–9
redundant, 193
relationships. See relationships
sensitive, 312–313

data abstraction, layers of, 6–9
data bank, 6
Data Control Language (DCL), 120, 164–165
Data Definition Language. See DDL
data files, 7–8, 9
data flow diagram (DFD), 240–243
data flows, 242–243
data integrity, 265–271
“data jail,” 18
Data Manipulation Language (DML), 119,  

154–159, 345
data marts, 344, 363–364

data modeler, 30
Data Query Language (DQL), 119, 131–154
data relationships. See relationships
data sets, 18
data store, 241
Data Type option, 75
data types

described, 44
extensions, 45–46
from major RDBMS vendors, 46
names, 44
options, 45–46
relational databases, 44–46
SQL, 380–383
table design and, 270
TIMESTAMP, 121
XML, 376–378
XML schema, 380–383

data warehouses, 344, 355–362, 364
data warehousing, 354
database activities, 173
database administrators. See DBAs
database clients. See clients
database connections

to applications, 295–297
concurrent update problem, 337–338
to Java applications, 296–297
login credentials, 311–312
multiple connections, 337–338
security issues, 306–310
terminal emulators, 283
via ODBC, 295–296
via OLE DB, 296

database design
conceptual database, 30–41, 66–73, 178
logical. See logical database design
Northwind database example,  

38–41, 66–73
physical. See physical database design

database designer, 30
database instances. See instances
database machines, 24
database management system. See DBMS
database models, 10–21

centralized model, 282–284
client/server model, 285–290
deployment models, 282–290
described, 4
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distributed model, 284–285
flat files, 10–13
hierarchical model, 13–15
Internet computing model, 285,  

288–290
network model, 15–17
object-oriented model, 19–21
object-relational model, 21
relational model, 17–19

database objects. See objects
database owner (DBO), 319
database queries. See queries
database servers. See also servers

client/server model, 285–290
defined, 315
security issues, 305–311, 315–317
vs. servers, 315

database specialist, 174
Database Task Group (DBTG), 22
Database Tools ribbon, 69, 70
databases

automatically committing changes, 126
created by SQL Server, 316
deploying. See deployment
described, 4, 316
fundamentals, 3–27
history, 22–24
Ingres, 23, 24, 120
layers of data abstraction, 6–9
life cycle, 171–188
locking mechanisms, 338–341
MOLAP, 360–362
normalizing. See normalization
Northwind. See Northwind database
object-oriented, 21, 386, 388–390, 392
object-relational, 392–393
OLAP, 354–366
OLE DB, 296
operational, 354
properties. See properties
relational. See relational databases
removing objects from, 163–164
security. See security
tables. See tables
universal, 21
views. See views
vs. data banks, 6
vs. files, 4–5
to Web, 290–295

data-driven approach, 174–175
Datasheet View, 75, 76
Date, C.J. (Chris), 209
DATE datatype, 121
DB2, 24
DBA role, 321
DBAs (database administrators), 7, 30, 319
DBMS (database management system)

installing minimal software for, 311
layers of data abstraction, 6–9
overview, 5

DBMS catalog, 9
DBO (database owner), 319
DBTG (Database Task Group), 22
DCL (Data Control Language), 120, 164–165
DDL (Data Definition Language), 120, 159, 179
DDL locks, 339
DDL statements, 120, 159–164, 257, 347
deadlocks, 340–341
DECLARE CURSOR clause, 331
delete anomalies, 193
DELETE statement, 158–159, 345
deleting

cascading deletes, 49
columns, 161–162
objects, 9, 10, 73
relationships, 75
rows, 49, 158–159, 268

deliverables, 172
demilitarized zone (DMZ), 293
denial of service (DoS) attacks, 307
denormalization, 209–210
Department of Defense (DoD), 290
dependence, functional, 200–203
dependencies

partial, 200–203
transitive, 203–205

deployment, 329–351
change control, 346–347
cursor processing, 330–332
performance tuning, 342–345
transaction management, 332–341

deployment models, 282–290
derived columns, 104
Descartes, René, 144
DESCRIBE command, 127, 129
Describe option, 127
Description option, 75
designing databases. See database design
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designing views, 271–272
determinants, 201, 206
development environments, 179–180
devices, performance, 9
DFD (data flow diagram), 240–243
dimension tables, 358–360, 365–366
DISCONNECT command, 335
discrete tables, 260–261
Display setting, 126
distributed model, 284–285
DKNF (domain-key normal form), 209
DML (Data Manipulation Language), 119,  

154–159, 345
DMZ (demilitarized zone), 293
document review, 177–178
DOCUMENT type, 377
DoD (Department of Defense), 290
domain-key normal form (DKNF), 209
DoS (denial of service) attacks, 307
DQL (Data Query Language), 119, 131–154
“drilling down,” 357
DROP command, 159
DROP statement, 163–164
dropping tables, 163–164
“dumb terminals,” 282, 283
durability, 333
dynamic web pages, 290–292

E
Ellison, Larry, 23
e-mail, 313
employees

observing, 177
offsite, 308–309

encapsulation, 20
encryption, 309, 310, 312–313
encryption keys, 305, 312
end users, 357. See also users
enterprise computing infrastructure, 282
enterprise networks, 306–309
enterprise resource planning (ERP), 287
entities

dependent, 226
described, 30–32
external, 31–32
instances, 31

names, 42–43
relating to processes, 245–246
relationships. See relationships
unique identifiers, 32
vs. relations, 191

entity class, 30–31
entity relationship diagrams. See ERDs
entity relationship modeling, 222, 228–230
Epstein, Bob, 24
equal to (=) operator, 80
ERD modeling, 222–244
ERDs (entity relationship diagrams), 222–244

Chen’s format, 23, 222, 223–224
conceptual design phase, 178
entity relationship modeling, 228–230
formats, 222–230
guidelines for, 235
IDEF1X standard, 227–228
IE format, 225–226, 246–247
illustrated, 18
naming conventions, 235
relational format, 224–225
super types, 230–235
Unified Modeling Language, 228–230

ERP (enterprise resource planning), 287
errors, 181
exclamation point (!), 80
exercises. See “Try This” exercises
EXIT command, 335
Explain option, 127
explicit mode, 334
expressions, 133–134
extended hierarchical model, 14
Extensible Markup Language. See XML
External Data ribbon, 69, 70
external design. See conceptual database design
external entities, 31–32
external layer, 8
extranets, 290

F
fact tables, 358
false condition, 54, 55
feasibility study, 174
FETCH statement, 332
Field Name option, 75
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Field option, 79
Field Size option, 75
fifth normal form, 208–209
files

data, 7–8
described, 4, 44
flat, 10–13
locking, 339
physical, 44
vs. databases, 4–5
vs. tablespaces, 44

Finkelstein, Clive, 225
firewalls, 290, 307–308
first normal form, 198–200
flat files, 10–13
flow charts, 236–239
foreign key columns, 47–48, 51
foreign keys, 47–52

constraints, 47, 268
described, 47
indexes on, 163
names, 47
normalization and, 197, 199, 231
one-to-one relationships and, 256

forest, 376
Forms object type, 71
forms-based queries, 63–116

creating basic query, 77–81
overview, 64–65
table design view, 75–77
“Try This” exercises, 81–114
working with. See Query Design panel

fourth normal form, 207–208
FROM clause, 131, 143
function hierarchy diagram, 239–240
functional dependence, 200–203
function-based indexes, 344
functions. See also specific functions

aggregate, 106–109
column, 107
nesting, 152
XML value, 378–380

G
General Electric, 22
Generalized Markup Language (GML), 372–373

Generalized Update Access Method (GUAM), 22
GML (Generalized Markup Language), 372–373
GRANT statement, 164–165, 320–321
grantee, 164, 165
grantor, 164, 165
greater than (>) operator, 80
greater than or equal to (>=) operator, 80
grid computing, 285
Group at the Xerox Palo Alto Research Center  

(PARC), 386–387
GROUP BY clause, 132, 152–153
GROUP BY specification, 107
grouping rows, 107, 152–153
groups, repeating, 198–200, 212
GUAM (Generalized Update Access Method), 22

H
hardware environment, 179–180
hashing, 256
Hawker Siddeley Aircraft Company, 120
Hawthorne effect, 177
hierarchical model, 13–15
history, database, 22–24
History option, 127
Home ribbon, 68, 69
host variables, 332
HP ALLBASE, 23
HR (human resources) sample schema, 118, 119
HR-XML Consortium, Inc., 293
HTML (Hypertext Markup Language), 292, 372
HTML documents, 294
HTML tags, 373
HTTP (Hypertext Transfer Protocol), 292
human resources (HR) sample schema, 118, 119
Hyperion product, 358
hyperlinks, 290
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol (HTTP), 292

I
IBM, 23, 120
IDEF1X standard, 227–228
identifiers. See also keys

artificial, 196
natural, 196
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identifiers (Continued)
object, 21, 386
SQL, 380, 383
surrogate, 52, 196, 197, 199, 214
unique, 32, 190, 196

IDMS (Integrated Database Management 
System), 15

IDS (Integrated Data Store), 22
IE (information engineering) format, 225–226, 

246–247
IIS (Internet Information Services) API, 294
Illustra, 24
implementation, 180–181
implicit mode, 334, 335
IMS (Information Management System), 13, 

14, 22
inclusive joins. See outer joins
index organized table, 274
Indexed option, 76
indexes

adding, 272–274
advantages of, 163
creating, 163
described, 47, 272
dropped tables and, 163
on foreign keys, 163
function-based, 344
guidelines for, 273–274
maintenance of, 345
naming conventions, 264–265
performance and, 272–274, 345
searching, 47
selective, 343–344
unique, 343–344
uses for, 161–162

infinite loops, 16
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restrictions, 271
saving queries as, 162–163
security and, 321–322
table design, 75–77
user. See user views
vs. queries, 77

virtual private networks (VPNs), 308–309
virtual tables, 56
virus scanners, 314
VPNs (virtual private networks), 308–309

W
Web. See also Internet; World Wide Web

connecting databases to, 290–295
exploring, 297–298
overview, 290–293

web browsers, 121, 290, 313
web pages

dynamic, 290–292
invoking transactions from, 293–295
static, 290

web servers, 293
Web technology stack, 293
WHERE clause, 132, 136, 137, 148–149,  

322, 343
wildcard characters, 137–139, 343
wireless access points, 309, 310
wireless networks, 309–310
wireless security policy, 310
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WITH ADMIN OPTION clause, 165
WITH GRANT OPTION clause, 165, 320
Wong, Eugene, 23
World Wide Web, 290, 297–298. See also 

Internet; Web

X
Xerox, 386–387
XML (Extensible Markup Language), 371–397

basics, 372–375
overview, 292–293, 372
popularity of, 293
SQL/XML, 372, 376–385

XML attributes, 374
XML data type, 376–378

XML elements, 374
XML names, 380
XML schema data types, 380–383
XML tree structures, 376
XML value functions, 378–380
XML vocabularies, 293
XMLSCHEMA type, 377
XMLType data type, 377
XQuery documents, 377

Z
ZIP codes, 204–205
zombie attacks, 307




