

Beginning

Database Design Solutions

 Enhance Your Knowledge
Advance Your Career

Professional Microsoft SQL Server 2008 Integration
Services
978-0-470-24795-2
This book shows developers how to master the 2008 release of SSIS,
covering topics including data warehousing with SSIS, new methods of
managing the SSIS platform, and improved techniques for ETL operations.

Professional SQL Server 2008 Reporting Services
978-0-470-24201-8
This book teaches solutions architects, designers, and developers how
to use Microsoft’s reporting platform to create reporting and business
intelligence solutions.

Professional Microsoft SQL Server 2008 Analysis Services
978-0-470-24798-3
Professional Microsoft SQL Server 2008 Analysis Services shows readers
how to build data warehouses and multidimensional databases, query
databases, and use Analysis Services and other components of SQL Server
to provide end-to-end solutions.

Professional Microsoft SQL Server 2008 Programming
978-0-470-25702-9
This updated new edition of Wrox’s best-selling SQL Server book has been
expanded to include coverage of SQL Server 2008’s new datatypes, new
indexing structures, manageability features, and advanced time-zone
handling.

Professional Microsoft SQL Server 2008 Administration
978-0-470-24796-9
A how-to guide for experienced database administrators, this book is loaded

with unique tips, tricks, and workarounds for handling the most difficult SQL Server administration issues. The authors discuss
data capture, performance studio, Query Governor, and new techniques for monitoring and policy management.

Beginning Microsoft SQL Server 2008 Programming
978-0-470-25701-2
This comprehensive introduction to SQL Server covers the fundamentals and moves on to discuss how to create and change
tables, manage keys, write scripts, work with stored procedures, and much more.

Beginning T-SQL with Microsoft SQL Server 2005 and 2008
978-0-470-25703-6
Beginning T-SQL with Microsoft SQL Server 2005 and 2008 provides a comprehensive introduction to the T-SQL programming
language, with concrete examples showing how T-SQL works with both SQL Server 2005 and SQL Server 2008.

Beginning Database Design Solutions
978-0-470-38549-4
Beginning Database Design Solutions introduces IT professionals—both DBAs and database developers—to database design.
It explains what databases are, their goals, and why proper design is necessary to achieve those goals. It tells how to decide
what should be in a database to meet the application’s requirements. It tells how to structure the database so it gives good
performance while minimizing the chance for error.

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.10"

Stephens ffirs.tex V3 - 10/03/2008 4:09am Page i

Beginning
Database Design Solutions

Introduction . xxiii

Part I: Introduction to Databases and Database Design 1
Chapter 1: Goals of Effective Database Design . 3
Chapter 2: Database Types . 23
Chapter 3: Relational Database Fundamentals . 49

Part II: Database Design Process and Techniques 63
Chapter 4: Understanding User Needs . 65
Chapter 5: Translating User Needs into Data Models . 89
Chapter 6: Extracting Business Rules. 121
Chapter 7: Normalizing Data . 137
Chapter 8: Designing Databases to Support Software Applications . 173
Chapter 9: Common Design Patterns . 185
Chapter 10: Common Design Pitfalls. 207

Part III: A Detailed Case Study 225
Chapter 11: User Needs and Requirements . 227
Chapter 12: Building a Data Model . 245
Chapter 13: Extracting Business Rules . 263
Chapter 14: Normalization and Refinement . 273

Part IV: Implementing Databases (with Examples in Access
and MySQL) 285
Chapter 15: Microsoft Access . 287
Chapter 16: MySQL . 313

Part V: Advanced Topics 343
Chapter 17: Introduction to SQL. 345
Chapter 18: Building Databases with SQL Scripts . 369
Chapter 19: Database Maintenance . 379
Chapter 20: Database Security. 389
Appendix A: Exercise Solutions . 403
Appendix B: Sample Database Designs . 467
Glossary . 487
Index . 497

Stephens ffirs.tex V3 - 10/03/2008 4:09am Page ii

Stephens ffirs.tex V3 - 10/03/2008 4:09am Page iii

Beginning
Database Design Solutions

Stephens ffirs.tex V3 - 10/03/2008 4:09am Page iv

Stephens ffirs.tex V3 - 10/03/2008 4:09am Page v

Beginning
Database Design Solutions

Rod Stephens

Wiley Publishing, Inc.

Stephens ffirs.tex V3 - 10/03/2008 4:09am Page vi

Beginning Database Design Solutions
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-38549-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Stephens, Rod, 1961-
Beginning database design solutions / Rod Stephens.

p. cm.
Includes index.
ISBN 978-0-470-38549-4 (978-0-470-38549-4)

1. Database design. 2. Databases. I. Title.
QA76.9.D26S97 2008
005.74 — dc22

2008037282

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Web site is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Web site may provide
or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

Stephens f01.tex V3 - 10/01/2008 3:23am Page vii

About the Author
Rod Stephens started out as a mathematician but, while studying at MIT, discovered the joys of computer
algorithms and programming and he’s been programming professionally ever since. During his career,
he has worked on a wide variety of applications in such diverse fields as telephone switching, billing,
repair dispatching, tax processing, wastewater treatment, concert ticket sales, cartography, and training
for professional football players.

Rod is a Microsoft Visual Basic Most Valuable Professional (MVP), consultant and author. He has written
18 books that have been translated into half a dozen different languages, and more than 250 magazine
articles, mostly about Visual Basic. Currently he is a regular contributor of C# and Visual Basic articles at
DevX.com (www.devx.com).

Rod’s popular VB Helper Web site www.vb-helper.com receives several million hits per month and con-
tains thousands of pages of tips, tricks, and example code for Visual Basic programmers, as well as
example code for this book.

Stephens f01.tex V3 - 10/01/2008 3:23am Page viii

Stephens f02.tex V3 - 10/01/2008 3:23am Page ix

Credits
Executive Editor
Robert Elliott

Development Editor
Sydney Jones

Technical Editor
Steve Hoberman

Production Editor
Angela Smith

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Publication Services, Inc.

Indexer
Jack Lewis

Stephens f02.tex V3 - 10/01/2008 3:23am Page x

Stephens f03.tex V3 - 10/01/2008 3:25am Page xi

Acknowledgments

Thanks to Bob Elliott, Sydney Jones, Steve Hoberman, and all of the others whose hard work went into
producing this book.

Special thanks to Sydney Jones for putting up with my sometimes overly generous interpretation of the
Wrox guidelines.

Stephens f03.tex V3 - 10/01/2008 3:25am Page xii

Stephens ftoc.tex V2 - 10/03/2008 4:13am Page xiii

Contents

Introduction xxiii

Part I: Introduction to Databases and Database Design

Chapter 1: Goals of Effective Database Design 3

Understanding the Importance of Design 4
Information Containers 5
Strengths and Weaknesses of Information Containers 7
Desirable Database Features 8

CRUD 9
Retrieval 9
Consistency 10
Validity 10
Easy Error Correction 11
Speed 11
Atomic Transactions 12
ACID 13
Persistence and Backups 14
Low Cost and Extensibility 16
Ease of Use 16
Portability 16
Security 17
Sharing 18
Ability to Perform Complex Calculations 19
Consequences of Good and Bad Design 19

Summary 21
Exercises 22

Chapter 2: Database Types 23

Why Bother? 24
Flat Files 24

INI Files 26
Windows System Registry 26

Relational Databases 27

Stephens ftoc.tex V2 - 10/03/2008 4:13am Page xiv

Contents

Spreadsheets 30
Hierarchical Databases 31
XML 34

XML Basics 34
XML Structures 37
XML Summary 39

Network 40
Object 42
Object-Relational 43
Exotic 44

Document-Oriented 44
Deductive 44
Dimensional 44
Temporal 45

Summary 45
Exercises 47

Chapter 3: Relational Database Fundamentals 49

Relational Points of View 49
Table, Rows, and Columns 50
Relations, Attributes, and Tuples 52
Keys 52
Indexes 54
Constraints 55

Basic Constraints 55
Check Constraints 55
Primary Key Constraints 55
Unique Constraints 56
Foreign Key Constraints 56

Database Operations 57
Summary 59
Exercises 59

Part II: Database Design Process and Techniques

Chapter 4: Understanding User Needs 65

Make a Plan 66
Bring a List of Questions 67

Functionality 67
Data Needs 67
Data Integrity 68

xiv

Stephens ftoc.tex V2 - 10/03/2008 4:13am Page xv

Contents

Security 68
Environment 69

Meet the Customers 69
Learn Who’s Who 70
Pick the Customers’ Brains 73
Walk a Mile in the User’s Shoes 73
Study Current Operations 74
Brainstorm 75
Look to the Future 76
Understand the Customers’ Reasoning 76
Learn What the Customers Really Need 77
Prioritize 78
Verify Your Understanding 79
Write the Requirements Document 80
Make Use Cases 81
Decide Feasibility 85
Summary 85
Exercises 86

Chapter 5: Translating User Needs into Data Models 89

What Are Data Models? 90
User Interface Models 92
Semantic Object Models 96

Classes and Objects 96
Cardinality 97
Identifiers 97
Putting It Together 97
Semantic Views 99
Class Types 100
Comments and Notes 106

Entity-Relationship Models 106
Entities, Attributes, and Identifiers 107
Relationships 107
Cardinality 108
Inheritance 109
Additional Conventions 112
Comments and Notes 113

Relational Models 113
Converting Semantic Object Models 113
Converting ER Diagrams 116

Summary 117
Exercises 118

xv

Stephens ftoc.tex V2 - 10/03/2008 4:13am Page xvi

Contents

Chapter 6: Extracting Business Rules 121

What Are Business Rules? 121
Identifying Key Business Rules 123
Extracting Key Business Rules 128
Multi-Tier Applications 129
Summary 133
Exercises 134

Chapter 7: Normalizing Data 137

What Is Normalization? 137
First Normal Form (1NF) 138
Second Normal Form (2NF) 146
Third Normal Form (3NF) 150
Stopping at Third Normal Form 154
Boyce-Codd Normal Form (BCNF) 154
Fourth Normal Form (4NF) 158
Fifth Normal Form (5NF) 162
Domain/Key Normal Form (DKNF) 165
Essential Redundancy 167
The Best Level of Normalization 168
Summary 169
Exercises 170

Chapter 8: Designing Databases to Support Software Applications 173

Plan Ahead 173
Document Everything 174
Consider Multi-Tier Architecture 175
Convert Domains into Tables 175
Keep Tables Focused 176
Use Three Kinds of Tables 176
Use Naming Conventions 178
Allow Some Redundant Data 179
Don’t Squeeze in Everything 180
Summary 181
Exercises 182

Chapter 9: Common Design Patterns 185

Associations 185
Many-to-Many Associations 186
Multiple Many-to-Many Associations 186

xvi

Stephens ftoc.tex V2 - 10/03/2008 4:13am Page xvii

Contents

Multiple-Object Associations 188
Repeated Attribute Associations 191
Reflexive Associations 193

Temporal Data 200
Effective Dates 200
Deleted Objects 202
Deciding What to Temporalize 203

Logging and Locking 203
Audit Trails 203
Turnkey Records 204

Summary 205
Exercises 205

Chapter 10: Common Design Pitfalls 207

Lack of Preparation 207
Poor Documentation 208
Poor Naming Standards 208
Thinking Too Small 210
Not Planning for Change 210
Too Much Normalization 213
Insufficient Normalization 213
Insufficient Testing 214
Performance Anxiety 214
Mishmash Tables 215
Not Enforcing Constraints 217
Obsession with IDs 218
Not Defining Natural Keys 220
Summary 221
Exercises 222

Part III: A Detailed Case Study

Chapter 11: User Needs and Requirements 227

Meet the Customers 227
Pick the Customers’ Brains 229

Determining What the System Should Do 229
Determining How the Project Should Look 231
Determining What Data Is Needed for the User Interface 232
Determining Where the Data Should Come From 233
Determining How the Pieces of Data Are Related 233
Determining Performance Needs 235

xvii

Stephens ftoc.tex V2 - 10/03/2008 4:13am Page xviii

Contents

Determining Security Needs 236
Determining Data Integrity Needs 236

Write Use Cases 238
Write the Requirements Document 242
Demand Feedback 243
Summary 244
Exercises 244

Chapter 12: Building a Data Model 245

Semantic Object Modeling 245
Building an Initial Semantic Object Model 245
Improving the Semantic Object Model 248

Entity-Relationship Modeling 250
Building an ER Diagram 250
Building a Combined ER Diagram 252
Improving the Entity-Relationship Diagram 254

Relational Modeling 256
Putting It All Together 259
Summary 260
Exercises 261

Chapter 13: Extracting Business Rules 263

Identifying Business Rules 263
Courses 264
CustomerCourses 266
Customers 267
Pets 267
Employees 267
Orders 267
OrderItems 268
InventoryItems 268
TimeEntries 268
Shifts 269
Persons 269
Phones 269
Vendors 269

Drawing a New Relational Model 270
Summary 270
Exercises 271

xviii

Stephens ftoc.tex V2 - 10/03/2008 4:13am Page xix

Contents

Chapter 14: Normalization and Refinement 273

Improving Flexibility 273
Verifying First Normal Form 275
Verifying Second Normal Form 278

Pets 279
TimeEntries 280

Verifying Third Normal Form 281
Summary 283
Exercises 284

Part IV: Implementing Databases
(with Examples in
Access and MySQL)

Chapter 15: Microsoft Access 287

Understanding Access 287
Getting Started 288
Defining Relationships 293
Creating Field Constraints 296
Creating Table Constraints 298
Creating Queries 301

Query Design View 304
SQL View 306

Summary 308
Exercises 308

Chapter 16: MySQL 313

Installing MySQL 313
Using MySQL Command Line Client 314
Executing SQL Scripts 318
Using MySQL Query Browser 319

Executing Queries 320
Editing Data 320
Creating and Modifying Databases 321
Using Scripts 327
Getting Syntax Help 329

Using MySQL Workbench 330
Loading Scripts 330
Creating EER Diagrams 331

xix

Stephens ftoc.tex V2 - 10/03/2008 4:13am Page xx

Contents

Editing Databases 333
Defining Triggers 334
Exporting Scripts 336

Summary 338
Exercises 338

Part V: Advanced Topics

Chapter 17: Introduction to SQL 345

Background 345
Finding More Information 346
Standards 346
Basic Syntax 347
Command Overview 348
CREATE TABLE 350
CREATE INDEX 355
DROP 356
INSERT 357
SELECT 358

SELECT Clause 358
FROM Clause 359
WHERE Clause 362
GROUP BY Clause 362
ORDER BY Clause 363

UPDATE 364
DELETE 365
Summary 366
Exercises 366

Chapter 18: Building Databases with SQL Scripts 369

Why Bother with Scripts? 369
Script Categories 370

Database Creation Scripts 370
Basic Initialization Scripts 370
Data Initialization Scripts 370
Cleanup Scripts 371
Saving Scripts 371

Ordering SQL Commands 371
Summary 376
Exercises 377

xx

Stephens ftoc.tex V2 - 10/03/2008 4:13am Page xxi

Contents

Chapter 19: Database Maintenance 379

Backups 379
Data Warehousing 382
Repairing the Database 383
Compacting the Database 383
Performance Tuning 383
Summary 386
Exercises 387

Chapter 20: Database Security 389

The Right Level of Security 389
Passwords 390

Single-Password Databases 390
Individual Passwords 390
Operating System Passwords 391
Good Passwords 391

Privileges 392
Initial Configuration and Privileges 398
Too Much Security 398
Physical Security 399
Summary 400
Exercises 401

Appendix A: Exercise Solutions 403

Chapter 1 403
Chapter 2 408
Chapter 3 411
Chapter 4 413
Chapter 5 417
Chapter 6 424
Chapter 7 430
Chapter 8 434
Chapter 9 436
Chapter 10 440
Chapter 11 442
Chapter 12 446
Chapter 13 449
Chapter 14 451
Chapter 15 454

xxi

Stephens ftoc.tex V2 - 10/03/2008 4:13am Page xxii

Contents

Chapter 16 454
Chapter 17 454
Chapter 18 457
Chapter 19 459
Chapter 20 460

Appendix B: Sample Database Designs 467

Books 468
DVD and Movies 470
Music and CDs 471
Documents 472
Customer Orders 472
Employee Shifts and Timesheets 473
Employees, Projects, and Departments 473
Employee Skills and Qualifications 475
Identical Object Rental 476
Distinct Object Rental 476
Students, Courses, and Grades 478
Teams 479
Individual Sports 480
Vehicle Fleets 480
Contacts 483
Passengers 483
Recipes 485

Glossary 487

Index 497

xxii

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxiii

I n t roduc t ion

It has been estimated that more than 80 percent of all computer programming is database-related. This
is certainly easy to believe. After all, a database can be a powerful tool for doing exactly what computer
programs do best: store, manipulate, and display data.

Even many programs that seem at first glance to have little to do with traditional business-oriented
data use databases to make processing easier. In fact, looking back on more than 20 years of software
development experience, I’m hard pressed to think of a single non-trivial application that I’ve worked on
that didn’t use some kind of database.

Not only do databases play a role in many applications, but they also often play a critical role. If the data
is not properly stored, it may become corrupted and the program will be unable to use it meaningfully.
If the data is not properly organized, the program may be unable to find what it needs in a reasonable
amount of time.

Unless the database stores its data safely and effectively, the application will be useless no matter how
well-designed the rest of the system may be. The database is like the foundation of a building: without a
strong foundation, even the best crafted building will fail, sometimes spectacularly (the Leaning Tower
of Pisa notwithstanding).

With such a large majority of applications relying so heavily on databases, you would expect every-
one involved with application development to have a solid, formal foundation in database design and
construction. Everyone including database designers, application architects, programmers, database
administrators, and project managers should ideally understand what makes a good database design.
Even an application’s key customers and users could benefit from understanding how databases work.

Sadly that is usually not the case. Many IT professionals have learned what they know about databases
through rumor, trial-and-error, and painful experience. Over the years, some develop an intuitive feel
for what makes a good database design but they may still not understand the reasons why a design is
good or bad, and they may leave behind a trail of rickety, poorly constructed programs built on shaky
database foundations.

This book provides the tools you need to design a database. It explains how to determine what should
go in a database and how a database should be organized to ensure data integrity and a reasonable
level of performance. It explains techniques for designing a database that is strong enough to store data
safely and consistently, flexible enough to allow the application to retrieve the data it needs quickly and
reliably, and adaptable enough to accommodate a realistic amount of change.

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxiv

Introduction

With the ideas and techniques described in this book, you will be able to build a strong foundation for
database applications.

Who This Book Is For
This book is intended for IT professionals and students who want to learn how to design, analyze, and
understand databases. The material will benefit those who want a better high-level understanding of
databases such as proposal managers, architects, project managers, and even customers. The material will
also benefit those who will actually design, build, and work with databases such as database designers,
database administrators, and programmers. In many projects, these roles overlap so the same person may
be responsible for working on the proposal, managing part of the project, and designing and creating the
database.

This book is aimed at IT professionals and students of all experience levels. It does not assume that you
have any previous experience with databases or programs that use them. It doesn’t even assume that you
have experience with computers. All you really need is a willingness and desire to learn.

What This Book Covers
This book explains database design. It tells how to plan a database’s structure so the database will be
robust, resistant to errors, and flexible enough to accommodate a reasonable amount of future change. It
explains how to discover database requirements, build data models to study data needs, and refine those
models to improve the database’s effectiveness.

The book solidifies these concepts by working through a detailed example that designs a realistic
database. Later chapters explain how to actually build databases using two common database products:
Access 2007 and MySQL.

The book finishes by describing some of the topics you need to understand to keep a database running
effectively such as database maintenance and security.

What You Need to Use This Book
This book explains database design. It tells how to determine what should go in a database and how the
database should be structured to give the best results.

This book does not focus on actually creating the database. The details of database construction are differ-
ent for different database tools so, to remain as generally useful as possible, this book doesn’t concentrate
on any particular database system. You can apply the techniques described here equally to whatever
database tool you use, whether it’s Access, SQL Server, Oracle, MySQL, or some other database product.

Most database products include free editions that you can use for smaller projects. For example, SQL
Server Express Edition, Oracle Express Edition, and MySQL Community Server are all free.

xxiv

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxv

Introduction

To remain database neutral, the book does not assume you are using a particular database so you don’t
need any particular software or hardware. To work through the Exercises, all you really need is a pencil
and some paper. You are welcome to type solutions into your computer if you like but you may actually
find working with pencil and paper easier than using a graphical design tool to draw pictures, at least
until you are comfortable with database design and are ready to pick a computerized design tool.

Chapter 15, ‘‘Microsoft Access,’’ explains how to build databases using the Microsoft Access 2007
database product. If you want to follow along with the examples in that chapter and work through the
Exercises, you need to have Microsoft Access 2007 installed (although other versions of Access will also
work with a few differences). You can use any operating system that will run Microsoft Access 2007.

Similarly Chapter 16, ‘‘MySQL,’’ explains how to build databases using the MySQL Community Server
database product. If you want to follow this chapter’s examples and work through them, you will need
to install MySQL Community Server. You can use any operating system that will run MySQL.

To experiment with the SQL database language described in Chapter 17, ‘‘Introduction to SQL,’’ and
Chapter 18, ‘‘Building Databases with SQL Scripts,’’ you need any database product that supports SQL
(that includes pretty much all relational databases) running on any operating system.

How This Book Is Structured
The chapters in this book are divided into five parts plus appendixes. The chapters in each part are
described here. If you have previous experience with databases, you can use these descriptions to decide
which chapters to skim and which to read in detail.

Part I: Introduction to Databases and Database Design
The chapters in this part of the book provide background that is necessary to understand the chapters
that follow. You can skim some of this material if it is familiar to you but don’t take it too lightly. If you
understand the fundamental concepts underlying database design, it will be easier to understand the
point behind important design concepts presented later.

Chapter 1, ‘‘Goals of Effective Database Design,’’ explains the reasons why people and organizations use
databases. It explains a database’s purpose and conditions that it must satisfy to be useful. This chapter
also describes the basic ACID (Atomicity, Consistency, Isolation, Durability) and CRUD (Create, Read,
Update, Delete) features that any good database should have. It explains in high-level general terms what
makes a good database and what makes a bad database.

Chapter 2, ‘‘Database Types,’’ explains some of the different types of databases that you might decide
to use. These include flat files, spreadsheets, hierarchical databases (XML), object databases, and rela-
tional databases. The relational database is one of the most powerful and most commonly used forms of
database so it is the focus of this book, but it is important to realize that there are alternatives that may
be more appropriate under certain circumstances. This chapter gives some tips on deciding which kind
of database might be best for a particular project.

Chapter 3, ‘‘Relational Database Fundamentals,’’ explains basic relational database concepts such as
tables, rows, and columns. It explains the common usage of relational database terms in addition to

xxv

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxvi

Introduction

the more technical terms that are sometimes used by database theorists. It describes different kinds of
constraints that databases use to guarantee that the data is stored safely and consistently.

Part II: Database Design Process and Techniques
The chapters in this part of the book discuss the main pieces of database design. They explain how to
understand what should be in the database, develop an initial design, separate important pieces of the
database to improve flexibility, and refine and tune the design to provide the most stable and useful
design possible.

Chapter 4, ‘‘Understanding User Needs,’’ explains how to learn about the users’ needs and gather user
requirements. It tells how to study the users’ current operations, existing databases (if any), and desired
improvements. It describes common questions that you can ask to learn about users’ operations, desires,
and needs, and how to build the results into requirements documents and specifications. This chapter
explains what use cases are and tells how to use them and the requirements to guide database design
and to measure success.

Chapter 5, ‘‘Translating User Needs into Data Models,’’ introduces data modeling. It explains how to
translate the user’s conceptual model and the requirements into other more precise models that define
the database design rigorously. This chapter describes several database modeling techniques including
user-interface models, semantic object models, entity-relationship diagrams, and relational models.

Chapter 6, ‘‘Extracting Business Rules,’’ explains how a database can handle business rules. It explains
what business rules are, how they differ from database structure requirements, and how you can identify
business rules. This chapter explains the benefits of separating business rules from the database structure
and tells how to achieve that separation.

Chapter 7, ‘‘Normalizing Data,’’ explains one of the biggest tools in database design: normalization.
Normalization techniques allow you to restructure a database to increase its flexibility and make it more
robust. This chapter explains the various forms of normalization, emphasizing the stages that are most
common and important: first, second, and third normal forms (1NF, 2NF, and 3NF). It explains how
each of these kinds of normalization helps prevent errors and tells why it is sometimes better to leave a
database slightly less normalized to improve performance.

Chapter 8, ‘‘Designing Databases to Support Software Applications,’’ explains how databases fit into the
larger context of application design and lifecycle. This chapter explains how later development depends
on the underlying database design. It discusses multi-tier architectures that can help decouple the appli-
cation and database design so there can be at least some changes to either without requiring changes to
the other.

Chapter 9, ‘‘Common Design Patterns,’’ explains some common patterns that are useful in many appli-
cations. Some of these techniques include implementing various kinds of relationships among objects,
storing hierarchical and network data, recording temporal data, and logging and locking.

Chapter 10, ‘‘Common Design Pitfalls,’’ explains some common design mistakes that occur in database
development. It describes problems that can arise from insufficient planning, incorrect normalization,
and obsession with ID fields and performance.

xxvi

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxvii

Introduction

Part III: A Detailed Case Study
If you follow all of the examples and exercises in the earlier chapters, by this point you will have seen
all of the major steps for producing a good database design. However, it’s often useful to see all of the
steps in a complicated process put together in a continuous sequence. The chapters in this part of the
book walk through a detailed case study following all of the phases of database design for the fictitious
Pampered Pet database.

Chapter 11, ‘‘User Needs and Requirements,’’ walks through the steps required to analyze the users’
problem, define requirements, and create use cases. It describes interviews with fictitious customers that
are used to identify the application’s needs and translate them into database requirements.

Chapter 12, ‘‘Building a Data Model,’’ translates the requirements gathered in the previous chapter into
a series of data models that precisely define the database’s structure. This chapter builds user-interface
models, entity-relationship diagrams, semantic object models, and relational models to refine the
database’s initial design. The final relational models match the structure of a relational database fairly
closely so they are easy to implement.

Chapter 13, ‘‘Extracting Business Rules,’’ identifies the business rules embedded in the relational model
constructed in the previous chapter. It shows how to extract those rules in order to separate them logically
from the database’s structure. This makes the database more robust in the face of future changes to the
business rules.

Chapter 14, ‘‘Normalization and Refinement,’’ refines the relational model developed in the previous
chapter by normalizing it. It walks through several versions of the database that are in different normal
forms. It then selects the degree of normalization that provides a reasonable tradeoff between robust
design and acceptable performance.

Part IV: Implementing Databases
(with examples in Access and MySQL)

Though this book focuses on abstract database concepts that do not depend on a particular database
product, it’s also worth spending at least some time on more concrete implementation issues. The
chapters in this part of the book describe some of those issues and explain how to build databases with
two different database products: Access 2007 and MySQL.

Chapter 15, ‘‘Microsoft Access,’’ explains how to build a database with Microsoft Access 2007. This
chapter doesn’t cover everything there is to know about Access, it just explains enough to get started
and to use Access to build non-trivial databases. You can use other versions of Access to work through
this chapter, although the locations of menus, buttons, and other Access features are different in different
versions.

Chapter 16, ‘‘MySQL,’’ explains how to build a database with MySQL. This chapter tells where to down-
load a free version of MySQL. It explains how to use the MySQL Command Line Client as well as some
useful graphical tools including MySQL Query Browser and MySQL Workbench.

xxvii

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxviii

Introduction

Part V: Advanced Topics
Although this book does not assume you have previous database experience, that doesn’t mean it cannot
cover some more advanced subjects. The chapters in this part of the book explain some more sophisti-
cated topics that are important but not central to database design.

Chapter 17, ‘‘Introduction to SQL,’’ provides an introduction to SQL (Structured Query Language). It
explains how to use SQL commands to add, insert, update, and delete data. By using SQL, you can help
insulate a program from the idiosyncrasies of the particular database product that it uses to store data.

Chapter 18, ‘‘Building Databases with SQL Scripts,’’ explains how to use SQL scripts to build a database.
It explains the advantages of this technique, such as the ability to create scripts to initialize a database
before performing tests. It also explains some of the restrictions on this method, such as the fact that the
user must create and delete tables in specific orders to satisfy table relationships.

Chapter 19, ‘‘Database Maintenance,’’ describes some of the database maintenance issues that are part
of any database application. Though performing and restoring backups, compressing tables, rebuilding
indexes, and populating data warehouses are strictly not database design tasks, they are essential to any
working application.

Chapter 20, ‘‘Database Security,’’ explains database security issues. It explains the kinds of security that
some database products provide. It also explains some additional techniques that can enhance database
security such as using database views to appropriately restrict the users’ access to data.

Appendixes
The book’s appendixes provide additional reference material to supplement the earlier chapters.

Appendix A, ‘‘Exercise Solutions,’’ gives solutions to Exercises so you can check your progress as you
work through the book.

Appendix B, ‘‘Sample Database Designs,’’ includes the designs for a variety of common database situa-
tions. These designs store information about such topics as books, movies, documents, customer orders,
employee timekeeping, rentals, students, teams, and vehicle fleets.

The Glossary provides definitions for useful database and software development terms. The Glossary
includes terms defined and used in this book in addition to other useful terms that you may encounter
while reading other database material. This appendix can be a useful reference when you encounter an
unfamiliar term on the Web or in database articles.

How to Use This Book
Because this book is aimed at readers of all experience levels, you may find some of the material familiar
if you have previous experience with databases. In that case, you may want to skim chapters covering
material that you already thoroughly understand.

If you are familiar with relational databases, you may want to skim Chapter 1, ‘‘Goals of Effective
Database Design,’’ Chapter 2, ‘‘Database Types,’’ and Chapter 3, ‘‘Relational Database Fundamentals.’’

xxviii

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxix

Introduction

If you have previously helped write project proposals, you may understand some of the questions you
need to ask users to properly understand their needs. In that case, you may want to skim Chapter 4,
‘‘Understanding User Needs.’’

If you have built databases before, you may understand at least some of the data normalization concepts
explained in Chapter 7, ‘‘Normalizing Data.’’ This is a complex topic, however, so I would recommend
that you not skip this chapter unless you have a really thorough understanding of data normalization.

If you have extensive experience with using the SQL database language, you may want to skim Chapter
17, ‘‘Introduction to SQL.’’ (Many developers who have used but not designed databases fall into this
category.)

In any case, I strongly recommend that you at least skim the material in every chapter to see if there are
any new concepts you can pick up along the way. Look at the Exercises at the end of a chapter before
you decide that you can safely skip that chapter. If you don’t know how to outline the solutions to the
Exercises, you should consider looking at the chapter more closely.

Different people learn best in different ways. Some learn best by listening to lecturers, others by reading,
and others by doing. Everyone learns better by combining learning styles. You will get the most from this
book if you read the material and then work through the Exercises. It’s easy to think to yourself, ‘‘Yeah,
that makes sense’’ and believe you understand the material but working through several of the Exercises
will help solidify the material in your mind. It may also help you see new ways that you can apply the
concepts covered in the chapter.

Normally, when I read a new technical book, I work through every example myself, modifying the prob-
lems to see what happens if I try different things not covered by the author. I work through as many
questions and exercises as I can until I reach the point where more examples don’t teach me anything
new. Then I move on. It’s one thing to read about a concept in the chapter; it’s another to try to apply it
to data that is meaningful to you.

After you have mastered the ideas in the book, you can use it for a reference. When you are starting a
new project, you may want to refer to Chapter 4, ‘‘Understanding User Needs,’’ to refresh your memory
about the kinds of questions you should ask users to really discover their true needs.

Visit the book’s Web site to download supplementary material such as checklists of questions to ask users
and quick summaries of key techniques. This material is included in the book but it is also available for
easy download on the book’s Web site.

Also visit the book’s Web site to look for updates and addendums. If readers find typographical errors
or places where a little additional explanation may help, I’ll post updates on the Web site.

Finally, if you get stuck on a really tricky concept and need a little help, email me at RodStephens@vb-
helper.com and I’ll try to help you out.

Note to Instructors
Database programming is boring. Not for you and me who have discovered the ecstatic joy of database
design, the thrill of normalization, and the slightly risqué elation brought by slightly de-normalizing a

xxix

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxx

Introduction

database to achieve optimum performance. But let’s face it, to a beginner database design and develop-
ment can be a bit dull.

There’s little you can do about the basic concepts but you can do practically anything with the data. At
some point it’s useful to explain how to design a simple inventory system but that doesn’t mean you
can’t use other examples designed to catch students’ attention. Data that relates to the students’ personal
experiences or that is just plain outrageous keeps them awake and alert (and most of us know that it’s
easier to teach students who are awake).

The examples in this book are intended to demonstrate the topic at hand but not all of them are strictly
business-oriented. I’ve tried to make them cover a wide variety of topics from serious to silly. To keep
your students interested and alert, you should add new examples from your personal experiences and
from your students’ interests.

I’ve had great success in my classroom using examples that involve sports teams (particularly local rival-
ries), music (combining classics such as Bach, Beethoven, and Tone-Loc), the students in the class (but be
sure not to put anyone on the spot), television shows and stars, comedians, and political candidates. (Be
careful with politics, though, because some people can become really emotionally attached to a particular
candidate, no matter how stupid that candidate is. I focus on things they do that are so stupid that even
loyal followers have to admit, ‘‘Yeah, that was a mistake.’’ Fortunately politicians make those kinds of
mistakes daily so there’s plenty to work with. Watch the evening comedians for material.)

For exercises, encourage students to design databases that they will find personally useful. I’ve had
students build databases that track statistics for the players on their favorite football teams, inventory
their DVD or CD collections, file and search recipe collections, store data on ‘‘Magic: The Gathering’’
trading cards, track role-playing game characters, record information about classic cars, and schedule
athletic tournaments. (Although the tournament scheduler didn’t work out too well — the scheduling
algorithms were too tricky.) One student even built a small but complete inventory application for his
mother’s business that she actually found useful. I think he was as surprised as anyone to discover he’d
learned something useful.

When students find an assignment interesting and relevant, they become emotionally invested and will
apply the same level of concentration and intensity to building a database that they normally reserve for
console gaming, South Park, and ‘‘World of Warcraft.’’ They may spend hours crafting a database to track
WoW alliances just to fulfill a five-minute assignment. They may not catch every nuance of domain/key
normal form but they’ll probably learn how to build a functional database.

Note to Students
If you’re a student and you peeked at the previous section, ‘‘Note to Instructors,’’ shame on you! If you
didn’t peek, do so now.

Building a useful database can be a lot of work but there’s no reason it can’t be interesting and useful to
you when you’re finished. Early in your reading, pick some sort of database that you would find useful
(see the previous section for a few ideas) and think about it as you read through the text. When the book
talks about creating an initial design, sketch out a design for your database. When the book explains

xxx

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxxi

Introduction

how to normalize a database, normalize yours. As you work through the exercises, think about how they
would apply to your dream database.

Don’t be afraid to ask your instructor if you can use your database instead of one suggested by the book
for a particular assignment. (Unless you have one of those instructors who hand out extra work to anyone
who crosses their path. In that case, keep your head down.) Usually an instructor’s thought process is
quite simple: ‘‘I don’t care what database you use as long as you learn the material.’’ Your database may
need to contain several related tables to create the complexity needed for a particular exercise but it’s
usually not too hard to make a database more complex.

When you’re finished, you will hopefully know a lot more about database design than you do now and,
if you’re persistent, you might just have a database that’s actually good for something. Hopefully you’ll
also know how to design other useful databases in the future. (And when you’re finished, email me at
RodStephens@vb-helper.com and let me know what you built!)

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Try It Out
The Try It Out is an exercise you should work through, following the text in the book.

1. They usually consist of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the database.

How It Works

After most Try It Out sections, the process you’ve stepped through will be explained in detail.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show file names, URLs, and code within the text like so: SELECT * FROM Students.

❑ We present blocks of code like this:

We use a monofont type with no highlighting for code examples.

xxxi

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxxii

Introduction

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-38549-4.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at . www.wrox.com/dynamic/books/download.aspx. to see
the code available for this book and all other Wrox books.

The Book’s Web Site
No book can possibly cover everything there is to know about any topic and this book is no exception.
I have tried to make it as complete, correct, and understandable as possible but there isn’t room for
everything here.

To get the most out of this book, you should visit the book’s Web page. There you will find additional
useful information that didn’t fit in the book such as checklists and user requirement surveys that you
can download and print, corrections and clarifications, example SQL scripts, forums for questions and
discussion, and other supplementary material.

To visit the book’s Wrox Web site, go to . www.wrox.com and search for the book’s title or ISBN, or for
the author’s name Rod Stephens. This Web site includes author information, excerpts, example programs
that you can download, and so forth.

Please visit the book’s Web site and look for additions and addendums. I also monitor the book’s Wrox
forum closely and answer questions as quickly as I can.

The book’s author web site, www.vb-helper.com/db_design.htm, contains similar material and links to
the Wrox Web site. The main VB Helper Web site also contains thousands of tips, tricks, and examples
written in various versions of Visual Basic.

To keep informed of changes to this book or my other books, you can sign up for one of my newsletters
at . www.vb-helper.com/newsletter.html. The newsletters, which are sent every week or so, include
Visual Basic tips, tricks, and examples, in addition to updates on my books and other thoughts about
Visual Basic development.

If you have corrections or comments, please send them to me at RodStephens@vb-helper.com. I will try
to help you out and do my best to keep the Web sites as up-to-date as possible.

xxxii

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxxiii

Introduction

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot ‘‘your’’ error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fix the problem
in subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At p2p.wrox.com you will find a number of different forums that will help you not only as you read this
book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

xxxiii

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxxiv

Introduction

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Contacting the Author
If you have questions, suggestions, comments, or just want to say ‘‘Hi,’’ email me at RodStephens@vb-
helper.com. I can’t promise that I’ll be able to help you with every problem, but I do promise to try.

Disclaimer
Many of the examples in this book were chosen for interest or humorous effect. They are not intended
to disparage anyone. I mean no disrespect to police officers (or anyone else who regularly carries a gun),
plumbers, politicians, jewelry store owners, street luge racers (or anyone else who wears helmets and
Kevlar body armor to work), or college administrators. Or anyone else for that matter.

Well, maybe politicians.

xxxiv

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxxv

Beginning
Database Design Solutions

Stephens f04.tex V3 - 10/01/2008 3:41am Page xxxvi

Stephens p01.tex V1 - 09/16/2008 3:48am Page 1

Part I

Introduction to Databases
and Database Design

Chapter 1: Goals of Effective Database Design

Chapter 2: Database Types

Chapter 3: Relational Database Fundamentals

The chapters in this part of the book provide background that is useful when studying database
design.

Chapter 1 explains the reasons why database design is important. It discusses the goals that you
should keep in mind while designing databases. If you keep those goals in mind, you can stay
focused on the end result and not get bogged down in the minutiae of technical details. If you
understand the goals, you can know when it might be useful to bend the rules a bit.

Chapter 2 describes several different kinds of databases. While this book (and most other database
books) focuses on relational databases, there are other kinds of databases that are better suited to
some tasks. If you know what alternatives are available, you can decide which will work best for
you. (I once worked on a 40-developer project that failed largely because it used the wrong kind of
database. Don’t let that happen to you!)

Chapter 3 provides background on relational databases. It explains common relational database
terms and concepts that you need to understand the chapters that follow. You won’t get as much
out of the rest of the book if you don’t understand the terminology.

Even if you’re somewhat familiar with relational databases, give these chapters at least a quick
glance to make sure you don’t miss anything important. Pay particular attention to the terms
described in Chapter 3, because you’ll need to know them later.

Stephens p01.tex V1 - 09/16/2008 3:48am Page 2

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 3

1
Goals of Effective
Database Design

Using modern database tools, just about anyone can build a database. The question is, will the
resulting database be useful?

A database won’t do you much good if you can’t get data out of it quickly, reliably, and consistently.
It won’t be useful if it’s full of incorrect or contradictory data. It also won’t be useful if it is stolen,
lost, or corrupted by data that was only half written when the system crashed.

You can address all of these potential problems by using modern database tools, a good database
design, and a pinch of common sense, but only if you understand what those problems are so you
can avoid them.

Step one in the quest for a useful database is understanding database goals. What should a database
do? What makes a database useful and what problems can it solve? Working with a powerful
database tool without goals is like flying a plane through clouds without a compass: you have
the tools you need but no sense of direction.

This chapter describes the goals of database design. By studying information containers such as files
that can play the role of a database, it defines properties that good databases have and problems that
they should avoid.

In this chapter, you learn:

❑ Why a good database design is important.

❑ Strengths and weaknesses of different kinds of information containers that can act as
databases.

❑ How computerized databases can benefit from those strengths and avoid those
weaknesses.

❑ How good database design helps achieve database goals.

❑ What CRUD and ACID are, and why they are relevant to database design.

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 4

Part I: Introduction to Databases and Database Design

Understanding the Importance of Design
Forget for a moment that this book is about designing databases and consider software design in general.
Software design plays a critical role in software development. The design lays out the general structure
and direction that future development will take. It determines which parts of the system will interact
with other parts. It decides which subsystems will provide support for other pieces of the application.

If an application’s underlying design is flawed, the system as a whole is at risk. Bad assumptions in the
design creep into the code at the application’s lowest levels, resulting in flawed subsystems. Higher-level
systems built on those subsystems inherit the design flaws and soon their code is corrupted, too.

Sometimes a sort of decay pervades the entire system and nobody notices until relatively late in the
project. The longer the project continues, the more entrenched the incorrect assumptions become and
the more reluctant developers are to suggest scrapping the whole design and starting over. The longer
problems remain in the system, the harder they are to remove. At some point, it may be easier to throw
everything away and start over from scratch, a decision that few managers will want to present to upper
management.

Project Management
A friend of mine who is an engineer was working on a really huge satellite project.
After a while, the engineers all realized that the project just wasn’t feasible given the
current state of technology and the design. Eventually the project manager was forced
to admit this to upper management and he was fired. The new project manager stuck
it out for a while and then he, too, was forced to confess to upper management that the
project was unfeasible. He, too, was fired.

This process continued for a while with a new manager taking over, realizing the hope-
lessness of the design, and being fired until eventually even upper management had to
admit the project wasn’t going to work out and the whole thing collapsed.

They could have saved time, money, and several careers if they had spent more upfront
time on the design and either fixed the problems or realized right away that the project
wasn’t going to work and scrapped it at the start.

Building an application is often compared to building a house or skyscraper. You probably wouldn’t
start building a multibillion dollar skyscraper without a comprehensive design that is based on
well-established architectural principles. Unfortunately software developers often rush off to start
coding as soon as they possibly can. Coding is more fun and interesting than design is. Coding also
lets developers tell management and customers how many lines of code they have written so it seems
like they are making progress even if the lines of code are corrupted by false assumptions. Only later do
they realize that the underlying design is flawed, the code they wrote is worthless, and the project is in
serious trouble.

Now back to database design. Few parts of an application’s design are as critical as the database’s design.
The database is the repository of the information that the rest of the application manages and displays to
the users. If the database doesn’t store the right data, doesn’t keep the data safe, or doesn’t let the appli-
cation find the data it needs, then the application has little chance for success. Here the GIGO (Garbage
In, Garbage Out) principle is in full effect. If the underlying data is unsound, it doesn’t matter what the
application that uses it does; the results will be suspect at best.

4

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 5

Chapter 1: Goals of Effective Database Design

For example, imagine that you’ve built an order tracking system that can quickly fetch information about
a customer’s past orders. Unfortunately every time you ask the program to fetch a certain customer’s
records it returns a slightly different result. Though the program can find data quickly, the results are not
trustworthy enough to be usable.

Or imagine that you have built an amazing program that can track the thousands of tasks that make
up a single complex job such as building a cruise liner or passenger jet. It can track each task’s state
of completion, determine when you need to order new parts for them to be ready for future phases of
construction, and can even determine the present value of future purchases so you can decide whether
it is better to buy parts now or wait until they are needed. Unfortunately the program takes hours to
recalculate the complex task schedule and pricing details. Though the calculations are correct, they are so
slow that users cannot reasonably make any changes. Changing the color of the fabric of a plane’s seats
or the tile used in a cruise liner’s hallways could delay the whole project.

Or suppose you have built an efficient subscription application that lets customers subscribe to your
company’s quarterly newsletters and data services. It lets you quickly find and update any customer’s
subscriptions and it always shows the same values for a particular customer consistently. Unfortu-
nately, when you change the price of one of your publications you find that not all of the customers’
records show the updated price. Some customers’ subscriptions are at the new rate, some are at the old
rate, and some seem to be at a rate you’ve never seen before. (This example isn’t as far-fetched as it
may seem. Some systems allow you to offer sale prices or special incentives to groups of customers, or
they allow sales reps to offer special prices to particular customers. That kind of system requires careful
design if you want to be able to do things like change standard prices without messing up customized
pricing.)

Poor database design can lead to these and other annoying and potentially expensive scenarios. A good
design creates a solid foundation on which you can build the rest of the application.

Experienced developers know that the longer a bug remains in a system the harder it is to find and
fix. From that it logically follows that it is extremely important to get the design right before you start
building on top of it.

Database design is no exception. A flawed database design can doom a project to failure before it has
begun as surely as ill-conceived software architecture, poor implementation, or incompetent program-
ming can.

Information Containers
What is a database? This may seem like a trivial question, but if you take it seriously the result can be
pretty enlightening. By studying the strengths and weaknesses of some physical objects that meet the
definition of a database, you can learn about the features you might like a computerized database to
have.

A database is a tool that stores data, and lets you create, read, update, and delete the
data in some manner.

This is a pretty broad definition and it includes a lot of physical objects that most people don’t think of
as modern databases. For example, an envelope full of business cards, a notebook, a filing cabinet full of

5

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 6

Part I: Introduction to Databases and Database Design

customer records, and your brain all fit this definition. Each of these physical databases has advantages
and disadvantages that can give insight into the features you might like in a computer database.

An envelope of business cards is useful as long as it doesn’t contain too many cards. You can find a
particular piece of data (for example, a person’s phone number) by looking through all of the cards. The
database is easy to expand by shoving more cards into the envelope, at least up to a point. If you have
more than a dozen or so business cards, finding a particular card can be time consuming. You can even
rearrange the cards a bit to improve performance for cards you use often. Each time you use a card, move
it to the front of the pile. Over time, those that are used most will be in front.

A notebook is small, easy to use, easy to carry, doesn’t require electricity, and doesn’t need to boot before
you can use it. A notebook database is also easily extensible because you can buy another notebook to
add to your collection when the first one is full. However, a notebook’s contents are arranged sequen-
tially. If you want to find information about a particular topic, you’ll have to look through the pages
one at a time until you find what you want. The more data you have, the harder this kind of search
becomes.

A filing cabinet can store a lot more information than a notebook and you can easily expand the database
by adding more files or cabinets. Finding a particular piece of information in the filing cabinet can be
easier than finding it in a notebook as long as you are searching for the type of data used to arrange the
records. If the filing cabinet is full of customer information sorted by customer name, and you want to
find a particular customer’s data, you’re in luck. If you want to find all of the customers that live in a
certain city, you’ll have to dig through the files one at a time.

Your brain is the most sophisticated database ever created. It can store an incredible amount of data
and it allows you to retrieve a particular piece of data in several different ways. For example, right
now you could probably easily answer the following questions about the restaurants that you visit
frequently:

❑ Which is closest to your current location?

❑ Which has the best desserts?

❑ Which has the best service?

❑ Which is least expensive?

❑ Which is the best for a business lunch?

❑ Which is your overall favorite?

Your brain provides many different ways you can access the same information about restaurants. You
can search the same base of information based on a variety of keys (location, quality of dessert, expense,
and so forth). To answer these questions with an envelope of business cards (or restaurant matchbooks),
a notebook, or a filing cabinet would require a long and grueling search.

Still your brain has some drawbacks, at least as a database. Most notably it forgets. You may be able
to remember an incredible number of things but some of them become less reliable or disappear com-
pletely over time. Do you remember the names of all of your elementary school teachers? I don’t. (I don’t
remember my own teachers’ names, much less yours!)

Your brain also gets tired and when it is tired it is less accurate.

6

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 7

Chapter 1: Goals of Effective Database Design

Although your brain is good at certain tasks such as recognizing faces or picking restaurants, it is not
so good at other tasks such as providing an accurate list of every item a particular customer purchased
in the last year. Those items have less emotional significance than, for example, your spouse’s name, so
they’re harder to remember.

All of these information containers (business cards, notebooks, filing cabinets, and your brain) can
become contaminated with misleading, incorrect, and contradictory information. If you write differ-
ent versions of the same information in a notebook, the data won’t be consistent. Later when you try to
look up the data, you may find either version first and you may not even realize there is another version.
(Your brain can become especially cluttered with inconsistent and contradictory information, particularly
if you listen to politicians during an election year.)

The following section summarizes some of the strengths and weaknesses of these information containers.

Strengths and Weaknesses
of Information Containers

By understanding the strengths and weaknesses of information containers such as those described in the
previous section, you can learn about features that would be useful in a computerized database. So what
are some of those strengths and weaknesses?

The following list summarizes the advantages of some information containers:

❑ None of these databases require electricity so they are safe from power failures. (Although your
brain requires food. As the dormouse said, feed your head.)

❑ These databases keep their data fairly safe and permanent (barring fires). The data doesn’t just
disappear.

❑ These databases (excluding your brain) are inexpensive and easy to buy.

❑ These databases have simple user interfaces so almost anyone can use them.

❑ Using these databases, it’s fairly easy to add, edit, and remove data.

❑ The filing cabinet lets you quickly locate data if you search for it in the same way it is arranged
(for example, by customer name).

❑ Your brain lets you find data by using different keys (for example, by location, cost, or quality of
service).

❑ All of these allow you to find every piece of information that they contain, although it may take
a while to dig through it all.

❑ All of these (except possibly your brain) provide consistent results as long as the facts they store
are consistent. For example, two people using the same notebook will find the same data. Simi-
larly if you look at the same notebook at a later time, it will show the same data you saw before
(if it hasn’t been modified).

❑ All of these except the filing cabinet are portable.

❑ Your brain can perform complex calculations, at least of a limited type and number.

❑ All of these provide atomic transactions.

7

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 8

Part I: Introduction to Databases and Database Design

The final advantage is a bit more abstract than the others so it deserves some additional explanation. An
atomic transaction is a possibly complex series of actions that is considered as a single operation by those
who are not involved directly in performing the transaction.

The classic example is transferring money from one bank account to another. Suppose Alice writes Bob a
check for $100 and you need to transfer the money between their accounts. You pick up the account book,
subtract $100 from Alice’s record, add $100 to Bob’s record, and then put the notebook down. Someone
else who uses the notebook might see it before the transaction (when Alice has the $100) or after the
transaction (when Bob has the $100) but they won’t see it during the transaction where the $100 has been
subtracted from Alice but not yet given to Bob. The office bully isn’t allowed to grab the notebook from
your hands when you’re halfway through. It’s an all-or-nothing transaction.

In addition to their advantages, information containers such as notebooks and filing cabinets have some
disadvantages. It’s worth studying these disadvantages so you can try to avoid them when you build
computerized databases.

The following list summarizes some of the disadvantages that these information containers have:

❑ All of these databases can hold incomplete, incorrect, or contradictory data.

❑ Some of them are easy to lose or steal. Someone could grab your notebook while you’re eating
lunch or read over your shoulder on the bus. You could even forget your notebook at the security
counter as you dash to catch your flight.

❑ In all of these databases, correcting large errors in the data can be difficult. For example, it’s easy
to use a pen to change one person’s address in an address notebook. It’s much harder to update
hundreds of addresses if a new city is created in your area. (This recently happened near where I
live.) Such a circumstance requires a tedious search through a set of business cards, a notebook,
or a filing cabinet. It may be years before your brain makes the switch completely.

❑ These databases are relatively slow at creating, retrieving, updating, and deleting data. Your
brain is much faster than the others at some tasks but is not good at manipulating a lot of infor-
mation all at once. For example, how quickly can you list your 20 closest friends in alphabetical
order? Even picking your closest friends can be difficult at times.

❑ Your brain can give different results at different times depending on uncontrollable factors such
as your mood, how tired you are, and even whether you’re hungry.

❑ Each of these databases is located in a single place so it cannot be easily shared. Each also cannot
be easily backed up so if the original is lost or destroyed, you lose your data.

The following section considers how you can translate these strengths and weaknesses into features to
prefer or avoid in a computerized database.

Desirable Database Features
By looking at the advantages and disadvantages of physical databases, you can create a list of fea-
tures that a computerized database should have. Some of these are fundamental characteristics that
any database must have. (‘‘You should be able to get data from it.’’ How obvious is that?)

Most of these features, however, depend at least in part on good database design. If you don’t craft a
good design, you’ll miss out on some or all of the benefit of these features. For example, any decent

8

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 9

Chapter 1: Goals of Effective Database Design

database provides backup features but a good design can make backup and recovery a lot quicker and
easier.

The following sections describe some of the features that a good database system should provide and
explain to what degree they depend on good database design.

CRUD
CRUD stands for the four fundamental database operations that any database should provide: Create,
Read, Update, and Delete. If you read database articles and discussions on the Web, you will often see
people tossing around the term CRUD. (They may be using the term just to sound edgy and cool. Now
that you know the term, you can sound cool, too!)

You can imagine some specialized data gathering devices that don’t support all of these methods. For
example, the black box flight data recorders on airplanes record flight information and later play it back
without allowing you to modify the data. In general, however, if it doesn’t have CRUD it’s not a database.

CRUD is more a feature of databases in general than it is a feature of good database design, but a
good database design provides CRUD efficiently. For example, suppose you design a database to
track times for your canuggling league (look it up online) and you require that the addresses for
participants include a State value that is present in the States table. When you create a new record (the
C in CRUD), the database must validate the new State entry. Similarly when you update a record (the U
in CRUD), the database must validate the modified State entry. When you delete an entry in the States
table (the D in CRUD), the database must verify that no Participant records use that state. Finally when
you read data (the R in CRUD), the database design determines whether you find the data you want in
seconds, hours, or not at all.

Many of the concepts described in the following sections relate to CRUD operations.

Retrieval
Retrieval is another word for ‘‘read,’’ the R in CRUD. The database should allow you to find every piece
of data. There’s no point putting something in the database if there’s no way to get it back later. (That
would be a ‘‘data black hole,’’ not a database.)

The database should allow you to structure the data so you can find particular pieces of data in one or
more specific ways. For example, you should be able to find a customer’s billing record by searching for
customer name or customer ID.

Ideally the database will also allow you to structure the data so it is relatively quick and easy to fetch
data in a particular manner.

For example, suppose you want to see where your customers live so you can decide whether you should
start a delivery service in a new city. To get this information, it would be helpful to be able to find cus-
tomers based on their addresses. Ideally you could optimize the database structure so you can quickly
search for customers by address.

In contrast, you probably don’t need to search for customers by middle name too frequently. (Imagine
a customer calling you and saying, ‘‘Can you look up my record? I don’t remember if I paid my bill last

9

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 10

Part I: Introduction to Databases and Database Design

month. I also don’t remember my account number or my last name but my middle name is ‘Konfused’.’’)
It would be nice if the common search by address was faster than the rare search by middle name.

Being able to find all of the data in the database quickly and reliably is an important part of database
design. Finding the data you need in a poorly designed database can take hours or days instead of mere
seconds.

Consistency
Another aspect of the R in CRUD is consistency. The database should provide consistent results. If you
perform the same search twice in a row, you should get the same results. Another user who performs
the same search should also get the same results. (Of course this assumes that the underlying data hasn’t
changed in the meantime. You can’t expect your net worth query to return the same results every day
when stock prices fluctuate wildly.)

A well-built database product can ensure that the exact same query returns the same result but design
also plays an important role. If the database is poorly designed, you may be able to store conflicting data
in different parts of the database. For example, you might be able to store one set of contact information
in a customer’s order and a different set of information in the main customer record. Later, if you need to
contact the customer with a question about the order, which contact information should you use?

Validity
Validity is closely related to the idea of consistency. Consistency means different parts of the database
don’t hold contradictory views of the same information. Validity means data is validated where possible
against other pieces of data in the database. In CRUD terms, data can be validated when a record is
created, updated, or deleted.

Just like physical data containers, a computerized database can hold incomplete, incorrect, or contradic-
tory data. You can never protect a database from users who can’t spell or who just plain enter the wrong
information, but a good database design can help prevent some kinds of errors that a physical database
cannot prevent.

For example, the database can easily verify that data has the correct type. If the user sees a Date field and
enters ‘‘No thanks, I’m married,’’ the database can tell that this is not a valid date format and can refuse
to accept the value. Similarly it can tell that ‘‘Old’’ is not a valid Age, ‘‘Lots’’ is not a valid Quantity, and
‘‘Confusion’’ is too long to be a two-letter state abbreviation (although that value may correctly reflect
the user’s state of mind).

The database can also verify that a value entered by the user is present in another part of the database.
For example, a poor typist trying to enter CO in a State field might type CP instead. The database can
check a list of valid states and refuse to accept the data when it doesn’t find CP listed. (If the database
needs to work with only certain states, you can restrict the list to include only those states and make the
test even tighter.)

The database can also check some kinds of conditions on the data. Suppose the database contains a book
ordering system. When the customer orders 500 copies of this book (who wouldn’t want that many
copies?), the database can check another part of the database to see if that many copies are available
(most bookstores carry only a few copies of any given book) and refuse the order if there aren’t enough
copies.

10

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 11

Chapter 1: Goals of Effective Database Design

A good database design also helps protect the database against incorrect changes. Suppose a cappuccino
machine repair service is dropping coverage for a nearby city. When you try to remove that city from
your list of valid locations, the database can tell you if you have existing customers in that city. Depend-
ing on the database’s design, it could refuse to allow you to remove the city until you apologized to those
customers and removed them from the database.

All of these techniques rely on a good, solid database design. They still can’t protect you from a user who
types first names in the last name field or who keeps accidentally bumping the CAPS LOCK KEY, but it
can prevent many types of errors that a notebook can’t.

Easy Error Correction
Even a perfectly designed database cannot ensure perfect validity. How can the database know that a
customer’s name is supposed to be spelled Pheidaux not Fido as typed by the user?

Correcting a single error in a notebook is fairly easy. Just cross out the wrong value and write in the
new one.

Correcting systematic errors in a notebook is a lot harder. Suppose you hire a summer intern to go
door-to-door selling household products and he writes up a lot of orders for ‘‘Duck Tape’’ not realizing
that the actual product is ‘‘Duct Tape.’’ Fixing all of the mistakes could be tedious and time-consuming.
(Of course tedious and time-consuming jobs are what summer interns are for so you can make him fix
it himself.) You could just ignore the problem and leave the orders misspelled, but then how would you
tell when a customer really wants to tape a duck?

In a computerized database, this sort of correction is trivial. A simple database command can update
every occurrence of the product name ‘‘Duck Tape’’ throughout the whole system. (In fact, this kind of
fix is sometimes too easy to make. If you aren’t careful, you may accidentally change the names of every
product to Duct Tape, even those that were not incorrectly spelled Duck Tape. You can prevent this by
building a safe user interface for the database or by being really careful.)

Easy correction of errors is a built-in feature of computerized databases, but to get the best advantage
from this feature you need a good design. If order information is contained in a free-formatted text
section, the database will have trouble fixing typos. If you put the product name in a separate field, the
database can make this change easily.

Though easy corrections are almost free, you need to do a little design work to make them as efficiently
and effectively as possible.

Speed
An important aspect of all of the CRUD components is speed. A well-designed database can create, read,
update, and delete records quickly.

There’s no denying that a computerized database is a lot faster than a notebook or a filing cabinet. Instead
of processing dozens of records per hour, a computerized database can process dozens or hundreds per
second. (I once worked with a billing center that processed around 3 million accounts every three days.)

Good design plays a critical role in database efficiency. A poorly organized database may still be faster
than the paper equivalent but it will be a lot slower than a well-designed database.

11

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 12

Part I: Introduction to Databases and Database Design

Database Design
The billing center I mentioned in the previous paragraph had a simple problem: they
couldn’t find the customers who owed them the most money. Every three days the
database would print out a list of customers who owed money. The list made a stack
of paper almost three feet tall. Unfortunately the list was randomly ordered (prob-
ably ordered by customer ID or shoe size or something equally unhelpful) so they
couldn’t figure out who owed the most. The majority of the customers owed only a few
dollars — too little to pursue — but a few customers owed tens of thousands of dollars.

We captured this printout electronically and sorted the accounts by balance. It turned
out that the really problematic customers only filled a couple of pages and the first five
or so customers owed more than all of the others combined.

I didn’t include this story just to impress you with my programming prowess (to be
completely honest, it was a pretty easy project) but to illustrate how database design
can make a big difference in performance. Here a very simple change (which any
database should be able to support) made the difference between finding the most
troublesome customers in a few seconds or not at all.

Not all changes to a database’s design can produce dramatic results, but design definitely plays an impor-
tant role in performance.

Atomic Transactions
Recall that an atomic transaction is a possibly complex series of actions that is considered as a single
operation by those not involved directly in performing the transaction. If you transfer $100 from Alice’s
account to Bob’s account, no one else can see the database while it is in an intermediate state where the
money has been removed from Alice’s account and not yet added to Bob’s.

The transaction either happens completely or none of its pieces happen — it cannot happen halfway.

Atomic transactions are important for maintaining consistency and validity, and are thus important for
the R and U parts of CRUD.

Physical data containers such as notebooks support atomic transactions because typically only one person
at a time can use them. Unless Derek the office bully grabs the notebook from your hands while you’re
writing in it, you can finish a series of operations before you let someone else have a turn.

Some of the most primitive kinds of databases, such as flat files and XML files (which are described later
in this book) don’t inherently support atomic transactions, but the more advanced relational database
products do. Those databases allow you to start a transaction and perform a series of operations. You
can then either commit the transaction to make the changes permanent or rollback the transaction to undo
them all and restore the database to the state it had before you started the transaction.

These databases also automatically rollback any transaction that is open if the database halts unex-
pectedly. For example, suppose you start a transaction, take $100 from Alice’s account, and then your
company’s mascot (a miniature horse) walks through the computer room, steps on a power strip, and
kills the power to your main computer. When you restart the database (after sending the horse to the HR

12

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 13

Chapter 1: Goals of Effective Database Design

department), it automatically rolls the transaction back so Alice gets her money back. You’ll need to try
the transaction again but at least no money has been lost by the system.

Atomic transactions are more a matter of properly using database features than database design. If you
pick a reasonably advanced database product and use transactions properly, you gain their benefits. If
you decide to use flat files to store your data, you’ll need to implement transactions yourself.

ACID
This section provides some more detail about the transactions described in the previous section rather
than discussing a new feature of physical data containers and computerized databases.

ACID is an acronym describing four features that an effective transaction system should provide. ACID
stands for Atomicity, Consistency, Isolation, and Durability.

Atomicity means transactions are atomic. The operations in a transaction either all happen or none of
them happen.

Consistency means the transaction ensures that the database is in a consistent state before and after the
transaction. In other words, if the operations within the transaction would violate the database’s rules,
the transaction is rolled back. For example, suppose the database’s rules say that an account cannot make
a payment that would result in a balance less than zero. Also suppose that Alice’s account holds only $75.
Now you start a transaction, add $100 to Bob’s account, and then try to remove $100 from Alice’s. That
would put Alice $25 in the red, violating the database’s rules, so the transaction is canceled and we all try
to forget that this ugly incident ever occurred. (Actually we probably bill Alice an outrageous surcharge
for writing a bad check.)

Isolation means the transaction isolates the details of the transaction from everyone except the person
making the transaction. Suppose you start a transaction, remove $100 from Alice’s account, and add $100
to Bob’s account. Another person cannot peek at the database while you’re in the middle of this process
and see a state where neither Alice nor Bob has the $100. Anyone who looks in the database sees the $100
somewhere, either in Alice’s account before the transaction or in Bob’s account afterwards.

In particular, two transactions operate in isolation and cannot interfere with each other. Suppose one
transaction transfers $100 from Alice to Bob and then a second transaction transfers $100 from Bob to
Cindy. Logically one of these transactions occurs first and finishes before the other starts. For example,
when the second transaction starts, it will not see the $100 missing from Alice’s account unless it is
already in Bob’s account.

Note that the order in which the transactions occur may make a big difference.
Suppose Alice starts with $150, Bob starts with $50, and Cindy starts with $50.

Now suppose the second Bob-to-Cindy transaction occurs first. If the transaction
starts by removing $100 from Bob’s account, Bob is overdrawn, this transaction is
rolled back, we assess Bob a surcharge for being overdrawn, and we try to sell Bob
overdraft protection for the low, low price of only $10 per month. After all of this,
the Alice-to-Bob transaction occurs and we successfully move $100 into Bob’s
account.

13

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 14

Part I: Introduction to Databases and Database Design

In contrast, suppose the Alice-to-Bob transaction occurs first. That transaction
succeeds with no problem so, when the Bob-to-Cindy transaction starts, Bob has
$150 and the second transaction can complete successfully.

The database won’t determine which transaction occurs first, just that each commits
or rolls back before the other starts.

Durability means that once a transaction is committed, it will not disappear later. If the power fails, when
the database restarts, the effects of this transaction will still be there.

The durability requirement relies on the consistency rule. Consistency ensures that the transaction will
not complete if it would leave the database in a state that violates the database’s rules. Durability means
that the database will not later decide that the transaction caused such a state and retroactively remove
the transaction.

Once the transaction is committed, it is final.

A high-end database might provide durability through continuous shadowing.
Every time a database operation occurs, it is shadowed to another system. If the
main system crashes, the shadow database can spring instantly into service.
Other databases provide durability through logs. Every time the database performs
an operation, it writes a record of the operation into the log. Now suppose the
system crashes. When the database restarts, it reloads its last saved data and then
reapplies all of the operations described by the log. This takes longer than
restarting from a shadow database but requires fewer resources so it’s generally less
expensive.

To provide durability, the database cannot consider the transaction as committed
until its changes are shadowed or recorded in the log so the database will not lose
the changes if it crashes.

Persistence and Backups
The data must be persistent. It shouldn’t change or disappear by itself. If you can’t trust the database to
keep the data safe, the database is pretty much worthless.

Database products do their best to keep the data safe, and in normal operation you don’t need to do
much to get the benefit of data persistence. When something unusual happens, however, you may need
to take special action and that requires prior planning. For example, suppose the disk drives holding
the database simply break. Or a fire reduces the computer to a smoldering puddle of slag. Or a user
accidentally or intentionally deletes the database. (A user tried that once on a project I was working on.
We were not amused!)

In these extreme cases, the database alone cannot help you. To protect against this sort of trouble, you
need to perform regular backups.

14

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 15

Chapter 1: Goals of Effective Database Design

Physical data containers such as notebooks are generally hard to back up, so they are hard to protect
against damage. If a fire burns up your accounts receivable notebook, you’ll have to rely on your cus-
tomers’ honesty in paying what they owe you. Though we like customers, I’m not sure most businesses
trust them to that extent.

In theory you could make copies of a notebook and store them in separate locations to protect against
these sorts of accidents, but in practice few businesses (except perhaps money laundering, smuggling,
and other endeavors where it’s handy to show law enforcement officials one set of books and the ‘‘share-
holders’’ another) do.

Computerized databases, however, are relatively easy to back up. If the loss of a little data won’t hurt you
too badly, you can back up the database daily. If fire, a computer virus, or some other accident destroys
the main database, you can reload the backup and be ready to resume operation in an hour or two.

If the database is very volatile or if losing even a little data could cause big problems (how much money
do you think gets traded through the New York Stock Exchange in a busy hour?), then you need a differ-
ent backup strategy. Many higher-end database products allow you to shadow every database operation
as it occurs so you always have a complete copy of everything that happens. If the main database is
destroyed, you can be back in business within minutes. Some database architectures can switch to a
backup database so quickly the users don’t even know it’s happened.

Backup Plans
It’s always best to store backups away from the computer that you’re backing up. Then
if a really big accident like a fire occurs and destroys the whole building holding the
database, the backup is still safe.

I’ve known of several development groups that stored their backups right next to
the computer they were backing up. That guards against some kinds of stupidity (in
the teams I’ve worked on, about once every 10 person-years or so someone accidentally
deleted a file that we needed to recover from backups) but doesn’t protect against big
accidents.

I’ve also known of companies that had an official backup plan, but once you submitted
a backup for proper storage it was shipped off site and it took a long time to get it back
if you needed it. A backup doesn’t do much good if you can’t use it!

In a very extreme example, I had a customer who was concerned that backups were
stored only 30 miles from the database. Their thought was that the backups might not
be safe in the event of a volcanic eruption or nuclear explosion.

Exactly how you implement database backups depends on several factors such as how likely you think a
problem will be, how quickly you need to recover from it, and how disastrous it would be to lose some
data and spend time to restore from a backup, but a computerized database gives you a lot more options
than a notebook does.

Good database design can help make backups a bit easier. If you arrange the data so changes occur in
a fairly localized area, you can back up that area fairly often and not waste time backing up data that
changes only rarely.

15

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 16

Part I: Introduction to Databases and Database Design

Low Cost and Extensibility
Ideally the database should be easy to obtain and install, inexpensive, and easily extensible. If you dis-
cover that you need to process a lot more data per day than you had expected, you should be able to
somehow increase the database’s capacity.

Although some database products are quite expensive, most of them have reasonable upgrade paths
so you can buy the least expensive license that will handle your needs, at least in the beginning. For
example, SQL Server, Oracle, and MySQL provide free editions that you can use to get started building
small single-user applications. They also provide more expensive editions that are suitable for very large
applications that have hundreds of users.

Installing a database will never be as easy and inexpensive as buying a new notebook, but it also doesn’t
need to be a time-consuming financial nightmare.

Though expense and capacity are more features of the particular database product than database design,
good design can help with a different kind of extensibility. Suppose you have been using a notebook
database for a while and discover that you need to capture a new kind of information. Perhaps you
decide that you need to track customers’ dining habits so you know what restaurant gift certificate to
give them on special occasions. In this case, it would be nice if you could extend the database design to
hold this extra information.

Good database design can make this kind of extension possible.

Ease of Use
Notebooks and filing cabinets have simple user interfaces so almost anyone can use them effectively.
(Although sometimes even they get messed up pretty badly. Should you file ‘‘United States Postal Ser-
vice’’ under ‘‘United States?’’ ‘‘Postal Service?’’ ‘‘Snail Mail?’’)

A computer application’s user interface determines how usable it is by average users. User interface
design is not part of database design, so you may wonder why ease of use is mentioned here.

The first-level users of a database are often programmers and relatively sophisticated database
users who understand how to navigate through a database. A good database design makes the
database much more accessible to those users. Just by looking at the names of the tables, fields, and
other database entities that organize the data, this type of user should be able to figure out how
different pieces of data go together and how to use them to retrieve the data they need. If those
sophisticated users can easily understand the database, they can build better user interfaces for the less
advanced users.

Portability
A computerized database allows for a portability that is even more powerful than the portability of a
notebook. It allows you to access the data from anywhere you have access to the Web without actually
moving the physical database. You can access the database from just about anywhere while the data itself
remains safely at home, far from the dangers of pickpockets, being dropped in a puddle, and getting
forgotten on the bus.

16

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 17

Chapter 1: Goals of Effective Database Design

In fact, the new kind of portability may be a little too easy. Though someone in the seat behind you on
the airplane can’t peek over your shoulder to read a computerized data the way he can a notebook (well,
he can if you’re using your laptop), a hacker located on the other side of the planet may try to sneak into
your database and rifle through your customer data while you’re asleep.

This leads to the next topic, security.

Security
A notebook is relatively easy to lose or steal but a highly portable database can be even easier to com-
promise. If you can access your database from all over the world, then so can cyber-banditos and other
ne’er-do-wells.

Locking down your database is mostly a security issue that you should address by using your network’s
and database’s security tools. However, there are some design techniques that you can use to make
securing the database easier.

Information Theft
There have been a number of spectacular stories of lost or stolen laptops, hard drives,
disks, and other media potentially exposing confidential information to bad guys.

❑ On January 22, 2005, a University of Northern Colorado hard drive con-
taining personal information about 30,000 current and former University
employees was apparently stolen.

❑ On December 22, 2005, a Ford Motor Company computer was stolen con-
taining the names and Social Security Numbers of 70,000 current and former
employees. Just three days later, on December 25, 2005, an Ameriprise Finan-
cial Inc. laptop containing sensitive information about 260,000 customers was
stolen (the laptop was later recovered).

❑ On June 1, 2006, a laptop containing information about 243,000 Hotel.com
customers was stolen.

❑ On January 13, 2007, a North Carolina Department of Revenue computer
containing tax information from 30,000 taxpayers was stolen.

❑ On January 24, 2008, a Fallon Community Health Plan computer containing
confidential information about 30,000 patients was stolen.

❑ Finally, in possibly the biggest data loss to date, on May 3, 2006, a U.S.
Department of Veterans Affairs laptop containing information about 28.6
million veterans and active duty personnel was stolen.

I don’t mean to single these victims out. This is a big issue and hundreds if not
thousands of companies around the world have suffered similar data exposure.
The Privacy Rights Clearinghouse Web page, ‘‘A Chronology of Data Breaches’’ at
www.privacyrights.org/ar/ChronDataBreaches.htm, lists incidents totaling more
than 230 million exposed records in the United States alone since the site began
tracking incidents in 2005.

17

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 18

Part I: Introduction to Databases and Database Design

If you separate the data into categories that different types of users need to manipulate, you can grant
different levels of permission to the different kinds of users. Giving users access to only the data they
absolutely need not only reduces the chance of a legitimate user doing something stupid or improper,
but it also decreases the chance that an attacker can pose as that user and do something malicious. Even
if Clueless Carl won’t mistreat your data intentionally, an online mugger might be able to guess Carl’s
password (which naturally is ‘‘Carl’’) and try to wreak havoc. If Carl doesn’t have permission to trash
the accounting data, neither does the mugger.

Yet another novel aspect to database security is the fact that users can access the database remotely
without actually holding a copy of the database locally. You can use your palmtop computer to access a
database without storing the data on your computer. That means if you do somehow lose your computer,
the data may still be safe on the database’s computer.

This is more an application architecture issue than a database design issue (don’t store the data locally
on laptops) but using a database design that restricts users’ access to what they really need to know
can help.

Sharing
It’s not easy to share a notebook or envelope full of business cards among a lot of people. No two
people can really use a notebook at the same time and there’s some overhead in shipping the notebook
back and forth among users. Taking time to walk across the room a dozen times a day would be
annoying; express mailing a notebook across the country every day would be just plain
silly.

Modern networks can let hundreds or even thousands of users access the same database at the same time
from locations scattered across the globe. Though this is largely an exercise in networking and the tools
provided by a particular database product, some design issues come into play.

If you compartmentalize the data into categories that different types of users need to use as described in
the previous section, this not only helps with security but it also helps reduce the amount of data that
needs to be shipped across the network.

Breaking the data into reasonable pieces can also help coordinate among multiple users. When
your coworker in London starts editing a customer’s record, that record must be locked so other
users can’t sneak in and mess things up before the edit is finished. Grouping the data appropriately lets
you lock the smallest amount of data possible so more data is available for other users
to edit.

Careful design can allow the database to perform some calculations and ship only the results to your
boss who’s working hard on the beaches of Hawaii instead of shipping the whole database out there and
making the user’s computer do all of the work.

Good application design is also important. Even after you prepare the database for efficient use, the
application still needs to use it properly. But without a good database design, these techniques aren’t
possible.

18

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 19

Chapter 1: Goals of Effective Database Design

Ability to Perform Complex Calculations
Compared to the human brain, computers are idiots. It takes seriously powerful hardware and
frighteningly sophisticated algorithms to perform tasks that you take for granted such as recognizing
faces, speaker-independent speech recognition, and handwriting recognition (although neither the
human brain nor computers have yet deciphered doctors’ prescriptions). The human brain is also
self-programming, so it can learn new tasks flexibly and relatively quickly.

Though a computer lacks the adaptability of the human brain, it is great at performing a series of
well-defined tasks quickly, repeatedly, and reliably. A computer doesn’t get bored, let its attention wan-
der, and make simple arithmetic mistakes (unless it suffers from the infamous Pentium FDIV bug, the
f00f bug, the Cyrix coma bug, or a few others). The point is, if the underlying hardware and software
works correctly, the computer can perform the same tasks again and again millions of times per second
without making mistakes.

When it comes to balancing checkbooks, searching for accounts with balances less than zero, and per-
forming a host of other number-crunching tasks, the computer is much faster and less error-prone than a
human brain.

The computer is naturally faster at these sorts of calculations, but even its blazing speed won’t help you
if your database is poorly designed. A good design can make the difference between finding the data you
need in seconds rather than hours, days, or not at all.

Consequences of Good and Bad Design
The following table summarizes how good and bad design can affect the features described in the previ-
ous sections.

Feature Good Design Bad Design

CRUD You can find the data
you need quickly and
easily. The database
prevents inconsistent
changes.

You find the data you need either very slowly
or not at all. You can enter inconsistent data or
modify and delete data to make the result
inconsistent. (Your products ship to the wrong
address or the wrong person.)

Retrieval You can find the correct
data quickly and easily.

You cannot find the data you need quickly.
(Your customer waits on hold for 45 minutes to
get a simple account balance.)

Consistency All parts of the
database agree on
common facts.

Different pieces of information hold
contradictory data. (A customer’s bills are sent
to one address but late payment notices are sent
to another.)

Validity Fields contain valid
data.

Fields contain gibberish. (Your company’s
address has the State value ‘‘Confusion.’’
Although if the database does hold that value,
it’s probably correct on some level.)

19

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 20

Part I: Introduction to Databases and Database Design

Feature Good Design Bad Design

Error Correction It’s easy to update
incorrect data.

Simple and large-scale changes never happen.
(Thousands of your customers’ bills are
returned to you because their ZIP Code
changed and the database didn’t get updated.)

Speed You can quickly find
customers by name,
account number, or
phone number.

You can only find a customer’s record if he
knows his 37-digit account number. Searching
by name takes half an hour.

Atomic
Transactions

Related transactions
either all happen or all
don’t happen.

Related transactions may occur partially. (Alice
loses $100 but Bob doesn’t receive it. Prepare
for customer complaints.)

Persistence and
Backups

You can recover from
computer failure. The
data is safe.

Recovering lost data is slow and painful or
even impossible. (You lose all of the orders
placed in the last week!)

Low Cost and
Extensibility

You can move to a
bigger database when
your need grows.

You’re stuck on a small-scale database. (When
your Web site starts getting hundreds of orders
per second, the database cannot keep up and
you lose thousands per day. Don’t we all wish
we had this problem!)

Ease of Use The database design is
clear so developers
understand it and build
a great user interface.

The database design is confusing so the
developers produce an ‘‘anthill’’
program — confusing and buggy. (I’ve worked
on projects like that and it’s no picnic!)

Portability The design allows
different users to
download relevant data
quickly and easily.

Users must download much more data than
they need, slowing performance and giving
them access to sensitive data (such as the
Corporate Mission Statement, which proves
management has no clue.)

Security Users have access to the
data they need and
nothing else.

Hackers and disgruntled employees have
access to everything.

Sharing Users can manipulate
the data they need.

Users lock data they don’t really need and get
in each others’ way, slowing them down.

Complex
Calculations

Users can easily
perform complex
analysis to support
their jobs.

Poor design makes calculations take far longer
than necessary. (I worked on a project where a
simple change to a data model could force a
20-minute recalculation.)

20

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 21

Chapter 1: Goals of Effective Database Design

Summary
This chapter explained the important position that database design plays in application development.
If the database design doesn’t provide a solid foundation for the rest of the project to build upon, the
application as a whole will fail.

This chapter then described physical data containers that can behave as databases. It discussed the
strengths and weaknesses of those objects and explained how a computerized database can provide
the strengths while avoiding the weaknesses.

In this chapter you learned that a good database provides:

❑ CRUD

❑ Retrieval

❑ Consistency

❑ Validity

❑ Easy error correction

❑ Speed

❑ Atomic transactions

❑ ACID

❑ Persistence and backups

❑ Low cost and extensibility

❑ Ease of use

❑ Portability

❑ Security

❑ Sharing

❑ Ability to perform complex calculations

This chapter used physical objects such as notebooks and filing cabinets to study database goals and
potential problems. These physical systems meet some but not all of the database goals fairly effectively.

The next chapter describes several different kinds of computerized databases. It explains which goals
each type of database meets and which it does not.

Though this book focuses mostly on relational databases, some of these other kinds of databases are
simpler and useful enough for some applications.

Before you move on, however, take a look at the following exercises and test your knowledge of database
design goals described in this chapter. You can find the solutions to these exercises in Appendix A.

21

Stephens c01.tex V3 - 10/04/2008 12:15pm Page 22

Part I: Introduction to Databases and Database Design

Exercises
1. Compare this book to a database (assuming you don’t just use it as a notebook, scribbling in

the margins). What features does it provide? What features are missing?

2. Describe two features that this book provides to help you look for particular pieces of data
in different ways.

3. What does CRUD stand for? What do the terms mean?

4. How does a chalkboard implement the CRUD methods? How does a chalkboard’s database
features compare to those of this book?

5. Consider a recipe file that uses a single index card for each recipe with the cards stored
alphabetically. How does that database’s features compare to those of a book?

6. What does ACID stand for? What do the terms mean?

7. Suppose Alice, Bob, and Cindy all have account balances of $100 and the database does
not allow an account’s balance to ever drop below zero. Now consider three transactions:
1) Alice transfers $125 to Bob, 2) Bob transfers $150 to Cindy, and 3) Cindy transfers $25 to
Alice and $50 to Bob. In what order(s) can the transactions be executed successfully?

8. Explain how a central database can protect your confidential data.

22

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 23

2
Database Types

Recall the question posed at the beginning of Chapter 1: What is a database? The answer given
there was:

A database is a tool that stores data, and lets you create, read, update, and delete the
data in some manner.

This broad definition allows you to consider all sorts of odd things as databases including note-
books, filing cabinets, and your brain. If you’re flexible about what you consider data, this definition
includes even stranger objects such as a chess set (which stores board positions) or a parking lot
(which stores car types and positions, although it might be hard for you to update any given car’s
position without the owner’s consent).

This chapter moves into the realm of computerized databases. Relational databases are by far the
most commonly used computerized databases today and most of this book (and other database
books) focus on them, but it’s still worth taking some time first to learn a bit about other kinds
of computerized databases that are available. Relational databases are extremely useful in a huge
number of situations but they’re not the only game in town. Sometimes a different kind of database
may make more sense for your particular problem.

Before you start frantically throwing tables together, building indexes, and normalizing everything
in sight, it’s worth taking some time to study some of the other kinds of databases that are available.

This chapter describes different types of databases including flat files, spreadsheets, hierarchical
databases (XML), object databases, and relational databases. Relational databases are the most
common of these, but this chapter describes the others and gives some tips on deciding whether
one of the others would be more appropriate.

In this chapter, you learn:

❑ What kinds of databases are most common.

❑ The strengths and weaknesses of these database types.

❑ How to decide which kind of database to use.

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 24

Part I: Introduction to Databases and Database Design

Why Bother?
There’s an expression, ‘‘If all you have is a hammer, everything looks like a nail.’’ If the only kind of
database you understand is the relational database, you’ll probably try to hammer every kind of data
into a relational database, and that can sometimes lead to trouble.

Comparing Database Types
I once worked on a fairly large database application with around 40 developers and
more than 120,000 lines of code. The program loaded some fairly large relational
databases and used their data to build huge tree-like structures. Those structures
allowed sales representatives to design and modify extremely complicated projects
for customers involving tens of thousands of line items.

The data was naturally hierarchical but was stored in relational databases, so the pro-
gram was forced to spend a long time loading each data set. Many projects took 5 to 20
minutes to load. When the user made even a simple change to the data, the program’s
design required it to recalculate parts of the tree and then save the changes back into
the database, a process that took another 5 to 30 minutes depending on the complex-
ity of the model. The program was so slow that the users couldn’t perform the kinds
of experiments they really needed to optimize the projects they were building. You
couldn’t quickly see the effects of tweaking a couple of numbers here and there.

To make matters worse, loading and saving all of that hierarchical data in a relational
database required tens of thousands of lines of moderately tricky code that was hard to
debug and maintain.

At one point, I did a quick experiment to see what would happen if the data were stored
in an XML database, a database that naturally stores hierarchical data. My test program
was able to load and save data sets containing 20,000 items in three or four seconds.

At this point, the project was too big and the design too entrenched to make such a
fundamental change. (After that, political pressure within the company pulled the
project in too many directions and it eventually shredded like a tissue in a tug-of-war.)

The lesson is clear: before you spend a lot of time building the ultimate relational database and piling
thousands of lines of code on top of it, make sure that’s really the kind of database you need. Had this
project started with an XML database, it probably would have had a simpler, more natural design with
much less code and would probably have lasted for many years to come.

The following sections describe some of the most commonly used database types. They are listed more
or less in order of increasing complexity, although it is possible to create very complicated flat files or
relatively simple hierarchical databases.

Flat Files
Flat files are simply files containing text. Nothing fancy. No bold, italic, different font faces, or other special
font tricks. Just text.

24

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 25

Chapter 2: Database Types

You can add structure to these files, for example by separating values with commas or using indentation
to show structure, but the basic file is just a pile of characters. Some structured variations such as INI files
and XML files are described later in this chapter.

Text files provide no special features. Flat files don’t help you search for data and don’t provide
aggregate functions such as total, average, and minimum. Writing code to perform any one of those
kinds of searches is fairly easy, but it’s extra work and providing flexible ad hoc search capabilities
is hard.

Programs cannot modify flat files in general ways. For example, you may be able to truncate a file, add
data to the end, or change specific characters within the file, but you cannot insert or delete data in the
middle of the file. Instead you must rewrite the entire file to make those sorts of changes.

Though flat files don’t provide many services, don’t scoff at their use. They are extremely simple and
easy to understand, so they are a good choice for some kinds of data. You can open a flat file in any text
editor and make changes without needing to write a complex user interface.

If a piece of data is relatively simple and seldom changes, a flat file may be an effective, simple way to
store the data. For example, a flat file is a fine place to store a message of the day. Each day you can type
in one of your favorite obscure quotes for a program to display when it starts. (‘‘The next thing to saying
a good thing yourself, is to quote one.’’ –Ralph Waldo Emerson.)

Flat files are also good places to store configuration settings. A configuration file lists a series of named
values that a program can read when it needs them. Often a program loads its configuration information
when it starts and doesn’t look at the configuration file again.

Lately some programming environments such as Microsoft’s Visual Studio have started saving configu-
ration information in XML files instead of flat files. This lets the application store values in a hierarchical
arrangement. The section ‘‘XML’’ later in this chapter has more to say about XML.

Flat files work well if:

❑ Values are fairly small and simple.

❑ Values don’t change too often.

❑ You want to be able to change values with a simple text editor.

❑ You want to be able to distribute settings by copying files to new locations.

❑ You want to keep a simple historical list of previous values, such as a list of previous daily
memos or welcome messages.

❑ You want to use tools to quickly compare two files.

Flat files don’t work well if:

❑ You need to perform complex searches through the values.

❑ Values change often.

❑ You don’t want others to be able to view and modify the values easily.

❑ The values are hierarchical.

25

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 26

Part I: Introduction to Databases and Database Design

Two particularly common places to store configuration information are INI files and the Windows system
registry. The following sections describe these two approaches.

INI Files
One common type of flat file database is the INI file (INI stands for ‘‘initialization’’). An INI file contains
section names surrounded by square brackets. Each section can hold any number of setting names and
values separated by an equal sign. For example, the following INI file contains configuration values for a
fictitious application named RBP (Really Big Project):

[WebSites]
VbTips=http://www.vb-helper.com/whats_new.html
Quote=http://www.quotationspage.com/qotd.html
AstroPicture=http://antwrp.gsfc.nasa.gov/apod/
Comic=http://www.userfriendly.org/

[Directories]
Image=C:\RBP Project\Pictures
Text=C:\RBP Project\Documents
Data=C:\RBP Project\DB

The file’s first section is called WebSites. It contains four values named VbTips, Quote, AstroPicture,
and Comic that contain URLs leading to Web sites that the application might use. (These pages are my
Web site’s ‘‘what’s new’’ page, a quote-of-the-day page, the astronomy picture-of-the-day site, and the
User Friendly daily comic strip page.)

The file’s second section is named Directories. It contains three directory paths that the program can
use to locate different kinds of files.

When the RBP application starts, it opens this INI file, reads these values into variables, and uses those
variables as it runs.

Later, if you need to change any of these settings, you can simply edit the INI file. For example, suppose
your data files fill your 250GB C drive. Rather than replacing your C drive with a slightly bigger drive and
filling it up in the next few weeks, you decide to add a new G drive that holds 10 petabytes (a petabyte
is 1 million gigabytes so this should last you for a while) and move only your data files to that drive. To
make the program use the new directory, you only need to change the value of the Directories section’s
Data setting to:

Data=G:\RBP Project\Data

Some applications store more volatile settings such as the MRU (Most Recently Used) file list in the File
menu. That works if users have separate INI files but doesn’t work if they all share the same INI file.
To handle both common and individual settings, some programs use one INI file in a shared location
to hold shared values and then other INI files in user-specific locations (for example, in each user’s My
Documents folder) for their personal settings.

Windows System Registry
The Windows system registry is actually not a flat file, although many applications use it as if it were
one. The registry is a hierarchical database that holds configuration information for the operating system

26

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 27

Chapter 2: Database Types

and many of the programs installed on the system. It contains information such as the locations of key
executable programs and libraries.

The registry is extremely important to the operating system and if you mess it up you could seriously
confuse the system. You can even make it unbootable, so it doesn’t pay to fool around in there casually.
However, some programming languages have tools that make using certain parts of the registry reason-
ably easy and safe. If you stick to those tools and don’t get carried away, you should be able to store
values with little risk of a serious meltdown.

The root of the registry contains several hives (that’s what Microsoft calls the areas in the registry) that
define branches for the local computer, users in general, and the current user. Those branches provide
places for you to store both global and user-specific settings.

Many applications store shared settings in the HKEY_LOCAL_MACHINE\SOFTWARE branch of the registry. For
example, the RBP application mentioned in the previous section might store its Text directory setting at
the registry path HKEY_LOCAL_MACHINE\SOFTWARE\RBP\Directories\Text.

The registry automatically builds a separate HKEY_CURRENT_USER hive for each user so many applications
store user-specific information there. The GBP application might store a user’s color preferences so users
who are color-deficient (color-blind) can adjust the colors so they are easy to see. The program can store
the color settings in the HKEY_CURRENT_USER\Software\GBP\Colors area so different users see a different
set of values.

Although if you provide this feature, some of the users will spend time fiddling with the colors to match
their moods each day. Sooner or later, someone will set his foreground and background colors to black
just to see what will happen. He won’t be able to see anything and you’ll have to fix it. (I knew someone
who did this intentionally to her Windows system colors just to see what would happen. It took her most
of a day to recover. Curiosity may not kill the programmer but it can sure make things interesting.)

The registry is hierarchical and you can build branches within other branches, but it really isn’t intended
for constructing elaborate data hierarchies. It also isn’t intended for storing huge amounts of data or data
that changes very frequently. It’s a good place to store user-specific configuration information such as
MRU lists that might change a few times per day, but it’s not a good place to store customer orders and
minute-to-minute stock prices.

Relational Databases
This book is mostly about relational databases. Chapter 3 provides an introduction to relational
databases. This chapter needs to describe them in enough detail for you to decide whether they’re the
right choice for you.

Without getting into too much detail (I don’t want to spoil the next chapter’s surprise), a relational
database contains tables that hold rows and columns. Each row holds related data about a particular
entity (person, vehicle, sandwich, or whatever). Each column represents a piece of data about that entity
(name, street address, number of pickles, and so forth).

Sometimes a piece of data naturally has more than one value. For example, a single customer might place
lots of orders. To make it easy to add multiple values, those values are stored in a separate table linked
to the first by some value that the corresponding records share.

27

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 28

Part I: Introduction to Databases and Database Design

For example, suppose you build a relational database to track your favorite street luge racers. The Racers
table stores information about individual racers. Each row corresponds to a particular racer. The columns
represent basic information for a racer such as name, age, height, weight, and so forth. A very important
column stores each racer’s ID number.

Over time, each racer will have lots of race results (although there will probably be lots of blank spots for
bale chuckers — see www.skateluge.com/lugetalk.htm). You store race results in a separate RaceRe-
sults table. Each row records the final standings for a single racer in a single race. The columns record the
racer’s ID number, the race’s name and date, the racer’s finishing position, and the points that position is
worth for overall ranking.

To find all of the finishing positions and points for a particular racer, you look up the racer’s row in the
Racers table, find the racer’s ID number, and then find all of the rows in the RaceResults table that have
this racer ID.

Figure 2-1 shows this simple database design. (No, this is not a finished design nor a very good one. It’s
just a start to give you the flavor of a relational database. Let’s not get ahead of ourselves!)

RacerName

RaceName
Go Fast Speed
Days

Pro Classic
Luge Mass

9/1/2007-
9/2/2007

1

1

1

2

3

3 3

13 0

424.3687

432.6154

432.6154

321.1366

403.3633

450.0024

450.0024

2 2

2

24

6

1

1

2

9/1/2007-
9/2/2007
9/1/2007-
9/2/2007

8/25/2007-
8/26/2007

7/27/2007-
7/28/2007

7/11/2007-
7/14/2007

7/11/2007-
7/14/2007

7/11/2007-
7/14/2007

Pro Classic
Luge Mass

Pro Classic
Luge Mass

Pro Classic
Luge Mass

Pro Classic
Luge Mass

Pro Classic
Luge Mass
Pro Classic
Luge Mass

Pro Street Luge
Mass

Go Fast Speed
Days
Go Fast Speed
Days

Top Challenge

Rock and Roll

Almabtrieb
World
Championships

Almabtrieb
World
Championships

Almabtrieb
World
Championships

Division Dates RacerId FinishingPosition Points

Nationality
Racers Table

RaceResults Table

RacerId
1
2
3

Austria
United States
France

Michael Serek
Chris McBride
Sebastien Tournissac

Figure 2-1

28

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 29

Chapter 2: Database Types

Relational databases have been around for a long time. (Edgar Codd started laying the foundations
in 1970.) They are the most commonly used kind of database today and have been for years, so a lot
of very powerful companies have spent a huge amount of time building them. All of that means that
relational databases have been thoroughly studied and have evolved over time to the point where they
are quite useful and effective.

Relational databases provide a number of features that make working with databases such as the street
luge database easier. Some of the features they provide include:

❑ Data types: Each column has a particular data type (text, numeric, date, and so forth) and the
database will not allow values of other types in a column.

❑ Basic constraints: The database can enforce constraints such as requiring that a luge racer’s top
speed be between 50 and 250mph (no one with a top speed less than 50 is worth recording) or it
can require certain fields.

❑ Referential integrity: The database can prevent you from adding a RaceResults record for a
racer who doesn’t exist in the Racers table. Similarly, the database can prevent you from mod-
ifying a racer’s ID if that would leave rows in the RaceResults table with invalid racer IDs, and it
could prevent you from modifying a RaceResults row’s racer ID to an invalid value.

❑ Cascading deletes and updates: If you delete a racer from the Racers table, the database can
automatically delete all of that racer’s RaceResults records. Similarly if you change a racer’s ID
number, the database can update the ID numbers in that racer’s RaceResults records.

❑ Joins: The database can quickly gather related records from different tables. For example, it can
easily list every racer with his or her corresponding finishing positions sorted alphabetically and
by race date.

❑ Complex queries: Relational databases support all sorts of interesting query and aggregation
functions such as SUM, AVG, MIN, COUNT, STDEV, and GROUP BY.

Relational databases work well if:

❑ You need to perform complicated queries and joins among different tables.

❑ You need to perform data validations such as verifying that related rows in other tables exist.

❑ You need to allow for any number of values for a particular piece of data (for example, race fin-
ishing positions).

❑ You want to be able to flexibly build new queries that you didn’t plan when you started design-
ing the project.

Relational databases don’t work well if:

❑ You need to use a special data topology to perform the application’s main function. For example,
you can beat a hierarchy or network with a brick until it fits in a relational database but you may
get better performance using a more specialized type of database.

Unless you have special needs, relational databases are usually an excellent choice. Hence the need for
this book!

29

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 30

Part I: Introduction to Databases and Database Design

Some of the later sections in this chapter discuss variations on relational databases or other kinds of
databases that provide relational features.

Spreadsheets
Spreadsheets display rows and columns of data. They allow the user to create formulas that depend on
other data in the spreadsheet, make charts and graphs to visualize the data, print the data, and import
and export the data in text and other formats. A spreadsheet may also support relatively sophisticated
analysis tools such as statistical functions and iterated solution finding (basically making a bunch of
guesses to see which ones work best).

Spreadsheets allow you to easily update some or all of the data and they automatically recalculate values
that depend on the data you change.

Because many users understand spreadsheets and are comfortable with them, they can perform some of
their own analysis, so you may be able to avoid some work generating a zillion different kinds of output.

In most of the larger projects I’ve worked on, we tried to build in ad hoc query tools so the users could
define their own reports. That not only lets you save all the time you would have spent building dozens
of reports yourself (one application had more than 100 reports), but it also keeps the users busy so they
have less time to dream up gratuitous feature change requests while you’re trying to implement the basic
functionality.

If these are the sorts of things you need to do with your data, using a spreadsheet may save you a lot of
time and trouble building a more complicated database.

However, spreadsheets don’t support complex queries. They also don’t automatically check the data’s
integrity, so it’s easy for you to enter incorrect or inconsistent values.

Some spreadsheets allow you to write scripting code that can add a lot of features such as integrity
checks and complex analysis that isn’t provided by the spreadsheet itself. If you’re going to go to all that
trouble, however, you may as well admit that you need more than the spreadsheet was intended to do
and consider using a more powerful database such as a relational database.

Many applications provide spreadsheet data as a form of output. They store their data in a relational or
other kind of database and then dump results into a spreadsheet format for users to manipulate.

Spreadsheets work well if:

❑ The data fits naturally in a simple tabular format.

❑ You need to visualize the data in charts and graphs.

❑ The end users are comfortable with spreadsheets.

❑ The end users want to be able to experiment with the data on their own.

Spreadsheets don’t work well if:

❑ You need complex relationships among the values on different worksheets.

❑ You need to perform complex calculations that a spreadsheet cannot easily handle.

30

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 31

Chapter 2: Database Types

❑ You need data validation.

❑ You need to perform complex queries.

❑ You need to update large amounts of data automatically.

Hierarchical Databases
Hierarchical data includes values that are naturally arranged in a tree-like structure. One piece of data
somehow logically contains or includes other pieces of data.

Files on a disk drive are typically arranged in a hierarchy. The disk’s root directory logically contains
everything in the file system. Inside the root are files and directories or folders that break the disk into
(hopefully) useful categories. Those folders may contain files and other folders that further refine the
groupings.

The following listing shows a tiny part of the folders that make up a file system. It doesn’t list the many
files that would be in each of these folders.

C:\
Documents and Settings

Administrator
All Users
Ben Grim
Groo
Rod

Temp
Art
Astro

Windows
Config
Cursors
Debug
system
system32

1025
1031
1040 short form
1099 int

The disk’s root directory is called C:\. It contains the Documents and Settings, Temp, and Windows direc-
tories. Documents and Settings contains folders for the administrator and all users in general, in addition
to folders for the system’s other users.

The Temp directory contains temporary files. It contains Art and Astro folders that hold temporary files
used for specific purposes.

The Windows directory contains various operating systems files that you should generally not mess with.

If your file system is designed logically, you should be able to tell from a file’s position in the hier-
archy what its purpose is. If you found the file iss_sts122.jpg in the folder C:\Temp\Astro, you

31

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 32

Part I: Introduction to Databases and Database Design

could guess that this was a temporary astronomy image. (If you know your astronomy, you might also
guess that it is a picture of the International Space Station taken on Space Shuttle mission TST-122. See
antwrp.gsfc.nasa.gov/apod/image/0803/iss_sts122.jpg.)

Many other kinds of data can also be arranged hierarchically. Figure 2-2 shows a business organization
chart that is arranged hierarchically. The lines indicate which people report to which others.

Board of Directors

President/CEO

Vice President, AdministrationCIO

Vice President,
Information Services

Vice President,
Networks and Grossworks

Vice President,
Resource Management

Vice President,
Perks and Boondoggles

General Accounting Colonel Accounting

Internal Auditing

Vice President,
Digital Assets and Paranoia

Human Resources Advertising, Marketing,
and Spam

Robotic Resources

CFO

Figure 2-2

Figure 2-3 shows the same information in a slightly different format. This version is arranged more
vertically in a way similar to that used by Windows Explorer to show a disk’s file system.

In a pipe system, typically big pipes feed into smaller ones to form a hierarchy. Water flows from a
treatment plant to large distribution pipes that break into smaller and smaller pipes that eventually feed
into houses, bookstores, and coffee houses.

Similarly, electricity flows from a power plant across high-voltage long-distance transmission lines at a
few hundred thousand volts (there’s less power loss at higher voltages). Next a transformer lowers the
voltage to 13,800 or so volts for more local transport. Some is used by factories and large businesses. The
rest moves through more transformers that reduce the voltage to 110 or 220 volts (in the United States
anyway) for use by your latte machine and desktop computer. (It doesn’t even stop there. Your computer
again reduces the voltage to 5 volts or so to power your USB plasma ball and missile launcher with Web
camera.)

Some other examples of data that you can arrange hierarchically include a family tree tracing your ances-
tors back in time (two parents, who each have two parents, who each have two parents, and so forth), the
parts of any complicated object (a computer has a keyboard, mouse, screen, and system box; the system
box includes a fan, power supply, peripherals, and a motherboard; the motherboard includes a chip, heat
sink, memory, and so forth), and order tracking information (customers have orders; orders have basic
information such as dates and addresses, in addition to order items and possibly sub-orders; order items
have an inventory item and quantity; inventory item has description, part number, price, and in some
applications sub-items).

32

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 33

Chapter 2: Database Types

Board of Directors

President/CEO

CIO

Vice President, Information Services

Vice President, Digital Assets and Paranoia

Vice President, Networks and Grossworks

Vice President, Administration

Human Resources

Robotic Resources

Advertising, Marketing, and Spam

CFO

Vice President, Resource Management

Vice President, Perks and Boondoggles

General Accounting

Colonel Accounting

Internal Auditing

Figure 2-3

You can even think of the information in this book hierarchically. (It’s made of chapters that contain
paragraphs and sections; sections contain paragraphs and sub-sections; paragraphs contain sentences,
which contain words, which contain characters.)

A hierarchical database stores these kinds of data in a way that makes it relatively easy to manipu-
late the data hierarchically. For example, it may be easy to add a new branch to the tree of data at a
particular point. It may be easy to enumerate the ‘‘children’’ of a particular location in the tree. Or it
may be easy to search the ‘‘ancestors’’ or ‘‘descendants’’ of a particular piece of data. (For example, in
an organizational chart, you might want to list every employee in the Human Resources part of the
hierarchy.)

At the same time, a hierarchical database may not support other operations as well as hierarchical opera-
tions. For example, it may be hard to search for every employee who filled in more than 60 hours on last

33

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 34

Part I: Introduction to Databases and Database Design

week’s timesheet (so you can buy these people cots to put in their offices so they can work even more).
If this is a common search, a relational database could use an index to find these employees very quickly.
A straightforward hierarchical database would need to examine every employee’s data individually.

Hierarchical databases work well if:

❑ The data is naturally hierarchical.

❑ You need to perform operations that take advantage of the hierarchical structure.

Hierarchical databases don’t work well if:

❑ The data is not naturally hierarchical.

❑ You need to perform complex calculations or searches that do not use the hierarchical structure.

❑ You need complex data validation.

❑ You need to update large amounts of data automatically.

In the past few years, the XML hierarchical data format has come into widespread use. XML is not actu-
ally a database; it’s just a text-based method for storing hierarchical data. Although XML is not a database
by itself, it’s useful and common enough to deserve more in-depth coverage, so the following section
provides a brief introduction to XML.

XML
XML (eXtensible Markup Language) is a language for storing hierarchical data. XML itself doesn’t pro-
vide any tools for building, searching, updating, validating, or otherwise manipulating data and anyone
who tells you otherwise is trying to sell you something.

However, XML is a fairly useful format for storing, transferring, and retrieving hierarchical data, and
there are several common tools that can make working with XML files easy. This book doesn’t explain
everything there is to know about XML files. The following sections just provide an overview of XML
to help you recognize when an XML database might be a better choice than other kinds of databases.
Several other books cover XML in excruciating detail.

XML Basics
An XML file is a relatively simple text file that uses special tokens to define a structure for the data that it
contains. People often compare XML to the Web language HTML (HyperText Markup Language) because
both use tokens surrounded by pointy brackets, but the two languages have several large differences.

One major difference between XML and HTML is that XML is extensible (the X isn’t part of the name
just to sound edgy and cool). HTML commands are predefined by the language specification and if you
try to invent new ones it’s unlikely that a typical browser will know what to do with them. In contrast,
XML defines some syntax and options but you get to make up the tokens that contain the data as you
go along. All you need to do is start using a token surrounded by pointy brackets. You follow the token
by whatever data it should contain and finish with a closing token that is the same as the opening token
except it starts with a slash.

34

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 35

Chapter 2: Database Types

For example, the following text shows a single XML token called Name with value Rod Stephens:

<Name>Rod Stephens</Name>

Programs that read XML ignore whitespace (non-printing characters such as spaces, tabs, and carriage
returns) so you can use them to make the data more readable. For example, you can use carriage returns
and tabs to indent the data and show the hierarchical structure.

You can make new tokens at any time. For example, the following code shows a Person element that
includes three fields called FirstName, LastName, and NetWorth. The text uses carriage returns and
indentation to make the data easy to read:

<Person>
<FirstName>Rod</FirstName>
<LastName>Stephens</LastName>
<NetWorth>$16.32</NetWorth>

</Person>

A second important way in which XML and HTML differ is that XML is much stricter about properly
nesting and closing opened tokens. For example, the HTML <P> command tells a browser to start a new
paragraph. Because this command cannot contain any text, there’s no need to end it with a closing </P>
token. The browser just assumes that the <P> token immediately ends with a corresponding </P> tag.
Similarly, a browser assumes an immediate closing tag for a horizontal rule <HR> element, and assumes a
closing tag for a list item element when it encounters another element or a list ending tag such
as or .

In XML every opening token must have a corresponding closing token. (However, XML does allow you
to use a shorthand syntax for tokens that immediately open and then close. Just put a slash before the
closing pointy bracket as in <Closed />.)

XML requires that elements be properly nested. One element may completely contain another, but they
may not overlap so one contains only part of another.

For example, the following text includes a FirstName element. While that element is open, the text defines
a LastName element but the FirstName element closes before the LastName element does. (The indentation
makes the overlap easier to see.) This violates XML’s nesting rules, so this is not a properly formed piece
of XML:

<Person>
<FirstName>Rod

<LastName>Stephens
</FirstName>

</LastName>
<NetWorth>$16.32</NetWorth>

</Person>

An XML file can define attributes for an element. For example, in the following XML code, the Person
element has an attribute named profession with value Dilettante:

<Person Profession="Dilettante">
<FirstName>Rod</FirstName>

35

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 36

Part I: Introduction to Databases and Database Design

<LastName>Stephens</LastName>
<NetWorth>$16.32</NetWorth>

</Person>

You can enclose a comment in an XML file by starting it with the characters <!-- and ending it with the
characters -->. For example, the following XML code adds a comment to the previous code:

<!-- The book’s author -->
<Person Profession="Dilettante">

<FirstName>Rod</FirstName>
<LastName>Stephens</LastName>
<NetWorth>$16.32</NetWorth>

</Person>

The final XML rule covered here is that the file must have a single root element that contains all other
elements. This makes the file an absolutely pure, true hierarchy of data. Actually, the file can also begin
with an optional XML declaration that gives the XML version.

The following text shows a slightly more elaborate XML file:

<?xml version="1.0" encoding="UTF-8"?>
<ClassSchedule>

<Class Name="Ascension for Beginners" Room="Atrium">
<!-- Note: Requires Falling 101. -->
<Instructor>Peter Parker</Instructor>
<Students>

<Student>
<FirstName>Ben</FirstName>
<LastName>Breaker</LastName>

</Student>
<Student>

<FirstName>Carla</FirstName>
<LastName>Crash</LastName>

</Student>
<Student>

<FirstName>Dirk</FirstName>
<LastName>Drop</LastName>

</Student>
</Students>

</Class>

<Class Name="Advanced Pyrotechnics" Room="Field 3">
<!-- Note: Requires fire-retardant suit. -->
<Instructor>Johnny Storm</Instructor>
<Fees Materials="$45" />
<Students>

<Student>
<FirstName>Erica</FirstName>
<LastName>Enflame</LastName>

</Student>
<Student>

<FirstName>Frank</FirstName>
<LastName>Flammable</LastName>
<NickName>Flambé</NickName>

36

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 37

Chapter 2: Database Types

</Student>
</Students>

</Class>
</ClassSchedule>

This file begins with an XML declaration indicating that it uses XML version 1.0 and the UTF-8 character
encoding. It then starts a ClassSchedule element that holds all of the document’s other content.

The ClassSchedule element contains two Class elements. Those elements have Name and Room attributes
that give the class’s name and location.

The Class elements contain Instructor and Fees elements that define basic information about the
classes. Each also includes a Students element that contains information about all of the students enrolled
in the class. The detailed student information is contained in Student elements that hold FirstName and
LastName elements.

Note that the elements need not contain exactly the same kinds of content. For example, the second class
contains a Fees element but the first does not. Similarly, the final Student element contains a NickName
element but none of the other Student elements do. (The text é in that value makes the NickName
data include the character with Unicode hexadecimal value E9. That’s the character ‘‘e’’ with an acute
accent: é.)

Because you can make up XML elements as you go along, they allow more flexibility than some other
kinds of databases. A relational database, for example, defines exactly what fields are contained in every
record in a table. In an XML file, you can add new elements at any point in the file. The XML file’s
elements provide self-documenting names (if you give your elements reasonable names and not just
‘‘e1’’ and ‘‘N32’’). This kind of flexible, self-describing database is called semi-structured.

XML schema files allow you to provide some validation. For example, they let you indicate that a partic-
ular element must contain certain other elements, that an element must contain a date or number, or that
an element is required.

XML Structures
In practice I typically see XML files used most often in one of three ways.

First, XML files are hierarchical so it’s natural to use them to hold hierarchical data. It’s straightforward
to map purely hierarchical data such as a simple family tree or organizational chart into an XML file.

Second, XML files are often used to hold table-like data. The basic structure closely follows the structure
of a relational database. The root element holds several table elements. Each of those elements holds
‘‘records’’ that hold ‘‘fields.’’

For example, the following XML document holds data about a simple company’s customers and their
orders:

<AllData>
<Customers>

<Customer ID="1">
<FirstName>Alfred</FirstName>

37

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 38

Part I: Introduction to Databases and Database Design

<LastName>Gusenbauer</LastName>
</Customer>
<Customer ID="2">

<FirstName>David</FirstName>
<LastName>Thompson</LastName>

</Customer>
<Customer ID="3">

<FirstName>Alberto</FirstName>
<LastName>Selva</LastName>

</Customer>
</Customers>
<Products>

<Product ID="273645" Description="Toothbrush" Price="$1.95" />
<Product ID="78463" Description="Pencil" Price="$0.15" />
<Product ID="48937" Description="Notepad" Price="$0.75" />

</Products>
<CustomerOrders>

<CustomerOrder Date="12/27/2008" CustomerId="2">
<Item ID="1" ProductId="78463" Quantity="12" />
<Item ID="2" ProductId="48937" Quantity="2" />

</CustomerOrder>
</CustomerOrders>

</AllData>

The file starts with an AllData root element. That element contains three more elements that define
table-like structures holding customer, product, and customer order information.

Each of these ‘‘tables’’ defines ‘‘records.’’ For example, the Customers element includes Customer
‘‘records’’ that hold FirstName and LastName values.

This XML document uses ID numbers to link records in different ‘‘tables’’ together. In this example, the
single CustomerOrder element represents an order placed by customer 2 (David Thompson) who ordered
12 items with ID 78463 (pencils) and 2 items with ID 48937 (notepads).

The third XML file structure I’ve seen regularly is a simple list of values. The following XML document
uses this structure to hold configuration settings for an application:

<Settings>
<NormalColor>Black</NormalColor>
<WarningColor>Green</WarningColor>
<ErrorColor>Yellow</ErrorColor>
<PanicSound>panic.wav</PanicSound>
<BugEmail>bugs@panic.com</BugEmail>

</Settings>

This kind of XML file gives a little more structure than a flat text file used to hold settings and lets a
program use XML tools to easily load and read setting values.

This flat structure is also useful when each XML document corresponds directly to some sort of object
that a program will use. For example, the following XML file defines a letter. A program could load this
data and use its fields to print and mail the letter.

<Letter>
<ToName>Hulk Hogan</ToName>
<ToStreet>2615 Grappler St, #12</ToStreet>

38

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 39

Chapter 2: Database Types

<ToCity>Gripper</ToCity>
<ToState>CA</ToState>
<FromName>Yokozuna Hakuho</FromName>
<Body>

Respected Sir,

Regarding your challenge: Bring it! Your dojo or mine?

Sincerely,
</Body>

</Letter>

The following code shows the same data but in a more structured format:

<Letter>
<To>

<Name>Hulk Hogan</Name>
<Address>

<Street>2615 Grappler St, #12</Street>
<City>Gripper</City>
<State>CA</State>

</Address>
</To>
<From>Yokozuna Hakuho</From>
<Body>

Respected Sir,

Regarding your challenge: Bring it! Your dojo or mine?

Sincerely,
</Body>

</Letter>

This version creates a To element that includes all of the information about the letter’s recipient. The
To element contains an Address element that holds the recipient’s address information. You could add
similar information for the sender.

XML Summary
XML files are hierarchical so they are a natural choice for storing hierarchical data. Though you can store
hierarchical data in other types of databases, they are unlikely to be able to re-create the hierarchical
object structure as quickly as XML tools can. (See the story in the ‘‘Why Bother?’’ section at the beginning
of this chapter.)

XML files allow you to create elements within other elements just about anywhere you like, so they are
semi-structured. This can be convenient if you’re not sure of the data’s exact format ahead of time. For
example, you could easily add extra To, Cc, or Bcc elements to the previous letter example even if you
didn’t realize you would need them when you wrote the original letter. (Of course, the program that
prints the letter may need some modifications to use the new fields but at least you can store valid data.)

Because XML files are plain old text files, they have some of the limitations of text files. In particular,
you cannot add, delete, or modify data in the middle of an XML file. To update an XML file, a program
typically reads the file into memory, makes its changes, and then writes the result back into the file.

39

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 40

Part I: Introduction to Databases and Database Design

This read-modify-write nature means XML documents are not great multi-user databases. An XML
document works fine if many users need to read it but it’s harder to allow them to update the file without
interfering with each other.

Note that recent versions of some other kinds of databases provide XML support. For example, Excel
workbooks can save their data in XML files. SQL Server and Oracle can execute queries to extract data
and then return the result in an XML format for the program to manipulate or save into a file.

XML files work well if:

❑ The data is naturally hierarchical.

❑ Available XML tools provide the features you need.

❑ You want the kinds of validation that schema files can provide.

❑ You want to import and export the data in products that understand XML.

XML files don’t work well if:

❑ You use non-hierarchical data such as networks (described in the following section).

❑ You need more complex data validation than schema files can provide.

❑ You need to perform relational rather than hierarchical queries.

❑ The database is very large so rewriting the entire file to update a small bit of data in the middle
is cumbersome.

❑ You need to allow multiple users to frequently update the database without interfering with
each other.

You can find lots of free tutorials covering XML and its related technologies such as XSL, XSLT, XPath,
XQuery, and others on the W3 Schools Web site (www.w3schools.com).

Network
A network contains a collection of nodes that are connected by links. The nodes and links can represent
all sorts of things such as telephone lines, streets, airline routes, and electrical circuits. Links can be
unordered (you can travel either way across a link) or ordered (each link is one-way).

Figure 2-4 shows a simple ordered street network. The numbers on the links represent the average time
in seconds to cross the link. The letters on the nodes are just there for identification.

A typical problem for this street network might be to find the shortest route from the police station at
node A to the donut store at node D. The police will be using their lights and sirens so you don’t need to
worry about turn penalties (a common feature in shortest path algorithms makes it take longer to turn
than to go straight). See if you can find the solution.

Often what appears to be a hierarchical database is really a network. For example, Figure 2-2 shows an
idealized corporate organizational chart where lines indicate which people report to which others.

In practice, organizational charts are often more complex and convoluted. Many companies practice
‘‘matrix management’’ where employees may work in more than one department and have several

40

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 41

Chapter 2: Database Types

managers for different purposes. Sometimes a person who normally reports to one superior also reports
to someone else, either temporarily for the duration of a special project or permanently if more than one
executive shares the same area of interest.

A
25

25

50

45

2219

45

35

25

36

35

23
27

25

35

25

25

15 90

17

E

B

F G

D

H

I

C

Figure 2-4

Figure 2-5 shows the organizational chart from Figure 2-2 with a few modifications. Here dashed lines
indicate that the Robotics Resources director also reports to the CIO, and that the Vice President of Perks
and Boondoggles also reports to the President, in addition to reporting through the normal chain of
command.

Board of Directors

President/CEO

Vice President, Administration
CIO

Vice President,
Information Services

Vice President,
Networks and Grossworks

Vice President,
Resource Management

Vice President,
Perks and Boondoggles

General Accounting Colonel Accounting

Internal Auditing

Vice President,
Digital Assets and Paranoia

Human Resources Advertising, Marketing,
and Spam

Robotic Resources

CFO

Figure 2-5

Some operating systems allow you to create links from one part of the file system to another. This lets
you create a folder that seems to be inside one directory when really entering it warps you to a completely
different part of the file system. In that case, the file system isn’t really a hierarchy any more. Instead of a

41

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 42

Part I: Introduction to Databases and Database Design

tree, it’s more like a bush with grafts and intertwined branches that make strange backwards connections
like some sort of alien hybrid, or the organizational chart shown in Figure 2-5. (Real organizational
charts often look like the products of some bizarre alien intelligence or plates of spaghetti.)

Network databases are uncommon, although network data structures are very useful for operational
algorithms such as shortest path finding, task scheduling, and network flow (think water flowing through
pipelines).

Some XML tools allow you to easily save and restore networks in addition to hierarchical data. For
example, Microsoft’s Visual Studio programming languages C# (pronounced ‘‘C sharp’’) and Visual
Basic include tools that can save and restore networks in XML files. The resulting files use automatically
generated ID numbers to link nodes together and they can be hard to read, but if you only need to save
and restore network structures they can be quite handy.

When you use a network file to store data, the program does all of the work. The file itself provides no
special features.

Network files work well if:

❑ The data is naturally a network (or almost a hierarchy).

❑ You need to perform network operations on the data such as finding shortest paths or calculating
network flows.

❑ You don’t need to perform complex queries on the data.

Network files don’t work well if:

❑ The data does not represent a network.

❑ You need to validate the data.

❑ You need to perform queries on the data.

❑ You need to allow multiple users to frequently update the data without interfering with each
other.

Object
Modern programming languages are object-oriented. They use programming abstractions called objects
to represent items such as customers, orders, penny stocks, and betting slips.

An object database manages objects. It provides some sort of query syntax for retrieving objects from the
database. It also provides tools for saving changes to an object back into the database.

Object databases also provide some useful concurrency features. For example, if two users of a program
need to work with an object representing the November 12thepisode of the television show Deal or No
Deal, the database gives them the same logical object. If the two users access the object simultaneously,
the database referees so the users don’t interfere with each other.

Object databases are also sometimes called object-oriented databases, object database management sys-
tems (ODBMS), and object stores. Some developers make a distinction among these different terms but
at this level they’re close enough to the same thing.

42

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 43

Chapter 2: Database Types

Object databases work well if:

❑ Your programming environment and architecture favors using objects.

❑ You don’t need to perform complex queries on the data (which tend to slow these databases
down considerably).

Object databases don’t work well if:

❑ Your program needs to interact with external tools where storing the data in a more common
format such as a relational database is an advantage.

❑ You need to perform complicated queries that will execute faster in a relational database.

❑ You aren’t using an object-oriented language (for example, if a Microsoft Access database can do
everything you need without any programming).

❑ You need to perform data validations that the object database cannot provide.

Object-Relational
An object-relational database (ORD) or object-relational database management system (ORDBMS) is a
relational database that provides extra features for integrating object types into the data. Like a relational
database, it can perform complex queries relatively quickly. Like an object database, it uses some special
syntax to simplify the creation of objects.

Over time, many of the features originally designed for use by object-relational databases have been
added to relational databases.

A closely related concept is the object-relational mapping system. An object-relational mapping system pro-
vides a layer between the object-oriented code and a relational database to convert between objects and
relational data. If this layer does a good job of separating the objects and the database, programmers and
database developers can ignore the details of each others’ work. This lets them work more independently,
makes them more productive, and makes it easier for either group to accommodate changes in the other
group’s work. (It may also help keep them from getting into brawls during project get-togethers.)

Object-relational databases and object-relational mappings work well if:

❑ Your programming environment and architecture favors using objects.

❑ You need to perform complicated relational-style queries.

❑ You need to perform relational-style data validations.

❑ Your program needs to interact with external tools where storing the data in a common rela-
tional format is an advantage.

❑ You have separate programmers and database developers so maintaining a strict separation can
make the project more manageable.

Object-relational databases and object-relational mappings don’t work well if:

❑ You aren’t using an object-oriented language (for example, if a Microsoft Access database can do
everything you need without any programming).

43

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 44

Part I: Introduction to Databases and Database Design

Exotic
These kinds of databases are more unusual than those described previously. They tend to be very spe-
cialized and work well only for a specific subset of database problems. Some are variations on other, less
unusual kinds of databases.

Document-Oriented
A document-oriented database is designed to work with document-oriented applications. A typical
document-oriented application allows the user to open a ‘‘document’’ that represents something. Usually
this is an actual file such as a letter, video clip, or Web page, but it might be something more abstract such
as student transcripts that are not actually stored in separate physical documents.

A good example of a document-oriented application might manage the files that make up a Web site.
(My VB Helper Web site www.vb-helper.com holds more than 5,000 files in a dozen or so directories and
keeping track of them all is quite a chore. I should build a document management system!)

Some document-oriented databases are simply constructs within a file system that use directories and
subdirectories to hold the files that make up the documents. Unfortunately this kind of file system offers
limited tools for sorting, searching, and performing other database-related tasks.

Other document-oriented databases are built as a layer on top of some other database system, for
example, a relational database. The database might store the contents of the documents themselves or it
might store the documents’ locations on disk.

Deductive
A deductive database is one that can make deductions based on rules and facts contained within the
database. They are a sort of cross between logic programming and relational databases. Some of these
databases allow the programmer to guide the evaluation of a program.

Dimensional
A dimensional database (sometimes called a multi-dimensional database) represents different aspects of
data as dimensions rather than as separate tables in a relational database.

You can think of dimensional data as forming a multi-dimensional rectangular box (also called a hyper-
cube or multi-dimensional array) where each dimension represents some important facet of the data. For
example, Figure 2-6 shows a three-dimensional picture with Year, Sales Rep, and Product Line as dimen-
sions. Each little cube or cell in the larger box contains information relating to a particular selection of the
dimensions. In other words, a particular cell would contain information about a selected sales rep’s sales
for a selected product line in a particular year (Crazy Bob’s yo-yo sales for 2008).

Dimensional databases are particularly useful for scrounging through old data looking for patterns and
they make useful data warehouses. However, if the data is sparse (a lot of the cells in Figure 2-6 are
empty), they can waste a lot of space, so they are not usually appropriate for day-to-day use for new
data entry. Truly native dimensional databases (as opposed to a dimensional database built on top of
a relational database) may be optimized to handle sparse data and can save space while still providing
fast results.

44

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 45

Chapter 2: Database Types

Sales RepPr
od

uc
t L

in
e

Year

Figure 2-6

Temporal
A temporal database has built-in time information. One of the simplest pieces of temporal data that this
kind of database stores is the data’s valid time: the time during which it is valid.

For example, suppose you build an inventory and sales database for your jewelry store. To make
mall visitors think they are getting a good deal, you constantly raise and lower prices. When you’re
ready for your bi-monthly vacation, you raise prices so the reduced sales load won’t overwhelm your
brother-in-law Joey (who’s otnay ootay ightbray) while you’re gone. When you get back, you have your
bi-monthly ‘‘Once-In-A-Lifetime Blockbuster Overstock Sale!’’ to clear inventory. To be able to later
track sales at various prices over time, you need to know the times during which different prices were
in effect.

If you were on vacation from April 1 until April 14 and prices were ‘‘normal,’’ then those prices have a
valid time of those two weeks. If you return and cut prices by 40% from April 15 until your next vacation
on May 22, the new prices have a valid time of April 15 through May 22.

For other examples, imagine tracking employee addresses as they move, mileage and fuel use in your
fleet of rental scooters, or daily coffee prices. You could store only the latest information in each of these
cases, but then you lose the ability to look back in time for important trends.

In fact, I’ve heard a reasonably plausible argument that a database should never delete or overwrite any
information. Instead it should just mark the old data as deleted and optionally create a new record for
the new data. With disk space as cheap as it is these days (as little as $0.22 or so per GB), it’s easy to
imagine saving every piece of data, at least for small- and medium-sized databases. (In this case, the
database wouldn’t need the D in CRUD (Create, Read, Update, Delete) so it goes from being CRUD to
being CRU, a fine French wine.)

It’s not too hard to add time fields to other kinds of databases such as relational databases. You’ll need
a little extra programming to keep track of which values you should use at different times, but this
technique can be very useful for data that changes frequently over time.

Summary
Before you launch into an exhausting year-long process of building a relational database, it’s worth
taking at least a few minutes to decide what kind of database would best fit your needs. Though you can
probably use any kind of database for most purposes, some lend themselves more naturally to certain
problems than others. Though you can store a data hierarchy or network in a relational database, it may

45

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 46

Part I: Introduction to Databases and Database Design

be a lot faster to use a simpler XML file. Though you certainly can store simple configuration settings in
an object-oriented database, a flat text file will do just as well with a lot less trouble.

In this chapter you learned how to pick the database type that will work best with your data. You
learned that:

❑ Flat files are good for storing simple values or complete documents, although they lack features
for concurrency and easy updating.

❑ INI files are good for storing simple values that are easy to look up, although they lack features
for concurrency and easy updating.

❑ The Windows system registry is good for storing simple values that are easy to look up and can
handle system-wide or user-specific settings.

❑ Relational databases are the workhorse of the database world. They allow complex data rela-
tions, sophisticated data validation, integrity constraints, cascading updates and deletes, ad hoc
queries, and many more useful features.

❑ Spreadsheets are good for drawing charts and graphs, and are convenient for users who already
know how to use them.

❑ Hierarchical databases are good for storing and manipulating hierarchical data such as organi-
zational charts and family trees.

❑ XML files are good for storing hierarchical data, although they lack features for concurrency and
easy updating.

❑ Network databases are good for storing network data such as street or telephone networks.

❑ Object databases are good for integrating programming objects into the database.

❑ Object-relational databases and object-relational mapping systems combine some of the best
features of object-databases and relational databases. An object-relational mapping layered on
top of a relational database can provide a useful separation between programmers and database
developers.

❑ Document-oriented databases are useful in document management systems (such as the one I
need to build some day to manage my Web site).

❑ Deductive databases can make logical deductions based on rules and data stored in the database.

❑ Dimensional databases consider data in hypercubes and make it easy to study data based on
dimensional selections (such as sales by a particular representative or during a particular year).

❑ Temporal databases integrate time with the data so they can record and work with information
that changes over time.

Relational databases are by far the most common type of database in use today and they are the topic of
most of this book and the majority other database books. The next chapter describes relational databases
in greater detail. It explains the basic relational concepts that you need to understand to design and build
effective relational databases.

Before you move on to Chapter 3, however, use the following exercises to test your understanding of the
material covered in this chapter. You can find the solutions to these exercises in Appendix A.

46

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 47

Chapter 2: Database Types

Exercises
For the following scenarios, list the type(s) of database that might make good choices for storing the data.

1. A dog breeding database that records the ancestors of a single dog for five generations.

2. A similar dog breeding database that records the ancestors and descendants of a single dog
for five generations each way.

3. Application settings that record which windows a user had open and where they were posi-
tioned the last time the application was used.

4. Total sales figures by month, arranged to make it easy to see trends graphically.

5. The same as Exercise 4 but the users want to be able to draw similar data for several product
lines on the same graph.

6. And they want to be able to print it and tweak the numbers to see what the graph would
look like if they exceed expectations next quarter (wishful thinking).

7. A map showing the main vessels and arteries leaving the human heart.

8. A very large amount of sales data including information about customers, orders, inventory
items, and sales representatives. You need to be able to perform ad hoc queries.

9. The same as Exercise 8 except your manager just returned from a technical seminar where he
learned the phrase ‘‘object-oriented’’ and now he’s determined to use object-oriented tech-
niques in everything.

10. A simple recipe book. You should be able to find recipes by name, part of meal (entrée,
aperitif, dessert, and so forth), or main ingredient.

11. A ‘‘Magic: The Gathering’’ game and trading card tracking system. You need to be able to
sort cards by their monetary value, number of duplicates, and power in the game. You also
want to be able to define ‘‘power decks’’ for competition.

12. A DVD, CD, or video collection. You want to be able to search by title, star rating (how good
you thought it was), Motion Picture Association of America rating (G, PG, and so forth),
actor, or director. And perhaps studio. And genre. And group titles by studio. And anything
else you might think of later.

13. A database to hold statistics for your favorite sports teams: football, baseball, polo, hurling,
or whatever. You need to be able to find all of the players on a particular team, find players
with the best stats (most yards rushing, highest hitting percentage, most chuckers chucked,
most . . . uh . . . hurls hurled?).

14. A database to hold the materials I use to write books. This includes author guidelines,
chapters, figures, scheduling workbooks, and the like.

15. An inspirational message of the day database. Every day when the application starts, it
should display a random message selected from the database.

47

Stephens c02.tex V3 - 10/04/2008 12:16pm Page 48

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 49

3
Relational Database

Fundamentals

The previous chapters discussed databases in general terms. Chapter 1 explained the general goals
of database design. Chapter 2 described some of the many kinds of databases that you might decide
to use.

With this chapter the book starts to focus on a particular kind of database: the relational database.
Relational databases are very powerful, are the most commonly used kind of database in computer
applications today, and are the focus of the rest of this book.

Before you can start learning how to properly design a relational database, you must understand
the basic concepts and terms that underlie relational databases.

This chapter provides an introduction to relational databases. It explains the major ideas and terms
that you need to know before you can start designing and building relational databases.

In this chapter, you learn about relational database terms such as:

❑ Table and relation

❑ Record, row, and tuple

❑ Column, field, and attribute

❑ Constraint, key, and index

Finally, you learn about the operations that you can use to get data out of a relational database.

Relational Points of View
Relational databases play a critical role in many important (that is, money-related) computer appli-
cations. As is the case whenever enormous amounts of money are at stake, people have spent a
huge amount of time and effort building, studying, and refining relational databases. Database
researchers usually approach relational databases from one of three points of view.

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 50

Part I: Introduction to Databases and Database Design

The first group approaches the problem from a database-theoretical point of view. These people
tend to think in terms of provability, mathematical set theory, and propositional logic. You’ll see
them at the local rave throwing around phrases such as relational algebra, Cartesian product, and tuple
relational calculus. This approach is intellectually stimulating (and looks good on a resume) but can
be a bit intimidating. These researchers focus on logical design and idealized database principles.

The second group approaches the matter from a less formal ‘‘just build the database and get it done’’
point of view. Their terminology tends to be less precise and rigorous but more intuitive. They tend
to use terms that you may have heard before such as table, row, and column. These people focus
on physical database design and pay more attention to concrete bits-and-bytes issues dealing with
actually building a database and getting the most out of it.

The third group tends to think in terms of flat files and the underlying disk structure used to hold
data. Though these people are probably in the minority these days, their terms file, record, and
field snuck into database nomenclature and stuck. Many of those who still use these terms are
programmers and other developers who look at the database from a consumer’s ‘‘how do I get my
data out of it’’ point of view.

These differing points of view have led to several different and potentially confusing ways to view
relational databases. This can cause some serious confusion, particularly because the different
groups have latched on to some of the same terms but used for different meanings. In fact, they
sometimes use the term ‘‘relation’’ in very different ways (that are described later in this chapter).

This chapter loosely groups these terms into ‘‘formal’’ and ‘‘informal’’ categories, where the formal
category includes the database theoretical terms and the informal category includes everything else.

This chapter starts with informal terms. Each section initially focuses on informal terms and con-
cepts, and then explains how they fit together with their more formal equivalents.

Table, Rows, and Columns
Informally you can think of a relational database as a collection of tables, each containing rows and
columns. At this level, it looks a lot like a workbook containing several worksheets (or spreadsheets),
although a worksheet is much less constrained than a database table is. You can put just about anything
in any cell in a worksheet. In contrast, every entry in a particular column of a table is expected to contain
the same kind of data. For example, all of the cells in a particular column might contain phone numbers
or last names.

Actually a poorly designed database application may allow the user to sneak some strange kinds of data
into other fields. For example, if the database and user interface aren’t designed properly, you might be
able to enter a string such as ‘‘none’’ in a telephone number field. That’s not the field’s intent, however.
In contrast, a spreadsheet’s cells don’t really care what you put in them.

The set of the values that are allowed for a column is called the column’s domain. For example, a column’s
domain might be telephone numbers, bank account numbers, snowshoe sizes, or hang glider colors.

Domain is closely related to data type but it’s not quite the same. A column’s data type is the kind of
data that the column can hold. The data types that you can use for a column depend on the particular

50

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 51

Chapter 3: Relational Database Fundamentals

database you are using but typical data types include integer, floating point number (a number with a
decimal point), string, and date.

To see the difference between domain and data type, note that street address (323 Relational Rd) and
jersey color (red) are both strings. However, the domain for the street address column is valid street
addresses, whereas the domain for the jersey color column is colors (and possibly not even all colors if
you only allow a few choices). (You can think of the data type as the highest level or most general possible
domain. For example, an address or color domain is a more restrictive subset of the domain allowing all
strings.)

The rows in a table correspond to column values that are related to each other according to the purpose
of the table. For example, suppose you have a Competitors table that contains typical contact information
for participants in your First (and probably Last) Annual Extreme Pyramid Sports Championship. This
table includes columns to hold competitor name, address, event, blood type, and next of kin as shown in
Figure 3-1. (Note that this is not a good database design. You’ll see why in later chapters.)

Name Address Event Blood
Type NextOfKin

Alice Adventure 6543 Flak Ter, Runner AZ 82018 Pyramid Boarding A+ Art Adventure

Alice Adventure 6543 Flak Ter, Runner AZ 82018 Pyramid Luge A+ Art Adventure

Bart Bold 6371 Jump St #27, Dove City, NV 73289 Camel Drafting O− Betty Bold

Bart Bold 6371 Jump St #27, Dove City, NV 73289 Pyramid Boarding O− Betty Bold

Bart Bold 6371 Jump St #27, Dove City, NV 73289 Sphinx Jumping O− Betty Bold

Cindy Copes 271 Sledding Hill, Ricky Ride CO 80281 Camel Drafting AB− John Finkle

Cindy Copes 271 Sledding Hill, Ricky Ride CO 80281 Sphinx Jumping AB− John Finkle

Dean Daring 73 Fighter Ave, New Plunge UT 78281 Pyramid Boarding O+ Betty Dare

Dean Daring 73 Fighter Ave, New Plunge UT 78281 Pyramid Luge O+ Betty Dare

Frank Fiercely 3872 Bother Blvd, Lost City HI 99182 Pyramid Luge B+ Fred Farce

Frank Fiercely 3872 Bother Blvd, Lost City HI 99182 Sphinx Jumping B+ Fred Farce

George Forman 73 Fighter Ave, New Plunge UT 78281 Sphinx Jumping O+ George Forman

George Forman 73 Fighter Ave, New Plunge UT 78281 Pyramid Luge O+ George Forman

Gina Gruff 1 Skatepark Ln, Forever KS 72071 Camel Drafting A+ Gill Gruff

Gina Gruff 1 Skatepark Ln, Forever KS 72071 Pyramid Boarding A+ Gill Gruff

Figure 3-1

A particular row in the table holds all of the values for a given competitor. For example, the values in the
first row (Alice Adventure, 6543 Flak Ter, Runner AZ 82018, Pyramid Boarding, A+, Art Adventure) all
apply to the competitor Alice Adventure.

Back in olden times when database developers worked with primitive tools by candlelight, everyone
lived much closer to nature. In this case that means they needed to work more closely with the underlying
file system. It was common to store data in ‘‘flat’’ files without any indexes, search tools, or other fancy
modern luxuries. A file would hold the related information that you might represent at a higher level
as a table. The file was divided into chunks called records that each had the same size and that each

51

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 52

Part I: Introduction to Databases and Database Design

corresponded to a row in a table. The records were divided into fixed-length fields that corresponded to
the columns in a table.

For example, if you think of the table shown in Figure 3-1 as a flat file, the first row corresponds to a
record in the file. Each record contains Name, Address, Event, and other fields to hold the data.

Though relatively few people still work with flat files at this level, the terms file, record, and field are still
with us and are often used in database documentation and discussions.

Relations, Attributes, and Tuples
The values in a row are related by the fact that they apply to a particular person. Because of this fact,
the formal term for a table is a relation. This can cause some confusion because the word ‘‘relation’’ is
also used informally to describe a relationship between two tables. This use is described in the section
‘‘Foreign Key Constraints’’ later in this chapter.

The formal term for a column is an attribute or data element. For example, in the Competitors relation
shown in Figure 3-1, Name, Address, BloodType, and NextOfKin are the attributes of each of the people
represented. You can think of this as in: ‘‘each person in the relation has a Name attribute.’’

The formal term for a row is a tuple (rhymes with ‘‘scruple’’). This almost makes sense if you think
of a two-attribute relation as holding data pairs, a three-attribute relation as holding value triples, and a
four-attribute relation as holding data quadruples. Beyond four items, mathematicians would say 5-tuple,
6-tuple, and so forth, hence the name tuple.

Don’t confuse the formal term relation (meaning table) with the more general and less precise use of
the term that means ‘‘related to’’ as in ‘‘these fields form a relation between these two tables’’ (or ‘‘that
psycho is no relation of mine’’). Similarly, don’t confuse the formal term attribute with the less precise use
that means ‘‘feature of’’ as in ‘‘this field has the ‘required’ attribute’’ (or ‘‘don’t attribute that comment to
me!’’). I doubt you’ll confuse the term tuple with anything — it’s probably confusing enough all by itself.

Theoretically a relation does not impose any ordering on the tuples that it contains nor does it give
an ordering to its attributes. Generally the orderings don’t matter to mathematical database theory. In
practice, however, database applications usually sort the records selected from a table in some manner
to make it easier for the user to understand the results. It’s also a lot easier to write the program (and for
the user to understand) if the order of the fields remains constant, so database products typically return
fields in the order in which they were created in the table unless told otherwise.

Keys
Relational database terminology includes an abundance of different flavors of keys. In the loosest sense,
a key is a combination of one or more columns that you use to find rows in a table. For example, a
Customers table might use CustomerID to find customers. If you know a customer’s ID, you can quickly
find that customer’s record in the table. (In fact, many ID numbers, such as employee IDs, student IDs,
driver’s licenses, and so forth, are invented just to make searching in database tables easier. My library
card certainly doesn’t include a 10-character ID number for my convenience.)

The more formal relational vocabulary includes several other more precise definitions of keys.

52

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 53

Chapter 3: Relational Database Fundamentals

In general, a key is a set of one or more columns in the table that have certain properties. A compound key
or composite key is a key that includes more than one column. For example, you might use the combination
of FirstName and LastName to look up customers.

A superkey is a set of one or more columns in a table for which no two rows can have the exact same val-
ues. For example, in the Competitors table shown in Figure 3-1, the Name, Address, and Event columns
together form a superkey because no two rows have exactly the same Name, Address, and Event values.
Because superkeys define fields that must be unique within a table, they are sometimes called unique keys.

Because no two rows in the table have the same values for a superkey, a superkey can uniquely identify
a particular row in the table. In other words, a program could use a superkey to find any particular
record.

A candidate key is a minimal superkey. That means if you remove any of the columns from the superkey,
it won’t be a superkey anymore.

For example, you already know that Name/Address/Event is a superkey for the Competitors table. If
you remove Event from the superkey, Name/Address is not a superkey because everyone in the table is
participating in multiple events so they have more than one record with the same name and address.

If you remove Name, Address/Event is not a superkey because Dean Daring and his roommate George
Foreman share the same address and are both signed up for Pyramid Luge. (They also have the same
blood type. They became friends and decided to become roommates when Dean donated blood for
George after a particularly flamboyant skateboarding accident.)

Finally if you remove Address, Name/Event is still a superkey. That means Name/Address/Event is
not a candidate key because it is not minimal. However, Name/Event is a candidate key because no two
rows have the same Name/Event values and you can easily see neither Name nor Event is a superkey,
so the pair is minimal.

You could still have a problem if one of George’s other brothers, who are all named George, moves
in. If they compete in the same event, you won’t be able to tell them apart. Perhaps we should add a
CompetitorId column to the table after all.

Note that there may be more than one superkey or candidate key in a table. In Figure 3-1,
Event/NextOfKin also forms a candidate key because no two rows have the same Event and NextOfKin
values. (That would probably not be the most natural way to look up rows, however. ‘‘Yes sir, I can look
up your record if you give me your event and next of kin.’’)

A unique key is a superkey that is used to uniquely identify the rows in a table. The difference between a
unique key and any other candidate key is in how it is used. A candidate key could be used to identify
rows if you wanted it to, but a unique key is used to constrain the data. In this example, if you make
Name/Event be a unique key, the database will not allow you to add two rows with the same Name and
Event values. A unique key is an implementation issue, not a more theoretical concept like a candidate
key is.

A primary key is a superkey that is actually used to uniquely identify or find the rows in a table. A table
can have only one primary key (hence the name ‘‘primary’’). Again, this is more of an implementation
issue than a theoretical concern. Database products generally take special action to make finding records
based on their primary keys faster than finding records based on other keys.

53

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 54

Part I: Introduction to Databases and Database Design

Some databases allow alternate key fields to have missing values, whereas all of the fields in a primary
key are required. For example, the Competitors table might have Name/Address/Event as a unique
key and Name/Event as a primary key. Then it could contain a record with Name and Event but no
Address value. (Although that would be a bit strange. We might want to require that all of the fields
have a value.)

An alternate key is a candidate key that is not the primary key. Some also call this a secondary key, although
others use the term secondary key to mean any set of fields used to locate records even if the fields don’t
define unique values.

That’s a lot of keys to try to remember! The following list briefly summarizes the different flavors:

❑ Compound key or composite key: A key that includes more than one field.

❑ Superkey: A set of columns for which no two rows can have the exact same values.

❑ Candidate key: A minimal superkey.

❑ Unique key: A superkey used to require uniqueness by the database.

❑ Primary key: A unique key that is used to quickly locate records by the database.

❑ Alternate key: A candidate key that is not the primary key.

❑ Secondary key: A key used to look up records but that may not guarantee uniqueness.

One last kind of key is the foreign key. A foreign key is used as a constraint rather than to find records in
a table, so it is described a bit later in the section ‘‘Constraints.’’

Indexes
An index is a database structure that makes it quicker and easier to find records based on the values in
one or more fields. Indexes are not the same as keys, although the two are related closely enough that
many developers confuse the two and use the terms interchangeably.

For example, suppose you have a Customers table that holds customer information: name, address,
phone number, Swiss bank account number, and so forth. The table also contains a CustomerId field that
it uses as its primary key.

Unfortunately customers usually don’t remember their customer IDs, so you need to be able to look
them up by name or phone number. If you make Name and PhoneNumber be two different keys, you
can quickly locate a customer’s record in three ways: by customer ID, by name, and by phone number.

Relational databases also make it easy to look up records based on non-indexed fields, although it may
take a while. If the customer only remembers his address and not his customer ID or name, you can
search for the address even if it that field isn’t part of an index. It may just take a long time. Of course if
the customer cannot remember his name, he’s got bigger problems.

Building and maintaining an index takes the database some extra time, so you shouldn’t make indexes
gratuitously. Place indexes on the fields that you are most likely to need to search and don’t bother
indexing fields such as apartment number that you are unlikely to need to search.

54

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 55

Chapter 3: Relational Database Fundamentals

Constraints
As you might guess from the name, a constraint places restrictions on the data allowed in a table. In formal
database theory, constraints are not considered part of the database. However, in practice constraints play
such a critical role in managing the data properly that they are informally considered part of the database.
(Besides, the database product enforces them!)

The following sections describe some of the kinds of constraints that you can place on the fields in a table.

Basic Constraints
Relational databases let you specify some simple basic constraints on a particular field. For example, you
can make a field required. The special value null represents an empty value. For example, suppose
you don’t know a customer’s income. You can place the value null in the Income field to indicate
that you don’t know the correct value. This is different from placing 0 in the field, which would
indicate that the customer doesn’t have any income.

Making a field required means it cannot hold a null value, so this is also called a not null constraint.

The database will also prevent a field from holding a value that does not match its data type. For example,
you cannot put a 20-character string in a 10-character field. Similarly, you cannot store the value ‘‘twelve’’
in a field that holds integers.

These types of constraints restrict the values that you can enter into a field. They help define the field’s
domain so they are called domain constraints. Some database products allow you to define more complex
domain constraints, often by using check constraints.

Check Constraints
A check constraint is a more complicated type of restriction that evaluates a Boolean expression to see if
certain data should be allowed. If the expression evaluates to true, the data is allowed.

A field-level check constraint validates a single column. For example, in a SalesPeople table you could
place the constraint Salary > 0 on the Salary field to mean that the field’s value must be positive.

A table-level check constraint can examine more than one of a record’s fields to see if the data is valid. For
example, the constraint (Salary > 0) OR (Commission > 0) requires that each SalesPeople record have a
positive salary or a positive commission (or both).

Primary Key Constraints
By definition, no two records can have identical values for the fields that define the table’s primary key.
That greatly constrains the data.

In more formal terms, this type of constraint is called entity integrity. It simply means that no two records
are exact duplicates (which is true if the fields in their primary keys are not duplicates) and that all of the
fields that make up the primary key have non-null values.

55

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 56

Part I: Introduction to Databases and Database Design

Unique Constraints
A unique constraint requires that the values in one or more fields be unique. Note that it only makes sense
to place a uniqueness constraint on a superkey. Recall that a superkey is a group of one or more fields
that cannot contain duplicate values. It wouldn’t make sense to place a uniqueness constraint on fields
that can validly contain duplicated values. For example, it would be silly to place a uniqueness constraint
on a Gender field.

Foreign Key Constraints
A foreign key is not quite the same kind of key defined previously. Instead of defining fields that you use
to locate records, a foreign key refers to a key in another (foreign) table. The database uses it to locate
records in the other table but you don’t. Because it defines a reference from one table to another, this
kind of constraint is also called a referential integrity constraint.

A foreign key constraint requires that a record’s values in one or more fields in one table (the referencing
table) must match the values in another table (the foreign or referenced table). The fields in the refer-
enced table must form a candidate key in that table. Usually they are that table’s primary key, and most
database products try to use the foreign table’s primary key by default when you make a foreign key
constraint.

For a simple example, suppose you want to validate the entries in the Competitors table’s Event field
so the minimum wage interns manning the phones cannot assign anyone to an event that doesn’t
exist.

To do this with a foreign key, create a new table named Events that has a single column called Event.
Make this the new table’s primary key and make records that list the possible events: Pyramid Boarding,
Pyramid Luge, Camel Drafting, and Sphinx Jumping.

Next, make a foreign key that relates the Competitors table’s Event field with the Events table’s Event
field. Now whenever someone adds a new record to the Competitors table, the foreign key constraint
will require that the new record’s Event value be listed in the Events table.

The database will also ensure that no one modifies a Competitors record to change the Event value to
something that is not in the Events table.

Finally, the database will take special action if you try to delete a record in the Events table if its value
is being used by a Competitors record. Depending on the type of database and how you have the rela-
tionship configured, the database will either refuse to remove the Events record or it will automatically
delete all of the Competitors records that use it.

This example uses the Events table as a lookup table for the Competitors table. Another common use for
foreign key constraints is to make sure related records always go together. For example, you could build
a NextOfKin table that contains information about the competitors’ next of kin (name, phone number,
email address, beneficiary status, and so forth). Then you could make a foreign key constraint to ensure
that every Competitor record’s NextOfKin value is contained in the Name fields in some NextOfKin table
record. That way you know that you can always contact the next of kin for anyone in the Competitors
table.

56

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 57

Chapter 3: Relational Database Fundamentals

Figure 3-2 shows the Competitors, Events, and NextOfKin tables with lines showing the relationships
among their related fields.

Name Address Event

Event

Name Phone Email Beneficiary

Blood
Type NextOfKin

Alice Adventure 6543 Flak Ter, Runner AZ 82018 Pyramid Boarding A+ Art Adventure

Alice Adventure 6543 Flak Ter, Runner AZ 82018 Pyramid Luge A+ Art Adventure

Bart Bold 6371 Jump St #27, Dove City, NV 73289 Camel Drafting O− Betty Bold

Bart Bold 6371 Jump St #27, Dove City, NV 73289 Pyramid Boarding O− Betty Bold

Bart Bold 6371 Jump St #27, Dove City, NV 73289 Sphinx Jumping O− Betty Bold

Camel Drafting

Pyramid Boarding

Pyramid Luge

Sphinx Jumping

Art Adventure 507-387-2738 art@adventure.com Yes

Betty Bold 302-288-9278 bettybopper@mns.com Yes

Gill Gruff 614-376-2378 gillyweed@hp.net No

Figure 3-2

Foreign keys define associations between tables that are sometimes called relations, relationships, or links
between the tables. The fact that the formal database vocabulary uses the word relation to mean table
sometimes leads to confusion. Fortunately, the formal and informal database people usually get invited
to different parties so the terms usually don’t collide in the same conversation.

Database Operations
The final topic in this chapter covers database operations. (I’ll save the rest so I have something for the
rest of the book.)

Eight operations were originally defined for relational databases and they form the core of modern
database operations. The following list describes those original operations:

❑ Selection: This selects some or all of the records in a table. For example, you might want to select
only the Competitors records where Event is Pyramid Luge so you can know who to expect for
that event (and how many ambulances to have standing by).

❑ Projection: This drops columns from a table (or selection). For example, when you make your
list of Pyramid Luge competitors you may only want to list their names and not their addresses,
blood types, events (which you know is Pyramid Luge anyway), or next of kin.

57

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 58

Part I: Introduction to Databases and Database Design

❑ Union: This combines tables with similar columns and removes duplicates. For example, sup-
pose you have another table named FormerCompetitors that contains data for people who par-
ticipated in previous years’ competitions. Some of these people are competing this year and
some are not. You could use the union operator to build a list of everyone in either table. (Note
that the operation would remove duplicates, but for these tables you would still get the same
person several times with different events.)

❑ Intersection: This finds the records that are the same in two tables. The intersection of the For-
merCompetitors and Competitors tables would list those few who competed in previous years
and who survived to compete again this year (the slow learners).

❑ Difference: This selects the records in one table that are not in a second table. For example, the
difference between FormerCompetitors and Competitors would give you a list of those who
competed in previous years but who are not competing this year (so you can email them and
ask them what the problem is).

❑ Cartesian Product: This creates a new table containing every record in a first table combined
with every record in a second table. For example, if one table contains values 1, 2, 3 and a second
table contains values A, B, C, then their Cartesian product contains the values 1/A, 1/B, 1/C,
2/A, 2/B, 2/C, 3/A, 3/B, and 3/C.

❑ Join: This is similar to a Cartesian product except records in one table are paired only with those
in the second table if they meet some condition. For example, you might join the Competitors
records with the NextOfKin records where a Competitors record’s NextOfKin value matches the
NextOfKin record’s Name value. In this example, that gives you a list of the competitors together
with their corresponding next of kin data.

❑ Divide: This operation is the opposite of the Cartesian product. It uses one table to partition the
records in another table. It finds all of the field values in one table that are associated with every
value in another table. For example, if the first table contains the values 1/A, 1/B, 1/C, 2/A, 2/B,
2/C, 3/A, 3/B, and 3/C and a second table contains the values 1, 2, 3, then the first divided by
the second gives A, B, C. (Don’t worry, I think it’s pretty weird and confusing, too, so it won’t be
on the final exam. Probably.)

The workhorse operation of the relational database is the join, often combined with selection and pro-
jection. For example, you could join Competitors records with NextOfKin records that have the correct
name. Next you could project to select only the competitors’ names, the next of kin names, and the next
of kin phone numbers. You could then select only Bart Bold’s records. Finally, you could select for unique
records so the result would contain only a single record containing the values Bart Bold, Betty Bold,
302-288-9278.

The following SQL query produces this result:

SELECT DISTINCT Competitors.Name, NextOfKin.Name, Phone
FROM Competitors, NextOfKin
WHERE Competitors.NextOfKin = NextOfKin.Name

AND Competitors.Name = ’Bart Bold’

The SELECT clause performs selection, the FROM clause tells which tables to join, the first part of the WHERE
clause (Competitors.NextOfKin = NextOfKin.Name) gives the join condition, the second part of the
WHERE clause (Competitors.Name = ’Bart Bold’) selects only Bart’s records, and the DISTINCT keyword
selects unique results.

58

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 59

Chapter 3: Relational Database Fundamentals

The results of these operations are table-like objects that aren’t permanently stored in the database.
They have rows and columns so they look like tables, but their values are generated on the fly when
the database operations are executed. These result objects are called views. Because they are often gener-
ated by SQL queries, they are also called query results. Because they look like tables that are generated as
needed, they are sometimes called virtual tables.

Chapter 20 has more to say about relational database operations as they are implemented in practice.

Summary
Before you can start designing and building relational databases, you need to understand some of the
basics. This chapter provided an introduction to relational databases and their terminology.

In this chapter you learned about:

❑ Formal relational database terms such as relation, attribute, and tuple.

❑ Informal terms such as table, row, record, column, and field.

❑ Several kinds of keys including superkeys, candidate keys, and primary keys.

❑ Different kinds of constraints that you can place on columns or tables.

❑ Operations defined for relational databases.

The following chapters change the book’s focus from general database concepts and terminology to
design techniques. They describe the tasks you must perform to design a database from scratch. Chapter
4 starts the process by explaining how to gather user requirements so the database you design has a good
chance of actually satisfying the users’ needs.

Before you move on to Chapter 4, however, use the following exercises to test your understanding of the
material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
1. What does the following check constraint on the SalesPeople table mean?

((Salary > 0) AND (Commission = 0)) OR ((Salary = 0) AND (Commission > 0))

2. In Figure 3-3, draw lines connecting the corresponding terms.

Attribute Row File

Relation Column Relationship

Foreign Key Table Virtual Table

Tuple Foreign Key Record

View Query Result Field

Figure 3-3

59

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 60

Part I: Introduction to Databases and Database Design

For questions 3 through 6, suppose you’re a numismatist and you want to track your
progress in collecting the 50 state quarters created by the United States Mint. You start with
the following table and plan to add more data later (after you take out the trash and finish
painting your lead miniatures).

State Abbr Title Engraver Year Got

Arizona AZ Grand Canyon State Joseph Menna 2008 No

Idaho ID Esto Perpetua Norm Nemeth 2007 No

Iowa IA Foundation in Education John Mercanti 2004 Yes

Michigan MI Great Lakes State Donna Weaver 2004 Yes

Montana MT Big Sky Country Don Everhart 2007 No

Nebraska NE Chimney Rock Charles Vickers 2006 Yes

Oklahoma OK Scissortail Flycatcher Phebe Hemphill 2008 No

Oregon OR Crater Lake Charles Vickers 2005 Yes

3. Is State/Abbr/Title a superkey? Why or why not?

4. Is Engraver/Year/Got a superkey? Why or why not?

5. What are all of the candidate keys for this table?

6. What are the domains of each of the table’s columns?

For questions 7 through 10, suppose you are building a dorm room database. Consider the
following table. For obscure historical reasons, all of the rooms in the building have even
numbers. The Phone field refers to the number of the phone in the room. Rooms that have
no phone cost less but students in those rooms are required to have a cell phone (so you can
call them and nag if they miss too many classes).

Room FirstName LastName Phone CellPhone

100 John Smith Null 202-837-2897

100 Mark Garcia Null 504-298-0281

102 Anne Johansson 202-237-2102 Null

102 Sally Helper 202-237-2102 Null

104 John Smith 202-237-1278 720-387-3928

106 Anne Uumellmahaye Null 504-298-0281

106 Wendy Garcia Null 202-839-3920

202 Mike Hfuhruhurr 202-237-7364 Null

202 Jose Johansson 202-237-7364 202-839-3920

60

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 61

Chapter 3: Relational Database Fundamentals

7. If you don’t allow two people with the same name to share a room (due to administrative
whimsy), what are all of the possible candidate keys for this table?

8. If you do allow two people with the same name to share a room, what are all of the possible
candidate keys for this table?

9. What field-level check constraints could you put on this table’s fields? Don’t worry about the
syntax for performing the checks, just define them.

10. What table-level check constraints could you put on this table’s fields? Don’t worry about
the syntax for performing the checks, just define them.

61

Stephens c03.tex V3 - 10/04/2008 12:17pm Page 62

Stephens p02.tex V1 - 09/17/2008 6:21am Page 63

Part II

Database Design Process
and Techniques

Chapter 4: Understanding User Needs

Chapter 5: Translating User Needs into Data Models

Chapter 6: Extracting Business Rules

Chapter 7: Normalizing Data

Chapter 8: Designing Databases to Support Software
Applications

Chapter 9: Common Design Patterns

Chapter 10: Common Design Pitfalls

The chapters in this part of the book contain the bulk of the information about the database design
process. They discuss the major steps in database design starting from the beginning of a project
and working through various design and refinement stages to provide a fully functional database.

Chapter 4 explains how you can learn about the customers’ needs. If you don’t understand the cus-
tomers’ needs, how can you possibly build a database that satisfies them? This chapter also explains
how to ensure that the customers agree with you on what the database should do so everyone is
happy with the final result.

Stephens p02.tex V1 - 09/17/2008 6:21am Page 64

Part II: Database Design Process and Techniques

Chapter 5 shows how to translate the customer needs defined in Chapter 4 into several different
kinds of data models. The data models allow you to represent the database’s needs formally. They
let you study the data and rearrange the pieces to build toward a flexible design.

Chapter 6 explains how to identify business rules. It tells how to modify the data models you
developed in Chapter 5 to make it easier to manage business rules, which may change relatively
frequently.

Chapter 7 describes one of the best known steps in designing a database: normalization. A properly
normalized database is more robust and resistant to certain kinds of potential data errors.

Chapter 8 discusses some database design issues that affect the database’s use and maintenance in a
larger application. The techniques described in this chapter make it easier for application developers
to build an effective, flexible user interface for the database.

Chapter 9 describes some patterns that occur in many applications. It explains solutions that you can use
to make handling those patterns simple.

Chapter 10 describes some common pitfalls that often hinder database designers. Avoiding these prob-
lems can make database design easier, faster, and more effective.

After you finish working through these chapters, you will have a good understanding of database design.
You will know how to decide what data belongs in a database, how to build data models, and how to
convert those models into powerful, flexible database designs.

64

Stephens c04.tex V3 - 10/08/2008 11:18am Page 65

4
Understanding User Needs

The previous chapters discussed databases in general terms. Chapters 1 and 2 explained the goals of
database design and described some of the types of databases that are available. Chapter 3 described
the most common type of database, relational databases, in slightly greater detail. With this basic
understanding of databases, you’re ready to take the first step in designing an actual database to
solve a particular problem: understanding the user’s needs.

Designing any custom product, whether it’s a database, beach house, or case mod (see
www.neatorama.com/case-mod/index.php for some amazing examples), is largely a translation
process. You need to translate the customers’ needs, wants, and desires from the sometimes fuzzy
ideas floating around in their heads into a product that meets the customers’ needs.

The first step in the translation process is understanding the user’s requirements. Unless you know
what the user needs, you cannot build it. Designing the best order processing database imaginable
won’t do you a bit of good if the customer really wants a circuit design database or an ostrich race
handicapping system.

Just as the database design forms the foundation upon which the rest of the application’s develop-
ment stands, your understanding of the user’s needs form the foundation of the database design. If
you don’t know what the user needs, how can you possibly design it?

If you don’t understand the customer’s needs thoroughly and completely, you may as well pack
it in now. There’s little satisfaction in wasting months of your life and a pile of your company’s
money to build something unusable. Make sure you’re on the right road before you stomp on the
accelerator and burn rubber down a dead-end alley.

This chapter explains techniques that you can use to learn about the customer’s needs. It describes
methods that you can use to record those needs in a concrete and verifiable way.

The sections that follow describe some of the steps you can take to better understand the customers’
needs. In some projects, you may not need to follow all of these steps. For example, if your customer
is a single person with very concrete ideas about what needs to be done, you may not need to
spend much time learning who’s who or brainstorming. If your customer works with government
classified data, you may not be allowed to ‘‘walk a mile in the user’s shoes’’ and you may have
access to only some of the business’s documentation.

Stephens c04.tex V3 - 10/08/2008 11:18am Page 66

Part II: Database Design Process and Techniques

I once knew a developer who was working on a classified project. He had clearance to see the source code
but not the data, so every week his customer brought him a giant printout of the latest run with all of
the data carefully clipped out with scissors. He would try to guess what was going on and make some
suggestions so the customer’s developers could try to fix the code. Then the cycle repeated the next week.
What an odd way to work!

In other projects, the steps may work best in a different order. You may find it better to brainstorm before
visiting the customers’ site and watching them work.

These are just steps that I’ve found most useful in trying to understand the customers’ situation. You’ll
have to adjust them as necessary to fit each of your projects.

In this chapter, you learn how to:

❑ Understand the customers’ needs and motivations.

❑ Gather and document user requirements.

❑ Cull requirements from existing practices and information.

❑ Build use cases to understand the user’s needs and to measure success or failure.

❑ Anticipate changes and future needs to build the most flexible database possible.

After you master these techniques, you’ll be ready to move on to the next step and actually start designing
the database.

Make a Plan
Though the steps described in this chapter sometimes occur in different orders, the following list sum-
marizes the order that’s most typical. Feel free to add, remove, and rearrange them as necessary.

❑ Bring a List of Questions

❑ Meet the Customers

❑ Learn Who’s Who

❑ Pick the Customers’ Brains

❑ Walk a Mile in the User’s Shoes

❑ Study Current Operations

❑ Brainstorm

❑ Look to the Future

❑ Understand the Customers’ Reasoning

❑ Learn What the Customers Really Need

❑ Prioritize

❑ Verify Your Understanding

❑ Write the Requirements Document

66

Stephens c04.tex V3 - 10/08/2008 11:18am Page 67

Chapter 4: Understanding User Needs

❑ Make Use Cases

❑ Decide Feasibility

This list isn’t perfect but it makes a good meta-plan — a plan for making the project’s plan. (Hopefully it
won’t be as useless as the traditional pre-meeting agenda planning meeting.)

Bring a List of Questions
From the very first day, you should start thinking of questions to ask the customers to get a better idea of
the project’s goals and scope.

The following sections list some questions that you can ask your customers to help understand their
needs. You’ll see many of them described in greater detail later in this chapter.

This list is by no means complete — the questions that you need to ask will depend to a large extent
on the type of project. Use them only as a starting point. It’s helpful to have something to work from
when you start, however. Then you can then wander off in promising directions as the discussions
continue.

Functionality
These questions deal with what the system is supposed to accomplish and, to a lesser extent, how. It
is usually best to avoid deciding how the system should do anything until you thoroughly understand
what it should do so you don’t become locked into one idea too early, but it’s still useful to record any
impressions the customers have of how the system should work.

❑ What should the system do?

❑ Why are you building this system? What do you hope it will accomplish?

❑ What should it look like? Sketch out the user interface.

❑ What response times do you need for different parts of the system? (Typically, interactive
response times should be under five seconds, whereas reports and other offline activities may
take longer.)

❑ What reports are needed?

❑ Do the end users need to be able to define new reports?

❑ Who are the players? (ties to previous section)

❑ Do power users and administrators need to be able to define new reports?

Data Needs
These questions help clarify the project’s data needs. Knowing what data is needed will help you start
defining the database’s tables.

❑ What data is needed for the user interface?

❑ Where should that data come from?

67

Stephens c04.tex V3 - 10/08/2008 11:18am Page 68

Part II: Database Design Process and Techniques

❑ How are those pieces of data related?

❑ How are these tasks handled today? Where does the data come from?

Data Integrity
These questions deal with data integrity. They help you define some of the integrity constraints that you
will build into the database.

❑ What values are allowed in which fields?

❑ Which fields are required? (For example, does a customer record need a phone number? A fax
number? An email address? One of those but not all of them?)

❑ What are the valid domains (allowed values) for various fields? What phone number formats
are allowed? How long can customer names be? Addresses? Do addresses need extra lines
for suite or apartment number? Do addresses need to handle U.S. ZIP Codes such as 12345?
ZIP+4 Codes such as 12345-6789? Canadian postal codes such as T1A 6G9? Or other countries’
postal codes?

❑ Which fields should refer to foreign keys? (For example, an address’s State field might need to be
in the States table and a CustomerID field might need to be in the Customers table. I’ve seen cus-
tomers with a big list of standard comments and a Comments field can only take those values.)

❑ Should the system validate cities against postal codes? (For example, should it verify that the
10005 ZIP Code is in New York City, New York? That’s cool but a bit tricky and can involve a lot
of data.)

❑ Do you need a customer record before you can place orders?

❑ If a customer cancels an account, do you want to delete the corresponding records or just flag
them as inactive?

❑ What level of system reliability is needed?

❑ Does the system need 24/7 access?

❑ How volatile is the data? How often does it need to be backed up?

❑ How disastrous will it be if the system crashes?

❑ How quickly do you need to be back up and running?

❑ How painful will it be if you lose some data during a crash?

Security
These questions focus on the application’s security. The answers to these questions will help you decide
which database product will work best (different products provide different forms of security) and what
architecture to use.

❑ Does each user need a separate password? (Generally a good idea.)

❑ Do different users need access to different pieces of data? (For example, sales clerks might need
to access customer credit card numbers but order fulfillment technicians probably don’t.)

❑ Does the data need to be encrypted within the database?

68

Stephens c04.tex V3 - 10/08/2008 11:18am Page 69

Chapter 4: Understanding User Needs

❑ Do you need to provide audit trails recording every action taken and by whom? (For example,
you can see which clerk increased the priority of a customer who was ordering the latest iPod
and then ask that clerk why that happened.)

❑ What different classes of users will there be?

I often use three classes of users. First, clerks do most of the regular work. They enter orders, print
invoices, discuss the latest Oprah around the water cooler, and so forth. Second, supervisors can do any-
thing that clerks can and they also perform managerial tasks. They can view reports, logs, and audit
trails; assign clerks to tasks; grant bonuses; and so forth. Third, super users or key users can do every-
thing. They can reset user passwords, go directly into database tables to fix problems, change system
parameters such as the states that users can pick from dropdowns, and so forth. There should only be
a couple of super users and they should usually log in as supervisors, not as super users, to prevent
accidental catastrophes.

❑ How many of each class of user will there be? Will only one person need access to the data at a
time? Will there be hundreds or even thousands (as is the case with some Web applications)?

❑ Is there existing documentation describing the users’ tasks and responsibilities?

Environment
These questions deal with the project’s surrounding environment. They gather information about other
systems and processes that the project will replace or with which it will interact.

❑ Does this system enhance or replace an existing system?

❑ Is there documentation describing the existing system?

❑ Does the existing system have paper forms that you can study?

❑ What features in the existing system are required? Which are not?

❑ What kinds of data does the existing system use? How is it stored? How are different pieces
of data related?

❑ Is there documentation for the existing system’s data?

❑ Are there other systems with which this one must interact?

❑ Exactly how will it interact with them?

❑ Will the new project send data to existing systems? How?

❑ Will the new project receive data from existing systems? How?

❑ Is there documentation for those systems?

❑ How does your business work? (Try to understand how this project fits into the bigger picture.)

Meet the Customers
Before you can start any project, you need to know what it is about. Are you building an inventory
system, a supply chain model, or a stock price tracker and predictor (also called a random number
generator)?

69

Stephens c04.tex V3 - 10/08/2008 11:18am Page 70

Part II: Database Design Process and Techniques

The best way to understand the system you need to design and build is to interrogate the customers. I use
the rather unfriendly word ‘‘interrogate’’ because, to do the job right, you need much more than a simple
chat over tea and crumpets. Learning about the customers’ requirements can be a long and grueling pro-
cess. It can take days or even weeks of cross-examination, studying existing practices, poring over dusty
scrolls and other corporate documentation, and spying on the customers while they do their daily jobs.

When it’s over, the customers shouldn’t hate you outright but they might wish you would go away and
leave them alone for a while. A good question and answer session should leave everyone exhausted
but with the warm glow of satisfaction that comes with moving a lot of information from their brains
to yours.

Customers who are truly dedicated to the company are usually willing to field even the most obtuse
questions as long as you’re willing to dish them out. Benjamin Disraeli once said, ‘‘Talk to a man about
himself, and he will listen for hours.’’ Most customers are more than happy to share the ins and outs of
their corner of the business universe with you for as long as you can stand it.

It may sound boring listening to customers drone on about their supply chains but I’ve found that once
you dig deeply enough, almost any business can be pretty interesting. I’ve worked on projects spanning
such topics as fuel tax collection, wastewater treatment, ticket sales, and school enrollment. Every time,
after I’d learned enough, I discovered hidden complexity that I would never have imagined.

The goal isn’t to torture the customers (although it may sometimes seem like it to them) but to give
you an absolute and complete understanding of the problem you’re attempting to solve. You want
as few surprises as possible after you’re done researching the problem. Unexpected difficulties and
feature requests are the biggest reasons why software projects finish late, come in over budget, or fail
completely.

The sooner you can identify potential problems and the more completely you can identify the system’s
features, the easier it will be for you to plan for them and the less they will mess up your meticulously
crafted plan. Your initial encounters with the customer give you your first chance to address these issues
so they don’t bite you later.

So when you first start a project, meet the customers. Get to know them and what they do. Even if the
problem you are trying to solve is only a small part of their business, get a feel for the overall picture.
Sometimes you’ll find unexpected connections that may make your job easier or that may lead to surpris-
ing benefits in a completely unrelated area.

When you first meet the customers, it usually doesn’t hurt to warn them that you’re going to be a major
pest for a while. This can also help you figure out who’s who. Those who are committed to the project
and are eager to succeed will take your warning well. Those who are less than dedicated may tip their
hands at this point. This idea leads naturally to the next section.

Learn Who’s Who
Ideally a project team works well together, everyone does the best possible job without conflict, and the
project moves along smoothly to create a finished product that meets the customers’ needs. In practice,
however, it doesn’t always work out that way. Like the bickering superheroes in an X-Men movie, every-
one has his or her own personal abilities, agenda, and motivation that don’t always coincide with those
of the other team members.

70

Stephens c04.tex V3 - 10/08/2008 11:18am Page 71

Chapter 4: Understanding User Needs

As you get to know the customers (and your team members), it’s important to realize that not
everyone shares the same vision of the product. You need to figure out which customer is the leader,
which are team players, which have little or no say in specifying the project, and which will be
super villains.

No one wants a super villain on their project, but you should be aware that they are out there. I’ve worked
on projects where customers ostracized members of the project team, tried to delete all of our project files,
spread dark rumors among senior management, and even slashed tires. Hopefully you won’t encounter
any of these types but it’s best that you know about these people as early as possible.

The following list describes some of the roles that customers (and developers) often play in a project.
Naturally these cannot categorize everyone, but they define some characteristics that you should
look for.

❑ Executive Champion: This is the highest ranking customer driving the project. Often this person
doesn’t participate in the project’s day-to-day trials and tribulations. The Executive Champion
will fight for truth, justice, and getting you that extra laptop you need. In the end, the Executive
Champion must be able to take on any bored super villains or you might be in trouble.

❑ Customer Champion: This person has a thorough understanding of the customers’ needs. Lesser
champions may help define pieces of the project but this is the person you run to when the oth-
ers are unclear. For the purposes of this chapter (‘‘Understanding User Needs’’), this is the most
important person on the project. This person must have enough time and resources (also known
as ‘‘people’’) to help you define the project and answer your questions. Ideally this person also
has enough clout to make decisions when the heroes start bickering over who has to fight Mag-
neto and who gets to fly the invisible plane.

❑ Customer Representative: A Customer Representative is someone assigned to answer your
questions and help define the project. Often these are people who do the day-to-day work of
your customers’ business. Sometimes they are experts in only parts of the business so you need
more than one to cover all of the issues.

❑ Stakeholder: This is anyone who has an interest in the project. Some of these fall into other cat-
egories such as Customer Champion or Customer Representative. Others are affected by the
outcome but have no direct say in the design of the system. For example, front-line clerks rarely
get to toss in their two cents when you design a point-of-sales system. They are like the civil-
ians whose fate is determined by the battling superheroes and who are easily crushed by falling
debris and pieces of robot monsters. Though many of them have no direct power over the out-
come, you should keep them in mind and try to minimize collateral damage. (In a really well-run
company, these people have their own representatives to watch out for them.)

❑ Sidekick/Gopher: This is someone who can help you get the more mundane resources you need
such as conference rooms, airline tickets, donuts, and kryptonite. Though this isn’t a glamorous
job, an effective Sidekick can make everything run more smoothly. (Sometimes they also pro-
vide comic relief. On one project, the Sidekick invited everyone out to a huge celebratory lunch
on him, only to find that the restaurant didn’t take credit cards, so we all had to pitch in. In all
fairness, though, it could have happened to any of us.)

❑ Short-Timer: This is someone who is only going to be around for a short while. This may be
someone who is about to be promoted to a new division, who will retire soon, or who is just
plain fed up and about to walk. A dedicated short-timer can be a huge asset, particularly those
who are about to retire and take a lifetime’s worth of experience with them. Others don’t care all
that much whether the project succeeds or fails after they’re gone. (These are like the red-shirts

71

Stephens c04.tex V3 - 10/08/2008 11:18am Page 72

Part II: Database Design Process and Techniques

on Star Trek who don’t contribute much. When Kirk says, ‘‘Spock, Bones, and Smith, meet me in
the transporter room,’’ guess who isn’t coming back?)

❑ Devil’s Advocate: This is an important role for avoiding groupthink. Left unchecked, some
groups become irrationally optimistic and can make extremely poor decisions. A Devil’s
Advocate can help bring the hopeless dreamers back to earth and keep the project realistic...
as long as the Devil’s Advocate doesn’t get out of hand. The purpose of the Devil’s Advocate
is to maintain a reality check, not to defeat the entire project. If this person shoots down every
idea anyone comes up with, you might gently mention that eventually you need to decide on an
approach and get something done.

❑ Convert: This is someone who originally is against the project but who you convert to your
cause. Strangely, both finding and converting this person are usually surprisingly easy, at least
for bigger projects. If you talk to the disenfranchised stakeholders (the front-line users who have
no say in the matter), you can usually find some who are dead-set against the project, if for no
other reason than it represents a change from the way they have always worked. Take one of
these people who has a fair amount of experience and make him a Stakeholder Representative.
Get him involved early in the process and take his suggestions very seriously. If you act on
some of those suggestions, you’ll show that you have the Stakeholders’ interests in mind and
you’ll win his loyalty. He’ll tell the rest of the Stakeholders and, if all goes well, you’ll have
more support than you can imagine. And who knows, you may build a better product with this
person’s input.

❑ Generic Bad Guy: These range from simple defeatists and layabouts to Arch Super Villains
actively trying to sabotage the project. Try to identify these people early so you know what
you’re up against. (On one project, we had a super villain at the Vice Presidential level. We
also had an Executive Champion at the same level, so we were able to hold our own, but it was
pretty tough going. It’s easy to get squashed when such heavy-hitters collide.)

Don’t feel constrained by this list. These are just some of the characters that I’ve encountered and you
may meet others.

I don’t mean to imply that every project is subject to continual harassment, interference, and sabotage.
I’ve worked on lots of projects where everyone really was pulling for the common good and we achieved
impressive results. Just keep your eyes open. Identify the main players as quickly as possible so you
know who to ask questions and where to run when the fighting erupts.

Try It Out Know the Players
If you’re familiar with the Dilbert comic strip, think about the main characters Dilbert, Alice, Wally, Asok
the Intern, and the Pointy-Haired Boss. Assume they are your customers and you need to design them a
database.

Who will play which customer roles? In particular, who will be:

❑ Executive Champion

❑ Customer Representative

❑ Sidekick

❑ Bad Guy

What are your chances for success?

72

Stephens c04.tex V3 - 10/08/2008 11:18am Page 73

Chapter 4: Understanding User Needs

How It Works

Unfortunately the only candidate for Executive Champion is the Pointy-Haired Boss. He’s incompetent
and unable to defend against any attacks from bad guys so you’re in trouble from the start.

Alice and Dilbert generally know what’s going on and try to do the right thing. They will be your best
bets for Customer Representatives.

Asok means well and is competent but he’s new to the company and doesn’t know how everything
works, so he won’t be the best Customer Representative. He might make a good Sidekick, however.

Wally is a serious layabout. He actively seeks to avoid work even if doing the work would be easier. He’s
a bad guy, although on a minor scale. He won’t destroy the project single-handedly but he may waste
other people’s time.

Your overall chances depend entirely on whether the project will face outside attack. If any serious bad
guy appears, the Pointy-Haired Boss will crumble and the project will fail.

If no one else is interested in taking over or ruining the project, you might have a chance to finish before
the Pointy-Haired Boss plays too active a role and messes everything up. (But then again, how long do
things run without interference in a Dilbert cartoon?)

Pick the Customers’ Brains
Once you figure out more or less who the movers and shakers are, you can start picking their brains. Sit
down with the Customer Champion and find out what the customers think they need. Find out what
they think the solution should look like. Find out what data they think it should contain, how that data
will be presented, and how different parts of the data are related.

Get input from as many Stakeholders as you can. Always keep in mind, however, that the Customer
Champion is the one who understands the customers’ needs thoroughly and has the authority to make
the final decisions. Though you should consider everyone’s opinions, the Customer Champion has the
final word.

Depending on the scope of the project, this can take a while. I’ve been on projects where the initial
brain-picking sessions took only a few hours and I’ve been on others where we spent more than a week
talking to the customers. One project was so complex that part of the project was still defining require-
ments after other parts of the project had been underway for months.

Take your time and make sure the customers have finished telling you what they think they need.

Walk a Mile in the User’s Shoes
Often following the customers’ day-to-day operations can give you some extremely helpful perspective.
Ideally you could do the customers’ jobs for them for a while to thoroughly learn what’s involved. Unless
your customers aren’t in your industry (and if they are, why are they hiring you?), however, you probably
aren’t qualified to do their jobs.

73

Stephens c04.tex V3 - 10/08/2008 11:18am Page 74

Part II: Database Design Process and Techniques

I was once saddened to read an article about ice cream testers. I eat a lot of ice cream and thought I had
a good sense of what tastes good and what tastes bad, but professional ice cream testers can isolate and
identify individual flavors in recipes that include dozens of ingredients. I’m not even competent to eat ice
cream professionally!

Though you may not be able to actually do the customers’ jobs, you may be able to sit next to them while
they do it. Warn them that you will probably reduce productivity slightly by asking stupid and annoying
questions. Then ask away. Take notes and learn as much as you can. Sometimes your outsider’s point of
view can lead to ideas that the customers would never have discovered.

Another Point of View
On one project, we visited a billing center responsible for a couple million accounts.
Every three days they processed 1/10th of their accounts and one of the things they did
was print out a pile of paper almost three feet tall listing all of the accounts that owed
money.

Unfortunately the accounts were arranged by ID, not balance, so they couldn’t figure
out which ones owed the most. In fact, by state law they were not allowed to do any-
thing about accounts that owed less than $50, and those included the vast majority.

Because of our outsider computer nerd viewpoint, we knew there was a better
approach. We installed a printer emulator (a program that looks like a printer to the
system but actually captures the data instead of killing trees with it) and dumped
the data into a file. We sorted the file by account balance and displayed the result
to the user. The first two or three pages listed all of the accounts that needed action.
(In fact, the first four or five accounts usually owed more than all of the other accounts
combined.)

We were actually there looking at a different problem but when we saw this one we
jumped all over it and in about a week we were heroes.

Take notes while you’re watching the customers do their jobs. Draw pictures and diagrams if that helps
you visualize what they’re doing. Pictures can also be very helpful in asking the customers if you have
the right idea. If the customers will let you, print screen shots and even take photographs. (However,
keep in mind that many businesses are required to safeguard the privacy of their clients’ data, so don’t
expect them to let you walk out with screen shots or photographs showing credit information, medical
histories, or records of political contributions. Be sure you ask before you try to take any material away
and ask before you even bring a camera in the building.)

Study Current Operations
After you’ve walked a mile or two in the customers’ shoes, see if there are other ways that you can study
the current operation. Often companies have procedure manuals and documentation that describes the
customers’ roles and responsibilities. (In fact, that kind of documentation is required for certain kinds
of ISO certifications. Some bigger companies like to display huge banners that say things like ‘‘ISO-9000

74

Stephens c04.tex V3 - 10/08/2008 11:18am Page 75

Chapter 4: Understanding User Needs

Certified.’’ These may just be there to cover holes in the wall, but if they have such a banner they probably
have more documentation than you can stomach.)

Look around for any existing databases that the customers use. Don’t forget the lesson of Chapter 2 that
there are many different kinds of databases. Don’t just look for relational databases. Look also for note
files, filing cabinets, boxes of index cards, tickler files (cubbies where they can place items that should
be examined on a certain date), and so forth. Generally, snoop around and find out what information is
kept where.

Figure out how that information is used and how it relates to other pieces of information. Often different
physical databases contain redundant information and that forms a relationship. For example, a filing
cabinet holding information about customers includes all of the customers’ data. A pile of invoices also
includes the customers’ names, addresses, ID numbers, and other information that is duplicated in the
customer files. Paper orders probably contain the same information. These are the sorts of pieces of data
that tie the whole process together.

Brainstorm
At this point, you should have a decent understanding of the customers’ business and needs. To make
sure the customer hasn’t left anything out, you can hold brainstorming sessions. Bring in as many Stake-
holders as you can and let them run wild. Don’t rule out anything yet. If a stakeholder says the database
should record the color of customers’ shoes when they make a purchase, write it down. If someone else
says they need to track the number of kumquats eaten by assembly line workers, write it down.

Continue brainstorming until everyone has had their say and it’s clear that no new ideas are appearing.

Occasionally extra creative people (sometimes known to management as ‘‘troublemakers’’) look like
they’re going to go on forever. Let them go for a while but if it’s clear they really can’t stem the flood
of ideas, split up. Have everyone go off separately and write down anything else relevant that they can
think of. Then come back and dump all of the ideas in a big pile.

Try not to let the Customer Champion suppress the others’ creativity too early. Though the Customer
Champion has the final say, the goal right now is to gather ideas, not to decide which ones are the best.

The goal at this point isn’t to accept or eliminate anything as much as it is to write everything down. You
want to be sure that everything relevant is considered before you start designing. Later, when you’ve
started laying out tables and indexes and changes are more difficult to make, you don’t want someone
to step in and say, ‘‘Owl voltages! Why didn’t someone think of owl voltages?’’ Hopefully you have owl
voltages written down somewhere and crossed out so you can say they were considered and everyone
agreed they were not a priority.

Different development shops take different approaches if this earth-shatteringly important requirement
somehow got missed during brainstorming. I prefer to grudgingly add it to the requirements, while
making sure that the customers understand that this sort of last minute change might affect the schedule.
If you grumble a little, they usually take the hint and only insist on changes that really are important.
Other shops simply say, ‘‘Sorry, that wasn’t in the original requirements and we’re not doing it so
there!’’ Though this is technically correct, it increases the chances that the final product won’t meet the
customers’ needs.

75

Stephens c04.tex V3 - 10/08/2008 11:18am Page 76

Part II: Database Design Process and Techniques

Look to the Future
During the brainstorming process, think about future needs. Explicitly ask the customers what they might
like to have in future releases. You may be able to include some of those ideas in the current project, but
even if you can’t it’s nice to know where things are headed. That will help you design your database
flexibly so you can more easily incorporate changes in the future.

For example, suppose your customer Paula Marble runs a plumbing supply shop but thinks some day
it might be nice to add a little café and call the whole thing ‘‘Paula’s Plumbing and Pastries.’’ After
you hide your snickers behind a cough, think about how this might affect the database and the rest of
the project.

Plumbing supplies are generally non-perishable, but pastries must be baked fresh daily and the ingre-
dients that go into pastries are perishable. You may want to think about using separate inventory tables
to hold information about non-perishable plumbing items that clients can purchase (gaskets, thread
tape, pipe wrenches) and perishable cooking items that the clients won’t buy directly (flour, eggs,
raisins).

You might not even track quantity in stock for finished pastries (the clients either see them in the case or
not) but you probably want to be able to record prices for them nonetheless. In that case, you will have
entries in an inventory table that will contain prices but that will never hold quantities.

You don’t necessarily need to start planning the future database just yet (after all, Paula may decide to
go with ‘‘Paula’s Plumbing and Tattoo Palace’’ instead), but you can keep these future changes in mind
as you study the rest of the problem.

Understand the Customers’ Reasoning
Occasionally you’ll come across a customer who thinks he knows something about database design. He
may say that you should use a particular table structure, an object-relational hierarchical data model, or
an acute polar space modulator.

Sometimes these suggestions make perfect sense. Other times you’ll think the customer clicked the
Google ‘‘I’m Feeling Lucky’’ link and stumbled into the endless morass of techno-babble.

Even if the suggestions seem to make no sense whatsoever, don’t dismiss them out of hand. Remember
that the customer has a different perspective than you do. The customer knows a lot more than you
about his particular business. He may or may not know anything about database design, but it’s entirely
possible that he has a reason for his obscure requests.

For example, suppose you’re trying to design a sales and inventory system for Thor’s Thimbles. The
president and CEO Thor says he thinks you need to use a temporal database, although the way he pro-
nounces it makes you think he probably doesn’t understand what that means (or perhaps it’s just his
Scandinavian accent). You think, ‘‘How hard can it be to sell thimbles?’’ and ignore him.

After you spend a month building a really slick relational database you discover that old Thor isn’t so
naive after all. It turns out that the company sells hundreds of different models of thimbles made from
such materials as stainless steel, anodized aluminum, gold, and platinum. The value of the more exotic
models changes daily with precious metal prices. Almost as volatile are the collectors’ models such as the

76

Stephens c04.tex V3 - 10/08/2008 11:18am Page 77

Chapter 4: Understanding User Needs

Great Scientists of History series and the Sports Immortals (the Pete Rose Hall of Fame model can bring
up to $200 at auction).

Suddenly what you thought was a simple problem really does have hundreds of variables changing
rapidly over time and you realize that you probably should have built a temporal database. You have egg
on your face and Thor decides that his brother-in-law, who originally suggested the temporal database
to Thor, might be able to do a better job than you.

Even if a customer’s suggestion seems odd, take it seriously. Dig deeper to find out why the customer
thinks that will be useful. Take the approach my doctor takes when I tell him that I think I have scurvy
or the plague or some other nonsense. He keeps an absolutely straight face and asks, ‘‘Why do you think
that?’’ I won’t be right but the symptoms I used in my incorrect diagnosis may help him decide that I
really have a cold. (I envision him with the other doctors sitting in the break room later laughing and
saying, ‘‘You’ll never guess what my patient thought he had today! Ha, ha, ha!’’)

Try It Out Who’s Right?
Suppose you have a customer who says you should use an XML-enabled object-relation database. You
look into the problem and don’t think that makes any sense. You ask the customer and he gives you a
bunch of half-justifications that don’t really add up. In the end he says, ‘‘Just do it.’’

How should you respond?

How It Works

This is a tricky situation. Everyone dreads the customer who tells you point-blank to do something that
you know doesn’t make sense. Do you waste the customer’s time and money to pursue the wrong course?
Or do you tell the customer that you won’t do it and risk getting fired?

Everyone has to make this call for him- or herself. You’re the one who has to be able to sleep at night
after making the decision.

My personal philosophy is that I put the customer’s needs first. If I think the customer is telling me to
do something incorrect, I’ll say so. But if the customer insists and I think I can do what he wants, I’ll go
ahead and do my best. In the end, it’s the customer’s money after all. If I make a big deal out of it and get
fired, he’ll probably just go out and find someone less experienced who blunders in without seeing the
consequences of following the misguided advice and will make matters worse than I would.

However, I’ve rarely come to this point with a customer. Usually if you can explain your concerns in
terms that customers can understand, they’ll either convince you that there’s a reason to their madness
or they’ll realize that the issues you’ve raised make sense.

Learn What the Customers Really Need
Sometimes the customers don’t really understand what they need. They think they do and they
almost certainly understand the symptoms of their problems, but they don’t always make the right
cause-and-effect connections.

77

Stephens c04.tex V3 - 10/08/2008 11:18am Page 78

Part II: Database Design Process and Techniques

Sometimes customers think a database or a new computer program will magically increase their sales,
reduce their costs, walk their dogs, and wash their cars. In fact, a well-designed database will increase
consistency, reduce data entry errors, provide reports, and otherwise help the customers manage their
data, but that won’t necessarily translate into higher profits.

As you look over the customers’ operation, keep in mind that their real goals may not be exactly what
they think they are. Their real goals probably include things such as making bigger profits, making fewer
mistakes so they don’t get yelled at as much by managers and clients, and finishing their daily work in
time to go watch junior’s soccer practice.

Look for the real causes of the customers’ problems and think about ways you can address them. If you
can see a way to improve operations, suggest it (always keeping in mind that they probably know a
whole lot more about their business than you do so there’s a good chance that your idea won’t fly).

By the way, never ever tell a customer, ‘‘What you really need is a slap in the head and a better product.’’
That sort of non-constructive criticism may be gratifying but usually generates an unfavorable response.

Prioritize
At this point, you should have a fair understanding of the customers’ business, at least the pieces that are
relevant to your project. You should understand at least roughly which customers will be playing which
roles during the upcoming drama. At a minimum, you should know who the Customer Champion and
Customer Representatives are so you know who to ask questions.

You should also have a big list of desired features. This list will probably include a lot of unicorns and
pixie dust — things that would be nice to have but that are obviously unrealistic. It may also include
things that are reasonable but that would take too much time for your current project.

To narrow the wish list to manageable scope, sit down with the customers and help them prioritize. You’ll
need the Customer Representatives who understand what is needed so they can make the decisions.
Sometimes you may need the Customer Champion either in the meeting or available for consultation to
make the tough calls.

Group the features into three categories. Priority 1 (or release 1) features are things that absolutely must
be in the version of the project that you’re about to start building. This should be the bare-bones essentials
without which the project will be a failure.

Priority 2 (or release 2) features are those that the customers can live without until the first version is in
use and you have time to start working on the next version. If development goes well, you may be able
to pull some of these features into the first release but the customers should not count on it.

Priority 3 (or release 3) features are those that the customers think would be nice but that are less impor-
tant than the priority 1 and 2 features. This is where you put the unicorns and pixie dust so you can
ignore them for now.

You don’t need to tell the customers but the priority 3 features are unlikely to ever make it into produc-
tion. By the time release 1 is finished, the customers will have thought of a plethora of other priority 1
and 2 features that they want in release 2 so the release 3 features will remain unimplemented in the next
version, and so on forever by induction.

78

Stephens c04.tex V3 - 10/08/2008 11:18am Page 79

Chapter 4: Understanding User Needs

This is another place where different development shops take different approaches. In the more flexible
approach that I prefer, these categories are somewhat flexible. If, during development, you discover
that some priority 2 feature would be really easy to implement, you can pull it into the current release.
In contrast, if some priority 1 feature turns out to be unexpectedly hard, you might ask the customers
how important it really is and suggest that it be bumped to the priority 2 list to avoid endangering the
schedule.

To make this sort of shuffling easier, it can be helpful to further prioritize the items within each category.
If an item is high up on the list of priority 1 items, it is not a likely candidate for deferral to the next
release. Similarly, if an item is high up in the priority 2 list, you might be willing to spend a little extra
effort to bring it into the first release.

In a hard-line development approach, the categories are fixed after the requirements phase ends and
items never move from one category to another. This prevents the customers from promoting items from
priority 2 to priority 1, so it can save you some trouble. However, this approach also makes it hard for
you to downgrade a feature that turns out to be a real project albatross.

Verify Your Understanding
With your notebook (and brain) bursting at the seams with all of this information, it’s almost time to
move on to the next chapter and start building a data model. Before you do, you should verify one last
time that you really understand the customers’ needs. This may be your last chance to avoid a painful
catastrophe, so be sure you’ve gotten it right.

Walk through your understanding of the system and explain it to the customers as if they were building
the system for you and not the other way around. They should make comforting grunts and noises such
as ‘‘yup’’ and ‘‘uh huh.’’

Watch out for words such as ‘‘but,’’ ‘‘except,’’ and ‘‘sort of.’’ When they use those words, make sure
they’re only emphasizing something that you already know and not adding a new twist to things. Often
at this stage the customers think of new situations and exceptions that they didn’t think of before.

Pay particular attention to exceptions — cases where things mostly work one way but occasionally work
in another. Exceptions are the bane of database designers and, as you’ll see in the following chapter, you
need to handle them in a special way.

For example, suppose you need to allow for returns. (A client might decide that the Kathryn Janeway
sculpture he ordered is too short or clashes with his Predator statue.) While reviewing your understand-
ing of the project, you say, ‘‘So the receiving clerk enters the RMA (Return Merchandize Authoriza-
tion number) and clicks Done, right?’’ Your customer representatives look sheepishly at each other
and say, ‘‘Well... usually but sometimes they don’t have an RMA. Then they just write in ‘None.’’’
This is an important exception that the customers didn’t tell you about before and you need to write
it down.

For another example, suppose your customers currently use paper order forms that have shipping and
billing address sections. You say, ‘‘So the form needs to hold one shipping address and one billing
address?’’ Your customer replies, ‘‘Well, sometimes we need two shipping addresses because different
parts of the order go to different addresses.’’ Someone pulls out an order form where a second address
and additional instructions have been scribbled in the margin.

79

Stephens c04.tex V3 - 10/08/2008 11:18am Page 80

Part II: Database Design Process and Techniques

This is a huge exception. It’s easy enough to add little notations to a paper form but it’s impossible to add
more than one address value to a single set of fields in a database. You can work around the issue if you
plan for it, but it can be a major headache if you don’t learn about it ahead of time.

For a final example, suppose a customer record needs a billing address. While you’re reviewing your
understanding the customer says, ‘‘Oh yeah, and a shipping address because sometimes they buy one
as a gift.’’ Now you have to wonder if sometime later someone will decide that you also need a contact
address in case you have questions about the order. Or a corporate address where you can send legal
correspondence. Or perhaps a whole slew of branch office addresses. Or an executive address where you
can send golf clubs to bribe the client’s executives.

When your customer expands a single field (or a group of fields such as an address), you should ask
seriously whether it’s going to happen again. If the record needs to hold many copies of the same field,
you can easily pull them into a separate table if you plan ahead of time, but it can be hard to add new
copies of fields to a table after you build it and its user interface. A single customer record can hold one
or two addresses but not an ill-defined, ever-expanding number. It’s better to know ahead of time and
plan for an arbitrary number of related addresses.

Sometimes in database design it’s better to only allow one or many related items. There’s no such thing
as two.

Write the Requirements Document
The requirements document describes the system that you are going to build. This document is sometimes
called the product requirements document (PRD), the requirements specification, specification, or spec. As all of
these names imply, this document specifies the project’s requirements.

At a minimum, the requirements document needs to spell out what you’re planning to build and what it
will do. It needs to explain the problems that it will solve and it should describe how the customers will
use it to solve their problems. It can also include any design or architecture that you’ve already done, and
it can include (possibly as attachments or appendixes) summaries of the discussions you’ve had while
deciding on the project’s features.

The requirements document keeps everyone on track during later design and development. It can also
prevent finger-pointing when someone starts yelling about how you forgot to include the telepathic user
interface. You can simply point to the requirements document and say, ‘‘Sorry but the telepathic interface
isn’t in here.’’ In fact, if you considered this issue during brainstorming and dumped the telepathic
interface into the priority 3 ‘‘unicorns and pixie dust’’ category, having it listed there will probably allow
you to skip the whole argument. The potential wave-maker can see that the issue has been shelved for
now and will probably not bother stirring up trouble on a dead issue.

(I’ve worked on some projects that had enormous requirements documents, sometimes running to 500
or more pages. In that case, it’s hard for anyone to remember everything that’s in there and you may end
up revisiting some issues occasionally.)

The requirements document should define deliverables (also called milestones, not to be confused with
millstones) that the customers can use to gauge the project’s progress. These should be tasks that you
complete along the way that you can show the customer and that can be verified in some meaningful way.
It’s important that they be verifiable. Saying you’re 25 percent done thinking about the design doesn’t

80

Stephens c04.tex V3 - 10/08/2008 11:18am Page 81

Chapter 4: Understanding User Needs

do the user any good. Saying that you will have a database built and you will have filled it with test
data drawn from a legacy system is much more useful and verifies that the database can hold that kind
of data.

If you make the database design a deliverable (usually a good idea), then you need to be able to somehow
verify that the design meets the customers’ needs. Usually that means an extensive review where a lot of
people put their heads together and try to poke holes in your carefully crafted design.

Prototypes also make excellent deliverables. Customers can experiment with a prototype to better under-
stand what the system will do and they can give you feedback if you’re not heading in the right direction.
If you’re building a full-blown user interface for the database, you could mock-up some prototype screens
(probably with no error checking and possibly with just a little concocted data) to give the customers a
feel for the completed application.

Some of the deliverables defined by the requirements document should be final deliverables. These are
deliverables that determine whether the project is finished. Like all of the other deliverables, they must
be measurable to be useful.

A particularly useful technique for deciding when a project has met its goals is to create use cases. Use
cases are described in the following section.

Make Use Cases
A use case is a script that the users can follow to practice solving a particular problem that they will face
while using your finished product. These can range in complexity from the very simple such as logging
in or closing the application, to the extremely complex such as scheduling a fleet of trucks to perform
in-home dog grooming.

Depending on how complete the user interface design is when you are writing the use cases, these may
be sketchy or extremely detailed. They may spell out every keystroke and mouse movement that the user
must make or they may provide vague instructions such as, ‘‘The user will use the Order Entry form to
place a new order.’’

When the project is finished, the customers should review all of the use cases and verify that the finished
project can handle them all. (In self-defense, you should run through the use cases before you tell the
customers that you’re finished. That way you don’t look silly when the product cannot handle simple
chores during an executive dog and pony show.)

Some of the things that you might specify when writing up use cases include:

❑ Goals: A summary of what the use case should achieve.

❑ Summary: An executive overview that your Executive Champion can understand.

❑ Actors: Who will do what? This includes people, your finished system, other systems, and so
forth. Anyone or anything that will do something.

❑ Pre- and post-conditions: The conditions that should be true before and after the use case is fin-
ished. For example, a pre-condition to placing a new order might be that the client placing the
order already exists.

81

Stephens c04.tex V3 - 10/08/2008 11:18am Page 82

Part II: Database Design Process and Techniques

❑ Normal Flow: The normal steps that occur during the use case.

❑ Alternative Flow: Other ways the use case might proceed. For example, when a user tries to look
up a customer, what happens if the customer isn’t there?

❑ Notes: Just in case there are special considerations that the person following the use case needs
to know.

Many developers like to draw use case diagrams to show what actors perform what tasks. These seem to
usually work at one of two levels.

A higher level use case shows which actors perform which tasks. For example, the Student actor
enrolls in a class and takes the class, the Instructor actor teaches the class and assigns grades, and
so forth. This type of use case diagram provides little detail about how the actors accomplish their
tasks. It’s useful early on when you know what you want to do but don’t yet know how the system
will do it.

Figure 4-1 shows a high-level use case diagram. Actors are shown as stick figures, tasks are shown in
ellipses, and lines connect actors to tasks. More elaborate use case diagrams use other kinds of arrows,
lines, and annotations to provide more detail.

Customer

Create Trouble Ticket

Fix Problem

Accept Fix

Assign Ticket to
Repair Person

Reject Fix

Report to Customer

Generate Reports

Repair Person

Tester

Ticket Tracker
Program

Sales Rep

Figure 4-1

The second kind of use case lists more specific steps that actors take to perform a task, although the steps
are still listed at a fairly high level.

82

Stephens c04.tex V3 - 10/08/2008 11:18am Page 83

Chapter 4: Understanding User Needs

Neither of these kinds of use case diagram provides enough detail to use as a script for testing, although
they do list the cases that you must test. Because they are shown at such a high level, they are great
for executive presentations. For more information on use case diagrams, look for books about UML
(Universal Modeling Language), which includes use case diagrams, or search the Web for ‘‘use case
diagram.’’ Two links that provide introductions are:

❑ atlas.kennesaw.edu/∼dbraun/csis4650/A&D/UML_tutorial/use_case.htm
❑ www.developer.com/design/article.php/10925_2109801_1

Typical use cases might include:

❑ The user logging in.

❑ The user logging out.

❑ Switching users (if the program allows that).

❑ Creating a new customer record.

❑ Editing a customer record.

❑ Marking a customer record as inactive.

❑ Creating a new order for an existing customer.

❑ Creating a new order for a new customer.

❑ Creating an invoice for an order.

❑ Sending out late payment notices.

❑ Creating a replacement invoice in case the customer lost one.

❑ Receiving a payment.

❑ Defining a new inventory item (when the CEO decides that you should start selling Rogaine
for Dogs).

❑ Adding new items to inventory (for example, when you restock your fuzzy dice supply).

❑ Etc.

The list can go on practically forever. A large project can include hundreds of use cases and it may take
quite a while to write them all down and then later verify that the finished project handles them all.

In addition to being measurable (you want to be able to tell whether the program can pull its weight),
use cases should be as realistic as possible. There’s no point in verifying that the program can handle a
situation that will never occur in real life.

In one project, the program we were writing needed to be able to handle 20 simultaneous users. One
customer performed a test where 20 people all sitting in the same room walked step-by-step through
the same use case at the same time. They all typed in the same text and clicked the Find button at the
same time. The program gave terrible performance because every user’s computer tried to access the same
database records at the same time. In a more realistic test, every user tried to access a different record and
everything was fine.

83

Stephens c04.tex V3 - 10/08/2008 11:18am Page 84

Part II: Database Design Process and Techniques

Try It Out Use Cases
Suppose you are building a program to let students log on over the Internet and enroll in classes.
All enrollments are tentative until a specific date on which they are all processed. (That gives the
school a chance to juggle schedules; for example, if a graduating student really needs a class, another
student might get bumped for now.) To accommodate this flexibility, students should enter alternate
choices.

For this exercise, make a list of database use cases that you could use to look for data that you have not
built into the design and to later test to ensure that all of the data is present. You don’t need to explain
how a user will perform a certain task, just briefly describe the task and list the kinds of data that must
be stored or accessed during that task. Add any questions that need further study or feedback from the
customers.

How It Works

You should perform use cases covering every task that the final users of the system would perform.
Here’s the list that I’ve come up with.

Task Data Needs

Log on successfully or
unsuccessfully

Verify UserName and Password in Students table.
(How do we generate these? How do we guarantee security?)

Enter desired schedule Let students pick from dropdown lists so we don’t need to verify
that they typed meaningful choices.
Refer to course schedule tables to give students choices.
Save student selections in student selections tables.
(Allow students to prioritize their selections?)

Generate final schedules Refer to course schedule tables to get Capacity.
Refer to global tables to learn minimum enrollment to not cancel a
class. (Or does this vary by class? By department?)
Process student selections tables, adding students to desired classes
in the course tables. If a class fills, bump lower priority students,
consult their selections, and assign a replacement course.
If a class has too few students, notify the administrator to cancel the
class. Consult the selections of any students in the class and assign
replacement courses.
When finished, review the course tables and copy student course
assignments into student data tables.
Check global tables (vary by department?) to learn minimum and
maximum normal course load. If a student falls outside of those
bounds, look up the student’s counselor in the student tables and
notify that counselor via email.

Send schedules to students Get student schedule and email address from student tables. Email
the schedule.

84

Stephens c04.tex V3 - 10/08/2008 11:18am Page 85

Chapter 4: Understanding User Needs

Task Data Needs

Email course rosters Get course roster data from course tables.
Get the name and email address of each course’s instructor from the
course tables.
Get the instructor’s email address from the instructor tables.
Email the class’s roster to the instructor.

Manually adjust schedules Allow administrators to manually adjust schedules to handle special
circumstances.
This will require free access to course tables, student data tables, and
student course assignment tables.

Decide Feasibility
At some point, you should step back, take a deep breath, and decide whether the project is feasible. Is it
even possible to design a database to do everything that the customer wants it to do?

Can you really build a database to hold records for 17 million customers, provide simultaneous access for
80 service representatives, log every transaction with timestamps and user IDs, give interactive responses
to queries in less than 2 seconds 90 percent of the time, and still fit it all on a 16MB flash drive?

Okay, the last condition is pretty unrealistic but seriously, someone needs to think about the project’s
viability at some point. No one will be happy to hear that you can’t solve all of the customers’ problems,
but everyone will be a lot happier if the project is canceled early instead of after you’ve waste a year of
everyone’s time and a king’s ransom in funding.

If it really looks like you can’t complete the project, make the tough call and ask everyone to rethink.
Perhaps the customers can give up some features to make the project possible. Or perhaps everyone
should just walk away and move on to a more realistic project.

Summary
Building any custom product is largely a translation process whether you’re building a small database, a
gigantic Internet sales system similar to the one used by Amazon, or a really tricked-out snowboard. You
need to translate the half-formed ideas floating around in the minds of your customers into reality.

The first step in the translation process is understanding the customers’ needs. This chapter explained
ways you can gather information about the customers’ problems, wishes, and desires so you can take the
next step in the process.

In this chapter you learned how to:

❑ Try to decide which customers will play which roles.

❑ Pick the customers’ brains for information.

85

Stephens c04.tex V3 - 10/08/2008 11:18am Page 86

Part II: Database Design Process and Techniques

❑ Look for documentation about user roles and responsibilities, existing procedures, and existing
data.

❑ Watch customers at work and study their current operations directly.

❑ Brainstorm and categorize the results into priority 1, 2, and 3 items.

❑ Verify your understanding of the customers’ needs.

❑ Write a requirements document with verifiable deliverables including use cases.

After you’ve achieved a good understanding of the customers’ needs and expectations, you can start
turning them into data models. The following chapter explains how to convert those needs into informal
data models that help you better understand the database, and then how to convert the informal models
into more formal ones that you can actually use to build a database.

Before you move on to Chapter 5, however, use the following exercises to test your understanding of the
material covered in this chapter. You can find the solutions to selected exercises in Appendix A.

Exercises
1. In Figure 4-2, draw lines connecting the customer roles with their corresponding

descriptions.

Customer Role Description

Convert Someone who won't be around for long. May be
helpful or may not care all that much.

Answers your questions about the project.

Makes things generally run smoothly. Not glamorous
but very useful.

Provides a reality check and prevents groupthink.

Ranges from annoying naysayer to malicious
saboteur/super villain.

A user who originally was against your project that
you include in the development process to bring them
onto your side.

The highest ranking customer driving the project.
Willing to fight super villains.

Thoroughly understands the customers’ needs. Has
the authority to make decisions that stick.

Anyone who has an interest in the project.

Customer Champion

Customer Representative

Devil’s Advocate

Executive Champion

Generic Bad Guy

Short-Timer

Stakeholder

Sidekick/Gopher

Figure 4-2

86

Stephens c04.tex V3 - 10/08/2008 11:18am Page 87

Chapter 4: Understanding User Needs

2. Which of the following does not describe a use case?

a. A script for performing some task.

b. Should describe a realistic operation.

c. Should cover the customer’s entire operation from start to finish.

d. Should be verifiable.

3. Brainstorming sessions should ideally include:

a. Customer Representatives.

b. A Devil’s Advocate.

c. All interested Stakeholders.

d. All of the above.

4. If a customer says you should use a hierarchical XML database, you should:

a. Politely say, ‘‘Thank you,’’ and ignore this nugget of wisdom.

b. Ask the customer why he thinks that.

c. Do as the customer says. (It’s his money.)

d. Study the problem to see if that kind of database makes sense.

5. During a visit to view the customers’ operation, you see someone repeatedly stamping the
front of an order with the current date, turning the order over, turning it over again, and
stamping the front with the date again. You should:

a. Ask someone what that’s all about.

b. Suggest that the manager fire this crazy and possibly dangerous employee.

c. Ignore the whole issue and stay focused on your own tasks.

d. Avoid eye contact with this employee at all costs.

6. Look at the ZIP Code lookup form at zip4.usps.com/zip4/welcome.jsp. What are this
form’s data needs? Which fields are required? (How does the user know those fields
are required?) What are the domains for the fields? Which could involve a foreign key
validation?

7. Which of the following is not a security issue that you should consider when studying the
project?

a. The number of classes of users the database must support.

b. Whether you need to provide audit trails to record changes to the data.

c. The frequency with which you need to perform backups.

d. Whether the users should have individual passwords.

8. You are called upon to design a database for a florist shop named ‘‘Frank’s Floral Fantasies.’’
Frank thinks that he might want to track the medicinal and homeopathic properties of his
plants because he thinks that might improve his sales of echinacea, St. John’s Wort, and
other plants. What priority should this requirement get?

87

Stephens c04.tex V3 - 10/08/2008 11:18am Page 88

Part II: Database Design Process and Techniques

a. Priority 1, definitely in this release.

b. Priority 2, probably in the next release.

c. Priority 3, with the unicorns and pixie dust.

d. It depends (you need more information).

9. Write a use case for logging in to your computer’s operating system.

10. You’re halfway finished designing your database when a Vice Presidential Super Villain
says your project is doomed to failure because you didn’t include a sufficient allowance for
farbulistic granilation. You need to cancel the whole thing and start over with him in control.
How should you handle this attack?

88

Stephens c05.tex V3 - 10/08/2008 11:21am Page 89

5
Translating User Needs

into Data Models

Chapter 4 discussed ways you can work with customers to gain a full understanding of the problem
at hand. The result should be a big pile of facts, goals, needs, and requirements that should be part
of the new database and its surrounding ecosystem. You may already have made some connections
among various parts of this information, but mostly it should be a big heap of requirements that
doesn’t say too much about the database’s design and construction.

This kind of pile of information is sometimes called a contextual list. It’s basically just a list of impor-
tant stuff (although it may be fairly elaborate and include requirements documents, diagrams,
charts, and all sorts of other supporting documentation).

The next step in turning the conceptual list into a database is converting it into a more formal model.
You can compare the formal model to the contextual list and make sure that the model can handle
all of your requirements.

You can also use the model to verify that you’re on track. You can explain the model to the cus-
tomers and see if they think it will handle all of their needs or if they forgot to mention something
important while you were following the procedures described in Chapter 4.

Constantly verifying that you’re on track is an important part of any project. It’s much easier to hit
a target if you’re constantly checking the map and making any necessary adjustments. You wouldn’t
aim your car at a parking space, close your eyes, and step on the pedal, would you? It’s much easier
to park if you keep an eye on your progress, the other cars, the skateboarders slamming nosegrinds off
the curb, kids riding on shopping carts, and everything else in the parking lot.

After you build a data model (or possibly more than one), you can use it to build a relational model.
The relational model is a specific kind of formal model that has a structure very similar to the one
used by relational databases. That makes it relatively easy to convert the relational model into an
actual database in Access, SQL Server, MySQL, or some other database product.

Stephens c05.tex V3 - 10/08/2008 11:21am Page 90

Part II: Database Design Process and Techniques

In this chapter you learn how to:

❑ Create user interface models

❑ Create semantic object models

❑ Create entity-relationship models

❑ Convert those types of models into relational models

After you master these techniques, you’ll be ready to start pulling the models apart and rearranging the
pieces to improve the design by making it lean and flexible.

What Are Data Models?
Despite what some managers occasionally seem to believe, a model isn’t a silver bullet or enchanted
wand that will magically make a project succeed. A model by itself doesn’t do anything. It doesn’t build
a database, it isn’t a piece of software (although there are software tools that can help you build a model),
and the final user of your database never sees a model.

A model is a plan. It’s a blueprint for building something, in this case a database. The purpose of the
model isn’t to do anything by itself. Instead it gives you a concrete way to think about the database that
you are going to build. By studying the pieces of the model, you can decide whether it represents all of
the data that you need to meet your customers’ needs.

A model is also useful for ensuring that everyone on the project has the same understanding of what
needs to be done. If everyone understands the model, then everyone should have the same ideas about
what data should be stored, which tables should contain it, and how the tables are related. They should
also agree on the business rules that determine how the data is used and constrained.

Note that it’s important that everyone actually understands the model. I’ve seen developers build
remarkably complicated models and then dump them on hapless end users, expecting those users to
understand the models’ every subtle nuance. The developers ended up walking the users through the
models until the users’ heads were spinning and the developers could have convinced them of just about
anything. The models are for those who know how to understand them, not necessarily for everyone.

After you build a model, you can look at it and ask questions such as:

❑ Where do we store customer information?

❑ How many contact names can we store for a customer?

❑ Where do we store the contacts’ favorite colors?

❑ What if we need to store multiple price points for the same product?

❑ How do we store the seventeen kinds of addresses we need for customers?

❑ Where do we store supplier information?

❑ If someone asks about an order they placed but haven’t received, how can we figure out where
it is?

90

Stephens c05.tex V3 - 10/08/2008 11:21am Page 91

Chapter 5: Translating User Needs into Data Models

❑ Where can we enter special instructions for an order?

❑ How do we know when we need to restock left-handed cable stretchers?

You should also work through any use cases or current scenarios and see if the model can handle
them. You can’t actually fill out insurance claim forms and look in the warehouse for missing orders
yet, but you should be able to say, ‘‘this table contains the data we need to do that.’’

The end users can help a lot with this part. Though they may not understand the models, they do under-
stand their business and can ask these sorts of questions while you and the other developers try to figure
out if the model can handle them.

If the model cannot handle all of your (and the users’) questions, you need to adjust the model. You
might need to add fields or tables, change a field’s data type, make new connections between tables, or
make other changes to satisfy the requirements. In extreme cases, it may be easiest to start a new model
from scratch.

This chapter discusses four kinds of models that grow successively closer to the final database imple-
mentation.

First, a user interface model views the database at a very high level as seen from the final user’s point
of view. Depending on how you are going to use the database, this might be as the user will view the
database through forms on a computer screen. This model is very far from the final database implemen-
tation and it doesn’t tell much about the database design. This model is useful for understanding what
data is needed by the project and how you might use it to navigate through the user interface.

The second and third types of models described in this chapter are semantic object models and
entity-relationship models. These are roughly at the same distance from the final database. They are at
a slightly lower level than the user interface model and show relationships among data entities more
explicitly. They are still at a moderately high logical level, however, and do not provide quite enough
detail to build the final database.

The fourth type of model described in this chapter is the relational model. This model mimics the struc-
ture of a relational database closely enough that you can actually sit down and start building the database.

In a typical database design project, you might start with a user interface model. I like to start there
because I figure if the user is going to see something, we better have a place for it in the database. Con-
versely, if the user isn’t going to see it in some manner, do we really need it in the database? (But that’s
just me. I like designing user interfaces. Some people prefer to skip that and let someone else worry about
the user interface.)

Next you use what you learned from the user interface model to build either a semantic object model or
an entity-relationship model. These models serve the same purpose so you generally don’t need to build
them both. Work through this chapter and the exercises at its end and decide which one you prefer.

Finally, you convert the semantic object model or entity-relationship model into a relational model. Now
you have something that could be turned into a database. There are still some steps to go as you refine
the relational model to improve the final database’s reliability and performance, but those are subjects
for later chapters.

91

Stephens c05.tex V3 - 10/08/2008 11:21am Page 92

Part II: Database Design Process and Techniques

Remember, these models are intended to better your understanding of the data and the ways in which
different bits are related, so with that in mind, anything that increases understanding is beneficial. Don’t
be afraid to add notes that clarify confusing issues. Feel free to modify the basic modeling techniques
described here. There’s some benefit to sticking close to standard notations because it lets others who
have studied the same notation understand what you are doing, but if adding a number in a box by each
link or a colored triangle helps you and your team get a better handle on the design, do it. Just be sure to
make a note of your additions and changes so everyone is on the same page.

User Interface Models
In most database applications, a user will eventually see the data in some form. For example, an order
entry and tracking application might use a series of screens where the user can perform such chores as
entering orders, tracking orders, marking an order as paid, looking up available inventory, and so forth.
Those screens form the database’s user interface.

Some databases don’t have their own user interfaces, at least not that a human will see. Some databases
are designed to store data for other applications to manipulate. In that case, it is the interfaces that those
other applications provide that the human user sees. If possible, you should consider what those appli-
cations will need to display and plan accordingly. Sometimes it is useful to build throwaway interfaces
to view the data on forms, in spreadsheets such as Microsoft Excel, or in text files.

You should also consider how those other applications will get the data from your database. The way in
which those applications interact with your database forms a non-human interface and you should plan
for that one, too. For example, suppose you know that a dispatch system will need to fetch information
about employees from your database and information about pending repair jobs from another system.
You should think about the kinds of employee data that the dispatch system will need (things such as a
repairperson’s skills, equipment, assigned vehicle, and so forth). Then you can design your database to
make fetching this data easy and efficient.

To build the user interface model, start by making rough sketches of the screens that the user will see.
Often these first sketches can come directly from paper forms if any exist.

Include the fields with sample data to make it easier to understand what belongs on each screen. These
sketches can be anything from crayon scribbles on bar napkins, to forms drawn with your favorite com-
puterized drawing tool, to full user interface prototypes. Figure 5-1 shows a mocked-up Find Orders
screen built with Visual Basic. This form holds only controls and doesn’t include any code to do anything
more than just sit there and look pretty.

In addition to the image in Figure 5-1, you should include text explaining what the various parts of the
form do. In this case, that text might say:

❑ The user enters selection criteria in the upper part of the form and clicks the Search button.

❑ The program displays a list of matching order records in the bottom of the form.

❑ The user can select an order from the list and click Open to open that order’s detail form.

At this level, the user probably thinks of each order as containing all of the information on this form.
If you were to fill out an order on a piece of paper, that paper would include blanks for you to fill in
customer name, customer ID, contact name, order date, and so forth. The order would also have a status,

92

Stephens c05.tex V3 - 10/08/2008 11:21am Page 93

Chapter 5: Translating User Needs into Data Models

although you might represent that by putting the order in boxes on your desk labeled Pending, Open,
Closed, and so forth rather than by having a status box on the paper form.

Figure 5-1

The form and its description also raise some important questions:

❑ What fields should be allowed as selection criteria?

❑ Should we index the selection criteria fields to make searching faster? Some or all fields?

❑ When the user selects an order and clicks Open, how does the program open the Orders record?
(Searching for the exact combination of fields shown in the list would be slow and there might
even be two entries with the same values if someone placed two orders on the same day. It might
be wise to add an order ID field to make finding the record again easier.)

When you select an order from the form shown in Figure 5-1 and click Open, the program displays the
form shown in Figure 5-2.

This form shows the fields that should be associated with an order. These include:

❑ Various dates such as the date the order was placed, the date the products were shipped, the
date the customer paid, and so forth

❑ The order’s current status

❑ The shipping method (Priority, Overnight, Armored Courier, and so forth)

❑ The billing method (credit card, invoice net 30)

❑ Various addresses such as the shipping and billing addresses

❑ Contact information for when we get confused (or want to send spam to the unsuspecting
contact)

❑ The order’s line items

❑ Subtotal, taxes, shipping, and grand total

93

Stephens c05.tex V3 - 10/08/2008 11:21am Page 94

Part II: Database Design Process and Techniques

Figure 5-2

Both of these forms involve orders and both provide some information about the order data. The Order
Detail form includes a lot of the fields that must be stored to represent an order. The Find Orders screen
tells which order fields should be allowed as search criteria (and thus may make good keys) and which
order fields should be displayed in the result list.

Each of these forms tells a little bit more about the order data. Other mocked-up forms would give even
more information about the order data. For example, the application would need an order entry form and
a form to update order information (such as changing the addresses or setting order status to Closed).
Depending on how the work was divided among employees, there might be special forms for performing
a single specific task. For example, an order fulfillment clerk (who puts things in a box and ships them)
would need to be able to change an order’s status to Shipped but probably doesn’t need to be able to
change credit card numbers. In fact, going through the screens and deciding which employees should be
able to do which tasks gives you an initial indication of the application’s security requirements.

Still other forms would give hints about other parts of the database. A full-fledged database for this
application would need to include forms for managing inventory. (For example, how do we know there
are any more whoopee cushions to sell and how do we know when to order more?) It might also include
supplier information (who sells us our nose glasses?), employee information (who is assigned to pester
delinquent customers this week?), advertising data (which spam campaigns gave us the most new con-
tacts?), and so forth.

A large application might include dozens or even hundreds of forms, each of which gives only a partial
glimpse of the information contained in the database. Together these mocked-up screens form a user
interface model that shines spotlights into the data needed to support the application.

94

Stephens c05.tex V3 - 10/08/2008 11:21am Page 95

Chapter 5: Translating User Needs into Data Models

With the user interface model in hand, you are now ready to build a more formal model that shows the
entities used by the application in greater detail. The first of those models discussed in this chapter is the
semantic object model.

Try It Out User Interface Models
Sketch out a form where the user could enter shift information for employees. What data must be dis-
played on the form?

How It Works

Figure 5-3 shows a mocked-up employee shift form.

Figure 5-3

This form includes the following data:

❑ Employee name (selected from a combo box).

❑ The starting day of the week the user is viewing and editing for this employee (selected from a
combo box). (Which weeks will we allow the user to pick? How far in the future?)

❑ The user should also be able to select past weeks (from a combo box) from which to copy.

❑ The hours that the employee is scheduled to work. These records (in the EmployeeShifts table?)
will include employee, date, start time, and stop time.

❑ Total hours scheduled. This can be calculated from the shift data.

95

Stephens c05.tex V3 - 10/08/2008 11:21am Page 96

Part II: Database Design Process and Techniques

The form will also need to look up minimum and maximum normal hours so we can warn the user if
something is unusual. For example, if the user is scheduled to work 70 hours in a week, the form can ask
the user to verify before accepting the changes.

Semantic Object Models
A semantic object model (SOM) is intended to represent a system at a fairly high level. Though the ideas
are somewhat technical, they still relate fairly closely to the way people think about things, so semantic
object models are relatively understandable to users.

Classes and Objects
Intuitively a semantic class is a type of thing that you might want to represent in your system. This can
include physical objects such as people, furniture, inventory items, and invoices. It can also include
logical abstractions such as report generators, tax years, and work queues.

Technically a semantic class is a named collection of attributes that are sufficient to identify a particular
entity. For example, a PERSON class might have FirstName and LastName attributes. If you can identify
members of the PERSON class by using their FirstName and LastName attribute values, then that’s good
enough.

By convention, the names of semantic classes are written in ALL CAPS as in EMPLOYEE, WORK_ORDER,
or PHISHING_ATTACK. Some prefer to use hyphens instead of underscores so the last two would be
WORK-ORDER and PHISHING-ATTACK.

A semantic object (SO) is an instance of a semantic class. It is an entity instance that has all of the attributes
defined by the class filled in. For example, an instance of the PERSON class might have FirstName ‘‘David’’
and LastName ‘‘Letterman.’’

Traditionally the attributes that define a semantic class and that distinguish semantic objects are written
in mixed case as in LastName, InvoiceDate, and DaysOfConfusion.

Attributes come in three flavors: simple, group, and object.

A simple attribute holds a simple value such as a string, number, or date. For example, LastName holds a
string and EmployeeId holds a number.

A group attribute holds a composite value — a value that is composed of other values. For example, an
Address attribute might contain a Street, Suite, City, State, and ZipCode. You could think of these
as separate attributes but that would ignore the structure built into an address. These values really go
together so, to represent them together, you use a group attribute.

An object attribute represents a relationship with some other semantic object. For example, a relationship
may represent logical containment. A COURSE class would have a STUDENT object attribute to represent the
students taking the course. Similarly the STUDENT class would have a COURSE object attribute representing
the courses that a student was taking. Each of these classes is related to the other so they are called paired
classes. Similarly their related attributes are called paired attributes.

96

Stephens c05.tex V3 - 10/08/2008 11:21am Page 97

Chapter 5: Translating User Needs into Data Models

Cardinality
An attribute’s cardinality tells how many values of that attribute an object might have. For example, at the
start of some volleyball tournaments each team’s roster must contain between 6 and 12 players.

You write the lower and upper bounds beside the attribute to which they apply separated by a period.
The volleyball team roster’s Players attribute would have cardinality 6.12. (I have no idea why it’s a
single period and not a dash or ellipsis.)

Usually the minimum cardinality is 0 if the value is optional or 1 if it is required.

The maximum cardinality is usually 1 if at most one value is allowed or N if any number of values is
allowed.

Probably the most common cardinalities are:

❑ 1.1: Exactly one value required. For example, suppose you are building a database to track
restaurant orders. In the ORDER class, the ServerName attribute would have cardinality 1.1
because every order must have exactly one server.

❑ 1.N: Any number of values but at least one required. For example, the ORDER class’s Item
attribute would hold the items ordered by the diners and would have cardinality 1.N. It
wouldn’t make sense to send an order to the kitchen if it didn’t contain any items, but it could
contain any number of items. (Although in practice I might double-check with the server if the
kitchen received an order for 13,000 hamburgers.)

❑ 0.1: An optional single value. For example, the server might want to record a comment to go with
the order. (‘‘Extra cheese on the milkshake.’’)

❑ 0.N: Any number of optional values. For example, a series of comments. (‘‘Dressing on the side
for salad 1. No mayo on burger 2. Recognize poor tipper, use day-old breadsticks.’’)

Identifiers
An object identifier is a group of one or more attributes that the users will typically use to identify an object
in the class.

An object identifier can include a single attribute such as CustomerId or a group of attributes such as
FirstName, MiddleName, and LastName.

You indicate an identifier by writing the text ‘‘ID’’ to the left of its attributes. Often identifiers con-
tain unique values so every item in the class will have different values for the identifier. For example,
CustomerId, SocialSecurityNumber, and Isbn are unique identifiers for customers, employees, and
books, respectively. You can indicate a unique identifier by underlining the ‘‘ID’’ to its left.

Sometimes non-unique identifiers are used to find groups of objects. For example, suppose the users of
your system will want to find customers in a particular city. Then the CUSTOMER class’s City attribute
would be a non-unique identifier.

Putting It Together
Figure 5-4 shows a simple representation of a CUSTOMER class that demonstrates these notational features.

97

Stephens c05.tex V3 - 10/08/2008 11:21am Page 98

Part II: Database Design Process and Techniques

CUSTOMER
CustomerId 1.1
Name 1.1
Addresses

AddressType 1.1
Street 1.1
Suite 0.1
City 1.1
State 1.1
ZipCode 1.1

CONTACT

ID
ID

1.N

1.N

ORDER 0.N

Figure 5-4

A big box surrounds the whole class definition. The class name, CUSTOMER, goes at the top.

CustomerId is a simple attribute that is used to identify customers so it gets the ID notation. CustomerId
values are unique so the ID is underlined. This value is required and a customer can have only one ID so
its cardinality is 1.1.

Users sometimes want to search for customers by name so the Name attribute is also an identifier. It is
possible that two customers could have the same name, however, so here ID isn’t underlined. (Duplicate
customer names could also lead to a trademark battle if your customers are companies. Fortunately that’s
their problem, not yours.)

The CUSTOMER class includes address information stored in the Addresses attribute. Each address has the
attributes AddressType (this will be something like Shipping or Billing), Street, Suite, City, State,
and ZipCode. All of these except Suite are required and can hold only one value. The Suite attribute is
optional. Lines show the attributes contained inside the Addresses value. The 1.N to the lower right of
the group indicates that a CUSTOMER object must have one or more Addresses values (each containing a
Street, Suite, City, State, and ZipCode).

Finally, the class has two object attributes named CONTACT and ORDER. The CONTACT attribute represents
one or more contact people for the customer. The box around the attribute tells you that this is an object
attribute. Its cardinality 1.N indicates that the CUSTOMER must have at least one contact.

The ORDER attribute represents the orders placed by this customer. You might think that this should have
cardinality 1.N. After all, why would you need a customer who doesn’t place any orders? However,
when you first create a customer record it will have no associated orders. You might also want to be able
to make a customer record in anticipation of future orders. For both of those reasons, this design sets the
cardinality of ORDER to 0.N.

This is a design decision and in your application you could take the other route. You can look at the
user interface model to see which would be more natural. Do you want to provide a screen where a user
can create a customer record without an order or do you want to make the order entry screen allow for
creating a new customer?

98

Stephens c05.tex V3 - 10/08/2008 11:21am Page 99

Chapter 5: Translating User Needs into Data Models

Try It Out Semantic Object Model
Make a semantic object model for an EMPLOYEE_WEEK class that holds information about employees sched-
uled for a week. This class should have object identifier fields EmployeeId and StartDate. It should also
have a group attribute named Shift that includes StartTime and StopTime, and it should hold one Shift
for each of the seven days of the week.

How It Works

Figure 5-5 shows the semantic object model for the EMPLOYEE_WEEK class.

EMPLOYEE_WEEK
EmployeeId 1.1
StartDate 1.1
Shift
StartTime 1.1
StopTime 1.1

ID
ID

7.7

Figure 5-5

Semantic Views
Sometimes it is useful to define different views into the same data. For example, consider the kinds of
information a company typically tracks for its employees. That information might include:

❑ Normal contact information such as name, address, phone number, and next of kin.

❑ Work-related contact information such as title, office number, extension, pager number, and
locker number at the country club (if you’re an executive).

❑ Confidential salary information including your complete salary and annual bonus history.

❑ Other confidential information such as your stock plan and 401K program participation, insur-
ance selections, annual performance reviews, and golf handicap.

Some of this information, such as your name and title, is freely available to anyone who wants it.

Other semi-public information is available to anyone within the company but not outside the company.
(Many companies worry that executive recruiters with the company phonebook could steal employees
away with all of their valuable skills and the proprietary information locked inside their heads.) This
information includes your office number, extension, project history, and birth date (excluding the year).
It does not include your home address, annual performance reviews, salary history, or other financial
data.

Other more sensitive information should be available to your manager and other superiors but not to
the general population of coworkers. This information includes such things as your annual performance
reviews and work history. However, your manager does not need to know how much you are having
deducted for retirement contributions, whether you participate in the company stock plan, and whether

99

Stephens c05.tex V3 - 10/08/2008 11:21am Page 100

Part II: Database Design Process and Techniques

you are deducting the extra $750 a month for the dental plan. Those sorts of information should be hidden
from your manager. (Depending on the way your company is structured, your manager might not even
need to know your exact salary.)

The people in the Human Resources department are the ones who arrange to siphon money out of your
paycheck for such perks as the stock plan and dental insurance so they obviously need to know that
information. However, they probably don’t need access to your annual performance reviews.

Figure 5-6 shows an EMPLOYEE class and four views that give access to different parts of the employee
data. For simplicity I’ve shown each attribute as if it were a simple attribute when actually most of these
are group or object attributes. For example, the OfficeData attribute is really a compound attribute
including Title, Office, Extension, BirthDate, and so forth.

EmployeeId 1.1
EMPLOYEE

PublicData 1.1
OfficeData 1.1
Reviews 0.N
SalaryData 0.N
FinanceData 1.1

ID EmployeeId 1.1
COWORKER_VIEW

PublicData 1.1
OfficeData 1.1

ID EmployeeId 1.1
MANAGER_VIEW

PublicData 1.1
OfficeData 1.1
Reviews 0.N
SalaryData 0.N

ID EmployeeId 1.1
HR_VIEW

PublicData 1.1
OfficeData 1.1
SalaryData 0.N
FinanceData 1.1

IDPublicData 1.1
PUBLIC_VIEW

Figure 5-6

Defining these different views allows you to make data available only to those who need it. (This notion
of view maps directly to the relational database concept of view so defining views now will help you later.)

After you finish building a complete semantic object model, you should check each of the views to ensure
that they contain all of the information needed for each class of user and nothing else. For example,
you should run through all of the use cases for managers and see if the EMPLOYEE class’s MANAGER_VIEW
provides enough information to handle those use cases. You should also check that every piece of data
included in the MANAGER_VIEW is actually used. If something isn’t used in some use case, then managers
might not need it and it might not belong in the MANAGER_VIEW.

Class Types
The following sections describe some of the types of classes that you may need to use while building
semantic object models. Some of these are little more than names for simple cases. Others such as associ-
ation classes and derived classes introduce new concepts that are useful for building models.

Simple Objects
A simple or atomic object is one that contains only single-valued simple attributes. For example, an inven-
tory item class might include the attributes Sku, Description, UnitPrice, and QuantityInStock. Each
inventory item’s data must include exactly one value for each of these attributes.

Figure 5-7 shows a simple INVENTORY_ITEM class.

100

Stephens c05.tex V3 - 10/08/2008 11:21am Page 101

Chapter 5: Translating User Needs into Data Models

INVENTORY_ITEM
Sku 1.1
Description 1.1
UnitPrice 1.1
QuantityInStock 1.1

ID

Figure 5-7

Composite Objects
A composite object contains at least one multi-valued, non-object attribute. For example, suppose you allow
online customers to provide product reviews for inventory items. Then you could add a multi-valued
Reviews attribute to the class shown in Figure 5-7 to get the composite object shown in Figure 5-8.

There’s some difference among developers over these terms. Some call an object with a multi-valued,
non-object attribute a ‘‘complex object’’ or ‘‘complex type’’ and use ‘‘composite’’ to mean an object that
contains more than one data element. I think the terms defined here are more common but if there’s any
doubt in your discussion with other developers, you should agree on common definitions.

INVENTORY_ITEM
Sku 1.1
Description 1.1
UnitPrice 1.1
QuantityInStock 1.1
Reviews 1.N

ID

Figure 5-8

Note that the multi-valued attribute need not be a simple attribute. For example, suppose you decide not
to use a simple attribute to hold customer comments. Instead for each comment you store the customer’s
user name, a numeric rating, and comments. Figure 5-9 shows the revised INVENTORY_ITEM class.

INVENTORY_ITEM
Sku 1.1
Description 1.1
UnitPrice 1.1
QuantityInStock 1.1
Reviews

UserName 1.1
Rating 1.1
Comments 1.1 1.N

ID

Figure 5-9

Compound Objects
A compound object contains at least one object attribute. For example, consider the CUSTOMER class
shown in Figure 5-10. This class contains basic information such as a customer name and shipping

101

Stephens c05.tex V3 - 10/08/2008 11:21am Page 102

Part II: Database Design Process and Techniques

and billing addresses. Its CONTACT object attribute stores information about the person we should
contact if we have a question about this customer. (This is also the person who gets our junk mail.) The
SALES_REPRESENTATIVE object attribute refers to another object representing the sales representative
who is charged with keeping this customer happy. (Okay, not too much junk mail.)

CUSTOMER
CustomerId 1.1
Name 1.1
Addresses

AddressType 1.1
Street 1.1
Suite 0.1
City 1.1
State 1.1
ZipCode 1.1

CONTACT

ID

1.1

1.N

SALES_REPRESENTATIVE 1.1

Figure 5-10

Hybrid Objects
A hybrid object contains a combination of the other kinds of attributes. For example, it might contain
a multi-valued group that contains an object attribute. The ORDER class shown in Figure 5-11 contains
a LineItems group attribute to represent the items in the order. Each LineItems entry contains an
INVENTORY_ITEM object attribute that refers to an object of the type shown in Figure 5-9.

ORDER
OrderNumber
Date 1.1

LineItems

Quantity 1.1
TotalPrice 1.1

SubTotal 1.1
Tax 1.1
GrandTotal 1.1

CUSTOMER

ID

SALESPERSON

1.1

1.1

INVENTORY_ITEM 1.1

1.N

Figure 5-11

Association Objects
An association object represents a relationship between two other objects and stores extra information
about the relationship.

102

Stephens c05.tex V3 - 10/08/2008 11:21am Page 103

Chapter 5: Translating User Needs into Data Models

Association objects are particularly useful for many-to-many relationships where an object of one class
can be associated with many objects of a second and an object of the second class can be associated with
many objects of the first.

For example, consider the PROJECT and DEVELOPER classes. A PROJECT may include many DEVELOPERs
and a DEVELOPER may work on many PROJECTs, so the two classes have a many-to-many relationship.
Figure 5-12 shows this relationship modeled with straightforward object attributes.

PROJECT
ProjectId 1.1
Description 1.1

ID

MANAGER

DEVELOPER

1.1

1.N

DEVELOPER
DeveloperId 1.1
FirstName 1.1

ID

LastName 1.1

PROJECT 0.N

Figure 5-12

If this is all there is to the relationship, then this model is fine. However, if there is extra information that
should be stored with the relationship, this model has no place to store that information.

For example, suppose developers play different roles in a project. A developer might be a technical lead,
toolsmith, tester, writer, generic project member, or even the project’s manager. In that case, there’s no
place to store this information in Figure 5-12. You cannot place it in the PROJECT class because data in that
class applies to the project as a whole and not to a specific developer on the project. You cannot place the
information in the DEVELOPER class because a developer might play different roles on different projects.

The solution is to create an association class to connect these classes and store the extra information.
Figure 5-13 shows the new design. A PROJECT_ROLE object connects the PROJECT and DEVELOPER classes
to represent the relationship that a particular developer has with a particular project. The RoleName
attribute stores the information about the type of role that a particular developer plays in the project
(technical lead, tester, and so forth).

PROJECT_ROLE
RoleId 1.1
RoleName 1.1

ID

PROJECT 0.N

DEVELOPER 0.N

PROJECT
Projectld 1.1
Description 1.1

ID

PROJECT_ROLE 1.N

DEVELOPER
DeveloperId 1.1
FirstName 1.1

ID

LastName 1.1

PROJECT_ROLE 0.N

Figure 5-13

For a concrete example, consider Dr. Frankenstein’s famous Build-a-Friend project. The following table
shows this PROJECT object’s attribute values.

ProjectId Description PROJECT_ROLE

Build-a-Friend Make a friend out of spare parts. Role1

Role2

103

Stephens c05.tex V3 - 10/08/2008 11:21am Page 104

Part II: Database Design Process and Techniques

The following table shows the attribute values for the two DEVELOPER objects.

DeveloperId FirstName LastName PROJECT_ROLE

Dr. Frankenstein Ted Frankenstein Role1

Igor Igor Johnson Role2

Finally, the following table shows the values for PROJECT_ROLE objects.

RoleId RoleName DEVELOPER PROJECT

Role1 Mad Scientist Dr. Frankenstein Make-a-Friend

Role2 Flunky Igor Make-a-Friend

From this data, you can figure out which developers play which roles on what projects.

Try It Out Association Objects
Suppose you’re putting together a database to record World of Warcraft adventures. You want to remem-
ber which player participated in which adventure. You also want to know what character they played
during the adventure.

Make a semantic object model to record this information.

1. Create PLAYER and ADVENTURE classes.

2. Make a PLAYER_CHARACTER association class to fit between PLAYER and ADVENTURE. This class
should store the character in addition to data linking the other two classes.

How It Works

1. Create PLAYER and ADVENTURE classes.

The PLAYER class stores player information (PlayerId, FirstName, LastName, and so forth), plus
an object attribute pointing to one or more PLAYER_CHARACTER objects. Those objects represent
this player’s characters in various adventures.

The ADVENTURE class stores adventure information (AdventureId, Description), plus another
object attribute pointing to one or more PLAYER_CHARACTER objects. Those objects represent all of
the characters in the adventure.

2. Make a PLAYER_CHARACTER association class to fit between PLAYER and ADVENTURE. This class
should store the character in addition to data linking the other two classes.

The PLAYER_CHARACTER class stores the name of the character that the player used in this adven-
ture. An object attribute points to the single PLAYER who played this character. Another object
attribute points to the single ADVENTURE in which the player used this character.

104

Stephens c05.tex V3 - 10/08/2008 11:21am Page 105

Chapter 5: Translating User Needs into Data Models

Figure 5-14 shows the classes.

PLAYER_CHARACTER
PlayerCharacterId 1.1
CharacterName 1.1

ID

ADVENTURE 0.N

PLAYER 0.N

ADVENTURE
AdventureId 1.1
Description 1.1

ID

PLAYER_CHARACTER 1.N

PLAYER
PlayerId 1.1
FirstName 1.1

ID

LastName 1.1

PLAYER_CHARACTER 1.N

Figure 5-14

Inherited Objects
Sometimes one class might share most of the characteristics of another class but with a few differences.

For example, you’ve built a CAR class that has typical automobile attributes: Make, Model, Year,
NumberOfCupholders, and so forth.

Now suppose you decide you need a RACECAR class. A racecar is a type of car so it has all of the same
attributes that a car has. In addition, it has some racecar-specific attributes such as ZeroTo60Time,
ZeroTo100Time, TopSpeed, and QuarterMileTime. You could build a whole new class that duplicates
all of the CAR attributes but that would not only be extra work (something any self-respecting database
designer should avoid), it also doesn’t acknowledge the relationship between the two classes.

Instead you can make RACECAR a subclass or subtype of the CAR class. To denote a subclass in a semantic
object model, create a RACECAR class that contains only the new attributes not included in CAR. Include
an object attribute in CAR linking to the RACECAR class and using the notation 0.ST in place of the car-
dinality to indicate that RACECAR forms an optional subtype for CAR. Then place an object attribute in
the RACECAR class linking it back to the CAR class and using the notation p in place of the cardinality to
indicate that the link refers to the parent class.

Figure 5-15 shows a CAR class and a RACECAR subclass. In this case, the RACECAR class is said to inherit
from the CAR class. CAR is called the parent class, superclass, or supertype.

CAR
CarId 1.1
Make 1.1
Model 1.1

NumberOfCupholders 1.1
Year 1.1

ID

RACECAR 0.ST

RACECAR

ZeroTo60Time 1.1
ZeroTo100Time 1.1

QuarterMileTime 1.1
TopSpeed 1.1

CAR p

Figure 5-15

In more complicated models, a class can have multiple subclasses, nested subclasses, or multiple parent
classes.

For example, suppose you decide you also want to store information about motorcycles. Motorcycles and
cars share some information but one isn’t really a special type of the other, so you create a new VEHICLE

105

Stephens c05.tex V3 - 10/08/2008 11:21am Page 106

Part II: Database Design Process and Techniques

class to hold the common features. You then pull the common attributes from the CAR class into VEHICLE
and make both CAR and MOTORCYCLE subclasses of VEHICLE. In this example, you have multiple classes
(CAR and MOTORCYCLE) inheriting from a common parent class (VEHICLE). You also have a nested class
RACECAR inheriting from the CAR subclass.

Comments and Notes
Semantic object models are fairly good at capturing the basic classes involved in a project, and through
object attributes they do a decent job of showing which classes are related to other classes. However, they
don’t capture every possible scrap of information about a project.

For example, semantic object models don’t indicate an attribute’s domain. There’s nothing in Figure 5-15
that shows that the CAR class’s Make attribute must take values from an enumerated list (Ford, GM,
Yugo, De Lorean, and so forth), that Model must come from a list that depends on Make, and that
NumberOfCupholders should be an integer between 0 and 99 (some of the bigger minivans may need
three-digit numbers).

For an even stranger example, suppose you build a VOLLEYBALL_TEAM class to represent volleyball teams.
Depending on the tournament, a volleyball team might have 2, 4, or 6 players but other values are not
allowed. (Although I’ve seen some really weird formats including as the ‘‘executive retreat’’ event where
as many 12 people wearing slacks and dress shirts but no shoes squeeze onto the court.) A semantic object
model lets you specify a minimum and maximum for the PLAYER object attribute but it cannot handle the
special case of 2, 4, or 6.

A semantic object model also doesn’t necessarily capture all of the meaning of the relationships between
classes. For example, suppose you build BAND and ARTIST classes to store information about your favorite
heavy metal bands. You would like to make separate fields in the BAND class to represent lead vocal, lead
guitar, lead trombone, and other key band members but, because these are all object attributes, you
need to represent them in the model as ARTIST. You’d really like to make LeadVocal, LeadGuitar, and
LeadTrombone attributes that have as their domain ARTIST objects.

Though you cannot make those kinds of attributes, you can jot down notes saying what each of the
ARTIST objects in the BAND class represent. You can add them as a footnote to the class, in a separate doc-
ument, or in any other way that will make it easy for you to remember the meanings of these associations.

Note that you can also work around this problem by making an association class BAND_MEMBER that has
a Role attribute in addition to BAND and ARTIST object attributes. Then, for example, you could use a
BAND_MEMBER object to associate the BAND Spin̈al Tap with the ARTIST David St. Hubbins with Role
set to Lead Vocal.

Remember that the point of a semantic model (or any model for that matter) is to help you understand
the problem. If the model alone doesn’t capture the full scope of the problem, add comments, notes,
attachments, video clips, dioramas, and other extras. The model can only do so much and if it’s missing
something, write it down. You may not need this information now to build the initial model, but you’ll
need it later to build the database so write it down.

Entity-Relationship Models
An entity-relationship diagram (ER diagram or ERD) is another form of object model that in many ways is
similar to a semantic object model. It also allows you to represent objects and their relationships, although

106

Stephens c05.tex V3 - 10/08/2008 11:21am Page 107

Chapter 5: Translating User Needs into Data Models

it uses different symbols. ER diagrams also have a different focus, providing a bit more emphasis on
relations and a bit less on class structure.

The following sections explain how to build basic ER diagrams to study the entities and relationships
that define a project.

Entities, Attributes, and Identifiers
An entity is similar to a semantic object. It represents a specific instance of some thing that you want to
track in the object model. Like semantic objects, an entity can be a physical thing (employee, work order,
espresso maker) or a logical abstraction (appointment, discussion, excuse).

Similar entities are grouped into entity classes or entity sets. For example, the employee entities Bowb,
Phrieda, and Gnick belong to the Employee entity set.

Like semantic objects, entities include attributes that describe the object that they represent.

There are a couple of different methods for drawing entity sets. In the first method, a set is contained
within a rectangle. Its attributes are drawn within ellipses and attached to the set with lines. If one of the
attributes is an identifier (also called a key or primary key), its name is underlined. Figure 5-16 shows a
simple Employee entity set with three attributes. (Some developers write entity set names in ALL CAPS,
whereas others use Mixed Case.)

Employee

EmployeeId FirstName LastName

Figure 5-16

One problem with this notation is that it takes up a lot of room. If you add all of the attributes to the
Employee class (EmployeeId, FirstName, LastName, SocialSecurityNumber, Street, Suite, City, State,
ZipCode, HomePhone, CellPhone, Fax, Email, and so forth), you’ll get a pretty cluttered picture. If you
then try to add Department, Project, Manager, and other classes to the picture with all of their attributes,
you can quickly build an incomprehensible mess.

A second approach is to draw entity sets in a manner similar to the one used by semantic object models
and then place only the set’s name in the ER diagram. Lines and other symbols, which are described
shortly, connect the entity sets to show their relationships. This approach allows you greater room for
listing attributes while removing them from the main ER diagram so it can focus on relationships.

Relationships
An ER diagram indicates a relationship with a diamond containing the relationship’s name. The name is
usually something very descriptive such as Contains, Works For, or Deceives, so often the relationship is
perfectly understandable on its own. If the name isn’t enough, you can add attributes to a relationship just
as you can add them to entities: by placing the attribute in an ellipse and attaching it to the relationship
with a line.

Normally entity names are nouns such as Voter, Person, Forklift, and Politician. Relationships are
verbs such as Elects, Drives, and Deceives. When you see entities and relationships connected in an

107

Stephens c05.tex V3 - 10/08/2008 11:21am Page 108

Part II: Database Design Process and Techniques

ER diagram, they appear as easy-to-read caveman phrases such as Voter Elects Politician, Person
Drives Forklift, and Politician Deceives Voter.

Figure 5-17 shows the Person Drives Forklift relationship.

Person Drives Forklift

Figure 5-17

Note that every relation implicitly defines a reverse relation. The phrase Person Drives Forklift implic-
itly defines the relation Forklift IsDrivenBy Person. Usually you can figure out the relation’s direction
from the context. You can help by drawing the relationships from left-to-right and top-to-bottom when-
ever possible.

I’ve also seen ER diagrams that include arrows above or beside a relationship to show its direction. For
example, Figure 5-18 shows an ER diagram that includes three objects and two relationships. The arrows
make it easier to see that Customer Places Order and Shipper Ships Order.

Customer Places Ships ShipperOrder

Figure 5-18

Cardinality
To add cardinality information, ER diagrams add one or more of three symbols to the lines leading in
and out of entity sets. The three symbols are:

❑ ring: A ring (or circle or ellipse) means zero.

❑ line: A short line (or dash or bar) means one.

❑ crow’s foot: A crow’s foot (or teepee or whatever you call it) means many.

These aren’t too hard to remember because the number 0 looks like a circle, the number 1 looks a line,
and the crow’s foot looks like several 1s.

If two of these symbols are present, they give the minimum and maximum number of entities that can
be associated with the relation. For example, if the line entering an entity includes a circle and line, then
zero or one of those items is associated with the relation.

For a concrete example, consider Figure 5-19. The relationship Swallows connects the classes
SwordSwallower and Sword. The two lines beside SwordSwallower mean that the relationship involves
between 1 and 1 SwordSwallower. In other words, the relationship requires exactly one SwordSwallower.

108

Stephens c05.tex V3 - 10/08/2008 11:21am Page 109

Chapter 5: Translating User Needs into Data Models

The circle and crow’s foot beside Sword mean that the relationship involves between 0 and many swords.
That means this is a one-to-many relationship.

SwordSwallower SwordSwallows

Figure 5-19

ER diagrams only have three symbols for representing three cardinalities: 0, 1, and many. (It reminds me
of those primitive tribes that only have words for the numbers 1, 2, and many. I wonder if they played a
role in developing ER diagrams?) This means you cannot specify cardinality as precisely as you can with
semantic object models, which let you explicitly give upper and lower bounds.

For example, suppose you want to represent 2 to 4 jugglers juggling 5 or more flaming torches. (It’s
hardly juggling if two people just stand there holding four torches. Even I could do that, if they’re not
too heavy.) In a semantic object model, you would give the jugglers the cardinality 2.4 and the torches
5.N. Because ER diagrams don’t have symbols for 2, 4, or 5, you’re out of luck if you’re building an ER
diagram.

But wait! The point of these models is to gain an understanding of the system, not to rigidly follow the
rules to their ridiculous conclusions, so I see no reason why you shouldn’t merge the best of both systems
and use ER diagrams that specify cardinality in the semantic object model style.

Figure 5-20 shows how I would model the jugglers. You won’t find many people who use this combined
notation on the Internet so you should understand the normal ER symbols, too, but this version seems
easy enough to understand.

Juggler Juggles Torch
2.4 5.N

Figure 5-20

Inheritance
Like a semantic object model, an ER diagram can represent inheritance. An ER diagram represents inher-
itance as a special relationship named IsA (read as ‘‘is a’’) that’s drawn inside a triangle. One point of the
triangle points toward the parent class. Other lines leading into the triangle attach on the triangle’s sides.

For example, a space shuttle crew contains several different kinds of astronauts including Commander,
Pilot, Mission Specialist, and Payload Specialist. All of these have the common crew member attributes
plus additional attributes that relate to their more specialized roles. For example, a Commander, Pilot,
and Mission Specialist have special NASA space training (I’ll call them ‘‘space trained’’).

A Payload Specialist is a doctor, physicist, database design book author, or other professional who comes
along for the ride to perform some specific mission such as watching spiders spin webs in microgravity.

109

Stephens c05.tex V3 - 10/08/2008 11:21am Page 110

Part II: Database Design Process and Techniques

Figure 5-21 shows one way you might model this inheritance hierarchy in an ER diagram. The
PayloadSpecialist inherits directly from Astronaut. SpaceTrained also inherits from Astronaut,
although the relationship diagram probably will include only subclasses of SpaceTrained and not any
SpaceTrained entities. Commander, Pilot, and MissionSpecialist inherit from SpaceTrained.

Astronaut

SpaceTrained

Commander Pilot MissionSpecialist

PayloadSpecialist

IsA

IsA IsA IsA

IsA

Figure 5-21

Sometimes you may see the IsA symbol shared by more than one inherited entity. The result implies a sib-
ling relationship that probably doesn’t mean much (for example, SpaceTrained and PayloadSpecialist
are related only by the fact that they inherit from a common parent entity) but it does make the diagram
less cluttered.

Figure 5-22 shows the same inheritance diagram shown in Figure 5-21 but with this new notation.

Astronaut

SpaceTrained

Commander Pilot MissionSpecialist

PayloadSpecialist

IsA

IsA

Figure 5-22

110

Stephens c05.tex V3 - 10/08/2008 11:21am Page 111

Chapter 5: Translating User Needs into Data Models

Try It Out ER Diagrams
Make an ER diagram to represent the Passenger, Driver, and Car entities.

1. Make a Person class with PersonId, FirstName, and LastName fields.

2. Show Passenger and Driver inheriting from Person.

3. Display the relationships between the Driver and Passenger classes and the Car class.

How It Works

1. Make a Person class with PersonId, FirstName, and LastName fields.

Draw Person in a rectangle. Attach ellipses holding PersonId (underlined because it’s the key),
FirstName, and LastName.

2. Show Passenger and Driver inheriting from Person.

Place a triangular IsA symbol below Person. Draw lines out of the bottom of that symbol to con-
nect to the Driver and Passenger classes.

3. Display the relationships between the Driver and Passenger classes and the Car class.

Connect Driver with Car via a Drives relationship. This relationship must involve exactly one
Driver and one Car. (This model doesn’t allow backseat drivers.)

Connect Passenger with Car via a Rides In relationship. This relationship must involve exactly
one Car but may involve any number of Passengers (even none).

Figure 5-23 shows the finished diagram.

Driver Passenger

1.1

1.1

1.1

0.N

Rides InCarDrives

IsA

Person

PersonId

FirstName

LastName

Figure 5-23

111

Stephens c05.tex V3 - 10/08/2008 11:21am Page 112

Part II: Database Design Process and Techniques

Additional Conventions
ER diagrams use a few other conventions to add fine shades of meaning to a model.

If every entity in an entity set must participate in the relationship, the diagram includes a thick or double
line. This is called a participation constraint because each entity must participate.

For example, consider the Pilot Flies Airplane relationship. During flight, every airplane must have
a pilot (otherwise it’s called a ‘‘smoking pile of metal’’ instead of an ‘‘airplane’’). This is a participation
constraint on the Airplane entity set because all entities in that set must participate in the relationship
(that is, have a pilot).

If an entity can participate in at most one instance of the relationship set, the diagram uses an arrow to
connect the entity to the relationship. This is called a key constraint. For example, during flight a pilot can
fly at most one airplane so the Pilot entity set has a key constraint on the Flies relationship. (Although
I suppose a pilot could throw a paper airplane while in the cockpit and thus fly two planes at the same
time.)

If an entity must be involved in exactly one instance of a relationship set, it gets a thick or double arrow
to indicate both participation and key constraints. For example, during flight an airplane must have one
and only one pilot so it would get the thick or double arrow.

Figure 5-24 shows the Pilot Flies Airplane relationship. Each Pilot can fly at most one airplane so
Pilot is connected to the relationship with an arrow (key constraint). A Pilot might sometimes be a
passenger who’s not flying the airplane so there’s no participation constraint on Pilot for this relation-
ship. On the other side of the relationship, the Airplane must have one and only one Pilot so it gets the
double arrow to indicate both key and participation constraints. The cardinalities are between 1 and 1 for
both entities because there’s a one-to-one relationship between Pilot and Airplane (ignoring copilots)
in this relationship.

Pilot Flies Airplane
1.1 1.1

Figure 5-24

A weak entity is one that cannot be identified by its attributes alone. For example, consider a database to
store submarine race results. A Race entity holds information about particular race. A Result entity holds
information about how a submarine performed in a race. The Result entity has attributes to store a refer-
ence to the Race entity, a reference to a Sub entity, and result information such as Time, FinishPosition,
and TorpedoesFired.

Alone, there’s no reasonable way to find a specific Result entity. There is no combination of Result
attributes that really makes sense as a search key. You could search for a combination of Time and
FinishPosition but that doesn’t identify a particular Result.

Instead you would either search for a particular Race and use it to find its associated Results, or search
for a particular Sub and use it to find its associated Results.

In an ER diagram, you draw a weak entity with a thick rectangle and connect it to its identifying relation-
ship with a thick arrow. Figure 5-25 shows the Race, Sub, and Result entity sets and their relationships.

112

Stephens c05.tex V3 - 10/08/2008 11:21am Page 113

Chapter 5: Translating User Needs into Data Models

Race ResultedIn Achieved SubResult
1.1 2.N 0.N 1.1

Figure 5-25

Comments and Notes
As is the case with semantic object models, you shouldn’t be afraid to add notes, comments, scribbles,
and anything else to make an ER diagram easier to understand. Annotate entity set definitions to show
the domain and cardinality of an entity’s attributes. Add notes to further explain confusing entities and
relationships.

The purpose of an ER diagram is to help you understand a project, not to become a technically correct
but uninformative doodle.

Relational Models
Chapter 3 explained basic concepts of relational databases such as tables, tuples, rows, and columns.
(If you don’t remember Chapter 3, go back and skim through it quickly to refresh your memory.)

Converting semantic object models and ER diagrams into a relational version isn’t too difficult once
you know how the concepts described in Chapter 3 map to those described so far in this chapter. The
following table shows the how key terms from Chapter 3 map to the terms used in semantic object models
and ER diagrams.

Theory Database File SOM ER

Relation Table File Class Entity Set

Tuple Row Record Object Entity

Attribute Column Field Attribute Attribute

To convert semantic object models and ER diagrams into relational models, you simply map the classes
or entity sets to tables. You then figure out which columns in the tables form the foreign key relationships
among the tables.

The following sections work through examples of converting SOM and ER models into relational ones.

Converting Semantic Object Models
Consider the simple semantic object model shown in Figure 5-26. A CUSTOMER object has one or more
Addresses, one or more CONTACTs, and one or more ORDERs. The CONTACT class contains only simple
attributes. The ORDER class contains a simple Date and a group attribute to hold information about Items
ordered.

This model leads immediately to three relational tables: Customers, Contacts, and Orders.

113

Stephens c05.tex V3 - 10/08/2008 11:21am Page 114

Part II: Database Design Process and Techniques

CUSTOMER
CustomerId 1.1
Name 1.1
Addresses

AddressType 1.1
Street 1.1
City 1.1
State 1.1
Zip 1.1

CONTACT

ID

1.N

1.N

ORDER 1.N

ORDER
Date 1.1
Item

Sku 1.1
Description 1.1
Quantity 1.1
UnitPrice 1.1 1.N

CONTACT
Name 1.1
Phone 1.1
Email 0.1

Figure 5-26

If the semantic object model includes inheritance relationships, build a table for each of the object sets.
Use the parent class’s primary key as a foreign key in the child class to connect the two in a one-to-one
relationship. For example, if CUSTOMER inherits from PERSON, add a PersonId field in the Customers table
to associate the corresponding records in the two tables.

The CUSTOMER class’s CONTACT and ORDER attributes indicate that there should be a link from the Cus-
tomers table to the Contacts and Orders tables. To do this, you can place foreign key fields in the Contacts
and Orders tables to hold the CustomerId values of their corresponding Customer records. To make
understanding the relational model easier, call those fields CustomerId so they match the name in the
Customers table.

At this point, the relational model is practically finished. Only one little problem remains: a relational
record cannot hold a potentially unlimited number of columns. In this case, a row in the Customers table
cannot have an unlimited number of columns to hold multiple address values for every row. Similarly,
the Orders table cannot have an unlimited number of columns to hold item data.

The solution is similar to the one used to allow a Customers record to correspond to multiple Contacts
and Orders records. Create new tables to hold the repeated items. Then use foreign key fields to link
those records back to their owning Customers and Orders records.

Figure 5-27 shows the resulting relational model.

Each table’s primary key is underlined (only the Customers and Orders tables have primary keys).

Lines connect the fields that form foreign key relationships. The numbers at the ends of these lines give
the numbers of items participating in the relationship (the infinity symbol ∞ means ‘‘many’’). In this
example, all of the relationships are one-to-many relationships.

This diagram shows relationships among tables but doesn’t show much other detail. In particular, it
doesn’t show the fields’ data types or whether they are required. If you expand each table’s representa-
tion, you can add some of this information. Figure 5-28 shows the same model with columns to show the
fields’ data types and whether each is required.

114

Stephens c05.tex V3 - 10/08/2008 11:21am Page 115

Chapter 5: Translating User Needs into Data Models

Customers Contacts
CustomerId Name

Phone
Email
CustomerId

AddressesType
Street
City
State
Zip
CustomerId

Name

Addresses

Sku
Description
Quantity
UnitPrice
OrderId

ItemsOrders
OrderId
Date
CustomerId

111

1

∞

∞

∞

∞

Figure 5-27

Required Name
Phone
Email
CustomerId

Contacts
String
String
String
Number

Required
Required

Required

AddressesType
Street
City
State
Zip
CustomerId

Required

String
String
String
String
String
Number

Addresses
Required
Required
Required
Required
Required
Required

Sku
Description
Quantity
UnitPrice
OrderId

String
String
Number
Currency
Number

Items
Required
Required
Required
Required
Required

OrderId
Date
CustomerId

Orders
Number
Date
Number

Required
Required
Required

Customers
Number
String

CustomerId
Name

111

1

∞

∞

∞

∞

Figure 5-28

There’s only so much information you can add to one of these diagrams, however. Even this relatively
simple diagram is pretty big if you add data type and required data. Usually it’s better to stick to the
simpler version and put additional information in separate documents.

As is the case with all models, you should write down notes to record any information that is not fully
captured by the diagram alone. For example, Figure 5-28 does not show which fields are required, their
meanings (what does Sku mean, anyway?), more precise cardinalities (what if ‘‘one-to-many’’ should
really be ‘‘one-to-four’’), and so forth.

Though the figure gives data types for each of the tables’ fields, that does not necessarily completely
specify the fields’ domains. For example, the Zip field should contain a 5-digit ZIP Code or a Zip+4 Code

115

Stephens c05.tex V3 - 10/08/2008 11:21am Page 116

Part II: Database Design Process and Techniques

similar to 12345-5678, UnitPrice should be a positive monetary value, and the Email field should hold a
properly formatted email address such as comments@whitehouse.gov.

You should write down all of these and any other constraints that are not obvious from the diagram.
(In case you’re curious, Sku stands for ‘‘stock keeping unit’’ and is pronounced ‘‘skew.’’ It’s like a serial
number you can use to identify products.)

Converting ER Diagrams
Figure 5-29 shows an ER diagram that covers a situation similar to the one modeled by semantic object
model shown in Figure 5-26.

HasA AddressCustomer 0.N1.1

1.1

1.1

1.1

HasA Order1.N

HasA Contact0.N

HasA Item0.N

AddressType

Street

City

State

Zip

Name

Phone

Email

Sku

Description Quantity

UnitPrice

Figure 5-29

Each Customer entity has at least one Address, Contact, and Order. Those are all participation constraints
so they are drawn with double lines.

The Address, Contact, and Order entities are accessed through their corresponding Customer entities.
That makes them weak entities so they are drawn with thick rectangles and they have thick arrows

116

Stephens c05.tex V3 - 10/08/2008 11:21am Page 117

Chapter 5: Translating User Needs into Data Models

pointing to their identifying relationships. (If you want to allow the users to search for orders directly,
perhaps by an OrderId, then Order would not be a weak entity.)

The Order entity must be associated with at least one Item so it has a participation constraint drawn with
a double line. The Item entity is also weak so it is drawn with a thick rectangle and it uses a thick arrow
to connect to its identifying relationship.

The entities in the ER diagram lead directly to the relational tables Customers, Addresses, Contacts,
Orders, and Items.

To connect a weak entity with its owner, make sure the owner’s table has a primary key. Then add a
foreign key field to the weak entity’s table that refers back to the owner’s primary key.

The resulting relational model is the same as the one generated by the semantic object model and is
shown in Figure 5-27.

You can handle inheritance the same way you did for semantic object models. Build a table for each of
the entities. Use the parent class’s primary key as a foreign key in the child class to connect the two in a
one-to-one relationship. For example, if Politician inherits from Weasel, then add a WeaselId field in
the Politicians table to link the corresponding records in the two tables.

As is the case when translating a semantic object model into a relational model, you will need to write
down any extra conditions, constraints, or other information that is not completely captured by the
model. See the end of the previous section for some examples of things you might want to write down.

Summary
Different kinds of models help define a problem. They identify the entities that are significant to the
problem and they clarify the relationships among those entities. You can then use the models to test your
understanding of the problem and to verify that the models provide the data you need to satisfy the
problem’s use cases and other requirements.

This chapter explained how to build different kinds of models.

In this chapter you learned how to:

❑ Build user interface models to learn what kind of data the database will need to store.

❑ Build semantic object models to study the objects that will interact while solving the problem.

❑ Build entity-relationship diagrams to study the entities that are involved in the problem and to
examine their interactions.

❑ Convert semantic object models and entity-relationship diagrams into relational models.

After you’ve built a relational model, you can use it to start building a database. Before you begin, how-
ever, there are several techniques that you can use to make the model more efficient. The first of these
techniques, extracting business rules, is described in the following chapter.

117

Stephens c05.tex V3 - 10/08/2008 11:21am Page 118

Part II: Database Design Process and Techniques

Before you move on to Chapter 6, however, use the following exercises to test your understanding of the
material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises

1. Draw a semantic object model for a small college with the classes STUDENT, INSTRUCTOR,
COURSE, and PROJECT. The rules are:

a. All students must be enrolled in at least one course or one project (or they’re dropped).

b. Similarly an instructor must teach at least one course or supervise at least one project.

c. A student cannot be working on more than one project (they’re too time-consuming).

d. An instructor can teach any number of courses and supervise any number of projects.

e. A project or course must have an instructor.

f. A course must have at least 5 students (or it’s canceled).

g. A project must have between 1 and 5 students.

h. STUDENT and INSTRUCTOR should be subclasses of a PERSON class that contains common
elements such as name, address, and phone number.

i. Student data must include past courses and projects, and grades for them.

Write down any special conditions and features that the semantic object model cannot han-
dle with its normal notation.

2. Draw two ER diagrams for the situation described in Exercise 1, one to show the inheritance
relationships and one to show the main entity relationships. Write down descriptions of any
constraints and any special conditions that are not represented by the diagram alone.

3. Convert either the semantic object model that you built for Exercise 1 or the ER diagram you
built for Exercise 2 into a relational model.

4. Mike’s Trikes sells tricycles. Not the little kiddie models, the giant motorized half-ton behe-
moths you occasionally see on the road that are somewhere between a motorcycle with an
extra wheel and a car with one missing.

Draw a semantic object model for Mike with the classes CUSTOMER, SALESPERSON, MANAGER,
CONTRACT, PAYMENT, and SHIFT. Use the following assumptions:

a. CUSTOMER and SALESPERSON are subclasses of the PERSON class that holds contact infor-
mation (name, address, phone). MANAGER is a subclass of SALESPERSON.

b. A salesperson sells a payment contract to a customer. The salesperson gets a commis-
sion so you need to keep track of who sold the contract.

c. A customer doesn’t have a record until that customer buys a contract.

d. SHIFT objects track dates and times that a salesperson works.

e. Customers make payments that should be subtracted from the customer’s balance.
A PAYMENT object should record the payment’s date and amount, and the customer who
made it.

118

Stephens c05.tex V3 - 10/08/2008 11:21am Page 119

Chapter 5: Translating User Needs into Data Models

f. You should be able to find all of the contracts that a particular salesperson sold.

g. You should be able to find all of the contracts that a particular customer purchased.
You should also be able to check the customer’s current balance.

Write down any special conditions and features that the semantic object model cannot han-
dle with its normal notation.

5. Draw two ER diagrams for the situation described in Exercise 3, one to show the inheritance
relationships and one to show the main entity relationships. Write down descriptions of any
constraints and any special conditions that are not represented by the diagram alone.

6. Convert either the semantic object model that you built for Exercise 4 or the ER diagram you
built for Exercise 5 into a relational model.

7. Suppose you want to make a database to represent your most expensive purchases. These
include your house and vehicles so you make HOUSE and VEHICLE classes. You decide to
expand the model to include CAR and TRUCK classes. Then you buy a camper. Because it
shares attributes with both HOUSE and TRUCK, you decide that it should inherit from both of
those classes.

Draw a semantic object model showing these inheritance relations. Add a few additional
non-object attributes of your choosing to each class.

8. Draw an ER diagram representing the inheritance hierarchy described in Exercise 7.

119

Stephens c05.tex V3 - 10/08/2008 11:21am Page 120

Stephens c06.tex V3 - 10/08/2008 11:23am Page 121

6
Extracting Business Rules

Chapter 5 explained how to build models to represent the entities involved in a database project and
to study the interactions among those entities. The final kind of model described in that chapter, the
relational model, has a structure that closely mimics the organization of a relational database. You
can easily convert a relational model into a working relational database.

Before you do, however, you should optimize the relational model to make the final database
as flexible and efficient as possible. Optimizing the model now is easier than reorganizing the
database later, so it’s worth taking some time to make sure you get the database design right the
first time.

The first step in optimizing the database is extracting business rules. Keeping business rules sep-
arate from other database constraints and relations, at least logically, makes later changes to the
database easier.

In this chapter you learn:

❑ Why business rules are important.

❑ How to identify business rules.

❑ How to modify a relational model to isolate business rules.

After you understand business rules, you’ll be able to use them to make the database more flexible
and easier to maintain.

What Are Business Rules?
Business rules describe the objects, relationships, and actions that a business finds important and
worth writing down. They include rules and policies that define how a business operates and han-
dles its day-to-operations. They generally help a business satisfy its goals and meet its obligations.

Stephens c06.tex V3 - 10/08/2008 11:23am Page 122

Part II: Database Design Process and Techniques

For example, some general business rules might be:

❑ The nearest clerk greets customers by saying ‘‘Welcome to Cloud Nine’’ when they enter
the store.

❑ Clerks ask to see a customer’s ID when writing a check for more than $20 or charging more
than $50. No signature is required when charging less than $25.

❑ Whoever unlocks the door in the morning makes the first pot of coffee (or risks mutiny).

❑ Save the good scotch for the landlord.

Because this is a database design book, this chapter is only concerned with the database-related
business rules. Some examples of those are:

❑ Don’t make a Customer record until the customer buys something and has an associated
order.

❑ Customer records must have first and last names. (If Bono, Everlast, or Madonna buys
something, get an autograph and make up a last name.)

❑ If a student doesn’t enroll in at least one class, change the Status field to Inactive.

❑ If a salesperson sells more than 10 hot tubs in one month, award a $200 bonus.

❑ All Contact records must have at least one phone number or email address.

❑ If an order totals more than $100 before taxes and shipping, give a 10 percent discount.

❑ If an order totals more than $50 before taxes and shipping, give free shipping.

❑ Employees get a 1 percent discount.

❑ If the in-stock quantity of an inventory item drops below the number of items sold during
the last month, order more.

From a database point of view, business rules are constraints. Some are simple constraints such as:

❑ All orders must have a ContactPhoneNumber.

Simple rules such as this one map easily to the features provided by a relational database. It’s easy
to indicate that a field has a certain data type or that it is required (as in this case).

Other business rules may represent quite complex constraints such as:

❑ A student’s number of course hours plus number of project hours must be between
1 and 14.

You can implement some of these more complex rules with check constraints or foreign key con-
straints. Recall from Chapter 3 that check constraints include field-level constraints that apply to
a single field in a table, and table-level constraints can examine more than one field in the same
record.

122

Stephens c06.tex V3 - 10/08/2008 11:23am Page 123

Chapter 6: Extracting Business Rules

Still other business rules are even more complex:

❑ An instructor must have a combination of classes, labs, and office hours totaling at least 30
contact hours with up to 1/2 office hour per hour of class, 1 office hour per hour of lab, and
thesis supervision counts as 2 hours.

This constraint may require you to gather data from several different tables. This kind of very com-
plex check is probably best performed by code either in the database itself or in external software.

All of these rules are implemented as constraints in one form or another, whether as easy database
features (requiring a field), as harder database features (check constraints and foreign keys), or in
code (inside or outside of the database).

Identifying Key Business Rules
Writing down all of the business rules is worthwhile in its own right so you can make sure they all get
implemented somehow in the database. It’s also worth categorizing the business rules so you can build
them properly.

How you implement a business rule depends not only on how tricky it is to build, but also on how likely
it will be to change later. If a rule is likely to change later, you may be better off building it by using a
more complicated but more flexible method.

For example, suppose you only ship orders to states where you have a warehouse and those include
Wyoming, Nebraska, Colorado, and Kansas. A business rule requires that the State field in an order’s
shipping address must be WY, NE, CO, or KS. You can implement this as a simple field-level check
constraint in the Orders table. Three minutes’ work and you’re a hero! No big deal.

But now suppose you open a new warehouse in Utah. To allow for this change, you’ll need to edit this
check constraint. This isn’t the end of the world, but this change requires that you modify the structure
of the database.

Now suppose the company policy changes so some warehouses are allowed to ship to certain other states.
You’ll need to change the database’s check constraints again to allow for the change. This still isn’t the
end of the world, but once more you’re required to change the structure of the database to accommodate
a change to a business rule.

Now consider an alternative approach. Suppose instead of making this business rule a field-level check
constraint on the State field, you make it a foreign key constraint. You create a ShippingStates table and
fill it with the values WY, NE, CO, and KS. Then you make the Orders table’s State field a foreign key
referring to the new States table. Now the Orders table will accept only records that have a State value
that is listed in the States table.

If you need to change the states that are allowed, you only need to add or remove records from the States
table. Admittedly the difference in difficulty between this approach and the previous one is small. The
previous approach required changing the database’s structure, whereas the new approach only requires
changing the data.

123

Stephens c06.tex V3 - 10/08/2008 11:23am Page 124

Part II: Database Design Process and Techniques

Not only does changing the data take a bit less effort, but it also requires less skill. This rule implemented
as a check constraint might look like this:

State = ‘WY’ Or State = ‘NE’ Or State = ‘CO’ Or State = ‘KS’

This isn’t terribly difficult code, but it is code and only someone familiar with database programming
will be able to make changes to it.

Data in the States table, however, is relatively easy to understand. Even your customers can add entries
to this table (possibly with a few hints from you).

Placing the validation data in a separate table also allows the users to understand it more easily. Most
users would be intimidated by the previous check constraint (even if they can find it), but they can easily
understand a list of allowed values in a table.

To identify these key business rules, ask yourself two questions. First, how easy is it to change a rule? If
a rule is very complex, it will be difficult to change without messing it up. If implementing the rule is as
simple as making a field required or not in a table, you won’t lose a huge amount of time if the customer
later decides that the Lumberjacks table’s PreferredAxe field isn’t required after all.

Second, how likely is the rule to change? If a rule is likely to change frequently, it’s probably worth some
extra planning to make changing the rule easier.

Types of rules that make good candidates for extra attention include:

❑ Enumerated values: For example, allowed shipping states, order statuses (Pending, Approved,
Shipped), and service names (Installation, Repair, Dog Washing).

❑ Calculation parameters: For example, suppose you give free shipping on orders over $50. Will
you later change that to $75? $100?

❑ Validity parameters: For example, suppose full-time students must take between 8 and 16 cred-
its. Will we ever make this 12 to 16 hours? 8 to 20 hours? Or suppose you require that all projects
include between 2 and 5 students. Will you ever want to allow a single student to have a project?
Or will you allow a bigger team if a group of friends wants to work together badly enough to
bribe you with donuts and latte?

❑ Cross-record and cross-table checks: These kinds of checks are more complicated. For example,
you might require that the date and time of a poker game be after the date the tournament
started. (Although the Olympics schedules competitions before the opening ceremony. They
probably use some sort of time-warp effect at international levels.)

❑ Generalizable constraints: If you think you may need to apply a similar constraint later, you
should think about generalizing the constraint and moving it out of the database proper. For
example, suppose your buyer slipped a decimal point and ordered 100 sets of crampons (those
spiky things that ice climbers wear on their boots) instead of 10. To move the excess inventory,
you offer a $50 bonus to any salesperson who can sell 10 pairs in a week. That’s fine, but next
month you might end up with an excess inventory of ice axes. After you fire your buyer, you
might want to change the incentive to give a $30 bonus to any salesperson who sells 5 ice axes.
You can make these changes easier if you pull the product name or ID, number of sales, bonus
amount, and duration (weekly) out into another table and then use those parameters to calculate
bonuses.

124

Stephens c06.tex V3 - 10/08/2008 11:23am Page 125

Chapter 6: Extracting Business Rules

❑ Very complicated checks: Some checks are so complex that it’s just easier to move them into
code, either stored within the database or in external code modules. For example, suppose you
can only register for the course Predicate Calculus (in the Mathematics department) if you have
already taken (and passed) Propositional Calculus (in the Mathematics department) or Logic I
and Logic II (in the Philosophy department). Or you have the instructor’s permission. Or your
advisor’s. You can probably implement this as a table-level check constraint, but it may be worth
thinking about moving this rule somewhere else, particularly because you may be able to gener-
alize it to handle prerequisites for other courses.

Types of rules that are usually not worth special attention and can be just implemented directly in the
database include:

❑ Enumerated types with fixed values: Though it might make sense to move allowed values for
a State field into a new table, it probably doesn’t make sense to do the same for a Handedness
field. Unless you’re planning to start marketing to octopi and squids, Left Handed and Right
Handed are probably the only values you’ll ever need for this field.

❑ Data type requirements: Requiring specific data types for a field is one of the bigger advantages
to using a database. It hardly ever makes sense to use a very generic data type such as string
because you’re not sure whether the field will need to be a currency amount or a date. If you are
that unsure, you probably need to study this field some more or split it into multiple fields.

❑ Required values: If a GolfRound record really needs a Caddie entry (so the golfer knows who to
blame for using the 3-wood on that 124-yard par 3 hole), just make it required and worry about
something more complicated.

❑ Sanity checks: For example, all inventory items should have a price of at least 0. You might want
to allow 0 cost for loss leaders (or perhaps not) but if I ever find a store that sells a product for
less than nothing (that is, pays me), I’m going down there with a dump truck and cleaning them
out. (Now that I think about it, I’ve bought a few products that would have been overpriced at
negative amounts. I might have to think a bit harder depending on what the product is.) If the
sanity checks are so broad that they’ll never need to be changed, just wire them in and don’t
worry about it.

Somewhere in the middle ground are business rules that have never changed in the past but that you
cannot swear won’t change in the future. They may be easy to implement as checks within the database
but there still might be some advantage to extracting them to accommodate changes.

For example, suppose you require that Resident Advisors (RAs) have passed all of their general education
requirements. It’s been that way for five years, but before that the rule was different. Chances are the rule
won’t change again, at least not for a long time, but you never know. There has been talk about exempting
RAs from the writing requirement (’cause riting ain’t emportunt enuff).

In cases such as this one, you need to rely on the judgment of those who make the rules. Then when the
unexpected happens, you can blame them.

So write down all of the business rules you can discover. Include the domains of every field and any
simple bounds checks such as Price > 0 in addition to more complicated rules.

Group the rules by how likely they are to change and how hard they would be to change. Then take a
closer look at the ones that are likely to change and that will be hard to change and see if you shouldn’t
pull them out of the database’s structure.

125

Stephens c06.tex V3 - 10/08/2008 11:23am Page 126

Part II: Database Design Process and Techniques

Try It Out Find the Business Rules
Consider this partial list of business rules for a custom woodworking shop:

❑ Accept no new orders if the customer has an unpaid balance on completed work.

❑ All customer records must include daytime and evening phone numbers.

❑ Always wear proper eye protection.

❑ Clean the shop thoroughly at the end of the day.

❑ Create a customer record when the customer places his or her first order.

❑ Don’t use non-portable power tools alone.

❑ Give a 10% discount if the customer pays in full in advance.

❑ If there is less than 1 pound of standard size screws, add them to the reorder list.

❑ If we have fewer than 3 bottles of glue, add it to the reorder list.

❑ Leave no power tool plugged in when not in use, even for a minute.

❑ No customer can ever have an outstanding balance greater than $10,000.

❑ No customers allowed in the painting area.

❑ Order 25% extra material for stock items.

❑ Replace a tool if you won’t need it in the next hour. Replace all tools at the end of the day.

❑ Require half of an order’s payment up front (so we can buy materials) if the order is more than
$1,000.

❑ Walt is not allowed to use the nail gun. Ever!

❑ When we have fewer than 2 pounds of standard size nails, add them to the reorder list.

1. Identify the database-related rules and indicate when they would apply.

2. Identify the rules that are simple or that seem unlikely to change so they can be built into the
database.

3. Identify the rules that may change or that are complicated enough to deserve special attention.

How It Works

1. The following are the database-related rules:

❑ Accept no new orders if the customer has an unpaid balance on completed work.

Applies when the customer tries to place a new order.

❑ All customer records must include daytime and evening phone numbers.

Applies when the customer places a new order.

❑ Create a customer record when the customer places his or her first order.

When the customer places a new order, try to look up the customer’s record. If there is no
record, create one.

126

Stephens c06.tex V3 - 10/08/2008 11:23am Page 127

Chapter 6: Extracting Business Rules

❑ Give a 10% discount if the customer pays in full in advance.

When the customer places a new order, give this discount if he or she pays in advance. (You
should also mention the discount at this time.)

❑ If there is less than 1 pound of standard size screws, add them to the reorder list.

When we use screws, check this. (In practice, we’ll probably check weekly or whenever we
notice we’re running low.)

❑ If we have fewer than 3 bottles of glue, add it to the reorder list.

When we use up a bottle of glue, check this.

❑ No customer can ever have an outstanding balance greater than $10,000.

When the user tries to place a new order, check the outstanding balance and place the order
on hold until the balance is under $10,000. Also when we receive a payment, check for
orders on hold (so we can release them if the customer’s balance is low enough).

❑ Order 25% extra material for stock items.

When ordering supplies, see if an item is in stock and if so add 25% to the order.

❑ Require half of an order’s payment up front (so we can buy materials) if the order is more
than $1,000.

When the user places a new order, check the cost and require this payment if necessary.

❑ When we have fewer than 2 pounds of standard size nails, add them to the reorder list.

When we use nails, check this. (In practice, we’ll probably check weekly or whenever we
notice we’re running low.)

2. The following rules are simple or seem unlikely to change, so they can be built into the database:

❑ Accept no new orders if the customer has an unpaid balance on completed work.

This seems unambiguous and unlikely to change, although if we need an exception mecha-
nism (for brother-in-law Frank), this rule cannot be built into the database’s structure.

❑ All customer records must include daytime and evening phone numbers.

This seems unambiguous and unlikely to change. (Will we ever need more than two phone
numbers?)

❑ Create a customer record when the customer places his or her first order.

This seems unambiguous and unlikely to change.

3. The following rules seem likely to change or are complicated enough to deserve special attention:

❑ Give a 10% discount if the customer pays in full in advance.

The parameter ‘‘10%’’ might change.

❑ If there is less than 1 pound of standard size screws, add them to the reorder list.

The parameter ‘‘1 pound’’ might change.

❑ If we have fewer than 3 bottles of glue, add it to the reorder list.

The parameter ‘‘3 bottles’’ might change.

127

Stephens c06.tex V3 - 10/08/2008 11:23am Page 128

Part II: Database Design Process and Techniques

❑ No customer can ever have an outstanding balance greater than $10,000.

The parameter ‘‘$10,000’’ might change. (Do we need an exception mechanism?)

❑ Order 25% extra material for stock items.

The parameter ‘‘25%’’ might change.

❑ Require half of an order’s payment up front (so we can buy materials) if the order is more
than $1,000.

The parameters ‘‘half’’ and ‘‘$1,000’’ might change.

❑ When we have fewer than 2 pounds of standard size nails, add them to the reorder list.

The parameter ‘‘2 pounds’’ might change.

A few of these rules follow the pattern, ‘‘If we have less than X, reorder.’’ It might be worthwhile to
generalize this rule and apply it to all inventory items. The item’s record would have fields ReorderWhen
(to indicate the quantity on hand that triggers a supply order) and ReorderQuantity (to indicate how
much to order).

Extracting Key Business Rules
Now that you’ve identified the business rules that will be tricky to implement within the database or
that may change frequently, pull them out of the database. There are a couple of standard approaches for
doing that.

First, if the rule is a validation list, convert it into a foreign key constraint. Only shipping to a set of
specific states is the perfect example. Simply make a States table, enter the allowed states, and then make
the Orders table’s State field be a foreign key referring to the States table.

Second, if the rule is a fairly straightforward calculation with parameters that may change, pull the
parameters out and put them in a table. For example, if you want to give salespeople who sell at least
$250,000 worth of cars in a month a $5 bonus, pull the parameters $250,000 and $5 out and put them in a
table. In some businesses, you might even want to pull out the duration one month.

I’ve written several applications that had a special Parameters table containing all sorts of oddball param-
eters that were used to perform calculations, check constraints, and otherwise determine the system’s
behavior. The records had two fields: Name and Value. To see if a salesperson should get the bonus, you
would look up the BonusSales parameter and see if his or her sales totaled at least that much. If so, you
would look up the BonusAward parameter and give the salesperson that big a bonus. (This approach
works particularly well when program code performs the checks. When the program starts, it can load
all of the parameters into a collection. Later it can look up values in the collection without hitting the
database.)

Third, if a calculation is complicated, extract it into code. That doesn’t necessarily mean you need to write
the code in C++, C#, Ada, or the latest programming language flavor-of-the-month. Many database
products can store and execute stored procedures. A stored procedure can select and iterate through
records, perform calculations, make comparisons, and do just about anything that a full-fledged pro-
gramming language can.

128

Stephens c06.tex V3 - 10/08/2008 11:23am Page 129

Chapter 6: Extracting Business Rules

So what’s the point of moving checks into a stored procedure? Partly it’s a matter of perception. Pulling
the check out of the database’s table structure and making it a stored procedure separates it logically
from the tables. That makes it easier to divide up maintenance work on the database into structural work
and programming work.

Of course you can also build the check into code written in a traditional programming language. You
may be able to invoke that code from the database or you might use it in the project’s user interface.

Finally, if you have a rule that you might want to generalize, well, you’re going to have to use your
judgment and imagination. For example, suppose an author of a database design book earns a 5% royalty
on the first 5,000 copies sold, 7% on the next 5,000, and 10% on any copies after that. You could code
those numbers into a stored procedure to calculate royalties but then later, when Steven Spielberg turns
the book into a movie, you better believe the author will want better terms for the sequel.

Rather than writing these values into the code, put them in a table. In this case, those values are associated
with a particular record in the Books table. You may want more or less than three percentage values for
different royalty points so you’ll need to pull the values into their own table (in ER diagram terms, the
new table will be a weak entity with identifying relationship to the Books table).

Figure 6-1 shows a tiny part of the relational model for this database. To find the royalty rates for a
particular book, you would look up the RoyaltyRates records for that book’s BookId.

Books
BookId

NumberSold
Rate

ISBN
AuthorId
Title
Pages

RoyaltyRates
1 BookId∞

Figure 6-1

Now it will be a little more work calculating royalty payments than before (although you can still hide
the details in a stored procedure), but it is easy to create new royalty schedules for future books.

Multi-Tier Applications
A multi-tier application uses several different layers to handle different data-related tasks. The most
common form of multi-tier application uses three tiers. (The tiers are also often called layers, so you’ll
hear talk of three-layer systems.)

The first tier (often called the user interface tier or user interface layer) is the user interface. It displays
data and lets the user manipulate it. It might perform some basic data validation such as ensuring that
required fields are filled in and that numeric values are actually numbers, but it doesn’t implement
complicated business rules.

The third tier (often called the data or database tier or layer) is the database. It stores the data with as
few restrictions as possible. Normally it provides basic validation (NumberOfRockets is required, Max-
imumTwistyness must be between 0.0 and 1.0) but it doesn’t implement complicated business rules,
either.

129

Stephens c06.tex V3 - 10/08/2008 11:23am Page 130

Part II: Database Design Process and Techniques

The middle tier (often called the middle or business tier or layer) is a service layer that moves data between
the first and third tiers. This is the tier that implements all of the business rules. When the user interface
tier tries to send data back to the database, the middle tier verifies that the data satisfies the business
rules and either sends the data to the data tier or complains to the user interface tier. When it fetches data
from the database, the middle tier may also perform calculations on the data to create derived values to
forward to the user interface tier.

Figure 6-2 shows the three-tier architecture graphically.

Name
Street
City
State
Zip
Email

User Interface Tier

Middle Tier
(Business Rules)

Database

Figure 6-2

The main goal of a multi-tier architecture is to increase flexibility. The user interface and database
tiers can work relatively independently while the middle tier provides any necessary translation. For
example, if the user interface changes so a particular value must be displayed differently (perhaps in
a dropdown instead of in a text box), it can make that change without requiring any changes to the
database. If the database must change how a value is stored (perhaps as a string Small/Medium/Large
instead of as a numeric size code), the user interface doesn’t need to know about it. The middle tier
might need to be adjusted to handle any differences but the first and third tiers are isolated from
each other.

The middle tier also concentrates most of the business logic. The user interface and database perform
basic validations but the middle tier does all of the heavy lifting.

Another advantage of multi-tier systems is that the tiers can run on different computers. The database
might run one a computer at corporate headquarters, the middle tier libraries might run on a second
computer (or even split across two other computers), and the user interface can run on many users’
computers. Or all three tiers might run on the same computer. Separating the tiers lets you shuffle them
around to fit your computing environment.

130

Stephens c06.tex V3 - 10/08/2008 11:23am Page 131

Chapter 6: Extracting Business Rules

In practice, there’s some benefit to placing at least some checks in the database tier so, if there’s a problem
in the rest of the application, the database has the final say. For example, if the user interface contains an
obscure bug so customers who order more than 999 pencils on leap year day are charged $–32,767, the
database can save the day by refusing that obviously harebrained price.

There’s also some value to placing basic checks in the user interface so the application doesn’t need to
perform unnecessary round trips to the database. For example, it doesn’t make a lot of sense to ship an
entire order’s data across the network to the corporate database only to have it rejected because the order
is for –10 buggy whips. The user interface should be smart enough to know that customers cannot order
less than zero of something.

Adding validations in both the user interface and the database requires some redundancy, but it’s worth
it. (Also notice that the user interface developers and database programmers can do their work separately
so they can work in parallel.)

Although multi-tier architecture is far outside the scope of this book, it’s worth knowing a little about it
so you understand that there’s another benefit to extracting complex business rules from the database’s
table structure. Even if you implement those rules in stored procedures within the database, you still get
some of the benefits of a logical separation and flexibility almost as if you had a hidden extra tier.

Try It Out Multi-Tier Applications
Consider the following database-related business rules:

❑ All Customers records must have at least one associated Orders record.

❑ All Orders records must have at least one associated OrderItems record.

❑ In a Customers record, Name, Street, City, State, and Zip are required.

❑ In an Orders record, Customer, Date, and DueDate are required.

❑ In an OrderItems record, Item and Quantity are required.

❑ In an OrderItems record, Quantity must be at least 1.

❑ In an OrderItems record, Quantity must normally (99% of the time) be no greater than 100. In
very rare circumstances, it might be greater.

❑ Only one order can be assigned a particular DueDate. (We have special products that take an
entire day to install and only enough staff to handle one installation per day.)

Decide where each of these rules should be implemented in a three-tier application.

1. Identify the rules that should be implemented in the database’s structure.

2. Identify the rules that should be implemented in the middle tier.

3. Identify the rules that should be implemented in the user interface.

Note that there will be some overlap. For example, the user interface may validate a required field to
avoid a round-trip to the database if the field is missing.

131

Stephens c06.tex V3 - 10/08/2008 11:23am Page 132

Part II: Database Design Process and Techniques

How It Works

1. Identify the rules that should be implemented in the database’s structure.

Whether a rule should be implemented in the database’s structure depends on whether it will
change. For example, if the users decide that it might be useful to create a Customers record with
no associated Orders records after all, then that rule should not be implemented in the database
layer. The following list shows the rules that seem extremely unlikely to change, so they can be
implemented in the database’s structure:

❑ In Customers record, Name, Street, City, State, and Zip are required.

❑ In an Orders record, Customer, Date, and DueDate are required.

❑ In an OrderItems record, Item and Quantity are required.

❑ In an OrderItems record, Quantity must be at least 1.

❑ Only one order can be assigned a particular DueDate.

The last one might be a bit iffy if the customer decides to add new staff so they can perform more
than one installation per day. I’d check with the customer on this, but this rule seems to belong
here.

2. Identify the rules that should be implemented in the middle tier.

The rules in the middle tier are the most complicated and the most subject to change. The follow-
ing list shows the rules that should probably be implemented in the middle tier:

❑ All Customers records must have at least one associated Orders record.

❑ All Orders records must have at least one associated OrderItems record.

❑ In an OrderItems record, Quantity must normally (99% of the time) be no greater than 100.
In very rare circumstances it might be greater.

3. Identify the rules that should be implemented in the user interface.

Whether a rule should be implemented in the user interface depends mostly on the rule’s
simplicity and the likelihood that it will change. These rules can prevent unnecessary trips to
the middle and database tiers so they can save time. However, the user interface shouldn’t be
unduly constrained so we have to make changes to it when business rules change. (Hint: if it’s
implemented in the middle tier, there’s probably a reason, so you might not want to implement
it here, too.) The following list shows the rules that probably should be enforced in the user
interface:

❑ In Customers record, Name, Street, City, State, and Zip are required.

❑ In an Orders record, Customer, Date, and DueDate are required.

❑ In an OrderItems record, Item and Quantity are required.

❑ In an OrderItems record, Quantity must be at least 1.

The following table summaries the places where these rules are implemented.

132

Stephens c06.tex V3 - 10/08/2008 11:23am Page 133

Chapter 6: Extracting Business Rules

Rule Database Middle Tier UI

All Customers records must have at least one associated
Orders record.

X

All Orders records must have at least one associated
OrderItems record.

X

In Customers record, Name, Street, City, State, and Zip are
required.

X X

In an Orders record, Customer, Date, and DueDate are
required.

X X

In an OrderItems record, Item and Quantity are required. X X

In an OrderItems record, Quantity must be at least 1. X X

In an OrderItems record, Quantity must normally (99% of
the time) be no greater than 100. In very rare circumstances
it might be greater.

X

Only one order can be assigned a particular DueDate. X

The final rule demonstrates an unusual combination: a rule that is easy to implement in the database but
hard to implement in the middle tier or user interface. Only the database has ready access to every order
at all times so it can see if a new order’s DueDate will conflict with a different order’s DueDate.

Summary
Business rules are, quite simply, the rules that govern how a business runs. They cover everything from
a list of acceptable attire for Casual Fridays to the schedule of performance bonuses.

As far as databases are concerned, business rules help define the data model. They define every field’s
domain (what values and ranges of values they can contain), whether fields are required, the fields’ data
types, and any special conditions on the fields.

Some rules are simple and unlikely to change so they can be easily implemented by using the database’s
features. Other rules are complex or subject to occasional change. You can make changing those rules
easier by separating them from the database’s structure either physically or logically.

In this chapter you learned how to:

❑ Understand business rules.

❑ Identify key business rules that may deserve special attention.

❑ Isolate key business rules physically or logically by extracting their data into tables, moving
them into stored procedures, and moving them into a middle tier.

133

Stephens c06.tex V3 - 10/08/2008 11:23am Page 134

Part II: Database Design Process and Techniques

Separating business rules from the database’s table structure is one way to make a database more
efficient and flexible. Chapter 7 describes another important way to improve the database’s behavior:
normalization.

Before you move on to Chapter 7, however, use the following exercises to test your understanding of the
material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
For Exercises 1 through 3, consider Happy Sherpa Trekking, a company that sells and rents trekking
equipment (boots, backpacks, llamas, yaks). They also organize guided adventure treks. Figure 6-3 shows
a relational model for that part of the business.

Phones

Explorers

Adventures

Persons Guides

Organizers

Treks

PersonId PersonId
GuideId
IceInstructor?
RockInstructor?
JumpInstructor?

PersonId
OrganizerId

TrekId
GuideId
Description
Locations
StartLocation
EndLocation
StartDate
EndDate
Price
MaxExplorers
IceRequired?
RockRequired?
JumpRequired?

FirstName
MiddleName
LastName
Street
City
State
Zip
EmailAddress
EmergencyContact
MedicalNotes
IceQualified?
RockQualified?
JumpQualified?

AdventureId
ExplorerId
EmergencyContact
OrganizerId
TrekId
DateSold
IncludeAir?
IncludeEquipment?
TotalPrice
Notes

PersonId
ExplorerId

Type
Number

1 1

11

1
1

1

1

1
1

1
1

PersonId
∞

∞

∞
∞

Figure 6-3

The company uses the following terminology to try to get everyone in an Indiana Jones mood:

❑ Explorer: A customer. Must be qualified to go on a trek.

❑ Adventure: A particular explorer’s trek. This is basically the contract with the customer.

❑ Guide: The person who will lead the trek. Must be qualified and an instructor for any needed
skills for a particular trek.

134

Stephens c06.tex V3 - 10/08/2008 11:23am Page 135

Chapter 6: Extracting Business Rules

❑ Organizer: A salesperson who sells adventures to explorers.

❑ Ice/Rock/Jump: These refer to ice climbing, rock climbing, and parachute jumping skills.

❑ Qualified?: These indicate whether an explorer or guide has training in a particular skill. For
example, if IceQualified? is Yes, then this person has ice climbing training.

❑ Instructor?: These indicate whether a guide is qualified to teach a particular skill. For example, if
RockInstructor? is Yes, then this guide can teach rock climbing.

❑ Required?: These indicate whether a trek requires a particular skill. For example, if JumpRe-
quired? is Yes, then this trek requires parachute jumping skills (for example, the popular
‘‘Parachute into the Andes and Hike Out’’ trek).

The company requires an emergency contact for all explorers and that contact cannot be going on the
same trek (in case an avalanche takes out the whole group).

The company gives a 10% discount if the explorer purchases airline flights with the adventure. Similarly
the company gives a 5% discount if the explorer rents equipment with the adventure. (During require-
ments gathering, one of the company’s owners asks which gives the customer the biggest discount:
applying a 10% discount followed by a 5% discount, applying a 5% discount followed by a 10% discount,
or adding the two and applying a 15% discount. What do you think?)

If the explorer purchases airfare with the adventure, the organizer uses the Notes field to record flight
information such as the explorer’s starting airport and meal preferences.

1. For each of the database’s tables, make a chart to describe the table’s fields. Fill in the follow-
ing columns for each field:

❑ Field: The field’s name.

❑ Required: Enter Yes if the field is always required, No if it is not, or ? if it is sometimes
required and sometimes not.

❑ Data Type: The field’s data type as in String or Yes/No.

❑ Domain: List or describe the allowed values. If the allowed values are a list that might
need to change, write ‘‘List:’’ before the list. You will extract these values into a new
table. If the value must be in another table, list the foreign field as in Persons.PersonId.

❑ Sanity Checks: List any basic sanity checks such as MaxExplorers > 0. Remember that
these just verify extremely basic information such as a price is greater than $0.00. Don’t
enter more complex checks such as looking up a value in a list. Also don’t enter data
type validations such as the fact that an ID really is an ID or that a date is a date. (Note
that this kind of sanity check has nothing to do with the explorers’ sanity. If it did, we’d
never get any customers to purchase the ‘‘Tubing over Niagara Falls’’ or ‘‘August in
Tampa’’ packages.)

2. For each of the database’s tables, list the related business rules that are unlikely to change
(and that are not too horribly complicated) so they should be implemented in the table’s field
or table checks. (For example, before the database creates a new Adventures record, it should
verify that the corresponding trek has space available.)

Include any fields that can be validated against a list of values that will never change (such
as Gender) and more complex format validations (such as phone numbers).

135

Stephens c06.tex V3 - 10/08/2008 11:23am Page 136

Part II: Database Design Process and Techniques

Do not include fields that are foreign key constraints because that validates them completely.
For example, a Phones record’s PersonId value must be in the Persons table so it needs no
further validation.

3. List any business rules that are likely to change, that fit better in a lookup table, that are
really complicated, or that are just too weird to build irrevocably into the database. Next to
each, describe how you might extract that business rule from the database’s structure.

4. List the new tables (and their fields) that you would create to implement these changes.

136

Stephens c07.tex V3 - 10/08/2008 11:25am Page 137

7
Normalizing Data

Chapter 6 explained how you can make a database more flexible and robust by extracting certain
business rules from the database’s structure. By removing some of the more complex and change-
able rules from the database’s check constraints, you make it easier to change those rules later.

Another way to make a database more flexible and robust is to ‘‘normalize’’ it. Normalization
makes the database more able to accommodate changes in the structure of the data. It also protects
the database against certain kinds of errors.

This chapter explains what normalization is and tells how you can use it to improve your database
design.

In this chapter you learn:

❑ What normalization is.

❑ What problems different types or levels of normalization address.

❑ How to normalize a database.

❑ How to know what level of normalization is best for your database.

After you normalize your relational model, you’ll be ready to build the database.

What Is Normalization?
Depending on how you design a relational database, it may be susceptible so all sorts of problems.
For example:

❑ It may contain lots of duplicated data. This not only wastes space but it also makes updat-
ing all of those duplicated values a time-consuming chore.

❑ It may incorrectly associate two unrelated pieces of data so you cannot delete one without
deleting the other.

Stephens c07.tex V3 - 10/08/2008 11:25am Page 138

Part II: Database Design Process and Techniques

❑ It may require a piece of data that shouldn’t exist in order to represent another piece of data
that should exist.

❑ It may limit the number of values that you can enter for what should be a multi-valued
piece of data.

In database terminology, these issues are called anomalies. (Anomaly is a euphemism for ‘‘problem.’’
I’m not sure why this needs a euphemism — I doubt the database’s feelings would be hurt by the
word ‘‘problem.’’)

Normalization is a process of rearranging the database to put it into a standard (normal) form that
prevents these kinds of anomalies.

There are seven different levels of normalization. Each level includes those before it. For example, a
database is in Third Normal Form if is in Second Normal Form plus it satisfies some extra prop-
erties. That means if a database is at one level of normalization, then by definition it gets the
advantages of the ‘‘lower’’ levels.

The different levels of normalization in order from weakest to strongest are:

❑ First Normal Form (1NF)

❑ Second Normal Form (2NF)

❑ Third Normal Form (3NF)

❑ Boyce-Codd Normal Form (BCNF)

❑ Fourth Normal Form (4NF)

❑ Fifth Normal Form (5NF)

❑ Domain/Key Normal Form (DKNF)

A database in DKNF has amazing powers of protection against anomalies, can leap tall buildings,
and has all sorts of other super-database powers.

The following sections explain the properties that a database must satisfy to officially earn one of
these coveted uber-database titles. They also explain the data anomalies that each level of normal-
ization prevents.

First Normal Form (1NF)
First Normal Form basically says that the data is in a database. It’s sort of the price to play the game if
you want be a relational database.

Most of the properties needed to be in 1NF are enforced automatically by any reasonable relational
database. There are a couple of extra properties added on to make the database more useful, but mostly
these rules are pretty basic. The official qualifications for 1NF are:

138

Stephens c07.tex V3 - 10/08/2008 11:25am Page 139

Chapter 7: Normalizing Data

1. Each column must have a unique name.

2. The order of the rows and columns doesn’t matter.

3. Each column must have a single data type.

4. No two rows can contain identical values.

5. Each column must contain a single value.

6. Columns cannot contain repeating groups.

The first two rules basically come for free when you use a relational database product such as Access,
SQL Server, or MySQL. All of these require that you give columns different names. They also don’t really
care about the order of rows and columns, although when you select data you will probably want to
specify the order in which it is returned for consistency’s sake.

Rule 3 means two rows cannot store different types of data in the same column. For example, the Value
field in a table cannot hold a string in one row, a date in another, and a currency value in a third. This
is almost a freebie because database products won’t let you say, ‘‘This field should hold numbers or
dates.’’

One way to run afoul of Rule 3 is to store values with different types converted into a common form.
For example, you could store a date written as a string (such as ‘‘3/14/2012’’) and a number written as a
string (such as ‘‘17’’) in a column designed to hold strings. Though this is an impressive display of your
cleverness, it violates the spirit of the rule. It makes it much harder to perform queries using the field in
any meaningful way. If you really need to store different kinds of data, split them apart into different
columns that each holds a single kind of data. (In practice, many databases end up with just this sort of
field. In particular, users often enter key data in comment or notes fields and a program must later search
for values in those fields. Not the best practice but it does happen.)

Rule 4 makes sense because, if two rows did contain identical values, how would you tell them apart?
The only reason you might be tempted to violate this rule is if you don’t need to tell the rows apart. For
example, suppose you fill out an order form for a pencil, some paper, and a tarantula. Oh, yeah, you also
need another pencil so you add it at the end.

This reminds me of the joke where some guy wants to buy two new residents for his aquarium by
mail-order (this was before Internet shopping) but he doesn’t know whether the plural of octopus is
octopi or octopuses. So he writes, ‘‘Dear Sirs, please send me an octopus. Oh and please send me another
one.’’

Now the form’s list of items contains two identical rows listing a pencil. You don’t care that the rows are
identical because the pencils are identical. In fact, all you really know is that you want two pencils. That
observation leads to the solution. Instead of using two identical rows, use one row with a new Quantity
field and set Quantity to 2.

Note that Rule 4 is equivalent to saying that the table can have a primary key. Recall from Chapter 3 that
a primary key is a set of columns that you can use to uniquely identify rows. If no two rows can have
exactly the same values, then you must be able to pick a set of columns to uniquely identify the rows,
even if it includes every column.

139

Stephens c07.tex V3 - 10/08/2008 11:25am Page 140

Part II: Database Design Process and Techniques

In fact, let’s make that a new rule:

4. (continued). Every table has a primary key.

Rule 5 is the one you might be most tempted to violate. Sometimes a data entity includes a concept that
needs multiple values. The semantic object models described in Chapter 5 even let you explicitly set an
attribute’s cardinality so you can make one attribute that holds multiple values.

For example, suppose you are building a recipe table and you give it the fields Name, Ingredients,
Instructions, and Notes (which contains things such as ‘‘Sherri loves this recipe’’ and ‘‘For extra fla-
vor, increase ants to 3 tbl.’’). This gives you enough information to print out a recipe and you can easily
follow it (assuming you have some talent for cooking and a garden full of ants).

However, the Ingredients, Instructions, and Notes fields contain multiple values. Two hints that this
might be the case are the fact that the column names are plural and that the column values are probably
broken up into sub-values by commas, periods, carriage returns, or some other delimiter.

Storing multiple values in a single field limits the usefulness of that field. For example, suppose you
decide that you want to find all of your recipes that use ants as an ingredient. Because the Ingredients
field contains a bunch of different values all glommed together, you cannot easily search for a particular
ingredient. You might be able to search for the word ‘‘ants’’ within the string, but you’re likely to get
extraneous matches such as ‘‘currants.’’ You also won’t be able to use indexes to make these searches in
the middle of a string faster.

The solution is to break the multiple values apart, move them into a new table, and link those records
back to this one with this record’s primary key. For the recipe example, you would create a RecipeIngre-
dients table with fields RecipeId, Ingredient, and Amount. Now you can search for RecipeIngredients
records where Ingredient is ‘‘ants.’’

Similarly, you could make a RecipeInstructions table with fields RecipeId, StepNumber, and Instruction.
The StepNumber field is necessary because you want to perform the steps in the correct order. (I’ve tried
rearranging the steps and it just doesn’t work! Baking bread before you mix the ingredients gives you a
strange little brick-like puddle.) Now you can search for Recipes records and matching RecipeInstructions
records that contain the word ‘‘preheat’’ to see how hot the oven must be.

Note that you only need to separate a field’s values if they are logically distinct for whatever purposes
you will use them. For example, you might want to search for individual ingredients. It’s a bit less clear
that you’ll need to search for particular instructions. It’s even less sure that you’ll want to search for
specific values within a Notes field. Notes is more or less a free-format field, and it’s not clear that any
internal structure is important.

For an even more obvious example, consider an Authors table’s Biography field. This field contains a brief
biography of the author. You could break it into sentences (or words, or even letters), but the individual
sentences don’t have any real context, so there’s little point. You will display the Biography as a whole
anyway so there’s little benefit in chopping it up arbitrarily.

Rule 6 means you cannot have multiple columns that contain values that are not distinguishable. For
example, suppose you decide that each Exterminators record should be able to hold the animals for
which an exterminator is qualified to remove (muskrat, ostrich, platypus, and so forth). (Don’t worry,
this is a humane pest control service, so the exterminators catch the critters and release them far away so
they can bug someone else.)

140

Stephens c07.tex V3 - 10/08/2008 11:25am Page 141

Chapter 7: Normalizing Data

You already know from Rule 5 that you can’t just cram all of the animals into a single Critters field. Rule
6 says you also cannot create columns named Critter1, Critter2, and Critter3 to hold different animals.
Instead you need to split the values out into a new table and use the Exterminators table’s primary key
to link back to the main records.

Figure 7-1 shows a relational model for the recipe data. The ingredients and instructions have been
moved into new tables but the Notes field remains as it was originally.

1

1

Recipes
RecipeId
Name
Notes

RecipeIngredients
RecipeId
Ingredient
Amount

RecipeInstructions
RecipeId
StepNumber
Instruction

∞

∞

Figure 7-1

Try It Out Arranging Data in the First Normal Form
The following table contains information about airline flights. It contains data about a party of two flying
from Denver to Phoenix and a party of three flying from San Diego to Los Angeles. The first two columns
give the start and destination cities. The final column gives the connection cities (if any) or the number of
connections. The rows are ordered so the frequent flyer passengers are at the top, in this case in the first
three rows.

City City Connections

DEN PHX 1

SAN LAX JFK, SEA, TPA

SAN LAX JFK, SEA, TPA

DEN PHX 1

SAN LAX JFK, SEA, TPA

Your mission, should you decide to accept it, is to put this atrocity into First Normal Form:

1. Make sure every column has a unique name. This table has two columns named City. To fix these
problems (sorry, I mean ‘‘anomalies’’), rename those columns to StartCity and DestinationCity.

2. Make sure the order of the rows and columns doesn’t matter. If the order of the rows matters,
add a column to record the information implied by their positions. In this example, make a new
Priority column and explicitly list the passengers’ priorities.

3. Make sure each column holds a single data type. If a column holds more than one type of data,
split it into multiple columns, one for each data type. In this case, list the connecting cities, and
don’t even record the number of cities. Just count them when necessary.

141

Stephens c07.tex V3 - 10/08/2008 11:25am Page 142

Part II: Database Design Process and Techniques

4. Make sure no two rows can contain identical values. If two rows contain identical values, add a
field to differentiate them. In this case, add a CustomerId column so you can tell the customers
apart.

5. Make sure each column contains a single value. If a column holds multiple data values, split them
out into a new table. Make a new Connections table and move the connection data there. To tie
those records back to their original rows in this table, add columns that correspond to the pri-
mary key columns in the original table (CustomerId and Date).

6. Make sure multiple columns don’t contain repeating groups. In this example, you need to think
about the two city fields and decide whether they contain distinguishable values.

How It Works

1. Make sure every column has a unique name.

Rule 1 says each column must have a unique name, but this table has two columns named City.
This also sort of violates the rule that the order of the columns cannot matter because we’re using
the ordering to know which is the start city and which is the destination city.

After you rename the columns, the table looks like this:

StartCity DestinationCity Connections

DEN PHX 1

SAN LAX JFK, SEA, TPA

SAN LAX JFK, SEA, TPA

DEN PHX 1

SAN LAX JFK, SEA, TPA

2. Make sure the order of the rows and columns doesn’t matter. If the order of the rows matters,
add a column to record the information implied by their positions.

Rule 2 says the order of the rows and columns doesn’t matter. After making the first change, the
order of the columns doesn’t matter any more because you can use the column names rather than
their order to tell which city is which. However, you’re using the order of the rows to determine
which passengers have the highest priority (frequent flyers get the caviar and pheasant while the
others get Twinkies and Spam).

To fix this, take whatever concept the row ordering represents and move it into a new column.
After you make a new Priority column and explicitly list the passengers’ priorities, the ordering
of the rows doesn’t matter because you can retrieve the original idea of who has higher priority
from the new column. Now the table looks like this:

142

Stephens c07.tex V3 - 10/08/2008 11:25am Page 143

Chapter 7: Normalizing Data

StartCity DestinationCity Connections Priority

DEN PHX 1 1

SAN LAX JFK, SEA, TPA 1

SAN LAX JFK, SEA, TPA 1

DEN PHX 1 2

SAN LAX JFK, SEA, TPA 2

3. Make sure each column holds a single data type. If a column holds more than one type of data,
split it into multiple columns, one for each data type.

Rule 3 says each column must have a single data type. Here the Connections column holds either
a list of connecting cities or the number of connections, two different kinds of data. There are at
least two reasonable solutions for this problem (at least for right now).

First, you could make two columns, ConnectingCities and NumberOfConnections, and split
these values into their proper columns. This would be the better solution if you really needed
both of these types of values.

In this case, however, the number of connections is just a count of the number of connecting
cities so, if you knew the cities, you could just count them to get the number of cities. The better
solution in this case is to list the connecting cities and calculate the number of those cities when
necessary. Here’s the new table:

StartCity DestinationCity Connections Priority

DEN PHX LON 1

SAN LAX JFK, SEA, TPA 1

SAN LAX JFK, SEA, TPA 1

DEN PHX LON 2

SAN LAX JFK, SEA, TPA 2

4. Make sure no two rows can contain identical values. If two rows contain identical values, add a
field to differentiate them.

Rule 4 says no two rows can contain identical values. Unfortunately this table’s second and third
rows are identical. The question now becomes, ‘‘Do you care that you cannot tell these records
apart?’’

143

Stephens c07.tex V3 - 10/08/2008 11:25am Page 144

Part II: Database Design Process and Techniques

If you are a cold, heartless, big corporation airline and you don’t care who is flying, just that some-
one is flying, then you don’t care. In that case, add a Count field to the table and use it to track the
number of identical rows. This would be the new design:

StartCity DestinationCity Connections Priority Count

DEN PHX LON 1 1

SAN LAX JFK, SEA, TPA 1 2

DEN PHX LON 2 1

SAN LAX JFK, SEA, TPA 2 1

However, if you’re a warm, friendly, mom-and-pop airline, then you do care who has which
flight. In that case, what is the difference between the two identical rows? The answer is that they
represent different customers so the solution is to add a column to differentiate between the cus-
tomers. If you add a CustomerId column, then you don’t need the Count column and the table
becomes:

StartCity DestinationCity Connections Priority CustomerId

DEN PHX LON 1 4637

SAN LAX JFK, SEA, TPA 1 12878

SAN LAX JFK, SEA, TPA 1 2871

DEN PHX LON 2 28718

SAN LAX JFK, SEA, TPA 2 9287

This works for now, but what if one of these customers wants to make the same trip more than
once on different dates? In that case the table will hold two identical records again. Again you
can ask yourself, what is the difference between the two identical rows? The answer this time is
that the trips take place on different dates so you can fix it by adding a Date column.

StartCity DestinationCity Connections Priority CustomerId Date

DEN PHX LON 1 4637 4/1/10

SAN LAX JFK, SEA, TPA 1 12878 6/21/10

SAN LAX JFK, SEA, TPA 1 2871 6/21/10

DEN PHX LON 2 28718 4/1/10

SAN LAX JFK, SEA, TPA 2 9287 6/21/10

144

Stephens c07.tex V3 - 10/08/2008 11:25am Page 145

Chapter 7: Normalizing Data

Rule 4a says the table should have a primary key. The combination of CustomerId and Date can
uniquely identify the rows. This seems like a safe combination because one customer cannot take
two flights at the same time (although customers have been known to book multiple flights at the
same time and then cancel all but one).

5. Make sure each column contains a single value. If a column holds multiple data values, split them
out into a new table.

Rule 5 says each column must contain a single value. This table’s Connections column clearly
violates the rule. To solve this problem, make a new Connections table and move the connec-
tion data there. To tie those records back to their original rows in this table, add columns that
correspond to the primary key columns in the original table (CustomerId and Date).

That single change leads to a big problem, however. The values in the combined Connections
column implicitly defined the connections’ order. Using the new table, you cannot tell which
connections come before which. (Unless you use the ordering of the rows to decide which comes
first, and you know that’s not allowed!)

The solution is to add a ConnectionNumber field to the new table so you can figure out how to
order the connections.

Figure 7-2 shows the tables together with lines connecting the corresponding records.

StartCity DestinationCity Prioriy CustomerId Date
DEN PHX 1 4637 4/1/10
SAN LAX 1 12878 6/21/10
SAN LAX 1 2871 6/21/10
DEN PHX 2 28718 4/1/10
SAN LAX 2 9287 6/21/10

 CustomerId Date ConnectionNumber City
 4637 4/1/10 1 LON
 12878 6/21/10 1 JFK
 12878 6/21/10 2 SEA
 12878 6/21/10 3 TPA
 2871 6/21/10 1 JFK
 2871 6/21/10 2 SEA
 2871 6/21/10 3 TPA
 28718 4/1/10 1 LON
 9287 6/21/10 1 JFK
 9287 6/21/10 2 SEA
 9287 6/21/10 3 TPA

Figure 7-2

Figure 7-3 shows a relational model for these tables. (In the context of airline connections, that
infinity symbol is kind of depressing.)

1

Trips
StartCity
DestinationCity
Priority
CustomerId
Date

Connections
CustomerId
Date
ConnectionNumber
City

∞

Figure 7-3

6. Make sure multiple columns don’t contain repeating groups. In this example, you need to think
about the two city fields and decide whether they contain distinguishable values.

145

Stephens c07.tex V3 - 10/08/2008 11:25am Page 146

Part II: Database Design Process and Techniques

Rule 6 says that multiple columns don’t contain repeating groups. In this example, the two city
fields contain very similar types of values: cities. Unlike the exterminator example described ear-
lier, however, these values are distinguishable. Starting and ending destination are not the same
thing, and they are not the same as connecting cities. (Although I had a travel agent once who
may not have fully understood the difference, judging by where my rental car was reserved.)

Database purists would say that having two fields containing the same kind of data is a bad thing
and you should move the values into a new table.

My take on the issue is that it depends on how you are going to use the values. Will you ever
want to ask, ‘‘Which customers ever visit San Jose?’’ If so, then having these cities in two separate
fields is cumbersome because you’ll have to ask the same question about each field. In fact, you’ll
also have to ask about the connecting cities. In this case, it might be better to move the start and
destination cities out of this table.

In contrast, suppose you never ask what cities customers visit and instead ask, ‘‘Which customers
start from Berlin?’’ or ‘‘Which customers finish in Madrid?’’ In that case, keeping these values in
separate fields does no harm.

For now I’ll leave them alone and take up this issue again in the next section.

As a quick check, you should also verify that the new table is in 1NF. If you run through the rules,
you’ll find that most of them are satisfied trivially but a few are worth a moment of reflection.

Rules 4 says no two rows can contain identical values and the table must have a primary key.
Assuming no customer takes more than one trip per day, then the Trips table’s CustomerId/Date
fields and the Connections table’s CustomerId/Date/ConnectionNumber fields make reasonable
primary keys. If you need to allow customers to take more than one trip per day (which happens
in the real world), you probably need to add another TripNumber field to both tables.

Rule 5 says every column must contain a single value. If we split apart the values in the original
table’s Connections column, the new table should be okay.

But we’ll need a separate table to track where the luggage goes.

Second Normal Form (2NF)
A table is in 2NF if:

1. It is in 1NF.

2. All of the non-key fields depend on all of the key fields.

To see what this means, consider the alligator wrestling schedule shown in the following table. It lists the
name, class (amateur or professional), and ranking for each wrestler, together with the time when this
wrestler will perform. The Time/Wrestler combination forms the table’s primary key.

Time Wrestler Class Rank

1:30 Annette Cart Pro 3

1:30 Ben Jones Pro 2

2:00 Sydney Dart Amateur 1

146

Stephens c07.tex V3 - 10/08/2008 11:25am Page 147

Chapter 7: Normalizing Data

Time Wrestler Class Rank

2:15 Ben Jones Pro 2

2:30 Annette Cart Pro 3

3:30 Sydney Dart Amateur 1

3:30 Mike Acosta Amateur 6

3:45 Annette Cart Pro 3

Though this table is in 1NF (don’t take my word for it, verify it yourself), it is trying to do too much work
all by itself and that leads to several problems.

Note that the Wrestler field contains both first and last names. This would violate 1NF if you consider
those as two separate pieces of information. For this example, assume you only need to display first
and last name together and will never need to perform searches on last name only, for example. This is
confusing enough without adding extra columns.

First, this table is vulnerable to update anomalies. An update anomaly occurs when a change to a row
leads to inconsistent data. In this case, update anomalies are caused by the fact that this table holds a lot
of repeated data. For example, suppose Sydney Dart decides to turn pro, so you update the Class entry
in the third row. Now that row is inconsistent with the Class entry in row 6 that still shows Sydney as an
amateur. You’ll need to update every row in the table that mentions Sydney to fix this problem.

Second, this table is susceptible to deletion anomalies. A deletion anomaly occurs when deleting a record
can destroy information that you might need later. In this example, suppose you cancel the 3:30 match
featuring Mike Acosta. In that case you lose the entire 7th record in the table, so you lose the fact that
Mike is an amateur, that he’s ranked 6th, and even that he exists (presumably he disappears in a puff of
smoke).

Third, this table is subject to insertion anomalies. An insertion anomaly occurs when you cannot store
certain kinds of information because it would violate the table’s primary key constraints. Suppose you
want to add a new wrestler Nate Waffle to the roster but you have not yet scheduled any matches for
him. (Nate’s actually the contest organizer’s nephew so he doesn’t really wrestle alligators; he just wants
to be listed in the program to impress his friends.) To add Nate to this table, you would have to assign
him a wrestling match, and Nate would probably have a heart attack. Similarly, you cannot create a new
time for a match without assigning a wrestler to it.

Okay, I confess I pulled a fast one here. You could create a record for Nate that had Time set to null.
That would be really bad form, however, because all of the fields that make up a primary key should
have non-null values. Many databases require that all primary key fields not allow nulls. Because
Time/Wrestler is the table’s primary key, you cannot give Nate a record without assigning a Time and
you’re stuck.

The underlying problem is that some of the table’s columns do not depend on all of the primary key
fields. The Class and Rank fields depend on Wrestler but not on Time. Annette Cart is a professional
whether she wrestles at 1:30, 2:30, or 3:45.

The solution is to pull the columns that do not depend on the entire primary key out of the table and put
them in a new table. In this case, you could create a new Wrestlers table and move the Class and Rank
fields into it. You would add a WrestlerName field to link back to the original table.

147

Stephens c07.tex V3 - 10/08/2008 11:25am Page 148

Part II: Database Design Process and Techniques

Figure 7-4 shows a relational model for the new tables.

1
1

Time
WrestlerName

Matches

Class
Rank

Wrestlers
WrestlerName

Figure 7-4

Figure 7-5 shows the new tables holding the original data. Here I’ve sorted the matches by wrestler name
to make it easier to see the relationship between the two tables. (It’s a mess if you sort the matches by
time.)

Matches
Time WrestlerName
1:30 Annette Cart
2:30 Annette Cart
3:45 Annette Cart
1:30 Ben Jones
2:15 Ben Jones
3:30 Mike Acosta
2:00 Sydney Dart
3:30 Sydney Dart

Wrestlers
WrestlerName Class Rank
Annette Cart Pro 3
Ben Jones Pro 2
Mike Acosta Amateur 6
Sydney Dart Amateur 1

Figure 7-5

The new arrangement is immune to the three anomalies described earlier. To make Sydney Dart a pro-
fessional, you only need to change her Wrestlers record. You can cancel the 3:30 match between Mike
Acosta and Hungry Bob without losing Mike’s information in the Wrestler’s table. Finally, you can make
a row for Nate in the Wrestlers table without making one in the Matches table.

You should also verify that all of the new tables satisfy the 2NF rule, ‘‘All of the non-key fields depend
on all of the key fields.’’ The Matches table contains no fields that are not part of the primary key so it
satisfies this requirement trivially.

The primary key for the Wrestlers table is the WrestlerName field, and the Class and Rank fields depend
directly on the value of WrestlerName. If you move to a different WrestlerName, you get different values
for Class and Rank. Note that the second wrestler might have the same Class and Rank but that would
be mere coincidence. The new values belong to the new wrestler.

Intuitively, the original table had problems because it was trying to hold two kinds of information: infor-
mation about matches and information about wrestlers. To fix the problem, we broke the table into two
tables to hold those two kinds of information separately.

If you ensure that every table represents one single, unified concept such as wrestler or match, the table
will be in 2NF. It’s when a table tries to play multiple roles, such as storing wrestler and match informa-
tion at the same time, that it is open to data anomalies.

148

Stephens c07.tex V3 - 10/08/2008 11:25am Page 149

Chapter 7: Normalizing Data

Try It Out Arranging Data in the Second Normal Form
Suppose you just graduated from the East Los Angeles Space Academy and you rush to the posting
board to find your ship assignments:

Cadet Position Ship

Ash, Joshua Fuse Tender Frieda’s Glory

Barker, Sally Pilot Scrat

Barker, Sally Arms Master Scrat

Cumin, Bil Cook’s Mate Scrat

Farnsworth, Al Arc Tauran Liaison Frieda’s Glory

Farnsworth, Al Interpreter Frieda’s Glory

Major, Major Cook’s Mate Scrat

Pickover, Bud Captain Athena Ascendant

This table uses the Cadet/Position combination as a primary key. Note that some cadets have more than
one job.

To earn your posting as Data Minder First Class:

1. Describe the table’s update, deletion, and insertion anomalies.

2. Put it in 2NF. Find any fields that don’t depend on the entire primary key and move them into
a new table. In this case, split the table into two new tables: CadetPositions and CadetShips. The
CadetPositions table is similar to the original table with the Ship field removed. The CadetShips
table links the cadets with their ships.

How It Works

1. Describe the table’s update, deletion, and insertion anomalies.

This table allows update anomalies because it contains repeated values. For example, if you
change Sally Barker’s Ship in row 2 to Athena Ascendant, it would conflict with the Ship value in
row 3 that says Sally is on the Scrat.

This table also allows deletion anomalies. If you delete the last row, you no longer know that the
Athena Ascendant is a Courier class ship or that she even exists. (Her crew will be mad when
headquarters stops sending paychecks.)

Finally, the table allows insertion anomalies because you cannot store information about a cadet
without a ship or a ship without a cadet.

2. Put it in 2NF. Find any fields that don’t depend on the entire primary key and move them into a
new table.

149

Stephens c07.tex V3 - 10/08/2008 11:25am Page 150

Part II: Database Design Process and Techniques

This table has problems because some of the fields don’t depend on the entire primary key. In
particular, the Ship field depends on the Cadet (it’s the ship where this cadet is assigned) but it
does not depend on the Position. You could solve the problem if you could remove Position from
the primary key but we need both Cadet and Position to uniquely identify a record.

The solution is to split the table into two new tables: CadetPositions and CadetShips, and move
the ship information (which doesn’t depend on the entire primary key) into the new table.
Figure 7-6 shows the relational model for this new design.

1
Cadet
Position

CadetPositions

Cadet

CadetShips
Ship∞

Figure 7-6

Figure 7-7 shows the new tables and their data.

CadetPositions
Cadet Position
Ash, Joshua Fuse Tender
Barker, Sally Pilot
Barker, Sally Arms Master
Cumin, Bil Cook's Mate
Farnsworth, Al Arc Tauran Liaison
Farnsworth, Al Interpreter
Major, Major Cook's Mate
Pickover, Bud Captain

CadetShips
Cadet Ship
Ash, Joshua Frieda's Glory
Barker, Sally Scrat
Cumin, Bil Scrat
Farnsworth, Al Frieda's Glory
Major, Major Scrat
Pickover, Bud Athena Ascendant

Figure 7-7

You can easily verify that these tables are in 1NF.

The CadetPositions table is in 2NF trivially because every field is part of the primary key.

The CadetShips table is in 2NF because the only field that is not part of the primary key (Ship)
depends on the single primary key field (Cadet).

Third Normal Form (3NF)
A table is in 3NF if:

1. It is in 2NF.

2. It contains no transitive dependencies.

A transitive dependency is when one non-key field’s value depends on another non-key field’s value.

For example, suppose you and your friends decide to start a book club. To see what kinds of books people
like, you put together the following table listing everyone’s favorite books. It uses Person as the primary

150

Stephens c07.tex V3 - 10/08/2008 11:25am Page 151

Chapter 7: Normalizing Data

key. (Again the Author field might violate 1NF if you consider it as containing multiple values: first and
last name. For simplicity, and because you won’t ever want to search for books written by authors with
the first name ‘‘Orson,’’ I’ll treat this as a single value.)

Person Title Author Pages Year

Amy Support Your Local Wizard Duane, Diane 473 1990

Becky Three to Dorsai! Dickson, Gordon 532 1975

Jon Chronicles of the Black Company Cook, Glen 704 2007

Ken Three to Dorsai! Dickson, Gordon 532 1975

Wendy Support Your Local Wizard Duane, Diane 473 1990

You can easily show that this table is 1NF. It uses a single field as primary key so every field in the table
depends on the entire primary key, so it’s also 2NF. (Each row represents that Person’s favorite book so
every field must depend on that Person.)

However, this table contains a lot of duplication, so it is subject to modification anomalies. (At this point
you probably knew that!) If you discover that the Year for Support Your Local Wizard is wrong and fix it
in row 1, it will conflict with the last row.

It’s also subject to deletion anomalies (if Jon insults everyone and gets kicked out of the group so you
remove the third row, you lose all of the information about Chronicles of the Black Company) and insertion
anomalies (you cannot save Title, Author, Pages, and Year information about a book unless it’s someone’s
favorite, and you cannot allow someone to join the group until he or she decides on a favorite).

The problem here is that some of the fields are related to others. In this example, Author, Pages, and Year
are related to Title. If you know a book’s Title, you could look up its Author, Pages, and Year.

In this example, the primary key Person doesn’t exactly drive the Author, Pages, and Year fields. Instead
it selects the Person’s favorite Title and then Title determines the other values. This is a transitive depen-
dency. Title depends on Person and the other fields depend on Title.

The main clue that there is a transitive dependency is that there are lots of duplicate values in the table.

You can fix this problem in a way similar to the way you put a table into 2NF: find the fields that are
causing the problem and pull them into a separate table. Add an extra field to contain the original field
on which those were dependent so you can link back to the original table.

In this case, you could make a Books table to hold the Author, Pages, and Year fields. You would then
add a Title field to link the new records back to the original table.

Figure 7-8 shows a relational model for the new design.

151

Stephens c07.tex V3 - 10/08/2008 11:25am Page 152

Part II: Database Design Process and Techniques

1
Persons
Title

Persons

Author
Pages
Year

Books
Title∞

Figure 7-8

Figure 7-9 shows the new tables containing the original data.

Persons
Person Title
Jon Chronicles of the Black Company
Amy Support Your Local Wizard
Wendy Support Your Local Wizard
Becky Three to Dorsai!
Ken Three to Dorsai!

Books
Title Author Pages Year
Chronicles of the Black Company Cook, Glen 704 2007
Support Your Local Wizard Duane, Diane 473 1990
Three to Dorsai! Dickson, Gordon 532 1975

Figure 7-9

Try It Out Arranging Data in the Third Normal Form
Suppose you’re helping to organize the 19,524th Jedi Olympics. Mostly the contestants stand around
bragging about how they don’t need to use violence because the Force is strong in them. You also often
hear the phrases, ‘‘I was just following the Force,’’ and ‘‘The Force made me do it.’’

But to keep television ratings up, there are some athletic events. The following table shows the day’s
schedule. It uses Contestant as the primary key.

Contestant Time Event Venue

Boyce Codd 2:00 Monster Mayhem Monster Pit

General Mills 1:30 Pebble Levitating Windy Plains Arena

Master Plethora 4:00 X-wing Lifting Windy Plains Arena

Master Tor 1:00 Monster Mayhem Monster Pit

Glenn 5:00 Poker Dark Force Casino

Xzktp! Krffzk 5:00 Poker Dark Force Casino

As part of your data processing padawan training:

1. Describe the data anomalies that this table allows.

2. Put the table in 3NF. If some fields are dependent on other non-key fields, pull the dependent
fields out into a new table.

152

Stephens c07.tex V3 - 10/08/2008 11:25am Page 153

Chapter 7: Normalizing Data

How It Works

1. Describe the data anomalies that this table allows.

This table allows update anomalies because it contains lots of repeated values. For example, if
you changed the Venue for Monster Mayhem in row 1, it would conflict with the Venue for Mon-
ster Mayhem in row 4. It also allows deletion anomalies (if Master Plethora is caught metaclorian
doping and he drops out, you lose the fact that X-wing Lifting occurs in the Windy Plains Arena)
and insertion anomalies (you cannot add a new contestant without an event or an event without
a contestant).

2. Put the table in 3NF. If some fields are dependent on other non-key fields, pull the dependent
fields out into a new table. Pull the dependent Venue field out into a new table. Add the field it
depends upon (Event) as a key to link back to the original table.

The problem is that the Event and Venue fields are dependent on each other in some manner.

The solution is to pull the dependent fields out and put them in a new table. Then add a field
linking back to the field on which they depend. The next question is, ‘‘Which of these two related
fields should be the one that you leave in the original table to use as the link?’’ Does Venue
depend on Event? Or does Event depend on Venue? Or does it matter which one you consider
dependent on the other?

In this example, it does matter.

Notice that Event determines Venue. In other words, each particular Event occurs in only one
Venue, so if you know the Event, you know the Venue. For example, all Pebble Levitating events
occur in Windy Plains Arena. This means Venue is dependent on Event.

However, the reverse is not true. Venue does not determine Event. If you know the Venue, you
do not necessarily know the Event. For example, the Windy Plains Arena is the venue for both
Pebble Levitating and X-wing Lifting. This means Event is not dependent on Venue.

(If there were a one-to-one mapping of Event to Venue, each field would determine the other so
you could use either as the key field. Although to me it makes more intuitive sense to use Event
as the key.)

Figure 7-10 shows the new model.

1

Time
EventName

ContestantAssignments
Contestant EventName

Venue

EventVenues

∞
Figure 7-10

Figure 7-11 shows the tables containing the original data.

Contestants
ContestantName Time Event
Boyce Codd 2:00 Monster Mayhem
Master Tor 1:00 Monster Mayhem
General Mills 1:30 Pebble Levitating
Glenn 5:00 Poker
Xzktp! Krffzk 5:00 Poker
Master Plethora 4:00 X-wing Lifting

EventVenues
Event Venue
Monster Mayhem Monster Pit
Pebble Levitating Windy Plains Arena
Poker Dark Force Casino
X-wing Lifting Windy Plains Arena

Figure 7-11

153

Stephens c07.tex V3 - 10/08/2008 11:25am Page 154

Part II: Database Design Process and Techniques

Stopping at Third Normal Form
Many database designers stop normalizing the database at 3NF because it provides the most bang for the
buck. It’s fairly easy to convert a database to 3NF and that level of normalization prevents the most com-
mon data anomalies. It stores separate data separately so you can add and remove pieces of information
without destroying unrelated data. It also removes redundant data so the database isn’t full of a zillion
copies of the same information that waste space and make updating values difficult.

However, the database may still be vulnerable to some less common anomalies that are prevented by the
more complete normalizations described in the following sections. These greater levels of normalization
are rather technical and confusing. They can also lead to unnecessarily complicated data models that are
hard to implement, hard to maintain, and hard to use. In some cases, they can give worse performance
than less completely normalized designs.

Though you may not always need to use these super-normalized databases, it’s still good to understand
them and the problems that they prevent. Then you can decide whether those problems are a big enough
issue to justify including them in your design. (Besides, they make great ice breakers at parties. ‘‘Hey
everyone! Let’s see who can put the guest list in 4NF the fastest!’’)

Boyce-Codd Normal Form (BCNF)
This one is kind of technical, so to understand it you need to know some terms.

Recall from Chapter 3 that a superkey is a set of fields that contain unique values. You can use a superkey
to uniquely identify the records in a table.

Also recall that a candidate key is a minimal superkey. In other words, if you remove any of the fields from
the candidate key, it won’t be a superkey anymore.

Now for a new term. A determinant is a field that at least partly determines the value in another field.
Note that the definition of 3NF worries about fields that are dependent on another field that is not part
of the primary key. Now we’re talking about fields that might be dependent on fields that are part of the
primary key (or any candidate key).

A table is in BCNF if:

1. It is in 3NF.

2. Every determinant is a candidate key.

For example, suppose you are attending the Wizards, Knights, and Farriers Convention hosted by three
nearby castles: Castle Blue, Castle Green, and Le Château du Chevalier Rouge. Each attendee must select
a track: Wizard, Knight, or Farrier. Each castle hosts three seminars, one for each track.

During the conference, you may attend seminars at any of the three castles, but you can only attend the
one for your track. That means if you pick a castle, I can deduce which session you will attend there.

Here’s part of the attendee schedule. The letters in parentheses show the attendee and seminar tracks to
make the table easier to read and they are not really part of this data.

154

Stephens c07.tex V3 - 10/08/2008 11:25am Page 155

Chapter 7: Normalizing Data

Attendee Castle Seminar

Agress Profundus (w) Green Poisons for Fun and Profit (w)

Anabel (k) Blue Terrific Tilting (k)

Anabel (k) Rouge Clubs ‘N Things (k)

Frock Smith (f) Blue Dealing with Difficult Destriers (f)

Lady Mismyth (w) Green Poisons for Fun and Profit (w)

Sten Bors (f) Blue Dealing with Difficult Destriers (f)

The Mighty Brak (k) Green Siege Engine Maintenance (k)

The Mighty Brak (k) Rouge Clubs ‘N Things (k)

This table is susceptible to update anomalies because it contains duplicated data. If you moved the Poi-
sons for Fun and Profit seminar to Castle Blue in the first record, it would contradict the Castle value in
row 5.

It’s also vulnerable to deletion anomalies because the relationship between Castle and Seminar is stored
implicitly in this table. If you deleted the second record, you would lose the fact that the Terrific Tilting
seminar is taking place in Castle Blue.

Finally, this table suffers from insertion anomalies. For example, you cannot create a record for a new
seminar without assigning an attendee to it.

In short, this table has a problem because it has multiple overlapping candidate keys.

This table has two candidate keys: Attendee/Castle and Attendee/Seminar. Either of those combinations
will uniquely identify a record.

The remaining combination, Castle/Seminar, cannot identify the Attendee so it’s not a candidate key.

The Castle and Seminar fields have a dependency: Seminar determines Castle (but not vice versa). In
other words, Seminar is a determinant of Castle.

This table is not in BCNF because Seminar is a determinant but is not a candidate key.

You can put this table in BCNF by pulling out the dependent data and linking it to the determinant.
In this case, that means moving the Castle data into a new table and linking it back to its determinant,
Seminar.

Figure 7-12 shows the new design.

1
Attendee
Seminar

AttendeeSeminars

Venue

SeminarVenues
Seminar

∞
Figure 7-12

155

Stephens c07.tex V3 - 10/08/2008 11:25am Page 156

Part II: Database Design Process and Techniques

Figure 7-13 shows the new tables containing the original data.

AttendeeSeminars
Attendee Seminar
Anabel (k) Clubs 'N Things (k)
The Mighty Brak (k) Clubs 'N Things (k)
Frock Smith (f) Dealing with Difficult Destriers (f)
Sten Bors (f) Dealing with Difficult Destriers (f)
Agress Profundus (w) Poisons for Fun and Profit (w)
Lady Mismyth (w) Poisons for Fun and Profit (w)
The Mighty Brak (k) Siege Engine Maintenance (k)
Anabel (k) Terrific Tilting (k)

SeminarVenues
Castle Seminar
Rogue Clubs 'N Things (k)
Blue Dealing with Difficult Destriers (f)
Green Poisons for Fun and Profit (w)
Green Siege Engine Maintenance (k)
Blue Terrific Tilting (k)

Figure 7-13

Now you can move the Poisons for Fun and Profit seminar to Castle Blue by changing a single record in
the SeminarVenues table. You can delete Anabel’s record for Terrific Tilting without losing the fact that
Terrific Tilting takes place in Castle Blue because that information is in the SeminarVenues table. Finally,
you can add a new record to the SeminarVenues table without assigning any attendees to it.

For another example, suppose you have an Employees table with columns EmployeeId, FirstName,
LastName, SocialSecurityNumber, and Phone. Assume you don’t need to worry about weird special
cases such as roommates sharing a phone number or multiple employees with the same name.

This table has several determinants. For example, EmployeeId determines every other field’s value. If
you know an employee’s ID, then all of the other values are fixed. This doesn’t violate BCNF because
EmployeeId is also a candidate key.

Similarly SocialSecurityNumber and Phone are each determinants of all of the other fields. Fortunately
they, too, are candidate keys.

So far so good. Now for a stranger case. The combination FirstName/LastName is a determinant for
all of the other fields. If you know an employee’s first and last names, the corresponding EmployeeId,
SocialSecurityNumber, and Phone values are set. Fortunately FirstName/LastName is also a candidate
key so even that doesn’t break the table’s BCNF-ness.

This table is in BCNF because every determinant is also a candidate key. Intuitively the table is in BCNF
because it represents a single entity: an employee.

The previous example was not in BCNF because it represented two concepts at the same time: attendees
and the seminars they’re attending, and the locations of the seminars. We solved that problem by splitting
the table into two tables that each represented only one of those concepts.

Generally if every table represents a single concept or entity, it will be in pretty good shape. It’s when
you ask a table to do too much that you run into problems.

156

Stephens c07.tex V3 - 10/08/2008 11:25am Page 157

Chapter 7: Normalizing Data

Try It Out Arranging Data in the BCNF
Consider an EmployeeAssignments table with the fields EmployeeId, FirstName, LastName, and Project.
Each employee can be assigned to multiple projects and each project can have multiple employees. Ignore
weirdnesses such as two employees having the same name.

To become a Data Wizard:

1. Explain why this table is not in BCNF. (Find a determinant that this not also a candidate key.)

2. Describe data anomalies that might befall this table.

3. Put this table in BCNF by pulling the FirstName and LastName fields out of the table and moving
them into a new EmployeeData table. Add an EmployeeId field to link the new table’s records
back to the original records.

How It Works

1. Explain why this table is not in BCNF. (Find a determinant that this not also a candidate key.)

Intuitively the problem with this table is that it includes two different concepts. It contains multi-
ple pieces of employee data (EmployeeId, FirstName, LastName) together with employee project
assignment data.

More technically, this table’s candidate keys are EmployeeId/Project and FirstName/LastName/
Project. (Take a few minutes to verify that these combinations specify the records uniquely,
that you cannot remove any fields from them, and that the remaining combination Employ-
eeId/FirstName/LastName doesn’t work.)

The problem occurs because these two candidate keys are partially overlapping. If you subtract
out the overlapping field (Project), you get EmployeeId and FirstName/LastName. These are in
the two candidate keys because they specify the same thing: the employee. That means they are
determinants of each other. Unfortunately neither of these is a candidate key by itself so the table
is not in BCNF.

2. Describe data anomalies that might befall this table.

Suppose an employee is involved with multiple projects. If you change the employee’s First-
Name in one of that employee’s rows, it will contradict the FirstName in the employee’s other
rows. This is a modification anomaly.

Suppose you delete the only record containing employee Milton Waddams. You no longer have
a record of his EmployeeId. In fact, you no longer have a record of him at all. (Perhaps that’s the
way he got deleted from the database in the movie Office Space.) This is a deletion anomaly.

You also can’t add an employee record without assigning the employee to a project, and you
can’t create a project without assigning an employee to it. These are insertion anomalies.

3. Explain how to put this table in BCNF.

157

Stephens c07.tex V3 - 10/08/2008 11:25am Page 158

Part II: Database Design Process and Techniques

The solution is to move one of the dependent fields into a new table. In this case, you could pull
the FirstName and LastName fields out of the table and move them into a new EmployeeData
table. Add an EmployeeId field to link the new table’s records back to the original records.

Figure 7-14 shows the new model.

1
EmployeeId
Project

EmployeeAssignments

FirstName
LastName

EmployeeData
EmployeeId∞

Figure 7-14

Fourth Normal Form (4NF)
Suppose you run a home fixit service. Each employee has a set of skills and each drives a particular truck
that contains useful special equipment. They are all qualified to use any of the equipment. The following
table shows a really bad attempt to store this information.

Employee Skills Tools

Gina Harris Electric, Plumbing Chop saw, Impact hammer

Pease Marks Electric, Tile Chain saw

Rick Shaw Plumbing Milling machine, Lathe

You should instantly notice that this table isn’t even in 1NF because the Skills and Tools columns contain
multiple values.

The following table shows an improved version. Here each row holds only one skill and tool.

Employee Skill Tool

Gina Harris Electric Chop saw

Gina Harris Electric Impact hammer

Gina Harris Plumbing Chop saw

Gina Harris Plumbing Impact hammer

Pease Marks Electric Chain saw

Pease Marks Tile Chain saw

Rick Shaw Plumbing Milling machine

Rick Shaw Plumbing Lathe

158

Stephens c07.tex V3 - 10/08/2008 11:25am Page 159

Chapter 7: Normalizing Data

Unfortunately, to capture all of the data about each employee, this table must include a lot of duplication.
To record the fact that Gina Harris has the electric and plumbing skills, and that her truck contains a chop
saw and an impact hammer, you need four rows showing the four possible combinations of values.

In general, if an employee has S skills and T tools, the table would need S × T rows to hold all of the
combinations.

This leads to the usual assortment of problems. If you modify the first row’s Skill to Tile, it contradicts
the second row, causing a modification anomaly. If Gina loses her impact hammer, you must delete two
rows to prevent inconsistencies. If Gina takes classes in Painting, you need to add two new rows to cover
all of the new combinations. If she then decides to add a spray gun, too, you need to add three more
rows.

Something strange is definitely going on here. And yet this table is in BCNF!

You can easily verify that it’s in 1NF.

Next note that every field must be part of the table’s primary key because there can be duplicates of every
other combination.

The table is in 2NF because all of the non-key fields (there are none) depend on all of the key fields (all of
them). It’s in 3NF because there are no transitive dependencies (every field is in the primary key so there
no field is dependent on a non-key field). It’s in BCNF because every determinant is a candidate key (the
only determinant is Employee/Skill/Tool, which is also the only candidate key).

In this table, the problem arises because Employee implies Skill and Employee implies Tool but Skill and
Tool are independent. This situation is called an unrelated multi-valued dependency.

A table is in 4NF if:

1. It is in BCNF.

2. It does not contain an unrelated multi-valued dependency.

A particular Employee leads to multiple Skills and for any given Skill there can be many Employees, so
there is a many-to-many relationship between Employee and Skill. Similarly there is a many-to-many
relationship between Employee and Tool. (Note that there is no relationship between Skill and Tool.)

Figure 7-15 shows an ER diagram for the entities involved: Employee, Skill, and Tool.

The solution to the problem is to find the field that drives the unrelated multi-valued dependency. In this
case, Employee is the central field. It’s in the middle of the ER diagram shown in Figure 7-15 and it forms
one part of each of the many-to-many relationships.

Skill Has Carries ToolEmployee
0.N 0.N 0.N 0.N

Figure 7-15

159

Stephens c07.tex V3 - 10/08/2008 11:25am Page 160

Part II: Database Design Process and Techniques

To fix the table, pull one of the other fields out into a new table. Add the central field (Employee) to link
the new records back to the original ones.

Figure 7-16 shows the new model.

Employee
Skill

EmployeeSkills

Tool

EmployeeTools
Employee∞ ∞

Figure 7-16

Figure 7-17 shows the original data in the new tables.

EmployeeSkills
Employee Skill
Gina Harris Electric
Gina Harris Plumbing
Pease Marks Electric
Pease Marks Tile
Rick Shaw Plumbing

EmployeeTools
Employee Tool
Gina Harris Chop saw
Gina Harris Impact hammer
Pease Marks Chain saw
Rick Shaw Milling machine
Rick Shaw Lathe

Figure 7-17

Try It Out Arranging Data in Fourth Normal Form
Consider the following artist’s directory that lists artist names, genres, and shows they will attend this
year.

Artist Genre Show

Ben Winsh Metalwork Makers of the Lost Art

Ben Winsh Metalwork Tribal Confusion

Harriette Laff Textile Fuzzy Mountain Alpaca Festival

Harriette Laff Textile Tribal Confusion

Harriette Laff Sculpture Fuzzy Mountain Alpaca Festival

Harriette Laff Sculpture Tribal Confusion

Mark Winslow Sculpture Green Mountain Arts Festival

A true database artist should be able to:

1. Identify the table’s unrelated multi-valued dependency.

2. Draw an ER diagram showing the table’s many-to-many relationships.

160

Stephens c07.tex V3 - 10/08/2008 11:25am Page 161

Chapter 7: Normalizing Data

3. Put the table into 4NF by pulling the Show field out into a new table and adding an Artist column
to link back to the original records. Then draw a relational model for the result.

4. Display the new tables with their data.

How It Works

In this example, there is a many-to-many relationship between Genre and Artist, and a second
many-to-many relationship between Show and Artist.

1. Identify the table’s unrelated multi-valued dependency.

The Artist determines Genre and Show but Genre and Show are unrelated.

2. Draw an ER diagram showing the table’s many-to-many relationships.

Figure 7-18 shows an ER diagram for this situation.

Genre Works In Will Attend ShowArtist
0.N 0.N 0.N 0.N

Figure 7-18

3. Put the table into 4NF and draw a relational model for the result.

The central entity is Artist. One solution to this puzzle is to pull the Show field out into a new
table and add an Artist column to link back to the original records. Figure 7-19 shows the result.

Artist
Genre

ArtistGenres

Show

ArtistShows
Artist∞ ∞

Figure 7-19

4. Display the new tables with their data.

Figure 7-20 shows the new tables holding the original data.

ArtistGenres
Artist Genre
Ben Winsh Metalwork
Harriette Laff Textile
Harriette Laff Sculpture
Mark Winslow Sculpture

ArtistShows
Artist Show
Ben Winsh Makers of the Lost Art
Ben Winsh Tribal Confusion
Harriette Laff Fuzzy Mountain Alpaca Festival
Harriette Laff Tribal Confusion
Mark Winslow Green Mountain Arts Festival

Figure 7-20

161

Stephens c07.tex V3 - 10/08/2008 11:25am Page 162

Part II: Database Design Process and Techniques

Fifth Normal Form (5NF)
A table is in 5NF (also called ‘‘Project-Join Normal Form’’) if:

1. It is in 4NF.

2. It contains no related multi-valued dependencies.

For example, suppose you run an auto repair shop. The grease monkeys who work there may be certified
to work on particular makes of vehicles (Honda, Hummer, Yugo) and on particular types of engines (gas,
diesel, hybrid, matter-antimatter).

If a grease monkey is certified for a particular make and for a particular engine, that person must provide
service for that make and engine (if that combination exists). For example, suppose Joe Quark is certified
to repair Hondas and Diesel. Then he must be able to repair Diesel engines made by Honda.

Now consider the following table showing which grease monkey can repair which combinations of make
and engine.

GreaseMonkey Make Engine

Cindy Oyle Honda Gas

Cindy Oyle Hummer Gas

Eric Wander Honda Gas

Eric Wander Honda Hybrid

Eric Wander Hummer Gas

Joe Quark Honda Diesel

Joe Quark Honda Gas

Joe Quark Honda Hybrid

Joe Quark Toyota Diesel

Joe Quark Toyota Gas

Joe Quark Toyota Hybrid

In this case, GreaseMonkey determines Make. For a given GreaseMonkey, there are certain Makes that
this person can repair.

Similarly, GreaseMonkey determines Engine. For a given GreaseMonkey, there are certain Engines that
this person can repair.

Up to this point, the table is very similar to the Employee/Skill/Tool table described in the previous
section about 4NF. Here comes the difference.

162

Stephens c07.tex V3 - 10/08/2008 11:25am Page 163

Chapter 7: Normalizing Data

In the Employee/Skill/Tool table, Skill and Tool were unrelated. In this table, however, Make and Engine
are related. For example, Eric Wander is certified in the Makes Honda and Hummer. He is also certified
in the Engines Gas and Hybrid. The rules state that he must repair Gas and Hybrid engines for Honda
and Hummer vehicles, if they provide those Makes. But Hummer doesn’t make a hybrid, so Eric doesn’t
need to service that combination.

There’s the dependency between Make and Engine. While the GreaseMonkey determines the Make and
Engine, Make also influences Engine.

So how can you remove this dependency? Break the single table into three new tables that record the
three different relationships: GreaseMonkey/Make, GreaseMonkey/Engine, and Make/Engine.

Figure 7-21 shows the new relational model.

GreaseMonkey
Make

GreaseMonkeyMakes
GreaseMonkey
Engine

GreaseMonkeyEngines

Engine

MakeEngines
Make

∞
∞

∞
∞

∞
∞

Figure 7-21

Figure 7-22 shows the new tables holding the original data. I haven’t drawn lines connecting related
records because it would make a big mess.

GreaseMonkey Make
Cindy Oyle Honda
Cindy Oyle Hummer
Eric Wander Honda
Eric Wander Hummer
Joe Quark Honda
Joe Quark Toyota

GreaseMonkey Engine
Cindy Oyle Gas
Eric Wander Gas
Eric Wander Hybrid
Joe Quark Diesel
Joe Quark Gas
Joe Quark Hybrid

Make Engine
Honda Diesel
Honda Gas
Honda Hybrid
Hummer Gas
Hummer Diesel
Toyota Diesel
Toyota Gas
Toyota Hybrid

Figure 7-22

Try It Out Working with the Fifth Normal Form
Remember the artist’s directory from the previous sections about 4NF? The rules have changed slightly.
The directory still lists artist names, genres, and shows they will attend, but now each show allows only
certain genres. Now the Fuzzy Mountain Alpaca Festival includes only textile arts and Tribal Confusion
includes only metalwork and sculpture. (Also, Ben Winsh started making sculptures.)

163

Stephens c07.tex V3 - 10/08/2008 11:25am Page 164

Part II: Database Design Process and Techniques

Here’s the new schedule:

Artist Genre Show

Ben Winsh Metalwork Makers of the Lost Art

Ben Winsh Metalwork Tribal Confusion

Ben Winsh Sculpture Makers of the Lost Art

Harriette Laff Textile Fuzzy Mountain Alpaca Festival

Harriette Laff Sculpture Tribal Confusion

Mark Winslow Sculpture Green Mountain Arts Festival

To prove you’re a true database artist:

1. Identify the table’s related multi-valued dependency.

2. Draw an ER diagram showing the table’s many-to-many relationships.

3. Put the table into 5NF and draw a relational model for the result.

4. Display the new tables with their data.

How It Works

1. Identify the table’s related multi-valued dependency.

Artist determines Genre, Artist determines Show, and Show determines Genre.

2. Draw an ER diagram showing the table’s many-to-many relationships.

Figure 7-23 shows an ER diagram for this situation.

Works In Will Attend

Genre

Artist

ShowAllows

0.N 0.N

0.N

0.N 0.N 0.N 0.N

0.N

Figure 7-23

3. Put the table into 5NF and draw a relational model for the result.

The new model should make separate tables to store the relationships between Artist and Genre,
Artist and Show, and Show and Genre. Figure 7-24 shows this 5NF model.

164

Stephens c07.tex V3 - 10/08/2008 11:25am Page 165

Chapter 7: Normalizing Data

Artist
Genre

ArtistGenres
Artist
Show

ArtistShows

Genre

ShowGenres
Show

∞ ∞
∞

∞
∞

∞

Figure 7-24

4. Display the new tables with their data.

Figure 7-25 shows the new tables holding the original data.

ArtistGenres
Artist
Ben Winsh
Ben Winsh
Harriette Laff
Harriette Laff
Mark Winslow

Genre
Metalwork
Sculpture
Sculpture
Textile
Sculpture

ArtistShows
Artist
Ben Winsh
Ben Winsh
Harriette Laff
Harriette Laff
Mark Winslow

Show
Markers of the Lost Art
Trible Confusion
Fuzzy Mountain Alpaca Festival
Tribal Confusion
Green Mountain Arts Festival

ShowGenres
Genre
Textile
Sculpture
Metalwork
Sculpture
Metalwork

Show

Markers of the Lost Art
Markers of the Lost Art

Fuzzy Mountain Alpaca Festival

Tribal Confusion
SculptureTribal Confusion

Green Mountain Arts Festival

Figure 7-25

Domain/Key Normal Form (DKNF)
A table is in DKNF if:

1. The table contains no constraints except domain constraints and key constraints.

In other words, a table is on DKNF if every constraint is a consequence of domain and key constraints.

Recall from Chapter 3 that a field’s domain consists of its allowed values. A domain constraint simply
means that a field has a value that is in its domain. It’s easy to check that a domain constraint is satisfied
by simply examining all of the field’s values.

A key constraint means the values in the fields that make up a key are unique.

So if a table is in DKNF, to validate all constraints on the data it is sufficient to validate the domain
constraints and key constraints.

For example, consider a typical Employees table with fields FirstName, LastName, Street, City,
State, and Zip. There is a hidden constraint between Street/City/State and Zip because a particular
Street/City/State defines a ZIP Code and a ZIP Code defines City/State. You could validate new

165

Stephens c07.tex V3 - 10/08/2008 11:25am Page 166

Part II: Database Design Process and Techniques

addresses in a table-level check constraint that looked up Street/City/State/Zip to make sure it was a
valid combination.

This table contains a constraint that is neither a domain constraint nor a key constraint so it is not in
DKNF.

You can make the table DKNF by simply removing the Zip field. Now instead of validating a new
Street/City/State/Zip, you look up the address’s ZIP Code whenever you need it. (You would use
whatever method you had been using before to validate the ZIP Code. For example, if the table-level
check constraint was looking it up in a table, you would use that table to look it up now.)

It can be proven (although not by me) that a database in DKNF is immune to all data anomalies. So why
would you bother with lesser forms of normalization? Mostly because it can be confusing and difficult to
build a database in DKNF. (For example, there are about 45,000 U.S. ZIP Codes and they are constantly
changing. That would make a whopper of a table and a maintenance nightmare!)

Lesser forms of normalization also usually give good enough results for most practical database applica-
tions so there’s no need for DKNF under most circumstances.

However, it’s nice to know what DKNF means so you won’t feel left out at cocktail parties when everyone
else is talking about DKNF.

Try It Out Arranging Data in the Domain/Key Normal Form
Consider the following student/class assignment table:

Student Class Department

Annette Silver First Order Logic Philosophy

Annette Silver Real Analysis II Mathematics

Janet Wilkes Fluid Dynamics I Physics

Janet Wilkes Real Analysis II Mathematics

Mark Hardaway First Order Logic Philosophy

Mark Hardaway Topology I Mathematics

This table has a dependency between Class and Department because each class is within a single depart-
ment.

To ace this class:

1. Explain why this table is not in DKNF.

2. Explain how you could put the table in DKNF.

3. Draw a relational model for the result.

4. Show the table(s) you create containing the original data.

166

Stephens c07.tex V3 - 10/08/2008 11:25am Page 167

Chapter 7: Normalizing Data

How It Works

1. Explain why table is not in DKNF.

The dependency between Class and Department is not a domain constraint or a key constraint.

2. Explain how you could put the table in DKNF.

Pull the Department data out of the table and make a new table to relate Department and Class.
Now instead of storing the Department data in the original table, you store only the Student and
Class. When you need to know the Department, you look it up in the new table.

3. Draw a relational model for the result.

Figure 7-26 shows a relational model in DKNF.

Student
Class

StudentClasses
Department
Class1

DepartmentClasses

∞
Figure 7-26

4. Show the table(s) you create containing the original data.

Figure 7-27 shows the new tables holding the original data.

StudentClasses
Student
Annette Silver

Annette Silver

Mark Hardaway

Mark Hardaway

Janet Wilkes

Janet Wilkes

Class
First Order Logic
First Order Logic
Fluid Dynamics I
Real Analysis II
Real Analysis II

First Order Logic
Fluid Dynamics I
Real Analysis II

Topology I

Topology I

DepartmentClasses
Class

Philosophy
Physics
Mathematics
Mathematics

Department

Figure 7-27

Essential Redundancy
One of the major data anomaly themes is redundancy. If a table contains a lot of redundant data, it’s
probably vulnerable to data anomalies, particularly modification anomalies.

However, this is not true if the redundant data is in keys. For example, look again at Figure 7-27. The
StudentClasses table contains several repeated student names and class names. Similarly the Depart-
mentClasses table contains repeated Department names. You might think these create a modification
anomaly hazard.

In fact, if you look at Figure 7-26, you’ll see that all of these fields are all part of the tables’ keys. Their
repetition is necessary to represent the data that the tables hold. For example, the repeated Department
values in the DepartmentClasses table are part of the data showing which departments hold which
classes. Similarly the repeated Student and Class data in the StudentClasses table is needed to represent
the students’ class assignments.

167

Stephens c07.tex V3 - 10/08/2008 11:25am Page 168

Part II: Database Design Process and Techniques

Though these repeated values are necessary, they do create a different potential problem. Suppose you
want to change the name of the class ‘‘Real Analysis II’’ to ‘‘Getting Real, the Sequel’’ because you think
it will make more students sign up for it.

Unfortunately you’re not supposed to change the value of a primary key. If you could change the value,
you might need to update a large number of records and that could lead to problems like any other
modification anomaly would.

The real problem here is that you decided that the class’s name should be changed. Because you can’t
change key values, the solution is to use something else instead of the class’s name for the key. Typically
a database will use an arbitrary ID number to represent the entity and then move the real data (in this
case the class’s name) into another table. Because the ID is arbitrary, you should never need to change it.

Figure 7-28 shows one way to replace these fields used as keys with arbitrary IDs that you will never
need to change.

1StudentId

StudentName

Students
StudentId
ClassId

StudentClasses
1

1
DepartmentId
DepartmentName

Departments

1

1 1

DepartmentId
ClassId

DepartmentClasses

ClassId
ClassName

Classes

∞
∞

∞
∞

Figure 7-28

For bonus points, you can notice that you can combine the DepartmentClasses and Classes tables to give
the simpler model shown in Figure 7-29.

1StudentId

StudentName

Students
StudentId
ClassId

StudentClasses
DepartmentId
DepartmentName

Departments
ClassId
ClassName
DepartmentId

Classes
1 1∞

∞
∞

Figure 7-29

This is a reasonable model. Each table represents a single, well-defined entity (student, class, department,
and the relationship between students and classes).

The Best Level of Normalization
Domain/Key Normal Form makes a database provably immune to data anomalies, but it can be tricky
to implement and it’s not usually necessary. The higher levels of normalization may also require you to
split tables into many pieces, making it harder and more time-consuming to reassemble the pieces when
you need them.

168

Stephens c07.tex V3 - 10/08/2008 11:25am Page 169

Chapter 7: Normalizing Data

For example, the previous section explained that an Employees table containing Street, City, State, and
Zip fields was not in DKNF because the Street/City/State combination duplicates some of the informa-
tion in the Zip field. The solution was to remove the Zip field and to look up an employee’s ZIP Code
whenever it was needed. To see whether this change is reasonable, look at the costs and benefits.

The extra cost is that you must perform an extra lookup every time you need to display an employee’s
address with the ZIP Code. Just about any time you display an employee’s address you will need the ZIP
Code, so you will probably perform this lookup a lot.

The benefit is that it makes the data less susceptible to data modification anomalies if you need to change
a ZIP Code value. But how often do ZIP Codes change? On a national level, ZIP Codes change all the
time but unless you have millions of employees, your employees’ ZIP Codes probably won’t change all
that frequently. This seems like a rare problem. It is probably better to use a table-level check constraint
to validate the Street/City/State/Zip combination when the employee’s data is created or modified and
then leave well enough alone. On the rare occasion when a ZIP Code really does change, you can do the
extra work to update all of the employees’ ZIP Codes.

Often 3NF reduces the chances of anomalies to a reasonable level without requiring confusing and com-
plex modifications to the database’s structure.

When you design your database, put it in 3NF. Then look for redundancy that could lead to anomalies.
If the kinds of changes that would cause problems in your application seem like they may happen often,
then you can think about using the more advanced normalizations. If those sorts of modifications seem
rare, you may prefer to leave the database less normalized.

Summary
Normalization is the process of rearranging a database’s table designs to prevent certain kinds of data
anomalies. Different levels of normalization protect against different kinds of errors.

If every table represents a single, clearly defined entity, you’ve already gone a long way toward making
your database safe from data anomalies. You can use normalization to further safeguard the database.

In this chapter you learned about:

❑ Different kinds of anomalies that can afflict a database.

❑ Different levels of normalization and the anomalies they prevent.

❑ Methods for normalizing database tables.

The next chapter discusses another way you can reduce the chances of errors entering a database. It
explains design techniques other than normalization that can make it safer for a software application to
manipulate the database.

Before you move on to Chapter 8, however, use the following exercises to test your understanding of the
material covered in this chapter. You can find the solutions to these exercises in Appendix A.

169

Stephens c07.tex V3 - 10/08/2008 11:25am Page 170

Part II: Database Design Process and Techniques

Exercises
1. Suppose a student contact list contains the fields Name, Email, Email, Phone1, PhoneType1,

Phone2, PhoneType2, and MajorOrSchool. The student’s preferred email address is listed
in the first Email field. Similarly the preferred phone number is in the Phone1 field. The
MajorOrSchool field stores the student’s major if he or she has picked one and the student’s
school (School of Engineering, School of Liberal Arts, School of Metaphysics, and so forth)
otherwise.

a. Explain why this list isn’t in 1NF.

b. Convert it into 1NF. Draw a relational diagram for it.

2. Consider the following table that lists errands that you need to run. The list shows the most
important items at the top.

Location Items

Grocery store milk, eggs, bananas

Office supply store paper, pencils, divining rod

Post Office stamps

Computer store flash drive, 8’’ floppy disks

a. Explain why this list isn’t in 1NF.

b. Convert this list into a single 1NF table. Be sure to define a primary key.

3. For the table you built for Exercise 2:

a. Explain why the table isn’t in 2NF.

b. Convert the table into 2NF.

4. Consider the following employee assignments table, which uses Employee as its primary
key.

Employee Project Department

Alice Most Work Assignment Network Lab

Bill Michaels Network Routing Network Lab

Deanna Fole Survey Design Human Factors

Josh Farfar Work Assignment Network Lab

170

Stephens c07.tex V3 - 10/08/2008 11:25am Page 171

Chapter 7: Normalizing Data

Employee Project Department

Julie Wish Survey Design Human Factors

Mandy Ponem Network Routing Network Lab

Mike Mix New Services Analysis Human Factors

a. Explain why the table isn’t in 3NF.

b. Convert the table into 3NF.

5. One of your friends has decided to start a breakfast club. What each member can cook
depends on his or her skills and equipment. Your friend built the following table to record
all of the combinations.

Person Food Tool

Alice Muffins Muffin tin

Alice Muffins Omelet pan

Alice Muffins Pancake griddle

Alice Omelets Muffin tin

Alice Omelets Omelet pan

Alice Omelets Pancake griddle

Alice Pancakes Muffin tin

Alice Pancakes Omelet pan

Alice Pancakes Pancake griddle

Bob Muffins Omelet pan

Bob Omelets Omelet pan

Bob Pancakes Omelet pan

Cyndi Omelets Muffin tin

Cyndi Omelets Pancake griddle

Fortunately you know all about normalization, so help your friend by:

a. Explaining why the table isn’t in 5NF.

b. Converting the table into 5NF.

171

Stephens c07.tex V3 - 10/08/2008 11:25am Page 172

Part II: Database Design Process and Techniques

6. In Figure 7-30, match the normal forms on the left with their corresponding rules on the
right.

First Normal Form

It contains no transitive dependencies.

Third Normal Form

Second Normal Form

Boyce/Codd Normal form

Fourth Normal form

Fifth Normal form

Domain/Key Normal Form

Columns cannot contain repeating groups.
Each column must contain a single value.

Every determinant is a candidate key.

No two rows can contain identical values.
Each column must have a single data type.

The table contains no constraints except
domain constraints and key constraints.

It contains no related multi-valued
dependencies.

All of the non-key fields depend on all of
the key fields.

The order of the rows and columns doesn't
matter.

Each column must have a unique name.

It does not contain an unrelated multi-
valued dependency.

Figure 7-30

172

Stephens c08.tex V3 - 10/08/2008 11:27am Page 173

8
Designing Databases
to Support Software

Applications

The previous chapters showed how to gather user requirements, build a database model, and
normalize the database to improve its performance and robustness. Those chapters showed how
to look at the database from the customers’ perspective, from the end user’s perspective, and from
a database normalization perspective, but there’s one other point of view that you should consider
before you open your database product and start slapping tables together: the programmer’s.

You may not be responsible for writing a program to work with a database. The database may not
ever directly interact with a program (although that’s rare). In any case, the techniques that you
would use to make a database easier for a program to use often apply to other situations. Learning
how to help a database support software applications can make the database easier to use in general.

In this chapter you learn:

❑ Steps you can take to make the database more efficient in practical use.

❑ Methods for making validation easier in the user interface.

❑ Ways to easily manage non-searchable data.

This chapter describes several things that you can do to make the database more program-friendly.

A few of these ideas (such as multi-tier architecture) have been covered in earlier chapters. They are
repeated in brief here to tie them together with other programming-related topics, but you should
refer to the original chapters for more detailed information.

Plan Ahead
Any complicated task benefits from prior planning, and software development is no exception. It
has been shown that the longer an error remains in a project the longer it takes to fix it. Database

Stephens c08.tex V3 - 10/08/2008 11:27am Page 174

Part II: Database Design Process and Techniques

design occurs very early in the development process, so mistakes made here can be very costly.
A badly designed database provides the perfect proving ground for the expression, ‘‘Act in haste,
repent at leisure.’’ Do your work up front or be prepared to spend a lot of extra time fixing mistakes.

Practically all later development depends directly or indirectly on the database design. The database
design acts like a building’s foundation. If you build a weak foundation, the building on top of
it will be wobbly and unsound. The Leaning Tower of Pisa is a beautiful result built on a weak
foundation, but it’s the result of luck more than planning and people have spent hundreds of years
trying to keep it from falling down. If you try to build on a wobbly foundation, you’re more likely
to end up with a pile of broken rubble than an interesting building.

After you get some experience with database design, it’s very tempting to just start cranking out
table and field definitions without any prior planning, but that’s almost always a mistake. Don’t
immediately start building a database or even creating a relational object model. At least sketch out
an ER diagram to better understand the entities that the database must represent before you start
building.

Document Everything
Write everything down. This helps prevent disagreements about who promised what to whom. (‘‘But
you promised that the database could look up a customer’s credit rating and Amazon password.’’)

Good documentation also keeps everyone on the same wavelength. If you have done a good job of
writing requirements, use cases, database models, design specifications, and all of the other paperwork
that describes the system, the developers can scurry off into their own little burrows and start working
on their parts of the system without fear of building components that won’t work together.

You can make programmers’ lives a lot easier if you specify table and field definitions in great detail.
Write down the fields that belong in each table. Also write down each field’s properties: name, data type,
length, whether it can be null, string format (such as ‘‘mm/dd/yyyy’’ or ‘‘###-####’’), allowed ranges
(1–100), default values, and other more complex constraints.

Programmers will need this information to figure out how to build the user interface and the code that
sits behind it (and the middle tiers if you use a multi-tier architecture). Make sure the information is
correct and complete at the start so the programmers don’t need to make a bunch of changes later.

For example, suppose Price must be greater than $1.00. The programmers get started and build a whole
slew of screens that assume Price is greater than $1.00. Now it turns out that you meant Price must be
at least $1.00 not greater than $1.00. This is a trivial change to the design and to the database but the pro-
grammers will need to go fix the whole bunch of screens that contain the incorrect assumption. (Actually,
good programming practices will minimize the problem, but you can’t assume everyone is a top-notch
developer.)

After you have all of this information, don’t just put it in the database and assume that everyone can get
the information from there. Believe it or not, some developers don’t know how to use every conceivable
type of database product (MySQL, SQL Server, Access, Informix, Oracle, DB2, Paradox, Sybase, Post-
greSQL, FoxPro — there are hundreds) so making them dig this information out of the database can be
a time-consuming hassle. Besides, writing it all up gives you something to show management to prove
that you’re making progress.

174

Stephens c08.tex V3 - 10/08/2008 11:27am Page 175

Chapter 8: Designing Databases to Support Software Applications

Consider Multi-Tier Architecture
A multi-tier architecture can help isolate the database and user interface development so programmers
and database developers can work independently. This approach can also make a database more flexible
and amenable to change. Unless you’re a project architect, you probably can’t decide to use this kind
of architecture by yourself but you can make sure it is considered. See Chapter 6 for more details about
multi-tier architectures.

Convert Domains into Tables
It’s easy enough to validate a field against its domain by using check constraints. For example, suppose
you know that the Addresses table’s State field must always hold one of the values CA, OR, or WA. You
can verify that a field contains one of those values with a field-level check constraint. In Access, you could
set the State field’s Validation Rule property to:

=‘CA’ Or =‘OR’ Or =‘WA’

Other databases use different syntax.

Although this is simple and it’s easy for you to change, it’s not easily visible to programmers building
the application. That means they need to write those values into the code. Later if you change the list, the
programmers need to change the code.

Even worse, someone needs to remember that the code needs to be changed! It’s fairly common to change
one part of an application and forget to make a corresponding change elsewhere. Those kinds of mistakes
can lead to some bugs that are very hard bugs.

A better approach is to move the domain information into a new table. Create a States table and put the
values CA, OR, and WA in it. Then make a foreign key constraint that requires the Addresses table’s
States field to allow only values that are in the States table. Programmers can query the database at run
time to learn what values are allowed and can then do things such as making a combo box that allows
only those choices. Now if you need to change the allowed values, you only need to update the States
table’s data and the program automatically picks up the change.

Wherever possible, convert database structure into data so everyone can read it easily.

Try It Out Lookup Tables
Okay, this is really easy but it’s important so bear with me. Suppose your Phoenician restaurant offers
delivery service for customers with ZIP Codes between 02154 and 02159. In Access, you could validate
the customer’s Zip field with the following field-level check constraint:

>=‘02154’ And <=‘02159’

Unfortunately that constraint is hidden from the programmers building the user interface. These checks
may also not be in a form that’s easy for the program to understand. Most programmers don’t know how
to open Access, read a field’s check constraints, and parse an expression such as this one to figure out
what it does.

175

Stephens c08.tex V3 - 10/08/2008 11:27am Page 176

Part II: Database Design Process and Techniques

How could you make this condition easier for programmers to discover and use at run time?

How It Works

Though reading and parsing check constraints is hard, it’s fairly easy for a program to read the values
from a table. The answer is to make a DeliveryZips table that lists the ZIP Codes in the delivery area:

Zip

02154

02155

02156

02157

02158

02159

This seems less elegant than the field-level check constraint but it’s a lot easier for the program to under-
stand.

Keep Tables Focused
If you keep each table well-focused, there will be fewer chances for misunderstandings. Different devel-
opers will have an easier time keeping each table’s purpose straight so different parts of the application
will use the data in the same (intended) way.

Modern object-oriented programming languages also use objects and classes that are very similar to
the objects and classes used in semantic object modeling and that are similar to the entities and entity
sets used by entity-relationship diagrams. If you do a good job of modeling, and keep object and table
definitions well-focused, those models practically write the code by themselves. There are still plenty of
other things for the programmers to do but at least they’ll be able to make programming object models
that closely resemble the database structure.

Use Three Kinds of Tables
One tip that can help you keep tables focused is to note that there are three basic kinds of tables. The first
kind stores information about objects of a particular type. These hold the bulk of the application’s data.

The second kind of table represents a link between two or more objects. For example, the association
tables described in Chapter 5 represent a link between two types of objects.

Figure 8-1 shows an ER diagram to model employees and projects. Each employee can be assigned to
multiple projects and each project can involve multiple employees. The EmployeeRoles table provides a

176

Stephens c08.tex V3 - 10/08/2008 11:27am Page 177

Chapter 8: Designing Databases to Support Software Applications

link between the other two object tables. It also stores additional information about the link. In this case,
it stores the role that an employee played on each project.

1
EmployeeId
Name

Employees

ProjectId
EmployeeRole

EmployeeRoles
EmployeeId ProjectId

Description

Projects
1∞

∞

Figure 8-1

The third basic kind of table is a lookup table. These are tables created simply to use in foreign key
constraints. For example, the States table described in the earlier section ‘‘Convert Domains into Tables’’
is a lookup table.

When you build a table, ask yourself whether it represents an object, a link, or a lookup. If you cannot
decide or if the table represents more than one of those, the table’s purpose may not be clearly defined.

Try It Out Well-Focused Tables
Take a look at the following table of extra-terrestrial animals:

Animal Size Planet PlanetaryMass

Hermaflamingo Medium Virgon 4 1.21

Shunkopotamus Large Dilbertopia 0.88

Mothalope Medium Xanth 0.01

Shunkopotamus Large Virgon 4 1.21

Platypus Small Australia 1.00

The table’s primary key is the combination of Animal/Planet. (The PlanetaryMass field is measured in
Earth masses.)

This isn’t a very well-focused table.

1. What ideas is this table is trying to capture?

2. What types of ideas are these (object, link, or lookup)?

3. Suggest a better design that keeps the table’s separate purposes separate.

How It Works

1. What ideas is this table is trying to capture?

This table is trying to capture three different ideas: information about the animals (Animal and
Size), information about planets (Planet and PlanetaryMass), and the associations between the

177

Stephens c08.tex V3 - 10/08/2008 11:27am Page 178

Part II: Database Design Process and Techniques

animals and planets. The fact that this table holds information about three different concepts is a
sign that it is not well-focused.

(Also note this table is not in Second Normal Form because it has non-key fields that do not
depend on the entire key. Recall that the primary key is Animal/Planet. The Size field depends
on Animal but not Planet, and the PlanetaryMass field depends on Planet but not Animal.)

2. What types of ideas are these (object, link, or lookup)?

Information about the animals and information about the planets represent objects. Information
about the associations between animals and planets is a link.

3. Suggest a better design that keeps the table’s separate purposes separate.

The key is to move the three kinds of information into three different tables. Figure 8-2 shows one
relational design that separates the three sets of information into three tables.

1
AnimalId
PlanetId

AnimalPlanets

Name
Size

Animals
AnimalId

1

Name
PlanetaryMass

Planets
PlanetId∞

∞

Figure 8-2

Figure 8-3 shows the tables holding their original data.

Medium

Medium
Small

Large

Animals
Size

Hermaflamingo

Mothalope
Platypus

Shunkopotamus

Animal AnimalId
1
2
3
4

Planets
PlanetaryMass

1.21
0.88
0.01
1.00

PlanetId
101
102
103
104

HomePlanet
Virgon 4
Dilbertopia
Xanth
Australia

AnimalPlanets
AnimalId

1
2
3
2

PlanetId
101
102
103
101

4 104

Figure 8-3

Use Naming Conventions
Use consistent naming conventions when you name database objects. It doesn’t matter too much what
conventions you use as long as you use something consistent.

Some database developers prefix table names with tbl and field names with fld as in, ‘‘The tblEmployees
table contains the fldFirstName and fldLastName fields.’’ For simple databases, I prefer to omit the pre-
fixes because it’s usually easy enough to tell which names represent objects (tables) and which represent
attributes (fields).

Some developers also use a lnk prefix for tables that represent a link between objects as in, ‘‘The lnkAni-
malsPlanets table links tblAnimals and tblPlanets.’’ These developers are also likely to use lu or lup as a
prefix for lookup tables.

178

Stephens c08.tex V3 - 10/08/2008 11:27am Page 179

Chapter 8: Designing Databases to Support Software Applications

Some developers prefer to use UPPERCASE_LETTERS for table names and lowercase_letters for field
names. Others use MixedCase for both.

Some prefer to make table names singular (the Employee table) and others prefer to make them plural
(the Employees table).

As I said, it doesn’t matter too much which of these conventions you use as long as you pick some
conventions and stick to them.

However, there are three ‘‘mandatory’’ naming rules that you should follow or the other developers will
snicker behind your back and openly mock you at parties.

First, don’t use special characters in table names, field names, or anywhere else in database objects. For
example, some databases (such as Access) allow you to include spaces in table and field names.
For example, you can make a field named ‘‘First Name.’’ Those databases also provide some mechanism
for making these weird names readable to the database. For example, in Access you need to use
square brackets to surround a field with a name containing spaces as in ‘‘[First Name].’’ This produces
hard-to-read expressions in check constraints and anywhere else you use the field. It also makes
programmers using the field take similar annoying steps and that makes their code less readable, too.

Second, if two fields in different tables contain the same data, give them the same name. For example,
suppose you use an ID field to link the Employees table to the EmployeePhones table. Don’t call this
linking field Id in the Employees table and EmpId in the EmployeePhones table. That’s just asking for
trouble. Call the field EmployeeId in both tables. (A corollary to this rule is that you cannot name an ID
field something vague such as Id. It may make sense in the main table such as Employees but that name
won’t make sense in a related table such as EmployeePhones.)

The third mandatory naming rule is to use meaningful names. Don’t abbreviate to the point of obscurity.
It shouldn’t take a team of National Security Agency cryptographers to decipher a table’s field names.
StudPrfCrs is much harder to read than StudentPreferredCourses. Don’t be afraid to spell things out
so everyone can understand them. (The exception here seems to be the military where everyone would
understand ‘‘SecInt visited NavSpecWarGru’’ but saying ‘‘the Secretary of the Interior visited the Naval
Special War Group’’ would brand you as an outsider.)

The section ‘‘Poor Naming Standards’’ in Chapter 10 has more to say about naming conventions and
includes a few links that you can follow to learn about some specific standards that you can adopt if
you like.

Allow Some Redundant Data
Chapter 7 explained that it is not always best to normalize a database as completely as possible. The
higher forms of normalization usually spread data out into tables that are linked by their fields. When a
program needs to display that data, it must reassemble all of that scattered data and that can take some
extra time.

For example, if you allow customers to have any number of phone numbers, email addresses, postal
addresses, and contacts, then what seems to the user like a simple customer record is actually spread
across the Customers, CustomerPhones, CustomerEmails, CustomerAddresses, and CustomerContacts
tables.

179

Stephens c08.tex V3 - 10/08/2008 11:27am Page 180

Part II: Database Design Process and Techniques

In some cases, it may be better to restrict the database’s flexibility somewhat to gain speed and simplicity.
For example, if you allow the customers to have only two phone numbers, one email address, and one
contact, you cut the number of tables that make up the customer’s information from five to two. The
database won’t be as infinitely flexible and it won’t be quite as completely normalized, but it will be
easier to use.

Usually it’s also best not to store the same data in multiple ways because that can lead to modification
anomalies. For example, you don’t really need a Balance field in a customer’s record if you can recalculate
the balance by adding up all of the customer’s credits and debits.

However, suppose you’re running an Internet service that allows customers to download music so a
typical customer makes dozens or even hundreds of purchases a month. After a year or two, adding
up all of a customer’s credits and debits could be time consuming. In this case, you might be better off
adding a Balance field to the customer’s record and exercising a little extra caution when updating the
account.

Don’t Squeeze in Everything
Just because you’re using a database doesn’t mean every piece of data that the system uses must be
squeezed in there somewhere. Databases provide tools for storing and retrieving some strange pieces of
data such as audio, video, images — just about anything you can cram into a computer file. That doesn’t
mean you should go crazy and store every file on your computer within the database.

For example, suppose an application must locate and play thousands of audio files. You could store all
of them in the database or you could place the files in a directory tree somewhere and then store the
locations of those files in the database. That makes the database simpler, smaller, and possibly more
efficient because it doesn’t need to store all of those files. It also makes it a lot easier to update the files.
Instead of loading a new file into the database, you can simply replace the file on the disk.

This technique can also be useful for managing large amounts of shared data such as Web pages. You
don’t need to copy Wikipedia pages into your database (in fact, it would probably be a copyright viola-
tion). Instead you can store the URLs pointing to the pages you need. In this case you give up control of
the data but you also don’t have to store and maintain it yourself. If the data is updated, you’ll see the
new data the next time you visit a URL.

There are only a couple of drawbacks to this technique. First, you lose the ability to search inside any
data that is not stored inside the database. I don’t know of any databases that let you search inside
video, audio, or jpeg data, however, so you probably shouldn’t lose much sleep over giving up an ability
that you don’t have anyway. I wouldn’t move textual data outside the database in this way, however,
unless you’re sure you’ll never want to search inside it.

Second, you give up some of the security provided by the database. For example, you lose the database’s
record-locking features so you may have trouble allowing multiple concurrent users to update the data.

180

Stephens c08.tex V3 - 10/08/2008 11:27am Page 181

Chapter 8: Designing Databases to Support Software Applications

Try It Out First Normal Form
Suppose you’re building a database of amusing commercials (see www.veryfunnyads.com and
giesbers.net/video for some good ones). The Commercials table includes the fields Name, Product,
Description, Length, Video (the commercial), and Still (a representative frame to remind you what the
commercial is about).

Figure out which of these fields should remain in the database and which might be moved outside into
the file system:

1. To figure out which fields should remain in the database, identify those that you might want to
search. Include fields with simple values (such as numbers and short strings) that are easy
to store in a database but that would not make a very big file on the disk.

2. To figure out which fields might be moved outside of the database into the file system, identify
the fields that contain large chunks of non-searchable data.

How It Works

1. In this database, you might want to search the Name, Product, Description, and Length fields.

2. You cannot search the Video or Still fields whether you want to or not so you might as well
move them into the file system. The Video field will contain particularly large amounts of data so
moving it outside of the database might even make the database more efficient.

Summary
Though the focus of this book and your database design efforts is on databases, a database rarely lives in
total isolation. Usually someone writes a program to interact with it. Often the database is just a backend
for a complicated user interface.

To get the most out of your database, you need to consider it in its environment. In particular, you
should think about the applications and programmers who will interact with it. Often a few relatively
small changes to the design can make life easier for everyone who works with the database.

In this chapter you learned to:

❑ Plan ahead and document everything.

❑ Convert domains into tables to help user interface programmers and to make maintaining
domain information easier.

❑ Keep tables well-focused and make each perform a single task.

❑ Use some redundancy and denormalized tables to improve performance.

181

Stephens c08.tex V3 - 10/08/2008 11:27am Page 182

Part II: Database Design Process and Techniques

The last several chapters dealt with database design techniques and considerations. Those chapters
explained general techniques for building a data model and then modifying it to make it more efficient.

The next chapter switches from general discussion to more specific techniques. It summarizes some
of the methods described in the previous chapters and explains some common database design patterns
that you may find useful in providing specific data features.

Before you move on to Chapter 9, however, use the following exercises to test your understanding of the
material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
1. Suppose you sell ocean cruises. Customers first decide what kind of Ship they want to travel

on: Luxury Liner, Schooner, or Tuna Boat. Depending on that choice, they may select differ-
ent classes of cabins. Luxury Liners provide 1st through 5th class. Schooners have 1st and
2nd class (basically a single or a double), and Tuna Boats have a single class (which they
playfully call 1st Class) where you share a single large bunkroom with the rest of the crew.

You could validate the Trips record’s Ship and Cabin fields by using a table-level check con-
straint but, because you’re a team player, you would rather build a foreign key constraint so
the user interface can read the allowed values from the tables.

Build such a table and display its data. Explain how this table will be used in the foreign key
constraint.

2. Figure 8-4 shows a relational diagram showing the relationships between students, the
classes they are taking, and the departments that hold the classes. For each table in this
diagram, tell which of the three types of table it is: object, link, or lookup.

1StudentId

StudentName

Students
StudentId
ClassId

StudentClasses
1

1
DepartmentId
DepartmentName

Departments

1

1 1

DepartmentId
ClassId

DepartmentClasses

ClassId
ClassName

Classes

∞
∞

∞
∞

Figure 8-4

3. The following table stores information about checkers matches. Explain why it lacks focus
and how you would fix it.

Player1 Player1Rank Player2 Player2Rank MatchTime

Smith 10 Jones 3 1:00

Marks 9 Lars 4 1:00

Aft 8 Cook 5 2:00

Mauren 7 Juno 6 2:00

182

Stephens c08.tex V3 - 10/08/2008 11:27am Page 183

Chapter 8: Designing Databases to Support Software Applications

4. Assume you have a large database that tracks how closely airplanes are to their scheduled
departure and landing times. It tracks these values by plane (which is associated with a par-
ticular airline) and airport. It also records the weather at the starting and landing airports.

Which of the following values should you store in a redundant variable and which should
you calculate as needed?

a. Average minutes late for an airline at a particular airport.

b. Average minutes late for all airlines at a particular airport.

c. Average minutes late for an airline across the country.

d. Average minutes late for all airlines across the entire country.

Assume that you need these numbers quickly several times per day.

183

Stephens c08.tex V3 - 10/08/2008 11:27am Page 184

Stephens c09.tex V2 - 10/08/2008 11:28am Page 185

9
Common Design Patterns

The previous chapters described general techniques for building database designs. For example,
Chapter 5 explained how to build semantic object models and entity-relationship diagrams for a
database, and how to convert those models into relational designs. Chapter 7 explained how to
transform those designs to normalize the database.

This chapter takes a different approach. It focuses on data design scenarios and describes methods
for building them in a relational model.

In this chapter you learn techniques for:

❑ Providing different kinds of associations between objects.

❑ Storing data hierarchies and networks.

❑ Handling time-related data.

❑ Logging user actions.

This chapter does not provide designs for specific situations such as order tracking or employee
payroll. Appendix B, ‘‘Sample Database Designs,’’ contains those sorts of examples.

This chapter focuses on a more detailed level to give you the techniques you need to build the pieces
that make up a design. You can use these techniques as the beginning of a database design toolbox
that you can apply to your problems.

The following sections group these patterns into three broad categories: associations, temporal data,
and logging and locking.

Associations
Association patterns represent relationships among various data objects. For example, an associa-
tion can represent the relationship between a rugby team and its opponents during matches.

Stephens c09.tex V2 - 10/08/2008 11:28am Page 186

Part II: Database Design Process and Techniques

The following sections describe different kinds of associations.

Many-to-Many Associations
It’s easy to represent a many-to-many association in an ER diagram. For example, a Student can be
enrolled in many Courses and a Course includes many Students, so there is a many-to-many rela-
tionship between Students and Courses. Figure 9-1 shows an ER diagram modeling this situation.

1.N 1.N
Student CourseTakes

Figure 9-1

Unfortunately relational databases cannot handle many-to-many relationships directly. To build
this kind of relationship in a relational database, you need to add an association table to represent
the relationship between students and courses. Simply create a table called StudentCourses and
give it fields StudentId and CourseId. Figure 9-2 shows this structure.

1 1
StudentId

Students

FirstName
LastName

Name
CourseId

Courses

Description

StudentCourses
StudentId
CourseId

∞
∞

Figure 9-2

To list all of the courses for a particular student, find the StudentCourses records with that Student
Id. Then use each of those records’ CourseId values to find the corresponding Courses records.

To list all of the students enrolled in a particular course, find the StudentCourses records with that
CourseId. Then use each of those records’ StudentId values to find the corresponding Students
records.

Multiple Many-to-Many Associations
Sometimes a many-to-many relationship contains extra associated data. For example, the previ-
ous section explained how to track students and their current course enrollments. Suppose you
also want to track student enrollments over time. In other words, you want to know each stu-
dent’s enrollments for each year and semester. In this case, you really need to make multiple
many-to-many associations between students and courses. You need whole sets of these associ-
ations to handle each school semester.

Fortunately this requires only a small change to the previous solution. The StudentCourses table
shown in Figure 9-2 can already represent the relationship of students to courses. The only thing
missing is a way to add more records to this table to store information for different years and
semesters.

186

Stephens c09.tex V2 - 10/08/2008 11:28am Page 187

Chapter 9: Common Design Patterns

The solution is to add Year and Semester fields to the StudentCourses table. Figure 9-3 shows the
new model.

1 1StudentId
Students

FirstName
LastName

Name
CourseId

Courses

Description

StudentCourses
StudentId
CourseId
Year

∞
∞

Semester

Figure 9-3

Now the StudentCourses table can store multiple sets of records representing different years and
semesters.

If you need to store extra information about each semester, you could make a new Semesters table
to hold that information. Then you could add the Year and Semester fields to this new table and use
them as a foreign key in the StudentCourses table.

Try It Out Many-to-Many Relations
Suppose you’re coordinating a week-long tour called ‘‘Junk Yards of the Napa Valley.’’ Each day,
the participants can sign up for several tours of different junk yards. They can also sign up for
dinner at a fine restaurant or winery.

Build a relational model to record this information.

1. Build Participants, Tours, and Restaurants tables.

2. Study the relationships between Participants and Tours, and between Participants and Restau-
rants. Determine whether they are many-to-many or some other kind of relationship.

3. Build a relationship table to represent each many-to-many relationship. Be sure to include
enough fields to distinguish among similar combinations of the involved tables. (For example,
Bill really liked the trip to Annette’s Scrap and Salvage on Tuesday so he took that tour again on
Thursday.) Your model needs a ParticipantTours table and a ParticipantRestaurants table. To
distinguish among repeats such as Bill’s, add a Date field to each table.

How It Works

1. There’s no real trick in Step 1. Just be sure to give each table an ID field so it’s easy to refer to its
records.

2. To understand Step 2, remember that each participant can go on many tours and each tour can
have many participants so the Participants/Tours relationship is many-to-many. During the
week, each participant can eat at several restaurants and each restaurant can feed many partic-
ipants, so the Participants/Restaurants relationship is also many-to-many.

3. To model the two many-to-many relationships, the model needs a ParticipantTours table and a
ParticipantRestaurants table. To distinguish among repeats (a customer takes the same tour twice
or visits the same restaurant twice), add a Date field to each table.

187

Stephens c09.tex V2 - 10/08/2008 11:28am Page 188

Part II: Database Design Process and Techniques

Figure 9-4 shows the final relational model.

1

1

1

1

Participants
ParticipantId
FirstName
LastName

ParticipantTours
ParticipantId
TourId
Date

ParticipantRestaurants
ParticipantId
RestaurantId
Date

TourId
Description

Tours

RestaurantId
Description

Restaurants

∞
∞

∞
∞

Figure 9-4

Multiple-Object Associations
A multiple-object association is one where many different kinds of objects are collectively associated
to each other. For example, making a movie requires a whole horde of people including a director,
a bunch of actors, and a huge number of crew members. You could model the situation with the ER
diagram shown in Figure 9-5.

Crewmember

Director 1.1

1.11.N

1.N

Actor MovieCreate

Figure 9-5

If this collection of people always worked as a team, this situation would be easy to implement in a
relational model. You would assign all of the people a TeamId and then build a Movies table with
a TeamId field to tell who worked on that movie.

Unfortunately, this idea doesn’t quite work because all of these people can work on any number of
movies in any combination.

You can solve this problem by thinking of the complex multi-object relationship as a combination of
simpler relationships. In this case, you can model the situation as a one-to-one Director/Movie rela-
tionship, a many-to-many Actor/Movie relationship, and a many-to-many Crewmember/Movie
relationship.

188

Stephens c09.tex V2 - 10/08/2008 11:28am Page 189

Chapter 9: Common Design Patterns

Figure 9-6 shows the new ER diagram.

1.1

1.1
1.1
1.1

1.N

1.N

Director Helps Create

Actor Helps Create

Crewmember Helps Create

Movie

Figure 9-6

You can convert this simpler diagram into a relational model as shown in Figure 9-7.

1
1

1

1

1

ActorId
Name

Actors

Name

 Crewmembers
CrewmemberId

ActorId
MovieId

MovieActors

MovieId
CrewmemberId

MovieId
Title
Description
DirectorId

Movies

Name

Directors
DirectorId

MovieCrewmembers

∞

∞

∞

∞

∞

Figure 9-7

Notice that this model uses two association tables to represent the two many-to-many relationships.
The relationship between Directors and Movies doesn’t require an association table because this is
a simpler one-to-one relationship.

Try It Out Building Multiple-Object Associations
Consider another aspect of the ‘‘Junk Yards of the Napa Valley’’ tours. You have multiple tour
guides and multiple vehicles. A Trip represents a specific instance of a tour by a guide, vehicle, and
a group of participants.

189

Stephens c09.tex V2 - 10/08/2008 11:28am Page 190

Part II: Database Design Process and Techniques

Build a relational model to hold this data.

1. Build Guides, Vehicles, Tours, Participants, and Trips tables.

2. Study the relationships between Trips and Guides, Vehicles, Tours, and Participants. Determine
whether they are many-to-many or some other kind of relationship.

3. Build an ER diagram to show these relationships.

4. Build a relationship table to represent each many-to-many relationship.

5. Draw the relational model.

How It Works

1. There’s no real trick in this. Just be sure to give each table an ID field so it’s easy to refer to its
records.

2. Each guide can lead several trips but each trip has a single guide, so Guides/Trips is a
one-to-many relationship.

Each vehicle can go on many trips but each trip has a single vehicle, so Vehicles/Trips is a
one-to-many relationship.

A tour represents a destination. A destination can be the target of many trips but each trip visits
only one destination, so Tours/Trips is a one-to-many relationship.

Finally, each participant can go on many trips and each trip can have many participants, so Par-
ticipants/Trips is a many-to-many relationship.

3. Figure 9-8 shows these relationships in an ER diagram.

Tour

Participant

Guide 1.1

1.1

1.1

0.N

1.N

Vehicle

TripGoes On

Figure 9-8

4. This model has only one many-to-many relationship: Participants/Trips. To handle it, the model
needs a ParticipantsTrips table.

Figure 9-9 shows the final relational model.

190

Stephens c09.tex V2 - 10/08/2008 11:28am Page 191

Chapter 9: Common Design Patterns

GuideId
FirstName
LastName

Guides
1

1

1

1

1

VehicleId
License
Capacity

Vehicles

TourId
Description

Tours

ParticipantId
FirstName
LastName

Participants
ParticipantId

TripId
Date

Participant Trips

TripId

GuideId
VehicleId

TourId

Trips

∞
∞
∞

∞
∞

Figure 9-9

Repeated Attribute Associations
Some entities have multiple fields that represent either the same kind of data or a very similar
kind of data. For example, it is common for orders and other documents to allow you to specify a
daytime phone number and an evening phone number. Other contact-related records may allow
you to specify even more phone numbers for such things as cell phone, FAX, pager, and others.

Figure 9-10 shows a semantic object model for a PERSON class that allows any number of Phone
attributes.

PERSON
ID PersonID 1.1
 FirstName 1.1
 LastName 1.1
 Phone
 Type 1.1
 Number 1.1 0.N

Figure 9-10

To allow any number of a repeated attributes in a relational model, build a new table to contain the
repeated values. Use the original table’s primary key to link the new records back to the original
table.

191

Stephens c09.tex V2 - 10/08/2008 11:28am Page 192

Part II: Database Design Process and Techniques

Figure 9-11 shows how to do this for the PERSON class shown in Figure 9-10.

1
Persons

PersonId

FirstName

LastName

Phones
PersonId

Type

Number

∞

Figure 9-11

Because the Phones table’s primary key includes all of the table’s fields, the combination of Per-
sonId/Type/Number must be unique. That means a particular person can only use a phone number
for a particular purpose once. That makes sense. It would be silly to list the same phone number as
a work number twice for the same person. However, a person could have the same number for
multiple purposes (daytime and evening number are the same cell phone) or have multiple phone
numbers for the same purpose (office and receptionist numbers for work phone).

You can use the primary keys and other keys to enforce other kinds of uniqueness. For example, to
prevent someone from using the same number for different purposes, make PersonId/Number a
unique key. To prevent someone from providing more than one number for the same purpose (for
example, two cell phone numbers), make PersonId/Type a unique key.

For another example, suppose you want to add multiple email addresses to the Persons table. Allow
each person to have any number of phone numbers and email addresses of any type, but don’t allow
duplicate phone numbers or email addresses. (For example, you cannot use the same phone number
for Home and Work numbers.)

Just as you created a Phones table, you would create an Emails table with Type and Address fields,
plus a PersonId field to link it back to the Persons table. To prevent an email address from being
duplicated for a particular person, include those fields in the table’s primary key. Figure 9-12 shows
the new relational model.

1

1

Persons

PersonId

FirstName

LastName

Phones
PersonId

Number

Type

Emails
PersonId

Address

Type

∞

∞

Figure 9-12

192

Stephens c09.tex V2 - 10/08/2008 11:28am Page 193

Chapter 9: Common Design Patterns

Reflexive Associations
A relflexive or recursive association is one in which an object refers to an object of the same class.
You can use recursive associations to model a variety of different situations ranging from simple
one-to-one relationships to complicated networks of association.

The following sections describe different kinds of reflexive associations.

One-to-One Reflexive Associations
As you can probably guess, in a one-to-one reflexive association an object refers to another single
object of the same class. For example, consider the Person class’s Spouse field. A Person can be mar-
ried to exactly one other person (at least in much of the world) so this is a one-to-one relationship.
Figure 9-13 shows an ER diagram representing this relationship.

1.1

1.1

Is Married ToPerson

Figure 9-13

Figure 9-14 shows a relational model for this relationship.

1

1

Person

PersonId

FirstName

LastNam

SpouseId

e

Figure 9-14

Unfortunately this design does not require that two spouses be married to each other. For example,
Ann could be married to Bob and Bob could be married to Cindy. That might make an interesting
television show, but it would make a confusing database.

Another approach would be to create a Marriage table to represent a marriage. That table would
give the IDs of the spouses. Figure 9-15 shows this design.

1

1 1

1

Person

PersonId

FirstName

LastName

Marriage
SpouseId1

SpouseId2

Figure 9-15

193

Stephens c09.tex V2 - 10/08/2008 11:28am Page 194

Part II: Database Design Process and Techniques

In this design the Person table refers to itself indirectly.

For another example, suppose you’re making a database that tracks competitive rock-paper-scissors
matches (see http://www.usarps.com). You need to associate multiple competitors with each other
to show who faced off in the big arena. You also want to record who won and what the winning
moves were.

You would start by making a Competitors table with fields Name and CompetitorId.

Next you would make a CompetitorMatches table to link Competitors. This table would contain
CompetitorId1 and CompetitorId2 fields, and corresponding FinalMove1 and FinalMove2 fields to
record the contestants’ final moves. To distinguish among different matches between the same two
competitors, the table would also include Date and Time fields.

Figure 9-16 shows the relational model.

1

1

Competitors

CompetitorId

Name

CompetitorMatches

CompetitorId1

CompetitorId2

FinalMove1

FinalMove2

Date

Time
∞
∞

Figure 9-16

One-to-Many Reflexive Associations
Typically employees have managers. Each employee is managed by one manager and a manager
can manage any number of employees, so there is a one-to-many relationship between managers
and employees.

But a manager is just another employee, so this actually defines a one-to-many relationship between
employees and employees. Figure 9-17 shows an ER diagram for this situation.

1.N

1.1

Is Managed ByEmployee

Figure 9-17

Figure 9-18 shows a relational model that handles this situation.

194

Stephens c09.tex V2 - 10/08/2008 11:28am Page 195

Chapter 9: Common Design Patterns

1

Employees

PersonId

FirstName

LastNam

IsManagedBy

e

∞

Figure 9-18

Hierarchical Data
Hierarchical data takes the form of tree-like structures. Every object in the hierarchy has a ‘‘parent’’
object of the same type. For example, a corporate organizational chart is a hierarchical data structure
that shows which employee reports to which other employee. Figure 9-19 shows the org chart for a
fictional company.

Board of Directors

President/CEO

Vice President, AdministrationCIO

Vice President,
Information Services

Vice President,
Networks and Grossworks

Vice President,
Resource Management

Vice President,
Perks and Boondoggles

General Accounting Colonel Accounting

Internal Auditing

Vice President,
Digital Assets and Paranoia

Human Resources Advertising, Marketing,
and Spam

Robotic Resources

CFO

Figure 9-19

Hierarchical data actually is an instance of a one-to-many reflexive association as described in the
previous section. Generally people think of the ‘‘Is Managed By’’ relationship as being relatively
flat, so managers supervise front-line employees but no one needs to manage the managers. In that
case, the hierarchy is very short.

An org chart represents the infinitesimally different concept of ‘‘Reports To.’’ I guess this is more
palatable to managers who don’t mind reporting to someone even if they don’t need help managing
their own work. (Although I’ve known a few managers who could have used some serious help in
that respect.)

195

Stephens c09.tex V2 - 10/08/2008 11:28am Page 196

Part II: Database Design Process and Techniques

The ‘‘Reports To’’ hierarchy may be much deeper (physically, not necessarily intellectually) than
the ‘‘Manages’’ hierarchy but you can still model it in the same way. Figure 9-20 shows an Employee
class that can model both hierarchies simultaneously.

1

1

Employee

PersonId

FirstName

LastNam

IsManagedBy

ReportsTo

e

∞
∞

Figure 9-20

Notice that the relationships used to implement a hierarchy are ‘‘upward-pointing.’’ In other words,
each object contains a reference to an object higher up in the hierarchy. This is necessary because
each object has a single ‘‘parent’’ in the hierarchy but may have many ‘‘children.’’ Though you can
list an object’s parent in a single field, you cannot list all of its children in a single field.

Try It Out Working with Hierarchical Data
The following table contains information about a corporate org chart.

PersonId Title ReportsTo

1 Mgr. Pie and Food Gags 9

2 Dir. Puns and Knock-Knock Jokes 6

3 Dir. Physical Humor 9

4 Mgr. Pratfalls 3

5 President null

6 VP Ambiguity 5

7 Dir. Riddles 6

8 Dir. Sight Gags 3

9 VP Schtik 5

Use this data to reconstruct the org chart graphically.

1. Find the record that represents the root node.

2. For each node on the bottom level of the tree so far (initially this is just the root node), find all
of the records that have that node as a parent (ReportsTo). Attach them below their parent. For
example, the first time around you would find the people who report to President. Their records
have ReportsTo equal to President’s PersonId: 5. These people are VP Ambiguity and VP Schtik.
Attach them below President.

3. Repeat until you have processed every record.

196

Stephens c09.tex V2 - 10/08/2008 11:28am Page 197

Chapter 9: Common Design Patterns

How It Works

1. The root node is the one that has no parent. In the table, it’s the one where ReportsTo is null: Pres-
ident.

2. Draw the root node.

a. Find the people who report to President. Their records have ReportsTo equal to President’s
PersonId: 5. These people are VP Ambiguity and VP Schtik. Attach them below President.

b. Find the people who report to VP Ambiguity. They are Dir. Puns and Knock-Knock Jokes
and Dir. Riddles. Draw them below VP Ambiguity.

c. Find the people who report to VP Schtik. They are Mgr. Pie and Food Gags and Dir. Physi-
cal Humor. Draw them below VP Schtik.

d. Find the people who report to Dir. Puns and Knock-Knock Jokes. There are none so Dir.
Puns and Knock-Knock Jokes is a leaf node.

e. Find the people who report to Dir. Riddles. There are none so Dir. Riddles is a leaf node.

f. Find the people who report to Mgr. Pie and Food Gags. There are none so Mgr. Pie and
Food Gags is a leaf node.

g. Find the people who report to Dir. Physical Humor. They are Mgr. Pratfalls and Dir. Sight
Gags. Draw them below Dir. Physical Humor.

h. Find the people who report to Mgr. Pratfalls. There are none so Mgr. Pratfalls is a leaf node.

i. Find the people who report to Dir. Sight Gags. There are none so Dir. Sight Gags is a leaf
node.

At this point, every record is represented on the tree so we’re done.

3. Figure 9-21 shows the finished org chart.

President

VB
Ambiguity

VB
Schtik

Dir.
Riddles

Dir. Physical
Humor

Mgr. Pie and
Food Gags

Dir. Puns and
Knock-knock Jokes

Dir. Sight
Gags

Mgr.
Pratfalls

Figure 9-21

197

Stephens c09.tex V2 - 10/08/2008 11:28am Page 198

Part II: Database Design Process and Techniques

Network Data
A network contains objects that are linked in an arbitrary fashion. References in one object point to
one or more other objects.

For example, Figure 9-22 shows a street network. Each circle represents a node in the network. An
arrow represents a link between two nodes. The numbers give the approximate driving time across
a link. Notice the one-way streets with arrows pointing in only one direction.

A
25

25

50

45

2219

45

35

25

36

35

23
27

25

35

25

25

15 90

17

E

B

F G

D

H

I

C

Figure 9-22

An object cannot use simple fields to refer to an arbitrary number of other objects, so this situation
requires an intermediate table describing the links between objects.

Figure 9-23 shows an ER diagram describing the network’s Node object. Notice that the Connects
To relationship has a LinkTime attribute that stores the time needed to cross the link.

1.N

1.N

Connects ToNode

LinkTime

Figure 9-23

The section ‘‘Many-to-Many Associations’’ earlier in this chapter showed how to build a relational
model for many-to-many relationships. That method just needs a small twist to make it work for a
many-to-many reflexive relationship.

198

Stephens c09.tex V2 - 10/08/2008 11:28am Page 199

Chapter 9: Common Design Patterns

Instead of creating two tables to represent the related objects, just create a single Nodes table. Then
create an intermediary table to represent the association between two nodes. That object represents
the network link and holds the LinkTime data.

Figure 9-24 shows this design. In addition to a NodeId, the Nodes table contains X and Y coordinates
for drawing the node.

1

1

Nodes

NodeId

X

Y

Links
FromNodeId

ToNodeId

LinkTime
∞

∞

Figure 9-24

Note that you need to use some care when you try to use this data to build a network in a program.
One natural approach is to start with a node, follow its links to new nodes, and then repeat the
process, following those nodes’ links.

Unfortunately if the network contains loops, the program will start running around in circles like a
dog chasing its tail and it will never finish.

A better approach is to select all of the Nodes records and make program objects to represent them.
Then select all of the Links records. For each Links record, find the objects representing the ‘‘from’’
node and the ‘‘to’’ node and connect them. This method is fast, requires only two queries, and best
of all, eventually stops.

For a concrete example, consider the small network shown in Figure 9-25. The numbers next to links
show the links’ times.

A
15

189 11
10

12

B

DC

Figure 9-25

Start by making a Nodes table with fields NodeId, X, and Y. The following table shows the Nodes
table’s values. The X and Y fields are blank here because we’re not really going to draw the network,
but a real program would fill them in.

199

Stephens c09.tex V2 - 10/08/2008 11:28am Page 200

Part II: Database Design Process and Techniques

NodeId X Y

A

B

C

D

Next make a Links table with fields FromNode and ToNode, plus a LinkTime field. Looking at
Figure 9-25, you see which nodes are connected to which others and what their LinkTime values
should be. The following table shows the Links table’s data.

FromNode ToNode LinkTime

A C 9

B A 15

C A 11

C B 18

C D 12

D B 10

Temporal Data
As its name implies, temporal data involves time. For example, suppose you sell produce and the prices
vary greatly from month to month (tomatoes are expensive in the winter, while pumpkins are practically
worthless on November 1). To keep a complete record of your sales, you not only need to track orders
but also the prices at the time each order was placed.

The following sections describe a few time-related database design issues.

(For some more in-depth discussion of some of these issues, you can download the free eBook ‘‘Devel-
oping Time-Oriented Database Applications in SQL’’ at http://www.cs.arizona.edu/people/rts/
tdbbook.pdf.)

Effective Dates
One simple way to track an object that changes over time is to add fields to the object giving its valid
dates. Those fields give the object’s effective or valid dates.

200

Stephens c09.tex V2 - 10/08/2008 11:28am Page 201

Chapter 9: Common Design Patterns

Figure 9-26 shows a relational model for temporal produce orders or orders for any other products with
prices that change over time.

1
1 1 1

OrderId
Orders

CustomerId
OrderDate

OrderId
ProductId
Quantity EffectiveStartDate

EffectiveEndDate
Price

ProductIdProductId
Description

OrderItems

Products ProductPrices∞
∞

Figure 9-26

The Orders table contains an OrderId field and a Date, in addition to other order information such as
CustomerId. The OrderId field provides the link to the OrderItems table.

Each OrderItems record represents one line item in an order. Its ProductId field provides a link to the
Products table, which describes the product purchased on this line item. The Quantity field tells the
number of items purchased.

The ProductPrices table has a ProductId field that refers back to the Products table. The Price field gives
the product’s price. The EffectiveStartDate and EffectiveEndDate fields tell when that price was in effect.

To reproduce an order, you would follow these steps:

1. Look up the order in the Orders table and get its OrderId. Record the OrderDate.

2. Find the OrderItems records with that OrderId. For each of those records, record the Quan-
tity and ProductId. Then:

a. Find the Products record with that ProductId. Use this record to get the item’s descrip-
tion.

b. Find the ProductPrices record with that ProductId and where EffectiveStartDate < =
OrderDate < = EffectiveEndDate. Use this record to get the item’s price at the time the
order was placed.

The result is a snapshot of how the order looked at the time it was placed. By digging through all of these
tables, you should be able to reproduce every order as it appeared when it was entered into the system.

Suppose you want to store one address for each employee but you want to track addresses over time.
You don’t want to track any other employee data temporally.

To build a relational model to hold this information, start by creating a basic Employees table that holds
EmployeeId, FirstName, LastName, and other fields as usual.

Next design an Addresses table to hold the employee addresses. Create Street, City, State, and Zip fields
as usual. Include an EmployeeId field to link back to the Employees record and EffectiveStartDate and
EffectiveEndDate fields to track temporal data.

201

Stephens c09.tex V2 - 10/08/2008 11:28am Page 202

Part II: Database Design Process and Techniques

Figure 9-27 shows the resulting relational model.

Employees

EmployeeId

FirstName

LastName

1
Addresses

EmployeeId

EffectiveEndDate

EffectiveStartDate

Street

City

Zip

State

∞

Figure 9-27

Deleted Objects
When you delete a record, the information that the record used to hold is gone forever. If you delete an
employee’s records, you lose all of the information about that employee including the fact that he was
fired for selling your company’s secrets to the competition. Because the employee’s records were deleted,
he could potentially get a job in another part of the company and resume spying with no one the wiser.

Similarly when you modify a record, its previous values are lost. Sometimes that doesn’t matter but other
times it might be worthwhile to keep the old values around for historical purposes. For example, it might
be nice to know that an employee’s salary was increased by only 0.25% last year so you might consider a
bigger increase this year.

One way to keep all of this data is to never, ever delete or modify records. Instead you use effective dates
to ‘‘end’’ the old record. If you’re modifying the record rather than deleting it, you would then create a
new record with effective dates starting now.

For example, suppose you hired Hubert Phreen on 4/1/2006 for a salary of $45,000. On his first anniver-
sary, you increased his salary to $46,000 and on his second you increased it to $53,000. He then grew
spoiled and lazy so he hasn’t gotten a raise since. The following table shows the records this scenario
would generate in the EmployeeSalaries table. Using this data, you can tell what Hubert’s current salary
is and what it was at any past point in time.

Employee Salary EffectiveStartDate EffectiveEndDate

Hubert Phreen $45,000 4/1/2006 4/1/2007

Hubert Phreen $46,000 4/1/2007 4/1/2008

Hubert Phreen $53,000 4/1/2008 1/1/3000

(To really be correct, you need to make one of the effective dates be exclusive. For example, you might
decide that a record is valid starting on the effective start date up through but not including the effective
end date. For example, Hubert’s salary was $46,000 from April 1, 2007 through March 31, 2008. Then on
April 1, 2008 his salary increased to $53,000.)

202

Stephens c09.tex V2 - 10/08/2008 11:28am Page 203

Chapter 9: Common Design Patterns

Deciding What to Temporalize
If you decide to use effective dates instead of deleting or modifying records, you will end up with a bigger
database. Depending on how often these sorts of changes occur, it might be a much bigger database.

Disk space is relatively inexpensive these days (as little as $0.22 or so per GB and dropping every year)
so that may not be a big issue. If the database is really huge, however, you may want to be selective in
what tables you make temporal.

For example, in the model shown in Figure 9-26, only the ProductPrices table has effective dates. That
would make sense for that example if you don’t allow changes to orders after they are created.

That greatly reduces the amount of data that you will have to duplicate to record changes.

Before you rush out and add effective dates to everything in sight, carefully consider what data is worth
saving in this manner.

Be sure to decide which tables to make temporal as early as possible because retrofitting effective date
fields can be very difficult, particularly for any programs that access the data. Any queries that request
data from tables with effective dates must be parameterized to get the right data. If you add effective
date fields after you start development, you need to modify all of those queries and that gives you extra
chances to make mistakes and insert bugs in the system.

This is definitely a case where you want thorough planning before you start to build.

Logging and Locking
Two techniques that I’ve found useful in a number of database applications are audit trails and turnkey
records. Audit trails let you log changes to key pieces of data. Turnkey records let you easily control
access to groups of related records.

Audit Trails
Many databases contain sensitive data, and it is important to make sure that the data is safe at all times.
Though you cannot always prevent a user from incorrectly viewing or modifying the data, you can make
a record showing who made a modification. Later, if it turns out that the change was unauthorized, you
can hunt down the perpetrator and wreak a terrible vengeance.

For example, in 2007 State Department contractors ‘‘inappropriately reviewed’’ the passport files of
then Senator and presidential candidate Barack Obama. The offenders were probably just curious, but it
violated the department’s privacy rules so two people were fired and one reprimanded.

One way to provide a record of significant actions is to make an audit trail table. This table has fields
Action, Employee, and Date to record what was done, who did it, and when it happened. For some
applications, this information can be non-specific, for example, recording only that a record was modified
and by whom. In other applications, it might record the fields that were modified and the old and new
values.

A similar technique works well with the effective dates described in the section ‘‘Temporal Data’’ earlier
in this chapter. If you never delete or update records, you can add a CreatedBy field to a table that you

203

Stephens c09.tex V2 - 10/08/2008 11:28am Page 204

Part II: Database Design Process and Techniques

want to audit and fill in the name of the user who created the record. Later if someone modifies the
record, you will be able to see who made the modification in the new version of the record.

You may still want a separate AuditEvents table, however, to record actions other than creating, deleting,
and modifying records. For example, you might want to keep track of who views records (as in the State
Department passport case), generates or prints reports, sends emails, or prints letters. You might even
want to record user log in and log out times.

Turnkey Records
When a user needs to modify a record, the database locks that record so other users can’t see an inconsis-
tent view of the data. This prevents others from seeing a half-completed operation.

Relational databases also provide transactions that allow one user to perform a series of actions
atomically — as if they were a single operation. This effectively locks all of the records involved in those
actions until the transaction is complete.

Though these features work well, their record-locking behaviors can lead to a couple of problems.

First, most databases won’t tell you who has a record locked. If someone is in the middle of editing a
record in the Employees table, you won’t be able to edit that record. Unfortunately the database also
won’t tell you that Frank has the record locked so you can’t go down the hall and ask him to release
it. Or worse, you’ll discover that Frank left his computer locked and went home for an early weekend
so you’re stuck until Monday. In that case, it will require database administrator powers and an act of
Congress to unlock the record so you can get some work done.

A second issue is that a complicated series of locks adds to the database’s load.

One technique I’ve found useful for addressing these problems is to use turnkey records to control access
to a group of tables.

Suppose normalization has spread a work order’s data across several tables holding basic information,
addresses, phone numbers, email addresses, and other stuff. Now suppose the system is designed to
assign work orders to users for processing. It would be nice to lock a work order’s data while a user is
working on it so others can’t blunder in and make conflicting changes. Unfortunately, it’s wasteful to
lock all of those records.

To use a turnkey record, add a LockedBy field to a table that is central to the work order. This is probably
the table that contains the work order’s basic information.

Now to ‘‘reserve’’ the work order for use by a particular user, the program sets this record’s LockedBy
field to the user’s name. That token means that this user has permission to mess with all of the work
order’s records in all of its tables without actually locking anything. Because the user’s name is in the
database, other parts of the program can tell that the record is locked and by whom. The program can
even allow an administrator with appropriate privileges to clear that field so you can fix the work order
after Frank has gone home.

The one drawback to this method is that if Frank’s computer crashes while he has the work order
reserved, then it remains locked. To recover, you’ll need to add an option in the program to clear those
sorts of zombie reservations.

204

Stephens c09.tex V2 - 10/08/2008 11:28am Page 205

Chapter 9: Common Design Patterns

A similar technique gives most of the same benefits while removing the problems that come with a
LockedBy field. Suppose you assign each work order to a particular person who then works on it, and no
one else ever works on that order.

To handle this case, add an AssignedTo field to the order. Some agent (either human or automated) sets
the AssignedTo field and after that the field doesn’t need to be changed. In that case, if Frank’s computer
crashes, his record is still assigned to him after he reboots. Because Frank is still the one who should work
on the job, you don’t need to clear this field. (Although in practice there will always be a situation where
someone needs to foist a job off on someone else for some weird reason, so you should allow some way
for an administrator to step in and fix it if necessary.)

Summary
This chapter described some common patterns that you can use to solve particular database design
problems. For example, if you need to build a database that includes many-to-many relationships, you
can use the pattern described in the section ‘‘Many-to-Many Associations’’ to implement that part of your
relational database design.

In this chapter you learned to model:

❑ Many-to-many relationships and multiple-object associations

❑ Repeated attribute associations

❑ Reflexive or recursive associations

❑ Temporal data

❑ Logging and locking

The next chapter does the opposite of this one. It describes common mistakes people make when design-
ing databases and explains ways to avoid those mistakes.

Before you move on to Chapter 10, however, use the following exercises to test your understanding of
the material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
1. Parcheesi is a board game for two to four players. Make an ER diagram to record informa-

tion about Parcheesi matches.

2. Build a relational model to record information about Parcheesi matches. Be sure to include a
way to tell who finished first through fourth.

3. Chess enthusiasts often like to walk through the moves of past matches to study how the
play developed. They even give names to the most famous of these matches. For example,
the ‘‘Immortal Game’’ was played on June 21, 1851 by Adolf Anderssen and Lionel Kieser-
itzky (see http://en.wikipedia.org/wiki/Immortalgame).

The following text shows the first six moves in the Immortal Game:

e4 e5 f4 exf4 Bc4 Qh4+?! Kf1 b5?! Bxb5 Nf6 Nf3 Qh6

205

Stephens c09.tex V2 - 10/08/2008 11:28am Page 206

Part II: Database Design Process and Techniques

(If someone showed me this string and I wasn’t thinking about chess at the time I’m not sure
whether I would guess it was an assembly program, encrypted data, or some new variant of
Leet. See http://en.wikipedia.org/wiki/Leet.)

Of course, a database shouldn’t store multiple pieces of information in a single field, so the
stream of move data should be broken up and stored in separate fields. In chess terms, a ply
is when one player moves a piece and a move is when both players complete a ply.

Figure 9-28 shows a semantic object model for a CHESS_MATCH class that stores the move
information as a series of Move attributes, each containing two Ply attributes. The Movement
field holds the actual move information (Qh4+?!) and MoveName is something like ‘‘The
Sierpinski Gambit’’ or ‘‘The Hilbert Defense.’’ Commentary is where everyone else pretends
they know what the player had in mind when he made the move.

CHESS_MATCH
ID MatchID 1.1
 Date 1.1
 PlayerWhite 1.1
 PlayerBlack 1.1
 Move
 Ply
 Movement 1.1
 MoveName 1.1
 Commentary 1.1 0.N2.2

Figure 9-28

Draw an ER diagram to show the relationships between the Player, Match, Move, and Ply
entity sets.

4. Build a relational model to represent chess relationships by using the tables Players,
Matches, Moves, and Plies. How can you represent the one-to-two relationship between
Moves and Plies within the tables’ fields? How would you implement this in the database?

5. Consider the relational model you built for Exercise 4. The Moves table doesn’t contain any
data of its own except for MoveNumber. Build a new relational model that eliminates the
Moves table. (Hint: collapse its data into the Plies table.) How does the new model affect the
one-to-two relationship between Moves and Plies?

6. Suppose you are modeling a network of pipes and you want to record each pipe’s diameter.
Design a relational model that can hold this kind of pipe network data.

7. Suppose you run a wine and cheese shop. Wine seems to get more expensive the longer it
sits on your shelves, but most cheeses don’t last forever. Build a relational model to store
cheese inventory information that includes the date by which it must be sold. Assume that
each batch of cheese gets a separate sell-by date.

8. Modify the design you made for Exercise 7 assuming each type of cheese has the same
shelf-life.

206

Stephens c10.tex V2 - 10/08/2008 11:30am Page 207

10
Common Design Pitfalls

Chapter 9 described some common patterns that you may want to use while designing a database.
This chapter takes an opposite approach: it describes some common pitfalls that you don’t want
to fall into while designing a database. If you see one of these situations starting to sprout in your
design, stop and rethink the situation so you can avoid a potential problem as soon as possible.

In this chapter you learn to avoid problems with:

❑ Normalization and denormalization.

❑ Lack of planning and standards.

❑ Mishmash and catchall tables.

❑ Performance anxiety.

The following sections describe some of the most common and troublesome problems that can
infect a database design.

Lack of Preparation
I’ve nagged about this in earlier chapters but it’s time to nag again. Database design is often one of
the first steps in development. It’s only natural for developers to want to rush ahead and get some
serious coding done. That gives them something to show management to prove that they aren’t
only playing computerized mahjong and reading friends’ MySpace pages. It’s also more fun than
working on plans, designs, use cases, documentation, and all the other things that you need to do
before you can roll up your sleeves and get to work.

Before you start cranking out tables and code, you need to do your homework. Some of the things
you need to do before you start wiring up the database include:

❑ Make sure you understand the problem.

❑ Write requirements documents to state the problem.

❑ Build use cases to see if you have solved the problem.

Stephens c10.tex V2 - 10/08/2008 11:30am Page 208

Part II: Database Design Process and Techniques

❑ Design a solution.

❑ Test the design to see if it satisfies the use cases.

❑ Document everything.

Remember, the time you spend on up-front design almost always pays dividends down the road.

Poor Documentation
This is part of preparation but is so important and under-appreciated that deserves its own section. Many
developers think of documentation as busy work or a chore to keep managers who have no real talents
off their backs while they build elegant data structures of intricate beauty and complexity.

I confess that occasionally that’s a handy attitude, but the real purpose of documentation is to keep
everyone on the project focused on the same goals. The documentation should tell people where the
project is headed. It should spell out the project’s design decisions so everyone knows how the pieces
will fit together.

If the documentation is weak, different people will make different and often contradicting assumptions.
Eventually those assumptions will collide and you’ll have to resolve the conflict. That will require devel-
opers to go back and fix work that they made under the wrong assumptions. That leads to more work,
more errors, and copious bickering over whose fault it was.

The real fault was poor documentation.

Poor Naming Standards
In a sense, naming standards are part of documentation. When done properly, an object’s name should
give you a lot of information about the object. For example, if I tell you to build an Employees table,
you probably know a lot about that table without even being told. You know that it will need name,
address, phone, email, and Social Security Number information (in the United States, at least). In most
companies, it will also need an employee ID, hire date, title, department, salary, and payroll information
(deductions, bank account for automatic deposit, and so forth). Somehow it should probably link to a
manager and possibly to projects. You got all of that from the single word ‘‘Employees.’’

Now suppose I told you to build a People table but I really want to use the table to hold employee data.
You’d probably only put about half of the necessary fields in this table. You’d get the name and address
stuff right, but you’d completely miss the business-related fields.

The problems become worse when you start working with multiple related tables and fields. For example,
suppose you use employee IDs to link a bunch of tables together but one table calls the linking field
EmpNo, another calls it EmployeeId, and a third calls it Purchaser.

This may seem like a small inconvenience and in isolation it is, but together a lot of little inconveniences
can add up to a real headache. Inconsistent naming makes developers think harder about names than the
things they represent and that makes them less productive and less accurate.

208

Stephens c10.tex V2 - 10/08/2008 11:30am Page 209

Chapter 10: Common Design Pitfalls

I have worked on projects where poor naming conventions made small changes take days instead of
hours because developers had to jump back and forth through the code to figure out what was happen-
ing. Inconsistent naming by itself is unlikely to sink a project, but it is enough to nudge an already leaky
ship toward the rocky shoals.

Write down names for fields that will be used in more than one table and stick to them so the same
concept gets the same name everywhere. Then use those names consistently. Consistency is more impor-
tant than following particular arcane formulae to generate names, although I will mention two useful
conventions for naming database objects such as tables and fields.

First, don’t use keywords such as TABLE, DROP, and INDEX. Though these may make sense for your appli-
cation and they may be allowed by the database, they can make programming confusing. If one of
these words really fits well for your project, try adding something to make it even more descriptive.
For example, if your database will hold seating assignments and it really makes sense to have a field
named Table, try naming it TableNumber or AssignedTable instead.

Second, don’t put special characters such as spaces in table or field names even if the database allows
it. Although there are ways to use these sorts of names, it makes working with the database a lot more
confusing and remember, the point of good naming conventions is to reduce confusion.

For some more information on naming conventions, see some of these links:

❑ http://en.wikipedia.org/wiki/Identifier_naming_convention

❑ http://standards.iso.org/ittf/PubliclyAvailableStandards/
c035347_ISO_IEC_11179-5_2005(E).zip

❑ http://www.gorillatraining.com/en-us/library/ms229002.aspx

❑ http://vyaskn.tripod.com/object_naming.htm

Picking good names for tables is like a vocabulary test. You need to think of a word or short phrase that
sums up as many of the features in the related items as possible so someone else who looks at your table’s
name will immediately understand the characteristics that you’re trying to record. The following table
shows some examples.

A table that holds: Should be called:

Magazines, newspapers, and comic books Periodicals

Things that your company sells, including physical items and services Products

People who work in your restaurant, including servers, bussers, cooks, and
greeters

Employees

Things that cost you money, such as groceries, gasoline, and fencing lessons Expenses

Things that you pay for but that are for work purposes, such as stationery,
stamps, and phone calls

BusinessExpenses

209

Stephens c10.tex V2 - 10/08/2008 11:30am Page 210

Part II: Database Design Process and Techniques

Thinking Too Small
Too often developers design a perfectly reasonable database only to discover during the final stages
of the project that it cannot handle the load that’s dumped on it. Make some calculations, estimate the
database’s storage and transaction loads, calculate the likely network traffic, and then multiply by five.
For some applications, such as online Web applications that can have enormous spikes in load over just
a few hours, you might want to multiply by ten or more.

Be sure you use a realistic model of the users’ computers and networks. It’s fairly common in software
development to give the programmers building a system great big, shiny, powerful computers so they
can be more productive. (It takes a lot of horsepower to play those interactive role-playing games quickly
so you can get back to work.)

Unfortunately, customers often cannot afford to buy new computers for every user. (Five developers
times $3,000 is $15,000. That’s not exactly pocket money, but it’s nothing compared to $2,000 times 200
users for a total of $400,000.) Make sure your calculations are based on the hardware that the users will
really have, not on the dream machine that you are using.

If you don’t think your architecture can handle that load, you should probably rethink things a bit.
You may be able to buy a more powerful server, buy more disk space, move to a faster network,
or split the data across multiple servers. If those tricks don’t work, you might need to consider a
three-tier architecture with different middle-tier objects running on separate computers. You might
need to think about moving some of the more intense calculations out of database code and moving
them into code running on separate servers. You might need to redesign the database to use turnkey
records. You might even need to split the database into disjoint pieces that can run in different
computers.

Solving these problems may be difficult, but you should at least plan ahead and be prepared to face them.
A sure way to ruin customer goodwill is to get the customers all excited, release the database, and then
tell them they can’t use it for four months while you rethink its performance problems.

Not Planning for Change
As you design the database, look for places that might need to change in the future. You don’t need
to build features that may never be needed, but you don’t want to narrow the design so those features
cannot be implemented later.

In particular, look for exceptions in the data. Customers often think in terms of paper forms, and those
are easy to modify. It’s easy to cross out headings and scribble in the margins of a paper form. It’s a lot
harder to do that in a computerized system.

Whenever you see two or more things that have a lot in common, ask the customers if those are enough
or whether you’ll sometimes need to add more. Listen for words such as ‘‘except,’’ ‘‘sometimes,’’ and
‘‘usually.’’ Those words often hint at changes yet to come.

For example, suppose a customer says, ‘‘This field holds the renter’s front binding tension, unless
he’s goofy-footed.’’ Here the word ‘‘unless’’ tells you that this one field may not be good enough
to hold all of the data. You’d better find out what ‘‘goofy-footed’’ means and change the database
accordingly.

210

Stephens c10.tex V2 - 10/08/2008 11:30am Page 211

Chapter 10: Common Design Pitfalls

For another example, suppose the customer says, ‘‘The order form must hold two addresses, one for
shipping and one for billing. Unless, of course, we’re billing a split order.’’ This says that two address
fields (or groups of fields) isn’t enough. At this point you probably need to pull the address data into
a new table so you can accommodate any number of addresses, including the ones the customer hasn’t
remembered yet.

For a third example, suppose you’re building a coaching tool for youth soccer teams. Figure 10-1 shows
your initial design.

Games

GameId 1

1

1
1

1

1

1

1
GameId PlayerId

PlayerIdDate

Time

Field

OpponentName

Coach

SnackBringer

GamePlayers

Parents

Players

ParentId

FirstName

FirstName

LastName

LastName

PlayerId

Street

City

State

Zip

Phone

Email

∞
∞

Figure 10-1

Let’s review this design and identify any pieces that seem like they might change later.

It’s often useful to look at fields that allow a single value and ask yourself if they might need to change
later. In this design, there are several such fields. It’s also particularly useful to look at one-to-one rela-
tionships and this design contains some of those, too.

First, do we need to change the one-to-many relationship between Games and GamePlayers to a
many-to-many relationship? Probably not. If the group of players is the same in any two games, that’s
more or less coincidence rather than a more formal arrangement such as an ‘‘A team’’ and a ‘‘B team.’’
(Although I’ve known some frighteningly serious youth soccer coaches. Seriously scary individuals with
clipboards yelling at the tops of their lungs at four-year-olds.)

The many-to-one relationship between GamePlayers and Players, together with the Games/GamePlayers
relationship, helps model the many-to-many relationship between Games and Players, so it probably
shouldn’t change.

What about the one-to-one relationship between Parents and Players? This link implies that a parent can
have only one player and that may not be a good assumption. What if a parent has two players on the

211

Stephens c10.tex V2 - 10/08/2008 11:30am Page 212

Part II: Database Design Process and Techniques

same team? For the younger age brackets, you won’t see players of different ages on the same team, but
you will find twins on the same team.

This relationship also implies that each player has a single parent (which is unlikely until cloning tech-
niques become more practical). You could add information about a second parent (in fact, that’s a very
common approach) but if a player’s parents are separated and remarried, you might need up to four
parents and sometimes you might need to contact any subset of them to figure out if a player will be at
a game. It might make the most sense to just allow a player to have any number of parents and not ask
too many questions. (And don’t even think about requiring players to have the same last names as their
parents! The combinations, including hyphenated last names, are too numerous to contemplate.)

The first one-to-one relationship between Games and Parents means that one parent will be coach for that
game. Is that a reasonable assumption? Will you ever need to worry about multiple coaches or assistant
coaches? For a youth league, it’s probably good enough to assume there is only one main coach and not
worry about any others, so I wouldn’t change that. But this is a good question to ask.

By far the most important piece of information in this database tells who is bringing a game’s snacks. The
second one-to-one relationship between Games and Parents means one parent will bring snacks for the
game. Is that a reasonable assumption? In my experience, there has always been only one snack-bringer
per game. As in the case with the coach, you can probably at least assume there is a main snack-
bringer and if someone else wants to bring extra cupcakes for a player’s birthday we just won’t worry
about it. But again, a good question.

One final place to look for these kinds of changes is in the fields within a table. In this design, the field
that begs for multiple values is Phone. Lots of people have multiple phones and sometimes you may
need to call several to track someone down. (Such as the all-important snack bringer!) I would split the
Phone field off into a new table to allow parents to have any number of phone numbers.

Figure 10-2 shows the new and improved design.

Games

GameId 1

1

1
1

1

1

1

1

1
GameId PlayerId

PlayerIdDate

Time

Field

OpponentName

Coach

SnackBringer

GamePlayers

Parents

Players

ParentId

FirstName

FirstName

LastName

LastName

Street

City

State

Zip

Email

ParentId

ParentId

PlayerId

ParentPlayers

Phones

Priority

∞
∞

∞

∞

∞

Figure 10-2

212

Stephens c10.tex V2 - 10/08/2008 11:30am Page 213

Chapter 10: Common Design Pitfalls

Again, you don’t need to use psychic powers to build all of the features that the customer will need
in the next 15 years, but keep your eyes open during requirements gathering and try not to close off
opportunities for later change.

Too Much Normalization
Taken to extremes, too much normalization can lead to a database that scatters related data all over the
place for little additional benefit. It can make the design confusing and can slow performance.

When you normalize, think about what a change will cost and what benefits it will provide. Think about
how the data will be accessed. If data is only read and written through stored procedures or middle-tier
code, that code can help play a role in keeping the data consistent and may allow you to get away
with slightly less normalization in the database’s tables. Putting every table in Fifth Normal Form or
Domain/Key Normal Form isn’t always necessary to keep the data safe.

I once worked on a project where a certain database developer (who coincidentally had just taken a class
in database normalization) wanted to split every data value out into a separate table. For example, a
customer record would contain little more than a CustomerId. Then a Values table would hold the actual
data in its three fields Id, ValueName, and ValueData. To look up a customer’s name, you would search
the Values table for a record with Id equal to the customer’s ID and ValueName equal to ‘‘Name.’’ In
some bizarre otherworldly sense, this table is very normalized and it lets you do some amazing things.
For example, you could decide to add a new EarSize field to the customer data without changing the
tables at all. However, that design doesn’t reflect the structure of the data so it would be next to impossi-
ble to use.

Insufficient Normalization
Though too much normalization can make the database slower than necessary, poor performance is
rarely the reason a software project fails. Much more common reasons for failure are designs that are too
complex and confusing to build, and designs that don’t do what they’re supposed to do. A database that
doesn’t ensure the data’s integrity definitely doesn’t do what it’s supposed to do.

Normalization is one of the most powerful tools you have for protecting the data against errors. If the
database refuses to allow you to make a mistake, you won’t have trouble with bad data later. Adding an
extra level of indirection to gather data from a separate table adds only milliseconds to most queries. It’s
very hard to justify allowing inconsistent data to enter the database to save one or two seconds per user
per day.

This doesn’t mean you need to put every table in Fifth Normal Form, but there’s no excuse for tables that
are not in at least Third Normal Form. It’s way too easy to normalize tables to that level for anyone to
claim that it’s not necessary.

If the code needs to parse data from a single field (Hobbies = ‘‘sail boarding, skydiving, knitting’’), break
it into multiple fields or split its values into a new table. If a table contains fields with very similar names
(JanPayment, FebPayment, MarPayment), pull the data into a new table. If two rows might contain

213

Stephens c10.tex V2 - 10/08/2008 11:30am Page 214

Part II: Database Design Process and Techniques

identical values, figure out what makes them logically different and add that explicitly to the table so you
can make a primary key. If some fields’ values don’t depend on the entire key, consider spreading the
record across multiple tables.

Insufficient Testing
This problem is closely related to ‘‘Thinking too Small’’ and ‘‘Too Much Normalization.’’ Some develop-
ers perform little or no testing before releasing a database into the wild. They run through a few tests to
check correctness (the better ones go through all of the use cases) and assume that everything will work
in the field. Then when customers try to use it under realistic conditions, the whole thing falls apart. They
discover bugs that the testers missed and the performance is unacceptable.

Be sure to test the database and any attached applications thoroughly. Fully testing every nook and
cranny of a system takes a lot of work, but it’s necessary. You need to be sure you exercise every piece of
code, every table, and every constraint. You also need to perform load testing to see if the database can
handle the expected load.

If you don’t find all of the bugs and bottlenecks, sooner or later the user will, guaranteed!

It’s also pretty safe to assume that every non-trivial application contains at least some bugs no matter
how much testing you perform. In that case, you cannot find every bug so you may be temped not to
even try. The goal isn’t really to catch every bug, but to find enough of them and to find the most likely
to occur so the probability of the users finding a bug is very small. The bugs will still be hiding in there,
but if you only get one or two user complaints per year, you’re doing pretty well.

Performance Anxiety
Many developers focus so heavily on performance that they needlessly complicate things. They make a
simple solution complicated and harder to build and maintain all in the name of speed. They denormalize
tables to avoid using any more tables than necessary and they build business rules into the database so
they don’t need to use stored procedures or other code to implement them separately.

Modern hardware and software is pretty fast, however. Often these CPU-pinching measures save only
milliseconds on a one-second query. Think hard about whether a convoluted design will really save all
that much time before you make things so complicated that you can’t build, debug, and maintain the
application. If you’re not sure, either make some tests and find out or go with the simpler version and
change it later if absolutely necessary. Usually performance is acceptable, but a database that contains
contradictory data is not.

I once worked on a huge database application where a simple change to the data might require five or
more minutes of recalculation. After about three days digging through horribly convoluted code and
database structure, I found the problem. The original developers had used a bunch of tricks to perform
calculations in some sneaky ways to save a little bit of time here and there. Then they had done some-
thing really silly that made them perform the same calculations again and again more than a hundred
thousand times. They were so busy worrying about tripping over the blades of grass that they wandered
blindly into a patch of poison ivy. I managed to speed things up a little, but a lot of their time-saving
tricks were so buried in the underlying design that there wasn’t much we could do without a total
rewrite.

214

Stephens c10.tex V2 - 10/08/2008 11:30am Page 215

Chapter 10: Common Design Pitfalls

The moral is, you don’t need to be stupid about design and ignore obvious chances to improve perfor-
mance, but don’t be so focused on the little things that they cloud the grander design.

First, make it work. Then make it work fast.

Mishmash Tables
Sometimes it’s tempting to build tables that contain unrelated values. The classic example is a Domain-
Values table that contains allowed values for fields in tables scattered throughout the database. For
example, suppose the State, Brand, and Medium fields take values from lists. State can take values CA,
CT, NV, and so forth; Brand can take values MixAll, Thumb Master, and Pheidaux; and Medium can
take values Oil, Acrylic, Pastel, and Crayon. You could build a DomainValues table with fields Table-
Name, FieldName, and Value. Then it would hold records such as TableName = Artwork, FieldName
= Medium, Value = Crayon. You would use this magic table to validate foreign keys in all of the other
tables.

This approach will work, but it’s more of a headache than it’s worth. The table is filled with unrelated
values and that can be confusing. It might seem that having one table rather than several would simplify
the database design, but this single table does so many things that it can be hard to keep track of them all.
Just think about drawing the database design’s ER diagram with this single table connected to dozens of
other tables.

Tying this table to a whole bunch of others can make it a chokepoint for the entire system. It can also lead
to unnecessary redundancy if multiple tables contain fields that have the same domains.

It’s better to use separate tables for each of the domains that you need. In this example, just build separate
States, Brands, and Media tables. Though this requires more tables, the pieces of the design are simpler,
smaller, and easier to understand.

Remember the rule that one table should do one clearly defined thing and nothing else. Although this
kind of mishmash table has an easily defined purpose, it does not do just one thing.

Try It Out Mishmash Bash
Consider the following mishmash DomainValues table.

Table Field Value

Customers State CO

Customers State KS

Customers State WY

Employees State CO

Employees State KS

Employees State WY

OrderItems Size Large

215

Stephens c10.tex V2 - 10/08/2008 11:30am Page 216

Part II: Database Design Process and Techniques

Table Field Value

OrderItems Size Medium

OrderItems Size Small

Orders ShippingMethod Overnight

Orders ShippingMethod Priority

Orders ShippingMethod Snail Mail

How could you avoid building this mishmash table? What tables would use the new domain tables? To
find out:

1. Figure out which records represent similar items.

2. Move similar records into smaller validation tables.

3. Define foreign keys to use the new tables for validation.

How It Works

1. Figure out which records represent similar items.

This table contains domain values for four tables (Employees, Customers, OrderItems, and
Orders) so you might think that you need four domain tables. However, the table really only
holds domain values for three kinds of fields: states, sizes, and shipping methods. Those define
the groups of similar items so you only need three new domain tables.

2. Move similar records into smaller validation tables.

The States table contains the following data:

State

CO

KS

WY

The Size table contains the following data:

Size

Large

Medium

Small

216

Stephens c10.tex V2 - 10/08/2008 11:30am Page 217

Chapter 10: Common Design Pitfalls

Finally, the ShippingMethod table contains the following data:

ShippingMethod

Overnight

Priority

Snail Mail

3. Define foreign keys to use the new tables for validation.

Instead of making every table validate domains against the mishmash table, the database now
uses the following foreign key constraints:

❑ Customers.State = States.State

❑ Employees.State = States.State

❑ OrderItems.Size = Sizes.Size

❑ Orders.ShippingMethod = ShippingMethods.ShippingMethod

Not Enforcing Constraints
When you design a table, you should write down the domains and other constraints for every field. Most
database designers can handle that, but it’s surprising how often those restrictions don’t make it into the
actual database.

When you start building the database, go through the list of field constraints and check them off as
you implement them. Often these are as simple as making a field required or writing field-level check
constraints for a field.

You can rely on middle-tier objects and user interface code to enforce some of these, but the database is
the final authority, so why not take advantage of its capabilities? You might want to allow the middle-tier
to verify that a flyball team’s number of dogs is no more than 3 because it’s a possibly changing business
rule. It seems unlikely that a team would ever include –1 dogs, however, so let the database enforce
that rule at least.

Databases can also often verify field formats. For example, some databases can verify that a phone num-
ber string has the format ###-###-####. You may want the user interface to validate this type of format,
too, but there’s no reason not to let the database do whatever it can to ensure that garbage doesn’t slip
into the data.

The database is pretty good at enforcing these simple rules. Let it do its job so it can feel appreciated.

217

Stephens c10.tex V2 - 10/08/2008 11:30am Page 218

Part II: Database Design Process and Techniques

Obsession with IDs
ID numbers are nice. They are relatively small and efficient, and it’s easy to ensure that they are always
unique. However, they don’t have any real meaning. You can probably recite your name, address, and
phone number easily enough, but do you remember your employee ID, utility company account number,
and driver’s license number? Unless you have a better memory than mine (which is likely, I have a pretty
poor memory) or someone took a shortcut when they defined their keys (in some states, your driver’s
license number is the same as your Social Security Number), you probably don’t remember all of these.

It’s okay to have some tables with keys that are not artificial IDs, particularly if the data provides a nice
unique key readymade for you. Books have ISBNs (International Standard Book Numbers) that uniquely
identify them so, if you’re tracking books, use ISBN instead of creating a new meaningless number.
Products often have SKU (Stock-Keeping Unit) or product numbers that are just as useful as an artificial
number. Even keys that include multiple fields can be perfectly fine and give acceptable performance.

Three obvious times when you really do need to create an artificial primary key are:

❑ You might need to change the value of the natural key (you shouldn’t change primary key values
and some databases won’t even let you).

❑ The natural key doesn’t guarantee uniqueness.

❑ Adding an automatically generated surrogate key makes integration with other systems easier.

Before you create a new key field, ask yourself whether it’s really necessary.

Try It Out IDs Undone
Consider the following tables.

❑ Customers with fields FirstName, LastName, Street, and so on.

❑ ChessMatches with fields Date, WhitePlayerId, and BlackPlayerId.

❑ Books with fields Title, Author, Year, Pages, Price, and Publisher.

❑ InventoryItems with fields Name, Vendor, Description, and QuantityInStock.

❑ WeatherReadings with fields Date, Time, Temperature, and Humidity.

To figure out which of these probably needs an artificial primary key:

1. Look for a natural key.

2. Decide whether you will ever need to change the key’s value.

3. Decide whether the key guarantees uniqueness.

4. Use the results from steps 1 through 4 to decide which tables need artificial IDs.

218

Stephens c10.tex V2 - 10/08/2008 11:30am Page 219

Chapter 10: Common Design Pitfalls

How It Works

1. Look for a natural key.

❑ Customers with fields FirstName, LastName, Street, and so on: FirstName/LastName is a
natural key.

❑ ChessMatches with fields Date, WhitePlayerId, and BlackPlayerId: Date/WhitePlayerId
/BlackPlayerId is a natural key.

❑ Books with fields Title, Author, Year, Pages, Price, and Publisher: Title/Author is a natu-
ral key.

❑ InventoryItems with fields Name, Vendor, Description, and QuantityInStock:
Name/Vendor is a natural key.

❑ WeatherReadings with fields Date, Time, Temperature, and Humidity: Date/Time is a
natural key.

2. Decide whether you will ever need to change the key’s value.

❑ Customers with fields FirstName, LastName, Street, and so on: Depending on your appli-
cation, you may need to change FirstName or LastName values. For example, when some
friends of mine got married they decided to change both of their last names to something
completely different. This means FirstName/LastName may not make a good primary key.

❑ ChessMatches with fields Date, WhitePlayerId, and BlackPlayerId: The application
should never need to change Date/WhitePlayerId/BlackPlayerId after the data for a match
is entered.

❑ Books with fields Title, Author, Year, Pages, Price, and Publisher: The application should
never need to change Title/Author after the data for a book is entered.

❑ InventoryItems with fields Name, Vendor, Description, and QuantityInStock: There’s
some chance that a vendor will rename a product. In that case, Name/Vendor might not
make a good primary key, although you could also treat the renamed product as a new
product instead.

❑ WeatherReadings with fields Date, Time, Temperature, and Humidity: The application
should never need to change Date/Time after the weather data for a reading is entered.

3. Decide whether the key guarantees uniqueness.

❑ Customers with fields FirstName, LastName, Street, and so on: FirstName/LastName is
probably not enough to guarantee uniqueness. There are just too many John Smiths and
Maria Garcias out there.

❑ ChessMatches with fields Date, WhitePlayerId, and BlackPlayerId: Unless you
allow two players to play more than one match at the same time (which is possible),
Date/WhitePlayerId/BlackPlayerId is unique.

219

Stephens c10.tex V2 - 10/08/2008 11:30am Page 220

Part II: Database Design Process and Techniques

❑ Books with fields Title, Author, Year, Pages, Price, and Publisher: It’s extremely unlikely
that the same author (or two authors with the same name) would publish two books with
the same title but Title/Author does not absolutely guarantee uniqueness. You could make
the key more unique by adding Year, but it’s still not an absolute guarantee.

❑ InventoryItems with fields Name, Vendor, Description, and QuantityInStock: It’s very
unlikely that a particular vendor will have more than one product with the same name (you
might not want to do business with such a confused vendor) so Name/Vendor guarantees
uniqueness.

❑ WeatherReadings with fields Date, Time, Temperature, and Humidity: Unless you take
more than one reading at the same time, Date/Time guarantees uniqueness.

4. Use the results from steps 1 through 4 to decide which tables need artificial IDs.

❑ Customers with fields FirstName, LastName, Street, and so on: A customer’s First-
Name/LastName value may change and these fields don’t guarantee uniqueness, so this
table really needs an ID field.

❑ ChessMatches with fields Date, WhitePlayerId, and BlackPlayerId: Date/WhitePlayerId/
BlackPlayerId is a fine primary key.

❑ Books with fields Title, Author, Year, Pages, Price, and Publisher: It is unlikely that you
would have trouble with Title/Author/Year as a primary key but it’s easy enough to use
the book’s ISBN code to remove all doubt. Adding that data will make it a lot easier to inte-
grate with other systems, such as online bookstores.

❑ InventoryItems with fields Name, Vendor, Description, and QuantityInStock:
Name/Vendor is unlikely to cause trouble but there is a chance. Most products have part
numbers, SKUs, UPCs (Universal Product Codes — those values that go with the barcode),
or other ID values that make excellent primary keys, so I would add one of those.

❑ WeatherReadings with fields Date, Time, Temperature, and Humidity: The combination
Date/Time guarantees uniqueness and you shouldn’t need to change those values later, so
this table shouldn’t need an artificial key.

Not Defining Natural Keys
Closely related to Obsession with IDs is not defining natural keys. A natural key is a key that you might
actually use to search the data. If a table is only there to provide detail for another table, then an ID makes
a reasonable link between the two, but if you will be searching a table for natural values such as names
or phone numbers, those may make good keys.

For example, suppose the Phones table uses CustomerId to link back to Customers records. Typically
to look up a phone number, you will look up the customer’s record and then look at its related phone

220

Stephens c10.tex V2 - 10/08/2008 11:30am Page 221

Chapter 10: Common Design Pitfalls

records. It’s unlikely that you will know a customer’s phone number and need to look up the customer,
so you probably don’t need to define a key on the phone number table’s PhoneNumber field.

In contrast, suppose the Customers table has a CustomerId for a primary key and contains basic customer
information such as name and address. What are the chances that you’ll need to look up customers by
ID? Unless the ID is something special (such as phone number if you’re running a phone company),
that number is meaningless to mere mortals, so you’re more likely to look a customer up by name. You
can make that faster by making the name a key. It can’t be the primary key because it doesn’t guarantee
uniqueness and you might need to change a customer’s name, but making it a non-primary key will make
searches by customer name faster. If that’s the search you perform the most, this key is a worthwhile
addition to the database.

You might also consider making other fields keys, too. For example, you might want to be able to list
customers by city or ZIP Code to prepare mass mailings (postal spam). In that case, making City and
ZipCode keys might also be useful if you perform those searches often.

Summary
This chapter described some common mistakes that people make while designing databases. I admit
some of these ideas seem a bit wishy-washy for a book about a computer-related subject, but they’re
pretty important. If you don’t pay attention to the ideas described in this chapter, you may end up redis-
covering the importance of proper planning, documentation, and testing by painful experience.

Some of these lessons I’ve learned the hard way, some by studying others’ mistakes, and some through
research. Take my word for it when I say it’s a lot easier (and sometimes humorous) to learn about these
issues here instead of through firsthand experience.

In this chapter, you learned the importance of:

❑ Advanced preparation through thorough requirements gathering.

❑ Good design practices such as using naming conventions and making a design before building
the database.

❑ Anticipating changes and increased database load.

❑ Using the database’s tools to ensure that values are within their allowed domains.

❑ Avoiding artificial keys if they are unnecessary and making natural keys even if they cannot be a
primary key.

This chapter ends the book’s main discussion of general database design topics. The next few chapters
explain some practical database implementation issues, paying extra attention to the Microsoft Access
and MySQL database management systems.

Before you move on to Chapter 11, however, use the following exercises to test your understanding of
the material covered in this chapter. You can find the solutions to these exercises in Appendix A.

221

Stephens c10.tex V2 - 10/08/2008 11:30am Page 222

Part II: Database Design Process and Techniques

Exercises
1. Suppose your client runs a ski rental shop and he’s the most dreaded of all clients: one who

thinks he knows something about databases. He has designed a Customers table that looks
like this:

Name Address City Zip Phone1 Phone2 Stuff

Sue Rank 2832 Shush Ln.
#2090

Boiler 72010 704-291-2039 Downhill,
Snowboarding

Mark Bosc 276 1st Ave East Fork 72013 704-829-1928 606-872-3982 X-country

The Stuff field contains a list of Downhill, X-country, Snowboarding, and Telemark. Your
client plans to get the customer’s state from the Zip value when he’s sending out mailings.

Your client wants you to build Orders and other tables to go with this one.

For this exercise, explain to your client what’s wrong with this table, paying particular atten-
tion to the ideas covered in this chapter.

2. Suppose you’re building a system to track rentals for a company that owns two Blu-ray
rental stores and plans to open a third next year. What special considerations do you need
to ponder that might not be as important if the client were, for example, a well-established
party rental store. (They rent chairs, punch bowls, big tents, and other stuff for large parties.)

3. What’s wrong with an Addresses table that includes these fields:

❑ CustomerId

❑ StreetName

❑ StreetNumber

❑ StreetPrefix

❑ StreetSuffix

❑ StreetPreDirectional

❑ StreetPostDirectional

❑ ApartmentOrSuite

❑ Floor

❑ City

❑ Neighborhood

❑ State

❑ Zip

❑ PlusFour

The Zip and PlusFour fields hold detailed ZIP Code data. For example, if a customer’s ZIP+4
is 02536-2918, the Zip field would hold 02536 and the PlusFour field would hold 2918.

222

Stephens c10.tex V2 - 10/08/2008 11:30am Page 223

Chapter 10: Common Design Pitfalls

4. Consider the relational design shown in Figure 10-3.

Phones Persons
PersonId

1
1

1
1

1

1
1

1

1

1

1

1

1

1
PersonId
FirstName
MiddleName
LastName
Street
City
State

StudentId

StudentId

StudentId

StudentId

ProjectId

ProjectId

ProjectId

PersonId

CourseId

CourseId

CourseId
InstructorId

InstructorId

InstructorId

Description

Description

DaysAndTime

DaysAndTime

Date

Date

Grade

Grade

Zip

Type
Number

PersonId
StudentId

Students

StudentCourses

CourseResults
Courses

Projects

Instructors

ProjectResults

StudentProjects

∞

∞
∞

∞

∞

∞

∞

∞

∞

∞

Figure 10-3

List the database constraints that you would place on the fields in this model and explain
how you would implement each of those constraints. (Feel free to add new tables if
necessary.)

223

Stephens c10.tex V2 - 10/08/2008 11:30am Page 224

Stephens p03.tex V3 - 10/03/2008 7:02am Page 225

Part III

A Detailed Case Study

Chapter 11: User Needs and Requirements

Chapter 12: Building a Data Model

Chapter 13: Extracting Business Rules

Chapter 14: Normalization and Refinement

The chapters in the next part of the book walk through a fictitious case study for The Pampered Pet,
a pet supply store. These chapters work through the steps for building the company a new database
from requirements gathering to implementation.

Chapter 11 begins the development process by gathering user requirements. It walks through the
project’s initial steps, including meeting the customers, picking the customers’ brains, and exam-
ining the database’s performance, security, and data integrity needs. It finishes by developing use
cases and requirements documents.

Chapter 12 uses the requirements gathered in Chapter 11 to build initial data models. It builds
semantic object models and entity-relationship models to satisfy the project’s requirements and
makes some improvements on the initial models.

Chapter 13 converts the models built in Chapter 12 into a relational model.

As you work through these chapters, you may find it useful to build an example of your own.
Pick some other business, fictitious or otherwise, and work through the corresponding phases of
database design and development as you read along.

Stephens p03.tex V3 - 10/03/2008 7:02am Page 226

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 227

11
User Needs

and Requirements

The first step in designing and building a database is gathering user requirements. You cannot
build a database to solve the users’ needs unless you understand those needs. This chapter walks
you through the process for The Pampered Pet.

In this chapter you see examples of:

❑ Identifying user requirements.

❑ Determining what the database’s main entities are.

❑ Defining use cases to verify that requirements have been met.

The scenarios described here do not necessarily present the most efficient possible outcome. Ideally
your customers know exactly what they need and give you their full cooperation while spelling
out the requirements in crystal-clear detail. Things don’t always go that way, however (in fact, I’ve
never seen it happen that way), so neither do the steps described here.

Perhaps you’ll get lucky and things will go more smoothly than some of the discussions described
here, but you should realize that at least sometimes people skills are as important as database design
skills during this phase.

Meet the Customers
Requirements gathering for this project begins with a series of meetings in The Pampered Pet’s
back room (where they hold pet training courses, so it smells a bit funny). Occasionally customers
have an agenda for these introductory meetings but, as often as not they won’t have been through
the process of building a database before, so it’ll be up to you to keep things moving in the proper
direction.

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 228

Part III: A Detailed Case Study

The initial meetings with The Pampered Pet are mostly to introduce you and the customers so you
can get to know each other. For this example, four key players attend the first meeting:

❑ Bill Wye ‘‘The Pet Store Guy,’’ the founder and owner of The Pampered Pet. Bill is the
one who decided the company needed a complete database. He’s the Executive Cham-
pion. Because this is a fairly small company and he’s at the very top of the food chain, there
will be no serious disputes over whether the project should go forward, although his help
might be needed to keep unenthusiastic participants pulling in the right direction.

❑ Alicia Myth, the store’s manager. Alicia has been working at the store since it was opened
and knows just about everything there is to know about the business. She spends more
time keeping things organized and running than anyone else at the store and knows more
about the day-to-day business than anyone else, even Bill.

❑ Charlie ‘‘Ice’’ Walker is a trainer specializing in aggressive dogs. He also works shifts at
the store and knows a lot about day-to-day operations. He doesn’t care as much about sell-
ing as he does about training. He has a very ‘‘whatever’’ attitude about the new database
system.

❑ Sveta Clark is a dog and exotic bird trainer who also works at the store about half the time.
Sveta isn’t convinced that the store needs a new computerized system and just wants to
be left alone to do her job the way she always has. She’s definitely more comfortable with
animals than people.

During the first meeting, you realize that Bill isn’t going to play much of a role in this project. He’s
the one who initiated the whole thing, and he can help keep things moving if they get bogged
down, but he’s not going to be directly involved on a daily basis. (He’s too busy with his classic car
collection.)

Charlie and Sveta are not particularly enthusiastic about the whole thing, but with Alicia’s encour-
agement and an occasional nudge from Bill, they’ll cooperate. Unfortunately Alicia’s time will be
largely taken up by running the store, so Charlie and Sveta will be your Customer Representatives.
Alicia will be around to make critical decisions, break ties, and generally look menacing if Charlie
and Sveta become difficult.

The purpose of the initial meeting is mostly to let you and the customers meet and get comfortable
with each other. There’s a chance that you’ll get some serious work done, but it’s more likely that
this meeting will stay at a fairly high level.

A couple of questions that you should try to address right away are:

❑ What do the customers expect to get from the new system?

❑ Why do they think they need a new database system?

❑ Does this system enhance or replace an existing system?

❑ Are there other systems with which this one must interact?

These are big-picture executive-level questions that Bill can answer and because he probably won’t
be present at the more detailed meetings still to come, he should answer them now. In the ensuing
discussion, during which Alicia talks more than anyone else, you realize that Bill doesn’t really
know what he’ll get out of the database. Though Bill made the final decision, it was Alicia who
thought a new database system would help.

228

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 229

Chapter 11: User Needs and Requirements

Alicia thinks the new system can help better track inventory (there have been times when they’ve
run out of products without realizing it). She also hopes it can streamline payroll (it currently takes
quite a while for her to track everyone’s hours) and she believes that it can help the company figure
out how to reach new customers and better market their training courses.

There is no existing system and no other systems with which this one must interact. The current
process is manual and uses paper order forms, paper shift assignments, and paper timesheets.

You should address these issues as soon as possible to give the customers the right expectations. A
new database can help with inventory tracking and streamline payroll. It will also help identify
which customers take which courses, but it’s not really a marketing tool. It will tell you about
existing customers but not about people who have never interacted with the company. Alicia seems
a little disappointed, but she still sees some worthwhile benefits and is ready to get started.

After the initial meeting, where you and the key players get to know each other a bit, you begin
a series of meetings where you try to pick Charlie’s and Sveta’s brains to define the project’s
requirements.

Pick the Customers’ Brains
Sometimes customers have already prepared requirements documents before they bring in database
designers and other developers, but often gathering requirements is part of the development process. In
this project, that means locking Charlie and Sveta in a room and picking their brains.

This is where you pull out your prepared list of questions (described in the ‘‘Bring a List of Questions’’
section in Chapter 4). The following sections run through a series of sample questions and give the
answers that Charlie and Sveta give.

Determining What the System Should Do
Charlie says he doesn’t know what the system should do and Sveta doesn’t care. For goals, they basically
repeat what Bill and Alicia said during the kickoff meeting.

This could be a problem. If these two really won’t join the team, they won’t be much help and right now
they’re all you’ve got. You could ask Alicia to have a word with them, but it would be better if they enlist
semi-voluntarily.

Rather than making waves right away, you decide to make some educated guesses and see if you can get
Charlie and Sveta more interested in the project.

Instead of starting with basic system features, you decide to jump to something that Charlie and Sveta
might find more interesting: training course information. You quickly sketch out a form that displays
course information including the general description, dates, locations, and the instructor. You draw a
little smiley face picture for the guide’s picture and write Charlie’s name beneath.

Training is the real reason why Charlie and Sveta work here and it’s what they love, so this gets their
attention. They start giving you useful information about what’s involved in defining a course: general
description (which includes the type of animal: dog, cat, bird, fish), locations, times, dates, price, and
maximum number of participants.

229

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 230

Part III: A Detailed Case Study

You let Charlie and Alicia brainstorm and tell stories about courses they’ve run and funny pets they’ve
met so they can build some enthusiasm. Before lunch you snap their pictures with your camera phone.
Then during lunch you email the pictures to yourself and paste them into the quickly assembled form
shown in Figure 11-1. A quick mockup makes the application seem more real to customers.

Figure 11-1

This may seem like a somewhat silly exercise, but a little glitz and showmanship can go a long way
toward uniting a project team. A simple mockup such as this one shows the customers something tan-
gible early on that they can understand. Database models and relational designs are your eventual goal,
but they are too abstract to generate much excitement with all but the nerdliest customers. Putting a
customer’s face on a mockup will almost certainly grab and hold their attention.

After lunch, you present your mockup and let Charlie and Sveta suggest improvements. That may be as
far as you get during this session. Before the next session, you build an improved mockup with Sveta’s
picture so she doesn’t feel left out and to show that you listened to their suggestions and made appropri-
ate changes.

The following list describes a few things to consider when you build this kind of mockup:

❑ Decide what tool you want to use. Use a tool that you find comfortable. I used Visual
Basic to build the form shown in Figure 11-1 (you can download the free Express Edition at
www.microsoft.com/express/vb) but you should use whatever tool you find comfortable. If
you’ve programmed before, you can use a programming tool. If you like building Web pages,
build one. If you are experienced with Microsoft Word or some other word processor, use it. Use
drawing tools or even paper and colored markers. Whatever is easiest for you.

❑ Put an image or graphic on the form. Graphics make a form more interesting, so add some
graphics to your mockup. Use familiar images such as the customers’ pictures, company logos,
or relevant clipart (a dog leaping to catch a disc or a cat stalking a mouse would work for The
Pampered Pet). You can add interest with a special font for the company’s name and with col-
ors. Don’t go overboard, though. You want the graphics to tie the form to the customer, not to
distract from the form’s purpose.

230

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 231

Chapter 11: User Needs and Requirements

❑ Add details that will be meaningful to the customer. Use terms and concepts that are famil-
iar to the customer. Use the customer’s company name and logo. This doesn’t have to be perfect
(the lawyers will eventually tell you that you’re not using exactly the right shade of blue any-
way) and the information doesn’t have to be perfectly correct. Just use anything that the cus-
tomers will find familiar and comfortable so they can see how this project connects with their
situation.

On one project for the Minnesota Department of Transportation, I gave the login form the shape of the
state of Minnesota. When they first saw the demo project, they were amazed. They had never seen shaped
forms before.

Determining How the Project Should Look
In later sessions with Charlie and Sveta, you can start defining what the finished project will look like.
Sketch out screens or let them do it for you. These don’t need to be perfect. The goal is to figure out what
data the system must contain to provide those screens, not to do the user interface designer’s job.

After this step, you should have a rough list of forms that the application should contain. In this case,
they might include:

❑ Login: Log in with user name and password.

❑ Orders: Write up sales orders for customers.

❑ Inventory: View inventory levels.

❑ Courses: Create and edit courses.

❑ Employees: Enter and edit employee information. Employees include salespeople and trainers.

❑ Shifts: Assign work shifts.

❑ Customers: Information about customers, particularly courses they’re taking.

You should sketch out these forms to make them easier for the customers to understand. The sketches
not only help customers visualize the forms and help them remember what information should be on
them, but they also help you understand what data they should contain.

The program also needs the following reports:

❑ Weekly Work Schedule: Displays the work shifts for the week.

❑ Course Schedule: Displays courses scheduled during a user-entered period of time.

❑ Course Roster: Prints a course roster for a trainer to use during a course.

❑ Reorder Items: Lists items that need to be reordered.

❑ Sales Stats: Lists employees sorted by amount of sales.

❑ Item Sales: Lists high and low selling items.

❑ List Customers: Displays a list of customers selected by as yet unknown criteria. (This sort of
feature is very useful to customers. Fortunately most databases will allow the user to perform ad
hoc queries so they can invent new reports long after the application has been built.)

231

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 232

Part III: A Detailed Case Study

Determining What Data Is Needed for the User Interface
Review the form sketches and figure out where the data should come from for the forms. For example,
Figure 11-2 shows a customer order form mocked up in Microsoft Word.

Customer Order

Items:

Purchased By:

Sold By: _______________
4/1/10

Sveta Clark

Description Price Each Quantity Total Price
Doggy Diet food, senior $34.95 1 $34.95
Squeaky toy $2.99 3 $8.97
Misc. mouse, small $1.99 4 $7.96
Class: Mouse Socialization, 4/1/10 – 4/29/10 $79.50 1 $79.50

 Subtotal $131.38
 Tax $6.57
 Shipping $0.00
 Grand Total $137.95

Ship To:

Name: __
Street: __
 __
City: __
State: _______________________________________ ZIP: ____________

Email: _______________________________________ Phone: ____________

Robert Terwilliger
1265 Petlover Ln
Apt. 12
Menagerie
WI 72827

Name: __
Street: __
 __
City: __
State: _______________________________________ ZIP: ____________

Same As Above

Figure 11-2

At this point, you don’t need to figure out exactly where every piece of data will be stored in the
database. You just need to discover what data is needed on the form. (Although at this point, you
can probably guess that there will be a Customers table for information such as Name and Street that
doesn’t change with every order, an Orders table to hold order-specific information such as the date
and shipping information, and an OrderItems table to hold information about the items that make up
the order.)

The following list shows the main types of data needed for each of the forms identified in the previous
section.

232

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 233

Chapter 11: User Needs and Requirements

❑ Login: User name and password. The program will use the database’s integrated security so this
data doesn’t need to be stored in the database.

❑ Order: Customer data (name, address), order data (date, shipping address), order items (item,
quantity), employees (sold by).

❑ Inventory: Inventory item data (UPC, description, buy price, sell price, quantity in stock,
quantity to require reorder, reorder amount, vendor information).

❑ Course: Course information (description, trainer, price, dates, times, location, animal type),
customer information.

❑ Employee: Employee information (name, address, Social Security number, skills).

❑ Shift: Employee, work shifts (date, time).

❑ Customer: Customer data (name, address, shipping address, orders, courses, email for
newsletter).

Determining Where the Data Should Come From
You can start making a list of the entity sets that will take part in the new system as soon as you have a
decent understanding of how the system will work. Be sure you don’t grow emotionally attached to this
very first design, however, because things are likely to change as you learn more.

For now, you can assume there will be entity sets corresponding to the forms listed in the previous
section. You don’t need to include a table for login information because the program will use the
database’s security features to log in. It will prompt for a user name and password, and try to connect to
the database using them. If the connection fails, the program doesn’t let the user do anything else.

The initial list of entities includes Order, Inventory, Course, Employee, Shift, and Customer.

At this point, you may realize that an order may include any number of items, so you know that you will
need a separate OrderItem entity to handle the one-to-many relationship.

Determining How the Pieces of Data Are Related
Think about how these entities are related. The forms that you sketched out show relationships among
pieces of data so they can help. For example, the order form shown in Figure 11-2 contains information
about the customer, the order, and the order items, so those entities must be related.

The following list describes relationships defined by the initial forms:

❑ Order: Relates customer data, order data, order items, and employees. Some order items may be
training courses, so it also relates course data.

❑ Inventory: This entity is fairly self-contained. Other entities such as Order refer to it but it
doesn’t need to refer to others.

❑ Course: Relates basic course information, trainer information, and customer information.

❑ Employee: This entity is fairly self-contained. Other entities such as Course refer to it but it
doesn’t refer to others.

233

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 234

Part III: A Detailed Case Study

❑ Shift: Relates work shifts and employee data.

❑ Customer: This entity is fairly self-contained. Other entities such as Order and Course refer to it
but it doesn’t refer to others.

Reports also define relationships among pieces of data. The following list shows where data comes from
for the previously defined reports:

❑ Weekly Work Schedule: Relates employees and shifts.

❑ Course Schedule: Relates basic course information and trainers. This report doesn’t need to list
customer information.

❑ Course Roster: Relates basic course information, trainers, and customers.

❑ Reorder Items: This report only uses inventory data.

❑ Sales Stats: Relates inventory and employees.

❑ Item Sales: This report only uses inventory data.

❑ List Customers: Because the selection criteria for these reports are not yet defined, you can’t
know exactly which entities might be involved. However, you can make some guesses. Users
will probably want to search for customers based on the items they purchased and courses they
took. It’s conceivable that they would want to search for customers who purchased items from a
particular employee (perhaps so they can apologize) but most of the reports seem to relate cus-
tomer, order, inventory, and course data.

Try It Out Where’s the Data?
Having a general idea of what data is required to build a report is very different from actually building
the report. Often when you try to identify the fields needed to build a report, you will find holes in your
understanding of the project. To fill in some of those holes, follow these steps for the Sales Stats and Item
Sales reports:

1. Determine exactly where the data comes from.

2. Decide whether it seems likely that the database can build these reports quickly enough to satisfy
the users.

How It Works

1. Determine exactly where the data comes from.

To generate the Sales Stats report, you need to figure out how much each employee sold during
a certain period of time. For each employee in the Employees table, you need to find the corre-
sponding Orders items with dates within the desired time period. You will then need to look up
the corresponding order items, calculate their total prices, and add up the results.

To generate the Item Sales report, you need to figure out how many of each type of item was sold
during a particular time period. To get at this data by date, you’ll need to search the Orders table
for orders placed during the time period. For each order, you’ll look up the order’s items and add
up the number of each item sold.

234

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 235

Chapter 11: User Needs and Requirements

2. Decide whether it seems likely that the database can build these reports quickly enough to satisfy
the users.

If a user wants to look at Sales Stats or Item Sales figures for the past month, these queries
shouldn’t be a problem. They will probably involve a reasonable number of records so the report
will run quickly.

If the user wants to look at data for the last year, this might take slightly longer but should still
be reasonable for The Pampered Pet. If the store were a large chain, these reports could take
much longer. (Wal-Mart has almost 2 million employees worldwide, but they probably keep
their data spread out on a bunch of different databases and only look at summaries on a global
scale.)

In each of these cases, the report will probably run reasonably quickly if it doesn’t cover too big a time
span. Once you realize this, you might want to inform the customers so they can decide how important
these reports are. You may also want to tell them that reports covering longer time periods (for example,
the previous year or year-to-date) will take longer than reports covering the previous month.

Determining Performance Needs
The system must be fast enough to be usable by an employee working with a customer. This is a typ-
ical case of ‘‘fast enough is fast enough.’’ Unfortunately ‘‘fast enough’’ isn’t a verifiable quantity. You
need to write down an explicit definition of what ‘‘fast enough’’ means so you can tell if you’re meeting
your goal.

For an interactive application, a good rule of thumb is a 5-second response. If the application takes longer
than 5 seconds to respond to a request, users grow impatient. (They check their email, wander off to get
coffee, bump into each other in the break room and start to chat, and pretty soon the 10-second response
takes 30 minutes.)

So the goal of the system will be to respond to interactive requests within 5 seconds 90 percent of the
time. Reports that are run daily should finish within 5 minutes and reports run less often can take as long
as 15 minutes. (These are very generous limits for this application and should be easy to achieve, but they
should be acceptable for most applications.)

Though this is an important application, it does not need 24/7 support. The data is fairly important,
however, particularly the data concerning future events such as orders that you have not yet delivered,
customer enrollment in courses, and future work shifts. Because the system doesn’t need to run 24 hours
a day, it can be shut down nightly for backups (and to save a little electricity). A manual system (using
pens, notebooks, sales slips, manual credit forms, and so forth) should be in place in case of a power
failure or in case the system crashes for some other reason.

Have you ever been in a store during a power failure or computer system crash and they couldn’t process
credit cards or even take cash? Not long ago my local McDonald’s was closed most of a day because their
computers were down. You’d think they could make and sell hamburgers for cash without a computer.
During a recent power failure, my local grocery store had emergency power for its registers and comput-
ers so, while they were frantically moving cheese and salads into refrigerated trucks, they could still sell
everything else.

235

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 236

Part III: A Detailed Case Study

Determining Security Needs
At first, Charlie and Sveta don’t see any need for extra levels of security. You point out that things such
as setting prices, reordering inventory, and assigning work shifts can only be performed by Alicia (the
store manager) so the system needs at least two classes of users: general employees and managers.

It will probably also be useful to have a third class of user to perform system administration tasks,
although Alicia may perform that role as well.

The general employees will make and fulfill orders. Managers (Alicia) will set prices, run reports, and
assign work shifts. System administrators will change system parameters, define reports, and perform
backups.

Charlie and Sveta probably won’t like the idea of an audit trail keeping track of their every move, but
most of what they do (making orders) should include their user names anyway in the Sold By field so
perhaps audit trails may not be necessary.

This is a place where you should look for future modifications. As long as Alicia makes all of the
system-wide changes (changing prices and assigning work shifts), you probably don’t need audit trails.
Orders hold a user name in the Sold By field so you know who created an order. If the system doesn’t
allow users to change orders after they are placed, there aren’t too many opportunities for Charlie and
Sveta to cause serious damage so any other changes are Bill’s or Alicia’s fault.

However, if the store ever gets another manager, it might be handy to record who makes what changes.

Only Bill can really decide whether audit trails are necessary. They’re not too hard to implement, so let’s
include them in this design.

Determining Data Integrity Needs
To really address this issue, you need to start making a list of the fields that belong to each of the database
entities. For example, the following table gives the data types and constraints for the fields in the Order
entity.

Field Req’d? Data Type Domain

Date Yes String Any date.

FirstName Note 1 String Any first name. Not validated.

LastName Note 1 String Any first name. Not validated.

Street Note 1 String Any street name and number. Not validated.

City Note 1 String Any city name. Not validated?

State Note 1 String Foreign key to States table.

Zip Note 1 String Valid ZIP Code. Not validated?

236

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 237

Chapter 11: User Needs and Requirements

Field Req’d? Data Type Domain

Email No String Valid email address. If provided, send the
customer a monthly email newsletter.

HomePhone Note 2 String Valid 10-digit phone number.

CellPhone Note 2 String Valid 10-digit phone number.

SameAsAbove Yes Boolean If unchecked, and we’re shipping, then the
Ship To fields are required.

ShipToFirstName Note 3 String Any first name. Not validated.

ShipToLastName Note 3 String Any first name. Not validated.

ShipToStreet Note 3 String Any street name and number. Not validated.

ShipToCity Note 3 String Any city name. Not validated?

ShipToState Note 3 String Foreign key to States table.

ShipToZip Note 3 String Valid ZIP Code. Not validated?

SoldBy Yes Reference Reference to employee information.

Description Yes String Foreign key to Inventory table.

PriceEach Yes Currency Taken from Inventory table.

Quantity Yes Integer > 0.

TotalPrice Yes Currency Calculated from PriceEach and Quantity.

Subtotal Yes Currency Calculated from the Items.

Tax Yes Currency Calculated from the Subtotal.

Shipping Yes Currency > = 0.

GrandTotal Yes Currency Subtotal + Tax + Shipping.

❑ Note 1 — This field is required if the customer is signing up for a course or if we’re shipping
products to the customer.

❑ Note 2 — If the customer is signing up for a course or if we’re shipping products to the customer,
at least one of the HomePhone and CellPhone fields is required.

❑ Note 3 — This field is required if we are shipping products to the customer and SameAsAbove
is false.

The customer contact fields (FirstName, LastName, Street, City, State, and Zip) are only required if
we are shipping the order to the customer or if the customer is enrolled in a course. If we are ship-
ping, either the Same As Above check box must be checked or the user must fill in the Ship To address
fields.

237

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 238

Part III: A Detailed Case Study

Try It Out Inventory
Build a table similar to the previous one for the InventoryItem entity.

1. List the fields.

2. Determine which are required.

3. Determine their data types.

4. Determine their domain requirements.

How It Works

The following table describes the fields in the InventoryItem entity.

Field Req’d? Data Type Domain

UPC Yes String Valid UPC values.

Description Yes String Any description.

BuyPrice No Currency > 0.

SellPrice Yes Currency > 0.

QuantityInStock Yes Integer > = 0.

StockLocation Yes String Where the item is stored when not on display.

ShelfLocation Yes String Where the item is stored when on display.

ReorderWhen No Integer > 0. If null, don’t reorder automatically.

ReorderAmount No Integer > = 0. If null, someone must specify the amount.

Vendor No Reference Vendor information (name, address, and so on).

The UPC, Description, SellPrice, and QuantityInStock fields are required. The BuyPrice and Vendor
will be filled in after the first purchase. When the database first goes into use, however, those values may
not be known so they cannot be required.

The Vendor field contains a bunch of data such as name, address, and phone number so it is a reference
to another entity that we need to add to the model.

Write Use Cases
One of the most important parts of identifying customer requirements is writing use cases. These help
drive the database toward its final goals and help keep developers on track. They let you test whether the
project is moving closer to completion and they let you verify that you have met your goals after you’re
finished.

238

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 239

Chapter 11: User Needs and Requirements

The following list shows use cases for The Pampered Pet database:

❑ Login

❑ Log in successfully

❑ Log in unsuccessfully

❑ Orders

❑ Create a new order for a new customer (see ‘‘Create a customer record’’)

❑ Create a new order for an existing customer

❑ Modify a pending order

❑ Cancel a pending order

❑ Fulfill an order (ship the items)

❑ Inventory

❑ View all inventory

❑ View low inventory

❑ View excess inventory

❑ Add an item to inventory

❑ Remove an item from inventory

❑ Modify an item in inventory

❑ Reorder low inventory

❑ List best and worst selling items in the last week, month, quarter, and year

❑ Courses

❑ Create a course

❑ Modify a course

❑ Delete a course

❑ Display and print a list of current and future courses

❑ Select a course and display its information

❑ Enroll a customer in a course

❑ Remove a customer from a course

❑ ‘‘Delete’’ a course after is has been completed by marking it as inactive

❑ Print a flyer about a course

❑ Print a course roster

239

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 240

Part III: A Detailed Case Study

❑ Employees

❑ Create a new employee

❑ Modify an employee

❑ ‘‘Delete’’ an employee by marking it as inactive

❑ List employees and sales for the last week, month, quarter, and year sorted by sales

❑ Verify that sensitive information (salary, Social Security number, and so on) are visible only
to manager and administrator

❑ Shifts

❑ Assign work shifts for a week

❑ Display and print work shifts for a week

❑ Copy shifts from one week to a new week for all employees

❑ Copy shifts from one week to a new week for one employee

❑ Modify work shifts

❑ Swap two employees’ shifts

❑ Verify that no one can modify work shifts for past weeks

❑ Customers — Information about customers, particularly courses they’re taking.

❑ Create a customer record

❑ Modify a customer record

❑ Print or email general customer mailing

❑ Print or email customer mailing based on criteria (for example, customers who took or are
taking a particular course)

❑ Display and print customers selected by ad hoc criteria

❑ ‘‘Delete’’ a customer record by marking it as inactive

Note that it’s important to write use cases before you build the database. Developers who build use cases
after the fact tend to slant the tests toward what the application can actually do rather than what it should
do. (Sort of like the politician who predicts prosperity if he’s elected and then after a year of recession
says, ‘‘See, I told you there were tough times ahead!’’)

Try It Out What’s the Use?
Each use case must be specified in enough detail that someone can try it out and decide whether the
database or project has passed the test. Ideally the instructions should be simple enough that less experi-
enced developers or even users can try them out while the more experienced developers concentrate on
making excuses and fixing the problems that the use cases uncover.

240

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 241

Chapter 11: User Needs and Requirements

Write out a detailed description for the use case ‘‘Display and print customers selected by ad hoc criteria.’’
Give the use case these sections:

1. Goals.

2. Summary.

3. Actors.

4. Normal Flow.

5. Alternative Flow.

Refer to Chapter 4 for more information on use cases if necessary.

How It Works

1. Goals.

Allow the user to display and print customer lists using ad hoc criteria.

2. Summary.

Allow the user to enter criteria to select customers. Display a list of the selected customers. Let
the user print the list. Let the user jump from a customer in the list to that customer’s detailed
information.

3. Actors.

Only the Manager and Administrator should be able to use this feature.

4. Normal Flow.

Here’s where the bulk of the test case begins. The following steps test the normal flow:

a. User selects Reports ➪ List Customers from menu.

b. Customer List screen appears.

c. User selects fields (Zip, TotalPurchases, LastPurchaseDate) and operators (<, >, > =) from
combo boxes. User clicks List button.

d. The screen displays a list of the selected customers.

e. User selects Data ➪ Details from the menu to display a dialog where the user can check the
fields that should be displayed in the list. The list clears after new selections are made. The
user can click List again to rebuild the list.

f. The user double-clicks a customer’s entry to open that customer’s detailed information.

g. The user selects File ➪ Print from the menu to print the list with the selected fields. (Test
lists containing 1, 2, and 3 pages.)

5. Alternative Flow.

241

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 242

Part III: A Detailed Case Study

These steps test unusual or exceptional circumstances. The following steps test unusual condi-
tions:

a. Criteria select no customers.

b. User enters no criteria (should select all customers).

c. User selects no fields for the list (should make empty list). (Question: Always include cus-
tomer name?)

d. User tries to print empty list (should refuse).

Write the Requirements Document
The requirements document is the first blueprint detailing the project’s scope. It sets the tone for
future development and guides developers as the project progresses, so it’s a very important
document.

Unfortunately, it’s also fairly long. This chapter identified about a half dozen main tables (later chapters
will define more) and around 50 use cases, so a reasonable requirements document would probably
take 50 to 75 pages. To save space, a full requirements document for The Pampered Pet database isn’t
included here.

Fifty or so pages is about the minimum I’ve seen on a formal project. I’ve worked on some projects with
requirements documents with around 500 pages stored in multiple ring binders.

Before wrapping up, however, this section shows two key pieces of the requirements document: the
mission statement and the executive overview.

The mission statement is a very brief declaration of the project’s overall purpose. Sometimes it is the
only part of the requirements document that upper management reads, so it needs to be written for ‘‘big
picture’’ executives. (Insert your own joke about ‘‘big picture’’ executives here.) Ideally it should include
at least a little content so the executives can discuss the project in the clubhouse after a hard round of golf.

The mission statement for The Pampered Pet database might read:

The Pampered Pet Database will allow management to better track and understand
its customers, orders, and inventory. It will provide streamlined administration of
currently manual processes such as work shift assignment to allow key personal to
dedicate additional time to more productive uses. Its data-tracking capabilities will
allow management to better identify customer purchasing trends so the company
can position itself to take best advantage of emerging industry trends. The database
will truly allow The Pampered Pet to move aggressively into 21st century data
management and
forecasting.

Seriously, this mission statement in all of its polysyllabic splendor isn’t quite as silly as it sounds. It gives
your executive champion some useful information and buzzwords that can be used to fight for resources
if necessary and to defend the project from possible outside interference.

242

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 243

Chapter 11: User Needs and Requirements

For more hands-on managers such as Bill Wye, you should also provide an executive summary. This
gives him a little more information if he needs it or he’s just curious while not flooding him with so
many details that his eyes glaze over. It explains what and why but not how.

The following bulleted list makes a concise executive summary that identifies the project’s key points.

The Pampered Pet Database will allow management to better:

❑ Track customer orders and fulfillment

❑ Identify customers with particular purchasing histories

❑ Identify customers with a history of taking training courses

❑ Streamline work shift assignment

❑ Identify products that are hot

❑ Identify products that are under-performing

❑ Identify salespeople who are over- or under-performing

Demand Feedback
It’s important to get feedback at every stage of development. Remember, the longer a mistake is in the
system, the harder it is to fix. Mistakes made during requirements gathering can throw the whole effort
out of whack.

Unfortunately customers, particularly those who know the most about their business, are often very
busy and may not feel they have time to look over the requirements documents thoroughly and provide
feedback. Because this feedback is so important, you may need to push on them a bit. In this example,
that means pestering Alicia mercilessly until she makes time to review the plan so far. When she has a
chance to look things over thoroughly, she finds the following mistakes:

❑ Some inventory items such as live food (crickets, mealworms, feeder guppies) and pet feed have
expiration dates. That means:

❑ The InventoryItem entity needs a new ExpirationDate field.

❑ The system needs a new Expiring Inventory report.

❑ Employees don’t always show up for their shifts on time and sometimes leave early, particu-
larly if business is slow. That means the work shift data is not enough to determine the hours
that an employee actually worked. That in turn means the database needs a new TimeEntry
entity.

❑ The system should have a report that shows how much money each employee earned for the
store during a particular week, month, quarter, or year.

❑ The system should print payroll checks and record the date on which they were printed.

❑ Alicia mentions that they may want to provide direct deposit at some point.

243

Stephens c11.tex V3 - 10/04/2008 12:24pm Page 244

Part III: A Detailed Case Study

This may seem like a lot of changes but it’s really not so bad. The basic database structure is close to
correct. The only real changes are one new field, one new entity, and a couple of reports. This chapter
won’t make these changes but the following chapter will include them.

Summary
Any project begins with requirements gathering. If you don’t have a good understanding of the cus-
tomers’ needs, you have little chance of building an effective solution for the customers’ problems.

This chapter described the requirements gathering phase for The Pampered Pet database project. In this
chapter, you saw examples of:

❑ Meeting with customers to identify requirements.

❑ Building a mockup to increase customer understanding, buy-in, and enthusiasm.

❑ Defining the database’s main entities and their relationships.

❑ Determining data integrity requirements for entities.

❑ Defining and writing use cases.

After you gather requirements information, you’re ready for the next stage of design and development:
building a data model. The following chapter describes this phase for The Pampered Pet database project.

Before you move on to Chapter 12, however, use the following exercises to test your understanding of
the material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
1. Make a table showing the data integrity needs for the Course entity. Note any special

requirements and conditions, which fields are required, and any relationships with other
entities.

2. Make a table showing the data integrity needs for the Employee entity. Note any special
requirements and conditions, which fields are required, and any relationships with other
entities.

3. Make a table showing the data integrity needs for the Shift entity. Note any special require-
ments and conditions, which fields are required, and any relationships with other entities.

4. Make a table showing the data integrity needs for the Customer entity. Note any special
requirements and conditions, which fields are required, and any relationships with other
entities.

5. Make a table showing the data integrity needs for the TimeEntry entity. Note any special
requirements and conditions, which fields are required, and any relationships with other
entities.

6. Make a table showing the data integrity needs for the Vendor entity. Note any special
requirements and conditions, which fields are required, and any relationships with other
entities.

244

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 245

12
Building a Data Model

The previous chapter described requirements gathering for The Pampered Pet database project. It
took the basic requirements and used them to build the fundamental entities that will take part in
the database’s operations.

This chapter builds more formal data models describing those entities. Semantic object models
emphasize the entities’ fields and entity-relationship diagrams emphasize the relationships among
them.

In this chapter you see examples of:

❑ Converting requirements entities into semantic objects.

❑ Splitting off repeated data into new objects.

❑ Converting requirements entities and semantic objects into entity-relationship diagrams.

❑ Converting semantic object models and entity-relationship diagrams into relational
models.

Semantic Object Modeling
Semantic object models have the advantage that they are relatively close in structure to the kinds of
entity definitions that you typically get out of requirements gathering. They focus on the attributes
that objects have. That is the same type of information that you get by studying the customer’s
needs and user interface mockups, and then figuring out where those mockups will get their data.

Building an Initial Semantic Object Model
To build a semantic object model, review the tables showing data integrity needs that were pre-
sented in the section ‘‘Determining Data Integrity Needs’’ in Chapter 11. The chapter’s text showed
the data needed by the Order and InventoryItem entities. The exercises built tables showing the
data needed by the Course, Employee, Shift, Customer, TimeEntry, and Vendor entities. Chapter 11
also discussed the relationships among those entities.

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 246

Part III: A Detailed Case Study

To convert the data requirements tables in Chapter 11 into semantic objects, simply convert the
entity’s pieces of data into attributes. Then add object attributes to represent relationships with
other object classes.

For example, the following table summarizes the Course entity’s fields given in Chapter 11.

Field Req’d? Data Type Domain

Title Yes String Any string.

Description Yes String Any string.

MaximumParticipants Yes Integer > 0

Price Yes Currency > 0

AnimalType Yes String One of Cat, Dog, Bird, and so on.

Dates Yes String List of dates.

Time Yes Time Between 8am and 11pm.

Location Yes String One of Room 1, Room 2, yard, arena, and so on.

Trainer No Reference The Employee teaching the course.

Students No Reference Customers table.

This entity has two relationships, one to the employee teaching the course (Trainer) and a sec-
ond to the customers taking the course (Students). Figure 12-1 shows the corresponding semantic
object class.

COURSE
ID CourseID 1.1

Title 1.1
Description 1.1
MaximumParticipants 1.1
Price 1.1
AnimalType 1.1
Dates 1.N
Time 1.1
Location 1.1
EMPLOYEE 0.1

CUSTOMER 0.N

Figure 12-1

246

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 247

Chapter 12: Building a Data Model

Try It Out A Little Class
Define a semantic EMPLOYEE class.

1. Write down the data requirements for the Employee entity.

2. Convert the entity’s fields into attributes.

3. Add object attributes to represent relationships between Employee and other entities.

How It Works

1. The following table shows the data requirements for the Employee entity identified in
Chapter 11.

Field Req’d? Data Type Domain

FirstName Yes String Any first name.

LastName Yes String Any last name.

Street Yes String Any street name and number. Not validated.

City Yes String Any city name. Not validated?

State Yes String Foreign key to States table.

Zip Yes String Valid ZIP Code. Not validated?

Email No String Valid email address. If provided, send the
customer a monthly email newsletter.

HomePhone No String Valid 10-digit phone number.

CellPhone No String Valid 10-digit phone number.

SocialSecurityNumber Yes String Valid Social Security number.

Specialties No String Zero or more of: Dog, Cat, Horse, Bird, Fish, and
so on.

2. The FirstName, LastName, Street, City, State, Zip, Email, HomePhone, CellPhone,
SocialSecurityNumber, and Specialties fields all turn into attributes in the EMPLOYEE class.

3. The Employee entity is related to the entities Course (an employee teaches courses), Shift (an
employee is assigned to work a shift), and Time Entry (an employee actually works sometimes).
Figure 12-2 shows the initial model for the EMPLOYEE class.

247

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 248

Part III: A Detailed Case Study

FirstName 1.1
LastName 1.1
Street 1.1
City 1.1
State 1.1
Zip 1.1
Email 0.1
HomePhone 0.1
CellPhone 0.1
SocialSecurityNumber 1.1
Specialties 0.N

COURSE 0.N

SHIFT 0.N

TIME_ENTRY 0.N

EMPLOYEE
ID EmployeeID 1.1

Figure 12-2

Improving the Semantic Object Model
Figure 12-3 shows a first attempt at building a semantic object model for the major entities identified
so far.

Notice that the relationships in Figure 12-3 are two-way. If object A is related to object B,
then object B is related to object A. For example, in this model the EMPLOYEE class contains an
object attribute referring to COURSE and the COURSE class contains an object attribute referring
to EMPLOYEE.

A quick look at Figure 12-3 uncovers several problems. First, the ORDER class contains two addresses,
the customer’s address and a shipping address. They are the same kind of data, so they should be
represented by a repeating multi-valued attribute.

This model doesn’t acknowledge the relationship between orders and customers. A customer places
an order, but there’s no link between the ORDER and CUSTOMER classes. The model should be changed
to make that relationship explicit.

Furthermore, one of the addresses contained in the ORDER class is actually the customer’s
address. That address is already represented in the CUSTOMER class, so it’s not needed in
ORDER.

The ORDER class’s second address is the shipping address. It probably makes sense to leave that
address in the ORDER class rather than moving it into CUSTOMER because it tells where that particular
order should be shipped. If this address is missing, the order should be shipped to the customer’s
address.

Because ORDER and CUSTOMER both contain addresses, it makes sense to create a new ADDRESS class
to hold address data for both of those classes.

248

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 249

Chapter 12: Building a Data Model

ORDER
ID OrderID 1.1

Date 1.1
FirstName 0.1
LastName 0.1
Street 0.1
City 0.1
State 0.1
Zip 0.1
Email 0.1
HomePhone 0.1
CellPhone 0.1
SameAsAbove 1.1
ShipToFirstName 0.1
ShipToLastName 0.1
ShipToStreet 0.1
ShipToCity 0.1
ShipToState 0.1
ShipToZip 0.1
SoldBy 1.1
Items

Description 1.1
PriceEach 1.1
Quantity 1.1
TotalPrice 1.1

Subtotal 1.1
Tax 1.1
Shipping 1.1
GrandTotal 1.1

INVENTORY_ITEM
ID ItemID 1.1

UPC 1.1
Description 1.1
BuyPrice 0.1
SellPrice 1.1
QuantityInStock 1.1
ExpirationDate 0.1
StockLocation 0.1
ShelfLocation 0.1
ReorderWhen 0.1
ReorderAmount 0.1
VENDOR 0.1

COURSE
ID CourseID 1.1

Title 1.1
Description 1.1
MaximumParticipants 1.1
Price 1.1
AnimalType 1.1
Dates 1.N
Time 1.1
Location 1.1

EMPLOYEE
ID EmployeeID 1.1

FirstName 1.1
LastName 1.1
Street 1.1
City 1.1
State 1.1
Zip 1.1
Email 0.1
HomePhone 0.1
CellPhone 0.1
SocialSecurityNumber 1.1
Specialties 0.N

SHIFT

Date 1.1
StartTime 1.1
StopTime 1.1

TIME_ENTRY

CUSTOMER
ID CustomerID 1.1

FirstName 1.1
LastName 1.1
Street 0.1
City 0.1
State 0.1

Email 0.1
HomePhone 0.1
CellPhone 0.1

Zip 0.1

Pets
Name 1.1
Type 1.1
Birthdate 1.1 0.N

COURSE 0.N

VENDOR
ID VendorID 1.1

CompanyName 1.1
ContactFirstName 1.1
ContactLastName 1.1
Street 1.1

ContactEmail 0.1
ContactPhone 0.1
Notes 0.1

City 1.1

Zip 1.1
State 1.1

INVENTORY ITEM 0.N

EMPLOYEE 1.1

StopTime 1.1

Date 1.1
StartTime 1.1

PaidDate 0.1

EMPLOYEE 1.1

TIME_ENTRY 0.N
SHIFT 0.N
COURSE 0.N

EMPLOYEE 0.1
CUSTOMER 0.1

1.N

Figure 12-3

Figure 12-3 also shows that the CUSTOMER, EMPLOYEE, and VENDOR classes share several attributes in
common. They all include name, address, email, and phone information. This makes intuitive sense
because customers, employees, and vendors are all types of people.

To recognize the relationship among customers, employees, and vendors, it makes sense to build
a PERSON parent class that holds name, address, email, and phone information. The CUSTOMER,
EMPLOYEE, and VENDOR classes then become subclasses of the PERSON class.

Finally, the phone information in the CUSTOMER, EMPLOYEE, and VENDOR classes is not exactly identi-
cal. The CUSTOMER and EMPLOYEE classes include both home and cell numbers, whereas the VENDOR
class has only a single contact phone number. That makes sense (most vendors don’t want you call-
ing their employees at home), but it’s easy to generalize the model slightly and allow the PERSON
class to hold any number of phone numbers of various kinds. A VENDOR object may never need a
home phone number, but it doesn’t hurt to allow the possibility.

Figure 12-4 shows the improved model.

Note that some of these steps used to improve the model actually make the database more normal-
ized. Many people think of normalization as a step that occurs after the data model is complete, but
it really occurs throughout the data modeling process. As you see parts of the database that need to
be normalized (and with experience you’ll see them earlier and earlier), go ahead and fix them even
if the model isn’t complete yet.

249

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 250

Part III: A Detailed Case Study

ORDER
ID OrderID 1.1

Items
Description 1.1
PriceEach 1.1
Quantity 1.1
TotalPrice 1.1

Subtotal 1.1
Tax 1.1
Shipping 1.1
GrandTotal 1.1

Date 1.1
CUSTOMER 0.1
ADDRESS 0.1
EMPLOYEE 1.1

EMPLOYEE 1.1

1.N

SHIFT

Date 1.1
StartTime 1.1
StopTime 1.1

EMPLOYEE 1.1

TIME_ENTRY

Date 1.1
StartTime 1.1
StopTime 1.1
PaidDate 0.1

PHONE
Number 1.1
Type 1.1
PERSON 0.N

VENDOR 0.1

CUSTOMER O.N
EMPLOYEE 0.1

Description 1.1
Title 1.1

MaximumParticipants 1.1
Price 1.1
AnimalType 1.1
Dates 1.N
Time 1.1
Location 1.1

UPC 1.1
Description 1.1
BuyPrice 0.1
SellPrice 1.1
QuantityInStock 1.1
ExpirationDate 0.1
StockLocation 0.1
ShelfLocation 0.1
ReorderWhen 0.1
ReorderAmount 0.1

INVENTORY_ITEM
ID ItemID 1.1

COURSE
ID CourseID 1.1

ADDRESS
Street 1.1
City 1.1
State 1.1
Zip 1.1
PERSON 0.N
ORDER 0.N

FirstName 1.1
LastName 1.1
Email 0.1
ADDRESS 0.1
PHONE 0.N

CUSTOMER 0.ST
VENDOR 0.ST
EMPLOYEE 0.ST

PERSON p

Pets
Name 1.1
Type 1.1
Birthdate 1.1

ORDER 0.N
COURSE 0.N

0.N

PERSON p

PERSON
ID PersonlD 1.1

CUSTOMER

ID CustomerID 1.1

EMPLOYEE

ID EmployeeID 1.1
SocialSecurityNumber 1.1
Specialties 0.N
ORDER 0.N
COURSE 0.N
SHIFT 0.N
TIME_ENTRY 0.N

VENDOR

ID VendorID 1.1
CompanyName 1.1
Notes 0.1
INVENTORY_ITEM 0.N

PERSON p

Figure 12-4

Entity-Relationship Modeling
Though semantic object models are fairly easy to build from lists of the database’s main objects and
their properties, they have the disadvantage that their structure doesn’t closely match that of a relational
database. Though the objects typically map into relational tables, the semantic object model doesn’t
emphasize the relationships among the entities. It also allows data arrangements that don’t fit the rela-
tional model, such as attributes that are repeated any number of times within the same entity.

An entity-relationship model has a structure that’s closer to the one used by relational databases, so it
makes some sense to convert the semantic object model into a set of ER diagrams.

Building an ER Diagram
To start converting the semantic object model into ER diagrams, consider a particular semantic class and
build a corresponding entity set. Connect it to other entity sets representing the class’s object attributes.

Finally, consider the class’s group attributes. If a group attribute is repeated, you should probably move it
into a new entity connected to the original one. If a group attribute occurs only once, you might still think
about moving the data into a new entity to either allow repetition later or to make similar data uniform
across other entities. If a Student class contains a single Address group attribute, it might be worth

250

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 251

Chapter 12: Building a Data Model

moving the Address data into a new table that holds address data for all kinds of entities (Instructor,
Employee, and so forth).

For example, the ORDER class shown in Figure 12-4 is one of the more complicated classes, having rela-
tionships with three other classes: CUSTOMER, ADDRESS, and EMPLOYEE. To start building the ER diagram,
you would create an Order entity set and connect it to Customer, Address, and Employee sets.

The ORDER class has one repeating group attribute: Items. Move that data into a new InventoryItem entity
set and connect it to the Order entity.

For each of the relationships, think about how many of each type of entity could be associated with a
single instance of the other entity type. For example, the Order entity is related to the Customer entity. A
single Order must have exactly one Customer, so the Customer end of the relationship gets cardinality
1.1. Looking at the relationship from the other end, a single Customer might have 1 or more Orders, so
the Order end of the relationship gets cardinality 1.N.

Similarly, you can find the cardinalities for the Order/Employee, Order/Address, and Order/
InventoryItem relationships.

Figure 12-5 shows the ER diagram for the Order entity and its relationships.

Customer

Places

Order

Ships To

Address

0.1

1.N

1.N

1.1

0.N0.N
Employee Sells

1.1 1.N
InventoryItemContains

Figure 12-5

Try It Out A Matter of Course
Make an ER diagram representing the COURSE class shown in Figure 12-4.

1. Make a Course entity set.

2. Make entity sets corresponding to the COURSE class’s object attributes and connect them to the
Course entity.

3. Consider any group attributes and decide whether to move them into new entities.

251

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 252

Part III: A Detailed Case Study

How It Works

1. Simply create a rectangle to hold the new Course entity.

2. The COURSE class has object references to EMPLOYEE and CUSTOMER, so you should create Employee
and Customer entities and connect them to Course.

3. The COURSE class doesn’t have any group attributes, so you don’t need to move them into new
entities. Figure 12-6 shows an ER diagram for the Course entity and its relationships.

Employee Teaches Course

Takes

Customer

0.N

0.N
1.N

1.1

Figure 12-6

Building a Combined ER Diagram
After you build separate ER diagrams for each of the classes defined by the semantic object model, you
can combine them into one big diagram. The individual diagrams are enough to let you understand
the entities’ relationships on a local level but a combined diagram can help show larger patterns of
relationship.

Sometimes it can be tricky arranging the entities so their relationships don’t overlap and are easy to read.
In that case, it is sometimes useful to leave parts of the model out and show them in a separate diagram.

Figure 12-7 shows the combined ER diagram for the bottom-level classes modeled in Figure 12-4. To
keep things a bit simpler, the diagram displays the Customer, Employee, and Vendor entities but does
not show the fact that they are subclasses of the Person parent class.

The diagram shown in Figure 12-7 uses more descriptive and business-oriented terms wherever possible.
For example, from a purely theoretical perspective, you could say that an Employee ‘‘has a’’ Shift, ‘‘has
a’’ TimeEntry, and ‘‘has a’’ Course. That would be more uniform but would make the diagram much
harder to read.

The phrase ‘‘Customer Owns Pet’’ is a bit tricky where I live in Boulder, Colorado. Here people decided
that pet owners would be more responsible and caring if they were called ‘‘guardians’’ instead of ‘‘own-
ers,’’ so all of the city documents were changed appropriately. My tax dollars hard at work! I suppose
for cities such as Boulder, San Francisco, Berkeley, and others we’ll have to make a special edition of the
book that changes the ‘‘Owns’’ relationship to ‘‘Is The Responsible And Caring Guardian Of.’’

252

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 253

Chapter 12: Building a Data Model

Course

Teaches

Employee Sells

Takes

Works TimeEntry

ShiftIs Assigned

0.N

0.N

0.N

0.N

1.N

0.N0.N

0.1

0.N

0.N

0.N1.1

1.1

1.1

1.1

1.1

1.1

1.N

1.N

0.1

Customer

Places

Order

Ships To

Address

Contains

Owns Pet

InventoryItem

Sells

Vendor

Figure 12-7

Figure 12-8 shows the inheritance hierarchy containing the Person, Customer, Employee, and Vendor
classes. You could squeeze this onto the diagram shown in Figure 12-7, but it would make the result
more complicated. (I think this part of the model is easier to understand in two pieces.)

Person

IsA

EmployeeCustomer Vendor

Figure 12-8

Figure 12-9 shows the entities representing the last remaining classes shown in Figure 12-4. This figure
shows the relationship between the Person parent class and the Address and Phone entities. (You could
easily add this to Figure 12-8 but to me the two seem logically separate. One shows inheritance and the
other shows entity relationships.)

253

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 254

Part III: A Detailed Case Study

Person

Address

Phone

Lives At

Is
Contacted

At

0.11.1

1.1 0.N

Figure 12-9

Improving the Entity-Relationship Diagram
If you look closely at Figure 12-7, you’ll find two many-to-many relationships. First, a Customer may
take many Courses while a Course may have many Customers enrolled. Second, an Order may contain
many InventoryItems and an InventoryItem can be part of many Orders.

Entity-relationship diagrams have no trouble modeling many-to-many relationships, but a relational
model cannot. To see why not, consider the relationship between Customer and Course. To build this
relationship in a relational model, one of the tables must contain information linking it to the other.

To link a single Customer record to many Course records, you would need to list many Course IDs in
the Customer record. Because a customer might take any number of courses, that would require the
Customer record to contain an indefinite number of fields, and that’s not allowed in a relational model.

Now suppose you try to make a single Course record hold information linking it to several Customer
records. That would require the Course record to contain an indefinite number of fields, and that’s not
allowed in a relational model.

The way out of this dilemma is to create an intermediate entity to represent the combination of a particu-
lar customer and a particular course. Then you can connect the Customer and Course entities to the new
one with one-to-many relationships, which can be represented in a relational model.

Figure 12-10 shows this new piece of the entity-relationship puzzle. Now a Customer is associated with
any number of CustomerCourse entities, each of which is associated with a single Course. Similarly, a
Course is associated with any number of CustomerCourse entities, each of which is associated with a
single Customer.

CustomerCourse Customer

Represents

Course

Takes
1.1

1.1

0.N

0.N

Figure 12-10

254

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 255

Chapter 12: Building a Data Model

Try It Out Broken Relationships
Restructure the other many-to-many relationship shown in Figure 12-7 between Order and InventoryItem
so it doesn’t require a many-to-many relationship.

1. Create a new intermediate entity.

2. Associate the new entity with the old ones.

How It Works

1. To connect the Order and InventoryItems entity sets, create a new OrderItem entity set.

2. Connect the Order and InventoryItems entity sets with the new one.

One order can contain one or more items so the OrderItem end of the Order/OrderItem relationship
has cardinality 1.N. One OrderItem is associated with exactly one Order so the Order end of this relation
has cardinality 1.1.

One inventory item can be used in zero or more orders, so it may be represented by many OrderItems.
That means the OrderItem end of the InventoryItem/OrderItem relationship has cardinality 0.N. A
single order item represents a particular inventory item, so the InventoryItem end of this relationship has
cardinality 1.1.

Figure 12-11 shows an ER diagram representing the Order/OrderItem/InventoryItem relationships.

1.N1.1

0.N

1.1

Order Contains OrderItem

InventoryItem

Represents

Figure 12-11

Figure 12-12 shows the new larger ER diagram from Figure 12-7 with the many-to-many relationships
replaced by intermediate tables.

The changes to remove the many-to-many relationships are another step that normalizes part of the
database. They remove the need for repeated columns in tables by replacing them with intermediate
tables. The entity-relationship model can represent many-to-many relationships, so you don’t really need
to remove them at this stage. Instead you could wait and remove them when you build the relational
model in the next step. However, the diagram shown in Figure 12-7 makes these relationships easy to
see, so this is a reasonable time to straighten them out and it will make building the relational model
easier in the following chapter.

255

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 256

Part III: A Detailed Case Study

0.1

0.1

1.11.1

1.11.1

1.1

1.1

1.1

1.1

1.11.1

0.N

0.N0.N

1.N
1.N0.N

0.N

0.N

0.N

0.N

0.N 0.N
CustomerCourse Takes Customer Has A Pet

PlacesCourse

Represents

Teaches

Employee Sells Order Contains OrderItem

Represents

InventoryItem

Sells

Vendor

Ships To

TimeEntry

ShiftIs Assigned

Works

Address

Figure 12-12

Relational Modeling
The semantic object model made it easy to study the classes that will make up the database and allowed
some normalization. The entity-relationship model emphasized the entities’ relationships and made it
easy to remove many-to-many associations.

Now it’s time to use what you’ve learned by building the semantic object and entity-relationship models
to create a relational model.

Start by making a table for each of the models’ classes and entity sets. Look at the final ER diagrams
shown in Figures 12-8, 12-9, and 12-12, and make tables for the entities drawn in rectangles. The following
list shows the tables that you need to create:

❑ CustomerCourses

❑ Customers

❑ Pets

256

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 257

Chapter 12: Building a Data Model

❑ Courses

❑ Employees

❑ Orders

❑ OrderItems

❑ Addresses

❑ InventoryItems

❑ TimeEntries

❑ Shifts

❑ Vendors

❑ Persons

❑ Phones

Refer to the semantic object model in Figure 12-4 to find the basic fields that each table needs.

Next consider the tables that are directly related in the ER diagrams. Figure 12-12 contains several
one-to-many relationships. To implement those in the relational model, you need one of the related
tables to include a field that leads back to a field in the other table. The table at the ‘‘one’’ end of the
one-to-many relationship cannot hold an unknown number of fields linking to the ‘‘many’’ records, so
the fields must work the other way around.

In the table on the ‘‘one’’ side of the relationships, identify the primary key fields. Remember, to qualify
as a primary key, the fields must guarantee uniqueness so no two records in the table can have exactly
the same primary key values.

Because those fields will be used as the record’s primary key, they should not be values that you will
want to modify later. For example, a combined FirstName/LastName key is a bit risky because people
do occasionally change their names.

The key values will also be contained in the table on the ‘‘many’’ side of the relationship, so it’s better
if the key doesn’t include a lot of data. The FirstName/LastName pair might be a moderately long text
string. Though it won’t hurt database performance too much if you use such a key, it’s easier to work
with a single field key.

If the table on the ‘‘one’’ side of the relationship doesn’t contain an easy-to-use natural key, add one.
Name it after the table and add ‘‘Id’’ at the end.

For example, consider the relationship between the Address and Order entities. Figure 12-12 shows that
this is a one-to-many relationship with the Address entity on the ‘‘one’’ side. That entity contains Street,
City, State, and Zip attributes. Even if you allow only a single customer per street address, using those
fields as the primary key would be a risky because you might need to change them later. For example, an
employee might misspell the customer’s street name when creating the customer’s record. Even worse, a
customer might move to a new address. In both of those cases, it would be seriously annoying to have to
delete the customer’s record and create a new one just to update the address. (Although I have an Internet
service provider that cannot seem to figure out how to change a customer’s email address without closing
the account and opening a new one. I’d send them a copy of this book if I thought they’d read it.)

257

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 258

Part III: A Detailed Case Study

Because this table has no natural primary key, add an AddressId field to it and use that to link the tables
together.

Now add an AddressId field to the ‘‘many’’ side of the relationship. In this example, that means adding
a new field to the Orders table.

Finally, draw the link between the two tables, place a 1 next to the ‘‘one’’ end of the relationship, and a
∞ next to the ‘‘many’’ end.

Figure 12-13 shows the resulting relational model for these two tables. Note that this version considers
only those two tables. In the more complete model, these tables will need additional ID fields to link them
to other tables.

Date
SameAsAbove
AddressId

1AddressId
Street
City
State
Zip

Orders

Addresses

∞

Figure 12-13

Try It Out Identifying IDs
Figure out what fields to add to represent the relationship between the Orders and OrderItems tables.

1. Identify the ‘‘one’’ side of the one-to-many relationship. Find or create a primary key for that
table.

2. Give the table representing the ‘‘many’’ side of the relationship fields to refer to the first table’s
primary key.

3. Draw the tables and the new link. Include the information about the relationship between Orders
and Addresses shown in Figure 12-13.

How It Works

1. The Orders table represents the ‘‘one’’ side of this one-to-many relationship because one order
can include many OrderItems. There is no natural primary key in an Order entity (if the same
customer placed another order on the same date, it could have exactly the same values), so add a
new OrderId field to the Orders table.

A single order can have many order items, so OrderId isn’t enough to uniquely identify the
records in the OrderItems table. Add a SequenceNumber field to the primary key to uniquely

258

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 259

Chapter 12: Building a Data Model

identify the records. This field also lets you display the items for an order in sorted order. The
record with SequenceNumber = 1 comes first, the records with SequenceNumber = 2 comes
next, and so forth. Displaying the items in the same order in which they were originally entered
is generally comforting to the users.

2. The OrderItems table represents the ‘‘many’’ side of the one-to-many relationship. Give it an
OrderId field that refers back to the Orders table’s OrderId field. Notice that the OrderItems
table’s primary key includes both the OrderId and SequenceNumber fields but the Orders table
refers only to the OrderId field. A program listing an order’s items would use the OrderId value
to fetch all of the related OrderItems records and then would use the SequenceNumber field to
sort them.

3. Figure 12-14 shows a relational diagram that includes the previous relationship between
Orders and Addresses shown in Figure 12-13 plus the new relationship between Orders and
OrderItems.

Orders
1 OrderIdOrderId

Date
SameAsAbove
AddressId

AddressId
Street
City
State
Zip

Quantity
SequenceNumber

OrderItems

Addresses

∞

∞

Figure 12-14

Putting It All Together
Continue examining the relationships shown in the ER diagram in Figure 12-12. Find or create a primary
key in the table on the ‘‘one’’ side of the relationship and add a corresponding field in the table on the
‘‘many’’ side.

You can make arranging the tables easier if you place them in roughly the same arrangement that
the corresponding entities occupied in the entity-relationship diagram. (Figures 12-13 and 12-14
show the Addresses table below the Orders table because the Address entity is below the Order entity
in Figure 12-12.)

You’ll probably need to move the tables around a little because they won’t be the same size as the rectan-
gles in the ER diagram, but starting with that arrangement should make drawing relationships between
the tables easier.

Figure 12-15 shows the resulting relational model.

259

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 260

Part III: A Detailed Case Study

1
1

111

1

11

1

1 1
1

1

1

CourseId
Title

Price

Time
Dates

Location

Courses

Description
MaximumParticipants

AnimalType

InstructorEmployeeld

11

11

CustomerId
CustomerCourses

CourseId

Customers
CustomerId
PersonId

Orders

Addresses

Date
OrderId

SameAsAbove
CustomerId

SoldByEmployeeId
AddressId

PersonId
EmployeeId

Employees

SocialSecurityNumber
Specialties

Time Entries
EmployeeId
Date
StartTime
StopTime
PaidDate

AddressId
Street
City
State
Zip

Persons
Shifts

EmployeeId
Date
StartTime
StopTime

PersonId
FirstName
LastName
Email
AddressId

OrderId

UPC
Quantity

Notes
CompanyName
PersonId
VendorId

VendorId

UPC
Description
BuyPrice
SellPrice
QuantityInStock
ExpirationDate
StockLocation
ShelfLocation
ReorderWhen
ReorderAmount

Phones

Vendors

InventoryItems

Pets
CustomerId
Name
AnimalType
BirthDate

OrderItems

PersonId
Number
PhoneType

SequenceNumber

1

1

∞
∞ ∞

∞

∞

∞

∞
∞

∞
∞

∞

∞

∞

Figure 12-15

As a quick check, examine each relational link. The end touching a primary key field should have cardi-
nality 1. The field’s name should be the table’s name plus ‘‘Id.’’ The exception to this naming convention
is in the InventoryItems table, which includes the natural primary key field UPC.

The end of a link touching the foreign key field on the ‘‘many’’ side of the relationship should have
the same name as the ID field and should have cardinality 1 (for a one-to-one relationship) or ∞ (for a
one-to-many relationship).

Note that the two intermediate tables used to represent many-to-many relationships, CustomerCourses
and OrderItems, contain little more than keys linking to the two tables that they connect. For example, the
CustomerCourses table contains only a CustomerId field linking to the Customers table and a CourseId
field linking to the Courses table.

The OrderItems table includes its two linking ID fields plus the SequenceNumber field to make the
primary key unique and to allow sorting. It also contains a Quantity field to indicate the number of that
type of item included in the order (for example, 3 pencils).

Summary
This chapter explains the data modeling steps for The Pampered Pet database project. It showed how to
build a semantic object model and how to convert that into an entity-relationship model. Along the way,
it showed how to improve the models by normalizing parts of them.

260

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 261

Chapter 12: Building a Data Model

In this chapter, you saw examples of:

❑ Building semantic objects.

❑ Moving repeated semantic group attributes and some other group attributes into new classes.

❑ Converting a semantic object model into an entity-relationship model.

❑ Representing many-to-many relationships with two one-to-many relationships.

❑ Improving models by normalizing parts of them.

❑ Converting semantic object models and ER diagrams into a relational model.

❑ Adding ID fields to tables.

❑ Converting entity relationships into relational links.

Not all projects use both semantic object models and entity-relationship models. Many developers prefer
one or the other and don’t bother with the extra work of creating two models. Some even jump straight
to a relational model. Each of these types of models has its strengths and weaknesses, however, so it’s
often useful to work through all three kinds.

Figure 12-15 shows a pretty reasonable relational model for The Pampered Pet database, but it’s still
not perfect. If you look closely, you may be able to identify a few places where the tables are not well
normalized. (Can you spot the tables that are not even in First Normal Form?)

Chapter 13 shows how to improve the model by isolating business rules that are likely to change in the
future. Chapter 14 further normalizes the database and puts the finishing touches on it.

Before you move on to Chapter 13, however, use the following exercises to test your understanding of
the material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
Consider the entity-relationship diagram shown in Figure 12-12 and think about possible changes that
The Pampered Pet might later want to make to the database. Easy changes include adding or removing
non-identifier fields from an entity. Harder changes would require adding or removing entities or chang-
ing the relationships among them. For each of the following changes, explain how you would make the
change and how hard it would be.

1. The Pampered Pet opens a café that serves snacks for pets and their owners. How would you
handle the new food items for sale?

2. Management decides that only certain employees with special training can teach courses.
How would you model this new type of employee?

3. The Pampered Pet opens a new store. Management wants to track customers company-wide
but wants to track sales by store. How would you handle that?

4. New courses are offered offsite. How would you store the addresses of these offsite courses?

5. The Pampered Pet offers free clinics and outings such as dog and llama hikes. How would
you store information about these freebies?

261

Stephens c12.tex V3 - 10/04/2008 12:25pm Page 262

Part III: A Detailed Case Study

6. You need to allow more than one address on an order. How would you store the new
addresses?

7. You need to store a phone number for each order. How would you store these phone num-
bers?

8. Management decides they want to track the department that sold each item. How would
you track item departments?

9. Management decides to track customer addresses as they change over time. How would you
remember old addresses?

10. The Pampered Pet starts holding sales and offering discounts to employees. Where do you
store the discount information?

11. Figure 12-16 shows an ER diagram for a Robot Wars competition (see www.marcthorpe.com/
robot.html). A competitor builds one or more robots either alone or with others (so robots
can have one or more builders). Each robot can fight in any number of matches (if it survives)
and a match involves several robots. Finally, each match has a single winner (the last robot
survivor). Unfortunately, the design shown in Figure 12-16 includes two many-to-many
relationships. Draw a new ER diagram that replaces those relationships with one-
to-many relationships.

1.N 1.N 1.N 1.N

1.N1.1
Competitor Builds Robot

Fights In

Wins

Match

Figure 12-16

12. Build a relational model for the solution you built for Exercise 11.

262

Stephens c13.tex V3 - 10/04/2008 12:25pm Page 263

13
Extracting Business Rules

The previous chapters have built up a basic design for The Pampered Pet database. They gath-
ered customer requirements, built a semantic object model and entity-relationship diagrams, and
converted those into a relational model.

This chapter further refines the design by identifying business rules in the relational model and
isolating them so they will be easy to modify in the future if necessary.

In this chapter you see examples that:

❑ Identify required fields and other field-level constraints that are unlikely to change.

❑ Identify sanity checks that are also unlikely to change.

❑ Identify business rules that are more complicated or likely to change in the future.

Identifying Business Rules
The text and exercises in Chapter 11 listed the fields required for the initial database design. For
each field, that chapter gave the field’s data type, whether the field is required, and its domain. That
information describes most of the project’s business rules.

Domain information usually includes simple ‘‘sanity check’’ constraints. These are conditions that
basically verify the ‘‘laws of physics’’ for the database. For example, an item’s cost cannot be less
than $0.00. Exercise 5 in Chapter 12 discussed free clinics and outings, so it’s possible that an item
might be free, but it’s hard to imagine The Pampered Pet’s management charging less than nothing
for a product.

Other sanity check conditions include field data types and whether a field is required. It may also
include simple pattern validation. For example, the database might require a phone number to have
a 10-digit format, as in 602-827-1298.

Stephens c13.tex V3 - 10/04/2008 12:25pm Page 264

Part III: A Detailed Case Study

Because these sanity checks will never change, they can be coded directly into the database by
setting field conditions (data type and required) and check constraints.

Primary key information is also built into the database. For example, making the InventoryItems
table’s primary key be its UPC field ensures that every record has a non-null UPC value and that
every record has a unique UPC value.

Other domain information is either more complicated or more likely to change over time. Those
conditions should be isolated as much as possible to make them easier to change in the future.

The following sections describe the constraints on each of the tables defined in the relational model
shown in Figure 12-15. They explain which of those constraints can be built into the database and
which should be isolated as business rules.

Courses
The Courses table’s required fields include: CourseId (the primary key), Title, Description, Maxi-
mumParticipants, Price, AnimalType, Dates, Time, and Location. The InstructorEmployeeId is not
required and only gets filled in after an employee is assigned to teach the course. The required fields
can be built into the database.

Sanity checks include:

❑ MaximumParticipants > = 0 and MaximumParticipants < 100.

❑ Price > 0.

❑ Dates no earlier than the current date.

❑ Time between 8am and 11pm.

The sanity checks can be built into the database as field-level check constraints.

This table has two fields that take values from enumerated lists:

❑ AnimalType comes from the list Cat, Dog, Bird, and so on.

❑ Location comes from the list Room 1, Room 2, Back Yard, arena, and so on.

If you coded the lists of choices allowed for AnimalType and Location into field-level check con-
straints, you would have to make non-trivial changes if the allowed values changed. To make the
design more flexible, the choices should be placed in lookup tables AnimalTypes and Locations.
Then the fields in the Courses table can refer to those values as foreign key constraints.

This table contains one slightly more complicated validation:

❑ Price > 0. The price must be at least 0. Management has not said it could be equal to 0 but
that’s a change they could make in the future.

This rule could be implemented in the user interface or in middle-tier code that fetches and updates
course data.

264

Stephens c13.tex V3 - 10/04/2008 12:25pm Page 265

Chapter 13: Extracting Business Rules

It’s tempting to make this a field-level check constraint. After all, it would be relatively easy to do
so and the change isn’t inevitable. However, suppose the company offers free clinics for a while
and then decides to no longer offer them. At that point, there would be old course entries with Price
= 0 and you could not change the field-level check constraint back to Price > 0 because it would
contradict existing data.

The management will get the most flexibility for this constraint if it is kept separate from the
database’s structure. It could be implemented in middle-tier routines that fetch and update
Courses data.

Figure 13-1 shows the Courses table with its new lookup tables. The lookup tables are drawn with
dashed rectangles so the main tables stand out from them. This figure omits all of the other tables
and their relationships.

Locations
1

1

Location

AnimalTypes

AnimalType

Courses
CourseId

Title

Description

MaximumParticipants

Price

Animal Type
Dates

Time

Location

InstructorEmployeeId

∞

∞

Figure 13-1

Try It Out Address Constraints
Identify the various kinds of constraints on the Addresses table and determine which should be
implemented in the database and which should be provided elsewhere as business rules.

1. Identify the primary key and the required fields.

2. Identify sanity checks that will never change.

3. Create lookup tables for fields with a fixed set of allowed values.

4. Identify more complicated business rules and rules that may change in the future.

265

Stephens c13.tex V3 - 10/04/2008 12:25pm Page 266

Part III: A Detailed Case Study

How It Works

1. The Addresses table’s required fields are: AddressId (the primary key), Street, City, State, Zip.
All of these fields should be marked as required in the database.

2. In the United States at least, the Zip value must always have the form 12345 or 12345-6789.
Verifying the format could be implemented as a simple field-level check constraint.

3. The State field’s values must be one of the standard state abbreviations. Those abbreviations
should be added to a States table and then this field can refer to it as a foreign key.

4. The relationship between City, State, and Zip is complex. It probably doesn’t make a
lot of sense to validate every possible combination because that would require a huge
lookup table. It’s unlikely that The Pampered Pet will do business in every state, so
most of that data would never be used. (The United States Postal Service FAQ at
www.maponics.com/ZIP_Code_Maps/ZIP_Code_FAQ/zip_code_faq.html says there are
roughly 45,000 ZIP Codes and there are approximately 25,000 ZIP Code changes every month.
There’s no way I would want to try to keep up with that!)

An alternative would be to build a CityStateZips lookup table to hold the nearby City/State/Zip
combinations and then warn the user if a record has a set of values that is not in the list. This way
if the user misspells a local town or enters a Zip value that doesn’t match that town, the program
will let the user fix it. In contrast, if a customer wants an order shipped a thousand miles away,
the program warns that it doesn’t know about this City/State/Zip combination but lets the user
enter it anyway.

Database constraints are unyielding. A value is either allowed or it isn’t. By itself, the database
won’t ask the user ‘‘Are you sure?’’ and then accept a suspicious value. That means this con-
straint cannot be implemented in the database. It must be implemented in a middle-tier routine
or in the user interface.

Figure 13-2 shows the Addresses table with its States lookup table and the pseudo-lookup
CityStateZip table. Both are drawn in dashed rectangles to indicate that they are lookup tables.
The relationship between the Addresses table and the CityStateZips table is also dashed because
it is implemented in a middle-tier routine or the user interface rather than inside the database.

CityStateZips

1

1
Addresses

City

AddressId
Street

City

State

States

State

ZipZip

State ∞ ∞

Figure 13-2

CustomerCourses
This table is an intermediate table representing the many-to-many relationship between the Courses
and Customers tables. It contains only two fields, CustomerId and CourseId. Both of these are

266

Stephens c13.tex V3 - 10/04/2008 12:25pm Page 267

Chapter 13: Extracting Business Rules

required because they are part of the table’s primary key. They are also used as foreign key con-
straints matching values in the Courses and Customers tables. That’s about as constrained as a field
can get, so there isn’t much more to do with this table.

Customers
The version of the Customers table shown in Figure 12-15 contains only two fields. CustomerId is
the primary key. PersonId is used in a foreign key constraint matching values in the Persons table
so it’s completely constrained.

Pets
The Pets table’s CustomerId and Name fields form the primary key. Its other fields, AnimalType
and BirthDate, are also required, so they should be flagged as required, in the database.

It wouldn’t hurt to put a sanity check constraint on the BirthDate field to verify that new dates are
not after the current date. Some pets live a really long time, so it’s hard to set a safe lower limit
on BirthDate. (Macaws can live 65 or more years and aggressive little yippy dogs live practically
forever — at least that seems to be the case with my neighbor’s dogs.)

The AnimalType field can only take a value from a list of allowed values, so those values should be
placed in a lookup table. The design already calls for an AnimalTypes lookup table (see the section
about the Courses table earlier in this chapter), so this table can refer to that one.

Employees
The Employees table’s primary key is its EmployeeId field. The PersonId and SocialSecurityNumber
fields are also required.

The SocialSecurityNumber field must have a format similar to 123-45-6789. That pattern can be
verified by a field-level check constraint.

PersonId is a foreign key constraint referring to the Persons table, so it is completely constrained.

Orders
The Orders table’s primary key is OrderId. The Date, SameAsAbove, CustomerId, and SoldByEm-
ployeeId fields are also required.

CustomerId is a foreign key constraint referring to the Customers table, so it is constrained. Sim-
ilarly, SoldByEmployeeId is a foreign key constraint referring to the Employees table so it also is
constrained.

The AddressId field is optional. It is a foreign key constraint referring to the Addresses table, so
if it is present it is completely constrained. (This field is fairly confusing. If the SameAsAbove
field has value True, the customer wants the order shipped to the customer’s address. If the
SameAsAbove is False and AddressId is present, the customer wants the order shipped to that
address. If SameAsAbove is False and AddressId is null, the customer is picking up the order and
doesn’t want it shipped. All of this must be implemented in the user interface but doesn’t affect the
database design.)

267

Stephens c13.tex V3 - 10/04/2008 12:25pm Page 268

Part III: A Detailed Case Study

OrderItems
Like the CustomerCourses table, this table is an intermediate table used to implement a
many-to-many relationship.

This table’s OrderId and SequenceNumber fields make up the primary key. The UPC and Quantity
fields are also required.

UPC is used as a foreign key constraint referring to the InventoryItems table, so it is completely
constrained.

For sanity checking, a field-level check constraint should also verify that Quantity > 0.

InventoryItems
This table’s UPC field is its primary key. The Description, SellPrice, QuantityInStock, StockLocation,
and ShelfLocation fields are also required.

Sanity checks include:

❑ If present, BuyPrice > = $0.00.

❑ SellPrice > = $0.00.

❑ QuantityInStock > = 0.

❑ If present, ExpirationDate > January 1, 2008 (or some other date guaranteed to be earlier
than the oldest expiration date in current inventory when you build the database).

❑ On new records, if present, ExpirationDate > the current date.

❑ If present, ReorderWhen > 0. (If null, reorder only occurs manually.)

❑ If present, ReorderAmount > = 0. (If null, someone must specify the amount.)

VendorId is a foreign key constraint referring to the Vendors table so, if its value is not null, the
value is completely constrained.

The StockLocation and ShelfLocation fields can only take certain values, so those values should be
moved into the lookup tables StockLocations and ShelfLocations.

TimeEntries
This table’s EmployeeId, Date, StartTime, and StopTime fields make up its primary key.

EmployeeId is a foreign key constraint referring to the Employees table, so it is completely
constrained.

The table should also contain the following field-level sanity check constraints:

❑ Date > = some early date such as the date the database is put into use.

❑ StartTime > = 6am.

268

Stephens c13.tex V3 - 10/04/2008 12:25pm Page 269

Chapter 13: Extracting Business Rules

❑ StopTime < = 11pm.

❑ If present, PaidDate > = Date.

Shifts
The Shifts table is similar to the TimeEntries table except it doesn’t have a PaidDate field. Its
EmployeeId, Date, StartTime, and StopTime fields make up its primary key.

EmployeeId is a foreign key constraint referring to the Employees table, so it is completely con-
strained.

The table should also contain the following field-level sanity check constraints:

❑ Date > = some early date such as the date the database is put into use.

❑ StartTime > = 6am.

❑ StopTime < = 11pm.

Persons
This table’s PersonId is its primary key. The FirstName and LastName fields are also required.

Email should have a valid email format. Unfortunately it’s pretty hard to define valid email formats,
so this should be considered a more complicated business rule. Validation should be provided by
a middle-tier routine that saves Persons records, a stored procedure, or user interface code. Then if
management decides to change the way this field is validated, you can make the change reasonably
easily.

This table’s AddressId field is a foreign key constraint referring to the Addresses table so, if it is
present, it is completely constrained.

Phones
This table’s primary key includes all of its fields: PersonId, Number, and PhoneType.

PersonId is also a foreign key constraint referring to the Persons table, so it is completely con-
strained.

Number should have a valid phone number format such as 987-6543 or 202-123-4567. This won’t
change (unless the store starts accepting international orders), so it can be checked in a field-level
check constraint.

PhoneType must be one of several values such as Home, Cell, or Work. Those values should be
moved into a PhoneTypes lookup table so this field can refer to it as a foreign key constraint.

Vendors
The Vendors table’s primary key is its VendorId field. The PersonId and CompanyName fields are
also required.

269

Stephens c13.tex V3 - 10/04/2008 12:25pm Page 270

Part III: A Detailed Case Study

PersonId is a foreign key constraint referring to the Persons table, so it is completely constrained.

The Notes field is completely unconstrained and optional.

Drawing a New Relational Model
Figure 13-3 shows the new relational model.

Locations
Location

AnimalTypes
AnimalType

1

1

1
1

1

1
1

11
11 1 1

1 1

1
1

1

1

1

1

1

1 1

1

1

1

CityStateZips
City
State
Zip

States
State

PhoneTypes
PhoneType

ShelfLocations
ShelfLocation

StockLocations
StockLocation

Courses

Employees

TimeEntries

Shifts

EmployeeId
Date
StartTime
StopTime
PaidDate

Persons
PersonId
FirstName
LastName
Email
AddressId

EmployeeId
Date
StartTime
StopTime

CourseId
Title
Description
MaximumParticipants
Price
AnimalType

Orders
OrderId
Date
SameAsAbove
CustomerId

OrderItems
OrderId
SequenceNumber
UPC
Quantity

AddressId
SoldByEmployeeId

Addresses
AddressId
Street
City
State

Phones
PersonId
Number
PhoneType

Zip

Dates
Time
Location
InstructorEmployeeId

EmployeeId
PersonId
SocialSecurityNumber
Specialties

CustomerCourses Customers
CustomerId CustomerId

Name
AnimalType
BirthDate

PersonId

Pets
CustomerId
CourseId

InventoryItems
UPC
Description
BuyPrice
SellPrice

Vendors
VendorId
PersonId
CompanyName
Notes

QuantityInStock
ExpirationDate
StockLocation
ShelfLocation
ReorderWhen
ReorderAmount
VendorId

∞
∞ ∞

∞

∞

∞ ∞

∞

∞

∞

∞
∞

∞

∞

∞

∞
∞

∞

∞

∞

∞

∞

Figure 13-3

Summary
This chapter showed how to classify table constraints in The Pampered Pet database. It showed how to:

❑ Identify the primary key and the required fields (to implement in the database).

❑ Identify sanity checks that will never change (to implement in the database).

❑ Create lookup tables for fields with a fixed set of allowed values.

❑ Identify more complicated business rules and rules that may change in the future.

270

Stephens c13.tex V3 - 10/04/2008 12:25pm Page 271

Chapter 13: Extracting Business Rules

After identifying these constraints and adding lookup tables, this chapter showed a new relational design
for the database.

Even at this point, however, the database isn’t perfect. The following chapter makes a few final changes
to make the database more flexible and robust.

Before you move on to Chapter 14, however, use the following exercises to test your understanding of
the material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
For these exercises, consider the relational model for a Robot Wars competition shown in Figure 13-4 (see
the exercises at the end of Chapter 12 and www.marcthorpe.com/robot.html). Use your own judgment
while working through the exercises.

Competitors 1 1
1

1

1
1CompetitorRobots Robots RobotMatches Matches

RobotWeapons

CompetitorId CompetitorId
FirstName
LastName
Street
City
State
Zip

RobotId
RobotId RobotId

RobotId
WeaponType

MatchId
MatchId
Date
Time
Location
WinningRobotId

Name
Weight
MaxSpeed
Chassis
Class

∞
∞

∞
∞

∞

∞

Figure 13-4

1. Identify the tables’ primary keys and required fields.

2. Identify the tables’ sanity checks that will never change.

3. Define lookup tables for fields with a fixed set of allowed values.

4. I can think of three somewhat more complicated business rules that should be implemented,
but in general it would be hard to identify more complicated business rules without know-
ing more about the competition. See if you can think of the three I thought of and make up
some others. What sorts of things would make interesting business rules that should not be
built into the database?

5. Draw a new relational model showing the new tables.

271

Stephens c13.tex V3 - 10/04/2008 12:25pm Page 272

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 273

14
Normalization

and Refinement

Chapters 11 through 13 walked through the steps of designing a preliminary database for The Pam-
pered Pet. They showed how to gather requirements, build semantic object and entity-relationship
models, and convert those into a relational model. Chapter 13 showed how to identify rules that
should be built into the database and more complex or changeable rules that should be isolated as
business rules.

Even after all of this work, the database isn’t perfect. This chapter puts the finishing touches on the
database by normalizing it appropriately.

In this chapter you see examples of:

❑ Improving the design to make the database more flexible.

❑ Identifying tables that are insufficiently normalized.

❑ Normalizing tables to prevent data anomalies.

❑ Not normalizing where normalization would be more trouble than it’s worth.

Improving Flexibility
Figure 14-1 shows the relational design built in Chapter 13.

This design is fairly reasonable, and I’ve seen worse designs in working databases, but it can use a
couple of improvements. Later sections in this chapter discuss normalization, but first there’s a big
flaw to fix.

If you think about the design long enough and you walk through the use cases, you’ll notice that
there’s a problem with the course data. Currently the design allows many customers to take a course
and it allows a course to hold many customers. However, the design allows only one instance of any
given course. If you run a Puppy Socialization course in April, you cannot run the same course again
in May because the course’s dates would have already passed.

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 274

Part III: A Detailed Case Study

Locations
Location

AnimalTypes
AnimalType

1

1

1

1

1

1

1

1

11
11 1 1

1 1

1
1

1

1

1

1

1

1 1

1

1

1

CityStateZips
City
State
Zip

States
State

PhoneTypes
PhoneType

ShelfLocations
ShelfLocation

StockLocations
StockLocation

Courses

Employees

TimeEntries

Shifts

EmployeeId
Date
StartTime
StopTime
PaidDate

Persons
PersonId
FirstName
LastName
Email
AddressId

EmployeeId
Date
StartTime
StopTime

CourseId
Title
Description
MaximumParticipants
Price
AnimalType

Orders
OrderId
Date
SameAsAbove
CustomerId

OrderItems
OrderId
SequenceNumber
UPC
Quantity

AddressId
SoldByEmployeeId

Addresses
AddressId
Street
City
State

Phones
PersonId
Number
PhoneType

Zip

Dates
Time
Location
InstructorEmployeeId

EmployeeId
PersonId
SocialSecurityNumber
Specialties

CustomerCourses Customers
CustomerId CustomerId

Name
AnimalType
BirthDate

PersonId

Pets
CustomerId
CourseId

InventoryItems
UPC
Description
BuyPrice
SellPrice

Vendors
VendorId
PersonId
CompanyName
Notes

QuantityInStock
ExpirationDate
StockLocation
ShelfLocation
ReorderWhen
ReorderAmount
VendorId

∞

∞
∞

∞

∞

∞

∞

∞
∞

∞∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

Figure 14-1

Furthermore, the same customer couldn’t take both the April and May courses (some dogs are slow
learners) because that would require identical records in the CustomerCourses table.

Instead you would need to make a completely new Courses record for the May course. That
wouldn’t be the end of the world, and some applications would do exactly that, but now the table
contains multiple records that really represent different offerings of the same thing. You can tell
that there’s a problem because the records would have so many duplicated fields: Title, Description,
Price, and AnimalType. The fields that would change between offerings are MaximumParticipants,
Dates, Time, Location, and InstructorEmployeeId.

The customers taking the course would also change (except for those who fail the first time and
retake the course), so the course offering would need some kind of new ID value to link it to the
CustomerCourses table.

The database needs a new type of object to represent a course offering. The course offerings will
link to a Courses record that provides all of their shared data.

One course can have many offerings, but an offering corresponds to only one course, so this
is a one-to-many relationship, and you can add it to the database the way you always build a
one-to-many relationship. First, add an ID field to the ‘‘one’’ table. Then refer to the ID field in the
‘‘many’’ table as a foreign key.

274

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 275

Chapter 14: Normalization and Refinement

Now the CustomerCourses table should link to the new CourseOfferings table instead of
the Courses table (because the customer takes an offering of a course not the abstract course
description).

Figure 14-2 shows the design with the new table added.

Locations
Location

1 AnimalTypes
AnimalType

1

1

1

1

1

1

1

1

1 11

1

1 1

1 1

1
1

1

1

1

1

1

1 1

1

1

1

CityStateZips
City
State
Zip

States
State

PhoneTypes
PhoneType

ShelfLocations
ShelfLocation

StockLocations
StockLocation

Courses

Employees
TimeEntries

Shifts

EmployeeId
Date
StartTime
StopTime
PaidDate

Persons
PersonId
FirstName
LastName
Email
AddressId

EmployeeId
Date
StartTime
StopTime

CourseId
Title
Description
Price
AnimalType

Orders
OrderId
Date
SameAsAbove
CustomerId

OrderItems
OrderId
SequenceNumber
UPC
Quantity

AddressId
SoldByEmployeeId

Addresses
AddressId
Street
City
State

Phones
PersonId
Number
PhoneType

Zip

CourseOfferings
CourseOfferingId
CourseId
Dates
Time
MaximumParticipants
Location
InstructorEmployeeId

EmployeeId
PersonId
SocialSecurityNumber
Specialties

CustomerCourses Customers
CustomerId CustomerId

Name
AnimalType
BirthDate

PersonId

Pets
CustomerId
CourseOfferingId

InventoryItems
UPC
Description
BuyPrice
SellPrice

Vendors
VendorId
PersonId
CompanyName
Notes

QuantityInStock
ExpirationDate
StockLocation
ShelfLocation
ReorderWhen
ReorderAmount
VendorId

∞

∞

∞

∞
∞

∞

∞

∞

∞

∞

∞

∞

∞
∞

∞

∞

∞

∞

∞

∞

∞
∞

∞

Figure 14-2

Verifying First Normal Form
The previous chapters were pretty careful about building their tables so they’re almost certainly in 1NF,
right? Not always. With some experience and attention to detail, you should be able to build tables in
1NF almost all of the time and 3NF most of the time, but occasionally a few normalization bugs slip
through.

Recall the rules for 1NF:

1. Each column must have a unique name.

2. The order of the rows and columns doesn’t matter.

3. Each column must have a single data type.

4. No two rows can contain identical values. (The table has a unique primary key.)

5. Each column must contain a single value.

275

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 276

Part III: A Detailed Case Study

You can easily verify the first four rules. For example, the Courses table’s columns all have different
names, the order of rows and columns doesn’t matter, each column in the Courses table has a single data
type, and the CourseId field is the primary key so no two records can have the same CourseId value and
therefore, they are different.

The rule that usually catches people is rule 5: Each column must contain a single value. Sometimes the
data in a field contains more than one logical piece of data. In that case, the field should be broken into
pieces.

If you know how many pieces there will be, you can use multiple fields in the same table. For exam-
ple, if you have a Name field that should be broken into FirstName and LastName, you know there are
only two pieces to the field and you can just replace it with two new fields.

If the field’s data could contain any number of values, you should move the values into a new
table and link back to the original table. For example, suppose the Customers table contains a
Children field that lists the customer’s children’s names separated by commas. In that case you
can’t just add a bunch of Child fields to the Customers table. Instead you need to add a Cus-
tomerChildren table that uses CustomerId to find the Customer associated with a particular
record.

If you look carefully at each of the fields shown in Figure 14-2, you’ll find a couple that might contain
multiple data values. You can ignore simple compound values such as the Pets table’s BirthDate field and
the Phones table’s Number field. Though you can think of a birth date as containing a day, month, and
year, The Pampered Pet will probably never need to look at those values separately. I suppose someone
might want to make a list of all pets born on the 13th of every month, but that would be pretty strange.
Similarly, unless the requirements call for you to be able to list customers in a given area code, it isn’t
worth breaking up the phone number field.

The first field that truly holds more than one value is the CourseOfferings table’s Dates field. This single
field is supposed to hold a list of the dates when a course offering takes place. For example, a particular
offering might occur every Wednesday for six weeks.

If every course is only offered on a weekly schedule, such as every Wednesday, you could encode that
in a single field by simply giving the day of the week. If there might be exceptions (for example, six
Mondays, skipping Labor Day), that system doesn’t work as well.

To solve this problem, you can break the Dates field into pieces. If The Pampered Pet doesn’t require
every course to have the same number of sessions, you need to move the values into a new CourseOffer-
ingDates table that refers back to its course offering.

Figure 14-3 shows the design with the new CourseOfferingDates table.

One hint that a field might contain multiple values is that its name is plural. If the field rep-
resents a number, such as the CourseOfferings table’s MaximumParticipants field, it probably
represents a single value. If the field represents a group of values, however, it should probably be
broken apart.

276

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 277

Chapter 14: Normalization and Refinement

Locations
Location

1 AnimalTypes
AnimalType

1

1

1

1

1

1

1

1

1

1 11

1

1 1

1 1

1
1

1

1

1

1

1

1 1

1

1

1

CityStateZips
City
State
Zip

States
State

PhoneTypes
PhoneType

ShelfLocations
ShelfLocation

StockLocations
StockLocation

Courses

Employees
TimeEntries

Shifts

EmployeeId
Date
StartTime
StopTime
PaidDate

Persons
PersonId
FirstName
LastName
Email
AddressId

EmployeeId
Date
StartTime
StopTime

CourseId
Title
Description

CourseOfferingDates
CourseOfferingId
Date

Price
AnimalType

Orders
OrderId
Date
SameAsAbove
CustomerId

OrderItems
OrderId
SequenceNumber
UPC
Quantity

AddressId
SoldByEmployeeId

Addresses
AddressId
Street
City
State

Phones
PersonId
Number
PhoneType

Zip

CourseOfferings
CourseOfferingId
CourseId
Time
MaximumParticipants
Location
InstructorEmployeeId

EmployeeId
PersonId
SocialSecurityNumber
Specialties

CustomerCourses Customers
CustomerId CustomerId

Name
AnimalType
BirthDate

PersonId

Pets
CustomerId
CourseOfferingId

InventoryItems
UPC
Description
BuyPrice
SellPrice

Vendors
VendorId
PersonId
CompanyName
Notes

QuantityInStock
ExpirationDate
StockLocation
ShelfLocation
ReorderWhen
ReorderAmount
VendorId

∞

∞

∞

∞

∞

∞ ∞

∞

∞

∞

∞
∞

∞

∞

∞

∞ ∞

∞

∞

∞

∞

∞
∞

∞

Figure 14-3

Try It Out Normal
There’s one other table in Figure 14-3 that isn’t in 1NF. Find and fix it.

1. Look for fields that don’t represent a single value.

2. Decide whether the field contains a fixed, known number of values or an unknown number of
values. If the field contains a fixed number of values, split it into the required number of fields. If
the field contains an unknown number of values, move the values into a new table.

3. Perform other modifications to the design if this change requires them. (Hint: In this case, you’ll
need to create a new lookup table.)

How It Works

1. All of the fields shown in Figure 14-3 represent a single value except the Employees table’s Spe-
cialties field. This field lists the employee’s areas of expertise. They might include animal types,
products, problems, and so forth. A typical value might be, ‘‘Cat, Dog, Parasites.’’ (This is also
the only field in Figure 14-3 that has a plural name other than MaximumParticipants, which rep-
resents a single number.)

277

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 278

Part III: A Detailed Case Study

2. The Specialties field could contain any number of values so it cannot be broken into new fields
within the Employees table. Instead the model needs a new Specialties table that refers back to
Employees. The new table will have fields EmployeeId and Specialty.

3. The new table’s Specialty field can contain only specific values, such as Cat, Dog, and Penguin, so
the model should validate the field by making it a foreign key that refers to a lookup table. In this
case, the new table should be called Specialties and will have a single field Specialty. Figure 14-4
shows the new design.

Locations
Location

1 AnimalTypes
AnimalType

1

1

1

1

1

1

1

1

1

1 11

1

1 1

1 1

1 1

1
1

1

1

1

1

1

1 1

1

1

1

CityStateZips
City
State
Zip

States
State

PhoneTypes
PhoneType

ShelfLocations
ShelfLocation

StockLocations
StockLocation

Courses

Employees
TimeEntries

Shifts

EmployeeId
Date
StartTime
StopTime
PaidDate

Persons
PersonId
FirstName
LastName
Email
AddressId

EmployeeId
Date
StartTime
StopTime

CourseId
Title
Description

CourseOfferingDates
CourseOfferingId
Date

Price
AnimalType

Orders
OrderId
Date
SameAsAbove
CustomerId

OrderItems
OrderId
SequenceNumber
UPC
Quantity

AddressId
SoldByEmployeeId

Addresses
AddressId
Street
City
State

Phones
PersonId
Number
PhoneType

Zip

CourseOfferings
CourseOfferingId
CourseId
Time
MaximumParticipants
Location
InstructorEmployeeId

EmployeeId
PersonId
SocialSecurityNumber

CustomerCourses Customers
CustomerId CustomerId

Name
AnimalType
BirthDate

PersonId

Pets
CustomerId
CourseOfferingId

InventoryItems
UPC
Description
BuyPrice
SellPrice

Vendors
VendorId
PersonId
CompanyName
Notes

QuantityInStock
ExpirationDate
StockLocation
ShelfLocation
ReorderWhen
ReorderAmount
VendorId

EmployeeSpecialties
EmployeeId
Specialty

Specialties
Specialty

Figure 14-4

Verifying Second Normal Form
Recall the rules for 2NF:

1. The table is in 1NF.

2. All of the non-key fields depend on all of the key fields.

Many of the tables have a one-field primary key, so every other field must depend on the entire primary
key. In the intermediate tables representing many-to-many relationships and the lookup tables, every
field is part of the primary key, so rule 2 doesn’t apply.

The only tables remaining to consider are Pets, OrderItems, and TimeEntries.

278

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 279

Chapter 14: Normalization and Refinement

Pets
The Pets table’s primary key contains the combination CustomerId/Name. Its other fields are Ani-
malType and BirthDate. AnimalType depends on both CustomerId and Name because you need to
know both CustomerId and Name to deduce the pet’s AnimalType.

Another way to think of this is to notice that if you know the CustomerId alone, you cannot guess the
pet’s AnimalType because the customer might have a cat and a fish. Similarly, if you know the pet’s
Name, you cannot determine the AnimalType because different customers might have different kinds
of pets with the same name. You can use similar arguments to show that BirthDate depends on both
CustomerId and Name.

A third way to look at this, which may be less intuitive but which is easy to apply mechanically, is to ask
yourself whether the database could contain any record with the same CustomerId, a different Name,
and a different AnimalType. If CustomerId alone determines animal type, then every record with the
same CustomerId must have the same AnimalType.

In this case, the database could hold a record with the same CustomerId, a different Name, and a dif-
ferent AnimalType (someone could own a fish named Phred and a dog named Pheidaux) so you know
that AnimalType depends on CustomerId.

Similarly, you can ask whether another record could have the same Name, different CustomerId, and
different AnimalType. I have a dog named Snortimer and I’ve met two other people with cats named
Snortimer, so that situation is possible. That means AnimalType also depends on CustomerId.

You can use similar arguments to show that BirthDate depends on both CustomerId and Name.

(This all assumes a customer doesn’t give multiple pets the same name. There’s a silly Sandra Boynton
song named ‘‘Fifteen Animals’’ about a guy who has 15 pets all named Bob, except his turtle, which he
named Simon James Alexander Ragsdale III. For this customer, you’ll probably have to assign the pets
serial numbers or something: Bob-1, Bob-2, Bob-3, and so forth.)

Try It Out OrderItems
Verify that the OrderItems table is in 2NF. For each of the table’s primary keys (OrderId and Sequen-
ceNumber) and each of the non-key fields (UPC and Quantity), see if another record could have a
different value for the key field and a different value for the non-key field. Consider all four combinations:

1. OrderId and UPC

2. OrderId and Quantity

3. SequenceNumber and UPC

4. SequenceNumber and Quantity

How It Works

1. Could there be two records with the same SequenceNumber, different OrderId, and different
UPC? Yes. Two orders could contain different items listed first. Then the OrderItems records will

279

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 280

Part III: A Detailed Case Study

have the same SequenceNumber (because the items are listed first), different OrderId (because
they’re two separate orders), and different UPC (because the orders are for different things).

2. Could there be two records with the same SequenceNumber, different OrderId, and different
Quantity? Yes. Two orders could contain different quantities of the same item. For example, one
customer could order one toy mouse and a second customer could order two toy mice. Then the
OrderItem records will have the same SequenceNumber (because they are the first items for each
order), different OrderId (because they are different orders), and different Quantity (because the
first customer ordered one toy mouse and the second customer ordered two).

3. Could there be two records with the same OrderId, different SequenceNumber, and different
UPC? Yes. Suppose an order contains two different items. Then the OrderItems records will
have the same OrderId (because they’re part of the same order), different SequenceNumber
(because they’re different line items in the order), and different UPC (because the two items are
different).

4. Could there be two records with the same OrderId, different SequenceNumber, and different
Quantity? Yes. Suppose an order contains two items with different quantities (for example, one
hamster wheel and two rawhide bones). Then the OrderItems table will contain two records for
this order with the same OrderId, different SequenceNumber (1 and 2), and different Quantity
(1 and 2).

Because the table can hold all of these combinations, all of the non-key fields depend on every primary
key field, so the table is in 2NF.

TimeEntries
The TimeEntries table’s primary key includes the fields EmployeeId, Date, StartTime, and StopTime.
Its only remaining field is PaidDate. To see that PaidDate depends on all of the primary key fields, ask
yourself whether you could deduce the PaidDate value if you are missing one of the key values.

If EmployeeId is missing, another employee might have worked the same shift and may or may not be
paid.

If Date is missing, the employee might have worked similar hours on another date and may or may not
have been paid.

The StartTime and StopTime fields are a bit trickier. If StartTime is missing, the table could contain
another record for the same employee on this date with the same StopTime but a different StartTime.
However, the business rules require that this table cannot have two records for the same employee on
the same date with overlapping times, so this record would not be allowed.

Does that mean the PaidDate field doesn’t depend on StopTime, so the table isn’t in 2NF? Not really.
Though the table isn’t allowed to hold a record with overlapping times, the table’s structure doesn’t
prevent it; a business rule does.

To see this in another way, consider the wrestling match schedule described in the ‘‘Second Normal Form
(2NF)’’ section of Chapter 7. The following table shows part of a schedule of matches. The table’s primary
key is the Time/Wrestler combination.

280

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 281

Chapter 14: Normalization and Refinement

Time Wrestler Class Rank

1:30 Annette Cart Pro 3

2:00 Sydney Dart Amateur 1

3:45 Annette Cart Pro 3

The problem with this table is that Class and Rank depend only on Wrestler and not on Time. Annette
Cart is ranked 3rd professionally no matter when she wrestles. That makes the table vulnerable to data
anomalies. For example, if you change the first entry’s Class to Amateur, it contradicts the third entry.

Now consider again the TimeEntries table. Because of the ‘‘no overlapping time’’ business rule, this table
cannot hold two records with the same EmployeeId, Date, and StopTime. It cannot hold two records that
correspond to the two wrestling schedule records for Annette Cart and that means it cannot suffer from
the same kind of modification anomaly as the wrestling schedule table.

Similarly, the table is safe from update anomalies because you cannot add two records with the same
EmployeeId, Date, and StopTime.

Verifying Third Normal Form
Recall the rules for 3NF:

1. The table is in 2NF.

2. It contains no transitive dependencies.

A transitive dependency is when one non-key field’s value depends on another non-key field’s value. It
takes a bit more work to find transitive dependencies than it does to detect other errors.

Because transitive dependencies occur when two non-key fields are related, you only need to consider
tables that have at least two non-key fields. In this example, those tables are Courses, CourseOfferings,
Pets, Orders, OrderItems, InventoryItems, Employees, Vendors, Addresses, and Persons.

Most of these tables are easy to check. For example, consider OrderItems. Its non-key fields are UPC
and Quantity. Are these fields related? Of course not. The type of item a customer is buying does not
determine the number of items bought or vice versa. (If the store has only one Jack Russell Terrier, you
can only buy one, but that’s an inventory issue, not a database design issue. Of course Jack Russells are
so energetic it might be insane to buy more than one but again, that’s not a database design issue.)

In the Courses table, the Title, Description, Price, and AnimalType fields don’t depend on each other. If
the business requirements stated that all Dog courses had the same price, then things would be different,
but in this example there are no such restrictions.

The Orders table might give you pause because the CustomerId might be related in some sense to the
AddressId. Remember that an Orders record has an AddressId field only if the customer wants the
order shipped to an address other than the customer’s usual address, however, so the relationship is not

281

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 282

Part III: A Detailed Case Study

really there. If the order included the customer’s home address every time, there would be a relationship
between the CustomerId and the AddressId.

The Addresses table also contains the standard weird relationship between City, State, and Zip.
Chapter 13 already considered this relationship (see the section ‘‘Try It Out, Address Constraints’’) and
decided to live with a lookup table for local addresses rather than building an enormous lookup table
for every City/State/Zip combination.

The last tricky table is CourseOfferings. The maximum number of participants for a course is determined
by the location where it is taught. For example, the store’s back conference room can only hold 20 people
so that’s the maximum size for any course taught there.

This transitive dependency means that any course in a particular location will have the same
MaximumParticipants value. To remove this dependency, you should create a new table that lists
the MaximumParticipants value for each location and then remove MaximumParticipants from the
CourseOfferings table. However, the design already contains a Locations lookup table that holds location
names. You can use that table if you add the MaximumParticipants field to it.

Note that it’s not always a good idea to combine tables in this manner. In this case, however, the new
version of the table holds data for a single, clearly defined purpose: to describe locations. Because the
table’s fields both fit this purpose, it makes sense to put them in the same table.

Figure 14-5 shows the new design. The new version of the Locations table is no longer simply a lookup
table, so it’s not drawn with a dashed rectangle in Figure 14-5.

Locations
Location
MaximumParticipants

1 AnimalTypes
AnimalType

1

1

1

1

1

1

1

1

1

1 11

1

1 1

1 1

1 1

1
1

1

1

1

1

1

1 1

1

1

1

CityStateZips
City
State
Zip

States
State

PhoneTypes
PhoneType

ShelfLocations
ShelfLocation

StockLocations
StockLocation

Courses

Employees
TimeEntries

Shifts

EmployeeId
Date
StartTime
StopTime
PaidDate

Persons
PersonId
FirstName
LastName
Email
AddressId

EmployeeId
Date
StartTime
StopTime

CourseId
Title
Description

CourseOfferingDates
CourseOfferingId
Date

Price
AnimalType

Orders
OrderId
Date
SameAsAbove
CustomerId

OrderItems
OrderId
SequenceNumber
UPC
Quantity

AddressId
SoldByEmployeeId

Addresses
AddressId
Street
City
State

Phones
PersonId
Number
PhoneType

Zip

CourseOfferings
CourseOfferingId
CourseId
Time
Location
InstructorEmployeeId

EmployeeId
PersonId
SocialSecurityNumber

CustomerCourses Customers
CustomerId CustomerId

Name
AnimalType
BirthDate

PersonId

Pets
CustomerId
CourseOfferingId

InventoryItems
UPC
Description
BuyPrice
SellPrice

Vendors
VendorId
PersonId
CompanyName
Notes

QuantityInStock
ExpirationDate
StockLocation
ShelfLocation
ReorderWhen
ReorderAmount
VendorId

EmployeeSpecialties
EmployeeId
Specialty

Specialties
Specialty

Figure 14-5

282

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 283

Chapter 14: Normalization and Refinement

Notice that the Locations table acts as a lookup table for the CourseOfferings table’s Location field. The
Locations table is not only a lookup table, however, so it’s not drawn with a dashed rectangle. You could
remove the pure lookup tables from the database and the database would still function, although you
would need to implement some field-level check constraints. If you removed the Locations table,
you would lose all of the MaximumParticipants data.

Note that the business rules could have indicated that different courses using a particular location might
be able to have different numbers of participants. For example, a seminar on piranha feeding takes less
room than a hands-on elephant training workshop, so more people will fit in the room. You could model
that situation by making the Locations table use Location and AnimalType as its primary key, but this
example seems complicated enough already.

Summary
This chapter refined The Pampered Pet database to increase its flexibility. It also normalized the
database’s tables to make the database more resistant to data anomalies.

This chapter showed examples of:

❑ Increasing the database’s flexibility by allowing multiple offerings of a particular course.

❑ Putting the CourseOfferings table into 1NF by moving course dates into a new CourseOffering-
Dates table.

❑ Putting the Employees table into 1NF by moving employee specialty information into a new
EmployeeSpecialties table.

❑ Putting the CourseOfferings table into 3NF by moving information about the maximum number
of participants at a location into a new Locations table.

(Of course you may have seen these problems earlier and been muttering under your breath about
how silly the design was for the last few chapters, but sometimes these problems sneak through to the
bitter end.)

At this point, the database is in pretty good shape and you should be able to build it with some confidence
that it can successfully fend off some serious data anomalies.

However, Figure 14-5 doesn’t show the complete picture. It shows the table structures and lookup tables,
but it doesn’t show the many additional constraints that were identified in Chapters 11 and 13. Those
must be implemented as field- and table-level check constraints.

The following chapters show how to build this database in the Access and MySQL relational database
management systems. They show how to build the tables shown in Figure 14-5 and how to provide the
necessary check constraints to really make the database robust.

Before you move on to Chapter 15, however, use the following exercises to test your under-
standing of the material covered in this chapter. You can find the solutions to these exercises in
Appendix A.

283

Stephens c14.tex V3 - 10/04/2008 12:26pm Page 284

Part III: A Detailed Case Study

Exercises
For these exercises, consider the following aquarium show schedule. The show times with asterisks
match with the shows with asterisks. For example, the 11:15 show in Sherman’s Lagoon is ‘‘Sherm’s
Shark Show’’ and the 1:15 show is ‘‘Meet the Rays.’’ (Yeah, I think it’s a strange way to list shows, too,
but I saw a real schedule very similar to this one recently.)

Show Venue Seating Times

Sherm’s Shark Show /
Meet the Rays*

Sherman’s
Lagoon

375 11:15, 1:15*, 3:00, 6:00*

Deb’s Daring Dolphins /
The Walter Walrus Comedy Hour*

Peet
Amphitheater

300 11:00, 12:00, 2:00*, 5:27*, 6:30

Flamingo Follies /
Wonderful Waterfowl*

Ngorongoro
Wash

413 2:00, 3:00*

1. Explain why this table isn’t in 1NF. Make a relational design that uses one table in 1NF.
Show the data in the new table.

2. Explain why the solution to Exercise 1 isn’t in 2NF. Make a relational design that fixes it.
Show the data in the new tables.

3. Explain why the solution to Exercise 2 isn’t in 3NF. Make a relational design that fixes it.
Show the data in the new tables.

4. If you made the fewest changes possible while converting the original table into 1NF, 2NF,
and 3NF, the new tables probably use show name, time, and venue name as primary keys.
That bodes ill if you need to change a show’s name (Pete Penguin holds out for equal billing
in The Walter Walrus Comedy Hour), a time, or a venue’s name (the Trustees decide to sell
naming rights and change the name of ‘‘Peet Amphitheater’’ to ‘‘Pampered Pet Cove’’).

Modify the design to make those kinds of changes easier. Show the data in the new tables.

284

Stephens p04.tex V2 - 09/26/2008 3:43pm Page 285

Part IV

Implementing Databases
(with Examples in Access

and MySQL)

Chapter 15: Microsoft Access

Chapter 16: MySQL

The chapters earlier in this book explained how to design a database. They showed how to gather require-
ments, build data models, convert those models into relational designs, and refine those designs for
a particular database example. They showed you how to prepare to build a database but they didn’t
actually build one.

The chapters in this part of the book show how to actually build a database using two database manage-
ment systems. Chapter 15 explains how to build a database with Microsoft Access. Chapter 16 explains
how to build a database with MySQL.

Stephens p04.tex V2 - 09/26/2008 3:43pm Page 286

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 287

15
Microsoft Access

The chapters earlier in this book explained how to design a database. This chapter explains how to
build a database in Microsoft Access. In this chapter you learn how to:

❑ Create tables.

❑ Create foreign key constraints graphically.

❑ Create check constraints that validate data.

(The examples in this chapter were tested in Microsoft Access 2007 with Service Pack 1.)

Understanding Access
One disadvantage of Access is that, unlike MySQL described in the next chapter, it’s not free.
However, you can download a 60-day free trial version as part of Microsoft Office Professional
at office.microsoft.com/en-us/access/default.aspx.

A second disadvantage to Access is that it is not really intended to support many users accessing the
database simultaneously. It doesn’t provide separate user accounts with different passwords, and
it doesn’t provide the same levels of record and field locking that are provided by some database
management systems.

One advantage to Access is that it is ubiquitous. Many Windows users have Access installed as part
of Microsoft Office. It’s possible that you have Access installed and don’t even know it.

The database drivers needed for programs to interact with Access databases are also very common.
Because programming environments such as Microsoft Visual Studio (which includes Visual Basic
and C#) come with Access drivers, it’s easy to write programs in those languages that work with
Access databases even if you don’t have Access installed.

Another advantage to Access is that Access databases come in simple files that are easy to distribute
with an application. Though some other database products can produce database files, most nor-
mally use a database engine that contains all of the databases on the system. For example, SQL
Server and MySQL run a server process that controls all of the databases on the system.

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 288

Part IV: Implementing Databases (with Examples in Access and MySQL)

In contrast, an Access database file is self-contained. You can simply copy the database file to
another computer to give that computer a copy of the database. You can also back up a database by
simply copying the database file somewhere safe.

Access is more than simply a relational database management system. In addition to providing a
backend database, Access also provides a complete development environment. The development
environment not only lets you design and build the database, but it also lets you write code to
interact with the database and build Access forms that display and modify the data. With Access
you can build a database and a user interface, too.

Getting Started
When you first start Access, it displays the Getting Started screen shown in Figure 15-1.

Figure 15-1

To create a new database, click the Blank Database template at the top, enter the name of the database file
that you want to create on the right, and click Create. This builds the file that will contain the database.

After you create the database, Access displays a new table in the Datasheet view as shown in Figure 15-2.
This editor lets you define a table by entering data. To add new rows and columns to the table, simply
type into the cells.

288

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 289

Chapter 15: Microsoft Access

Figure 15-2

When you type values into the Datasheet view’s columns, Access tries to guess the data types of the
columns. For example, if you enter a number, it assumes the column is a long integer.

To get more control over the table’s column definitions, expand the View dropdown (in the upper left)
and select the Design view. Figure 15-3 shows the Students table in Design view.

Enter the names of the table’s fields in the left column and select the fields’ data types in the right column.
When you have a field selected, the tabs at the bottom give you additional options. For example, in
Figure 15-3 the default ID field’s options let you change the field’s size.

Some of the fields, such as Text Align, apply to Access forms and not to the database itself.

Figure 15-4 shows a more complete Students table. In this figure, the name of the ID field has been
changed to StudentId. The FirstName and LastName fields are 40-character text fields that are required
and that do not allow zero-length strings.

This table’s primary key is the StudentId field. To change the primary key, click to the left of the field’s
name to select it and then click the Primary Key button (next to the View button at the top of the pro-
gram). To use multiple fields as the primary key, click-and-drag or Shift+click to select the fields you
want and then click the Primary Key button.

289

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 290

Part IV: Implementing Databases (with Examples in Access and MySQL)

Figure 15-3

Figure 15-4

290

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 291

Chapter 15: Microsoft Access

Try It Out Build a Test Scores Database
Access is easy to use with a little practice. Get some by building a test scores database.

1. Create the database. Start Access. Click the Blank Database template, enter the database name
TestScoresDB.accdb, and click the Create button.

2. Make the Students table: Click the View button and select Design. When Access asks you what to
name the new table, enter the name Students.

Change the default first field’s name from ID to StudentId. Leave its other properties alone. This
field is an AutoNumber field, which means the database automatically creates new values for it
when you add a new record to the table.

Add FirstName and LastName fields. Set their Data Types to Text. In the properties tab at the
bottom, set Field Size = 40, Required = Yes, and Allow Zero Length = No.

Save the database.

3. Make the TestScores table: Select the Create tab and click Table to make a second table. Click the
View button and select Design. When Access asks you what to name the new table, enter the
name TestScores.

Change the default first field’s name from ID to StudentId. Later this field will be a foreign key
referring to the StudentId field in the Students table so this cannot be an AutoNumber field (you
don’t want the database to automatically create these values). Change the field’s Data Type to
Number. Then in the properties tab at the bottom, set Required = Yes.

Create a new TestNumber field. Set its Data Type to Number. In the properties tab, set Required
= Yes.

Create a third field named Score. Set its Data Type to Number. In the properties tab, set Required
= Yes.

Now in the main column list, click-and-drag to the left of the field names (in the little column
that holds the primary key symbol) to select the StudentId and TestNumber fields. Then click the
Primary Key button to make those fields the table’s primary key.

Save the database.

4. Add some data to the tables: In the list of tables on the left, double-click the Students table to
open the table in Datasheet view. Click the empty FirstName cell and enter the name Ben. Notice
when you do this, Access automatically sets the record’s StudentId field to 1 because this is an
AutoNumber field.

Try to click the table’s blank second row. Notice that Access displays a message telling you that
you must enter a LastName value.

Click the record’s LastName cell and enter Franklin. Now Access will let you click the empty
second row.

Add another record for Thomas Edison.

Now double-click the TestScores table to open it in Datasheet view. Create a record with values
StudentId = 1, TestNumber = 1, and Score = 99.

291

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 292

Part IV: Implementing Databases (with Examples in Access and MySQL)

Then try to create a second record with values StudentId = 1, TestNumber = 1, and Score = 100.
When you try to move to a new record, Access will tell you that this would create a duplicate
primary key entry (two records with the same StudentId and TestNumber). Change the Test-
Number to 2 and move to a new record.

Create some more records so the data looks like Figure 15-5. Then save the database.

Figure 15-5

How It Works

1. Create the database.

When you create the database, Access makes the database file. Initially it contains no tables.

2. Make the Students table.

Access initially displays a new empty form in Datasheet view. Usually I switch to Design view to
get better control over column definitions.

292

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 293

Chapter 15: Microsoft Access

3. Make the TestScores table.

4. Add some data to the tables.

In this example, the database doesn’t have any foreign key constraints so you can enter values
that don’t make sense. For example, you can enter TestScores records for StudentId 3 even
though there’s no such student in the Students table. The following section explains how to add
constraints to prevent this.

Defining Relationships
Before you define the relationships between tables, close all of the tables’ views. You can open the
relationship editor with the tables open, but they will cause problems later when you try to define rela-
tionships.

Next click the Database Tool tab at the top of the application and then click the Relationships button
shown in the upper left of Figure 15-6.

Figure 15-6

In the dialog shown in Figure 15-7, select the tables that you want in the relationship diagram and click
Add. Then click Close to close the dialog.

293

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 294

Part IV: Implementing Databases (with Examples in Access and MySQL)

Figure 15-7

Figure 15-8 shows the relationship editor displaying the two tables.

Figure 15-8

To create a foreign key relationship between the two tables, click the Students table’s StudentId field
and drag it onto the TestScores table’s StudentId column. In the dialog shown in Figure 15-9, check the
Enforce Referential Integrity box to make the database validate foreign key constraints.

If you don’t click the right field or you drop it on the wrong field, use the field dropdowns in Figure 15-9
to select the right fields.

You can use other rows in the field list to add other fields to the relationship. For example, if you wanted
to relate the Addresses table’s City, State, and Zip fields to the City, State, and Zip fields in a CityStateZips
table, you would add those fields here.

294

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 295

Chapter 15: Microsoft Access

Figure 15-9

If you check the Cascade Update Related Fields box, the database automatically copies changes to related
fields. For example, if you change a StudentId value in the Students table, the database automatically
updates the corresponding StudentId values in the TestScores table.

If you check the Cascade Delete Related Records box, the database automatically deletes related records
containing that field. For example, if you delete a particular StudentId value in the Students table, the
database automatically deletes any records with that StudentId in the TestScores table.

After you have chosen the relationship’s properties, click the Create button. Figure 15-10 shows the
relationship editor displaying the new relationship. If you checked the Enforce Referential Integrity box,
the diagram shows the link’s cardinalities.

Figure 15-10

295

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 296

Part IV: Implementing Databases (with Examples in Access and MySQL)

Try It Out Building Relationships
Foreign key constraints are crucial to validating data in relational databases. In this Try It Out, you add
two constraints, one linking the Students table’s StudentId field with the TestScores table’s StudentId
field, and one linking the Students table’s State field with a new States table’s State field.

1. Create the Students/TestScores relationship: Open the database you created for the previous Try
It Out and close any table editors that might be open. Select the Database Tools tab and click the
Relationships button.

In the Show Table dialog, select the Students and TestScores tables. Click Add and then click
Close.

Click the Students table’s StudentId field and drag it onto the TestScores table’s StudentId field.
In the Edit Relationships dialog, verify that the StudentId fields are selected, check the Enforce
Referential Integrity box, and click Create.

2. Add address fields to the Students table: Right-click the Students table and select Design View.
Below the LastName field, add new fields Street (Text length 40), City (Text length 40), State (Text
length 2), and Zip (Text length 5).

Save the database and close the table’s Design view.

3. Add a States table: Select the Create tab and click Table. Switch to Design view and name the new
table States.

Rename the default ID field States. Change it to a length 2 Text field. Save the database.

4. Create a Students/States relationship.

Close any open table views. If the relationship editor is not open, select the Database Tools tab
and click the Relationships button to open it.

Right-click the relationship editor and select Show Table. Select the States table, click Add, and
then click Close.

Drag the Students table’s State field onto the States table’s State field. In the Edit Relationships
dialog, verify that the State fields are selected, check the Enforce Referential Integrity box, and
click Create.

Resize and rearrange the tables if you like to ensure that the relationship links don’t run under
any of the tables. Figure 15-11 shows the result.

Creating Field Constraints
To add a field-level constraint, open a table in Design view and click the field. In the property tab at
the bottom, the Validation Rule entry contains the constraint that you want to execute when the field is
created or modified.

The validation rule should be a series of tests combined with logical operators such as And, Not, and
Or. For example, the validation rule ‘‘> = 1 And < = 5’’ checks whether the field’s value lies between
1 and 5.

296

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 297

Chapter 15: Microsoft Access

Figure 15-11

If you select the Validation Rule property and click the ellipsis on the right, the Expression Builder shown
in Figure 15-12 appears. You can click its buttons and the entries in the lists at the bottom to add pieces
to the test.

Figure 15-12

297

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 298

Part IV: Implementing Databases (with Examples in Access and MySQL)

A field’s Validation Rule property gives an expression to validate the field’s value. The Validation Text
property gives the text that Access displays if you try to set a field to an invalid value.

Figure 15-13 shows the TestScores table in Design view with the TestNumber field selected. The Valida-
tion Rule property is set to ‘‘> = 1 And < = 5’’ and the Validation Text property is set to ‘‘TestNumber
must be between 1 and 5.’’

Figure 15-13

Figure 15-14 shows the message Access displayed when I tried to change a TestNumber value to 0.

Creating Table Constraints
Access also lets you define table-level constraints. At this level, you can refer to all of the fields in a
record, not just a single field. For example, suppose your Relativistic Embroidery class has five tests. All
are graded on a 0- to 100-point scale except the final, which has a 10-point bonus question. (‘‘Discuss
parallels between Fabric Grin Through and Randall-Sundrum Brane Cosmology.’’)

298

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 299

Chapter 15: Microsoft Access

Figure 15-14

The following constraint verifies that a TestScores record has a Score value up to 100, unless the Test-
Number value is 5, in which case the Score can be as large as 110.

([Score]<=100) Or (([TestNumber]=5) And ([Score]<=110))

The database should also require that Score be at least zero. You could add that condition to this con-
straint or, to avoid making this rule more complex than it already is, you could give the Score field the
field constraint ‘‘> = 0’’ as described in the previous section.

To make a table-level constraint, open the table in Design view. Select the Design tab and click the Prop-
erty Sheet tool on the upper right.

Figure 15-15 shows the Design tab with the Property Sheet command highlighted (next to the Indexes
command). The Property Sheet window appears on the right side of the form.

Enter the constraint in the Property Sheet window’s Validation Rule field. Enter the message that you
want Access to display when the rule is violated in the Validation Text field.

299

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 300

Part IV: Implementing Databases (with Examples in Access and MySQL)

Figure 15-15

If you click the ellipsis next to the Validation Rule field, the Expression Builder shown in Figure 15-16
appears. This Expression Builder is similar to the one shown in Figure 15-12 for field-level constraints
except now it provides an expression category containing the table’s fields. Double-click a field to add it
to the validation rule.

Figure 15-16

300

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 301

Chapter 15: Microsoft Access

Creating Queries
This book isn’t really about Access so it doesn’t go into great detail about creating forms, views, charts,
and reports. See the Access documentation and the Web for more information on those topics. (There are
approximately seven zillion Web pages dealing with Access. A quick Google while I wrote this showed
an estimated 682,000 pages containing the exact phrase ‘‘Microsoft Access Database’’ so there’s plenty of
information out there.)

However, I do want to cover queries at least in passing because they’re useful and they also apply to
other database products, not just Access. Chapter 17 has more to say about queries.

A query is a SELECT statement that selects values from one or more tables. Optionally you can select only
records that match certain conditions and you can group or sort the results. The SELECT statement is one
of the more complicated SQL statements so it’s not covered thoroughly here. However, Access provides
some nifty tools that make building queries easier and those are covered here.

To create a query, select the Create tab and click either the Query Wizard or the Query Design tool on the
upper right. Figure 15-17 shows the Create tab with the Query Wizard tool highlighted.

Figure 15-17

Figure 15-18 shows the first page of the Query Wizard. For this example, select the Simple Query Wizard
and click OK.

301

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 302

Part IV: Implementing Databases (with Examples in Access and MySQL)

Figure 15-18

Figure 15-19 shows the Query Wizard’s second page. Use the Tables/Queries dropdown to select a table.
Then select a field and use the > button to move it into the Selected Fields list on the right. This list shows
which fields will be selected in the query’s result. For example, if you want a list of student names, select
the FirstName and LastName fields.

Figure 15-19

After you select the fields you want from the tables, click the Next button to display the page shown in
Figure 15-20. Pick Detail to see all of the data in the fields you selected. Pick Summary to make the query
display sums, averages, minimums, and other combined values. For this example, pick Detail and click
Next.

302

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 303

Chapter 15: Microsoft Access

Figure 15-20

Figure 15-21 shows the Query Wizard’s final page. Give the query a meaningful name. Then select the
first option (Open the query to view information) to run the query now or select the second option
(Modify the query design) if you want to change the query in Design view. For now, pick the first option
and click Finish.

Figure 15-21

Figure 15-22 shows the query’s results. Notice that it shows the values in the four fields selected in
Figure 15-19.

303

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 304

Part IV: Implementing Databases (with Examples in Access and MySQL)

Figure 15-22

To change the query, select the Home tab, click the Views dropdown, and select Design View. The fol-
lowing section explains how to edit a query in Design view.

Query Design View
Figure 15-23 shows the query built in the previous section opened in Design view. You can make changes
to the query’s column in the grid at the bottom. To delete a column, click just above the column and
press the Delete key. You can click and drag fields from the tables above onto the grid to add a field to
the query. In Figure 15-23, I removed the LastName field and then dragged it back onto the query in the
leftmost position.

To sort by a field, click the field’s Sort entry and use the dropdown to select Ascending, Descending,
or (not sorted). In Figure 15-23, the query sorts its results by the LastName field’s values in ascending
order.

To select only some records, add a condition to a field’s Criteria cell. In Figure 15-23, the query selects
only records where the Score field’s value is at least 95.

304

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 305

Chapter 15: Microsoft Access

Figure 15-23

To run the query, click the Run button in the upper left of Figure 15-23. Figure 15-24 shows the results.
Compare this to the results shown in Figure 15-22. This display shows the last name first, then sorts the
results by last name, and only shows records with Score > = 95.

Try It Out Make a Query
Create a query to select students whose addresses are in CA.

1. Add records to the States table. In the list of tables on the left, double-click the States table. In the
table’s Datasheet view, add some state abbreviations. Be sure to include CA.

2. Add address information to the Students table: In the list of tables on the left, double-click the
Students table. In the table’s Datasheet view, add some address information for the students. You
can add more students if you like. Try giving a student a State that isn’t listed in the States table
and verify that the database won’t let you. (If it does let you, then you didn’t correctly make the
foreign key constraint between the Students table and the States table in the previous Try It Out,
‘‘Building Relationships.’’)

305

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 306

Part IV: Implementing Databases (with Examples in Access and MySQL)

Be sure you give at least one student the State CA.

3. Use the Query Wizard to build a basic query: Select the Create tab and click the Query Wizard
tool. Use a Simple Query Wizard to select the Students table’s FirstName, LastName, and State
fields, and the TestScores table’s TestNumber and Score fields. Pick the Detail query and name
the query CA Students.

4. Modify the query to select only students in CA: In the grid at the bottom of the Query Design
view, find the State field’s column. In its Criteria cell, type = ‘CA’. Note the straight quotes sur-
rounding the value CA.

5. Click the Run command and verify that the records displayed all have State value CA.

Figure 15-24

SQL View
The Query Wizard and the Query Design view let you build and modify queries relatively quickly and
easily but some people prefer the control they can get by just typing out a SQL SELECT statement by
hand. (Some of these people also prefer the extra control they get driving manual instead of automatic.)

To manually edit a query, open it, select the Design tab, click the View dropdown, and select SQL View.
Figure 15-25 shows the SQL view showing the same query designed in Figure 15-23 and executed in
Figure 15-24.

306

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 307

Chapter 15: Microsoft Access

Figure 15-25

The following code shows the SQL statement, reformatted a bit to make it easier to read:

SELECT Students.LastName, Students.FirstName, TestScores.TestNumber,
TestScores.Score

FROM Students
INNER JOIN TestScores ON Students.[StudentId] = TestScores.[StudentId]
WHERE (((TestScores.Score)>=95))
ORDER BY Students.LastName;

Scary isn’t it? Don’t worry, it’s not that bad if you take it a piece at a time.

The SELECT clause on the first two lines tells the database which fields you want to see. The FROM clause
tells it to look for those fields in the Students table.

The INNER JOIN statement tells the database to also look at records in the TestScores table where the
Students record’s StudentId value matches the TestScores record’s StudentId value. In other words,
match up records in the two tables that have the same StudentId values.

The WHERE clause tells the database to select only records where the Score value is at least 95. (I don’t
know why the Query Wizard and Query Design view got carried away and added all of those parenthe-
ses. I think they treat parentheses like beer at a picnic, figuring it’s better to have extra rather than not
enough.)

307

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 308

Part IV: Implementing Databases (with Examples in Access and MySQL)

Finally, the ORDER BY clause tells the database to sort the results by the LastName field’s values.

Here’s a slightly simplified version that works just as well but without some of the redundant table
names and parentheses:

SELECT LastName, FirstName, TestNumber, Score
FROM Students
INNER JOIN TestScores ON Students.StudentId = TestScores.StudentId
WHERE Score >=95
ORDER BY LastName;

Chapter 17 has a bit more to say about SQL but if you’re brave, you can modify this statement to produce
other results. For example, to select tests where students failed, you could change the WHERE clause to
WHERE Score < 60.

For more complicated queries, you can use the Query Wizard and the Query Design view, and then use
the SQL view to see how the query works.

Summary
This chapter showed how to use Microsoft Access to build a database. It explained how to:

❑ Create tables and define fields.

❑ Set a table’s primary key.

❑ Define foreign key relationships and view them graphically.

❑ Create field-level constraints to validate field values separately.

❑ Create table-level constraints to validate a record’s fields together.

The next chapter explains how to use the MySQL database management system to build databases much
as this chapter explained how to build them with Access.

Before you move on to Chapter 16, however, use the following exercises to test your understanding of
the material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
These exercises all involve the same database, which you create in Exercise 1.

1. Use Access to create an AquariumDB database containing the three tables ShowTimes,
Shows, and Venues that were designed for Exercise 4 of Chapter 14. The following table
shows the field types for the three tables.

308

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 309

Chapter 15: Microsoft Access

Table Field Data Type

ShowTimes ShowId Number (Long Integer)

ShowTimes Time Date/Time

Shows ShowId AutoNumber (Long Integer)

Shows ShowName Text (45)

Shows VenueId Number (Long Integer)

Venues VenueId AutoNumber (Long Integer)

Venues VenueName Text (45)

Venues Seating Number (Integer)

2. Use the Relationships editor to define foreign key constraints as shown in Figure 15-26.

Figure 15-26

3. Use the tables’ Datasheet views to add values matching the data shown in Figure 15-27.
(Access won’t let you set values in AutoNumber fields, so don’t worry if the ID values don’t
match those shown in Figure 15-27 as long as they make the correct relational links.)

309

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 310

Part IV: Implementing Databases (with Examples in Access and MySQL)

11:15
3:00
1:15
6:00

11:00
12:00
6:30
2:00
5:27
2:00
3:00

1
1
2
2
3
3
3
4
4
5
6

ShowTimes
1 Sherm’s Shark Show 1
2 Meet the Rays 1
3 Deb’s Daring Dolphins 2
4 The Walter Walrus Comedy Hour 2
5 Flamingo Follies 3
6 Wonderful Waterfowl 3

Shows
1 Sherman’s Lagoon 375
2 Peet Amphitheater 300
3 Ngorongoro Wash 413

Venues

Figure 15-27

Try adding some duplicate primary key values and some data that doesn’t satisfy the foreign
key constraints. (For example, a ShowTimes record with ShowId = 100.)

4. Create a field-level constraint to check that the Venues table’s Seating value is between 10
and 1000 (a sanity constraint). Add appropriate Validation Text for the field. Try to modify
records so they violate the constraint.

Figure 15-28

310

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 311

Chapter 15: Microsoft Access

Create a field-level constraint to check that the ShowTimes table’s Time value is between
9:00am and 9:00pm. (Tip: In Access, you must surround times with hash marks as in
#16:30:00#.) Add appropriate Validation Text for the field. Try to modify records so they
violate the constraint.

5. Use the Query Wizard to build a query that displays the data shown in Figure 15-28. Be sure
to sort the results by time and then by show name.

311

Stephens c15.tex V3 - 10/04/2008 12:27pm Page 312

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 313

16
MySQL

MySQL is a database engine designed to be used as a backend for a separate user interface. The
user interface might be a Web page that uses Java, JavaScript, ASP, ASP.NET, or some other script-
ing technology to interact with the database. Alternatively the user interface might be a desktop
application built in a high-level programming language such as Visual Basic, C#, or C++.

This chapter explains how to use MySQL to design and build a relational database. In this chapter
you learn how to:

❑ Create tables.

❑ Create foreign key constraints.

❑ Create entity-relationship diagrams.

❑ Create triggers that validate data.

❑ Export scripts that build a database.

Installing MySQL
One of MySQL’s greatest strengths is its price: $0. That makes it a very popular database with those
trying to build an application or Web site on a budget. It has its roots in Linux computers so it’s also
very popular with those who use the various flavors of Linux.

A couple of feature-enhanced (in other words, not free) versions are also available. They provide
extra support for teams of developers and enterprise applications. They’re not really necessary
for the examples shown here so they’re not covered in this book. After you work through the
examples and exercises in this chapter, you can decide whether you should look into these enhanced
versions.

MySQL itself is a database engine, not a sophisticated development tool such as Microsoft Access.
Though it is functional, you will probably find MySQL easier to use if you also install some of its
graphical user interface (GUI) tools. You’ll probably also want to download at least some of the
documentation (you can also view it online).

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 314

Part IV: Implementing Databases (with Examples in Access and MySQL)

The MySQL Workbench is a particularly useful tool that lets you design a database, draw pretty
pictures of it, and create a script that can actually build it. Most of this chapter explains how to use
MySQL Workbench, so you will need to install it to get the most out of this chapter.

The following list shows where you can download these important MySQL tools.

❑ dev.mysql.com/downloads/mysql/5.0.html— Here you can download MySQL itself.
You need this if you want to use MySQL (for example, if you want to follow along with
the examples and exercises in this chapter). I tested the code in this chapter using MySQL
version 5.0.51b for 32-bit Windows XP.

❑ dev.mysql.com/doc/workbench/en/index.html— Here you can learn more about
MySQL Workbench.

❑ dev.mysql.com/downloads/workbench/5.0.html— Here you can download MySQL
Workbench. I highly recommend that you get this tool. (You can build a database by
typing SQL commands into the Command Line Client or writing scripts for the Client to
execute, but it’s hard. Like flint knapping and butter churning, it’s a lost art that is mostly
dragged out once a year for Pioneer Days festivals.) For this chapter I used version 5.0.21
OSS Revision 3111. (‘‘OSS’’ stands for ‘‘Community Edition.’’ I don’t know why. Perhaps
it really stands for ‘‘Obscure Something Silly.’’ All part of the Linux heritage.)

❑ dev.mysql.com/downloads/gui-tools/5.0.html — Here you can download additional
MySQL GUI tools. These include a graphical administrator and a query browser that are
easier to use than the Command Line Client.

❑ dev.mysql.com/doc — Here you can view or download MySQL documentation. Either
bookmark this page if you have an always-on fast Internet connection or download the
documentation for your version of MySQL.

Download and install MySQL, MySQL Workbench, and any other tools you want. I found the
installations pleasantly quick and painless.

MySQL is an Open Source project, and it is constantly undergoing modifications and improvements.
As you use some of the tools described in this chapter, you will probably encounter an occasional bug.
To avoid losing a lot of work, be sure to save your work often and take everything with a grain of salt.
After all, this is a free tool, and even with a few bugs you’re getting a lot more than you paid for.

Using MySQL Command Line Client
MySQL is a database engine that doesn’t really have a user interface of its own. Fortunately it comes with
a selection of tools that you can use to manipulate the database so you don’t have to write a program to
perform the simplest tasks.

MySQL’s natural habitat is the Linux operating system, and that has given some of its tools a
command-line orientation. For example, Figure 16-1 shows one of the most important MySQL tools: the
Command Line Client.

If, like me, you’ve become addicted to the point-and-click convenience of a windowing operating system
such as one of the flavors of the Microsoft or Macintosh operating systems, you may find the MySQL

314

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 315

Chapter 16: MySQL

Command Line Client a bit disconcerting. It is a primitive text-based tool. You type a command, the
Client executes it, and then it displays the result. If you look at Figure 16-1, you can see the commands
and results for this session.

Figure 16-1

When the Client first started, it prompted for the database’s password. You can see the asterisks it dis-
played as I entered the password.

The Client displays the mysql> prompt after which you can enter a command. The first command in
Figure 16-1, USE ppet, tells the Client to use the database named ppet, the database for The Pampered Pet
project.

Note that the commands are case-insensitive so USE ppet, use PPET, and use ppet all do the same thing.
I usually type command words such as USE in ALL CAPS so they stand out.

The next command, DESCRIBE Courses, tells the Client to show information about the Courses table. The
response shows the table’s fields, their data types, whether each allows null values, whether they are
used in keys, their default values, and extra information. This information is useful but displayed in a
primitive ASCII table.

(The first applications in the Paleolithic era painted their results on the sides of caves using this kind of
ASCII table output. Later, during the Neolithic era, special characters that draw lines were used to make
the result prettier. Only fairly recently during the Renaissance did windowing operating systems bring
us such features as dropdown menus, combo boxes, Ctrl+triple-clicking to select multiple paragraphs,
and bugs that can crash the entire operating system instead of just the window that the program is using.)

The last command shown in Figure 16-1, SELECT * FROM PhoneTypes, makes the Client select and display
all of the records in the PhoneTypes table. In this example, the table contained four records holding the
values Cell, Home, Pager, and Work.

315

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 316

Part IV: Implementing Databases (with Examples in Access and MySQL)

Notice that all of the commands end with a semicolon. Some of the commands can be quite long so the
Client lets you continue them across multiple lines. The semicolon lets it know when you’re done and
tells it to execute the command.

Some of the commands that the Command Line Client understands are instructions to the Client itself.
These make it do such things as connecting to a different host, selecting a different database on a host,
and executing a SQL script (which is covered further in the following section).

One of the most important commands displays help (notice that in Figure 16-1 the first thing the Client
does after accepting the password is tell you how to find help).

Other commands that you can send to the Client are SQL (Structured Query Language) commands.
These are industry-standard commands for building, modifying, and controlling relational databases.
The command SELECT * FROM PhoneTypes shown in Figure 16-1 is a SQL command. (Chapter 17 describes
SQL in greater detail.)

Try It Out Using the Command Line Client
After you install MySQL, give the Command Line Client a try. The following steps walk you through
some simple database actions.

1. Start the Command Line Client: Assuming you used a typical installation in Windows, open the
Start menu and select All Programs ➪ MySQL ➪ MySQL Server 5.0 ➪ MySQL Command Line
Client. When it prompts you for the database’s password, enter the password you used when
you installed MySQL.

2. List the available databases: Enter the command SHOW DATABASES;. (Remember to end each com-
mand with a semicolon and press Enter.) The Client should list the available databases running
in MySQL.

3. Select the mysql database: Enter the command USE mysql;. This makes the Client use the
database named mysql.

4. List the database’s tables: Enter the command SHOW TABLES;. This makes the Client list the tables
in the mysql database.

5. Select some data: Most of the mysql database’s tables will be empty, but the user table should
hold one record for the root user that was created when you installed MySQL. Enter the com-
mand SELECT user, password FROM user;. The Client should list a single record showing the
user name root and that user’s password. You won’t be able to read the password because it is
encrypted.

6. Create a new database: enter the command CREATE DATABASE testdb;. To select the new
database, enter the command USE testdb;. If you execute the SHOW TABLES command now, you
should find that the new database contains no tables.

7. Create a table by using a SQL CREATE TABLE statement. This is a long, potentially complex state-
ment that can span several lines. For this example, enter the command:

CREATE TABLE People (
FirstName VARCHAR(40) NOT NULL,
LastName VARCHAR(40) NOT NULL,
PRIMARY KEY (FirstName, LastName)

);

316

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 317

Chapter 16: MySQL

8. Make some data. Enter the following two commands one after the other:

INSERT INTO People VALUES("Assam", "Lembek");
INSERT INTO People VALUES("Nedlim", "Popo");

Then press the up arrow and press Enter to try to add the second record again. The database
should throw a fit and say, ‘‘Duplicate entry `Nedlim-Popo´for key 1.’’ It won’t allow this
entry because there is already a record that has the same primary key value.

9. Select some data: To select all of the rows in the table, enter the command SELECT * FROM People;.

10. Drop a table: enter the command DROP TABLE People;. This immediately removes the table and
all of its data without any warning or confirmation. To see that the table is gone, enter the com-
mand SHOW TABLES;.

11. Drop a database: enter the command DROP DATABASE testdb;.

12. Enter the command EXIT;.

How It Works

The CREATE TABLE command, repeated here, warrants a little discussion:

CREATE TABLE People (
FirstName VARCHAR(40) NOT NULL,
LastName VARCHAR(40) NOT NULL,
PRIMARY KEY (FirstName, LastName)

);

This command makes a table named People with two fields FirstName and LastName. Both fields are
40-character variable-length text fields, and both are required (neither allows null values). The table’s
primary key is the FirstName/LastName pair.

Now if you execute the SHOW TABLES statement, you should see the new table. To learn about the table’s
structure, enter the command DESCRIBE People.

The SELECT statement is quite complex and has many variations. The following table lists a few variations
that you can try.

Command Result

SELECT * FROM People Selects all fields in all records.

SELECT * FROM People
WHERE LastName = ’Lembek’

Selects all fields from records where LastName is
Lembek.

SELECT * FROM People
ORDER BY LastName DESC

Selects all fields from all records and sorts the results
by LastName in descending order.

The DROP TABLE command is dangerous because it instantly deletes all of the data in a table without any
warning. The data is gone forever, and there’s no way to get it back other than typing it all in again.

317

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 318

Part IV: Implementing Databases (with Examples in Access and MySQL)

The DROP DATABASE testdb command is even more dangerous than DROP TABLE because it deletes the
entire database including all of its tables and all of the data they contain immediately without any confir-
mation. All of the data is permanently gone with no apologies or do-overs. If you’re not careful, working
with the Command Line Client can be harsh and brutal!

Executing SQL Scripts
The following text shows all of the commands described in the previous Try It Out steps:

SHOW DATABASES;
USE mysql;
SHOW TABLES;
SELECT user, password FROM user;
CREATE DATABASE testdb;
USE testdb;
SHOW TABLES;
CREATE TABLE People (

FirstName VARCHAR(40) NOT NULL,
LastName VARCHAR(40) NOT NULL,
PRIMARY KEY (FirstName, LastName)

);
SHOW TABLES;
INSERT INTO People VALUES("Assam", "Lembek");
INSERT INTO People VALUES("Nedlim", "Popo");
INSERT INTO People VALUES("Nedlim", "Popo");
SELECT * FROM People;
SELECT * FROM People
WHERE LastName=‘Lembek’;
SELECT * FROM People
ORDER BY LastName DESC;
DROP TABLE People;
SHOW TABLES;
DROP DATABASE testdb;
SHOW DATABASES;

A series of commands such as this that is contained in a file is called a script. By convention, scripts such
as this one that contain SQL statements have a .sql extension. For example, this script might be in the
file tests.sql.

If you open a script in a text editor, you can select the commands and press Ctrl+V to copy them to the
Clipboard. Then you can right-click the MySQL Command Line Client and select Paste to make the Client
execute them all at once. This is an easy way to execute a series of commands more than once without
typing them all over again.

In fact, the Command Line Client provides a SOURCE command that executes a script to make working
with scripts even easier. The command SOURCE C:\Scripts\testdb.sql makes the Client execute the
script contained in the file C:\Scripts\testdb.sql. (This script file is available for download on the
book’s Web site.)

318

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 319

Chapter 16: MySQL

Scripts make working with the Command Line Client a lot easier and safer than typing them in by hand
because they let you study the commands and check for mistakes before you execute them. For example,
you can make darned sure that you don’t have a DROP TABLE or DROP DATABASE statement where you
don’t want it.

This technique also lets you test the commands a few at a time. For example, you can start with a script
that creates a database and makes a table. Then you can write another script to create a second table and
insert records into it.

After you have each script debugged, you can glue them together in one huge master script if you like.
Alternatively you can leave each script in a separate file so you can execute them separately, or you can
make a master script that uses the SOURCE command to invoke the individual scripts.

Writing scripts by hand and testing them can be somewhat tedious. Two MySQL tools that can make the
process a bit easier are MySQL Query Browser and MySQL Workbench.

Using MySQL Query Browser
MySQL Query Browser is a MySQL GUI tool that lets you interactively write and execute queries. If you
install the MySQL GUI tools with default settings in Windows, you can open the Start menu and select
All Programs ➪ MySQL ➪ MySQL Query Browser to see the login form shown in Figure 16-2. Enter the
root password that you specified when you installed MySQL. In the Default Schema field, you can enter
the name of the database that you want to use initially. (‘‘Schema’’ is MySQL-ese for ‘‘database.’’)

Figure 16-2

Figure 16-3 shows the Query Browser after it opens. On the right you can see the Schemata window
listing the installed databases. Click the little triangle to the left of an entry in this window to expand that
entry. In Figure 16-3, the ppet database is expanded to show its tables and the courses table is expanded
to show its fields. By using this window, you can learn about the database’s basic structure.

319

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 320

Part IV: Implementing Databases (with Examples in Access and MySQL)

Figure 16-3

Executing Queries
One of the simpler features of the Query Browser is letting you enter and execute queries. You can enter
an SQL query in the large text box at the top of the Query Browser. If you double-click a table in the
Schemata window, the program enters a query to select all of the records from this table for you.

When this query area contains a query, you can click the Execute button to run the query and see what
data is in the database. Figure 16-4 shows the Query Browser after I double-clicked the some_people
database’s People table to build a default query and then clicked Execute. (I also rearranged the result
area’s columns a bit to fit all of the values on the form.)

Editing Data
After you execute a query, you can use the result grid to edit the database. Click the Edit button on the
bottom of the Query Browser to start editing. Double-click a cell to change its value or double-click the
row below the last row to create a new record. Right-click a row and select Delete Row(s) to remove
a row.

320

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 321

Chapter 16: MySQL

Figure 16-4

Figure 16-5 shows the Query Browser editing the People table with its context menu open so you can see
some of the other tools that you can use to edit data. You can’t tell in the book, but the Query Browser
uses color to show changes. Modified fields are shown in dark blue, new records are shown in green, and
deleted records are shown in red.

If you click the Discard Changes button, the Query Browser throws out any changes, additions, or dele-
tions that you made in the editing grid.

If you click the Apply Changes button, the Query Browser tries to save your changes and additions
to the database. If there are any errors (for example, a text field is too long or a required field is missing),
the Query Browser tells you.

Figure 16-6 shows the program after trying to add two records with the same primary key values. The
row that didn’t get added is shown in red with white text and the error is described at the bottom of the
Query Browser. If you click the Execute button again, you’ll see the latest data from the database so you
can tell which changes made it into the data and which didn’t.

Creating and Modifying Databases
In addition to executing queries, the Query Browser can create databases and modify their structures.
If you right-click a database in the Schemata window, the context menu shown in Figure 16-7 appears.

321

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 322

Part IV: Implementing Databases (with Examples in Access and MySQL)

Figure 16-5

Use the Drop Schema command to drop a database. Use the Copy CREATE Statement to Clipboard
command to copy a CREATE DATABASE command to the Clipboard so you can paste it into a script. Use
Create New Schema to make a new database. Use the Create New Table command to add a new table to
a database.

If you right-click a table in the Schemata window, you see a slightly different set of commands. The Edit
Table command lets you change the fields in the table. The Drop Table command removes the table from
the database. The Copy CREATE Statement to Clipboard command copies an SQL statement as before
but this time it’s a CREATE TABLE statement.

If you right-click a table and selected Edit Table, the Query Browser displays the MySQL Table Editor
that lets you design the table. Figure 16-8 shows the editor displaying a more complete version of the
People table.

Double-click in the field definition area to change the table’s basic structure. For example, if you
double-click the City field’s Datatype column, you can change the field’s type to VARCHAR(50) or some
other type.

To define a foreign key, select the Foreign Keys tab as shown at the bottom of Figure 16-8. Click the plus
sign at the bottom left to add a new foreign key. In the dialog that appears (not shown in Figure 16-8),
enter a name for the new key. Select the table that the key references in the Ref. Table dropdown. Then
use the Column and Reference Column area if necessary to specify the columns in the two tables that
should match.

322

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 323

Chapter 16: MySQL

Figure 16-6

Figure 16-7

323

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 324

Part IV: Implementing Databases (with Examples in Access and MySQL)

When you’re done making changes to the table’s structure, click Apply Changes (at the bottom in
Figure 16-8) to make the Table Editor try to apply the changes you specified.

Figure 16-8

Note that you can also use the Query Browser while the Table Editor is open. For example, you can drop
the original table from the database if you need to make changes to it that would conflict with the data it
currently contains.

Try It Out Build a Database
The Query Browser provides tools you can use to build a complete database. Take a few minutes to
practice by building a small test database.

1. Create a new database. Right-click in the Schemata window and select Create New Schema.
Name the new database some_people.

2. Add a States table and give it some data. Right-click the some_people database and select Create
New Table. In the Table Name text box, enter States. Double-click the cell below the Column
Name header and enter the field name State. In the Datatype column, enter CHAR(2). Be careful
not to add an extra closing parenthesis. (The Table Editor tries to be helpful and adds one for you
so don’t add another one. Usually clicking Apply Changes, clicking Execute on the following dia-
log, reading the error message, figuring out what it means, and removing the extra parenthesis

324

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 325

Chapter 16: MySQL

takes a lot more of my time than I would save by not typing that extra parenthesis. But I appre-
ciate the thought.) The data type CHAR(2) means a two-character fixed-length string. Click the
Apply Changes button and then the Close button.

To add data to the table, return to the Query Browser, expand the some_people database, and
double-click the new table. This makes the Query Browser put a SQL SELECT statement in the
text box at the top to select the records from the States table. Click the Execute button to run the
query and return an empty list (because the table holds no data yet).

Click the Edit button at the bottom of the program. Then double-click the empty cell below
the State field in the result grid. Type the value CO and press Enter. Repeat this process,
double-clicking below the last value and adding a new one, until you have added several records
as shown in Figure 16-9.

Figure 16-9

When you have finished adding the records, click the Apply Changes button at the bottom of the
program to add the new values to the database.

3. Add a People table and give it a foreign key constraint referring to the States table. Right-click
the some_people database and select Create New Table. Use the Table Editor to create fields
FirstName, LastName, Street, City, State, and Zip. Use the field properties shown in
Figure 16-10. (Be careful when you enter the data types. The Query Browser doesn’t validate
those so if you misspell a data type as CHA(2), for example, it won’t tell you until you try to
apply the changes.)

325

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 326

Part IV: Implementing Databases (with Examples in Access and MySQL)

Initially the table will use its first field as its primary key. To make it use both the FirstName and
LastName fields instead, select the Indices tab as shown in Figure 16-10. Click and drag the Last-
Name field into the Index Columns area on the lower right.

Figure 16-10

To create the foreign key constraint, select the Foreign Keys tab and click the plus sign. In the
dialog that appears, name the new key FK_People_States. Open the Ref. Table dropdown and
select States. The Table Editor will correctly select the State field for both tables so you don’t have
to make any changes here.

Click the Apply Changes button to create the new People table. Then click the Close button.

4. Add some data to the People table. Try to violate the foreign key constraint. Double-click the
table in the Schemata window to copy a query for that table into the query area. Then click the
Execute button to display the empty results. Double-click the cells below the header fields and
enter some data. When you have finished entering data, click the Apply Changes button.

Figure 16-11 shows the Query Browser after trying to add new People records. The last record for
Joe Kerr violated its foreign key constraint because the States table doesn’t contain the State value
AZ. The Query Browser didn’t add that record and flagged the error.

326

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 327

Chapter 16: MySQL

Figure 16-11

Using Scripts
In addition to building databases and executing queries, the Query Browser can execute scripts. This
makes writing and executing a complex series of commands even easier than using the Command Line
Client’s source command.

To create a blank script, open the File menu and select New Script Tab. To load an existing script file,
open the File menu and select Open Script.

After you write or load a script, click the Execute button to run it. Figure 16-12 shows the Query Browser
after executing a script. The program displays the error message at the bottom because the script tried to
create two records with the same primary key values. If you double-click the error message, the program
moves the cursor to the line that caused the error.

By using the Query Browser’s script editor, you can write and debug scripts relatively quickly.

327

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 328

Part IV: Implementing Databases (with Examples in Access and MySQL)

Figure 16-12

Try It Out Writing a Script
MySQL Query Browser makes editing and running scripts easy. The following steps walk you through
loading and running a simple script.

1. Start MySQL Query Browser. Assuming you used a typical installation in Windows, open the
Start menu and select All Programs ➪ MySQL ➪ MySQL Query Browser. When it prompts you
for the database’s password, enter the password you used when you installed MySQL.

2. Make and execute a new script to create a database. In MySQL Query Browser, open the File
menu and select New Script Tab. Enter the following code (don’t worry about it if you can’t easily
type the special characters ö, ç, and so forth):

DROP DATABASE IF EXISTS PoliticianDB;
CREATE DATABASE PoliticianDB;

USE PoliticianDB;

CREATE TABLE Politicians (
Country VARCHAR(45) NOT NULL,
FirstName VARCHAR(45) NOT NULL,
LastName VARCHAR(45) NOT NULL,

328

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 329

Chapter 16: MySQL

PRIMARY KEY (Country)
);

INSERT INTO Politicians VALUES("Germany", "Horst", "Köhler");
INSERT INTO Politicians VALUES("France", "François", "Fillon");
INSERT INTO Politicians VALUES("Italy", "Romano", "Prodi");
INSERT INTO Politicians VALUES("Spain", "José Luis Rodrı́guez", "Zapatero");

Use the File menu’s Save command to save the script with a reasonable name. Then click the Exe-
cute button to run this script. This creates the PoliticianDB database, adds the Politicians table,
and inserts some values into it.

3. Execute a query against the newly created table and modify the data. In the Schemata window,
double-click the Politicians table. The Query Browser should create a query tab with the follow-
ing query at the top:

SELECT * FROM politiciandb.politicians p;

(Once in a while, the Query Browser decides it has better things to do than listen to you so it
doesn’t create this tab or it doesn’t create the proper query. At those times, I’ve had some luck
opening another database, selecting a table in it, and then double-clicking the Politicians table
again. If it really won’t behave, you can type the query into a query tab yourself. Remember, this
is a free tool!)

Click the Execute button to run the query. You should see four records.

Click the Edit button at the bottom to enter editing mode. Then double-click the Italy entry and
change it to Italia. Click the Apply Changes button to accept the change.

Change the query to this:

SELECT * FROM politiciandb.politicians
WHERE Country < ‘M’
ORDER BY FirstName;

Click the Execute button to run the new query. You should see only three records (Spain comes
after the letter M so it’s not listed) and they should be sorted by the politicians’ first names.

In the Schemata window, right-click the new database and select Drop Schema to remove the
new database.

Getting Syntax Help
One very nice feature of the Query Browser is its integrated help for SQL syntax. To get help, expand
the folders in the Syntax window on the lower right of Figure 16-12. Then double-click an item to
see help for that entry. Figure 16-13 shows the Query Browser displaying help for the CREATE TABLE
statement.

This integrated help is particularly useful when you are editing a script.

329

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 330

Part IV: Implementing Databases (with Examples in Access and MySQL)

Figure 16-13

Using MySQL Workbench
Query Browser is a great tool for building a database, exploring its tables, executing queries, and writing
scripts, but it doesn’t provide any tool for visualizing the structure of the database. By examining each
table separately, you can figure out which tables are related to others through foreign key constraints,
but the process is slow and tedious.

That’s where MySQL Workbench comes in. It allows you to build and view an Extended
Entity-Relationship diagram (EER diagram) showing the database’s relational structure.

Loading Scripts
MySQL Workbench can load an existing database’s structure from a creation script (a script that builds
the database with CREATE commands). It can also load structure from a running database. Unfortunately
only the commercial versions of Workbench will load from a running database so, if you’re using the free
version, you need to work from a creation script.

If you don’t have a creation script, the Query Browser can help you build one. Right-click an object in the
Query Browser’s Schemata window and select Copy CREATE Statement to Clipboard. Then paste the
result into a script file.

330

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 331

Chapter 16: MySQL

For a big database, this can be time-consuming, and you’ll need to arrange the commands in the script
so tables are created in a valid order. For example, suppose the Addresses table’s State field refers to the
States table’s State field as a foreign key. In that case, you’ll need to create the States table before you
create the Addresses table (so Addresses has something to reference).

To load a creation script, open the File menu’s Import submenu and select Reverse Engineer MySQL
Create Script. Select the script file that you want to load and click Next. The program loads the file and
checks that it’s not complete gibberish. Click the Next and Finish buttons to move through the rest of the
dialog’s pages.

Figure 16-14 shows Workbench with The Pampered Pets database loaded. The Catalog window on the
right is similar to the Schemata window displayed by the Query Browser except it displays only a single
database.

Figure 16-14

Creating EER Diagrams
One the most useful features of Workbench is that it lets you build and edit EER diagrams. You can build
them from scratch or you can let Workbench do some of the work for you.

331

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 332

Part IV: Implementing Databases (with Examples in Access and MySQL)

The final page of the script loading dialog includes a checkbox labeled Autoplace Objects in New Dia-
gram. If you check this box before clicking the Finish button, Workbench creates a new EER diagram for
the database and drops its tables in default locations on it.

If you don’t create an autoplace diagram when you load the creation script, you can make one later by
selecting the Model menu’s command Create Diagram from Catalog Objects.

The automatically generated diagrams aren’t perfect. Tables sometimes overlap slightly and links show-
ing relationships between tables often run underneath other tables, but it’s a start. From there you can
drag tables into new positions to try to make the diagram look nicer.

Figure 16-15 shows Workbench displaying a hand-made EER diagram for The Pampered Pet database.
The key in the upper right shows the part of the diagram that is visible in the main window. The slider
and combo box below the key area lets you adjust the diagram’s scale.

Figure 16-15

Solid links indicate an identifying relationship where a child table cannot be identified without its parent.
For example, it doesn’t make much sense to look up a particular TimeEntries record by itself — normally
you would look up the TimeEntries records that go with a particular Employees record.

Dashed links indicate a non-identifying relationship.

332

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 333

Chapter 16: MySQL

Symbols on the links indicate the cardinality of the objects at each end. The three cardinality symbols are:

❑ Circle — Means 0.

❑ Tick mark — Means 1.

❑ Crow’s foot (looks like a little teepee or something) — Means ‘‘many.’’

For example, take a look at the link between the Employees and TimeEntries entities in Figure 16-15. The
Employees end of the link is marked by two tick marks so its cardinality is 1 to 1. In other words, exactly
one Employees entity participates in this relationship. The TimeEntries end of the link is marked with a
circle and crow’s foot. That means the relationship involves zero or more TimeEntries entities. All that
makes sense: a single employee is associated with any number of time entries (including zero), and a
time entry is associated with exactly one employee.

By using the tools on the left edge of the program shown in Figure 16-15, you can annotate an EER
diagram with text or pictures. You can also add tables and relationships. If you double-click or right-click
and select the appropriate Edit command, you can edit a table or relationship.

Some changes you can only perform using the EER diagram editor. For example, a relational database
only represents one-to-many relationships. If you want to build a one-to-one relationship such as the one
between the Employees and Persons table shown in Figure 16-15, you need to edit that link manually.

That link should also be an identifying relationship because you wouldn’t normally look up a Persons
record without going through the corresponding Employees record. To make that change, you would
need to delete the non-identifying link and use the tools on the left to make a new one-to-one identifying
relationship (it’s the third tool from the bottom).

The diagramming tool can also represent many-to-many relationships (the second-to-last tool on the left),
which the database cannot represent directly.

Editing Databases
Workbench has many of the same table creation and editing features as Query Browser. To create a new
table, select the Model tab and in the Tables area double-click the Add Table item. Figure 16-16 shows
Workbench creating a new table.

Enter the table’s name and then use the other tabs in the table editing area to define the table. For
example, use the Columns, Indexes, and Foreign Keys tabs to define the table’s columns, non-primary
key indexes, and foreign keys.

The Inserts tab allows you to add data to the table. Click the Open Editor button on the tab to display the
dialog shown in Figure 16-17. Use the grid to enter data and click OK.

When you export the database creation script (described in the section ‘‘Exporting Scripts’’ later in this
chapter), Workbench adds INSERT statements to the script to create this data. For the data shown in
Figure 16-17, it adds the following statements:

INSERT INTO ‘TestScores‘ (‘idStudent‘,‘TestNumber‘,‘Score‘) VALUES (1, 1, 97);
INSERT INTO ‘TestScores‘ (‘idStudent‘,‘TestNumber‘,‘Score‘) VALUES (1, 2, 91);
INSERT INTO ‘TestScores‘ (‘idStudent‘,‘TestNumber‘,‘Score‘) VALUES (1, 3, 87);

333

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 334

Part IV: Implementing Databases (with Examples in Access and MySQL)

Figure 16-16

Figure 16-17

Defining Triggers
MySQL databases don’t perform check constraints, at least not in the current version. It does, however,
execute triggers. A trigger is a piece of database code that is automatically executed when certain events
occur. For example, you can define a routine to run before a record is updated or after a record is deleted.

334

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 335

Chapter 16: MySQL

Though MySQL doesn’t have check constraints, you can use triggers to perform checks when a record is
created or updated. You can type CREATE TRIGGER statements into database creation scripts or you can let
MySQL Workbench do it for you.

To create a trigger, edit the table that should contain it, select the Triggers tab, and type the statements
to create the trigger. The following code shows how you could create triggers to run before records
are added or updated in a test score database. This example tries to ensure that the TestScores table’s
TestNumber value is between 1 and 5 and its Score value is between 0 and 100:

-- Trigger DDL Statements
USE TestScoresDB;
DELIMITER //

CREATE TRIGGER TestScores_BeforeInsert BEFORE INSERT ON TestScores
FOR EACH ROW BEGIN
IF NEW.TestNumber < 1 THEN

-- Cause an error.
SET NEW.idStudent = null;

ELSEIF NEW.TestNumber > 5 THEN
-- Cause an error.
SET NEW.idStudent = null;

ELSEIF NEW.Score < 0 THEN
-- Cause an error.
SET NEW.idStudent = null;

ELSEIF NEW.Score > 100 THEN
-- Cause an error.
SET NEW.idStudent = null;

END IF;

END;
//

CREATE TRIGGER TestScores_BeforeUpdate BEFORE UPDATE ON TestScores
FOR EACH ROW BEGIN
IF NOT(NEW.TestNumber BETWEEN 1 AND 5) THEN

-- Reset the value.
SET NEW.TestNumber = OLD.TestNumber;

ELSEIF NOT (NEW.Score BETWEEN 0 AND 100) THEN
-- Reset the value.

SET NEW.Score = OLD.Score;
END IF;

END;
//

Normally a script uses a semicolon to delimit statements. Because a trigger contains database code (it’s
basically a little script), it may contain semicolons so the database cannot use a semicolon to tell when the
trigger’s definition is complete. The DELIMITER statement tells the database what to use for the statement
delimiter while the trigger is defined.

The first trigger executes before a new record is added to the TestScores table. For each row about to
be added, the trigger checks the new value in its TestNumber field. If the new value is less than 1 or
greater than 5, the trigger would like to raise some sort of error to tell the database not to accept the new

335

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 336

Part IV: Implementing Databases (with Examples in Access and MySQL)

record. Unfortunately MySQL doesn’t have a command to raise an error so the trigger does the next
best thing: it does something illegal. In this case, it sets the idStudent field’s value to null. The idStudent
field is required so setting the value to null causes an error and the database refuses to add the new
record.

Next the trigger checks the new Score value. If the new value is less than 0 or greater than 100, the trigger
again sets idStudent to null to cause an error.

The second trigger executes before a record is updated. The documentation says causing an error makes
the update fail, but in my tests the database seems to reset the invalid field to a default value and accept
the change, so this trigger doesn’t use the same trick as the previous one. Instead, if a new TestNum-
ber or Score value is out of bounds, the trigger resets it to the old value that it had before the update
began.

The two triggers demonstrate different styles of checking their values. The first uses inequalities and the
second uses the BETWEEN statement.

Unfortunately there seem to be a few bugs in the Workbench’s trigger code. If you check the Gener-
ate DROP TABLE Statements check box while exporting the database creation script, the program also
creates DROP TRIGGER statements that contain syntax errors. If you don’t check this box, the program gen-
erates a script that contains an empty statement where it would have tried to create the DROP TRIGGER
statement and that causes an error.

The easiest solution I’ve found is to create the DROP TRIGGER statements and remove them from the script.
You can then add correct ones before the trigger’s DELIMITER statement if you like. The correct statements
for this example are:

DROP TRIGGER IF EXISTS TestScores_BeforeInsert;
DROP TRIGGER IF EXISTS TestScores_BeforeUpdate;

Exporting Scripts
After you have modified the database, defined foreign keys, added triggers, and so forth, Workbench can
generate a database creation script. Open the File menu’s Export submenu and select Forward Engineer
SQL CREATE Script to display the dialog shown in Figure 16-18.

Select the items that you want in the database creation script and click Next to move to the page shown
in Figure 16-19.

If you want the script to include only some tables, triggers, or other objects, click the corresponding
Detailed Selection button and make your selections.

After you make your selections, click Finish to make Workbench generate the database creation script.
The result isn’t perfect (have I mentioned that this is a free tool?), but it’s a pretty good start and at least
defines the database’s tables and foreign keys. You can load the script into MySQL Script Browser to test
and debug it.

336

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 337

Chapter 16: MySQL

Figure 16-18

Figure 16-19

337

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 338

Part IV: Implementing Databases (with Examples in Access and MySQL)

Summary
This chapter showed how to use the MySQL Query Browser and MySQL Workbench tools. They have a
few rough edges, but overall they are very useful. They let you create and modify databases for MySQL
databases more easily than you can with the MySQL Command Line Client. Workbench also lets you
draw EER diagrams.

This chapter explained how to:

❑ Use MySQL Query Browser to create tables, define their columns, and give them foreign key
constraints.

❑ Use MySQL Workbench to create and modify tables and EER diagrams.

❑ Use MySQL Workbench to modify links in EER diagrams to specify cardinality.

❑ Use MySQL Workbench to create triggers that validate data.

❑ Use MySQL Workbench to export database creation scripts containing triggers and INSERT state-
ments.

This chapter completes your introduction to database design and construction. Using the techniques
described up to this point in the book, you can design and implement a flexible, robust database in
Access or MySQL.

Database programming is an enormous topic, however, and there’s much more to study. The next part
of the book explains some more advanced database design and development topics.

This chapter used scripts to create MySQL databases and insert data into them, but it didn’t really explain
how those scripts worked. The following chapter provides a lot more detail by introducing SQL, the
database language used to write those scripts.

Before you move on to Chapter 17, however, use the following exercises to test your understanding of
the material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises

1. Use MySQL Workbench to create the database shown in Figure 16-20.

Add insert and update triggers to ensure that the TestNumber is between 1 and 10 and that
the test scores are between 0 and 100. Also give each table some INSERT statements on the
Inserts tab.

Be sure to save your Workbench project and then export a database creation script. Load the
script in MySQL Query Browser, fix the trigger errors, and execute the script.

2. Use MySQL Workbench to create the database designed in Exercise 4 of Chapter 14 and
shown in Figure 16-21.

338

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 339

Chapter 16: MySQL

Figure 16-20

Figure 16-21

339

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 340

Part IV: Implementing Databases (with Examples in Access and MySQL)

Add insert and update triggers to ensure that show times are between 9:00am and 9:00pm.
(Tip: In scripts and insert statements, write times in 24-hour notation surrounded by straight
single quotes. For example, the time ’14:15:00’ is 2:00pm.)

Give each table INSERT statements matching the data shown in Figure 16-22.

11:15
3:00
1:15
6:00

11:00
12:00
6:30
2:00
5:27
2:00
3:00

1
1
2
2
3
3
3
4
4
5
6

ShowTimes
1 Sherm’s Shark Show 101
2 Meet the Rays 101
3 Deb’s Daring Dolphins 102
4 The Walter Walrus Comedy Hour 102
5 Flamingo Follies 103
6 Wonderful Waterfowl 103

Shows
101 Sherman’s Lagoon 375
102 Peet Amphitheater 300
103 Ngorongoro Wash 413

Venues

Figure 16-22

Figure 16-23

340

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 341

Chapter 16: MySQL

Save your Workbench project and then export a database creation script. Load the script in
MySQL Query Browser, fix the trigger errors, and execute the script.

3. Use MySQL Workbench to create The Pampered Pet database designed in Chapter 14 and
shown in Figure 16-23.

Save your Workbench project and then export a database creation script. Load the script in
MySQL Query Browser and execute the script.

341

Stephens c16.tex V3 - 10/04/2008 12:28pm Page 342

Stephens p05.tex V1 - 09/16/2008 3:50am Page 343

Part V

Advanced Topics

Chapter 17: Introduction to SQL

Chapter 18: Building Databases with SQL Scripts

Chapter 19: Database Maintenance

Chapter 20: Database Security

The chapters in the next part of the book deal with more advanced topics. Though they are not
strictly necessary for designing a database, they are very important for database practitioners. You
can design a database without understanding these topics but it’s unlikely that you will do a good
job implementing the database without at least some awareness of them.

Chapter 17 provides an introduction to SQL (Structured Query Language). Chapter 18 explains how
to use SQL to make scripts that create, populate, and otherwise manipulate databases. Chapter 19
discusses database maintenance issues and Chapter 20 describes database security.

Although these chapters don’t cover every last detail of these topics, they should provide you
enough background to let you build a database competently.

Stephens p05.tex V1 - 09/16/2008 3:50am Page 344

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 345

17
Introduction to SQL

Eventually you (or someone else) must actually build the database that you’ve designed. Also at
some point, someone will probably want to actually use the database you’ve spent so much time
designing.

SQL (pronounced ‘‘sequel’’) includes commands that let you build, modify, and manipulate a
database. Chances are SQL will be used either directly or behind the scenes to create and use
the database. Even tools such as MySQL, Access, and SQL Server that let you interactively build
a database also allow you to use SQL.

SQL is also directly useful for creating and initializing a database. In fact, it’s so useful that it’s the
topic of the next chapter.

SQL is such an important part of database development that your education as a database designer
is sadly lacking if you don’t at least understand the basics. (The other developers will rightfully
mock you if you don’t chuckle when you see a tee-shirt that says, ‘‘SELECT * FROM People WHERE NOT
Clue IS null.’’)

In this chapter you learn how to use SQL to:

❑ Create and delete tables.

❑ Insert data into tables.

❑ Select data from the database using various criteria and sort the results.

❑ Modify data in the database.

❑ Delete records.

Background
SQL, which stands for Structure Query Language, was developed by IBM in the mid-1970s. It is an
English-like command language for building and manipulating relational databases.

From a small but ambitious beginning, SQL has grown into a large language containing around
70 commands with hundreds of variations. Because SQL has grown so large, this chapter cannot

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 346

Part V: Advanced Topics

possibly cover it all. Instead this chapter gives a brief introduction to SQL and then describes some
of the most useful SQL commands in greater detail. Even then, this chapter doesn’t have room to
cover most of the more interesting commands completely. The SELECT statement alone includes so
many variations that you could practically write a book about just that one command.

Finding More Information
SQL is intuitive enough that, once you master the basics, you should be able to get pretty far on your
own. The Internet is practically clogged with Web sites that are chock full of SQL goodness in the form
of tutorials, references, FAQs, question and answer forums, and discussion groups.

In fact, I’ll start you off with a small list of Web sites right now. The following list shows a few Web sites
that provide SQL tutorials:

❑ www.sql-tutorial.net/

❑ www.w3schools.com/sql

❑ www.sql.org/

❑ sqlcourse.com/

For help on specific issues, you should find a few SQL forums where you can ask questions. A huge
number of developers work with databases and SQL so there are lots of forums out there. IT Toolbox
alone (www.ITToolbox.com) has more than a dozen SQL or database-related forums.

These tutorials can help you get started using some of the more common SQL statements but they aren’t
designed as references. If you need more information about a particular command, you should look for
a SQL reference. The following links lead to references for different versions of SQL.

❑ Microsoft Transact-SQL: msdn.microsoft.com/en-us/library/ms189826.aspx

❑ PostgreSQL: www.postgresql.org/docs/8.1/interactive/sql-commands.html

❑ Oracle SQL: www.adp-gmbh.ch/ora/sql/

❑ MySQL: dev.mysql.com/doc/refman/5.0/en/index.html

Each of these pages provides simple navigation to look up specific SQL commands.

Note, however, that these Web pages deal with specific versions of SQL (Transact-SQL, PostgreSQL,
Oracle SQL, and MySQL). Though the basics of any version of SQL are fairly standard, there are some
differences between the different flavors. In fact, this is such an important issue that it deserves its own
section.

Standards
Although all relational databases support SQL, different databases may provide slightly different imple-
mentations of SQL. In fact, this is such an important point that I’ll say it again in a box.

346

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 347

Chapter 17: Introduction to SQL

Different databases provide slightly different implementations of SQL.

Both the International Organization for Standardization (ISO) and the American National Standards
Institute (ANSI) have standards for the SQL language and most database products follow those standards
pretty faithfully. However, different database products also add extra features to make certain chores
easier. Those extras can make your life easier but only if you are aware of which features are standard
and which are not and you use the extra features with caution.

(I don’t know why the International Organization for Standardization is abbreviated ISO instead of IOS.
Possibly it’s a French thing. Or perhaps that’s just the way it is, like when NIST, formerly the ‘‘National
Institute of Standards and Technology,’’ decided that NIST no longer stands for anything and is just a
name.)

For example, in the Transact-SQL language used by SQL Server, the special values @@TOTAL_ERRORS,
@@TOTAL_READS, and @@TOTAL_WRITES return the total number of disk write errors, disk reads, and disk
writes respectively since SQL Server was last started. Other relational databases don’t provide those,
although they may have their own special values that return similar statistics.

If you use them haphazardly, it may be very hard to rebuild your database or the applications that use
it if you are forced to move to a new kind of database. For that matter, extra features can make it hard for
you to reuse tools and techniques that you develop in your next database project.

(In one project I worked on, we didn’t know which database engine we would be using for almost a year.
Management had two database vendors bidding against each other so they kept changing their minds to
keep the pressure on the vendors. They didn’t finally pick one until development was almost complete.)

Fortunately most flavors of SQL are 90+ percent identical. You can guard against troublesome changes
in the future by keeping the non-standard features in a single place as much as possible.

Usually the places where SQL implementations differ the most is in system-level chores such as database
management and searching meta-data. For example, different databases might provide different tools for
searching through lists of tables, creating new databases, learning about the number of reads and writes
that the database performed, examining errors, and optimizing queries.

Basic Syntax
As is mentioned earlier in this chapter, SQL is an English-like language. It includes command words such
as CREATE, INSERT, UPDATE, and DELETE.

SQL is case-insensitive. That means it doesn’t care whether you spell the DELETE keyword as DELETE,
delete, Delete, or DeLeTe.

SQL also doesn’t care about the capitalization of database objects such as table and field names. If a
database has a table containing people from the Administrative Data Organization, SQL doesn’t care
whether you spell the table’s name ADOPEOPLE, AdoPeople, or aDOPEople.

347

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 348

Part V: Advanced Topics

To make the code easier to read, however, most developers write SQL command words in ALL CAPS and
they write database object names using whatever capitalization they used when building the database.
For example, I prefer Mixed Case for table and field names.

A final SQL feature that makes commands easier to read is that SQL ignores whitespace. That means it
ignores spaces, tabs, line feeds, and other ‘‘spacing’’ characters so you can use those characters to break
long commands across multiple lines or to align related statements in columns.

For example, the following code shows a typical SELECT command as I would write it.

SELECT FirstName, LastName, Clue,
Street, City, State, Zip

FROM People
WHERE NOT Clue IS NULL
ORDER BY Clue, LastName, FirstName

This command selects name and address information from the records in the People table where the
record’s Clue field has a value that is not null. (Basically it selects people who have a clue, normally a
pretty small data set.) It sorts the results by Clue, LastName, and FirstName.

This command places the different SQL clauses on separate lines to make them easier to read. It also
places the person’s name and address on separate lines and indents the address fields so they line up
with the FirstName field. That makes it easier to pick out the SELECT, FROM, WHERE, and ORDER BY clauses.

Command Overview
SQL commands are typically grouped into four categories: Data Definition Language (DDL), Data Manip-
ulation Language (DML), Data Control Language (DCL), and Transaction Control Language (TCL).

Note that some commands have several variations. For example, in Transact-SQL the ALTER command
has the versions ALTER DATABASE, ALTER FUNCTION, ALTER PROCEDURE, ALTER TABLE, ALTER TRIGGER, and
ALTER VIEW. The following tables just provide an overview of the main function (ALTER) so you know
where to look if you need one of these.

DDL commands define the database’s structure. The following table briefly describes the most commonly
used DDL commands.

Command Purpose

ALTER Modifies a database object such as a table, stored procedure, or view. The most
important variation is ALTER TABLE, which lets you change a column definition or table
constraint.

CREATE Creates objects such as tables, indexes, views, stored procedures, and triggers. In some
versions of SQL, this also creates databases, users, and other high-level database
objects. Two of the most important variations are CREATE TABLE and CREATE INDEX.

DROP Deletes database objects such as tables, functions, procedures, triggers, and views. Two
of the most important variations are DROP TABLE and DROP INDEX.

348

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 349

Chapter 17: Introduction to SQL

DML commands manipulate data. They let you perform the CRUD operations: Create, Read, Update,
and Delete. (Where athletes ‘‘talk smack,’’ database developers ‘‘talk CRUD.’’) The following table sum-
marizes the most common DML commands. Generally developers think of only the CRUD commands
INSERT, SELECT, UPDATE, and DELETE as DML commands but this table includes cursor commands because
they are used to select records.

Command Purpose

CLOSE Closes a cursor.

DECLARE Declares a cursor that a program can use to fetch and process records a few at a time
instead of all at once.

DELETE Deletes records from a table.

FETCH Uses a cursor to fetch rows.

INSERT Inserts new rows into a table. A variation lets you insert the result of a query into a
table.

SELECT Selects data from the database, possibly saving the result into a table.

TRUNCATE Deletes all of the records from a table as a group without logging individual record
deletions. It also removes empty space from the table while DELETE may leave empty
space to hold data later. (Some consider TRUNCATE a DDL command, possibly because
it removes empty space from the table. Or possibly just to be contrary. Or perhaps I’m
the contrary one.)

UPDATE Changes the values in a record.

DCL commands allow you control access to data. Depending on the database, you may be able to con-
trol user privileges at the database, table, or field level. The following table summarizes the two most
common DCL commands.

Command Purpose

GRANT Grants privileges to a user.

REVOKE Revokes privileges from a user.

TCL commands let you use transactions. A transaction is a set of commands that should be executed
atomically as a single unit so either every command is executed or none of the commands are
executed.

For example, suppose you want to transfer money from one account to another. It would be bad if
the system crashed after you had subtracted money from the first account but before you added it
to the other. If you put the two commands in a transaction, the database guarantees that either both
happen or neither happens.

The following table summarizes the most common TCL commands.

349

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 350

Part V: Advanced Topics

Command Purpose

BEGIN Starts a transaction. Operations performed before the next COMMIT or ROLLBACK
statement are part of the transaction.

COMMIT Closes a transaction, accepting its results.

ROLLBACK Rewinds a transaction’s commands back to the beginning of the transaction or to a
savepoint defined within the transaction.

SAVE Creates a savepoint within a transaction. (Transact-SQL calls this command SAVE
TRANSACTION whereas PostgreSQL calls it SAVEPOINT.)

The following sections describe the most commonly used commands in greater detail.

CREATE TABLE
The CREATE TABLE statement builds a database table. The basic syntax for creating a table is:

CREATE TABLE table_name (parameters)

Here table_name is the name you want to give to the new table and parameters is a series of state-
ments that define the table’s columns. Optionally parameters can include column-level and table-level
constraints.

A column definition includes the column’s name, its data type, and optional extras such as a default
value or the keywords NULL or NOT NULL to indicate whether the column should allow null values.

A particularly useful option that you can add to the CREATE TABLE statement is IF NOT EXISTS. This clause
makes the statement create the new table only if it doesn’t already exist.

For example, the following statement creates a Students table with three fields. Notice how the code uses
whitespace to make the data types and NOT NULL clauses align so they are easier to read:

CREATE TABLE IF NOT EXISTS Students (
idStudent INT NOT NULL AUTO_INCREMENT,
FirstName VARCHAR(45) NOT NULL,
LastName VARCHAR(45) NOT NULL,
PRIMARY KEY (idStudent)

)

The idStudent field is an integer (INT) that is required (NOT NULL). The database automatically generates
values for this field by adding one to the value it last generated (AUTO_INCREMENT).

The FirstName and LastName fields are required variable-length strings up to 45 characters long.

The table’s primary key is the idStudent field.

350

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 351

Chapter 17: Introduction to SQL

A key part of a column’s definitions is the data type. The following list summarizes the most common
SQL data types:

❑ BLOB: A Binary Large Object. This is any chunk of binary data such as a JPEG file, audio file,
video file, or Word document. The database knows nothing about the internal structure of this
data so, for example, if the BLOB contains a Word document the database cannot search its
contents.

❑ BOOLEAN: A true or false value.

❑ CHAR: A fixed-length string. Use this for strings that always have the same length such as
two-letter state abbreviations or five-digit ZIP Codes.

❑ DATE: A month, date, and year such as February 29, 2012.

❑ DATETIME: A date and time such as 12:34pm February 29, 2012.

❑ DECIMAL(p, s): A fixed-point number where p (precision) gives the total number of digits and s
(scale) gives the number of digits to the right of the decimal. For example, DECIMAL(6, 2) holds
numbers of the form 1234.56.

❑ INT: An integer value.

❑ NUMBER: A floating point number.

❑ TIME: A time without a date such as 3:14am.

❑ TIMESTAMP: A date and time.

❑ VARCHAR: A variable-length string. Use this for strings of unknown lengths such as names and
street addresses.

Specific database products often provide extra data types and aliases for these types. They also sometimes
use these names for different purposes. For example, in different databases the INT data type might use
32 or 64 bits, and the database may provide other data types such as SMALLINT, TINYINT, BIGINT, and so
forth to hold integers of different sizes.

Most databases can handle the basic data types but before you make specific assumptions (for example,
that INT means 32-bit integer), check the documentation for the database product you are using.

The following code builds a frankly hacked together table with the sole purpose of demonstrating most
of the common data types. Notice that this command uses the combined FirstName and LastName fields
as the table’s primary key:

CREATE TABLE IF NOT EXISTS MishmashTable (
FirstName VARCHAR(40) NOT NULL,
LastName VARCHAR(40) NOT NULL,
Age INT NULL,
Birthdate DATE NULL,
AppointmentDateTime DATETIME NULL,
PreferredTime TIME NULL,
TimeAppointmentCreated TIMESTAMP NULL,
Salary DECIMAL(8,2) NULL,
IncludeInvoice BOOLEAN NULL,
Street VARCHAR(40) NULL,
City VARCHAR(40) NULL,

351

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 352

Part V: Advanced Topics

State CHAR(2) NULL,
Zip CHAR(5) NULL,
PRIMARY KEY (FirstName, LastName))

Try It Out Create a Table
The CREATE TABLE statement can be quite complicated. You need to specify the fields’ names, data types,
default values, and whether they allow null values. You need to specify the table’s primary key and
indexes, and foreign key constraints.

Try writing a CREATE TABLE statement to make an inventory items table.

1. Give the new table the following fields:

Name Type Required?

UPC String up to 40 characters Yes

Description String up to 45 characters Yes

BuyPrice Number of the form 12345678.90. No

SellPrice Number of the form 12345678.90. Yes

QuantityinStock Integer Yes

ExpirationDate Date No

StockLocation String up to 40 characters No

ShelfLocation String up to 40 characters No

ReorderWhen Integer No

ReorderAmount Integer No

idVendor Integer No

To create the table, enter the following code:

CREATE TABLE IF NOT EXISTS InventoryItems (
UPC VARCHAR(40) NOT NULL,
Description VARCHAR(45) NOT NULL,
BuyPrice DECIMAL(10,2) NULL,
SellPrice DECIMAL(10,2) NOT NULL,
QuantityinStock INT NOT NULL,
ExpirationDate DATE NULL,
StockLocation VARCHAR(40) NULL,
ShelfLocation VARCHAR(40) NULL,
ReorderWhen INT NULL,
ReorderAmount INT NULL,
idVendor INT NULL

)

352

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 353

Chapter 17: Introduction to SQL

2. Make the table’s primary key be the UPC field with the following line:

PRIMARY KEY (UPC)

3. Some of the fields are used in foreign key constraints. Make indexes for those fields. Set their
DELETE and UPDATE actions to NO ACTION. The fields are:

Local Field Foreign Table Foreign Field

idVendor Vendors idVendor

StockLocation StockLocations StockLocation

ShelfLocation ShelfLocations ShelfLocation

Use the following code:

INDEX FK_InventoryItems_idVendor (idVendor ASC),
INDEX FK_InventoryItems_StockLocation (StockLocation ASC),
INDEX FK_InventoryItems_ShelfLocation (ShelfLocation ASC),

4. Make foreign key constraints for the fields listed in step 3. Set their DELETE and UPDATE actions to
NO ACTION. (That prevents the database from deleting or modifying a record in the foreign table if
the value is needed by one of these constraints.) The following code defines these constraints:

CONSTRAINT FK_InventoryItems_idVendor
FOREIGN KEY (idVendor)
REFERENCES Vendors (idVendor)
ON DELETE NO ACTION
ON UPDATE NO ACTION,

CONSTRAINT FK_InventoryItems_StockLocation
FOREIGN KEY (StockLocation)
REFERENCES StockLocations (StockLocation)
ON DELETE NO ACTION
ON UPDATE NO ACTION,

CONSTRAINT FK_InventoryItems_ShelfLocation
FOREIGN KEY (ShelfLocation)
REFERENCES ShelfLocations (ShelfLocation)
ON DELETE NO ACTION
ON UPDATE NO ACTION

How It Works

1. Give the new table the following fields.

The main part of the CREATE TABLE statement defines the fields, their data types, default values if
any, and whether they are required. The following code shows the basic statement:

CREATE TABLE IF NOT EXISTS InventoryItems (
UPC VARCHAR(40) NOT NULL,

353

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 354

Part V: Advanced Topics

Description VARCHAR(45) NOT NULL,
BuyPrice DECIMAL(10,2) NULL,
SellPrice DECIMAL(10,2) NOT NULL,
QuantityinStock INT NOT NULL,
ExpirationDate DATE NULL,
StockLocation VARCHAR(40) NULL,
ShelfLocation VARCHAR(40) NULL,
ReorderWhen INT NULL,
ReorderAmount INT NULL,
idVendor INT NULL

)

2. Make the table’s primary key be the UPC field.

To define the primary key, you simply add a PRIMARY KEY clause to the statement like this:

PRIMARY KEY (UPC),

3. Make indexes for fields used in foreign key constraints.

Creating indexes for fields used in foreign key constraints is not mandatory but it makes match-
ing up the related values in the two tables faster. By default, MySQL Workbench creates indexes
for fields used in foreign keys.

Use the INDEX clause to define these indexes. Give them names that tell what table they are used
in (InventoryItems), what fields they contain, and the fact that they are used in foreign key con-
straints. The following lines of code create the indexes:

INDEX FK_InventoryItems_idVendor (idVendor ASC),
INDEX FK_InventoryItems_StockLocation (StockLocation ASC),
INDEX FK_InventoryItems_ShelfLocation (ShelfLocation ASC),

4. Make foreign key constraints for the fields listed in step 3.

Use the CONSTRAINT clause to define the constraints. Give the constraints names that indicate the
table, fields, and the fact that these are foreign key constraints. The following code defines these
constraints:

CONSTRAINT FK_InventoryItems_idVendor
FOREIGN KEY (idVendor)
REFERENCES Vendors (idVendor)
ON DELETE NO ACTION
ON UPDATE NO ACTION,

CONSTRAINT FK_InventoryItems_StockLocation
FOREIGN KEY (StockLocation)
REFERENCES StockLocations (StockLocation)
ON DELETE NO ACTION
ON UPDATE NO ACTION,

CONSTRAINT FK_InventoryItems_ShelfLocation
FOREIGN KEY (ShelfLocation)
REFERENCES ShelfLocations (ShelfLocation)

354

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 355

Chapter 17: Introduction to SQL

ON DELETE NO ACTION
ON UPDATE NO ACTION

The following code shows the complete CREATE TABLE statement:

CREATE TABLE IF NOT EXISTS InventoryItems (
UPC VARCHAR(40) NOT NULL,
Description VARCHAR(45) NOT NULL,
BuyPrice DECIMAL(10,2) NULL,
SellPrice DECIMAL(10,2) NOT NULL,
QuantityinStock INT NOT NULL,
ExpirationDate DATE NULL,
StockLocation VARCHAR(40) NULL,
ShelfLocation VARCHAR(40) NULL,
ReorderWhen INT NULL,
ReorderAmount INT NULL,
idVendor INT NULL,

PRIMARY KEY (UPC),

INDEX FK_InventoryItems_idVendor (idVendor ASC),
INDEX FK_InventoryItems_StockLocation (StockLocation ASC),
INDEX FK_InventoryItems_ShelfLocation (ShelfLocation ASC),

CONSTRAINT FK_InventoryItems_idVendor
FOREIGN KEY (idVendor)
REFERENCES Vendors (idVendor)
ON DELETE NO ACTION
ON UPDATE NO ACTION,

CONSTRAINT FK_InventoryItems_StockLocation
FOREIGN KEY (StockLocation)
REFERENCES StockLocations (StockLocation)
ON DELETE NO ACTION
ON UPDATE NO ACTION,

CONSTRAINT FK_InventoryItems_ShelfLocation
FOREIGN KEY (ShelfLocation)
REFERENCES ShelfLocations (ShelfLocation)
ON DELETE NO ACTION
ON UPDATE NO ACTION

)

The following chapter has more to say about using the CREATE TABLE statement to build
databases.

CREATE INDEX
The previous CREATE TABLE example uses INDEX clauses to define indexes for the table as it is being
created. The CREATE INDEX statement adds an index to a table after the table has been created.

355

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 356

Part V: Advanced Topics

For example, the following statement adds an index named IDX_Persons_Names to the Persons table.
This index makes it easier to search the table by the records’ combined FirstName/LastName fields:

CREATE INDEX IDX_Persons_Names ON Persons (FirstName, LastName)

You could use a CREATE INDEX statement to add an index to a table if you didn’t realize you would
need one or just forgot to do it earlier, but there’s also a strategic reason to do it this way. Relational
databases use complicated self-balancing trees to provide indexes. When you add or delete a record,
the database must perform a non-trivial amount of work to update its index structures. If you add the
records in sorted order, as is often the case when you first populate the database, this can mean even
more work than usual because the tree structures tend to have trouble with sorted values.

When you create an index after the table is populated, the database must perform a fair amount of work
to build the index tree, but it has a big advantage that it doesn’t when indexing records one at a time: it
knows how many records are in the table. Instead of resizing the index tree as it is built one record at a
time, the database can build a big empty tree and then fill it with data.

Some databases may not use this information effectively but some may be able to fill the table and then
add an index more quickly than they can fill the table if the index is created first. Note that the difference
is small so you probably shouldn’t worry about creating the indexes separately unless you are loading a
lot of records.

DROP
The DROP statement removes an object from the database. For example, the following statement removes
the index named IDX_Persons_Names from the Persons table in a MySQL database:

DROP INDEX IDX_Persons_Names ON Persons

The following statement shows the Transact-SQL language version of the previous command:

DROP INDEX Persons.IDX_Persons_Names

The other most useful DROP statement is DROP TABLE. You can add the IF EXISTS clause to the basic
command to make the database ignore the command if the table does not already exist. That makes it
easier to write scripts that drop tables before creating them. (If you don’t add IF EXISTS and you try to
drop a table that doesn’t exist, the script will crash.)

The following command removes the Persons table from the database:

DROP TABLE IF EXISTS Persons

Note that DROP TABLE is instant, immediate, and irrevocable. The database doesn’t give you any warning
or make you confirm the deletion. It instantly destroys the table and all of the data it contains. You
cannot undo this command so be really, really, really sure you want to do it before you execute a DROP
TABLE command.

356

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 357

Chapter 17: Introduction to SQL

INSERT
The INSERT statement adds data to a table in the database. This command has several variations. For the
following examples, assume the Persons table was created with the following command:

CREATE TABLE IF NOT EXISTS Persons (
idPerson INT NOT NULL AUTO_INCREMENT,
FirstName VARCHAR(45) NOT NULL DEFAULT ‘<missing>’,
LastName VARCHAR(45) NOT NULL DEFAULT ‘<none>’,
State VARCHAR(10) NULL,
PRIMARY KEY (idPerson)

)

The simplest form of the INSERT statement lists the values to be inserted in the new record after the
VALUES keyword. The values must have the correct data types and must be listed in the same order as
the fields in the table.

The following command inserts a new record in the Persons table:

INSERT INTO Persons VALUES (1, "Rod", "Stephens", "CO")

Some databases will not let you specify values for AUTO INCREMENT fields such as idPerson in this example.
If you specify the value null for such a field, the database automatically generates a value for you.
(Although some databases won’t even let you specify null. In that case, you must use a more complicated
version of INSERT that lists the fields.)

If you replace a value with the keyword DEFAULT, the database uses that field’s default value if it has one.

When it executes the following command, the database automatically generates an idPerson value, the
FirstName value defaults to <missing>, the LastName value is set to Markup, and the State value is set to
null:

INSERT INTO Persons VALUES (null, DEFAULT, "Markup", null)

The next form of INSERT statement explicitly lists the fields that it will initialize. The values in the VALUES
clause must match those listed earlier and they must be in the correct order. Listing the fields that you
are going to enter lets you omit some fields or change the order in which they are given.

The following statement creates a new Persons record. It explicitly sets the FirstName field to Snortimer
and the State field to Confusion. The database automatically generates a new idPerson value and the
LastName value gets its default value <none>:

INSERT INTO Persons (FirstName, State) VALUES ("Snortimer", "Confusion")

The final version of INSERT INTO described here gets the values that it will insert from a SELECT statement
(described in the next section) that pulls values from a table.

357

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 358

Part V: Advanced Topics

The following example inserts values into the SmartPersons table’s LastName and FirstName fields. It
gets the values from a query that selects FirstName and LastName values from the Persons table where
the corresponding record’s State value is not Confusion:

INSERT INTO SmartPersons (LastName, FirstName)
SELECT LastName, FirstName FROM Persons
WHERE State <> ‘Confusion’

Unlike the previous INSERT statements, this version may insert many records in the table if the query
returns a lot of data.

SELECT
The SELECT command retrieves data from the database. This is one of the most often used and complex
SQL commands. The basic syntax is:

SELECT select_clause
FROM from_clause
[WHERE where_clause]
[GROUP BY group_by_clause]
[ORDER BY order_by_clause [ASC | DESC]]

The parts in square brackets are optional and the vertical bar between ASC and DESC means you can
include one or the other of those keywords.

The following sections describe these main clauses in more detail.

SELECT Clause
The SELECT clause specifies the fields that you want the query to return.

If a field’s name is unambiguous given the tables selected by the FROM clause (described in the next
section), you can simply list the field’s name as in FirstName.

If more than one of the tables listed in the FROM clause have a field with the same name, you must put the
table’s name in front of the field’s name as in Persons.FirstName.

The special value * tells the database that you want to select all of the available fields. If the query
includes more than one table in the FROM clause and you want all of the fields from a specific table, you
can include the table’s name before the asterisk as in Persons.*.

The following query returns all of the fields for all of the records in the Persons table:

SELECT * FROM Persons

Optionally you can give a field an alias by following it with the keyword AS and the alias that you want
it to have. When the query returns, it acts as if that field’s name is whatever you used as an alias. This is
useful for such things as differentiating among fields with the same name in different tables, for creating

358

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 359

Chapter 17: Introduction to SQL

a new field name that a program can use for nicer display (for example, changing the CustName field to
Customer Name), or for creating a name for a calculated column.

A particularly useful option you can add to the SELECT clause is DISTINCT. This makes the database
return only one copy of each set of values that are selected.

For example, suppose the Orders table contains customer first and last names. The following MySQL
query selects the FirstName and LastName values from the table, concatenates them into a single
field with a space in between, and gives that calculated field the alias Name. The DISTINCT keyword
means the query will only return one of each Name result even if a single customer has many records in
the table.

SELECT DISTINCT CONCAT(FirstName, " ", LastName) AS Name FROM Orders

The following code shows the Transact-SQL equivalent of this statement:

SELECT DISTINCT FirstName + " " + LastName AS Name FROM Orders

FROM Clause
The FROM clause lists the tables from which the database should pull data. Normally if the query pulls
data from more than one table, the query either uses a JOIN or a WHERE clause to indicate how the records
in the tables are related.

For example, the following statement selects information from the Orders and OrderItems tables. It
matches records from the two using a WHERE clause. That clause tells the database to associate Orders
records with OrderItems records that have the same OrderId value.

SELECT * FROM Orders, OrderItems
WHERE Orders.OrderId = OrderItems.OrderId

Several different kinds of JOIN clauses perform roughly the same function as the previous WHERE clause.
They differ in how the database handles records in one table that have no corresponding records in the
second table.

For example, suppose the Courses table contains the names of college courses and holds the values in the
following table.

CourseId CourseName

CS 120 Database Design

CS 245 The Customer: A Necessary Evil

D? = h@p Introduction to Cryptography

Furthermore, suppose the Enrollments table contains the following information about students taking
classes.

359

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 360

Part V: Advanced Topics

FirstName LastName CourseId

Guinevere Conkle CS 120

Guinevere Conkle CS 101

Heron Stroh CS 120

Heron Stroh CS 245

Maxene Quinn CS 245

Now consider the following query:

SELECT * FROM Enrollments, Courses
WHERE Courses.CourseId = Enrollments.CourseId

This may seem like a simple enough query that selects enrollment information plus each student’s class
name. For example, one of the records returned would be:

FirstName LastName CourseId CourseId CourseName

Guinevere Conkle CS 120 CS 120 Database Design

(Note that the result contains two CourseId values, one from each table.)

The way in which the kinds of JOIN clause differ is in the way they handle missing values. If you look
again at the tables, you’ll see that no students are currently enrolled in Introduction to Cryptography.
You’ll also find that Heron Stroh is enrolled in CS 245, which has no record in the Courses table.

The following query that uses a WHERE clause discards any records in one table that have no correspond-
ing records in the second table:

SELECT * FROM Enrollments, Courses
WHERE Courses.CourseId = Enrollments.CourseId

The following statement uses the INNER JOIN clause to produce the same result:

SELECT * FROM Enrollments INNER JOIN Courses
ON (Courses.CourseId = Enrollments.CourseId)

The following table shows the results of these two queries.

FirstName LastName CourseId CourseId CourseName

Guinevere Conkle CS 120 CS 120 Database Design

Heron Stroh CS 120 CS 120 Database Design

Maxene Quinn CS 245 CS 245 The Customer: A Necessary Evil

Heron Stroh CS 245 CS 245 The Customer: A Necessary Evil

360

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 361

Chapter 17: Introduction to SQL

The following statement selects the same records except it uses the LEFT JOIN clause to favor the table
listed to the left of the clause in the query (Orders). If a record appears in that table, it is listed in the
result even if there is no corresponding record in the other table.

SELECT * FROM Orders LEFT JOIN OrderItems
ON (Orders.OrderId = OrderItems.OrderId)

The following table shows the result of this query. Notice that the results include a record for Guinevere
Conkle’s CS 101 enrollment even though CS 101 is not listed in the Courses table. In that record, the fields
that should have come from the Courses table have null values.

FirstName LastName CourseId CourseId CourseName

Guinevere Conkle CS 120 CS 120 Database Design

Heron Stroh CS 120 CS 120 Database Design

Maxene Quinn CS 245 CS 245 The Customer: A Necessary Evil

Guinevere Conkle CS 101 NULL NULL

Heron Stroh CS 245 CS 245 The Customer: A Necessary Evil

Similarly the RIGHT JOIN clause makes the query favor the table to the right of the clause so it includes
all of the records in that table even if there are no corresponding records in the other table. The following
query demonstrates the RIGHT JOIN clause:

SELECT * FROM Orders RIGHT JOIN OrderItems
ON (Orders.OrderId = OrderItems.OrderId)

The following table shows the result of this query. This time there is a special record for the Introduction
to Cryptography course even though no student is enrolled in it.

FirstName LastName CourseId CourseId CourseName

Guinevere Conkle CS 120 CS 120 Database Design

Heron Stroh CS 120 CS 120 Database Design

Maxene Quinn CS 245 CS 245 The Customer: A Necessary Evil

Heron Stroh CS 245 CS 245 The Customer: A Necessary Evil

NULL NULL NULL D? = h@p Introduction to Cryptography

Both the left and right joins are called outer joins because they include records that are outside of the
‘‘natural’’ records that include values from both tables.

Many databases, including MySQL and Access, don’t provide a join to select all records from both tables
like a combined left and right join. You can achieve a similar result by using the UNION keyword to
combine the results of a left and right join. The following query uses the UNION clause:

361

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 362

Part V: Advanced Topics

SELECT * FROM Courses LEFT JOIN Enrollments
ON Courses.CourseId=Enrollments.CourseId

UNION
SELECT * FROM Courses RIGHT JOIN Enrollments

ON Courses.CourseId=Enrollments.CourseId

The following table shows the results.

FirstName LastName CourseId CourseId CourseName

Guinevere Conkle CS 120 CS 120 Database Design

Heron Stroh CS 120 CS 120 Database Design

Maxene Quinn CS 245 CS 245 The Customer: A Necessary Evil

Guinevere Conkle CS 101 NULL NULL

Heron Stroh CS 245 CS 245 The Customer: A Necessary Evil

NULL NULL NULL D? = h@p Introduction to Cryptography

WHERE Clause
The WHERE clause provides a filter to select only certain records in the tables. It can compare the values
in the tables to constants, expressions, or other values in the tables. You can use parentheses and logical
operators such as AND, NOT, and OR to build complicated selection expressions.

For example, the following query selects records from the Enrollments and Courses tables where the
CourseId values match and the CourseId is alphabetically less than CS 200 (upper division classes begin
with CS 200):

SELECT * FROM Enrollments, Courses
WHERE Enrollments.CourseId = Courses.CourseId

AND Courses.CourseId < ‘CS 200’

The following table shows the result.

FirstName LastName CourseId CourseId CourseName

Guinevere Conkle CS 120 CS 120 Database Design

Heron Stroh CS 120 CS 120 Database Design

GROUP BY Clause
If you include an aggregate function such as AVERAGE or SUM in the SELECT clause, the GROUP BY clause
tells the database which fields to look at to determine whether values should be combined.

362

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 363

Chapter 17: Introduction to SQL

For example, the following query selects the CustomerId field from the CreditsAndDebits table. It also
selects the sum of the Amount field values. The GROUP BY clause makes the query combine values that
have matching CustomerId values for calculating the sums. The result is a list of every CustomerId and
the corresponding current total balance (calculated by adding up all of the customer’s credits and debits).

SELECT CustomerId, SUM(Amount) AS Balance
FROM CreditsAndDebits
GROUP BY CustomerId

ORDER BY Clause
The ORDER BY clause gives a list of fields that the database should use to sort the results. The optional
keyword DESC after a field makes the database sort that field’s values in descending order. (The default
order is ascending. You can explicitly include the ASC keyword if you want to make the order obvious.)

The following query selects the CustomerId field and the total of the Amount values for each CustomerId
from the CreditsAndDebits table. It sorts the results in descending order of the total amount so you can
see who has the largest balance first.

SELECT CustomerId, SUM(Amount) AS Balance
FROM CreditsAndDebits
GROUP BY CustomerId
ORDER BY Amount DESC

The following query selects the distinct first and last name combinations from the Enrollments table and
orders the results by LastName and then by FirstName. (For example, if two students have the same last
name Zappa, then Dweezil comes before Moon Unit.)

SELECT DISTINCT LastName, FirstName
FROM Enrollments
ORDER BY LastName, FirstName

Try It Out Be Selective
Though the SELECT statement has many variations, the basic ideas are reasonably intuitive so a little
practice will go a long way toward learning how to write SELECT statements.

Suppose the Authors table has fields AuthorId, FirstName, and LastName. Suppose also that the Books
table has fields AuthorId, Title, ISBN (International Standard Book Number), MSRP (Manufacturer’s
Suggested Retail Price), Year, and Pages. Write a query to select book titles, prices, and author names.
Concatenate the authors’ first and last names and give the result the alias Author. Select only books
where MSRP is less than $10.00. Sort the results by price in ascending order.

1. Write the SELECT clause. The following code shows the SELECT clause:

SELECT MSRP, Title, CONCAT(FirstName, " ", LastName) AS Author

2. Write a FROM clause to select an inner join using the Authors and Books tables. The following code
shows the FROM clause:

363

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 364

Part V: Advanced Topics

FROM Books INNER JOIN Authors
ON (Books.AuthorId = Authors.AuthorId)

3. Write a WHERE clause to select records where MSRP < $10.00. The following code shows the WHERE
clause:

WHERE MSRP < 10

4. Write an ORDER BY clause to sort the results by MSRP in ascending order:

ORDER BY MSRP

How It Works

The basic SELECT clause includes the Books table’s Title and MSRP fields. It also concatenates the Authors
table’s FirstName and LastName fields with a space in between.

The FROM clause selects an inner join using the Authors and Books tables. This query uses the tables’
AuthorId fields to match corresponding records.

The WHERE clause adds a further condition on the selected records, requiring that the MSRP value be less
than 10.

The ORDER BY clause sorts the results by MSRP. The default order for ORDER BY clauses is ascending so the
statement doesn’t need to explicitly include the ASC keyword.

The following code shows the complete query.

SELECT MSRP, Title, CONCAT(FirstName, " ", LastName) AS Author
FROM Books INNER JOIN Authors

ON (Books.AuthorId = Authors.AuthorId)
WHERE MSRP < 10
ORDER BY MSRP

UPDATE
The UPDATE statement changes the values in one or more records’ fields. The basic syntax is:

UPDATE table SET field = new_value
WHERE where_clause

For example, the following statement fixes a typo in the Books table. It changes the Title field’s value to
‘‘The Portable Door’’ in any records that currently have Title ‘‘The Potable Door.’’

UPDATE Books SET Title = "The Portable Door"
WHERE Title = "The Potable Door"

364

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 365

Chapter 17: Introduction to SQL

The WHERE clause is extremely important in an UPDATE statement. If you forget the WHERE clause, the
update affects every record in the table! In the previous example, the statement would change the title of
every book to ‘‘The Portable Door,’’ probably not what you intended. The effects of the UPDATE statement
are immediate and irreversible so forgetting the WHERE clause can be disastrous. (In fact, some developers
have suggested that an UPDATE statement without a WHERE clause should generate an error unless you
take special action to say ‘‘yes, I’m really, really sure.’’)

Try It Out Updates
Suppose the Sales table includes the fields EmployeeId, Year, Month (which holds three-letter month
abbreviations), TotalSales (the number of light sabers sold), and Salary. Write an update statement that
gives a $100 bonus to employees who made their sales quota of 10 light sabers sold during the month of
August 2008.

1. Write the UPDATE statement including the table name and the SET clause:

UPDATE Sales
SET Salary = Salary + 100

2. Write the WHERE clause to select the records that should be updated:

WHERE TotalSales >= 10
AND Month="AUG"
AND Year=2008

How It Works

The UPDATE clause will affect the Sales table. You need to add $100 to the Salary field for certain records.
To do that, the clause sets the Salary value to $100 plus the current Salary value.

The WHERE clause has three parts that require the number of light sabers sold to be at least 10, the month
to be AUG, and the year to be 2008.

The following code shows the complete UPDATE statement.

UPDATE Sales
SET Salary = Salary + 100
WHERE TotalSales >= 10

AND Month="AUG"
AND Year=2008

DELETE
The DELETE statement removes records from a table. The basic syntax is:

DELETE FROM table
WHERE where_clause

365

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 366

Part V: Advanced Topics

For example, the following statement removes all records from the Books table where the AuthorId is 7:

DELETE FROM Books
WHERE AuthorId = 7

As is the case with UPDATE, the WHERE clause is very important in a DELETE statement. If you forget
the WHERE clause, the DELETE statement removes every record from the table mercilessly and without
remorse.

Summary
SQL is a powerful tool. The SQL commands described in this chapter let you perform basic database
operations such as determining the database’s structure and contents. This chapter explained how to:

❑ Use the CREATE TABLE statement to create a table with a primary key, indexes, and foreign key
constraints.

❑ Use INSERT statements to add data to a table.

❑ Use SELECT statements to select data from one or more tables, satisfying specific conditions, and
sort the result.

❑ Use the UPDATE statement to modify the data in a table.

❑ Use the DELETE statement to remove records from a table.

SQL statements let you perform simple tasks with a database such as creating a new table or inserting
a record. By combining many SQL statements into a script, you can perform elaborate procedures such
as creating and initializing a database from scratch. Chapter 18 explains this topic in greater detail. It
describes the benefits of using scripts to create databases and discusses some of the issues that you should
understand before writing those scripts.

Before you move on to Chapter 18, however, use the following exercises to test your understanding of
the material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
1. Write SQL statements to create the three tables shown in Figure 17-1. Include the primary

keys, foreign key constraints, and indexes on the fields used in those constraints.

11

ShowName
VenueId

Shows

Seating
VenueName

Venues
ShowId
Time

ShowTimes
ShowId VenueId

∞
∞

Figure 17-1

2. Write a series of SQL statements to insert the data shown in Figure 17-2.

366

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 367

Chapter 17: Introduction to SQL

11:15
3:00
1:15
6:00

11:00
12:00
6:30
2:00
5:27
2:00
3:00

1
1
2
2
3
3
3
4
4
5
6

ShowTimes
1 Sherm’s Shark Show 101
2 Meet the Rays 101
3 Deb’s Daring Dolphins 102
4 The Walter Walrus Comedy Hour 102
5 Flamingo Follies 103
6 Wonderful Waterfowl 103

Shows
101 Sherman’s Lagoon 375
102 Peet Amphitheater 300
103 Ngorongoro Wash 413

Venues

Figure 17-2

Hint: Use 24-hour clock times as in 14:00 for 2:00pm.

3. Management has decided that no two shows should start fewer than 15 minutes apart. Write
SQL statements to change the 2:00 Flamingo Follies show to 2:15 and the 3:00 Sherm’s Shark
Show to 3:15.

Hint: Include both the ShowTimes and Shows tables in the UPDATE clause. Then use a WHERE
clause to select the correct record by Time and ShowName.

4. Write a SQL statement to select data from the tables and produce the following result.

Show Time Location

Deb’s Daring Dolphins 11:00am Peet Amphitheater

Sherm’s Shark Show 11:15am Sherman’s Lagoon

Deb’s Daring Dolphins 12:00pm Peet Amphitheater

Meet the Rays 1:15pm Sherman’s Lagoon

The Walter Walrus Comedy Hour 2:00pm Peet Amphitheater

Flamingo Follies 2:15pm Ngorongoro Wash

Wonderful Waterfowl 3:00pm Ngorongoro Wash

Sherm’s Shark Show 3:15pm Sherman’s Lagoon

The Walter Walrus Comedy Hour 5:27pm Peet Amphitheater

Meet the Rays 6:00pm Sherman’s Lagoon

Deb’s Daring Dolphins 6:30pm Peet Amphitheater

Hints:

❑ Sort the results by Show and then Time.

❑ In MySQL at least, ‘‘SHOW’’ is a keyword so you cannot simply use ‘‘AS Show’’ to give
the ShowName field the alias Show because that would confuse MySQL. Instead put
quotes around the word Show wherever you need it as in AS "Show" and ORDER BY
"Show".

367

Stephens c17.tex V3 - 10/04/2008 12:29pm Page 368

Part V: Advanced Topics

❑ To format the times as in 6:30pm in MySQL, use the DATE_FORMAT function. To make
the times line up nicely on the right, use the LPAD function to pad them on the left with
spaces. The following code shows how:

LPAD(DATE_FORMAT(Time, "%l:%i %p"), 8, " ")

❑ Unfortunately when you pad the times, the ORDER BY statement treats the result as a
string rather than a time. That means, for example, ‘‘ 3:00pm’’ comes alphabetically
before ‘‘11:00am’’ because ‘‘ 3:00pm’’ begins with a space. To fix this, use the TIME func-
tion to convert the times as strings back into times in the ORDER BY clause. For example,
if you use the alias Time for the result of this field, then the ORDER BY clause should
contain the following:

TIME(Time)

5. Write a SQL statement to select data from the tables and produce the following result.

Time Show Location

11:00am Deb’s Daring Dolphins Peet Amphitheater

11:15am Sherm’s Shark Show Sherman’s Lagoon

12:00pm Deb’s Daring Dolphins Peet Amphitheater

1:15pm Meet the Rays Sherman’s Lagoon

2:00pm The Walter Walrus Comedy Hour Peet Amphitheater

2:15pm Flamingo Follies Ngorongoro Wash

3:00pm Wonderful Waterfowl Ngorongoro Wash

3:15pm Sherm’s Shark Show Sherman’s Lagoon

5:27pm The Walter Walrus Comedy Hour Peet Amphitheater

6:00pm Meet the Rays Sherman’s Lagoon

6:30pm Deb’s Daring Dolphins Peet Amphitheater

See Exercise 4 for hints.

368

Stephens c18.tex V3 - 10/03/2008 5:02am Page 369

18
Building Databases with

SQL Scripts

The previous chapter provided an introduction to using SQL to create and manage databases. That
chapter also hinted at techniques for using SQL scripts to make database maintenance easier.

This chapter goes a little further. It discusses some of the details that you need to take into account
when you use scripts to manage a database.

In this chapter you learn how to:

❑ Know when scripts can be useful.

❑ Build tables in a valid order.

❑ Insert data into tables in a valid order.

❑ Drop tables in a valid order.

Why Bother with Scripts?
SQL statements let you create, populate, modify, and delete the tables in a database. In
many database products, SQL statements even let you create and destroy the database itself.
For example, MySQL’s CREATE DATABASE and DROP DATABASE statements create and destroy
databases.

If you put these SQL commands in a script, you can rerun that script whenever it’s necessary. You
can easily rebuild the database if it gets corrupted, make copies of the database on other comput-
ers, fill the tables with data to use when running tests, and reinitialize the data after the tests are
finished.

Being able to reinitialize the data to a known state can also be very helpful in tracking down bugs.
It’s extremely hard to find a bug if it just pops up occasionally and then disappears again. If you can
reinitialize the database and then make a bug happen by following a series of predictable steps, it’s
much easier to find and fix the problem.

Stephens c18.tex V3 - 10/03/2008 5:02am Page 370

Part V: Advanced Topics

Script Categories
Scripts that are useful for managing databases fall into at least four categories, described in the following
sections.

Database Creation Scripts
Database creation scripts build the database’s structure. They build the tables, primary keys, indexes,
foreign key constraints, field and table check constraints, and all of the other structure that doesn’t change
as the data is modified.

Basic Initialization Scripts
Basic initialization scripts initialize basic data that is needed before the database can be useful. This
includes system parameter tables, lookup tables, and other tables that hold data that changes only rarely
when the database is in use.

For example, you might use one of these scripts to initialize a list of allowed states or regions, physical
constants (the speed of light, Avogadro’s number, Finagle’s Variable Constant), or define data type
conversion constants (how many centimeters in an inch, how many millimeters in an attoparsec, how
many seconds in a microfortnight).

Data Initialization Scripts
These scripts place data in tables. These range from small scripts to initialize a few values to huge monster
scripts that insert thousands of records into the database.

Often it’s useful to have a separate subcategory for test scripts that fill the tables with data for use in
specific tests. You would run a script to prepare the data and then run the test. If the test can be executed
by SQL statements, the script might perform the test, too. Sometimes it may be useful to have a separate
test initialization script for every use case defined by your requirement documents.

It’s also often useful to have separate scripts to initialize different parts of the database. For example, you
might have a script that creates users, another that creates orders, and a third that creates invoice and
payment data.

You can build scripts that invoke smaller scripts to perform larger tasks. For example, you might make a
test initialization script that calls the standard user initialization script and then inserts or updates specific
records in other tables to prepare for the test that you are about to perform.

For example, the following MySQL script invokes three others. It creates a database, selects it, and
then calls three other scripts that create a table, insert some data, and select the data. It then drops the
database.

CREATE DATABASE MultipleScripts;

USE MultipleScripts;

SOURCE C:\Rod\DB Design\MultiScript1.sql
SOURCE C:\Rod\DB Design\MultiScript2.sql

370

Stephens c18.tex V3 - 10/03/2008 5:02am Page 371

Chapter 18: Building Databases with SQL Scripts

SOURCE C:\Rod\DB Design\MultiScript3.sql

DROP DATABASE MultipleScripts;

It may not always be necessary to break the database scripts into little pieces, but on some projects it’s
even useful to have two separate scripts to create and initialize each table. Then if you change a table,
it’s easy to find the creation and initialization code for it. Higher-level scripts can then call those scripts
to build and initialize the database.

Cleanup Scripts
Often it’s easier to simply drop the database and re-create it than it is to clean up the mess left by a
test, but occasionally it’s useful to truncate or drop only some of the tables. For example, if the database
contains a lot of data (millions of records), it may be easier and faster to repair changes made by tests
than to rebuild the whole thing from scratch.

It’s not always easy to undo changes made by a complex series of tests, particularly if you later make
changes to the tests. In fact, it’s often hard to even tell if you’ve successfully undone the changes. For
those reasons, I usually prefer to rebuild the database from scratch when possible.

Saving Scripts
Just as any other piece of software does, scripts change during development, testing, and use. Also as
is the case for other types of software, it’s often useful to look back at previous versions of scripts. To
ensure that those versions are available, always keep the old versions of scripts. Later if you discover a
problem, you can compare the current and older versions to see what’s changed.

One way to keep old scripts is to use version control software. Programs such as CVS (Concurrent Ver-
sions System, see www.nongnu.org/cvs) and VSS (Visual Source Safe, see msdn.microsoft.com/en-us/
vs2005/aa718670.aspx) keep track of different versions of files. You can store your scripts in one of those
systems and then update the files whenever you create a new version. Then you can always go back and
see the older versions if you have a reason.

If you don’t feel like using a formal version control system, you can invent your own in one of several
ways. For example, you can put a version number in the script file names. You might make a script
named MakeUsers.sql that fills the Users table. The file MakeUsers.sql would always contain the most
current version and MakeUsers001.sql, MakeUsers002.sql, and so forth would contain older versions.

Another approach is to email scripts to yourself when you revise them. Later you can search through the
emails sorted by date to see the older versions. To keep your normal email account uncluttered so you
can easily find those offers for mortgage debt elimination, jobs as a rebate processor, and pleas for help
in getting $10 million out of Nigeria (you get to keep $3 million for your trouble), create a separate email
account to hold the scripts. You can use free email accounts on Gmail, Yahoo! Mail, or Hotmail if you
don’t want to use up your own mail space.

Ordering SQL Commands
One issue that you should consider when building scripts is that some commands must be
executed in a particular order. For example, if the Races table for your cheese-rolling database

371

Stephens c18.tex V3 - 10/03/2008 5:02am Page 372

Part V: Advanced Topics

(see www.cheese-rolling.co.uk) has a WinnerId field that refers to the Racers table’s RacerId field as a
foreign key, you must create the Racers table before you create the Races table. Clearly the Races table
cannot refer to a field in a table that doesn’t yet exist.

Usually you can create the tables in some order so none refers to another table that doesn’t yet exist.
(Tip: build lookup tables first.) If for some bizarre reason there is no such ordering, you can use an ALTER
TABLE ADD FOREIGN KEY statement (or a similar statement in whatever version of SQL you are using) to
create the foreign key constraints after you build all of the tables.

You may also be able to tell the database to turn off constraint checking while you build the tables. For
example, the following MySQL script builds three tables that are mutually dependent. TableA refers to
TableB, TableB refers to TableC, and TableC refers to TableA.

SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;
SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;
SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE=‘TRADITIONAL’;

CREATE DATABASE CycleDb;
USE CycleDb;

CREATE TABLE TableC (
CType VARCHAR(10) NOT NULL,
AType VARCHAR(10) NULL,

PRIMARY KEY (CType),

INDEX FK_CrefA (AType ASC),

CONSTRAINT FK_CrefA
FOREIGN KEY (AType)
REFERENCES TableA (AType)
ON DELETE NO ACTION
ON UPDATE NO ACTION

);

CREATE TABLE TableB (
BType VARCHAR(10) NOT NULL,
CType VARCHAR(10) NULL,

PRIMARY KEY (BType),

INDEX FK_BrefC (CType ASC),

CONSTRAINT FK_BrefC
FOREIGN KEY (CType)
REFERENCES TableC (CType)
ON DELETE NO ACTION
ON UPDATE NO ACTION

);

CREATE TABLE TableA (
AType VARCHAR(10) NOT NULL,
BType VARCHAR(10) NULL,

PRIMARY KEY (AType),

372

Stephens c18.tex V3 - 10/03/2008 5:02am Page 373

Chapter 18: Building Databases with SQL Scripts

INDEX FK_ArefB (BType ASC),

CONSTRAINT FK_ArefB
FOREIGN KEY (BType)
REFERENCES TableB (BType)
ON DELETE NO ACTION
ON UPDATE NO ACTION

);

INSERT INTO TableA VALUES("A value", "B value");
INSERT INTO TableB VALUES("B value", "C value");
INSERT INTO TableC VALUES("C value", "A value");

SET SQL_MODE=@OLD_SQL_MODE;
SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;
SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;

SELECT * FROM TableA;
SELECT * FROM TableB;
SELECT * FROM TableC;

DROP DATABASE CycleDb;

The first three statements tell the database not to check for unique key values, not to check foreign key
constraints, and to use traditional SQL behavior (in short, give errors instead of warnings).

The script then creates the three interdependent tables and inserts some values in them. It then
restores the original values for the SQL mode, foreign key checking, and unique key checking.

The script finishes by performing some queries and dropping the database.

Just as you may need to create tables in a particular order, you may need to insert values into the tables
in a particular order. For example, you’ll need to create the Racer’s record for Nick Morris before you
create the Races record for the 2007 cheese-rolling uphill race in the Boys Under 12 Years division (Nick
won that race).

If you cannot find a legal ordering for the INSERT statements, you may be able to disable the database’s
checks just as you can while creating tables. The preceding script inserts records that depend on each
other so there is no valid way to enter those values without disabling the error checking.

Finally, if you delete records or entire tables, you may need to do so in a particular order. After you’ve
built your cheese-rolling database, you cannot remove Nick Morris’s record from the Racers table before
you remove the Races record that refers to him.

Try It Out Ordering Tables
I haven’t actually seen a real database with mutually dependent tables so I have always been able to put
them in a valid order. (If you know of a real-world database that has mutually dependent tables, please
email me at RodStephens@vb-helper.com. I’d love to hear about a real example.)

To hone your ordering skills, make a list showing a valid order for creating the tables in the design shown
in Figure 18-1.

373

Stephens c18.tex V3 - 10/03/2008 5:02am Page 374

Part V: Advanced Topics

Locations
Location
MaximumParticipants

1
AnimalTypes
AnimalType

1

1

1

1

1

1

1

1

1

1 11

1

1 1

1 1

1 1

1
1

1

1

1

1

1

1 1

1

1

1

CityStateZips
City
State
Zip

States
State

PhoneTypes
PhoneType

ShelfLocations
ShelfLocation

StockLocations
StockLocation

Courses

Employees
TimeEntries

Shifts

EmployeeId
Date
StartTime
StopTime
PaidDate

Persons
PersonId
FirstName
LastName
Email
AddressId

EmployeeId
Date
StartTime
StopTime

CourseId
Title
Description

CourseOfferingDates
CourseOfferingId
Date

Price
AnimalType

Orders
OrderId
Date
SameAsAbove
CustomerId

OrderItems
OrderId
SequenceNumber
UPC
Quantity

AddressId
SoldByEmployeeId

Addresses
AddressId
Street
City
State

Phones
PersonId
Number
PhoneType

Zip

CourseOfferings
CourseOfferingId
CourseId
Time
Location
InstructorEmployeeId

EmployeeId
PersonId
SocialSecurityNumber

CustomerCourses Customers
CustomerId CustomerId

Name
AnimalType
BirthDate

PersonId

Pets
CustomerId
CourseOfferingId

InventoryItems
UPC
Description
BuyPrice
SellPrice

Vendors
VendorId
PersonId
CompanyName
Notes

QuantityInStock
ExpirationDate
StockLocation
ShelfLocation
ReorderWhen
ReorderAmount
VendorId

EmployeeSpecialties
EmployeeId
Specialty

Specialties
Specialty

Figure 18-1

A list where some of the objects must come before others but not all of the relationships are known is
called a partial ordering. Creating a full ordering that satisfies a partial ordering is called extending the
partial ordering.

1. Define a partial ordering by making a list of the tables. Next to each table, make a predecessor list
showing all of the other tables that must be defined before that one.

2. Use this list to build an output list giving the tables in a valid order.

a. Look through the list you created in Step 1 and find any tables that have no predecessors.

b. Put those tables in the output list.

c. Remove those tables from any other table’s predecessor list.

d. Remove the outputted tables’ rows from the list.

e. Repeat this process until every table is in the output list or you find a group of mutually
dependent tables.

How It Works

1. Define a partial ordering by making a list of the tables.

If two tables are related by a one-to-many relationship, the table on the ‘‘many’’ side of the rela-
tionship depends on the table on the ‘‘one’’ side. For example, a CourseOfferings record refers to

374

Stephens c18.tex V3 - 10/03/2008 5:02am Page 375

Chapter 18: Building Databases with SQL Scripts

a Locations record (each course offering occurs at some location) so you must create the Locations
table before you create the CourseOfferings table.

If two tables are related by a one-to-one relationship, you need to think a bit harder about which
depends on the other. Normally such a relationship involves the primary key of only one of the
tables. In that case, the non-primary key table depends on the primary key table. For example,
the Addresses and Persons tables in Figure 18-1 have a one-to-one relationship. The relation-
ship connects the Addresses table’s primary key AddressId with the Persons table’s non-primary
key AddressId field, so the Persons table (non-primary key) depends on the Addresses table
(primary key).

The following list shows the database’s tables and their predecessors.

Table Predecessors

Addresses CityStateZips, States

AnimalTypes

CityStateZips

CourseOfferingDates CourseOfferings

CourseOfferings Locations, Courses, Employees

Courses AnimalTypes

CustomerCourses CourseOfferings, Customers

Customers Persons

Employees Persons

EmployeeSpecialties Specialties, Employees

InventoryItems StockLocations, ShelfLocations, Vendors

Locations

OrderItems Orders, InventoryItems

Orders Customers, Employees, Addresses

Persons Addresses

Pets Customers, AnimalTypes

Phones PhoneTypes, Persons

PhoneTypes

ShelfLocations

Shifts Employees

Specialties

States

StockLocations

375

Stephens c18.tex V3 - 10/03/2008 5:02am Page 376

Part V: Advanced Topics

Table Predecessors

TimeEntries Employees

Vendors Persons

(Give yourself bonus points if you cringed a bit at this table and said to yourself, ‘‘Hey, that’s not
in 1NF because the second column doesn’t hold a single value!’’)

2. Use this list to build an output list giving the tables in a valid order.

During the first pass through this list, the AnimalTypes, CityStateZips, Locations, PhoneTypes,
ShelfLocations, Specialties, States, and StockLocations tables have no predecessors. You can
immediately output those tables (so you can build them first in the database creation script) and
remove them from the list.

After removing those tables from the list, the revised list has only two tables with no predeces-
sors: Addresses and Courses. Output them and build them next in the database creation script.

After removing those tables from the list, the revised list has only one table with no predecessors:
Persons. Output it and build it next in the database creation script.

At this point things seem pretty grim and you might wonder whether you will get stuck. For-
tunately after removing the Persons table, the revised list contains several tables without prede-
cessors: Customers, Employees, Phones, and Vendors. Output them and build them next in the
database creation script.

After removing those tables from the list, the revised list contains lots of tables without predeces-
sors: CourseOfferings, EmployeeSpecialties, InventoryItems, Orders, Pets, Shifts, and TimeEn-
tries. You can build them next in the database creation script.

When you remove those tables from the list, the three remaining tables have no predecessors:
CourseOfferingDates, CustomerCourses, and OrderItems. You can build those tables last when
you create the database.

The complete ordering of the tables is: AnimalTypes, CityStateZips, Locations, PhoneTypes,
ShelfLocations, Specialties, States, StockLocations, Addresses, Courses, Persons, Customers,
Employees, Phones, Vendors, CourseOfferings, EmployeeSpecialties, InventoryItems, Orders,
Pets, Shifts, TimeEntries, CourseOfferingDates, CustomerCourses, OrderItems.

Note that this is not the only possible complete ordering for these tables. Each time a group of
tables had no predecessors, you could have created them in any order.

Summary
SQL scripts can make building and maintaining a database much easier than working manually with
database tools such as MySQL or Access. They are particularly useful for repeatedly performing tasks
such as initializing the database before performing a test.

376

Stephens c18.tex V3 - 10/03/2008 5:02am Page 377

Chapter 18: Building Databases with SQL Scripts

This chapter explained:

❑ Why scripts are useful.

❑ Different categories of useful scripts such as database creation, basic initialization, data initializa-
tion, and cleanup.

❑ How to save different versions of scripts.

❑ How to create tables, insert data, remove data, and delete tables in a valid order.

Scripts are useful for maintaining databases. The following chapter discusses some of the typical main-
tenance chores that you should perform to keep a database in working order. Before you move on to
Chapter 19, however, use the following exercises to test your understanding of the material covered in
this chapter. You can find the solutions to these exercises in Appendix A.

Exercises

1. Consider the movie database design shown in Figure 18-2. A movie can have many actors
and producers but only one director. Actors, producers, and directors are all persons and
any person can hold any of those positions, sometimes simultaneously. (For example, in Star
Trek IV: The Voyage Home, Leonard Nimoy is the director, an actor, and a writer. In The Nutty
Professor, Eddie Murphy plays practically everyone.)

Persons
PersonId

LastName
FirstName

Movies
MovieId
Title
Year
MpaaRating
Review
NumStars
Minutes
Description
Genre
TrailerUrl

MovieActors
MovieId
PersonId
CharacterName
RoleType
Review
NumStars

RoleType
RoleTypes

MpaaRating
Description

MpaaRatings

Genre
Description

Genres

MovieId
PersonId

MovieProducers

MovieId
PersonId

MovieDirectors1

1

1

1

1 1

1

1

1

∞

∞

∞∞

∞

∞
∞

1 ∞

Figure 18-2

Find an order in which you can create the database’s tables so no table is created before
another that depends on it.

2. Write a SQL script to build the movie database shown in Figure 18-2.

377

Stephens c18.tex V3 - 10/03/2008 5:02am Page 378

Stephens c19.tex V3 - 10/04/2008 12:31pm Page 379

19
Database Maintenance

At this point, you’ve learned how to identify customer needs, design a database, refine the design,
and implement the database interactively or by using scripts. Even after you start using the
database, however, the work isn’t done. You (or someone) must perform regular maintenance to
keep the database healthy and efficient.

Like a high-performance sports car, the database needs regular maintenance to keep it running at
peak efficiency. Just as the best engineering and construction in the world won’t save your engine
if you drive 100,000 miles without an oil change, your database design won’t give you optimal
performance if you don’t give it regular tune-ups. (At least the database doesn’t need collision
insurance.)

This chapter describes some of the maintenance chores that must be performed to keep the database
working smoothly. Unfortunately the details of performing these chores differ greatly in differ-
ent databases so the exact steps you need to perform are not included here. Instead this chapter
describes the issues that you should keep in mind when you design the database’s maintenance
schedule. You should consult the documentation for your particular database product to flesh out
the details.

In this chapter you learn:

❑ What tasks are necessary to keep a database functional.

❑ How to schedule backups to safeguard data.

❑ What you can do to keep a database working efficiently.

Backups
Backups are one of the most important parts of database maintenance. Unfortunately they are
also sometimes the most neglected part of a larger software effort. No database design can
protect against system crashes, power failures, and the user accidentally deleting critical
information. Without good backups, you could lose significant chunks of data.

Stephens c19.tex V3 - 10/04/2008 12:31pm Page 380

Part V: Advanced Topics

(In one project, a ne’er-do-well tried to delete our entire code database. Fortunately he was stopped in
time. We had backups anyway but we would probably have wasted an hour or so recovering the lost
files. Unfortunately corporate policy didn’t include burying him up to his neck in an ant hill.)

There are two main kinds of backups that many databases support: full and incremental.

A full backup makes a copy of everything in the database. Depending on the size of the database, this
might take a lot of time and disk space. For a reasonably small database that is only used during business
hours, you might have the computer automatically back up the database at midnight. Even if the backup
takes several hours, the computer has little else to do in the middle of the night. It might slow down your
SETI@home program (setiathome.berkeley.edu) so it may take a little longer to contact Starfleet but a
full backup is the easiest and quickest to restore.

An incremental backup only records data that has changed since some earlier date. For example, you
might back up all changes since the previous full backup. To restore an incremental backup, you need to
first restore a full backup and then reapply the changes saved in the incremental backup.

Making an incremental backup is faster than making a full backup but restoring the data is harder.
Because they are faster, incremental backups are useful for really big databases where it would take too
long to make a full backup.

For example, suppose you have a really active database that records many thousands of transactions
per day, such as a database that tracks keywords used in major news stories around the world (see
tenbyten.org/10x10.html for an interesting display). Suppose that you need the database to be running
at full speed 20 hours a day on weekdays but a full backup takes 12 hours. Then on Saturday morning
you might make a full backup and on other days you would make an incremental backup.

Now suppose the database crashes and burns on a Thursday. To restore the database, you would restore
the previous weekend’s full backup and then apply the incremental backups for Monday, Tuesday, and
Wednesday in order. That could take quite a while.

To make the process a bit faster, you could make a larger incremental backup halfway through the week.
On Monday, Tuesday, Thursday, and Friday, you would make an incremental backup recording changes
since the previous day. On Wednesday you would make an incremental backup to record all changes
made since the previous Saturday full backup. Now to recover from a crash on Thursday, you only need
to restore Saturday’s full backup and then Wednesday’s incremental backup. It will still take a while but
it will be a bit faster and easier. Wednesday’s incremental backup will also take longer than the daily
backups but it will be a lot faster than a full backup.

Some databases allow you to perform backups while the database is in use. This is critical for databases
that must be available most or all of the time. The backup will slow the database down so you still need
to schedule backups for off-peak periods such as weekends or the middle of the night, but at least the
database can keep running.

For example, my local grocery store’s cash registers perform downloads, uploads, and backups in the
middle of the night. If you stop in around midnight, the self-checkout machines usually run much slower
than they do during the day. (I was there in the spirit of scientific inquiry, not because I was debugging
software at midnight and needed a donut. Honest!)

One final note about backups. Backups are intended to protect you against unexpected damage to the
database. That includes normal damage caused by logical disasters such as power glitches, the CIH

380

Stephens c19.tex V3 - 10/04/2008 12:31pm Page 381

Chapter 19: Database Maintenance

virus (see en.wikipedia.org/wiki/CIH_virus), spilled soda, and EBCAK (Error Between Chair and
Keyboard) problems, but it also includes physical calamities such as fire, tornado, and volcanic eruption.
Your backups do you no good if they’re stored next to the database’s computer and you are hit by one of
these. A full backup won’t do you any good if the flash drive or DVD that holds it is sitting on top of the
computer and a meteor reduces the whole thing to a pile of steel and plastic splinters.

To avoid this kind of problem, think about taking backups offsite. Of course, that creates a potential
security issue if your data is sensitive (for example, credit card numbers, medical records, or salary
information).

Try It Out Make a Backup Plan
Suppose you have a really large database. A full backup takes around 10 hours, whereas an incremental
backup takes about 1 hour per day of changes that you want to include in the backup. You are not
allowed to make backups during the peak usage hours of 3:00am to 11:00pm weekdays, and 6:00am to
8:00pm on weekends.

Figure out what types of backups to perform on which days to make restoring the database as easy as
possible.

1. Figure out when you have time for a full backup.

2. For each day after the full backup, make an incremental backup. Make the backup go back to the
most complete previous backup it can reach given the time constraints.

How It Works

1. Figure out when you have time for a full backup.

The following table shows the number of off-peak hours you have available for performing back-
ups during each night of the week.

Night Off-Peak Start Off-Peak End Off-Peak Hours

Monday 11:00pm 3:00am 4

Tuesday 11:00pm 3:00am 4

Wednesday 11:00pm 3:00am 4

Thursday 11:00pm 3:00am 4

Friday 11:00pm 6:00am 7

Saturday 8:00pm 6:00am 10

Sunday 8:00pm 3:00am 7

The only time when you have enough off-peak hours to perform a full backup is Saturday night.

2. For each day after the full backup, make an incremental backup. Make the backup go back to the
most complete previous backup it can reach given the time constraints.

381

Stephens c19.tex V3 - 10/04/2008 12:31pm Page 382

Part V: Advanced Topics

On Sunday, Monday, Tuesday, and Wednesday nights, the incremental backup has at least 4
hours so it can save changes for up to the previous 4 days. All of these backups should record
the changes since the full backup on Saturday night. If you need to restore one of these backups,
you only need to apply the previous full backup and then one incremental backup.

On Thursday and Friday nights, you don’t have time to go all the way back to the previous full
backup. There is time, however, to record all changes since the Wednesday night incremental
backup so you should do so. If you need to restore one of these backups, you will have to restore
the last full backup, then the Wednesday night backup, and then this backup.

The following table shows the complete backup schedule.

Night Backup Type

Monday Incremental from last Saturday

Tuesday Incremental from last Saturday

Wednesday Incremental from last Saturday

Thursday Incremental from last Wednesday

Friday Incremental from last Wednesday

Saturday Full

Sunday Incremental from last Saturday

Don’t forget to store copies of the backups offsite in a secure location.

Data Warehousing
Many database applications have two components: an online part that is used in day-to-day business and
an offline ‘‘data warehousing’’ part that is used to generate reports and perform more in-depth analysis
of the data.

The rules for a data warehouse are different than those for an online database. Often a data warehouse
contains duplicated data, non-normalized tables, and special data structures that make building reports
easier. Warehoused data is updated much less frequently than online data. In a data warehouse, flexibility
in reporting is more important than speed.

For the purposes of this chapter, it’s important that you be aware of your customers’ data warehousing
needs so you can plan for appropriate database maintenance. In some cases, that may be as simple as
passing a copy of the most recent full backup to a data analyst. In others, it may mean writing and
executing special data extraction routines periodically.

For example, as part of nightly maintenance (backups, cleaning up tables, and what have you), you might
need to pull sales data into a separate table or database for later analysis.

This book isn’t about data warehousing so this chapter doesn’t say any more about it. For a more com-
plete overview, see en.wikipedia.org/wiki/Data_warehouse. For more in-depth coverage, see a book

382

Stephens c19.tex V3 - 10/04/2008 12:31pm Page 383

Chapter 19: Database Maintenance

about data warehousing such as Professional Microsoft SQL Server Analysis Services 2008 with MDX by
Sivakumar Harinath, Robert Zare, Sethu Meenakshisundaram, and Matt Carroll (Wiley Publishing, Inc.,
2008). (If you go to Amazon or your favorite book retailer and search for ‘‘data warehouse,’’ you should
find lots of relevant books.)

Repairing the Database
Although databases provide lots of safeguards to protect your data, databases sometimes become cor-
rupted. They are particularly prone to index corruption because it can take a while to update a database’s
index structures. If the computer crashes while the database is in the middle of updating its index trees,
the trees may contain garbage, invalid keys, and pointers leading to nowhere (similar to the Gravina
Island Bridge, en.wikipedia.org/wiki/Gravina_Island_Bridge).

When an index becomes corrupted, the results you get from queries may become unpredictable. You may
get the wrong records, records in the wrong order, or no records at all. The program using the database
may even crash.

To ensure that your database works properly, you should periodically run its repair tools. That should
clean up damaged records and indexes.

Compacting the Database
When you delete a record, many databases don’t actually release the space that the record occupied. Some
databases may be able to undelete the record in case you decide you want it later but most databases
do this so they can reuse the space later for new records. If you add and then remove a lot of records,
however, the database can become full of unused space.

The trees that databases typically use to store indexes are self-balancing. That ensures that they never
grow too tall so searches are fast, but it also means that they contain extra unused space. They use that
extra space to make adding new entries in the trees more efficient but, under some circumstances, the
trees can contain a lot of unused space.

These days disk space is relatively cheap (as little as 18 cents per gigabyte) so the ‘‘wasted’’ space may
not be much of an issue. Just pull the sock full of money out from under your bed and buy a bigger hard
drive. Having some extra unused space in the database can even make adding and updating the database
faster.

In some cases, however, parts of the database may become fragmented so the database may take longer
to load records that are logically adjacent but that are scattered around the disk. In that case, you may
get better performance if you compact and defragment the database. Look at your database product’s
instructions and notes to learn about good maintenance strategies.

Performance Tuning
Normally you don’t need to worry too much about how the database executes a query. In fact, if you start
fiddling around with the way queries are executed, you take on all sorts of unnecessary responsibility.
It’s kind of like being an air traffic controller: when everything works, no one notices that you’re doing
your job, but when something goes wrong everyone knows it was your fault.

383

Stephens c19.tex V3 - 10/04/2008 12:31pm Page 384

Part V: Advanced Topics

Generally you shouldn’t try to tell the database how to do its job, but often you can help it help itself.
Some databases use a statistical analysis of the values in an index to help decide how to perform queries
using that index. If the distribution of the values changes, you can sometimes help the database realize
that the situation has changed. For example, the Transact-SQL statement UPDATE STATISTICS makes a
SQL Server database update its statistics for a table or view, possibly leading to better performance in
complex queries.

Often you can make queries more efficient by building good indexes. If you know that the users will be
looking for records with specific values in a certain field, put an index on that field. For example, if you
know that you will need to search customer records by LastName, make LastName an index.

If you have a lot of experience with query optimization, you may even be able to give the database a hint
about how it should perform a particular query. For example, you may know that a GROUP BY query will
work best if the database uses a hashing algorithm. In Transact-SQL you could use the OPTION (HASH
GROUP) clause to give the database that hint (technet.microsoft.com/en-us/library/ms181714.aspx).
Only serious SQL nerds (with IQs exceeding their weights in pounds) should even consider this level of
meddling.

Some databases provide tools such as query analyzers or execution plan viewers so you can see exactly
how the database will perform an operation. That not only lets you learn more about how queries are
performed so you can aspire to write your own query hints, but it also lets you look for problems in your
database design. For example, an execution plan may point out troublesome WHERE clauses that require
executing a function many times, searches on fields that are not indexed, and nested loops that you might
be able to remove by rewriting a query.

More expensive database products may also be able to perform other optimizations at a more physical
level. For example, database replication allows several databases to contain the same information and
remain synchronized. This can be useful if you perform more queries than updates. If one database is the
master and the others are used as read-only copies, the copies can take some of the query burden from
the main database.

Another advanced optimization technique is partitioning. A partitioned table stores different records in
different locations, possibly on different hard disks or even different computers. If your typical queries
normally divide the data along partition boundaries, the separate partitions can operate more or less
independently. You may even be able to back up different partitions separately, improving performance.

In a variation on partitioning, you use multiple databases to handle different parts of the data. For
example, you might have different databases to handle customers in different states or time zones.
Because the databases operate independently, they are smaller and faster, and you can back them up
separately. You can extract data into a data warehouse to perform queries that involve more than one
database.

Try It Out The Keys to Success
Not all indexes are created equal. You need to tailor a table’s indexes and keys to help the database
perform the queries that you expect to actually perform.

Suppose you have a Customers table that contains the usual sorts of fields: CustomerId, FirstName,
LastName, Street, City, State, and Zip. It also includes some demographic information such as BirthDate,
AnnualIncome, and Gender.

384

Stephens c19.tex V3 - 10/04/2008 12:31pm Page 385

Chapter 19: Database Maintenance

1. Decide which fields should be indexed to support normal database queries that must join Orders
and OrderItems records to Customers records.

2. Decide which fields should be indexed to support typical customer queries where a customer
wants information about an order.

3. Decide which fields should be indexed to support reporting queries such as ‘‘Find all orders
placed by female customers between ages 15 and 25.’’

How It Works

1. Decide which fields should be indexed to support normal database queries that must join Orders
and OrderItems records to Customers records.

In a typical database, the Customers table’s CustomerId field will link to the Orders table. The
Orders table will have an OrderId field that links to the OrderItems table. CustomerId is the Cus-
tomers table’s primary key and OrderId is the Orders table’s primary key. Relational databases
automatically index the primary key (I have yet to meet one that doesn’t) so you don’t need to
add any additional indexes to support this typical joining operation.

2. Decide which fields should be indexed to support typical customer queries where a customer
wants information about an order.

Depending on your business, customers might know (or be able to figure out) their customer IDs.
For example, I can read the account number from my bank statements, utility bill, and telephone
bill. But customers who walk into your store, phone you, or send you a flaming email typically
don’t know their customer IDs. You could force them to go dig through their trash looking for
an old statement while you joke with the other customer service representatives (‘‘I can hear him
digging through the trash compactor! Snigger.’’), but that’s not very customer-friendly.

It would be better if you could look up customers given something they actually might know
such as their name, address, or phone number. Name works very well (most customers over
two years of age know their names), although the user interface must be prepared to handle
duplicates. (So you can ask, ‘‘Are you the Zaphod Beeblebrox on Improbable Blvd or the one on
Unlikely Terrace?’’) You probably also need to handle ambiguous first names for cases where
it’s not clear which member of the household opened the account or when someone goes by a
nickname (‘‘The name’s George but everyone calls me Dubbya.’’).

You may also want to consider spelling errors (‘‘Is that Melllvar with three L’s?). If you have
a very large customer base, you might want to look into soundex (en.wikipedia.org/wiki/
Soundex) and other algorithms for handling names phonetically.

Even with these issues, the combination of LastName/FirstName is an excellent choice for a sec-
ondary index.

Address and phone number also make good keys. Usually they are slightly less natural for
customers but sometimes they may have special meaning that makes them more useful. For
example, the phone number is critical for telephone companies so it might make sense to look up
the records for the phone number that is giving the customer problems.

3. Decide which fields should be indexed to support reporting queries such as ‘‘Find all orders
placed by female customers between ages 15 and 25.’’

To really understand how this query works in all of its gruesome detail, you would probably
need to look at the database’s execution plan.

385

Stephens c19.tex V3 - 10/04/2008 12:31pm Page 386

Part V: Advanced Topics

Does the database search for customers in the right age group and then look through their orders
to find the ones for at least $100 and ordered by women? In that case, you might improve perfor-
mance by indexing the BirthDate field.

Does the database select orders placed by women and then look through those to find the ones
with the right total prices and birth date? In that case, you might improve performance by index-
ing the Gender field.

The best approach depends on exactly what your data looks like. Typically I recommend that
you not try to optimize this type of query until you have tried it out with some real data and you
know there is a problem. After all, there’s a chance that the query will be fast enough without
adding any extra indexes.

However, not knowing what’s going on rarely prevents me from having an opinion so let me
mention two points.

First, the Gender field would make a terrible index. It can only hold two values (assuming a typ-
ical distribution of customers) so using that field to select women doesn’t really help the query
narrow down its search much. The database will still need to wade through about half of its
records to figure out which are interesting. Using BirthDate or total purchase price would prob-
ably narrow the search much more quickly so, if the database is stupid enough to filter using
Gender first, you should probably change the query somehow to coerce it into doing something
more sensible.

Second, this is a query for a data warehouse not for an online system. This is an off-line query
used to study data after the fact so it probably doesn’t need to execute in real time. It could be
that your boss’s, boss’s, boss said, ‘‘I bet if we changed these hideous plaid golf shorts to pink, we
could sell more to teenage girls’’ and you’re stuck gathering data to justify this brilliant insight.
This query probably won’t take all that long to execute even without extra indexes and you can
probably run it at night so it won’t matter if it takes a few hours in any case. Adding extra indexes
to a table makes inserting, updating, and deleting records in that table slower so it’s better to just
grit your teeth and take a few hours to run this sort of one-time query at midnight rather than
slowing down typical database operations to satisfy this one query. (During the night manage-
ment will have a brainwave and decide to focus on building a play stove painted in camouflage
colors that transforms into a robot to sell more play kitchens to boys anyway and this issue will
be forgotten.)

Summary
Designing and building a database is one thing, but keeping it running efficiently is another. Without
proper maintenance, a database can become infected with bloated tables, inefficient indexes, and even
corrupted data. This chapter explained that to get the most out of a database you must:

❑ Perform regular full and incremental backups.

❑ Extract data into a data warehouse to perform off-line queries.

❑ Repair damaged indexes.

❑ Build indexes to support the queries that you will actually perform.

❑ Optionally compact tables and index structures to remove unused space.

386

Stephens c19.tex V3 - 10/04/2008 12:31pm Page 387

Chapter 19: Database Maintenance

Unfortunately the exact details of performing these tasks are specific to different kinds of databases
so this chapter cannot provide all of the details. The following chapter describes another topic that is
database-specific: security. Though the precise details for providing security depends on the type of
database you are using, the following chapter describes some of the general issues that you should take
into account to keep your data secure.

Before you move on to Chapter 20, however, use the following exercises to test your understanding of
the material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
1. Suppose your database is big enough that it takes about 4 hours to perform a full backup and

2 hours to perform an incremental backup per day of changes that you want to include in
the backup. Peak hours are 4:00am to 11:00pm on weekdays and 6:00am to 9:00pm on week-
ends. Design a backup schedule for the database that doesn’t require any backup during
peak hours.

2. Your business flourishes (a problem we all wish we had) so the database described in
Exercise 1 grows and now takes 6 hours to perform a full backup and 3 hours per day of
changes for an incremental backup. A large part of your success comes from increased sales
in new time zones so your peak hours have grown to 3:00am to 12:00 midnight on weekdays
and 5:00am to 10:00pm on weekends. Design a new backup schedule that doesn’t require
any backup during peak hours.

387

Stephens c19.tex V3 - 10/04/2008 12:31pm Page 388

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 389

20
Database Security

Like database maintenance, database security is an important topic with details that vary from
database to database. This chapter doesn’t try to cover everything there is to know about database
security. Instead it explains some of the general concepts that you should understand.

In this chapter you learn how to:

❑ Pick a reasonable level of security for the database.

❑ Choose good passwords.

❑ Give users necessary privileges.

❑ Promote a database’s physical security.

The Right Level of Security
Database security can range from nonexistent to tighter than Fort Knox. You can allow any user or
application to connect to a database or you can use encryption to prevent even the database itself
from looking at data that it shouldn’t see.

Though many people think more security is better, that’s not always the case. Some databases can
encrypt the data they contain so it’s very hard for bad guys to peek at your data. Unfortunately it
takes extra time to encrypt and decrypt data as you read and write it in the database, and that slows
things down. For most applications, that level of security is overkill.

Although you may not need as much security as the White House or Pentagon, it does make sense
to take advantage of whatever security features your database does provide. The following sections
describe some of the security features that you should look for in a database product.

Rather than buying the most powerful security system money can buy, you should consider the
needs of your application and the security features that are available. Then you can decide how
tightly to lock things down.

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 390

Part V: Advanced Topics

Passwords
Passwords are the most obvious form of security in most applications. Different databases handle
passwords differently and with different levels of safety. The following sections describe some of
the password issues that you should consider when you build a database application.

Single-Password Databases
Different databases provide different kinds of password protection. At the weaker end of the spectrum,
some databases provide only a single password for the entire database. A database may be protected by
a password or not, but that’s about it.

The single password provides access to the entire database. That means a bad guy who learns the pass-
word can get into the database. It also means that anyone who should use the database must share that
password. One consequence of that is that you cannot easily tell which user makes which changes to
the data.

In practice that often means the program that provides a user interface to the database knows the pass-
word and then it may provide its own extra layer of password protection. For example, the application
might store user names and passwords (hopefully encrypted, not in their plain text form) in a table. When
the user runs the program, it uses its hard-coded password to open the database and verifies the user’s
name and password in the table. It then decides whether to allow the user in (and decides what privileges
the user deserves) or whether it should display a nasty message, shut itself down, send threatening email
to the user’s boss, and so forth.

There are a couple of reasons why this is a weak approach. First, the program must contain the password
in some form so it can open the database. Even if you encrypt the password within the code, a determined
hacker will be able to get it back out. At worst, a tenacious bit-monkey could examine the program’s
memory while it was executing and figure out what password the database used.

A second reason why this approach can be risky is that it relies on the correctness of the user interface.
Every non-trivial program contains bugs so there’s a chance that users will find some way to bypass the
homemade security system and sneak in somewhere they shouldn’t be.

Individual Passwords
More sophisticated databases give each user a separate password and that has several advantages over a
single password database.

If the database logs activity, you can tell who logged into the database when. If there are problems, the
log may help you narrow down who caused the problem and when. If the database logs every interaction
with the database (or if your application does), you can tell exactly who messed up.

Another advantage to individual passwords is that the user interface program doesn’t ever need to store
a password. When the program starts, the user enters a user name and password and the program tries
to use them to open the database. The database either opens or not and the program doesn’t need to
worry about why. Even a ‘‘seriously dope uberhacker with mad skillz’’ can’t dig a password out of the
application if the password isn’t there.

390

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 391

Chapter 20: Database Security

Because the database takes care of password validation, you can focus on what the program is supposed
to help the users do instead of worrying about whether you made a mistake in the password validation
code.

If your database allows individual user passwords, use them. They provide a lot of benefits with rela-
tively little extra work on your part.

Operating System Passwords
Some databases don’t manage passwords very well. They may use little or no encryption, may not
enforce any password standards (allowing weak passwords such as ‘‘12345’’ and ‘‘password’’), and
may even write passwords into log files where a hacker can find them relatively easily.

If your database can integrate its own security with the security provided by the operating system, make
it do so. In any case, take advantage of the operating system’s security. Make sure users pick good oper-
ating system passwords and don’t share them. A hacker won’t get a chance to attack your database if he
can’t even log in to the operating system.

Good Passwords
Picking good passwords is something of an art. You need to pick something obscure enough that an
evil hacker (or your prankster coworkers) can’t guess but that’s also easy enough for you to remember.
It’s easy to become overloaded when you’re expected to remember the database password in addition
to your computer user name and password, bank PIN number, voice mail password, online banking
password, PayPal password, eBay password, locker combination, anniversary, and children’s names.

And you don’t want to use the same password for all of these because then if someone ever steals your
eBay password, they know all of your passwords.

Many companies have policies that require you to use certain characters in your password (must include
letters, numbers, and a special character such as $ or #, and you need to type every other character with
your left hand and your eyes crossed). They also force you to change your password so often it’s pretty
much guaranteed that you’ll forget it. (I’ve never quite understood that. Do they assume that a hacker
will guess your password and then say, ‘‘Whew! That was hard. I think I’ll wait a month before I take
advantage of this password and trash the database?’’ Okay, I know they’re really worried about someone
just prowling through the database unnoticed and they want to change the password to shut them out
as quickly as possible. I’m not sure which is more common, an eavesdropper or someone who wreaks
havoc as soon as they break in.)

So what do users do when faced with dozens of passwords that must pass complex checks? They write
their passwords down where they are easy to find. They pick sequential passwords such as Secret1,
Secret2, and so forth. They use names and dates that are easy to remember and guess. (Once as a security
check I attacked our own password database to see how many passwords I could guess. By throwing
names, dates, and common words at the database, I was able to guess more than half of the 300 or so
passwords in just a few hours.)

It’s much better to give the users a little extra training so they can figure out how to pick a really good
password and then not require changes so often. For example, a series of unrelated words is a lot

391

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 392

Part V: Advanced Topics

better than a single word but is usually just as memorable. The password beeR&Pizza%suckS is pretty
easy to remember, tricky to guess, and what self-respecting hacker would ever want to type that?
Replacing letters in the password with other symbols can further obscure the message. Replacing ‘‘z’’
with ‘‘2’’ and ‘‘e’’ with ‘‘3’’ turns this password into b33R&Pi22a%suckS. (Search the Web for ‘‘leet’’ to
learn about a hacker wannabe language that uses this kind of substitution to make plain and simple
text practically unintelligible. Or look at congressional legislation or a legal contract for some serious
incomprehensibility.)

A technique that is particularly useful for touch-typists is to shift your fingers before typing. For example,
if you type ‘‘Potatoe’’ (with the ‘‘optional’’ extra ‘‘e’’) with your fingers shifted one key to the right you
get ‘‘pysypr’’ on a standard qwerty keyboard. Combine a few of these tricks and you can build a fairly
tough password that’s still reasonably easy to remember.

There are a few ‘‘don’ts’’ when it comes to making good passwords. Don’t use names, dates, places, ID
numbers (such as Social Security numbers or driver’s licenses), or anything else that would be easy to
guess or figure out by rummaging through your email or trash. In fact, don’t use words at all, unless you
do something to obscure them such as replacing letters with other symbols or keyboard shifting. A few
words together, even if they’re logically incompatible (such as ‘‘Politician’’ and ‘‘Honest’’ or ‘‘Inexpen-
sive’’ and ‘‘Plumber’’) are easy to guess. Remember that modern computers are really fast so guessing a
few million or even a few billion password combinations is child’s play.

Privileges
Most relational databases allow you to restrict each user’s access to specific tables and even columns
within a table. Typically you would define groups such as Clerks or Managers and then grant permission
for users in those groups to view certain data. You may also be able to grant exceptions for individual
users. (You can perform similar feats of cleverness yourself in your application even if you’re using a
single password database but it’s a lot more work.)

For example, suppose your Employees table contains columns holding three levels of data. Data available
to anyone includes the employee’s name, office number, phone number, and so forth. Data available only
to managers includes the employee’s salary and performance reviews. Data available to human resources
includes the employee’s next of kin, insurance information, school grades, and beneficiary name. You
could get into serious trouble if some of that data were to slip out.

If you use the database’s security features to prevent certain users from viewing sensitive data, you don’t
need to worry about the wrong people seeing the wrong data. If Ann is a non-manager employee, she
will be able to view Bob’s office and phone number so she can call him but the database won’t let her
view Bob’s salary.

Some databases also provide row-level security that allows you to restrict access to particular rows in
a table. For example, suppose a table contains government documents that are labeled with one of the
security levels Public, Secret, Top Secret, and Illegal (you get thrown in jail if anyone finds those). When a
program queries this table, it compares the user’s privileges with the records’ security labels and returns
only those that the user should be able to see.

392

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 393

Chapter 20: Database Security

Some databases don’t provide access control at such a refined level. They may let you restrict access to a
table but not to particular columns or rows within a table. Fortunately you can provide similar behavior
by using views.

A view is the result of a query. It looks a lot like a table but it may contain only some of the columns or
records in one or more tables. If the database doesn’t provide column-level security, you can deny access
to the table and then create different views for the different groups of users. For the Employees table, you
would create separate views that include public data, manager accessible data, and data that should be
visible to human resources. Now you can grant access for the views to let users see the types of data they
should be able to view.

The SQL GRANT and REVOKE statements let you give and withdraw privileges. It is generally safest to give
users the fewest privileges possible to do their jobs. Then if an application contains a bug and accidentally
tries to do something stupid, such as dropping a table or showing the user sensitive information, the
database won’t allow it.

Rather than remembering to remove every extraneous privilege from a new user, many database admin-
istrators revoke all privileges and then grant those that are needed. That way the administrator cannot
forget to remove some critical privilege.

The following three MySQL scripts demonstrate user privileges. You can execute the first and third
scripts in the MySQL Command Line Client. You need to start the Command Line Client in a special way
(described shortly) to use the second script properly.

The following script prepares a test database for use:

CREATE DATABASE UserDb;
USE UserDb;

-- Create a table.
CREATE TABLE People (

FirstName VARCHAR(5) NOT NULL,
LastName VARCHAR(40) NOT NULL,
Salary DECIMAL(10,2) NULL,
PRIMARY KEY (LastName, FirstName)

);

-- Create a new user with an initial password.
-- Note that this password may appear in the logs.
CREATE USER Rod IDENTIFIED BY ‘secret’;

-- Revoke all privileges for the user.
REVOKE ALL PRIVILEGES, GRANT OPTION FROM Rod;

-- Grant privileges that the user really needs.
--GRANT INSERT ON UserDb.People TO Rod;
GRANT INSERT (FirstName, LastName, Salary) ON UserDb.People TO Rod;
GRANT SELECT (FirstName, LastName) ON UserDb.People TO Rod;
GRANT DELETE ON UserDb.People TO Rod;

393

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 394

Part V: Advanced Topics

This script creates the database UserDB and gives it a People table. It then creates a user named Rod,
giving it the password ‘‘secret.’’ (Yes, that is a terrible password. Don’t do something like this in your
database!)

Next the script drops all privileges including the GRANT privilege (which would allow the user to grant
privileges to himself). It then grants privileges that allow the user to insert FirstName, LastName, and
Salary values into the People table, select only the FirstName and LastName values, and delete records
from the table.

Before you can execute the next script, you need to start the MySQL Command Line Client as the user
Rod. To do that, start a command window (in Windows, open the Start menu, pick Run, type CMD, and
press Enter). At the command prompt, change to the directory that contains the MySQL Command Line
Client mysql.exe. (On my Windows XP system, it’s at C:\Program Files\MySQL\MySQL Server 5.0\bin.)
After you move to that directory, start the MySQL Command Line Client by executing this command:

mysql -u Rod -p

(You might need to use mysql --u Rod --p on Unix systems.)

Note that the user name is case-sensitive, so type Rod not rod or ROD. When prompted, enter the pass-
word ‘‘secret.’’ The Command Line Client should run in the operating system command window and
you should see the mysql prompt.

Now you can execute the following script to test the user’s privileges:

USE UserDB;

-- Make some records.
INSERT INTO People VALUES(‘Annie’, ‘Lennox’, 50000);
INSERT INTO People VALUES(‘Where’, ‘Waldo’, 60000);
INSERT INTO People VALUES(‘Frank’, ‘Stein’, 70000);

-- Select the records.
-- This fails because we don’t have SELECT privilege on the Salary column.
SELECT * FROM People ORDER BY FirstName, LastName;

-- Select the records.
-- This works because we have SELECT privilege on FirstName and LastName.
SELECT FirstName, LastName FROM People ORDER BY FirstName, LastName;

-- Create a new table.
-- This fails because we don’t have CREATE TABLE privileges.
CREATE TABLE MorePeople (

FirstName VARCHAR(5) NOT NULL,
LastName VARCHAR(40) NOT NULL,
PRIMARY KEY (LastName, FirstName)

);

-- Delete the records.
DELETE FROM People;

This script sets UserDB as the default database and inserts some records into the People table. This works
because the user Rod has privileges to insert FirstName, LastName, and Salary values into this table.

394

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 395

Chapter 20: Database Security

Next the script tries to select all of the fields in this table. That operation fails because Rod doesn’t have
privilege to select the Salary field. Even if the user-interface application managing this database contains
a bug and tries to select salary data, the database won’t let the user see the Salary field.

The script then tries to select the FirstName and LastName values from the People table. That works
because Rod does have privileges to select those fields.

Next the script tries to create a table and fails because Rod doesn’t have that privilege.

Finally the script deletes all of the records from the table. That works because Rod has that privilege.

After you test the user’s privileges, you can close the Command Line Client by entering the command
‘‘exit.’’ You can then close the operating system window by typing ‘‘exit’’ again.

Back in the original MySQL Command Line Client that created the database and the user, you can execute
the third script to clean up:

DROP USER Rod;

DROP DATABASE UserDb;

The technique of removing all privileges and then granting only those that are absolutely necessary is
very useful for preventing mistakes. In fact, many database administrators deny even the administrator
accounts all of the dangerous privileges that they don’t need on a daily basis (such as DROP TABLE and
CREATE USER). The account still has the GRANT privilege so it can grant itself more power if necessary, but
that takes an extra step so it’s harder to accidentally make dangerous mistakes such as dropping critical
tables.

A similar technique is for administrators to log in as a less powerful ‘‘mortal’’ user normally and only log
in to an administrator account when they really need to do something special and potentially dangerous.

Try It Out A Privileged Few
Consider the database design shown in Figure 20-1.

1CustomerId
FirstName
LastName
Street
City
State
Zip
Phone
CreditCardType
CreditCardNumber

Customers

OrderId
CustomerId
OrderDate
ShippedDate
OrderStatus

Orders
OrderId
SquenceNumber
ItemId
Quantity

OrderItems

OrderStatus
OrderStatuses

ItemId
Description
Price
QuantityInStock

InventoryItems
1

1

1

∞
∞

∞

∞

Figure 20-1

395

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 396

Part V: Advanced Topics

Many users need relatively few privileges to do their jobs. Write a SQL script that gives a shipping clerk
enough privileges to fulfill orders in the database shown in Figure 20-1 by following these steps:

1. Make a permission table showing the CRUD (Create, Read, Update, and Delete) privileges that
the user needs for the tables and their fields.

2. Deny all privileges.

3. Grant SELECT privileges for the fields in the Customers, Orders, OrderItems, and InventoryItems
tables that the clerk needs to properly address a shipment.

4. Grant UPDATE privileges for the fields in the Customers, Orders, OrderItems, and InventoryItems
tables that the clerk needs to properly record a shipment.

How It Works

1. Make a table showing the CRUD (Create, Read, Update, and Delete) privileges that the user
needs for the tables and their fields.

The following table lists the privileges that the user needs. The user might need Create or Delete
privileges for tables and Read or Update privileges for fields.

Table or Field Privileges

Customers –

CustomerId R

FirstName R

LastName R

Street R

City R

State R

Zip R

Phone R

CreditCardType –

CreditCardNumber –

Orders –

OrderId R

CustomerId R

OrderDate R

ShippedDate RU

OrderStatus RU

396

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 397

Chapter 20: Database Security

Table or Field Privileges

OrderItems –

OrderId R

SequenceNumber R

ItemId R

Quantity R

InventoryItems –

ItemId R

Description R

Price –

QuantityInStock RU

OrderStatuses –

OrderStatus R

2. Deny all privileges.

The following MySQL code creates a ShippingClerk user and revokes all privileges. (Again this
is a terrible password. Don’t use it.)

CREATE USER ShippingClerk IDENTIFIED BY ‘secret’;

-- Revoke all privileges for the user.
REVOKE ALL PRIVILEGES, GRANT OPTION FROM ShippingClerk;

3. Grant SELECT privileges for the fields in the Customers, Orders, OrderItems, and InventoryItems
tables that the clerk needs to properly address a shipment.

To prepare and ship orders, the user must see all fields in the Orders, OrderItems, and Invento-
ryItems tables. The clerk must also see the name and address information in the Customers table.
The following MySQL statements grant privileges to select those fields:

GRANT SELECT ON ShippingDb.Orders TO ShippingClerk;
GRANT SELECT ON ShippingDb.OrderItems TO ShippingClerk;
GRANT SELECT ON ShippingDb.InventoryItems TO ShippingClerk;
GRANT SELECT (CustomerId, FirstName, LastName, Street, City, State,

Zip, Phone) ON ShippingDb.Customers TO ShippingClerk;

Notice that the last statement grants privileges to select specific fields and doesn’t let the clerk
view the customer table’s other fields such as CreditCardNumber.

4. Grant UPDATE privileges for the fields in the Customers, Orders, OrderItems, and InventoryItems
tables that the clerk needs to properly record a shipment.

397

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 398

Part V: Advanced Topics

When shipping an order, the clerk must update the InventoryItems table’s QuantityInStock field.
The clerk must also update the Orders table’s OrderStatus and ShippedDate fields. The following
statements grant the necessary privileges:

GRANT UPDATE (QuantityinStock) ON ShippingDb.InventoryItems TO ShippingClerk;
GRANT UPDATE (OrderStatus, ShippedDate) ON ShippingDb.Orders TO ShippingClerk;

You can download scripts that demonstrate these privileges from the book’s Web site. The script
MakeShippingClerk.sql builds a test database and uses the previous code snippets to create the
ShippingClerk with the correct privileges. The UseShippingClerk.sql script performs the tasks
that the shipping clerk would perform while shipping an order. The DropShippingClerk.sql
script deletes the ShippingClerk account and the test database.

Initial Configuration and Privileges
Databases (and many other software tools) often come preconfigured to make it easy for you to get
started. Find out how the database is initially configured and modify the default settings to make the
database more secure.

For example, databases often come with an administrator account that has a default user name and pass-
word. It is amazing how many people build a database and don’t bother changing those default settings.
Anyone who knows the defaults can not only open your database but can do so with administrator priv-
ileges so they can do anything they want to your data. Hackers are very aware of these default accounts
and, not surprisingly, trying to open those accounts is often the first attack a hacker makes.

Too Much Security
Ironically one of the most common security problems I’ve seen in large applications is caused by too
much security. The user interface application tries to restrict users so they cannot do things they’re not
supposed to do accidentally or otherwise. When it’s done properly, that type of checking is quite impor-
tant but if the system is too restrictive and too hard to change, the users will find ways to circumvent
your security.

For example, suppose an application manages telephone accounts. Customer representatives can discon-
nect a customer for outstanding bills, answer customer questions, and reconnect service when payments
are received. They can also reconnect service if the customer comes up with a really good sob story. (‘‘My
doggy Mr. Tiddles ate the bill. I sent it in anyway half chewed up, but the Post Office returned it for
insufficient postage. It would have been a day late, but I was on a cruise and the ship crossed the Inter-
national Date Line. I can pay now but it would be in a third party check written in Florins from a bank
in a country that no longer exists. Etc.’’) At this point, the representative hands the customer to a shift
supervisor who reconnects services for 15 days in self-defense just to shut the customer up.

Unfortunately a lot of customers have sob stories that are more believable than this one (it’s hard to imag-
ine one less believable) so the shift supervisors waste a lot of time approving service reconnections. To
save time, the supervisor writes his user ID and password in huge letters on the whiteboard at the front

398

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 399

Chapter 20: Database Security

of the room so every representative can approve reconnections without interrupting the supervisor’s
online shopping.

Your expression of amusement should change to one of horror when you learn that this is actually a true
story. (Not the one about Mr. Tiddles, the one about the password on the whiteboard.) Everyone in the
entire billing center could log on as a supervisor at any time to approve special actions without wasting
the supervisor’s time.

At this point, a reasonable security feature, making supervisors approve special reconnections, has
completely backfired. Not only can anyone approve special reconnections, but they could log on as a
supervisor and perform all sorts of other unauthorized actions without leaving any trace of who actually
did them.

The moral is, restrict access to various database features appropriately but make it easy for the customers
to change the settings. If the supervisors could have changed the program to allow representatives to
approve special reconnections, this would never have been a problem.

Physical Security
Many system administrators spend a great deal of effort on software and network security and do
nothing about physical security. It makes sense to focus on network attacks because an open Internet
connection makes you potentially vulnerable to millions of would-be hackers and cybersnoops.

However, focusing exclusively on software security and ignoring physical security is like building a
James Bond–caliber fortress and then leaving the screen door wide open. While an unsecured Internet
connection does expose you to a huge number of potential hackers, you shouldn’t completely ignore local
villains.

Though most employees are honest and hardworking, there have been several spectacular cases where
employees have stolen data. There have also been many cases where employees and contractors have
lost data through carelessness.

In one case, a former Boeing employee was accused of stealing 320,000 files using a portable drive. Boeing
estimated that the files could cause $5 billion to $15 billion in damages if they fell into the wrong hands.
(See www.scmagazineus.com/Former-Boeing-employee-charged-in-data-theft/article/35228.)

I generally prefer to assume that people are basically honest but that doesn’t mean you should make it
easier for them to make bad decisions and silly mistakes.

Flash drives small enough to fit in a wallet hold several gigabytes of data. Portable USB drives that fit
easily in a backpack or briefcase can hold up to 2 terabytes and larger drives will probably be available
soon.

I’m not suggesting that you frisk employees before they leave for home but, if your database contains
financial data, credit card numbers, and other proprietary secrets (such as numerological algorithms for
picking lottery numbers), you should at least provide some supervision to discourage employees from
walking out with the database.

399

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 400

Part V: Advanced Topics

Many powerful computers are also relatively small so, in some cases, it may be possible for someone to
simply pick up your server and walk away with it. If the computer is too large to carry away, a few min-
utes with a screwdriver will allow just about anyone to remove the hard drive. Keeping your database
server in a separate office that’s accessible by an internal network provides some extra security.

Even if you lock the network down so Internet hackers can’t find a seam to open, you should also consider
outgoing connections. An employee can probably email data outside of your system or surf to a Web site
that allows file uploading.

Laptop security is a particularly tricky issue these days. Laptops are designed for portability. If you
didn’t need that portability, you would probably buy a less expensive desktop computer so you must
assume the laptop will go offsite. Laptop theft is a huge and growing problem so you should assume that
any data you have on your laptop may be stolen. If you absolutely must store sensitive data on a laptop,
encrypt it. Don’t assume the laptop’s operating system security will stop a thief from reading the hard
disk. The Web contains lots of sites with advice for preventing laptop theft, so look around and adopt
whatever measures you can.

I once worked at a company that didn’t allow cameras or cell phones with cameras because they
were afraid someone might steal their corporate secrets. However, they didn’t prohibit flash
drives, USB drives, laptops, MP3 players (which have drives that can hold computer files, see
news.cnet.com/Beware-the-pod-slurping-employee/2100-1029_3-6039926.html), outgoing email, or
Web surfing to sites where you could upload files. They had plugged one possible channel for misdeeds
but had left lots of others open. (My theory is that management was a bit behind the times and wasn’t
familiar enough with the other methods to realize that they were a potential problem.)

This all begs the question of whether the company has any data worth stealing. In the time I worked
there, I saw lots of company confidential material but nothing that had any real financial or strategic
value. Before you start installing security cameras and metal detectors, you should ask yourself how
likely it is that someone would want to steal your data and how expensive the loss would be. Then you
can take appropriate measures to reduce the likelihood of loss.

Though ignoring physical security is a mistake, obsessing over it can make you paranoid. Not everyone
is an undercover agent for your competition or looking to sell credit card numbers to drug dealers. Take
reasonable measures but try not to go completely overboard unnecessarily.

Summary
Database security doesn’t happen all by itself. Many databases provide sophisticated security features but
it’s up to you to take advantage of them. This chapter described some of the issues you should consider
to protect your data against accidental and malicious damage. It explained how to:

❑ Decide on a reasonable level of security for the database.

❑ Restrict privileges so users cannot harm the database accidentally or intentionally.

❑ Protect the database physically.

400

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 401

Chapter 20: Database Security

The chapters in this book explain how to determine customers’ data needs. They explain how to build
data models to study those needs, how to use the models to form a design, and how to refine the design to
make it more efficient. Finally, the chapters explain how to implement the database, and how to examine
the database’s maintenance and security needs.

Having studied these chapters, you are ready to design and build effective relational databases but there’s
a lot more to learn. Although I’ve tried to cover the most important topics of relational database design
in some depth, database design is a huge topic and you can always learn more. You may want to increase
your knowledge by surfing the Web or reading other database books that focus on different aspects of
database design and development. In particular, you may want to seek out books that deal with specific
issues for whichever database product you are using.

Before you leave these pages, however, use the following exercises to test your understanding of the
material covered in this chapter. You can find the solutions to these exercises in Appendix A.

Exercises
For these exercises, consider the database design shown in Figure 20-1.

In the Try It Out earlier in this chapter, you determined the privileges needed by a shipping clerk for this
database. These exercises consider other roles that users will play.

1. Build a permission table showing the privileges needed by an order entry clerk to create new
orders. Write SQL statements to create an order entry clerk with the appropriate privileges.

2. Build a permission table showing the privileges needed by a customer service clerk who
answers questions about users’ accounts and orders. This clerk should be able to modify
customer and order data, and should be able to cancel an order that has not yet shipped.

3. Build a permission table showing the privileges needed by an inventory manager who
orders new inventory as needed. This person also changes an order’s status from Back
Ordered to Ordered when there is enough inventory to fulfill the order. The inventory
manager also keeps the InventoryTable up-to-date and may need to add, remove, or modify
records.

401

Stephens c20.tex V3 - 10/04/2008 12:31pm Page 402

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 403

A
Exercise Solutions

Chapter 1

Exercise 1 Solution
The following list summarizes how the book provides (or doesn’t) database goals:

❑ CRUD: This book doesn’t let you easily CREATE information. You could write in new
information but there isn’t much room for that and that’s not really its purpose. The book
lets you READ information, although it’s hard for you to find a particular piece of infor-
mation (unless it is listed in the table of contents or the index). You can UPDATE informa-
tion by crossing out the old information and entering the new. You can also highlight key
ideas by underlining, by using a highlighter, and by putting bookmarks on key pages.
Finally, you can DELETE data by crossing it out.

❑ Retrieval: The book’s mission in life is to let you retrieve its data, although it can be hard
to find specific pieces of information unless you have bookmarked them, or they are in the
table of contents or the index.

❑ Consistency: I’ve tried hard to make the book’s information consistent. If you start making
changes, however, it will be extremely hard to ensure that you make related changes to
other parts of the book.

❑ Validity: The book provides no data validation. If you write in new information, the book
cannot validate your data. (If you write, ‘‘Normalization rocks!’’ the book cannot verify
that it indeed rocks.)

❑ Easy Error Correction: Correcting one error is easy; simply cross out the incorrect data
and write in the new data. Correcting systematic errors (for example, if I’ve methodically
misspelled ‘‘the’’ as ‘‘thue’’ and the editors didn’t catch it) would be difficult and time con-
suming.

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 404

Appendix A: Exercise Solutions

❑ Speed: The book’s structure will hopefully help you learn database design relatively efficiently
but a lot relies on your reading ability.

❑ Atomic Transactions: The book doesn’t really support transactions of any kind, much less
atomic ones.

❑ ACID: Because it doesn’t support transactions, the book doesn’t provide ACID.

❑ Persistence and Backups: The book’s information is non-volatile so you won’t lose it if the book
‘‘crashes.’’ If you lose the book or it is destroyed (my dog ate it), you can buy another one but
you’ll lose any updates you have written into it. You can buy a second copy and backup your
notes into it but the chances of a tornado destroying your book are low and the consequences
aren’t all that earth-shattering, so I’m guessing you’ll just take your chances.

❑ Low Cost and Extensibility: Let’s face it, books are pretty expensive these days, although not as
expensive as even a cheap computer. You can easily buy more copies of the book but that isn’t
really extending the amount of data. The closest thing you’ll get to extensibility is buying a dif-
ferent database-related book or perhaps buying a notebook to improve your note taking.

❑ Ease of Use: This book is fairly easy to use. You’ve probably been using books for years and are
familiar with its user interface.

❑ Portability: It’s a fairly large book but you can reasonably carry it around. You can’t read it
remotely the way you can a computerized database, but you can carry it on a bus.

❑ Security: The book isn’t password protected but it doesn’t contain any top-secret material, so if it
is lost or stolen you probably won’t be as upset by the loss of its data as by the loss of the concert
tickets that you were using as a bookmark. It’ll also cost you a bit to buy a new copy if you can’t
borrow someone else’s.

❑ Sharing: After you lose your copy, you could read over the shoulder of a friend and you could
borrow someone else’s book. Sharing isn’t as easy as it would be for a computerized database,
however, so you might just want to splurge and get a new copy.

❑ Ability to Perform Complex Calculations: Sorry, not in this edition.

Overall the book is a reasonably efficient read-only database with limited search and correction capa-
bilities. As long as you don’t need to make too many corrections, it’s a pretty useful tool. The fact that
instructional books have been around for a long time should indicate that they work pretty well.

Exercise 2 Solution
This book provides a table of contents to help you find information about general topics and an index to
help you find more specific information if you know the name of the concept that you want to study.

Features that help you find information in less obvious ways include the introductory chapter that
describes each chapter’s concepts in more detail than the table of contents does, and references within
the text.

Exercise 3 Solution
CRUD stands for the four fundamental database operations: Create (add new data), Read (retrieve data),
Update (modify data), and Delete (remove data from the database).

404

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 405

Appendix A: Exercise Solutions

Exercise 4 Solution
A chalkboard provides:

❑ Create: Use chalk to write on the board.

❑ Read: Look at the board.

❑ Update: Simply erase old data and write new data.

❑ Delete: Just erase the old data.

A chalkboard has the following advantages over a book:

❑ CRUD: It’s easier to create, read, update, and delete data.

❑ Retrieval: Though a chalkboard doesn’t provide an index, it usually contains much less data
than a book so it’s easier to find what you need.

❑ Consistency: Keeping the data consistent isn’t trivial but again, because there’s less data than in
a book, you can find and correct any occurrences of a problem more easily.

❑ Easy Error Correction: Correcting one error is trivial; just erase and write in the new data. Cor-
recting systematic errors is harder but a chalkboard contains a lot less data than a book so fixing
all of the mistakes is easier.

❑ Backups: You can easily backup a chalkboard by taking a digital picture of it. (This is actually
more important than it may seem in a research environment where chalkboard discussions can
contain crucial data.)

❑ Ease of Use: A chalkboard is even easier to use than a book. Toddlers who can’t read can still
scribble on a chalkboard.

❑ Security: It’s relatively hard to steal a chalkboard nailed to a wall.

❑ Sharing: Usually everyone in the room can see what’s on a chalkboard at the same time. This is
one of the main purposes of chalkboards.

A book has the following advantages over a chalkboard:

❑ Persistence: A chalkboard is less persistent. For example, someone brushing against the chalk-
board may erase data. (I once had a professor who did that regularly and always ended the
lecture with a stomach covered in chalk.)

❑ Low Cost and Extensibility: Typically books are cheaper than chalkboards, at least large ones.

❑ Portability: Books typically aren’t nailed to a wall.

The following database properties are roughly equivalent for books and chalkboards:

❑ Validity: Neither provides features for validating new or modified data against other data in the
database.

❑ Speed: Both are limited by your reading (and writing) speed.

❑ Atomic Transactions: Neither provides transactions.

405

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 406

Appendix A: Exercise Solutions

❑ ACID: Neither provides transactions so neither provides ACID.

❑ Ability to Perform Complex Calculations: Neither can do this (unless you have some sort of
fancy interactive computerized book or chalkboard).

In the final analysis, books contain a lot of information and are intended for use by one person, whereas
chalkboards hold less information and are tools for group interaction. Which you use depends on which
of these features you need.

Exercise 5 Solution
A recipe card file has the following advantages over a book:

❑ CRUD: It’s easier to create, read, update, and delete data in a recipe file. Updating and deleting
data is also more aesthetically pleasing. In a book, these changes require you to cross out old data
and optionally write in new data in a place where it probably won’t fit too well. In a recipe file,
you can replace the card containing the old data with a completely new card.

❑ Consistency: Recipes tend to be self-contained so this usually isn’t an issue.

❑ Easy Error Correction: Correcting one error in the recipe file is trivial; just replace the card that
holds the error with one that is correct. Correcting systematic errors is harder but less likely to be
a problem. (What are the odds that you’ll mistakenly confuse metric and English units and mix
up liters and tablespoons? Although NASA and Lockheed managed to mix metric and English
to crash a $125 million Mars orbiter. See www.cnn.com/TECH/space/9909/30/mars.metric.)

❑ Backups: You could back up a recipe file fairly easily. In particular, it would be easy to make
copies of any new or modified cards. I don’t know if anyone (except perhaps Martha Stewart)
does this.

❑ Low Cost and Extensibility: It’s extremely cheap and easy to add a new card to a recipe file.

❑ Security: You could lose a recipe file but it will probably stay in your kitchen most of the time.
Someone could break into your house and steal your recipes but you’d probably give copies to
anyone who asked (except for your top-secret Death-by-Chocolate Brownies recipe).

A book has the following advantages over a recipe file:

❑ Retrieval: A recipe file’s cards are sorted, essentially giving it an index, but a book also provides
a table of contents. With this kind of recipe file, it would be hard to simultaneously sort cards
alphabetically and group them by type (entrée, dessert, aperitif, midnight snack).

❑ Persistence: The structure of a recipe file is slightly less persistent than that of a book. If you drop
your card file down the stairs, the cards will be all mixed up. (Although that may be a useful way
to pick a random recipe if you can’t decide what you want to eat.)

The following database properties are roughly equivalent for books and recipe files:

❑ Validity: Neither provides features for validating new or modified data against other data in the
database.

❑ Speed: Both are limited by your reading (and writing) speed.

❑ Atomic Transactions: Neither provides transactions.

❑ ACID: Neither provides transactions so neither provides ACID.

406

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 407

Appendix A: Exercise Solutions

❑ Ease of Use: Many people are less experienced with using a recipe file than a book but both are
fairly simple. (Following the recipes will probably be harder than using the file, at least if you
cook anything interesting.)

❑ Portability: Both books and recipe files are portable, although your recipe may never leave the
kitchen.

❑ Sharing: Neither is easy to share.

❑ Ability to Perform Complex Calculations: Neither can do this. (Some computerized recipe
books can adjust measurements for different number of servings but index cards cannot.)

Instructional books usually contain tutorial information and you are expected to read them in big chunks.
A recipe file is intended for quick reference and you generally use specific recipes rather than reading a
bunch of them. This is more like a dictionary and has many of the same features.

Exercise 6 Solution
ACID is an acronym describing four features that an effective transaction system should provide. ACID
stands for Atomicity, Consistency, Isolation, and Durability.

❑ Atomicity means transactions are atomic. The operations in a transaction either all happen or
none of them happen.

❑ Consistency means the transaction ensures that the database is in a consistent state before and
after the transaction.

❑ Isolation means the transaction isolates the details of the transaction from everyone except the
person making the transaction.

❑ Durability means that once a transaction is committed, it will not disappear later.

Exercise 7 Solution
If transaction 1 occurs first, Alice tries to transfer $150 to Bob and her balance drops below zero, which is
prohibited.

If transaction 2 occurs first, Bob tries to transfer $150 to Cindy and his balance drops below zero, which
is prohibited.

So transaction 3 must happen first: Cindy transfers $25 to Alice and $50 to Bob. Afterwards Alice has
$125, Bob has $150, and Cindy has $25.

At this point, Alice and Bob have enough money to perform either transaction 1 or transaction 2.

If transaction 1 comes second, then Alice, Bob, and Cindy have $0, $275, and $25 respectively. (If he can,
Bob should walk away at this point and quit while he’s ahead.) Transaction 2 follows and the three end
up with $0, $125, and $175.

If transaction 2 comes second, then Alice, Bob, and Cindy have $125, $0, and $175 respectively. Transac-
tion 1 follows and the three end up with $0, $125, and $175.

So the allowed transaction orders are 3 – 1 – 2 and 3 – 2 – 1. Note that the final balances are the same
in any case.

407

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 408

Appendix A: Exercise Solutions

Exercise 8 Solution
If the data is centralized, it does not remain on your local computer. In particular, if your laptop is lost or
stolen, you don’t need to worry about your customers’ credit card information because it is not on your
laptop.

Be sure to use good security on the database so cyber-criminals can’t break into it remotely.

Chapter 2

Exercise 1 Solution
Assuming the dogs are not inbred so they have the most genetic diversity, this is a tree so it could be
stored in a hierarchical database. It would be a moderately small tree so it would fit easily in a small
XML file.

You could also coerce the hierarchical data in a relational database if you wanted to be able to find dogs
with certain characteristics such as dog show winners and flyball champions.

Exercise 2 Solution
This seems like a much bigger database than the one in Exercise 1 but it’s still a tree. The tree has two
main branches: one leading to descendants and one leading to ancestors. As long as you don’t track other
relationships such as uncles, cousins, and sisters-in-law, it’s just another tree so you could still store it in
a hierarchical database or an XML file. You could also use a relational database to allow more general
queries.

Exercise 3 Solution
Application settings are easy to store in a flat file located in the user’s directory hierarchy (for example,
in My Documents or the user’s Documents and Settings\UserName\Local Settings directory).

If you have a lot of settings and you want to access them by name as needed instead of reading the entire
file all at once, you could store them in an INI file, again in a location specific to each user. You could also
use the system registry’s HKEY_CURRENT_USER hive.

I have written applications that stored this kind of information in a shared relational database. That
made it centralized so it was easy for the system administrators to fix it when a user managed to make
a window zero pixels wide or dragged a window completely off of the screen. It also meant that if you
logged into the application from any computer you found your personal settings ready and waiting
for you.

Exercise 4 Solution
This sounds like a very simple database whose major requirement is graphing so a spreadsheet can
probably handle this. This does tie the application into a dead-end technology, however, and if the users

408

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 409

Appendix A: Exercise Solutions

decide that they want to store more complex data and perform sophisticated queries on it, you’ll wish
you’d chosen a relational database.

Exercise 5 Solution
A spreadsheet can also handle this requirement but there’s the same risk that the users will later decide
they need more features than a spreadsheet can handle.

Exercise 6 Solution
A spreadsheet will still work, with the same caveats. At this point, however, I would notice that the
users are starting to add more and more features. I would want to explore the requirements more fully
and make sure this is really their final request before committing to a spreadsheet. It would be better to
move to a more complicated database model now than to have to rebuild everything from scratch in six
months. (Or just as likely, have users complain about how the spreadsheet doesn’t do all of the things
they didn’t tell you it was supposed to do.)

Exercise 7 Solution
This is a fairly simple tree so it will fit easily in a hierarchical database or XML file. It’s such a small tree
(relatively speaking) that it seems unlikely that you’ll need to perform complex ad hoc queries.

Exercise 8 Solution
This needs to be some sort of relational database. They are great at handling large amounts of intercon-
nected data and performing complex ad hoc queries.

Which flavor of relational database you should pick (regular, object-oriented, object-relational,
object-relational mapping) depends largely on your development philosophy and environment.

Exercise 9 Solution
As in Exercise 8, this problem cries out for some kind of relational database. To make the boss happy, you
could use an object-oriented database, object-relational database, or object-relational mapping. In several
projects I’ve used an object-relational mapping approach planted on top of a relational database and it
has always worked quite well.

Exercise 10 Solution
If the recipe book will be fairly small, you could just put each recipe on a separate page in a Microsoft
Word document and use Word’s search capability to find recipe names, part of meal, or main ingredient.
(Fooled you, didn’t I? That wasn’t one of the main topics covered in this chapter! However, it would be
a reasonable solution for such a simple application. Remember, the goal is to provide a useful solution
with the minimum amount of work.)

Of the solutions that are described in this chapter, I would probably pick a relational database. It will
provide better search capabilities than the simpler flat file, spreadsheet, or XML databases. Truly

409

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 410

Appendix A: Exercise Solutions

object-oriented databases are probably serious overkill for this project. (I would only pick one of them
if I wanted practice with a particular new tool, for example, one that I knew was going to be used on a
future project.)

Exercise 11 Solution
This one could require some serious sorting and searching so a relational database is your best bet.
(You would use a separate table or two to define power decks.) Which flavor you should pick (regu-
lar, object-oriented, object-relational, object-relational mapping) depends largely on your development
philosophy and environment.

Exercise 12 Solution
These collections could require some serious sorting, searching, and grouping so a relational database is
your best bet. The statement ‘‘And anything else you might think of later.’’ is a sure sign of a vague spec-
ification that will almost certainly require you to implement other queries later. A relational database’s
ability to perform ad hoc queries is just what you need.

Which flavor of relational database you should pick (regular, object-oriented, object-relational,
object-relational mapping) depends largely on your development philosophy and environment.

To support those future unknown queries, you will need to be sure to include as much data as possible
about every item in the database. If you don’t record each DVD’s Best Boy and Key Grip, you won’t be
able to search on them later.

Exercise 13 Solution
These databases will require some serious sorting, searching, and grouping so a relational database is in
order. It will allow you to perform complex queries linking players and their teams.

Which flavor of relational database you should pick (regular, object-oriented, object-relational,
object-relational mapping) depends largely on your development philosophy and environment.

Exercise 14 Solution
This situation lends itself naturally to a document-oriented database. I use a separate directory for
each book with subdirectories for manuscript files, figure files, and planning files such as the sched-
ule spreadsheet. It’s simple and it works fairly well, although it is sometimes tricky to find some items.
(For example, find all of the bitmap files containing figures that show image processing techniques. Or
find all of the figures that contain pictures of people.)

Exercise 15 Solution
This data is so simple that it could conveniently be stored in just about any kind of database. If the
application uses a database for some other purpose, you might consider adding this information to it
because the database will be there anyway.

410

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 411

Appendix A: Exercise Solutions

Otherwise you should use the simplest solution that makes sense. A plain old text file would work
just fine.

Chapter 3

Exercise 1 Solution
This constraint means that all salespeople must have a salary or work on commission but they cannot
have both a salary and receive commissions.

Exercise 2 Solution
In Figure A-1, lines connect the corresponding database terms.

Attribute Row File

Relation Column Relationship

Foreign Key Table Virtual Table

Tuple Foreign Key Record

View Query Result Field

Figure A-1

Exercise 3 Solution
State/Abbr/Title is a superkey because no two rows in the table can have exactly the same values in
those columns.

Exercise 4 Solution
Engraver/Year/Got is not a superkey because the table could hold two rows with the same values for
those columns.

Exercise 5 Solution
The candidate keys are State, Abbrev, and Title. Each of these by itself guarantees uniqueness so it is a
superkey. Each contains only one column so it is a minimal superkey and therefore a candidate key.

All of the other fields contain duplicates and any combination that doesn’t have duplicates in the data
shown (such as Engraver/Year) is just a coincidence (someone could engrave two coins in the same year).
That means any superkey must include at least one of State, Abbrev, or Title to guarantee uniqueness so
there can be no other candidate keys.

411

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 412

Appendix A: Exercise Solutions

Exercise 6 Solution
The domains for the columns are:

❑ State: The names of the fifty U.S. states.

❑ Abbrev: The abbreviations of the fifty U.S. states.

❑ Title: Any text string that might describe a coin.

❑ Engraver: People’s names.

❑ Year: A four-digit year. More precisely, 1999 through 2008.

❑ Got: ‘‘Yes’’ or ‘‘No.’’

Exercise 7 Solution
Room/FirstName/LastName and FirstName/LastName/Phone/CellPhone are the possible
candidate keys.

CellPhone can uniquely identify a row if it is not null. If CellPhone is null, we know Phone is not null
because all students must have either a room phone or a cell phone. But roommates share the same Phone
value so we need FirstName and LastName to decide which is which. (Basically Phone/CellPhone gets
you to the Room.)

Exercise 8 Solution
In this case, FirstName/LastName is not enough to distinguish between roommates. If their room has a
phone, they might not have cell phones so there’s no way to tell them apart in this table. In this case, the
table has no candidate keys. That might be a good reason to add a unique column such as StudentId. (Or
if the administration assigns rooms, just don’t put two John Smiths in the same room. You don’t have to
tell them it’s because of your poorly designed database!)

Exercise 9 Solution
The room numbers are even so you could use Room Is Even (don’t worry about the syntax for checking
that a value is even). You could also use some simple range checks such as (Room > = 100) AND (Room <
300) depending on what room numbers are actually allowed.

You might also notice that every Phone value has the same area code and exchange 202-237 so you could
check for that.

Exercise 10 Solution
Every student must have a Phone or CellPhone value so you could check that (Phone <> null) OR
(CellPhone <> null).

412

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 413

Appendix A: Exercise Solutions

Chapter 4

Exercise 1 Solution
In Figure A-2, lines connect the customer roles with their corresponding descriptions.

Customer Role Description

Convert Someone who won't be around for long. May be
helpful or may not care all that much.

Answers your questions about the project.

Makes things generally run smoothly. Not glamorous
but very useful.

Provides a reality check and prevents groupthink.

Ranges from annoying naysayer to malicious
saboteur/super villain.

A user who originally was against your project that
you include in the development process to bring them
onto your side.

The highest ranking customer driving the project.
Willing to fight super villains.

Thoroughly understands the customers’ needs. Has
the authority to make decisions that stick.

Anyone who has an interest in the project.

Customer Champion

Customer Representative

Devil’s Advocate

Executive Champion

Generic Bad Guy

Short-Timer

Stakeholder

Sidekick/Gopher

Figure A-2

Exercise 2 Solution
A use case can cover any part of the customers’ operation including big or little pieces of the whole
process. In fact, it’s easier to test a big scenario if you break it into smaller pieces. The answer that doesn’t
describe a use case is:

c. Should cover the customer’s entire operation from start to finish.

Exercise 3 Solution
Brainstorming sessions should include everyone interested so the correct answer is:

d. All of the above.

Although technically Customer Representatives and the Devil’s Advocate are also Stakeholders.

413

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 414

Appendix A: Exercise Solutions

Exercise 4 Solution
The correct answer is:

b. Ask the customer why he thinks that.

You never know if the customer knows more than he’s admitting and he may have very good reasons
for suggesting that kind of database. Even if he’s wrong, the reasons he gives will tell you more about
the situation and may lead to other important insights.

Exercise 5 Solution
Whenever you don’t understand something about the customers’ operation you should ask someone so
the correct answer is:

a. Ask someone what that’s all about.

The answer you get may be as arbitrary as ‘‘that’s just the way Mark likes to do it’’ but in this fictitious
scenario the customers use the first date stamp to record when the order was received and the second to
indicate that the order entry operator looked at the back of the order to check for notes and comments.

If you didn’t ask, you might have incorrectly placed two date fields in the Orders table. Once the process
is online, however, you won’t need the second date because there is no ‘‘other side’’ of the order to check.
(Looking at the back of your computer monitor won’t tell you much.) All of the notes and comments will
be in a text box at the bottom of the online form.

Exercise 6 Solution
The following table summarizes the fields’ data requirements:

Field Required? Domain

Address 1 Yes Valid street addresses or street names without numbers.

Address 2 No Apartment, suite, floor, etc.

City Yes Valid cities.

State Yes Valid states.

ZIP Code No Five digit or ZIP+4 codes as in 12345 and 12345-6789.

The required fields are marked on the form with asterisks.

The form could use a foreign key validation for the City, checking against a table listing every city in the
country. It would be a huge table and would probably contain errors so in many applications this might
not be worth the effort. However, this application needs the city to look up the ZIP Code so if the City
isn’t legal the lookup will fail. (In fact, that may be the way to validate the data: see if you can look up
the ZIP Code.)

414

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 415

Appendix A: Exercise Solutions

The form could also verify that the ZIP Code is valid for the City, if the user enters both. Again the whole
point is to look up a ZIP Code so it would be easy to check it against any value that the user entered.

Exercise 7 Solution
Backup policy is a data reliability issue more than a security issue so the correct answer is:

c. The frequency with which you need to perform backups.

Although the two issues are often closely related. For example, in many applications backups must be
stored securely so sensitive data doesn’t fall into the wrong hands.

Exercise 8 Solution
The correct answer is:

d. It depends (you need more information).

This is probably a priority 1 or 2 feature, depending on how serious Frank is and how soon he wants to
add this feature. This doesn’t sound too complicated (it would probably just require a few new fields in
an inventory table or a new plant lookup table) so I would say if Frank is serious he should make this
a priority 1 feature and add it to the database design. I would also make this data not required in case
Frank doesn’t have time to enter all of this information right away for every kind of plant.

Exercise 9 Solution
The answer to this one depends on the operating system you’re using. I’m currently sitting at a computer
running Windows XP so here’s how my use case might read:

❑ Goals: Authorized users should be able to log in while unauthorized users should not.

❑ Summary: The user tries to enter a user name and password. If they are correct, the user is
allowed access to the system.

❑ Actors:

❑ The user — Tries to log in.

❑ The operating system — Validates the user name and password and grants or denies
access.

❑ Pre-conditions: No one is currently logged in to the system.

❑ Post-conditions: If the user enters a valid user name and password, the system is logged in and
displays the user’s desktop. If the user enters an invalid user name/password combination,
the system remains logged out and the user cannot see the desktop or any of the data in the
computer.

❑ Normal Flow: The user should try all of the possible combinations of blank, valid, and invalid
user names and passwords and click OK. The following table lists the combinations and their

415

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 416

Appendix A: Exercise Solutions

desired results. The tester should fill in the blank column with ‘‘Pass’’ or ‘‘Fail’’ to indicate
whether each test gave the desired result.

Username Password Desired Result Pass/Fail

Blank Blank No access

Blank Valid No access

Blank Invalid No access

Valid Blank No access

Valid Valid Access

Valid Valid for different account No access

Valid Invalid No access

Invalid Blank No access

Invalid Valid No access

Invalid Invalid No access

❑ Alternative Flow: Instead of clicking OK, the user could click Cancel. The system should reset
the screen, blanking the user name and password text boxes.

❑ Notes: In all cases that do not give the user access, the system should deny access in exactly the
same way so the user cannot learn, for example, that he has guessed a valid user name but an
invalid password. That would give a ne’er-do-well a valid user name to attack and that would
be bad.

Note that this use case specifies the user’s actions with enough detail that a relatively inexperienced user
could follow it.

Exercise 10 Solution
When a heavy hitter such as a Vice President attacks, you need to call in your Executive Champion.
Ideally he can point to your requirements document and show that you did, in fact, consider farbulistic
granilation and that everyone agreed the allowance was sufficient. If you didn’t consider this issue, you
may need to put in some extra study to give your Executive Champion ammunition to fend off the attack.

If your Executive Champion doesn’t have enough clout to fight off the Super Villain, you could be in
trouble.

One project I worked on really did have Super Villains and Executive Champions at that level in a pretty
big company (many tens of thousands of employees). I won’t bore you with the details but our Executive
Champion and Customer Champion spent a huge amount of time fending off attacks for about two years
before the project finished.

416

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 417

Appendix A: Exercise Solutions

Chapter 5

Exercise 1 Solution
Figure A-3 shows one possible solution.

PERSON STUDENT

INSTRUCTOR

COURSE

PROJECT PROJECT_RESULT

COURSE_RESULT

ID PersonID 1.1
 FirstName 1.1
 MiddleName 0.1
 LastName 1.1
 Street 1.1
 City 1.1
 State 1.1
 Zip 1.1
 Phone
 Type 1.1
 Number 1.1 0.N
 EmailAddress 0.1
 STUDENT 0.ST
 INSTRUCTOR 0.ST

ID StudentID 1.1
 PERSON p
 COURSE 0.N
 PROJECT 0.1
 COURSE_RESULT 0.N
 PROJECT_RESULT 0.N

ID InstructorID 1.1
 PERSON p
 COURSE 0.N
 PROJECT 0.N

Date 1.1
Grade 1.1
 COURSE 1.1
 STUDENT 1.1

Date 1.1
Grade 1.1
 PROJECT 1.1
 STUDENT 1.1

ID CourseId 1.1
 Description 1.1
 INSTRUCTOR 1.1
 STUDENT 5.N

ID ProjectId 1.1
 Description 1.1
 INSTRUCTOR 1.1
 STUDENT 1.5

Figure A-3

❑ In the STUDENT class, COURSE and PROJECT have cardinality 0.N and 0.1, respectively. This doesn’t
capture the fact that at least one of these two attributes must include at least one value.

❑ Similarly in the INSTRUCTOR class, does not capture the fact that at least one of the COURSE or
PROJECT attributes must include at least one value.

Exercise 2 Solution
Figure A-4 shows an inheritance diagram for the Person, Student, and Instructor entities. It also shows
the relationship between the Person and Phone entities.

The Phone entity doesn’t have a primary key because it doesn’t make sense to search for just a Phone
entity by itself. Instead, you can find the Phone entities corresponding to a Person entity. That means
Phone is a weak entity so it is surrounded by a thick rectangle and its identifying relationship is drawn
with a thick arrow.

417

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 418

Appendix A: Exercise Solutions

PhonePerson

IsA

Student Instructor

HasA
0.N1.1

StudentId

FirstName

MiddleName

LastName

Street

City

State

Zip
InstructorId

PersonId
Type Number

Figure A-4

Figure A-5 shows one possible ER diagram for the college course data.

Took

Takes

WorksOn

WorkedOn

Records

Records

Supervises

Teaches

CourseResult

Course

Project

InstructorStudent

0.N 0.N

ProjectResult
0.N

1.1

1.1

1.1

1.1

1.1

5.N

1.5

1.1

1.1

1.1

1.1

1.1

0.N

Grade Date

Grade Date

Figure A-5

418

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 419

Appendix A: Exercise Solutions

The diagram’s constraints are:

❑ It doesn’t make sense to look for a particular CourseResult so it doesn’t have a primary key.
Instead you can look for CourseResults associated with a Student or with a Course. That means
CourseResult is a weak entity so it is drawn with a thick rectangle and it is connected to its iden-
tifying relationships with thick arrows.

❑ Similarly ProjectResult is a weak entity.

❑ A Course must be involved in a relationship with a Student (or else the Course is canceled) so
its line leading toward Student is double (a participation constraint).

❑ Similarly a Project must be involved in a relationship with a Student so its line leading toward
Student is double (a participation constraint).

❑ A Course must be involved in a relationship with an Instructor (someone has to teach it) so its
line leading toward Instructor is double (a participation constraint). A Course can have only
one Instructor so the line is also an arrow (a key constraint).

❑ Similarly a Project must be involved in a relationship with exactly one Instructor so its line
leading toward Instructor is a double arrow (participation and key constraint).

❑ A Student can work on at most one Project at a time so its line leading to Project is an arrow
(key constraint).

Special notes:

❑ The Student entity’s relationships with Course and Project do not indicate that a Student must
be involved with at least one Course or a Project.

❑ Similarly the Instructor entity’s relationships with Course and Project do not indicate that an
Instructor must be involved with at least one Course or a Project.

Exercise 3 Solution
Figure A-6 shows one possible solution.

Notice the way this model handles the fact that Student and Instructor inherit from Person. The Per-
sons table holds the basic Person information and a PersonId. The Students and Instructors tables include
PersonId foreign keys to link to the corresponding basic Person data.

Note also the different approach used for the Student/Course and Instructor/Course relationships.
Because a course has exactly one instructor, the Instructors and Courses tables are connected with a
simple one-to-many relationship. In contrast, a course has many students so the relationship uses an
intermediate StudentCourses table to connect the two to build a many-to-many relationship. (The same
reasoning applies to the Student/Project and Instructor/Project relationships.)

Finally, notice the difference between the Student/Course and Student/Project relationships. A stu-
dent can be enrolled in any number of courses but at most one project so the first is a many-to-many
relationship while the second is a one-to-one relationship.

Unfortunately this solution doesn’t capture every aspect of the system either. In particular, it doesn’t
indicate that a Student must be enrolled in at least one Course or a Project. Similarly it doesn’t show that

419

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 420

Appendix A: Exercise Solutions

Phones Persons
PersonId

1
1

1
1

1

1
1

1

1

1

1

1

1

1

1

1
PersonId
FirstName
MiddleName
LastName
Street
City
State

StudentId

StudentId

StudentId

StudentId

ProjectId

ProjectId

ProjectId

PersonId

CourseId

CourseId

CourseId
InstructorId

InstructorId

InstructorId

Description

Description

DaysAndTime

DaysAndTime

Date

Date

Grade

Grade

Zip

Type
Number

PersonId
StudentId

Students

StudentCourses

CourseResults
Courses

Projects

Instructors

ProjectResults

StudentProjects

∞

∞
∞

∞

∞

∞

∞

∞

∞

∞

Figure A-6

an Instructor must teach at least one Course or supervise at least one Project. The model also doesn’t
include data type, required, and other domain data. All of this should be noted in separate documents.

Exercise 4 Solution
Figure A-7 shows one possible solution.

Special notes: The semantic object model actually does a pretty good job of capturing the Mike’s Trikes
data. About the only item that isn’t described explicitly is the manager’s role. In this model, you can
deduce the manager at any given time by examining the manager’s shift data. If Mike needed a more
explicit record of who is managing during a salesperson’s shift or when a contract was sold, the model
would need to be modified.

Exercise 5 Solution
Figure A-8 shows an inheritance diagram for the Person, Customer, Salesperson, and Manager entities.
It also shows the relationship between the Person and Phone entities.

420

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 421

Appendix A: Exercise Solutions

PERSON SALESPERSON

CUSTOMER

CONTRACT

SHIFT

PAYMENT

ID PersonID 1.1
 FirstName 1.1
 MiddleName 0.1
 LastName 1.1
 Street 1.1
 City 1.1
 State 1.1
 Zip 1.1
 Phone
 Type 1.1
 Number 1.1 0.N
 EmailAddress 0.1
 SALESPERSON 0.ST
 CUSTOMER 0.ST

ID SalespersonID 1.1
 PERSON p
 SHIFT 0.N
 CONTRACT 0.N
 MANAGER 0.ST

ID CustomerID 1.1
 Balance 1.1
 PERSON p
 CONTRACT 0.N
 PAYMENT 0.N

Date 1.1
Amount 1.1
 CUSTOMER 1.1

ID ContractId 1.1
 CUSTOMER 1.1
 SALESPERSON 1.1

 Date 1.1
 StartTime 1.1
 StopTime 1.1
 SALESPERSON 1.1

MANGER
ID MangerID 1.1
 SALESPERSON p

Figure A-7

PhonePerson

IsA

HasA
0.N1.1

CustomerId

FirstName

MiddleName

LastName

Street

City

State

Zip
Balance

IsA

PersonId

SalespersonId

ManagerId

Manager

Type Number

Customer Salesperson

Figure A-8

421

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 422

Appendix A: Exercise Solutions

The Phone entity doesn’t have a primary key because it doesn’t make sense to search for just a Phone
entity by itself. Instead, you can find the Phone entities corresponding to a Person entity. That means
Phone is a weak entity so it is surrounded by a thick rectangle and its identifying relationship is drawn
with a thick arrow.

Figure A-9 shows one possible ER diagram for Mike’s Trikes.

1.N
0.N

0.N

0.N

0.N 1.1

1.1

1.1
1.1

1.1

Makes

Purchases

Salesperson

Customer

Sells

Works

Manages

Payment

Contract

Shift

Manager

Figure A-9

The diagram’s constraints are:

❑ Payment is a weak entity because you look up payments via the Customer who made them.
Payment is drawn with a thick rectangle and a thick arrow pointing toward its identifying
relationship.

❑ Shift is also is a weak entity because you look up shift data via the Salesperson who works
them. Shift is drawn with a thick rectangle and a thick arrow pointing toward its identifying
relationship.

❑ A Customer must be involved in at least one Contract (we don’t make a Customer record until
Customer Purchases Contract) so its line leading toward Contract is double (a participation
constraint).

❑ A Contract must have exactly one Customer and exactly one Salesperson so the lines leading
out of Contract toward those other entities are double (participation constraint) and arrows (key
constraint).

422

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 423

Appendix A: Exercise Solutions

Special notes:

❑ This diagram does not emphasize the fact that a Manager is also a Salesperson so a manager
could play the role of the Salesperson in the diagram. You could add the Manager Works Shift
relationship but that would complicate the diagram.

Exercise 6 Solution
Figure A-10 shows one possible solution.

Phones
PersonId
Type
Number

Payments
Date
Amount
CustomerId

Customers
PersonId
CustomerId
Balance

Contracts
ContractId
CustomerId
SalespersonId

Salespersons
PersonId Shifts

SalespersonId
Date
StartTime
StopTime

Managers
SalespersonId

Persons
PersonId
FirstName
MiddleName
LastName
Street
City
State
Zip
EmailAddress

Salespersonld

Managerld

1 1
1

1
1 1

1 1

1

1

1

∞

∞ ∞
∞ ∞

Figure A-10

Notice how this model builds the inheritance hierarchy. The Customers and Salespersons tables use
PersonId foreign key fields to link to their corresponding Persons records. The Managers table uses a
SalespersonId foreign key field to link to Salespersons records.

As usual, the model doesn’t capture all of the information available about the situation. In particular,
it doesn’t indicate that a Customers record must be associated with at least one Contracts record. You
should write down this and other facts such as field data types and domain information in separate
documents.

Exercise 7 Solution
Figure A-11 shows one possible solution.

423

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 424

Appendix A: Exercise Solutions

HOUSE
NumBeds 1.1
NumBaths 1.1
SquareFeet 1.1
 CAMPER 0.ST

VEHICLE
Make 1.1
Model 1.1
Year 1.1
HorsePower 1.1
MilesPerGallon 1.1
 CAR 0.ST
 TRUCK 0.ST

CAR
Stereo 1.1
 VEHICLE p

TRUCK
LoadLimit 1.1
 CAMPER 0.ST
 VEHICLE p

CAMPER
Sleeps 1.1
 HOUSE p
 TRUCK p

Figure A-11

Exercise 8 Solution
Figure A-12 shows one possible solution.

IsA

IsA

IsA

Vehicle

Truck

NumBeds Make

Model

Year

Stereo

LoadLimit
CamperSleeps

MilesPerGallon

Car

House

NumBaths SquareFeet

Figure A-12

Chapter 6

Exercise 1 Solution
The following chart describes the Phones table.

424

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 425

Appendix A: Exercise Solutions

Field Required Data Type Domain Sanity Checks

PersonId Yes ID Persons.PersonId

Type Yes String List: Cell, Home, Fax

Number Yes String Phone numbers

The following chart describes the Persons table.

Field Required Data Type Domain Sanity Checks

PersonId Yes ID Any ID

FirstName Yes String Any string

MiddleName No String Any string

LastName Yes String Any string

Street Yes String Any string

City Yes String Any string

State Yes String List: (states)

Zip Yes String ZIP or ZIP+4 format Verify ZIP or ZIP+4 format

EmailAddress No String Valid email address Contains one @ symbol

MedicalNotes ? String Any string

IceQualified? ? Yes/No Yes or No

RockQualified? ? Yes/No Yes or No

JumpQualified? ? Yes/No Yes or No

The following chart describes the Guides table.

Field Required Data Type Domain Sanity Checks

PersonId Yes ID Persons.PersonId

GuideId Yes ID Any ID

IceInstructor? Yes Yes/No Yes or No

RockInstructor? Yes Yes/No Yes or No

JumpInstructor? Yes Yes/No Yes or No

425

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 426

Appendix A: Exercise Solutions

The following chart describes the Explorers table.

Field Required Data Type Domain Sanity Checks

PersonId Yes ID Persons.PersonId

ExplorerId Yes ID Any ID

The following chart describes the Organizers table.

Field Required Data Type Domain Sanity Checks

PersonId Yes ID Persons.PersonId

OrganizerId Yes ID Any ID

The following chart describes the Adventures table.

Field Required Data Type Domain Sanity Checks

AdventureId Yes ID Any ID

ExplorerId Yes ID Explorers.ExplorerId

EmergencyContact Yes ID Persons.PersonId

OrganizerId Yes ID Organizers.OrganizerId

TrekId Yes ID Treks.TrekId

DateSold Yes Date Any date Before the trek’s start date.
Between January 1, 2000 and
December 31, 2050 (or some
other very early and late dates).

IncludeAir? Yes Yes/No Yes or No

IncludeEquipment? Yes Yes/No Yes or No

TotalPrice Yes Currency Monetary amount > $0 Price > $250 (or some minimum
sane value).

Notes ? Yes/No Yes or No

The following chart describes the Treks table.

Field Required Data Type Domain Sanity Checks

TrekId Yes ID Any ID

GuideId Yes ID Guides. GuideId

426

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 427

Appendix A: Exercise Solutions

Field Required Data Type Domain Sanity Checks

Description Yes String Any string Length > 100 (anything shorter
couldn’t say enough).

Locations Yes String List of locations Length > 5.

StartLocation Yes String A location Length > 5.

EndLocation Yes String A location Length > 5.

StartDate Yes Date Any date StartDate is on or before EndDate.
Between January 1, 2000 and
December 31, 2050 (or some other
very early and late dates).

EndDate Yes Date Any date EndDate is on or after StartDate.
Between January 1, 2000 and
December 31, 2050 (or some other
very early and late dates).

Price Yes Currency Monetary amount > $0 Price > $250 (or some minimum
sane value). Price > some minimum
price per day times the number of
days (EndDate–StartDate).

MaxExplorers Yes Number Number > 0 Number > 0. Number < 20 (or
some maximum sane amount).

IceRequired? Yes Yes/No Yes or No

RockRequired? Yes Yes/No Yes or No

JumpRequired? Yes Yes/No Yes or No

Exercise 2 Solution
The following list describes business rules that can be implemented in field or table checks for the Phones
table:

❑ Type: Verify that the type is one of Home, Work, Cell, or Fax. Alternatively if you think this list
might change in the future, you could put these values in a lookup table.

❑ Number: Verify that the value has a valid phone number format. In the United States, you would
probably want to verify that it is a 10-digit number of the format ###-###-#### and you should
allow for an extension.

The following list describes business rules that can be implemented in field or table checks for the Persons
table:

❑ FirstName/MiddleName/LastName: Verify that this combination is unique. This will prevent
you from adding the same person twice, perhaps as an explorer and as an emergency contact.

427

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 428

Appendix A: Exercise Solutions

It would also be natural to try to validate the EmailAddress field in a field check. Unfortunately valid
email address formats are quite complicated so this probably doesn’t belong in the simpler field and
table checks.

Similarly it might be nice to look up the explorer’s City, State, and Zip values to make sure they are
compatible. If you build a table listing all of the possible combinations, this wouldn’t be a hard check
but it would be an enormous table so it’s probably not worth all of the extra effort. (Although for bonus
points you could probably use a Web Service to perform this check over the Internet. If you don’t know
what a Web Service is, don’t worry about it.)

You could also look up the State value in a list built into a field check. Though it’s unlikely that the list
of allowed states will change often, this list is so long that it’s easier to manage in a separate lookup table
rather than in a very long field check. (And who knows, Canada may eventually be officially recognized
as ‘‘The Maple Leaf State.’’) (Just kidding! But this does bring up a whole series of questions about non-US
explorers. This model ignores those issues completely.)

The Explorers, Organizers, and Guides tables should verify that their records are unique. That means
checking uniqueness for the Explorers table’s PersonId/ExplorerId fields, the Organizers table’s Per-
sonId/OrganizerId fields, and the Guides table’s PersonId/GuideId fields.

The following list describes business rules that can be implemented in field or table checks for the Adven-
tures table:

❑ (Table): Verify that the trek has room for this explorer.

❑ (Table): Verify that the explorer’s IceQualified?, RockQualified?, and JumpQualified? values
include those required for this trek.

❑ ExplorerId/TrekId: Verify that this combination is unique. An explorer should not buy the same
trek twice. (We’re assuming that the same trip on different dates gets a different record in the
Treks table. Some people may very well want to go to the same places again.)

❑ EmergencyContact: Verify that the EmergencyContact is not going on the same trek listed for
this Adventures record.

❑ IncludeAir?/Notes: If IncludeAir? is Yes, the Notes field should include flight information such
as the explorer’s starting airport and meal preferences. The database can probably not verify that
the notes make sense (who knows if the low sodium meal is available on that flight?) but it can
verify that the Notes entry has some minimum length if IncludeAir? is Yes.

The Adventures table would be a natural place to try to deal with the discounts for purchasing airline
tickets or renting equipment. You would set TotalPrice equal to the trek’s cost minus any discounts.
(Note that this model doesn’t have room to hold information about the equipment rented. The full model
would need more order-related information along those lines.)

In any case, the discount schedule seems likely to change so it’s better handled later, not in a simple field
or table check.

The following list describes business rules that can be implemented in field or table checks for the Treks
table:

❑ (Table): Verify that the guide’s IceQualified?, RockQualified?, JumpQualified?, IceInstructor?,
RockInstructor?, and JumpInstructor? values include those required for this trek.

428

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 429

Appendix A: Exercise Solutions

Exercise 3 Solution
The following list summarizes business rules that should be extracted from the database’s structure:

❑ If you really want to validate email addresses, it would be better to do so outside of the field and
table checks. You could put this code in a stored procedure, code library, or middle tier.

❑ If you use a lookup table to validate phone number types (Home, Work, Cell, or Fax), do so here.

❑ If you’re going to perform a complex City/State/Zip lookup, this is where to do it. You might
use a huge table or you might call a Web Service over the Internet.

❑ If you use a lookup table to validate State values, do so here.

❑ This is where you would calculate an adventure’s TotalPrice. You would look up discount infor-
mation stored in a separate table and perform the calculation. You could put this code in a stored
procedure, code library, or middle-tier layer.

❑ The fact that one of the company’s owners asked which calculation would give the customer
the biggest discount if they both purchase airline tickets and rent equipment (adding the two
discounts and take 15% off gives the biggest discount) further implies that they might someday
change the way they perform this calculation. That gives you more reason to extract this rule
from the database so it’s easier to change later.

❑ If the adventure’s IncludeAir? value is Yes, you could try to parse the Notes field to see if the
flight and meal information is present. I’ve seen several systems that make these sorts of checks,
mostly because their requirements changed after the database was built and they couldn’t easily
modify the database. If you really need this check, you should move the flight and meal informa-
tion into separate fields so they are easier to find and examine.

Exercise 4 Solution
The PhoneTypes table would have only one field: Type. The records would initially include Home, Work,
Cell, and Fax.

The States table would have only one field: State. The records would list all of the allowed State values:
AL, AK, AS,..., WY.

The DiscountParameters table would have two fields: Type and Amount. Type would give the discount
type (Air or Equipment) and Amount would be the discount amount (15% or 5%).

An additional Parameters table would have two fields: Name and Value. This table would hold param-
eters used in other calculations so they would be easier to update than they would be if they were
embedded in check constraints. The following table describes the initial values in this table.

Name Value Purpose

MinimumDate January 1, 2000 Sanity check date for DateSold, StartDate, and EndDate.

MaximumDate December 31, 2000 Sanity check date for DateSold, StartDate, and EndDate.

MinimumTotalPrice $250 Sanity check price for an Adventure’s TotalPrice.

MinimumTrekPrice $250 Sanity check price for a Trek’s Price.

429

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 430

Appendix A: Exercise Solutions

Name Value Purpose

MinimumPricePerDay $100 Sanity check minimum price per day for a Trek’s Price.

MaximumExplorers 20 Sanity check maximum number of explorers on a trek.

Chapter 7

Exercise 1 Solution

a. The list isn’t in 1NF because it violates these 1NF rules:

1. Each column must have a unique name.

The two Email fields have the same name.

2. The order of the rows and columns doesn’t matter.

The order of the Email columns represents the student’s preferred email address.

3. Each column must have a single data type.

The MajorOrSchool field holds both majors and schools.

5. Each column must contain a single value.

The Name field contains the student’s first and last names together.

Let’s take these rules one at a time.

1. Each column must have a unique name.

The two Email fields have the same name. You could fix this problem by giving them
different names. For example, you could name them Email1 and Email2. The numbers
would indicate the student’s preferred email address solving the problem with Rule 2.
This is the approach taken by the Phone1 and Phone2 fields so it might work, right?

Not really. There’s another equally important issue here. These two Email fields represent
the same kind of data with only a minor difference: priority. Aside from the student’s
preference of which comes first, the two fields hold identical values. How do we know
you won’t want to add a third email address later? You’ve already got two, why not three
or four? Simply renaming the fields solves the duplicate name issue but locks you in to
exactly two email addresses. Not only would that prevent you from adding more email
addresses, but in many cases the second field would be empty. It’s also flirting with 1NF
rule number 6: Columns cannot contain repeating groups.

A better solution to the multiple Email field problem would be to pull those fields into a
new StudentEmails table.

While we’re thinking about multiple fields holding the same kind of data, let’s take a
closer look at the Phone1, PhoneType1, Phone2, and PhoneType2 fields. Though they
have different names, they also represent the same kind of information and you’re prob-
ably even more likely to want a third phone number than you are to want a third email

430

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 431

Appendix A: Exercise Solutions

address. Though these fields technically don’t violate 1NF (aside from Rule 6), it’s proba-
bly worthwhile moving them into a new StudentPhones table.

2. The order of the rows and columns doesn’t matter.

The order of the Email columns represents the student’s preferred email address. The new
StudentEmails table should have a Priority column to capture the student’s preference.
Similarly the new StudentPhones table should have a Priority column to indicate the stu-
dent’s preference.

3. Each column must have a single data type.

The MajorOrSchool field holds both majors and schools. It should be split into Major and
School fields. Note that a student has a school whether he has a major or not so the School
field should always contain a value while the Major field may contain null.

5. Each column must contain a single value.

The Name field contains the student’s first and last names together. Here you need to
decide whether the name value is atomic. In other words, will you ever need to do some-
thing with just a first name or just a last name? Chances are good that you’ll want to at
least be able to search for last names (so you can easily look up students) so you should
split this field into FirstName and LastName fields.

b. Figure A-13 shows a relational diagram for this model.

StudentId
Students

FirstName
LastName

1

1

Major
School

StudentId
StudentEmails

Email
Priority

StudentId
StudentPhones

Phone
Type
Priority

∞

∞

Figure A-13

Exercise 2 Solution

a. The list isn’t in 1NF because it violates these 1NF rules:

2. The order of the rows and columns doesn’t matter.

The order of the rows represents the rows’ priorities.

5. Each column must contain a single value.

The Items column contains a comma-separated list of values.

b. The following table shows one way to convert the list into 1NF.

431

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 432

Appendix A: Exercise Solutions

Location Item Priority

Grocery store milk 1

Grocery store eggs 1

Grocery store bananas 1

Office supply store paper 2

Office supply store pencils 2

Office supply store divining rod 2

Post Office stamps 3

Computer store flash drive 4

Computer store 8 ’’ floppy disks 4

The primary key for this table is the combination Location/Item.

Exercise 3 Solution

a. The list isn’t in 2NF because it violates the 2NF rule:

2. All of the non-key fields depend on all of the key fields.

The Priority field depends on Location but not Item. That’s why its values are repeated so
many times in the table.

b. The solution is to pull the non-key field (Priority) out into a new table and use the key field that
it depends on (Location) as the link to the original data. Figure A-14 shows the new relational
design.

Location
LocationItems

Item
Location
LocationPriorities

Priority

1∞

Figure A-14

Figure A-15 shows the new tables holding the original data.

Exercise 4 Solution

a. The list isn’t in 3NF because it violates the 3NF rule:

2. It contains no transitive dependencies.

432

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 433

Appendix A: Exercise Solutions

LocationItems LocationPriorities
ItemLocation Location Priority

Grocery store Grocery store 1milk
eggs
bananas
paper
pencils
divining rod
stamps
flash drive
8" floppy disks

Grocery store
Grocery store
Office supply store
Office supply store

Office supply store 2

Office supply store

Computer store
Computer store

Computer store 4

Post Office

Post Office 3

Figure A-15

In this table, the Department field depends on the Project. Because those fields are not key
fields, this is a transitive dependency.

b. The solution is to pull the dependent field (Department) out into a new table and use the field
that it depends on (Project) as the link to the original data. Figure A-16 shows the new rela-
tional design.

Employee
EmployeeProjects

Project
Project
ProjectDepartments

Department

1

∞
Figure A-16

Figure A-17 shows the new tables holding the original data.

ProjectEmployee Project Department
Bill Michaels Network Routing Network LabNetwork Routing

Network Routing
Net Services Analysis
Survey Design
Survey Design
Work Assignment
Work Assignment

Mandy Ponem
Mike Mix
Deanna Fole
Julie Wish

Net Services Analysis Human Factors

Alice Most

Work Assignment Network Lab

Josh Farfar

Survey Design Human Factors

Figure A-17

Exercise 5 Solution

a. The table isn’t in 5NF because it violates the 5NF rule:

2. It contains no related multi-values dependencies.

433

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 434

Appendix A: Exercise Solutions

In this table, Person determines Food (the type the person can make), Person determines
Tools (those in the person’s kitchen), and Tool partially determines Food (you can’t make
muffins without a muffin tin). This makes a related multi-value dependency.

Figure A-18 shows an ER diagram for this model.

Person
PersonFoods

Food
Person

PersonTools

Tool

Tool
ToolFoods

Food

∞ ∞
∞∞

∞
∞

Figure A-18

b. The solution is to break the single table into three new tables that record the three different rela-
tionships: Person/Food, Person/Tool, and Tool/Food. Figure A-19 shows the new relational
model.

PersonFoods
Person

Alice Muffins
Omelets

Omelets

Omelets

Pancakes

Pancakes

Muffins

Alice
Alice
Bob
Bob
Bob
Cyndi

Food
PersonTools

Person
Alice Muffin tin

Muffin tin

Omelet pan

Omelet pan
Pancake griddle

Pancake griddle

Alice
Alice
Bob
Cyndi
Cyndi

Tool
ToolFoods

Tool
Muffin tin Muffins

Omelets
Pancakes

Omelet pan
Pancake griddle

Food

Figure A-19

Exercise 6 Solution
Figure A-20 shows the matching between normal forms and their rules.

Chapter 8

Exercise 1 Solution
The following ShipClasses table contains the allowed combinations of Ship and Class.

434

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 435

Appendix A: Exercise Solutions

First Normal Form

It contains no transitive dependencies.

Third Normal Form

Second Normal Form

Boyce/Codd Normal Form

Fourth Normal Form

Fifth Normal Form

Domain/Key Normal Form

Columns cannot contain repeating groups.
Each column must contain a single value.

Every determinant is a candidate key.

No two rows can contain identical values.
Each column must have a single data type.

The table contains no constraints except
domain constraints and key constraints.

It contains no related multi-valued
dependencies.

All of the non-key fields depend on all of
the key fields.

The order of the rows and columns doesn't
matter.

Each column must have a unique name.

It does not contain an unrelated multi-
valued dependency.

Figure A-20

Ship Class

Luxury Liner 1st Class

Luxury Liner 2nd Class

Luxury Liner 3rd Class

Luxury Liner 4th Class

Luxury Liner 5th Class

Schooner 1st Class

Schooner 2nd Class

Tuna Boat 1st Class

Because the validation involves two fields, this must be a two-field foreign key constraint. In the Trips
table, the combination of fields Ship/Class will be a foreign key referencing the ShipClasses table’s
Ship/Class fields.

Exercise 2 Solution
The Students table holds information about students so it is an object table. Similarly the Departments
table holds information about the school’s departments and the Classes table holds information about
classes so they are also object tables.

435

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 436

Appendix A: Exercise Solutions

The StudentClasses table links the Students and Classes tables so it is a link table. Similarly the Depart-
mentClasses table links the Departments and Classes tables so it is also a link table.

Exercise 3 Solution
This table is trying to hold information about three different concepts: the first player, the second player,
and the match they will play.

To fix it, create a Players table with fields PlayerId, Name, and Rank. Put all of the player information
in this table for all of the Player1 and Player2 entries. This is an object table holding information about
players.

Then create a Matches table that has fields PlayerId1, PlayerId2, and MatchTime. This is a link table that
links the Players table to itself. It also holds extra information about the link: the times of the matches.

Exercise 4 Solution

a. Average minutes late for an airline at a particular airport.

This will require finding and averaging up to a few hundred values so it should be possible to
calculate as needed.

b. Average minutes late for all airlines at a particular airport.

This will require finding and averaging several hundred values. It may still be possible to per-
form this calculation as needed.

c. Average minutes late for an airline across the country.

This could require a lot of calculations. If this is a common query (for example, if lots of people
are asking for this information all over the country hundreds of times per day), it might be bet-
ter to store and update the information as planes take off and land rather than calculating it as
needed.

d. Average minutes late for all airlines across the entire country.

This will require a huge number of calculations. This could take quite a while even if the
database isn’t heavily used so it might be best to store this value rather than calculating it as
needed.

Of course, as long as you’re going to store some of these values, you might want to just store
them all so you can treat them uniformly.

Chapter 9

Exercise 1 Solution
Figure A-21 shows an ER diagram to represent Parcheesi matches.

436

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 437

Appendix A: Exercise Solutions

Plays AgainstPlayer
2.4

2.4

Figure A-21

Exercise 2 Solution
Figure A-22 shows a relational model for recording information about Parcheesi matches. PlayerId1
finished first, PlayerId2 finished second, PlayerId3 finished third, and PlayerId4 finished fourth.

Players 1 ∞
∞
∞
∞

111Name

PlayerMatches
Date
Time
PlayerId1
PlayerId2
PlayerId3
PlayerId4

PlayerId

Figure A-22

Exercise 3 Solution
Figure A-23 shows an ER diagram that represents the relationships between Match, Move, and Ply.

PlaysPlayer
2.2

ContainsMatch
1.1

ContainsMove Ply
1.1

1.N

1.N

2.2

Figure A-23

Exercise 4 Solution
Figure A-24 shows a relational model for recording chess Match, Move, and Ply data.

Players 1

∞

1 ∞

∞
1Name

Matches
MatchId
Date
PlayerIdWhite
PlayerIdBlack

Moves
MoveId
MatchId
MoveNumberPlayerId

21
Plies

MoveId
PlyNumber
Movement
MoveName
Commentary

Figure A-24

437

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 438

Appendix A: Exercise Solutions

You can model the one-to-two relationship between Moves and Plies by making the domain of the
PlyNumber field include the values 1 and 2. You can implement that as a field-level check constraint
on PlyNumber. Note that the fact that MoveId/PlyNumber is the Plies table’s primary key ensures that
each move cannot contain two plies with the same PlyNumber.

Exercise 5 Solution
Figure A-25 shows the chess model without the Moves table.

Players 1

∞
∞

1Name

Matches
MatchId MatchId
Date
PlayerIdWhite
PlayerIdBlack

PlayerId
∞1

Plies

PlyNumber
Movement

MoveNumber

MoveName
Commentary

Figure A-25

The new diagram doesn’t explicitly show that there should be exactly two plies per move. It has con-
verted the old one-to-two relationship into a new one-to-many relationship.

The database still needs to verify that there are only two plies per move. You can still use
a field-level check constraint to verify that the PlyNumber is either 1 or 2. The fact that
MatchId/MoveNumber/PlyNumber is the Plies table’s primary key ensures that any move in a
given match cannot contain two plies with the same PlyNumber.

Exercise 6 Solution
The network solution described earlier in Chapter 9 and shown in Figure A-26 uses two tables. The Nodes
table holds node IDs and coordinates. The Links table holds link times and the IDs of the nodes that the
link connects.

Nodes 1 ∞
∞1X

Y

Links
FromNodeId
ToNodeId
LinkTime

NodeId

Figure A-26

This exercise is slightly different because it is an undirected network. In other words, each link has the
same ‘‘value’’ no matter which direction you cross it. The solution shown in Figure A-26 isn’t perfect
because the FromNodeId and ToNodeId fields imply a direction for the link. To use this design you
would either need to recognize that a Links record connecting node1 to node2 also represents a link
connecting node2 with node1. Or you could insert two records for each link with the order of the node
IDs switched, but that would double the number of records and all of that duplication screams out, ‘‘I’m
not normalized!’’

438

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 439

Appendix A: Exercise Solutions

In normalization terms, FromNodeId and ToNodeId store the same kind of data. For a directed network,
the two fields are not exactly the same thing so there’s some benefit to using two fields with different
names to store their data and differentiate them.

Normalization purists would say that the link’s node data should be moved into a new table with an
extra field to tell you which was the ‘‘from’’ node and which was the ‘‘to’’ node. For a directed network,
the extra layer of indirection seems like a lot of work for little benefit. In addition to making you follow
extra links to find the data, you would also need to perform some new validations to ensure that every
link corresponded to exactly two nodes.

However, this more normalized design works somewhat better for an undirected network because mov-
ing the link’s nodes into a new table removes the implication that one is the ‘‘from’’ node and one is the
‘‘to’’ node.

You still need a way to ensure that each link has two nodes, however. One way to do that is to give
the new table a NodeNumber field to indicate which node this is, make the domain of NodeNumber
be the numbers 1 and 2, and make LinkId/NodeNumber the primary key. That ensures that any link can
have only two nodes. This design is shown in Figure A-27.

Links
1 2 1

∞PipeDiameter

LinkNodes
LinkId
NodeNumber
NodeId

LinkId
Nodes

X
Y

NodeId

Figure A-27

This is the same as the normalized design for a directed network. The only difference is that in the undi-
rected network you treat the NodeNumber field as a simple index to ensure that a link has two nodes
whereas in a directed network you use that field to tell which node is ‘‘from’’ and which is ‘‘to.’’

Exercise 7 Solution
This is fairly straightforward temporal data. Figure A-28 shows a model to hold cheese item data. A
CheeseItem record would probably hold other information such as the quantity of cheese purchased, the
lot number, and so forth.

CheeseItem
CheeseItemId
CheeseType
SellByDate

Figure A-28

Exercise 8 Solution
Figure A-29 shows the new model to hold cheese item data. Instead of a SellByDate, this version stores
the date the cheese was made and a link leading to the shelf life.

439

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 440

Appendix A: Exercise Solutions

CheeseItem
CheeseItemId
CheeseTypeId
MadeDate

CheeseType

ShelfLife
CheeseTypeId∞ 1

Figure A-29

In the model, the CheeseItem table is the same size as the model for Exercise 7 and there’s a new table,
so you could ask if this is an improvement. In terms of looking up expiration data for a particular cheese
item, however, this model isn’t an improvement. It takes more space and requires an extra lookup plus a
calculation (MadeDate + ShelfLife) to find the cheese item’s sell-by date.

However, this model provides more consistency because it ensures that each item of a particular kind of
cheese uses the same shelf life.

Chapter 10

Exercise 1 Solution
This table has a lot of problems. Specific problems include:

❑ The Name field includes two logical fields, FirstName and LastName, so the table isn’t even in
First Normal Form.

❑ Your client plans to look up the state from the Zip value. Why doesn’t he also look up the city?
The table should be changed to either also look up the city or have separate City, State, and Zip
fields (the second option is a lot easier).

❑ The two phone number fields are not differentiated. In other words, how do you know which
number is a home phone, cell phone, or work phone? Which is the daytime number and which is
the evening number? These fields should be moved into a Phones table with an additional field
indicating the type of the phone number.

❑ Two phone numbers is also an arbitrary limit. Some day a customer will probably want to leave
more than two numbers. When you create the Phones table, you should not restrict a customer
to two entries.

❑ The Address field has a bad name because Address implies that the field contains an entire
address when in fact it only contains the street information. This field’s name should be
something like Street or StreetAddress.

❑ The Stuff field has a terrible name because ‘‘Stuff’’ could mean just about anything! This field’s
name should be changed to Interests.

❑ The freshly renamed Interests field lists more than one value. (The fact that the name is plural is
a hint.) This field’s data should be moved into a new CustomerInterests table. You should also
make an Interests lookup table to list the allowed values so CustomerInterests can use it as a
foreign key constraint.

❑ Planning for future changes, you might also suggest adding an Email field.

Your client’s assumption that you can just build Orders and other tables implies the plan isn’t very well
thought out. This project definitely needs a lot more planning and a complete database design before

440

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 441

Appendix A: Exercise Solutions

you start slapping tables together. This kind of homegrown project also rarely includes documentation
of any kind so you’ll need to do a lot of documentation work early in the project. (Though this type of
project often provides many hours of lucrative consulting later for debugging, it’s the frustrating kind of
consulting.)

Exercise 2 Solution
Because this client is opening a new store, you should wonder if they will grow even more in the next few
years. Blu-ray is also a brand new technology and, if it becomes as popular as current growth indicates,
demand for rentals could skyrocket.

This database will need extra testing at very high loads to verify that the database design can meet
ever-increasing performance demands.

In contrast, a well-established party rental store probably won’t experience explosive growth in the
near future because it’s been around for a while and it isn’t selling new technology. You still need to
thoroughly test their application but your load testing doesn’t need to run at loads as far beyond the
current level.

Exercise 3 Solution
This table is hyper-normalized. Though you can break a street address into name, number, prefix, and
so forth, there are very few applications where that is necessary. If you will only ever need to use the
address information to send mail to someone, you can combine all of this information in a single Street
field. You can even include the apartment or suite number.

Similarly you can probably combine the Zip and PlusFour fields into a single Zip field. If you’re only
going to use the ZIP Code to write addresses, there’s no need to use separate fields.

The Floor and Neighborhood information is also probably not useful. (Although if your business is
renting apartments, you might want to be able to search for ground floor apartments or apartments
within a certain neighborhood. In that case, these fields might make sense.)

Here’s the new list of fields:

❑ CustomerId

❑ Street

❑ City

❑ State

❑ Zip

Exercise 4 Solution
In this model, the Phones table is fairly unconstrained because it allows a person to have any number
of any type of phone number. All of the fields are required. Some other validations that you could build
into the database include:

441

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 442

Appendix A: Exercise Solutions

Field Constraint Implementation

PersonId Exists Foreign key match to Persons.PersonId.

Type Enumerated value Foreign key match to new PhoneTypes table.

Number Format Let the database verify that the value has format ###-###-####.

In the Persons table, every field except MiddleName should be required. The table can implement the
following constraints:

Field Constraint Implementation

State Enumerated value Foreign key match to new States table.

Zip Format Let the database verify that the value has format #### or ####-####.

All of the fields in the Courses and Projects tables should be required, although you may want to allow
a blank InstructorId and DaysAndTime so you can create a course before you’re ready to schedule it.
This table should also have a foreign key constraint requiring that the InstructorId exist in the Instructors
table.

The Students and Instructors tables should require all fields. They should also have a foreign key con-
straint requiring that their PersonId fields have values that exist in the Persons table.

StudentCourses and StudentProjects are linking tables used to implement many-to-many relationships.
Their fields should be required and foreign key constraints should verify that their values exist in the
corresponding tables.

CourseResults and ProjectResults are also linking tables that implement many-to-many relationships.
They should require all fields and foreign key constraints should verify that their ID values exist in the
corresponding tables.

CourseResults and ProjectResults should also use constraints to verify that the Grade fields contain
acceptable values. If Grade is numeric, a check constraint should verify that it is between 0 and 100 (or
whatever scale the school uses). If the Grade value includes A+, A, A-, B+, and so forth, the tables should
use foreign key constraints to verify that the Grade exists in a new PossibleGrades table.

Finally, you could check that the Date fields in the CourseResults and ProjectResults tables come after
the corresponding student’s enrollment date.

Chapter 11

Exercise 1 Solution
The following table summarizes the Course entity’s fields.

442

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 443

Appendix A: Exercise Solutions

Field Req’d? Data Type Domain

Title Yes String Any string

Description Yes String Any string.

MaximumParticipants Yes Integer > 0

Price Yes Currency > 0

AnimalType Yes String One of Cat, Dog, Bird, Bat, and so on.

Dates Yes String List of dates.

Time Yes Time Between 8am and 11pm.

Location Yes String One of Room 1, Room 2, yard, arena, and so on.

Trainer No Reference The Employee teaching the course.

Students No Reference Customers table.

Because the Dates and Time fields are required, we cannot create a course until it is scheduled.

A more complex validation for new records should verify that there are no other courses scheduled for
the same location with overlapping dates and times.

Exercise 2 Solution
The following table summarizes the Employee entity’s fields.

Field Req’d? Data Type Domain

FirstName Yes String Any first name.

LastName Yes String Any last name.

Street Yes String Any street name and number. Not validated.

City Yes String Any city name. Not validated?

State Yes String Foreign key to States table.

Zip Yes String Valid ZIP Code. Not validated?

Email No String Valid email address. If provided, send the customer a
monthly email newsletter.

HomePhone No String Valid 10-digit phone number.

CellPhone No String Valid 10-digit phone number.

SocialSecurityNumber Yes String Valid Social Security number.

Specialties No String Zero or more of: Dog, Cat, Horse, Bird, Fish, Snail,
and so on.

443

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 444

Appendix A: Exercise Solutions

Exercise 3 Solution
Alicia and The Pampered Pet employees think of work shift assignments as coming in one week batches.
Alicia posts schedules one week at a time.

However, the database may not actually need to create records representing weeks of assignments.
Instead it can track individual work assignments that represent an employee working certain hours on
a given day. The interactive interface and any work assignment reports will gather the assignments for a
particular week and display the results in the familiar week-at-a-time format.

That means the Shift entity can be relatively simple:

Field Req’d? Data Type Domain

Employee Yes Reference Refers to the assignment’s employee.

Date Yes Date Valid dates. For new records, verify that the date is on or after today.

StartTime Yes Time > = 6am.

StopTime Yes Time > = StartTime + 1 hour, and < = 11pm.

Exercise 4 Solution
The following table summarizes the Customer entity’s fields.

Field Req’d? Data Type Domain

FirstName Yes String Any first name.

LastName Yes String Any last name.

Street See notes String Any street name and number. Not validated.

City See notes String Any city name. Not validated?

State See notes String Foreign key to States table.

Zip See notes String Valid ZIP Code. Not validated?

Email See notes String Valid email address. If provided, send the customer a
monthly email newsletter.

HomePhone See notes String Valid 10-digit phone number.

CellPhone No String Valid 10-digit phone number.

Pets No String Pet names, ages, and types.

444

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 445

Appendix A: Exercise Solutions

The system only creates customer records in one of the following circumstances:

❑ The customer enrolls in a course. In that case, we require either a home or cell phone number so
we can contact the customer in case there’s a change in schedule or some other unexpected event
occurs (for example, Sveta contracts Capgras syndrome and won’t work with Charlie anymore).

❑ The customer wants to receive postal mailings about sales and courses. In that case, the address
information is required.

❑ The customer wants to receive email about sales and courses. In that case, the email address is
required.

❑ We are shipping items to the customer. In that case, the address information and at least one
phone number is required.

Exercise 5 Solution
Like the Shift entity, TimeEntry is simpler than it might appear. Users typically think of timekeeping as
a weekly chore so they tend to think of a week’s worth of time entries. However, individually each time
entry is quite simple. The interactive timekeeping interface and any related reports (including printing
payroll checks) will gather the assignments for a particular week and display the results appropriately.

The following table summarizes the TimeEntry entity’s fields.

Field Req’d? Data Type Domain

Employee Yes Reference The employee who worked (or at least pretended to work).

Date Yes Date < = now.

StartTime Yes Time < = now.

StopTime Yes Time < = now, and > StartTime.

PaidDate No Date < = now.

The PaidDate field records the date on which the employee’s check was printed covering this time entry.

A more complex check for new records should verify that no existing record for this employee has an
overlapping date and times.

Exercise 6 Solution
The Vendor entity gives the name of a company that provides Pampered Pet products. (Peter Piper
picked a peck of Pampered Pet products.) It includes information about a contact person at the
company.

445

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 446

Appendix A: Exercise Solutions

The following table summarizes the Vendor entity’s fields.

Field Req’d? Data Type Domain

CompanyName Yes String Any company name.

ContactFirstName Yes String Any first name.

ContactLastName Yes String Any last name.

Street Yes String Any street name and number. Not validated.

City Yes String Any city name. Not validated?

State Yes String Foreign key to States table.

Zip Yes String Valid ZIP Code. Not validated?

ContactEmail No String Valid email address.

ContactPhone Yes String Valid 10-digit phone number.

Notes No String Miscellaneous instructions and notes.

Chapter 12

Exercise 1 Solution
Food items could be treated like any other inventory item, although their expiration dates would prob-
ably be much shorter. Some items might not even be counted in inventory if they expire quickly. For
example, the database will need an entry for coffee so you can add one to an order but there’s no point
trying to update the QuantityInStock every time someone makes a new pot.

Exercise 2 Solution
An easy solution would be to add a new Certifications attribute to the EMPLOYEE class listing the courses
that the employee can teach. This would be a foreign key field referring to COURSE classes. In the ER
model, the Employee entity would have a new relationship with the Course entity. This would be a
moderately hard change but probably doable.

Alternatively you could create a new Instructor subclass that inherits from Employee. This would require
creating a new class/entity so it would be harder.

Exercise 3 Solution
Add a new StoreId attribute to the Order entity. That part wouldn’t be too hard. At a minimum, you
would also need to add a Store entity to look up allowed store IDs. That would be a little harder. If you
also want to store real information about each store, such as an Address (which would require a link to
the Addresses table), the change would be a lot harder.

446

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 447

Appendix A: Exercise Solutions

Exercise 4 Solution
You could add a link between the Course entity and the Address entity. This wouldn’t be too hard but it
does require a new relationship so it would be harder than adding a new attribute to the Course entity.

Exercise 5 Solution
It would be easy to store these as Course entities with a Price of $0. The Pampered Pet could adver-
tise them just like any other course. Probably no one would care if people attended without creating
Customer entities.

Exercise 6 Solution
Adding more addresses to an order would make the Order/Address relationship many-to-many. You
would need to add an intermediate table to represent the Order/Address pairs and replace the exist-
ing one-to-many relationship with two new one-to-many relationships. This would be a fairly difficult
change.

Exercise 7 Solution
The easy solution would be to add a Phone attribute to the Order entity. However, Figure 12-9 shows
that the design already has a Phone entity associated with the Person entity. Rather than creating a new
attribute, it would be slightly more complicated but more flexible to reuse the Phone entity.

Before doing any of this, however, it would be worth asking the customers whether they will ever need
to allow multiple phone numbers for an order. After all, they’re adding one and there’s nothing to stop
them from adding another, particularly because the Person entity already allows any number of phone
numbers.

Unfortunately adding multiple phone numbers to the Order entity would create a many-to-many rela-
tionship (one order can have many phone numbers and one phone number might be used to place any
number of orders, probably by the same customer). To implement this, you would need to make an
OrderPhone entity and two new one-to-many relationships. That would be a much harder change than
simply adding a new Phone attribute to the Order entity.

Exercise 8 Solution
The obvious solution is to add a new Department attribute to the InventoryItem entity. However, that
would create a functional dependency in that entity’s attributes. InventoryItem already has a ShelfLoca-
tion field that tells where the item is when it is on display in the store. That location is in some department
so adding a new Department attribute would partially duplicate that data and that could lead to incon-
sistent data. For example, an item could be listed as shelved in the Fish department but its Department
field could be set to Reptile.

A better solution would be to make a new Departments entity that maps ShelfLocation values to depart-
ments. This requires adding a new table and a new relationship between InventoryItem and Departments
so it would be fairly difficult.

447

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 448

Appendix A: Exercise Solutions

Exercise 9 Solution
This would require a couple of changes. First, you would need to add effective date attributes to the
Address entity. You would also need to change the user interface significantly to let the user decide
which of a customer’s addresses to use for any given operation. If the program simply uses the address
that was in effect when an order was placed, that might be manageable.

Overall, however this change seems like a lot of trouble and the need is so unclear that I would ask the
customers why they wanted to do this and try to talk them out of it if they don’t have a good reason.

Exercise 10 Solution
The discount applied to an order would need to be recorded so the simplest solution would be to add a
new Discount attribute to the Order entity.

More complicated solutions could track types of discounts to ensure consistency. Then, for example,
the employee entering an order would enter a coupon or discount code rather than the actual discount
percentage so entering in an incorrect discount would be less common. This solution would require
creating a new Discounts entity and a relationship between it and the Order entity so it would be a more
complicated solution.

Exercise 11 Solution
Figure A-30 shows one possible solution. It uses the CompetitorRobot entity to implement the Competi-
tor/Robot relationship and it uses the RobotMatch entity to implement the Robot/Match relationship.

CompetitorId
FirstName
LastName

Competitors
CompetitorId
RobotId

CompetitorRobots
RobotId
Name
Weight

Robots RobotMatches
RobotId
MatchId

Matches
MatchId
Date
Time
WinningRobotId

1 1 1 1
1

∞
∞

∞
∞

∞
Figure A-30

Exercise 12 Solution
Figure A-31 shows one possible relational design.

Competitor Builds Competitor
Robot

Represents

Represents

Robot

Fights In Robot
Match

Wins

Match
1.11.11.1

1.1

1.1

1.N

1.N1.N

1.N1.N

Figure A-31

448

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 449

Appendix A: Exercise Solutions

Chapter 13

Exercise 1 Solution
The following list describes the primary keys and required fields for each table:

❑ Competitors — The CompetitorId field is the primary key. Other required fields are FirstName,
LastName, Street, City, State, Zip.

❑ CompetitorRobots — This is an intermediate table. Its primary key includes both of its
fields. Both of its fields are also foreign key constraints to other tables so they are completely
constrained.

❑ Robots — The RobotId field is the primary key. Name and Class must be required in order to
compete. The Weight, MaxSpeed, and Chassis fields could also be required.

❑ RobotMatches — This is an intermediate table. Its primary key includes both of its fields. Both
of its fields are also foreign key constraints to other tables so they are completely constrained.

❑ Matches — The MatchId field is the primary key. Date, Time, and Location are also required.
WinningRobotId cannot be required because the Matches record will probably be created before
the match occurs and at that time the winner isn’t known (unless it’s a fixed fight).

❑ RobotWeapons — This table lists the weapons that are built into each robot (chainsaw, axe,
grapple, laser cannon). Both of its fields are part of the primary key so both are required. The
RobotId field is a foreign key constraint referring to the Robots table so it is completely con-
strained.

Exercise 2 Solution
The following list describes sanity checks for each table:

❑ Competitors — Zip should have a valid ZIP Code format similar to either 12345 or 12345-6789.

❑ CompetitorRobots — None.

❑ Robots — If present, Weight > 0 and Weight < 10,000 lbs. If present, Speed > = 0 and Speed <

30 mph.

❑ RobotMatches — None.

❑ Matches — When created, Date > = today. Time > 8am and Time < 11pm.

❑ RobotWeapons — None.

Exercise 3 Solution
The following list describes lookup tables for each table’s fields:

❑ Competitors — You could build a full City/State/Zip lookup table but it would be big and hard
to maintain. You could use the trick described in this chapter of using a table to validate common

449

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 450

Appendix A: Exercise Solutions

City/State/Zip values but allow values not in the table, but competitors in Robot Wars come
from all over the country so there’s no good list of the most likely City/State/Zip combinations.

❑ CompetitorRobots — Both of this table’s fields are used in foreign key constraints already.

❑ Robots — Chassis should be one of 4 Wheel, 6 Wheel, Tank Tread, Hovercraft, and so forth.
Class should be one of Light, Medium, Heavy, Under $1000, and so forth. The allowed values
should be moved into new Chasses and Classes lookup tables.

❑ RobotMatches — Both of this table’s fields are used in foreign key constraints already.

❑ Matches — Location should be one of Arena 1, Arena 2, Pond, and so forth. These values should
be added to a Locations lookup table.

❑ RobotWeapons — WeaponType should be one of Chainsaw, Axe, Rail Gun, Plasma Cannon,
and so forth. Those values should be added to a WeaponTypes table.

Exercise 4 Solution
The three somewhat more complicated business rules that I thought of that really should be implemented
in some manner are:

❑ Two matches should not be scheduled for the same place at the same time. This can be
implemented as a uniqueness constraint on the Matches table’s combined Date/Time/Location
values. (This assumes the matches fit in nice time slots so we don’t need to worry about them
overlapping.)

❑ A robot should not be scheduled for two matches at the same time.

❑ Because competitors must control their robots during a match, none of a competitor’s robots
should not be scheduled for two matches at the same time. (If two robots share multiple
co-owners, the team could split up and be in two matches at once but that would make the
database just plain ugly. If that sort of change is required, you’ll be glad you provided this check
in a stored procedure, a middle tier, or some other place that’s reasonably easy to change.)

Some other possible rules that I thought of include:

❑ A competitor can have no more than one robot in each match.

❑ A competitor can have no more than one robot in each class.

❑ A robot can have no more than two weapons.

❑ Weight, speed, chassis, and weapons could be part of what determines class. For example,
classes could include Heavy, Light & Fast, Wheeled, or Single Weapon. Those definitions would
be complicated and would probably change regularly.

❑ How the matches are assigned could be part of a set of business rules. For example, it could be
single elimination, double elimination (if a robot can be repaired), winners and losers brackets,
or a giant brawl.

Exercise 5 Solution
Figure A-32 shows the new relational model with the lookup tables added.

450

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 451

Appendix A: Exercise Solutions

Competitors
CompetitorId
FirstName
LastName
Street
City
State
Zip

CompetitorRobots
CompetitorId
RobotId

Chasses
Chassis

Classes
Class

Robots
RobotId
Name
Weight
MaxSpeed
Chassis
Class

RobotMatches
RobotId
MatchId

RobotWeapons
RobotId
WeaponType

WeaponTypes
WeaponType

Locations
Location

Matches
MatchId
Date
Time
Location
WinningRobotId

1 1 1 1
11

1

1

∞

1

1

∞
∞

∞
∞

∞
∞

∞

∞

∞

Figure A-32

Chapter 14

Exercise 1 Solution
This table isn’t in 1NF because it contains two columns that hold multiple values. The Show column
holds the names of all shows at a particular venue and the Times column holds all of the times for shows
at a location.

Figure A-33 shows a relational design that stores this data in 1NF.

Shows
ShowName
Time
Venue
Seating

Figure A-33

The following table shows the data in this new format.

ShowName Time Venue Seating

Sherm’s Shark Show 11:15 Sherman’s Lagoon 375

Sherm’s Shark Show 3:00 Sherman’s Lagoon 375

Meet the Rays 1:15 Sherman’s Lagoon 375

Meet the Rays 6:00 Sherman’s Lagoon 375

Deb’s Daring Dolphins 11:00 Peet Amphitheater 300

Deb’s Daring Dolphins 12:00 Peet Amphitheater 300

451

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 452

Appendix A: Exercise Solutions

ShowName Time Venue Seating

Deb’s Daring Dolphins 6:30 Peet Amphitheater 300

The Walter Walrus Comedy Hour 2:00 Peet Amphitheater 300

The Walter Walrus Comedy Hour 5:27 Peet Amphitheater 300

Flamingo Follies 2:00 Ngorongoro Wash 413

Wonderful Waterfowl 3:00 Ngorongoro Wash 413

This table contains so much redundant information that there must be something wrong with it.

Exercise 2 Solution
The solution to Exercise 1 isn’t in 2NF because some non-key fields depend on only some of the primary
key fields. A particular show only occurs in one location (it would be hard to move the dolphins to
different amphitheaters for different shows) so the Venue and Seating fields depend only on Show and
not on Time.

The solution is to move the Venue and Seating data into a new table connected to the original table by
the ShowName. Because the original table now only holds show time information, I’m going to rename
it ShowTimes and call the new table Shows. Figure A-34 shows the result.

ShowTimes
ShowName ShowName

Venue
Seating

Time

Shows
1∞

Figure A-34

Figure A-35 shows the new tables holding their data.

ShowTimes
Sherm’s Shark Show Sherm’s Shark Show Sherman’s Lagoon

Sherman’s Lagoon
Peet Amphitheater
Peet Amphitheater
Ngorongoro Wash
Ngorongoro Wash

Sherm’s Shark Show
Meet the Rays

Meet the Rays

Meet the Rays
Deb’s Daring Dolphins

Deb’s Daring Dolphins

Deb’s Daring Dolphins
Deb’s Daring Dolphins
The Walter Walrus Comedy Hour

The Walter Walrus Comedy Hour

The Walter Walrus Comedy Hour
Flamingo Follies

Flamingo Follies

Wonderful Waterfowl

Wonderful Waterfowl

11:15
3:00
1:15
6:00

11:00
12:00
6:30
2:00
5:27
2:00
3:00

Shows
375
375
300
300
413
413

Figure A-35

452

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 453

Appendix A: Exercise Solutions

Exercise 3 Solution
The solution to Exercise 2 isn’t in 3NF because the Shows table contains a transitive dependency: the
Seating field is determined by the Venue field. In the original table, the dependency isn’t obvious because
the same Venue and Seating values are not repeated. In Figure A-35 the problem is shown by the repeated
Venue/Seating pairs in the Shows table.

The solution is to move the seating information into a new table to match venues with their
capacities. The new table should use the Venue field to link back to the Shows table. Because this table
describes the venues, I’ll call it Venues. (Clever, huh?) Figure A-36 shows the new design.

ShowName
Time

ShowTimes
ShowName
Venue

Shows
Venue
Seating

Venues
1 1∞

∞
Figure A-36

Figure A-37 shows the data in the new tables.

ShowTimes
Sherm’s Shark Show Sherm’s Shark Show Sherman’s Lagoon

Sherman’s Lagoon
Peet Amphitheater
Peet Amphitheater
Ngorongoro Wash
Ngorongoro Wash

Sherm’s Shark Show
Meet the Rays

Meet the Rays

Meet the Rays
Deb’s Daring Dolphins

Deb’s Daring Dolphins

Deb’s Daring Dolphins
Deb’s Daring Dolphins
The Walter Walrus Comedy Hour

The Walter Walrus Comedy Hour

The Walter Walrus Comedy Hour
Flamingo Follies

Flamingo Follies

Wonderful Waterfowl

Wonderful Waterfowl

11:15
3:00
1:15
6:00

11:00
12:00
6:30
2:00
5:27
2:00
3:00

Shows
Sherman’s Lagoon
Peet Amphitheater
Ngorongoro Wash

375
300
413

Venues

Figure A-37

Exercise 4 Solution
Changing show names, time, or venue names is difficult for the design shown in Figure A-36 because
those fields are used as primary keys. To increase the database’s flexibility, all you need to do is make
artificial keys (ID numbers) for the tables. Because the ShowName was only in the ShowTimes table to
provide a link to the Shows table, it is no longer needed in ShowTimes. Similarly the Venue field in the
Shows table was only there to link to the Venus table so Venue is no longer needed in the Shows table.

Figure A-38 shows the more flexible design.

ShowName
Time

ShowTimes
ShowId
ShowName

Shows
VenueId
VenueName

Venues
1 1∞

∞VenueId Seating

Figure A-38

453

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 454

Appendix A: Exercise Solutions

Figure A-39 shows the data in the new tables. The ShowId values are between 1 and 6 and the VenueId
values are between 101 and 103 so it’s easy to see which are which.

Venues
101
102
103

375
300
413

ShowTimes
11:15
3:00
1:15
6:00

11:00
12:00
6:30
2:00
5:27
2:00
3:00

Sherman’s Lagoon1
1
2
2
3
3
3
4
4
5
6

101
101
102
102
103
103

Sherm’s Shark Show
Meet the Rays
Dep’s Daring Dolphins
The Walter Walrus Comedy Hour
Flamingo Follies
Wonderful Waterfowl

1
2
3
4
5
6

Peet Amphitheatre
Ngorongoro Wash

Shows

Figure A-39

Notice that the tables contain no repeated data other than their ID values so you can easily change a
show’s name or time, or a venue’s name.

Chapter 15
These exercises ask you to do something and there’s no reasonable way to put answers for them here.
If you visit the book’s Web site at wrox.com, you can download the Access database I created for these
exercises and then you can compare them to your own.

Chapter 16
These exercises ask you to do something and there’s no reasonable way to put answers for them here.
If you visit the book’s Web site, you can download the MySQL Workbench solutions and the database
creation scripts I built for these exercises, and then you can compare them to your own.

Chapter 17

Exercise 1 Solution
The following code creates the Venues, Shows, and ShowTimes tables. Note that you must create the
tables in this order because you cannot create a foreign key constraint that refers to a table that doesn’t
yet exist.

CREATE TABLE Venues(
VenueId INT NOT NULL,
VenueName VARCHAR(45) NOT NULL,
Seating INT NOT NULL,

454

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 455

Appendix A: Exercise Solutions

PRIMARY KEY (VenueId)
);

CREATE TABLE Shows(
ShowId INT NOT NULL,
ShowName VARCHAR(45) NOT NULL,
VenueId INT NOT NULL,

PRIMARY KEY (ShowId),

INDEX fk_Shows_Venues (VenueId),

CONSTRAINT fk_Shows_Venues
FOREIGN KEY (VenueId)
REFERENCES Venues (VenueId)
ON DELETE NO ACTION
ON UPDATE NO ACTION

);

CREATE TABLE ShowTimes(
ShowId INT NOT NULL,
Time TIME NOT NULL,

PRIMARY KEY (ShowId, Time),

INDEX fk_ShowTimes_Shows (ShowId),

CONSTRAINT fk_ShowTimes_Shows
FOREIGN KEY (ShowId)
REFERENCES Shows (ShowId)
ON DELETE NO ACTION
ON UPDATE NO ACTION

);

Exercise 2 Solution
The following code inserts the values for the aquarium show schedule. Note that the statements must
insert data in tables used as foreign key constraints before inserting the values that refer to them. For
example, the statement that creates the Sherman’s Lagoon Venues record must come before the Sherm’s
Shark Show record that refers to it.

Also note that some of the text contains an apostrophe so that text is delimited by double quotes instead
of apostrophes. For example, the text "Sherman’s Lagoon" contains an apostrophe. Alternatively you
could double-up the apostrophes to indicate characters that are part of the text value as in ’Sherman’‘s
Lagoon’ (here ’‘ are two apostrophes, not a double quote).

INSERT INTO Venues VALUES (101, "Sherman‘s Lagoon", 375);
INSERT INTO Venues VALUES (102, "Peet Amphitheater", 300);
INSERT INTO Venues VALUES (103, "Ngorongoro Wash", 413);

INSERT INTO Shows VALUES (1, "Sherm‘s Shark Show", 101);

455

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 456

Appendix A: Exercise Solutions

INSERT INTO Shows VALUES (2, "Meet the Rays", 101);
INSERT INTO Shows VALUES (3, "Deb‘s Daring Dolphins", 102);
INSERT INTO Shows VALUES (4, "The Walter Walrus Comedy Hour", 102);
INSERT INTO Shows VALUES (5, "Flamingo Follies", 103);
INSERT INTO Shows VALUES (6, "Wonderful Waterfowl", 103);

INSERT INTO ShowTimes VALUES (1, "11:15");
INSERT INTO ShowTimes VALUES (1, "15:00");
INSERT INTO ShowTimes VALUES (2, "13:15");
INSERT INTO ShowTimes VALUES (2, "18:00");
INSERT INTO ShowTimes VALUES (3, "11:00");
INSERT INTO ShowTimes VALUES (3, "12:00");
INSERT INTO ShowTimes VALUES (3, "18:30");
INSERT INTO ShowTimes VALUES (4, "14:00");
INSERT INTO ShowTimes VALUES (4, "17:27");
INSERT INTO ShowTimes VALUES (5, "14:00");
INSERT INTO ShowTimes VALUES (6, "15:00");

Exercise 3 Solution
The following statement updates the Flamingo Follies time:

UPDATE Shows, ShowTimes SET Time = "14:15"
WHERE Shows.ShowId = ShowTimes.ShowId

AND Time= "14:00"
AND ShowName = "Flamingo Follies";

The following statement updates the Sherm’s Shark Show time:

UPDATE Shows, ShowTimes SET Time = "15:15"
WHERE Shows.ShowId = ShowTimes.ShowId

AND Time= "15:00"
AND ShowName = "Sherm‘s Shark Show";

Exercise 4 Solution
The following code produces the desired result in MySQL:

SELECT
ShowName AS "Show",
LPAD(DATE_FORMAT(Time, "%l:%i %p"), 8, " ") AS Time,
VenueName AS Location

FROM Shows, ShowTimes, Venues
WHERE Shows.ShowId = ShowTimes.ShowId

AND Shows.VenueId = Venues.VenueId
ORDER BY "Show", TIME(Time);

456

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 457

Appendix A: Exercise Solutions

Exercise 5 Solution
The following code produces the desired result in MySQL:

SELECT
LPAD(DATE_FORMAT(Time, "%l:%i %p"), 8, " ") AS Time,
ShowName AS "Show",
VenueName AS Location

FROM Shows, ShowTimes, Venues
WHERE Shows.ShowId = ShowTimes.ShowId

AND Shows.VenueId = Venues.VenueId
ORDER BY TIME(Time), "Show";

Chapter 18

Exercise 1 Solution
One order in which you could build these tables is: MpaaRatings, Genres, Movies, Persons, MoviePro-
ducers, MovieDirectors, RoleTypes, MovieActors.

Exercise 2 Solution
The following code shows one possible SQL script for creating the movie database:

CREATE DATABASE MovieDb;
USE MovieDb;

CREATE TABLE MpaaRatings (
MpaaRaiting VARCHAR(5) NOT NULL,
Description VARCHAR(40) NOT NULL,
PRIMARY KEY (MpaaRaiting)

);

CREATE TABLE Genres (
Genre VARCHAR(10) NOT NULL,
Description VARCHAR(40) NOT NULL,
PRIMARY KEY (Genre)

);

CREATE TABLE Movies (
MovieId INT NOT NULL AUTO_INCREMENT,
Title VARCHAR(40) NOT NULL,
Year INT NOT NULL,
MpaaRating VARCHAR(5) NOT NULL,
Review TEXT NULL,
NumStars INT NULL,
Minutes INT NOT NULL,

457

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 458

Appendix A: Exercise Solutions

Description TEXT NULL,
Genre VARCHAR(10) NULL,
TrailerUrl VARCHAR(255) NULL,
PRIMARY KEY (MovieId),
INDEX FK_Movies_Ratings (MpaaRating ASC),
INDEX FK_Movies_Genres (Genre ASC),
CONSTRAINT FK_Movies_Ratings
FOREIGN KEY (MpaaRating)
REFERENCES MovieDb.MpaaRatings (MpaaRaiting)
ON DELETE NO ACTION
ON UPDATE NO ACTION,

CONSTRAINT FK_Movies_Genres
FOREIGN KEY (Genre)
REFERENCES MovieDb.Genres (Genre)
ON DELETE NO ACTION
ON UPDATE NO ACTION

);

CREATE TABLE Persons (
PersonId INT NOT NULL AUTO_INCREMENT,
FirstName VARCHAR(40) NOT NULL,
LastName VARCHAR(40) NOT NULL,
PRIMARY KEY (PersonId)

);

CREATE TABLE MovieProducers (
MovieId INT NOT NULL,
PersonId INT NOT NULL,
PRIMARY KEY (MovieId, PersonId),
INDEX FK_Producers_Persons (PersonId ASC),
INDEX FK_Producers_Movies (MovieId ASC),
CONSTRAINT FK_Producers_Persons
FOREIGN KEY (PersonId)
REFERENCES MovieDb.Persons (PersonId)
ON DELETE NO ACTION
ON UPDATE NO ACTION,

CONSTRAINT FK_Producers_Movies
FOREIGN KEY (MovieId)
REFERENCES MovieDb.Movies (MovieId)
ON DELETE NO ACTION
ON UPDATE NO ACTION

);

CREATE TABLE MovieDirectors (
MovieId INT NOT NULL,
PersonId INT NOT NULL,
PRIMARY KEY (MovieId, PersonId),
INDEX FK_Directors_Persons (PersonId ASC),
INDEX FK_Directors_Movies (MovieId ASC),
CONSTRAINT FK_Directors_Persons
FOREIGN KEY (PersonId)
REFERENCES MovieDb.Persons (PersonId)
ON DELETE NO ACTION

458

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 459

Appendix A: Exercise Solutions

ON UPDATE NO ACTION,
CONSTRAINT FK_Directors_Movies
FOREIGN KEY (MovieId)
REFERENCES MovieDb.Movies (MovieId)
ON DELETE NO ACTION
ON UPDATE NO ACTION

);

CREATE TABLE RoleTypes (
RoleType VARCHAR(40) NOT NULL,
PRIMARY KEY (RoleType)

);

CREATE TABLE MovieActors (
MovieId INT NOT NULL,
PersonId INT NOT NULL,
CharacterName VARCHAR(40) NOT NULL,
RoleType VARCHAR(40) NULL,
Review TEXT NULL,
NumStars INT NULL,
PRIMARY KEY (MovieId, PersonId, CharacterName),
INDEX FK_Actors_Persons (PersonId ASC),
INDEX FK_Actors_RoleTypes (RoleType ASC),
INDEX FK_Actors_Movies (MovieId ASC),
CONSTRAINT FK_Actors_Persons
FOREIGN KEY (PersonId)
REFERENCES MovieDb.Persons (PersonId)
ON DELETE NO ACTION
ON UPDATE NO ACTION,

CONSTRAINT FK_Actors_RoleTypes
FOREIGN KEY (RoleType)
REFERENCES MovieDb.RoleTypes (RoleType)
ON DELETE NO ACTION
ON UPDATE NO ACTION,

CONSTRAINT FK_Actors_Movies
FOREIGN KEY (MovieId)
REFERENCES MovieDb.Movies (MovieId)
ON DELETE NO ACTION
ON UPDATE NO ACTION

);

DROP DATABASE MovieDb;

Chapter 19

Exercise 1 Solution
The following table shows a backup schedule. In this case, you have time for a full backup every night so
you may as well use it.

459

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 460

Appendix A: Exercise Solutions

Night Off-Peak Start Off-Peak End Off-Peak Hours Backup Type

Monday 11:00pm 4:00am 5 Full

Tuesday 11:00pm 4:00am 5 Full

Wednesday 11:00pm 4:00am 5 Full

Thursday 11:00pm 4:00am 5 Full

Friday 11:00pm 6:00am 7 Full

Saturday 9:00pm 6:00am 9 Full

Sunday 9:00pm 4:00am 7 Full

Exercise 2 Solution
The following table shows a new backup schedule. Now you can make a full backup only on Saturday
night and on other nights you only have time for an incremental backup of changes since the previous
night’s backup.

Night Off-Peak Start Off-Peak End Off-Peak Hours Backup Type

Monday 12:00am 3:00am 3 Incremental from Sunday

Tuesday 12:00am 3:00am 3 Incremental from Monday

Wednesday 12:00am 3:00am 3 Incremental from Tuesday

Thursday 12:00am 3:00am 3 Incremental from Wednesday

Friday 12:00am 5:00am 5 Incremental from Thursday

Saturday 10:00pm 5:00am 7 Full

Sunday 10:00pm 3:00am 5 Incremental from Saturday

This backup schedule is pretty full so you should probably start thinking about other strategies to use if
your database continues to grow. For example, you might need to perform some backups during peak
hours (naturally during the ‘‘off-peak’’ peak hours) or you could partition the database so areas handling
different time zones are stored separately so you can back them up separately.

Chapter 20

Exercise 1 Solution
An order entry clerk doesn’t need to read or update any existing order records so you don’t need to set
privileges for individual fields in the Orders or OrderItems tables. (Although you may want the user
interface program to read previous orders so it can copy their values.)

460

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 461

Appendix A: Exercise Solutions

The clerk will need to read existing Customers records for existing customers and create Customers
records for new customers. Many applications also allow the clerk to update customer data when creat-
ing a new order so the clerk needs Update access to the Customers table. The clerk should not change
the CustomerId field, however, because that would disconnect the customer from previous orders. (In
general, you should not update primary key values because that causes this kind of problem.)

The clerk needs Read access to the InventoryItems table to select the items that the customer wants to
buy. (If there isn’t enough inventory, assume the clerk creates the order anyway and sets the order’s
status to Back Order.)

The clerk also needs Read access to the OrderStatuses table to pick an initial status.

The following table lists the privileges that an order entry clerk needs for each table.

Table or Field Privileges

Customers C

CustomerId R

FirstName RU

LastName RU

Street RU

City RU

State RU

Zip RU

Phone RU

CreditCardType RU

CreditCardNumber RU

Orders C

OrderId –

CustomerId –

OrderDate –

ShippedDate –

OrderStatus –

OrderItems C

OrderId –

SequenceNumber –

ItemId –

461

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 462

Appendix A: Exercise Solutions

Table or Field Privileges

Quantity –

InventoryItems –

ItemId R

Description R

Price R

QuantityInStock R

OrderStatuses –

OrderStatus R

The following SQL statements create an order entry clerk with appropriate privileges:

CREATE USER EntryClerk IDENTIFIED BY ‘secret’;

-- Revoke all privileges for the user.
REVOKE ALL PRIVILEGES, GRANT OPTION FROM EntryClerk;

-- Grant needed privileges.
GRANT INSERT, SELECT ON ShippingDb.Customers TO EntryClerk;
GRANT UPDATE (FirstName, LastName, Street, City, State, Zip, Phone,

CreditCardType, CreditCardNumber)
ON ShippingDb.Customers TO EntryClerk;

GRANT INSERT ON ShippingDb.Orders TO EntryClerk;
GRANT INSERT ON ShippingDb.OrderItems TO EntryClerk;
GRANT SELECT ON ShippingDb.InventoryItems TO EntryClerk;
GRANT SELECT ON ShippingDb.OrderStatuses TO EntryClerk;

Exercise 2 Solution
A customer service clerk must be able to read everything to give information about an existing order.
This clerk doesn’t need to create records but needs to be able to update and delete Orders and OrderItems
records for orders that have not yet shipped.

Though the clerk can update Customers data, the CustomerId should never change because that would
disconnect it from previous orders.

Note that it doesn’t make sense for the clerk to update Orders data. Changing OrderId would disconnect
the items from the order, changing CustomerId would disconnect the order from the customer, changing
OrderDate would be revising history (popular with politicians but not a good business practice), and
changing ShippedDate and OrderStatus is the shipping clerk’s job.

This clerk should also not be able to change an OrderItems record’s OrderId value because it would
disconnect the item from the order.

462

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 463

Appendix A: Exercise Solutions

Whether the clerk can delete Customers records is a business rule. In this case, assume the clerk cannot
delete customers so you don’t need to worry about old orders without corresponding Customers records.

Finally, whether the clerk can update OrderItems records or should just delete old records and create
new ones is another business rule. In this case, it will probably be easier for the user interface application
to delete the old records and create new ones so the clerk needs Create, Read, and Delete privileges for
the OrderItems table.

The following table lists the privileges that a customer service clerk needs for each table.

Table or Field Privileges

Customers –

CustomerId R

FirstName RU

LastName RU

Street RU

City RU

State RU

Zip RU

Phone RU

CreditCardType RU

CreditCardNumber RU

Orders D

OrderId R

CustomerId R

OrderDate R

ShippedDate R

OrderStatus R

OrderItems CD

OrderId R

SequenceNumber R

ItemId R

Quantity R

InventoryItems –

ItemId R

463

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 464

Appendix A: Exercise Solutions

Table or Field Privileges

Description R

Price R

QuantityInStock R

OrderStatuses –

OrderStatus R

The following SQL statements create a customer service clerk with appropriate privileges:

CREATE USER ServiceClerk IDENTIFIED BY ‘secret’;

-- Revoke all privileges for the user.
REVOKE ALL PRIVILEGES, GRANT OPTION FROM ServiceClerk;

-- Grant needed privileges.
GRANT SELECT ON ShippingDb.Customers TO ServiceClerk;
GRANT UPDATE (FirstName, LastName, Street, City, State, Zip, Phone,

CreditCardType, CreditCardNumber)
ON ShippingDb.Customers TO ServiceClerk;

GRANT SELECT, DELETE ON ShippingDb.Orders TO ServiceClerk;
GRANT INSERT, SELECT, DELETE ON ShippingDb.OrderItems TO ServiceClerk;
GRANT SELECT ON ShippingDb.InventoryItems TO ServiceClerk;
GRANT SELECT ON ShippingDb.OrderStatuses TO ServiceClerk;

Exercise 3 Solution
The inventory manager’s main task is to order new inventory and maintain the InventoryItems table.
That requires Create, Read, Update, and Delete privileges on that table.

To change an order’s status from Back Ordered to Ordered, the inventory manager must look in the
Orders table to find orders in the Back Ordered status, look up the items for that order, and see if there
is now enough inventory to fulfill the order. That means the manager must be able to look at the Orders
table’s OrderId and OrderStatus fields, and update the OrderStatus field. The manager must also be able
to look at the OrderItems table’s OrderId, ItemId, and Quantity fields.

The following table lists the privileges that an inventory manager needs for each table.

Table or Field Privileges

Customers –

CustomerId –

FirstName –

LastName –

464

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 465

Appendix A: Exercise Solutions

Table or Field Privileges

Street –

City –

State –

Zip –

Phone –

CreditCardType –

CreditCardNumber –

Orders –

OrderId R

CustomerId –

OrderDate –

ShippedDate –

OrderStatus RU

OrderItems –

OrderId R

SequenceNumber –

ItemId R

Quantity R

InventoryItems CD

ItemId R

Description RU

Price RU

QuantityInStock RU

OrderStatuses –

OrderStatus R

The following SQL statements create a customer service clerk with appropriate privileges:

CREATE USER ServiceClerk IDENTIFIED BY ‘secret’;

-- Revoke all privileges for the user.
REVOKE ALL PRIVILEGES, GRANT OPTION FROM ServiceClerk;

-- Grant needed privileges.

465

Stephens bapp01.tex V3 - 10/04/2008 12:32pm Page 466

Appendix A: Exercise Solutions

GRANT SELECT ON ShippingDb.Customers TO ServiceClerk;
GRANT UPDATE (FirstName, LastName, Street, City, State, Zip, Phone,

CreditCardType, CreditCardNumber)
ON ShippingDb.Customers TO ServiceClerk;

GRANT SELECT, DELETE ON ShippingDb.Orders TO ServiceClerk;
GRANT INSERT, SELECT, DELETE ON ShippingDb.OrderItems TO ServiceClerk;
GRANT SELECT ON ShippingDb.InventoryItems TO ServiceClerk;
GRANT SELECT ON ShippingDb.OrderStatuses TO ServiceClerk;

466

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 467

B
Sample Database Designs

When you break a data model down into small pieces, there are really only three types of data rela-
tionships: one-to-one, one-to-many, and many-to-many (modeled with one-to-many relationships).
If you think in those terms, then you really don’t need examples. Just break the problem into small
enough pieces and start assembling these three kinds of relationships. (Inheritance and subtyping
forms another kind of logical relationship that you can also model.)

However, it may be useful to see more complete examples that include several different entities
associated in typical ways. This appendix is intended to show you those kinds of examples.

Note that many different problems can be modeled in very similar ways. For example, consider a
typical library. It has one or more copies of a whole bunch of books and lends them to patrons for
a specific amount of time. Patrons can renew a book once and pay late fees if a book isn’t returned
on time.

Now consider a business that rents party supplies such as tables, chairs, big tents, dunk tanks,
doves, and so forth. Like a library, this business has multiple copies of many of these items (it
probably has dozens of tables and hundreds of chairs). Also like a library, this business ‘‘loans’’ (for
a fee) its items to customers and charges a late fee if an item isn’t returned on time.

Though a library and a party rental store are very different organizations, the structure of their
databases is quite similar.

As you look at the examples in this appendix, think about variations that might use a similar struc-
ture. Though your application may not fit these examples exactly, you may find an example that
uses a similar structure.

Also note that different applications might use very different database designs for the same data.
The exact fields and sometimes even the tables included in the design depend on the application’s
focus.

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 468

Appendix B: Sample Database Designs

For example, consider a large company’s employee data. If you’re building an application to assign
employees to tasks for which they are qualified, your database will probably have an EmployeeSkills
table that matches employee records to their skills. You’ll also need a Tasks table that describes tasks and
lists the skills that they require.

In contrast, suppose you need to build a human resources application that tracks employee payroll
deductions for retirement contributions, medical coverage, and so forth. Although this application deals
with the same employees, it doesn’t need skill or task data so it doesn’t need the EmployeeSkills or Tasks
tables. It also needs new employee data not required by the work assignment project such as employee
Social Security number, bank account number, next of kin, and anniversary date.

These two applications deal with the same physical entities (employees) but have very different
data needs.

Because the types of data that you might need to store in a particular table depends on your application,
these examples don’t try to be exhaustive. For employee data, a table might include a few fields such as
FirstName, LastName, and HireDate to give you an idea of what the table might include but you’ll have
to fill in the details for your application.

The following sections each describe a single example database design and give some ideas for variations
that you may find useful. In particular, many of these models can include all sorts of address information
such as Street, Suite, Building, Office, MailStop, City, State, Zip, PostalCode, Phone, and Extension. To
keep the models simple, some tables include a single Address entry to represent address information.
You should use whatever address information is appropriate for your application.

Books
The entities in a books database include the books themselves, authors, and publishers. Depending on
your application, you may also want to include information about the book’s various editors (acquisitions
editors, managing editors, production editors, technical editors, and copy editors), artists, photographers,
and all of the other people associated with the book. If the book is a compilation (for example, a collection
of articles or short stories), the ‘‘Editor’’ who put it all together is similar to the author of the work as
a whole.

Some of these people may be associated with the publisher. For example, many editors work for a partic-
ular publisher, although others are hired by a publisher as contractors and editors often move from one
publisher to another over time so, if you want to record these types of associations, you will probably
need to allow a separate publisher affiliation for each book.

Books may have many printings and editions. Different printings contain few or no differences. Different
editions may contain completely different content or may come in different media such as paperback,
hardcover, audio CD, video, DVD, PDF file, large print edition, and so forth.

Figure B-1 shows a simple book database design that models books, authors, and publishers. Book cat-
egories include Cooking, Home & Garden, Science Fiction, Professional, Bodice Ripper, and so forth.
Recall that dashed lines represent lookup tables.

468

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 469

Appendix B: Sample Database Designs

BookId
Title
PublisherId
DatePublished
MRSP
ISBN10
ISBN13
Length
Rating
WebPage
SmallImageUrl
LargeImageUrl

Books 1

1

1

1

AuthorId
BookId

AuthorBooks
AuthorId
FirstName
LastName

Authors

PublisherId
Name
Address

Publishers

Category
CategoriesBookId

Category

BookCategories

∞

∞

1∞

∞
∞

Figure B-1

Figure B-2 shows a more complex design that includes media and edition information. The LengthUnit
depends on an item’s medium. For example, the DVD and Video media have length measured in minutes
whereas printed books have length measured in pages.

BookId
Title
PublisherId
DatePublished
MRSP
ISBN10
ISBN13
Medium
Length
Rating
WebPage
SmallImageUrl

LargeImageUrl

Books 1

1

1

1

1
1

1

1

AuthorId
BookId

AuthorBooks
AuthorId
FirstName
LastName

Authors

PublisherId
Name
Address

Publishers

FirstEditionId
NewEditionId
EditionNumber

Editions

Category
CategoriesBookId

Category

BookCategories

Medium
LengthUnit

Media

∞

∞

1∞

1∞

∞
∞

Figure B-2

Figure B-3 generalizes the author data to include other types of people such as editors, artists, and
photographers.

469

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 470

Appendix B: Sample Database Designs

BookId
Title
PublisherId
DatePublished
MRSP
ISBN10
ISBN13
Medium
Length
Rating
WebPage
SmallImageUrl

LargeImageUrl

Books 1

1

1

1

1
1

1

1

PersonId
FirstName
LastName

People
PersonId
BookId
Role

BookPeople

PublisherId
Name
Address

Publishers

FirstEditionId
NewEditionId
EditionNumber

Editions

Category
CategoriesBookId

Category

BookCategories

Medium
LengthUnit

Media

∞

∞

1 Role
Roles

∞

1∞

1∞

∞
∞

Figure B-3

DVD and Movies
In many ways, DVDs and movies are similar to books. All of them are created by a team of people who
may work on other projects as well, all of them are owned by some sort of entity (publisher or studio),
and all have similar basic information such as lengths and URLs. Many of the details are different (movies
have actors instead of authors and directors instead of editors) but some of the basic structure of the data
is similar.

Figure B-4 shows a version of Figure B-3 that has been modified to hold movie data. To avoid confusion,
this model uses the word ‘‘job’’ to represent a person’s responsibility in the project (Actor, Director,
Producer, Grip, Best Boy, and so forth) and ‘‘actor role’’ to represent a part played by an actor.

Notice that a single person may appear in more than one MoviePeople records for a movie. For example,
an actor may play more than one role and may be the director. (I suppose an actor could also be a crew
member but it’s hard to imagine Orlando Bloom catering or Julia Roberts stringing cables.)

Notice also the one-to-one relationship between the MoviePeople and ActorRoles records. Each Actor-
Roles record represents a single role in a particular movie. If someone later shoots a remake of a movie,
this model assumes that each of the characters gets a new ActorRoles record because the characters will
represent new interpretations of the originals. If the ActorRoles records are abbreviated enough that they
will be the same for different versions, you could make this a one-to-many relationship. You might also
want to add version information similar to the Editions table in Figure B-3.

470

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 471

Appendix B: Sample Database Designs

MovieId
Title
StudioId
DateReleased
MRSP
UPC
Medium
Length
MpaaRating
WebPage
SmallImageUrl
LargeImageUrl

Movies 1

1

1

1

1

1

PersonId
FirstName
LastName

People
PersonId
MovieId

MoviePeople

Job
ActorRoleId

StudioId
Name
Address

Studios

ActorRoleId
CharacterName
Background
Makeup
Lines

ActorRoles

MovieId
Url

Trailers
Category

CategoriesMovieId
Category

MovieCategories

Medium
LengthUnit

Media

∞

∞

1 Job
Jobs

∞

1

∞

1

1

∞

1∞

∞
∞

∞

MpaaRating
Media

Figure B-4

(I’ll know a lot more about the movie industry so I can build better models after Steven Spielberg makes
a movie out of this book.)

Music and CDs
Though music collections, books, and movies all have similarities (for example, they are all produced
by a team of people), there are some important differences. Songs are grouped by album and albums
are grouped by band. Some or all of a band may participate in any given song on an album. Over
time, the members of a band may change (except for ZZ Top) and one artist may be in many bands or
even the same band more than once (in case they have a falling out and then later decide to make a
reunion tour when the money runs out).

Although you could make similar distinctions for books (you could group books by series and you might
define working combinations of authors), it doesn’t make as much sense unless your application really
needs to focus on that kind of information.

Figure B-5 shows a design to hold music album data.

In this model, roles might include such values as Lead Singer, Writer, and Costume Designer. The Instru-
ments table holds values such as Electric Guitar, Drums, Zither, and Didgeridoo.

Notice that one person may play multiple roles in the same song. Typically this will be singer and song
writer but really nimble artists may play multiple instruments.

471

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 472

Appendix B: Sample Database Designs

AlbumId
Title
BandId
StudioId
DateReleased
MRSP
UPC
Rating

Albums 1

1

1

1

1

1

1

1

PersonId
FirstName
LastName

People

PersonId
BandId

PeopleBands

StartDate
EndDate

PersonId
SongId

PeopleSongs

Role
Instrument

StudioId
Name
Address

Studios

SongId
AlbumId
Track
Title
Length
Lyrics

Songs

Category
Categories

BandId
Name

Bands

AlbumId
Category

AlbumCategories
∞

∞

∞

Instrument
Instruments

Role
Roles

∞

∞

∞

1

1

∞

∞
∞

1

∞

∞

Figure B-5

Documents
Before you rush out and build a document management system, you might consider using one
that is already available. Systems such as Visual Source Safe (msdn.microsoft.com/en-us/vstudio
/aa718670.aspx), Concurrent Versions System (CVS — www.nongnu.org/cvs), and Subversion
(subversion.tigris.org) manage multiple document versions quite effectively. They may not provide
all of the features that you might add (such as advanced keyword queries) but they provide enough
features to be quite useful without all of the work of building your own system.

However, Figure B-6 shows a data model that you could use to manage multiple document versions.
This model assumes that a single author makes each version of a document and that multiple versions
have major and minor version numbers as in 1.0, 1.1, 2.0, and so forth. The model allows you to store
keywords and comments for the document as a whole and for each version.

The DocumentVersions table’s Content field can hold either the complete document version or a list of
differences between this version and the previous one.

Customer Orders
Several of the examples described throughout this book include data to record customer orders.
Figure B-7 shows one of the simpler variations. It assumes a customer has a single address and all orders
for that customer are shipped to that address.

472

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 473

Appendix B: Sample Database Designs

1

1
DocumentId
Title
Comments

Documents
DocumentId
VersionMajor

VersionKeywords

VersionMinor
SequenceNumber
Keyword

AuthorId
FirstName

Authors

LastName
Phone

DocumentId
VersionMajor
VersionMinor
AuthorId
DateCreated
Content
Comments

DocumentVersions

∞

∞

∞
1

1

∞

1

1

∞

∞

DocumentId
SequenceNumber

DocumentKeywords

Keyword Keyword
Keywords

Figure B-6

CustomerId
FirstName
LastName
Address
Phone

Customers OrderId
CustomerId
OrderStatus
DateOrdered
DateShipped

Orders OrderId
SquenceNumber
ItemId
Quantity

OrderItems

VendorId
Name
Address
Phone

Vendors

ItemId
Description
Price
QuantityInStock
VendorId

InventoryItems
1∞

∞

1∞

1
1

∞

OrderStatus
OrderStatuses

1

∞

Figure B-7

Employee Shifts and Timesheets
Employee shifts and timesheet records are very similar. Both record a date and either hours scheduled or
worked for an employee. Figure B-8 shows a simple model for storing shift and timesheet data.

Employees, Projects, and Departments
Figure B-9 shows a model for storing employee, project, and department data. This model assumes that
an employee can be in any number of projects but only one department. The DepartmentRoles table
contains values such as Manager, Secretary, Member of Technical Staff, and Sycophant. The ProjectRoles
table contains values such as Project Manager, Lead Developer, Toolsmith, and Tester. The primary key
for EmployeeProjects includes the ProjectRole field so a single employee can play multiple roles in a
single project (for example, Project Manager and Doomsayer).

473

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 474

Appendix B: Sample Database Designs

EmployeeId
FirstName
LastName
Address
Phone

Employees

EmployeeId
ShiftDate
StartTime
EndTime

Shifts

EmployeeId
WorkDate
StartTime
EndTime

Timesheets

∞

∞

1

1

Figure B-8

1

1

DepartmentId
Name
MailStop

Departments EmployeeId
FirstName
LastName
DepartmentId
DepartmentRole
Office
Phone

Employees

∞
∞

1 ∞
∞

∞

1

1

EmployeeId
ProjectId

EmployeeProjects

ProjectRole

ProjectId
Name

Projects

Description

ProjectRole
ProjectRoles

DepartmentRole
DepartmentRoles

Figure B-9

You can use this design for matrix management with only a few changes. In matrix management, an
employee has a functional manager who coordinates employees who have similar functions (mechanical
engineering, optical design, software development, and so forth). The functional manager guides the
employee’s career development and handles project reviews.

Project managers determine what the employee does on a particular project.

For example, an electronics technician might be in the Electronics department, report to a functional
manager in that department, work on several projects in various other departments, and report to project
managers in those departments.

If each functional department has a single manager, you can use Figure B-9 by simply adding the func-
tional managers as members of their departments with DepartmentRole set to Functional Manager. If
there is not a simple one-to-one relationship between departments and functional managers, you can add
a FunctionalId field to the Employees table as shown in Figure B-10.

474

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 475

Appendix B: Sample Database Designs

1

1

DepartmentId
Name
MailStop

Departments EmployeeId
FirstName
LastName
DepartmentId
DepartmentRole
Office
Phone
FunctionalId

Employees

∞
∞

1 ∞
∞

∞

1

1

∞

1
EmployeeId
ProjectId

EmployeeProjects

ProjectRole

ProjectId
Name

Projects

Description

ProjectRole
ProjectRoles

DepartmentRole
DepartmentRoles

Figure B-10

Employee Skills and Qualifications
Employee skills and qualifications are important when certain jobs require them. For example, machining
a particular glass part might require a technician who is certified to use a computerized ultrasonic cutter.

Depending on your application, some qualifications may expire. For example, a Red Cross CPR certifica-
tion expires one year after it is issued. The design shown in Figure B-11 assumes that all skills expire. If
a skill does not expire, you can set its ValidDuration to a really large value such as 300 years. If none of
the skills you track expire, you can remove the ValidDuration field.

EmployeeId
JobId

EmployeeJobs
EmployeeId
FirstName
LastName
Address
Phone

Employees

Skills
ValidDuration

Skills JobId
Skill

JobSkills

JobId
Name
Description
DueDate

Jobs

EmployeeId
Skill
StartDate

EmployeeSkills

∞

∞

1

∞ 1

∞ 1

∞1

1

∞

1

Figure B-11

In a more formal setting, you might need to add more fields to the EmployeeSkills table. For example,
you might need to track a certification number, issuing agency, and so forth to prove an employee has a
certain skill.

Note that this design tracks employee skills but doesn’t do anything with them. It would be up to the user
interface application to ensure that only employees with the proper skills are assigned to a given job.

475

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 476

Appendix B: Sample Database Designs

Identical Object Rental
Just about any situation where something is given to a customer for a limited period of time can be
modeled as a rental. For example, equipment rentals, DVD rentals, hourly contractors, and hotel rooms
can all be treated as different kinds of rentals.

Figure B-12 shows a design that holds data for simple rental of identical objects. For example, a
DVD rental store has many copies of each DVD and you don’t really care which copy of a DVD the
customer gets.

AssetId
Name
Description
QuantityInStock
RentalFee
RentalLength
LateFee

Assets
CustomerId
AssetId
RentalDate
ReturnDate

CustomersRentals
1∞CustomerId

FirstName
LastName
Address
Phone

Customers
1 ∞

Figure B-12

If you want to track specific instances of rented assets (for example, to keep track of the number of times
each copy of a DVD is rented), you can add an AssetInstances table as shown in Figure B-13.

AssetId
InstanceNumber
TimesRented

AssetInstances
AssetId
Name
Description
FeeSchedule

Assets
1∞CustomerId

FirstName
LastName
Address
Phone

Customers
CustomerId
AssetId
InstanceNumber
RentalDate
ReturnDate

CustomerRentals
1 ∞

1∞

Figure B-13

There are many variations on rental and late fees. A DVD rental store might charge a nightly fee and no
late fees. A store that rents heavy equipment such as backhoes and excavators might charge an hourly
fee and large late fees. A public library might charge no rental fee and a small daily late fee. (My library
charges no fees for children’s books.)

Distinct Object Rental
Figure B-14 shows a rental variation that is more appropriate for a company that hires its employees as
contractors.

Unlike DVD rental and libraries, contractor ‘‘rental’’ models distinct entities because different contrac-
tors are not alike. (Unless you’re the army or a mega-corporation that treats people as interchangeable
‘‘assets.’’)

476

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 477

Appendix B: Sample Database Designs

ContractorId
FirstName
LastName
Resume

Contractors

TemplateId
Name
Contents

Templates
SkillId
Name
Description

Skills

ContractorId
SkillId
YearsOfExperience
DateLastUsed

ContractorSkills
1

1

∞
∞

CustomerId
FirstName
LastName
Address
Phone

Customers
CustomerId
ContractId
TemplateId
Hourlyfee
StartDate
EndDate

CustomerContracts
1 ∞

1∞

1

Figure B-14

Other businesses can model distinct entities in a similar manner, although the exact details will usually
differ. For example, Figure B-15 shows a model designed for hotel reservations.

ReservationId
CustomerId
RoomType
Floor
RoomNumber
ArrivalDate
DepartureDate
IsConfirmed

Reservations
ReservationId
GuestId

GuestReservations
1

1

∞
∞

CustomerId
GuestId
CreditInformation
LicenseNumber

Customers

PriceType
Description

PriceTypes

RoomType
Description

RoomTypes

RoomType
Amenity

RoomAmenities

Amenity
Description

Amenities

PriceType
StartDate
EndDate
Rate

RoomPrices

Floor
RoomNumber
RoomType
PriceType

Rooms

GuestId
FirstName
LastName
Address
Phone

Guests
1
1

∞

1
∞

∞
∞

1

1

1

1

∞

∞

1

∞

1

∞

1

Figure B-15

A customer calls and makes a reservation. Initially the reservation is for a type of room, not a particular
room. When the guests check in, the clerk fills in the floor and room number.

A Guest is a person staying in the room (there can be several people in the same room). A Customer is
a person who pays for a reservation (only one person pays). If the IsConfirmed field has the value True,
the reservation is confirmed for late arrival so the hotel will hold the room and charge the Customer’s
credit card if they show up at midnight. (Although I’ve had my room sold to another customer despite
being confirmed for late arrival.)

A Room Type defines the amenities in the room. Amenities include such things as hot tubs, balconies,
bathrooms, non-smoking, pets allowed, and king-sized heart-shaped rotating beds.

477

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 478

Appendix B: Sample Database Designs

A Price Type defines the prices for a room. Price Types include values such as Business, Preferred, Fre-
quent Visitor, Walk In, and Chump Whose Flight Was Canceled At The Last Minute And Is Desperate.
(Hotels typically code price types as A, B, C, and so forth so the Chump doesn’t notice he’s paying four
times as much as the family from Des Moines who booked three months in advance.)

Students, Courses, and Grades
Figure B-16 shows a model for storing student, course, and grade data.

CourseId
GradeItem
Weight

CourseGradeItems

CourseId
PrerequisiteId

CoursePrerequisite

11

1

1

1

1

∞ 1 ∞

∞

∞

1 ∞

∞

∞
∞

∞

StudentId
CourseOfferingId
Grade
IsApproved

StudentCourses

CourseOfferingId
CourseId
Year
Quarter
InstructorId

CourseOfferings

StudentId
CourseOfferingId
GradeItem
Score

StudentGrades

InstructorId
FirstName
LastName
DepartmentId
Office
Phone

Instructors

DepartmentId
Name
Office
Phone
ChairId
Secretary

Departments

CourseOfferingId
DayOfWeek
Time
Location

CourseOfferingDays

InstructorId
DayOfWeek
StartTime
StopTime

InstrutorOfficeHours

CourseId
Name
Description
DepartmentId
Credits
IsApprovalRequired

Courses
StudentId
FirstName
LastName
Address
Phone
DepartmentId
AdvisorId

Students

1

1

1

∞

∞

∞
∞

1

11

Figure B-16

A Course represents a type of class (Introduction to Database Design). A Course Offering is a particu-
lar instance of a Course (the 2010 winter term Introduction to Database Design class on Tuesdays and
Thursdays from 9:00 to 10:30 in Building 12, room B-16).

A Grade Item is something in the course that receives a grade, such as Quiz 1, Midterm, and Term
Paper 2. The CourseGradeItem table’s Weight field lets you assign different weights to different Grade
Items (for example, the Final is worth 50% of the total grade).

Grade Items are somewhat tricky because a StudentGrades record should have an appropriate GradeItem
value. You might like to make the record’s combined CourseOfferingId/GradeItem be a foreign
key into the CourseGradeItems table but that table uses CourseId as a key, not CourseOfferingId.
Ensuring that the CourseGradeItems record has a valid GradeItem must be handled as a business rule.

478

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 479

Appendix B: Sample Database Designs

This database will probably be stored in two pieces: an online piece holding the current school year’s data
and a data warehouse piece holding older data. The data would undergo final consistency checks before
it is moved form the current database to the warehouse. For example, you would verify that students
have grades for every CourseGradeItem defined for their classes.

Other Students fields in the online database would probably record summary information. For example,
a GPA field could record the student’s grade point average for courses in the data warehouse. That field
would be redundant because you could recalculate it from the data in the data warehouse, but placing it
in the online database would let you avoid opening the data warehouse for day-to-day queries.

Teams
Figure B-17 shows a relatively simple data model for team sports. This design is based on a typical
volleyball league. Players belong to a team and teams play in tournaments.

PlayerId
TeamId
FirstName
LastName
Phone

Players

PlayerId
Position

PlayersPositions

TeamId
Name

Teams

Position
Positions

TournamentId
CourtNumber
MatchNumber
HomeTeamId
AwayTeamId
HomeScore
AwayScore

Matches
TournamentId
VenueId
Name
Date
Notes

Tournaments

VenueId
Name
Address
Phone
NumCourts

Venues

1
1

1

∞

∞
∞

1

1

∞
∞

1

1

∞
∞

Figure B-17

This model allows each player to be associated with several positions. You can include special ‘‘positions’’
such as captain, coach, and water boy, or you can add them as new fields in the Players or Teams table
depending on your needs.

Tournaments occur at venues that have a given number of courts. A match is a game between two teams.
(In practice, a match will include several games so the scores may be games won rather than points
won. In a really serious competition, you would need to expand the model to save scores for individual
games in a match so you can compare points head-to-head in case there’s a tie based on games alone. In
fact, official volleyball record sheets include so much detail that you can figure out exactly when each
point was made by each team and every player’s location at the time.)

In a normal tournament, teams play against each other in pools. For example, six teams might play a
round-robin against each other on each of two courts. Then the top two teams from each pool would
enter single-elimination playoffs.

479

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 480

Appendix B: Sample Database Designs

You can modify the simple design shown in Figure B-17 to handle non-tournament situations. For
example, in many soccer leagues teams play one game a week so there isn’t really a notion of a tour-
nament. In that case, you can pull the relevant tournament fields (VenueId, Date, Notes) into the Matches
table. You might also want to make some cosmetic changes such as changing ‘‘court’’ to ‘‘field’’ or
‘‘pitch.’’

Individual Sports
An individual sport such as running doesn’t need all of the team information recorded in the previous
model. Instead its database can focus on individual statistics and accomplishments.

Figure B-18 shows a model to hold running information. If you only store basic race information, you can
treat races like any other run. If you’re more competitive and want to record race data such as finishing
position, position in age group, mile times, number of bathroom breaks, and so forth, you can add new
Races and RunnerRaces tables similar to the Runs and RunnerRuns.

1
1

1

1

RunnerId
FirstName
LastName

Runners

Races
RacesId
Name
Description
Length
Location
Surface

RunnerId
RaceSplits

RaceId
MilePoint
Time

Surfaces
Surface

RunnerId
RaceId

RunnerRaces

WeatherCondition
Temperature

WeatherConditions
WeatherCondition

Date

∞
∞

∞

1

∞

∞

Figure B-18

Vehicle Fleets
Fleet tracking can be quite complex. Different parts of a business might want to track the vehicles’ cargo
and weights, current location, special equipment and tools, leases, repairs and maintenance, mileage,
equipment, drivers, taxes, fuel use and taxes, and so forth.

For this example, you should know a little about the International Fuel Tax Agreement (IFTA). IFTA is
an agreement among most U.S. States and Canadian Provinces to distribute fuel taxes fairly.

Each state and province charges a different tax rate on various kinds of fuel such as gasoline, diesel,
propane, E-85, A55, and several others. (Perhaps the list will soon include hydrogen.) The taxes are
included in the price at the pump and you’ve been paying them for years, probably without thinking
about it.

480

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 481

Appendix B: Sample Database Designs

The system is simple and makes sense until you consider a big fleet of vehicles that buys fuel in one
state and then drives mostly in another state. For example, suppose your business is in St. Louis, Mis-
souri but you do most of your driving across the river in Illinois. Fuel is cheaper in Missouri so you
buy yours there. Illinois screams, ‘‘No fair! You’re paying fuel taxes to Missouri but using our roads!’’
Enter ITFA.

Each quarter, you need to file IFTA tax forms listing every mile you drove and every drop of fuel you
purchased in every state or province. You then need to pay any extra taxes that you owe based on how
much tax you paid in each state and where you drove. In this example, you probably owe Illinois some
money. (The net result is there’s much less incentive for you to cross borders to buy fuel. The IFTA
agency gathers all of these records from fleets all over North America, performs lengthy calculations,
and then makes the states pay each other the differences between their taxes collected and what they
should have collected based on miles driven. The numbers tend to cancel out so the grand totals aren’t
necessarily big.)

Figure B-19 shows a model designed to hold license, permit, fuel, and mileage data. Each field marked
with an asterisk should be validated against a States lookup table but, to keep the model simple (relatively
simple, anyway), the States table and its links aren’t shown.

TripId
DateTime
Mileage
Gallons
State *
TotalCost

FuelPurchases

Model
CurbWeight
MaxGrossWeight
FuelType
FuelCapacity
MPG

Models

TripId
DateTime
EnteredState *
Mileage

TripStateEntries

PermitType
PermitTypes

Model
State *
Class

LicenserRequired

FuelType
FuelTypes

VIN
Model
Mileage

Vehicles
1

1

1

1

∞

∞

∞
∞

∞

DriverId
FirstName
LastName

Drivers

DriverId
LicenseNumber
State *
Class
ExpirationDate

DriversLicenses

TripId
State *
PermitNumber
PermitType
StartDate
EndDate
Notes

State *
Class
Description

StateLicenses

TripPermits

TripId
ItemNumber
Description
Weight
Destination
DeliveredDateTime

Manifests

TripId
DriverId
VIN
StartDateTime
EndDateTime
StartMileage
EndMileage

Trips 1 1

1

1 1

∞

∞

1

1

1

∞

∞

∞

1

∞
∞

∞

Figure B-19

481

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 482

Appendix B: Sample Database Designs

The model’s FuelPurchases table records the states in which fuel is purchased. The TripStateEntries
records the mileages at which a vehicle entered a new state. By subtracting Mileage values in subsequent
TripStateEntries, you can calculate the number of miles driven in each state.

Another interesting case is modeling jobs, employees, and vehicles with special requirements, tools,
and skills. Employees have tools (such as wrenches, ohm meters, and chainsaws) and skills (such as the
ability to fix dishwashers, install phones, and juggle). Vehicles have equipment such as pipe benders and
threaders, cherry pickers, and pole setters.

Finally, jobs require certain skills and tools. For example, if you need to haul a lot of logs, you need a
vehicle with a tree grapple and an employee who has tree grappling as a skill. (‘‘Tree grappling’’ sounds
like a wrestling move but it’s not.)

Figure B-20 shows a data model to store this information. The model is simplified and leaves out a lot of
information. For example, you may need to add job addresses, appointments, length, and so forth.

EmployeeId
FirstName
LastName

Employees

JobId
EmployeeId
VehicleId
Date

Assignments

EmployeeId
Skill

EmployeeSkills

VehicleId
VehicleType

Vehicles
JobId
Description

Jobs

JobId
SkillRequired

JobSkills

JobId
ToolRequired

JobToolsVehicleId
Tool

VehicleTools

EmployeeId
Tool

EmployeeTools

Skill
Skills

Tool
Tools

VehicleType
VehicleTypes

1

1 1
1

1

11

1 1

1

1

1
1

1

∞
∞

∞

∞
∞

∞
∞

∞

∞

∞
∞
∞

∞
∞

Figure B-20

(Note that assigning a tool to an employee implies that the employee can use the tool. You wouldn’t
give a defibrillator to an employee who didn’t know how to use it. However, if you also want to model
employees signing equipment in and out, you might need to make this assumption explicit by giving the
employee a Defibrillator skill.)

This model assumes that multiple employees may be assigned to a single job. You could allow an Assign-
ments record to have a null VehicleId value to allow two employees to ride in the same vehicle.

Of course, once you have this data stored, someone will need to figure out a way to match employees,
vehicles, and jobs to get the most work done as efficiently as possible.

482

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 483

Appendix B: Sample Database Designs

Contacts
The most obvious application that needs to store contact information is an address book, but many other
applications can store contact information, too. Most complex applications that involve interaction among
customers, employees, vendors, and other people can benefit from a contact database. For example,
an order placement and processing application can use contact data to keep track of customer calls that
place orders, change orders, request returns, and register complaints.

Figure B-21 shows a general contact data model. An application can use these tables to remember contacts
at different times covering different topics.

ContactId
FirstName
LastName
BirthDate

Contacts 1

1 1

ContactId
PhoneType
PhoneNumber

ContactPhones

PhoneType
PhoneTypes

∞ ∞ ∞

1

∞
ContactId
AddressType
Street
Suite
City
State
Zip

ContactAddresses

AddressType
AddressType

1

∞
ContactId
DateTime
ConversationType
Subject
Notes

Conversations

ConversationType
ConversationType

1

∞

Figure B-21

If you want to integrate contact data in an application involving multiple employees, you may want to
add an EmployeeId field to the Conversations table so you know who talked to the customer. You might
also want to add fields to refer to a customer order to help further define the conversation. That would
allow you to search for all of the conversations related to a particular order.

Passengers
There are several ways you might like to model vehicles with passengers. For example, typically city
buses don’t take reservations and don’t care where passengers sit as long as the number of passengers
doesn’t exceed the vehicle’s capacity (which in larger cities equals approximately two passengers per
cubic foot of space).

Figure B-22 shows a simple design to track the number of passengers on a bus.

A route defines the stops that a bus will take. The information for each stop includes the time it should
take to get to that stop and the duration of time that the bus should ideally wait at that stop.

A trip represents a bus traveling over a route. The TripStops records correspond to RouteStops records
and record actual times and passenger counts (although in practice I don’t know how often drivers record
passenger numbers).

483

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 484

Appendix B: Sample Database Designs

RouteId
StartLocationId
PercentOnTime

Routes

RouteId
StopNumber
LocationId
MilesFromPrevious
TimeFromPrevious
Duration

RouteStops

TripId
RouteId
BusId
StartDateTime

Trips

TripId
StopNumber
ActualArrival
ActualDeparture
PassengersOn
PassengersOff

TripStops

BusId
ModelId
YearBuilt
MilesDriven

Busses

ModelId
Manufacturer
NumPassengers
Range
FuelType

BusModels

LocationId
Address
Description

Locations

1

1

1

1

∞
∞
∞

∞

∞

∞

∞

1

1

1

Figure B-22

Figure B-23 shows a slightly more complex model that allows passengers to reserve room on a bus
but not to reserve individual seats. This model is intended for long distance common carriers such as
long-distance buses (Greyhound, Trailways) and railroads. In this model, the customer makes reserva-
tions to assure that a seat is available on each leg of the trip but specific seats are not assigned.

RouteId
StartLocationId
PercentOnTime

Routes

RouteID
StopNumber
LocationId
MilesFromPrevious
TimeFromPrevious
Duration

RouteStops

TripId
RouteId
BusId
StartDateTime

Trips

TripId
StopNumber
ActualArrival
ActualDeparture
PassengersOn
PassengersOff

TripStops

BusId
ModelId
YearBuilt
MilesDriven

Busses

ModelId
Manufacturer
NumPassengers
Range
FuelType

BusModels

LocationId
Address
Description

Locations

ReservationId
TripId
BeginStopNumber
EndStopNumber

ReservationSeats

ReservationId
CustomerName
CreditCard
ReservationDate
NumberOfSeats

Reservations

1

1

1

1

∞
∞
∞

∞

∞

∞

∞

∞
1

∞1

1

1

1

Figure B-23

This model is very similar to the previous one except it includes Reservations and ReservationSeats
tables. Each Reservations record records information about a customer’s trip. A ReservationSeats record
holds information about a set of seats on a particular bus trip. The collection of ReservationSeats records

484

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 485

Appendix B: Sample Database Designs

corresponding to a particular Reservations record contains all of the information about the buses that a
passenger’s trip will use.

You can model airline and other travel where passengers have previously assigned seats using a very
similar model. The only change you need (at least to model this part of the system) is to add assigned seat
information to the ReservationSeats data. You could also add meal selection and other special information
to each seat.

Note that these databases are typically enormous. For example, a typical large airline runs several thou-
sand flights per day holding up to a few hundred passengers each. That means the Trips and TripStops
tables grow by a few thousand records per day and the ReservationSeats table might grow by a few hun-
dred thousand records per day. If you allow passengers to reserve seats up to a year in the future, the
database must be able to hold several hundred million records.

Keeping such a large and quickly changing database running efficiently 24 hours a day is a Herculean
effort. It may require huge disk farms, segmented data, special route-finding algorithms, and massive
backup and warehousing processes. In other words, don’t try this at home.

Recipes
This may seem like a silly example but it demonstrates how to store a set of instructions that require
special equipment (ingredients).

A recipe database needs to store basic information about recipes such as their names, difficulty, and tasti-
ness rating. It also needs an ingredient list and instructions. Figure B-24 shows a simple recipe database
design. This model assumes the Difficulty and Rating fields are simple numeric values (for example, on a
1 to 10 scale). If you wanted to, you could change them to values such as Easy, Medium, and Hard, and
make them foreign keys to lookup tables.

RecipeId
Name
Description
TotalTime
Difficulty
Rating
Servings
PreheatTemp

Recipes
RecipeId
IngredientNumber
Ingredient
Amount
Unit

RecipeIngredients

RecipeId
ToolNumber
Tool

RecipeTools

RecipeId
StepNumber
Instructions

RecipeSteps

Tool
Tools

Unit
Units

Ingredient
Ingredients1 1

1

1

1

∞

∞

∞

∞
∞

∞

Figure B-24

485

Stephens bapp02.tex V3 - 10/04/2008 12:34pm Page 486

Appendix B: Sample Database Designs

You can use this design to store information about other assembly tasks (putting together skateboards,
tuning a car, and so forth) or more generally for giving instructions (troubleshooting a wireless network).

Unfortunately generalizing this model to pull information out of the steps is trickier than it might initially
seem. For example, you might like to make an instruction record refer to an ingredient and then tell
you what to do with it as in, ‘‘Oatmeal, 2 cups, mix.’’ That instruction would work but others are more
complex.

For example, a recipe might ask you to mix different ingredients in separate bowls and then combine
them. To break that information out, you would probably need to record the bowls as equipment and
then somehow associate ingredients with each bowl. Some recipes call for even more complex steps such
as separating eggs, scalding milk, caramelizing sugar, changing temperatures during cooking, and even
lighting food on fire.

With enough time and effort, you might be able to write a cooking language to let you represent all
of these operations (you could call it CML — Cooking Markup Language) but what would you have
gained? Breaking instructions down to that level would let you do things such as finding all recipes that
require you to perform certain tasks such as ‘‘powderizing’’ oatmeal in a food processor but how often
will you need to perform those kinds of searches?

The simpler model already lets you search for specific tools, ingredients, and temperatures so it’s prob-
ably best to stick with that model unless you have a very specialized need with well-defined steps. If
necessary, you can add keywords to the recipes to let you search for particular unusual tools and tech-
niques such as flambé and fossil-shaped gelatin molds.

486

Stephens bgloss.tex V2 - 10/03/2008 5:04am Page 487

Glossary

This appendix contains a glossary of useful database terms. You may find them handy
when you read other books and articles about databases. You may also want to look for database
and related glossaries online and in print. For example, ‘‘The DAMA Dictionary of Data
Management’’ (Mark Mosley editor, Technics Publications, LLC, 2008) contains an excellent data
management glossary.

For a list of relational database management systems in addition to those mentioned here, see
en.wikipedia.org/wiki/List_of_relational_database_management_systems. For a comparison
of relational database management system features, see en.wikipedia.org/wiki/Comparison_of_
relational_database_management_systems.

1NF See ‘‘First Normal Form.’’

2NF See ‘‘Second Normal Form.’’

3NF See ‘‘Third Normal Form.’’

4NF See ‘‘Fourth Normal Form.’’

5NF See ‘‘Fifth Normal Form.’’

6NF See ‘‘Domain Key Normal Form.’’

ACID Acronym for a set of database properties needed for reliable transactions. ACID stands for
Atomicity, Consistency, Isolation, Durability (see the entries for those terms).

ADO ActiveX Data Objects. A Microsoft collection of classes that allows programs to interact
with databases. ADO is built on top of OLE DB (see ‘‘OLE DB’’).

alternate key A candidate key that is not used as the table’s primary key.

Stephens bgloss.tex V2 - 10/03/2008 5:04am Page 488

Glossary

API Application Programming Interface. A library of routines that a program can use to perform
specialized tasks such as manipulating a database or drawing graphics.

association object In a semantic object model, an object used to represent a relationship between two
other objects.

atom A piece of data that cannot be meaningfully divided. For example, a Social Security number of
the form 123-45-6789 contains three pieces but they don’t have any separate meaning so the number as
a whole is an atom. (Unless your application groups records by, say, the middle two digits of a Social
Security number. That would be weird.)

atomic transaction A possibly complex series of actions that is considered as a single operation by
those not involved directly in performing the transaction.

atomicity The requirement that tasks within a transaction occur as a group as if they were a single
complex task. The tasks are either all performed or none of them are performed. It’s all or nothing.

attribute The formal database term for column (see ‘‘column’’).

b+tree (Pronounced ‘‘bee plus tree.’’) A self-balancing tree data structure that allows efficient searching
of indexes. A b+tree stores data records only in leaf nodes.

BCNF See ‘‘Boyce-Codd Normal Form.’’

BLOB Binary Large Object. A data type that can hold large objects of arbitrary content such as video
files, audio files, images, and so forth. Because the data can be any arbitrary chunk of binary data, the
database does not understand its contents so you cannot search in these fields.

Boyce-Codd Normal Form (BCNF) A table is in BCNF if every determinant is also a candidate key
(minimal superkey). See ‘‘determinant’’ and ‘‘candidate key.’’

b-tree (Pronounced ‘‘bee tree.’’) A self-balancing tree data structure that allows efficient searching of
indexes. A b-tree stores data records in internal and leaf nodes.

business rule Business-specific rule that constrains the data. For example, ‘‘all orders require a valid
existing Customers record’’ and ‘‘orders for $50 or more get free shipping’’ are business rules.

candidate key A minimal superkey (see ‘‘superkey’’). In other words, the fields in a candidate
key uniquely define the records in a table and no subset of those fields also uniquely defines the
records.

cardinality A representation of the minimum and maximum allowed number of values for an attribute.
In semantic object models, written as L.U where L and U are the lower and upper bounds. For example,
1.10 means an attribute must occur between 1 and 10 times.

catalog A directory storing metadata.

check constraint A record-level validation that is performed when a record is created or updated.

column A piece of data that may be recorded for each row in a table. The corresponding formal
database term is attribute.

488

Stephens bgloss.tex V2 - 10/03/2008 5:04am Page 489

Glossary

commit Makes changes made within a transaction permanent.

composite index An index that includes two or more fields. Also called a compound index or concate-
nated index.

composite key A key that includes two or more fields. Also called a compound key or concatenated
key.

composite object In a semantic object model, an object that contains at least one multi-valued
non-object attribute.

compound index An index that includes two or more fields. Also called a composite index or concate-
nated index.

compound key A key that includes two or more fields. Also called a composite key or concatenated
key.

compound object In a semantic object model, an object that contains at least one object attribute.

concatenated index An index that includes two or more fields. Also called a compound index or com-
posite index.

concatenated key A key that includes two or more fields. Also called a compound key or composite
key.

consistency The requirement that a transaction should leave the database in a consistent state. If a
transaction would put the database in an inconsistent state, the transaction is canceled.

CRUD Acronym for the four main database operations: Create, Read, Update, Delete. These operations
correspond to the SQL statements INSERT, SELECT, UPDATE, and DELETE.

CSV file Comma Separated Value file. A text file where each row contains the data for one record and
field values are separated by commas.

cursor An object that allows a program to work through the records returned by a query one at a
time. Some databases allow cursors to move forward and backward through the set of returned records
whereas others allow only forward movement.

cyclic dependency Occurs in a table when field A depends on field B, field B depends on field C, and
field C depends on field A.

DAO Data Access Objects. A Microsoft collection of classes that allows programs to interact with
databases. DAO is in many ways similar to ADO, although ADO is newer.

Data Definition Language The SQL commands that deal with creating the database’s structure such
as CREATE TABLE, CREATE INDEX, and DROP TABLE.

data dictionary A list of descriptions of data items to help developers stay on the same track.

Data Manipulation Language The SQL commands that manipulate data in a database. These include
INSERT, SELECT, UPDATE, and DELETE.

489

Stephens bgloss.tex V2 - 10/03/2008 5:04am Page 490

Glossary

data mart A smaller data warehouse that holds data of interest to a particular group. Also see ‘‘data
warehouse.’’

data mining Digging through data (usually in a data warehouse or data mart) to identify interesting
patterns.

data scrubbing Processing data to remove or repair inconsistencies.

data type The type of data that a column can hold. Types include numbers, fixed-length strings,
variable-length strings, and so forth.

data warehouse A repository of data for offline use in building reports and analyzing historical data.
Also see ‘‘data mart.’’

database An entity that holds data in some useful way and provides CRUD methods (see ‘‘CRUD’’).
Modern databases also provide sophisticated methods for joining, sorting, grouping, and otherwise
manipulating the data.

database administrator Someone who manages the database, optimizes performance, performs back-
ups, and so forth.

DBA Database Administrator.

DBMS Database Management System. A product or tool that manages any kind of database, not just
relational databases.

DDBMS Distributed Database Management System. See ‘‘DBMS.’’

DDL See ‘‘Data Definition Language.’’

DELETE SQL command that removes a row from a table. The Delete in CRUD.

deletion anomaly Occurs when deleting a record can destroy information.

determinant A field that at least partly determines the value in another field.

dimensional database A database that treats the data as if it is stored in cells within a
multi-dimensional array (see ‘‘multi-dimensional array’’).

distributed database A database with pieces stored on multiple computers on a network.

DKNF See ‘‘Domain Key Normal Form.’’

DML See ‘‘Data Manipulation Language.’’

document-oriented database A database oriented around documents. For example, a file system or a
Web site.

domain The values that are allowed for a particular column. For example, the domain of the Average-
Speed field in a database of downhill speed skiers might allow values between 0 and 200 miles per hour
(although if your average speed is 0, you might consider another sport).

490

Stephens bgloss.tex V2 - 10/03/2008 5:04am Page 491

Glossary

Domain Key Normal Form (DKNF) A table is in DKNF if it contains no constraints except domain
constraints and key constraints.

durability The requirement that a completed transaction is safely recorded in the database and will
not be lost even if the database crashes.

Edgar Codd IBM researcher who laid the groundwork for modern relational databases and SQL start-
ing in 1970.

entity In entity-relationship modeling, an object or item of interest such as a customer, invoice, vehicle,
or product.

entity integrity Requires that all tables have a primary key. The values in the primary key fields must
be non-null and no two records can have the same primary key values.

entity-relationship diagram (ER diagram) A diagram that shows entities (rectangles), their attributes
(ellipses), and the relationships among them (diamonds).

ER diagram See ‘‘entity-relationship diagram.’’

field Another informal term for column (see ‘‘column’’).

Fifth Normal Form (5NF) A table is in 5NF if it is in 4NF and contains no related multi-valued depen-
dencies.

First Normal Form (1NF) A table is in 1NF if it satisfies basic conditions to be a relational table.

flat file A plain old text file used to store data. A flat file isn’t very fancy and provides few tools for
querying, sorting, grouping, and performing other database operations but flat files are very easy to use.

foreign key One or more columns that are related to values in corresponding columns in another table.
For example, the Orders table’s CustomerId column might be a foreign key referring to the Customers
table’s CustomerId column. To maintain consistency, no Orders record could have a CustomerId value
that is not in some record in the Customers table.

Fourth Normal Form (4NF) A table is in 4NF if it is in BCNF and contains no unrelated multi-valued
dependencies.

HOLAP Hybrid Online Analytical Processing. A combination of MOLAP and ROLAP. Typically this
combines relational storage for some data and specialized storage for other data. The exact definition of
HOLAP isn’t clear so you can use it as a conversation starter at cocktail parties. Also see ‘‘OLAP.’’

hybrid object In a semantic object model, an object that contains a combination of multi-valued and
object attributes. For example, it might contain a multi-valued group attribute that includes an object
attribute.

hypercube A multi-dimensional array (see ‘‘multi-dimensional array’’). To be a true hypercube, each
dimension should have the same length or number of entries.

identifier In a semantic object model, one or more attributes that are used to identify individual objects.
Indicated by writing ID to the left of the attribute(s), underlined if the identifier is unique.

491

Stephens bgloss.tex V2 - 10/03/2008 5:04am Page 492

Glossary

index A data structure that uses one or more columns to make looking up values on those columns
faster.

INSERT SQL command that creates a new record in a table. The Create in CRUD.

insertion anomaly Occurs when you cannot store certain kinds of information because it would violate
the table’s primary key constraints.

instance A particular occurrence of an entity. For example, if VicePresident is an entity (class) then
Dan Quayle is an instance of that class.

isolation The requirement that no one should be able to peek into the database and see changes while
a transaction is underway. Anyone looking at the data will either see it as it is before the transaction or
after the transaction but cannot see the transaction partly completed.

JDBC Java Database Connectivity. An API for manipulating databases from Java programs.

join A query that selects data from more than one table, usually using a JOIN or WHERE clause to indicate
which records in the two tables go together.

JOLAP Java Online Analytical Processing. A Java API for online analytical processing. Also see
‘‘OLAP.’’

key One or more fields used to locate or arrange the records in a table. Also see ‘‘index.’’

key constraint In an ER diagram, a key constraint means an entity can participate in at most one
instance of a relationship. For example, during flight a pilot can fly at most one hang glider.

lock Used to control access to part of the database. For example, while one user updates a row, the
database places a lock on the row so other users cannot interfere with the update. Different databases
may lock data by rows, table, or disk page.

many-to-many relationship A relationship where one object of one type may correspond to many
objects of another type and vice versa. For example, one COURSE may include many STUDENTs and
one STUDENT may be enrolled in many COURSEs. Normally you implement this kind of relationship
by using an intermediate table that has one-to-many relationships with the original tables.

MDAC Microsoft Data Access Components. A group of Microsoft tools and APIs that provides tools
for interacting with many kinds of databases.

memo A text data type that can hold very large chunks of text.

metabase A database that stores metadata.

metadata Data about the database such as table names, column names, column data types, column
lengths, keys, and indexes. Some relational databases allow you to query tables that contain the
database’s metadata.

MOLAP Multidimensional Analytical Processing. The ‘‘classic’’ version of OLAP and is sometimes
referred to as simply OLAP. See ‘‘OLAP.’’

492

Stephens bgloss.tex V2 - 10/03/2008 5:04am Page 493

Glossary

multi-dimensional array A multi-dimensional rectangular block of cells containing values. Picture a
row of bricks where each brick is a cell. A wall made of bricks arranged in rows and columns (which
would not be very architecturally sound) would be a two-dimensional array. A series of walls closely
packed together (which would be architecturally useless) would be a three-dimensional array. Use your
imagination for higher dimensions.

multi-valued dependency When one field implies the values in two other fields that are unrelated. For
example, a table has a multi-valued dependency if field A implies values in field B, and field A implies
values in field C, but the values in fields B and C are not related.

MySQL An open source relational database management system. See www.mysql.com.

normalization The process of transforming the database’s structure to minimize the changes of certain
kinds of data anomalies.

null A special column value that means ‘‘this column has no value.’’

object An instance of an item of interest to the data model. See ‘‘instance.’’

object database See ‘‘object-oriented database.’’

object database management systems (ODBMS) A product or tool for managing object-oriented
databases. See ‘‘object-oriented database.’’

object store See ‘‘object-oriented database.’’

object-oriented database A database that provides tools to allow a program to create, read, update,
and delete objects. The database automatically handles object persistence (changes to the object are
automatically saved) and concurrency (two users accessing the same object will not interfere with each
other).

object-relational database (ORD) A database that provides relational operations plus additional fea-
tures for creating, reading, updating, and deleting objects.

object-relational database management system (ORDBMS) See ‘‘object-relational database.’’

object-relational mapping A translation layer that converts objects to and from entries in a relational
database.

ODBC Open Database Connectivity. A standard database interface that allows many database prod-
ucts to use data stored in different kinds of databases.

ODBMS Object Database Management System. See ‘‘object database management system.’’

OLAP Online Analytical Processing. A data mining approach for performing multi-dimensional
queries.

OLE DB Object Linking and Embedding, Database. A Microsoft API that allows programs to manipu-
late databases. OLE DB is part of MDAC.

493

Stephens bgloss.tex V2 - 10/03/2008 5:04am Page 494

Glossary

one-to-many relationship A relationship where one object of one type may correspond to many objects
of another type. For example, one INSTRUCTOR may teach many COURSEs but each COURSE has only
one INSTRUCTOR.

one-to-one relationship Occurs when one record in a table corresponds to exactly one record in
another table.

OODBMS Object-Oriented Database Management System. See ‘‘object database management system.’’

Oracle An enterprise-level relational database management system. See www.oracle.com/database/
index.html.

ORD Object-Relational Database. See ‘‘object-relational database.’’

ORDBMS Object-Relational Database Management System. See ‘‘object-relational database.’’

participation constraint In an ER diagram, a participation constraint means every entity in an entity
set must participate in a relationship set. The constraint is drawn with a thick or double line. For example,
during flight a hang glider must participate in the ‘‘Pilot Flies HangGlider’’ relationship.

PL/SQL Procedural Language/Structured Query Language. Oracle’s extension to SQL used to write
stored procedures in Oracle.

primary key A candidate key that is singled out as the table’s ‘‘main’’ method for uniquely identifying
records. Most databases automatically build an index for a table’s primary key and enforce uniqueness.

primary key constraint Requires that each table’s primary key behavior be valid. In particular, this
requires that no two records in a table can have exactly the same primary key values and that all records’
primary key values not be null.

query A SQL SELECT statement that extracts data from a database.

RDBMS Relational Database Management System. A product or tool that manages a relational
database such as SQL Server, MySQL, and Informix.

record Another informal term for row (see ‘‘row’’).

referential integrity Requires that relationships among tables be consistent. For example, foreign
key constraints must be satisfied. You cannot accept a transaction until referential integrity is
satisfied.

relation The database theoretical term for a table. For example, the Customer table is a relation holding
attributes FirstName, LastName, Street, City, State, and ZipCode.

relational database A database that stores data in tables containing rows and columns, and that allows
queries representing relationships among records in different tables.

relationship An association between two tables. For example, if an order contains several order items,
there is a one-to-many relationship between Orders and OrderItems tables. Don’t confuse this term with
‘‘relation.’’

494

Stephens bgloss.tex V2 - 10/03/2008 5:04am Page 495

Glossary

replication The process of storing data in multiple databases while ensuring that it remains consistent.
For example, one database might contain a master copy of the data and other satellite databases might
hold read-only copies to let clerks view data quickly without impacting the main database.

report The results of a query displayed in a nice format. Sometimes this term is used to mean the
format that will produce the report when data is added to it.

ROLAP Relational Online Analytical Processing. OLAP performed with a relational database. See
‘‘OLAP.’’

rollback Undoes changes performed within a transaction before the transaction is committed.

row A group of related column values in a table. The corresponding formal database term is tuple.
Also see ‘‘record.’’

Second Normal Form (2NF) A table is in 2NF if it is in 1NF and every field that is not part of the
primary key depends on every part of the primary key.

SELECT SQL command that selects data from a database. The Read in CRUD.

semantic attribute A characteristic of a semantic object.

semantic class A named collection of attribute sufficient to specify an entity of interest.

semantic object (SO) An instance of a semantic class with specific attribute values.

semantic object model (SOM) A model that uses classes, objects, and relationships to provide under-
standing of a system. Classes have attributes that describe instances. Object attributes provide the
relationships among objects.

simple object In a semantic object model, an object that has only single-valued simple attributes.

SOM See ‘‘semantic object model.’’

splay tree A self-balancing tree data structure that allows efficient searching of indexes.

SQL See ‘‘Structured Query Language.’’

SQL Server Microsoft’s enterprise-level relational database management system. See
www.microsoft.com/sql/default.mspx.

SQLJ A standard Java language extension for embedding SQL statements in Java programs. The code
must be run through a preprocessor before they can be compiled. Also see ‘‘JDBC.’’

stored procedure A piece of code stored in the database that can be executed by various pieces of code
such as check constraints or application code. Stored procedures are a good place to store business logic
that should not be built into the database’s structure.

Structured Query Language An industry standard English-like language for building and manipulat-
ing relational databases.

495

Stephens bgloss.tex V2 - 10/03/2008 5:04am Page 496

subclass object An object that represents a subset of the objects in a larger class. For example, the
Vehicle class could have the Truck subclass, which could have its own PickupTruck subclass, which
could in turn have its own BrokenPickupTruck class.

superkey A set of fields that uniquely define the records in a table. (Not a key that wears a cape and
fights crime.)

table A collection of rows holding similar columns of data. The corresponding formal database term is
relation.

temporal database A database that associates times with data. See ‘‘valid time.’’

Third Normal Form (3NF) A table is in 3NF if it is in 2NF and it contains no transitive dependencies.

transaction A series of database operations that should be treated as a single atomic operation so either
they all occur or none of them occur. Also see ‘‘commit’’ and ‘‘rollback.’’

Transact-SQL Microsoft’s version of SQL used in SQL Server. See ‘‘SQL.’’

transitive dependency When one non-key field’s value depends on another non-key field’s value.
Typically this shows up as duplicated data. For example, suppose a table holds people’s favorite book
information and includes fields Person, Title, and Author. The primary key is Person but Title determines
Author so there is a transitive dependency between Title and Author.

trigger A stored procedure that executes when certain conditions occurs such as when a record is
created, modified, or deleted. Triggers can perform special actions such as creating other records or
validating changes.

TSQL See ‘‘Transact-SQL.’’

tuple The formal database term for a record or row (see ‘‘row’’).

unique constraint Requires that the values in one or more columns be unique within a table. UPDATE
SQL command that changes the values in a record’s fields. The Update in CRUD.

update anomaly Occurs when a change to a row leads to inconsistent data.

valid time The time during which a piece of data is valid in a temporal database.

view The result of a query that can be treated as if it were a virtual table. For example, you could define
views that return only selected records from a table or that return only certain columns.

weak entity In an ER diagram, an entity that cannot be identified by its own attributes. Instead you
need to use the attributes of some other associated entity to find the weak entity. Drawn with a bold or
double rectangle and attached to its identifying relationship by a bold or double arrow.

XML Extensible Markup Language. A language that uses nested tokens to represent hierarchical data.

496

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 497

In
de

x

Index

NUMBERS
1NF. See First Normal Form (1NF)
2NF. See Second Normal Form (2NF)
3NF. See Third Normal Form (3NF)
4NF. See Fourth Normal Form (4NF)
5NF. See Fifth Normal Form (5NF)

A
Access. See Microsoft Access
access control

database security and, 17
security planning and, 68

ACID (Atomicity, Consistency, Isolation,
Durability), 13–14

alternate (secondary) keys, relational
databases, 53–54

American National Standards Institute (ANSI),
347

anomalies
2NF and, 147
3NF and, 151
4NF and, 159
BCNF and, 155
normalization and, 138
redundancy and, 167

ANSI (American National Standards Institute),
347

applications
developing for databases. See software

development
multi-tier. See multi-tier applications
speed of interactive, 235

association objects, semantic views, 102–105
association patterns

many-to-many, 186–188
multiple-object, 188–191
one-to-many reflexive, 194–195
one-to-one reflexive, 193–194
overview of, 185–186
reflexive, 193
repeated attribute, 191–192

association tables
many-to-many relationships and,

186

multiple-object associations and, 189
types of tables, 176

atomic objects, 100–101
atomic transactions, 8, 12–13
Atomicity, Consistency, Isolation, Durability

(ACID), 13–14
attributes

classes sharing in common, 249
database columns, 52
ERD, 107
relational databases, 52
repeated attribute associations, 191–192
semantic objects, 96
XML, 35

audit trails
logging and, 203–204
security needs and, 236
security planning and, 69

B
backups, 379–382

design goals and, 14–15
offsite, 381
overview of, 379–381
planning, 15, 381–382

basic initialization scripts, 370
BCNF. See Boyce-Codd Normal Form (BCNF)
Boyce-Codd Normal Form (BCNF), 154–158

arranging data in, 157
how it works, 157–158
qualifications/rules, 154

brainstorming sessions
customer/user needs and, 75
Pampered Pet case study, 229–230

bugs, testing and, 214
business logic, multi-tier applications, 130
business rules, 121–136

exercise solutions, 424–430
exercises, 134–136
extracting key, 128–129
identifying key, 123–128
list for custom woodworking shop, 126
multi-tier applications, 129–133
overview of, 121–123
summary, 133–134

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 498

business rules (Pampered Pet case study)

business rules (Pampered Pet case study),
263–271

Courses table, 264–266
CustomerCourses table, 266–267
Customers table, 267
Employees table, 267
exercise solutions, 449–451
exercises, 271
identifying, 263–264
InventoryItems table, 268
OrderItems table, 268
Orders table, 267
overview of, 263
Persons table, 269
Pets table, 267
Phones table, 269
relational model for, 270
Shifts table, 269
summary, 270–271
TimeEntries table, 268–269
Vendors table, 269–270

C
calculations

ability of databases to perform complex, 19
business rules for parameters of, 124, 128

candidate keys
BCNF and, 154–156
relational databases, 53–54

cardinality
enforcing referential integrity and, 295
ERD and, 108–109
semantic object attributes, 97

Cartesian product, relational database
operations, 58

case sensitivity, SQL, 347
catchall tables, as design pitfall, 215–217
cells, in dimensional databases, 44
change

managing, 264
not planning for, 210–212

check constraints
allowing for changes to business rules,

123
business rules for, 122, 124
business rules for complex checks, 125
overview of, 55
sanity checks and, 264
validating fields against domain, 175

classes
building ERDs and, 250–252
entity classes, 107
object inheritance and, 105–106
semantic classes, 96

semantic views, 100
sharing common attributes, 249

cleanup scripts, 371
columns

1NF and, 139–146
attributes or data elements, 52
multiple values in, 276
relational databases, 50–52

Command Line Client, MySQL, 314–318
commands, SQL

FROM clause, 359–362
CREATE INDEX command, 355–356
CREATE TABLE command, 350–355
DELETE command, 365–366
DROP command, 356
GROUP BY clause, 362–363
INSERT command, 357–358
ORDER BY clause, 363–364
overview of, 348–350
SELECT clause, 358–359
SELECT command, 358
UPDATE command, 364–365
WHERE clause, 362

comments and notes
ERDs, 113
SOMs, 106

commit, atomic transactions, 12
compacting databases, 383
composite objects, semantic views, 101
compound (composite) keys, relational

databases, 53–54
compound objects, semantic views, 101–102
configuration information

INI files, 26
Windows system registry, 26–27

consistency
database design goals, 10
definition of, 13
naming conventions and, 209

constraints, 55–57
Addresses table (Pampered Pet case study),

265–266
business rules as, 122–123
check constraints, 55
Courses table (Pampered Pet case study),

264–265
CustomerCourses table (Pampered Pet case

study), 267
data integrity and, 68, 236–238
DKNF and, 165–166
ERDs and, 112
field constraints in Access, 296–298
foreign key constraints, 56–57
generalized, 124
not enforcing as design pitfall, 217

498

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 499

In
de

xdata models

overview of, 55
primary key constraints, 55
table constraints in Access, 298–300
unique constraints, 56

contextual lists, 89. See also requirements
document

conventions, ERD, 112–113
corrupted databases, repairing, 383
cost savings, database design goals, 16
Courses table (Pampered Pet case study),

264–266
Create, Read, Update, and Delete. See CRUD

(Create, Read, Update, and Delete)
CREATE DATABASE statement, 322
CREATE INDEX statement, 355–356
Create operations

CRUD and, 9
speed and, 11
validity, 10–11

CREATE TABLE statement, 322
creating table with, 352–355
MySQL, 317
overview of, 350–352
SQL, 350–355

CREATE TRIGGER statement, 335
creative people, 75
CRUD (Create, Read, Update, and Delete)

atomic transactions, 11–12
consistency, 10
database operations, 9
error correction, 11
retrieval, 9–10
speed, 11–12
SQL and, 349
validity, 10–11

customer champion
brainstorming and, 75
who’s who, 71

customer representative, 71
CustomerCourses table (Pampered Pet case

study), 266–267
Customers table (Pampered Pet case study),

267
customer/user requirements, 65–88

brainstorming sessions, 75
creating list of questions for, 67
data integrity and, 68
data requirements, 67–68
environmental requirements, 69
exercise solutions, 413–416
exercises, 86–88
experiencing day-to-day operations, 73–74
feasibility evaluation, 85
functional requirements, 67
future needs, 76

meeting with customer(s), 69–70
overview of, 65–66
picking customers’ brains, 73
planning process, 66–67
prioritization, 78–79
requirements document, 80–81
security and, 68–69
studying day-to-day operations, 74–75
summary, 85–86
understanding customers’ real needs, 77–78
understanding customers’ reasoning, 76–77
use cases, 81–85
verifying approach, 79–80
who’s who and, 70–73

customer/user requirements (Pampered Pet
case study)

data integrity needs, 236–238
exercise solutions, 442–446
exercises, 244
functional requirements, 229–231
getting feedback, 243–244
meeting with customer(s), 227–229
overview of, 227
performance needs, 235
picking customers’ brains, 229
project look, 231
relationships between data, 233–235
security needs, 235
sources of data, 233
summary, 244
user interface, 232–233
writing requirements document, 242–243
writing use cases, 238–242

D
data

allowing for redundant, 179–180
determining sources of (Pampered Pet case

study), 233
editing in MySQL, 320–321
organizing hierarchically, 32

data (database) tier, multi-tier applications, 129
Data Control Language (DCL), 348–349
Data Definition Language (DDL), 348–349
data elements, 52
data initialization scripts, 370–371
data integrity

customer/user needs, 68
customer/user needs (Pampered Pet case

study), 236–238
Data Manipulation Language (DML), 348–349
data models

entity-relationship. See ERDs (entity-relationship
diagrams)

499

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 500

data models (continued)

data models (continued)
exercise solutions, 417–424
exercises, 118–119
normalization and, 249
overview of, 89–92
relational. See relational models
semantic object. See SOMs (semantic object

models)
semantic views, 99–100
summary, 117–118
user interface, 92–96
well-focused tables and, 176–177

data models (Pampered Pet case study)
building combined ERD, 252–254
building ERD, 250–252
building initial SOM, 245–248
ERDs, 250
exercise solutions, 446–448
exercises, 261–262
improving ERD, 254–256
improving SOM, 248–250
integrating all models, 259–260
overview of, 245
relational modeling, 256–259
SOMs, 245
summary, 260–261

data requirements
converting requirements tables into semantic

objects, 246–248
customer/user needs, 67–68

data types
column, 50–51
requirements, 125
SQL, 351

data warehousing, 382–383
database creation scripts, 370
database drivers, Access and, 287
database maintenance. See maintenance
database security. See security
Database Tool tab, Access, 293
database types, 23–47

benefits of different types, 24
deductive, 44
dimensional, 44
document-oriented, 44
exercise solutions, 408–411
exercises, 47
flat files, 24–27
hierarchical, 31–34
networks, 40–42
object, 42–43
object-relational, 43
overview of, 23–24
relational, 27–30
spreadsheets, 30–31

summary, 45–46
temporal, 45
XML, 34–40

databases
business rules for, 122
definition of, 5
as information containers, 5

Datasheet views, Access, 289
day-to-day operations

experiencing, 73–74
studying, 74–75

DCL (Data Control Language), 348–349
DDL (Data Definition Language), 348–349
deductive databases, 44
Delete operations

CRUD and, 9
speed and, 11
validity and, 10–11

DELETE statement, SQL, 365–366
deleted objects, temporal data, 202
deletion anomalies

2NF and, 147
3NF and, 151
BCNF and, 155

deliverables, requirements document, 80–81
dependencies

5NF and, 162–163
DKNF and, 166

design
consequences of good and bad designs, 9–10
importance of, 4–5

design patterns
associations, 185–186
exercise solutions, 436–440
exercises, 205–206
hierarchical data and, 195–197
logging and locking, 203–205
many-to-many associations, 186–188
multiple-object associations, 188–191
network data and, 198–200
one-to-many reflexive associations, 194–195
one-to-one reflexive associations, 193–194
overview of, 185
reflexive associations, 193
repeated attribute associations, 191–192
summary, 205
temporal data, 200–203

design pitfalls
exercise solutions, 440–442
exercises, 222–223
insufficient normalization, 213–214
insufficient testing, 214
lack of preparation, 207–208
mishmash tables, 215–217
not defining natural keys, 220–221

500

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 501

In
de

xfield-level check constraints

not enforcing constraints, 217
not planning for change, 210–212
overuse of IDs, 218–220
overview of, 207
performance anxiety, 214–215
poor documentation, 208
poor naming standards, 208–209
summary, 221
thinking too small, 210
too much normalization, 212–213

Design view, Access, 289
determinants, BCNF and, 154–156
development environment, Access, 288
devil’s advocate, who’s who and, 72
difference operation, relational databases,

58
dimensional (multi-dimensional) databases,

44
divide operation, relational databases, 58
DKNF. See Domain/Key Normal Form (DKNF)
DML (Data Manipulation Language), 348–349
documentation

of existing system in planning projects or
applications, 69

importance of documenting everything, 174
naming conventions and, 208
poor or insufficient, 208

document-oriented databases, 44
domain constraints, 55
Domain/Key Normal Form (DKNF), 165–167

arranging data in, 166
qualifications/rules, 165

domains
columns and, 50–51
converting into tables, 175–176
data integrity and, 68
sanity checks, 263

DROP DATABASE statement, 318
DROP statement, 356
DROP TABLE statement, 317
durability, ACID, 14

E
ease of use, database design goals, 16
EER diagrams, creating with MySQL Workbench,

331–333
effective/valid dates, temporal data, 200–202
elements, XML nesting rules, 35
Employees table, (Pampered Pet case study),

267
encryption

right level of security and, 389
security planning and, 68

end users, modeling and, 91

entities
1NF and, 140
building ERDs, 250–252
classes, 107
converting requirements tables into semantic

objects, 246–248
ERDs and, 107
primary key constraints for integrity of, 55

entity sets, 107
enumerated types, with fixed values, 125
enumerated values, types of business rules, 124
environment, customer/user needs, 69
ERDs (entity-relationship diagrams), 106–113

building combined (Pampered Pet case study),
252–254

building initial (Pampered Pet case study),
250–252

cardinality, 108–109
comments and notes, 113
conventions for, 112–113
converting to relational models, 116–117
entities, attributes, and identifiers, 107
improving (Pampered Pet case study), 254–256
inheritance, 109–110
integrating all models (Pampered Pet case

study), 259–260
overview of, 106–107
Pampered Pet case study, 250
relationships, 107–108
working with, 111

errors
avoiding vs. fixing, 173–174
database design goals and, 11

executive champion, who’s who and, 71
executive overview, in requirements document,

242–243
extensibility, database design goals, 16
eXtensible Markup Language (XML). See XML

(eXtensible Markup Language)

F
feasibility evaluation, customer/user needs, 85
feedback, development process and, 243–244
field-level check constraints

business rules and, 122
Courses table (Pampered Pet case study),

264–265
creating in Access, 296–298
Employees table (Pampered Pet case study),

267
not enforcing as design pitfall, 217
overview of, 55
Phones table (Pampered Pet case study), 269

501

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 502

field-level check constraints (continued)

field-level check constraints (continued)
Shifts table (Pampered Pet case study),

268–269
TimeEntries table (Pampered Pet case study),

268–269
validating fields with, 175

fields
1NF and, 140
breaking into pieces to handle multiple values,

276
data integrity and, 68
documentation, 174
naming conventions, 209
relational databases, 52
sanity checks, 263–264

Fifth Normal Form (5NF), 161–165
how it works, 164–165
qualifications/rules, 161
working with, 163–164

file system, as hierarchical database, 31–32
final deliverables, 81
First Normal Form (1NF), 138–146

arranging data in, 141–142
databases vs. alternative methods of data

storage, 181
how it works, 142–146
qualifications/rules, 138–141
verifying (Pampered Pet case study), 275–278

flat files, 24–27
INI files, 26
overview of, 24–25
pros/cons, 25
Windows system registry, 26–27

foreign key constraints
allowing for changes to business rules, 123
business rules and, 122
converting domains into tables, 175
CustomerCourses table (Pampered Pet case

study), 267
InventoryItems table (Pampered Pet case study),

268
OrderItems table (Pampered Pet case study),

268
Orders table (Pampered Pet case study), 267
overview of, 56–57
Persons table (Pampered Pet case study), 267
Phones table (Pampered Pet case study), 269
Shifts table (Pampered Pet case study),

268–269
between tables in Access, 294, 296
TimeEntries table (Pampered Pet case study),

268–269
validation list, 128
Vendors table (Pampered Pet case study),

270

foreign keys
data integrity and, 68
relational databases and, 54

formats, verifying field formats, 217
forms (Pampered Pet case study), 231
Fourth Normal Form (4NF), 158–161

arranging data in, 160–161
how it works, 161
overview of, 158–159
qualifications/rules, 159

FROM clause, SQL statements, 359–362
full backups, 380
functional requirements

customer/user needs, 67
Pampered Pet case study, 229–231

future needs, customer/user needs, 76

G
Garbage In, Garbage Out (GIGO), 4
generic bad guy, who’s who, 72
get it done viewpoint, 50
GIGO (Garbage In, Garbage Out), 4
goals, database design, 3–23

ACID transactions, 13–14
atomicity of transactions, 12–13
complex calculations, 19
consequences of good and bad designs, 19–20
consistency, 10
CRUD, 9
databases as information containers, 5–7
ease of use, 16
error correction, 11
exercise, 22
exercise solutions, 403–408
low cost and extensibility, 16
overview of, 3–5
Pampered Pet case study, 229
persistence and backups, 14–15
portability, 16–17
retrieval, 9–10
security, 17–18
sharing, 18
speed, 11–12
strengths and weaknesses of information

containers, 7–8
summary, 21
validity, 10–11

GRANT statement, SQL, 393
graphical user interface (GUI),

313
graphics, mockups and, 230
group attributes

ERDs, 250–251
SOMs, 96

502

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 503

In
de

xmany-to-many associations

GROUP BY clause, SQL, 362–363
GUI (graphical user interface), 313

H
hierarchical data, 195–197

improving ERDs and, 253
overview of, 195–196
working with, 196–197

hierarchical databases
examples of, 32–33
overview of, 31–32
pros/cons, 34
Windows system registry, 26–27
XML databases, 34
XML structures and, 37

hives, registry, 27
HTML, 34–35
hybrid objects, semantic views, 102

I
identifiers

ERDs, 107
SOMs, 97

IDs
identifying, 258
overuse of, 218–220

incremental backups, 380
indexes

relational databases, 54
repairing/compacting databases and, 383

information containers
databases as, 5–7
strengths and weaknesses of, 7–8

information theft, 17–18
inheritance

ERDs, 109–110, 253
SOMs, 105–106

INI files, 26
initialization scripts, 370–371
INSERT statement, SQL, 357–358
insertion anomalies

2NF and, 147
BCNF and, 155

integrity, determining need for (Pampered Pet
case study), 236–238

integrity constraints, 68
interactive applications, performance needs and,

235
International Organization for Standardization

(ISO), 347
intersection operation, relational databases, 58

InventoryItems table, (Pampered Pet case
study), 268

ISO (International Organization for
Standardization), 347

isolation, 13

J
join operation, relational databases, 58

K
key constraints

DKNF and, 165–166
overview of, 112

keys
enforcing uniqueness with, 192
entity identifiers, 107
ID numbers vs. natural keys, 218–220
not defining natural keys, 220–221
relational databases, 52–54

L
link tables, 176
links, network, 40
Linux, 314
load handling, multi-tier applications and, 210
locking data, 204–205
logs/logging

audit trails, 203–205
durability and, 14

lookup tables
Courses table (Pampered Pet case study), 265
example of use of, 175–176
Pets table (Pampered Pet case study), 267
types of tables, 177

M
maintenance, 379–387

backups, 379–382
compacting database, 383
data warehousing, 382–383
exercise solutions, 459–460
exercises, 387
overview of, 379
performance tuning, 383–386
repairing database, 383
summary, 386–387

many-to-many associations, 186–188
CustomerCourses table (Pampered Pet case

study), 266

503

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 504

many-to-many associations (continued)

many-to-many associations (continued)
improving ERDs and, 254–256
multiple many-to-many associations, 186–188
network data and, 198
OrderItems table (Pampered Pet case study),

268
overview of, 186

many-to-many reflexive associations, 198
matrix management, 40
Microsoft Access, 287–311

1NF and, 139
building test scores database, 291–293
creating field constraints, 296–298
creating queries, 301–304
creating table constraints, 298–300
defining relationships, 293–296
exercise solutions, 454
exercises, 308–311
getting started, 288–290
overview of, 287–288
pros/cons, 287
Query Design View, 304–306
SQL View, 306–308
summary, 308

middle (business) tier, multi-tier applications,
130

milestones, requirements document, 80–81
mishmash tables, as design pitfall, 215–217
mission statement, in requirements document,

242–243
models. See data models
modification anomalies

3NF and, 151
4NF and, 159
causes of, 180
redundancy and, 167

multiple-object associations, 188–191
multi-tier applications, 129–133

benefits of, 175
business rules for, 131–133
goals and advantages of, 130
load handling and, 210
overview of, 129
tiers of, 129–130

multi-valued dependencies
4NF and, 159
5NF and, 162–163

MySQL
1NF and, 139
building database with, 324–327
Command Line Client, 314–318
creating/modifying databases, 321–324
defining triggers, 334–336
editing data, 320–321
editing databases, 333–334

EER diagrams, 331–333
executing queries, 320
executing scripts, 327–329
exercise solutions, 454
exercises, 338–341
exporting scripts, 336–337
installing, 313–314
loading, 330–331
overview of, 313
privileges, 393–395
pros/cons, 313
Query Browser, 319–320
SQL scripts, 318–319
SQL syntax help feature, 329–330
summary, 338
Workbench, 330

N
naming conventions

database objects, 178–179
poor use of, 208–209

nesting rules, XML elements, 35
network data, 198–200
networks

overview of, 40–42
pros/cons, 42

nodes, network, 40
normalization, 137–172

Boyce-Codd Normal Form (BCNF), 154–158
data modeling and, 249
determining best level of, 168–169
disadvantages of higher forms of, 179–180
Domain/Key Normal Form (DKNF),

165–167
exercise solutions, 430–434
exercises, 170–172
Fifth Normal Form (5NF), 161–165
First Normal Form (1NF), 138–146
Fourth Normal Form (4NF), 158–161
overview of, 137–138
redundancy and, 167–168
Second Normal Form (2NF), 146–150
summary, 169
Third Normal Form (3NF), 150–153
too little, 213–214
too much, 212–213

normalization/refinement (Pampered Pet case
study), 273–284

exercise solutions, 451–454
exercises, 284
improving flexibility, 273–275
overview of, 273
summary, 283
verifying 1NF, 275–278

504

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 505

In
de

xprioritization, of customer/user needs

verifying 2NF, 278–281
verifying 3NF, 281–283

not null constraints, 55
null values, 55

O
object attributes, 96
object database management systems

(ODBMS), 42
object databases, 42, 43
object identifiers, 97
object tables, 177
object-relational databases (ORD), 43
object-relational mapping, 43
objects

association objects, 102–105
composite objects, 101
compound objects, 101–102
deleted or modified objects in temporal data,

202
hierarchical data and, 195
hybrid objects, 102
inheritance, 105–106
multiple-object associations, 188–191
naming conventions and, 178–179, 209
network data, 198
as programming abstraction, 42
reflexive associations, 193
semantic object identifiers, 97
simple (atomic) objects, 100–101
SOs (semantic objects), 96

ODBMS (object database management
systems), 42

one-to-many reflexive associations
hierarchical data and, 195
overview of, 194–195

one-to-many relationships, 274
one-to-one reflexive associations, 193–194
operating system passwords, 391
operations, relational databases, 57–58
ORD (object-relational databases), 43
ORDER BY clause, SQL, 363–364
OrderItems table (Pampered Pet case study),

268, 279–280
Orders table, (Pampered Pet case study), 267
org charts, as example of hierarchical data, 195

P
Pampered Pet case study

business rules. See business rules (Pampered
Pet case study)

customer/user requirements. See customer/
user requirements (Pampered Pet case
study)

data models. See data models (Pampered Pet
case study)

normalization. See normalization/refinement
(Pampered Pet case study)

tables. See tables (Pampered Pet case study)
participation constraints, 112
partitioning, performance tuning and, 384
passwords, 390–392

operating system, 391
overview of, 390
qualities of good, 391–392
security planning and, 68
single-password databases, 390
user passwords (individual), 390–391

pattern validation, 263
performance

anxiety related to too much focus on, 214–215
determining performance needs (Pampered Pet

case study), 235
tuning, 383–386

permissions, database security and, 17
persistence, database design goals, 14–15
Persons table, (Pampered Pet case study), 269
Pets table (Pampered Pet case study), 267, 279
Phones table, (Pampered Pet case study), 269
physical security, 399–400
planning

benefits of planning ahead, 173–174
for change, 210–212
customer/user needs and, 66–67
lack of preparation as design pitfall, 207–208
making backup plan, 381–382

points of view, relational databases, 49–50
policies, password, 391. See also business rules
portability, database design goal, 16–17
PRD (product requirements document), 80–81
primary key constraints

OrderItems table (Pampered Pet case study),
268

overview of, 55
Vendors table (Pampered Pet case study), 269

primary keys
1NF and, 140
2NF and, 146
5NF and, 168
building into database, 264
enforcing uniqueness with, 192
entity identifiers, 107
ID numbers vs. natural keys, 218–220
relational databases, 53–54
tables in Access and, 289

prioritization, of customer/user needs, 78–79

505

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 506

privileges

privileges, 392–398
example of use of, 395–396
how it works, 396–398
overview of, 392–395

problem solving, understanding user needs, 207
product requirements document (PRD), 80–81
programmers, benefits of documentation to, 174
programs. See applications
project look, (Pampered Pet case study), 231
project management, 4
projection operation, relational databases, 57
Project-Join Normal Form. See Fifth Normal Form

(5NF)
prototypes, as deliverables, 81

Q
queries

creating in Access, 301–304
executing in MySQL, 320

query analyzers, 384
Query Browser, MySQL

building database with, 324–327
creating/modifying databases, 321–324
editing query data, 320–321
executing queries, 320
executing scripts, 327–329
overview of, 319–320

Query Design tool, Access, 301, 304–306
query results, SQL queries, 59
Query Wizard, Access, 301–304
questions

creating list of questions in problem solving, 67
Pampered Pet case study, 228–229

R
Read operations

atomicity of transactions and, 12
consistency and, 10
CRUD and, 9
retrieval and, 9–10
speed and, 11

records
business rules for cross-record checks, 124
compacting databases, 383
deleted or modified objects in temporal data,

202
XML structures and, 38

recursive associations. See reflexive
associations

redundancy
allowing for redundant data, 179–180
normalization and, 167–168

referential integrity constraints, 56, 295
reflexive associations

one-to-many reflexive associations, 194–195
one-to-one reflexive associations, 193–194
overview of, 193

registry, Windows system, 26–27
relational databases

constraints, 55–57
exercise solutions, 411–412
exercises, 59–61
features, 29
indexes, 54
keys, 52–54
many-to-many relationships and, 186
operations, 57–58
overview of, 27–29, 49
points of view, 49–50
pros/cons, 29
relations, attributes, and tuples, 52
summary, 59
tables, rows, and columns, 50–52

relational models, 113–117
business rules (Pampered Pet case study), 270
converting ERDs to, 116–117
converting ERDs to (Pampered Pet case study),

256–259
converting SOMs to, 113–116
converting SOMs to (Pampered Pet case study),

256–259
integrating with other models (Pampered Pet

case study), 256–259
overview of, 113

relations, as formal term for a table, 52
relationships

broken, 255
building ERDs, 251–252
defining relationships between tables in Access,

293–296
determining (Pampered Pet case study),

233–235
in ERD (entity-relationship diagram), 107–108

reliability, data integrity and, 68
remote access, database security and, 17
repairing databases, 383
repeated attribute associations, 191–192
reports (Pampered Pet case study), 231
required values, 125
requirements document

customer/user needs, 80–81
preparation and, 207
writing (Pampered Pet case study), 242–243

resources, for SQL, 346
retrieval, database design goals, 9–10
REVOKE statement, SQL, 393
rollback, atomicity of transactions and, 12

506

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 507

In
de

xsoftware development

rows
1NF and, 139–146
relational databases and, 51–52
tuples and, 52

S
sanity checks, 125

Addresses table (Pampered Pet case study),
264

coding directly into databases, 264
Courses table (Pampered Pet case study), 264
InventoryItems table (Pampered Pet case study),

268
OrderItems table (Pampered Pet case study),

268
Pets table (Pampered Pet case study), 267
Shifts table (Pampered Pet case study),

268–269
TimeEntries table (Pampered Pet case study),

268–269
uses of, 263

scale, thinking too small, 210
script editor, MySQL, 327
scripts, 369–377

categories of, 370–371
executing with MySQL Query Browser, 327–329
exercise solutions, 457–459
exercises, 377
exporting in MySQL, 336–337
loading scripts with MySQL Workbench,

330–331
ordering SQL commands and, 371–376
overview of, 318–319, 369
summary, 376–377

searches, data storage and, 180. See also
queries

Second Normal Form (2NF), 146–150
anomalies, 147
arranging data in, 149
how it works, 149–150
qualifications/rules, 146
verifying (Pampered Pet case study), 278–281

secondary (alternate) key, relational databases,
53–54

security, 389–401
customer/user needs, 68–69
databases vs. alternative methods of data

storage, 180
determining needs (Pampered Pet case study),

235
exercise solutions, 460–466
exercises, 401
goals of database design, 17–18
initial configuration, 398

overview of, 389
passwords, 390–392
physical security, 399–400
privileges, 392–398
right level of, 389
summary, 400
too much, 398–399

SELECT clause, SQL, 358–359
SELECT statement, 301

FROM clause, 359–362
GROUP BY clause, 362–363
MySQL, 317
ORDER BY clause, 363–364
SELECT clause, 358–359
SQL, 358
SQL view, in Access, 307
WHERE clause, 362

selection operation, relational databases, 57
semantic classes, 96
semantic object models. See SOMs (semantic

object models)
semantic views

association objects, 102–105
class types, 100
comments and notes, 106
composite objects, 101
compound objects, 101–102
hybrid objects, 102
inherited objects, 105–106
overview of, 99–100
simple (atomic) objects, 100–101

sensitive data, protecting, 203
shadowing, durability and, 14
sharing, database design goals, 18
Shifts table, (Pampered Pet case study), 269
short-timer, who’s who and, 71–72
SHOW DATABASES statement, 316
SHOW TABLES statement, 316
sidekick/gopher, who’s who and, 71
simple (atomic) objects, 100–101
simple attributes, semantic objects, 96
sketches/mockups

of forms, 231
planning process and, 230

snapshot views, of temporal data, 201
software development

allowing for redundant data, 179–180
benefits of planning ahead, 173–174
considering what to include in a database,

180–181
converting domains into tables, 175–176
documentation, 174
exercise solutions, 434–436
exercises, 182–183
multi-tier architecture for, 175

507

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 508

software development (continued)

software development (continued)
naming conventions for, 178–179
overview of, 173
summary, 181–182
types of tables, 176–177
well-focused tables, 176–177

SOMs (semantic object models)
association objects, 102–105
building initial (Pampered Pet case study),

245–248
cardinality of attributes, 97
class types, 100
classes and objects, 96
comments and notes, 106
composite objects, 101
compound objects, 101–102
converting to ERD, 250
converting to relational models, 113–116
example of, 97–98
hybrid objects, 102
improving (Pampered Pet case study), 248–250
inherited objects, 105–106
integrating all models (Pampered Pet case

study), 248–250
object identifiers, 97
Pampered Pet case study, 245
semantic views, 99–100
simple (atomic) objects, 100–101
working with, 99

SOs (semantic objects), 96
spaces, naming conventions and, 209
special characters, naming conventions and,

179, 209
specifications (specs), 80–81
speed

database design goals, 11–12
normalization and, 179–180
performance needs and, 235

spreadsheets, 30–31
overview of, 30
pros/cons, 30–31

SQL (Structure Query Language)
background of, 345–346
FROM clause, 359–362
commands, 348–350
CREATE INDEX command, 355–356
CREATE TABLE command, 350–355
DELETE command, 365–366
DROP command, 356
exercise solutions, 454–457
exercises, 366–368
GRANT and REVOKE for privileges, 393
GROUP BY clause, 362–363
INSERT command, 357–358
ORDER BY clause, 363–364

ordering, 371–376
overview of, 345–368
resources for, 346
scripts. See scripts
SELECT clause, 358–359
SELECT command, 301, 358
SQL view in Access, 306–308
standards, 346–347
summary, 366
syntax, 347–348
UPDATE command, 364–365
WHERE clause, 362

SQL query operation, relational databases,
58–59

SQL Server, 139
SQL view, Access, 306–308
stakeholders

getting input from, 73
Pampered Pet case study, 228
who’s who, 71

standards
naming, 208–209
SQL, 346–347

states table, 175
superkeys

BCNF and, 154
relational databases, 53–54

syntax, SQL, 329–330, 347–348
system reliability, 68

T
Table Editor, MySQL, 324
table-level check constraints

business rules and, 122
overview of, 55

tables
1NF and, 139–146
2NF and, 146–150
3NF and, 150–154
4NF and, 158–161
BCNF and, 154–158
business rules for cross-table checks, 124
constraints, in Access, 298–300
converting domains to, 175–176
creating in SQL, 352–355
data needed as basis of design, 67
DKNF, 165–167
documentation, 174
ID numbers vs. natural keys, 218–220
mishmash or catchall tables as design pitfall,

215–217
naming conventions, 209
ordering, 373–376
in relational databases, 50–52

508

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 509

In
de

xvalues

relations/relationships, 52, 293–296
types of, 176–177
well-focused, 176–177
XML structures and, 37–38

tables (Pampered Pet case study)
Courses table, 264–266
CustomerCourses table, 266–267
Customers table, 267
Employees table, 267
InventoryItems table, 268
OrderItems table, 268
Orders table, 267
Persons table, 269
Pets table, 267
Phones table, 269
Shifts table, 269
TimeEntries table, 268–269
Vendors table, 269–270

TCL (Transaction Control Language), 348–350
team members

team building, 230
who’s who, 70–73

temporal data, 200–203
deciding what to temporalize, 203
deleted objects, 202
effective/valid dates, 200–202
overview of, 200

temporal databases, 45
test scores database, 291–293
testing

insufficient, 214
preparation and, 208

text, XML files as, 39
theoretical viewpoint, problem response, 50
Third Normal Form (3NF), 150–153

arranging data in, 152
how it works, 153
qualifications/rules, 150
stopping normalization at, 154
transitive dependencies and, 150–151
verifying (Pampered Pet case study), 281–283

TimeEntries table (Pampered Pet case study),
268–269, 280–281

training courses, 229
Transaction Control Language (TCL), 348–350
Transact-SQL language, 347
transitive dependencies, 3NF and, 150–151,

281–282
tree structures, hierarchical data and, 31, 195
triggers, defining in MySQL, 334–336
tuples, relational databases, 52
turnkey records, 204–205
two-way relationships, 248

U
union operation, relational databases, 58
unique constraints, 56
unique keys, relational databases, 53–54
unrelated multi-valued dependencies, 4NF and,

159
update anomalies

2NF and, 147
BCNF and, 155

Update operations
atomicity of transactions and, 12
CRUD and, 9
speed and, 11
validity, 10–11

UPDATE statement
performance tuning and, 384
SQL (Structure Query Language), 364–365

URLs, as alternative to database storage, 180
use cases, 81–85

diagrams in, 82–83
list of what might be included in, 83
modeling and, 91
overview of, 81
preparation and, 207
specifications in, 81–82
working with, 84–85
writing (Pampered Pet case study), 238–242
writing before vs. after building database, 240

user classes
Pampered Pet case study, 236
security planning and, 69

user interface models, 92–96
building with sketches and forms, 92–94
overview of, 92
working with, 95

user interface, (Pampered Pet case study),
232–233

user interface tier, multi-tier applications, 129
user needs, 218–220

V
valid time, in temporal database, 45
validation data, placing in separate tables, 124
validation list, foreign key constraints, 128
validation rules, Access, 296–298
validity

business rules for parameters of, 124
database design goals, 10–11

values
data integrity and, 68
list of allowed, 124
repeated values causing anomalies, 168
required values, 125

509

Stephens bindex.tex V1 - 10/03/2008 4:41am Page 510

values (continued)

values (continued)
storing multiple values, 140
XML structures and, 38

Vendors table, (Pampered Pet case study),
269–270

verifying approach, customer/user needs, 79–80
version control, 371
virtual tables, SQL queries, 59

W
weak entity, 112
WHERE clause, SQL, 362
whitespace

SQL, 348
XML, 35

who’s who, 70–73
Windows system registry, 26–27
Workbench, MySQL

creating EER diagrams, 331–333
editing databases, 333–334
exporting scripts, 336–337
loading scripts with, 330
overview of, 314

X
XML (eXtensible Markup Language), 34–40

basics of XML, 34–37
overview of, 34
structures, 37–39
summary, 39–40

510

Stephens blank.tex V3 - 10/04/2008 4:52pm Page 515

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

wrox_24x7_BOB_ad_final.indd 1wrox_24x7_BOB_ad_final.indd 1 9/8/2007 4:26:08 PM9/8/2007 4:26:08 PM

Beginning

Database Design Solutions

 Enhance Your Knowledge
Advance Your Career

Professional Microsoft SQL Server 2008 Integration
Services
978-0-470-24795-2
This book shows developers how to master the 2008 release of SSIS,
covering topics including data warehousing with SSIS, new methods of
managing the SSIS platform, and improved techniques for ETL operations.

Professional SQL Server 2008 Reporting Services
978-0-470-24201-8
This book teaches solutions architects, designers, and developers how
to use Microsoft’s reporting platform to create reporting and business
intelligence solutions.

Professional Microsoft SQL Server 2008 Analysis Services
978-0-470-24798-3
Professional Microsoft SQL Server 2008 Analysis Services shows readers
how to build data warehouses and multidimensional databases, query
databases, and use Analysis Services and other components of SQL Server
to provide end-to-end solutions.

Professional Microsoft SQL Server 2008 Programming
978-0-470-25702-9
This updated new edition of Wrox’s best-selling SQL Server book has been
expanded to include coverage of SQL Server 2008’s new datatypes, new
indexing structures, manageability features, and advanced time-zone
handling.

Professional Microsoft SQL Server 2008 Administration
978-0-470-24796-9
A how-to guide for experienced database administrators, this book is loaded

with unique tips, tricks, and workarounds for handling the most difficult SQL Server administration issues. The authors discuss
data capture, performance studio, Query Governor, and new techniques for monitoring and policy management.

Beginning Microsoft SQL Server 2008 Programming
978-0-470-25701-2
This comprehensive introduction to SQL Server covers the fundamentals and moves on to discuss how to create and change
tables, manage keys, write scripts, work with stored procedures, and much more.

Beginning T-SQL with Microsoft SQL Server 2005 and 2008
978-0-470-25703-6
Beginning T-SQL with Microsoft SQL Server 2005 and 2008 provides a comprehensive introduction to the T-SQL programming
language, with concrete examples showing how T-SQL works with both SQL Server 2005 and SQL Server 2008.

Beginning Database Design Solutions
978-0-470-38549-4
Beginning Database Design Solutions introduces IT professionals—both DBAs and database developers—to database design.
It explains what databases are, their goals, and why proper design is necessary to achieve those goals. It tells how to decide
what should be in a database to meet the application’s requirements. It tells how to structure the database so it gives good
performance while minimizing the chance for error.

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.10"

Beginning

Database Design Solutions

www.wrox.com

$44.99 USA
$48.99 CAN

Wrox Beginning guides are crafted to make learning programming languages and technologies easier than you think, providing
a structured, tutorial format that will guide you through all the techniques involved.

Recommended
Computer Book

Categories

Database Management

General

ISBN: 978-0-470-38549-4

Databases play a critical role in the business operations of most organizations;
they’re the central repository for critical information on products, customers,
suppliers, sales, and a host of other essential information. It’s no wonder that
the majority of all business computing involves database applications.

With so much at stake, you’d expect most IT professionals would have a firm
understanding of good database design. But in fact most learn through a painful
process of trial and error, with predictably poor results.

This book provides readers with proven methods and tools for designing efficient,
reliable, and secure databases. Author Rod Stephens explains how a database
should be organized to ensure data integrity without sacrificing performance.
He shares procedures for designing robust, flexible, and secure databases that
provide a solid foundation for all of your database applications. The methods
and techniques in this book can be applied to any database environment,
including Oracle®, Microsoft Access®, SQL Server®, and MySQL®. You’ll learn
the basics of good database design and ultimately discover how to design a
real-world database.

What you will learn from this book
● How to identify database requirements that meet users’ needs
● Ways to build data models using a variety of modeling techniques, including

entity-relational models, user-interface models, and semantic object models
● Tips for understanding the different types of databases, including relational

databases, flat files, spreadsheets, XML and object databases
● How to refine and tune the design to improve database performance

 Enhance Your Knowledge
Advance Your Career

● Techniques for understanding the relationship between good application design and database design
● Methods for designing flexible and robust databases that can adapt to business change and growth
● Ways to design for ease of maintenance and support
● How to avoid common database design mistakes

Who this book is for
This book is for anyone interested in learning to design, build, analyze, and understand databases. No previous experience with
databases or programs is required.

D
atabase D

esign
S

olutions

Stephens

Beginning

subtitle

spine=1.10"

Updates, source code, and Wrox technical support at www.wrox.com

Beginning

Database Design
Solutions

Rod Stephens

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

	Beginning Database Design Solutions
	Cover
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	What You Need to Use This Book
	How This Book Is Structured
	How to Use This Book
	Note to Instructors
	Note to Students
	Conventions
	Source Code
	The Book’s Web Site
	Errata
	Contacting the Author
	Disclaimer

	Part I: Introduction to Databases and Database Design
	Chapter 1: Goals of Effective Database Design
	Understanding the Importance of Design
	Information Containers
	Strengths and Weaknesses of Information Containers
	Desirable Database Features
	Summary
	Exercises

	Chapter 2: Database Types
	Why Bother?
	Flat Files
	Relational Databases
	Spreadsheets
	Hierarchical Databases
	XML
	Network
	Object
	Object-Relational
	Exotic
	Summary
	Exercises

	Chapter 3: Relational Database Fundamentals
	Relational Points of View
	Table, Rows, and Columns
	Relations, Attributes, and Tuples
	Keys
	Indexes
	Constraints
	Database Operations
	Summary
	Exercises

	Part II: Database Design Process and Techniques
	Chapter 4: Understanding User Needs
	Make a Plan
	Bring a List of Questions
	Meet the Customers
	Learn Who’s Who
	Pick the Customers’ Brains
	Walk a Mile in the User’s Shoes
	Study Current Operations
	Brainstorm
	Look to the Future
	Understand the Customers’ Reasoning
	Learn What the Customers Really Need
	Prioritize
	Verify Your Understanding
	Write the Requirements Document
	Make Use Cases
	Decide Feasibility
	Summary
	Exercises

	Chapter 5: Translating User Needs into Data Models
	What Are Data Models?
	User Interface Models
	Semantic Object Models
	Entity-Relationship Models
	Relational Models
	Summary
	Exercises

	Chapter 6: Extracting Business Rules
	What Are Business Rules?
	Identifying Key Business Rules
	Extracting Key Business Rules
	Multi-Tier Applications
	Summary
	Exercises

	Chapter 7: Normalizing Data
	What Is Normalization?
	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)
	Stopping at Third Normal Form
	Boyce-Codd Normal Form (BCNF)
	Fourth Normal Form (4NF)
	Fifth Normal Form (5NF)
	Domain/Key Normal Form (DKNF)
	Essential Redundancy
	The Best Level of Normalization
	Summary
	Exercises

	Chapter 8: Designing Databases to Support Software Applications
	Plan Ahead
	Document Everything
	Consider Multi-Tier Architecture
	Convert Domains into Tables
	Keep Tables Focused
	Use Three Kinds of Tables
	Use Naming Conventions
	Allow Some Redundant Data
	Don’t Squeeze in Everything
	Summary
	Exercises

	Chapter 9: Common Design Patterns
	Associations
	Temporal Data
	Logging and Locking
	Summary
	Exercises

	Chapter 10: Common Design Pitfalls
	Lack of Preparation
	Poor Documentation
	Poor Naming Standards
	Thinking Too Small
	Not Planning for Change
	Too Much Normalization
	Insufficient Normalization
	Insufficient Testing
	Performance Anxiety
	Mishmash Tables
	Not Enforcing Constraints
	Obsession with IDs
	Not Defining Natural Keys
	Summary
	Exercises

	Part III: A Detailed Case Study
	Chapter 11: User Needs and Requirements
	Meet the Customers
	Pick the Customers’ Brains
	Write Use Cases
	Write the Requirements Document
	Demand Feedback
	Summary
	Exercises

	Chapter 12: Building a Data Model
	Semantic Object Modeling
	Entity-Relationship Modeling
	Relational Modeling
	Putting It All Together
	Summary
	Exercises

	Chapter 13: Extracting Business Rules
	Identifying Business Rules
	Drawing a New Relational Model
	Summary
	Exercises

	Chapter 14: Normalization and Refinement
	Improving Flexibility
	Verifying First Normal Form
	Verifying Second Normal Form
	Verifying Third Normal Form
	Summary
	Exercises

	Part IV: Implementing Databases (with Examples in Access and MySQL)
	Chapter 15: Microsoft Access
	Understanding Access
	Getting Started
	Defining Relationships
	Creating Field Constraints
	Creating Table Constraints
	Creating Queries
	Summary
	Exercises

	Chapter 16: MySQL
	Installing MySQL
	Using MySQL Command Line Client
	Executing SQL Scripts
	Using MySQL Query Browser
	Using MySQL Workbench
	Summary
	Exercises

	Part V: Advanced Topics
	Chapter 17: Introduction to SQL
	Background
	Finding More Information
	Standards
	Basic Syntax
	Command Overview
	CREATE TABLE
	CREATE INDEX
	DROP
	INSERT
	SELECT
	UPDATE
	DELETE
	Summary
	Exercises

	Chapter 18: Building Databases with SQL Scripts
	Why Bother with Scripts?
	Script Categories
	Ordering SQL Commands
	Summary
	Exercises

	Chapter 19: Database Maintenance
	Backups
	Data Warehousing
	Repairing the Database
	Compacting the Database
	Performance Tuning
	Summary
	Exercises

	Chapter 20: Database Security
	The Right Level of Security
	Passwords
	Privileges
	Initial Configuration and Privileges
	Too Much Security
	Physical Security
	Summary
	Exercises

	Appendix A: Exercise Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20

	Appendix B: Sample Database Designs
	Books
	DVD and Movies
	Music and CDs
	Documents
	Customer Orders
	Employee Shifts and Timesheets
	Employees, Projects, and Departments
	Employee Skills and Qualifications
	Identical Object Rental
	Distinct Object Rental
	Students, Courses, and Grades
	Teams
	Individual Sports
	Vehicle Fleets
	Contacts
	Passengers
	Recipes

	Glossary
	Index

