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Preface

The IEEE ICDM 2004 workshop on the Foundation of Data Mining and
the IEEE ICDM 2005 workshop on the Foundation of Semantic Oriented
Data and Web Mining focused on topics ranging from the foundations of
data mining to new data mining paradigms. The workshops brought together
both data mining researchers and practitioners to discuss these two topics
while seeking solutions to long standing data mining problems and stimulat-
ing new data mining research directions. We feel that the papers presented at
these workshops may encourage the study of data mining as a scientific field
and spark new communications and collaborations between researchers and
practitioners.

To express the visions forged in the workshops to a wide range of data min-
ing researchers and practitioners and foster active participation in the study
of foundations of data mining, we edited this volume by involving extended
and updated versions of selected papers presented at those workshops as well
as some other relevant contributions. The content of this book includes stud-
ies of foundations of data mining from theoretical, practical, algorithmical,
and managerial perspectives. The following is a brief summary of the papers
contained in this book.

The first paper “Compact Representations of Sequential Classification
Rules,” by Elena Baralis, Silvia Chiusano, Riccardo Dutto, and Luigi
Mantellini, proposes two compact representations to encode the knowledge
available in a sequential classification rule set by extending the concept of
closed itemset and generator itemset to the context of sequential rules. The
first type of compact representation is called classification rule cover (CRC),
which is defined by the means of the concept of generator sequence and is
equivalent to the complete rule set for classification purpose. The second
type of compact representation, which is called compact classification rule set
(CCRS), contains compact rules characterized by a more complex structure
based on closed sequence and their associated generator sequences. The entire
set of frequent sequential classification rules can be re-generated from the
compact classification rules set.
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A new subspace clustering algorithm for high dimensional binary val-
ued dataset is proposed in the paper “An Algorithm for Mining Weighted
Dense Maximal 1-Complete Regions” by Haiyun Bian and Raj Bhatnagar.
To discover patterns in all subspace including sparse ones, a weighted den-
sity measure is used by the algorithm to adjust density thresholds for clusters
according to different density values of different subspaces. The proposed clus-
tering algorithm is able to find all patterns satisfying a minimum weighted
density threshold in all subspaces in a time and memory efficient way. Al-
though presented in the context of the subspace clustering problem, the al-
gorithm can be applied to other closed set mining problems such as frequent
closed itemsets and maximal biclique.

In the paper “Mining Linguistic Trends from Time Series” by Chun-Hao
Chen, Tzung-Pei Hong, and Vincent S. Tseng, a mining algorithm dedicated
to extract human understandable linguistic trend from time series is proposed.
This algorithm first transforms data series to an angular series based on an-
gles of adjacent points in the time series. Then predefined linguistic concepts
are used to fuzzify each angle value. Finally, the Aprori-like fuzzy mining
algorithm is used to extract linguistic trends.

In the paper “Latent Semantic Space for Web Clustering” by I-Jen Chiang,
T.Y. Lin, Hsiang-Chun Tsai, Jau-Min Wong, and Xiaohua Hu, latent semantic
space in the form of some geometric structure in combinatorial topology and
hypergraph view, has been proposed for unstructured document clustering.
Their clustering work is based on a novel view that term associations of a given
collection of documents form a simplicial complex, which can be decomposed
into connected components at various levels. An agglomerative method for
finding geometric maximal connected components for document clustering is
proposed. Experimental results show that the proposed method can effectively
solve polysemy and term dependency problems in the field of information
retrieval.

The paper “A Logical Framework for Template Creation and Information
Extraction” by David Corney, Emma Byrne, Bernard Buxton, and David
Jones proposes a theoretical framework for information extraction, which al-
lows different information extraction systems to be described, compared, and
developed. This framework develops a formal characterization of templates,
which are textual patterns used to identify information of interest, and pro-
poses approaches based on Al search algorithms to create and optimize tem-
plates in an automated way. Demonstration of a successful implementation of
the proposed framework and its application on biological information extrac-
tion are also presented as a proof of concepts.

Both probability theory and Zadeh fuzzy system have been proposed by
various researchers as foundations for data mining. The paper “A Probability
Theory Perspective on the Zadeh Fuzzy System” by Q.S. Gao, X.Y. Gao, and
L. Xu conducts a detailed analysis on these two theories to reveal their re-
lationship. The authors prove that the probability theory and Zadeh fuzzy
system perform equivalently in computer reasoning that does not involve



Preface VII

complement operation. They also present a deep analysis on where the fuzzy
system works and fails. Finally, the paper points out that the controversy on
“complement” concept can be avoided by either following the additive prin-
ciple or renaming the complement set as the conjugate set.

In the paper “Three Approaches to Missing Attribute Values: A Rough
Set Perspective” by Jerzy W. Grzymala-Busse, three approaches to missing
attribute values are studied using rough set methodology, including attribute-
value blocks, characteristic sets, and characteristic relations. It is shown
that the entire data mining process, from computing characteristic relations
through rule induction, can be implemented based on attribute-value blocks.
Furthermore, attribute-value blocks can be combined with different strategies
to handle missing attribute values.

The paper “MLEM2 Rule Induction Algorithms: With and Without Merg-
ing Intervals” by Jerzy W. Grzymala-Busse compares the performance of three
versions of the learning from example module of a data mining system called
LERS (learning from examples based on rough sets) for rule induction from
numerical data. The experimental results show that the newly introduced ver-
sion, MLEM2 with merging intervals, produces the smallest total number of
conditions in rule sets.

To overcome several common pitfalls in a business intelligence project, the
paper “Towards a Methodology for Data Mining Project Development: the
Importance of Abstraction” by P. Gonzdlez-Aranda, E. Menasalves, S. Milldn,
Carlos Ruiz, and J. Segovia proposes a data mining lifecycle as the basis for
proper data mining project management. Concentration is put on the project
conception phase of the lifecycle for determining a feasible project plan.

The paper “Finding Active Membership Functions in Fuzzy Data Mining”
by Tzung-Pei Hong, Chun-Hao Chen, Yu-Lung Wu, and Vincent S. Tseng
proposes a novel GA-based fuzzy data mining algorithm to dynamically de-
termine fuzzy membership functions for each item and extract linguistic as-
sociation rules from quantitative transaction data. The fitness of each set of
membership functions from an itemset is evaluated by both the fuzzy supports
of the linguistic terms in the large 1-itemsets and the suitability of the derived
membership functions, including overlap, coverage, and usage factors.

Improving the efficiency of mining frequent patterns from very large
datasets is an important research topic in data mining. The way in which
the dataset and intermediary results are represented and stored plays a cru-
cial role in both time and space efficiency. The paper “A Compressed Vertical
Binary Algorithm for Mining Frequent Patterns” by J. Hdez. Palancar, R.
Hdez. Ledn, J. Medina Pagola, and A. Hechavarria proposes a compressed
vertical binary representation of the dataset and presents approach to mine
frequent patterns based on this representation. Experimental results show
that the compressed vertical binary approach outperforms Apriori, optimized
Apriori, and Mafia on several typical test datasets.

Causal reasoning plays a significant role in decision-making, both formally
and informally. However, in many cases, knowledge of at least some causal
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effects is inherently inexact and imprecise. The chapter “Naive Rules Do Not
Consider Underlying Causality” by Lawrence J. Mazlack argues that it is
important to understand when association rules have causal foundations in
order to avoid naive decisions and increases the perceived utility of rules with
causal underpinnings. In his second chapter “Inexact Multiple-Grained Causal
Complexes”, the author further suggests using nested granularity to describe
causal complexes and applying rough sets and/or fuzzy sets to soften the
need for preciseness. Various aspects of causality are discussed in these two
chapters.

Seeing the needs for more fruitful exchanges between data mining practice
and data mining research, the paper “Does Relevance Matter to Data Min-
ing Research” by Mykola Pechenizkiy, Seppo Puuronen, and Alexcy Tsymbal
addresses the balance issue between the rigor and relevance constituents of
data mining research. The authors suggest the study of the foundation of data
mining within a new proposed research framework that is similar to the ones
applied in the IS discipline, which emphasizes the knowledge transfer from
practice to research.

The ability to discover actionable knowledge is a significant topic in the
field of data mining. The paper “E-Action Rules” by Li-Shiang Tsay and
Zbigniew W. Ras proposes a new class of rules called “E-action rules” to
enhance the traditional action rules by introducing its supporting class of
objects in a more accurate way. Compared with traditional action rules or
extended action rules, e-action rule is easier to interpret, understand, and
apply by users. In their second paper “Mining e-Action Rules, System DEAR,”
a new algorithm for generating e-action rules, called Action-tree algorithm
is presented in detail. The action tree algorithm, which is implemented in
the system DEAR2.2, is simpler and more efficient than the action-forest
algorithm presented in the previous paper.

In his first paper “Definability of Association Rules and Tables of Critical
Frequencies,” Jan Ranch presents a new intuitive criterion of definability of
association rules based on tables of critical frequencies, which are introduced
as a tool for avoiding complex computation related to the association rules
corresponding to statistical hypotheses tests. In his second paper “Classes
of Association Rules: An Overview,” the author provides an overview of im-
portant classes of association rules and their properties, including logical as-
pects of calculi of association rules, evaluation of association rules in data
with missing information, and association rules corresponding to statistical
hypotheses tests.

In the paper “Knowledge Extraction from Microarray Datasets Using
Combined Multiple Models to Predict Leukemia Types” by Gregor Stiglic,
Nawaz Khan, and Peter Kokol, a new algorithm for feature extraction and
classification on microarray datasets with the combination of the high accu-
racy of ensemble-based algorithms and the comprehensibility of a single de-
cision tree is proposed. Experimental results show that this algorithm is able
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to extract rules by describing gene expression differences among significantly
expressed genes in leukemia.

In the paper “Using Association Rules for Classification from Databases
Having Class Label Ambiguities: A Belief Theoretic Method” by S.P. Sub-
asinghua, J. Zhang, K. Premaratae, M.L. Shyu, M. Kubat, and K.K.R.G.K.
Hewawasam, a classification algorithm that combines belief theoretic tech-
nique and portioned association mining strategy is proposed, to address both
the presence of class label ambiguities and unbalanced distribution of classes
in the training data. Experimental results show that the proposed approach
obtains better accuracy and efficiency when the above situations exist in the
training data. The proposed classifier would be very useful in security moni-
toring and threat classification environments where conflicting expert opinions
about the threat category are common and only a few training data instances
available for a heightened threat category.

Privacy preserving data mining has received ever-increasing attention dur-
ing the recent years. The paper “On the Complexity of the Privacy Problem”
explores the foundations of the privacy problem in databases. With the ulti-
mate goal to obtain a complete characterization of the privacy problem, this
paper develops a theory of the privacy problem based on recursive functions
and computability theory.

In the paper “Ensembles of Least Squares Classifiers with Randomized
Kernels,” the authors, Kari Torkkola and Eugene Tuv, demonstrate that sto-
chastic ensembles of simple least square classifiers with randomized kernel
widths and OOB-past-processing achieved at least the same accuracy as the
best single RLSC or an ensemble of LSCs with fixed tuned kernel width, but
require no parameter tuning. The proposed approach to create ensembles uti-
lizes fast exploratory random forests for variable filtering as a preprocessing
step; therefore, it can process various types of data even with missing values.

Shusahu Tsumoto contributes two papers that study contigency table from
the perspective of information granularity. In the first paper “On Pseudo-
statistical Independence in a Contingency Table,” Shusuhu shows that a con-
tingency table may be composed of statistical independent and dependent
parts and its rank and the structure of linear dependence as Diophatine equa-
tions play very important roles in determining the nature of the table. The
second paper “Role of Sample Size and Determinants in Granularity of Con-
tingency Matrix” examines the nature of the dependence of a contingency
matrix and the statistical nature of the determinant. The author shows that
as the sample size N of a contingency table increases, the number of 2 x 2
matrix with statistical dependence will increase with the order of N3, and the
average of absolute value of the determinant will increase with the order of N2.

The paper “Generating Concept Hierarchy from User Queries” by Bob
Wall, Neal Richter, and Rafal Angryk develops a mechanism that builds con-
cept hierarchy from phrases used in historical queries to facilitate users’ nav-
igation of the repository. First, a feature vector of each selected query is
generated by extracting phrases from the repository documents matching the
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query. Then the Hierarchical Agglomarative Clustering algorithm and subse-
quent portioning and feature selection and reduction processes are applied to
generate a natural representation of the hierarchy of concepts inherent in the
system. Although the proposed mechanism is applied to an FAQ system as
proof of concept, it can be easily extended to any IR system.

Classification Association Rule Mining (CARM) is the technique that uti-
lizes association mining to derive classification rules. A typical problem with
CARM is the overwhelming number of classification association rules that may
be generated. The paper “Mining Efficiently Significant Classification Asso-
ciate Rules” by Yanbo J. Wang, Qin Xin, and Frans Coenen addresses the
issues of how to efficiently identify significant classification association rules
for each predefined class. Both theoretical and experimental results show that
the proposed rule mining approach, which is based on a novel rule scoring and
ranking strategy, is able to identify significant classification association rules
in a time efficient manner.

Data mining is widely accepted as a process of information generalization.
Nevertheless, the questions like what in fact is a generalization and how one
kind of generalization differs from another remain open. In the paper “Data
Preprocessing and Data Mining as Generalization” by Anita Wasilewska and
Ernestina Menasalvas, an abstract generalization framework in which data
preprocessing and data mining proper stages are formalized as two specific
types of generalization is proposed. By using this framework, the authors show
that only three data mining operators are needed to express all data mining
algorithms; and the generalization that occurs in the preprocessing stage is
different from the generalization inherent to the data mining proper stage.

Unbounded, ever-evolving and high-dimensional data streams, which are
generated by various sources such as scientific experiments, real-time produc-
tion systems, e-transactions, sensor networks, and online equipments, add fur-
ther layers of complexity to the already challenging “drown in data, starving
for knowledge” problem. To tackle this challenge, the paper “Capturing Con-
cepts and Detecting Concept-Drift from Potential Unbounded, Ever-Evolving
and High-Dimensional Data Streams” by Ying Xie, Ajay Ravichandran,
Hisham Haddad, and Katukuri Jayasimha proposes a novel integrated archi-
tecture that encapsulates a suit of interrelated data structures and algorithms
which support (1) real-time capturing and compressing dynamics of stream
data into space-efficient synopses and (2) online mining and visualizing both
dynamics and historical snapshots of multiple types of patterns from stored
synopses. The proposed work lays a foundation for building a data stream
warehousing system as a comprehensive platform for discovering and retriev-
ing knowledge from ever-evolving data streams.

In the paper “A Conceptual Framework of Data Mining,” the authors,
Yiyu Yao, Ning Zhong, and Yan Zhao emphasize the need for studying the
nature of data mining as a scientific field. Based on Chen’s three-dimension
view, a threelayered conceptual framework of data mining, consisting of the
philosophy layer, the technique layer, and the application layer, is discussed
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in their paper. The layered framework focuses on the data mining questions
and issues at different abstract levels with the aim of understanding data
mining as a field of study, instead of a collection of theories, algorithms, and
software tools.

The papers “How to Prevent Private Data from Being Disclosed to a
Malicious Attacker” and “Privacy-Preserving Naive Bayesian Classification
over Horizontally Partitioned Data” by Justin Zhan, LiWu Chang, and Stan
Matwin, address the issue of privacy preserved collaborative data mining. In
these two papers, secure collaborative protocols based on the semantically se-
cure homomorphic encryption scheme are developed for both learning Support
Vector Machines and Nave Bayesian Classifier on horizontally partitioned pri-
vate data. Analyses of both correctness and complexity of these two protocols
are also given in these papers.

We thank all the contributors for their excellent work. We are also grateful
to all the referees for their efforts in reviewing the papers and providing valu-
able comments and suggestions to the authors. It is our desire that this book
will benefit both researchers and practitioners in the filed of data mining.

Tsau Young Lin
Ying Xie

Anita Wasilewska
Churn-Jung Liau
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Compact Representations of Sequential
Classification Rules

Elena Baralis, Silvia Chiusano, Riccardo Dutto, and Luigi Mantellini

Politecnico di Torino, Dipartimento di Automatica ed Informatica
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
elena.baralis@polito.it, silvia.chiusano@polito.it,
riccardo.dutto@polito.it, luigi.mantellini@polito.it

Summary. In this chapter we address the problem of mining sequential classifica-
tion rules. Unfortunately, while high support thresholds may yield an excessively
small rule set, the solution set becomes rapidly huge for decreasing support thresh-
olds. In this case, the extraction process becomes time consuming (or is unfeasible),
and the generated model is too complex for human analysis.

We propose two compact forms to encode the knowledge available in a sequential
classification rule set. These forms are based on the abstractions of general rule,
specialistic rule, and complete compact rule. The compact forms are obtained by
extending the concept of closed itemset and generator itemset to the context of
sequential rules. Experimental results show that a significant compression ratio is
achieved by means of both proposed forms.

1 Introduction

Association rules [3] describe the co-occurrence among data items in a large
amount of collected data. They have been profitably exploited for classification
purposes [8,11,19]. In this case, rules are called classification rules and their
consequent contains the class label. Classification rule mining is the discovery
of a rule set in the training dataset to form a model of data, also called
classifier. The classifier is then used to classify new data for which the class
label is unknown.

Data items in an association rule are unordered. However, in many ap-
plication domains (e.g., web log mining, DNA and proteome analysis) the
order among items is an important feature. Sequential patterns have been
first introduced in [4] as a sequential generalization of the itemset concept. In
[20,24,27,35] efficient algorithms to extract sequences from sequential datasets
are proposed. When sequences are labeled by a class label, classes can be mod-
eled by means of sequential classification rules. These rules are implications
where the antecedent is a sequence and the consequent is a class label [17].

E. Baralis et al.: Compact Representations of Sequential Classification Rules, Studies in
Computational Intelligence (SCI) 118, 1-30 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008
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In large or highly correlated datasets, rule extraction algorithms have to
deal with the combinatorial explosion of the solution space. To cope with this
problem, pruning of the generated rule set based on some quality indexes (e.g.,
confidence, support, and x?) is usually performed. In this way rules which are
redundant from a functional point of view [11,19] are discarded. A different
approach consists in generating equivalent representations [7] that are more
compact, without information loss.

In this chapter we propose two compact forms to represent sets of sequen-
tial classification rules. The first compact form is based on the concept of
generator sequence, which is an extension to sequential patterns of the con-
cept of generator itemset [23]. Based on generator sequences, we define general
sequential rules. The collection of all general sequential rules extracted from a
dataset represents a sequential classification rule cover. A rule cover encodes
all useful classification information in a sequential rule set (i.e., is equivalent
to it for classification purposes). However, it does not allow the regeneration
of the complete rule set.

The second proposed compact form exploits jointly the concepts of closed
sequence and generator sequence. While the notion of generator sequence, to
our knowledge, is new, closed sequences have been introduced in [29,31]. Based
on closed sequences, we define closed sequential rules. A closed sequential rule
is the most specialistic (i.e., characterized by the longest sequence) rule into
a set of equivalent rules. To allow regeneration of the complete rule set, in the
compact form each closed sequential rule is associated to the complete set of
its generator sequences.

To characterize our compact representations, we first define a general
framework for sequential rule mining under different types of constraints. Con-
strained sequence mining addresses the extraction of sequences which satisfy
some user defined-constraints. Example of constraints are minimum or maxi-
mum gap between events [5,17,18,21,25], sequence length or regular expression
constraints over a sequence [16,25]. We characterize the two compact forms
within this general framework.

We then define a specialization of the proposed framework which addresses
the maximum gap constraint between consecutive events in a sequence. This
constraint is particularly interesting in domains where there is high correlation
between neighboring elements, but correlation rapidly decreases with distance.
Examples are the biological application domain (e.g., the analysis of DNA
sequences), text analysis, web mining. In this context, we present an algorithm
for mining our compact representations.

The chapter is organized as follows. Section 2 introduces the basic con-
cepts and notation for the sequential rule mining task, while Sect. 3 presents
our framework for sequential rule mining. Sections 4 and 5 describe the com-
pact forms for sequences and for sequential rules, respectively. In Sect. 6 the
algorithm for mining our compact representations is presented, while Sect.7
reports experimental result on the compression effectiveness of the proposed
techniques. Section 8 discusses previous related work. Finally, Sect.9 draws
some conclusions and outlines future work.
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2 Definitions and Notation

Let 7 be a set of items. A sequence S on 7 is an ordered list of events, denoted
S = (e1,e9,...,€,), where each event e; € S is an item in Z. In a sequence,
each item can appear multiple times, in different events. The overall number
of items in S is the length of S, denoted |S|. A sequence of length n is called
n-sequence.

A dataset D for sequence mining consists of a set of input-sequences. Each
input-sequence in D is characterized by a unique identifier, named Sequence
Identifier (SID). Each event within an input-sequence SID is characterized
by its position within the sequence. This position, named event identifier (eid),
is the number of events which precede the event itself in the input-sequence.

Our definition of input-sequence is a restriction of the definition proposed
in [4,35]. In [4,35] each event in an input-sequence contains more items and
the eid identifier associated to the event corresponds to a temporal timestamp.
Our definition considers instead domains where each event is a single symbol
and is characterized by its position within the input-sequence. Applicative
examples are the biological domain for proteome or DNA analysis, or the
text mining domain. In these contexts each event corresponds to either an
aminoacid or a single word.

When dataset D is used for classification purposes, each input-sequence
is labeled by a class label ¢. Hence, dataset D is a set of tuples (SID, S, c),
where S is an input-sequence identified by the SID value and c is a class
label belonging to the set C of class labels in D. Table 1 reports a very simple
sequence dataset, used as a running example in this chapter.

The notion of containment between two sequences is a key concept to
characterize the sequential classification rule framework. In this section we
introduce the general notion of sequence containment. In the next section, we
explore the concept of containment between two sequences and we formalize
the concept of sequence containment with constraints.

Given two arbitrary sequences X and Y, sequence Y “contains” X when it
includes the events in X in the same order in which they appear in X [5,35].
Hence, sequence X is a subsequence of sequence Y. For example for sequence
Y = ADCBA, some possible subsequences are ADB, DBA, and C' A.

An arbitrary sequence X is a sequence in dataset D when at least one
input-sequence in D “contains” X (i.e., X is the subsequence of some input-
sequences in D).

Table 1. Example sequence dataset D

SID Sequence Class

1 ADCA c1
2 ADCBA c2
3 ABE C1
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A sequential rule [4] in D is an implication in the form X — Y, where X
and Y are sequences in D (i.e., both are subsequences of some input-sequences
in D). X and Y are respectively the antecedent and the consequent of the rule.
Classification rules (i.e., rules in a classification model) are characterized by a
consequent containing a class label. Hence, we define sequential classification
rules as follows.

Definition 1 (Sequential Classification Rule). A sequential classification
rule v : X — ¢ is a rule for D when there is at least one input-sequence S in
D such that (i) X is a subsequence of S, (ii) and S is labeled by class label c.

Differently from general sequential rules, the consequent of a sequential
classification rule belongs to set C, which is disjoint from Z. We say that a
rule r : X — ¢ covers (or classifies) a data object d if d “contains” X. In this
case, r classifies d by assigning to it class label c.

3 Sequential Classification Rule Mining

In this section, we characterize our framework for sequential classification rule
mining. Sequence containment is a key concept in our framework. It plays a
fundamental role both in the rule extraction phase and in the classification
phase. Containment can be defined between:

e Two arbitrary sequences. This containment relationship allows us to de-
fine generalization relationships between sequential classification rules. It
is exploited to define the concepts of closed and generator sequence. These
concepts are then used to define two concise representations of a classifi-
cation rule set.

e A sequence and an input-sequence. This containment relationship allows
us to define the concept of support for both a sequence and a sequential
classification rule.

Various types of constraints, discussed later in the section, can be enforced
to restrict the general notion of containment. In our framework, sequence
mining is constrained by two sets of functions (¥, ®). Set ¥ describes contain-
ment between two arbitrary sequences. Set @ describes containment between
a sequence and an input-sequence, and allows the computation of sequence
(and rule) support. Sets ¥ and @ are characterized in Sects. 3.1 and 3.2, re-
spectively. The concise representations for sequential classification rules we
propose in this work require pair (¥, ®) to satisfy some properties, which are
discussed in Sect. 3.3. Our definitions are a generalization of previous defini-
tions [5,17], which can be seen as particular instances of our framework. In
Sect. 3.4 we discuss some specializations of our (¥, $)-constrained framework
for sequential classification rule mining.
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3.1 Sequence Containment

A sequence X is a subsequence of a sequence Y when Y contains the events
in X in the same order in which they appear in X [5,35].

Sequence containment can be ruled by introducing constraints. Constraints
define how to select events in Y that match events in X. For example, in [5]
the concept of contiguity constraint was introduced. In this case, events in
sequence Y should match events in sequence X without any other inter-
leaved event. Hence, X is a contiguous subsequence of Y. In the example
sequence Y = ADCDBA, some possible contiguous subsequence are ADC),
DCB, and BA.

Before formally introducing constraints, we define the concept of matching
function between two arbitrary sequences. The matching function defines how
to select events in Y that match events in X.

Definition 2 (Matching Function). Let X = (21,...,2y) and ¥ =
(y1,...,y1) be two arbitrary sequences, with arbitrary length | and m < .
A function ¢ : {1,...,m} — {1,...,1} is a matching function between X
and Y if ¢ is strictly monotonically increasing and Vi € {1,...,m} it is
Tj = Yp()-

The definition of constrained subsequence is based on the concept of
matching function. Consider for example sequences ¥ = ADCBA, X =
DCB, and Z = BA. Sequence X matches Y with respect to function
¥(j) =147 (with 1 < j < 3), and sequence Z matches Y according to func-
tion ¥ (j) =34 7 (with 1 < j < 2). Hence, sequences X and Z match Y with
respect to the class of possible matching functions in the form ¥ (j) = offset+;.

Definition 3 (Constrained Subsequence). Let ¥ be a set of matching
functions between two arbitrary sequences. Let X = (x1,...,2y) and Y =
(Y1, -.-,u1) be two arbitrary sequences, with arbitrary length | and m < 1. X
18 a constrained subsequence of Y with respect to ¥, written as X Ty Y, if
there is a function v € ¥ such that X matches Y according to 1.

Definition 3 yields two particular cases of sequence containment based on
the length of sequences X and Y. When X is shorter than YV (i.e., m < [),
then X is a strict constrained subsequence of Y, written as X Cy Y. Instead,
when X and Y have the same length (i.e., m = [), the subsequence relation
corresponds to the identity relation between X and Y.

Definition 3 can support several different types of constraints on subse-
quence matching. Both unconstrained matching and contiguous subsequence
are particular instances of Definition 3. In particular, in the case of contiguous
subsequence, set ¥ includes the complete set of matching function in the form
¥(j) = offset + j. When set ¥ is the universe of all the possible matching
functions, sequence X is an unconstrained subsequence (or simply a subse-
quence) of sequence Y, denoted as X C Y. This case corresponds to the usual
definition of subsequence [5,35].
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3.2 Sequence Support

The concept of support is bound to dataset D. In particular, for a sequence
X the support in a dataset D is the number of input-sequences in D which
contain X [4]. Hence, we need to define when an input-sequence contains a
sequence. Analogously to the concept of sequence containment introduced
in Definition 3, an input-sequence S contains a sequence X when the events
in X match the events in S based on a given matching function. However,
in an input-sequence S events are characterized by their position within S.
This information can be exploited to constrain the occurrence of an arbitrary
sequence X in the input-sequence S.

Commonly considered constraints are maximum and minimum gap con-
straints and windows constraints [17,25]. Maximum and minimum gap con-
straints specify the maximum and minimum number of events in S which
may occur between two consecutive events in X. The window constraint spec-
ifies the maximum number of events in S which may occur between the first
and last event in X. For example sequence ADA occurs in the input-sequence
S = ADCBA, and satisfies a minimum gap constraint equal to 1, a maximum
gap constraint equal to 3 and a window constraint equal to 4.

In the following we formalize the concept of gap constrained occurrence
of a sequence into an input-sequence. Similarly to Definition 3, we introduce
a set of possible matching function to check when an input-sequence S in D
contains an arbitrary sequence X . With respect to Definition 3, these matching
functions may incorporate gap constraints. Formally, a gap constraint on a
sequence X and an input-sequence S can be formalized as Gap 6 K, where Gap
is the number of events in S between either two consecutive elements of X (i.e.,
maximum and minimum gap constraints), or the first and last elements of X
(i.e., window constraint), 6 is a relational operator (i.e., 0 € {>,>,=,<,<}),
and K is the maximum/minimum acceptable gap.

Definition 4 (Gap Constrained Subsequence). Let X = (z1,...,2y,) be
an arbitrary sequence and S = (s1,...,s) an arbitrary input-sequence in D,
with arbitrary length m < 1. Let @ be a set of matching functions between two
arbitrary sequences, and Gap 0 K be a gap constraint. Sequence X occurs in
S under the constraint Gap 0 K, written as X =¢ S, if there is a function
© € @ such that (a) X Cg S and (b) depending on the constraint type, ¢
satisfies one of the following conditions

o Vie{l,....m—1}, (p(+1)—p(4) < K, for maximum gap constraint
o Vje{l,...om—1}, (p(j+1)— () > K, for minimum gap constraint
o (p(m)—¢(1)) < K, for window constraint

When no gap constraint is enforced, the definition above corresponds to
Definition 3. When consecutive events in X are adjacent in input-sequence S,
then X is a string sequence in S [32]. This case is given when the maximum
gap constraint is enforced with maximum gap K = 1. Finally, when set @ is the
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universe of all possible matching functions, relation X <¢ S can be formalized
as (a) X C S and (b) X satisfies Gap 6 K in S. This case corresponds to
the usual definition of gap constrained sequence as introduced for example
in [17,25].

Based on the notion of containment between a sequence and an input-
sequence, we can now formalize the definition of support of a sequence. In par-
ticular, supgs(X) = [{(SID,S,c) € D | X <¢ S}|. A sequence X is frequent
with respect to a given support threshold minsup when supe(X) > minsup.

The quality of a (sequential) classification rule r : X — ¢; may be mea-
sured by means of two quality indexes [19], rule support and rule confi-
dence. These indexes estimate the accuracy of r in predicting the correct
class for a data object d. Rule support is the number of input-sequences
in D which contain X and are labeled by class label ¢;. Hence, supg(r) =
[{(SID,S,¢c) € D| X =<4 S Ac = ¢}| Rule confidence is given by
the ratio confe(r) = supe(r)/sups(X). A sequential rule r is frequent if
supg(r) > minsup.

3.3 Framework Properties

The concise representations for sequential classification rules we propose in
this work require the pair (¥, @) to satisfy the following two properties.

Property 1 (Transitivity). Let (¥, ®) define a constrained framework for
mining sequential classification rules. Let X, Y, and Z be arbitrary sequences
m D. If X Cg Y and Y Cy Z, then it follows that X Ty Z, i.e., the
subsequence relation defined by ¥ satisfies the transitive property.

Property 2 (Containment). Let (¥, ) define a constrained framework for
mining sequential classification rules. Let XY be two arbitrary sequences
in D. If X Cy Y, then it follows that {(SID,S,c) € D | X =<¢ S} 2
{(SID,S,c) e D|Y =<4 S}.

Property 2 states the anti-monotone property of support both for se-
quences and classification rules. In particular, for an arbitrary class label ¢
it is supa(X — ¢) > sups(Y — ¢).

Albeit in a different form, several specializations of the above framework
have already been proposed previously [5,17,25]. In the remainder of the
chapter, we assume a framework for sequential classification rule mining where
Properties 1 and 2 hold.

The concepts proposed in the following sections rely on both properties of
our framework. In particular, the concepts of closed and generator itemsets
in the sequence domain are based on Property 2. These concepts are then ex-
ploited in Sect. 5 to define two concise forms for a sequential rule set. By means
of Property 1 we define the equivalence between two classification rules. We
exploit this property to define a compact form which allows the classification of
unlabeled data without information loss with respect to the complete rule set.
Both properties are exploited in the extraction algorithm described in Sect. 6.
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3.4 Specializations of the Sequential Classification Framework

In the following we discuss some specializations of our (¥, ®)-constrained
framework for sequential classification rule mining. They correspond to partic-
ular cases of constrained framework for sequence mining proposed in previous
works [5,17,25]. Each specialization is obtained from particular instances of
function sets ¥ and .

Containment between two arbitrary sequences is commonly defined by
means of either the unconstrained subsequence relation or the contiguous
subsequence relation. In the former, set ¥ is the complete set of all possible
matching functions. In the latter, set ¥ includes all matching functions in the
form ¥(j) = offset+j. It can be easily seen that both notions of sequence
containment satisfy Property 1.

Commonly considered constraints to define the containment between an
input-sequence S and a sequence X are maximum and minimum gap con-
straints and window constraint. The gap constrained occurrence of X within
S is usually formalized as X C S and X satisfies the gap constraint in S.
Hence, in relation X =g S, set @ is the universe of all possible matching
functions and X satisfies Gap 6 K in S.

e Window constraint. Between the first and last events in X the gap is
lower than (or equal to) a given window-size. It can be easily seen that an
arbitrary subsequence of X is contained in S within the same window-size.
Thus, Property 2 is verified. In particular, Property 2 is verified both for
unconstrained and contiguous subsequence relations.

e  Minimum gap constraint. Between two consecutive events in X the gap is
greater than (or equal to) a given size. It directly follows that any pair of
non-consecutive events in X also satisfy the constraint. Hence, an arbitrary
subsequence of X is contained in S within the minimum gap constraint.
Thus, Property 2 is verified. In particular, Property 2 is verified both for
unconstrained and contiguous subsequence relations.

e  Mazimum gap constraint. Between two consecutive events in X the gap is
lower than (or equal to) a given gap-size. Differently from the two cases
above, for an arbitrary pair of non-consecutive events in X the constraint
may not hold. Hence, not all subsequences of X are contained in input-
sequence S. Instead, Property 2 is verified when considering contiguous
subsequences of X.

The above instances of our framework find application in different con-
texts. In the biological application domains, some works address finding DNA
sequences where two consecutive DNA symbols are separated by gaps of more
or less than a given size [36]. In the web mining area, approaches have been
proposed to predict the next web page requested by the user. These works
analyze web logs to find sequences of visited URLs where consecutive URLs
are separated by gaps of less than a given size or are adjacent in the web log
(i.e., maxgap = 1) [32]. In the context of text mining, gap constraints can be
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used to analyze word sequences which occur within a given window size, or
where the gap between two consecutive words is less than a certain size [6].

The concise forms presented in this chapter can be defined for any frame-
work specialization satisfying Properties 1 and 2. Among the different gap
constraints, the maximum gap constraint is particularly interesting, since it
finds applications in different contexts. For this reason, in Sect.6 we address
this particular case, for which we present an algorithm to extract the proposed
concise representations.

4 Compact Sequence Representations

To tackle with the generation of a large number of association rules, several al-
ternative forms have been proposed for the compact representation of frequent
itemsets. These forms include maximal itemsets [10], closed itemsets [23,34],
free sets [12], disjunction-free generators [13], and deduction rules [14]. Re-
cently, in [29] the concept of closed itemset has been extended to represent
frequent sequences.

Within the framework presented in Sect. 3, we define the concept of con-
strained closed sequence and constrained generator sequence. Properties of
closed and generator itemsets in the itemset domain are based on the anti-
monotone property of support, which is preserved in our framework by Prop-
erty 2. The definition of closed sequence was previously proposed in the case
of unconstrained matching in [29]. This definition corresponds to a special
case of our constrained closed sequence. To completely characterize closed se-
quences, we also propose the concept of generator itemset [9,23] in the domain
of sequences.

Definition 5 (Closed Sequence). An arbitrary sequence X in D is a closed
sequence iff there is not a sequence Y in D such that (i) X Ty Y and (it)

supp(X) = supap(Y).

Intuitively, a closed sequence is the maximal subsequence common to a set
of input-sequences in D. A closed sequence X is a concise representation of all
sequences Y that are subsequences of it, and have its same support. Hence,
an arbitrary sequence Y is represented in a closed sequence X when Y is a
subsequence of X and X and Y have equal support.

Similarly to the frequent itemset context, we can define the concept of
closure in the domain of sequences. A closed sequence X which represents a
sequence Y is the sequential closure of Y and provides a concise representa-
tion of Y.

Definition 6 (Sequential Closure). Let X, Y be two arbitrary sequences
in D, such that X is a closed sequence. X is a sequential closure of Y iff (i)
Y Cy X and (i) supe(X) = sups(Y).
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The next definition extends the concept of generator itemset to the do-
main of sequences. Different sequences can have the same sequential closure,
i.e., they are represented in the same closed sequence. Among the sequences
with the same sequential closure, the shortest sequences are called generator
sequences.

Definition 7 (Generator Sequence). An arbitrary sequence X in D is a
generator sequence iff there is not a sequence Y in D such that (i) Y Cy X
and (ii)supgp(X) = supg(Y).

Special cases of the above definitions are the contiguous closed sequence
and the contiguous generator sequence, where the matching functions in set ¥
define a contiguous subsequence relation. Instead, we have an unconstrained
closed sequence and an unconstrained generator sequence when ¥ defines an
unconstrained subsequence relation.

Knowledge about generators associated to a closed sequence X allow
generating all sequences having X as sequential closure. For example, let
closed sequence X be associated to a generator sequence Z. Consider an
arbitrary sequence Y with Z Cy Y and Y Cy X. Then, X is the sequen-
tial closure of Y. From Property 2, it follows that supg(Z) > supe(Y) and
supg(Y) > supg(X). Being X the sequential closure of Z, Z and X have
equal support. Hence, Y has the same support as X. It follows that sequence
X is the sequential closure of Y according to Definition 6.

In the example dataset, ADBA is a contiguous closed sequence with sup-
port 33.33% under the maximum gap constraint 2. ADBA represents con-
tiguous sequences BA, DB, DBA, ADB, ADBA which satisfy the same gap
constraint. BA and DB are contiguous generator sequence for ADBA.

In the context of association rules, an arbitrary itemset has a unique clo-
sure. The property of uniqueness is lost in the sequential pattern domain.
Hence, for an arbitrary sequence X the sequential closure can include sev-
eral closed sequences. We call this set the closure sequence set of X, denoted
CS(X). According to Definition 6, the sequential closure for a sequence X is
defined based on the pair of matching functions (¥, ®). Being a collection of
sequential closures, the closure sequence set of X is defined with respect to
the same pair (¥, D).

Property 3. Let X be an arbitrary sequence in D and CS(X) the set of
sequences in D which are the sequential closure of X . The following properties
are verified. (i) If X is a closed sequence, then CS(X) includes only sequence
X. (i1) Otherwise, CS(X) may include more than one sequence.

In Property 3, case (i) trivially follows from Definition 5. We prove case (ii)
by means of an example. Consider the contiguous closed sequences ADC' A and
ACA, which satisfy maximum gap 2 in the example dataset. The generator
sequence C' is associated to both closed sequences. Instead, D is a generator
only for ADCA. From Property 3 it follows that a generator sequence can
generate different closed sequences.
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5 Compact Representations of Sequential
Classification Rules

We propose two compact representations to encode the knowledge available
in a sequential classification rule set. These representations are based on the
concepts of closed and generator sequence. One concise form is a lossless rep-
resentation of the complete rule set and allows regenerating all encoded rules.
This form is based on the concepts of both closed and generator sequences.
Instead, the other representation captures the most general information in
the rule set. This form is based on the concept of generator sequence and it
does not allow the regeneration of the original rule set. Both representations
provide a smaller and more easily understandable class model than traditional
sequential rule representations.

In Sect.5.1, we introduce the concepts of general and specialistic classi-
fication rule. These rules characterize the more general (shorter) and more
specific (longer) classification rules in a given classification rule set. We then
exploit the concepts of general and specialistic rule to define the two compact
forms, which are presented in Sects. 5.2 and 5.3, respectively.

5.1 General and Specialistic Rules

In associative classification [11,19,30], a shorter rule (i.e., a rule with less ele-
ments in the antecedent) is often preferred to longer rules with same confidence
and support with the intent of both avoiding the risk of overfitting, and re-
ducing the size of the classifier. However, in some applications (e.g., modeling
surfing paths in web log analysis [32]), longer sequences may be more accurate
since they contain more detailed information. In these cases, longest-matching
rules may be preferable to shorter ones. To characterize both kinds of rules,
we propose the definition of specialization of a sequential classification rule.

Definition 8 (Classification Rule Specialization). Let r; : X — ¢; and
rj : Y — ¢; be two arbitrary sequential classification rules for D. r; is a
specialization of v iff (i) X Te Y, (it) ¢; = ¢;, (4i) sups(X) = sups(Y),
and () supe(r;) = sups(r;).

From Definition 8, a classification rule r; is a specialization of a rule r; if r;
is more general than r;, i.e., r; has fewer conditions than r; in the antecedent.
Both rules assign the same class label and have equal support and confidence.

The next lemma states that any new data object covered by r; is also
covered by 7;. The lemma trivially follows from Property 1, the transitive
property of the set of matching functions ¥.

Lemma 1. Let r; and r; be two arbitrary sequential classification rules for
D, and d an arbitrary data object covered by r;. If r; is a specialization of r;,
then r; covers d.
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With respect to the definition of specialistic rule proposed in [11, 19, 30],
our definition is more restrictive. In particular, both rules are required to have
the same confidence, support and class label, similarly to [7] in the context of
associative classification.

Based on Definition 8, we now introduce the concept of general rule. This
is the rule with the shortest antecedent, among all rules having same class
label, support and confidence.

Definition 9 (General Rule). Let R be the set of frequent sequential clas-
sification rules for D, and r; € R an arbitrary rule. v; is a general rule in R
iff Ir; € R, such that r; is a specialization of r;.

In the example dataset, BA — c5 is a contiguous general rule with respect
to the rules DBA — ¢y and ADBA — c5. The next lemma formalizes the
concept of general rule by means of the concept of generator sequence.

Lemma 2 (General Rule). Let R be the set of frequent sequential classifi-
cation rules for D, and r € R, r : X — ¢, an arbitrary rule. r is a general
rule in R iff X is a generator sequence in D.

Proof. We first prove the sufficient condition. Let r; : X — ¢ be an arbitrary
rule in R, where X is a generator sequence. By Definition 7, if X is a generator
sequence then Vr; : Y — cin R with Y Ty X it is sups(Y) > supa(X). Thus,
r; is a general rule according to Definition 9. We now prove the necessary
condition. Let 7; : X — ¢ be an arbitrary general rule in R. For the sake of
contradiction, let X not be a generator sequence. It follows that Ir; : ¥ —
cin R, with Y Cy X and sups(X) = sups(Y). Hence, from Property 2,
{(SID,S,¢) € DY <¢ S} = {(SID,S,c) € D| X =4 S}, and thus
supg(r;) = supa(r;). It follows that 7; is not a general rule according to
Definition 9, a contradiction. O

By applying iteratively Definition 8 in set R, we can identify some par-
ticular rules which are not specializations of any other rules in R. These are
the rules with the longest antecedent, among all rules having same class label,
support and confidence. We name these rules specialistic rules.

Definition 10 (Specialistic Rule). Let R be an arbitrary set of frequent
sequential classification rules for D, and r; € R an arbitrary rule. r; is a
specialistic rule in R iff jﬂrj € R such that r; is a specialization of r;.

For example, B — ¢y is a contiguous specialistic rule in the example
dataset, with support 33.33% and confidence 50%. The contiguous rules
ACBA — ¢ and ADCBA — c¢o which include it have support equal to
33.33% and confidence 100%.

The next lemma formalizes the concept of specialistic rule by means of the
concept of closed sequence.
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Lemma 3 (Specialistic Rule). Let R be the set of frequent sequential classi-
fication rules for D, andr € R, r : X — ¢, an arbitrary rule. v is a specialistic
rule in R iff X is a closed sequence in D.

Proof. We first prove the sufficient condition. Let r; : X — ¢ be an arbitrary
rule in R, where X is a closed sequence. By Definition 5, if X is a closed
sequence then Vr; : Y — cin R, with X Ty Y it is sups(X) > sups(Y).
Thus, r; is a specialistic rule according to Definition 10. We now prove the
necessary condition. Let r; : X — ¢ be an arbitrary specialistic rule in R.
For the sake of contradiction, let X not be a closed sequence. It follows that
Ir; 0 Y — cin R, with X Ty Y and sups(X) = sups(Y). Hence, from
Property 2, {(SID,S,c) € D |Y <4 S} ={(SID,S,c) € D | X <4 S}, and
thus supe(r;) = supe(r;). It follows that r; is not a specialistic rule according
to Definition 10, a contradiction. 0O

5.2 Sequential Classification Rule Cover

In this section we present a compact form which is based on the general rules
in a given set R. This form allows the classification of unlabeled data without
information loss with respect to the complete rule set R. Hence, it is equivalent
to R for classification purposes.

Intuitively, we say that two rule sets are equivalent if they contain the
same knowledge. When referring to a classification rule set, its knowledge is
represented by its capability in classifying an arbitrary data object d. Note
that d can be matched by different rules in R. Each rule r labels d with a
class c¢. The estimated accuracy of r in predicting the correct class is usually
given by r’s support and confidence.

The equivalence between two rule sets can be formalized in terms of rule
cover.

Definition 11 (Sequential Classification Rule Cover). Let Ry and Ro C
R1 be two arbitrary sequential classification rule sets extracted from D. Ry is
a sequential classification rule cover of Rq if (i) Vr; € Rq, Ir; € Ra, such that
i s a specialization of r; according to Definition 8 and (ii) Ra is minimal.

When Ry C R, is a classification cover of Rq, the two sets classify in the
same way an arbitrary data object d. If a rule r; € Ry labels d with class c,
then in Ry there is a rule r;, where r; is a specialization of r;, and r; labels
d with the same class ¢ (see Lemma 1). 7; and r; have the same support
and confidence. It follows that R; and Ry are equivalent for classification
purposes.

We propose a compact representation of rule set R which includes all
general rules in R. This compact representation, named classification rule
cover, encodes all necessary information to perform classification, but it does
not allow the regeneration of the complete rule set R.
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Definition 12 (Classification Rule Cover). Let R be the set of frequent
sequential classification rules for D. The classification rule cover of R is the set

CRC={r e Rlr: G — c¢AG € G}, G isthe set of generator sequences in D.

(1)

The next theorem proves that the C RC' rule set is a sequential classifica-
tion rule cover of R. Hence, it is a compact representation of R, equivalent to
it for classification purposes.

Theorem 1. Let R be the set of frequent sequential classification rules for D.
The rule set CRC' C R is a sequential classification rule cover of R.

Proof. Consider an arbitrary rule r; € R. By Definition 12 and Lemma 2,
there exists at least a rule r; € CRC, r; not necessarily identical to r;,
such that r; is a general rule and 7; is a specialization of r; according to
Definition 8. Hence, it follows that the CRC rule set satisfies point (i) in
Definition 11. Consider now an arbitrary rule r; € CRC. By removing r;, (at
least) r; itself is no longer represented in CRC by Definition 9. Thus, CRC
is a minimal representation of R (point (ii) in Definition 11). O

5.3 Compact Classification Rule Set

In this section we present a compact form to encode a classification rule set,
which, differently from the classification rule cover presented in the previ-
ous section, allows the regeneration of the original rule set R. The proposed
representation relies on the notions of both closed and generator sequences.

In the compact form, both general and specialistic rules are explicitly rep-
resented. All the remaining rules are summarized by means of an appropriate
encoding. The compact form consists of a set of elements named compact
rules. Each compact rule includes a specialistic rule, a set of general rules,
and encodes a set of rules that are specializations of them.

Definition 13 (Compact Rule). Let M be an arbitrary closed sequence in
D, and G(M) the set of its generator sequences. Let ¢ € C be an arbitrary
class label. F : (G(M), M) — c is a compact rule for D. F represents all rules
r: X — ¢ for D with (i) ¢; = ¢ and (i) M € CS(X), i.e., M belongs to the
sequential closure set of X.

By Definition 13, the rule set represented in a compact rule F
(G(M),M) — c includes (i) the rule r : M — ¢, which is a specialistic
rule since M is a closed sequence; (ii) the set of rules r : G — ¢ that are
general rules since G is a generator sequence for M (i.e., G € G(M)); and
(iii) a set of rules r : X — ¢ that are a specialization of rules in (ii). For rules
in case (iii), the antecedent X is a subsequence of M (i.e., X Cy M) and
it completely includes at least one of the generator sequences in G(M) (i.e.,

3G € G(M)|G Cy X).
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In the example dataset, the contiguous classification rules BA — ¢,
DB — ¢y, DBA — ¢3, ADB — c¢9, and ADBA — ¢y are represented in
the compact rule ({BA, DB}, ADBA) — c5.

The next lemma proves that the rules represented in a compact rule are
characterized by the same values of support and confidence.

Lemma 4. Let F : (G(M), M) — ¢ be an arbitrary compact rule for D. For
each rule r : X — ¢ represented in F it is (i) sups(X) = supg(M) and (ii)
supg(r) = supe(M — c).

Proof. Let r : X — ¢ be an arbitrary rule, and F : (G(M),M) — ¢ an
arbitrary compact rule for D. If r is represented in F, then by Definition 13
it is M € CS(X). Thus, by Definition 6, X Ty M and supg(X) = sups(M).
Hence, from Property 2 (containment property) it follows supe(X — ¢) =
supg(M — ¢). O

We use the concept of compact rule to encode the set R of frequent se-
quential classification rules. We propose a compact representation of R named
compact classification rule set (CCRS). This compact form includes one com-
pact rule for each specialistic rule in R. Each compact rule includes the spe-
cialistic rule itself and all general rules associated to it.

Definition 14 (Compact Classification Rule Set). Let R be the set of
frequent sequential classification rules for D. Let M be the set of closed se-

quences, and G the set of generator sequences in D. The compact classification
rule set (CCRS) is defined as follows

CORS = {F: (G(M), M) — ¢}, GIM)CG A MeM (2)

where ¥r : M — ¢ in R such that M € M, then 3F : (G(M),M) — ¢ and
G(M) contains all generator sequences for M.

The following theorem proves that CC'RS is a minimal and complete rep-
resentation of R.

Theorem 2. Let R be the set of frequent sequential classification rules for D,
and CCRS the compact classification rule cover of R. CCRS is a complete
and minimal representation of R.

Proof. We first prove that CCRS is a complete representation of R. By De-
finition 14, set CC'RS includes one compact rule for each specialistic rule in
R. Hence, Vr; : X — ¢ in R, there is a compact rule F : (G(M), M) — ¢ in
CCRS, with M € CS(X). This compact rule encodes r;. Hence CCRS com-
pletely represents R. We then prove that CC'RS is a minimal representation of
R. Consider an arbitrary compact rule F : (G(M), M) — cin CCRS. F (also)
encodes specialistic rule r; : M — ¢ in R. From Property 3 it follows that
the sequential closure set of M includes only sequence M (i.e., CS(M) = M).
Hence, F is the unique compact rule in CCRS encoding r;. By removing
this rule, r; is no longer represented in CCRS. Thus, CCRS is a minimal
representation of R. 0O
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From the properties of closed itemsets, it follows that a rule set contain-
ing only specialistic rules is a compact and lossless representation of R only
when anti-monotonic constraints (e.g., support constraint) are applied. This
property is lost in case of non anti-monotonic constraints (e.g., confidence
constraint). In the CCRS representation, each compact rule contains all in-
formation needed to generate all the rules encoded in it independently from
the other rules in the set. Hence, it is always possible to regenerate set R
starting from the CCRS rule set.

6 Mining Compact Representations

In this section we present an algorithm to extract the compact rule set and
the classification rule cover representations from a sequence dataset. The al-
gorithm works in a specific instance of our framework for sequential rule min-
ing. Recall that in our framework sequence mining is constrained by the pair
(@, ®). The set of matching functions ¥ defines the containment between a
sequence and an input-sequence. In the considered framework instance, func-
tions in ¥ yield a contiguous subsequence relation. Hence, the mined compact
representations yield contiguous closed sequences and contiguous generator
sequences. In this section, we will denote the mined sequences simply as gen-
erator or closed sequences since the contiguity constraint is assumed. Set &
contains all matching functions which satisfy the maximum gap constraint.
Hence, the gap constrained subsequence relation X <g S (where X is a se-
quence and S an input-sequence) can be formalized as X C S and X satisfies
the maximum gap constraint in .S. Furthermore, for an easier readability we
denote sequence support, rule support, and rule confidence by omitting set &.

The proposed algorithm is levelwise [5] and computes the set of closed
and generator sequences by increasing length. At each iteration, say itera-
tion k, the algorithm performs the following operations. (1) Starting from set
MF of k-sequences, it generates set M**1 of (k+1)-sequences. Then, (2) it
prunes from M*+! sequences encoding only unfrequent classification rules.
This pruning method limits the number of iterations and avoids the genera-
tion of uninteresting (i.e., unfrequent) rules. (3) The algorithm checks M*+1
against M¥ to identify the subset of closed sequences in MF¥ and the subset
of generator sequences in M**+1. (4) Based on this knowledge, the algorithm
updates the CRC and CCRS sets.

Each sequence is provided of the necessary information to support the next
iteration of the algorithm and to compute the compact representations poten-
tially encoded by it. The following information is associated to a sequence X.
(a) A sequence identifier list (denoted id-list) recording the input-sequences
including X. The id-list is a set of triplets (SID,eid, Class), where SID is
the input-sequence identifier, eid is the event identifier for the first! item of

! As discussed afterwards, knowledge about the event identifiers for the other items
in X is not necessary.
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X within sequence STD, and Class is the class label associated to sequence
SID. (b) Two flags, isClosed and isGenerator, stating when sequence X
is a candidate closed or generator sequence, respectively. (¢) The set G(X)
including the sequences which are generators of X.

The proposed algorithm has a structure similar to GSP [5], where sequence
mining is performed by means of a levelwise search. To increase the efficiency
of our approach, we associate to each sequence an id-list similar to the one
in [17].

A sequence X generates a set of classification rules having X as antecedent,
and the class labels in the id-list of X as consequent. The support of X
(sup(X)) is the number of different SIDs in the id-list of X. For a rule r :
X — ¢, the support (sup(r)) is the number of different SIDs in the id-list
labeled by the class label c. The confidence is given by conf(r)=sup(r)/sup(X).

The algorithm, whose pseudocode is shown in Fig. 1, is described in the
following. As a preliminary step, we compute the set M? of 1-sequences which
encodes at least one frequent classification rule (line 3). All sequences in M*
are generator sequences by Definition 7. For each sequence X € M!, the
set G(X) of its generator sequences is initialized with the sequence itself. All
sequences in M! are also candidate closed sequences by Definition 5. Hence,
both flags isClosed and isGenerator are set to true.

Generating M*T1. At iteration k+1 we generate set M*+1 by joining M* with
MPF. Function generate_cand_closed (line 10) generates a new (k-1)-sequence
Z € M*1 by combining two k-sequences X,Y € MF.

Our generation method is based on the contiguous subsequence concept
(similar to GSP [5]). Sequence Z € MF*! is generated from two sequences

1. CompactForm_Miner(D,minsup,minconf,mazxgap)
2. {CRC =CCRS = 0;
3. k=1;

4. M = compute_ M (D, minsup);

5. forall X € M*

6. CRC = CRC U {extract_general -rules(X ,minsup,minconf)};

7. while(M* # 0)

8. {MFFL =,

9. for all (X,Y) € M* »a MF

10. {Z=generate_cand_closed(X,Y ,mazgap);

11. if (support_pruning(Z,minsup)==false) then

12. {MFF = MFTY U {Z);

13. evaluate_closure(Z,X,Y);}}

14. for all X € M* with X.isClosed == true

15. CCRS = CCRS U {extract_compact_rules(X ,minsup,minconf)};
16. for all X € M**! with X.isGenerator == true

17. CRC = CRC U {extract_general_rules(X ,minsup,minconf)};
18. k= k+1;}

Fig. 1. Compact form mining algorithm
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X,Y € MF which are contiguous subsequences of Z, i.e., they share with Z
either the k-prefix or the k-suffix. In particular, sequences X and Y generate
a new sequence Z if (k-1)suffix(X)=(k-1)prefix(Y). Sequence Z thus contains
the first item in X, the k — 1 items common to both X and Y, and the last
item in Y. Z should also satisfy the maximum gap constraint.

Based on Property 2, we compute the id-list for sequence Z. Since X and Y
are subsequences of Z, sequence Z is contained in the input-sequences common
to both X and Y, where Z satisfies the maximum gap constraint. Function
generate_cand_closed computes the id-list for sequence Z by joining the id-lists
of X and Y. This operation corresponds to a temporal join operation [17]. We
observe that sequence Z is obtained by extending Y on the left, with the first
item of X (or equivalently by extending X on the right, with the last item of
Y'). By construction, Y (and X) satisfies the maximum gap constraint. Hence,
the new sequence Z satisfies the constraint if the gap between the first items
of X and Y is lower or equal to maxgap. It follows that the only information
needed to perform the temporal join operation between X and Y are the
SIDs of the input-sequences which include X and Y, and the event identifiers
associated to the first items of X and Y.

Pruning M**! based on support. Function support_pruning (line 11) evaluates
the support for the sequential classification rules with Z as antecedent and
the class labels in the id-list of Z as consequent. Sequence Z is discarded
when none of its associated classification rules has support above minsup.
Otherwise Z is added to M**+1. This pruning criterion exploits the well known
anti-monotone property of support [3], which is guaranteed by Property 2 in
our framework. If a classification rule Z — ¢; does not satisfy the support
constraint, then no classification rule K — c¢;, with Z subsequence of K and
¢; = ¢; can satisfy the support constraint.

Checking closed sequences in M* and generator sequences in M*+1. Consider
an arbitrary sequence Z € M**! generated from sequences X,Y € M¥ as
described above. Function evaluate_closure (line 13) checks if Z is a candidate
sequential closure according to Definition 6 for either X or Y, or both of them.
Function evaluate_closure compares the support of Z with the supports of X
and Y. Three cases are given:

1. sup(Z) < sup(X) and sup(Z) < sup(Y), i.e., Z is not a candidate sequen-
tial closure for either X or Y.

2. sup(Z) = sup(X), i.e., Z is a candidate sequential closure for X.

3. sup(Z) = sup(Y), i.e., Z is a candidate sequential closure for Y.

In case (1), sequence Z is a generator sequence according to Definition 7,
since it has lower support than any of its contiguous subsequences. The only
two contiguous subsequences of Z in M* are X and Y. By Property 1, any
subsequence of X or Y is also a subsequence of Z. Hence, all possible con-
tiguous subsequences of Z are X, Y, and the contiguous subsequences of X
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and Y. Both X and Y have support higher than Z. By Property 2, any sub-
sequence of X (or Y) has support higher than or equal to X (or Y'). Hence,
Z is a generator sequence by Definition 7. At this step, sequence Z is also a
candidate closed itemset. The set of its generator sequences is initialized with
the sequence Z itself (G(Z) = Z).

In case (2), sequence X is not a closed sequence according to Definition 5.
Instead, Z is a candidate sequential closure for X. Furthermore, Z is a candi-
date sequential closure for all sequences represented in X. In fact, sequences
represented in X are contiguous subsequences of X that have its same sup-
port. They are generated from X by means of the sequences in G(X). By
Property 1, all subsequences of X are also subsequences of Z. Hence, all gen-
erator sequences associated to X are inherited by Z. Analogously to case (2),
in case (3) Y is not a closed sequence. All generator sequences associated to
Y are inherited by Z.

Function evaluate_closure updates the flag isClosed for sequences X, Y,
and Z, and flag isGenerator for sequence Z. The flag isGenerator is true for
a generator sequence, and is false otherwise. The flag isClosed is true for a
candidate closed sequence and is false for a non closed sequence.

Updating sets CRC and CCRS. Once the generation of set MF+1 is com-
pleted, all sequences in M**1 have been marked as actual generator or non
generator sequences. In addition, all candidate closed sequences in M* have
been marked as actual closed or non closed sequences.

For each closed sequence X € M*, function extract_compact_rules (line 15)
extracts the compact rules with {G(X), X} as antecedent and that satisfy both
support and confidence constraints. These rules are included in the CCRS
rule set.

For each generator sequence Z € MF*1 function extract_general_rules
(line 17) extracts the general rules with Z as antecedent that satisfy both
support and confidence constraints. These rules are added to the CRC rule set.

6.1 Example

By means of the example dataset in Table 1, we describe how the proposed
algorithm performs the extraction of the CRC and CCRS rule sets. Due to
the small size of the example, we do not enforce any support and confidence
constraint, and as gap constraint we consider mazxgap = 1.

The first step is the generation of set M (function compute_M"* in line 4).
Since no support constraint is enforced, M* includes all sequences with length
equal to 1. Set M* is shown in Fig. 2a. By Definition 7, all sequences in M are
contiguous generator sequences. For each of them, the set G of its generator
sequences is initialized with the sequence itself. Furthermore, all sequences in
M? contribute to the C RC' set. This set is shown in Fig. 2b.

By joining M! with itself, we generate set M? which includes all sequences
with length equal to 2 (function generate_cand_closed in line 10) and is re-
ported in Fig.3a. For example, sequence DA is obtained from sequences D
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General rules in M?
rule |sup%/|conf%
A — ¢1|66.66| 66.66

M A — c2[33.33]33.33
Sequence| sup | G B — ¢1(33.33| 50.00
cilea B — ¢2(33.33| 50.00
A 211 {A} C — ¢1/33.33] 50.00
B 1|1[{B} C — ¢2(33.33| 50.00
c 1(1{C} D — ¢1|33.33| 50.00
D 1|1{D} D — ¢2|33.33| 50.00
E  |L|0|{E} E — ¢133.33[100.00
(a) (b)
Fig. 2. M* set and general rules in M*
ME
Sequence| sup g
C1|C2
AB 1|10|{AB}
AC |1|1| {C}
AD |1|1| {D}
AE |1|0] {E}
BA |0|1|{BA} General rules in M?
BE |1|0| {E} rule |[sup%|conf% Compact rules in M
CA |1]1] {C} AB — ¢133.33]100.00 rule sup%|conf%
CB [0[1[{CB}| |BA — ¢2[33.33[100.00| [({A}, A) — c1[66.66]66.66
DA [1|0][{DA}]| [CB — ¢2[33.33/100.00| |({A}, A) — c2|33.33|33.33
DB |0[1[{DB}| |DA — ¢1|33.33[100.00| |({B}, B) — ¢1]50.00|50.00
DC [1]1[{C,D}| |[DB — ¢|33.33[100.00| |({B},B) — ¢2]50.00|50.00
(a) (b) (c)

Fig. 3. M? set, general rules in M?, and compact rules in M!

and A by joining their id-lists. The id-list of DA contains the input-sequences
where the gap between D and A is lower than maxgap. In particular it con-
tains only the input-sequence with SID = 1.

By checking M! against M2, we identify the subset of closed sequences in
M! and the subset of generator sequences in M? (function evaluate_closure
in line 13). In set M1, sequences A and B are closed sequences. For example,
sequence B is a closed sequence since both sequences in M? including B (i.e.,
AB and BFE) have lower support than it. Hence, we generate the compact rules
for sequences A and B (see Fig.3c). In set M?, five sequences are generators
(i.e., AB, BA, CB, DA and DB). For example, sequence AB is a generator
sequence since all its subsequences in M! (i.e., A and B) have higher support
than it. The set of its generators G(AB) is initialized with the sequence itself.
Figure 3b shows the general rules in M2.
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Compact rules General rules
rule sup% | conf% rule  |sup%|conf%
{A},A) = 66.66 | 66.66 A — c1 |66.66| 66.66
({A},A) — e 33.33| 33.33 A — c2 33.33] 33.33
{B},B) — a1 33.33| 50.00 B — c1 |33.33] 50.00
({B},B) — c2 33.33| 50.00 B — ¢z |33.33] 50.00
{E}, AE) — &1 33.33(100.00 C — ¢ |33.33| 50.00
({AB,E},ABE) — ¢ |33.33/100.00 C — ¢ |33.33[50.00
({C},ACA) — 1 33.33| 50.00 D — ¢ [33.33] 50.00
({C},ACA) — ¢ 33.33| 50.00 D — ¢z [33.33] 50.00
({DA},ADA) — ¢;_ [33.33]100.00 E — c1 |33.33]100.00
({CB,BA}, ACBA) — ¢233.33(100.00 AB — ¢133.33|100.00
({DB,BA}, ADBA) — ¢2(33.33|100.00 BA — ¢2(33.33]100.00
({D,C}, ADCA) — ¢1|33.3350.00 CB — ¢333.33]100.00
({D,C}, ADCA) — c2 [33.33]| 50.00 DA — ¢133.33]|100.00
({CB},ADCBA) — ¢, [33.33]100.00 DB — ¢2(33.33/100.00

(a) CCRS set (b) CRC set

Fig. 4. Compact representations

Sequences in set M? which are not generators inherit generators from
their subsequences with the same support. For example, sequence B E contains
sequence E, and BE and E have equal support. Hence, we add to G(BE) all
sequences in set G(E) (i.e., F).

By iteratively applying the algorithm, we generate set M3, which includes
all sequences with length=3, by joining M? with itself . For instance, we gen-
erate sequence DC A from sequences DC and C'A. DC A has the same support
as both CA and DC. Hence, DCA is not a generator sequence. Instead, it
inherits generators from both CA and DC'. Hence G(DCA) = {D,C}.

Set M3 does not contribute to the CRC' set, since none of its elements
is a generator sequence. For set M?, only sequence AE is a closed sequence.
Hence, it generates the compact rule ({E}, AE) — ¢;.

Figure 4 reports the CRC and CCRS sets for our example dataset.

7 Experimental Results

Experiments have been run to evaluate both the compression achievable
by means of the proposed compact representations and the performance of
the proposed algorithm. To run experiments we considered three datasets.
Reuters-21578 news and NewsGroups datasets [2] include textual data. DNA
dataset includes collections of DNA sequences [2]. Table 2 reports the number
of items, sequences, and class labels for each dataset. For Reuters and News-
Grousp datasets items correspond to words in a text. For DNA dataset items
correspond to four aminoacid symbols. Table 2 also shows the maximum,
minimum and average length of sequences in the datasets.
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Table 2. Datasets

Dataset Sequences Sequence length Ttems Classes
Min Max Avg

Reuters-21578 6,454 4 371 52.03 27,600 10

NewsGroup 2,000 83 21,691  303.97 41,420 20

DNA 2,000 60 60 60 4 3

We ran experiments with different support threshold values (denoted
minsup) and for different maximum gap values (denoted maxgap). Exper-
iments were run on an Intel P4 with 2.8 GHz CPU clock rate and 2 GB RAM.
The CompactForm_Miner algorithm has been implemented in ANSI C.

7.1 Compression Factor

Let R be the set of all rules which satisfy both minsup and maxzgap con-
straints and CRC and CCRS the set of general rules and compact rules
satisfying the same constraints. To measure the compression factor achieved
by our compact representations, we compare their size with the size of the

complete rule set. The compression factor (CF%) for the two representations

is respectively (1 — |C|71;C|)% and (1 — \C%TSI)%.

For the C'RC representation, a high compression factor indicates that rules
whose antecedent is a generator sequence are a small fraction of R. Instead,
for the CCRS representation, a high compression factor indicates that rules
whose antecedent is a closed sequence are a small fraction of R. In both cases,
a small subset of R encodes all useful information to model classes.

Different data distributions yield a different behavior when varying
minsup and maxgap values. In the following we summarize some com-
mon behaviors. Then, we analyze each dataset separately and discuss it in
detail.

For moderately high minsup values, the two representations have a very
close size (or even exactly the same size). In this case, the subsets of rules in
R having as antecedent a closed sequence or a generator sequence are almost
the same.

When lowering the support threshold or increasing the maxgap value, the
number of rules in set R and in sets CC RS and C'RC increases significantly.
In this case, the C'RC representation often achieves a higher compression than
the CC RS representation. This effect occurs for mazgap > 1 and low minsup
values. In this case, the set of rules with a generator sequence as antecedent is
smaller than the set of rules with a closed sequence as antecedent. This occurs
because when increasing maxgap or decreasing minsup, mined sequences are
characterized by increasing length. Hence, the number of closed sequences,
which are the sequences with the longest antecedent, increases significantly.
Instead, the increase in the number of generator sequences, which have shorter
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length, is less remarkable. Few generator sequences (in most cases only one)
are associated to each closed sequence. In addition, as stated by Property 3,
each generator sequence can be common to different closed sequences.?

In some cases, the C'RC representation achieves a slightly lower compres-
sion than the CC RS representation. It occurs for maxgap = 1 and low minsup
values. With respect to the case above, for this minsup and mazxgap values
there are a few more generator sequences than closed sequences. On the av-
erage more than one generator sequence is associated to each closed sequence
(about 2 in the DNA dataset, and 1.2 in the Reuters and Newsgroup datasets).
Generator sequences are still common to more closed sequence as stated in
Property 3.

Reuters Dataset

Figure5 reports the total number of rules in set R for different minsup
and maxgap values. Results show that the rule set becomes very large for
minsup = 0.1% and mazxgap > 3 (e.g., 1,306,929 rules for maxgap = 5).

Figure6a, b show the compression achieved by the two compact repre-
sentations. For both of them, for a given maxgap value, the compression
factor increases when minsup decreases. Furthermore, for a given minsup
value, the compression factor increases when the maxgap value increases. For
both representations, the compression factor is significant when set R includes
many rules. When minsup = 0.1% and 3 < mazgap < 5, R includes from
184,715 to 1,291,696 rules. Compression ranges from 52.57 to 58.61% for the
CCRS representation and from 60.18 to 80.54% for the C'RC representation.
A lower compression (less than 10%) is obtained when mazgap = 1. However,
in this case the complete rule set is rather small, since it only includes about
12,000 rules when minsup = 0.1% and less than 2,000 rules for higher support
thresholds.

10000000
—+—maxgap 1
1000000 | -m- =
= = -maxgap 2
w0 <A -maxgap 3
2 100000 = -&- 4 L
2 R
£
s
& 10000
1000
100
0.0% 0.5% 1.0% 15% 20%

minsup

Fig. 5. Number of rules for Reuters dataset

2Recall that this behavior is peculiar of the sequential pattern domain. In the
context of itemset mining, the number of generator itemsets is always greater
than or equal to the number of closed itemsets. Furthermore, the sets of generator
itemsets associated to different closed itemsets are disjoint.
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Fig. 6. Compression factor for Reuters dataset
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Fig. 7. Rule length for CRC and CCRS sets for Reuters dataset (mazgap = 2)

For low support thresholds and high mazgap values, the C RC representa-
tion always achieves a higher compression. In particular, when minsup = 0.1%
and 3 < mazgap < 5, the compression factor is more than 10% higher than
in the CCRS representation (about 20% when maxgap = 5). The two rep-
resentations provide a comparable compression for higher minsup and lower
maxgap values. To analyze this behavior, Fig. 7 plots the number of general
and compact rules for different rule lengths, for maxgap = 2 and different
minsup values. As discussed above, when decreasing minsup, the number of
compact rules increases more significantly. Figure 7 shows that this is due to
an increment in the number of compact rules with longer size.

As showed in Fig. 7a, b, for a given minsup value compression increases for
increasing maxgap values. Figure 8 focuses on this issue and plots the com-
pression factor for both compact forms for a large set of maxgap values and for
thresholds minsup = 0.5% and minsup = 1%. For both forms the compression
factor increases until maxgap = 5 and then decreases again. The compression
factors are very close until mazgap = 5 and then the difference between the
two representations becomes more significant. This difference is more relevant
when minsup = 0.5%. The CRC form always achieves higher compression.
An analogous behavior has been obtained for other minsup values.
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Fig. 9. Newsgroup dataset

Newsgroup Dataset

Figure 9a reports the total number of rules in set R for different minsup and
mazgap values. The compression factor shows a similar behavior for the two
compact forms. In the following we discuss the compression factor for the
CRC set, taken as a representative example (see Fig. 9b). When mazgap # 1,
the compression factor is only slightly sensitive to the variation of the support
threshold. Hence, the fraction of rules with a closed or a generator sequence
as antecedent does not vary significantly when vaying support. Similarly to
the case of the Reuters dataset, the CRC representation always achieves a
higher compression than the CCRS representation, with an improvement of
about 20%.

The case maxgap = 1 yields a different behavior. For both representa-
tions, the compression factor increases for increasing support thresholds. From
Fig.9b, the cardinality of the complete rule set is rather stable for growing
support values. Instead, both the number of closed and generator sequences
decreases. This effect yields growing compression when increasing the support
threshold.

When varying maxgap, both compact forms show a compression factor
behavior similar to the Reuters dataset. For a given a minsup value, the
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Fig. 10. DNA dataset

compression factor first increases when increasing maxgap. After a given
maxgap value, it decreases again. This behavior is less evident than in the
Reuters dataset. Furthermore, the maxgap value where the maximum com-
pression is achieved varies with the support threshold.

DNA Dataset

For the DNA dataset, we only consider the case maxgap = 1. This constraint
is particularly interesting in the biological application domain since sequences
of adjacent items in the DNA input sequences are mined. Figure 10a reports
the number of rules in sets R, CCRS, and CRC' for different minsup values.
Even if the alphabet only includes four symbols, a large number of rules is
generated when decreasing the support threshold.

Figure 10b shows the compression factor for the two compact representa-
tions. Both compact forms yield significant benefits for low support thresh-
olds. In this case R contains a large number of rules (2,672,408 rules when
minsup=0.05%), while both compact forms have a significantly smaller size
(CF=95.85% for the CRC representation and CF=93.74% for the CCRS
representation). The C'RC representation provides a slightly lower compres-
sion than the CCR.S representation for low support thresholds. Instead, the
compression factor is comparable for high minsup values.

7.2 Running Time

For high support thresholds and low mingap values, rule mining is performed
in less than 60s for all considered datasets. The CPU time increases when
low minsup and high mingap values are considered. For these values, a larger
solution space has to be explored and thus the amount of required memory is
large. Our algorithm adopts a levelwise approach which requires a large mem-
ory space because of its nature. On the other hand, this approach allows us to
explore the solution set and identify both closed and generator sequences, in
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order to associate each generator sequence to the appropriate closed sequence.
For example, in the Reuters dataset when minsup = 0.1% and maxgap goes
from 3 to 5, CPU times range from 22 min up to 1.80h. In the Newsgroup
dataset, CPU time is always lower than 1min. However, when we consider
maxgap > 4 and supports lower than 2.5% more than 10h are required.

We compared our time performance with the algorithm proposed in [17], an
efficient state-of-the-art algorithm for constrained sequence mining. Zaki [17]
does not address the extraction of closed and generator sequences. The code
was downloaded from [1]. To optimize memory usage, [17] partitions the search
space and analyzes each partition independently. The same approach can not
be applied in our context due to the type of search we want to perform. When
the required memory is not very large, the two algorithms provide comparable
performance. Otherwise, [17] yields better performance. For example, when
large amounts of memory are required, [17] runs up to five times faster for the
Reuters dataset.

8 Related Work

Sequential pattern mining is a relevant research area with applications in a va-
riety of different contexts. Examples of sequential data include text data, DNA
sequence, web log files, and customer purchase transactions. The problem of
mining sequential patterns has been introduced in [4]. It has been further
studied in [20,24,27,35], where different sequence extraction algorithms have
been proposed.

Several types of user-defined constraints on sequential pattern have also
been considered. For example, minimum or maximum gap constraint between
consecutive events or between the first and the last event in the sequence
have been addressed in [5,17,18,21,25]. Alternative constraints for sequence
mining are relative to sequence length, occurrence of a set of items within the
sequence, or regular expression constraints over a sequence [16,25].

For classification datasets, where each input sequence is characterized by a
class label, sequential classification rules have been introduced in [17]. These
rules allow modeling class properties and have been exploited for instance in
the web context to predict users’ next requests and behavior (e.g., to predict
the next request for a web document) [32], or in the biological domain for
example to predict protein properties [26].

When low support thresholds are considered or the dataset is highly cor-
related, a huge set of sequences may be generated, until the problem becomes
intractable. To deal with the generation of a large solution set, in the context
of association rule mining a significant effort has been devoted to define con-
cise representations for frequent itemsets and association rules. For frequent
itemsets these forms are based on the concepts of maximal itemsets [10], closed
itemsets [23,34], free sets [12], disjunction-free generators [13], and deduction
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rules [14]. For association rules, concise representations have been proposed
based on closed and generator itemsets [22,23,33]. In the context of associa-
tive classification, compact representations for associative classification rules
have been proposed based on generator itemsets [7] and free-sets [15].

In the sequence domain less effort has been so far devoted to mine concise
representations. Recently in [29, 31] the concept of closed itemset has been
extended to represent frequent sequences, and in [28] an algorithm to mine
top-k closed sequential patterns has been presented. As far as we know, no
concise representations have been proposed for sequential classification rules.

Our work addresses the definition of concise representations for a sequen-
tial classification rule set. We define a general framework for sequential clas-
sification rule mining. In the framework, the notions of containment between
two arbitrary sequences, and a sequence and an input sequence are a gen-
eralization of previous definitions of constrained containment [5,17,25]. In
this general context, we define the concept of sequence generator, which, to
our knowledge, has never been proposed before in the sequence domain. Fur-
thermore, we introduce the concepts of constrained closed sequence and con-
strained generator sequence. We exploit both concepts to define two compact
representations of a classification rule set.

9 Conclusions and Future Work

In this chapter we propose two compact representations to encode the knowl-
edge available in a sequential classification rule set. The classification rule
cover (CRC) is defined by means of the concept of generator sequence and
yields a simple rule set, which is equivalent to the complete rule set for classifi-
cation purposes. Compact rules, which are the building blocks of the compact
classification rule set (CCRS)), are characterized by a more complex structure,
based on closed sequences and their associated generator sequences. Compact
rules allow us to regenerate the entire set of frequent sequential classification
rules from the compact form.

Experiments on textual and biological datasets show that the compression
ratio is significant for low support thresholds and correlated datasets. In this
case, traditional techniques would generate a huge amount of classification
rules.

As future work, we plan to exploit our compact representations to design
an effective classifier. A promising direction is the integration of both sequen-
tial and associative classification rules, to exploit both the specific character-
ization provided by sequential rules and the general representation given by
associative classification rules.
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Summary. We propose a new search algorithm for a special type of subspace
clusters, called maximal 1-complete regions, from high dimensional binary valued
datasets. Our algorithm is suitable for dense datasets, where the number of maximal
1-complete regions is much larger than the number of objects in the datasets. Unlike
other algorithms that find clusters only in relatively dense subspaces, our algorithm
finds clusters in all subspaces. We introduce the concept of weighted density in or-
der to find interesting clusters in relatively sparse subspaces. Experimental results
show that our algorithm is very efficient, and uses much less memory than other
algorithms.

1 Introduction

Frequency has been used for finding interesting patterns in various data min-
ing problems, such as the minimum support threshold used in mining frequent
itemsets [2,3] and the minimum density defined in mining subspace clusters [1].
A priori-like algorithms [1] perform levelwise searches for all patterns having
enough frequencies (either support or density) starting from single dimen-
sions, and prune the search space based on the rationale that in order for a
k—dimensional pattern to be frequent, all its (k—1)—dimensional sub-patterns
must also be frequent. A large frequency threshold is usually set in most of the
algorithms to control the exponential growth of the search space as a function
of the highest dimensionality of the frequent patterns.

Closed patterns was proposed [7] to reduce the number of frequent patterns
being returned by the algorithm without losing any information. Mining closed
patterns is lossless in the sense that all frequent patterns can be inferred
from the set of closed patterns. Most algorithms proposed for mining closed
patterns require all candidates found so far to be kept in memory to avoid
duplicates [9, 11, 12]. These algorithms also require the minimum frequency
threshold value to be specified before the algorithms are run, and the same
value is used to prune off candidates for patterns in all subspaces.

H. Bian and R. Bhatnagar: An Algorithm for Mining Weighted Dense Mazimal 1-Complete
Regions, Studies in Computational Intelligence (SCI) 118, 31-48 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008
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Table 1. Subspaces with varied density

a b c de f
1 00 0O0O0T1
2 0000O0O0°1
3 000011
4 000111
5 000111
6 000111
7 000110
8 000100
9 111000
10 1 1 1.0 0 O

However, patterns with higher dimensionality tend to have less frequencies,
so using the same threshold value for all patterns risks losing patterns in higher
dimensional spaces. Furthermore, patterns with the same dimensionality may
need different frequency threshold values for various reasons. For example,
a pattern with higher frequency in very dense dimensions may not be as
informative and interesting as a pattern with lower frequency in very sparse
dimensions. Setting a relatively high frequency threshold tends to bias the
search algorithm to favor patterns in dense subspaces only, while patterns in
less dense subspaces are neglected. Consider the example shown in Table 1.
Each column denotes one of the six attributes (a,b,c¢,d, e, f), and each row
denotes one object (data point). An entry ‘1’ in row ¢ and column j denotes
that object 7 has attribute j. There is a pattern in subspace {abc} that contains
two instances {9,10}, and subspace {def} has another pattern containing
three instances {4,5,6}. If we set the minimum frequency threshold to be
3, we lose the pattern in {abc}. However, this pattern in {abc} maybe more
interesting than the one in {def}, considering the fact that the number of
‘I’s in attributes a, b, ¢ is much smaller than in attributes d,e, f. Actually,
all instances that have entry ‘1’ in a also have entry ‘1’ in b and ¢, and this
may suggest a strong correlation between a, b, ¢, and also a strong correlation
between instances 9 and 10. On the other hand, although the pattern in {def}
has a larger frequency, it does not suggest such strong correlations either
between attributes d, e, f or between instances 4—6. So we suggest that smaller
frequency threshold should be chosen for subspaces with lower densities, that
is, subspaces with less number of ‘1’ entries.

We propose a weighted density measure in this chapter, which captures
the requirement to use a smaller density threshold for less dense subspaces.
And we present an efficient search algorithm to find all patterns satisfying a
minimum weighted density threshold.

Most algorithms for finding closed patters report only the dimensions in
which the patterns occur, without explicitly listing all the objects that are
contained in the patterns. However, the object space of the patterns is crucial
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in interpreting the relationships between two possibly overlapping patterns.
Our algorithm treats the objects and dimensions (attributes) equally, and all
patterns are reported with their associated dimensions and subsets of objects.

Another advantage of our algorithm lies in its step-wise characteristic, that
is, the computation of the next pattern depends only on the current pattern.
Our algorithm is memory efficient due to this property, since there is no need
to keep all previously generated patterns in the memory.

In the rest of the chapter, we present our algorithm in the context of the
subspace clustering problem, but the algorithm and the theorem can also be
applied to other closed set mining problems such as frequent closed item-
sets [7] and maximal biclique [8]. We first present in Sect.2 the definition of
maximal 1-complete region, where we also introduce the terms and notations
used in this chapter. Section 3 presents our algorithm. Section 4 presents the
experimental results. Finally, we make the conclusion.

2 Problem Statement

A data space DS is characterized by a set of attributes A (attribute space)
and a population of objects O (object space). Each object o, € O has a
value assigned for each attributes a; € A, denoted as d;;. We consider only
binary valued datasets in this chapter, that is, d; ; € [0,1]. However, real
valued datasets can be quantized into binary values, and different quantization
methods lead to clusters of different semantics [6]. A subspace S is a subset
of A. A subspace cluster C is defined as <O, A>, where O C O and A C A.
We call O and A the object set and the attribute set of the subspace cluster
respectively. Subspace clustering is a search for subsets of P(A) (the power
set of A) where interesting clusters exist.

2.1 The Prefix Tree of Subspaces

Let “<;” be a lexicographic order on the attributes in A, and we use a; <p,
a; to indicate that attribute a; is lexicographically smaller than attribute
a;j. Each subspace is represented as the set of attributes contained in it in
the lexicographically increasing order. For example, a subspace containing
attribute a1, as,as (a1 <r a2 <r, as) is labeled as {ajasa3}. And we arrange
all subspaces into a prefix-based tree structure 7ps as follows:

1. Each node in the tree corresponds to one subspace, and the tree is rooted
at the node corresponding to the empty subspace that contains no at-
tributes.

2. For a node with label S = {ay,...,ar_1,ax}, its parent is the node whose
label is S" = {aq1,...,ak-1}.

Table 2 shows an example dataset, and Fig. 1 shows its prefix tree of sub-
spaces.
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Table 2. An example data table

a b ¢ d
1 0 0 1 1
2 1 0 1 1
3 1 1 1 0
4 0 0 1 1
5 1 1 0 0
6 0 0 1 1
7 0 0 1 1
8 01 0 O
D
Il T
a b c d

ab ac ad bec bd cd

— 1 ' '
abe abd acd bed
abed

Fig. 1. Prefix-based subspaces search tree

2.2 Maximal 1-complete Regions and Closed Subspaces

We are interested in finding subspace clusters that contain largest regions of
‘1’ entries, formally defined as follows:

Definition 1. A subspace cluster C' = <O, A> of binary valued data space
DS is a 1-complete region if it contains only ‘1’ entries.

Definition 2. A complete dense region C' = <O, A> is a maximal 1-complete
region if all regions that are proper super-regions of C' are not 1-complete.

For the example shown in Table 2, <{1,2,4,6,7},{d}> is a l-complete
region but it is not maximal, because its super-region <{1,2,4,6,7}, {cd}>
is 1-complete. <{1,2,4,6,7},{cd}> is a maximal 1-complete region, while
<{1,2,3,4,6,7}, {cd}> is not 1-complete since it contains zero entries. If we
consider each attribute (column) in Table 2 as a bit vector, all 1-complete
regions can be found by intersecting all possible subsets of attributes. How-
ever, not all of them are maximal, so the problem is to find those subsets of
attributes whose intersection produce maximal 1-complete regions.

Definition 3. If a subspace is the attribute set of a mazimal 1-complete re-
gion, we call this subspace a closed subspace.
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According on Definition 3, each maximal 1-complete region corresponds to
one unique closed subspace. In order to find all maximal 1-complete regions,
we can traverse the prefix tree of subspaces and check each node to see whether
it is a closed subspace. In the following, we present several methods to test
whether a subspace is closed. We first introduce two functions that perform
mapping between the object space and the attribute space.

We define 4(S) to be {o0;|Va; € S,d;; = 1}, that is, ¥(S) returns the set
of objects that have entry ‘1’ for all the attributes in S. Similarly, p(O) is
defined to be {a;|Vo;, € O,d;; = 1}, that is, ¢(O) returns the set of attributes
that are shared by all objects in O. Then ¢ o 1) is a closure operator, and we
have the following lemma.

Lemma 1. The following statements are equivalent:

1. C = <y(S), 8> is mazimal 1-complete
2. S is a closed subspace

3. Aa € A/S, for which (a) 2 (S)
4-potp(S) =5

Proof. 1 < 2: True by Definition 3.

1—3: C = <(5),S> is maximal 1-complete means that we cannot add
any attribute a to S to get an enlarged region, and at the same time maintain
the 1-complete property. If there exists a for which ¥ (a) 2 ¥(.5), then adding
a to S will produce a region that has 1-complete property, which contradicts
the fact that C is maximal 1-complete.

3 — 4 and 4 — 1 can be proved similarly. O

From Lemma 1, we can see that po(.9) is a superset of S if S is not closed,
or equal to S if S is closed. Figure 2 shows a modified prefix tree from Fig. 1,
where each node in Fig. 2 has two labels, including the corresponding subspace
S and the object set 1(5). For example, node “b, 358” (Fig.2) represents that
this node corresponds to subspace {b}, for which ¢ ({b}) = {3,5,8}. Under-
lined nodes are those 1-complete regions that are not maximal. Furthermore,
nodes corresponding to subspaces with equal closure are grouped together into
one equivalence class in Fig. 2. For example, ¢ o1{bc} = {abc}, so nodes “bc”
and “abc” are grouped together. Notice that all equivalent subspaces have
the same object set, so each equivalence class generates only one maximal
1-complete region. Therefore, we need only find one subspace for every such
equivalence class in order to find all 1-complete regions.

2.3 The Lectical Order Between Subspaces

From Fig. 2, we can see that within each equivalence class, the closed subspace
is always to the left of those non-closed ones. Based on this observation, we
define a total order, called the lectical order, on the set of all subspaces. A sim-
ilar definition can be found in [5]. A subspace S; is called lectically smaller
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Fig. 2. Prefix tree of equivalence classes

than subspace S, denoted as S7 < S9, if the lexicographically smallest at-
tribute a; that distinguishes S; from Sy belongs to S5. That is, there exists
a; € Sy Na; ¢ S1, and all attributes lexicographically smaller than a; are
shared by S; and S;. Formally,

S < Sy & 3a¢€52\51 SN {al, ag, ..., ai,l} =5nN {al,ag, ey ai,l}.

If we know the attribute a; that distinguishes S; and S, we say S is
i-smaller than S5, denoted as S; <; Ss.

For example, {ad} <. {acd} because the lexicographically smallest at-
tribute that distinguishes them is ¢, and it belong to {acd}.

We define S* to be a subset of S which includes all the attributes in S
that are lexicographically smaller than a;, that is, S* := SN {ay,...,a;_1}.
Starting from an arbitrary subspace S, the next lectically smallest subspace
that is larger than S can be computed based on Lemma 2.

Lemma 2. The lectically smallest subspace that is lectically larger than S is
StU{a;}, where a; is the lexicographically largest attribute that is not contained

mS.

Proof. Let S; = S*U{a;}, with a; being the lexicographically largest attribute
that is not contained in S. Suppose the lemma is not true, then there must
exist o, such that S <« Sy < S;. Since S < S, there must exist an attribute
aj(i # j), which satisfies a; € Sa, a; € S and 771 = S%fl. We also know
that a; is the smallest attribute that differentiates S and S, so S*~! = Sifl.
We consider the following two possible relationships between a; and a;.

a;<pa;: Since i<j, S <; Sy implies a; is not contained in S, which
contradicts the fact that a; is the largest attribute not contained in S.
a;>raj: Since i>j, S = Si_l implies S9! = S{;l. And we also have
§9-1 = 837" 50 87" = SJ7". Since the smallest attribute that differenti-
ates S and S is a;, which is larger than a;, so a; ¢ S;. Since S{_l = Sg_l,
a; € Sy and a; € S1, we have S; < Sz, which contradicts the assumption
S« S «S,. O

Starting from the empty subspace, if we keep looking for the next lectically
smallest subspace, we actually perform a right-to-left pre-order depth-first
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traversal of the prefix tree. For the example shown in Fig. 1, the total lectical
order is: {¢} <4 {d} <. {c} <q {cd} < {b} <4 {bd} <. {bc} <q {bed} <,
{a} <4 {ad} <. {ac} <4 {acd} < {ab} <4 {abd} <. {abc} <4 {abcd}.

The next question is how to find the next closed subspace after S. Let
a; be the lexicographically largest attribute that is not contained in S. If
SU{a;} is a closed subspace, then it is trivial that SU{a;} is the next closed
subspace. If S U {a;} is not closed, then its closure ¢ o ¢(S*U {a;}) must
contain an attribute a;<ra; and a; ¢ S. To simplify the notation, we define
S @ a; := ¢ o (St U {a;}). Lemma 3 shows the method to find the next closed
subspace after S.

Lemma 3. The lectically smallest closed subspace that is lectically larger than
S is pop(StU{a;}), where a; is the lexicographically largest attribute that is
not contained in S for which S <; S & a; holds.

A detailed proof for Lemma 3 can be found in [5]. Let a; be the lexico-
graphically largest attribute that is not contained in S for which S <; S @ a;
holds. Let aj be an attribute ax ¢ S and ax>pa;. Since S € S D ag, S D ay,
must contains at least one attribute that is lexicographically smaller than ag.
Let S <; S @ ay, that is, a; is the lexicographically smallest attribute that
differentiates S and S @ ar. If a;<pa;, then S @ ay is lectically larger than
S®a;. If aj = a;, then S©a; = SDayg. If a;>ra;, this contradicts the assump-
tion that a; is the lexicographically largest attribute that is not contained in
S for which S <; S @ a; holds. So in conclusion, Lemma 3 is true.

2.4 Density and Weighted Density

Notice that many nodes in Fig. 2 contain empty object set, which do not con-
tribute to the clustering process. Furthermore, simply enumerating all maxi-
mal 1-complete regions is very time consuming. So we focus on finding those
maximal 1-complete regions that contain at least a certain number of objects.
Formally, we define the density of a single attribute a; to be the ratio between
the number of ‘1’ entries in a; and the total number of objects in the data,
denoted as dens(a;). For the example shown in Table 2, dens(d) is 2 and
dens(a) is % Similarly, the density of a subspace cluster is the ratio between
the number of objects contained in it and the total number of objects in the
data space. For example, the density of <{1,2,4,6, 7}, {cd}> is %

The weighted density of a subspace cluster C = <O, A>, denoted as

dens,, (C), is defined as the ratio between dens(C') and the average density
dens(C)

a7 (X o, ca dens(ai))’
where |A| is the number of attributes contained in S. We call the denomina-
tor, fix\(zaieA dens(a;)), the weight.

Since each subspace S has a unique closure ¢ 0 (.S), which corresponds to
exactly one maximal 1-complete region C' = <(5), p 0¥ (S)>, we define the
density of subspace S (dens(S)) to be dens(C), where C is the cluster having

over all attributes contained in A, that is, dens,, (C) =
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the closure of S (¢ o 9(S)) as its attribute set. Similarly, dens,,(S) is equal
to dens,, (C).

The next section presents the algorithm for finding all maximal 1-complete
regions that have a weighted density larger than §, where 0 is a real number
between 0 and 1.

3 Mining Weighted Dense Maximal 1-complete Regions

In this section, we present the underlying idea of our algorithm and the proof
of correctness. Then we present some methods to speed up the algorithm.

3.1 Non-Decreasing Property

As shown in Fig. 2, density is non-increasing along any branches in the tree.
This is because that the set of objects that are contained in a child node
SU{a;} is the intersection of ({a;}) and the object set of its parent node S.
Consequently, ¥ (S U {a;}) must be a subset of 1(S).

However, weighted density does not have this property. Although the den-
sity is non-increasing (numerator), the weights (denominator) may decrease
when less dense attributes are added. If the decrease of the weights is faster
than the decrease of density, weighted density of a child node may become
larger than its parent node. One way to guarantee that weighted density
is non-increasing along any branches is to enforce a constraint on the lexico-
graphical order. More specifically, we sort all the attributes into the increasing
density order, such that the lexicographically largest attribute is the one that
has the largest density. By doing this, we can make sure that when we go
deeper into the tree, the weights never decrease. Therefore, weighted density
along any branches of the tree must also be non-increasing. This property
facilitates the search algorithm that is introduced later.

In the remaining of the chapter, we assume that the data has been sorted
this way. For the data shown in Table 2, the sorted dataset is shown in Table 3.

Table 3. Sorted example

a b ¢ d
1 0 011
21 011
3 1 1 0 1
4 0 0 1 1
51 100
6 0 0 1 1
70 0 1 1
8 01 00
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{1,12345678
///m
a,235 b,358 cd, 12467 d,123467
ab,35 acd,2 ad,23
abd,3

Fig. 3. 1-complete regions for sorted data

Figure 3 is a tree containing all and only the maximal 1-complete regions in
this sorted dataset. Ideally, we only need to check all and only the nodes
in Fig.3, which is much smaller than the number of nodes contained in the
complete tree as shown in Fig. 1.

3.2 Mining Weighted Dense 1-complete Regions

To better explain the algorithm, we first show the underlying idea and the cor-
rectness proof of our approach. Lemma 4 states that under certain condition,
applying the “@a;” operator multiple times has the same effect as applying
only once.

Lemma4.5<;S®a; - S®a;Pa;=5Da,.

Rationale. By definition, S <; S @ i means that S N {ay,a2,...,a;—1} U
{a;} =S @a;N{ay,as,...,a;-1} U {a;}. Since SDa; Da; = pop(S®a;N
{a1,a9,...,a;-1} U{a;}), and g o (S N{ay,as,...,a;1}U{a;}) = S & a,,
we have S® a; Da; =5 D a;.

Lemma 5. S <; S@a; and aj>ra; — S®a; ®aj D5 D a.

Rationale. S@a;®a; = pob(SEa;N{a1, as, ..., a;—1}U{a;}). Since a; € SPa;
and a;>ra;, S®a;N{ai,az,...,a;_1}U{a;} D S®a;N{ar,as,...,a;-1}U
{ai}. This implies ¢ o ’(/)(S D a; N {al, as, ..., aj,l} @] {ij}) Do qp(S D a; N
{a1,a2,...,a;-1} U{a;}), which is equivalent to S @ a; ®a; DS & a;.

The implication of Lemma 5 is that if a 1-complete region C; in subspace
S @& a; does not have enough density, then there is no need to check any
attribute a;>rpa;. This is because Lemma 5 proves that S @© a; @ a; is a
superset of S ® a;, thus the cluster Cs in S @ a; ® a; must have a density less
than dens(Cy). Furthermore, since the weights is non-decreasing along any
branches after we sort the attributes into increasing density, dens,, (Cs) must
also be less than dens,, (C1). Thus if we know that dens,,(C1)<9d, S&a;$a; can
be safely pruned. Similarly, we can prove the following Lemma 6 by induction.

Lemma 6. S <; S®a; and ag,, >r ... >0k, >L0k, >10; — S®a;Bag, ...H
ag, O S & a;.
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Lemma 6 tells us that if a 1-complete region C in subspace S & a; does
not have enough weighted density, we can directly jump to test S @ a; for
a;j<pa; because anything in between must not meet the minimum weighted
density threshold, which leads to Theorem 1.

Theorem 1. The lectical smallest closed subspace larger than a given subspace
S C A and having weighted density larger than § is S ® a;, where a; is the
lexicographically largest attribute which satisfies dens,,(S @ a;)>0 and S <K
S&a;.

Rationale. Let S @ a; be the lectically smallest closed subspace that is larger
than S. If dens,, (S @ a;)>J, the theorem is true since it is the same case as in
Lemma 3. If dens,,(S@®a;)<0, let a; be the largest attribute for which a;<ra;
and S <; S @ a; hold. So we need to show that S ® a; © a; is the lectically
smallest closed subspace that is larger than S @ a;, and potentially could
have enough weighted density. Since dens,, (S @ a;)<d, Lemma 6 guarantees
the search to start with a;_; for the smallest weighted dense cluster. Since
S<jS®aj, Sn{ar,...,a;_1} =S ®a; N{ai,...,aj_1}. So the search for
the next a; performs the same on S and S ® aj, thatis, S®a; =S D a; ® a;.
So S @ a; is the lectically smallest closed subspace that is larger than S and
could have enough weighted density. If dens(S @ a;)>J, this theorem is true.
Otherwise, find the next arp<ra; for which S <; S P ag, and the proof can
be completed inductively.

3.3 Lectical Weighted Dense Region Mining Algorithm

Theorem 1 states that if we find that a subspace S @& a; is not weighted dense,
we can prune the search space by skipping all a;>ra;, and check directly on
a;_1 in the next iteration of the algorithm. Algorithm 1 is a straightforward
implementation of this idea. Based on the correctness of Theorem 1, we can
conclude the correctness of Theorem 2.

Algorithm 1 Lectical weighted dense region mining algorithm
C =<0,5> « <9(¢), poYp(¢)>
IF (dens.(C)>0)
Add C =<0, 8> to Tree
found — true
END IF
REPEAT
(C, found) < findnext(C)
UNTIL found = false

e

Theorem 2. Algorithm 1 finds all mazimal 1-complete regions that satisfy
the minimum weighted density threshold o.
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FUNCTION: findnext(C)

1. found «— FALSE

2. o« lexicographlly — largest({ila; & S})
3. WHILE (!found) AND (0 > 0)

4. IF (ao & S)

5. C=<0,5>«— <Y(S@a,),S®a,>
6. IF (dens.(C)>8) AND (S <, S)
7. found — TRUFE

8. Add C = <(0), S> to Tree

9. END IF

10. END IF

11. o—o—1

12. END WHILE
13. RETURN (C, found)

£1,12345678

2,235 Q*x‘d‘!imh— d,123467

ab,35 +— acd,2 <—ad,23 bed,}}=+— bdJ3

e,

abed,{} =— abd.3

Fig. 4. Search tree of sorted data

The search starts out by finding the closure of the empty subspace (line 1),
and adding that to the tree of closed subspace if it has enough weighted density
(line 2-3). Then the algorithm keeps looking for the next lectically larger
closed subspace satisfying the weighted density constraint until no more such
subspaces can be found (line 6-8).

Function findnextbasic accepts a 1-complete region C' as parameter, and
returns the next lectically smallest closed and weighted dense subspace and
its corresponding maximal 1-complete region. First the flag found is set to
be false. Starting from the lexicographically largest attribute not contained
in the current subspace S, it looks for an attribute a, that meets the two
conditions at line 6. The loop terminates either with a successful candidate
or when all the possibilities have been tried (line 3).

Figure 4 traces the algorithm on the dataset shown in Table 3 with § =
0 (no weighted density pruning). Nodes in the tree are those being visited.
Underlined nodes are non-maximal ones. The arrows indicate the sequence of
visiting. Suppose we start from node S = ¢. Since the current subspace is
empty, the largest attribute not contained in S is d. Then we compute the
S @ {d} = {d}. Since S <4 S ® {d}, we output cluster <{123467}, {d}> and
keep looking for the next one.
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3.4 Optimizing Techniques

In this section, we present several methods to optimize the time complexity of
the basic algorithm. The data is stored as bit strings, that is, each attribute
is represented as a string of 0 and 1. The major operation of our algorithm
is bit intersection. When the percentage of 1 entries in the dataset is larger
than 10%, using bit strings not only saves memory space, it also makes the
computations more efficient.

Reuse Previous Results in Computing O

The most expensive operation in Function findnext is at line 5, where we
need to compute the S = S @ a, and its object set O = (S @ a,). Notice
that for any node in the prefix tree as shown in Fig. 2, its object set can be
computed incrementally from the object set of its parent. That is, the object
of the child node is the intersection of the object set of the parent node and
¥ (a,), where a, is the newly added attribute. For example, the object set of
cd can be computed by taking the intersection of the object set of its parent
node ¢({123467}) and ¢(d) ({12467}). So we can maintain the object sets
of all the nodes on the current branch of the search tree on a stack called
curPath to avoid duplicated intersection operations.

However, when the search moves from one branch to the other, the stack
curpath needs to be updated to maintain the correctness of the object set
computation. For example, after we visited node ad, the next node to be
visited is ac. But the object set of ac can not be incrementally computed
based on the object set of ad, while it can be computed incrementally based
on the object set of a. So we maintain another stack of attribute id called
istack, which keeps track of all the attribute id for which S <, S ® a, is
true. For example, after we find that the next closed subspace after ¢ o ()
is <{123467},c>, we push the object set into curPath and we push ¢ into
stack istack. When we try to find the next closed subspace after ¢, we check
if o is larger than the top of istack. If yes, that means that we are still on
the same branch of the search tree, so there is no need to change the stack; if
no, that means that we are jumping to a different branch, so pop up all the
elements in iStack that is larger than o. When popping out the elements in
iStack, cur Path is also updated in the similar fashion. That is, whenever pop
out an element from ¢Stack, we also pop out an element from curPath.

Stack of Unpromising Nodes

Observe the search tree in Fig.2. Starting from node ¢, we first check if
@ Kq ¢@d. Since pdd = {cd}, we know that any closed subspaces that contain
d must also contain c. So, after we reach node {a}, there is no need to check
{ad}, since we know for sure that it can not be closed. For this type of pruning,
we maintain a stack called prelistStack. This stack contains elements called
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prelist, and for each attribute i, prelist[i] is the id of the lexicographically
smallest attribute j for which ¢(j) 2 (). Initially set all prelist[i] = i.
During the search algorithm, set the elements accordingly. Similar to cur Path
and ¢Stack, prelist needs to be updated when we jump between branches.

4 Experimental Results

We tested our algorithm on three datasets as listed in Table 4, which includes
the name of the dataset, number of objects, number of attributes, minimum
density of the attributes, and maximal density of the attributes. Mushroom
and Chess are from [4], and Cog is from [10].! The objective of the experiments
is to show that our algorithm can indeed find clusters both from dense sub-
spaces and relatively sparse subspaces. All our experiments were performed
on 2.4 GHz Pentium PC with 512 MB memory running Windows 2000.

All test data are very dense in the sense that the number of maximal
1-complete regions contained in the datasets is much larger than the number
of objects in the datasets. Another feature of these data is that their at-
tributes have quite different densities. Mushroom contains 129 attributes and
8,124 objects, while the most dense attribute contains all ‘1’s and the least
dense attribute contains only four ‘1’s. The other two datasets have similar
characteristics. Figure 5 shows the density distribution of the attributes for all
the three datasets. For the Chess dataset, around 30% of the attributes have
density less than 20%. If we set the minimum density to be 20%, we will not be
able to find any patterns in almost one thirds of the subspaces. One possible so-
lution to find patterns in these less dense subspaces is to reduce the minimum
density threshold to less than 20%. However, reducing the minimum density
threshold leads to an exponential growth in the total number of clusters being
found, most of which belong to the more dense subspaces. So we perform the
following experiments to show that our algorithm can find weighted dense
1-complete regions in both dense subspaces and sparse subspaces.

We compared our algorithm with CLOSET+ [11], which is an enhanced
version of CLOSET [9]. For CLOSET+, a very small minimum density
threshold value is needed in order to find those weighted dense clusters in the
less dense subspaces. We set the minimum density threshold for CLOSET+
to be a value such that it can find all weighted dense regions larger than a

Table 4. Datasets characteristics

# Of objs # Of attrs Minimum density Maximum density

Mushroom 8,124 129 0.01 1
Chess 3,196 75 0.03 1
COG 3,307 43 0.11 0.60

1Cog stands for clusters of orthologous genes.
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Fig. 5. Density distribution for all attributes

certain threshold value. For example, the least dense attribute in COG has
density 0.11. If we want to find weighted dense clusters that have this least
dense attribute, the minimum density threshold must be set to be no larger
than 0.11. However, our tests show that for Chess and COG, CLOSET+ runs
out of memory for these low threshold values. For Mushroom, CLOSET+ can
finish the mining task for all threshold values.

Our algorithm uses almost the same amount of memory for all weighted
density threshold values, since the computation of the next cluster depends
only on the current cluster and not on any other previously found ones.
As shown in Fig.6, our algorithm uses almost the same amount of mem-
ory for all weighted density threshold values for all datasets. Compared with
CLOSET+, our algorithms uses much less memory on Mushroom. For Chess
and COG, the difference is more significant as CLOSET+ cannot finish the
task due to insufficient memory.

We also compared the running time of our algorithm with CLOSET+ on
the Mushroom data. Since C'LOS ET+ runs out of memory on Chess and Cog,
we only report the running time for our algorithm. In order to find weighted
dense clusters in the least dense subspaces, CLOSET+ needs to find almost
all dense regions, which explains why its running time is almost constant for all
threshold values. Even if we want to find all the maximal 1-complete regions
in the data, our algorithm is still faster than CLOSET+.

Figure 9 shows the total number of clusters being found for various
weighted density threshold values. For all three datasets, the running time
curves as shown in Figs.7 and 8 fit very well with the curves in Fig.9. This
suggests that our algorithm has a linear time complexity with the number of
clusters being found.



An Algorithm for Mining Weighted Dense Maximal 1-Complete Regions 45

» Memory
10 T T -
- =0 = Mushroom: Our algorithm
---+--Mushroom: Closet+
-¢ -COG
—&— Chess
’323 et e eeeeeee e e e e e e e e e e e e e e e e e e e e e e e e aa s g
£
>10'} ]
S
S
)
=
P00 mmmm oo Q= —mm i m —
100 ().Q__g.—_—_h_ar?_____? _____ §
0 0.2 0.4 0.6 0.8 1
minimum weighted density
Fig. 6. Memory comparison
Mushroom
10 . . . .
—&— Our algorithm
--+--- CLOSET+
8 L 4
(2]
°
§ R ereereeeeteea et e e e e e e ——————- 4
o 6f 1
w
£
)
£ 41 T
c
2
2 4
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

minimum weighted density

Fig. 7. Mushroom time comparison

We also want to show through experiments that using weighted density
can find more clusters in less dense subspaces. So we compared the results
from density pruning with the results from weighted density pruning. For fair
comparison, we only compare when the minimum density threshold and the
minimum weighted density threshold are equally selective, that is, there are
equal number of clusters that satisfy each of the constraint. Figure 10 shows
the percentage of the clusters being found after each attribute id on COG
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Fig. 9. Total number of clusters being found

when there are 10,000 clusters being found. Attributes are numbered such
that more dense larger attributes have larger ids. The search starts from the
attribute that has the largest id (45 in this case), and ends when it finishes
attribute 0. From the figure we can see that when using weighted density, more
clusters in the less dense subspaces are returned. Close examination reveals
that using minimum density threshold, seven attributes are not included in
any clusters. On the other hand, using weighted density, all attributes belong
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to at least one cluster. We tested a set of different selective threshold values
on all three datasets, and all of them confirms that using the weighted density
constraint finds more clusters in less dense subspaces.

5 Conclusion

We have presented a new subspace clustering mining algorithm to find
weighted dense maximal 1-complete regions in high dimensional datasets. Our
algorithm is very memory efficient, since it does not need to keep all the clus-
ters found so far in the memory. Unlike other density mining algorithms which
tend to find only patterns in the dense subspaces while ignore patterns in less
dense subspaces, our algorithm finds clusters in subspaces of all densities. Our
experiments showed that our algorithm is more efficient than CLOS ET+ from
both time complexity and memory consumption perspectives.
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Summary. In this chapter, we propose a mining algorithm based on angles of ad-
jacent points in a time series to find linguistic trends. The proposed approach first
transforms data values into angles, and then uses a sliding window to generate con-
tinues subsequences from angular series. Several fuzzy sets for angles are predefined
to represent semantic concepts understandable to human being. The a priori-like
fuzzy mining algorithm is then used to generate linguistic trends. Appropriate post-
processing is also performed to remove redundant patterns. Finally, experiments are
made for different parameter settings, with experimental results showing that the
proposed algorithm can actually work.

1 Introduction

Time-series data are commonly seen around our daily life. They are the data
recorded at each time interval. For example, the stock prices evolving over
a period of time are an example of a time series. Many sets of data in the
fields like telecommunication, bioinformatics and medical treatment, are time
series data.

Finding useful patterns from time-series data has recently become an im-
portant issue for researchers in the data-mining fields. Indyk et al. focused on
the problem of identifying representative trends, such as relaxed periods and
average trends over a period of observations in time series [8]. They first gen-
erated a template set of sketches by using polynomial convolution, where each
sketch is a low dimensional vector. The sketches were then used to replace each
interval to find representative trends. Patel et al. proposed a method based on
Euclidean distance to find k-motifs, which mean frequently occurring patterns
in time series [11]. They first normalized time series data, and then used ap-
proximated piecewise aggregation to reduce data dimension [9,15]. After the
C.-H. Chen et al.: Mining Linguistic Trends from Time Series, Studies in Computational

Intelligence (SCI) 118, 49-60 (2008)
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data dimension was reduced, they further transformed the data into a discrete
representation and mined k-motifs from the transformed time series. Agrawal
et al. proposed an algorithm to capture the shapes from historical time-series
database by using a simple translation [2]. They first transformed the differ-
ence value of every two adjacent data points into a predefined category, such
as increase, steep increase, steep decrease, decrease, no-change, and zero. The
same time series may be labeled more than one category. In other words, the
intervals among these categories have overlapped a little. The transformed
symbolic series were then used for querying desired results.

Most of the above approaches, however, usually require predefined crisp
intervals for each category. It thus needs domain knowledge and depends on
applications. Udechukwu et al. thus proposed a domain-independent trend-
encoding method to mine frequent trends [13]. They transformed the difference
value between two adjacent data points into an angle, instead of the difference
value itself. The angles lay within the range —90° to 90°, and were partitioned
into 52 predefined angular categories, represented by letters. They then used
the data structure of suffix trees to find the maximally repeated patterns as
frequent trends. In this way, the effect of the domain knowledge could be
reduced. Their approach, however, had too many angular categories, which
might cause users hard to understand the meaning of the patterns easily.

As to fuzzy data mining, Hong et al. proposed several fuzzy mining al-
gorithms to mine linguistic association rules from quantitative data [6,7,10].
They transformed each quantitative item into a fuzzy set and used fuzzy oper-
ations to find fuzzy rules. Their approaches, however, focused on transaction
data. For time-series data, Song et al. proposed a fuzzy stochastic time series
and built a model by assuming the values are fuzzy sets [12]. Chen et al. pro-
posed a two-factor time-variant fuzzy time-series model to deal with forecast-
ing problems [4]. Au and Chan proposed a fuzzy mining approach to find fuzzy
rules for classifying time-series [1]. Watanabe exploited the Takagi-Sugeno
model to build a time-series model [14].

In this chapter, we thus propose a mining algorithm based on angles of
adjacent points in a time series to find linguistic trends. Several fuzzy sets
for angles are predefined to represent semantic concepts understandable to
human being. The a priori-like fuzzy mining algorithm is then used to generate
linguistic trends. Appropriate post-processing is also performed to remove
redundant patterns. Since the final results are represented by linguistic terms,
they will be friendlier to human than quantitative representation.

2 Mining Linguistic Trends for Time Series

The proposed fuzzy mining algorithm integrates the fuzzy sets, the a pri-
ori mining algorithm and the time-series concepts to find out appropriate
linguistic trends from a time series. The proposed approach first transforms
data values into angles, and then uses a sliding window to generate continuous
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subsequences from the transformed angular series. Several fuzzy sets for angles
are predefined to represent semantic concepts understandable to human be-
ing. Finally, an a priori-like fuzzy mining algorithm is proposed to generate
linguistic trends. Appropriate post-processing is also performed to remove re-
dundant patterns. Details of the proposed mining algorithm are described
below.

The proposed mining algorithm for linguistic trends:

INPUT: A time series S with k data points, a set of h membership functions
for angles, a predefined minimum support «, and a sliding-window
size w.

OUTPUT: A set of linguistic trends.

STEP 1: Transform every two adjacent data points in the time series S into
an angle. Assume S = (dy, da, ds,..., di). Then the resulting
angular series S’ is formed as:

S/ = (0,170,27@3, e 7ak71)7

where a; is the angle from data point d; to d;41.
STEP 2: Transform S’ into a set of subsequences W (S) according to the
sliding-window size w. That is,

W(S") = {splsp = (ap, ap+1, - - s appw—1),p = 1 to k —w},

where a,, is the value of the p-th angle in 5.
STEP 3: Transform the j-th (j = 1 to w) quantitative value (angle) v,; in
each subsequence s, (p = 1 to k-w) into a fuzzy set f,;, repre-

sented as:
(fm'l Foi2 - Twin )

Rjy" Rjp" " Rpjn )’
using the given membership functions, where Rj; is the [-th fuzzy
region of the j-th data point in each subsequence, h is the number
of fuzzy memberships, and f,;; is vp;’s fuzzy membership value in
region Rj;. Bach Rj; is called a fuzzy term.

STEP 4: Calculate the scalar cardinality of each fuzzy term Rj; as:

k—w

countj; = g Fpit-
p=1

STEP 5: Collect each fuzzy term to form the candidate 1-patternsets Cf.

STEP 6: Check whether the support (=count;;/(k — w)) of each Rj in
C; is larger than or equal to the predefined minimum support
value. If R;; satisfies the above condition, put it in the set of large
1-pattern-sets (L;). That is:

Li ={Rjj|countj; > a,1 < j<p+w-—1land1l <l <h}
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STEP 7:

STEP 8:

STEP 9:

STEP 10:

If Ly is not null, then do the next step; otherwise, exit the algo-
rithm.

Set » = 1, where 7 is used to represent the number of fuzzy terms
in the current pattern-sets to be processed.

Join the large r-pattern-sets L, to generate the candidate (r+1)-
pattern-set C).;1 in a way similar to that in the a priori algorithm
[3] except that two items generated from the same order of data
points in subsequences cannot simultaneously exist in a pattern in
Cy41. Besides, the first (r-1)-subpattern in a large r-pattern must
be the same with the last (r-1)-subpattern in another r-pattern to
form a candidate (r+1)-pattern in Cy4.

Do the following substeps for each newly formed (r+1)-pattern I
with fuzzy terms (I1, Ia, ..., I11) in Criq:

STEP 10.1 Calculate the fuzzy value of I in each subsequence s, as fl(s‘”)

= I(fp) A fl(;p)/\, ey Af}:ii’ where fl(:p) is the membership
value of fuzzy pattern I; in s,. If the minimum operator is

used for the intersection, then:

STEP 10.2 Calculate the count of I in all subsequences as:

k—w
county = Z f}sﬁ).
p=1

STEP 10.3 If the support of I is larger than or equal to the predefined

STEP 11:

STEP 12:

STEP 13:
STEP 14:

minimum support value o, put it in L,4.
IF L, is null, then do the next step; otherwise, set r = r + 1 and
repeat Steps 8-10.
Shift each large pattern (Iy, Iy, ...,1;), ¢=2, into (11,15, ..., 1;),
such that the fuzzy region Rj; in I; will become Ry; in I{ and a
fuzzy region R;; in the other items will become R(; ;1 1)¢, where R
is the [-th fuzzy region of the j-th data point in each subsequence.
Remove redundant large patterns from the results after Step 12.
Output the maximally large patterns generated from Step 13 as
the linguistic trends.

3 An Example

In this section, a simple example is given to show how the proposed algorithm
can generate fuzzy linguistic trends from the given time series. Assume the
data points in a time series are shown in Table 1. The time series in Table 1
contains 13 data points. Each data point represents a value at a certain time.
For example, the second data point in the time series means the value obtained
at time 2 is 4.
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Table 1. The time series used in this example

Time series
3,4,7,9,8,3,2,4, 8,10, 8, 4, 2

Membership value

Low LowMiddle Middle MiddleHigh High

0 20 40 45 50 70 Angle

Fig. 1. The membership functions for angles

Table 2. The transformed angular series from Table 1

Angular sequence
45, 71.56, 63.43, —45, —78.96, —45, 63.43, 75.96, 63.43, —63.43, —75.96, —63.43

The range of the angles is between —90° and 90Y. Assume the member-
ship functions for the angular values are defined as shown in Fig.1. There
are five fuzzy membership functions, represented as linguistic terms, Low,
LowMiddle, Middle, MiddleHigh and High, for positive angles. There are
another five membership functions, represented as low, lowmiddle, middle,
middlehigh and high, for negative angles. Thus, the uppercase initial letter
means the angle is positive, and the lowercase initial letter means the angle
is negative.

For the time series given in Table 1, the proposed fuzzy mining algorithm
proceeds as follows.

STEP 1: Every two adjacent data points in Table 1 are transformed into
an angle. The results are shown in Table 2.

STEP 2: The angular series is then used to generate a set of subsequences
according to the predefined window size. Assume the given window size is 6.
There are totally 7 (=13 — 6) subsequences to be obtained. The results are
shown in Table 3.

STEP 3: The angular values in each subsequence are then transformed
into fuzzy sets according to the membership functions given in Fig. 1. Take
the first value v1; (=45) in the subsequence s; as an example. The value “45”
is converted into the fuzzy set (1.0/P;.m), where P;.term is a fuzzy region of
the i-th data in the subsequences and is called a fuzzy term. For example, P;.m
represents the fuzzy region middle of the first data point in each subsequence.
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Table 3. The transformed angular series from Table 1

Sp Subsequence

Sy (45, T1.56, 63.43, —45, —78.96, —45)
So (71.56, 63.43, —45, —78.96, —45, 63.43)
S3 (63.43, —45, —78.96, —45, 63.43, 75.96)
Sy (—45, —78.96, —45, 63.43, 75.96, 63.43)
Ss (—78.96, —45, 63.43, 75.96, 63.43, —63.43)
Se (—45, 63.43, 75.96, 63.43, —63.43, —75.96)

Sy (63.43, 75.96, 63.43, —63.43, —75.96, —63.43)

Table 4. The fuzzy sets transformed from the data in Table 3

Sp P P, Py Py Ps Ps
Sl Pl.m(l) Pg.h(.92) Pg.mh(.32) P4.M(1) P5.H(.56) P@.M(l)
Ps.h(.67)
Py.h(.67) Ps.h(.67)
S3 Pr.mh(.32) Po.M(1)  P3.H(.56) Py.M(1) Ps.mh(.32) Ps.h(.70)
Py.h(.67) Ps.h(.67)
Sy PiL.M(1)  Py.H(.56) P3.M(1)  Pymh(.32) Ps.h(.70)  Ps.mh(.32)
P1.h(.67) Ps.h(.67)
55 PlH(56) PQ,M(I) Pg.mh(.32) P4h(70) P5.mh(.32) PG.MH(.32)
Ps.h(.67) Ps.h(.67)  Ps.H(.67)
S@ Pl.M(l) Pz.mh(.SQ) P3.h(.70) P4.mh(.32) P5.MH(.32) Pe.H(.70)
Py.h(.67) Py.h(.67)  P5.H(.67)
S, Pi.mh(.32) P2.h(.70)  Ps.mh(.32) Py.MH(.32) Ps.H(.70)  Ps.MH(.32)
Py.h(.67) P3.h(.67)  PyH(.67) Ps.H(.67)

This step is repeated for the other angles and subsequences, with the results
shown in Table 4.

STEP 4: The scalar cardinality of each fuzzy term is calculated as its count
value. Take the fuzzy term P;.h as an example. Its scalar cardinality = (0 +
0.92 + 0.67 +0 + 0 + 0 + 0.67) = 2.26. This step is repeated for the other
fuzzy terms.

STEP 5: All the fuzzy items are collected as the candidate 1-pattern-sets.

STEP 6: For each fuzzy candidate 1-pattern, its support is checked against
the predefined minimum support value «. Assume in this example, « is set at
0.075. Since the support values of all the candidate 1-patterns are larger than
0.075, these patterns are thus put in L; (Table 5).

STEP 7: Since L is not null, the next step is done.

STEP 8: Set r = 1, where r is the number of fuzzy terms in the current
pattern-sets to be processed.

STEP 9: In this step, the candidate set C,,; is generated from L,..
Cs is thus first generated from L;. In this example, totally 19 candidate



Mining Linguistic Trends from Time Series 55

Table 5. The set of large 1-pattern-sets L; for this example

Itemset Count Itemset Count Itemset Count
Pi.h 2.26 Ps.M 2.00 Ps.h 2.04
P.M 2.00 Ps.mh 0.96 Ps.M 1.00
Pr.m 1.00 Py.M 2.00 Ps.H 2.04

Ps.h 2.96 Py.H 123 PFs.h 2.04
P, M 2.00 Py.h 204 PFPs.M 1.00
Ps.h 271 Ps.H 1.93

Table 6. The membership values for Pi.H N P>.H
Sp Plh PQh Pl.hmPQ.h

1 0 0.92 0.0
2 0.92 0.67 0.67
3 0.67 0 0.0
4 0 0 0.0
5 0 0 0.0
6 0 0.67 0.0
7 0.67 0.70 0.67

2-pattern-sets are generated. Note that no two fuzzy terms with the same
P; are put in a candidate 2-pattern-set.

STEP 10: The following substeps are done for each newly formed candidate
pattern-set.

STEP 10.1: The fuzzy membership value of each candidate pattern-set in
each subsequence is calculated. Here, assume the minimum operator is used
for the intersection. Take (P;.h, P5.h) as an example. The derived membership
value for this candidate 2-pattern-set in ss is calculated as: min(0.92, 0.67) =
0.58. The results for the other subsequences are shown in Table 6.

STEP 10.2: The scalar cardinality (count) of each candidate 2-pattern-set
in the subsequences is then calculated.

STEP 10.3: The supports of the above candidate pattern-sets are then
calculated and compared with the predefined minimum support 0.075. In
this example, 18 pattern-sets satisfy this condition. They are thus kept in
Ly (Table 7).

STEP 11: Since Lo is not null in the example, r = r + 1 = 2. Steps 8-10
are then repeated to find Ls and others. In this example, the other fuzzy large
pattern-sets found are shown in Table 8.

STEP 12: The large patterns are shifted to the ones with the first data-
point subscript. For example, the three patterns (Py.h, Ps.h, Py.h), (Ps.h,
Py.h, Ps.h) and (Py.h, Ps.h, Ps.h) in Lg are shifted into (Py.h, Py.h, Ps.h).
The other patterns are also checked for shifting in the same way.

STEP 13: Redundant patterns are removed. For example, the four large
patterns, (Pl.h, Pg.h, Pg.h)7 (Pl.h,, Pg.h, Pg.h), (Pl.h, Pg.h,, Pgh) and (Pl.h,
Py.h, P3.h), are the same and only one of them is kept. The final results are
shown in Table 9.
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Table 7. The pattern-sets and their counts in L2

Itemset Count Itemset Count
(P1.h, Py.h) .34 ( ) 0.67
(Pi.h,P,.M) 0.67 (Py.M,Ps.h) 0.67
(P1.M,P>.h)  0.67 ( ) 0.67
(P1 m, PQ ) 0.92 (P4.h, P5.H) 0.67
(P>.h, Ps.h) 2.01 (Ps.h, Ps.h) 1.34
(Ps.h, Ps. 0.67 (Ps.H,Ps.H) 134
(
(
(
(
(

M)
PoM,Prh) 067 (Poh, PoH)  0.67
M) 067 (Ps.h,Ps.h)  1.34
Poh PLH) 067 (Ps.M,Psh)  0.67
PyhPih) 134
Ps.h,Pih) 134

Table 8. The other fuzzy large pattern-sets

L; Pattern-set

L3z (Pi.h, P>.h, Ps.h), (Pi.h, P>.h, Ps. M), (P1.M, Ps.h, P5.h), (P1.m, P2.h, P5.h),

(P2.h, Ps.h, Ps.M), (P2.h, Ps.h, Ps.H), (Ps.h, P3.h, Ps.h), (P2.M, Ps.h, Ps.h)

(Ps.h,Py.H,Ps.H), (Ps.h, Ps.h, Ps.H), (Ps.h, Py.h, Ps.h), (P3.M, Py.h, Ps.h),

(Pys.M, Ps.h, Ps.h), (Py.H, Ps.H, Ps.H), (Py.h, Ps.H, Ps.H), (Ps.h, Ps.h, Ps.H),
(Ps.h, Ps.h, Ps.h)

Li (Py.h,Py.h,Ps.h, Py.H), (Py.M, Py.h, Ps.h, Py.h), (Py.m, Py.h, Ps.h, Py.M),
(@&@m&& H), (Ps.h, Ps.h, Py.h, Ps.H), (P2.M, Ps.h, Py.h, Ps.h),
(Ps.h, Py.H, Ps.H, Ps.H), (Ps.h, Ps.h, Ps.H, Ps.H), (Ps.h, Py.h, Ps.h, Ps.H),

(Ps.M, Py.h, Ps.h, Ps.h)

Ls (Py.h, Py.h, Ps.h, Py H, Ps.H), (P,.M, Ps.h, Ps.h, Py.h, Ps.H),
(Py.h, Ps.h, Py.H, P5.H, Ps.H), (Py.h, Ps.h, Py.h, Ps.H, Ps.H),
(Py.M, Ps.h, Py.h, Ps.h, Ps.H)

Le (Py.h, Py.h, Ps.h, Py H, Ps.H, Ps.H),
(Py.M, Py.h, Ps.h, Py.h, Ps.H, Ps.H)

)

Table 9. The final large patterns after Step 13

L; Pattern-set

Ll H)7 (h’)v (mh)7 (M)7 (m)

Ly (h,H), (h,h), (H,H), (h, M), (m,h), (M,h)

Ls (H,H,H), (m,h,h), (h,h,H), (h,h,h),

(h,H,H), (h,h, M), (M,h,h)

Ly (M, h,h,h), (m,h,h, M), (h,H,H, H)
(hyh,h,H), (h,h,H, H)

Ls (h,h,h,H, H), (M,h,h,h,H), (h,h,H, H, H)

Lg (hyh,h,H H,H), (M,h,h,h,H, H)
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STEP 14: The maximally fuzzy patterns generated from Step 13 are output
as fuzzy linguistic trends that are (mh), (m,h,h, M), (h,h,h, H, H, H) and
(M,h,h,h, H H).

4 Experimental Results

In this section, the experiments made to show the performance of the pro-
posed method are described. They were implemented in Java at a personal
computer with Intel Pentium IV 3.20 GHz and 512MB RAM. The dataset
used in the experiments is a set of synthetic control-chart time series from
The UCI KDD Archive [5]. The dataset contains 600 examples of control
charts synthetically generated. The six classes are normal, cyclic, increasing
trend, decreasing trend, upward shift, and downward shift. Each time se-
ries has sixty data points. One time series of each class was selected to make
the following experiments.

Experiments were first made to show the relationship between numbers of
linguistic trends and minimum support values. The sliding-window size was
set at ten and the number of membership functions for angles is ten, with
five for both positive and negative angles. Results for the class of decreasing
trend are shown in Fig. 2.

From Fig. 2, it is easily seen that the number of linguistic trends decreased
along with the increase of the length of large patterns except for Ly and Ls.
Finding Lo and L3 was the main effort in the mining process, which was
consistent with previous study [6,7,10].

25

20

S
RV
L/ \

: N\
0 w \3&- R e
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

|—0—sup2 1% g sup = 2% ——sup = 3% —3— sup = 4% =—mm—sup = 5%

Number of Linguistic Trends

Fig. 2. The relationship between numbers of linguistic trends and min. sup
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Table 10. The final large patterns aster Step 13

L; Fuzzy linguistic trends

Ly (MH), (M)7 (LM), (h), (mh), (m), (Im), (a), (H)

L, (H,MH), (MH,H), (h,h), (Im,h), (H,h), (H,mh), (H, lm), (h,H), (H,H)
Ls (MH,h, h) (H h,h), (H,lm,h), (h,H,h), (H,H,h),

(h, b, H), (H,h, H), (h, H, ), (h, H, MH)
Ly (h,H,h,H), (MH,H,h,H), (h,H,h h), (h,H, H, h) (H,h,H,H)7 (H,h,H,h)
Ls (H,h,H, H,h)

600

500 \

400 \

300 \

200 \\

Numbers of Linguistic Trends

———

1.0%  1.5%  2.0% 25% 3.0% 3.5% 4.0% 45%  5.0%

Minimum Support

—#—Non-removing —@— Removing

Fig. 3. The numbers of linguistic trends with and without Step 13

All the linguistic trends found for the class of decreasing trend with sliding-
window size set at 10 and the minimum support set at 0.015 are listed in
Table 10.

In Table 10, the pattern (H, h, H, H, h) is a linguistic trend with five
fuzzy items in Ls. Lowercase and uppercase letters represent the positive and
negative angular degrees upward and downward directions respectively. Most
of the derived linguistic trends in Table 10 have the decreasing property, which
is consistent with the class of decreasing trend.

The experiments were then made to compare the numbers of linguistic
trends generated with and without Step 13 of removing redundant large pat-
terns. The results are shown in Fig. 3.

From Fig. 3, it can be easily observed that removing redundant fuzzy large
patterns during the mining process has its efficacy. Without this step, too
many redundant linguistic trends may be generated and may make users
confused.
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Fig. 4. The relationship between number of frequent trends and minimum supports
along with different sliding-window sizes

At last, experiments were made to show the relationship between numbers
of frequent trends and minimum supports along with different sliding-window
sizes. The results were shown in Fig. 4.

As expected, when the sliding-window size increased, the numbers of fre-
quent trends also increased.

5 Conclusion and Future Works

In this chapter, we have proposed a mining algorithm based on angles of ad-
jacent points in a time series to find linguistic trends. The proposed approach
first transforms data values into angles, and then uses a sliding window to
generate continues subsequences from angular series. Several fuzzy sets for
angles are predefined to represent semantic concepts understandable to hu-
man being. The a priori-like fuzzy mining algorithm is then used to generate
linguistic trends. Appropriate post-processing is also performed to remove
redundant patterns. Finally, experiments have been made for different para-
meter settings and experimental results shows that the proposed algorithm
actually works.

Although the proposed method works for time series, it is just a beginning.
There is still much work to be done in this field. In the future, we will contin-
uously attempt to enhance the proposed algorithm for other applications, like
telecommunication, bioinformatics, medical treatment and mobile computing.
Besides, we will also continuously enhance the proposed algorithm for mining
different kinds of knowledge.
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