

3D Graphics with XNA Game
Studio 4.0

Create attractive 3D graphics and visuals in your
XNA games

Sean James

 BIRMINGHAM - MUMBAI

3D Graphics with XNA Game Studio 4.0

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010

Production Reference: 1071210

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849690-04-1

www.packtpub.com

Cover Image by Charwak A (charwak86@gmail.com)

Table of Contents
Preface 1
Chapter 1: Getting Started with 3D 7

Setting up a new project 7
The 3D coordinate system 10
Matrices 10
Loading a model 12
Drawing a model 14
Creating a Custom Model class 18
Creating a Camera class 21

Creating a target camera 22
Upgrading the camera to a free camera 24

Calculating bounding spheres for models 27
View frustum culling 29
Additional camera types: Arc-Ball 31
Additional camera types: chase camera 34
Example—spaceship simulator 37

XNA Graphics Profiles 39
Summary 39

Chapter 2: Introduction to HLSL 41
Getting started 42
Assigning a shader to a model 44
Creating a simple effect 48
Texture mapping 52
Texture sampling 54
Diffuse colors 56
Ambient lighting 56
Lambertian directional lighting 57
Phong specular highlights 60

Table of Contents

[ii]

Creating a Material class to store effect parameters 65
Summary 67

Chapter 3: Advanced Lighting 69
Implementing a point light with HLSL 69
Implementing a spot light with HLSL 74
Drawing multiple lights 77
Prelighting 80
Storing depth and normal values 81
Creating the light map 83
Drawing models with the light map 86
Creating the prelighting renderer 88
Using the prelighting renderer 93
Summary 94

Chapter 4: Projection and Shadowing Effects 95
Projective texturing 95
Shadow mapping—drawing the depth map 100

Shadow mapping—projecting the depth texture onto the scene 105
Shadow mapping—performing the depth comparison 107

Variance shadow mapping—soft shadows 110
Variance shadow mapping—blurring the depth texture 111

Variance shadow mapping—generating shadows 115
Summary 116

Chapter 5: Shader Effects 117
Fog 117
Normal mapping 118
Generating normal maps with Photoshop 123
Cube mapping: Making a sky sphere 127
Cube mapping: Reflections 131
Rendering sky boxes with Terragen 133
Creating a reflective water effect 137
Summary 148

Chapter 6: Billboard and Particle Effects 149
Creating the BillboardSystem class 150
Drawing Billboards 153
Creating clouds with spherical billboarding 162
Non-rotating billboards 163
Particle effects 168
Particle fire 177
Particle smoke 179
Summary 180

Table of Contents

[iii]

Chapter 7: Environmental Effects 181
Building a terrain from a heightmap 182
Multitexturing 190
Adding a detail texture to the terrain 193
Placing plants on the terrain 195
Adding the finishing touches 200
Summary 203

Chapter 8: Advanced Materials and Post Processing 205
Advanced Materials 206
Post processing 208
Black and white post processor 212
Gaussian blur post processor 214
Depth of field 218
Glow post processor 225
Summary 229

Chapter 9: Animation 231
Object animation 231
Keyframed animation 233
Curve interpolation 237
Building a Race Track from a Curve 240
Moving a car along the track 246
Hierarchical animation 250
Skinned animation 251
Loading a skinned model 254
Playing a skinned animation 261
Changing an animation's play speed 266
Model attachments 267
Summary 268

Index 269

Preface
XNA is a very powerful API using which it's easy to make great games, especially
when you have dazzling 3D effects. This book will show you how to implement the
same 3D graphics used in professional games to make your games shine, and get
those gamers addicted! This book will show you, step-by-step, how to implement the
effects used in professional 3D games in your XNA games. Upon reaching the end of
the book, you would have built an extensible framework for both basic 3D rendering
and advanced effects. The one thing that can make or break a game is its appearance;
players will mostly be attracted to a game if it looks good. One of the most common
stopping points in an XNA game is its graphics, and many independent developers
are not sure of how to implement the graphical effects needed to make great looking
games. This book will help you avoid this pitfall, by walking you through the
implementation of many common effects and graphics techniques used in
professional games so that you can make your games look great.

What this book covers
Chapter 1, Getting Started with 3D, introduces the fundamentals of 3D graphics,
including coordinate systems, matrices, and so on, which will be used for the rest
of the book. We start by learning some simple model drawing code and finish by
building a framework to implement a number of camera types. We also take a look at
view frustum culling and how it can speed up our game.

Chapter 2, Introduction to HLSL, continues on the first chapter, explaining the graphics
pipeline and shaders. We then look at a number of lighting and texturing effects,
expanding on the framework built in Chapter 1 and adding a system that will
allows us to draw our models with any effect.

Chapter 3, Advanced Lighting, continues our discussion of lighting, implementing
more light types. We then look at several ways to increase the number of lights we
can draw in a scene at a time.

Preface

[2]

Chapter 4, Projection and Shadowing Effects, builds on top of the renderer completed in
Chapter 3 by adding two new effects: projected textures and shadow mapping.

Chapter 5, Shader Effects, takes a look at some "shader effects" such as normal
mapping and reflections. We build a number of useful effects in this chapter
such as a sky box and reflective water effect.

Chapter 6, Billboard and Particle Effects, investigates particle and billboarding
effects—two effects that take advantage of 2D textures to create some interesting
effects in 3D scenes such as foliage, clouds, and efficient trees and particle systems.

Chapter 7, Environmental Effects, discusses several "environmental" effects such as
terrain, randomly "grown" foliage, and more. The chapter finishes by combining
many effects created in the book thus far to create a spectacular mountainous
terrain scene.

Chapter 8, Advanced Materials and Post Processing, expands on the material system
created in the earlier chapter to allow for more advanced material types. It then
takes a look at "post processing" effects like blurs, glows, and depth of field.

Chapter 9, Animation, takes a look at several different types of animation, including
objects animation, keyframed animation, and skinned animation to introduce
movement into our scenes.

What you need for this book
All you need for this book is XNA and Visual Studio—the whole list and guide is
available at creators.xna.com.

Who this book is for
This book is mainly written for those who are familiar with object-oriented
programming and C# and who are interested in improving the visual appearance of
their XNA games. This book will be useful as a learning material for those who are
new to graphics and for those who are looking to expand their toolset. Also, it can
be used by game developers looking for an implementation guide or reference for
effects or techniques they are already familiar with.

Preface

[5]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with 3D
This chapter will provide you with a brief overview of the fundamentals of 3D
graphics. We will create a number of useful classes and systems that will make work
easier later on and provide us with a flexible framework for building games. This
chapter will focus mainly on models, how they work, and how to view them with
cameras. We will build a number of different types of camera that can be used in
many situations we may encounter while building games. Next, we will look at a
way to improve performance with a "view frustum culling" system, and finally, we'll
build a small game that allows the player to fly a spaceship using keyboard controls.

Setting up a new project
The first step in any game is to set up the XNA game project in Visual Studio.

1. To begin with, ensure that XNA and Visual Studio are installed by following
the guide available at creators.xna.com and launch Visual Studio. Once it
has loaded, create a new project:

Chapter 1

[9]

The automatically generated Game1 class contains a lot of excess comments and code,
so once you have familiarized yourself with the class and its functions, simplify it to
the following:

public class Game1 : Microsoft.Xna.Framework.Game
{
 GraphicsDeviceManager graphics;
 SpriteBatch spriteBatch;

 public Game1()
 {
 graphics = new GraphicsDeviceManager(this);
 Content.RootDirectory = "Content";
 }

 // Called when the game should load its content
 protected override void LoadContent()
 {
 }

 // Called when the game should update itself
 protected override void Update(GameTime gameTime)
 {
 base.Update(gameTime);
 }

 // Called when the game should draw itself
 protected override void Draw(GameTime gameTime)
 {
 GraphicsDevice.Clear(Color.CornflowerBlue);

 base.Draw(gameTime);
 }
}

Getting Started with 3D

[10]

The 3D coordinate system
One thing that all 3D systems hold in common is a coordinate system. Coordinate
systems are important because they allow us to represent points in 3D space in a
consistent manner as distances from a center point called the origin along a number
of axes. You're probably used to the idea of a 2D coordinate system from your math
classes in school—the origin was at (0, 0) and the X and Y axes grew to the right and
up respectively. A 3D coordinate system is very similar, except for the addition of a
third axis labeled the Z-axis. XNA uses what is called a "right-handed" coordinate
system, meaning that the X and Y axes grow the way you're used to (to the right
and up respectively), and the Z-axis grows "towards" you. If the X and Y axes were
placed flat on your computer screen, you can imagine the Z-axis as growing out of
the screen towards you.

With this coordinate system, we can define points in space. For example, let's assume
that our coordinate system uses meters as units. Say for a moment, we were sitting
at the origin (0, 0, 0) and were facing down the negative portion of the Z-axis. If we
wanted to note the location of an object sitting five meters in front of us, three meters
to the right, on a table one meter tall, we would say that the object was at (3, 1, -5).

Matrices
Matrices are mathematical structures that are used in 3D graphics to represent
transformations—operations performed on a point to move it in some way. The three
common transformations are translation (movement), rotation, and scaling (changing
size). When a transformation is applied to a model, each vertex in the model is
multiplied by the transformation's matrix until the entire model has been transformed.

Chapter 1

[11]

Matrices can be combined by multiplying them together. It is worth noting that
matrix multiplication is done from right to left, so the last matrix to be multiplied
will be the first to affect the model and so on. This means that rotating and then
moving a model will not have the same effect as moving and then rotating it.
Generally, unless you mean to do otherwise, the matrices should be multiplied
in the following order: scaling * rotation * transformation.

In the 3D graphics world, there are usually three matrices that must be calculated
to draw an object onto the screen: the world, view, and projection matrices. The
world matrix is the result of all of our transformation matrices multiplied together.
Once this transformation has been applied, the model has moved from what is called
"local" or "object space" to "world space". Each model in a scene has a different world
matrix, as they all have different locations, orientations, and so on. It is also possible
that each "piece" of a model (or mesh) may have its own world matrix. For example,
the head and leg of a human model will likely have their own matrices to offset them
from the center of the model (its root). When the model is drawn, each mesh has its
transformation multiplied by the entire model's world matrix to calculate the final
world matrix.

The view matrix is used to transform the scene from world space into view space: the
world as seen by the camera. The world matrix for each model is simply multiplied
by the view matrix to transform the scene. The projection matrix then transforms
the three-dimensional position of each vertex in the scene into the two-dimensional
projection of the scene that is drawn onto the screen. When the 3D world/view
matrix combination is multiplied by the projection matrix, the scene is flattened out
so that it can be drawn onto a 2D screen.

Getting Started with 3D

[12]

Loading a model
A model is a file exported from a 3D modeling package such as 3D Studio Max or
Blender. The file basically contains a list of points called vertices, which form the
edges of polygons that, joined together, give the appearance of a smooth surface:

To load a model, we must add it to our game's content project. XNA will
automatically build all of the content in our content project so that we can use it in
our game. To add a model to the content project, open the Solution Explorer, right-
click on the content project (labeled Content), and click on Add Existing Item.

In addition to building all of the content in the content project, XNA builds any
files referenced by a piece of content. Because our model references its texture, we
need to exclude the texture from the list of content to build or it will be built twice.
Right-click on the texture and then select Exclude From Project. This will remove
the texture from the content project but will not delete the file itself, which will allow
XNA to find it when building the model but still only build it once.

Chapter 1

[13]

Now that the content pipeline is building our model for us, we can load it into our
game. We do this with the ContentManager class—a class used to access the runtime
functionality of the content pipeline. The Game class already has an instance of
the ContentManager class built-in, so we can go ahead and use it in the
LoadContent() method.

First, an instance of the Model class will be needed. The Model class contains all
the data necessary to draw and work with a model. We will also need an array of
matrices representing the model's built-in mesh transformations. Add the following
member definitions:

Model model;
Matrix[] transforms;

Now, in the LoadContent() method, we can use the ContentManager to load the
model. The Load() function of the ContentManager class takes the name of the
resource to load—the original filename without its extension. Note that this means
we can't have multiple files with the same name only varying by extension.

model = Content.Load<Model>("ship");

transforms = new Matrix[model.Bones.Count];
model.CopyAbsoluteBoneTransformsTo(transforms);

In XNA, a model is made up of pieces called meshes. As described earlier, each
model has its own transformation in 3D space, and each mesh also has its own
transformation relative to the model's transformation as a whole. The Model class
stores these transformations as a skeleton structure with each mesh attached to a
bone. The last two lines in the previous code snippet copied that skeleton into the
transforms array.

Getting Started with 3D

[14]

Drawing a model
Now that the model has been loaded, we are ready to draw it. We do this in the
Draw() function of our game. Games redraw dozens of times per second, and each
redraw is called a frame. We need to clear the screen before drawing a new frame,
and we do so using XNA's GraphicsDevice.Clear() function. The single argument
allows us to change the color to which the screen is cleared:

GraphicsDevice.Clear(Color.CornflowerBlue);

The first step of drawing the model itself is to calculate the view and projection
matrices. To calculate the view matrix, we will use the CreateLookAt() static
function of the Matrix class, which accepts as arguments a camera position, target,
and up direction. The position is simply where in 3D space the camera should be
placed, the target is the point the camera should be looking at, and the up vector is
literally the direction that is "up" relative to the camera position. This code will go in
the Draw() function after the GraphicsDevice is cleared:

Matrix view = Matrix.CreateLookAt(
 new Vector3(200, 300, 900),
 new Vector3(0, 50, 0),
 Vector3.Up);

There are some exceptions, but usually we calculate the projection matrix using the
Matrix class' CreatePerspectiveFieldOfView() function, which accepts, in order,
a field of view (in radians), the aspect ratio, and the near and far plane distances.
These values define the shape of the view frustum as seen in the following figure. It
is used to decide which objects and vertices are onscreen and which are not when
drawing, and how to squish the scene down to fit onto the two-dimensional screen.

Chapter 1

[15]

The near plane and far plane determine the distances at which objects will start
and stop being drawn. Outside of the range between the two planes, objects will be
clipped—meaning they will not be drawn. The field of view determines how "wide"
the area seen by the camera is. Most first person shooters use an angle between 45
and 60 degrees for their field of view as anything beyond that range would start
to distort the scene. A fish eye lens, on the other hand, would have a field of view
closer to 180 degrees. This allows it to see more of the scene without moving, but it
also distorts the scene at the edges. 45 degrees is a good starting point as it matches
human vision closest without warping the image. The final value, the aspect ratio, is
calculated by dividing the width of the screen by the height of the screen, and is used
by the CreatePerspectiveFieldOfView() function to determine the "shape" of the
screen in regards to its width and height. The GraphicsDevice has a precalculated
aspect ratio value available that we can use when calculating the projection matrix:

Matrix projection = Matrix.CreatePerspectiveFieldOfView(
 MathHelper.ToRadians(45), GraphicsDevice.Viewport.AspectRatio,
 0.1f, 10000.0f);

The last matrix needed to draw the model is the world matrix. However, as
discussed earlier, each mesh in the model has its own transformation relative to
the model's overall transformation. This means that we will need to calculate a
world matrix for each mesh. We'll start with the overall transformation and add
the transformations from the modelTransformations array per mesh. Each mesh
also has what is called an effect. We will look at effects in much more depth in
the coming chapters, but for now, just remember that they are used to determine
the appearance of a model. We will be using one of XNA's built-in effects (called
BasicEffect) for now, so all we need to do is set its World, View, and
Projection properties:

// Calculate the starting world matrix
Matrix baseWorld = Matrix.CreateScale(0.4f) *
 Matrix.CreateRotationY(MathHelper.ToRadians(180));

foreach (ModelMesh mesh in model.Meshes)
{
 // Calculate each mesh's world matrix
 Matrix localWorld = modelTransforms[mesh.ParentBone.Index]
 * baseWorld;

 foreach (ModelMeshPart part in mesh.MeshParts)
 {
 BasicEffect e = (BasicEffect)part.Effect;

 // Set the world, view, and projection matrices to the effect
 e.World = localWorld;

Getting Started with 3D

[16]

 e.View = view;
 e.Projection = projection;

 e.EnableDefaultLighting();
 }

 // Draw the mesh
 mesh.Draw();
}

XNA will already have added the last piece of code for you as well, but it is
important to ensure that this code is still in place at the end of the Draw() function.
This line of code simply calls the Draw() function of the base Game class, ensuring
that the game runs correctly.

base.Draw(gameTime);

The complete code for the Game1 class is now as follows:

public class Game1 : Microsoft.Xna.Framework.Game
{
 GraphicsDeviceManager graphics;
 SpriteBatch spriteBatch;

 Model model;
 Matrix[] modelTransforms;

 public Game1()
 {
 graphics = new GraphicsDeviceManager(this);
 Content.RootDirectory = "Content";

 graphics.PreferredBackBufferWidth = 1280;
 graphics.PreferredBackBufferHeight = 800;
 }

 // Called when the game should load its content
 protected override void LoadContent()
 {
 spriteBatch = new SpriteBatch(GraphicsDevice);

 model = Content.Load<Model>("ship");

 modelTransforms = new Matrix[model.Bones.Count];
 model.CopyAbsoluteBoneTransformsTo(modelTransforms);

Chapter 1

[17]

 }

 // Called when the game should update itself
 protected override void Update(GameTime gameTime)
 {
 base.Update(gameTime);
 }

 // Called when the game should draw itself
 protected override void Draw(GameTime gameTime)
 {
 GraphicsDevice.Clear(Color.CornflowerBlue);

 Matrix view = Matrix.CreateLookAt(
 new Vector3(200, 300, 900),
 new Vector3(0, 50, 0),
 Vector3.Up);

 Matrix projection = Matrix.CreatePerspectiveFieldOfView(
 MathHelper.ToRadians(45),
 GraphicsDevice.Viewport.AspectRatio,
 0.1f, 10000.0f);

 // Calculate the starting world matrix
 Matrix baseWorld = Matrix.CreateScale(0.4f) *
 Matrix.CreateRotationY(MathHelper.ToRadians(180));

 foreach (ModelMesh mesh in model.Meshes)
 {
 // Calculate each mesh's world matrix
 Matrix localWorld = modelTransforms[mesh.ParentBone.Index]
 * baseWorld;

 foreach (ModelMeshPart part in mesh.MeshParts)
 {
 BasicEffect e = (BasicEffect)part.Effect;

 // Set the world, view, and projection
 // matrices to the effect
 e.World = localWorld;
 e.View = view;
 e.Projection = projection;

 e.EnableDefaultLighting();
 }

Getting Started with 3D

[18]

 // Draw the mesh
 mesh.Draw();
 }

 base.Draw(gameTime);
 }
}

Run the game (Debug | Start Debugging, or F5) and you should see our spaceship
in all its glory:

Creating a Custom Model class
The previous code works for drawing one model, but what if we wanted to draw
more than one? More than ten? Writing the previous code out for each model would
quickly become unmanageable. To make our lives a little easier, we'll take the
previous code and put it into a new class called CModel (for custom model). This
class will handle loading the transformations from a model, setting the matrices
to the mesh part effects, and so on. Later on, it will handle setting custom effects,
manage textures, and more. For now, we will keep it simple:

public class CModel
{
 public Vector3 Position { get; set; }
 public Vector3 Rotation { get; set; }
 public Vector3 Scale { get; set; }

 public Model Model { get; private set; }
 private Matrix[] modelTransforms;

 private GraphicsDevice graphicsDevice;

Chapter 1

[19]

 public CModel(Model Model, Vector3 Position, Vector3 Rotation,
 Vector3 Scale, GraphicsDevice graphicsDevice)
 {
 this.Model = Model;

 modelTransforms = new Matrix[Model.Bones.Count];
 Model.CopyAbsoluteBoneTransformsTo(modelTransforms);

 this.Position = Position;
 this.Rotation = Rotation;
 this.Scale = Scale;

 this.graphicsDevice = graphicsDevice;
 }

 public void Draw(Matrix View, Matrix Projection)
 {
 // Calculate the base transformation by combining
 // translation, rotation, and scaling
 Matrix baseWorld = Matrix.CreateScale(Scale)
 * Matrix.CreateFromYawPitchRoll(
 Rotation.Y, Rotation.X, Rotation.Z)
 * Matrix.CreateTranslation(Position);

 foreach (ModelMesh mesh in Model.Meshes)
 {
 Matrix localWorld = modelTransforms[mesh.ParentBone.Index]
 * baseWorld;

 foreach (ModelMeshPart meshPart in mesh.MeshParts)
 {
 BasicEffect effect = (BasicEffect)meshPart.Effect;

 effect.World = localWorld;
 effect.View = View;
 effect.Projection = Projection;

 effect.EnableDefaultLighting();
 }

 mesh.Draw();
 }
 }
}

Getting Started with 3D

[20]

We can now simplify the Game1 class to draw a list of models:

GraphicsDeviceManager graphics;
SpriteBatch spriteBatch;

List<CModel> models = new List<CModel>();

As a demonstration, let's add nine copies of our spaceship to that list in the
LoadContent() method:

for (int y = 0; y < 3; y++)
 for (int x = 0; x < 3; x++)
 {
 Vector3 position = new Vector3(
 -600 + x * 600, -400 + y * 400, 0);

 models.Add(new CModel(Content.Load<Model>("ship"), position,
 new Vector3(0, MathHelper.ToRadians(90) * (y * 3 + x), 0),
 new Vector3(0.25f), GraphicsDevice));

 }

We can now update our Draw() method to draw a list of models, then we can run
the game and see the result:

// Called when the game should draw itself
protected override void Draw(GameTime gameTime)
{
 GraphicsDevice.Clear(Color.CornflowerBlue);

 Matrix view = Matrix.CreateLookAt(
 new Vector3(0, 300, 2000),
 new Vector3(0, 0, 0),
 Vector3.Up);

 Matrix projection = Matrix.CreatePerspectiveFieldOfView(
 MathHelper.ToRadians(45), GraphicsDevice.Viewport.AspectRatio,
 0.1f, 10000.0f);

 foreach (CModel model in models)
 model.Draw(view, projection);

 base.Draw(gameTime);
}

Chapter 1

[21]

Creating a Camera class
Much like we did with the CModel class, let's create a reusable Camera class. We'll
start with a base class that represents a camera at its lowest level: simply the view
and projection matrices. We use a base class that all camera types will inherit from
because we want to be able to use all camera types interchangeably. This Camera
base class will also take care of calculating the projection matrix unless derived
classes choose to do so themselves.

public abstract class Camera
{
 public Matrix View { get; set; }
 public Matrix Projection { get; set; }
 protected GraphicsDevice GraphicsDevice { get; set; }

 public Camera(GraphicsDevice graphicsDevice)
 {
 this.GraphicsDevice = graphicsDevice;
 generatePerspectiveProjectionMatrix(MathHelper.PiOver4);
 }

 private void generatePerspectiveProjectionMatrix(float FieldOfView)
 {
 PresentationParameters pp = GraphicsDevice.PresentationParameters;

 float aspectRatio = (float)pp.BackBufferWidth /
 (float)pp.BackBufferHeight;

Getting Started with 3D

[22]

 this.Projection = Matrix.CreatePerspectiveFieldOfView(
 MathHelper.ToRadians(45), aspectRatio, 0.1f, 1000000.0f);
 }

 public virtual void Update()
 {
 }
}

Creating a target camera
Now that we have our base class, let's create the most basic type of camera—the
target camera. This is simply a camera with two components—a position and
a target. The camera points from the position towards the target, similar to the
"camera" we used when we first drew our model:

This data is more or less directly passed into the CreateLookAt() function in the
Matrix class to calculate the view matrix. The call in the constructor to the Camera
base class' constructor ensures that the projection matrix and other matrices are
calculated for us:

public class TargetCamera : Camera
{
 public Vector3 Position { get; set; }
 public Vector3 Target { get; set; }

 public TargetCamera(Vector3 Position, Vector3 Target,
 GraphicsDevice graphicsDevice) : base(graphicsDevice)
 {
 this.Position = Position;
 this.Target = Target;
 }

 public override void Update()
 {
 Vector3 forward = Target - Position;
 Vector3 side = Vector3.Cross(forward, Vector3.Up);
 Vector3 up = Vector3.Cross(forward, side);
 this.View = Matrix.CreateLookAt(Position, Target, up);
 }
}

Chapter 1

[23]

As you can see, the Position and Target values can be set freely through their
public properties or through the constructor to position the camera any way desired
at any time, as the Update() function will update the view matrix as necessary. We
can now once again update the Game1 class to use the TargetCamera instead of doing
all the camera calculations itself. In addition to our list of models, we will also need
a camera:

List<CModel> models = new List<CModel>();
Camera camera;

We will need to initialize the camera along with any models in the
LoadContent() method:

models.Add(new CModel(Content.Load<Model>("ship"),
 Vector3.Zero, Vector3.Zero, new Vector3(0.6f), GraphicsDevice));

camera = new TargetCamera(
 new Vector3(300, 300, -1800),
 Vector3.Zero, GraphicsDevice);

We need to update the camera in the Update() method:

// Called when the game should update itself
protected override void Update(GameTime gameTime)
{
 camera.Update();

 base.Update(gameTime);
}

Finally, we can use the View and Projection properties of camera in the
Draw() method:

// Called when the game should draw itself
protected override void Draw(GameTime gameTime)
{
 GraphicsDevice.Clear(Color.CornflowerBlue);

 foreach (CModel model in models)
 model.Draw(camera.View, camera.Projection);

 base.Draw(gameTime);
}

Getting Started with 3D

[24]

We now have two classes, TargetCamera and CModel, which can be reused easily,
and a base class for creating any type of camera we could need. We'll use the rest of
this chapter to look at other types of cameras, and to add a system that will speed
up the game by keeping it from drawing (culling) objects that are not in the
camera's view.

Upgrading the camera to a free camera
At the moment, we can put our camera at one point and aim it at another. This
works for a static scene, but it doesn't allow for any freedom in a real game. Most
games would be pretty difficult to play if the camera can't move around, so this
will be our next task. The free camera we will create will operate like those found in
First-Person-Shooter (FPS) games, which allow the player to move around with the
W, S, A, and D keys (for forward, back, left, and right respectively), and look around
with the mouse. On the Xbox 360, we would use the left joystick for movement and
the right joystick to rotate the camera.

public class FreeCamera : Camera
{
 public float Yaw { get; set; }
 public float Pitch { get; set; }

 public Vector3 Position { get; set; }
 public Vector3 Target { get; private set; }

 private Vector3 translation;

 public FreeCamera(Vector3 Position, float Yaw, float Pitch,
 GraphicsDevice graphicsDevice) : base(graphicsDevice)
 {
 this.Position = Position;
 this.Yaw = Yaw;
 this.Pitch = Pitch;

 translation = Vector3.Zero;
 }
}

The FreeCamera class adds two new values that the TargetCamera class didn't
have—yaw and pitch. These two values (in radians) determine the amount that
the camera has been rotated around the Y and X axes, respectively. The yaw and
pitch values can be modified (usually based on mouse movements) through
the new Rotate() method. There is also a new value called translation that
accumulates the amount that the camera has moved (in the direction the camera is
facing) between frames. The Move() function modifies this value (usually based on
keyboard or joystick input):

Getting Started with 3D

[26]

Once again we are ready to modify the Game1 class, this time to switch to our new
camera and add keyboard and mouse control. First, we need to change the type of
camera we are creating in the LoadContent() function:

camera = new FreeCamera(new Vector3(1000, 0, -2000),
 MathHelper.ToRadians(153), // Turned around 153 degrees
 MathHelper.ToRadians(5), // Pitched up 13 degrees
 GraphicsDevice);

Let's start by adding mouse control. In order to measure the amount of mouse
movement between frames, we need to be able to store the last frame's mouse state.
We can then compare that mouse state to the current mouse state. To store the last
frame's mouse state, we will add a MouseState member variable:

List<CModel> models = new List<CModel>();
Camera camera;

MouseState lastMouseState;

This value needs to be initialized once before the Update method so that the game
doesn't crash when trying to access it on the first frame, so we will grab the mouse
state at the end of the LoadContent method:

lastMouseState = Mouse.GetState();

Now, we can create a new function that the Update() method will use to update
the camera:

// Called when the game should update itself
protected override void Update(GameTime gameTime)
{
 updateCamera(gameTime);

 base.Update(gameTime);
}

void updateCamera(GameTime gameTime)
{
 // Get the new keyboard and mouse state
 MouseState mouseState = Mouse.GetState();
 KeyboardState keyState = Keyboard.GetState();

 // Determine how much the camera should turn
 float deltaX = (float)lastMouseState.X - (float)mouseState.X;
 float deltaY = (float)lastMouseState.Y - (float)mouseState.Y;

 // Rotate the camera
 ((FreeCamera)camera).Rotate(deltaX * .01f, deltaY * .01f);

 Vector3 translation = Vector3.Zero;

Chapter 1

[27]

 // Determine in which direction to move the camera
 if (keyState.IsKeyDown(Keys.W)) translation += Vector3.Forward;
 if (keyState.IsKeyDown(Keys.S)) translation += Vector3.Backward;
 if (keyState.IsKeyDown(Keys.A)) translation += Vector3.Left;
 if (keyState.IsKeyDown(Keys.D)) translation += Vector3.Right;

 // Move 3 units per millisecond, independent of frame rate
 translation *= 3 * (float)gameTime.ElapsedGameTime.
 TotalMilliseconds;

 // Move the camera
 ((FreeCamera)camera).Move(translation);

 // Update the camera
 camera.Update();

 // Update the mouse state
 lastMouseState = mouseState;
}

Run the game again, and you should be able to move and rotate the camera with the
mouse and W, S, A, and D keys.

Calculating bounding spheres for models
It is often convenient for us to have a simplified representation of the geometry of a
model. Because complex models are made of hundreds if not thousands of vertices, it
is often too inefficient to check for object intersection per vertex between every object
in the scene when doing collision detection, for example. To simplify collision checks,
we will use what is called a bounding volume, specifically a bounding sphere. Let's
add some functionality to our CModel class to calculate bounding spheres for us. To
start, we need to add a new BoundingSphere member variable to the CModel class:

private Matrix[] modelTransforms;
private GraphicsDevice graphicsDevice;
private BoundingSphere boundingSphere;

Next, we will create a function to calculate this bounding sphere based on our
model's geometry:

private void buildBoundingSphere()
{
 BoundingSphere sphere = new BoundingSphere(Vector3.Zero, 0);

 // Merge all the model's built in bounding spheres
 foreach (ModelMesh mesh in Model.Meshes)
 {
 BoundingSphere transformed = mesh.BoundingSphere.Transform(

Getting Started with 3D

[28]

 modelTransforms[mesh.ParentBone.Index]);

 sphere = BoundingSphere.CreateMerged(sphere, transformed);
 }

 this.boundingSphere = sphere;
}

We need to be sure to call this function in our constructor:

public CModel(Model Model, Vector3 Position, Vector3 Rotation,
 Vector3 Scale, GraphicsDevice graphicsDevice)
{
 this.Model = Model;

 modelTransforms = new Matrix[Model.Bones.Count];
 Model.CopyAbsoluteBoneTransformsTo(modelTransforms);

 buildBoundingSphere();

 ...

However, there is one problem with this approach: this bounding sphere is centered
at the origin, so if we were to move our model, the bounding sphere would no
longer contain the model. To solve this problem, we will add a public property that
translates our origin-centered boundingSphere value to the model's current position
and scales it based on our model's scale:

public BoundingSphere BoundingSphere
{
 get
 {
 // No need for rotation, as this is a sphere
 Matrix worldTransform = Matrix.CreateScale(Scale)
 * Matrix.CreateTranslation(Position);

 BoundingSphere transformed = boundingSphere;
 transformed = transformed.Transform(worldTransform);

 return transformed;
 }
}

Chapter 1

[29]

View frustum culling
One usage of our new bounding sphere system is to determine which objects are
onscreen. This is useful when, for example, we are drawing a large number of
objects: if we first check whether an object is onscreen before drawing it, we have a
chance of improving the performance of our games if some of the objects in the scene
leave the player's view. This is called view frustum culling because we are checking
if an object's bounding sphere intersects the view frustum, and if it doesn't, we cull
it (refrain from drawing it). It is worth noting that this method of culling is not an
all-encompassing method of optimization—if you are drawing many small objects,
it may not be worth the time to cull objects because the graphics card won't process
pixels that are offscreen anyway.

The first thing we need to do is to actually calculate a view frustum. We can do this
very simply once we know our view and projection matrices. Let's go back to our
abstract Camera class and add a BoundingFrustum. The BoundingFrustum class has
a function to check if a BoundingSphere is in view.

public BoundingFrustum Frustum { get; private set; }

The view and projection matrices can change frequently, so we need to update the
frustum whenever they change. We will do this by calling the generateFrustum()
function that we will write shortly in the View and Projection properties'
set accessors:

Matrix view;
Matrix projection;

public Matrix Projection
{
 get { return projection; }
 protected set
 {
 projection = value;
 generateFrustum();
 }
}

public Matrix View
{
 get { return view; }
 protected set
 {
 view = value;
 generateFrustum();

Getting Started with 3D

[30]

 }
}

private void generateFrustum()
{
 Matrix viewProjection = View * Projection;
 Frustum = new BoundingFrustum(viewProjection);
}

Finally, we will make things a little easier on ourselves by adding some shortcuts to
check if bounding boxes and bounding spheres are visible. Because we are doing this
in the base class, these functions will conveniently work for any camera type.

public bool BoundingVolumeIsInView(BoundingSphere sphere)
{
 return (Frustum.Contains(sphere) != ContainmentType.Disjoint);
}

public bool BoundingVolumeIsInView(BoundingBox box)
{
 return (Frustum.Contains(box) != ContainmentType.Disjoint);
}

Finally, we can update the Game1 class to use this new system. Our new Draw()
function will check if the bounding sphere of each model to be drawn is in view, and
if so, it will draw the model. If it doesn't end up drawing any models, it will clear the
screen to red so we can tell if models are being culled correctly:

// Called when the game should draw itself
protected override void Draw(GameTime gameTime)
{
 GraphicsDevice.Clear(Color.CornflowerBlue);

 int nModelsDrawn = 0;

 foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 {
 nModelsDrawn++;
 model.Draw(camera.View, camera.Projection);
 }

 if (nModelsDrawn == 0)
 GraphicsDevice.Clear(Color.Red);

 base.Draw(gameTime);
}

Getting Started with 3D

[32]

Most games limit the vertical and zoom range of this type of camera, so our camera
will allow this as well. The code for the ArcBall Camera class is as follows:

public class ArcBallCamera : Camera
{
 // Rotation around the two axes
 public float RotationX { get; set; }
 public float RotationY { get; set; }

 // Y axis rotation limits (radians)
 public float MinRotationY { get; set; }
 public float MaxRotationY { get; set; }

 // Distance between the target and camera
 public float Distance { get; set; }

 // Distance limits
 public float MinDistance { get; set; }
 public float MaxDistance { get; set; }

 // Calculated position and specified target
 public Vector3 Position { get; private set; }
 public Vector3 Target { get; set; }

 public ArcBallCamera(Vector3 Target, float RotationX,
 float RotationY, float MinRotationY, float MaxRotationY,
 float Distance, float MinDistance, float MaxDistance,
 GraphicsDevice graphicsDevice) : base(graphicsDevice)
 {
 this.Target = Target;

 this.MinRotationY = MinRotationY;
 this.MaxRotationY = MaxRotationY;

 // Lock the y axis rotation between the min and max values
 this.RotationY = MathHelper.Clamp(RotationY, MinRotationY,
 MaxRotationY);

 this.RotationX = RotationX;

 this.MinDistance = MinDistance;
 this.MaxDistance = MaxDistance;

 // Lock the distance between the min and max values

Chapter 1

[33]

 this.Distance = MathHelper.Clamp(Distance, MinDistance,
 MaxDistance);
 }

 public void Move(float DistanceChange)
 {
 this.Distance += DistanceChange;

 this.Distance = MathHelper.Clamp(Distance, MinDistance,
 MaxDistance);
 }

 public void Rotate(float RotationXChange, float RotationYChange)
 {
 this.RotationX += RotationXChange;
 this.RotationY += -RotationYChange;

 this.RotationY = MathHelper.Clamp(RotationY, MinRotationY,
 MaxRotationY);
 }

 public void Translate(Vector3 PositionChange)
 {
 this.Position += PositionChange;
 }

 public override void Update()
 {
 // Calculate rotation matrix from rotation values
 Matrix rotation = Matrix.CreateFromYawPitchRoll(RotationX, -
 RotationY, 0);

 // Translate down the Z axis by the desired distance
 // between the camera and object, then rotate that
 // vector to find the camera offset from the target
 Vector3 translation = new Vector3(0, 0, Distance);
 translation = Vector3.Transform(translation, rotation);

 Position = Target + translation;

 // Calculate the up vector from the rotation matrix
 Vector3 up = Vector3.Transform(Vector3.Up, rotation);

 View = Matrix.CreateLookAt(Position, Target, up);
 }
}

Getting Started with 3D

[34]

To implement this camera in the Game1 class, we first instantiate our camera as an
ArcBallCamera in the LoadContent() method:

camera = new ArcBallCamera(Vector3.Zero, 0, 0, 0, MathHelper.PiOver2,
 1200, 1000, 2000, GraphicsDevice);

Second, we need to update the updateCamera() function to reflect the way this new
camera type moves:

void updateCamera(GameTime gameTime)
{
 // Get the new keyboard and mouse state
 MouseState mouseState = Mouse.GetState();
 KeyboardState keyState = Keyboard.GetState();

 // Determine how much the camera should turn
 float deltaX = (float)lastMouseState.X - (float)mouseState.X;
 float deltaY = (float)lastMouseState.Y - (float)mouseState.Y;

 // Rotate the camera
 ((ArcBallCamera)camera).Rotate(deltaX * .01f, deltaY * .01f);

 // Calculate scroll wheel movement
 float scrollDelta = (float)lastMouseState.ScrollWheelValue -
 (float)mouseState.ScrollWheelValue;

 // Move the camera
 ((ArcBallCamera)camera).Move(scrollDelta);

 // Update the camera
 camera.Update();

 // Update the mouse state
 lastMouseState = mouseState;
}

Run the game, and you will be able to rotate around the ship with the mouse, and
move towards and away from it with the scroll wheel.

Additional camera types: chase camera
The last camera type we will look at is the chase camera. A chase camera is designed
to "chase" an object. Generally, the camera follows the object at some distance and
turns with it. This is the type of camera used, for example, in most third person
situations—racing games, third person shooters, flight simulators, and so on. The
chase distance and view direction are generally determined using an offset for the
camera position and an offset for the target position from the object's position. The
view matrix is then calculated as usual based on those values.

Getting Started with 3D

[36]

 {
 this.PositionOffset = PositionOffset;
 this.TargetOffset = TargetOffset;
 this.RelativeCameraRotation = RelativeCameraRotation;
 }

 public void Move(Vector3 NewFollowTargetPosition,
 Vector3 NewFollowTargetRotation)
 {
 this.FollowTargetPosition = NewFollowTargetPosition;
 this.FollowTargetRotation = NewFollowTargetRotation;
 }

 public void Rotate(Vector3 RotationChange)
 {
 this.RelativeCameraRotation += RotationChange;
 }

 public override void Update()
 {
 // Sum the rotations of the model and the camera to ensure it
 // is rotated to the correct position relative to the model's
 // rotation
 Vector3 combinedRotation = FollowTargetRotation +
 RelativeCameraRotation;

 // Calculate the rotation matrix for the camera
 Matrix rotation = Matrix.CreateFromYawPitchRoll(
 combinedRotation.Y, combinedRotation.X, combinedRotation.Z);

 // Calculate the position the camera would be without the spring
 // value, using the rotation matrix and target position
 Vector3 desiredPosition = FollowTargetPosition +
 Vector3.Transform(PositionOffset, rotation);

 // Interpolate between the current position and desired position
 Position = Vector3.Lerp(Position, desiredPosition, Springiness);

 // Calculate the new target using the rotation matrix
 Target = FollowTargetPosition + Vector3.Transform(TargetOffset,
 rotation);

 // Obtain the up vector from the matrix
 Vector3 up = Vector3.Transform(Vector3.Up, rotation);

 // Recalculate the view matrix
 View = Matrix.CreateLookAt(Position, Target, up);
 }
}

Chapter 1

[37]

Example—spaceship simulator
Let's use the concepts and classes learned and created so far to create a simple game
in which the player flies our spaceship around using the keyboard. You'll notice that
the example uses the ChaseCamera to follow the spaceship and uses two models to
represent the ground and spaceship.

1. We'll start by instantiating these values in the LoadContent() method:
models.Add(new CModel(Content.Load<Model>("ship"),
 new Vector3(0, 400, 0), Vector3.Zero, new Vector3(0.4f),
 GraphicsDevice));

models.Add(new CModel(Content.Load<Model>("ground"),
 Vector3.Zero, Vector3.Zero, Vector3.One, GraphicsDevice));

camera = new ChaseCamera(new Vector3(0, 400, 1500),
 new Vector3(0, 200, 0),
 new Vector3(0, 0, 0), GraphicsDevice);

2. Next, we will create a new function that updates the position and
rotation of our model based on keyboard input, which is called by
the Update() function:
// Called when the game should update itself

protected override void Update(GameTime gameTime)

{

 updateModel(gameTime);

 updateCamera(gameTime);

 base.Update(gameTime);

}

void updateModel(GameTime gameTime)

{

 KeyboardState keyState = Keyboard.GetState();

 Vector3 rotChange = new Vector3(0, 0, 0);

 // Determine on which axes the ship should be rotated on, if any

 if (keyState.IsKeyDown(Keys.W))

 rotChange += new Vector3(1, 0, 0);

 if (keyState.IsKeyDown(Keys.S))

 rotChange += new Vector3(-1, 0, 0);

 if (keyState.IsKeyDown(Keys.A))

 rotChange += new Vector3(0, 1, 0);

 if (keyState.IsKeyDown(Keys.D))

 rotChange += new Vector3(0, -1, 0);

 models[0].Rotation += rotChange * .025f;

Getting Started with 3D

[38]

 // If space isn't down, the ship shouldn't move

 if (!keyState.IsKeyDown(Keys.Space))

 return;

 // Determine what direction to move in

 Matrix rotation = Matrix.CreateFromYawPitchRoll(
 models[0].Rotation.Y, models[0].Rotation.X,
 models[0].Rotation.Z);

 // Move in the direction dictated by our rotation matrix

 models[0].Position += Vector3.Transform(Vector3.Forward,
 rotation) * (float)gameTime.ElapsedGameTime.TotalMilliseconds *
 4;

}

3. We can now greatly simplify the updateCamera() function:
void updateCamera(GameTime gameTime)

{

 // Move the camera to the new model's position and orientation

 ((ChaseCamera)camera).Move(models[0].Position,
 models[0].Rotation);

 // Update the camera

 camera.Update();

}

4. And with that, we're finished! Run your game one last time and you should
be able to fly the ship around with W, S, A, D, and the Space bar:

Chapter 1

[39]

XNA Graphics Profiles
In an effort to allow developers to easily maintain compatibility with a wide range
of devices, XNA provides two "graphics profiles." A graphics profile is a set of
features that are guaranteed to work on a certain machine, as long as the machine
meets all of the requirements of that graphics profile. The two profiles XNA provides
are "Reach" and "HiDef." Games developed with the Reach profile will work on a
very large range of devices, but are limited in which graphics features they can use.
Games developed with the HiDef profile will be able to use a large range of graphics
features but they will only work on a much more limited range of devices. The Xbox
360 supports the HiDef profile.

In order to implement many of the examples in this book, you will need to be
developing under the Hidef profile. Some examples may work under the Reach
profile but this book assumes you are working on a computer supporting HiDef. If
you encounter errors while trying to build or run an example, you should first ensure
that the game is set to run under the HiDef profile. To do this, right click on your
game's project in the solution explorer in Visual Studio (labelled "MyGame" if you
have been following along) and click "Properties." Under the "XNA Game Studio"
tab, select "Use HiDef to access the complete API (including features unavailable
for Windows Phone." Rebuild the game and run it and any errors relating to the
graphics profile will be fixed. More information can be found at http://msdn.
microsoft.com/en-us/library/ff604995.aspx.

Summary
Now that you have completed this chapter, you have an understanding of the
fundamentals of 3D graphics. You know how to create a new game project with
Visual Studio, how to add content to its content project, and how to remove content.
You also have a basic understanding of the content pipeline and how to interact with
it through code and the ContentManager. You have also created a number of useful
classes that will be reused later, including the CModel and Camera classes, and all of
the derived camera classes. Finally, you also have a way to determine which objects
intersect others or which are onscreen.

In the coming chapters, we will learn how to add new special effects to our games.
We will start with "Effects" (which were mentioned earlier) and HLSL to implement
some lighting and texturing effects.

Introduction to HLSL

[42]

Getting started
For your convenience, I've provided the starting code for this chapter here. It is
comparable to the code we had arrived at the end of the last chapter, but the
camera has been switched back to a free camera:

public class Game1 : Microsoft.Xna.Framework.Game
{
 GraphicsDeviceManager graphics;
 SpriteBatch spriteBatch;

 List<CModel> models = new List<CModel>();
 Camera camera;

 MouseState lastMouseState;

 public Game1()
 {
 graphics = new GraphicsDeviceManager(this);
 Content.RootDirectory = "Content";

 graphics.PreferredBackBufferWidth = 1280;
 graphics.PreferredBackBufferHeight = 800;
 }

 // Called when the game should load its content
 protected override void LoadContent()
 {
 spriteBatch = new SpriteBatch(GraphicsDevice);

 models.Add(new CModel(Content.Load<Model>("ship"),
 new Vector3(0, 400, 0), Vector3.Zero, new Vector3(1f),
 GraphicsDevice));

 models.Add(new CModel(Content.Load<Model>("ground"), Vector3.Zero,
 Vector3.Zero, Vector3.One, GraphicsDevice));

 camera = new FreeCamera(new Vector3(1000, 500, -2000),
 MathHelper.ToRadians(153), // Turned around 153 degrees
 MathHelper.ToRadians(5), // Pitched up 13 degrees
 GraphicsDevice);
 lastMouseState = Mouse.GetState();
 }

 // Called when the game should update itself
 protected override void Update(GameTime gameTime)

Chapter 2

[43]

 {
 updateCamera(gameTime);

 base.Update(gameTime);
 }

 void updateCamera(GameTime gameTime)
 {
 // Get the new keyboard and mouse state
 MouseState mouseState = Mouse.GetState();
 KeyboardState keyState = Keyboard.GetState();

 // Determine how much the camera should turn
 float deltaX = (float)lastMouseState.X - (float)mouseState.X;
 float deltaY = (float)lastMouseState.Y - (float)mouseState.Y;

 // Rotate the camera
 ((FreeCamera)camera).Rotate(deltaX * .005f, deltaY * .005f);

 Vector3 translation = Vector3.Zero;

 // Determine in which direction to move the camera
 if (keyState.IsKeyDown(Keys.W)) translation += Vector3.Forward;
 if (keyState.IsKeyDown(Keys.S)) translation += Vector3.Backward;
 if (keyState.IsKeyDown(Keys.A)) translation += Vector3.Left;
 if (keyState.IsKeyDown(Keys.D)) translation += Vector3.Right;

 // Move 3 units per millisecond, independent of frame rate
 translation *= 4 *
 (float)gameTime.ElapsedGameTime.TotalMilliseconds;

 // Move the camera
 ((FreeCamera)camera).Move(translation);

 // Update the camera
 camera.Update();

 // Update the mouse state
 lastMouseState = mouseState;
 }

 // Called when the game should draw itself
 protected override void Draw(GameTime gameTime)
 {

Introduction to HLSL

[44]

 GraphicsDevice.Clear(Color.CornflowerBlue);

 foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 model.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);

 base.Draw(gameTime);
 }
}

Assigning a shader to a model
In order to draw a model with XNA, it needs to have an instance of the Effect class
assigned to it. Recall from the first chapter that each ModelMeshPart in a Model has
its own Effect. This is because each ModelMeshPart may need to have a different
appearance, as one ModelMeshPart may, for example, make up armor on a soldier
while another may make up the head. If the two used the same effect (shader), then
we could end up with a very shiny head or a very dull piece of armor. Instead, XNA
provides us the option to give every ModelMeshPart a unique effect.

As you may remember from the first chapter, by default, each ModelMeshPart is
loaded by the standard content pipeline model processor with an instance of the
BasicEffect class assigned to it. In order to draw our models with our own effects,
we need to replace the BasicEffect of every ModelMeshPart with our own effect
loaded from the content pipeline. For now, we won't worry about the fact that each
ModelMeshPart can have its own effect; we'll just be assigning one effect to an entire
model. Later, however, we will add more functionality to allow different effects on
each part of a model.

However, before we start replacing the instances of BasicEffect assigned to our
models, we need to extract some useful information from them, such as which
texture and color to use for each ModelMeshPart. We will store this information in a
new class that each ModelMeshPart will keep a reference to using its Tag properties:

public class MeshTag
{
 public Vector3 Color;
 public Texture2D Texture;
 public float SpecularPower;
 public Effect CachedEffect = null;

 public MeshTag(Vector3 Color, Texture2D Texture,
 float SpecularPower)

Chapter 2

[45]

 {
 this.Color = Color;
 this.Texture = Texture;
 this.SpecularPower = SpecularPower;
 }
}

This information will be extracted using a new function in the CModel class:

private void generateTags()
{
 foreach (ModelMesh mesh in Model.Meshes)
 foreach (ModelMeshPart part in mesh.MeshParts)
 if (part.Effect is BasicEffect)
 {
 BasicEffect effect = (BasicEffect)part.Effect;
 MeshTag tag = new MeshTag(effect.DiffuseColor, effect.Texture,
 effect.SpecularPower);
 part.Tag = tag;
 }
}

This function will be called along with buildBoundingSphere() in the constructor:

...

buildBoundingSphere();
generateTags();

...

Notice that the MeshTag class has a CachedEffect variable that is not currently used.
We will use this value as a location to store a reference to an effect that we want to
be able to restore to the ModelMeshPart on demand. This is useful when we want
to draw a model using a different effect temporarily without having to completely
reload the model's effects afterwards. The functions that will allow us to do this are
as shown:

// Store references to all of the model's current effects
public void CacheEffects()
{
 foreach (ModelMesh mesh in Model.Meshes)
 foreach (ModelMeshPart part in mesh.MeshParts)
 ((MeshTag)part.Tag).CachedEffect = part.Effect;
}

// Restore the effects referenced by the model's cache

Introduction to HLSL

[46]

public void RestoreEffects()
{
 foreach (ModelMesh mesh in Model.Meshes)
 foreach (ModelMeshPart part in mesh.MeshParts)
 if (((MeshTag)part.Tag).CachedEffect != null)
 part.Effect = ((MeshTag)part.Tag).CachedEffect;
}

We are now ready to start assigning effects to our models. We will look at this in
more detail in a moment, but it is worth noting that every Effect has a dictionary
of effect parameters. These are variables that the Effect takes into account when
performing its calculations—the world, view, and projection matrices, or colors and
textures, for example. We modify a number of these parameters when assigning a
new effect, so that each texture of ModelMeshPart can be informed of its specific
properties (which we extracted earlier from BasicEffect):

public void SetModelEffect(Effect effect, bool CopyEffect)
{
 foreach(ModelMesh mesh in Model.Meshes)
 foreach (ModelMeshPart part in mesh.MeshParts)
 {
 Effect toSet = effect;

 // Copy the effect if necessary
 if (CopyEffect)
 toSet = effect.Clone();

 MeshTag tag = ((MeshTag)part.Tag);

 // If this ModelMeshPart has a texture, set it to the effect
 if (tag.Texture != null)
 {
 setEffectParameter(toSet, "BasicTexture", tag.Texture);
 setEffectParameter(toSet, "TextureEnabled", true);

 }
 else
 setEffectParameter(toSet, "TextureEnabled", false);

 // Set our remaining parameters to the effect
 setEffectParameter(toSet, "DiffuseColor", tag.Color);
 setEffectParameter(toSet, "SpecularPower", tag.SpecularPower);

 part.Effect = toSet;
 }
}

// Sets the specified effect parameter to the given effect, if it
// has that parameter

Introduction to HLSL

[48]

 Matrix baseWorld = Matrix.CreateScale(Scale)
 * Matrix.CreateFromYawPitchRoll(Rotation.Y, Rotation.X,
 Rotation.Z)
 * Matrix.CreateTranslation(Position);

 foreach (ModelMesh mesh in Model.Meshes)
 {
 Matrix localWorld = modelTransforms[mesh.ParentBone.Index] *
 baseWorld;

 foreach (ModelMeshPart meshPart in mesh.MeshParts)
 {
 Effect effect = meshPart.Effect;

 if (effect is BasicEffect)
 {
 ((BasicEffect)effect).World = localWorld;
 ((BasicEffect)effect).View = View;
 ((BasicEffect)effect).Projection = Projection;
 ((BasicEffect)effect).EnableDefaultLighting();
 }
 else
 {
 setEffectParameter(effect, "World", localWorld);
 setEffectParameter(effect, "View", View);
 setEffectParameter(effect, "Projection", Projection);
 setEffectParameter(effect, "CameraPosition", CameraPosition);
 }
 }

 mesh.Draw();
 }
}

Creating a simple effect
We will create our first effect now, and assign it to our models so that we can see the
result. To begin, right-click on the content project, choose Add New Item, and select
Effect File. Call it something like SimpleEffect.fx:

Chapter 2

[49]

The code for the new file is as follows. Don't worry, we'll go through each piece in
a moment:

float4x4 World;
float4x4 View;
float4x4 Projection;

struct VertexShaderInput
{
 float4 Position : POSITION0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float4 worldPosition = mul(input.Position, World);
 float4x4 viewProjection = mul(View, Projection);

 output.Position = mul(worldPosition, viewProjection);

 return output;
}

Introduction to HLSL

[50]

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 return float4(.5, .5, .5, 1);
}

technique Technique1
{
 pass Pass1
 {
 VertexShader = compile vs_1_1 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

To assign this effect to the models in our scene, we need to first load it in the game's
LoadContent() function, then use the SetModelEffect() function to assign the
effect to each model. Add the following to the end of the LoadContent function:

Effect simpleEffect = Content.Load<Effect>("SimpleEffect");

models[0].SetModelEffect(simpleEffect, true);
models[1].SetModelEffect(simpleEffect, true);

If you were to run the game now, you would notice that the models appear both flat
and gray. This is the correct behavior, as the effect doesn't have the code necessary to
do anything else at the moment. After we break down each piece of the shader, we
will add some more exciting behavior:

Let's begin at the top. The first three lines in this effect are its effect paremeters. These
three should be familiar to you—they are the world, view, and projection matrices
(in HLSL, float4x4 is the equivalent of XNA's Matrix class). There are many types
of effect parameters and we will see more later.

float4x4 World;
float4x4 View;
float4x4 Projection;

Chapter 2

[51]

The next few lines are where we define the structures used in the shaders. In this case,
the two structs are VertexShaderInput and VertexShaderOutput. As you might
guess, these two structs are used to send input into the vertex shader and retrieve
the output from it. The data in the VertexShaderOutput struct is then interpolated
between vertices and sent to the pixel shader. This way, when we access the Position
value in the pixel shader for a pixel that sits between two vertices, we will get the
actual position of that location instead of the position of one of the two vertices. In this
case, the input and output are very simple: just the position of the vertex before and
after it has been transformed using the world, view, and projection matrices:

struct VertexShaderInput
{
 float4 Position : POSITION0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
};

You may note that the members of these structs are a little different from the
properties of a class in C#—in that they must also include what are called semantics.
Microsoft's definition for shader semantics is as follows (http://msdn.microsoft.
com/en-us/library/bb509647%28VS.85%29.aspx):

A semantic is a string attached to a shader input or output that conveys
information about the intended use of a parameter.

Basically, we need to specify what we intend to do with each member of our structs
so that the graphics card can correctly map the vertex shader's outputs with the pixel
shader's inputs. For example, in the previous code, we use the POSITION0 semantics
to tell the graphics card that this value is the one that holds the position at which to
draw the vertex.

The next few lines are the vertex shader itself. Basically, we are just multiplying
the input (object space or untransformed) vertex position by the world, view,
and projection matrices (the mul function is part of HLSL and is used to
multiply matrices and vertices) and returning that value in a new instance
of the VertexShaderOutput struct:

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float4 worldPosition = mul(input.Position, World);

Introduction to HLSL

[52]

 float4x4 viewProjection = mul(View, Projection);

 output.Position = mul(worldPosition, viewProjection);

 return output;
}

The next bit of code makes up the pixel shader. It accepts a VertexShaderOutput
struct as its input (which is passed from the vertex shader), and returns a float4—
equivelent to XNA's Vector4 class, in that it is basically a set of four floating point
(decimal) numbers. We use the COLOR0 semantic for our return value to let the
pipeline know that this function is returning the final pixel color. In this case, we
are using those numbers to represent the red, green, blue, and transparency values
respectively of the pixel that we are shading. In this extremely simple pixel shader,
we are just returning the color gray (.5, .5, .5), so any pixel covered by the
model we are drawing will be gray (like in the previous screenshot).

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 return float4(.5, .5, .5, 1);
}

The last part of the shader is the shader definition. Here, we tell the graphics card
which vertex and pixel shader versions to use (every graphics card supports a
different set, but in this case we are using vertex shader 1.1 and pixel shader 2.0)
and which functions in our code make up the vertex and pixel shaders:

technique Technique1
{
 pass Pass1
 {
 VertexShader = compile vs_1_1 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

Texture mapping
Let's now improve our shader by allowing it to render the textures each
ModelMeshPart has assigned. As you may recall, the SetModelEffect function in
the CModel class attempts to set the texture of each ModelMeshPart to its respective
effect. However, it attempts to do so only if it finds the BasicTexture parameter on
the effect. Let's add this parameter to our effect now (under the world, view, and
projection properties):

texture BasicTexture;

Chapter 2

[53]

We need one more parameter in order to draw textures on our models, and that is an
instance of a sampler. The sampler is used by HLSL to retrieve the color of the pixel
at a given position in a texture—which will be useful later on—in our pixel shader
where we will need to retrieve the pixel from the texture corresponding the point on
the model we are shading:

sampler BasicTextureSampler = sampler_state {
 texture = <BasicTexture>;
};

A third effect parameter will allow us to turn texturing on and off:

bool TextureEnabled = false;

Every model that has a texture should also have what are called texture coordinates.
The texture coordinates are basically two-dimensional coordinates called UV
coordinates that range from (0, 0) to (1, 1) and that are assigned to every vertex in the
model. These coordinates correspond to the point on the texture that should be drawn
onto that vertex. A UV coordinate of (0, 0) corresponds to the top-left of the texture and
(1, 1) corresponds to the bottom-right. The texture coordinates allow us to wrap two-
dimensional textures onto the three-dimensional surfaces of our models. We need to
include the texture coordinates in the input and output of the vertex shader, and add
the code to pass the UV coordinates through the vertex shader to the pixel shader:

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float4 worldPosition = mul(input.Position, World);
 float4x4 viewProjection = mul(View, Projection);

 output.Position = mul(worldPosition, viewProjection);

 output.UV = input.UV;

 return output;
}

Introduction to HLSL

[54]

Finally, we can use the texture sampler, the texture coordinates (also called UV
coordinates), and HLSL's tex2D function to retrieve the texture color corresponding
to the pixel we are drawing on the model:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 float3 output = float3(1, 1, 1);

 if (TextureEnabled)
 output *= tex2D(BasicTextureSampler, input.UV);

 return float4(output, 1);
}

If you run the game now, you will see that the textures are properly drawn onto
the models:

Texture sampling
The problem with texture sampling is that we are rarely able to simply copy each
pixel from a texture directly onto the screen because our models bend and distort the
texture due to their shape. Textures are distorted further by the transformations we
apply to our models—rotation and other transformations. This means that we almost
always have to calculate the approximate position in a texture to sample from and
return that value, which is what HLSL's sampler2D does for us. There are a number
of considerations to make when sampling.

Chapter 2

[55]

How we sample from our textures can have a big impact on both our game's
appearance and performance. More advanced sampling (or filtering) algorithms
look better but slow down the game. Mip mapping refers to the use of multiple sizes
of the same texture. These multiple sizes are calculated before the game is run and
stored in the same texture, and the graphics card will swap them out on the fly, using
a smaller version of the texture for objects in the distance, and so on. Finally, the
address mode that we use when sampling will affect how the graphics card handles
UV coordinates outside the (0, 1) range. For example, if the address mode is set to
"clamp", the UV coordinates will be clamped to (0, 1). If the address mode is set to
"wrap," the coordinates will be wrapped through the texture repeatedly. This can be
used to create a tiling effect on terrain, for example.

For now, because we are drawing so few models, we will use anisotropic filtering.
We will also enable mip mapping and set the address mode to "wrap".

sampler BasicTextureSampler = sampler_state {
 texture = <BasicTexture>;
 MinFilter = Anisotropic; // Minification Filter
 MagFilter = Anisotropic; // Magnification Filter
 MipFilter = Linear; // Mip-mapping
 AddressU = Wrap; // Address Mode for U Coordinates
 AddressV = Wrap; // Address Mode for V Coordinates
};

This will give our models a nice, smooth appearance in the foreground and a
uniform appearance in the background:

Introduction to HLSL

[56]

Diffuse colors
Looking at the screenshot that appears immediately before the Texture sampling
section, there is a problem with our render: some parts of the model are completely
white. This is because this particular model does not have textures assigned to those
pieces. Right now, if we don't have a texture assigned, our effect simply defaults to
white. However, this model also specifies what are called diffuse colors. These
are basic color values assigned to each ModelMeshPart. In this case, drawing the
diffuse colors will fix our problem. We are already loading the diffuse colors into
the MeshTag class, so all we need to do is add a parameter for them to our effect:

float3 DiffuseColor = float3(1, 1, 1);

Now we can make a small change to our pixel shader to use the diffuse color values
instead of white:

float3 output = DiffuseColor;

Ambient lighting
Our model is now textured correctly and is using the correct diffuse color values,
but it still looks flat and uninteresting. With the groundwork out of the way, we can
start recreating some of the lighting effects provided by the BasicEffect shader.
Let's start with ambient lighting: Ambient lighting is an attempt at simulating all the
light that bounces off of other objects, the ground, and so on, which would be found
in the real world. If you look at an object that doesn't have light shining directly onto
it, you can still see it because light has bounced off of other objects nearby and lit it
somewhat. As we can't possibly simulate all the bounced rays of light (technically,

Chapter 2

[57]

we can with a technique called ray tracing, but this is very slow), we instead simplify
it into a constant color value. To add an ambient light value, we simply add another
effect parameter:

float3 AmbientLightColor = float3(.1, .1, .1);

Now, we once again need only a small modification to the pixel shader:

float3 output = DiffuseColor + AmbientColor;

This will produce the following output (if you're following along with the code files,
I've changed the model to a teapot at this point, as it will demonstrate lighting better
due to its shape). The object should now look darker, as this light is mainly meant
to fill in darker areas as though light were being bounced onto the object from
its surroundings.

Lambertian directional lighting
Our next lighting type, directional lighting, is meant to provide some definition to
our objects. The formula used for this lighting type is called Lambertian lighting,
and is very simple:

kdiff = max(l • n, 0)

This equation simply means that the lighting amount on a given face is the dot
product of the light vector and the face's normal. The dot product is defined as:

X • Y = |X| |Y| cos θ

Chapter 2

[59]

We next need to update the vertex shader to transform the normals passed in (which
are in object space) with the world matrix to move them into world space. The
following line does just this, and should be inserted before the VertexShaderOutput
is returned from the vertex shader. Note that the value is "normalized" with the
normalize() function. This resizes the normal vector to length 1 as it may have been
scaled by the world matrix, which would cause the lighting to be incorrect later on.
As discussed earlier, keeping our vectors at length 1 keeps dot products simple.

output.Normal = mul(input.Normal, World);

We also need to add a parameter at the beginning of the effect for the light direction.
While we're at it, we will also add a parameter for the light color:

float3 LightDirection = float3(1, 1, 1);
float3 LightColor = float3(0.9, 0.9, 0.9);

Finally, we can update the pixel shader to perform the lighting calculation. Note that
once again we use the normalize function, this time to ensure that the user-given
light vector's components fall within the -1 to 1 range. The dot product of the vertex's
normal and the light direction is multiplied by the light color and added to the total
amount of light. Note that the saturate() function clamps the bottom end of a
number to 0 to avoid negative light amounts:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 // Start with diffuse color
 float3 color = DiffuseColor;

 // Texture if necessary
 if (TextureEnabled)
 color *= tex2D(BasicTextureSampler, input.UV);

 // Start with ambient lighting
 float3 lighting = AmbientColor;

 float3 lightDir = normalize(LightDirection);
 float3 normal = normalize(input.Normal);

 // Add lambertian lighting
 lighting += saturate(dot(lightDir, normal)) * LightColor;

 // Calculate final color
 float3 output = saturate(lighting) * color;

 return float4(output, 1);
}

Introduction to HLSL

[60]

This produces the effect of a light falling diagonally across the model, and highlights
its edges well:

Phong specular highlights
Our object is now looking very defined, but it is still missing one thing: specular
highlights. Specular highlights is the formal term for the "shininess" you see
when looking at the reflection of a light source on an object's surface. Think of the
highlights like you are looking at a light bulb through a mirror—you can clearly see
the light source. Now, fog the mirror. You can't see the light source, but you can see
the circular gradiant effect where the light source would appear on a shinier surface.
It should be no surprise, then, that the formula for calculating specular highlights
(what is called the phong shading model) is as follows:

kspec = max(r • v, 0)n

Translate this to a mirror: r is the ray of the light bouncing off from the light source
of the mirror (a mirror of our last equation's l), and v is the view direction. Given the
behavior of the last equation and the dot product, it would make sense that the closer
v, or the direction your eye is facing is to the reflected light vector, the brighter the
specular highlight would appear. If you were to move your eye far enough across
the mirror, you would lose sight of the light entirely. In that case, there would be
no specular highlight as you no longer have light reflecting across the mirror into
your eye.

Introduction to HLSL

[62]

Finally, we can update the pixel shader:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 // Start with diffuse color
 float3 color = DiffuseColor;

 // Texture if necessary
 if (TextureEnabled)
 color *= tex2D(BasicTextureSampler, input.UV);

 // Start with ambient lighting
 float3 lighting = AmbientColor;

 float3 lightDir = normalize(LightDirection);
 float3 normal = normalize(input.Normal);

 // Add lambertian lighting
 lighting += saturate(dot(lightDir, normal)) * LightColor;

 float3 refl = reflect(lightDir, normal);
 float3 view = normalize(input.ViewDirection);

 // Add specular highlights
 lighting += pow(saturate(dot(refl, view)), SpecularPower) *
 SpecularColor;

 // Calculate final color
 float3 output = saturate(lighting) * color;

 return float4(output, 1);
}

For your convenience, the full shader is reproduced here—the screenshot of the
results of our specular highlights, texturing, directional lighting, ambient lighting,
and diffuse color:

Chapter 2

[63]

float4x4 World;
float4x4 View;
float4x4 Projection;
float3 CameraPosition;

texture BasicTexture;

sampler BasicTextureSampler = sampler_state {
 texture = <BasicTexture>;
 MinFilter = Anisotropic; // Minification Filter
 MagFilter = Anisotropic; // Magnification Filter
 MipFilter = Linear; // Mip-mapping
 AddressU = Wrap; // Address Mode for U Coordinates
 AddressV = Wrap; // Address Mode for V Coordinates
};

bool TextureEnabled = false;

float3 DiffuseColor = float3(1, 1, 1);
float3 AmbientColor = float3(0.1, 0.1, 0.1);
float3 LightDirection = float3(1, 1, 1);
float3 LightColor = float3(0.9, 0.9, 0.9);
float SpecularPower = 32;
float3 SpecularColor = float3(1, 1, 1);

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float3 Normal : NORMAL0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float3 Normal : TEXCOORD1;
 float3 ViewDirection : TEXCOORD2;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

Introduction to HLSL

[64]

 float4 worldPosition = mul(input.Position, World);
 float4x4 viewProjection = mul(View, Projection);

 output.Position = mul(worldPosition, viewProjection);
 output.UV = input.UV;
 output.Normal = mul(input.Normal, World);
 output.ViewDirection = worldPosition - CameraPosition;

 return output;
}

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 // Start with diffuse color
 float3 color = DiffuseColor;

 // Texture if necessary
 if (TextureEnabled)
 color *= tex2D(BasicTextureSampler, input.UV);

 // Start with ambient lighting
 float3 lighting = AmbientColor;

 float3 lightDir = normalize(LightDirection);
 float3 normal = normalize(input.Normal);

 // Add lambertian lighting
 lighting += saturate(dot(lightDir, normal)) * LightColor;

 float3 refl = reflect(lightDir, normal);
 float3 view = normalize(input.ViewDirection);

 // Add specular highlights
 lighting += pow(saturate(dot(refl, view)), SpecularPower) *
 SpecularColor;

 // Calculate final color
 float3 output = saturate(lighting) * color;

 return float4(output, 1);
}

technique Technique1
{

Chapter 2

[65]

 pass Pass1
 {
 VertexShader = compile vs_1_1 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

Creating a Material class to store effect
parameters
By now we have accumulated a large number of effect parameters in our lighting
effect. It would be great if we had an easy way to set and change them from our C#
code, so we will add a class called Material that does solely this. Each Model will
have its own material that will store surface properties such as specularity, diffuse
color, and so on. This class will then handle setting those properties to an instance of
the Effect class. As we may have many different types of material, we will also set
up a base class:

public class Material
{
 public virtual void SetEffectParameters(Effect effect)
 {
 }
}

public class LightingMaterial : Material
{
 public Vector3 AmbientColor { get; set; }
 public Vector3 LightDirection { get; set; }
 public Vector3 LightColor { get; set; }
 public Vector3 SpecularColor { get; set; }

 public LightingMaterial()
 {
 AmbientColor = new Vector3(.1f, .1f, .1f);
 LightDirection = new Vector3(1, 1, 1);
 LightColor = new Vector3(.9f, .9f, .9f);
 SpecularColor = new Vector3(1, 1, 1);
 }

 public override void SetEffectParameters(Effect effect)
 {

Introduction to HLSL

[66]

 if (effect.Parameters["AmbientColor"] != null)
 effect.Parameters["AmbientColor"].SetValue(AmbientColor);

 if (effect.Parameters["LightDirection"] != null)
 effect.Parameters["LightDirection"].SetValue(LightDirection);

 if (effect.Parameters["LightColor"] != null)
 effect.Parameters["LightColor"].SetValue(LightColor);

 if (effect.Parameters["SpecularColor"] != null)
 effect.Parameters["SpecularColor"].SetValue(SpecularColor);
 }
}

We will now update the model class to use the Material class. First, we need an
instance of the Material class:

public Material Material { get; set; }

We initialize it into a new material in the constructor. As this is the simplest material,
no changes will be made to the effect when drawing. This is good as, by default, that
effect is a BasicEffect, and does not match our parameters.

this.Material = new Material();

Finally, after the world, view, and projection matrices have been set to the effect in
the Draw() function, we will call SetEffectParameters() on our material:

Material.SetEffectParameters(effect);

We can finally update the Game1 class to set the material to the model in the
LoadContent() method, immediately after setting the effect to the model:

Effect simpleEffect = Content.Load<Effect>("LightingEffect");

models[0].SetModelEffect(simpleEffect, true);
models[1].SetModelEffect(simpleEffect, true);

LightingMaterial mat = new LightingMaterial();

models[0].Material = mat;
models[1].Material = mat;

Chapter 2

[67]

So if we now, for example, wanted to light our pot blue with red ambient light,
we could set the following options to the modelMaterial and they would be
automatically reflected onto the shader when the model is drawn:

mat.AmbientColor = Color.Red.ToVector3() * .15f;
mat.LightColor = Color.Blue.ToVector3() * .85f;

Summary
Now that you've completed this chapter, you've learned the basics of shading—what
the programmable pipeline is, what shaders and effects are, and how to write
them in HLSL. You saw how to implement a number of lighting types with HLSL,
as well as other effects such as diffuse colors and texturing. You upgraded the
CModel class to support custom shaders and created a Material class to manage
effect parameters.

If you'd like to know more about HLSL, Microsoft's official documentation is very
extensive. It covers all of the built-in functions, filtering, and address modes, and so
on, and has several example shaders. It is available at http://msdn.microsoft.
com/en-us/library/bb509638%28VS.85%29.aspx.

In the next chapter, we will look at more lighting effects and expand our lighting
system to support multiple lights. We will look at several ways of doing so and will
ultimately create a system that supports an arbitrary number of models and lights
while remaining reasonably fast.

Advanced Lighting
By the end of the last chapter, we had developed a system to draw a model with
custom effects and we had created an effect that rendered a directional light shining
onto a model. This is useful if we want a scene with only sunlight, for example, but
what if we wanted to light up a specific area? To start with, we'd need a light type
that more accurately models real world lights—the "point" light. We will start this
chapter by implementing this type of light in HLSL. We will then look at a similar
light type—the "spot" light. We will spend the rest of the chapter looking at two
ways to draw multiple lights at the same time.

Implementing a point light with HLSL
A point light is just a light that shines equally in all directions around itself (like a
light bulb) and falls off over a given distance:

In this case, a point light is simply modeled as a directional light that will slowly fade
to darkness over a given distance. To achieve a linear attenuation, we would simply
divide the distance between the light and the object by the attenuation distance,
invert the result (subtract from 1), and then multiply the lambertian lighting with the
result. This would cause an object directly next to the light source to be fully lit, and
an object at the maximum attenuation distance to be completely unlit.

Advanced Lighting

[70]

However, in practice, we will raise the result of the division to a given power before
inverting it to achieve a more exponential falloff:

Katt = 1 – (d / a) f

In the previous equation, Katt is the brightness scalar that we will multiply the
lighting amount by, d is the distance between the vertex and light source, a is the
distance at which the light should stop affecting objects, and f is the falloff exponent
that determines the shape of the curve. We can implement this easily with HLSL
and a new Material class. The new Material class is similar to the material for
a directional light, but specifies a light position rather than a light direction. For
the sake of simplicity, the effect we will use will not calculate specular highlights,
so the material does not include a "specularity" value. It also includes new values,
LightAttenuation and LightFalloff, which specify the distance at which the light
is no longer visible and what power to raise the division to.

public class PointLightMaterial : Material
{
 public Vector3 AmbientLightColor { get; set; }
 public Vector3 LightPosition { get; set; }
 public Vector3 LightColor { get; set; }
 public float LightAttenuation { get; set; }
 public float LightFalloff { get; set; }

 public PointLightMaterial()
 {
 AmbientLightColor = new Vector3(.15f, .15f, .15f);
 LightPosition = new Vector3(0, 0, 0);
 LightColor = new Vector3(.85f, .85f, .85f);
 LightAttenuation = 5000;
 LightFalloff = 2;
 }

 public override void SetEffectParameters(Effect effect)
 {
 if (effect.Parameters["AmbientLightColor"] != null)

Chapter 3

[71]

 effect.Parameters["AmbientLightColor"].SetValue(
 AmbientLightColor);

 if (effect.Parameters["LightPosition"] != null)
 effect.Parameters["LightPosition"].SetValue(LightPosition);

 if (effect.Parameters["LightColor"] != null)
 effect.Parameters["LightColor"].SetValue(LightColor);

 if (effect.Parameters["LightAttenuation"] != null)
 effect.Parameters["LightAttenuation"].SetValue(
 LightAttenuation);

 if (effect.Parameters["LightFalloff"] != null)
 effect.Parameters["LightFalloff"].SetValue(LightFalloff);
 }
}

The new effect has parameters to reflect those values:

float4x4 World;
float4x4 View;
float4x4 Projection;

float3 AmbientLightColor = float3(.15, .15, .15);
float3 DiffuseColor = float3(.85, .85, .85);
float3 LightPosition = float3(0, 0, 0);
float3 LightColor = float3(1, 1, 1);
float LightAttenuation = 5000;
float LightFalloff = 2;

texture BasicTexture;

sampler BasicTextureSampler = sampler_state {
 texture = <BasicTexture>;
};

bool TextureEnabled = true;

The vertex shader output struct now includes a copy of the vertex's world position
that will be used to calculate the light falloff (attenuation) and light direction.

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float3 Normal : NORMAL0;
};

Advanced Lighting

[72]

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float3 Normal : TEXCOORD1;
 float4 WorldPosition : TEXCOORD2;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float4 worldPosition = mul(input.Position, World);
 float4 viewPosition = mul(worldPosition, View);
 output.Position = mul(viewPosition, Projection);

 output.WorldPosition = worldPosition;
 output.UV = input.UV;
 output.Normal = mul(input.Normal, World);

 return output;
}

Finally, the pixel shader calculates the light much the same way that the directional
light did, but uses a per-vertex light direction rather than a global light direction.
It also determines how far along the attenuation value the vertex's position is and
darkens it accordingly. The texture, ambient light, and diffuse color are calculated
as usual:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 float3 diffuseColor = DiffuseColor;

 if (TextureEnabled)
 diffuseColor *= tex2D(BasicTextureSampler, input.UV).rgb;
 float3 totalLight = float3(0, 0, 0);

 totalLight += AmbientLightColor;

 float3 lightDir = normalize(LightPosition - input.WorldPosition);
 float diffuse = saturate(dot(normalize(input.Normal), lightDir));
 float d = distance(LightPosition, input.WorldPosition);
 float att = 1 - pow(clamp(d / LightAttenuation, 0, 1),
 LightFalloff);

 totalLight += diffuse * att * LightColor;

 return float4(diffuseColor * totalLight, 1);
}

Chapter 3

[73]

We can now achieve the above image using the following scene setup from the
Game1 class:

models.Add(new CModel(Content.Load<Model>("teapot"),
 new Vector3(0, 60, 0), Vector3.Zero, new Vector3(60),
 GraphicsDevice));

models.Add(new CModel(Content.Load<Model>("ground"),
 Vector3.Zero, Vector3.Zero, Vector3.One, GraphicsDevice));

Effect simpleEffect = Content.Load<Effect>("PointLightEffect");

models[0].SetModelEffect(simpleEffect, true);
models[1].SetModelEffect(simpleEffect, true);

PointLightMaterial mat = new PointLightMaterial();
mat.LightPosition = new Vector3(0, 1500, 1500);
mat.LightAttenuation = 3000;

models[0].Material = mat;
models[1].Material = mat;

camera = new FreeCamera(new Vector3(0, 300, 1600),
 MathHelper.ToRadians(0), // Turned around 153 degrees
 MathHelper.ToRadians(5), // Pitched up 13 degrees
 GraphicsDevice);

Chapter 3

[75]

 if (effect.Parameters["AmbientLightColor"] != null)
 effect.Parameters["AmbientLightColor"].SetValue(
 AmbientLightColor);

 if (effect.Parameters["LightPosition"] != null)
 effect.Parameters["LightPosition"].SetValue(LightPosition);

 if (effect.Parameters["LightColor"] != null)
 effect.Parameters["LightColor"].SetValue(LightColor);

 if (effect.Parameters["LightDirection"] != null)
 effect.Parameters["LightDirection"].SetValue(LightDirection);

 if (effect.Parameters["ConeAngle"] != null)
 effect.Parameters["ConeAngle"].SetValue(
 MathHelper.ToRadians(ConeAngle / 2));

 if (effect.Parameters["LightFalloff"] != null)
 effect.Parameters["LightFalloff"].SetValue(LightFalloff);
 }
}

Now we can create a new effect that will render a spot light. We will start by
copying the point light's effect and making the following changes to the second
block of effect parameters:

float3 AmbientLightColor = float3(.15, .15, .15);
float3 DiffuseColor = float3(.85, .85, .85);
float3 LightPosition = float3(0, 5000, 0);
float3 LightDirection = float3(0, -1, 0);
float ConeAngle = 90;
float3 LightColor = float3(1, 1, 1);
float LightFalloff = 20;

Finally, we can update the pixel shader to perform the lighting calculations:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 float3 diffuseColor = DiffuseColor;

 if (TextureEnabled)
 diffuseColor *= tex2D(BasicTextureSampler, input.UV).rgb;

 float3 totalLight = float3(0, 0, 0);
 totalLight += AmbientLightColor;
 float3 lightDir = normalize(LightPosition - input.WorldPosition);

Advanced Lighting

[76]

 float diffuse = saturate(dot(normalize(input.Normal), lightDir));

 // (dot(p - lp, ld) / cos(a))^f
 float d = dot(-lightDir, normalize(LightDirection));
 float a = cos(ConeAngle);

 float att = 0;

 if (a < d)
 att = 1 - pow(clamp(a / d, 0, 1), LightFalloff);

 totalLight += diffuse * att * LightColor;

 return float4(diffuseColor * totalLight, 1);
}

If we were to then set up the material as follows and use our new effect, we would
see the following result:

SpotLightMaterial mat = new SpotLightMaterial();
mat.LightDirection = new Vector3(0, -1, -1);
mat.LightPosition = new Vector3(0, 3000, 2700);
mat.LightFalloff = 200;

Chapter 3

[77]

Drawing multiple lights
Now that we can draw one light, the natural question to ask is how to draw more
than one light. Well this, unfortunately, is not simple. There are a number of
approaches—the easiest of which is to simply loop through a certain number of
lights in the pixel shader and sum a total lighting value. Let's create a new shader
based on the directional light effect that we created in the last chapter to do just that.
We'll start by copying that effect, then modifying some of the effect parameters as
follows. Notice that instead of a single light direction and color, we instead have an
array of three of each, allowing us to draw up to three lights:

#define NUMLIGHTS 3

float3 DiffuseColor = float3(1, 1, 1);
float3 AmbientColor = float3(0.1, 0.1, 0.1);
float3 LightDirection[NUMLIGHTS];
float3 LightColor[NUMLIGHTS];
float SpecularPower = 32;
float3 SpecularColor = float3(1, 1, 1);

Second, we need to update the pixel shader to do the lighting calculations one
time per light:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 // Start with diffuse color
 float3 color = DiffuseColor;

 // Texture if necessary
 if (TextureEnabled)
 color *= tex2D(BasicTextureSampler, input.UV);

 // Start with ambient lighting
 float3 lighting = AmbientColor;

 float3 normal = normalize(input.Normal);
 float3 view = normalize(input.ViewDirection);

 // Perform lighting calculations per light
 for (int i = 0; i < NUMLIGHTS; i++)
 {
 float3 lightDir = normalize(LightDirection[i]);

 // Add lambertian lighting
 lighting += saturate(dot(lightDir, normal)) * LightColor[i];

Advanced Lighting

[78]

 float3 refl = reflect(lightDir, normal);

 // Add specular highlights
 lighting += pow(saturate(dot(refl, view)), SpecularPower)
 * SpecularColor;
 }

 // Calculate final color
 float3 output = saturate(lighting) * color;

 return float4(output, 1);
}

We now need a new Material class to work with this shader:

public class MultiLightingMaterial : Material
{
 public Vector3 AmbientColor { get; set; }
 public Vector3[] LightDirection { get; set; }
 public Vector3[] LightColor { get; set; }
 public Vector3 SpecularColor { get; set; }

 public MultiLightingMaterial()
 {
 AmbientColor = new Vector3(.1f, .1f, .1f);
 LightDirection = new Vector3[3];
 LightColor = new Vector3[] { Vector3.One, Vector3.One,
 Vector3.One };
 SpecularColor = new Vector3(1, 1, 1);
 }

 public override void SetEffectParameters(Effect effect)
 {
 if (effect.Parameters["AmbientColor"] != null)
 effect.Parameters["AmbientColor"].SetValue(AmbientColor);

 if (effect.Parameters["LightDirection"] != null)
 effect.Parameters["LightDirection"].SetValue(LightDirection);

 if (effect.Parameters["LightColor"] != null)
 effect.Parameters["LightColor"].SetValue(LightColor);

 if (effect.Parameters["SpecularColor"] != null)
 effect.Parameters["SpecularColor"].SetValue(SpecularColor);
 }
}

Chapter 3

[79]

If we wanted to implement the three directional light systems found in the
BasicEffect class, we would now just need to copy the light direction values
over to our shader:

Effect simpleEffect = Content.Load<Effect>("MultiLightingEffect");

models[0].SetModelEffect(simpleEffect, true);
models[1].SetModelEffect(simpleEffect, true);

MultiLightingMaterial mat = new MultiLightingMaterial();

BasicEffect effect = new BasicEffect(GraphicsDevice);
effect.EnableDefaultLighting();

mat.LightDirection[0] = -effect.DirectionalLight0.Direction;
mat.LightDirection[1] = -effect.DirectionalLight1.Direction;
mat.LightDirection[2] = -effect.DirectionalLight2.Direction;

mat.LightColor = new Vector3[] {
 new Vector3(0.5f, 0.5f, 0.5f),
 new Vector3(0.5f, 0.5f, 0.5f),
 new Vector3(0.5f, 0.5f, 0.5f) };

models[0].Material = mat;
models[1].Material = mat;

Advanced Lighting

[80]

Prelighting
This method works, but it limits us to just three lights. In any real game, this number
is way too small. We could add more lights to the shader, but we would still be
quite limited as we cannot do more because we have a limited number of shader
instructions to work with. Our next option would be to concoct a system to draw
the scene repeatedly with multiple light sources, and then blend them together.
However, this would force us to draw every object in the scene once for every light
in the scene—an extremely inefficient approach.

Instead, we will use an approach called prelighting. In this approach, we store the
information that we need to calculate lighting for a pixel into textures that can then
be loaded later on by another shader to do the lighting calculation themselves. This
has two benefits: First, we are drawing each object only once. Second, we use spheres
to approximate our lights so that we can run a pixel shader on only the pixels a light
would affect, limiting the lighting calculations to pixels that are actually affected
by a light. Therefore, if a light is small enough or distant enough, we don't need to
perform its lighting calculations for every pixel on the screen.

The prelighting process is as follows:

1. Render the scene into two textures, storing the distance of each vertex from
the camera and the normal at each vertex.

2. Render the scene into another texture, rendering each (point) light as a
sphere, performing lighting calculations in the pixel shader using the values
stored in the corresponding pixels of the last step's textures.

3. Render the final scene, multiplying diffuse colors, textures, and so on in the
pixel shader by the lighting values stored in the corresponding pixels of the
last step's texture.

We will implement prelighting in the next sections. This is a bit of a process,
but in the end, you'll be able to draw a large number of lights and models in
your scene—well worth the effort as this is a common stumbling block for new
game developers. As an example, the following scene was rendered with eight
different-colored point lights:

Chapter 3

[81]

Storing depth and normal values
Recall that we need two pieces of information to calculate simple Lambertian
lighting—the position of each vertex and its normals. In a prelighting approach to
lighting, we store these two pieces of information into two textures using "multiple
render targets". To use multiple render targets, we output multiple values from the
pixel shader using multiple COLOR (COLOR0, COLOR1, and so on) semantics.
The output from the effect will then be stored into the "render targets" (similar to
textures) of our choosing. We will see shortly how this is set up from the XNA side.

We store the distance between each vertex and the camera into one texture and the
"depth" texture and each vertex's normal into the second texture. Note that the depth
is divided by the far plane distance before storing it into the texture to keep it in the 0
to 1 range:

Similarly, the normals are scaled from the -1 to 1 range to the 0 to 1 range.

Advanced Lighting

[82]

The effect that stores the depth and normal values is as follows. Create a new effect
in your content project called PPDepthNormal.fx and add the following code:

float4x4 World;
float4x4 View;
float4x4 Projection;

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float3 Normal : NORMAL0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 Depth : TEXCOORD0;
 float3 Normal : TEXCOORD1;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float4x4 viewProjection = mul(View, Projection);
 float4x4 worldViewProjection = mul(World, viewProjection);

 output.Position = mul(input.Position, worldViewProjection);
 output.Normal = mul(input.Normal, World);

 // Position's z and w components correspond to the distance
 // from camera and distance of the far plane respectively
 output.Depth.xy = output.Position.zw;

 return output;
}

// We render to two targets simultaneously, so we can't
// simply return a float4 from the pixel shader
struct PixelShaderOutput
{
 float4 Normal : COLOR0;
 float4 Depth : COLOR1;
};

Chapter 3

[83]

PixelShaderOutput PixelShaderFunction(VertexShaderOutput input)
{
 PixelShaderOutput output;

 // Depth is stored as distance from camera / far plane distance
 // to get value between 0 and 1
 output.Depth = input.Depth.x / input.Depth.y;

 // Normal map simply stores X, Y and Z components of normal
 // shifted from (-1 to 1) range to (0 to 1) range
 output.Normal.xyz = (normalize(input.Normal).xyz / 2) + .5;

 // Other components must be initialized to compile
 output.Depth.a = 1;
 output.Normal.a = 1;

 return output;
}

technique Technique1
{
 pass Pass1
 {
 VertexShader = compile vs_1_1 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

Creating the light map
Once we have our normal and depth values recorded, we can generate the light
map. We'll be creating a class in a moment to tie all of the steps together, but first,
let's look at the effect that generates light maps. Because the depth and normal
values are stored in a texture and we can't pass them from a vertex shader, we
need a way to map 3D positions to pixel coordinates in the two textures. For the
sake of convenience, we will place the functions that do so in a shared file that will
be included in a few of the remaining effects. You'll need to create a new effect file
and rename it to PPShared.vsi.

float viewportWidth;
float viewportHeight;

// Calculate the 2D screen position of a 3D position
float2 postProjToScreen(float4 position)

Advanced Lighting

[84]

{
 float2 screenPos = position.xy / position.w;
 return 0.5f * (float2(screenPos.x, -screenPos.y) + 1);
}

// Calculate the size of one half of a pixel, to convert
// between texels and pixels
float2 halfPixel()
{
 return 0.5f / float2(viewportWidth, viewportHeight);
}

Now we can create the effect that uses these values to perform the lighting
calculations. The effect parameters are fairly self-explanatory—we include texture
parameters for the depth and normal textures, world, view, and projection matrices
(remember that we are drawing the light as a spherical model), and point light
parameters. The vertex shader simply transforms from object space to screen space:

float4x4 WorldViewProjection;
float4x4 InvViewProjection;

texture2D DepthTexture;
texture2D NormalTexture;
sampler2D depthSampler = sampler_state
{
 texture = <DepthTexture>;
 minfilter = point;
 magfilter = point;
 mipfilter = point;
};
sampler2D normalSampler = sampler_state
{
 texture = <NormalTexture>;
 minfilter = point;
 magfilter = point;
 mipfilter = point;
};

float3 LightColor;
float3 LightPosition;
float LightAttenuation;

// Include shared functions
#include "PPShared.vsi"

Chapter 3

[85]

struct VertexShaderInput
{
 float4 Position : POSITION0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float4 LightPosition : TEXCOORD0;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 output.Position = mul(input.Position, WorldViewProjection);
 output.LightPosition = output.Position;

 return output;
}

The pixel shader is where the magic happens—we sample the depth and normal
values from the textures that we rendered earlier and use the depth values to
reconstruct our original world space position. We then use that position and its
normal to perform the lighting calculations that we saw earlier:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 // Find the pixel coordinates of the input position in the depth
 // and normal textures
 float2 texCoord = postProjToScreen(input.LightPosition) +
 halfPixel();

 // Extract the depth for this pixel from the depth map
 float4 depth = tex2D(depthSampler, texCoord);

 // Recreate the position with the UV coordinates and depth value
 float4 position;
 position.x = texCoord.x * 2 - 1;
 position.y = (1 - texCoord.y) * 2 - 1;
 position.z = depth.r;
 position.w = 1.0f;

 // Transform position from screen space to world space
 position = mul(position, InvViewProjection);

Advanced Lighting

[86]

 position.xyz /= position.w;

 // Extract the normal from the normal map and move from
 // 0 to 1 range to -1 to 1 range
 float4 normal = (tex2D(normalSampler, texCoord) - .5) * 2;

 // Perform the lighting calculations for a point light
 float3 lightDirection = normalize(LightPosition - position);
 float lighting = clamp(dot(normal, lightDirection), 0, 1);

 // Attenuate the light to simulate a point light
 float d = distance(LightPosition, position);
 float att = 1 - pow(d / LightAttenuation, 6);

 return float4(LightColor * lighting * att, 1);
}

Drawing models with the light map
After we have created the light map, we can sample the values it stores when
drawing our models for the final pass instead of performing the lighting equations.
We will again use the functions in our shared file to sample from the light map. The
rest of the effects are similar to those we have already seen, transforming to screen
space in the vertex shader and performing texture lookups in the pixel shader. At the
end of the pixel shader, we multiply the lighting value sampled from the light map
with the diffuse color to get the final color:

float4x4 World;
float4x4 View;
float4x4 Projection;

texture2D BasicTexture;
sampler2D basicTextureSampler = sampler_state
{
 texture = <BasicTexture>;
 addressU = wrap;
 addressV = wrap;
 minfilter = anisotropic;
 magfilter = anisotropic;
 mipfilter = linear;
};
bool TextureEnabled = true;

texture2D LightTexture;

Chapter 3

[87]

texture2D LightTexture;
sampler2D lightSampler = sampler_state
{
 texture = <LightTexture>;
 minfilter = point;
 magfilter = point;
 mipfilter = point;
};

float3 AmbientColor = float3(0.15, 0.15, 0.15);
float3 DiffuseColor;

#include "PPShared.vsi"

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float4 PositionCopy : TEXCOORD1;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float4x4 worldViewProjection = mul(World, mul(View, Projection));

 output.Position = mul(input.Position, worldViewProjection);
 output.PositionCopy = output.Position;

 output.UV = input.UV;

 return output;
}

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 // Sample model's texture

Advanced Lighting

[88]

 float3 basicTexture = tex2D(basicTextureSampler, input.UV);

 if (!TextureEnabled)
 basicTexture = float4(1, 1, 1, 1);

 // Extract lighting value from light map
 float2 texCoord = postProjToScreen(input.PositionCopy) +
 halfPixel();
 float3 light = tex2D(lightSampler, texCoord);

 light += AmbientColor;

 return float4(basicTexture * DiffuseColor * light, 1);
}

Creating the prelighting renderer
Let's now create a class that manages the effects we created and the rest of the
prelighting process. This class, PrelightingRenderer, will be responsible for
calculating the depth and normal maps, light map, and eventually preparing models to
be drawn with the calculated lighting values. The following framework version loads
all of the effects and the model that we will need to perform the prelighting process.

The PrelightingRenderer also handles the creation of three "surfaces" or "render
targets" that we will render the depth, normal, and light maps into. Render targets
serve to capture the output of the graphics card and store it in memory, much like a
texture. We can then access the data in that texture later, when we are calculating the
light map, for example. We can also draw into multiple render targets at the same
time using the various color semantics, as we saw earlier in DepthNormal.fx.

public class PrelightingRenderer
{
 // Normal, depth, and light map render targets
 RenderTarget2D depthTarg;
 RenderTarget2D normalTarg;
 RenderTarget2D lightTarg;

 // Depth/normal effect and light mapping effect
 Effect depthNormalEffect;
 Effect lightingEffect;

 // Point light (sphere) mesh
 Model lightMesh;

Chapter 3

[89]

 // List of models, lights, and the camera
 public List<CModel> Models { get; set; }
 public List<PPPointLight> Lights { get; set; }
 public Camera Camera { get; set; }

 GraphicsDevice graphicsDevice;
 int viewWidth = 0, viewHeight = 0;

 public PrelightingRenderer(GraphicsDevice GraphicsDevice,
 ContentManager Content)
 {
 viewWidth = GraphicsDevice.Viewport.Width;
 viewHeight = GraphicsDevice.Viewport.Height;

 // Create the three render targets
 depthTarg = new RenderTarget2D(GraphicsDevice, viewWidth,
 viewHeight, false, SurfaceFormat.Single, DepthFormat.Depth24);

 normalTarg = new RenderTarget2D(GraphicsDevice, viewWidth,
 viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24);

 lightTarg = new RenderTarget2D(GraphicsDevice, viewWidth,
 viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24);

 // Load effects
 depthNormalEffect = Content.Load<Effect>("PPDepthNormal");
 lightingEffect = Content.Load<Effect>("PPLight");

 // Set effect parameters to light mapping effect
 lightingEffect.Parameters["viewportWidth"].SetValue(viewWidth);
 lightingEffect.Parameters["viewportHeight"].SetValue(viewHeight);

 // Load point light mesh and set light mapping effect to it
 lightMesh = Content.Load<Model>("PPLightMesh");
 lightMesh.Meshes[0].MeshParts[0].Effect = lightingEffect;

 this.graphicsDevice = GraphicsDevice;
 }

 public void Draw()
 {
 drawDepthNormalMap();
 drawLightMap();
 prepareMainPass();
 }

Advanced Lighting

[90]

 void drawDepthNormalMap()
 {
 }

 void drawLightMap()
 {
 }

 void prepareMainPass()
 {
 }
}

Now we can start filling in the three empty functions in the framework of this class.
The drawDepthNormalMap() function will be responsible for capturing the depth
and normal map information from all of the models currently in view. We already
wrote the effect that does this, so all we need to do is set our render target and draw
the models with the PPDepthNormal.fx effect:

void drawDepthNormalMap()
{
 // Set the render targets to 'slots' 1 and 2
 graphicsDevice.SetRenderTargets(normalTarg, depthTarg);

 // Clear the render target to 1 (infinite depth)
 graphicsDevice.Clear(Color.White);

 // Draw each model with the PPDepthNormal effect
 foreach (CModel model in Models)
 {
 model.CacheEffects();
 model.SetModelEffect(depthNormalEffect, false);
 model.Draw(Camera.View, Camera.Projection,
 ((FreeCamera)Camera).Position);
 model.RestoreEffects();
 }

 // Un-set the render targets
 graphicsDevice.SetRenderTargets(null);
}

Chapter 3

[91]

The second function takes the depth and normal map data from the first and uses it
to perform the lighting calculations for each point light in the scene, approximated
as spheres:

void drawLightMap()
{
 // Set the depth and normal map info to the effect
 lightingEffect.Parameters["DepthTexture"].SetValue(depthTarg);
 lightingEffect.Parameters["NormalTexture"].SetValue(normalTarg);

 // Calculate the view * projection matrix
 Matrix viewProjection = Camera.View * Camera.Projection;

 // Set the inverse of the view * projection matrix to the effect
 Matrix invViewProjection = Matrix.Invert(viewProjection);
 lightingEffect.Parameters["InvViewProjection"].SetValue(
 invViewProjection);

 // Set the render target to the graphics device
 graphicsDevice.SetRenderTarget(lightTarg);

 // Clear the render target to black (no light)
 graphicsDevice.Clear(Color.Black);

 // Set render states to additive (lights will add their influences)
 graphicsDevice.BlendState = BlendState.Additive;
 graphicsDevice.DepthStencilState = DepthStencilState.None;

 foreach (PPPointLight light in Lights)
 {
 // Set the light's parameters to the effect
 light.SetEffectParameters(lightingEffect);

 // Calculate the world * view * projection matrix and set it to
 // the effect
 Matrix wvp = (Matrix.CreateScale(light.Attenuation)
 * Matrix.CreateTranslation(light.Position)) * viewProjection;

 lightingEffect.Parameters["WorldViewProjection"].SetValue(wvp);

 // Determine the distance between the light and camera
 float dist = Vector3.Distance(((FreeCamera)Camera).Position,
 light.Position);

Advanced Lighting

[92]

 // If the camera is inside the light-sphere, invert the cull mode
 // to draw the inside of the sphere instead of the outside
 if (dist < light.Attenuation)
 graphicsDevice.RasterizerState = RasterizerState.CullClockwise;

 // Draw the point-light-sphere
 lightMesh.Meshes[0].Draw();

 // Revert the cull mode
 graphicsDevice.RasterizerState =
 RasterizerState.CullCounterClockwise;
 }

 // Revert the blending and depth render states
 graphicsDevice.BlendState = BlendState.Opaque;
 graphicsDevice.DepthStencilState = DepthStencilState.Default;

 // Un-set the render target
 graphicsDevice.SetRenderTarget(null);
}

The last function, prepareMainPass(), attempts to set the light map and viewport
width/height to the effect each model is currently using. The models can then
sample from the light map to obtain lighting information, as our PPLight.fx
function does:

void prepareMainPass()
{
 foreach (CModel model in Models)
 foreach (ModelMesh mesh in model.Model.Meshes)
 foreach (ModelMeshPart part in mesh.MeshParts)
 {
 // Set the light map and viewport parameters to each model's
 effect
 if (part.Effect.Parameters["LightTexture"] != null)
 part.Effect.Parameters["LightTexture"].SetValue(lightTarg);

 if (part.Effect.Parameters["viewportWidth"] != null)
 part.Effect.Parameters["viewportWidth"].SetValue(viewWidth);

 if (part.Effect.Parameters["viewportHeight"] != null)
 part.Effect.Parameters["viewportHeight"].
 SetValue(viewHeight);
 }
}

Chapter 3

[93]

Using the prelighting renderer
With that, we've finished the prelighting renderer and can now implement it
into our game. To begin with, we'll need an instance variable of the renderer
in the Game1 class:

PrelightingRenderer renderer;

Next, we set the scene up as follows in the LoadContent() function, using our
PPLight.fx effect and four point lights:

models.Add(new CModel(Content.Load<Model>("teapot"),
 new Vector3(0, 60, 0), Vector3.Zero, new Vector3(60),
 GraphicsDevice));

models.Add(new CModel(Content.Load<Model>("ground"),
 Vector3.Zero, Vector3.Zero, Vector3.One, GraphicsDevice));

Effect effect = Content.Load<Effect>("PPModel");

models[0].SetModelEffect(effect, true);
models[1].SetModelEffect(effect, true);

camera = new FreeCamera(new Vector3(0, 300, 1600),
 MathHelper.ToRadians(0), // Turned around 153 degrees
 MathHelper.ToRadians(5), // Pitched up 13 degrees
 GraphicsDevice);

renderer = new PrelightingRenderer(GraphicsDevice, Content);
renderer.Models = models;
renderer.Camera = camera;
renderer.Lights = new List<PPPointLight>()
{
 new PPPointLight(new Vector3(-1000, 1000, 0), Color.Red * .85f,
 2000),
 new PPPointLight(new Vector3(1000, 1000, 0), Color.Blue * .85f,
 2000),
 new PPPointLight(new Vector3(0, 1000, 1000), Color.Green * .85f,
 2000),
 new PPPointLight(new Vector3(0, 1000, -1000), Color.White * .85f,
 2000)
};

Advanced Lighting

[94]

Finally, we need to call the Draw() function of the renderer before drawing our
models for the final pass, making sure to clear the graphics card first:

protected override void Draw(GameTime gameTime)
{
 renderer.Draw();

 GraphicsDevice.Clear(Color.Black);

 foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 model.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);

 base.Draw(gameTime);
}

Summary
Having completed this chapter, you've learned how to implement point lights and
spot lights in HLSL. You've also learned of the limitations of the programmable
pipeline, as far as lighting is concerned, and learned two ways to draw multiple
lights in your scenes relatively efficiently. There are many other lighting and shading
techniques, and we'll look at many more of them in the rest of the book, starting with
shadows and projection effects in the next chapter.

Projection and
Shadowing Effects

Our PrelightingRenderer is a great way to render a large number of lights in a
relatively efficient manner and it also makes a great framework for implementing
some other fairly complicated effects. In this chapter, we will look at two related
effects—projective texturing and shadow mapping. We saw some aspects of projective
texturing in the last chapter, but in this chapter we will learn how to project an image
across the scene as though it was projected by a real world projector.

Next, we will look at two implementations of shadow mapping. Shadow mapping
is similar to projective texturing—in that we use the same process to project a
depth texture across the scene, which we then use to generate shadows. However,
the process is limited to hard-edged shadows, so we will look at a second way to
perform shadow mapping that allows us to blur the depth texture and achieve
soft shadows.

Projective texturing
Projective texturing is a technique that "projects" a texture across the scene, as
though it were an image being projected onto the objects in a room by a real-world
projector. This is useful for simulating effects such as video projectors or non-circular
spot lights, and the process (as we shall see later in the chapter) can be extended to
support what is called shadow mapping—a way to add shadows to the objects in
our scenes.

Projection and Shadowing Effects

[96]

In this example, our projector will be placed at one position and will point towards a
target position. A texture will be projected toward the target position and appear on
any objects that lie in its path:

The projective texturing process is fairly simple and, in fact, we have been doing
it since the last chapter. In the last chapter, we looked up the normal, depth, and
lighting values for various pixels in our pixel shaders by finding the screen space
positions of the geometry being shaded at those pixels, and then sampling our
various texture maps at those pixel coordinates. The only difference with projective
texturing is that we use different view and projection matrices when calculating that
screen space position—in this case, we calculate the view and projection matrices
for a virtual "camera" at the projector's position pointing towards its target. We
then take the screen space position of our vertices and look up the corresponding
pixel colors in the texture we are projecting. Finally, we add those colors to the
pixel shader's output.

The first thing we will need is a new Material class to store the projector settings:

public class ProjectedTextureMaterial : Material
{
 public Vector3 ProjectorPosition { get; set; }
 public Vector3 ProjectorTarget { get; set; }
 public Texture2D ProjectedTexture { get; set; }
 public bool ProjectorEnabled { get; set; }
 public float Scale { get; set; }

 float halfWidth, halfHeight;

 public ProjectedTextureMaterial(Texture2D Texture,

Chapter 4

[97]

 GraphicsDevice graphicsDevice)
 {
 ProjectorPosition = new Vector3(1500, 1500, 1500);
 ProjectorTarget = new Vector3(0, 150, 0);
 ProjectorEnabled = true;
 ProjectedTexture = Texture;

 // We determine how large the texture will be based on the
 // texture dimensions and a scaling value
 halfWidth = Texture.Width / 2.0f;
 halfHeight = Texture.Height / 2.0f;
 Scale = 1;
 }

 public override void SetEffectParameters(Effect effect)
 {
 if (effect.Parameters["ProjectorEnabled"] != null)
 effect.Parameters["ProjectorEnabled"].SetValue(
 ProjectorEnabled);

 if (!ProjectorEnabled)
 return;

 // Calculate an orthographic projection matrix for the
 // projector "camera"
 Matrix projection = Matrix.CreateOrthographicOffCenter(
 -halfWidth * Scale, halfWidth * Scale,
 -halfHeight * Scale, halfHeight * Scale,
 -100000, 100000);

 // Calculate view matrix as usual
 Matrix view = Matrix.CreateLookAt(ProjectorPosition,
 ProjectorTarget, Vector3.Up);

 if (effect.Parameters["ProjectorViewProjection"] != null)
 effect.Parameters["ProjectorViewProjection"].SetValue(
 view * projection);

 if (effect.Parameters["ProjectedTexture"] != null)
 effect.Parameters["ProjectedTexture"].SetValue(
 ProjectedTexture);
 }
}

Projection and Shadowing Effects

[98]

Note that the projection matrix that this material generates is different from those
that our cameras have been using—in that this matrix is orthographic. When a scene
is viewed with an orthographic camera, objects do not appear to get smaller as their
distance from the camera decreases. This is perfect for projective texturing, as the
rays our projector casts will all be parallel:

Keep in mind that while we are using an orthographic projection matrix for this
example; we could easily use a perspective projection matrix to achieve an effect
more like a real-world projector (where moving the projector away from the screen
would make the image larger because the rays it casts diverge from the center rather
than remaining parallel).

The next step is to create an effect for projective texturing. To allow us to use
the lighting system that we are used to, we will build a new effect based on the
PPModel.fx effect. Start by copying that effect, and then add the following effect
parameters. The parameters represent the view and projection matrices that our
virtual "projector" is using, and which texture we would like to project:

float4x4 ProjectorViewProjection;

texture2D ProjectedTexture;
sampler2D projectorSampler = sampler_state
{
 texture = <ProjectedTexture>;
};

bool ProjectorEnabled = false;

Chapter 4

[99]

Our vertex shader output struct will need one more field to store the screen space
position of our vertices according to the ProjectorViewProjection matrix:

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float4 PositionCopy : TEXCOORD1;
 float4 ProjectorScreenPosition : TEXCOORD2;
};

Then, our vertex shader will need to calculate this value:

output.ProjectorScreenPosition = mul(mul(input.Position, World),
 ProjectorViewProjection);

The last step is to sample from the texture that we would like to project. However,
we cannot simply use the UV coordinates calculated from the screen space position,
as we may be shading vertices outside of the range of our projected texture (that is,
the vertices the projected image is not meant to fall on to.) To solve this problem,
we need to return only a texture sample if the point being sampled is visible to the
projector, by limiting UV coordinates to [0, 1] and [0, 1]. Outside of that range we
will simply use black, so that nothing is added to the output color:

float3 sampleProjector(float2 UV)
{
 if (UV.x < 0 || UV.x > 1 || UV.y < 0 || UV.y > 1)
 return float3(0, 0, 0);

 return tex2D(projectorSampler, UV);
}

We can then use this new function to sample from the texture in the pixel shader:

light += AmbientColor;

float3 projection = float3(0, 0, 0);

if (ProjectorEnabled)
 projection = sampleProjector(postProjToScreen(
 input.ProjectorScreenPosition) + halfPixel());

return float4(basicTexture * DiffuseColor * light + projection, 1);

Projection and Shadowing Effects

[100]

Finally, we can update our game to use the projective texturing effect and material:

Effect effect = Content.Load<Effect>("ProjectedTexture");

models[0].SetModelEffect(effect, true);
models[1].SetModelEffect(effect, true);

ProjectedTextureMaterial mat = new ProjectedTextureMaterial(
 Content.Load<Texture2D>("projected texture"), GraphicsDevice);
mat.ProjectorPosition = new Vector3(0, 4500, 4500);
mat.ProjectorTarget = new Vector3(0, 0, 0);
mat.Scale = 2;

models[0].Material = mat;
models[1].Material = mat;

Shadow mapping—drawing the depth
map
Now that we've seen how to perform projective texturing, we are ready to learn how
to add shadows to our scene with shadow mapping. Shadow mapping is a process
where we:

1. Render the scene to a depth texture. This is similar to the depth texture
we rendered to perform prelighting, but this time we render the scene
from the light's point of view, pretending that the light we are generating
shadows for is a point-target type of camera. The depth texture will store
the distance from the light of the closest vertices that are in view of the
light's virtual camera.

2. Render the scene using the normal effects, but project the depth texture onto
the scene from the light's point of view. This will allow us to extract the
depth value in the depth texture for each vertex that we shade.

Chapter 4

[101]

3. Calculate the actual distance between each vertex and the light. We can then
compare the value stored in the depth texture and the actual distance. If the
actual distance between a vertex and the light is greater than the distance
stored in the depth texture, then there must have been another vertex
between it and the light that overwrote the original vertex's depth value.
Therefore, the vertex we are currently shading must be obscured from the
light's point of view and therefore, is in shadow.

4. If a vertex is in shadow, we multiply its final color value by some amount to
darken the areas that are in shadow.

The first step is to render the scene as a depth texture from the light's point of view.
We did something similar in the previous chapter with our depth/normal buffer;
however, that was rendered from the camera's point of view. The depth buffer we
will render uses only the red component of the color output, in order to store depth
with the full 32-bit accuracy afforded by disregarding the green, blue, and alpha
channels. The distance from the camera is divided by a certain far-plane distance to
get a number between 0 and 1, which can then be returned as the color value:

Projection and Shadowing Effects

[102]

Let's start by writing a shader that will do this for us. The shader simply calculates
the screen space position of each vertex as usual, and calculates the depth (distance
from the camera) of each vertex in the pixel shader. It then returns that value divided
by the far plane and clamped to return a value between 0 and 1, where 0 would
represent a vertex on the camera's near plane, and 1 would represent a vertex on
the camera's far plane.

float4x4 World;
float4x4 View;
float4x4 Projection;

float FarPlane = 10000;

struct VertexShaderInput
{
 float4 Position : POSITION0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float4 ScreenPosition : TEXCOORD0;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 // Calculate the screen space position
 float4x4 wvp = mul(World, mul(View, Projection));
 float4 position = mul(input.Position, wvp);

 output.Position = position;
 output.ScreenPosition = position;

 return output;
}

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 // Determine the depth of this vertex / by the far plane distance,
 // limited to [0, 1]
 float depth = clamp(input.ScreenPosition.z / FarPlane, 0, 1);

Chapter 4

[103]

 // Return only the depth value
 return float4(depth, 0, 0, 1);
}

technique Technique1
{
 pass Pass1
 {
 VertexShader = compile vs_1_1 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

We now need to update our PrelightingRenderer class to draw this depth map
during its draw cycle. First, we will need a number of new instance variables
and properties:

// Position and target of the shadowing light
public Vector3 ShadowLightPosition { get; set; }
public Vector3 ShadowLightTarget { get; set; }

// Shadow depth target and depth-texture effect
RenderTarget2D shadowDepthTarg;
Effect shadowDepthEffect;

// Depth texture parameters
int shadowMapSize = 2048;
int shadowFarPlane = 10000;

// Shadow light view and projection
Matrix shadowView, shadowProjection;

// Shadow properties
public bool DoShadowMapping { get; set; }
public float ShadowMult { get; set; }

The depth texture target and the depth texture effect need to be initialized in
the constructor:

shadowDepthTarg = new RenderTarget2D(GraphicsDevice, shadowMapSize,
 shadowMapSize, false, SurfaceFormat.Single, DepthFormat.Depth24);

shadowDepthEffect = Content.Load<Effect>("ShadowDepthEffect");
shadowDepthEffect.Parameters["FarPlane"].SetValue(shadowFarPlane);

Projection and Shadowing Effects

[104]

Next, we'll need a function to render the depth map:

void drawShadowDepthMap()
{
 // Calculate view and projection matrices for the "light"
 // shadows are being calculated for
 shadowView = Matrix.CreateLookAt(ShadowLightPosition,
ShadowLightTarget,
 Vector3.Up);

 shadowProjection = Matrix.CreatePerspectiveFieldOfView(
 MathHelper.ToRadians(45), 1, 1, shadowFarPlane);

 // Set render target
 graphicsDevice.SetRenderTarget(shadowDepthTarg);

 // Clear the render target to 1 (infinite depth)
 graphicsDevice.Clear(Color.White);

 // Draw each model with the ShadowDepthEffect effect
 foreach (CModel model in Models)
 {
 model.CacheEffects();
 model.SetModelEffect(shadowDepthEffect, false);
 model.Draw(shadowView, shadowProjection, ShadowLightPosition);
 model.RestoreEffects();
 }

 // Un-set the render targets
 graphicsDevice.SetRenderTarget(null);
}

Finally, we must be sure to call this function from the Draw() function:

public void Draw()
{
 drawDepthNormalMap();
 drawLightMap();
 if (DoShadowMapping) drawShadowDepthMap();
 prepareMainPass();
}

Chapter 4

[105]

Shadow mapping—projecting the depth
texture onto the scene
The shadow mapping technique depends on the fact that the pixel shader shades
only the vertices that are closest to the camera. Therefore, only the objects closest
to the "light" will be drawn into the depth buffer when the scene is drawn from the
light's point of view. When we are drawing our objects from the camera's point of
view, we can determine each vertex's actual distance from the light source, which we
can then compare to the value stored in the depth buffer. If the value stored in the
depth buffer is lesser than the vertex's actual distance from the light source, it must
have an object between it and the camera and must therefore, be in shadow:

In order to get the value stored in the depth map for a given pixel, we will project the
depth map onto the scene exactly the same way we did in the previous example. We
will be adding the shadowing code to another extension of the PPModel.fx effect, so
begin by copying that effect and adding the parameters we will need to project the
texture onto the scene:

bool DoShadowMapping = true;
float4x4 ShadowView;
float4x4 ShadowProjection;

texture2D ShadowMap;
sampler2D shadowSampler = sampler_state {
 texture = <ShadowMap>;
 minfilter = point;
 magfilter = point;
 mipfilter = point;
};

Projection and Shadowing Effects

[106]

Our VertexShaderOutput struct will need new values as well—the screen space
position of the vertex as seen by the light:

float4 ShadowScreenPosition : TEXCOORD2;

The vertex shader will then need to calculate this value:

output.ShadowScreenPosition = mul(mul(input.Position, World),
 mul(ShadowView, ShadowProjection));

Now, we will need to sample from the depth texture. Once again, we must be careful
to sample from the texture only when the UV coordinates are in the [0, 1] range,
otherwise there will not be a smooth transition between those areas that the virtual
light camera can see.

float sampleShadowMap(float2 UV)
{
 if (UV.x < 0 || UV.x > 1 || UV.y < 0 || UV.y > 1)
 return 1;

 return tex2D(shadowSampler, UV).r;
}

Finally, we can use this function to sample from the depth texture in the pixel shader:

float2 shadowTexCoord = postProjToScreen(input.ShadowScreenPosition)
 + halfPixel();

float mapDepth = sampleShadowMap(shadowTexCoord);

If we were to return this value alone, we would be projecting the depth texture onto
the scene:

return float4(mapDepth, mapDepth, mapDepth, 1);

Chapter 4

[107]

Before we actually use this depth value to generate shadows, we need to be
sure that we are setting all of the effect parameters that we just added in the
prepareMainPass() function of PrelightingRenderer:

if (part.Effect.Parameters["DoShadowMapping"] != null)
 part.Effect.Parameters["DoShadowMapping"].SetValue(DoShadowMapping);

if (!DoShadowMapping) continue;

if (part.Effect.Parameters["ShadowMap"] != null)
 part.Effect.Parameters["ShadowMap"].SetValue(shadowDepthTarg);

if (part.Effect.Parameters["ShadowView"] != null)
 part.Effect.Parameters["ShadowView"].SetValue(shadowView);

if (part.Effect.Parameters["ShadowProjection"] != null)
 part.Effect.Parameters["ShadowProjection"].
 SetValue(shadowProjection);

Shadow mapping—performing the depth
comparison
The final step in shadow mapping is to compare the depth value stored in the depth
texture to the actual distance between each vertex and the camera. We will need
three more effect parameters to calculate and compare depth values and to perform
the final shading in the pixel shader:

float3 ShadowLightPosition;
float ShadowFarPlane;
float ShadowMult = 0.3f;
float ShadowBias = 1.0f / 50.0f;

Projection and Shadowing Effects

[108]

The last parameter is what is called the depth bias. Remember that we are
comparing a relatively precise actual distance between each vertex and the light to a
distance that has been stored in a texture. Because that texture is limited in size and
precision, the depth value that we will get when sampling from it will be somewhat
inaccurate. If we tried to compare that value to the actual distance we calculated
directly, we would end up with very messy shadows on some surfaces, instead of a
smoothly transitioning shadow:

In the case of the previous screenshot, the surface of the teapot is curved, which leads
to banding where the depth texture had stored somewhat inaccurate depth values.
Notice also that the floor is entirely in shadow in this image—another flaw caused by
the depth texture's lack of precision.

We solve this problem with the depth bias, by subtracting a small amount from the
actual depth before comparing it to the value stored in the depth texture. A large
enough bias will reduce these flaws, but may also cause a lack of shadows on steep
enough surfaces. Finding the right depth bias is more of an art than a science, and
there are other techniques available (using a slope-scaled depth bias for example), but
for simplicity's sake, we will use a constant bias. Increasing the size of the depth
texture will also help to reduce these errors.

We perform the depth comparison as follows—multiplying the output color by the
shadow darkness, if we determine the area to be in shadow:

float2 shadowTexCoord = postProjToScreen(input.ShadowScreenPosition)
 + halfPixel();

float mapDepth = sampleShadowMap(shadowTexCoord);

Chapter 4

[109]

float realDepth = input.ShadowScreenPosition.z / ShadowFarPlane;
float shadow = 1;

if (realDepth < 1 && realDepth - ShadowBias > mapDepth)
 shadow = ShadowMult;

return float4(basicTexture * DiffuseColor * light * shadow, 1);

We will also need to be sure to set our new Effect parameters in the
PrelightingRenderer class:

if (part.Effect.Parameters["ShadowLightPosition"] != null)
 part.Effect.Parameters["ShadowLightPosition"].
 SetValue(ShadowLightPosition);

if (part.Effect.Parameters["ShadowFarPlane"] != null)
 part.Effect.Parameters["ShadowFarPlane"].SetValue(shadowFarPlane);

if (part.Effect.Parameters["ShadowMult"] != null)
 part.Effect.Parameters["ShadowMult"].SetValue(ShadowMult);

Finally, we set up the renderer to generate shadows in the Game1 class:

renderer.ShadowLightPosition = new Vector3(1500, 1500, 2000);
renderer.ShadowLightTarget = new Vector3(0, 150, 0);
renderer.DoShadowMapping = true;
renderer.ShadowMult = 0.3f;

Projection and Shadowing Effects

[110]

Variance shadow mapping—soft
shadows
Our current shadows look nice, but they do not behave like those found in the real
world. While shadows often do have sharp edges, most of the time they do not. On
overcast days, or when objects are hit with an indirect light source, shadows will
often appear fuzzy and blurry. In the following sections, we will implement soft
shadows with a technique called Variance Shadow Maps (VSM). The major benefit
of variance shadow mapping is that we can filter the depth texture like a regular
texture—in this case, blurring it—without ruining the shadows that result.

This section will focus more on the implementation of VSM, but the original paper
and presentation for the technique as well as another example implementation are
available at http://www.punkuser.net/vsm.

The first difference between "regular" shadow mapping and VSM is that we store
both the depth and the square of the depth in the depth texture. We later use these
values to approximate shadows. First, we will need to update the depth texture
rendering effect to return both of these values:

return float4(depth, depth * depth, 0, 1);

Now that our depth texture effect is returning two values, we need to change the
surface format that we are using. In the past, we've used SurfaceFormat.Single,
which is a 32-bit format with all 32 bits allocated to the red channel. This allows us
to store relatively precise depth values in the red channel of a render target—much
more precise than SurfaceFormat.Color for example, which allocates only 8 bits to
the red channel.

Chapter 4

[111]

Because we are now storing two values, we will use SurfaceFormat.HalfVector2.
This is also a 32-bit format, allocating 16 bits to the red channel and 16 bits to the
green channel. This is less precise than what we have been using, but because we are
blurring the shadow map the difference is not very noticeable. This will allow us to
keep memory requirements down, especially given the number of render targets we
have accumulated.

shadowDepthTarg = new RenderTarget2D(GraphicsDevice, shadowMapSize,
 shadowMapSize, false, SurfaceFormat.HalfVector2,
 DepthFormat.Depth24);

Variance shadow mapping—blurring the
depth texture
The next step in the VSM process is to blur the depth texture that we just rendered,
using what is called a Gaussian blur. Chapter 8 covers Gaussian blurs in much more
detail, but for simplicity's sake, we will use pre-calculated settings for the blur.
Blurring the depth texture will give us soft shadows. If we did not blur the depth
texture at all, we would get shadows nearly identical to those we created earlier.

Blurring is simply the process of averaging a pixel and its neighbors for every pixel
in the image—"smoothing" out the image as a whole. The Gaussian blur improves
this somewhat by using specific pixel offsets and weights but the process is the same.
The Gaussian blur effect is as follows:

// The texture to blur
texture ScreenTexture;

sampler2D tex = sampler_state {

Projection and Shadowing Effects

[112]

 texture = <ScreenTexture>;
 minfilter = point;
 magfilter = point;
 mipfilter = point;
};

// Precalculated weights and offsets
float weights[15] = { 0.1061154, 0.1028506, 0.1028506, 0.09364651,
 0.09364651, 0.0801001, 0.0801001, 0.06436224, 0.06436224,
 0.04858317, 0.04858317, 0.03445063, 0.03445063, 0.02294906,
 0.02294906 };

float offsets[15] = { 0, 0.00125, -0.00125, 0.002916667,
 -0.002916667, 0.004583334, -0.004583334, 0.00625, -0.00625,
 0.007916667, -0.007916667, 0.009583334, -0.009583334, 0.01125,
 -0.01125 };

// Blurs the input image horizontally
float4 BlurHorizontal(float4 Position : POSITION0,
 float2 UV : TEXCOORD0) : COLOR0
{
 float4 output = float4(0, 0, 0, 1);

 // Sample from the surrounding pixels using the precalculated
 // pixel offsets and color weights
 for (int i = 0; i < 15; i++)
 output += tex2D(tex, UV + float2(offsets[i], 0)) * weights[i];

 return output;
}

// Blurs the input image vertically
float4 BlurVertical(float4 Position : POSITION0,
 float2 UV : TEXCOORD0) : COLOR0
{
 float4 output = float4(0, 0, 0, 1);

 for (int i = 0; i < 15; i++)
 output += tex2D(tex, UV + float2(0, offsets[i])) * weights[i];

 return output;
}

technique Technique1
{

Chapter 4

[113]

 pass Horizontal
 {
 PixelShader = compile ps_2_0 BlurHorizontal();
 }

 pass Vertical
 {
 PixelShader = compile ps_2_0 BlurVertical();
 }
}

Notice that this effect contains two techniques—one for blurring the image
horizontally and one for blurring vertically. We blur each direction independently
to create a smoother blur. Notice also that each pixel shader simply adds the
contributions of 15 neighboring pixels and averages the result as discussed earlier.

For the PrelightingRenderer class to perform the blur, we will need a few more
instance variables—a SpriteBatch to draw the depth map into render targets,
the Gaussian blur effect, and a render target where we will store the result of the
horizontal blur. We blur vertically using the original depth buffer as the target,
sampling the horizontally blurred scene from this secondary render target.

SpriteBatch spriteBatch;
RenderTarget2D shadowBlurTarg;
Effect shadowBlurEffect;

These values need to be initialized in the constructor:

spriteBatch = new SpriteBatch(GraphicsDevice);
shadowBlurEffect = Content.Load<Effect>("GaussianBlur");

shadowBlurTarg = new RenderTarget2D(GraphicsDevice, shadowMapSize,
 shadowMapSize, false, SurfaceFormat.Color, DepthFormat.Depth24);

Next, we'll create the function that performs the blur. Notice that we specify which
render target to sample from and which render target to draw into. We also specify
which technique we'd like to use with the dir parameter—0 for the horizontal blur
technique and 1 for the vertical blur technique.

void blurShadow(RenderTarget2D to, RenderTarget2D from, int dir)
{
 // Set the target render target
 graphicsDevice.SetRenderTarget(to);

 graphicsDevice.Clear(Color.Black);

Projection and Shadowing Effects

[114]

 spriteBatch.Begin(SpriteSortMode.Immediate, BlendState.Opaque);

 // Start the Gaussian blur effect
 shadowBlurEffect.CurrentTechnique.Passes[dir].Apply();

 // Draw the contents of the source render target so they can
 // be blurred by the gaussian blur pixel shader
 spriteBatch.Draw(from, Vector2.Zero, Color.White);

 spriteBatch.End();

 // Clean up after the sprite batch
 graphicsDevice.BlendState = BlendState.Opaque;
 graphicsDevice.DepthStencilState = DepthStencilState.Default;

 // Remove the render target
 graphicsDevice.SetRenderTarget(null);
}

In the last change to the PrelightingRenderer class, we need to be sure to blur the
shadow in the Draw() function. Notice that we first copy from the depth target to the
blur target, blurring horizontally along the way, then copy from the blur target back
to the depth target, blurring vertically along the way.

public void Draw()
{
 drawDepthNormalMap();
 drawLightMap();

 if (DoShadowMapping)
 {
 drawShadowDepthMap();
 blurShadow(shadowBlurTarg, shadowDepthTarg, 0);
 blurShadow(shadowDepthTarg, shadowBlurTarg, 1);
 }

 prepareMainPass();
}

Chapter 4

[115]

Variance shadow mapping—generating
shadows
The last step in variance shadow mapping is to generate the shadows themselves.
We will do this in the same place where we calculated the shadows in the previous
example. As we are now storing two values in the depth texture, we first need to
update our sampling function to return the red and green values:

float2 sampleShadowMap(float2 UV)
{
 if (UV.x < 0 || UV.x > 1 || UV.y < 0 || UV.y > 1)
 return float2(1, 1);

 return tex2D(shadowSampler, UV).rg;
}

Finally, we can update the pixel shader to do the variance shadow mapping
calculations. We sample from the depth texture as usual to get the depth it contains,
and calculate the light distance as usual, offsetting it with a small bias. From there,
we perform the shadow calculations as demonstrated in the VSM example code:

float shadow = 1;

if (DoShadowMapping)
{
 float2 shadowTexCoord = postProjToScreen(input.ShadowScreenPosition)
 + halfPixel();

 float realDepth = input.ShadowScreenPosition.z / ShadowFarPlane
 - ShadowBias;

 if (realDepth < 1)
 {
 // Variance shadow mapping code below from the variance shadow
 // mapping demo code @ http://www.punkuser.net/vsm/

 // Sample from depth texture
 float2 moments = sampleShadowMap(shadowTexCoord);

 // Check if we're in shadow
 float lit_factor = (realDepth <= moments.x);

 // Variance shadow mapping
 float E_x2 = moments.y;

Projection and Shadowing Effects

[116]

 float Ex_2 = moments.x * moments.x;
 float variance = min(max(E_x2 - Ex_2, 0.0) +
 1.0f / 10000.0f, 1.0);
 float m_d = (moments.x - realDepth);
 float p = variance / (variance + m_d * m_d);

 shadow = clamp(max(lit_factor, p), ShadowMult, 1.0f);
 }
}

return float4(basicTexture * DiffuseColor * light * shadow, 1);

Summary
Now that you've finished this chapter, you've learned how to use projective texturing
to project 2D images onto your 3D scenes. You've also learned how to extend the
projective texturing effect to project depth textures onto the scene. You then learned
how to use that depth texture to calculate both hard- and soft- edged shadows. In
the next chapter, we will look at a number of "shader effects". These are effects that
involve shaders but are not strictly lighting effects—reflections, fog, and so on.

Shader Effects
HLSL provides us with an incredible amount of power when it comes to what I call
shader effects. These special effects are carried out by the vertex and pixel shaders
on the graphics card rather than through some other method on the CPU. Because
the GPU works directly with vertices and pixels, it can perform certain tasks such
as per pixel lighting, shadow mapping, and so on—as we've already seen—easily
and extremely efficiently. In this chapter, we will implement a number of these "3D
effects" in our own game, and gain an understanding of how powerful these effects
can be.

We will look at four effects: fog, normal mapping, cube mapping, and a water effect.
Fog is used to hide the scene after a given distance. This can have both dramatic and
practical effects: we don't need to draw objects after a certain distance, if we have
faded to the fog color before seeing them, for example. Normal mapping is used
to provide extra detail to a surface without adding more polygons and vertices.
Cube mapping is an effect that is used to add reflections to objects. Although these
reflections can be generated in real time, this is very inefficient using the cube
mapping technique, so we will look at cube mapping with existing 3D textures.
Finally, we will create a water effect that will actually generate reflections in real
time, reflecting the environment around the water as it changes.

Fog
Fog can be entirely implemented in an effect—all we need to do is determine the
distance from the camera of each vertex that we are shading and fade the final
color to a given fog color based on that distance. We will base this effect on the
LightingEffect effect by making a copy of that effect. We will then add the
following effect parameters:

float FogStart = 2000;
float FogEnd = 10000;
float3 FogColor = float3(1, 1, 1);

Chapter 5

[119]

The following screenshot depicts a flat rectangle with a brick texture applied to it.
Because the wall is flat, there is only one normal vector and it points directly away
from the wall. We can imagine that this will produce flat lighting across the entire
wall, despite the fact that a real brick wall varies across its surface due to the bumps
and valleys its bricks create on its surface:

What if, instead of using the model's built-in normal vector, we sampled normal
values as the RGB values of a second texture mapped to its surface?

Shader Effects

[120]

If we were to take the (R, G, B) values and map them to a [-1, 1] range, we could
effectively extract the normal for each pixel the wall covers. The texture we are
sampling from is called a normal map, and this process is called normal mapping.
Notice in the previous screenshot that the normal map appears to line up with the
texture shown in the next screenshot, although the normal map looks a little odd
as it is really storing three pieces of information (the X, Y, and Z components of the
normal) in every pixel.

If we sample the normal map to construct normals instead of using the normals built
into the model, the wall can appear to have much more detail without the need for a
ton of extra vertices:

Chapter 5

[121]

This is the same model and the same texture. The only difference is that the normals
have been extracted from the normal map rather than from the model. This is an
extremely fast way of vastly improving the apparent quality of a model. This is
one of the most common 3D effects used in modern videogames, so it's well worth
learning. That said, let's get to it!

The normal mapping effect will be based on the LightEffect.fx effect, so begin
by copying that effect. We will simply be substituting the use of the model's normal
with the use of the normal extracted from a normal map. First, we need to add a
parameter for the normal map and its sampler:

texture NormalMap;

sampler NormalMapSampler = sampler_state {
 texture = <NormalMap>;
 MinFilter = Anisotropic;
 MagFilter = Anisotropic;
 MipFilter = Linear;
 AddressU = Wrap;
 AddressV = Wrap;
};

Next, we will go ahead and remove the original normal calculations from the vertex
shader and its input/output structs:

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float3 ViewDirection : TEXCOORD2;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float4 worldPosition = mul(input.Position, World);
 float4x4 viewProjection = mul(View, Projection);
 output.Position = mul(worldPosition, viewProjection);

Shader Effects

[122]

 output.UV = input.UV;

 output.ViewDirection = worldPosition - CameraPosition;

 return output;
}

Finally, we can update the lighting section of the pixel shader to extract the normals
from our normal map and use them for the lighting calculations:

// Start with ambient lighting
float3 lighting = AmbientColor;

float3 lightDir = normalize(LightDirection);

// Extract the normals from the normal map
float3 normal = tex2D(NormalMapSampler, input.UV).rgb;
normal = normal * 2 - 1; // Move from [0, 1] to [-1, 1] range

// Add lambertian lighting
lighting += saturate(dot(lightDir, normal)) * LightColor;

Next, we'll create a new material based on the LightMaterial class that will keep
track of the normal map for us:

public class NormalMapMaterial : LightingMaterial
{
 public Texture2D NormalMap { get; set; }

 public NormalMapMaterial(Texture2D NormalMap)
 {
 this.NormalMap = NormalMap;
 }

 public override void SetEffectParameters(Effect effect)
 {
 base.SetEffectParameters(effect);

 if (effect.Parameters["NormalMap"] != null)
 effect.Parameters["NormalMap"].SetValue(NormalMap);
 }
}

To demonstrate our new normal mapping effect, we'd set our scene up as follows:

models.Add(new CModel(Content.Load<Model>("ground"),
 Vector3.Zero, Vector3.Zero, Vector3.One, GraphicsDevice));

models.Add(new CModel(Content.Load<Model>("brick_wall"),
 Vector3.Zero, new Vector3(0,0, 0), Vector3.One, GraphicsDevice));

Effect lightingEffect = Content.Load<Effect>("LightingEffect");
LightingMaterial lightingMat = new LightingMaterial();

Chapter 5

[123]

Effect normalMapEffect = Content.Load<Effect>("NormalMapEffect");
NormalMapMaterial normalMat = new NormalMapMaterial(
 Content.Load<Texture2D>("brick_normal_map"));

lightingMat.LightDirection = new Vector3(.5f, .5f, 1);
lightingMat.LightColor = Vector3.One;

normalMat.LightDirection = new Vector3(.5f, .5f, 1);
normalMat.LightColor = Vector3.One;

models[0].SetModelEffect(lightingEffect, true);
models[1].SetModelEffect(normalMapEffect, true);

models[0].Material = lightingMat;
models[1].Material = normalMat;

Generating normal maps with Photoshop
The "correct" way to generate normal maps for a model is to build two versions
of the model—a high resolution version and another version that is of a lower
resolution (fewer vertices). From there, the modeling tool will generate normal maps
that, when applied to the lower resolution model, will approximate the appearance
of the higher resolution model. In this way, a similar level of detail can be achieved
while the total number of polygons drawn is reduced. This process is different for
every modeling tool, however, and is beyond the scope of this book, so it will not be
covered here. However, there is another way to generate normal maps using Adobe
Photoshop that can still improve the appearance of your models.

Shader Effects

[124]

We are going to generate a normal map for the brick wall that we have been using
thus far. The final result will not be as good as the "real" normal map we have been
using, but it will still make the wall look more detailed and won't require us to build
our own models for the wall. To start with, you will need Adobe Photoshop—it is
an expensive software but you may be able to get it for a lower price if you are a
student, or if you work for a graphics company, and so on. There are other tools
available that can also create normal maps from textures, but we will focus on
Photoshop in this book as the general process remains the same. Once you have
Photoshop, you will need to download and install the "NVIDIA Plug-ins for Adobe
Photoshop" from http://developer.nvidia.com/object/photoshop_dds_
plugins.html. This package contains the tools needed to create normal maps
from images and to create DirectX's .dds image files.

To start, open the texture file in Photoshop. Then, choose Image | Adjustments |
Desaturate to remove the color from the image.

Next, invert the image (Ctrl + I) to swap white and black colors in the image. This
will turn the image into a height map, where pixels with a color value of zero
indicate the lowest height, and pixels with the color value of one indicate the highest
area of the image. You can imagine our bricks as "bumps" on the height map, where
the valleys between them are darker and the bricks themselves are lighter. Next, use
the Image | Adjustments | Brightness and Contrast menu to make the difference
between lighter and darker areas more dramatic. You will probably need to do this
multiple times to achieve the desired effect.

Chapter 5

[125]

Finally, we can use the normal map filter under Filter | NVIDIA Tools |
NormalMapFilter to convert our height map into a normal map. Ensure that under
Height Generation, Filter Type is set to 3x3, Invert Y is checked, Scale is set to 10,
and Height Source is set to Average RGB. Choosing these settings is more of a guess
and check process than a science—the goal is to make something that looks good in
the end. In this case, Average RGB will cause the plugin to use the color value as
the height.

Shader Effects

[126]

NVIDIA's tool will then convert your image into a normal map.

If you were to save this normal map and load it instead onto your brick wall texture,
you would see that while this normal map is not as "correct" as the other, it still does
a good job of approximating the brick pattern:

Chapter 5

[127]

Cube mapping: Making a sky sphere
The second effect we will discuss is called cube mapping. A cube map is like a
texture, but it actually contains six textures—one for each side of a cube:

Cube mapping is any process that involves sampling pixels from this texture. In the
following sections, we will use the preceding cube map to simulate reflections off of
an object, and to simulate a sky wrapped around the scene. Let's start with the sky.

We start by creating a new class SkySphere that keeps track of a model and an effect.
The model is simply a sphere that our cube map will be drawn onto, and the effect
(which we will create next) does that drawing. We draw the sphere around the
camera with the depth buffer disabled, so that the texture drawn on the inside
of the sphere will "fake" an infinitely far away background:

public class SkySphere : IRenderable
{
 CModel model;
 Effect effect;
 GraphicsDevice graphics;

 public SkySphere(ContentManager Content,
 GraphicsDevice GraphicsDevice, TextureCube Texture)
 {
 model = new CModel(Content.Load<Model>("skysphere_mesh"),
 Vector3.Zero,Vector3.Zero, new Vector3(100000),
 GraphicsDevice);

 effect = Content.Load<Effect>("skysphere_effect");
 effect.Parameters["CubeMap"].SetValue(Texture);

Shader Effects

[128]

 model.SetModelEffect(effect, false);

 this.graphics = GraphicsDevice;
 }

 public void Draw(Matrix View, Matrix Projection,
 Vector3 CameraPosition)
 {
 // Disable the depth buffer
 graphics.DepthStencilState = DepthStencilState.None;

 // Move the model with the sphere
 model.Position = CameraPosition;

 model.Draw(View, Projection, CameraPosition);

 graphics.DepthStencilState = DepthStencilState.Default;
 }

 public void SetClipPlane(Vector4? Plane)
 {
 effect.Parameters["ClipPlaneEnabled"].SetValue(Plane.HasValue);

 if (Plane.HasValue)
 effect.Parameters["ClipPlane"].SetValue(Plane.Value);
 }
}

Now we can create the effect. The effect parameters are fairly standard, except that
we use a samplerCUBE parameter instead of a sampler2D:

float4x4 World;
float4x4 View;
float4x4 Projection;
float3 CameraPosition;

texture CubeMap;

samplerCUBE CubeMapSampler = sampler_state {
 texture = <CubeMap>;
 minfilter = anisotropic;
 magfilter = anisotropic;
};

The vertex shader simply outputs the regular position value and a copy of the
world position:

struct VertexShaderInput
{
 float4 Position : POSITION0;
};

Shader Effects

[130]

 {
 VertexShader = compile vs_2_0 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

To implement the sky sphere into our game, we need an instance of the
SkySphere class:

SkySphere sky;

This instance needs to be initialized in the LoadContent() function:

sky = new SkySphere(Content, GraphicsDevice,
 Content.Load<TextureCube>("clouds"));

Finally, we must be sure to call its Draw() function before anything else so it can be
drawn as the infinitely far away background:

// Called when the game should draw itself
protected override void Draw(GameTime gameTime)
{
 GraphicsDevice.Clear(Color.CornflowerBlue);

 sky.Draw(camera.View, camera.Projection, (
 (FreeCamera)camera).Position);

 foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 model.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);

 base.Draw(gameTime);
}

Shader Effects

[132]

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float3 WorldPosition : TEXCOORD0;
 float3 Normal : TEXCOORD1;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float4 worldPosition = mul(input.Position, World);
 output.WorldPosition = worldPosition;

 output.Position = mul(worldPosition, mul(View, Projection));

 output.Normal = mul(input.Normal, World);

 return output;
}

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 if (ClipPlaneEnabled)
 clip(dot(float4(input.WorldPosition, 1), ClipPlane));

 float3 viewDirection = normalize(
 input.WorldPosition - CameraPosition);
 float3 normal = normalize(input.Normal);

 // Reflect around normal
 float3 reflection = reflect(viewDirection, normal);

 return texCUBE(CubeMapSampler, reflection);
}

technique Technique1
{
 pass Pass1
 {
 VertexShader = compile vs_2_0 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

The second and final step is to create a very simple material for this effect:

public class CubeMapReflectMaterial : Material
{
 public TextureCube CubeMap { get; set; }

 public CubeMapReflectMaterial(TextureCube CubeMap)

Chapter 5

[133]

 {
 this.CubeMap = CubeMap;
 }

 public override void SetEffectParameters(Effect effect)
 {
 if (effect.Parameters["CubeMap"] != null)
 effect.Parameters["CubeMap"].SetValue(CubeMap);
 }
}

To use this new effect, we would add an object to our scene (in the LoadContent()
method of the Game1 class) as follows:

models.Add(new CModel(Content.Load<Model>("teapot"),
 Vector3.Zero, Vector3.Zero, Vector3.One * 50, GraphicsDevice));

Effect cubeMapEffect = Content.Load<Effect>("CubeMapReflect");
CubeMapReflectMaterial cubeMat = new
 CubeMapReflectMaterial(Content.Load<TextureCube>("clouds"));

models[0].SetModelEffect(cubeMapEffect, false);
models[0].Material = cubeMat;

Rendering sky boxes with Terragen
There are many ways to create the cube map for a sky box. You can draw them by
hand, render them from a 3D modeling program or the game itself, or, like we are
going to do right now, render them with an environment modeling program such
as Terragen. Terragen is a free program (unless you want to use it commercially, in
which case you will need to pay $99) that renders terrain, water, and skies. We can
specify the camera angles to render from in order to render the images for the six
sides of our cube map.

Shader Effects

[134]

The first step is to download and install Terragen. Download "Terragen Classic" from
http://planetside.co.uk, install it, and launch the program. Before we render our
environment, we need to set a few settings.

Let's begin with the general render settings.

1. Drag the slider under Quality all the way to 100%, and uncheck Land, as
right now we only want to render the sky.

2. In the Image Size dialog, set the image size to the size you want. (512 pixels
by 512 pixels is a good size, however the unregistered version of Terragen
will allow you to export images up to 960 pixels wide and high for the
highest quality sky.)

3. Next, set your camera settings. Under Camera, change the units to Terrain
Units, and set the Camera Position to (128, 128, 0). Set the Target Position to
(128, 256, 0) for now. Set both the Fixed Height Above Surface boxes to 0.

Chapter 5

[135]

4. Finally, in the Camera Settings dialog, set the zoom level to 1.

Now we can change the appearance of our sky. There are dozens of settings than can
create all sorts of skies and landscapes, however for now I'm just going to focus on a
standard cloudy blue sky. Click on the Cloudscape button on the toolbar on the left
side of the screen.

Shader Effects

[136]

We will first extend the height of our sky to cover more of the sky box, by setting
the Sky size parameter. I set it to 8192—twice its original height. Check 3D to make
Terragen render the clouds in 3D. Finally, adjust the contrast and density sliders as
you see fit. In this case, I set them to 100 and 10 respectively.

Finally, we can render our images by using the corresponding button on the
Rendering Control pane. We need to render six times—one for each face of the cube
map that will later be rendered around our scene. The Save button on the render
window can be used to save each image when it finishes rendering. Render the
following images with the respective camera target settings:

Image Target X Target Y Target Z
Front.bmp 128 256 0
Right.bmp 256 128 0
Back.bmp 128 0 0
Left.bmp 0 128 0
Top.bmp 128 128 2
Bottom.bmp 128 128 -2

Chapter 5

[137]

Now we need to combine these textures into a cube map. I've written a program
to do just this. Download it from http://www.innovativegames.net/blog/
blog/2010/06/03/cubemapper and run CubeMapper.exe. Specify the six input
files and an output location for the cube map, then click on Create Cube Map. The
program will generate your cube map for you, which you can then copy into your
game's content directory and use as normal. Keep in mind that this program could
also create cube maps from other textures—the source textures do not have to be
from Terragen.

Creating a reflective water effect
The final example in this chapter will demonstrate how to create a water effect that
reflects the environment above it. It will also make use of normal mapping to create a
ripple effect, and we'll finish it off with some specular highlights.

Shader Effects

[138]

Let's start with the basics. We'll need a class to represent our effect with a model and
effect inside.

class Water
{
 CModel waterMesh;
 Effect waterEffect;

 ContentManager content;
 GraphicsDevice graphics;

 public WaterEffect(ContentManager content, GraphicsDevice graphics,
 Vector3 position, Vector2 size)
 {
 this.content = content;
 this.graphics = graphics;

 waterMesh = new CModel(content.Load<Model>("plane"), position,
 Vector3.Zero, new Vector3(size.X, 1, size.Y), graphics);

 waterEffect = content.Load<Effect>("WaterEffect");
 waterMesh.SetModelEffect(waterEffect, false);

 waterEffect.Parameters["viewportWidth"].SetValue(
 graphics.Viewport.Width);

 waterEffect.Parameters["viewportHeight"].SetValue(
 graphics.Viewport.Height);
 }

}

The first step in the process is to render the scene from the position of a "reflected"
camera. Basically, we flip the position and target of the camera across the water's
plane and render the area of the scene above the water:

Chapter 5

[139]

Because the water needs to be able to draw the entire scene at will, we will need
to specify a way for it to interact with other objects. All of our classes so far have
a common Draw() function, so we will simply create an interface with a Draw()
function that they will all share. Then, the water will be able to tell objects to draw
themselves when necessary:

public interface IRenderable
{
 void Draw(Matrix View, Matrix Projection, Vector3 CameraPosition);
}

Now all we need to do is apply this interface to all of our "renderable" classes:

// Make SkySphere IRenderable
public class SkySphere : IRenderable

// Make CModel IRenderable
public class CModel : IRenderable

We need two member variables to draw the scene—a list of IRenderables and a
render target to render the reflected scene into. Because we want to render our scene
from the camera's point of view, we need to keep a few more instance variables—a
list of objects to render and a render target to store the rendered scene:

RenderTarget2D reflectionTarg;
public List<IRenderable> Objects = new List<IRenderable>();

The render target needs to be initialized in the constructor:

reflectionTarg = new RenderTarget2D(graphics, graphics.Viewport.Width,
 graphics.Viewport.Height, false, SurfaceFormat.Color,
 DepthFormat.Depth24);

As our reflected camera position will be below the water's plane, we want to limit
the rendering to only the objects above water. To do so, we will use what is called
a clipping plane, where we cut off anything below the water's surface when
rendering. We'll need to add this functionality to any effect that may intersect our
water, so while we will do so only for the sky sphere and cube map reflection effects
that we wrote most recently, we would need to do so for any effect to be used in
conjunction with the Water class.

We will expand our IRenderable interface to also require a SetClipPlane()
function. We represent a clip plane as a Vector4 with the X, Y, and Z components
representing a normal and the final component representing the distance along that
normal from the origin:

public interface IRenderable
{

Shader Effects

[140]

 void Draw(Matrix View, Matrix Projection, Vector3 CameraPosition);
 void SetClipPlane(Vector4? Plane);
}

The implementation for the CModel class is simple: if the model's effect supports clip
planes, set the clip plane to each effect:

public void SetClipPlane(Vector4? Plane)
{
 foreach (ModelMesh mesh in Model.Meshes)
 foreach (ModelMeshPart part in mesh.MeshParts)
 {
 if (part.Effect.Parameters["ClipPlaneEnabled"] != null)
 part.Effect.Parameters["ClipPlaneEnabled"].
 SetValue(Plane.HasValue);

 if (Plane.HasValue)
 if (part.Effect.Parameters["ClipPlane"] != null)
 part.Effect.Parameters["ClipPlane"].SetValue(Plane.Value);
 }
}

The implementation for the SkySphere class is even simpler because we know ahead
of time what effect parameters the sky effect will have:

public void SetClipPlane(Vector4? Plane)
{
 effect.Parameters["ClipPlaneEnabled"].SetValue(Plane.HasValue);

 if (Plane.HasValue)
 effect.Parameters["ClipPlane"].SetValue(Plane.Value);
}

We will need to add the relevant effect parameters to any effect that we want to
support clip planes, in this case, the CubeMapReflect.fx and skysphere_effect.fx
effects:

float4 ClipPlane;
bool ClipPlaneEnabled = false;

As both of these effects already calculate the world position in the vertex shader, we
can simply add the following to the beginning of both of their pixel shaders:

if (ClipPlaneEnabled)
 clip(dot(float4(input.WorldPosition, 1), ClipPlane));

Chapter 5

[141]

Now let's get to the effect file. We start with the usual effect paremeters—a texture
sampler for the reflected scene render and the view matrix for the reflected camera.

float4x4 World;
float4x4 View;
float4x4 Projection;
float3 CameraPosition;
float4x4 ReflectedView;

texture ReflectionMap;

sampler2D reflectionSampler = sampler_state {
 texture = <ReflectionMap>;
 MinFilter = Anisotropic;
 MagFilter = Anisotropic;
};

#include "PPShared.vsi"

The vertex shader simply needs to calculate the screen space position of the vertex
from the main camera's point of view and from the reflected camera's point of view.
We need the latter because it will be used to sample from the reflection map, which is
where the reflected view of the scene was rendered.

struct VertexShaderInput
{
 float4 Position : POSITION0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float4 ReflectionPosition : TEXCOORD1;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float4x4 wvp = mul(World, mul(View, Projection));
 output.Position = mul(input.Position, wvp);

 float4x4 rwvp = mul(World, mul(ReflectedView, Projection));
 output.ReflectionPosition = mul(input.Position, rwvp);

 return output;
}

Shader Effects

[142]

The pixel shader then uses the reflected screen space position of the vertex to sample
the reflection from the reflection map. For now, it will just return this value to create
a mirror effect.

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 float2 reflectionUV = postProjToScreen(input.ReflectionPosition) +
 halfPixel();

 float3 reflection = tex2D(reflectionSampler, reflectionUV);

 return float4(reflection, 1);
}

Finally, we have our usual technique definition:

technique Technique1
{
 pass Pass1
 {
 VertexShader = compile vs_1_1 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

We can now write a function that will render the scene with the reflected camera,
clip planes, and so on into our render target:

public void renderReflection(Camera camera)
{
 // Reflect the camera's properties across the water plane
 Vector3 reflectedCameraPosition = ((FreeCamera)camera).Position;
 reflectedCameraPosition.Y = -reflectedCameraPosition.Y +
 waterMesh.Position.Y * 2;

 Vector3 reflectedCameraTarget = ((FreeCamera)camera).Target;
 reflectedCameraTarget.Y = -reflectedCameraTarget.Y
 + waterMesh.Position.Y * 2;

 // Create a temporary camera to render the reflected scene
 Camera reflectionCamera = new TargetCamera(
 reflectedCameraPosition, reflectedCameraTarget, graphics);

 reflectionCamera.Update();

 // Set the reflection camera's view matrix to the water effect
 waterEffect.Parameters["ReflectedView"].SetValue(
 reflectionCamera.View);

 // Create the clip plane

Chapter 5

[143]

 Vector4 clipPlane = new Vector4(0, 1, 0, -waterMesh.Position.Y);

 // Set the render target
 graphics.SetRenderTarget(reflectionTarg);
 graphics.Clear(Color.Black);

 // Draw all objects with clip plane
 foreach (IRenderable renderable in Objects)
 {
 renderable.SetClipPlane(clipPlane);

 renderable.Draw(reflectionCamera.View, reflectionCamera.Projection,
 reflectedCameraPosition);

 renderable.SetClipPlane(null);
}

 graphics.SetRenderTarget(null);

 // Set the reflected scene to its effect parameter in
 // the water effect
 waterEffect.Parameters["ReflectionMap"].SetValue(reflectionTarg);
}

We will also add another function to handle the entire pre-drawing process (drawing
the scene into the render target):

public void PreDraw(Camera camera, GameTime gameTime)
{
 renderReflection(camera);
}

Let's see what we have so far by creating a "water effect" in the Game1 class. First, we
need an instance of the class:

Water water;

We can then initialize this instance in the LoadContent() method. Remember that
we need to add objects to its list if we want them to be drawn in the reflection:

water = new Water(Content, GraphicsDevice,
 new Vector3(0, 0, 0), new Vector2(1000, 1000));

water.Objects.Add(sky);
water.Objects.Add(models[0]);

Finally, we need to call its PreDraw() and Draw() functions in the main
Draw() function:

// Called when the game should draw itself
protected override void Draw(GameTime gameTime)

Shader Effects

[144]

{
 water.PreDraw(camera, gameTime);

 GraphicsDevice.Clear(Color.CornflowerBlue);

 sky.Draw(camera.View, camera.Projection, (
 (FreeCamera)camera).Position);
 water.Draw(camera.View, camera.Projection, (
 (FreeCamera)camera).Position);

 foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 model.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);

 base.Draw(gameTime);
}

Running the game now will show the perfect mirror water effect that we have so far:

You could leave the effect as is if you wanted, for example, a super shiny glass floor.
It's not much of a stretch to modify the effect to produce a mirror for other situations,
like a mirror on a wall, for example. However, as we are working on a water effect
right now, we'll focus on making this look more like water. Let's start by giving it a
watery hue. We'll start by adding two new effect parameters:

float3 BaseColor = float3(0.2, 0.2, 0.8);
float BaseColorAmount = 0.3f;

Now we simply need to blend between the reflection color and the base color in the
pixel shader to give it a little tint. The lerp() function interpolates between two
values by the amount given in the third parameter (0 to 1).

return float4(lerp(reflection, BaseColor, BaseColorAmount), 1);

Chapter 5

[145]

This looks a little more like water, but we're missing a huge feature of normal
water—ripples. We'll simulate water ripples by applying a normal map. However,
instead of using it to offset lighting, we're going to use it to modify the sampling
position of the reflection map. This will create the illusion that each "wave" is
reflecting the scene correctly. The first thing we need is a texture and texture
sampler in our shader for the normal map:

texture WaterNormalMap;

sampler2D waterNormalSampler = sampler_state {
 texture = <WaterNormalMap>;
};

We will also need a few effect parameters that will modify the normal map slightly
to adjust the wave size and offset the position over time to make the waves "move"
across the surface of the water.

float WaveLength = 0.6;
float WaveHeight = 0.2;
float Time = 0;
float WaveSpeed = 0.04f;

We'll also need a new value in the VertexShaderOutput struct—the position to
sample from the normal map. The VertexShaderInput struct will need to supply
the UV coordinates of the mesh as well:

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
};

Shader Effects

[146]

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float4 ReflectionPosition : TEXCOORD1;
 float2 NormalMapPosition : TEXCOORD2;
};

The vertex shader, then, will need to calculate this value:

output.NormalMapPosition = input.UV/WaveLength;
output.NormalMapPosition.y -= Time * WaveSpeed;

Finally, we can modify the pixel shader to use the offset texture coordinates when
sampling from the reflection map:

float4 normal = tex2D(waterNormalSampler, input.NormalMapPosition) * 2
- 1;
float2 UVOffset = WaveHeight * normal.rg;
float3 reflection = tex2D(reflectionSampler, reflectionUV + UVOffset);

Our WaterEffect class will need to set the shader parameters that we added for us.
At the end of the constructor, add the code to load in the normal map:

waterEffect.Parameters["WaterNormalMap"].SetValue(
 content.Load<Texture2D>("water_normal"));

At the end of the PreDraw method, we will set the Time value:

waterEffect.Parameters["Time"].SetValue(
 (float)gameTime.TotalGameTime.TotalSeconds);

This makes our water ripple like real water:

Chapter 5

[147]

However, there is a flaw in this image, where the water touches the edge of the
screen. Offsetting the UV coordinates that we use to sample from the reflection
render target can sometimes result in us using UV coordinates that are past the
boundaries of the screen, which by default will be wrapped around to the other
side of the texture. This means that at the bottom of the screen, we can actually see
the sky where we should see water. To fix this, we can change the "texture address
mode" to "mirror", which will reverse the reflected texture when sampled outside of
its boundaries. This is not technically correct but it will give the water edges a more
correct appearance:

sampler2D reflectionSampler = sampler_state {
 texture = <ReflectionMap>;
 MinFilter = Point;
 MagFilter = Point;
 AddressU = Mirror;
 AddressV = Mirror;
};

Let's add one finishing touch—specular highlights when the water reflects our light
source (in this case, a directional light). We will need one more effect parameter—the
light direction.

float3 LightDirection = float3(1, 1, 1);

Our VertexShaderOutput struct will need another value as well:

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float4 ReflectionPosition : TEXCOORD1;
 float2 NormalMapPosition : TEXCOORD2;
 float4 WorldPosition : TEXCOORD3;
};

Calculating this value in the vertex shader is easy: we simply multiply the input
position by the world matrix:

output.WorldPosition = mul(input.Position, World);

Shader Effects

[148]

Finally, we can update the pixel shader to add the specular value to the output. The
specular value is calculated the same way as earlier with our model shader:

float3 viewDirection = normalize(CameraPosition - input.
WorldPosition);

float3 reflectionVector = -reflect(LightDirection, normal.rgb);
float specular = dot(normalize(reflectionVector), viewDirection);
specular = pow(specular, 256);
return float4(lerp(reflection, BaseColor, BaseColorAmount) + specular,
1);

Adding in the specular effect completes our water effect.

Summary
Now that you've reached the end of this chapter, you've seen a number of "shader
effects"—special effects that make use of HLSL and the programmable pipeline
to get some interesting results that don't have anything to do with lighting per se.
You've seen how to implement some extremely simple fog in an effect file, which
(as discussed earlier) is both cheap and extremely useful, performance-wise and for
dramatic effect.

Next, you saw two ways to use cube maps in a game—mapped to the inside of a
sphere placed around the camera to simulate an infinitely far away sky, and mapped
to the exterior of a model to implement some relatively cheap non-real-time reflections.

Billboard and Particle Effects
Billboarding is a technique where 2D textures are drawn onto 3D rectangles placed
in the scene. In many cases, those rectangles are rotated to face the camera, while in
other cases they rotate around a specific axis. We will look at examples of both of
these situations to create the effect of 3D clouds and trees. The latter case is interesting
because it allows us to efficiently draw huge numbers of trees onto the screen—a
number that would be impractical with 3D models. In the following screenshot, the
trees and the clouds at the top of the screen are drawn using billboards:

From afar, the two methods are often indistinguishable, so many games will do
just that: draw 2D "billboards" in place of 3D models until the player gets within a
certain distance of an object. Once the player gets close enough that they would see a
difference between a billboard and the model, the game will switch to drawing a 3D
model instead. This is a common practice in most "level of detail" systems, and so it
is a valuable technique to learn. The technique can be used in other ways as well: to
simulate more complex objects, such as shrubs or tree leaves, or to draw the muzzle
flash for a gun to name a few.

Billboard and Particle Effects

[150]

A more advanced use of the billboarding technique is for use in particle effects.
Particles are just billboards, but they move according to time, fade in and out,
change color, and so on to create a variety of effects, such as fire and smoke.
We will look at particle systems at the end of this chapter.

Creating the BillboardSystem class
We draw billboards using what are called vertex buffers and index buffers. A vertex
is simply a point in 3D space. XNA allows us to specify what information we'd like
to store in a vertex, and this information is passed to the vertex shader according to
the semantics we specify in the input struct in HLSL. A vertex buffer is basically a
list of vertices that the graphics card can interact with.

Index buffers help us to cut down on the total number of vertices we have to draw.
Instead of using six vertices to describe a rectangle (three vertices per triangle, with
two triangles forming a rectangle), we can use four vertices and six indices. An index
buffer is simply a list of locations (indices) in the vertex buffer that combine to form
shapes—triangles in this case. Let's begin by creating a class that will, given the
locations of a set of billboards, handle the creation and drawing of those billboards.

public class BillboardSystem
{
 // Vertex buffer and index buffer, particle
 // and index arrays
 VertexBuffer verts;
 IndexBuffer ints;
 VertexPositionTexture[] particles;
 int[] indices;

 // Billboard settings
 int nBillboards;
 Vector2 billboardSize;
 Texture2D texture;

 // GraphicsDevice and Effect
 GraphicsDevice graphicsDevice;
 Effect effect;
}

Chapter 6

[151]

Our constructor will need to accept a number of values as well:

public BillboardSystem(GraphicsDevice graphicsDevice,
 ContentManager content, Texture2D texture,
 Vector2 billboardSize, Vector3[] particlePositions)
{
 this.nBillboards = particlePositions.Length;
 this.billboardSize = billboardSize;
 this.graphicsDevice = graphicsDevice;
 this.texture = texture;

 effect = content.Load<Effect>("BillboardEffect");
}

Our first order of business in the constructor is to initialize the vertex buffers and
index buffers. We create four vertices and six indices per billboard. The vertices are
all centered at each billboard's location, and are offset later in the vertex shader based
on their texture coordinates. The six indices allow us to create two triangles from
four vertices:

void generateParticles(Vector3[] particlePositions)
{
 // Create vertex and index arrays
 particles = new VertexPositionTexture[nBillboards * 4];
 indices = new int[nBillboards * 6];

 int x = 0;

 // For each billboard...
 for (int i = 0; i < nBillboards * 4; i += 4)
 {
 Vector3 pos = particlePositions[i / 4];

 // Add 4 vertices at the billboard's position
 particles[i + 0] = new VertexPositionTexture(pos,
 new Vector2(0, 0));
 particles[i + 1] = new VertexPositionTexture(pos,
 new Vector2(0, 1));

Billboard and Particle Effects

[152]

 particles[i + 2] = new VertexPositionTexture(pos,
 new Vector2(1, 1));
 particles[i + 3] = new VertexPositionTexture(pos,
 new Vector2(1, 0));

 // Add 6 indices to form two triangles
 indices[x++] = i + 0;
 indices[x++] = i + 3;
 indices[x++] = i + 2;
 indices[x++] = i + 2;
 indices[x++] = i + 1;
 indices[x++] = i + 0;
 }

 // Create and set the vertex buffer
 verts = new VertexBuffer(graphicsDevice,
 typeof(VertexPositionTexture),
 nBillboards * 4, BufferUsage.WriteOnly);
 verts.SetData<VertexPositionTexture>(particles);

 // Create and set the index buffer
 ints = new IndexBuffer(graphicsDevice,
 IndexElementSize.ThirtyTwoBits,
 nBillboards * 6, BufferUsage.WriteOnly);
 ints.SetData<int>(indices);
}

We need to call this function at the end of the constructor:

generateParticles(particlePositions);

As noted earlier, there are four vertices for each billboard. However, note that we
are not actually placing a vertex at each corner of the billboard as you may expect,
but are instead placing all six vertices at the billboard's position. At this point, the
vertices are not offset from the billboard position at all but are clustered around the
same point. Instead, we are storing the corner of the billboard at which each vertex is
positioned into the texture coordinate data.

Billboard and Particle Effects

[154]

We can now write the Draw() function:

public void Draw(Matrix View, Matrix Projection, Vector3 Up, Vector3
Right)
{
 // Set the vertex and index buffer to the graphics card
 graphicsDevice.SetVertexBuffer(verts);
 graphicsDevice.Indices = ints;

 setEffectParameters(View, Projection, Up, Right);

 // Draw the billboards
 graphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList,
 0, 0, 4 * nBillboards, 0, nBillboards * 2);

 // Un-set the vertex and index buffer
 graphicsDevice.SetVertexBuffer(null);
 graphicsDevice.Indices = null;
}

We can also write the HLSL effect. Add a new effect called BillboardEffect.fx.
The effect will have parameters that reflect those listed earlier:

float4x4 View;
float4x4 Projection;

texture ParticleTexture;
sampler2D texSampler = sampler_state {
 texture = <ParticleTexture>;
};

float2 Size;
float3 Up; // Camera's 'up' vector
float3 Side; // Camera's 'side' vector

As we are using the VertexPositionTexture vertex type, the only values the
vertex shader needs to receive and return are the position and UV coordinates
of each vertex:

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
};

Chapter 6

[155]

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
};

The vertex shader then transforms the vertex's position to the corner of the rectangle
it represents based on its UV coordinates:

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float3 position = input.Position;

 // Determine which corner of the rectangle this vertex
 // represents
 float2 offset = float2((input.UV.x - 0.5f) * 2.0f,
 -(input.UV.y - 0.5f) * 2.0f);

 // Move the vertex along the camera's 'plane' to its corner
 position += offset.x * Size.x * Side + offset.y * Size.y * Up;

 // Transform the position by view and projection
 output.Position = mul(float4(position, 1), mul(View, Projection));

 output.UV = input.UV;

 return output;
}

Finally, the pixel shader simply samples the texture and returns the value. The
technique definition is very standard as well:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 float4 color = tex2D(texSampler, input.UV);

 return color;
}

technique Technique1
{
 pass Pass1
 {
 VertexShader = compile vs_2_0 VertexShaderFunction();

Billboard and Particle Effects

[156]

 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

Let's create an instance of the BillboardSystem class in our Game1 class to see how
it looks:

BillboardSystem trees;

We'll need to initialize it in the constructor:

// Generate random tree positions
Random r = new Random();
Vector3[] positions = new Vector3[100];

for (int i = 0; i < positions.Length; i++)
 positions[i] = new Vector3((float)r.NextDouble() * 20000 - 10000,
 400, (float)r.NextDouble() * 20000 - 10000);

trees = new BillboardSystem(GraphicsDevice, Content,
 Content.Load<Texture2D>("tree_billboard"), new Vector2(800),
positions);

Note that we'll need access to the vectors pointing up and to the right from the
camera's point of view. For brevity's sake we'll just make these public properties of
the FreeCamera class:

public Vector3 Up { get; private set; }
public Vector3 Right { get; private set; }

These values can then be set at the end of the Update() function of the
FreeCamera class:

this.Up = up;
this.Right = Vector3.Cross(forward, up);

Finally, we need to make sure to call the Draw() method of the BillboardSystem
class in the game's Draw() method, after the models have been drawn:

trees.Draw(camera.View, camera.Projection, ((FreeCamera)camera).Up,
 ((FreeCamera)camera).Right);

Drawing this way will indeed draw all of the polygons to the screen, but right off the
bat there is a problem: our billboards are not being drawn with transparency.

Chapter 6

[157]

As this billboard texture has an alpha channel (transparency), we would expect
it to blend in with the scene. To fix this, we need to enable alpha blending before
drawing the polygons:

// Enable alpha blending
graphicsDevice.BlendState = BlendState.AlphaBlend;

// Draw the billboards
graphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0,
 4 * nBillboards, 0, nBillboards * 2);

// Reset render states
graphicsDevice.BlendState = BlendState.Opaque;

Enabling transparency, however, creates a second, more subtle problem: our
billboards are obscuring each other, despite being drawn transparently. This is
because the depth buffer is still being used to determine which polygons are
obscuring other polygons.

Billboard and Particle Effects

[158]

We could solve this problem by disabling the depth buffer when drawing our
billboards, but then we would end up with yet another issue where billboards
drawn later would obscure other billboards, even if the latter billboards are
closer to the camera:

This is a somewhat complex problem with two solutions. The first solution would
be to sort all of the billboards from back to front when drawing, so that the closer
billboards would always be drawn on top of the farther billboards. This would be the
most accurate way to solve the problem, but it would also be incredibly inefficient:
sorting potentially hundreds of billboards by their distance from the camera would
take a long time, especially considering that this technique is meant to save time.

Luckily, there is a simpler solution: instead of drawing all the billboards in one pass,
we will draw all of them twice but will draw only certain parts of them each time. In
the first pass, we will draw those sections that are completely or mostly opaque—in
other words, we will draw the "solid" parts of the billboard first. During the first
pass, we will allow our billboards to write to the depth buffer so that these solid
areas will obscure other billboards. We first need to update our effect to discard
pixels below a certain transparency threshold:

bool AlphaTest = true;
float AlphaTestValue = 0.5f;

In the pixel shader, we will use the clip() function again to discard pixels below the
AlphaTestValue parameter:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 float4 color = tex2D(texSampler, input.UV);

 if (AlphaTest)

Chapter 6

[159]

 clip((color.a - AlphaTestValue) * (AlphaTestGreater ? 1 : -1));

 return color;
}

Back in the BillboardSystem class, we will add a function to draw the opaque parts
of our billboards:

void drawOpaquePixels()
{
 graphicsDevice.DepthStencilState = DepthStencilState.Default;

 effect.Parameters["AlphaTest"].SetValue(true);
 effect.Parameters["AlphaTestGreater"].SetValue(true);

 drawBillboards();
}

void drawBillboards()
{
 effect.CurrentTechnique.Passes[0].Apply();

 graphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0,
 4 * nBillboards, 0, nBillboards * 2);
}

During the second pass, we will draw only the transparent parts of each billboard,
but this time we will do so with the depth buffer disabled. In this way, the sections
being drawn will still be obscured by other billboards, but will not obscure billboards
drawn after them. While this is not always technically correct, as some transparent
parts of billboards may be drawn over the transparent parts of billboards drawn
before them, the effect is usually not noticeable.

void drawTransparentPixels()
{
 graphicsDevice.DepthStencilState = DepthStencilState.DepthRead;

 effect.Parameters["AlphaTest"].SetValue(true);
 effect.Parameters["AlphaTestGreater"].SetValue(false);

 drawBillboards();
}

Billboard and Particle Effects

[160]

The last step is to update the Draw() method to use these two functions. However,
we should probably give the user the option to choose which method of drawing
to use: simple drawing or occlusion-ensured drawing. In this way, if the user is
drawing a large number of mostly transparent billboards, where most of the pixels
will be drawn without occlusion anyway (clouds, for example), they will not waste
time drawing everything twice:

public bool EnsureOcclusion = true;

We then check this value in the Draw() method:

public void Draw(Matrix View, Matrix Projection, Vector3 Up, Vector3
Right)
{
 // Set the vertex and index buffer to the graphics card
 graphicsDevice.SetVertexBuffer(verts);
 graphicsDevice.Indices = ints;

 graphicsDevice.BlendState = BlendState.AlphaBlend;

 setEffectParameters(View, Projection, Up, Right);

 if (EnsureOcclusion)
 {
 drawOpaquePixels();
 drawTransparentPixels();
 }
 else
 {
 graphicsDevice.DepthStencilState = DepthStencilState.DepthRead;
 effect.Parameters["AlphaTest"].SetValue(false);
 drawBillboards();
 }

 // Reset render states
 graphicsDevice.BlendState = BlendState.Opaque;
 graphicsDevice.DepthStencilState = DepthStencilState.Default;

 // Un-set the vertex and index buffer
 graphicsDevice.SetVertexBuffer(null);
 graphicsDevice.Indices = null;
}

Chapter 6

[161]

If we run the game now, we can see that the trees are all rendering nicely, from any
horizontal angle:

There is, however, one final problem. If we look at the scene from the previous
screenshot, the trees will continue to rotate to face the camera. This works for
some billboards (clouds, smoke particles, and so on) but does not work very well
for objects that are trying to approximate 3D objects, such as trees that are rooted in
one spot:

Billboard and Particle Effects

[162]

What we are currently doing is called spherical billboarding. With spherical
billboarding, billboards will turn to face the camera no matter what angle the
camera is viewing them from. To solve this problem we will switch to cylindrical
billboarding, which will limit rotation to the Y axis. However, we want to allow the
user to switch between the two modes depending on the desired effect:

public enum BillboardMode { Cylindrical, Spherical };
public BillboardMode Mode = BillboardMode.Spherical;

To change which mode we are using we simply switch between using the camera's
"up" vector or the literal "up" vector (0, 1, 0) in the setEffectParameters() method:

effect.Parameters["Up"].SetValue(Mode == BillboardMode.Spherical ?
 Up : Vector3.Up);

Switching to cylindrical billboarding in the game's class will give us the
desired result:

trees.Mode = BillboardSystem.BillboardMode.Cylindrical;

Creating clouds with spherical
billboarding
Now that our BillboardSystem class is complete, let's add another instance of
it to the Game1 class using the opposite Mode and EnsureOcclusion settings to
draw clouds:

BillboardSystem clouds;

We'll need to initialize this like our trees instance:

Vector3[] cloudPositions = new Vector3[350];

for (int i = 0; i < cloudPositions.Length; i++)
{

Chapter 6

[163]

 cloudPositions[i] = new Vector3(
 r.Next(-6000, 6000),
 r.Next(2000, 3000),
 r.Next(-6000, 6000));
}

clouds = new BillboardSystem(GraphicsDevice, Content,
 Content.Load<Texture2D>("cloud2"), new Vector2(1000),
 cloudPositions);

clouds.EnsureOcclusion = false;

Non-rotating billboards
Another way to use billboards is to simply place them in 3D space and leave them
as is. This is useful to approximate various shapes without having them rotate all
the time—a bush or shrub, for example. This is more practical for up-close drawing
because they still look as complex as a model, but don't require a model to be drawn
containing hundreds of vertices:

Billboard and Particle Effects

[164]

In this style of billboarding, we build a "cross" out of two rectangles that will
simulate a 3D object:

The class that handles this is very similar to the BillboardSystem class, but makes a
few simplifying changes, and has some changes when creating vertices and indices.
Begin by copying the BillboardSystem class, and rename it to BillboardCross.
You will need to change the classname and reflect that change in the constructor.
You can then remove the Mode enumeration and member variable. The differences
arise first in the generateParticles() function, where we create two rectangles per
billboard instead of one. Note that we are also placing vertices directly in 3D space
rather than transforming them in a shader:

void generateParticles(Vector3[] particlePositions)
{
 // Create vertex and index arrays
 particles = new VertexPositionTexture[nBillboards * 8];
 indices = new int[nBillboards * 12];

 int x = 0;

 // For each billboard...
 for (int i = 0; i < nBillboards * 8; i += 8)
 {

Chapter 6

[165]

 Vector3 pos = particlePositions[i / 8];

 Vector3 offsetX = new Vector3(billboardSize.X/2.0f,
 billboardSize.Y/2.0f, 0);
 Vector3 offsetZ = new Vector3(0, offsetX.Y, offsetX.X);

 // Add 4 vertices per rectangle
 particles[i + 0] = new VertexPositionTexture(pos +
 new Vector3(-1, 1, 0) * offsetX, new Vector2(0, 0));
 particles[i + 1] = new VertexPositionTexture(pos +
 new Vector3(-1, -1, 0) * offsetX, new Vector2(0, 1));
 particles[i + 2] = new VertexPositionTexture(pos +
 new Vector3(1, -1, 0) * offsetX, new Vector2(1, 1));
 particles[i + 3] = new VertexPositionTexture(pos +
 new Vector3(1, 1, 0) * offsetX, new Vector2(1, 0));

 particles[i + 4] = new VertexPositionTexture(pos +
 new Vector3(0, 1, -1) * offsetZ, new Vector2(0, 0));
 particles[i + 5] = new VertexPositionTexture(pos +
 new Vector3(0, -1, -1) * offsetZ, new Vector2(0, 1));
 particles[i + 6] = new VertexPositionTexture(pos +
 new Vector3(0, -1, 1) * offsetZ, new Vector2(1, 1));
 particles[i + 7] = new VertexPositionTexture(pos +
 new Vector3(0, 1, 1) * offsetZ, new Vector2(1, 0));

 // Add 6 indices per rectangle to form four triangles
 indices[x++] = i + 0;
 indices[x++] = i + 3;
 indices[x++] = i + 2;
 indices[x++] = i + 2;
 indices[x++] = i + 1;
 indices[x++] = i + 0;

 indices[x++] = i + 0 + 4;
 indices[x++] = i + 3 + 4;
 indices[x++] = i + 2 + 4;
 indices[x++] = i + 2 + 4;
 indices[x++] = i + 1 + 4;
 indices[x++] = i + 0 + 4;
 }

Billboard and Particle Effects

[166]

 // Create and set the vertex buffer
 verts = new VertexBuffer(graphicsDevice,
 typeof(VertexPositionTexture),
 nBillboards * 8, BufferUsage.WriteOnly);
 verts.SetData<VertexPositionTexture>(particles);

 // Create and set the index buffer
 ints = new IndexBuffer(graphicsDevice,
 IndexElementSize.ThirtyTwoBits,
 nBillboards * 12, BufferUsage.WriteOnly);
 ints.SetData<int>(indices);
}

The only other difference is in the drawBillboards() function where we must draw
twice as many triangles:

void drawBillboards()
{
 effect.CurrentTechnique.Passes[0].Apply();

 graphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0,
 0, nBillboards * 8, 0, nBillboards * 4);
}

The effect is also a duplicate of the BillboardEffect.fx effect, save for a few
simplifying changes. First, we will no longer need the Up or Side parameters.
Second, the vertex shader will only need to transform our vertices' positions
with the view and projection matrices:

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 output.Position = mul(input.Position, mul(View, Projection));
 output.UV = input.UV;

 return output;
}

Chapter 6

[167]

Back in the BillboardCross class, the setEffectParameters() function will no
longer need to set the Side or Up parameters. Additionally, we will no longer need to
pass those parameters to the setEffectParameters() or Draw() functions, so you
may remove them:

void setEffectParameters(Matrix View, Matrix Projection)
{
 effect.Parameters["ParticleTexture"].SetValue(texture);
 effect.Parameters["View"].SetValue(View);
 effect.Parameters["Projection"].SetValue(Projection);
}

Finally, we need to switch to the new effect in the constructor:

effect = content.Load<Effect>("BillboardCrossEffect");

To use this new system in our game, we can switch the trees member variable to a
BillboardCross variable:

BillboardCross trees;

We initialize this using the same random positions but with slightly different
arguments:

trees = new BillboardCross(GraphicsDevice, Content,
 Content.Load<Texture2D>("tree_billboard"), new Vector2(800),
positions);

Finally, our Draw() call must be changed so as not to pass the Right or Up
parameters:

trees.Draw(camera.View, camera.Projection);

Billboard and Particle Effects

[168]

Particle effects
The final topic we are going to look at is particle effects. Particles are basically
billboards, but in addition to being rotated to face the camera we move them over
time. For example, we may specify a starting position, direction, and speed, and
move each particle along its direction at its speed from its starting position based
on the time that has elapsed since the particle began moving in the vertex shader. It
is possible to create very complicated effects using particles, as they are relatively
cheap—fire, smoke, and so on, are all easily achieved and convincing using
particle systems.

In this case, we will specify a starting position, movement direction, speed, lifetime,
fade in time, and "wind" value (which moves all particles uniformly in a given
direction over time) for our particles. Because we want to specify all of these
specific values per particle we will need a custom vertex format:

struct ParticleVertex : IVertexType
{
 Vector3 startPosition;
 Vector2 uv;
 Vector3 direction;
 float speed;
 float startTime;

 // Starting position of that particle (t = 0)
 public Vector3 StartPosition
 {
 get { return startPosition; }
 set { startPosition = value; }
 }

 // UV coordinate, used for texturing and to offset vertex in shader
 public Vector2 UV
 {
 get { return uv; }
 set { uv = value; }
 }

 // Movement direction of the particle
 public Vector3 Direction
 {
 get { return direction; }
 set { direction = value; }
 }

Chapter 6

[169]

 // Speed of the particle in units/second
 public float Speed
 {
 get { return speed; }
 set { speed = value; }
 }

 // The time since the particle system was created that this
 // particle came into use
 public float StartTime
 {
 get { return startTime; }
 set { startTime = value; }
 }

 public ParticleVertex(Vector3 StartPosition, Vector2 UV,
 Vector3 Direction, float Speed, float StartTime)
 {
 this.startPosition = StartPosition;
 this.uv = UV;
 this.direction = Direction;
 this.speed = Speed;
 this.startTime = StartTime;
 }

 // Vertex declaration
 public readonly static VertexDeclaration VertexDeclaration =
 new VertexDeclaration(
 new VertexElement(0, VertexElementFormat.Vector3,
 // Start position
 VertexElementUsage.Position, 0),
 new VertexElement(12, VertexElementFormat.Vector2,
 // UV coordinates
 VertexElementUsage.TextureCoordinate, 0),
 new VertexElement(20, VertexElementFormat.Vector3,
 // Movement direction
 VertexElementUsage.TextureCoordinate, 1),
 new VertexElement(32, VertexElementFormat.Single,
 // Movement speed
 VertexElementUsage.TextureCoordinate, 2),
 new VertexElement(36, VertexElementFormat.Single,
 // Start time
 VertexElementUsage.TextureCoordinate, 3)
);

 VertexDeclaration IVertexType.VertexDeclaration {
 get { return VertexDeclaration; } }
}

Chapter 6

[171]

 // Queue variables
 int activeStart = 0, nActive = 0;

 // Time particle system was created
 DateTime start;
}

The constructor and generateParticles() functions may also appear familiar:

public ParticleSystem(GraphicsDevice graphicsDevice,
 ContentManager content, Texture2D tex, int nParticles,
 Vector2 particleSize, float lifespan,
 Vector3 wind, float FadeInTime)
{
 this.nParticles = nParticles;
 this.particleSize = particleSize;
 this.lifespan = lifespan;
 this.graphicsDevice = graphicsDevice;
 this.wind = wind;
 this.texture = tex;
 this.fadeInTime = FadeInTime;

 // Create vertex and index buffers to accomodate all particles
 verts = new VertexBuffer(graphicsDevice, typeof(ParticleVertex),
 nParticles * 4, BufferUsage.WriteOnly);

 ints = new IndexBuffer(graphicsDevice,
 IndexElementSize.ThirtyTwoBits, nParticles * 6,
 BufferUsage.WriteOnly);

 generateParticles();

 effect = content.Load<Effect>("ParticleEffect");

 start = DateTime.Now;
}

void generateParticles()
{
 // Create particle and index arrays
 particles = new ParticleVertex[nParticles * 4];
 indices = new int[nParticles * 6];

 Vector3 z = Vector3.Zero;

Billboard and Particle Effects

[172]

 int x = 0;

 // Initialize particle settings and fill index and vertex arrays
 for (int i = 0; i < nParticles * 4; i += 4)
 {
 particles[i + 0] = new ParticleVertex(z, new Vector2(0, 0),
 z, 0, -1);
 particles[i + 1] = new ParticleVertex(z, new Vector2(0, 1),
 z, 0, -1);
 particles[i + 2] = new ParticleVertex(z, new Vector2(1, 1),
 z, 0, -1);
 particles[i + 3] = new ParticleVertex(z, new Vector2(1, 0),
 z, 0, -1);

 indices[x++] = i + 0;
 indices[x++] = i + 3;
 indices[x++] = i + 2;
 indices[x++] = i + 2;
 indices[x++] = i + 1;
 indices[x++] = i + 0;
 }
}

The AddParticle() function is where things get interesting. We first check if there
is enough room in the queue to bring another particle to life, and if so, we do it by
applying the particle settings we are giving to the particle:

// Marks another particle as active and applies the given settings to
it
public void AddParticle(Vector3 Position, Vector3 Direction, float
Speed)
{
 // If there are no available particles, give up
 if (nActive + 4 == nParticles * 4)
 return;

 // Determine the index at which this particle should be created
 int index = offsetIndex(activeStart, nActive);
 nActive += 4;

 // Determine the start time
 float startTime = (float)(DateTime.Now - start).TotalSeconds;

 // Set the particle settings to each of the particle's vertices
 for (int i = 0; i < 4; i++)

Chapter 6

[173]

 {
 particles[index + i].StartPosition = Position;
 particles[index + i].Direction = Direction;
 particles[index + i].Speed = Speed;
 particles[index + i].StartTime = startTime;
 }
}

// Increases the 'start' parameter by 'count' positions, wrapping
// around the particle array if necessary
int offsetIndex(int start, int count)
{
 for (int i = 0; i < count; i++)
 {
 start++;

 if (start == particles.Length)
 start = 0;
 }

 return start;
}

The Update() function goes through the list of active particles and marks them as
inactive if they have aged past the lifetime. Finally, it updates the vertex and index
buffers. In a more complex implementation, we could specify that those buffers
contain only the active particles to reduce overhead, but for simplicity's sake,
we will simply update the entirety of the two buffers.

public void Update()
{
 float now = (float)(DateTime.Now - start).TotalSeconds;

 int startIndex = activeStart;
 int end = nActive;

 // For each particle marked as active...
 for (int i = 0; i < end; i++)
 {
 // If this particle has gotten older than 'lifespan'...
 if (particles[activeStart].StartTime < now - lifespan)
 {
 // Advance the active particle start position past
 // the particle's index and reduce the number of
 // active particles by 1

Billboard and Particle Effects

[174]

 activeStart++;
 nActive--;

 if (activeStart == particles.Length)
 activeStart = 0;
 }
 }

 // Update the vertex and index buffers
 verts.SetData<ParticleVertex>(particles);
 ints.SetData<int>(indices);
}

The Draw() function is also similar to those in our previous two classes, simply
drawing all of the particles with various blending states and our effect applied:

public void Draw(Matrix View, Matrix Projection, Vector3 Up, Vector3
Right)
{
 // Set the vertex and index buffer to the graphics card
 graphicsDevice.SetVertexBuffer(verts);
 graphicsDevice.Indices = ints;

 // Set the effect parameters
 effect.Parameters["ParticleTexture"].SetValue(texture);
 effect.Parameters["View"].SetValue(View);
 effect.Parameters["Projection"].SetValue(Projection);
 effect.Parameters["Time"].SetValue((float)(DateTime.Now - start).
 TotalSeconds);
 effect.Parameters["Lifespan"].SetValue(lifespan);
 effect.Parameters["Wind"].SetValue(wind);
 effect.Parameters["Size"].SetValue(particleSize / 2f);
 effect.Parameters["Up"].SetValue(Up);
 effect.Parameters["Side"].SetValue(Right);
 effect.Parameters["FadeInTime"].SetValue(fadeInTime);

 // Enable blending render states
 graphicsDevice.BlendState = BlendState.AlphaBlend;
 graphicsDevice.DepthStencilState = DepthStencilState.DepthRead;

 // Apply the effect
 effect.CurrentTechnique.Passes[0].Apply();

Chapter 6

[175]

 // Draw the billboards
 graphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList,
 0, 0, nParticles * 4, 0, nParticles * 2);

 // Un-set the buffers
 graphicsDevice.SetVertexBuffer(null);
 graphicsDevice.Indices = null;

 // Reset render states
 graphicsDevice.BlendState = BlendState.Opaque;
 graphicsDevice.DepthStencilState = DepthStencilState.Default;
}

Now that the ParticleSystem class has been written, we can write the effect
(ParticleEffect.fx). The effect parameters mirror those that are set in the
Draw() function:

float4x4 View;
float4x4 Projection;

texture ParticleTexture;
sampler2D texSampler = sampler_state {
 texture = <ParticleTexture>;
};

float Time;
float Lifespan;
float2 Size;
float3 Wind;
float3 Up;
float3 Side;
float FadeInTime;

The VertexShaderInput struct matches the values of our custom vertex format:

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float3 Direction : TEXCOORD1;
 float Speed : TEXCOORD2;
 float StartTime : TEXCOORD3;
};

Billboard and Particle Effects

[176]

The role of the vertex shader, then, will be to calculate the final position of each
vertex (including moving them to their respective billboard corners). Additionally,
the vertex shader will pass through the texture coordinates and will determine the
total length of time that the current particle has been active:

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float2 RelativeTime : TEXCOORD1;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 float3 position = input.Position;

 // Move to billboard corner
 float2 offset = Size * float2((input.UV.x - 0.5f) * 2.0f,
 -(input.UV.y - 0.5f) * 2.0f);
 position += offset.x * Side + offset.y * Up;

 // Determine how long this particle has been alive
 float relativeTime = (Time - input.StartTime);
 output.RelativeTime = relativeTime;

 // Move the vertex along its movement direction and the wind
direction
 position += (input.Direction * input.Speed + Wind) * relativeTime;

 // Transform the final position by the view and projection matrices
 output.Position = mul(float4(position, 1), mul(View, Projection));

 output.UV = input.UV;

 return output;
}

Chapter 6

[177]

The pixel shader fades the particle in and out based on how close to the start and end
of its life it is:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 // Ignore particles that aren't active
 clip(input.RelativeTime);

 // Sample texture
 float4 color = tex2D(texSampler, input.UV);

 // Fade out towards end of life
 float d = clamp(1.0f - pow((input.RelativeTime / Lifespan), 10),
 0, 1);

 // Fade in at beginning of life
 d *= clamp((input.RelativeTime / FadeInTime), 0, 1);

 // Return color * fade amount
 return float4(color * d);
}

The technique definition is similar to those we have been using:

technique Technique1
{
 pass Pass1
 {
 VertexShader = compile vs_2_0 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

Particle fire
The first effect we will create with our particle system is a "fire" effect. To start, we
will need an instance of the ParticleSystem class. We will also need a random
number generator:

ParticleSystem ps;
Random r = new Random();

We initialize the particle system using the following settings:

ps = new ParticleSystem(GraphicsDevice, Content, Content.Load<Texture
2D>("fire"),
 400, new Vector2(400), 1, Vector3.Zero, 0.5f);

Billboard and Particle Effects

[178]

Every frame, we will add a "new" particle to the particle system at a random position
within 400 units of the origin, a direction within 15 degrees of the "up" vector (0, 1,
0), and a random speed between 600 and 900 units per second:

// Called when the game should update itself
protected override void Update(GameTime gameTime)
{
 updateCamera(gameTime);

 // Generate a direction within 15 degrees of (0, 1, 0)
 Vector3 offset = new Vector3(MathHelper.ToRadians(10.0f));
 Vector3 randAngle = Vector3.Up + randVec3(-offset, offset);

 // Generate a position between (-400, 0, -400) and (400, 0, 400)
 Vector3 randPosition = randVec3(new Vector3(-400), new
Vector3(400));

 // Generate a speed between 600 and 900
 float randSpeed = (float)r.NextDouble() * 300 + 600;

 ps.AddParticle(randPosition, randAngle, randSpeed);
 ps.Update();

 base.Update(gameTime);
}

// Returns a random Vector3 between min and max
Vector3 randVec3(Vector3 min, Vector3 max)
{
 return new Vector3(
 min.X + (float)r.NextDouble() * (max.X - min.X),
 min.Y + (float)r.NextDouble() * (max.Y - min.Y),
 min.Z + (float)r.NextDouble() * (max.Z - min.Z));
}

Finally, we need to draw our particle system in the Draw() function after the models
have been drawn:

ps.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Up, ((FreeCamera)camera).Right);

Chapter 6

[179]

Particle smoke
As our last example, let's add some smoke to our fire effect. We'll need a second
ParticleSystem:

ParticleSystem smoke;

We will initialize this particle system the same way, except this time we will use a
longer lifetime and fade in time, and we will make use of the "wind" parameter:

smoke = new ParticleSystem(GraphicsDevice, Content,
 Content.Load<Texture2D>("smoke"), 400, new Vector2(800), 6,
 new Vector3(500, 0, 0), 5f);

For convenience's sake, we will reuse the random values that we have generated
when adding the particle and will simply offset the start position on the Y axis:

smoke.AddParticle(randPosition + new Vector3(0, 1200, 0), randAngle,
randSpeed);
smoke.Update();

Finally, we draw it the same way we drew our fire particles:

smoke.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Up, ((FreeCamera)camera).Right);

Billboard and Particle Effects

[180]

Summary
Having finished this chapter, you've seen a number of different uses and
implementations of billboarding effects. You've seen how to do basic spherical and
cylindrical billboarding to "fake" 3D objects or create volumetric effects, such as
clouds. You've also seen how to create billboards out of vertices that do not turn to
face the camera to better fake 3D objects, especially foliage.

Finally, you learned how to implement a somewhat basic particle system and learned
how to create fire and smoke effects with it. The particle system is extensible enough
that you should be able to build off of it and create new effects in the future. In the
next chapter, we will combine these systems with those created in previous chapters
to create a rather impressive 3D environment complete with foliage, terrain, clouds, a
sky box, and water.

Environmental Effects
In this chapter, we will focus on building a full 3D environment. We will start by
creating a class that builds a terrain from a 2D image called a heightmap. We will
make a number of improvements to the basic version of this class, allowing multiple
textures across its surface through multitexturing and extra detail at close distances
to its surface through a "detail texture". We will look at a technique called region
growing to add plants and trees to the terrain's surface, and finish by combining the
terrain with our sky box, water, and billboarding effects to create a mountain scene:

Environmental Effects

[182]

Building a terrain from a heightmap
A heightmap is a 2D image that stores, in each pixel, the height of the corresponding
point on a grid of vertices. The pixel values range from 0 to 1, so in practice we will
multiply them by the maximum height of the terrain to get the final height of each
vertex. We build a terrain out of vertices and indices as a large rectangular grid with
the same number of vertices as the number of pixels in the heightmap.

Let's start by creating a new Terrain class. This class will keep track of everything
needed to render our terrain: textures, the effect, vertex and index buffers, and so on.

public class Terrain
{
 VertexPositionNormalTexture[] vertices; // Vertex array
 VertexBuffer vertexBuffer; // Vertex buffer
 int[] indices; // Index array
 IndexBuffer indexBuffer; // Index buffer
 float[,] heights; // Array of vertex heights
 float height; // Maximum height of terrain
 float cellSize; // Distance between vertices on x and z axes
 int width, length; // Number of vertices on x and z axes
 int nVertices, nIndices; // Number of vertices and indices
 Effect effect; // Effect used for rendering
 GraphicsDevice GraphicsDevice; // Graphics device to draw with
 Texture2D heightMap; // Heightmap texture
}

The constructor will initialize many of these values:

public Terrain(Texture2D HeightMap, float CellSize, float Height,
 GraphicsDevice GraphicsDevice, ContentManager Content)
{
 this.heightMap = HeightMap;
 this.width = HeightMap.Width;
 this.length = HeightMap.Height;

Chapter 7

[183]

 this.cellSize = CellSize;
 this.height = Height;

 this.GraphicsDevice = GraphicsDevice;

 effect = Content.Load<Effect>("TerrainEffect");

 // 1 vertex per pixel
 nVertices = width * length;

 // (Width-1) * (Length-1) cells, 2 triangles per cell, 3 indices per
 // triangle
 nIndices = (width - 1) * (length - 1) * 6;

 vertexBuffer = new VertexBuffer(GraphicsDevice,
 typeof(VertexPositionNormalTexture), nVertices,
 BufferUsage.WriteOnly);

 indexBuffer = new IndexBuffer(GraphicsDevice,
 IndexElementSize.ThirtyTwoBits,
 nIndices, BufferUsage.WriteOnly);
}

Before we can generate any normals or indices, we need to know the dimensions of
our grid. We know that the width and length are simply the width and height of our
heightmap, but we need to extract the height values from the heightmap. We do this
with the getHeights() function:

private void getHeights()
{
 // Extract pixel data
 Color[] heightMapData = new Color[width * length];
 heightMap.GetData<Color>(heightMapData);

 // Create heights[,] array
 heights = new float[width, length];

 // For each pixel
 for (int y = 0; y < length; y++)
 for (int x = 0; x < width; x++)
 {
 // Get color value (0 - 255)
 float amt = heightMapData[y * width + x].R;

 // Scale to (0 - 1)

Environmental Effects

[184]

 amt /= 255.0f;

 // Multiply by max height to get final height
 heights[x, y] = amt * height;
 }
}

This will initialize the heights[,] array, which we can then use to build our
vertices. When building vertices, we simply lay out a vertex for each pixel in the
heightmap, spaced according to the cellSize variable. Note that this will create
(width – 1) * (length – 1) "cells"—each with two triangles:

The function that does this is as shown:

private void createVertices()
{
 vertices = new VertexPositionNormalTexture[nVertices];

 // Calculate the position offset that will center the terrain at
 (0, 0, 0)
 Vector3 offsetToCenter = -new Vector3(((float)width / 2.0f) *
 cellSize, 0, ((float)length / 2.0f) * cellSize);

 // For each pixel in the image
 for (int z = 0; z < length; z++)
 for (int x = 0; x < width; x++)
 {
 // Find position based on grid coordinates and height in
 // heightmap
 Vector3 position = new Vector3(x * cellSize,
 heights[x, z], z * cellSize) + offsetToCenter;

 // UV coordinates range from (0, 0) at grid location (0, 0) to
 // (1, 1) at grid location (width, length)
 Vector2 uv = new Vector2((float)x / width, (float)z / length);

Chapter 7

[185]

 // Create the vertex
 vertices[z * width + x] = new VertexPositionNormalTexture(
 position, Vector3.Zero, uv);
 }
}

When we create our terrain's index buffer, we need to lay out two triangles for each
cell in the terrain. All we need to do is find the indices of the vertices at each corner
of each cell, and create the triangles by specifying those indices in clockwise order
for two triangles. For example, to create the triangles for the first cell in the preceding
screenshot, we would specify the triangles as [0, 1, 4] and [4, 1, 5].

private void createIndices()
{
 indices = new int[nIndices];

 int i = 0;

 // For each cell
 for (int x = 0; x < width - 1; x++)
 for (int z = 0; z < length - 1; z++)
 {
 // Find the indices of the corners
 int upperLeft = z * width + x;
 int upperRight = upperLeft + 1;
 int lowerLeft = upperLeft + width;
 int lowerRight = lowerLeft + 1;

 // Specify upper triangle
 indices[i++] = upperLeft;
 indices[i++] = upperRight;
 indices[i++] = lowerLeft;

 // Specify lower triangle
 indices[i++] = lowerLeft;
 indices[i++] = upperRight;
 indices[i++] = lowerRight;
 }
}

Environmental Effects

[186]

The last thing we need to calculate for each vertex is the normals. Because we are
creating the terrain from scratch, we will need to calculate all of the normals based
only on the height data that we are given. This is actually much easier than it sounds:
to calculate the normals we simply calculate the normal of each triangle of the terrain
and add that normal to each vertex involved in the triangle. Once we have done
this for each triangle, we simply normalize again, averaging the influences of each
triangle connected to each vertex.

private void genNormals()
{
 // For each triangle
 for (int i = 0; i < nIndices; i += 3)
 {
 // Find the position of each corner of the triangle
 Vector3 v1 = vertices[indices[i]].Position;
 Vector3 v2 = vertices[indices[i + 1]].Position;
 Vector3 v3 = vertices[indices[i + 2]].Position;

 // Cross the vectors between the corners to get the normal
 Vector3 normal = Vector3.Cross(v1 - v2, v1 - v3);
 normal.Normalize();

 // Add the influence of the normal to each vertex in the
 // triangle
 vertices[indices[i]].Normal += normal;
 vertices[indices[i + 1]].Normal += normal;
 vertices[indices[i + 2]].Normal += normal;
 }

 // Average the influences of the triangles touching each
 // vertex
 for (int i = 0; i < nVertices; i++)
 vertices[i].Normal.Normalize();
}

We'll finish off the constructor by calling these functions in order and then setting the
vertices and indices that we created into their respective buffers:

getHeights();
createVertices();
createIndices();
genNormals();

vertexBuffer.SetData<VertexPositionNormalTexture>(vertices);
indexBuffer.SetData<int>(indices);

Chapter 7

[187]

Now that we've created the framework for this class, let's create the TerrainEffect.
fx effect. This effect will, for the moment, be responsible for some simple directional
lighting and texture mapping. We'll need a few effect parameters:

float4x4 View;
float4x4 Projection;

float3 LightDirection = float3(1, -1, 0);
float TextureTiling = 1;

texture2D BaseTexture;
sampler2D BaseTextureSampler = sampler_state {
 Texture = <BaseTexture>;
 AddressU = Wrap;
 AddressV = Wrap;
 MinFilter = Anisotropic;
 MagFilter = Anisotropic;
};

The TextureTiling parameter will determine how many times our texture is
repeated across the terrain's surface—simply stretching it across the terrain would
look bad because it would need to be stretched to a very large size. "Tiling" it across
the terrain will look much better.

We will need a very standard vertex shader:

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float3 Normal : NORMAL0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
 float3 Normal : TEXCOORD1;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 output.Position = mul(input.Position, mul(View, Projection));

Environmental Effects

[188]

 output.Normal = input.Normal;
 output.UV = input.UV;

 return output;
}

The pixel shader is also very standard, except that we multiply the texture
coordinates by the TextureTiling parameter. This works because the texture
sampler's address mode is set to "wrap", and thus the sampler will simply wrap
the texture coordinates past the edge of the texture, creating the tiling effect.

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 float light = dot(normalize(input.Normal),
 normalize(LightDirection));
 light = clamp(light + 0.4f, 0, 1); // Simple ambient lighting

 float3 tex = tex2D(BaseTextureSampler, input.UV * TextureTiling);

 return float4(tex * light, 1);
}

The technique definition is the same as our other effects:

technique Technique1
{
 pass Pass1
 {
 VertexShader = compile vs_2_0 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

In order to use the effect with our terrain, we'll need to add a few more member
variables to the Terrain class:

Texture2D baseTexture;
float textureTiling;
Vector3 lightDirection;

These values will be set from the constructor:

public Terrain(Texture2D HeightMap, float CellSize, float Height,
 Texture2D BaseTexture, float TextureTiling, Vector3 LightDirection,
 GraphicsDevice GraphicsDevice, ContentManager Content)
{
 this.baseTexture = BaseTexture;

Chapter 7

[189]

 this.textureTiling = TextureTiling;
 this.lightDirection = LightDirection;

 // etc...

Finally, we can simply set these effect parameters along with the View and
Projection parameters in the Draw() function:

effect.Parameters["BaseTexture"].SetValue(baseTexture);
effect.Parameters["TextureTiling"].SetValue(textureTiling);
effect.Parameters["LightDirection"].SetValue(lightDirection);

Let's now add the terrain to our game. We'll need a new member variable in the
Game1 class:

Terrain terrain;

We'll need to initialize it in the LoadContent() method:

terrain = new Terrain(Content.Load<Texture2D>("terrain"), 30, 4800,
 Content.Load<Texture2D>("grass"), 6, new Vector3(1, -1, 0),
 GraphicsDevice, Content);

Finally, we can draw it in the Draw() function:

terrain.Draw(camera.View, camera.Projection);

Environmental Effects

[190]

Multitexturing
Our terrain looks pretty good as it is, but to make it more believable the texture
applied to it needs to vary—snow and rocks at the peaks, for example. To do this,
we will use a technique called multitexturing, which uses the red, blue, and green
channels of a texture as a guide as to where to draw textures that correspond to
those channels. For example, sand may correspond to red, snow to blue, and rock to
green. Adding snow would then be as simple as painting blue onto the areas of this
"texture map" that correspond with peaks on the heightmap. We will also have one
extra texture that fills in the area where no colors have been painted onto the texture
map—grass, for example.

To begin with, we will need to modify our texture parameters on our effect from
one texture to five: the texture map, the base texture, and the three color channel
mapped textures.

texture RTexture;
sampler RTextureSampler = sampler_state
{
 texture = <RTexture>;
 AddressU = Wrap;
 AddressV = Wrap;
 MinFilter = Anisotropic;
 MagFilter = Anisotropic;
};

texture GTexture;
sampler GTextureSampler = sampler_state
{
 texture = <GTexture>;

Chapter 7

[191]

 AddressU = Wrap;
 AddressV = Wrap;
 MinFilter = Anisotropic;
 MagFilter = Anisotropic;
};

texture BTexture;
sampler BTextureSampler = sampler_state
{
 texture = <BTexture>;
 AddressU = Wrap;
 AddressV = Wrap;
 MinFilter = Anisotropic;
 MagFilter = Anisotropic;
};

texture BaseTexture;
sampler BaseTextureSampler = sampler_state
{
 texture = <BaseTexture>;
 AddressU = Wrap;
 AddressV = Wrap;
 MinFilter = Anisotropic;
 MagFilter = Anisotropic;
};
texture WeightMap;
sampler WeightMapSampler = sampler_state {
 texture = <WeightMap>;
 AddressU = Clamp;
 AddressV = Clamp;
 MinFilter = Linear;
 MagFilter = Linear;
};

Second, we need to update our pixel shader to draw these textures onto the terrain:

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 float light = dot(normalize(input.Normal), normalize(
 LightDirection));
 light = clamp(light + 0.4f, 0, 1);

 float3 rTex = tex2D(RTextureSampler, input.UV * TextureTiling);
 float3 gTex = tex2D(GTextureSampler, input.UV * TextureTiling);
 float3 bTex = tex2D(BTextureSampler, input.UV * TextureTiling);

Environmental Effects

[192]

 float3 base = tex2D(BaseTextureSampler, input.UV * TextureTiling);

 float3 weightMap = tex2D(WeightMapSampler, input.UV);

 float3 output = clamp(1.0f - weightMap.r - weightMap.g -
 weightMap.b, 0, 1);
 output *= base;

 output += weightMap.r * rTex + weightMap.g * gTex +
 weightMap.b * bTex;

 return float4(output * light, 1);
}

We'll need to add a way to set these values to the Terrain class:

public Texture2D RTexture, BTexture, GTexture, WeightMap;

All we need to do now is set these values to the effect in the Draw() function:

effect.Parameters["RTexture"].SetValue(RTexture);
effect.Parameters["GTexture"].SetValue(GTexture);
effect.Parameters["BTexture"].SetValue(BTexture);
effect.Parameters["WeightMap"].SetValue(WeightMap);

To use multitexturing in our game, we'll need to set these values in the Game1 class:

terrain.WeightMap = Content.Load<Texture2D>("weightMap");
terrain.RTexture = Content.Load<Texture2D>("sand");
terrain.GTexture = Content.Load<Texture2D>("rock");
terrain.BTexture = Content.Load<Texture2D>("snow");

Chapter 7

[193]

Adding a detail texture to the terrain
Our last improvement to the terrain will be to add what is called a detail texture.
This is essentially a noise texture that we blend in when the camera is close to the
terrain to fake a higher resolution texture.

The terrain right now looks great from afar, but when the camera is close enough
the texture will start to smudge and blur. However, if we increase the number of
times the texture tiles, we start to see what is called strobing—where the high-
resolution texture starts to flicker as it is scaled down in the distance. The easiest
way to eliminate this effect is to just tile the main texture fewer times, but then we
are left with a blurry texture up close as noted earlier. Adding a detail texture that
fades in only when the camera is close to the terrain solves both of these problems.
By multiplying the main texture(s) by the detail texture (which is tiled many more
times across the terrain so that each tile is smaller and more detailed up close), we
can make it look as though the main texture were higher resolution without getting
the "strobe" effect at a distance.

Environmental Effects

[194]

To start with, we will need a few more effect parameters:

float DetailTextureTiling;
float DetailDistance = 2500;

texture DetailTexture;
sampler DetailSampler = sampler_state {
 texture = <DetailTexture>;
 AddressU = Wrap;
 AddressV = Wrap;
 MinFilter = Linear;
 MagFilter = Linear;
};

We can then update our pixel's shader to blend in the detail texture and multiply
the output with it. The lerp() function interpolates between solid white (1) and the
detail texture based on the depth at the pixel we're shading.

float3 detail = tex2D(DetailSampler, input.UV * DetailTextureTiling);
float detailAmt = input.Depth / DetailDistance;
detail = lerp(detail, 1, clamp(detailAmt, 0, 1));

return float4(detail * output * light, 1);

We'll need to add more instance variables to the Terrain class to reflect these
parameters:

public Texture2D DetailTexture;
public float DetailDistance = 2500;
public float DetailTextureTiling = 100;

We also need to set these effect parameters in the Draw() function:

effect.Parameters["DetailTexture"].SetValue(DetailTexture);
effect.Parameters["DetailDistance"].SetValue(DetailDistance);
effect.Parameters["DetailTextureTiling"].SetValue(DetailTextureTiling
);

Finally, we'll set the DetailTexture value in the game's LoadContent() method:

terrain.DetailTexture = Content.Load<Texture2D>("noise_texture");

Chapter 7

[195]

Placing plants on the terrain
The next step in building our environment is to add some plants and trees to the
terrain. We will look at two approaches to placing billboards on the terrain, and we
will use both approaches to add vegetation to the terrain—one for trees and one
for grass. First, we will need a function to find the height of the terrain at any given
coordinate. This is a deceptively complex problem as we will need to interpolate
between the heights at each vertex rather than just retrieving a rounded value from
the heights array. The function to do this is as follows. Note that it also outputs
the "steepness" of the terrain at the sampled point—this value is simply the angle
between the lower and higher of the vertices at the edge of the cell being sampled:

// Returns the height and steepness of the terrain at point (X, Z)
public float GetHeightAtPosition(float X, float Z, out float
Steepness)
{
 // Clamp coordinates to locations on terrain
 X = MathHelper.Clamp(X, (-width / 2) * cellSize,
 (width / 2) * cellSize);
 Z = MathHelper.Clamp(Z, (-length / 2) * cellSize,
 (length / 2) * cellSize);

 // Map from (-Width/2->Width/2,-Length/2->Length/2)
 // to (0->Width, 0->Length)
 X += (width / 2f) * cellSize;
 Z += (length / 2f) * cellSize;

 // Map to cell coordinates
 X /= cellSize;
 Z /= cellSize;

 // Truncate coordinates to get coordinates of top left cell vertex
 int x1 = (int)X;
 int z1 = (int)Z;

 // Try to get coordinates of bottom right cell vertex
 int x2 = x1 + 1 == width ? x1 : x1 + 1;
 int z2 = z1 + 1 == length ? z1 : z1 + 1;

 // Get the heights at the two corners of the cell
 float h1 = heights[x1, z1];
 float h2 = heights[x2, z2];

 // Determine steepness (angle between higher and lower vertex of
 // cell)

Environmental Effects

[196]

 Steepness = (float)Math.Atan(Math.Abs((h1 - h2)) / (cellSize *
 Math.Sqrt(2)));

 // Find the average of the amounts lost from coordinates during
 // truncation above
 float leftOver = ((X - x1) + (Z - z1)) / 2f;

 // Interpolate between the corner vertices' heights
 return MathHelper.Lerp(h1, h2, leftOver);
}

We can now use this function to place our trees randomly on the terrain. We will
need a random number generator and a BillboardSystem in our Game1 class:

Random r = new Random();
BillboardSystem trees;

When we get a random coordinate result from the random number generator, we
will first check the height and steepness of the corresponding position on the terrain.
If the steepness is more than 15 degrees or if the height does not fall into a reasonable
range for trees to grow, we will reject the coordinates and try another random result.
If we do find a good position for a tree, we simply add that position to the list to be
drawn by the BillboardSystem we wrote in the last chapter. The following code,
placed in the LoadContent function of the Game1 class, will do this for us:

// Positions where trees should be drawn
List<Vector3> treePositions = new List<Vector3>();

Chapter 7

[197]

// Continue until we get 500 trees on the terrain
for (int i = 0; i < 500; i++) // 500
{
 // Get X and Z coordinates from the random generator, between
 // [-(terrain width) / 2 * (cell size), (terrain width) / 2 * (cell
size)]
 float x = r.Next(-256 * 30, 256 * 30);
 float z = r.Next(-256 * 30, 256 * 30);

 // Get the height and steepness of this position on the terrain,
 // taking the height of the billboard into account
 float steepness;
 float y = terrain.GetHeightAtPosition(x, z, out steepness) + 100;

 // Reject this position if it is too low, high, or steep. Otherwise
 // add it to the list
 if (steepness < MathHelper.ToRadians(15) && y > 2300 && y < 3200)
 treePositions.Add(new Vector3(x, y, z));
 else
 i--;
}

trees = new BillboardSystem(GraphicsDevice, Content,
 Content.Load<Texture2D>("tree_billboard"), new Vector2(200),
 treePositions.ToArray());

trees.Mode = BillboardSystem.BillboardMode.Cylindrical;
trees.EnsureOcclusion = true;

Finally, we can draw the trees in the Draw() function:

trees.Draw(camera.View, camera.Projection, ((FreeCamera)camera).Up,
 ((FreeCamera)camera).Right);

Environmental Effects

[198]

We will now use a second method to add grass to the terrain. Here, we will use a
texture as a "map" to dictate where to place the terrain. We could use the previous
technique equally well, but the purpose here is more to demonstrate this technique.
We will add a second billboard system to draw the grass billboards, and place them
according to our map, where a brighter pixel means a higher chance of placing a
grass billboard:

We'll need a second BillboardSystem:

BillboardSystem grass;

We initialize the grass value as follows:

// List of positions to place grass billboards
List<Vector3> grassPositions = new List<Vector3>();

// Retrieve pixel grid from grass map
Texture2D grassMap = Content.Load<Texture2D>("grass_map");
Color[] grassPixels = new Color[grassMap.Width * grassMap.Height];
grassMap.GetData<Color>(grassPixels);

// Loop until 1000 billboards have been placed
for (int i = 0; i < 300; i++)
{
 // Get X and Z coordinates from the random generator, between
 // [-(terrain width) / 2 * (cell size), (terrain width) / 2 * (cell
size)]
 float x = r.Next(-256 * 30, 256 * 30);
 float z = r.Next(-256 * 30, 256 * 30);

 // Get corresponding coordinates in grass map

Chapter 7

[199]

 int xCoord = (int)(x / 30) + 256;
 int zCoord = (int)(z / 30) + 256;

 // Get value between 0 and 1 from grass map
 float texVal = grassPixels[zCoord * 512 + xCoord].R / 255f;

 // Retrieve height
 float steepness;
 float y = terrain.GetHeightAtPosition(x, z, out steepness) + 50;

 // Randomly place a billboard here based on pixel color in grass
 // map
 if ((int)((float)r.NextDouble() * texVal * 10) == 1)
 grassPositions.Add(new Vector3(x, y, z));
 else
 i--;
}

// Create grass billboard system
grass = new BillboardSystem(GraphicsDevice, Content,
 Content.Load<Texture2D>("grass_billboard"), new Vector2(100),
 grassPositions.ToArray());

grass.Mode = BillboardSystem.BillboardMode.Cylindrical;
grass.EnsureOcclusion = false;

Again, we need to draw this billboard system in the Draw() function:

grass.Draw(camera.View, camera.Projection, ((FreeCamera)camera).Up,
 ((FreeCamera)camera).Right);

Environmental Effects

[200]

Adding the finishing touches
Our scene is starting to look pretty good! Let's finish it off by first adding a billboard
system to render clouds, and finally bring in our sky and water effects. First, we will
add a third billboard system for our clouds.

BillboardSystem clouds;

Note that the following function creates more believable clouds than in the last
chapter by "clumping" billboards together instead of spreading them evenly across
the sky.

List<Vector3> cloudPositions = new List<Vector3>();

// Create 20 "clusters" of clouds
for (int i = 0; i < 20; i++)
{
 Vector3 cloudLoc = new Vector3(r.Next(-8000, 8000),
 r.Next(4000, 6000), r.Next(-8000, 8000));

 // Add 10 cloud billboards around each cluster point
 for (int j = 0; j < 10; j++)
 {
 cloudPositions.Add(cloudLoc + new Vector3(r.Next(-3000, 3000),
 r.Next(-300, 900), r.Next(-1500, 1500)));
 }
}

clouds = new BillboardSystem(GraphicsDevice, Content,
 Content.Load<Texture2D>("cloud2"), new Vector2(2000),
cloudPositions.ToArray());

clouds.Mode = BillboardSystem.BillboardMode.Spherical;
clouds.EnsureOcclusion = false;

Once again, we'll need to draw the clouds in the Draw() function:

clouds.Draw(camera.View, camera.Projection, ((FreeCamera)camera).Up,
 ((FreeCamera)camera).Right);

Chapter 7

[201]

Finally, let's add in water and a sky:

SkySphere sky;
Water water;

We'll initialize them as follows:

sky = new SkySphere(Content, GraphicsDevice,
 Content.Load<TextureCube>("clouds"));

water = new Water(Content, GraphicsDevice, new Vector3(0, 1600, 0),
 new Vector2(256 * 30));

water.Objects.Add(sky);

Now, we can update the Draw() function to draw everything:

// Called when the game should draw itself
protected override void Draw(GameTime gameTime)
{
 GraphicsDevice.Clear(Color.Black);
 water.PreDraw(camera, gameTime);

 GraphicsDevice.Clear(Color.Black);
 sky.Draw(camera.View, camera.Projection, ((FreeCamera)camera).
Position);

 foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 model.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);

 terrain.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);

 water.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);

 trees.Draw(camera.View, camera.Projection, ((FreeCamera)camera).Up,
 ((FreeCamera)camera).Right);

 grass.Draw(camera.View, camera.Projection, ((FreeCamera)camera).Up,
 ((FreeCamera)camera).Right);

 clouds.Draw(camera.View, camera.Projection, ((FreeCamera)camera).Up,
 ((FreeCamera)camera).Right);

 base.Draw(gameTime);
}

Environmental Effects

[202]

There is one last thing we need to do—make the terrain IRenderable. We want the
water to reflect the sky and the terrain, so we need to ensure that the Water class
knows how to draw the terrain. We'll start by updating the Terrain class to include
the IRenderable interface:

public class Terrain : IRenderable

We'll need to add a SetClipPlane function to this class as well:

public void SetClipPlane(Vector4? Plane)
{
 effect.Parameters["ClipPlaneEnabled"].SetValue(Plane.HasValue);

 if (Plane.HasValue)
 effect.Parameters["ClipPlane"].SetValue(Plane.Value);
}

Now, all we need to do is update the TerrainEffect.fx file to include clipping.
First, we add the necessary effect parameters:

float4 ClipPlane;
bool ClipPlaneEnabled = false;

The VertexShaderOutput struct will now need to include the world space position:

float3 WorldPosition : TEXCOORD3;

We'll set this value in the vertex shader:

output.WorldPosition = input.Position;

Finally, we can perform the clipping at the beginning of the pixel shader:

if (ClipPlaneEnabled)
 clip(dot(float4(input.WorldPosition, 1), ClipPlane));

Chapter 7

[203]

Finally, we can add the terrain to the list of items the water should reflect (in the
LoadContent() function of the Game1 class) and we're finished:

water.Objects.Add(terrain);

Summary
In this chapter, we learned a lot about environmental effects—terrain, clever
placement of billboards, so-called "region growing" (placing billboards according to a
texture)—and we also learned a lot about more advanced texturing techniques such
as multitexturing and detail textures. We now have a very flexible terrain class, and
a lovely environment to show it off in! In the next chapter, we will look at some post
processing effects—blur, glow, and so on.

Advanced Materials and
Post Processing

In this chapter, we will cover two topics: First, we will extend our CModel class to
allow us to apply materials to objects per mesh rather than assigning materials to
objects as a whole. This is important because often there are times where we do not
want an entire model to have the same appearance. For example, the windows of
a car shouldn't have the same reflectivity or transparency as the body of the car, or
the tires or seats, but it would be a pain to try to work with each piece individually
instead of as parts of a larger model, especially if we wanted to move the car, rotate
it, and so on, and have each piece stay in position.

The second topic we will cover is post processing. A post processing effect is one
applied to the rendered scene as a whole rather than one applied to individual
objects in the scene. Basically, the full rendered scene as it would be drawn onto the
screen is passed as an image to an Effect consisting only of a pixel shader. Instead
of processing geometry, that Effect is processing only the pixels in an image. Post
processing effects can be as simple as converting an image to black and white, or can
be more complex, like a blur. In fact, the lighting calculation stage of our prelighting
renderer is basically a post processor because it operates on the normals and depths
of the scene stored in an image. We will create a framework for creating post
processing effects, including a black and white effect, a full screen blur, a depth of
field effect, and a glow effect.

Advanced Materials and Post Processing

[206]

Advanced Materials
XNA represents models as a set of meshes, which in turn are sets of "mesh parts."
Each mesh part can have its own effect, texture, and so on. Because each mesh part
can have a different effect, we will set up our CModel class to allow each mesh part
to have its own effect and material. This will allow us to use different materials on
different parts of the model: for example, rubber-like wheels and a shiny body on a
car. Our MeshTag class already allows us to set the effect used on each mesh part, so
we'll just extend this and also have it keep track of a material:

public Material Material = new Material();

Next, we'll add a function to the CModel class that will allow us to set a given effect
to any given mesh part:

public void SetMeshEffect(string MeshName, Effect effect, bool
CopyEffect)
{
 foreach (ModelMesh mesh in Model.Meshes)
 {
 if (mesh.Name != MeshName)
 continue;

 foreach (ModelMeshPart part in mesh.MeshParts)
 {
 Effect toSet = effect;

 // Copy the effect if necessary
 if (CopyEffect)
 toSet = effect.Clone();

 MeshTag tag = ((MeshTag)part.Tag);

 // If this ModelMeshPart has a texture, set it to the effect
 if (tag.Texture != null)
 {
 setEffectParameter(toSet, "BasicTexture", tag.Texture);
 setEffectParameter(toSet, "TextureEnabled", true);
 }
 else
 setEffectParameter(toSet, "TextureEnabled", false);

 // Set our remaining parameters to the effect
 setEffectParameter(toSet, "DiffuseColor", tag.Color);
 setEffectParameter(toSet, "SpecularPower", tag.SpecularPower);

 part.Effect = toSet;
 }
 }
}

Chapter 8

[207]

Similarly, we'll add a function to set a material to a given mesh part:

public void SetMeshMaterial(string MeshName, Material material)
{
 foreach (ModelMesh mesh in Model.Meshes)
 {
 if (mesh.Name != MeshName)
 continue;

 foreach (ModelMeshPart meshPart in mesh.MeshParts)
 ((MeshTag)meshPart.Tag).Material = material;
 }
}

We can also update the SetModelEffect() and SetModelMaterial() functions to
use these functions:

public void SetModelEffect(Effect effect, bool CopyEffect)
{
 foreach (ModelMesh mesh in Model.Meshes)
 SetMeshEffect(mesh.Name, effect, CopyEffect);
}

public void SetModelMaterial(Material material)
{
 foreach (ModelMesh mesh in Model.Meshes)
 SetMeshMaterial(mesh.Name, material);
}

Finally, we can remove the effect-wide material and change the draw function to use
the mesh part specific materials:

((MeshTag)meshPart.Tag).Material.SetEffectParameters(effect);

We could now use multiple materials on a model by setting our scene up as follows:

Effect lit = Content.Load<Effect>("LightingEffect");
Effect normal = Content.Load<Effect>("NormalMapEffect");

LightingMaterial marble = new LightingMaterial();
marble.SpecularColor = Color.White.ToVector3();

LightingMaterial steel = new LightingMaterial();
steel.SpecularColor = Color.Gray.ToVector3();

NormalMapMaterial brick = new NormalMapMaterial(
 Content.Load<Texture2D>("brick_normal_map"));

NormalMapMaterial wood = new NormalMapMaterial(
 Content.Load<Texture2D>("wood_normal"));

Advanced Materials and Post Processing

[208]

CModel model = new CModel(Content.Load<Model>("multimesh"),
 Vector3.Zero, Vector3.Zero, Vector3.One, GraphicsDevice);

model.SetMeshEffect("Box01", normal, true);
model.SetMeshMaterial("Box01", wood);

model.SetMeshEffect("Pyramid01", normal, true);
model.SetMeshMaterial("Pyramid01", brick);

model.SetMeshEffect("Sphere01", lit, true);
model.SetMeshMaterial("Sphere01", marble);

model.SetMeshEffect("Plane01", lit, true);
model.SetMeshMaterial("Plane01", steel);

models.Add(model);

Post processing
A post processor takes in an image and does some form of processing on it, whether
it be desaturation of the image (converting to black and white), or averaging pixels
and their neighbors to create a blur. Generally, the image that is processed is the
rendered scene, so effects such as motion blur, glow, HDR bloom, and so on can be
applied. However, it is also common to use post processors in intermediate stages of
the rendering process—blurring a shadow map, for example.

Because we want to be able to implement many different kinds of post processing
effects, we will create a framework that we can either use directly for simple post
processing effects, or build on top of for more complex effects.

public class PostProcessor
{
}

Chapter 8

[209]

Any post processing effect (as was mentioned at the beginning of the chapter) is
basically a shader with only a pixel shader component. Thus, we will need an Effect
instance to use that pixel shader. We also need a Texture2D to process:

// Pixel shader
public Effect Effect { get; protected set; }

// Texture to process
public Texture2D Input { get; set; }

We will also need a few other miscellaneous things—a GraphicsDevice and a
SpriteBatch:

// GraphicsDevice and SpriteBatch for drawing
protected GraphicsDevice graphicsDevice;
protected static SpriteBatch spriteBatch;

The constructor will initialize these values:

public PostProcessor(Effect Effect, GraphicsDevice graphicsDevice)
{
 this.Effect = Effect;

 if (spriteBatch == null)
 spriteBatch = new SpriteBatch(graphicsDevice);

 this.graphicsDevice = graphicsDevice;
}

The Draw() function draws the texture with the effect applied:

// Draws the input texture using the pixel shader postprocessor
public virtual void Draw()
{
 // Set effect parameters if necessary
 if (Effect.Parameters["ScreenWidth"] != null)
 Effect.Parameters["ScreenWidth"].
 SetValue(graphicsDevice.Viewport.Width);

 if (Effect.Parameters["ScreenHeight"] != null)
 Effect.Parameters["ScreenHeight"].
 SetValue(graphicsDevice.Viewport.Height);

 // Initialize the spritebatch and effect
 spriteBatch.Begin(SpriteSortMode.Immediate, BlendState.Opaque);
 Effect.CurrentTechnique.Passes[0].Apply();

Advanced Materials and Post Processing

[210]

 // Draw the input texture
 spriteBatch.Draw(Input, Vector2.Zero, Color.White);

 // End the spritebatch and effect
 spriteBatch.End();

 // Clean up render states changed by the spritebatch
 graphicsDevice.DepthStencilState = DepthStencilState.Default;
 graphicsDevice.BlendState = BlendState.Opaque;
}

Next, we will create a class that will easily capture what is being drawn—in this case,
to use as input to the post processor:

public class RenderCapture
{
 RenderTarget2D renderTarget;
 GraphicsDevice graphicsDevice;

 public RenderCapture(GraphicsDevice GraphicsDevice)
 {
 this.graphicsDevice = GraphicsDevice;
 renderTarget = new RenderTarget2D(GraphicsDevice,
 GraphicsDevice.Viewport.Width, GraphicsDevice.Viewport.Height,
 false, SurfaceFormat.Color, DepthFormat.Depth24);
 }

 // Begins capturing from the graphics device
 public void Begin()
 {
 graphicsDevice.SetRenderTarget(renderTarget);
 }

 // Stop capturing
 public void End()
 {
 graphicsDevice.SetRenderTarget(null);
 }

 // Returns what was captured
 public Texture2D GetTexture()
 {
 return renderTarget;
 }
}

Chapter 8

[211]

We begin setting up the post processor by adding instance variables of the
PostProcessor and RenderCapture classes in the Game1 class:

RenderCapture renderCapture;
PostProcessor postprocessor;

We initialize these two values in the LoadContent() function (we'll write the
BWPostProcessor.fx file in a moment):

renderCapture = new RenderCapture(GraphicsDevice);
postprocessor = new PostProcessor(Content.Load<Effect>
 ("BWPostProcessor"), GraphicsDevice);

Finally, we will use the RenderCapture to capture the initial render of the scene, and
use the PostProcessor to perform whatever effect it is performing:

// Called when the game should draw itself
protected override void Draw(GameTime gameTime)
{
 // Capture the render
 renderCapture.Begin();

 GraphicsDevice.Clear(Color.CornflowerBlue);

 // Draw all of the models
 foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 model.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);

 // End capturing
 renderCapture.End();

 GraphicsDevice.Clear(Color.Black);

 // Perform postprocessing with the render of the scene
 postprocessor.Input = renderCapture.GetTexture();
 postprocessor.Draw();

 base.Draw(gameTime);
}

Advanced Materials and Post Processing

[212]

Black and white post processor
For our first post processing effect, we'll create a simple post processor that will
convert the following screenshot (or any image) to grayscale (black and white).

We start by creating a new Effect file, with only a pixel shader:

float4 PixelShaderFunction(float4 Position : POSITION0,
 float2 UV : TEXCOORD0) : COLOR0
{
}

technique Technique1
{
 pass Pass1
 {
 PixelShader = compile ps_1_1 PixelShaderFunction();
 }
}

We need a way to access the input texture(s). To make this easy on ourselves, we will
use an array of texture samplers instead of specifying each explicitly. We will see
later how we set values to this array. For this shader, the SpriteBatch will set it for
us automatically.

sampler2D tex[1]; // Input textures (just 1 in this case)

Chapter 8

[213]

All we need to do now is add up the weighted values of each color channel. We
weigh them because our eyes naturally pick up more information from the green
channel, followed by red and blue roughly proportioned according to the weight
values that we will use. This will allow us to get the clearest image possible because
more useful information is stored in the green and red channels. We then set each
pixel to the summed value to get a monotone image (black and white):

float4 PixelShaderFunction(float4 Position : POSITION0,
 float2 UV : TEXCOORD0) : COLOR0
{
 float4 color = tex2D(tex[0], UV);

 float intensity = 0.3f * color.r
 + 0.59f * color.g
 + 0.11f * color.b;

 return float4(intensity, intensity, intensity, color.a);
}

Our game is already set up to load and use this post processing effect, so we can
simply run the game to see it at work:

Advanced Materials and Post Processing

[214]

Gaussian blur post processor
The next post processing effect that we will look at is blurring, specifically with
what is called a "Gaussian" blur. A Gaussian blur is a blur which, instead of simply
calculating a weighted average of a pixel and its neighbors, calculates a weighted
average, weighing pixels based on their distance from the center pixel. The weights
are calculated according to the Gaussian (or "normal") function:

In normal use of this function, x is the distance from the mean of a data set, and σ is
the standard deviation. In this case, x is a pixel's distance from the center pixel and σ
is used as a parameter to determine how much the image is blurred. The following
graph shows how much a pixel will be weighted as its distance approaches 1, 2, 3,
and so on σ's from the center pixel:

The GaussianBlur post processor is an extension of the basic PostProcessor class:

public class GaussianBlur : PostProcessor
{
}

Chapter 8

[215]

We will sample from the input texture 15 times and calculate a weighted average of
the sampled values. Thus, in addition to the overall blur amount parameter, we will
store weights and offsets for each sample:

float blurAmount;

float[] weightsH, weightsV;
Vector2[] offsetsH, offsetsV;

We calculate the weights and offsets for the horizontal and vertical directions
separately. Because a Gaussian blur can work in each direction independently, we
perform the full blur in two passes—one blur horizontally and one blur vertically,
giving us a stronger blur. The following function will calculate the weights and
offsets for one pass:

void calcSettings(float w, float h, out float[] weights, out Vector2[]
offsets)
{
 // 15 Samples
 weights = new float[15];
 offsets = new Vector2[15];

 // Calculate values for center pixel
 weights[0] = gaussianFn(0);
 offsets[0] = new Vector2(0, 0);

 float total = weights[0];

 // Calculate samples in pairs
 for (int i = 0; i < 7; i++)
 {
 // Weight each pair of samples according to Gaussian function
 float weight = gaussianFn(i + 1);
 weights[i * 2 + 1] = weight;
 weights[i * 2 + 2] = weight;
 total += weight * 2;

 // Samples are offset by 1.5 pixels, to make use of
 // filtering halfway between pixels
 float offset = i * 2 + 1.5f;
 Vector2 offsetVec = new Vector2(w, h) * offset;
 offsets[i * 2 + 1] = offsetVec;
 offsets[i * 2 + 2] = -offsetVec;
 }

 // Divide all weights by total so they will add up to 1
 for (int i = 0; i < weights.Length; i++)
 weights[i] /= total;
}

Advanced Materials and Post Processing

[216]

This function makes use of the gaussianFn() function, which is an implementation
of the previous mathematical function:

float gaussianFn(float x)
{
 return (float)((1.0f / Math.Sqrt(2 * Math.PI * blurAmount *
blurAmount)) *
 Math.Exp(-(x * x) / (2 * blurAmount * blurAmount)));
}

The GaussianBlur class will need a RenderCapture of its own to capture the output
of the first blur pass, which it will then use as input to the second pass:

RenderCapture capture;

This value, along with the weights and offsets for each pass, will be initialized in
the constructor:

public GaussianBlur(GraphicsDevice graphicsDevice,
 ContentManager Content,
 float BlurAmount) : base(Content.Load<Effect>
 ("GaussianBlur"), graphicsDevice)
{
 this.blurAmount = BlurAmount;

 // Calculate weights/offsets for horizontal pass
 calcSettings(1.0f / (float)graphicsDevice.Viewport.Width, 0,
 out weightsH, out offsetsH);

 // Calculate weights/offsets for vertical pass
 calcSettings(0, 1.0f / (float)graphicsDevice.Viewport.Height,
 out weightsV, out offsetsV);

 capture = new RenderCapture(graphicsDevice);
}

Finally, we perform the two blur passes in the overridden Draw() function:

public override void Draw()
{
 // Set values for horizontal pass
 Effect.Parameters["Offsets"].SetValue(offsetsH);
 Effect.Parameters["Weights"].SetValue(weightsH);

 // Render this pass into the RenderCapture

Chapter 8

[217]

 capture.Begin();
 base.Draw();
 capture.End();

 // Get the results of the first pass
 Input = capture.GetTexture();

 // Set values for the vertical pass
 Effect.Parameters["Offsets"].SetValue(offsetsV);
 Effect.Parameters["Weights"].SetValue(weightsV);

 // Render the final pass
 base.Draw();
}

The next step is to write the Gaussian blur effect file. Again, we'll need a texture
sampler array. Additionally, we will need effect parameters for our weight and
offset values:

sampler2D tex[1];

float2 Offsets[15];
float Weights[15];

The pixel shader performs 15 texture lookups based on the offsets from the main
pixel being shaded, and weighs the results based on the weights calculated by the
Gaussian function:

float4 PixelShaderFunction(float4 Position : POSITION0,
 float2 UV : TEXCOORD0) : COLOR0
{
 float4 output = float4(0, 0, 0, 1);

 for (int i = 0; i < 15; i++)
 output += tex2D(tex[0], UV + Offsets[i]) * Weights[i];

 return output;
}

The technique definition simply defines the pixel shader:

technique Technique1
{
 pass p0
 {
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

Advanced Materials and Post Processing

[218]

All we need to do to use this in our game is change our black and white
PostProcessor class to a GaussianBlur:

postprocessor = new GaussianBlur(GraphicsDevice, Content, 2);

Depth of field
The next effect that we will look at builds on our Gaussian blur effect to recreate the
"depth of field" effect. In the real world, cameras have one specific range they can
focus clearly on, and everything outside of that range is blurred somewhat, getting
increasingly blurry as the subjects move farther from the focal range. Generally, the
effect isn't terribly noticeable, but in some cases it can be exaggerated intentionally
for aesthetic effects.

The process is simple: First, we render the scene storing only the depth values in a
depth map (like we did in Chapter 3, Advanced Lighting). Then we render the scene
normally, storing both the original render and a blurred version of it. Finally, we
combine the blurred and non-blurred images in another post processor, which
determines how much to blur the image based on the depths stored in the depth map
at each pixel.

The effect that we will need to render the depth map is very simple, and we have
seen most if not all of it before:

float4x4 World;
float4x4 View;
float4x4 Projection;

Chapter 8

[219]

float MaxDepth = 20000;

struct VertexShaderInput
{
 float4 Position : POSITION0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float Depth : TEXCOORD0;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 // Output position and depth
 output.Position = mul(input.Position, mul(World, mul(View,
Projection)));
 output.Depth = output.Position.z;

 return output;
}

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 // Return depth, scaled/clamped to [0, 1]
 return float4(input.Depth / MaxDepth, 0, 0, 1);
}

technique Technique1
{
 pass Pass1
 {
 VertexShader = compile vs_2_0 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

Advanced Materials and Post Processing

[220]

For simplicity's sake, we will render the depth map directly in the Game1 class. We
will need to load the effect that we have just created and a RenderCapture:

RenderCapture depthCapture;
Effect depthEffect;

These values will be initialized in the LoadContent() function:

depthEffect = Content.Load<Effect>("DepthEffect");
depthCapture = new RenderCapture(GraphicsDevice, SurfaceFormat.
HalfSingle);

We will then use these to start off the Draw() function by rendering the depth map:

// Start rendering to depth map
depthCapture.Begin();

// Clear to white (max depth)
GraphicsDevice.Clear(Color.White);

foreach(CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 {
 model.CacheEffects(); // Cache effect
 model.SetModelEffect(depthEffect, false); // Set depth effect
 model.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);
 model.RestoreEffects(); // Restore effects
 }

Chapter 8

[221]

// Finish rendering to depth map
depthCapture.End();

In the next step, we will render the scene as usual, into our existing
RenderCapture:
// Begin rendering the main render
renderCapture.Begin();

GraphicsDevice.Clear(Color.CornflowerBlue);

// Draw all models
foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 model.Draw(camera.View, camera.Projection, ((FreeCamera)camera).
Position);

// Finish the main render
renderCapture.End();

The next step is to blur the rendered scene. However, our GaussianBlur class will
output only its results directly to the screen. We could try wrapping its draw call
with a RenderCapture, but this will not work as it uses a RenderCapture of its own
internally to capture the results of its first pass. What we need to do is capture the
results of its second pass, so we will have to have the GaussianBlur class do this for
us. Let's add a value to the GaussianBlur class that will allow us to specify where
we want to send its output:

public RenderCapture ResultCapture = null;

If this value is set to null when the Draw() function of GaussianBlur is called, it will
simply output the results of its second pass directly to the screen. Otherwise, it will
render into whichever RenderCapture is specified:

if (ResultCapture != null)
 ResultCapture.Begin();

// Set values for the vertical pass
Effect.Parameters["Offsets"].SetValue(offsetsV);
Effect.Parameters["Weights"].SetValue(weightsV);

// Render the final pass
base.Draw();

if (ResultCapture != null)
 ResultCapture.End();

Advanced Materials and Post Processing

[222]

To capture the results of the blur, the Game1 class will need another RenderCapture:
RenderCapture blurCapture;

This RenderCapture will need to be initialized in the LoadContent() function:
blurCapture = new RenderCapture(GraphicsDevice, SurfaceFormat.Color);

Now, we can continue the Draw() function by blurring the main render:

// Prepare to blur results of main render
postprocessor.Input = renderCapture.GetTexture();
// Output blur to our RenderCapture
((GaussianBlur)postprocessor).ResultCapture = blurCapture;
// Perform blur
postprocessor.Draw();

Now that we've rendered all of these various views of the scene, we need to
combine them into the final result. We will do this with another PostProcessor
called DepthOfField, whose main role is to handle setting all three textures to the
GraphicsDevice and loading the Effect that combines them:

public class DepthOfField : PostProcessor
{
 // Depth map and un-blurred render of scene. The blurred render
 // will be set as the Input value
 public Texture2D DepthMap;
 public Texture2D Unblurred;

 public DepthOfField(GraphicsDevice graphicsDevice,
 ContentManager Content): base(Content.Load<Effect>
 ("DepthOfField"), graphicsDevice)
 {
 }

 public override void Draw()
 {
 // Set the two textures above to the second and third
 // texture slots
 graphicsDevice.Textures[1] = Unblurred;
 graphicsDevice.Textures[2] = DepthMap;

 // Set the samplers for all three textures to PointClamp
 // so we can sample pixel values directly
 graphicsDevice.SamplerStates[0] = SamplerState.PointClamp;
 graphicsDevice.SamplerStates[1] = SamplerState.PointClamp;
 graphicsDevice.SamplerStates[2] = SamplerState.PointClamp;

 base.Draw();
 }
}

Chapter 8

[223]

Finally, the effect file simply samples the depth from the depth map and converts it
back to its full range. It then samples the blurred and non-blurred copies of the scene,
and blends between them using essentially the same calculations that we used to
draw fog in the earlier chapters:

sampler2D tex[3];

float MaxDepth = 20000;

// Distance at which blur starts
float BlurStart = 600;

// Distance at which scene is fully blurred
float BlurEnd = 1000;

float4 PixelShaderFunction(float4 Position : POSITION0,
 float2 UV : TEXCOORD0) : COLOR0
{
 // Determine depth
 float depth = tex2D(tex[2], UV).r * MaxDepth;

 // Get blurred and unblurred render of scene
 float4 unblurred = tex2D(tex[1], UV);
 float4 blurred = tex2D(tex[0], UV);

 // Determine blur amount (similar to fog calculation)
 float blurAmt = clamp((depth - BlurStart) / (BlurEnd - BlurStart),
 0, 1);

 // Blend between unblurred and blurred images
 float4 mix = lerp(unblurred, blurred, blurAmt);

 return mix;
}

technique Technique1
{
 pass p0
 {
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

Advanced Materials and Post Processing

[224]

All we need to do now is create an instance of this class in the Game1 class:

DepthOfField dof;

We will set it up in the LoadContent() function:

dof = new DepthOfField(GraphicsDevice, Content);

Finally, we can finish off the Draw() function by using the DepthOfField class to
combine all of the images into the final result. We must also be sure to call base.
Draw() when we are done:

// Set the three images to the DOF class
dof.DepthMap = depthCapture.GetTexture();
dof.Unblurred = renderCapture.GetTexture();
dof.Input = ((GaussianBlur)postprocessor).ResultCapture.GetTexture();

// Combine the images into the final result
dof.Draw();

base.Draw(gameTime);

This finishes up the depth of the field effect. Notice when running the game that
objects that are close to the camera stay entirely in focus, and fade to a blur between
the FogStart and FogEnd ranges. In a "real" implementation of the depth of field,
these values would change while the camera was moved to focus on different
objects. For example, depth of field is often used in game cinematics, focusing on a
character who is talking and blurring the scene behind them. Depth of field can also
be useful for a weapon scope effect, focusing on the object the player is currently
targeting, for example. In that case, we would simply cast a ray into the scene to
determine the depth at which we want to start the blur.

Chapter 8

[225]

Glow post processor
The final effect that we will look at is glow. Glow is generally implemented by
rendering the parts of the scene that are meant to glow into a render target, then
blurring that render target. The blurred image is then drawn additively over the
original render of the scene to make it look like parts of the scene are in fact emitting
light. The following screenshot shows the non-blurred glow channel on the left,
which transitions to the blurred version on the right:

We will need a few things to implement glow in our game: RenderCapture for the
regular render of the scene and the glow render, an effect to used to render the glow,
and a GaussianBlur to blur the glowing scene.

RenderCapture renderCapture;
RenderCapture glowCapture;
Effect glowEffect;
GaussianBlur blur;

We set these values up as follows in the LoadContent() function:
renderCapture = new RenderCapture(GraphicsDevice);
glowCapture = new RenderCapture(GraphicsDevice);

glowEffect = Content.Load<Effect>("GlowEffect");
glowEffect.Parameters["GlowTexture"].SetValue(
 Content.Load<Texture2D>("glow_map"));

blur = new GaussianBlur(GraphicsDevice, Content, 4);

Advanced Materials and Post Processing

[226]

The contents of the GlowEffect.fx effect are very simple, no more complicated than
drawing a texture onto a model—the same way we did back in Chapter 2, Introduction
to HLSL:

float4x4 World;
float4x4 View;
float4x4 Projection;

texture GlowTexture;

sampler2D GlowSampler = sampler_state {
 texture = <GlowTexture>;
};

struct VertexShaderInput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
};

struct VertexShaderOutput
{
 float4 Position : POSITION0;
 float2 UV : TEXCOORD0;
};

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{
 VertexShaderOutput output;

 output.Position = mul(input.Position, mul(World,
 mul(View, Projection)));
 output.UV = input.UV;

 return output;
}

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
 return tex2D(GlowSampler, input.UV);
}

technique Technique1
{

Chapter 8

[227]

 pass Pass1
 {
 VertexShader = compile vs_2_0 VertexShaderFunction();
 PixelShader = compile ps_2_0 PixelShaderFunction();
 }
}

Now all we need to do is update the Draw() function. We begin drawing by
rendering the glowing scene to the corresponding RenderCapture:

// Begin capturing the glow render
glowCapture.Begin();

GraphicsDevice.Clear(Color.Black);

// Draw all models with the glow effect/texture applied, reverting
// the effect when finished
foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 {
 model.CacheEffects();
 model.SetModelEffect(glowEffect, false);
 model.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);
 model.RestoreEffects();
 }

// Finish capturing the glow
glowCapture.End();

Next, we draw the scene as usual into the second RenderCapture:

// Draw the scene regularly into the other RenderCapture
renderCapture.Begin();

GraphicsDevice.Clear(Color.Black);

// Draw all models
foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 model.Draw(camera.View, camera.Projection,
 ((FreeCamera)camera).Position);

// Finish capturing
renderCapture.End();

Advanced Materials and Post Processing

[228]

Next, we blur the glow render, storing the result into the same RenderCapture:

// Blur the glow render back into the glow RenderCapture
blur.Input = glowCapture.GetTexture();
blur.ResultCapture = glowCapture;
blur.Draw();

Finally, we simply draw the two renderers of the scene on top of each other with the
SpriteBatch, making sure to blend additively so that the glowing areas of the scene
will brighten the image:

// Draw the blurred glow render over the normal render additively
spriteBatch.Begin(SpriteSortMode.Immediate, BlendState.Additive);
spriteBatch.Draw(renderCapture.GetTexture(), Vector2.Zero, Color.
White);
spriteBatch.Draw(glowCapture.GetTexture(), Vector2.Zero, Color.White);
spriteBatch.End();

// Clean up after the SpriteBatch
GraphicsDevice.DepthStencilState = DepthStencilState.Default;
GraphicsDevice.BlendState = BlendState.Opaque;

base.Draw(gameTime);

Chapter 8

[229]

Summary
Having finished this chapter, we have extended the CModel class to allow us to
set materials and effects to individual meshes rather than limiting us to setting
these only to models as a whole. We have also created a flexible framework for
implementing various post processing effects, and have implemented a number of
post processing effects of our own, including a black and white filter, a full screen
blur, depth of field, and glow.

In the next and the final chapter of the book we will look at various topics in
animation, including animation of objects as a whole (moving a vehicle around a
track, for example), animation of specific meshes of a model (spinning the blades on
a windmill, for example), and what is called "skinned animation"—animation of the
bones in a model that causes the model itself to deform. This is useful for character
animation, where the "skin" of the model will bend, stretch, and flex along with the
model's bones.

Animation
In this chapter, we will look at several ways to make the objects in our scene move.
First, we will look at the animation of objects as a whole. We will do this through
simple linear interpolation between start and end values, and through a more
complex curve interpolation. We will also look at more complex animations through
keyframed animation. We will look at hierarchical animation to animate specific
pieces of a model, and finally, we will look at skinned animation—the animation of
the vertices of a model themselves according to the model's skeletal structure.

Object animation
We will first look at the animation of objects as a whole. The most common ways to
animate an object are rotation and translation (movement). We will begin by creating
a class that will interpolate a position and rotation value between two extremes
over a given amount of time. We could also have it interpolate between two scaling
values, but it is very uncommon for an object to change size in a smooth manner
during gameplay, so we will leave it out for simplicity's sake.

The ObjectAnimation class has a number of parameters—starting and ending
position and rotation values, a duration to interpolate during those values, and a
Boolean indicating whether or not the animation should loop or just remain at the
end value after the duration has passed:

public class ObjectAnimation
{
 Vector3 startPosition, endPosition, startRotation, endRotation;
 TimeSpan duration;
 bool loop;
}

Animation

[232]

We will also store the amount of time that has elapsed since the animation began,
and the current position and rotation values:

TimeSpan elapsedTime = TimeSpan.FromSeconds(0);

public Vector3 Position { get; private set; }
public Vector3 Rotation { get; private set; }

The constructor will initialize these values:

public ObjectAnimation(Vector3 StartPosition, Vector3 EndPosition,
 Vector3 StartRotation, Vector3 EndRotation, TimeSpan Duration,
 bool Loop)
{
 this.startPosition = StartPosition;
 this.endPosition = EndPosition;
 this.startRotation = StartRotation;
 this.endRotation = EndRotation;
 this.duration = Duration;
 this.loop = Loop;
 Position = startPosition;
 Rotation = startRotation;
}

Finally, the Update() function takes the amount of time that has elapsed since the
last update and updates the position and rotation values accordingly:

public void Update(TimeSpan Elapsed)
{
 // Update the time
 this.elapsedTime += Elapsed;

 // Determine how far along the duration value we are (0 to 1)
 float amt = (float)elapsedTime.TotalSeconds / (float)duration.
TotalSeconds;

 if (loop)
 while (amt > 1) // Wrap the time if we are looping
 amt -= 1;
 else // Clamp to the end value if we are not
 amt = MathHelper.Clamp(amt, 0, 1);

 // Update the current position and rotation
 Position = Vector3.Lerp(startPosition, endPosition, amt);
 Rotation = Vector3.Lerp(startRotation, endRotation, amt);
}

Chapter 9

[233]

As a simple example, we'll create an animation (in the Game1 class) that rotates our
spaceship in a circle over a few seconds:

We'll also have it move the model up and down for demonstration's sake:

ObjectAnimation anim;

We initialize it in the constructor:

models.Add(new CModel(Content.Load<Model>("ship"),
 Vector3.Zero, Vector3.Zero, new Vector3(0.25f), GraphicsDevice));

anim = new ObjectAnimation(new Vector3(0, -150, 0),
 new Vector3(0, 150, 0),
 Vector3.Zero, new Vector3(0, -MathHelper.TwoPi, 0),
 TimeSpan.FromSeconds(10), true);

We update it as follows:

anim.Update(gameTime.ElapsedGameTime);

models[0].Position = anim.Position;
models[0].Rotation = anim.Rotation;

Keyframed animation
Our ObjectAnimation class allows us to create simple linear animations, but we
can't create anything more complex. For example, we can't make our spaceship move
in a circle with this class. To achieve more complex animations, we will use what
is called keyframed animation. In this method, we specify "key" frames where we
want the object to be in a specific position and orientation. We then rely on the code
to interpolate between those values to fill in the frames between the key frames.

Animation

[234]

The following screenshot shows our spaceship at the keyframed positions along
a path, and the black line shows the path that would be taken by interpolating
between keyframes:

Keyframed animation is useful because it is a fast way to create somewhat complex
animations without having to animate each frame. For example, birds flying
through the air, soldiers on patrol, or even a camera flying through a scene, can
all be animated through keyframes. This is probably the easiest way to move
the camera during a cutscene, for example. We represent a key frame with the
ObjectAnimationFrame class. Like the previous class, it contains position and
rotation values. It also, however, contains a time value, marking this frame's time
offset from the beginning of the animation.

public class ObjectAnimationFrame
{
 public Vector3 Position { get; private set; }
 public Vector3 Rotation { get; private set; }
 public TimeSpan Time { get; private set; }

 public ObjectAnimationFrame(Vector3 Position, Vector3 Rotation,
 TimeSpan Time)
 {
 this.Position = Position;
 this.Rotation = Rotation;
 this.Time = Time;
 }
}

Chapter 9

[235]

We can now create a new animation class that uses key frames:

public class KeyframedObjectAnimation
{
 List<ObjectAnimationFrame> frames = new List<ObjectAnimationFrame>();
 bool loop;
 TimeSpan elapsedTime = TimeSpan.FromSeconds(0);

 public Vector3 Position { get; private set; }
 public Vector3 Rotation { get; private set; }

 public KeyframedObjectAnimation(List<ObjectAnimationFrame> Frames,
 bool Loop)
 {
 this.frames = Frames;
 this.loop = Loop;
 Position = Frames[0].Position;
 Rotation = Frames[0].Rotation;
 }
}

Finally, the Update() function figures out which frame we are on and interpolates
between its values and the next frame's values, based on how far between them
we are:

public void Update(TimeSpan Elapsed)
{
 // Update the time
 this.elapsedTime += Elapsed;

 TimeSpan totalTime = elapsedTime;
 TimeSpan end = frames[frames.Count - 1].Time;

 if (loop) // Loop around the total time if necessary
 while (totalTime > end)
 totalTime -= end;
 else // Otherwise, clamp to the end values
 {
 Position = frames[frames.Count - 1].Position;
 Rotation = frames[frames.Count - 1].Rotation;
 return;
 }

 int i = 0;

Animation

[236]

 // Find the index of the current frame
 while(frames[i + 1].Time < totalTime)
 i++;

 // Find the time since the beginning of this frame
 totalTime -= frames[i].Time;

 // Find how far we are between the current and next frame (0 to 1)
 float amt = (float)((totalTime.TotalSeconds) /
 (frames[i + 1].Time - frames[i].Time).TotalSeconds);

 // Interpolate position and rotation values between frames
 Position = Vector3.Lerp(frames[i].Position, frames[i + 1].Position,
 amt);
 Rotation = Vector3.Lerp(frames[i].Rotation, frames[i + 1].Rotation,
 amt);
}

For example, we can now create a new animation to move our spaceship in a square:

KeyframedObjectAnimation anim;

We set it up as follows:

List<ObjectAnimationFrame> frames = new List<ObjectAnimationFrame>();

frames.Add(new ObjectAnimationFrame(new Vector3(-1000, 100, -1000),
 new Vector3(0, MathHelper.ToRadians(-90), 0),
 TimeSpan.FromSeconds(0)));
frames.Add(new ObjectAnimationFrame(new Vector3(1000, 100, -1000),
 new Vector3(0, MathHelper.ToRadians(-90), 0),
 TimeSpan.FromSeconds(3)));
frames.Add(new ObjectAnimationFrame(new Vector3(1000, 100, -1000),
 new Vector3(0, MathHelper.ToRadians(-180), 0),
 TimeSpan.FromSeconds(6)));
frames.Add(new ObjectAnimationFrame(new Vector3(1000, 100, 1000),
 new Vector3(0, MathHelper.ToRadians(-180), 0),
 TimeSpan.FromSeconds(9)));
frames.Add(new ObjectAnimationFrame(new Vector3(1000, 100, 1000),
 new Vector3(0, MathHelper.ToRadians(-270), 0),
 TimeSpan.FromSeconds(12)));
frames.Add(new ObjectAnimationFrame(new Vector3(-1000, 100, 1000),
 new Vector3(0, MathHelper.ToRadians(-270), 0),
 TimeSpan.FromSeconds(15)));
frames.Add(new ObjectAnimationFrame(new Vector3(-1000, 100, 1000),
 new Vector3(0, MathHelper.ToRadians(-360), 0),
 TimeSpan.FromSeconds(18)));

Chapter 9

[237]

frames.Add(new ObjectAnimationFrame(new Vector3(-1000, 100, -1000),
 new Vector3(0, MathHelper.ToRadians(-360), 0),
 TimeSpan.FromSeconds(21)));
frames.Add(new ObjectAnimationFrame(new Vector3(-1000, 100, -1000),
 new Vector3(0, MathHelper.ToRadians(-450), 0),
 TimeSpan.FromSeconds(24)));

anim = new KeyframedObjectAnimation(frames, true);

The Update code remains the same. Running the game, you will see the spaceship
move from corner to corner of a box, turning towards the next corner at each stop.

Curve interpolation
We now have the ability to make animations with multiple key frames, which allows
us to create more complex animations. However, we are still interpolating linearly
between those key frames. This looks good for rotations, for example, but it would
not look good for an object following a path, as the object would abruptly change
direction after reaching a key frame in its animation. Instead, we want to be able
to have our objects follow a smooth curve through the positions defined in the key
frames. We will do this with what is called Catmull-Rom interpolation. This is a
process that will create a curve through our key frame positions, allowing for much
smoother object animation:

Animation

[238]

Let's modify the KeyframedObjectAnimation class to use Catmull-Rom
interpolation for the position value. XNA has a built-in function to calculate an
interpolated position between the second and third points in a set of four points
using Catmull-rom interpolation. However, it works only in one dimension, so we'll
need to create a function that will interpolate between a set of instances of Vector3:

Vector3 catmullRom3D(Vector3 v1, Vector3 v2, Vector3 v3, Vector3 v4,
float amt)
{
 return new Vector3(
 MathHelper.CatmullRom(v1.X, v2.X, v3.X, v4.X, amt),
 MathHelper.CatmullRom(v1.Y, v2.Y, v3.Y, v4.Y, amt),
 MathHelper.CatmullRom(v1.Z, v2.Z, v3.Z, v4.Z, amt));
}

The amt argument specifies how far (0 to 1) between the second and third vectors
the new position should be. We can now modify the position calculation to use this
new function:

// Interpolate position and rotation values between frames
Position = catmullRom3D(frames[wrap(i - 1, frames.Count - 1)].
Position,
 frames[wrap(i, frames.Count - 1)].Position,
 frames[wrap(i + 1, frames.Count - 1)].Position,
 frames[wrap(i + 2, frames.Count - 1)].Position, amt);

The wrap() function wraps the value that it is given around a certain interval—in
this case [0, frames.Count – 1]. This means that we will not have to worry about
our indices going out of range when finding the last point, next point, and so on, but
it does mean that this type of interpolation will work best with a closed curve—a
circle, for example:

// Wraps the "value" argument around [0, max]
int wrap(int value, int max)
{
 while (value > max)
 value -= max;

 while (value < 0)
 value += max;

 return value;
}

Chapter 9

[239]

We could now create the following keyframed animation with a curved path to
demonstrate our new interpolation method:

List<ObjectAnimationFrame> frames = new List<ObjectAnimationFrame>();

frames.Add(new ObjectAnimationFrame(new Vector3(-500, 100, 1000),
 new Vector3(0, MathHelper.ToRadians(0), 0),
 TimeSpan.FromSeconds(0)));
frames.Add(new ObjectAnimationFrame(new Vector3(500, 100, 500),
 new Vector3(0, MathHelper.ToRadians(0), 0),
 TimeSpan.FromSeconds(3)));
frames.Add(new ObjectAnimationFrame(new Vector3(-500, 100, 0),
 new Vector3(0, MathHelper.ToRadians(0), 0),
 TimeSpan.FromSeconds(6)));
frames.Add(new ObjectAnimationFrame(new Vector3(500, 100, -500),
 new Vector3(0, MathHelper.ToRadians(0), 0),
 TimeSpan.FromSeconds(9)));
frames.Add(new ObjectAnimationFrame(new Vector3(-500, 100, -1000),
 new Vector3(0, MathHelper.ToRadians(180), 0),
 TimeSpan.FromSeconds(12)));
frames.Add(new ObjectAnimationFrame(new Vector3(-500, 100, 1000),
 new Vector3(0, MathHelper.ToRadians(180), 0),
 TimeSpan.FromSeconds(15)));
frames.Add(new ObjectAnimationFrame(new Vector3(-500, 100, 1000),
 new Vector3(0, MathHelper.ToRadians(360), 0),
 TimeSpan.FromSeconds(18)));

anim = new KeyframedObjectAnimation(frames, true);

Animation

[240]

Building a Race Track from a Curve
Our method of Catmull-Rom curve interpolation works well for moving objects
along a smooth path, but can also be used for many other things. In this example, we
will build a race track from a curve and have a car follow that path at the player's
command. The RaceTrack class will take care of creating and rendering the track:

public class RaceTrack
{
 // List of control points
 List<Vector2> positions;

 // Vertex and index buffers
 VertexBuffer vb;
 IndexBuffer ib;
 int nVertices, nIndices;

 // Rendering variables
 GraphicsDevice graphicsDevice;
 BasicEffect effect;
 Texture2D texture;

 // Total length of the track
 float trackLength;
}

Note that we store the positions as a list of instances of Vector2, as the track is flat
on the ground and requires no Y position component. The constructor will direct the
initialization of the track:

public RaceTrack(List<Vector2> positions, int nDivisions, float
trackWidth, int textureRepetitions, GraphicsDevice graphicsDevice,
 ContentManager content)
{
 this.graphicsDevice = graphicsDevice;
 this.positions = interpolatePositions(positions, nDivisions);

 effect = new BasicEffect(graphicsDevice);
 texture = content.Load<Texture2D>("track");

 createBuffers(trackWidth, textureRepetitions);
}

Chapter 9

[241]

The constructor first calls the interpolatePositions() function, which adds
a given number of points to the list of control points based on Catmull-Rom
interpolation. We've already seen most of this in the last section—we are simply
using a similar Catmull-Rom function to insert extra positions into a list:

// Adds the given number of positions between the control points
specified,
// to subdivide/smooth the path
List<Vector2> interpolatePositions(List<Vector2> positions, int
nDivisions)
{
 // Create a new list of positions
 List<Vector2> newPositions = new List<Vector2>();

 // Between each control point...
 for (int i = 0; i < positions.Count - 1; i++)
 {
 // Add the control point to the new list
 newPositions.Add(positions[i]);

 // Add the specified number of interpolated points
 for (int j = 0; j < nDivisions; j++)
 {
 // Determine how far to interpolate
 float amt = (float)(j + 1) / (float)(nDivisions + 2);

 // Find the position based on catmull-rom interpolation
 Vector2 interp = catmullRomV2(
 positions[wrapIndex(i - 1, positions.Count - 1)], positions[i],
 positions[wrapIndex(i + 1, positions.Count - 1)],
 positions[wrapIndex(i + 2, positions.Count - 1)], amt);

 // Add the new position to the new list
 newPositions.Add(interp);
 }
 }

 return newPositions;
}

// Wraps a number around 0 and the "max" value
int wrapIndex(int value, int max)
{
 while (value > max)

Animation

[242]

 value -= max;
 while (value < 0)
 value += max;

 return value;
}

// Performs a Catmull-Rom interpolation for each component of a
Vector2 based
// on the given control points and interpolation distance
Vector2 catmullRomV2(Vector2 v1, Vector2 v2, Vector2 v3, Vector2 v4,
float amount)
{
 return new Vector2(MathHelper.CatmullRom(v1.X, v2.X, v3.X, v4.X,
amount),
 MathHelper.CatmullRom(v1.Y, v2.Y, v3.Y, v4.Y, amount));
}

Having added a number of additional points to the list of track points, we now
need to create the vertices and indices to trace a track through them. We add a vertex
to the left and right of each track point and create two triangles to fill the space
between each track section. We find the side vector by taking the cross product of
the forward vector (the vector between the next and the current position) and the up
vector (0, 1, 0).

We create the vertices as follows. For the sake of brevity, I won't step through the
code in pieces, as it is well commented:

VertexPositionNormalTexture[] createVertices(float trackWidth,
 int textureRepetitions)
{
 // Create 2 vertices for each track point
 nVertices = positions.Count * 2;

Chapter 9

[243]

 VertexPositionNormalTexture[] vertices = new
 VertexPositionNormalTexture[nVertices];

 int j = 0;
 trackLength = 0;

 for (int i = 0; i < positions.Count; i++)
 {
 // Find the index of the next position
 int next = wrapIndex(i + 1, positions.Count - 1);

 // Find the current and next positions on the path
 Vector3 position = new Vector3(positions[i].X, 0, positions[i].Y);
 Vector3 nextPosition = new Vector3(positions[next].X, 0,
 positions[next].Y);

 // Find the vector between the current and next position
 Vector3 forward = nextPosition - position;
 float length = forward.Length();
 forward.Normalize();

 // Find the side vector based on the forward and up vectors
 Vector3 side = -Vector3.Cross(forward, Vector3.Up) * trackWidth;

 // Create a vertex to the left and right of the current position
 vertices[j++] = new VertexPositionNormalTexture(position - side,
 Vector3.Up, new Vector2(0, trackLength));
 vertices[j++] = new VertexPositionNormalTexture(position + side,
 Vector3.Up, new Vector2(1, trackLength));

 trackLength += length;
 }

 // Attach the end vertices to the beginning to close the loop
 vertices[vertices.Length - 1].Position = vertices[1].Position;
 vertices[vertices.Length - 2].Position = vertices[0].Position;

 // For each vertex...
 for (int i = 0; i < vertices.Length; i++)
 {
 // Bring the UV's Y coordinate back to the [0, 1] range
 vertices[i].TextureCoordinate.Y /= trackLength;

Animation

[244]

 // Tile the texture along the track
 vertices[i].TextureCoordinate.Y *= textureRepetitions;
 }

 return vertices;
}

Next, we need to create the indices. All we need to do is create two triangles between
each track position:

int[] createIndices()
{
 // Create indices
 nIndices = (positions.Count - 1) * 6;
 int[] indices = new int[nIndices];

 int j = 0;

 // Create two triangles between every position
 for (int i = 0; i < positions.Count - 1; i++)
 {
 int i0 = i * 2;

 indices[j++] = i0;
 indices[j++] = i0 + 1;
 indices[j++] = i0 + 2;
 indices[j++] = i0 + 2;
 indices[j++] = i0 + 1;
 indices[j++] = i0 + 3;
 }

 return indices;
}

The createBuffers() function ties the vertex and index creation together:

void createBuffers(float trackWidth, int textureRepetitions)
{
 VertexPositionNormalTexture[] vertices = createVertices(trackWidth,
 textureRepetitions);

 // Create vertex buffer and set data
 vb = new VertexBuffer(graphicsDevice,
 typeof(VertexPositionNormalTexture),
 vertices.Length, BufferUsage.WriteOnly);

Chapter 9

[245]

 vb.SetData<VertexPositionNormalTexture>(vertices);
 int[] indices = createIndices();

 // Create index buffer and set data
 ib = new IndexBuffer(graphicsDevice, IndexElementSize.ThirtyTwoBits,
 indices.Length, BufferUsage.WriteOnly);
 ib.SetData<int>(indices);
}

Drawing the track is very simple:

public void Draw(Matrix View, Matrix Projection)
{
 // Set effect parameters
 effect.World = Matrix.Identity;
 effect.View = View;
 effect.Projection = Projection;
 effect.Texture = texture;
 effect.TextureEnabled = true;

 // Set the vertex and index buffers to the graphics device
 graphicsDevice.SetVertexBuffer(vb);
 graphicsDevice.Indices = ib;

 // Apply the effect
 effect.CurrentTechnique.Passes[0].Apply();

 // Draw the list of triangles
 graphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList,
 0, 0, nVertices, 0, nIndices / 3);
}

Let's now create a track in our game:

RaceTrack track;

We initialize it as follows in the LoadContent() function:

List<Vector2> trackPositions = new List<Vector2>()
{
 new Vector2(-4000, 0),
 new Vector2(-4000, -4000),
 new Vector2(0, -4000),
 new Vector2(4000, -4000),

Animation

[246]

 new Vector2(4000, -2000),
 new Vector2(0, -2000),
 new Vector2(-1000, 0),
 new Vector2(0, 2000),
 new Vector2(4000, 2000),
 new Vector2(4000, 4000),
 new Vector2(0, 4000),
 new Vector2(-4000, 4000),
 new Vector2(-4000, 0)
};

track = new RaceTrack(trackPositions, 25, 300, 30, GraphicsDevice,
Content);

Finally, we draw the terrain as follows:

track.Draw(camera.View, camera.Projection);

Moving a car along the track
Now that we can create and render our race track, we are ready to add a car to our
little racing game. First, we will need a way to determine where on the track the car
is, based on a distance value. This function will be able to handle the car looping
around the track, and will be able to interpolate between track positions:

Chapter 9

[247]

// Returns the position on the track the given distance from the start,
// and the forward direction at that point
public Vector2 TracePath(float distance, out Vector2 direction)
{
 // Remove extra laps
 while (distance > trackLength)
 distance -= trackLength;

 int i = 0;

 while (true)
 {
 // Find the index of the next and last position
 int last = wrapIndex(i - 1, positions.Count - 1);
 int next = wrapIndex(i + 1, positions.Count - 1);

 // Find the distance between this position and the next
 direction = positions[next] - positions[i];
 float length = direction.Length();

 // If the length remaining is greater than the distance to
 // the next position, keep looping. Otherwise, the
 // final position is somewhere between the current and next
 // position in the list
 if (length < distance)
 {
 distance -= length;
 i++;
 continue;
 }

 // Find the direction from the last position to the current
 position
 Vector2 lastDirection = positions[i] - positions[last];
 lastDirection.Normalize();
 direction.Normalize();

 // Determine how far the position is between the current and next
 // positions in the list
 float amt = distance / length;

Animation

[248]

 // Interpolate the last and current direction and current and
 // next position to find final direction and position
 direction = Vector2.Lerp(lastDirection, direction, amt);
 return Vector2.Lerp(positions[i], positions[next], amt);
 }
}

Now we are ready to animate the car. First, we load the car as usual. In this case,
the car is filling the second position in the list as the ground is loaded into the
first position.

models.Add(new CModel(Content.Load<Model>("car"), Vector3.Zero,
 Vector3.Zero, Vector3.One, GraphicsDevice));

We'll attach a chase camera to the car:

camera = new ChaseCamera(new Vector3(0, 250, 700),
 new Vector3(0, 250, 0),
 new Vector3(0, MathHelper.Pi, 0), GraphicsDevice);

The camera will need to be updated at the very end of the Update() function:

((ChaseCamera)camera).Move(models[1].Position, models[1].Rotation);
((ChaseCamera)camera).Update();

We will also need to update the references in the Draw() function to treat the camera
as a ChaseCamera instead of a FreeCamera:

foreach (CModel model in models)
 if (camera.BoundingVolumeIsInView(model.BoundingSphere))
 model.Draw(camera.View, camera.Projection, ((ChaseCamera)camera).
Position);

track.Draw(camera.View, camera.Projection);

To make things more interesting, we will simulate some simple velocity/acceleration
physics on our car. We will need distance and speed values:

float distance = 0;
float speed = 0;

We will work with these values at the beginning of the Update() function:

// Update the car speed for acceleration, braking, and friction
if (Keyboard.GetState().IsKeyDown(Keys.Up))
 speed += 1000 * (float)gameTime.ElapsedGameTime.TotalSeconds;
else if (Keyboard.GetState().IsKeyDown(Keys.Down))
 speed -= 2500 * (float)gameTime.ElapsedGameTime.TotalSeconds;
else

Chapter 9

[249]

 speed -= 1500 * (float)gameTime.ElapsedGameTime.TotalSeconds;

// Limit the speed min/max
speed = MathHelper.Clamp(speed, 0, 2000);

// Increase the distance based on speed
distance += speed * (float)gameTime.ElapsedGameTime.TotalSeconds;

Next, we get the position and direction of the car from the race track based on our
distance value, and move the car accordingly:

// Get position and direction of car from track class
Vector2 direction;
Vector2 trackPosition = track.TracePath(distance, out direction);

// Convert direction vector to angle
float rotation = (float)Math.Acos(direction.Y > 0 ? -direction.X :
direction.X);

if (direction.Y > 0)
 rotation += MathHelper.Pi;

rotation += MathHelper.PiOver2;

// Move and rotate car accordingly
models[1].Position = new Vector3(trackPosition.X, 20, trackPosition.Y);
models[1].Rotation = new Vector3(0, rotation, 0);

Running the game, you can drive the car using the up key to accelerate and the
back key to brake. Also notice that with no input the car will slow down by itself
due to friction.

Animation

[250]

Hierarchical animation
Thus far, we have looked at animation of objects as a whole, but this is interesting
only to a point. Next, we'll look at hierarchical animation—animation of individual
parts of a model. We call it hierarchical animation because models are generally built
as a hierarchy of pieces, where transforming one piece will also affect its children.
For example, a windmill may have the following hierarchy:

If we were to rotate the Fan part of the hierarchy, you can see that each blade
would also be rotated. Let's try this in our game. First, we load the windmill
and an animation:

models.Add(new CModel(Content.Load<Model>("windmill"),
 Vector3.Zero, Vector3.Zero, new Vector3(0.25f), GraphicsDevice));

anim = new ObjectAnimation(new Vector3(0, 875, 0),
 new Vector3(0, 875, 0),
 Vector3.Zero, new Vector3(0, 0, MathHelper.TwoPi),
 TimeSpan.FromSeconds(10), true);

This animation will simply rotate the fan blade in a circle every ten seconds. Now, all
we need to do is link the animation to the Fan mesh in the Update() function, and
the fan will spin independently of the tower. Because the fan is spinning, the blades
will spin as well, as they are linked hierarchically to the Fan piece:

models[0].Model.Meshes["Fan"].ParentBone.Transform =
 Matrix.CreateRotationZ(anim.Rotation.Z) *
 Matrix.CreateTranslation(anim.Position);

Chapter 9

[251]

We will revisit hierarchical animation when we get to skinned models, but for any
"normal" (non-skinned) model—like those we have been using throughout the
book—simply manipulating the bone transforms, like we did earlier, will be
enough to perform most animations of individual pieces of a model.

Skinned animation
The final type of animation we will look at is skinned animation. Skinned animation
animates the individual vertices of an object based on the object's skeleton. Each
bone is assigned a number of vertices, which it will affect when moved. For each
of those vertices, each bone is also assigned a weight determining how much
influence the bone will have on each vertex. This technique is especially useful for
animating characters, animals, and so on, because it makes it easy to simulate a
smooth, flowing, morphing skin with a skeleton inside. For example, it is easy to
model an arm as being made up of a few bones, which will deform the skin when
moved. This makes for a much more realistic effect than other approaches and makes
animation easy because the animator only has to worry about animating the bones of
a character—the skinning process will take care of animating each individual vertex.

Skinned animation also commonly makes use of keyframed animation: animators
will specify positions and orientations for each bone at specific frames and allow
the interpolation functions to handle the frames between the key frames. To make
matters even simpler (building off of even more of what we have learned), the bones
of a model are almost always modeled as a hierarchy, so transformations of one bone
will be reflected by its children. For example, moving a character's thigh will also
move its lower leg and foot, without any extra animation needed.

Animation

[252]

Before we can render skinned models, we need to be able to load them. XNA doesn't
provide a content processor for the content pipeline to build and load a skinned
model. Therefore, we will need to write our own. We will base this off of the skinned
model sample available at apphub.com. To begin with, we need to add a few projects
to our game's solution. We will need two new projects—a neutral class library to
store classes that can be accessed by the content pipeline and the game, and the
content pipeline extension itself. To add a new project, right-click on the solution in
the Solution Explorer in Visual Studio (labeled Solution MyGame (two projects))
and click on Add New Project. We will do this twice—adding a Windows Game
Library called SkinnedModel the first time, and a Content Pipeline Extension
Library called SkinnedModelPipeline the second time.

We now need to link all of the projects together so that each project will have
access to what they need to build. The game and content pipeline extension will
need access to the SkinnedModel project, and the game's content project will need
access to the content pipeline extension. In the Solution Explorer, first right-click on
References under the Content Pipeline Extension project (SkinnedModelPipeline)
and under Projects in the pop-up window, choose SkinnedModel. Do the same
for the MyGame project. Add a reference in the MyGameContent project to the
SkinnedModelPipeline project.

We will need a few classes in the SkinnedModel project for animation. First, we will
need a somewhat familiar Keyframe class. This class stores the transformation of a
single bone as a matrix, the index of the bone the keyframe stores the transformation
of, and the time from the beginning of the animation of the keyframe:

public class Keyframe
{
 // Index of the bone this keyframe animates
 [ContentSerializer]
 public int Bone { get; private set; }

 // Time from the beginning of the animation of this keyframe
 [ContentSerializer]
 public TimeSpan Time { get; private set; }

 // Bone transform for this keyframe
 [ContentSerializer]
 public Matrix Transform { get; private set; }

 public Keyframe(int Bone, TimeSpan Time, Matrix Transform)
 {
 this.Bone = Bone;
 this.Time = Time;

Chapter 9

[253]

 this.Transform = Transform;
 }

 private Keyframe()
 {
 }
}

The ContentSerializer attribute on the public properties and the blank constructor
of this class will allow the content pipeline to serialize the class so that it can be
recreated when loaded by the game. Next, the AnimationClip class stores all of the
keyframes for all of the bones of an animation:

public class AnimationClip
{
 // Total length of the clip
 [ContentSerializer]
 public TimeSpan Duration { get; private set; }

 // List of keyframes for all bones, sorted by time
 [ContentSerializer]
 public List<Keyframe> Keyframes { get; private set; }

 public AnimationClip(TimeSpan Duration, List<Keyframe> Keyframes)
 {
 this.Duration = Duration;
 this.Keyframes = Keyframes;
 }

 private AnimationClip()
 {
 }
}

Finally, the SkinningData class stores all of the data needed to load, animate, and
draw a skinned model. First, it stores all of the animation clips a model may happen
to contain. Next, it contains the matrix transformations for each bone (relative to their
parent's bone) that will put the model in what is called its "bind pose"—the "default"
pose of the model. The SkinningData class also contains the inverse matrices of the
bind pose matrices, to convert back from the bind pose. Finally, this class stores the
skeleton hierarchy of the model by storing the parent index of each bone:

public class SkinningData
{
 // Gets a collection of animation clips, stored by name
 [ContentSerializer]

Animation

[254]

 public Dictionary<string, AnimationClip> AnimationClips { get;
private set; }

 // Bind pose matrices for each bone in the skeleton,
 // relative to the parent bone.
 [ContentSerializer]
 public List<Matrix> BindPose { get; private set; }

 // Vertex to bonespace transforms for each bone in the skeleton.
 [ContentSerializer]
 public List<Matrix> InverseBindPose { get; private set; }

 // For each bone in the skeleton, stores the index of the parent bone.
 [ContentSerializer]
 public List<int> SkeletonHierarchy { get; private set; }

 public SkinningData(Dictionary<string, AnimationClip>
animationClips,
 List<Matrix> bindPose, List<Matrix> inverseBindPose,
 List<int> skeletonHierarchy)
 {
 AnimationClips = animationClips;
 BindPose = bindPose;
 InverseBindPose = inverseBindPose;
 SkeletonHierarchy = skeletonHierarchy;
 }

 private SkinningData()
 {
 }
}

Loading a skinned model
In XNA, the content pipeline is responsible for processing content files—models,
textures, and so on—and converting them into a format that is ready to be loaded
by the game. The content pipeline is a two stage process—first, content is run
through an importer that converts files of the same type (.fbx and .x models, or
.jpg and .png and .tga textures, for example) to the same intermediate format.
This intermediate data is then further processed by a content processor. The content
processor is responsible for taking the data provided by the importer and creating
an object that can be serialized (saved to a file) and loaded directly by the game's
content manager. In this case, we will take the animation data that has been loaded
by the importer and create a SkinningData object attached to the regular model
output by the content processor.

Chapter 9

[255]

With these three classes, we are ready to write the content processor that will process
the model file. XNA's model importer will have already extracted the data from the
model file, so all we need to do is extract the data that we need and convert it to a
format we can use. We will do this in the SkinnedModelPipeline project, with a
processor called SkinnedModelProcessor:

[DisplayName("Skinned Model Processor")]
public class SkinnedModelProcessor : ModelProcessor
{
}

The Process() function is primarily responsible for converting the data we are
given to the format we desire:

public override ModelContent Process(NodeContent input,
 ContentProcessorContext context)
{
}

The first step is to find the skeleton of the model in the data we are given, by using
the MeshHelper.FindSkeleton() function. We then extract the bones from that
skeleton using the same class' FlattenSkeleton() function:

// Find the skeleton.
BoneContent skeleton = MeshHelper.FindSkeleton(input);

// Read the bind pose and skeleton hierarchy data.
IList<BoneContent> bones = MeshHelper.FlattenSkeleton(skeleton);

Next, we will extract the bind post matrix transformations from the bones as well as
the hierarchy of the parent bone indices:

List<Matrix> bindPose = new List<Matrix>();
List<Matrix> inverseBindPose = new List<Matrix>();
List<int> skeletonHierarchy = new List<int>();

// Extract the bind pose transform, inverse bind pose transform,
// and parent bone index of each bone in order
foreach (BoneContent bone in bones)
{
 bindPose.Add(bone.Transform);
 inverseBindPose.Add(Matrix.Invert(bone.AbsoluteTransform));
 skeletonHierarchy.Add(bones.IndexOf(bone.Parent as BoneContent));
}

Animation

[256]

The next step is to process all of the animations in the model. We will do this with a
function called ProcessAnimations(), which we will write in a moment:

// Convert animation data to our runtime format.
Dictionary<string, AnimationClip> animationClips;
animationClips = ProcessAnimations(skeleton.Animations, bones);

Once we have processed all of this data, we call the base.Process() function so that
the Process() function of the default ModelProcessor can process the rest of the
data contained in the model (including the bone weights). Then we create an instance
of the SkinningData class, fill it with all of the data we collected, and set it as the
model's tag:

// Chain to the base ModelProcessor class so it can convert the model
data.
ModelContent model = base.Process(input, context);

// Store our custom animation data in the Tag property of the model.
model.Tag = new SkinningData(animationClips, bindPose,
inverseBindPose,
 skeletonHierarchy);

return model;

The content importer will have provided the animations of the model as an
AnimationContentDictionary object, so the ProcessAnimations() function's
job is to convert that object into our AnimationClip object. We do this by first
building a dictionary of bone names and indices. Next, we process all of the
individual animations in the dictionary. Finally, we add each animation to a
dictionary of animation clips. The table of bone names and indices is needed by the
ProcessAnimation() function to convert between bone names and indices when
processing a single animation:

static Dictionary<string, AnimationClip> ProcessAnimations(
 AnimationContentDictionary animations, IList<BoneContent> bones)
{
 // Build up a table mapping bone names to indices.
 Dictionary<string, int> boneMap = new Dictionary<string, int>();

 for (int i = 0; i < bones.Count; i++)
 boneMap.Add(bones[i].Name, i);

 Dictionary<string, AnimationClip> animationClips =
 new Dictionary<string, AnimationClip>();

 // Convert each animation

Chapter 9

[257]

 foreach (KeyValuePair<string, AnimationContent> animation in
animations)
 {
 AnimationClip processed = ProcessAnimation(animation.Value,
boneMap);
 animationClips.Add(animation.Key, processed);
 }

 return animationClips;
}

The ProcessAnimation() function is responsible for taking a single animation from
the AnimationContentDictionary (stored as an AnimationContent object) and
converting it into an AnimationClip, filled with keyframes. It does this by looking
at each animation channel in the animation. An animation channel contains all of
the key frames for one bone of a model. This function, then, needs to determine
what bone the animation channel controls, and extract all of the key frames in
the animation channel. Finally, having loaded all of the key frames for each bone,
the ProcessAnimation() function sorts all of the key frames by their time in the
animation using a comparison function:

static AnimationClip ProcessAnimation(AnimationContent animation,
 Dictionary<string, int> boneMap)
{
 List<Keyframe> keyframes = new List<Keyframe>();

 // For each input animation channel.
 foreach (KeyValuePair<string, AnimationChannel> channel in
 animation.Channels)
 {
 // Look up what bone this channel is controlling.
 int boneIndex = boneMap[channel.Key];

 // Convert the keyframe data.
 foreach (AnimationKeyframe keyframe in channel.Value)
 keyframes.Add(new Keyframe(boneIndex, keyframe.Time,
 keyframe.Transform));
 }

 // Sort the merged keyframes by time.
 keyframes.Sort(CompareKeyframeTimes);

 return new AnimationClip(animation.Duration, keyframes);
}

Animation

[258]

static int CompareKeyframeTimes(Keyframe a, Keyframe b)
{
 return a.Time.CompareTo(b.Time);
}

We can now build a model using our content processor and load it into the game.
We'll use the dude.fbx model from the skinning sample (also included in the code
download). To build the model with the correct content processor, we need to tell
XNA to use the Skinned Model Processor by right-clicking on the model in the
Solution Explorer, opening its properties, and setting the Content Processor
property to the previously mentioned value:

In order to render a skinned model, we need to use an Effect that will perform
the vertex transformations based on bone transformations. XNA provides a built-in
effect called SkinnedEffect that can do this for us. Let's create a new class that will
handle skinned models for us:

public class SkinnedModel
{
 Model model;
 GraphicsDevice graphicsDevice;
 ContentManager content;

 SkinningData skinningData;

 public Vector3 Position, Rotation, Scale;

Chapter 9

[259]

 public Model Model { get { return model; } }

 public SkinnedModel(Model Model, Vector3 Position, Vector3 Rotation,
 Vector3 Scale, GraphicsDevice GraphicsDevice,
 ContentManager Content)
 {
 this.model = Model;
 this.graphicsDevice = GraphicsDevice;
 this.content = Content;
 this.Position = Position;
 this.Rotation = Rotation;
 this.Scale = Scale;

 this.skinningData = model.Tag as SkinningData;

 setNewEffect();
 }
}

The setNewEffect() function changes the effect used by the model to a
SkinnedEffect and copies the texture, diffuse color, and so on from the old effect to
the new effect:

void setNewEffect()
{
 foreach (ModelMesh mesh in model.Meshes)
 {
 foreach (ModelMeshPart part in mesh.MeshParts)
 {
 SkinnedEffect newEffect = new SkinnedEffect(graphicsDevice);
 BasicEffect oldEffect = ((BasicEffect)part.Effect);

 newEffect.EnableDefaultLighting();
 newEffect.SpecularColor = Color.Black.ToVector3();

 newEffect.AmbientLightColor = oldEffect.AmbientLightColor;
 newEffect.DiffuseColor = oldEffect.DiffuseColor;
 newEffect.Texture = oldEffect.Texture;

 part.Effect = newEffect;
 }
 }
}

Animation

[260]

Finally, the Draw() function draws the model as usual:

public void Draw(Matrix View, Matrix Projection, Vector3
CameraPosition)
{
 Matrix world = Matrix.CreateScale(Scale) *
 Matrix.CreateFromYawPitchRoll(Rotation.Y, Rotation.X, Rotation.Z) *
 Matrix.CreateTranslation(Position);

 foreach (ModelMesh mesh in model.Meshes)
 {
 foreach (SkinnedEffect effect in mesh.Effects)
 {
 effect.World = world;
 effect.View = View;
 effect.Projection = Projection;
 }

 mesh.Draw();
 }
}

Right now, this class may not seem complicated enough to be warranted, but we will
see in a moment why we created a separate SkinnedModel class. We can test it at this
most basic level right now, by creating an instance of this class in our game:

SkinnedModel skinnedModel;

We initialize it in the LoadContent() function just like a CModel:

skinnedModel = new SkinnedModel(Content.Load<Model>("dude"),
 Vector3.Zero,new Vector3(0, MathHelper.Pi, 0), new Vector3(10),
 GraphicsDevice, Content);

We also draw it just like a CModel:

skinnedModel.Draw(camera.View, camera.Projection,
((FreeCamera)camera).Position);

Running the game, we should see the model in its bind pose. The model will be
facing backwards without an animation playing if you use the dude.fbx model.
This will change when an animation plays.

Chapter 9

[261]

Playing a skinned animation
In order to play a skinned animation, we need to, for each frame, find the
transformations to be applied to each bone according to the current keyframe of the
animation. The Effect will then take those transformations and use them to move
the vertices of our model. We will use XNA's SkinnedEffect to perform the second
function. However, to perform the first function of determining the current keyframe
and determining what the bone transformations should be, we will create a new
class—AnimationPlayer.

public class AnimationPlayer
{
 SkinningData skinningData;

 // The currently playing clip, if there is one
 public AnimationClip CurrentClip { get; private set; }

 // Whether the current animation has finished
 public bool Done { get; private set; }

 // Timing values
 TimeSpan startTime, endTime, currentTime;
 bool loop;
 int currentKeyframe;

 // Transforms
 public Matrix[] BoneTransforms { get; private set; }
 public Matrix[] WorldTransforms { get; private set; }
 public Matrix[] SkinTransforms { get; private set; }

Animation

[262]

 public AnimationPlayer(SkinningData skinningData)
 {
 this.skinningData = skinningData;

 BoneTransforms = new Matrix[skinningData.BindPose.Count];
 WorldTransforms = new Matrix[skinningData.BindPose.Count];
 SkinTransforms = new Matrix[skinningData.BindPose.Count];
 }
}

The AnimationPlayer class will be responsible for playing back animation clips.
It would be nice if all of the separate animations included in a model were stored
as individual animation clips, but unfortunately, many modeling packages export
only a single AnimationClip, with all of the animations placed together in a
sequence. For this reason, we want to be able to playback only a specific portion of
an AnimationClip. To accommodate this, we will provide a number of overloads for
the StartClip() function, which is responsible for resetting the animation player
and getting ready to play a given AnimationClip:

// Starts playing the entirety of the given clip
public void StartClip(string clip, bool loop)
{
 AnimationClip clipVal = skinningData.AnimationClips[clip];
 StartClip(clip, TimeSpan.FromSeconds(0), clipVal.Duration, loop);
}

// Plays a specific portion of the given clip, from one frame
// index to another
public void StartClip(string clip, int startFrame, int endFrame,
 bool loop)
{
 AnimationClip clipVal = skinningData.AnimationClips[clip];

 StartClip(clip, clipVal.Keyframes[startFrame].Time,
 clipVal.Keyframes[endFrame].Time, loop);
}

// Plays a specific portion of the given clip, from one time
// to another
public void StartClip(string clip, TimeSpan StartTime,
 TimeSpan EndTime, bool loop)
{
 CurrentClip = skinningData.AnimationClips[clip];
 currentTime = TimeSpan.FromSeconds(0);

Chapter 9

[263]

 currentKeyframe = 0;
 Done = false;
 this.startTime = StartTime;
 this.endTime = EndTime;
 this.loop = loop;

 // Copy the bind pose to the bone transforms array to reset the
 // animation
 skinningData.BindPose.CopyTo(BoneTransforms, 0);
}

The Update() function increases the time value, then updates the three arrays of
transformations:

public void Update(TimeSpan time, Matrix rootTransform)
{
 if (CurrentClip == null || Done)
 return;

 currentTime += time;

 updateBoneTransforms();
 updateWorldTransforms(rootTransform);
 updateSkinTransforms();
}

First, we update the bone transforms:

// Helper used by the Update method to refresh the BoneTransforms data
void updateBoneTransforms()
{
 // If the current time has passed the end of the animation...
 while (currentTime >= (endTime - startTime))
 {
 // If we are looping, reduce the time until we are
 // back in the animation's time frame
 if (loop)
 {
 currentTime -= (endTime - startTime);
 currentKeyframe = 0;
 skinningData.BindPose.CopyTo(BoneTransforms, 0);
 }
 // Otherwise, clamp to the end of the animation
 else
 {
 Done = true;

Animation

[264]

 currentTime = endTime;
 break;
 }
 }

 // Read keyframe matrices
 IList<Keyframe> keyframes = CurrentClip.Keyframes;

 // Read keyframes until we have found the latest frame before
 // the current time
 while (currentKeyframe < keyframes.Count)
 {
 Keyframe keyframe = keyframes[currentKeyframe];

 // Stop when we've read up to the current time position.
 if (keyframe.Time > currentTime + startTime)
 break;

 // Use this keyframe.
 BoneTransforms[keyframe.Bone] = keyframe.Transform;

 currentKeyframe++;
 }
}

Next, we update the world transforms. This will give us the world space
transformation of each bone, including its parent transform:

// Helper used by the Update method to refresh the WorldTransforms
data
void updateWorldTransforms(Matrix rootTransform)
{
 // Root bone
 WorldTransforms[0] = BoneTransforms[0] * rootTransform;

 // For each child bone...
 for (int bone = 1; bone < WorldTransforms.Length; bone++)
 {
 // Add the transform of the parent bone
 int parentBone = skinningData.SkeletonHierarchy[bone];

 WorldTransforms[bone] = BoneTransforms[bone] *
 WorldTransforms[parentBone];
 }
}

Chapter 9

[265]

Finally, we can update the skin transforms. These are the matrices actually used to
render the model:

// Helper used by the Update method to refresh the SkinTransforms data
void updateSkinTransforms()
{
 for (int bone = 0; bone < SkinTransforms.Length; bone++)
 SkinTransforms[bone] = skinningData.InverseBindPose[bone] *
 WorldTransforms[bone];
}

We can now update the SkinnedModel class to use an AnimationPlayer to
play animations:

public SkinnedAnimationPlayer Player { get; private set; }

We initialize this player in the constructor:

this.skinningData = model.Tag as SkinningData;
Player = new SkinnedAnimationPlayer(skinningData);

Next, we add an Update() function that will update the player and perform the
world matrix calculation:

public void Update(GameTime gameTime)
{
 Matrix world = Matrix.CreateScale(Scale) *
 Matrix.CreateFromYawPitchRoll(Rotation.Y, Rotation.X, Rotation.Z) *
 Matrix.CreateTranslation(Position);

 Player.Update(gameTime.ElapsedGameTime, world);
}

Finally, we can update the draw function to set the skin transforms from the
animation player to the SkinnedEffect attached to each MeshPart:

public void Draw(Matrix View, Matrix Projection, Vector3
CameraPosition)
{
 foreach (ModelMesh mesh in model.Meshes)
 {
 foreach (SkinnedEffect effect in mesh.Effects)
 {
 effect.SetBoneTransforms(Player.SkinTransforms);
 effect.View = View;

Animation

[266]

 effect.Projection = Projection;
 }

 mesh.Draw();
 }
}

Back in the Game1 class, we must be sure to call the skinned model's update function:

skinnedModel.Update(gameTime);

Finally, we can play this character's walking animation by calling the StartClip()
function of the AnimationPlayer of the SkinnedModel:

skinnedModel.Player.StartClip("Take 001", true);

Changing an animation's play speed
With the SkinnedModel class set up the way it is, it would be very easy to change
the speed at which its animations are played. All we need to do is lie to the
AnimationPlayer about how much time has elapsed between frames. First,
we'll add a PlaySpeed property:

public float PlaySpeed = 1.0f;

We can then modify the Update() function to use a modified elapsed time when
updating the AnimationPlayer:

TimeSpan elapsedTime = TimeSpan.FromSeconds(
 gameTime.ElapsedGameTime.TotalSeconds * PlaySpeed);

Player.Update(elapsedTime, world);

Chapter 9

[267]

We could make our character walk in slow motion, then, by changing the
PlaySpeed property:

skinnedModel.PlaySpeed = 0.5f;

Model attachments
A very useful trick when animating models, or when drawing models in general, is
attaching models to certain parts of other models. In the next example, we will attach
a gun model to the hand of our "dude" model. The first step is to find the index of
the bone controlling the hand. We will store that index in a variable. We will have to
load our model as a regular Model instead of the CModel, so that we can set the world
matrix directly:

Model gun;
int handIndex;

We find the index of the hand through the Model class of the underlying
SkinnedModel, while loading the gun model:

gun = Content.Load<Model>("mp5");

foreach(ModelMesh mesh in gun.Meshes)
 foreach (BasicEffect effect in mesh.Effects)
 {
 effect.Texture = Content.Load<Texture2D>("mp5_tex");
 effect.TextureEnabled = true;
 effect.EnableDefaultLighting();
 }

handIndex = skinnedModel.Model.Bones["R_Hand"].Index;

We can now draw the gun model as follows, applying both a transformation to make
the gun model lineup with the character's hand and the world transformation of the
character's hand itself:

foreach (ModelMesh mesh in gun.Meshes)
{
 foreach (BasicEffect effect in mesh.Effects)
 {
 Matrix gunTransform = Matrix.CreateScale(0.65f) *
 Matrix.CreateFromYawPitchRoll(-MathHelper.PiOver2, 0,
 MathHelper.Pi);

 effect.World = gunTransform *
 skinnedModel.Player.WorldTransforms[handIndex];

Animation

[268]

 effect.View = camera.View;
 effect.Projection = camera.Projection;
 }

 mesh.Draw();
}

Summary
Having completed this chapter, you have learned about several different types
of animation—you have learned how to animate objects as a whole with some
very simple position and rotation interpolation and interpolation over a curve.
You have also learned how to create a race track from a curve and how to move
a car along that path and track. You have also learned about hierarchical
animation—the animation of an object's skeleton and submeshes. You also
learned about "keyframed" animation, and how to create more complex
animations using it. Finally, you learned about "skinned" animation:
animation of the individual vertices of a model according to the model's
skeleton's transformations.

Index
Symbols
3D coordinate system 10

A
AddParticle() function 172
advanced materials 206-208
A key 24
AlphaTestValue parameter 158
ambient lighting 56, 57
amt argument 238
animation

keyframed animation 233, 234
object animation 231
play speed, changing 266
skinned animation 251, 252
skinned animation, playing 261
Update() function 266

animation channel 257
AnimationClip class 253
AnimationContentDictionary object 256
AnimationPlayer class, creating 261, 262
anisotropic filtering 55
arc-ball camera

about 31
ArcBall Camera class 32, 33
LoadContent() method 34

ArcBall Camera class 32, 33
aspect ratio 15

B
base.Draw() 224
base.Process() function 256
BasicEffect 15, 66

BasicTexture parameter 52
Billboarding 149
Billboards

drawing 153-156
non-rotating 163-166

BillboardSystem 196, 198
billboard system

adding, to render clouds 200-203
BillboardSystem class

about 156, 159, 164
creating 150, 152

black and white post processor 212, 213
BoundingFrustum class 29
BoundingSphere member variable 27
bounding spheres

calculating, for models 27, 28
boundingSphere value 28
bounding volume 27
buildBoundingSphere() 45

C
CachedEffect variable 45
camera

arc-ball camera 31, 34
chase camera 34-36
types 31, 34
upgrading, to free camera 24-27

Camera base class 21
Camera class

creating 21, 22
Catmull-Rom interpolation

about 237
amt argument 238
KeyframedObjectAnimation class,

modifying 238

[270]

wrap() function 238
cellSize variable 184
chase camera

about 34
ChaseCamera class, code 35, 36

ChaseCamera class
code 35, 36

circular queue 170-173
clipped 15
clipping plane 139
clouds

creating, with spherical billboarding 162
CModel class 18, 21, 27, 45, 61, 140, 205, 206
constructor function 171
ContentManager class 13
Content Processor property 258
ContentSerializer attribute 253
coordinate system 10
CopyEffect parameter 47
createBuffers() function 244
CreateLookAt() function 22
CreateLookAt() static function 14
CreatePerspectiveFieldOfView() function

14, 15
cube map 127
cube mapping

about 127
reflections, simulating 131-133
SkySphere class, creating 127-130

curve interpolation 237
Custom Model class

creating 18-20
cylindrical billboarding 162

D
depth bias 108
depth buffer 157
depth of field effect

about 218, 220
base.Draw() 224
Draw() function 220, 221
GaussianBlur class 221
LoadContent() function 220, 222, 224

depth values
storing 81-83

detail texture
adding, to terrain 193, 194
Draw() function 194
effect parameters 194
lerp() function 194
LoadContent() method 194
Terrain class 194

diffuse colors 56
directional lighting 57
D key 24
Draw() call 167
Draw() function 14, 16, 30, 47, 94, 114, 130,

154, 167, 174, 178, 189, 192, 194, 197,
199, 201, 209, 220, 221, 222, 224, 227,
248, 260

Draw() method 20, 23, 156, 160
drawBillboards() function 166
drawDepthNormalMap() function 90
draw function 207, 265
drawing

model 14, 15, 17

E
effect 15, 41, 46
Effect class 65
Effect instance 209
effect parameters 46, 153, 187, 189, 194, 217

F
First-Person-Shooter (FPS) games 24
FlattenSkeleton() function 255
fog 117
frame 14
FreeCamera class 24, 156

G
Game1 class 16, 143, 222
Game class 13
Gaussian blur 111
GaussianBlur class 216, 221
Gaussian blur post processor

about 214
effect parameter 217
GaussianBlur class 216

[271]

gaussianFn() function 216
Gaussian function 217

Gaussian function 217
generateFrustum() function 29
generateParticles() function 164, 171
getHeights() function 183
glow post processor effect

about 225
Draw() function 227

GraphicsDevice 15
GraphicsDevice.Clear() function 14
grass value 198

H
heightmap

about 181
cellSize variable 184
Draw() function 189
effect parameters 187, 189
getHeights() function 183
heights[,] array 184
LoadContent() method 189
new Terrain class, creating 182
normals 186
Projection parameters 189
terrain, building from 182
TerrainEffect.fx effect 187
TextureTiling parameter 187, 188
View parameters 189

heights[,] array 184
heights array 195
hierarchical animation

about 231, 250
animation, loading 250
Update() function 250
windmill, loading 250

High Level Shader Language. See HLSL
HLSL

about 41
ambient lighting 56, 57
diffuse colors 56
lambertian directional lighting 57-59
material class, creating to store effect

parameters 65-67
phong specular highlights 60, 62, 65

point light, implementing with 69-73
shader, assigning to model 44, 46
simple effect, creating 49-52
spot light, implementing with 74, 75
starting 42, 43
texture mapping 52
texture sampling 54, 55

I
index buffer 150
interpolatePositions() function 241
IRenderable interface 202

K
Keyframe class 252
keyframed animation

about 231, 233
ObjectAnimation class 233
Update() function 235
Update code 237
uses 234

KeyframedObjectAnimation class,
modifying 238

L
lambertian directional lighting 57-60
Lambertian lighting 57, 81
lerp() function 144, 194
LightEffect.fx effect 121
light map

creating 83-86
used, for drawing models 86, 87

LightMaterial class 122
lights

multiple lights, drawing 77-79
Load() function 13
LoadContent() function 26, 93, 130, 203, 211,

220, 222, 224, 245, 260
LoadContent() method 13, 20, 23, 34, 66, 143,

189, 194
LoadContent function 50, 196
loading

model 12, 13
local 11

[272]

M
Material 65
material class

about 70, 96
creating, to store effect parameters 65

matrices 10, 11
Matrix class 14, 22
mesh 11
meshes 13
MeshHelper.FindSkeleton() function 255
MeshTag class 45, 56, 206
method

PreDraw 146
Mip mapping 55
model

adding, to content project 12
bounding spheres, calculating 27, 28
drawing 14-16
drawing, with light map 86, 87
loading 12
shader, assigning to 44

model attachments 267, 268
Model class 13
modelMaterial 67
ModelMeshPart 44
modelTransformations array 15
MouseState member variable 26
Move() function 24
mul function 51
multiple lights

drawing 77-79
multitexturing

about 181, 190
pixel shader, updating 191
texture parameters, modifying 190, 191
values, setting in Game1 class 192
values, setting to effect 192

N
normalize() function 59
normal mapping 118-123
normal maps

about 120
generating, Photoshop used 123-126

normal values
storing 81-83

O
object animation

about 231
ObjectAnimation class 231
Update() function 232

ObjectAnimation class 231, 233
ObjectAnimationFrame class 234
object space 11
origin 10

P
particles 168, 169
particle smoke 179
ParticleSystem class 177
Photoshop

using, for normal map generation 123-126
pitch values 24
pixel shader 41, 72
point light

about 69
implementing, with HLSL 70-73
LightAttenuation value 70
LightFalloff value 70
pixel shader 72

POSITION0 semantics 51
position 14
post processing effect 205, 208, 209, 211
PostProcessor class 214, 218
PPLight.fx function 92
PreDraw method 146
prelighting

about 80
process 80

PrelightingRenderer 88
prelighting renderer

creating 88-92
using 93

PrelightingRenderer class 103, 113
prepareMainPass() function 92
Process() function 255
ProcessAnimation() function 256, 257

[273]

ProcessAnimations() function 256
projection matrix 11
Projection parameters 189
projective texturing

about 95-100
difference 96
effect, creating 98
orthographic matrix 98
texture, sampling from 99

R
Race Track

building, from curve 240, 241
car, moving 246, 247
createBuffers() function 244
Draw() function 248
indices, creating 244
interpolatePositions() function 241
LoadContent() function 245

RaceTrack class 240
reflective water effect

creating 137-147
region growing 181
RenderCapture class 211
render clouds

billboard system, adding 200-203
Right vectors 153
root 11
Rotate() method 24
rotation, transformations 10

S
sampler 53
saturate() function 59
scaling (changing size), transformations 10
SetClipPlane() function 139
SetClipPlane function 202
SetEffectParameters() 66
setEffectParameters() function 167
setEffectParameters() method 162
SetModelEffect() function 50, 207
SetModelMaterial() function 207
setNewEffect() function 259

shader effects
about 117
cube mapping 117, 127
fog 117
normal mapping 117, 118
water effect 117

shaders
about 41
assigning, to model 44-48
pixel shader 41
vertex shader 41

shadows, VSM
generating 115, 116

shadow mapping
about 95, 100
depth comparison, performing 107, 108,

109
depth texture, projecting onto scene 105,

106, 107
PrelightingRenderer class, updating 103,

104
scene, rendering as depth texture 101
shader, writing 102, 103

Side parameters 166
simple effect

creating 48-51
S key 24
skinned animation

about 231, 251
AnimationClip class 253
AnimationPlayer class, creating 261, 262
ContentSerializer attribute 253
draw function 265
playing 261
SkinnedModel class, updating 265
SkinnedModelPipeline 252
SkinningData class 253
skin transforms, updating 265
StartClip() function, calling 266
Update() function 263
Update() function, adding 265
world transforms, updating 264

skinned model
animation channel 257
AnimationContentDictionary object 256

[274]

base.Process() function 256
Content Processor property 258
Draw() function 260
FlattenSkeleton() function 255
LoadContent() function 260
loading 254
MeshHelper.FindSkeleton() function 255
Process() function 255
ProcessAnimation() function 256, 257
ProcessAnimations() function 256
rendering 258
setNewEffect() function 259
SkinnedModel class 260
SkinnedModelPipeline project 255
SkinningData class 256
SkinningData object 254

SkinnedModel class 260, 266
SkinnedModel class, updating 265
SkinnedModelPipeline 252
SkinnedModelPipeline project 255
SkinningData class 253, 256
SkinningData object 254
SkySphere class

creating 127-130
spaceship simulator 37, 38
specular highlights 60-65
spherical billboarding

about 162
clouds, creating with 162

spot light
about 74
implementing, with HLSL 74, 75
new effect, creating 75

StartClip() function 262
StartClip() function, calling 266
strobing 193

T
Tag properties 44
target 14
target camera

creating 22-24
TargetCamera class 24
Terragen

about 133

downloading 134
general render settings 134-136
sky boxes, rendering 133-136

terrain
BillboardSystem 198
detail texture, adding 193, 194
plants, placing 195-198

Terrain class 188, 194
texture mapping 52-54
texture parameter, multitexturing

modifying 190, 191
texture sampling 54, 55
TextureTiling parameter 187, 188
transformations

about 10
rotation 10
scaling (changing size) 10
translation (movement) 10
types 10

transforms array 13
translation (movement), transformations 10

U
Update() function 23, 25, 156, 173, 232, 235,

250, 263, 265, 266
Update() method 23, 26
Update code 237
Up parameters 166
up vector 14, 153
UV coordinates 53

V
Variance Shadow Maps. See VSM
vertex 150
vertex buffer 150
VertexPositionTexture vertex type 154
vertex shader 41
VertexShaderInput struct 175
VertexShaderOutput 59
VertexShaderOutput struct 51, 52, 202
vertices 12
view frustum culling 29
view matrix 11
View parameters 189

[275]

VSM
about 110
benefits 110
depth texture, blurring 111-114
shadows, generating 115, 116
soft shadows, implementing 110

W
WaterEffect class 146
W key 24
world matrix 11
world space 11
wrap() function 238

X
XNA game project

setting up 7-9

Z
Z-axis 10

	Team rebOOk

