
Solution* for Chapter 1 Exercise*

Solutions for Chapter 1 Exercises

1.1 5, CPU

1.2 1, abstraction

1.3 3, bit

1.4 8, computer family

1.5 19, memory

1.6 10, datapath

1.7 9, control

1.8 11, desktop (personal computer)

1.9 15, embedded system

1.10 22, server

1.11 18, LAN

1.12 27, WAN

1.13 23, supercomputer

1.14 14, DRAM

1.15 13, defect

1.16 6, chip

1.17 24, transistor

1.18 12, DVD

1.19 28, yield

1.20 2, assembler

1.21 20, operating system

1.22 7, compiler

1.23 25, VLSI

1.24 16, instruction

1.25 4, cache •

1.26 17, instruction set architecture
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1.27 21, semiconductor

1.28 26, wafer

1.29 i

1.30 b

1.31 e

1.32 i

1.33 h

1.34 d

1.35 f

1.36 b

1.37 c

1.38 f

1.39 d

1.40 a

1.41 c

1.42 i

1.43 e

1.44 g

1.45 a

1.46 Magnetic disk:

Time for 1/2 revolution =1/2 rev x 1/7200 minutes/rev X 60 seconds/
minutes3 4.17 ms

Time for 1/2 revolution = 1/2 rev x 1/10,000 minutes/rev X 60 seconds/
minutes = 3 ms

Bytes on center circle = 1.35 MB/seconds X 1/1600 minutes/rev x 60
seconds/minutes = 50.6 KB

Bytes on outside circle = 1.35 MB/seconds X 1/570 minutes/rev X 60
seconds/minutes = 142.1 KB

1.48 Total requests bandwidth = 30 requests/sec X 512 Kbit/request = 15,360
Kbit/sec < 100 Mbit/sec. Therefore, a 100 Mbit Ethernet link will be sufficient.
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1.49 Possible solutions:

Ethernet, IEEE 802.3, twisted pair cable, 10/100 Mbit

Wireless Ethernet, IEEE 802.1 lb, no medium, 11 Mbit

Dialup, phone lines, 56 Kbps

ADSL, phone lines, 1.5 Mbps

Cable modem, cable, 2 Mbps

1.50

a. Propagation delay = mis sec

Transmission time = LIR sec

End-to-end delay =m/s+L/R

b. End-to-end delay =mls+ LJR+t

c. End-to-end delay = mis + 2I/R + f/2

1.51 Cost per die = Cost per wafer/(Dies per wafer x Yield) = 6000/( 1500 x 50%)
= 8

Cost per chip = (Cost per die + Cost_packaging + Cost_testing)/Test yield =

(8 + 10)/90% = 20

Price = Cost per chip x (1 + 40%) - 28

If we need to sell n chips, then 500,000 + 20« = 28», n = 62,500.

1.52 CISCtime = P x 8 r = 8 P r n s

RISC time = 2Px 2T= 4 PTns

RISC time = CISC time/2, so the RISC architecture has better performance.

1.53 Using a Hub:

Bandwidth that the other four computers consume = 2 Mbps x 4 = 8 Mbps

Bandwidth left for you = 10 - 8 = 2 Mbps

Time needed = (10 MB x 8 bits/byte) / 2 Mbps = 40 seconds

Using a Switch:

Bandwidth that the other four computers consume = 2 Mbps x 4 = 8 Mbps

Bandwidth left for you = 10 Mbps. The communication between the other
computers will not disturb you!

Time needed = (10 MB x 8 bits/byte)/10 Mbps = 8 seconds
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1.54 To calculate d = ax fc -axc , the CPU will perform 2 multiplications and 1
subtraction.

Time needed = 1 0 x 2 + 1 x 1 = 2 1 nanoseconds.

We can simply rewrite the equation &sd = axb-axc= ax (b-c). Then 1 multi-
plication and 1 subtraction will be performed.

Time needed =10x1 + 1x1 = 11 nanoseconds.

1.55 No solution provided.

1.56 No solution provided.

1.57 No solution provided.

1.68 Performance characteristics:

Network address

Bandwidth (how fast can data be transferred?)

Latency (time between a request/response pair)

Max transmission unit (the maximum number of data that can be transmit-
ted in one shot)

Functions the interface provides:

Send data

Receive data

Status report (whether the cable is connected, etc?)

1.69 We can write Dies per wafer = /((Die area)"1) and Yield = /((Die area)"2)
and thus Cost per die = /((Die area)3).

1.60 No solution provided.

1.61 From the caption in Figure 1.15, we have 165 dies at 100% yield. If the defect
density is 1 per square centimeter, then the yield is approximated by

1

1 +

= .198.

Thus, 165 x .198 = 32 dies with a cost of $1000/32 = $31.25 per die.



Solution* for Chapter 1 Exercises

1.62 Defects per area.

1 Yield = 1
(1 + Defects per area x Die area/2)2

Defects per area = —: j —L ••— - 1 |

1980

1992

1992 + 19S0

Die ares

Yield
Defect density
Die area

Yield
Defect density
improvement

0.16

0.48
5.54
0.97
0.48
0.91

6.09
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Solutions for Chapter 2 Exercises

2.2 By lookup using the table in Figure 2.5 on page 62,

7ffififfohoi = 0111 1111 1111 1111 1111 1111 1

= 2,147,483,642^.

2.3 By lookup using the table in Figure 2.5 on page 62,

1100 1010 1111 1110 1111 1010 1100 111<U, = ca

2.4 Since MIPS includes add immediate and since immediates can be positive or
negative, subtract immediate would be redundant.

2.6

s l l $tO, $ t3 , 9 # s h i f t $t3 l e f t by 9, store in $tO
sr l $tO, t tO , 15 # s h i f t $tO r i gh t by 15

2.8 One way to implement the code in MIPS:

s l l tsO, $ s l , 11 # s h i f t receiver l e f t by 22, store in data
s r l $sO, $so, 24 # s h i f t data r i gh t by 24 (data - rece iver , r
andi $ s l , $ s l , Oxfffe # recei ver . ready - 0:
on* $sl , t s l , 0x0002 # recei ver.enabl e - 1;

Another way:

srl $sO. $sl, 2 ii data = recei ver. recei vedByte
andi $sO, $sO, OxOOff
andi $sl . $sl . Oxfffe it recei ver. ready - 0;
or i $s l , Ssl, 0x0002 it receiver.enable = 1;

1b tsO, 0($sl) # load the lower 8 bytes of a into bits
s l l $t0, JsO, 8 it $t0 - bits << 8
or $s0, $s0, $tO # b i ts .data l = bits.dataO
Iu1 $sO, 0000 0000 OHO 0100 # b i t s .da ta? - ' d '
l u i $ t0 , 0000 0001 0000 0000 # load a 1 in to the upper b i t s of $t0
or $s0. $s0, $t0 # b i t s . v a l i d - 1
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LO:

LI:

L2:

L3:

Exit

2.11

sit
bne

sit
beq

sll
add

lw

jr
add

St3
Jt3

St3
$t3

Jtl
$tl

«to,
$to
$sO

j Exit
add $sO

i Exit

sub $sO

3 Exit
sub $S0

i Exit

. Ss5,

. $zero
, $s5,

, $zero
, Ss5,

, «tl.
0($tl)

.• fs3.

. fsl,

. tsl,

. fs3,

$zero
, Exit
$t2

, Exit
2

It4

$s4

$S2

Js2

$s4

#
t
i
t
§
t
t
t
t
#
t
1
f
f
t
f

test k < 0
if so, exit

test k < 4
if not, exit

$tl - 4*k
$tl - SJumpTabletk)

$tO - JumpTable[k]
jump register

k — 0
break
k — 1

break
k — 2

break

k — 3
break

if (k—0) f - i + j;
else if (k—1) f - g + h;
else if (k—2) f - g - h;
else if (k—3) f - i - j:
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bne $s5, $0, Cl # branch k != 0
add JsO, $s3, $s4 # f - 1 + j
j Exit # break

Cl: addi $tO, $s5, -1 # $tO - k - 1
bne StO, tO. C2 # branch k !- 1
add tsO. $sl. $s2 # f - g + h
j Exit # break

C2: addi $tO, $s5, -I # $tO - k - 2
bne $tO, $0, C3 # branch k != 2
sub tsO, tsl, Ss2 # f - g - h
j Exit # break

C3: addi StO, $s5, -3 # $tO - k - 3
bne $tO, $0, Exit \\ branch k != 3
sub $sO, $s3, $s4 # f - 1 - j

Exit:

c The MIPS code from the previous problem would yield the following
results:

(5 arithmetic) 1.0 + (1 data transfer) 1.4 + (2 conditional branch) 1.7
+ (2 jump) 1.2 = 12.2 cycles

while the MIPS code from this problem would yield the following:

(4 arithmetic) 1.0 + (0 data transfer)1.4 + (4 conditional branch) 1.7
+ (0jump)1.2 = 10.8 cycles

2.12 The technique of using jump tables produces MIPS code that is independent
of N, and always takes the following number of cycles:

(5 arithmetic) 1.0 + (1 data transfer) 1.4 + (2 conditional branch) 1.7
+ (2 jump) 1.2= 12.2 cycles

However, using chained conditional jumps takes the following number of cycles in
a worst-case scenario:

(Narithmetic)1.0+ (0datatransfer)1.4 +{Nconditionalbranch)1.7
+ (0jump)1.2 = 2.7Ncycles

Hence, jump tables are faster for the following condition:

N> 12.2/2.7 = 5 case statements
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J

For

1 = 0

K l ?

H l

»•»•!

1- • 1

' " " , E *
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2.16 Hence, the results from using if-else statements are better.

set_array:

loop:

compare:

add!
sw
sw
sw
addi

add
addi
sll
add
add
add
Jal
sw
addi
bne

Iw
Iw
lw
addi
jr

addi
sw
sw
addi

$sp,
»fp.
$ra,
*aO,
Jfp,

$SO.
$to,
$tl.
$t2,
«aO,
tal,

$sp. -52
48<$sp)
44(tsp)
40($sp)
$sp, 48

$zero, $ze
$zero, 10
$sO, 2
Jsp, $tl
$a0, $zero
$s0, $zero

compare
$V0.
$sO,
$sO,

$aO,
Sra,
$fp.
$sp.
(ra

tsp.
(fp,
Jra,
tfp.

0($t2)
ISO, 1
$t0, loop

40($sp)
44($sp)
48($sp)
$sp, 52

Jsp, "8
4(Ssp)
0($sp)
$sp, 4

jal sub
sit $vO, $vO, $zero
slti $v0, $v0, 1

lw $ra, 0($sp)
lw $fp, 4($sp)
addi $sp, $sp, 8
jr $ra

# move stack pointer
# save frame pointer
# save return address
# save parameter (num)
# establish frame pointer

# 1 - 0
# max iterations is 10
# $tl - i * 4
# $t2 - address of array[i]
# pass num as parameter
# pass i as parameter
# cal 1 comparedium, i)
# array[i] - compare(num, i);

# loop if K 1 0

# restore parameter (num)
# restore return address
# restore frame pointer
# restore stack pointer
# return

# move stack pointer
# save frame pointer
it save return address
# establish frame pointer

# can jump directly to sub
# if sub(a.b) >= 0, return 1

# restore return address
# restore frame pointer
# restore stack pointer
# return

sub $v0, $a0, $al
jr $ra

# return a-b
# return
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The following is a diagram of the status of the stack:

Before set_array

Sip 1

$sp ,

Sfp .

$

During set_array

$fp
Sra

SaO • num

arraypi
arrays
«rray[7)

array[6]

array[5]

airayM

arraylSl

arrayT^J

array[1J

array(O]

Sfp 1

During compare/sub

$fp
Sra

SaO * num
arrayPl
arraylSl
arrayrj]

arrayie)
array(51
array(4]
arrayPI
arraypi
array[i]

arrayJOl
J(p
$ra

2.16

# Description: Computes the Fibonacci function using a recursive process.
# Function: F(n) = 0 . if n - 0;
t 1. if n - 1;
# F(n-l) + F(n-2). otherwise.
# Input: n. which must be a nonnegative integer.
# Output: F(n).
ii Preconditions: none
# Instructions: Load and run the program in SPIM, and answer the prompt.
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if Algorithm for main program:
# print prompt
if call fib(read) and print result.
# Register usage:
if taO - n (passed directly to fib)
# $sl - f(n)

.data

.align 2
if Data for prompts and output description
prmptl: .asciiz "\n\nThis program computes the Fibonacci function.
prmpt2: .asciiz "\nEnter value for n: "
descr: .asciiz "fib(n) - "

.text

.align 2
• -globl start

_start:
if Print the prompts

li $vO, 4 if p r in t_s t r system service . . .
la $aO, prmptl # . . . passing address of f i r s t prompt
syscal1
li SvO, 4 # pr in t_st r system service . . .
la $aO, prmpt2 if . . . passing address of 2nd prompt
syscal1

if Read n and cal l f i b with result
li $vO, 5 if read_int system service
syscall
move $aO, $vO
j a l f i b
move $s l , $vO

# Print result
li $vO, 4
la $aO, descr
syscall
li $vO, 1
move $aO, $sl
syscall

if Call system - exit
li $vO. 10
syscal1

if Algorithm for Fib(n):
it if (n == 0) return 0
if else if (n — 1) return 1
# e l s e r e t u r n f i b ( n - l ) + f 1 b ( n - 2 ) .
it

if $aO - n = result of read
§ ca l l f ib (n )
if $sl = f ib (n)

if pr in t_st r system service . . .
it . . . passing address of output descriptor

if p r in t_ in t system service . . .
it . . . passing argument f ib (n)
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# Register usage:
# $aO - n (argument)
# $tl - fibCn-1)
# $t2 - fibCn-2)
# $vO = 1 (for comparison)
#
# Stack usage:
# 1. push return address, n, before calling fib(n-l)
# 2. pop n
# 3. push n, fib(n-l), before calling fibtn-2)
# 4. pop fib(n-l), n, return address

fib: bne $aO, $zero, fibneO # if n ~ 0 ...
move $vO, $zero # ... return 0
jr $31

fibneO: # Assert: n !- 0
li tvO, 1
bne $aO, $vO, fibnel # if n — 1 ...
jr $31 # ... return 1

fibnel: # Assert: n > 1
## Compute fib(n-l)

addi $sp, $sp, -8 # push ...
sw $ra, 4($sp) # ... return address
sw $aO, O($sp) # ... and n
addi $aO, $aO, -1 # pass argument n-1 ...
jal fib # ... to fib
move $tl, $vO # $tl = fib(n-l)
lw $aO, O($sp) # pop n
addi $sp, $sp, 4 # ... from stack

## Compute fib(n-2)
addi $sp, $sp, -8 tf push ...
sw $aO, 4($sp) # ... n
sw $tl, 0($sp) # ... and fib(n-l)
addi $aO, $aO, -2 # pass argument n-2 ...
jal fib # ... to fib
move $t2, $vO # tt2 = fib(n~2)
lw $tl, OC$sp) # pop fib(n-l) ...
Iw $aO, 4{$sp) # ... n
lw $ra, 8{$sp) # ... and return address
addi $sp, $sp, 12 # ... from stack

## Return fib(n-l) + ffbCn-2)
add $vO, $tl. $t2 # $vO - fib(n) = fib(n-l) + fib(n-2)
jr $31 # return to caller
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2.17

# Description: Computes the Fibonacci function using an
it iterative process.
# Function: F(n) = 0 , if n = 0;
# 1, 1f n - 1;
# F(n-l) + Ftn-2). otherwise.
it Input: n, which must be a nonnegative integer.
it Output: F(n).
# Preconditions: none
# Instructions: Load and run the program in SPIH, and answer
it the prompt.
it
# Algorithm for main program:
it print prompt
it call f i b ( l , 0, read) and print result.
it
# Register usage:
# $a2 - n (passed directly to f ib)
it $sl - fCn)

.data

.align 2
# Data for prompts and output description
prmptl: .asciiz "\n\nThis program computes the the

Fibonacci functi on."
prmpt2: .asciiz "\nEnter value for n: "
descr: .asciiz "fib{n) - "

.text

.align 2

.globi start
—start:
it Print the prompts

li $vo, 4
1 a $aO, prmptl

# Read n and ca

syscal1
li $vo, 4
la $aO, prmpt2
prompt syscall
1 fib with result
li $vO, 5
syscal1
move $a2, $vO
li $al, 0
li $aO, 1
jal fib
move Isl, IvO

# print_str system service ...
# ... passing address of first
prompt

# print_str system service ...
# ... passing address of 2nd

# read_int system service

# $a2 - n - result of read
# Sal - fib(O)
it $aO - fibtl)
it call fib(n)
it $sl - fib(n)



Sohrthms for Chapter 2 Exercises

it Print result
11 JvO, 4
la iaO, descr

syscal1
If $vO, 1
move $aO, ts1
syscal1

# Call system - exit
li $vO. 10
syscal1

# Algor i thm for FibCa. b, count) :
# if (count — 0) re turn b
# else re turn f i b ( a + b, a, count - 1)
it
it Register usage:
it $a0 - a - f ib(n- l )
it Sal - b - fib{n-2)
it $a2 - count (initially n, finally 0 ) .
it ttl = temporary a + b

it print_str system service ...
it ... passing address of output
it descriptor

it print_int system service ...
it ... passing argument fib(n)

fib: bne $a2, $zero. fibneO
move $vO, $al
jr $31

addi $a2, $a2, -1
add $tl, $aO, $ai
move $al, taO
move $aO, ttl
j fib

# if count — 0 ...
# ... return b

# Assert: n !- 0
# count - count - 1
# $tl - a + b
it b = a
# a - a + old b
it tail call fib(a+b.

2.18 No solution provided.

2.19 Irisin ASCII: 73 114 105 115

Iris in Unicode: 0049 0072 0069 0073

Julie in ASCII: 74 117 108 105 101

Julie in Unicode: 004A 0075 006C 0069 0065

2.20 Figure 2.21 shows decimal values corresponding to ACSII characters.

A

65 32

b

98

y

121

t

116

e

101 32

i

101

s

115 32

8

56 32

b

98

i

101

t

116

s

115 0
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# initialize running sum StO - 0
# finished when Sal is 0
# compute running sum of $aO
# compute this $al times

4 add 100 to a * b
# return a * b + 100

# max i- 2500 * 4
# max j- 2500 * 4
# tvO - 0
# 1 - 0
# $t4 = address of array l[i] -
# $t4 - array l[i]
# j - 0
# $t3 - address of array 2[J]
# $t3 - array 2[J]
# if (array l[i] !- array 2[j]) skip $v0+
# $v0++
# j++
# loop if j I- 2500 * 4
# i++
# loop 1f 1 !- 2500 * 4

The code determines the number of matching elements between the two arrays
and returns this number in register $v0.

2 .31 Ignoring the four instructions before the loops, we see that the outer loop
(which iterates 2500 times) has three instructions before the inner loop and two
after. The cycles needed to execute these are 1 + 2 + 1 = 4 cycles and 1 + 2 = 3
cycles, for a total of 7 cycles per iteration, or 2500 x 7 cycles. The inner loop ,
requires 1 + 2 + 2 + 1 + 1 + 2 = 9 cycles per iteration and it repeats 2500 x 2500
times, for a total of 9 x 2500 x 2500 cycles. The total number of cycles executed is
therefore (2500 x 7) + (9 x 2500 x 2500) = 56,267,500. The overall execution time
is therefore (56,267,500) / (2 x 109) = 28 ms. Note that the execution time for the
inner loop is really the only code of significance.

1 oop:

finish:

beq
add
sub
j
addi
add

$to,

$al.
StO.
$al,
loop

StO.
SvO,

Szer
Sier
StO,
Sal,

StO,
StO,

The program computes a * b +

2.30

outer:

Inner:

skip

sll
sll
add
add
add
lw
add
add
lw
bne
addi
addi
bne
addi
bne

Sa2.
Sa3.
SvO.
StO.
St4,
$t4,
»tl,
St3.
St3,
»t3.
SvO,
Stl,

m.
StO,
StO.

$a2.
8a3,
Szero
Szero
Sao,

0, finish
SaO
1

100
Szero

100.

2
2
, Szero
. Szero
StO

0(St41
Szero
Sal,

. Szero
Stl

0(St3)
St4,
SvO,
Stl,
Sa3,
StO,
Sa2.

skip
1
4
inner
4
outer
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2.32 ori H I , $tO. 25

2.34

# register ttl - StO I 25;

addi $vO, $zero, -1 # Initialize to avoid counting zero word
loop: lw, $vl, 0($a0) tf Read next word from source

addi $vO, $vO, 1 # Increment count words copied
sw $vl, 0($al) # Write to destination
addi $aO, $aO, 4 # Advance pointer to next source
addi Sal, $al, 4 # Advance pointer to next destination
bne $vl, tzero, loop # Loop if word copied != zero

Bug I:Count($vO) is initialized to zero, no t -1 to avoid counting zero word.

Bug 2: Count (SvO) is not incremented.

Bug 3: Loops if word copied is equal to zero rather than not equal.

2.37

clear- ItO

beq t t l . small. L

beq H2. big. L

11 t t l . small

11 JtZ, big

ble t t3 . St5. L

bge t t5. t t3 . L

addi ttO. ttZ. big

lw i t5 , b1g(Jt2)

UO-0

if<*tl = small)goto L

if <tt2 ==• big) go to L

t t l * small

ttZ = big

tf <*t3 <=It5}goto L

lf{tt4>it5)gotoL

lf(tt5>=tt3)gotoL

StO = ttZ + big

tt5 = Memoryltt2 + big]

add t

beq t

11 1

beq t

addi t

lui %

on" I
sit t
beq t
sit t

sit 1
beq I
11 t
add t

add J

ero. tzero

a l l

t . L

ero. L

ero. small

per(big)

2. lower(big)

5, t t3

ero, L

5. St4

ero. L

5. tt3

ero, L

1. tat

t . %xz

2. tat

Note: In the solutions, we make use of the 1 i instruction, which should be imple-
mented as shown in rows 5 and 6.

2.38 The problem is that we are using PC-relative addressing, so if that address is
too far away, we won't be able to use 16 bits to describe where it is relative to the
PC. One simple solution would be
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here: bne $sO, $s2, skip
j there

skip:

there: add $sO, $sO, $sO

This will work as long as our program does not cross the 256MB address bound-
ary described in the elaboration on page 98.

2.42 Compilation times and run times will vary widely across machines, but in
general you should find that compilation time is greater when compiling with op-
timizations and that run time is greater for programs that are compiled without
optimizations.

2.45 Let /be the number of instructions taken on the unmodified MIPS. This de-
composes into 0.42/arithmetic instructions (24% arithmetic and 18% logical),
0.361 data transfer instructions, 0.18/conditional branches, and 0.031 jumps. Us-
ing the CPIs given for each instruction class, we get a total of (0.42 x 1.0 + 0.36 x
1.4 + 0.18 x 1.7 + 0.03 x 1.2) x /cycles; if we call the unmodified machine's cycle
time Cseconds, then the time taken on the unmodified machine is (0.42 x 1.0 +
0.36 x 1.4 + 0.18 x 1.7 + 0.03 x 1.2) x /x Cseconds. Changing some fraction,/
(namely 0.25) of the data transfer instructions into the autoincrement or autodec-
rement version will leave the number of cycles spent on data transfer instructions
unchanged. However, each of the 0.36 x / x /data transfer instructions that are
changed corresponds to an arithmetic instruction that can be eliminated. So, there
are now only (0.42- (036 xf)) x I arithmetic instructions, and the modified ma-
chine, with its cycle time of 1.1 x Cseconds, will take {(0.42 - 0.36/) x 1.0 + 0.36 x
1.4 + 0.18 x 1.7 + 0.03 x 1.2) x I x 1.1 x Cseconds to execute. When/is 0.25, the
unmodified machine is 2.2% faster than the modified one.

2.46 C

Loop:

ode befot
In
sit
bne
sit
beq
sll
add
Iw
bne
addi

1

me:

m.
sto.
sto,
sto.
sto.
Stl,

Stl.

sto,
sto,
Ss3,

Loop

4(Ss6)

Ss3,

Szero

Ss3.

Szero

Ss3,

Stl.

Szero

. IndexOutOfBounds

St2
, IndexOutOfBounds

2
$S6

8($tl)

Ss5.

Ss3,

Exit
1

# temp reg $t2 - length of array save

# temp reg $tO - 1 if 1 < 0

tt if 1< 0, goto Error

# temp reg $t0 = 0 if i >= length

# if i >- length, goto Error

# temp reg $tl = 4 * i

# Stl - address of saved]

# temp reg $t0 = save[i]

# go to Exit if save[i] !* k

# i - 1 + 1
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The number of instructions executed over 10 iterations of the loop is 10 x 10 + 8 +
1 = 109. This corresponds to 10 complete iterations of the loop, plus a final pass
that goes to Exit from the final bne instruction, plus the initial Iw instruction.
Optimizing to use at most one branch or jump in the loop in addition to using
only at most one branch or jump for out-of-bounds checking yields:

# temp reg $t2 = length of array save

# temp reg $tO - 1 if i < 0

# temp reg $t3 - 0 if i >- length
# f l i p the value of $t3
# $t3 - 1 if i is out of bounds
# if out of bounds, goto Error
# tern reg Stl - 4 * 1
# Stl - address of saved]
# temp reg $tO - saved]
# go to Exit if save[i] !- k
# 1 - 1 + 1
# temp reg $tO = 1 if i < 0
# temp reg St3 = 0 if i >- length
# f l i p the value of $t3
# $t3 = 1 if i is out of bounds
•# if out of bounds, goto Error
# temp reg $tl = address of saved]
# temp reg $tO = save[i]
# go to Loop if save[i] = k

The number of instructions executed by this new form of the loop is 10+10*9 =
100.

sit
sit
slti

or
bne
stl
add
In
bne
addi

sit
sit
slti

or
bne
addi

lu
beq

uz.
tto,

tt3,

tt3.

(t3.

tt3.

ttl.

ttl.

tto,

sto,

ts3.

tto.

tt3.

St3,

$t3.

it3,

itl.

tto.

no.

Code after:
4($s6)

$S3,

$S3,

$t3,

>t3,
(zero

»s3,

ttl,

tzero

$tz
1

tto
, IndexOutOfBounds

2
ts6

8(ttl)

ts5,

*s3,

$S3,

>s3.

«t3.

tt3,
tzero

ttl,

Exit

1
tzero

tt2
1
tto
, IndexOutOfBounds

4
8($tl)

«s5. Loop
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2.47 To test for loop termination, the constant 401 is needed. Assume that it is
placed in memory when the program is loaded:

Loop:

lw
lw
lw
add
sit
bne
sit
beq
sit
beq
add
lw
add
add
sw
addi

sit
bne

tt8,

tt7,

tt6,

tto.

$t4.

tt4.

tt4,

tt4.

$t4.

tt4,

ttl,

tt2.

$t2.

$t3.

tt2,

no,
tt4.

tt4.

AddressConstant401(tzero)

4(taO)

4(tal)

tzero, tzero

ttO. tzero

tzero, IndexOutOfBounds

ttO. St6

Jzero, IndexOutOfBounds

ttO, tt7

tzero, IndexOutOfBounds

tal, StO

8(Stl)

tt2, tsO

taO. ttO

8(tt3)

ttO, 4

StO, St8

tzero, Loop

it
it
It
it
it
it
it
it
it
it
it
it
it
it
it
it
it
it

tt8 - 401

tt7 = length of a[]

St6 - length of b[]

Initialize 1 - 0

$t4 - 1 If 1 < 0

if i< 0. goto Error

tt4 - 0 If 1 >- length

if i >- length, goto Error

tt4 = 0 if i >- length

if i >- length, goto Error

ttl - address of b[i]

St2 - bti]

$t2 - b[i] + c

tt3 - address of a[i]

a[i] - b[i] + c

i - i + 4

tt8 - 1 If ttO < 401, i.e., i

goto Loop if i <= 100

The number of instructions executed is 4 + 101 X 14= 1418. The number of data
references made is 3 + 101 X 2 = 205.

2.48
compareTo: sub $v0, $a0, Sal # return v[i].value - v[j+l],value

jr $ra # return from subroutine

2.49 From Figure 2.44 on page 141, 36% of all instructions for SPEC2000int are
data access instructions. Thus, for every 100 instructions there are 36 data accesses,
yielding a total of 136 memory accesses (1 to read each instruction and 36 to access
data).

a. The percentage of all memory accesses that are for data = 36/136 = 26%.

b. Assuming two-thirds of data transfers are loads, the percentage of all mem-
ory accesses that are reads = (100 + (36 x 2/3)}/136 = 91%.
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2.50 From Figure 2.44,39% of all instructions for SPEC2000fp are data access in-
structions. Thus, for every 100 instructions there are 39 data accesses, yielding a
total of 139 memory accesses (1 to read each instruction and 39 to access data).

a. The percentage of all memory accesses that are for data = 39/139 = 28%.
b. Assuming two-thirds of data transfers are loads, the percentage of all mem-

ory accesses that are reads = (100 + (39 x 2/3))/139 = 91%.

2.51 Effective CPI = Sum of (CPI of instruction type x Frequency of execution)

The average instruction frequencies for SPEC2000int and SPEC2000fp are 0.47
arithmetic (0.36 arithmetic and 0.11 logical), 0.375 data transfer, 0.12 conditional
branch, 0.015 jump. Thus, the effective CPI is 0.47 x 1.0 + 0.375 x 1.4 + 0.12 x 1.7
+ 0.015x1.2=1.2.

2.52

load b
add c

add c
store b
neg
add a.
store d

Ac
Ac

Ac
Ac
Ac
Ac

- b;
+- c;

+- c:
- b;
-- Ace;
-- b;

d - ACC;
Total:

3
3
3
3
3
1
3
3
22 28

Code size is 22 bytes, and memory bandwidth is 22 + 28 = 50 bytes.

push b
push c
add
dup

3
3
1
1

4
0
0
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pop a
push c

add

duo
pop b
neg
push a
add
pop d
Total:

3
3
1
1

3

1
3
1
3

27

4

0
0
4

0
4
0
4

28

Code size is 27 bytes, and memory bandwidth is 27 + 28 = 55 bytes.

I add b, a, c # b-a-

Total:

7

21

12

36

Code size is 21 bytes, and memory bandwidth is 21 + 36 = 57 bytes.

load $
load I

add $
s tore S

add S
store $

sub $
store $
Total:

1 , b

2, c
3. $ 1 ,
3. a

1 . 12.
1 . b
4, 13
4. d

12

$3

t l •

1

2
3
-

-
4

-

i

$

t

i +

2 +

3 -

SZ

$3;

t l :

4
4

3
4

3
4
3
4

29

4
4
0
4

0
4

0
4

20

Code size is 29 bytes, and memory bandwidth is 29 + 20 = 49 bytes.
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The load-store machine has the lowest amount of data traffic. It has enough regis-
ters that it only needs to read and write each memory location once. On the other
hand, since all ALU operations must be separate from loads and stores, and all
operations must specify three registers or one register and one address, the load-
store has the worst code size. The memory-memory machine, on the other hand,
is at the other extreme. It has the fewest instructions (though also the largest num-
ber of bytes per instruction) and the largest number of data accesses.

2.53 To know the typical number of memory addresses per instruction, the na-
ture of a typical instruction must be agreed upon. For the purpose of categorizing
computers as 0-, 1-, 2-, 3-address machines, an instruction that takes two operands
and produces a result, for example, a d d, is traditionally taken as typical.

Accumulator: An add on this architecture reads one operand from memory, one
from the accumulator, and writes the result in the accumulator. Only the location
of the operand in memory need be specified by the instruction. Category: 1-
address architecture.

Memory-memory: Both operands are read from memory and the result is written
to memory, and all locations must be specified. Category: 3-address architecture.

Stack: Both operands are read (removed) from the stack (top of stack and next to
top of stack), and the result is written to the stack (at the new top of stack). All
locations are known; none need be specified. Category: 0-address architecture.

Load-store: Both operands are read from registers and the result is written to a reg-
ister. Just like memory-memory, all locations must be specified; however, location
addresses are much smaller—5 bits for a location in a typical register file versus 32
bits for a location in a common memory. Category: 3-address architecture.

2.54

sbn temp, temp, .+1 # clears temp, always goes to next instruction
start: sbn temp, b, .+1 # Sets temp = -b

sbn a, temp, .+1 # Sets a - a - temp - a - {-b) - a + b

2.55 There are a number of ways to do this, but this is perhaps the most concise
and elegant:

sbn c, c, .+1 # c = 0;
sbn tmp, tmp, .+1 # tmp - 0;

loop: sbn b, one, end # whi le { - -b >= 0)
sbn tmp, a, loop # tmp -=•= a; /* always continue */

end: sbn c, tmp, .+1 # c = -tmp; / * - a x b * /

2.56 Without a stored program, the programmer must physically configure the
machine to run the desired program. Hence, a nonstored-program machine is one
where the machine must essentially be rewired to run the program. The problem
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with such a machine is that much time must be devoted to reprogramming the ma-
chine if one wants to either run another program or fix bugs in the current pro-
gram. The stored-program concept is important in that a programmer can quickly
modify and execute a stored program, resulting in the machine being more of a
general-purpose computer instead of a specifically wired calculator.

2.57

MIPS:

loop:

add

addi

sll

add

Iw

add

sll

add

sw

addi

bne

PowerPC:

loop:

add

addi

1 wu

add

sll

sw

addi

bne

tto.

ttl,

$t2.

$t3,

tt4,

tt4.

$t2,

$t3,

tt4,

(to,

$to.

$to,

$tl,

tt4,

tt4,

tt2,

ft4,

tto.

tto,

tze

tze

to,

tt2

ro, $zero

ro, 10

2

, tal

0(tt3)

tt4

to,
tt2

, tto

4

, taO

0(tt3)

sto
ttl

tze

, 1

. loop

ro, tzero

tzero, 10

4(t

tt4

to,

taO

$to
$tl

al)

, tto

4

+tt2

, 1

, 1 oop

t
t
t
1
t
t
t
t
t
t
t

t
#

#
t
1
#
II

1 - 0

set m

tt2 -

tt3 -

tt4 -

tt4 -

tt2 -

tt3 -

a[2i]

i++

loop

i --0

set m

tt4 =

tt4 -

tt2 -

a[2i]

i++

1 oop

ax iterations of loop

i * 4

address of b[i]

b[i]

bCi] + i

1 * 4 * 2

address of a[2i]

- b[i] + 1

if i !- 10

ax iterations of loop

bti]

bti] + 1

1 * 4 * 2

- b[i] + i

if i !- 10
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add

add

addi

outer: add

1u
add

add!

inner: add

lw
bne

addi

skip: addi

bne

sit

bne

add

next: addi

bne

PowerPC:

add
add
addi

add
outer: lwu

add
addi

add
inner: lwu

bne
addi

tvO,
$to,
St8,

St4,

St4,

$sO,

$tl.

St3,

$t3.

St3,

SsO,

Stl,

$tl.

*t2,

$t2,

$vO,

sto,
tto,

tvO,
$to,
«t8,

St7,

(t4,

SsO,

Sctr

St6,

St3,

$t3.

$sO.

$zero, Szero

Szero, 400

$aO, StO

0($t4)

$zero, Szero

$zero, 400

$aO, $tl

0($t3)

St4, skip

SsO, 1

Stl, -4

Szero, inner

SsO, SvO

SsO, Szero

StO, 4

St8, outer

Szero, Szero

Szero, Szero

Szero, 400

SaO, Szero

4(St7)

Szero, Szero

, Szero, 100

SaO, Szero

4($t6)

St4, skip

SsO, 1

t
t
t
t
it
#
#
f
1
t
t
t
t
t

§
1
1

t
t
t
t
t
t
#
#
t
t
t

freq = 0

i - 0

St8 - 400

St4 - address of a[i]

St4 - a[i]

x - 0

j - 400

St3 - address of a[j]

St3 - a[j]

if (a[1] !•

X++

J--
loop if j

St2 - 0 if

freq = x

i++

loop if i

freq - 0

1 - 0

St8 - 400

keep track

$t4 - a[i]

x - 0

i - 100

keep track

St3 - a[j]

if !a[i] !•

X++

• a[j]l skip x++

!- 0

x >= freq

!- 400

of a[i] with update addressing

of a[j] with update addressing

- a[j]) skip x++
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skip: be
sit
bne
add
addi

bne

inner

stz,

$t2.

$vO,

no.
no.

, $ctr!-0

SsO, $vO
$zero, next

SsO,

$to,

$t8.

$zero

4
outer

# j--. loop If j!-0

t tt2 - 0 if x >- freq

# skip freq - x if

t freq - x

t 1++

# loop if 1 !- 400

xor $s0, $s0, $sl
xor $sl, SsO, Isl
xor SsO. SsO. $sl
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Solutions for Chapter 3 Exercises
3.1 0000 0000 0000 0000 0001 0000 0000 0000two

3.2 1111 1111 1111 1111 1111 1000 0000 0001two

3.3 1111 1111 1110 0001 0111 1011 1000 0000two

3.4 -250ten

3.5 -17 t t n

3.6 2147483631wn

3.7

addu $t2, Izero, $t3 # copy St3 into $t2
bgez $t3, next # if $t3 >= 0 then done
sub t t2 , Szero, St3 # negate $t3 and place into $t2

Next:

3.9 The problem is that A_1 ower will be sign-extended and then added to $t0.
The solution is to adjust A_upper by adding 1 to it if the most significant bit of
A_l ower is a 1. As an example, consider 6-bit two's complement and the address
23 = 010111. If we split it up, we notice that A_l ower is 111 and will be sign-
extended to 111111 = - 1 during the arithmetic calculation. A_upper_adjusted
= 011000 = 24 (we added 1 to 010 and the lower bits are all Os). The calculation is
then24+- l = 23.

3.10 Either the instruction sequence

addu $t2, $t3, $t4
situ $t2, $t2. $t4

addu $t2, $t3, $t4
situ $t2. -$t2, $t3

works.

3.12 To detect whether $ s 0 < $ s 1, it's tempting to subtract them and look at the
sign of the result. This idea is problematic, because if the subtraction results in an
overflow, an exception would occur! To overcome this, there are two possible
methods: You can subtract them as unsigned numbers (which never produces an
exception) and then check to see whether overflow would have occurred. This
method is acceptable, but it is lengthy and does more work than necessary. An
alternative would be to check signs. Overflow can occur if $ s 0 and (- $ s 1) share
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the same sign; that is, if $ s 0 and $ s 1 differ in sign. But in that case, we don't need
to subtract them since the negative one is obviously the smaller! The solution in
pseudocode would be

if <$s0<0) and (Ssl>0) then
$tO:-l

else if <$s0>0) and {$sl<OJ then
$tO:-O

else
$tl:-$sO-Ssr
if ($tl<0) then

$tO:-l
else

$tO:-O

3.13 Here is the equation:

Sum = (a • b • Carryln) + (a • b • Carryln) + (a • b • Carryln) + (a • b • Carryln)

Carryln
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0
0

0

1

1

1

1

0

1

1

0

0

1

1

1

0

1

0

1

0

1

None
Add the multiplicand

Add the multiplicand

Add twice the
multiplicand
Subtract twice the
multiplicand

Subtract the
multiplicand

Subtract the
multiplicand
None

End of a string of Is
A string of one 1, so subtract the multiplicand at
position i for the beginning of the string and add twice
the multiplicand (twice to align with position 1 + I) for
the end of the string; net result, add the multiplicand
End of a string of Is; must align add with 0 In position
i + 1
Beginning of a string of Is; must subtract with 1 in
position 1 +1
End of string of Is, so add multiplicand, plus
beginning of a string of Is, so subtract twice the
multiplicand; net result Is to subtract Hie multiplicand
Beginning of a string of Is

Middle of a suing of Is

One example of 6-bit operands that run faster when Booth's algorithm looks at 3
bits at a time is 21 t e n x 27^ , = 567^ .

Two-bit Booth's algorithm:

010101 =2 I t e n

X011011 = 2 7 ^

- 010101 10 string (always start with padding 0 to right of LSB)
000000 11 string, middle of a string of Is, no operation

+ 010101 01 string, add multiplicand
- 010101 10 string, subtract multiplicand
000000 11 string

+ 010101 01 string

11111101011 two's complement with sign extension as needed
0000000000 zero with sign extension shown
000010101 positive multiplicand with sign extension
11101011
0000000

(-010101

01000110111 =567 t e n
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Don't worry about the carry out of the MSB here; with additional sign extension
for the addends, the sum would correctly have an extended positive sign. Now,
using the 3-bit Booth's algorithm:

010101 = 2 1 t e n

X0110U = 2 7 ^

- 010101 110 string (always start with padding 0 to right of LSB)
— 010101 101 string, subtract the multiplicand

+• 0101010 011 string, add twice the multiplicand (i.e., shifted left 1 place)

11111101011 two's complement of multiplicand with sign extension
111101011 two's complement of multiplicand with sign extension
0101010

01000110111 "S67 , , , ,

Using the 3-bit version gives only 3 addends to sum to get the product versus 6
addends using the 2-bit algorithm.

Booth's algorithm can be extended to look at any number of bits b at a time. The
amounts to add or subtract include all multiples of the multiplicand from 0 to
2*6"1'. Thus, for b> 3 this means adding or subtracting values that are other than
powers of 2 multiples of the multiplicand. These values do not have a trivial
"shift left by the power of2numberofbitposit ions"methodof computation.

3.25

1 A »fO, -8(»gp)
1 A $f2, -ie(tgp)
1 A Sf4, -24(Sgp)
fmadd tfO. tfO, t f2, (f4
s.d tfO, -8($gp)

3.26 a.

1 = 0100 0000 0110 0000 0000 00000010 0001

y = 0100 0000 1010 0000 0000 0000 0000 0000

Exponents

100 00000
+100 0000 1

1000 0000 1
-01111111
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X 1.100 0000 0000 0000 0010 0001
y xl.010 0000 0000 0000 0000 0000

1 100 0000 0000 0000 0010 0001 000 0000 0000 0000 0000 0000
+ 11 0000 0000 0000 0000 1000 010 0000 0000 0000 0000 0000

1.111 0000 0000 0000 0010 1001 010 0000 0000 0000 0000 0000

Round result for part b.

1.111 1100 0000 0000 0010 1001

Z0011 1100 111000000000 1010 11000000

Exponents

100 0001 0
- 11 1100 1

100 1 --> shift 9 bits

1.1110000 0000 0000 0010 1001010 0000 00
+ z 111000000000101011000000

1.111 OOOOOIUOOOOOOIO 1110 101
GRS

Result:

0100 000101110000011100000100 1111

b.

1.111 1100 0000 0000 0000 1001 result from mult.
+ z 1110000 0000 0101011

1.111 11000111 0000 0001 1110011
GRS

0100000101110000 01110000 01001110
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0 0 0 0

• 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1 1

0 1 0 1 1 0 1 1

0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

- 0 0 0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 1 0 1 1

0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

0

0

0

0

n

0

0

0

0

n

0

0

0

0

n

0

o .

0

0

0

n

0

0

0

o

n

0

0

0

0

0

n

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

n

0

0

0

0

n

0

0

0

0

n

0

0

0

0

n

0

0

0

0

f>

0

0

0

0

n

0

0

0

0

0

0

0

0

0

0

0

'o
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

1

0

1

1

1

0

0

1

0

1

0

1

0

1

1

1

1

1

1

0

1

0

1

1

0

1

1

1

1

0 0 0 0 1 1 0 1 1

-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

1

1

0

1

0

1

1

It™

1

1

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 1

0 0 0 1 1 0 1 1

0 1 1 0 1

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
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Solutions for Chapter 6 Exercises

6.1

a. Shortening the ALU operation will not affect the speedup obtained from
pipelining. It would not affect the dock cycle.

b. If the ALU operation takes 25% more time, it becomes the bottleneck in the
pipeline. The clock cycle needs to be 250 ps. The speedup would be 20%
less.

6.2

a. It takes 100 ps * 106 instructions - 100 microseconds to execute on a non-
pipelined processor (ignoring start and end transients in the pipeline).

b. A perfect 20-stage pipeline would speed up the execution by 20 times.

c. Pipeline overhead impacts both latency and throughput.

6.3 See the following figure:

6.4 There is a data dependency through $ 3 between the first instruction and each
subsequent instruction. There is a data dependency through $ 6 between the 1 w in-
struction and the last instruction. For a five-stage pipeline as shown in Figure 6.7,
the data dependencies between the first instruction and each subsequent instruc-
tion can be resolved by using forwarding.

The data dependency between the load and the last add instruction cannot be
resolved by using forwarding.
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6.6 Any part of the following figure not marked as active is inactive.
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i



S o l u t i o n s f o r C h a p t e r 3 E x t r d s o *

I l l 1 1 1 1

- 0 0 0 0 0 0 0 0

< 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1

0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1
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d. Convert to positive:

0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1

0 0 1 0 1 1 0 1 0 1 1 1 I I

1 1 1 1 1 0 0 1 1 II

1 0 1 1 0 1 0 1 1 II

1 0 0 0 1 0 0 0 0101

1 0 1 1 0 1 0 1111

10 1 1 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0

Since signs differ, convert quotient to negative;

1111 1111 1111 1111 1111 1111 1 1 1 0 0 1 0 1 ^

3.29 Start

Set subtract bit to true

1. If subtract bit true: Subtract the Divisor register from the Remainder and
place the result in the remainder register.

else Add the Divisor register to the Remainder and place the result in the
remainder register.

Test Remainder

>=0

2. a. Shift the Quotient register to the left, setting rightmost bit to 1.

<0

2. b. Set subtract bit to false.

3. Shift the Divisor register right 1 bit.

<33rd rep —> repeat

Test remainder

<0
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Add Divisor register to remainder and place in Remainder register.

Done

Example:

Perform n + 1 iterations for n bits

Remainder 0000 1011

Divisor 00110000

Iteration 1:

(subtract)

Rem 1101 1011

Quotient 0

Divisor 0001 1000

Iteration 2:

(add)

Rem 11110011

Q00

Divisor 0000 1100

Iteration 3:

(add)

Rem 11111111

Q0O0

Divisor 0000 0110

Iteration 4:

(add)

Rem 0000 0101

Q0001

Divisor 0000 0011

Iteration 5:

(subtract)

Rem 0000 0010

Q 0001 1

Divisor 0000 0001

Since remainder is positive, done.

Q = 0011 and Rem = 0010
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a. - 1 391 460 350

b. 2 903 506 946

c. -8.18545 XMT12

d.sw $sO, » tO(16 ) sw J r l 6 , S r 8 ( 2 )

3.31

a. 613 566 756

b. 613 566 756

c. 6.34413 X 10"17

d .add iu . $s2, taO, 18724 addiu $18, 14, 0x8924

3.35

.285 X 10*
+9.84 X 10*

10.125 X104

1.0125 X 10*

with guard and round: 1.01 X 105

without: 1.01 X 105

3.36

3.63 X 104

+.687 X 104

4.317 X104

with guard and round: 4.32 x 104

without: 4.31 X 104

3.37

Sign = 0, Significand - .010

Single exponent = 4 + 127 = 131

Double exponent = 4 + 1023 = 1027



Solutions for Chapter 3 Ex*rci*«*

Single
precision 0 1000 Oil 010 0000 0000 0000 0000 0000

0 1000 0000 011 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Single
0 1000 0011 010 0100 0000 0000 0000 0000

precision

3.39

'e I 0 1000 0000 Oil 0100 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 I

°-lun = 0.00011^= U001L™* 2"*

Sign = 0, Significand = . 10011

Single exponent = -A + 127 = 123

Double exponent = -4 + 1023 = 1019

Single
precision

0 01111011
10011001100110011001100 trunc
10011001100110011001101 round

Double
precision 0 01111111011

lOOllOOllOOllOOllOOllOOllOOllOOllOOllOOllOOllOOllOOl trunc

lOOllOOllOOllOOllOOllOOllOOllOOilOOllOOllOOllOOllOlO round
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3.40

I 1 00011110 101 01010101 0101 0101 0101

3.41 No, since floating point adds are not associative, doing them simultaneously
is not the same as doing them serially.

Convert+1.1011 • 211 + -1 .11 *

1.1011 0000 0000 0000 0000 000
-0.0000 0000 0000 0001 1100 000

1.1010 1111 1111 11100100 000

oiooono noi oiii mi mi ooiooooo

b. Calculate new exponent:

111111
100 0110 1

+01111101

1000 0101 0
-011 11111 minusbias

100 01011 new exponent

Multiply significands:

1.101 1000 0000 0000 0000 0000

xi.no oooo oooo oooo oooo oooo
11111

1 1011 0000 0000 0000 0000 0000 0000 0000 0000 0000 OOOO
11 0110 0000 0000 0000 0000 OOOO 0000 0000 0000 OOOO 0000

+1.10 1100 OOOO 0000 0000 0000 0000 0000 0000 0000 0000 0000

10.11 1101 0000 00000000 0000 0000 0000 OOOO 0000 0000 0000
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Normalize and round:

exponent 100 0110 0
signifkand

1.011 10100000 0000 00000000

Signs differ, so result is negative:

1100 0110 0011 1010 0000 0000 0000 0000

3.43

0 101 1111 10111110 01000000 0000 0000
01010001 11111000 0000 0000 0000 0000

a. Determine difference in exponents:

1011 1111
-1010 0011

0011100--> 28

Add signiiicands after scaling:

1.011 1110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
+0.000 0000 0000 0000 0000 0000 0000 1111 1000 0000 0000 0000 0000

1.011 11100100 0000 00000000 0000 1111 1000 0000 0000 0000 OOOO

Round (truncate) and repack:

0 1011111 1011 1110 0100 000000000000.
0101 1111101111100100 0000 0000 OOOO

b. Trivially results in zero:

0000 0000 0000 0000 0000 0000 0000 0000

c. We are computing (x + y) + z, where z = -x and y * 0
(x + y) + -x = y intuitively
(x + y) + -x = 0 with finite floating-point accuracy
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3.44

a.

b.

21

2.1

22

22

5 _

»«,

12

13

2 2 " ;

22 15

1=32767

15

= 3.23 X 10616

= 1.04xl01233

= 1 .09xl0 2 4 "

= 1.19xlO4932

= 1.42 X 109 '64

as small as 2.0wn X 10"9864

and almost as large as 2.0ten X 109864

c. 20% more significant digits, and 9556 orders of magnitude more flexibility.
(Exponent is 32 times larger.)

3.45 The implied 1 is counted as one of the significand bits. So, 1 sign bit, 16
exponent bits, and 63 fraction bits.

3.46

Load 2 X 10!<"
Square it 4 x 10616

Square it 1.6 x 101233

Square it 2.5 X 102466

Square it 6.2 X 104932

Square it 3.6 X 10986s

Min 6 instructions to utilize the full exponent range.
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Solutions for Chapter 4 Exercises

4.1 For PI, M2 is 4/3 (2 sec/1.5 sec) times as fast as Ml. For P2, Ml is 2 times as
fast (10 sec/5 sec) as M2.

4.2 We know the number of instructions and the total time to execute the pro-
gram. The execution rate for each machine is simply the ratio of the two values.
Thus, the instructions per second for PI on Ml is (5 x 109 instructions/2 seconds)
= 2.5 x 109 IPS, and the instructions for PI on M2 is (6 x 109 instructions/1.5 sec-
onds) = 4x 109 IPS.

4.3 M2 runs 4/3 as fast as Ml, but it costs 8/5 as much. As 8/5 is more than 4/3,
Ml has the better value.

4.6 Running PI 1600 times on Ml and M2 requires 3200 and 2400 seconds re-
spectively. This leaves 400 seconds left for Ml and 1200 seconds left for M2. In that
time Ml can run (400 seconds/{5 seconds/iteration)) = 80 iterations of P2. M2 can
run (1200 seconds/(10 seconds/iteration)) = 120 iterations. Thus M2 performs
better on this workload.

Looking at cost-effectiveness, we see it costs ($500/(80 iterations/hour)) = $6.25
per (iteration/hour) for Ml, while it costs ($800/(120 iterations/hour)) = $6.67
per (iteration/hour) for M2. Thus Ml is most cost-effective.

4.7

a. Time = (Seconds/cycle) * (Cycles/instruction) * (Number of instructions)

Therefore the expected CPU time is (1 second/5 x 109 cycles) * (0.8
cycles/instruction) * (7.5 x 109 instructions) = 1.2 seconds

b. P received 1.2 seconds/3 seconds or 40% of the total CPU time.

4.8 The ideal instruction sequence for PI is one composed entirely of instructions
from class A (which have CPI of 1). So Mi's peak performance is (4 x 109 cy-
des/second)/( 1 cycle/instruction) = 4000 MIPS.

Similarly, the ideal sequence for M2 contains only instructions from A, B, and C
(which all have a CPI of 2). So M2's peak performance is (6 x 109 cycles/second)/
(2 cycles/instruction) = 3000 MIPS.

4.9 The average CPI of PI is (1x2 + 2 + 3 + 4 + 3)/6 = 7/3. The average CPI of
P2 is ( 2 x 2 + 2 + 2 + 4 + 4)/6 = 8/3. P2 then is ((6 x 109 cydes/second)/(8/3
cycles/instruction))/((4 x 109 cydes/second)/(7/3 cydes/instruction)) = 21/16
times faster than PI.

4.10 Using Cl, the average CPI for II is (.4 * 2 + .4 * 3 + .2 * 5) = 3, and the average
CPI for 12 is (.4 * 1 + .2 * 2 + .4 * 2) = 1.6. Thus, with Cl, II is ((6 x 109 cycles/sec-
ond)/^ cydes/instruction))/((3 x 109 cycles/second)/(1.6 cydes/instruction))
= 16/15 times as fast as 12.
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Using C2, the average CPI for 12 is (.4 * 2 + .2 * 3 + .4 * 5) = 3.4, and the average
CPI for 12 is (.4 * 1 + .4 * 2 + .2 * 2) = 1.6. So with C2,12 is faster than II by factor
of ((3 x I09 cydes/second)/(1.6 cydes/instruction))/((6 x 109 cydes/second)/(3.4
cycles/instruction)) = 17/16.

For the rest of the questions, it will be necessary to have the CPIs of 11 and 12 on
programs compiled by C3. For II, C3 produces programs with CPI (.6 * 2 + .15 *
3 + .25 * 5) = 2.9.12 has CPI (.6 * 1 + .15 * 2 + .25 * 2) = 1.4.

The best compiler for each machine is the one which produces programs with the
lowest average CPI. Thus, if you purchased either II or 12, you would use C3.

Then performance of II in comparison to 12 using their optimal compiler (C3) is
({6 x 109 cydes/second)/(2.9 cydes/instmction))/((3 X 109 cydes/second)/( 1.4
cycles/instruction)) = 28/29. Thus, 12 has better performance and is the one you
should purchase.

4.11 Program P running on machine M takes (109 cydes/seconds) * 10 seconds =
1010 cydes. P7 takes (109 cydes/seconds) * 9 seconds = 9 x 109 cydes. This leaves
109 less cycles after the optimization.

Everytime we replace a mult with two adds, it takes 4 - 2 * 1 = 2 cydes less per
replacement.

Thus, there must have been 109 cydes /(2 cydes/replacement) = 5 X 108 replace-
ments to make P into P'.

4.12 The first option reduces the number of instructions to 80%, but increases
the time to 120%. Thus it will take: 0.8 * 1.2 = 0.96 as much time as the initial case.

The second option removes 20W2 = 10% of the instructions and increases the
time taken to 110%. Therefore it will take 0.9 * 1.1 = 0.99 times as much time as
the initial case.

Therefore, the first option is the faster of the two, and it is faster than the orginial,
so you should have hardware automatically do garbage collection.

4.13 Let I = number of instructions in program and C = number of cydes in pro-
gram. The six subsets are {dock rate, C} {cycle time, C} {MIPS, 1} {CPI, C, MIPS!
{CPI, I, clock rate} {CPI, I, cyde time}. Note that in every case each subset has to
have at least one rate {CPI, dock rate, cyde time, MIPSJ and one absolute {C, I}.

4.14 The total execution time for the machines are as follows:

Computer A =2 + 20 + 200 seconds = 222 seconds

Computer B =5 + 20 + 50 seconds = 75 seconds

Computer C = 10 + 20 + 15 seconds = 45 seconds
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Thus computer C is fester. It is 75/45 = 5/3 times fester than computer B and
222/45 = 74/15 times faster than computer A.

4.15 With the new weighting the total execution time for the group of programs
is:

Computer A = 8 * 2 + 2* 2 0 + 1 * 200 seconds = 256 seconds

Computer B = 8 * 5 + 2* 2 0 + 1 * 50 seconds = 130 seconds

Computer C = 8 * 10+ 2* 2 0 + 1 * 15 seconds = 135 seconds

So with this workload, computer B is faster by a factor of 135/130 = 1.04 with
respect to computer C and a factor of 256/130 = 1.97 with respect to computer A.
This new weighting reflects a bias from the previous results by a bias toward pro-
gram 1 and program 2, which resulted in computer A and computer B looking
comparitively better than before.

4.16 Comparing the times of the program executions on computer A, we see that
to get an equal amount of execution time, we will have to run program 1100 times,
program 2 10 times, and Program 3 1 time. This results in the following execution
times:

Computer A = 100 * 2 + 1 0 * 2 0 + l * 200 seconds = 600 seconds

Computer B = 100 * 5 + 10 * 20 + 1 * 50 seconds = 750 seconds

Computer C = 100 * 10 + 10 * 20 + 1 * 15 seconds = 1215 seconds

So computer A is fastest with this workload.

Using computer B's program execution times to determine a weighting, we get a
ratio of 20:5:2 for program 1, program 2, and program 3, respectively. This results
in the following execution times:

Computer A =20*2 + 5*20 + 2*200 seconds = 540 seconds

Computer B = 20!*5 + 5*20 + 2*50 seconds = 300 seconds

Computer C = 20 * 10 + 5 * 20 + 2 * 15 seconds = 330 seconds

So in this case, computer B is fastest.

Using the execution times on computer C, we get a 6:3:4 ratio, resulting in the fol-
lowing total execution times:

Computer A = 6 * 2 + 3* 20+ 4* 200 seconds = 872 seconds

Computer B = 6 * 5 + 3* 20+ 4* 50 seconds = 290 seconds

Computer C = 6 * 10+ 3* 20+ 4* 15 seconds = 180 seconds

So in this case computer C is fastest.
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As we did the weighting to equalize the times on one particular machine, we
ended up running programs that that computer could do the fastest most often
and the programs that it was slower on less often. This will tend to be a compara-
tive improvement in the execution time for the machine we are normalizing time
to (as die weightings are not guaranteed to bias towards the programs that the
other machines are better at). In this example, this type of weighting was enough
to make that computer appear the fastest.

4.17 We know CPI is equal to (Cydes/second)/(Instructions/second). So the CPI
of PI on Ml is (4 x 109 cydes/second)/(2.5 x 10* instructions/second) = 1.6 CPI,
and the CPI of PI on M2 is (6 x 109 cydes/second)/(4 x 109 instructions/second)
= 1.5 CPI.

4.18 We have the CPI, the dock rate, and the total execution time, and we're try-
ing to find the total number of instructions. Using the following equation:

(Cydes/instruction)/(Cydes/second) * Instructions = (Execution time)

We find that there are (5 seconds) * (4 x 109 cydes/second)/(0.8 cydes/instruc-
tion) = 12.5 x 109 instructions in P2 .on Ml, and (10 seconds) * (6 x 109

cydes/second)/( 1.5 CPI) = 40 X 109 instructions in P2 on M2.

4.19 No solution provided.

4.20 No solution provided.

4.21 No solution provided.

4.22 Using Amdahl's law (or just common sense), we can determine the follow-
ing:

• Speedup if we improve only multiplication = 100/(30 + 50 + 20/4) = 100/85
= 1.18.

• Speedup if we only improve memory access = 100/(30 + 50/2 + 20)) =
100/75=1.33.

• Speedup if both improvements are made = 100/(30 + 50/2 + 20/4) = 100/60
= 1.67.

4.23 The problem is solved algebraically and results in the equation

100/(r+ (100-X- Y) + X/4) = 100/CX+ (100 -X- Y) + 172)

where X = multiplication percentage and Y = memory percentage. Solving, we get
memory percentage = 1.5 x multiplication percentage. Many examples thus exist:
for example, multiplication = 20%, memory = 30%, other = 50%, or multiplica-
tion = 30%, memory = 45%, other = 25%, and so on.
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a. 9A Q A — Execution time before improvement

Execution time after improvement

Rewrite the execution time equation:

Execution time after improvement = Execution time affected by improvement + ^ a t i a n , i m e u n a f f e c t e d

Amount or improvement

= Execution time affected + Amount of improvement x Execution time unaffected
Amount of improvement

Rewrite execution time affected by improvement as execution time before improve-
ment X f, where /is the fraction affected. Similarly execution time unaffected.

- Execution t i m e before improvement x f + ^ ^ ^ b e f e r e . e m e n t x ( i _ f l

Amount of improvement

j _
lAmount of improvement

+ (1 - f) 1 x Execution time before improvement

c , Execution time before improvement
bpeedup =

[ 7^ + (1 - f) | x Execution time before improvement
V. Amount of improvement )

Speedup =

The denominator has two terms: the fraction improved (f) divided by the amount
of the improvement and the fraction unimproved (1 - / ) .

4.25 We can just take the GM of the execution times and use the inverse.

GM(A) = VIOOO = 32, GM(B) = ,/l000 = 32,and GM(C) = ^400 = 20,

so C is fastest.

4.26 A, B: B has the same performance as A. If we run program 2 once, how many
times should we run program 1? x + 1000 = IOJC + 100, or x = 100. So the mix is
99% program 1,1% program 2.

B, C: C is faster by the ratio of — = 1.6.
20

Program 2 is run once, so we have 10JC+ 100= 1.6 x(20x+ 20), x= 3.1 times. So
the mix is 76% program 1 and 24% program 2.
A, C: C is also faster by 1.6 here. We use the same equation, but with the proper
times: x+ 1000= 1.6 x{20x+ 20), x= 31.2. So the mix is 97% program 1 and 3%
program 2. Note that the mix is very different in each case!
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4.27 No solution provided.

4.28 No solution provided.

4.29 No solution provided.

4.30

1 1 10
2 [ 0.1

1

1

0.5

5

4.31 The harmonic mean of a set of rates,

'•< 1 T-> y Time; l JL,
—— V Time, M, - > Tirr

•'Rate,. *-> ' LzJ n-^

where AM is the arithmetic mean of the corresponding execution times.

4.32 No solution provided.

4.33 The time of execution is (Number of instructions) * (CPI) * (Clock period).
So the ratio of the times (the performance increase) is:

10.1 = (Number of instructions) * (CPI) * (Clock period)

(Number of instructions w/opt.) * (CPI w/opt.) * (Clock period)

= l/(Reduction in instruction count) * (2.5 improvement in CPI)

Reduction in instruction count = .2475.

Thus the instruction count must have been reduced to 24.75% of the original.

4.34 We know that

(Number of instructions on V) * (CPI on V) * (Clock period)

(Time on V) _ (Number of instructions on V) * (CPI on V) * (Clock period)
(Time on P) "* (Number of instructions on P) * (CPI on P) * (Clock period)

5 = (1/1.5) * (CPI ofV)/(1.5 CPI)

CPI of V= 11.25.

4.45 The average CPI is .15 * 12 cycles/instruction + .85 * 4 cycles/instruction =
5.2 cycles/instructions, of which .15 * 12 = 1.8 cycles/instructions of that is due to
multiplication instructions. This means that multiplications take up 1.8/5.2 =
34.6% of the CPU time.
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4.46 Reducing the CPI of multiplication instructions results in a new average CPI
of .15 * 8 + .85 * 4 = 4.6. The clock rate will reduce by a factor of 5/6 . So the new
performance is (5.2/4.6) * (5/6) = 26/27.6 times as good as the original. So the
modification is detrimental and should not be made.

4.47 No solution provided.

4.48 Benchmarking suites are only useful as long as they provide a good indicator
of performance on a typical workload of a certain type. This can be made untrue if
the typical workload changes. Additionally, it is possible that, given enough time,
ways to optimize for benchmarks in the hardware or compiler may be found,
which would reduce the meaningfulness of the benchmark results. In those cases
changing the benchmarks is in order.

4.49 Let Tbe the number of seconds that the benchmark suite takes to run on
Computer A. Then the benchmark takes 10 * T seconds to run on computer B. The
new speed of A is (4/5 * T+ 1/5 * (T/50)) = 0.804 Tseconds. Then the performance
improvement of the optimized benchmark suite on A over the benchmark suite on
B is 10 * T/(0.804 T) = 12.4.

4.50 No solution provided.

4.51 No solution provided.

4.82 No solution provided.
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Solutions for Chapter 5 Exercises

5.1 Combinational logic only: a, b, c, h, i

Sequential logic only: f, g, j

Mixed sequential and combinational: d, e, k

5.2

a. RegWrite = 0: All R-format instructions, in addition to 1 w, will not work
because these instructions will not be able to write their results to the regis-
ter file.

b. ALUopl = 0: All R-format instructions except subtract will not work cor-
rectly because the ALU will perform subtract instead of the required ALU
operation.

c. ALUopO = 0: beq instruction will not work because the ALU will perform
addition instead of subtraction (see Figure 5.12), so the branch outcome
may be wrong.

d. Branch (or PCSrc) = 0: beq will not execute correctly. The branch instruc-
tion will always be not taken even when it should be taken.

e. MemRead = 0: 1 w will not execute correctly because it will not be able to
read data from memory.

f. MemWrite = 0: sw will not work correctly because it will not be able to write
to the data memory.

S.3

a. RegWrite = 1: sw and beq should not write results to the register file, sw
(beq) will overwrite a random register with either the store address (branch
target) or random data from the memory data read port.

b. ALUopO = 1: 1 w and sw will not work correctly because they will perform
subtraction instead of the addition necessary for address calculation.

c. ALUopl = 1: 1 w and sw will not work correctly. 1 w and sw will perform a
random operation depending on the least significant bits of the address field
instead of addition operation necessary for address calculation.

d. Branch = 1: Instructions other than branches (beq) will not work correctly
if the ALU Zero signal is raised. An R-format instruction that produces zero
output will branch to a random address determined by its least significant
16 bits.

e. MemRead = 1: All instructions will work correctly. (Data memory is always
read, but memory data is never written to the register file except in the case
oflw.)
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f. MemWrite = 1: Only sw will work correctly. The rest of instructions will
store their results in the data memory, while they should not.

5.7 No solution provided.

5.8 A modification to the datapath is necessary to allow the new PC to come
from a register (Read data 1 port), and a new signal (e.g., JumpReg) to control it
through a multiplexor as shown in Figure 5.42.

A new line should be added to the truth table in Figure 5.18 on page 308 to imple-
ment the j r instruction and a new column to produce the JumpReg signal.

5.9 A modification to the data path is necessary (see Figure 5.43) to feed the
shamt field (instruction [10:6]) to the ALU in order to determine the shift amount
The instruction is in R-Format and is controlled according to the first line in Fig-
ure 5.18 on page 308.

The ALU will identify the s 11 operation by the ALUop field.

Figure 5.13 on page 302 should be modified to recognize the opcode of si 1; the
third line should be changed to 1X1X0000 0010 (to discriminate the a d d and s s 1
functions), and a new line, inserted, for example, 1X0X0000 0011 (to define si 1
by the 0011 operation code).

5.10 Here one possible 1 u i implementation is presented:

This implementation doesn't need a modification to the datapath. We can use the
ALU to implement the shift operation. The shift operation can be like the one pre-
sented for Exercise 5.9, but will make the shift amount as a constant 16. A new line
should be added to the truth table in Figure 5.18 on page 308 to define the new
shift function to the function unit. (Remember two things: first, there is no funct
field in this command; second, the shift operation is done to the immediate field,
not the register input.)

RegDst = 1: To write the ALU output back to the destination register ( t r t ) .

ALUSrc = 1: Load the immediate field into the ALU.

MemtoReg = 0: Data source is the ALU.

RegWrite = 1: Write results back.

MemRead = 0: No memory read required.

MemWrite = 0: No memory write required.

Branch = 0: Not a branch.

ALUOp = 11: si 1 operation.

This ALUOp (11) can be translated by the ALU asshl,ALUI1.16by modifying
the truth table in Figure 5.13 in a way similar to Exercise 5.9.
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5 . U A modification is required for the datapath of Figure 5.17 to perform the
autoincrement by adding 4 to the $ r s register through an incrementer. Also we
need a second write port to the register file because two register writes are
required for this instruction. The new write port will be controlled by a new sig-
nal, "Write 2", and a data port, "Write data 2." We assume that the Write register 2
identifier is always the same as Read register 1 {$ rs). This way "Write 2" indicates
that there is second write to register file to the register identified by "Read register
1," and the data is fed through Write data 2.

A new line should be added to the truth table in Figure 5.18 for the 1 _ i n c com-
mand as follows:

RegDst = 0: First write to $r t .

ALUSrc = 1: Address field for address calculation.

MemtoReg = 1: Write loaded data from memory.

RegWrite = 1: Write loaded data into $ r t.

MemRead = 1: Data memory read.

MemWrite = 0: No memory write required.

Branch = 0: Not a branch, output from the PCSrc controlled mux ignored.

ALUOp = 00: Address calculation.

Write2 = 1: Second register write (to $rs).

Such a modification of the register file architecture may not be required for a mul-
tiple-cycle implementation, since multiple writes to the same port can occur on
different cycles.

5.12 This instruction requires two writes to the register file. The only way to
implement it is to modify the register file to have two write ports instead of one.

5.13 From Figure 5.18, the MemtoReg control signal looks identical to both sig-
nals, except for the don't care entries which have different settings for the other
signals. A don't care can be replaced by any signal; hence both signals can substi-
tute for the MemtoReg signal.

Signals ALUSrc and MemRead differ in that sw sets ALSrc (for address calcula-
tion) and resets MemRead (writes memory: can't have a read and a write in the
same cycle), so they can't replace each other. If a read and a write operation can
take place in the same cycle, then ALUSrc can replace MemRead, and hence we
can eliminate the two signals MemtoReg and MemRead from the control system.

Insight: MemtoReg directs the memory output into the register file; this happens
only in loads. Because sw and beq don't produce output, they don't write to the
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register file (Regwrite = 0), and the setting of MemtoReg is hence a don't care. The
important setting for a signal that replaces the MemtoReg signal is that it is set for
1 w (Mem->Reg), and reset for R-format (ALU->Reg), which is the case for the
ALUSrc (different sources for ALU identify 1 w from R-format) and MemRead (1 w
reads memory but not R-format).

5.14 swap $rs,$rt can be implemented by

addi $ rd ,$ rs ,0

addi $ r s , $ r t , 0

addi $ r t , $ r d , 0

if there is an available register $ r d

or

sw $rs,temp($rO)

addi $ r s , $ r t , 0

Iw $ r t , t emp($ rO)

if not.

Software takes three cycles, and hardware takes one cycle. Assume Rs is the ratio of
swaps in the code mix and that the base CPI is 1:

Average MIPS time per instruction = Rs* 3* T + ( l - Rs)* 1* T={2Rs + 1) * T

Complex implementation time = 1.1 * T

If swap instructions are greater than 5% of the instruction mix, then a hardware
implementation would be preferable.

. 5.27 l _ i n c r $ r t , A d d r e s s ( I r s ) can be implemented as

?w trt.Address(trs)

addi $rs,$rs,l

Two cycles instead of one. This time the hardware implementation is more effi-
cient if the load with increment instruction constitute more than 10% of the
instruction mix.

5.28 Load instructions are on the critical path that includes the following func-
tional units: instruction memory, register file read, ALU, data memory, and regis-
ter file write. Increasing the delay of any of these units will increase the clock
period of this datapath. The units that are outside this critical path are the two

I
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adders used for PC calculation (PC + 4 and PC + Immediate field), which pro-
duce the branch outcome.

Based on the numbers given on page 315, the sum of the the two adder's delay can
tolerate delays up to 400 more ps.

Any reduction in the critical path components will lead to a reduction in the dock
period.

5.29

a. RegWrite = 0: All R-format instructions, in addition to 1 w, will not work
because these instructions will not be able to write their results to the regis-
ter file.

b. MemRead = 0: None of the instructions will run correctly because instruc-
tions will not be fetched from memory.

c. MemWrite = 0: s w will not work correctly because it will not be able to write
to the data memory.

d. IRWrite = 0: None of the instructions will run correctly because instructions
fetched from memory are not properly stored in the IR register.

e. PCWrite = 0: Jump instructions will not work correctly because their target
address will not be stored in the PC.

f. PCWriteCond = 0: Taken branches will not execute correctly because their
target address will not be written into the PC.

5.30

a. RegWrite = 1: Jump and branch will write their target address into the regis-
ter file, sw will write the destination address or a random value into the reg-
ister file.

b. MemRead = 1: All instructions will work correctly. Memory will be read all
the time, but IRWrite and IorD will safeguard this signal.

c. MemWrite = 1: All instructions will not work correctly. Both instruction
and data memories will be written over by the contents of register B.

d. IRWrite= 1: lw will not work correctly because data memory output will be
translated as instructions.

e. PCWrite = 1: All instructions except jump will not work correctly. This sig-
nal should be raised only at the time the new PC address is ready (PC + 4 at
cycle 1 and jump target in cycle 3). Raising this signal all the time will cor-
rupt the PC by either ALU results of R-format, memory address of 1 w/sw, or
target address of conditional branch, even when they should not be taken.

f. PCWriteCond = 1: Instructions other than branches (beq) will not work
correctly if they raise the ALU's Zero signal. An R-format instruction that
produces zero output will branch to a random address determined by .their
least significant 16 bits.
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5.31 RegDst can be replaced by ALUSrc, MemtoReg, MemRead, ALUopl.

MemtoReg can be replaced by RegDst, ALUSrc, MemRead, or ALUOpl.

Branch and ALUOpO can replace each other.

5.32 We use the same datapath, so the immediate field shift will be done inside
theALU.

1. Instruction fetch step: This is the same (IR <= Memory[PCl; PC <= PC +• 4)

2. Instruction decode step: We don't really need to read any register in this stage if
we know that the instruction in hand is a 1 u 1, but we will not know this before
the end of this cycle. It is tempting to read the immediate field into the ALU to
start shifting next cycle, but we don't yet know what the instruction is. So we have
to perform the same way as the standard machine does.

A <= 0 ($rO); B <= $rt; ALUOut <= PC + (sign-extend(immediate field));

3. Execution: Only now we know that we have a 1 u i. We have to use the ALU to
shift left the low-order 16 bits of input 2 of the multiplexor. (The sign extension is
useless, and sign bits will be flushed out during the shift process.)

ALUOut <= {IR[15-OJ,16(O)J

4. Instruction completion: Reg[IR[20-16]] = ALUOut.

The first two cycles are identical to the FSM of Figure 5.38. By the end of the sec-
ond cycle the FSM will recognize the opcode. We add the Op='lui', a new transi-
tion condition from state 1 to a new state 10. In this state we perform the left
shifting of the immediate field: ALUSrcA = x, ALUSrcB = 10, ALUOp = 11
(assume this means left shift of ALUSrcB). State 10 corresponds to cycle 3. Cycle 4
will be translated into a new state 11, in which RegDst = 0, RegWrite, MemtoReg
= 0. State 11 will make the transition back to state 0 after completion.

As shown above the instruction execution takes 4 cycles.

5.33 This solution can be done by modifying the data path to extract and shift
the immediate field outside the ALU. Once we recognize the instruction as 1 u i (in
cycle 2), we will be ready to store the immediate field into the register file the next
cycle. This way the instruction takes 3 cycles instead of the 4 cycles of Exercise
5.26.

1. Instruction fetch step: Unchanged.

2. Instruction decode: Also unchanged, but the immediate field extraction
and shifting will be done in this cycle as well.
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3. Now the final form of the immediate value is ready to be loaded into the
register file. The MemtoReg control signal has to be modified in order to
allow its multiplexor to select the immediate upper field as the write data
source. We can assume that this signal becomes a 2-bit control signal, and
that the value 2 will select the immediate upper field.

Figure 5.44 plots the modified datapath.

The first two cycles are identical to the FSM of Figure 5.38. By the end of the sec-
ond cycle, the FSM will recognize the opcode. We add the Op = 'lui', a new transi-
tion condition from state 1 to a new state 10. In this state we store the immediate
upper field into the register file by these signals: RedDst = 0, RegWrite, MemtoReg
= 2. State 10 will make the transition back to state 0 after its completion.

5.34 We can use the same datapath.

1. Instruction fetch: Unchanged (IR <= Memory[PC]; PC<= PC + 4).

2. Instruction decode: Unchanged (A <= Reg[IR[25-21]]; B<=REG[IR[20-
16]];ALUOut<=PC+(sign-extend(IR[15-03)<<2).

3. Load immediate value from memory (MDR <= Memory[PC]; PC <= PC +
4).

4. Complete instruction (Reg[IR[20-16]] (dependent on instruction format)
<= MDR).

The first two cycles are identical to the FSM of Figure 5.38.

We add the Op='ldi', a new transition condition from state 1 to a new state 10. In this
state we fetch the immediate value from memory into the MDR: MemRead, ALUSrcA
= 0, IorD = 0, MDWrite, ALUSrcB = 01, ALUOp = 00, PCWrite, PCSource = 00.

FSM then makes the transition to another new state 11.

In this state we store the MDR into the register file by these signals: RedDst = 0
(actually depends on the instruction format), RegWrite, MemtoReg = 1.

State 11 will make the transition back to state 0 after its completion.

Four cycles to complete this instruction, in which we have two instruction mem-
ory accesses.

5.35 Many solutions are possible. In all of them, a multiplexor will be needed as
well as a new control signal (e.g., RegRead) to select which register is going to be
read (i.e., using I R [ 2 5 - l l ] o r I R [ 2 0 - 1 6 ] ) . One simple solution is simply to
add a write signal to A and break up state 1 into two states, in which A and B are
read. It is possible to avoid adding the write signal to A if B is read first. Then A is
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read and RegRead is held stable (because A always writes). Alternatively, you could
decide to read A first because it may be needed to calculate an address. You could
then postpone reading B until state 2 and avoid adding an extra cycle for the load
and store instructions. An extra cycle would be needed for the branch and R-type
instructions.

6.36 Effective CPI = Sum(operation frequency * operation latency)

MIPS = Frequency/CPIeffective

Instruction Frequency Ml M2 M3

Loads CPI 25% 5 4 3

Stores CPI 13% 4 4 3

R-type CPI 47% 4 3 3

Branch/jmp CPI 15% 3 3 3

Effective CPI 4.1 3.38 3

MIPS 976 946 933

From the results above, the penalty imposed on frequency (for all instructions)
exceeds the gains attained through the CPI reduction. Ml is the fastest machine.

The more the load instructions in the instruction mix, the more the CPI gain we
can get for the M2 and M3 machines. In the extreme case we have all instructions
loads, Ml MIPS = 800, M2 MIPS = 300, and M3 MIPS = 933.3, so M3 becomes
the best machine in such a case.

5.37 Effective CPI = Sum(operation frequency * operation latency)

MIPS = Frequency/CPIeffective

Instruction

Loads CPI

Stores CPI

R-type CPI

Branch/jmp CPI

Effective CPI

MIPS

Frequency

26%

10%

49%

15%

2.8 GHZ CPI

5

4

4

3

4.11

1167.9

5.6 GHz CPI

6

5

4

3

4.47

1250

6.4 GH

7

6

5

4

5.47

1170.0
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The two-cycle implementation increases the frequency, which benefits all instruc-
tions, and penalizes only loads and stores. The performance improvement is 7%
relative to die original implementation.

Further increase of the clock frequency by increasing the instruction fetch time
into two cycles will penalize all instructions and will reduce the performance to
about the same as that of the 4.8 GHz base performance. Such implementation
hurts the CPI more than the gain it brings through frequency increase and should
not be implemented.

5.38
sit $t4, $zero, $t3

beg $t4. $zero, exit
cmpr: lw $t4, 0{$tl)

lw $t5, 0{$t5)
bne $t4, $t5, done
addT $t3. $t3, -1
addi ni, $tl, 4
addi" StZ, $t2, 4
bne $t3, Szero, cmpr

exit addi $tl. Szero, $zero
done:

To compare two 100-work blocks we'll perform at most one sit 200 loads, 300
adds, and 201 branches = 803 instructions (if the two blocks are equal). Using
this chapter's multicycle implementation, this will take 4 cycles for sit 1000 cycles
for loads, 1200 cycles for adds, and 603 cycles for branches. The total cycles = 2811
cycles.

5.39 No solution provided.

5.49 No solution provided.

5.50 The exception cause can be represented through the status "cause" register,
which records the reason code for the exception. The instruction position at
which the exception occur is identified by saving it in the Exception Program
Counter (EPC) register.

Execution can be restarted for some exceptions like overflow, system call request,
or external I/O device interrupt by restarting execution at the EPC after handling
the exception.

Other exceptions are not restartable and program has to terminate. Examples of
this are invalid instructions (which can actually be restartable if defined as NOP
by the hardware), power/hardware failure, and divide by zero. In such a case, an
error message can be produced, and program termination takes place.
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5.51

a. Divide by zero exception can be detected in the ALU in cycle 3, before exe-
cuting the divide instruction.

b. Overflow can be hardware detected after the completion of the ALU opera-
tion. This is done in cycle 4 (see Figure 5.40)

c. Invalid opcode can be detected by the end of cycle 2 (see Figure 5.40).

d. This is an asynchronous exception event that can occur at any cycle. We can
design this machine to test for this condition either at a specific cycle (and
then the exception can take place only in a specific stage), or check in every
cycle (and then this exception can occur at any processor stage).

e. Check for instruction memory address can be done at the time we update
the PC. This can be done in cycle 1.

f. Check for data memory address can be done after address calculation at the
end of cycle 3.

S.53 No solution provided.

5.57 No solution provided.

5.58 a) will assign the same value (2) to both A and B.

b) will swap A and B (A = 2 and B = 1).

5.59

module ALUControl (ALUOp, FuncCode, ALUCtl):

input ALUOp[l:O], FuncCode[5:0];

output ALUCtl[3:0];

if(ALUOp — Z'b 00)

ALUCtl - 4'b 0010;

1f(ALUOp — Z'b 01)

ALUCtl = 4'b 0110;

iffALUOp — 2'b 10) begin

case(FuncCode)

6' b 100000: ALUCtl - 4'b 0010;

6'b 100O10: ALUCtl - 4'b 0110;

6'b 100100: ALUCtl - 4'b 0000;

6'b 100101: ALUCtl - 4'b 0001;
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6'b 101010: ALUCtl = 4'b 0111;

default ALUCtl - 4'b xxxx;

endcase

end

endmodule

S.60
// Register File
module RegisterFile (Readl.Read2,Writereg,Writedata.Regwrite,
0atalData2,clock);

input [5:0] Readl,Read2.Wn"tereg; // the registers numbers to read
or write

input [31:0] Writedata; // data to write
input RegUrite. // The write control

clock; // the clock to tr igger writes

reg [31:0] RF [31:0]; // 32 registers each 32 bits long
i n i t i a l RF[O] = 32"h 00000000; // In i t i a l i ze a l l registers to 0
always begin

Datal <= RFCReadl]; Data2 <= RF[Read2];
// write the register with new value if RegwMte is high

//ALU Control same as 5.30
module ALUControl (ALUOp, FuncCode. ALUCtl);
input ALUOp[l:0L FuncCode[5:0];
output ALUCtl[3:0];

iffALUOp — 2'b 00)
ALUCtl = 4'b 0010;

if(ALU0p — 2'b 01)
ALUCtl - 4'b 0110:

1f(ALUOp = 2'b 10) begin
case(funct)

6'b 100000: ALUCtl = 4'b 0010;
6'b 100010: ALUCtl - 4'b 0110:
6'b 100100: ALUCtl = 4'b 0000;
6'b 100101: ALUCtl = 4'b 0001;
6'b 101010: ALUCtl = 4'b 0111;
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end

endmoduie

//ALU

module HIPSALU (ALUct l . A, B, ALUOut, Zero):

input [ 3 :0 ] ALUct l ;

input [31 :0 ] A,B;

output [31:0] ALUOut;

output Zero;

assign Zero " tALUOut—0); / /Zero is t rue if ALUOut is 0

case

0:

1 :

2 :

6 :

7:

/ /

endc

end

endmod

(Aluctl)

ALUOi

ALUOi

j t <-

j t <-

ALUOut <-

ALUOi

ALUOi

ase

u l e

Jt <-

j t <-

Add

A

A

A

• A

A

tna

& B;

1 B ;

+ B;

- B;

< B ? 1:0;

re ALU operations here

/ /2 - to - l Multiplexor

module Mult2tol Unl. In2.Sel.Out);

input [31:0] I n l , InZ;

input Sel;

output [31:0] Out:

always @(Inl, In2. Sel)

case (Sel) / /a 2->l multiplexor

0: Out <= I n l ;

default: Out <- InZ;

endcase;

endmodule;
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"control block"

//Wnicn decodes the opcode, and generate the control signals
accordingly

module OataPathistart,RegDst.Branch,MemRead.HemtoReg.ALUOp,Mem-

input RegDst.Branch,MemRead,MemtoReg,

ALUOp,MemWrite.ALUSrc.RegWrite,clock;

input [1:0] ALUOp;

output [5:0] opcode;

i n i t i a l begin / / i n i t i a l i z e PC and Memories

PC = s ta r t ;

IMemory = PROGRAM;

DMemory - OATA;

end

reg [31:0] PC, IMemory[0:1023]. 0Memory[0:1023];

wire [31:0] SignExtendOffset, PCOffset, PCValue, ALUResultOut,

IAddress. DAddress, IMemOut, DmemOut, DWriteData, Inst ruct ion,

RWriteData. DreadData. ALUAin. ALUBin;

wire [3:0] ALUctl:

wi re Zero;

wire [5:0] WriteReg; .

/ / Inst ruct ion f i e l d s , to improve code readabil i ty

wire [5:0] funct;

wire [4:0] rs, r t , rd . shamt;

wire [15:0] o f fset ;
ALUControl alucontroller(ALUOp,Instruction[5:0],ALUctl);

//ALL control

'MIPSALU ALUCALUctl, ALUAin, ALUBin, ALUResultOut, Zero);

RegisterFile REGtrs. r t , WriteReg, RWriteOata, ALUAin, DWriteData

clock);

Mult2tol regdst ( r t , rd , RegDst, RegWrite),

alusrc (DWriteData, SignExtendOffset. ALUSrc, ALUBin),

pesre (PC+4. PC+4+PC0ffset, Branch S Zero. PCValue);

assign offset = Inst ruct ion[15:0] ;

assign SignExtendOffset = I16{o f fse t [15 ] } ,o f fse t } ; //sign~extend
lower 16 b i t s :

assign PCOffset = SignExtendOffset « 2;



Solution* for Chaptw 9 IXMCISM

always @(negedge clock) begin
Ins t ruc t ion - IMemory[PC];
PC <- PCValue;

end
always ©(posedge clock) begin

if MemRead
DreadData <- DMemoryLALUResultOut]:

else 1f MemWrite
DMemoryCALUResultOut] <- OWriteData;

module MIPSlCYCLE(start);
// Clock

I n i t i a l clock - 0:
parameter LW - 6b 100011. SW - 6b 101011, BE0-6b 000100;
input s t a r t ;
wire [ 1 :0 ] AlUOp;
wire [5 :0 ] opcode;
wire [31:0] SignExtend;

wire RegDst,Branch.MemRead.MemtoReg.ALUOp.MemWrite.ALUSrc.RegWrite;
Datapath MIPSDP (start.RegDst.Branch,MemRead,MemtoReg.ALUOp,
MemWrite.ALUSrc.RegWrite.opcode.clock);

/ /datapath control

#1 clock =- - c lock; / / c l ock generation
case(opcode)

0: |RegDst,ALUSrc.MemtoReg.RegWrite,MemRead.MemWrite,Branch,
ALUOp}- 9'b 100100010;//R-Format

LW: IRegDst.ALUSrc.MemtoReg.RegWrite.MemRead,MemWrite,Branch,
ALUOp!- 9'b 011110000;

SW: ) RegDst, ALUSrcMemtoReg.RegWrite.MettiRead,MemWrite, Branch.
ALUOp)" 9'b xlxOOlOOO;

BEQ: (RegDst,ALUSrc.MemtoReg.RegWrite,MemRead,Mem-
Wri te. Branch.ALUOpH 9"b xOxOOOlOl;

de fau l t : S f i n i sh ; / / end simulat ion i f i n v a l i d opcode

end

endmodule
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5.61 We implement the add shift functionality to the ALU using the Verilog code
provided in B.22 in Appendix B. The 32-bit multiply execution takes 32 cycles to
complete, so the instruction takes a total of 35 cycles. Assume the ALU control
recognizes the multiply code correctly.

We follow the CD Verilog code, but we add the following:

case(state)

3: begin //Execution starts at cycle 3

state=4

casefopcode—6'b 0)

MPYU: begin

// issue load command to the multiplier

!RegOst,ALUSrc,MemtoReg,RegWrite,MemRead,
MemWrite.Branch,ALUOpJ- 9"b 1001000110;//R-Format same
command. Al u should now recognize the Func Field

end

35: // A f te r 3? cycles the m u l t i p l i c a t i o n
resu l t s are ava i lab le in the 32 -b i t Product output of
the ALU. Wri te the high order and low order words in
t h i s and the next cyc le .

case(opcode—6'b 0) case <IR[5:0])

MPYU: begin

Regs[hi]=RegH

end
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34:

case<opcode-=6'b 0) case (IR[5:0])

MPYU: begin

Regs[lo]-RegL

end

5.62 We add the divide functionality to the ALU using the code of B.23. The rest
of the solution is almost exactly the same as the answer to Exercise 5.61.

5.63 No solution provided

5.64 No solution provided.

5.65 No solution provided.

5.66 No solution provided.
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Statf.4

Since this is an sw instruction, there is no work done in the WB stage.

6.12 No solution provided.

6.13 No solution provided.

6.14 No solution provided.
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6.17 At the end of the first cycle, instruction 1 is fetched.

At the end of the second cycle, instruction 1 reads registers.

At the end of the third cycle, instruction 2 reads registers.

At the end of the fourth cycle, instruction 3 reads registers.

At the end of the fifth cycle, instruction 4 reads registers, and instruction 1 writes
registers.

Therefore, at the end of the fifth cycle of execution, registers 16 and $ 1 are being
read and register $2 will be written.

6.18 The forwarding unit is seeing if it needs to forward. It is looking at the
instructions in the fourth and fifth stages and checking to see whether they intend
to write to the register file and whether the register written is being used as an ALU
input. Thus, it is comparing 3 = 4? 3 = 2? 7 = 4? 7 = 2?

6.19 The hazard detection unit is checking to see whether the instruction in the
ALU stage is an 1 w instruction and whether the instruction in the ID stage is read-
ing the register that the 1 w will be writing. If it is, it needs to stall. If there is an 1 w
instruction, it checks to see whether the destination is register 6 or 1 (the registers
being read).

6.21

a. There will be a bubble of 1 cycle between a 1 w and the dependent add since
the load value is available after the MEM stage.

There is no bubble between an add and the dependent 1 w since the add
result is available after the EX stage and it can be forwarded to the EX stage
for the dependent 1 w. Therefore, CPI = cycle/instruction = 1.5.

b. Without forwarding, the value being written into a register can only be read
in the same cycle. As a result, there will be a bubble of 2 cycles between an 1 w
and the dependent add since the load value is written to the register after the
MEM stage. Similarly, there will be a bubble of 2 cycles between an add and
the dependent 1 w. Therefore, CPI = 3.
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6.22 It will take 8 cycles to execute this code, including a bubble of 1 cycle due to
the dependency between the 1 w and sub instructions.

Time (in clock cycles)

Program CC1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

CC1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8
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ID/£X.ReglsterRs
ID/EX.RegisterRt
EX/MEM.RegisterRd

EX/MEM.RegWrite
MEM/WB.RegisterBd
MEM/WB.RegWrlte

5
5
5
1

5
1

operand reg number, compare to see if match
operand reg number, compare to see if match
destination reg number, compare to see if match
TRUE if writes to the destination reg
destination reg number, compare to see if match
TRUE If writes to the destination reg

ForwardB 2 forwarding signal

6.29 No solution provided.

6.30 The performance for the single-cycle design will not change since the clock
cycle remains the same.

For the multicycle design, the number of cycles for each instruction class becomes
the following: loads: 7, stores: 6, ALU instructions: 5, branches: 4, jumps: 4.

CPI = 0.25 * 7 + 0.10 * 6 + 0.52 * 5 + 0.11 * 4 + 0.02 * 4 = 5.47. The cycle time for
the multicycle design is now 100 ps. The average instruction becomes 5.47 * 100 =
547 ps. Now the multicycle design performs better than the single-cycle design.

6.33 See the following figure.

used In i2 =>
[ used in i3 =>

1-cycle stall

forward

used li
| used ii

n\2
i i 3

=> forward
=> forward |
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6.34 Branches take 1 cycle when predicted correctly, 3 cycles when not (including
one more memory access cycle). So the average dock cycle per branch is 0.75 * 1 +
0.25 * 3 = 1.5.

For loads, if the instruction immediately following it is dependent on the load, the
load takes 3 cycles. If the next instruction is not dependent on the load but the
second following instruction is dependent on the load, the load takes two cycles. If
neither two following instructions are dependent on the load, the load takes one
cycle.

The probability that the next instruction is dependent on the load is 0.5. The
probability that the next instruction is not dependent on the load, but the second
following instruction is dependent, is 0.5 * 0.25 = 0.125. The probability that nei-
ther of the two following instructions is dependent on the load is 0.375.

Thus the effective CPI for loads is 0.5 * 3 + 0.125 * 2 + 0.375 * 1 = 2.125.

Using the date from the example on page 425, the average CPI is 0.25 * 2.125 +
0.10 * 1 + 0.52 * 1 + 0.11 * 1.5 + 0.02 * 3 = 1.47.

Average instruction time is 1.47 * lOOps = 147 ps. The relative performance of the
restructured pipeline to the single-cycle design is 600/147 = 4.08.

6.35 The opportunity for both forwarding and hazards that cannot be resolved by
forwarding exists when a branch is dependent on one or more results that are still
in the pipeline. Following is an example:

I w $ 1 . $ 2 ( 1 0 0 )

add $ 1 , $ 1 . 1

beq $ 1 , $2, 1

6.36 Prediction accuracy = 100% * PredictRight/TotalBranches

a. Branch 1: prediction: T-T-T, right: 3, wrong: 0

Branch 2: prediction: T-T-T-T, right: 0, wrong: 4

Branch 3: prediction: T-T-T-T-T-T, right: 3, wrong: 3

Branch 4: prediction: T-T-T-T-T, right: 4, wrong: 1

Branch 5: prediction: T-T-T-T-T-T-T, right: 5, wrong: 2

Total: right: 15, wrong: 10

Accuracy = 100% * 15/25 = 60%
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b. Branch 1: prediction: N-N-N, right: 0, wrong: 3

Branch 2: prediction: N-N-N-N, right: 4, wrong: 0

Branch 3: prediction: N-N-N-N-N-N, right: 3, wrong: 3

Branch 4: prediction: N-N-N-N-N, right: 1, wrong: 4

Branch 5: prediction: N-N-N-N-N-N-N, right: 2, wrong: 5

Total: right: 10, wrong: 15

Accuracy - 100% * 10/25 - 40%

c. Branch 1: prediction: T-T-T, right: 3, wrong: 0

Branch 2: prediction: T-N-N-N, right: 3, wrong: 1

Branch 3: prediction: T-T-N-T-N-T, right: 1, wrong: 5

Branch 4: prediction: T-T-T-T-N, right: 3, wrong: 2

Branch 5: prediction: T-T-T-N-T-T-N, right: 3, wrong: 4

Total: right: 13, wrong: 12

Accuracy = 100% * 13/25 = 52%

d. Branch 1: prediction: T-T-T, right: 3, wrong: 0

Branch 2: prediction: T-N-N-N, right: 3, wrong: 1

Branch 3: prediction: T-T-T-T-T-T, right: 3, wrong: 3

Branch 4: prediction: T-T-T-T-T, right: 4, wrong: 1

Branch 5: prediction: T-T-T-T-T-T-T, right: 5, wrong: 2

Total: right: 18, wrong: 7

Accuracy = 100% * 18/25 = 72%

6.37 No solution provided.

6.38 No solution provided.

6.39 Rearrange the instruction sequence such that the instruction reading a value
produced by a load instruction is right after the load. In this way, there will be a
stall after the load since the load value is not available till after its MEM stage.

lw $2. 100($6)
add $4. $2, $3
lw $3, 2OO($7)
add $6, $3, $5
sub $8, 14, $6
lw $7, 300($8)
beq $7, 18, Loop
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6.40 Yes. When it is determined that the branch is taken (in WB), the pipeline will
be flushed. At the same time, the 1 w instruction will stall the pipeline since the load
value is not available for add. Both flush and stall will zero the control signals. The
flush should take priority since the 1 w stall should not have occurred. They are on
the wrong path. One solution is to add the flush pipeline signal to the Hazard De-
tection Unit. If the pipeline needs to be flushed, no stall will take place.

6.41 The store instruction can read the value from the register if it is produced at
least 3 cycles earlier. Therefore, we only need to consider forwarding the results
produced by the two instructions right before the store. When the store is in EX
stage, the instruction 2 cycles ahead is in WB stage. The instruction can be either a
1 w or an ALU instruction.

assign EXMEMrt = EXMEMIR[ZO:16];

assign bypassVfromWB - (IDEXop — SW) 5 CIOEXrt !- 0) &
{ ((MEMWBop — LW) & (IDEXrt — HEMWBrt)) j
((MEMWBop —ALUop) & (IDEXrt — MEMWBrd)) );

This signal controls the store value that goes into EX/MEM register. The value
produced by the instruction 1 cycle ahead of the store can be bypassed from the
MEM/WB register. Though the value from an ALU instruction is available 1 cycle
earlier, we need to wait for the load instruction anyway.

assign bypassVfromWB2 - (EXHEMop — SW) & (EXMEMrt !- 0) &
(ibypassVfroinWB) &

( {{MEMWBop — LW) & (EXMEMrt — MEMWBrt)) |
{(MEMWBop — ALUop) & (EXMEMrt — MEMWBrd)) );

This signal controls the store value that goes into the data memory and MEM/WB
register.

6.42

assign bypassAfromMEM - (IDEXrs 1- 0) &
( ((EXMEMop —- LW) & (IDEXrs — EXMEMrt)) |
((EXMEMop — ALUop) & (IDEXrs — EXMEMrd)) );

assign bypassAfromWB = (IDEXrs 1= 0) & (loypassAfromMEM) &
( ((MEMWBop — LW) & (IDEXrs — MEMBrt)) |
((MEMWBop — ALUop) & (IDEXrs — MEMBrd)) ):
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6.43 The branch cannot be resolved in ID stage if one branch operand is being
calculated in EX stage (assume there is no dumb branch having two identical op-
erands; if so, it is a jump), or to be loaded (in EX and MEM).

ass ign b r a n d i S t a l l i n I D = CIFIDop =- BEQ) &
( ((IOEXop — ALUop) S ( { I F I D r s — IDEXrd) |

( I F I D r t — IDEXrd)) ) | // a l i i in EX
((IDEXop — LW) & ( ( I F I D r s — IDEXr t ) |

( I F I D r t — I D E X r t ) ) ) | // Iw in EX
((EXMEMop — LW) & ( ( I F I D r s — EXMEMrt) |

( I F I D r t == EXMEMrt)) ) ); // lw in MEM

Therefore, we can forward the result from an ALU instruction in MEM stage, and
an ALU or 1 w in WB stage.

assign bypassIDA = (EXMEMop — ALUop) & (IFIDrs — EXMEMrd);
assign bypassIDB = (EXMEMop — ALUop) & (IFIDrt — EXMEMrd);

Thus, the operands of the branch become the following:

assign IDAin =- bypassIDA ? EXMEMALUout : Regs[IFIDrs];
assign IDBTn - bypassIDB ? EXMEMALUout : Regs[IFIDrt];

And the branch outcome becomes:

assign takebranch = (IFIDop == BEQ) & (IDAin == IDBin);

5.44 For a delayed branch, the instruction following the branch will always be
executed. We only need to update the PC after fetching this instruction.

If(-stall) begin IFIDIR <- IMemoryEPC]; PC <- PC+4; end;
if(takebranch) PC <- PC + (161IFIDIRC15]) +4; end;
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6.45

module PredictPCfcurrentPC, nextPC, miss, update, destination);
input currentPC, update, desti nati on;
output nextPC, miss;
integer index, tag;
//512 entries, direct-map
reg[31:0] brTargetBuf[0:611], brTargetBufTag[O:511];
index = (currentPC>>2) & 511;
tag = currentPC»(2+9);
if(update) begin //update the destination and tag
brTargetBuf[index]-destination;
brTargetBufTag[index]=tag; end;

else if(tag==brTargetBufTag[index]) begin //a hit!
nextPC-brTargetBuf[index]; miss-FALSE; end;

else miss-TRUE:
endmodule;

6.46 No solution provided.

6.47

lw
lw
sub
sub
sw
sw
addi
bne

sz.$5,
$4,
$6,
$4,
S6.
$10,
$10,

0(510)
4(510)
$2, $3
$5, $3
0(S10)
4(510)
$10,
$30,

8
Loop
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6.48 The code can be unrolled twice and rescheduled. The leftover part of the
code can be handled at the end. We will need to test at the beginning to see if it has
reached the leftover part (other solutions are possible.

Loop:

Leftover:

F in i sh : . . .

6.49

alu or branch

Loop: addi

sub
sub
sub
sub
addi
bne

6.50 The pipe stages

add!
bgt
lw
lw
lw
sub
sub
sub
sw
sw
sw
bne
jump
lw
sub
sw
add!
beq
1 w
sub
sw

$20

$4 ,
$6,
$11
$12
$10
$10

$10,
$10,
$2.
$5 ,
$7 ,
$4,
$6,
$8 ,
$4,
$6,
$8 ,
$10,
Fini
$2,
$4,
$4,
$10,
$10,
$ 5 .
$6.
$6,

$10. 12
$30, Leftov

-12($10)
-8<$10)
-4($10)
$2, $3
$5, $3
$7, $3
-12($10)
-8($10)
-4($10)

$30, Loop
sh
-12($10)
$2, $3
-12($10)

$10, -8
$30, Fir

4($10)
$5, $3
4($10)

. $10, 0

$2
$5

, $7
, $8

. $3

. $3

. $3

. $3
, $10, 16
, $30, Loop

added for wire delays dc

iish

lw
lw
lw
lw
sw
sw
sw
sw

mot

er

hv/sw

$2.
$5 .
$7 ,
$8,
$4,
$6,
$11
$12

prod

0($10)
4{$10)
8($10)
12($10)
0($10)
4($10)

, 8($20)
, 12($20)

luce any useful work. With
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Solutions for Chapter 7 Exercises

7.1 There are several reasons why you may not want to build large memories out
of SRAM. SRAMs require more transistors to build than DRAMs and subsequently
use more area for comparably sized chips. As size increases, access times increase
and power consumption goes up. On the other hand, not using the standard
DRAM interfaces could result in lower latency for the memory, especially for sys-
tems that do not need more than a few dozen chips.

7.2-7.4 The key features of solutions to these problems:

• Low temporal locality for data means accessing variables only once.

• High temporal locality for data means accessing variables over and over again.

• Low spatial locality for data means no marching through arrays; data is scattered.

• High spatial locality for data implies marching through arrays.

7.5 For the data-intensive application, the cache should be write-back. A write
buffer is unlikely to keep up with this many stores, so write-through would be too
slow.

For the safety-critical system, the processor should use the write-through cache.
This way the data will be written in parallel to the cache and main memory, and
we could reload bad data in the cache from memory in the case of an error.
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7.9 2-miss, 3-miss, 11-miss, 16-miss, 21-miss, 13-miss, 64-miss, 48-miss,
19-miss, 11—hit, 3-miss, 22-miss, 4-miss, 27-miss, 6-miss, 11-set.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

4a

2

3

4

21

6

27

11

13

7.10 2-miss, 3—hit, 11-miss, 16-miss, 21-miss, 13-miss, 64-miss, 48-mis
19-miss, 1 i—hit, 3-miss, 22-hit, 4-miss, 27-miss, 6-hit, 11-miss

01

10

11

[0,1, 2, 3]

[4, 5, 6, 7]

[8, 9. 10, 11]

[12. 13, 14, 15]

7.11 C stores multidimensional arrays in row-major form. Therefor
the array in row-major form will be fester since there will be a greater degree of
temporal and spatial locality. Column-major form, on the other hand, will result
in capacity misses if the block size is more than one word.

7.12 The Intrinsity caches are 16 KB caches with 256 blocks and 16 words per
block. Data is 64 bytes = 512 bytes. The tag field is 18 bits (32 - (8 + 6}).

Total bits = 256 x {Data + Tag + Valid)

= 256 X (512 bits + 18 bits + 1 bit)

= 135,936 bits



Solution* for Chapter 7 E X W G I M S

7.13 Simply extend the comparison to include the valid bit as the high-order bit
of the cache tag and extend the address tag by adding a high-order " 1 " bit. Now the
values are equal only if the tags match and the valid bit is a 1.

7.14 The miss penalty is the time to transfer one block from main memory to the
cache. Assume that it takes 1 clock cycle to send the address to the main memory.

a. Configuration (a) requires 16 main memory accesses to retrieve a cache
block, and words of the block are transferred 1 at a time.

Miss penalty = 1 + 16 x 10 + 16 x 1 = 177 clock cycles.

b. Configuration (b) requires 4 main memory accesses to retrieve a cache block
and words of the block are transferred 4 at a time.

Miss penalty - 1 + 4 x 1 0 + 4 x 1 = 4 5 clock cycles.

c. Configuration (c) requires 4 main memory accesses to retrieve a cache
block, and words of the block are transferred 1 at a time.

Miss penalty = 1 + 4 x 1 0 + 1 6 x 1 = 57 clock cycles

7.16 The shortest reference string will have 4 misses for Cl and 3 misses for C2.
This leads to 32 miss cycles versus 33 miss cycles. The following reference string
will do: 0x00000000, 0x00000020,0x00000040, 0x00000041.

7.17 AMAT = Hit time + Miss rate x Miss penalty

AMAT = 2 ns + 0.05 x (20 x 2ns) = 4 ns

7.18 AMAT = (1.2 x 2 ns) + (20 x 2 ns x 0.03) = 2.4 ns + 1.2 ns = 3.6 ns

Yes, this is a good choice.

7.19 Execution time = Clock cycle x IC x ( C P I ^ + Cache miss cycles per instruc-
tion)

Execution timeoriginal = 2 x IC x (2 + 1.5 x 20 x 0.05) = 7 IC

Execution timenew = 2.4 x IC x (2 + 1.5 x 20 x 0.03) = 6.96 IC

Hence, doubling the cache size to improve miss rate at the expense of stretching
the clock cycle results in essentially no net gain.
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3
9

17

2
51
37
13
4

a
41
67

10

No
No
Yes (with 9)
No
No

Yes (with 17)
Yes (with 37
No

Yes (with 4)
No
No
NO

A bank conflict causes the memory system to stall until the busy bank has com-
pleted the prior operation.

7.21 No solution provided.

7.22 No solution provided.

7.28 Two principles apply to this cache behavior problem. First, a two-way set-
associative cache of the same size as a direct-mapped cache has half the number of
sets. Second, LRU replacement can behave pessimally (as poorly as possible) for
access patterns that cycle through a sequence of addresses that reference more
blocks than will fit in a set managed by LRU replacement.

Consider three addresses—call them A, B, C—that all map to the same set in the
two-way set-associative cache, but to two different sets in the direct-mapped cache.
Without loss of generality, let A map to one set in the direct-mapped cache and B
and C map to another set. Let the access pattern b e A B C A B C A . . . and so on. The
direct-mapped cache will then have miss, miss, miss, hit, miss, miss, h i t , . . . , and so
on. With LRU replacement, the block at address C will replace the block at the
address A in the two-way set-associative cache just in time for A to be referenced
again. Thus, the two-way set-associative cache will miss on every reference as this
access pattern repeats.
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7.29

Address size:
Cache size:
Block size:
Associativity:

Number of sets in the cache:

Sets/cache =

it bits
S bytes/cache
B = 2b bytes/block
A blocks/set

(Bytes/cache)
(Blocks/set) X (Bytes/block)

Number of address bits needed to index a particular set of the cache:

Cache set index bits = log2 (Sets/cache)

Number of bits needed to implement the cache:

Tag address bits/block = (Total address bits) - (Cache set index bits)

- {Block offset bits)

—(I)
Number of bits needed to implement the cache
+ tag + valid):

sets/cache x associativity x (data
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7.32 Here are the cycles spent for each cache:

Cl

C2 6 + 4 = 10

8 + 4 - 1 0

2% x 10 = 0.20 10

0.42

= 0.4

tSSm
0.28 x

0.20 x

2
U.4
2

2

= 0.49

= 0.4

= 0.35

Therefore Cl spends the most cycles on cache misses.

7.33 Execution time = CPI x Clock cycle x IC

We need to calculate the base CPI that applies to all three processors. Since we are
given CPI = 2 for Cl,

CPI_base = CPI - C P I ^ ^ = 2 - 0.49 = 1.51

ExCl = 2 x 420 ps x IC = 8.4 x 10"10 x IC

ExC2 = (1.51 + 0.4) X 420 ps X IC = 8.02 x 10"10 X IC

ExC3 = (1.51 + 0.35) X 310 ps x IC = 5.77 X 10"10 X IC

Therefore C3 is fastest and Cl is slowest.

7.34 No solution provided.

7.35 If direct mapped arid stride = 256, then we can assume without loss of gen-
erality that array[0]... array[31 ] is in block 0. Then, block I has array [32] . . . [63]
and block 2 has array[64] .. . [127] and so on until block 7 has [224] . . . [255].
(There are 8 blocks X 32 bytes = 256 bytes in the cache.) Then wrapping around,
we find also that block 0 has array[256]... [287], and so on.

Thus if we look at array[0] and array[256], we are looking at the same cache
block. One access will cause the other to miss, so there will be a 100% miss rate. If
the stride were 255, then array [0] would map to block 0 while array [255] and
array [510] would both map to block 7. Accesses to array [0] would be hots, and
accesses to array [255] and array [510] would conflict. Thus the miss rate would
be 67%.

If the cache is two-way set associative, even if two accesses are in the same cache
set, they can coexist, so the miss rate will be 0.

7.38 No solution provided.
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7.39 The total size is equal to the number of entries times the size of each entry.
Each page is 16 KB, and thus, 14 bits of the virtual and physical address will be used
as a page offset. The remaining 40 - 14 = 26 bits of the virtual address constitute
the virtual page number, and there are thus 226 entries in the page table, one for
each virtual page number. Each entry requires 36 -14 = 22 bits to store the physical
page number and an additional 4 bits for the valid, protection, dirty, and use bits.
We round the 26 bits up to a full word per entry, so this gives us a total size of 226

x 32 bits or 256 MB.

7.40 No solution provided.

7.41 The TLB will have a high miss rate because it can only access 64 KB (16 x 4 KB)
directly. Performance could be improved by increasing the page size if the architec-
ture allows it.

7.42 Virtual memory can be used to mark the heap and stack as read and write
only. In the above example, the hardware will not execute the malicious instruc-
tions because the stack memory locations are marked as read and write only and
not execute.

7.45 Less memory—fewer compulsory misses. (Note that while you might as-
sume that capacity misses would also decrease, both capacity and conflict misses
could increase or decrease based on the locality changes in die rewritten program.
There is not enough information to definitively state the effect on capacity and
conflict misses.)

Increased clock rate—in general there is no effect on the miss numbers; instead,
the miss penalty increases. (Note for advanced students: since memory access tim-
ing would be accelerated, there could be secondary effects on the miss numbers if
the hardware implements prefetch or early restart.)

Increased associativity—fewer conflict misses.

7.46 No solution provided.

7.47 No solution provided.

7.48 No solution provided.

7.49 No solution provided.

7.50 No solution provided.

7.51 No solution provided.

7.52 This optimization takes advantage of spatial locality. This way we update all
of the entries in a block before moving to another block.
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Solutions for Chapter 8 Exercises

8.1 Each transaction requires 10,000 x 50 = 50,000 instructions.

CPU limit: 500M/50K = 10,000 transactions/second.

The I/O limit for A is 1500/5 = 300 transactions/second.

The I/O limit for B is 1000/5 = 200 transactions/second.

These I/O limits limit the machine.

8.2 System A

transactions 9 compute 1

I/Os 45 latency 5

times 900 ms 100 us 100 ins exceeds 1 s

Thus system A can only support 9 transactions per second.

System B—first 500 I/Os (first 100 transactions)

transactions 9 compute 1 1

l/0s 45 latency 5 5

990.1m810 ms 100 us 90 ms 90 ms

Thus system B can support 11 transactions per second at first.

8.3 Time/file = 10 seconds + 40 MB * 1/(5/8) seconds/MB - 74 seconds

Power/file = 10 seconds * 35 watts + (74 - 10) seconds * 40 watts = 2910 I

Number of complete files transferred = 100,000 J/2910 J = 34 files

8.4 Time/file = 10 seconds + 0.02 seconds + 40 MB * 1/(5/8) seconds/MB = 74.02
seconds

Hard disk spin time/file = 0.02 seconds + 40 MB * 1/50 seconds/MB = 0.82 sec-
onds

Power/file - 10 seconds * 33 watts + 0.02 seconds * 38 watts + 0.8 seconds * 43
watts + 63.2 seconds * 38 watts = 330 J + 0.76 J + 34.4 J + 2401.6 J = 2766.76 J

Number of complete files transferred = 100000 J / 2766.761 = 36 files

Energy for all 100 files = 2766.76 * 100 = 276676 J
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8.5 After reading sector 7, a seek is necessary to get to the track with sector 8 on
it. This will take some time (on the order of a millisecond, typically), during which
the disk will continue to revolve under the head assembly. Thus, in the version
where sector 8 is in the same angular position as sector 0, sector S will have already
revolved past the head by the time the seek is completed and some large fraction of
an additional revolution time will be needed to wait for it to come back again. By
skewing the sectors so that sector 8 starts later on the second track, the seek will
have time to complete, and then the sector will soon thereafter appear under the
head without the additional revolution.

8.6 No solution provided.

8.7

a. Number of heads =15

b. Number of platters = 8

c. Rotational latency = 8.33 ms

d. Head switch time = 1.4 ms

e. Cylinder switch time = 2.1 ms

8.8

a. System A requires 10 + 10 - 20 terabytes.

System B requires 10 + 10 * 1/4 = 12,5 terabytes.

Additional storage: 20 - 12.5 = 7.5 terabytes.
b. System A: 2 blocks written = 60 ms.

System B: 2 blocks read and written = 120 ms.

c. Yes. System A can potentially accommodate more failures since it has more
redundant disks. System A has 20 data disks and 20 check disks. System B
has 20 data disks and 5 check disks. However, two failures in the same group
will cause a loss of data in both systems.

8.9 The power failure could result in a parity mismatch between the data and
check blocks. This could be prevented if the writes to the two blocks are performed
simultaneously,

8.10 20 meters time: 20 m * 1/(1.5 * 108) s/m = 133.3 ns

2,000,000 meters time: 2000000 m * 1/(1.5 * 108) s/m = 13.3 ms

8.11 20 m: 133.3 * 10"9 s * 6 MB/sec = 0.8 bytes

2000000 m: 13.3 * 10"3 s * 6 MB/sec = 80 KB
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8.12 4 KHz * 2 bytes/sample * 100 conversations = 800,000 bytes/sec

Transmission time is 1 KB/5 MB/sec + 150 us = 0.00035 seconds/KB

Total time/KB = 800 * 0.00035 = 0.28 seconds for 1 second of monitoring

There should be sufficient bandwidth.

8.13

a. 0

b. 1

c. 1

d. 2

e. Each bit in a 3-bit sequence would have to be reversed. The percentage of
errors is 0.01 "0.01 *0.01 =0.000001 (or 0.0001%)

8.14

b. 0

8.15

a. Not necessarily, there could be a single-bit error or a triple-bit error.

b. No. Parity only specifies whether an error is present, not which bit the error
is in.

c. No. There could be a double-bit error or the word could be correct.

8.16 (Seek time + Rotational delay + Overhead) * 2 + Processing time

(0.008 sec + 0.5 / (10000/60) sec + 0.002) * 2 + (20 million cyctes)(5 GHz) sec =
(.008 + .003 + .002)*2 + .004 = 30 ms

Block processed/second = 1/30 ms = 33.3

Transfer time is 80 usec and thus is negligible.

8.17 Possible answers may include the following:

• Application programmers need not understand how things work in lower
levels.

• Abstraction prevents users from making low-level errors.

• Flexibility: modifications can be made to layers of the protocol without dis-
rupting other layers.
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8.1S For 4-word block transfers, the bus bandwidth was 71.11 MB/sec. For 16-
word block transfers, the bus bandwidth was 224.56 MB/sec. The disk drive has a
transfer rate of 50 MB/sec. Thus for 4-word blocks we could sustain 71/50 = 1
simultaneous disk transfers, and for 16-word blocks we could sustain 224/50 = 4
simultaneous disk transfers. The number of simultaneous disk transfers is inher-
ently an integer and we want the sustainable value. Thus, we take the floor of the
quotient of bus bandwidth divided by disk transfer rate.

8.19 For the 4-word block transfers, each block now takes

1. 1 cycle to send an address to memory

2. 150 ns/5 ns = 30 cycles to read memory

3. 2 cycles to send the data

4. 2 idle cycles between transfers

This is a total of 35 cycles, so the total transfer takes 35 x 64 - 2240 cycles. Modify-
ing the calculations in the example, we have a latency of 11,200 ns, 5.71M trans-
actions/second, and a bus bandwidth of 91.43 MB/sec.

For the 16-word block transfers, each block now takes

1. 1 cycle to send an address to memory

2. 150 ns or 30 cycles to read memory

3. 2 cycles to send the data

4. 4 idle cycles between transfers, during which the read of the next block is
completed

Each of the next two remaining 4-word blocks requires repeating the last two
steps. The last 4-word block needs only 2 idle cycles before the next bus transfer.
This is a total of 1 + 20 -f 3 * (2 + 4) + (2 + 2) = 53 cycles, so the transfer takes 53
* 16 = 848 cycles. We now have a latency of 4240 ns, 3.77M transactions/second,
and a bus bandwidth of 241.5 MB/sec.

Note that the bandwidth for the larger block size is only 2.64 times higher given
the new read times. This is because the 30 ns for subsequent reads results in fewer
opportunities for overlap, and the larger block size performs (relatively) worse in
this situation.

8.20 The key advantage would be that a single transaction takes only 45 cycles, as
compared with 57 cycles for the larger block size. If because of poor locality we
were not able to make use of the extra data brought in, it might make sense to go
with a smaller block size. Said again, the example assumes we want to access 256
words of data, and dearly larger block sizes will be better. (If it could support it,
we'd like to do a single 256-word transaction!)
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8.21 Assume that only the 4-word reads described in the example are provided by

the memory system, even if fewer than 4 words remain when transferring a block.

Then,

send the block

(bus cycles)

Time to redd first 4 words in
memory (bus cycles)
Block trensfer timep at 2 transfer
bus cycles and 2 idle bus cycles
per 4-word transfer (bus cycles)
Total time to transfer one block
(bus cycles)
Number of bus transactions to
read 256 words using the given

Time for 256-word transfer (bus
cycles)
Latency ( IK)
Number of bus transactions
(millions per second)
Bandwidth (MB/«oc)

40

4

45

64

2880

14400
4.444

71.1

40

8

49

52

2548

12740
4.082

80.4

40

8

49

43

2107

10535
4.082

97.2

40

8

49

37

1813

9065
4.082

113.0

40

8

49

32

1568

7840
4.082

130.6

40

12

S3

29

1537

7685
3.774

133.2

40

12

53

26

1378

6890
3.774

148.6

40

12

53

24

1272

6360
3.774

161.0

40

12

53

22

1166

5830
3.774

175.6

40

16

57

20

1140

5700
3.509

179.6

40

16

57

19

1083

5415
3.509

189.1

40

16

57

18

1026

5130
3.509

199.6

40

16

57

16

912

4560
3.509

224.6
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The following graph plots latency and bandwidth versus block size:

r 250.0

9 10 11 12 13 14 15 16

Block size {words)
'-i Latency

A. Bandwidth
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8.22 From the example, a 4-word transfer takes 45 bus cycles and a 16-word block

transfer takes 57 bus cycles. Then,

worO transfers
to send the

Number of 16-

to send the
data

Total read time
using 4-word
blocks (bus
cycles)

Total read time
using 16-word
blocks (bus
cycles)

Latency using
4-word block*
<ns>

Latency n-lnf
le-word
block* (ns)

Bandwidth
using 4-word
blocks
(MB/MC)

Bandwidth
using 18-word
blocks
(MB/soc)

1

45

57

225

285

71.1

56.1

1

90

57

450

285

44.4

70.2

1

90

57

450

285

53.3

84.2

1

90

57

450

285

62.2

98.2

1

90

57

450

285

71.1

112.3

1

135

57

675

285

53.3

126.3

1

135

57

675

285

59.3

140.4

1

135

57

675

285

65.2

154.4

135

57

675

285

71.1

168.4

180

57

900

285

57.8

182.5

180

57

900

285

62.2

196.5

180

57

900

285

66.7

210.5

180

57

900

285

71.1

224.6

a

360

114

1800

570

71.1

224.6

16

720

228

3600

1140

71.1

224.6

32

8

1440

456

7200

2280

71.1

224.6

64

16

2880

912

14400

4560

71.1

224.6
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The following graph plots read latency with 4-word and 16-word blocks:

4 5 6 7 8 9 10 11 12 13 14 15 16 32 64 128 256

Read size (words)

A 4-word blocks

* 16-word blocks

The following graph plots bandwidth with 4^word and 16-word blocks:

Read size (words)

16 32 64 128 256

A 4-word blocks
-1* 16-word blocks

8.23

For 4-word blocks:

Send address and first word simultaneously = I clock
Time until first write occur = 40 clocks

Time to send remaining 3 words over 32-bit bus = 3 clocks
Required bus idle time = 2 clocks

Total time = 46 clocks

Latency = 64 4-word blocks at 46 cycles per block = 2944 clocks = 14720 ns
Bandwidth = (256 x 4 bytes)/14720 ns = 69.57 MB/sec

I
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For 8-word blocks:

Send address and first word simultaneously = 1 clock
Time until first write occurs = 40 clocks

Time to send remaining 7 words over 32-bit bus = 7 clocks
Required bus idle time (two idle periods) = 4 docks

Total time = 52 clocks

Latency = 32 8-word blocks at 52 cycles per block = 1664 clocks = 8320 ns

Bandwidth = (256 x 4 bytes)/8320 ns = 123.08 MB/sec
In neither case does the 32-bit address/32-bit data bus outperform the 64-bit
combined bus design. For smaller blocks, there could be an advantage if the over-
head of a fixed 4-word block bus cycle could be avoided.

4-word transfer*

bus bus memory

addr data

8-word transform

JS bus memory

> •

2 + 40 + 8 + 2 = 52

8.24 For a 16-word read from memory, there will be four sends from the 4-word-
wide memory over the 4-word-wide bus. Transactions involving more than one
send over the bus to satisfy one request are typically called burst transactions.

For burst transactions, some way must be provided to count the number of sends
so that the end of the burst will be known to all on the bus. We don't want another
device trying to access memory in a way that interferes with an ongoing burst
transfer. The common way to do this is to have an additional bus control signal,
called BurstReq or Burst Request, that is asserted for die duration of the burst.
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This signal is unlike the ReadReq signal of Figure 8.10, which is asserted only long
enough to start a single transfer. One of the devices can incorporate the counter
necessary to track when BurstReq should be deasserted, but both devices party to
the burst transfer must be designed to handle the specific burst (4 words, 8 words,
or other amount) desired. For our bus, if BurstReq is not asserted when ReadReq
signals the start of a transaction, then the hardware will know that a single send
from memory is to be done.

So the solution for the 16-word transfer is as follows: The steps in the protocol
begin immediately after the device signals a burst transfer request to the memory
by raising ReadReq and Burst_Request and putting the address on the Date lines.

1. When memory sees the ReadReq and BurstReq lines, it reads the address of
the start of the 16-word block and raises Ack to indicate it has been seen.

2. I/O device sees the Ack line high and releases the ReadReq and Data lines,
but it keeps BurstReq raised.

3. Memory sees that ReadReq is low and drops the Ack line to acknowledge
the ReadReq signal.

4. This step starts when BurstReq is high, the Ack line is low, and the memory
has the next 4 data words ready. Memory places the next 4 data words in
answer to the read request on the Data lines and raises DataRdy.

5. The I/O device sees DataRdy, reads the data from the bus, and signals that it
has the data by raising Ack.

6. The memory sees the Ack signal, drops DataRdy, and releases the Data
lines.

7. After the I/O device sees DataRdy go low, it drops the Ack line but contin-
ues to assert BurstReq if more data remains to be sent to signal that it is
ready for the next 4 words. Step 4 will be next if BurstReq is high.

8. If the last 4 words of the 16-word block have been sent, the I/O device drops
BurstReq, which indicates that the burst transmission is complete.

With handshakes taking 20 ns and memory access taking 60 ns, a burst transfer
will be of the following durations:

Step 1 20 ns (memory receives the address at the end of this step; data goes on
the bus at the beginning of step 5)

Steps 2,3,4 Maximum (3 x 20 ns, 60 ns) = 60 ns
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Steps 5,6,7,4 Maximum (4 x 20 ns, 60 ns) = 80 ns (looping to read and then
send the next 4 words; memory read latency completely hidden by hand-
shaking time)

Steps 5,6, 7,4 Maximum {4 x 20 ns, 60 ns) = 80 ns (looping to read and then
send the next 4 words; memory read latency completely hidden by hand-
shaking time)

Steps 5, 6,7, 4 Maximum (4 x 20 ns, 60 ns) = 80 ns {looping to read and then
send the next four words; memory read latency completely hidden by
handshaking time)

End of burst transfer

Thus, the total time to perform the transfer is 320 ns, and the maximum band-
width is

(16 words x 4 bytes)/320 ns = 200 MB/sec

It is a bit difficult to compare this result to that in the example on page 665
because the example uses memory with a 200 ns access instead of 60 ns. If the
slower memory were used with the asynchronous bus, then the total time for the
burst transfer would increase to 820 ns, and the bandwidth would be

(16 words X 4 bytes)/820 ns = 78 MB/sec

The synchronous bus in the example on page 665 needs 57 bus cycles at 5 ns per
cycle to move a 16-word block. This is 285 ns, for a bandwidth of

(16 words x 4 bytes)/285 ns = 225 MB/sec

8.26 No solution provided

8.27 First, the synchronous bus has 50-ns bus cycles. The steps and times required
for the synchronous bus are as follows:

Send the address to memory: 50 ns

Read the memory: 200 ns

Send the data to the device: 50 ns

Thus, the total time is 300 ns. This yields a maximum bus bandwidth of 4 bytes
every 300 ns, or

4 bytes _ 4MB _ MB
300 ns 0.3 seconds ~ ' second

At first glance, it might appear that the asynchronous bus will be much slower,
since it will take seven steps, each at least 40 ns, and the step corresponding to the
memory access will take 200 ns. If we look carefully at Figure 8.10, we realize that
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several of the steps can be overlapped with the memory access time. In particular,
the memory receives the address at the end of step 1 and does not need to put the
data on the bus until the beginning of step 5; steps 2,3, and 4 can overlap with the
memory access time. This leads to the following timing:

Step 1: 40 ns

Steps 2,3,4: maximum (3 x 40 ns, 200 ns) = 200 ns

Steps5,6,7: 3X40ns = 120ns

Thus, the total time to perform the transfer is 360 ns, and the maximum band-
width is

4bytes _ 4MB _ MB
360 ns 0.36 seconds ' second

Accordingly, the synchronous bus is only about 20% faster. Of course, to sustain
these rates, the device and memory system on the asynchronous bus will need to
be fairly fast to accomplish each handshaking step in 40 ns.

8.28 For the 4-word block transfers, each block takes

1. 1 clock cycle that is required to send the address to memory

2. 200ns = 40 dock cycles to read memory
5 ns/cyde ' '

3. 2 clock cycles to send the data from the memory

4. 2 idle clock cydes between this transfer and the next

This is a total of 45 cydes, and 256/4 = 64 transactions are needed, so the entire
transfer takes 45 X 64 = 2880 dock cycles. Thus the latency is 2880 cydes X 5
ns/cyde = 14,400 ns.

Sustained bandwidth is 2 5 6 ^ t y e S =71.11 MB/sec.

The number of bus transactions per second is

64 transactions . „, , ,
= 4.44 transactions/second

14,400 ns

For the 16-word block transfers, the first block requires

1. 1 dock cycle to send an address to memory

2. 200 ns or 40 cydes to read the first four words in memory

3. 2 cycles to send the data of the block, during which time the read of the four
words in the next block is started

4. 2 idle cycles between transfers and during which the read of the next block
is completed
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Each of the three remaining 16-word blocks requires repeating only the last two
steps.

Thus, the total number of cycles for each 16-word block is 1 + 40 + 4 X (2 + 2) =
57 cycles, and 256/16 = 16 transactions are needed, so the entire transfer takes,
57 x 16 = 912 cycles. Thus the latency is 912 cycles x 5 ns/cyde = 4560 ns, which is
roughly one-third of the latency for the case with 4-word blocks.

u: 256 x 4
Sustained bandwidth is SJ* = 2 2 4 - 5 6 MB/sec

The number of bus transactions per second with 16-word blocks is

16 transactions
4560 ns

: 3.51M transactions/second

which is lower than the case with 4-word blocks because each transaction takes
longer (57 versus 45 cydes).

8.29 First the mouse:

Clock cydes per second for polling = 30 x 400 = 12,000 cydes per second

Fraction of the processor dock cycles consumed = - - = 0.002%

Polling can dearly be used for the mouse without much performance impact on
the processor.

For the floppy disk, the rate at which we must poll-is

- 0 KB
second _ ^ p o l l i n g accesses
bytes second

polling access
Thus, we can compute the number of cycles:

Cycles per second for polling = 25K x 400 = 10 x 106

10 X 10*
Fraction of the processor consumed =

500 x 106

This amount of overhead is significant, but might be tolerable in a low-end system
with only a few I/O devices like this floppy disk.
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In the case of the hard disk, we must poll at a rate equal to the data rate in four-
word chunks, which is 250K times per second (4 MB per second/16 bytes per
transfer). Thus,

Cycles per second for polling = 250Kx400

100 x10^
Fraction of the processor consumed = —- = 20%

500 x LO6

Thus one-fifth of the processor would be used in just polling the disk. Clearly,
polling is likely unacceptable for a hard disk on this machine.

8.30 The processor-memory bus takes 8 clock cycles to accept 4 words, or 2
bytes/clock cycle. This is a bandwidth of 1600 MB/sec. Thus, we need 1600/40 = 40
disks, and because all 40 are transmitting, we need 1600/100 = 16 I/O buses.

8.31 Assume the transfer sizes are 4000 bytes and 16000 bytes (four sectors and
sixteen sectors, respectively). Each disk access requires 0.1 ms of overhead + 6 ms
of seek.

For the 4 KB access (4 sectors):

• Single disk requires 3 ms + 0.09 ms (access time) +6.1 ms = 9.19 ms

• Disk array requires 3 ms + 0.02 ms (access time) + 6.1 ms = 9.12 ms

For the 16 KB access (16 sectors):

• Single disk requires 3 ms + 0.38 ms (access time) + 6.1 ms = 9.48 ms

• Disk array requires 3 ms + 0.09 ms (access time) + 6.1 ms = 9.19 ms

Here are the total times and throughput in I/Os per second:

• Single disk requires (9.19 + 9.48)/2 = 9.34 ms and can do 107.1 I/Os per sec-
ond.

• Disk array requires (9.12 + 9.19)/2 = 9.16 ms and can do 109.1 I/Os per sec-
ond.

8.32 The average read is (4 + 16)/2 = 10 KB. Thus, the bandwidths are

Single disk: 107.1 * 10KB - 1071 KB/second.

Disk array: 109.1 * 10 KB = 1091 KB/second.

8.33 You would need I/O equivalents of Load and Store that would specify a des-
tination or source register and an I/O device address (or a register holding the ad-
dress). You would either need to have a separate I/O address bus or a signal to
indicate whether the address bus currently holds a memory address or an I/O ad-
dress.
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a. If we assume that the processor processes data before polling for the next
byte, the cycles spent polling are 0.02 ms * 1 GHz - 1000 cycles = 19,000
cycles. A polling iteration takes 60 cycles, so 19,000 cycles = 316.7 polls.
Since it takes an entire polling iteration to detect a new byte, the cycles spent
polling are 317 * 60 = 19,020 cycles. Each byte thus takes 19,020 + 1000 =
20,020 cycles. The total operation takes 20,020 * 1000 = 20,020,000 cycles.

(Actually, every third byte is obtained after only 316 polls rather than 317;
so, the answer when taking this into account is 20,000,020 cycles.)

b. Every time a byte comes the processor takes 200 + 1000= 1200 cycles to pro-
cess the data. 0.02 ms * 1 GHz - 1200 cycles = 18,800 cycles spent on the
other task for each byte read. The total time spent on the other task is 18,800
"1000= 18,800,000 cycles.

8.38 Some simplifying assumptions are the following:

• A fixed overhead for initiating and ending the DMA in units of clock cycles.
This ignores memory hierarchy misses adding to the time.

• Disk transfers take the same time as the time for the average size transfer,
but the average transfer size may not well represent the distribution of actual

• Real disks will not be transferring 100% of the time—far from it.

Network: (2 us + 25 us * 0.6)/(2 us + 25 us) = 63% of original time (37% reduc-
tion)

Reducing the trap latency will have a small effect on the overall time reduction

8.39 The interrupt rate when the disk is busy is the same as the polling rate.
Hence,

Cycles per second for disk = 250K x 500 = 125 x 106 cycles per second

<106

" 5oox~Tb~«~25%

Assuming that the disk is only transferring data 5% of the time,

Fraction of the processor consumed on average = 2 5 % x 5 % = 1.25%

As we can see, the absence of overhead when an I/O device is not actually transfer-
ring is the major advantage of an interrupt-driven interface versus polling.
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8.40 Each DMA tranfer takes
8 K B =2xlO-3seconds

second

So if the disk is constantly transferring, it requires

* '"- =750x1
transfer _ , „ „ 1Q3 clock C

. ..-3 seconds &CWJUU

transfer

Since the processor runs at 500 MHz, 3

Fraction of processor consumed = 7 5 ° x 1Q = 1.5 x io"3 = 0.15%
500 x 10

8.44 Maximum I/O rate of the bus: 1,000,000,000/8000 = 125,000 I/O/second

CPU bottleneck restricts throughput to 10,000 I/O / second
Time/I/O is 6.11 ms at disk, each disk can complete 1000/6.11 = 163.67 I/O/sec-
ond

To saturate the CPU requires 10,000 I/O second.
10,000

61 disks.
163.67

61 disks
7 disks/scsl controller

= 9 scsl controllers.

8.45 First, check that neither the memory nor the I/O bus is a bottleneck. Sustain-
able bandwidth into memory is 4 bytes per 2 clocks = 800 MB/sec The I/O bus can
sustain 100 MB/sec. Both of these are faster than the disk bandwidth of 40 MB/sec,
so when the disk transfer is in progress there will be negligible additional time
needed to pass the data through the I/O bus and write it into memory. Thus, we
ignore this time and focus on the time needed by the DMA controller and the disk.
This will take 0.1 ms to initiate, 8 ms to seek, 16 KB/40 MB to transfer: total = 8.5
ms.

8.46 Disk access total time: 10,000/500,000,000 s + 20 ms = 20.002 ms

% delay trapping to OS: 0.01%

Network access total time: 10,000/5,000,000,000 s + 25 us = 27 us

% delay trapping to OS: 7.4%
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8.47 Disk: (2 us + 20 ms * 0.4)/(2 [is + 20 ms) = 40% of original time (60% re-
duction)

Reducing the trap latency will have virtually no effect on the overall time reduc-
tion

Network: (2 us + 25 us * 0.6)/(2 us + 25 us) = 63% of original time (37% reduc-
tion)

Reducing the trap latency will have a small effect on the overall time reduction
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Solutions for Chapter 9 Exercises

9.1 No solution provided.

9.2 The short answer is that x is always 2, and y can either be 2,4, or 6. In a load-
store architecture the code might look like the following:

load X Into a register

Increment register

store register back to X

load Y into a register

add two registers to register

store register back to Y

Incrernent register

store register bach to Y

load X into a register

When considering the possible interleavings, only the loads/stores are really of
interest. There are four activities of interest in process 1 and two in process 2.
There are 15 possible interleavings, which result in the following:

111122: x = 2,y = 4
111212: x = 2,y =4
111221:x = 2,y = 2
112112: X =2 ,y =4
112121:x = 2,y = 2
112211:x = 2 , y = 6
121112:x=2,y = 2
121121:x = 2,y = 2
121211:x = 2 , y = 4
122111:x = 2 , y = 4
211112:x = 2,y = 2
211121:x = 2 , y = 2
211211: x = 2 , y =4
2121U:x = 2,y = 4
2211H:x = 2 , y = 4

9.3 No solution provided.

9.4 No solution provided.
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9.5 Write-back cache with write-update cache coherency and one-word blocks.
Both words are in both caches and are initially clean. Assume 4-byte words and
byte addressing.

Total bus transactions = 2

1
2
3
4

5
6

PI writes to 100
P2 writes to 104
Pi reads 100
P2 reads 104
PI reads 104
P2 reads 100

One bus transfer to move the word at 100 from PI to P2 cache.
One bus transfer to move the word at 104 from P2 to PI cache.
No bus transfer; word read from PI cache.
No bus transfer; word read from P2 cache.
No bus transfer; word read from PI cache.
No bus transfer; won) read from P2 cache.

9.6 Write-back cache with write-update cache coherency and four-word blocks.
The block is in both caches and is initially clean. Assume 4-byte words and byte ad-
dressing. Assume that the bus moves one word at a time. Addresses 100 and 104
are contained in the one block starting at address 96.

1

2
3
4
5
6

PI writes to 100
P2 writes to 104
Plrea
P2rea
Plree

P2res

ids 100
ids 104
ids 104

dslOO

One bus transfer to move the word at 100 from PI t
One bus transfer to move the word at 104 from P21
No bus transfer; word read from PI cache.
No bus transfer; word read from P2 cache.

No bus transfer; word read from PI cache.
No bus transfer; word read from P2 cache.

o P2 cache.
a PI cache.

Total bus transactions = 2.

False-sharing appears as a performance problem under a write-invalidate cache
coherency protocol. Writes from different processors to different words that hap-
pen to be allocated in the same cache block cause that block to ping-pong between
the processor caches. That is, a dirty block can reside in only one cache at a time.
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If we modify the cache in this exercise to use write-invalidate, the number of bus
transactions increases to 9.

1

2

3

4

5
6

PI writes 100

P2 writes 104

PI reads 100

P2 reads 104
PI reads 104
P2 reads 100

PI issues a write-invalidate using one bus transaction to send the address 100;
P2 removes the block from its cache; the block Is now dirty In the PI cache
alone.
P2 issues a read-with-intent-to-modify and the block Is moved from PI to P2
using four bus transfers; PI removes the block from Its cache; the block is now
dirty in the P2 cache alone

PI Issues a read miss and the P2 cache supplies the block to PI and writes
back to the memory at the same time using four bus transfers; the block Is now
clean in both cases.

No bus transfer; word read from P2 cache.
No bus transfer; word read from PI cache.
No bus transfer; word read from P2 cache.

9.7 No solution provided.

9.8 No solution provided.

9.9 No solution provided.

9.10 No solution provided.

9.11 No solution provided.

9.12 No solution provided.

9.13 No solution provided.

9.14 No solution provided.
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B.1

0

1

1

0

1

1
1

0

0

0

1

0

o
0

0

0

0

o

1

1

o

1
1

1
0

B.2 Here is the first equation:

E = ((A• B) + (A • C) + (B • C)) • ( A - B - C ) .

Now use DeMorgan's theorems to rewrite the last factor:

E = ((A-B) + (A-C) + (B-C)) - (A + B + C)

Now distribute the last factor:

E = ((A- B) • (A + B + C)) + ((A-C) • (A + B + C)) +({B • C)-(A + B + C))

Now distribute within each term; we show one example:

((A-B) • (A + B + C)) = (A-B-A) + ( A B • B) + ( A ' B - C ) = 0 + 0 + ( A - B - C )

(This is simply A • B • C.) Thus, the equation above becomes

E = (A - B • C) + (A • B • C) + (A • B - C) , which is the desired result.
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B.7 Four inputs A0-A3 & F (0/P) = 1 if an odd number of Is exist in A.

0

0

0

0

0

0

0

0
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1

1

1

1
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0
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1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

a
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0

0

1

1
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0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

B.8 F = A3'A2'A1'AO + A3'A2'A1 AO' + A3'A2 Al'AO' + A3'A2 AI AO +

A3 A2'A1'AO' + A3 A2'A1 AO + A3'A2'A1 AO' + A3 A2 Al AO'

Note: F = AO XOR Al XOR A2 XOR A3. Another question can ask the students to
prove that.
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A2 |

nP°—

Lr-so—

—

\ No solution provided.
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0

0

0
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0
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1

Fl = X2'XI XO + X2 Xl'XO + X2 XI XO'
F2 = X2TU-X0 + X2TU XO' + X2 Xl'XO' + X2 XI XO = (A XOR B XOR C)
F3=X2 '
F4 = X2(=F3')
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i x2y2 + x2y2xlyl + x2y2xlylx0y0 + x2y2xlyl + x2y2xlylx0yO + x2y2xlylxOyO + x2y2xlylx0y0

+ x2y2xlylx0y0

• x2y2 + x2y2xlyl + x2y2xlylx0y0 + x2y2xlyl + x2y2xlylxOyO + x2y2xlylx0yO + x2y2xlylx0y0

• (x2y2 + x2y2)(xlyl+x~lyl)(x0y0 + x0yl))

B.14

B.15 Generalizing DeMorgan's theorems for this exercise, if A + B = A • B, then

A + B + C = A+(B + C) = A- (B + C) = A • (B • C) = A- B C.

Similarly,

A - B - C = A - ( B - C ) = A + B - C = A - ( B + C ) = A + B + C.

Intuitively, DeMorgan's theorems say that (1) the negation of a sum-of-products
form equals the product of the negated sums, and (2) the negation of a product-
of-sums form equals the sum of the negated products. So,

= ( A - B C ) + ( A C B ) + ( B - C A )

= (A - B • C) • (A • C • B) • (B • C • A); first application of DeMorgan's theorem

= (A + B + C) • (A + C + B) • (B + C + A); second application of DeMorgan's

theorem and product-of-sums form

B.16 No solution provided.
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B.18 2-1 multiplexor and 8 bit up/down counter.

B.19

module LATCHCclock .D.Q.Qbar)
i n p u t c l o c k , D ;
reg 0;
w i r e Obar :
a s s i g n Qbar - ~ 0 ;
a lways @ ( D . c l o c k ) / / s e n s t i v i t y l i s t watches c l o c k and data
begi n

i f ( c l o c k )
0 - D;

end
endmodule

B.20

module decoder (in, out,, enable);
input [1:0] in;
input enable
output [3:0] out;
reg [3:0] out;

always @ (enable. in)
if (enable) begin
out = 0;
case (in)

2'hO : out - 4'hl;
2'hl : out - 4'h2;
2'h2 : out = 4'h4;
2'h3 : out = 4'h8;

endcase
end
endmodule
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B.21

module ACCIClk, Rst. Load, IN, LOAD, OUT);

input C1k, Rst, Load;
input [ 3 : 0 ] IN;
input [15 :0 ] LOAD
output [15 :0 ] OUT;

wire [15 :0 ] W;
reg [15:0] Register;

initial begin
Register = 0;
end
assign W = IN + OUT;

always @ {Rst,Load)
begin
if Rst begin

Register = 0;
end

if Load begin
Register = LOAD;

end
end

always @ (Clk)
begin

Register <- W;
end

endmodule
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B.22 We use Figure 3.5 to implement the multiplier. We add a control signal
"load" to load the multiplicand and the multiplier. The load signal also initiates the
multiplication. An output signal "done" indicates that simulation is done.

module MULKclk, load, Multiplicand. Multipl ier, Product, done);
input elk, load;
input [31:0] Multiplicand, Multiplier;
output [63:0] Product;
output done;

reg [63:0] A, Product;
reg [31:0] B;
reg [5:0] loop;
reg done;

initial begin
done - 0; loop = 0;

end

always @(posedge e lk) begin
if ( load && loop ™Q) begin

done <- 0;
Product <=0;
A <= Multiplicand;
B <=.Multiplier;
loop <= 32;

end

ifdoop > 0) begin
if(B[0] =- 1)

Product <- Product + A;

A <-
B <-
1 oop

A
6
<=

if(loop
dor

end

end

ie

endmodule

<< 1;
» 1;
loop -1;

— 0)
<- 1;
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B.23 We use Figure 3.10 for divider implementation, with additions similar to the
ones listed above in the answer for Exercise B.22.

module DIVtclk, load. Divisor, Dividend, Quotient, Remainder, done);

input clk, 1oad;
input [31:0] Divisor;
input [63:0] Dividend:
output [31:0] Quotient;
input [31:0] Remainder;
output done;

reg [31:0] Quotient; //Quotient
reg [63:0] D, R; //Divisor, Remainder
reg [6:0] loop; //Loop counter
reg done;

initial begin
done = 0; 1oop = 0;

end

assign Remainder - R [31 :0 ] ;

always ©Cposedge e lk) begin
if ( load SS loop —0) begin

done <= 0;
R <=Dividend;
D <- Div isor << 32;

Quotient <-0;
loop <= 33;

end

i f f l o o p > 0) begin
i f ( R - D >- 0)

begin
Quotient <= (Ouotient << 1) + 1;
R <- R - D;
end

else
begin
Quotient <= Quotient << 1;

end

D <- D » 1:
loop <= loop - 1;
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i fdoop -~ 0)
done <= 1:

end
endmodule

Note: This code does not check for division by zero (i.e., when Divisior - = 0) or
for quotient overflow (i.e., when Divisior < = Dividiend [64:32)).

B.24 The ALU-supported set less than (s 11) uses just the sign bit. In this case, if
we try a set less than operation using the values -7 t e n and 6ten, we would get -7 >
6. This is clearly wrong. Modify the 32-bit ALU in Figure 4.11 on page 169 to han-
dle s 11 correctly by factor in overflow in the decision.

If there is no overflow, the calculation is done properly in Figure 4.17 and we sim-
ply use the sign bit (Result31). If there is overflow, however, then the sign bit is
wrong and we need the inverse of the sign bit.

0

1

1

1

0
1

1

1

0

LessThan = Overflow © Result31

Overflow
IteuMl

0

1

1

0

1

1

1

0
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B.25 Given that a number that is greater than or equal to zero is termed positive
and a number that is less than zero is negative, inspection reveals that the last two
rows of Figure 4.44 restate the information of the first two rows. Because A - B =
A + (-B), the operation A - B when A is positive and B negative is the same as the
operation A + B when A is positive and B is positive. Thus the third row restates
the conditions of the first. The second and fourth rows refer also to the same con-
dition.

Because subtraction of two's complement numbers is performed by addition, a
complete examination of overflow conditions for addition suffices to show also
when overflow will occur for subtraction. Begin with the first two rows of Figure
4.44 and add rows for A and B with opposite signs. Build a table that shows all
possible combinations of Sign and Carryin to the sign bit position and derive the
CarryOut, Overflow, and related information. Thus,

0

0
0
0
1
1
1

1

0
0

1
1
0
0
1

0

1
0

1
0
1
0

0
0
0

1
0
1
1

0

1
1
0
1

0
0

0
0
1
0
1

0
1

No
fes
No
No
No

No
Yes

No

0
1
0

0
0
0
1

0

Carries differ
IAI < IBI

IAI > IBI
IAI > IBI
IAI < iBI

Carries differ

From this table an Exclusive OR (XOR) of the Carryin and CarryOut of the sign
bit serves to detect overflow. When the signs of A and B differ, the value of the
Carryin is determined by the relative magnitudes of A and B, as listed in the Notes

B.26 Cl = C4, C2 = C8, C3 = Cl2, and C4 = cl6.

c4 = G3,o + (Pi,o • cO).

c8 is given in the exercise.

cl2 = G,,j, + (Pu,8 • G,,4) + (P n , 8 • P,,4- G M ) + {Pn,»-P7,4 • P3.0 • cO).
CIS = G15il2 + (P15,i2 • G,,,,) + (P,5,12 • P u , 8 • G7|4)

+ (Pl5,12 ' Pll,« • P7.4 • G3,0) + (Pl5,12 • Pll,» • P7.4 • P3.0 • CO).
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B.27 The equations for c4, c8, and d2 are the same as those given in the solution
to Exercise 4.44. Using 16-bit adders means using another level of carry lookahead
logic to construct the 64-bit adder. The second level generate, G(f, and propagate,
PO', are

GO' = G15,o = Gis,12 + Pi5,12 • GU ,8 + Pl5,i2- P 1 U -G7.4 + P15 , l 2 • P l l j 8 • P7>4 • G3l0

and

Using GO' and PO', we can write cl6 more compactly as

cl6 = G1SiO + Pi5?o-cO

and

c32 = G 3 U 6 + P3 i i l 6 • cl6
c48 = G47i32 + P47i32-c32
c64 = G63,4g + P63,48-c48

A 64-bit adder diagram in the style of Figure B.6.3 would look like the foUowing:



Solutions for Appmidix B Exarclsaa

1
Carryln

ALUO
PO
GO

r
Carryln

ALU1
P1
G1

r
Carryln

ALU2
P2
G2

r
Carryln

ALU3
P3

G3

C1

C2_

C3

C4
I '

pi
Qi

pi +1

Ql+1

ci + 2

pi+ 2
gf +2

ci +3

pi +3

g i+3

Cf + 4

B.8.3 Four 4-Ut ALUs u»b« carry lookahaad to form a 16-btt «dder. Note that the
ime from the carry-2ookahead unit, not from the 4-bit ALUs.
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B.28 No solution provided.

B.29 No solution provided.

B.30 No solution provided.

B.31 No solution provided.

B.32 No solution provided.

B.33 No solution provided.

B.34 The longest paths through the top {ripple carry) adder organization in Fig-
ure B. 14.1 all start at input aO or bO and pass thrdiigh seven full adders on the way
to output s4 or s5. There are many such paths, all with a time delay of 7 x 2T = 14T.
The longest paths through the bottom (carry sale); adder all start at input bO, eO,
fl), b l , el , or fl and proceed through six full adders to outputs s4 or s5. The time
delay for this circuit is only 6 x 2T = 12T.


