
Lehrer A (1985). ‘The influence of semantic fields on
semantic change.’ In Fisiak J (ed.) Historical semantics/
historical word-formation. Berlin: Mouton. 283–296.

Lutzeier P R (1981). Wort und Feld. Wortsemantische
Fragestellungen mit besonderer Berücksichtigung des
Wortfeldbegriffes. Tübingen: Max Niemeyer Verlag.

Lutzeier P R (ed.) (1993). Studien zur Wortfeldtheorie/Studies
in lexical field theory. Tübingen: Max Niemeyer Verlag.

Lutzeier P R (1995). Lexikologie. Ein Arbeitsbuch.
Tübingen: Stauffenburg Verlag.

Lutzeier P R (2005). ‘Die Wortfeldtheorie unter dem Ein-
fluss des Strukturalismus.’ In Auroux S, Koerner E F,
Niederehe H-J et al. (eds.) History of the language
sciences: an international handbook on the evolution of
the study of language from the beginnings to the present,
vol. 3. Berlin: Walter de Gruyter.

Lyons J (1968). Introduction to theoretical linguistics.
Cambridge: Cambridge University Press.

Pottier B (1963). Recherches sur l’analyse sémantique en
linguistique et en traduction mécanique. Nancy: Univer-
sité de Nancy.

Schmidt L (ed.) (1973). Wortfeldforschung. Zur Geschichte
und Theorie des sprachlichen Feldes. Darmstadt:
Wissenschaftliche Buchgesellschaft.

Seiffert L (1968). Wortfeldtheorie und Strukturalismus.
Studien zum Sprachgebrauch Freidanks. Stuttgart:
Kohlhammer Verlag.

Trier J (1973). Der deutsche Wortschatz im Sinnbezirk
des Verstandes. Die Geschichte eines sprachlichen Feldes.
Band 1 (Von den Anfängen bis zum Beginn des 13.
Jahrhunderts) (2 edn.). Heidelberg: Carl Winter.

82 Lexical Fields
Lexical Functional Grammar

M Dalrymple, Oxford University, Oxford, UK

� 2006 Elsevier Ltd. All rights reserved.

LFG’s Syntactic Structures

Lexical Functional Grammar (LFG) is a theory of
the structure of language and how different aspects
of linguistic structure are related. As the name
implies, the theory is lexical; the lexicon is richly
structured, with lexical relations rather than transfor-
mations or operations on phrase structure trees as
a means of capturing linguistic generalizations. It is
also functional; grammatical functions such as sub-
ject and object are primitives of the theory, not de-
fined in terms of phrase structure configuration or
semantic roles.

LFG assumes that two syntactic levels are important
in the analysis of linguistic structure. F(unctional)-
structure represents abstract grammatical functions
such as subject and object as well as abstract fea-
tures such as tense and case. Another level, c(onstituent)-
structure, represents the concrete phrasal expression
of these relations, governed by language-particular
constraints on word order and phrase structure. This
duality of syntactic representation is motivated by the
different natures of these two structures both within
and across languages. Languages vary greatly in word
order and phrasal structure, and the theory of constit-
uent structure allows for this variation within certain
universally defined parameters. In contrast, all lan-
guages share the same functional vocabulary. Accord-
ing to LFG’s theory of functional structure, the abstract
syntactic structure of every language is organized in
terms of subject, object, and other grammatical func-
tions, most of which are familiar from traditional
grammatical work.

Regularities in the relation between c-structure and
f-structure are captured by functions relating parts of
one structure to parts of the other. For example, the
subject phrase in the c-structure tree is related to the
subject f-structure by means of a function that
relates nodes of the c-structure tree to parts of the
f-structure for a sentence. Relations among c-structure,
f-structure, and other linguistic levels have also been
explored and defined in terms of functional mappings
from subparts of one structure to the corresponding
subparts of other structures.

The overall formal structure and basic linguistic as-
sumptions of the theory have changed very little since
its development in the late 1970s by Joan Bresnan, a
linguist trained at the Massachusetts Institute of
Technology, and Ronald M. Kaplan, a psycholin-
guist and computational linguist trained at Harvard
University. Bresnan (1982) is a collection of influential
early papers in LFG; recent works providing an over-
view or introduction to LFG include Dalrymple et al.
(1995), Bresnan (2001),Dalrymple (2001), Falk (2001),
and Kroeger (2004).
Constituent Structure

Languages vary greatly in the basic phrasal expres-
sion of even simple sentences. Basic word order can
be verb-initial (Malagasy), verb-final (Japanese), or
verb-medial (English). Word order correlates with
grammatical function in some languages, such as



Lexical Functional Grammar 83
English, in which the subject and other arguments
appear in particular phrase structure positions. In
other languages, word order is more free, and gram-
matical functions are identified by case marking or
agreement rather than phrasal configuration; in many
languages, there is no specific phrasal position where
the subject or object must always appear. Require-
ments for phrasal groupings also differ across lan-
guages. In English, for example, a noun and any
adjectives that modify it must appear together and
form a phrasal unit. In many other languages, includ-
ing Latin, this is not necessary and a noun can be se-
parated from its modifying adjectives in the sentence.
LFG’s constituent structure represents word order
and phrasal constituenthood.

Constituent Structure Representation

Like many other linguistic theories, LFG represents
word order and phrasal groupings by means of phrase
structure trees, also called constituent structures (see
Constituent Structure) or c-structures. The c-structure
for an English sentence such as David is sleeping is:
(1)
 David is sleeping.
C-structure trees contain two sorts of categories.
Categories such as N (noun) and V (verb), familiar
from traditional grammatical analysis, are called lex-
ical categories. Most LFG analyses assume at least the
lexical categories N (noun), A (adjective), V (verb),
Adv (adverb), and P (preposition), although more or
fewer categories may be relevant for a particular
language. Most languages also make use of a set of
functional categories, including I (for Inflection),
C (for Complementizer), and D (for Determiner).
Functional categories play an organizing role in the
syntax and are either associated with closed-class
categories such as complementizers or are filled with
subtypes of particular lexical categories.

Constituent structure is organized according to
X-bar theory (see X-Bar Theory), which assumes
that phrases are internally headed and therefore
endocentric; a phrase and its head have the same
category but a different bar level. For example, the
basic lexical category N is the head of the single-bar-
level category N0 (‘N-bar’), which in turn is the head
of the two-bar-level category N00 (‘N-double-bar’).
Similarly, the basic functional category I is the head
of I0, which heads I00. Many LFG analyses assume that
N00 and I00 are maximal phrases, meaning that there is
no category N000 or I000 for the double-bar-level catego-
ry to head. Thus, as maximal phrases, the categories
N00 and I00 are usually written as NP (noun phrase) and
IP (the category assigned to a sentence such as David
is sleeping). Nonprojecting categories are also as-
sumed (Toivonen, 2003); these are lexical categories
that are not heads of phrases but appear on their own,
adjoined to heads. For example, verbal particles
(words corresponding to the particle up in a sentence
such as I woke up the baby) in some Germanic lan-
guages are nonprojecting words, typically preposi-
tions, adjoined to the verb.

Not all phrases are endocentric. LFG assumes a
single exocentric, nonheaded category, the category S,
which does not obey the constraints of X-bar theory.
Not all languages make use of this phrase; it plays
no role in the syntax of English, for example. In lan-
guages that make use of this phrase, it behaves as a
maximal phrase, but it has no c-structure head and it
can dominate phrases of any category or bar level.

A phrase can dominate other constituents in addi-
tion to its head. LFG does not require phrase structure
trees to be binary branching, and so there can be more
than two daughters of any node in a c-structure tree.
The nonhead daughter of a maximal phrase is called
its specifier, and the nonhead sisters of a lexical cate-
gory are its complements. This is shown schematically
in (2).
As shown in (1), a verbal category, often an auxil-
iary, appears in I. The complement of I is either VP, as
in (1), or, in languages that make use of it, the exo-
centric category S. Not all languages make use of the
functional category C and the phrases it heads, C0 and
CP. When a language makes use of this category,
complementizers or verbs can appear in C, and the
complement of C is IP or S. The functional category
D, filled by a determiner, is also often assumed; the
complement of D is NP. In the following, we do not
assume DP, which means that the category of a phrase
such as the boy is NP. However, there is no general
agreement of the status of such phrases in LFG.
According to some analyses, the boy is a DP rather
than an NP in at least some languages.



84 Lexical Functional Grammar
Unlike many theories, LFG assumes that daughters
of all phrasal categories are optional. In particular,
the head of a maximal phrase need not appear. In
many languages, for example, tensed verbs appear
in I (King, 1995; Sells, 2001). A Swedish sentence
such as (3), with a tensed verb and no nontensed
verbs, has a VP that does not contain a V.
(3)
 Anna
 såg
 boken

Anna
 saw
 book.DEF
‘Anna saw the book.’
Nonhead daughters are also only optionally present. In
Japanese and other so-called ‘prodrop’ languages, a
verb can appear with no overt arguments. If no overt
arguments of a verb are present, the c-structure tree
contains only the verb:
(4)
 koware-ta

break-PAST

‘[it/something] broke.’
C-structure does not contain subparts of words or
unpronounced features, nor does it contain null pro-
nominals in prodrop languages such as Japanese.
Rather, it reflects the structure and grouping of the
full syntactic units – the words and phrases – in the
sentence.

Phrase Structure Rules

LFG draws a strong distinction between the formal
objects of the theory – constituent structure trees and
functional structures – and the constraints or descrip-
tions involving those objects. C-structure trees are
constrained by phrase structure rules, which license
local tree configurations. The phrase structure rule in
(5a) licenses the c-structure in (5b):
The right-hand side of an LFG phrase structure rule
is a regular expression, allowing for disjunction, op-
tionality, and arbitrary repetition of a node or se-
quence of nodes. The V and NP daughters in the
rule in (6) are optional, and the Kleene star (*) anno-
tation on the PP indicates that a sequence of zero or
more PP constituents may appear.

0
(6)
 V ! (V) (NP) PP*
Functional Structure

Syntactic analyses in traditional grammatical descrip-
tions are stated in terms of abstract syntactic functions
such as subject, object, and complement. These func-
tions are represented at LFG’s functional structure.
F-structure represents abstract grammatical functions
such as subject and object, as well as features such as
tense, case, person, and number.
Grammatical Functions and Their Representation

In a sentence such as David devoured a sandwich,
David is the subject and a sandwich is the object. This
information is represented by an attribute-value struc-
ture, the f-structure, in which the value of the SUBJ
feature is the f-structure for the subject and the value of
the OBJ feature is the f-structure for the object.
(7)
 David devoured a sandwich.
For clarity, many of the features and values in
this f-structure have been omitted, a practice often
followed in LFG presentations. The full f-structure
contains tense, aspect, person, number, and other
functional features.

Every content word in a sentence contributes a
value for the feature PRED. These values are called
semantic forms. In the functional structure, semantic
forms are surrounded by single quotes: the semantic
form contributed by the word David is ‘DAVID.’

An important property of semantic forms is that
they are uniquely instantiated for each instance of
their use, reflecting the unique semantic contribution
of each word within the sentence. This is occasionally



Table 1 Governable grammatical functions

SUBJ Subject

Lexical Functional Grammar 85
indicated by associating a unique numerical identifier
with each instance of a semantic form, as in (8):
OBJ Object
(8)
 David devoured a sandwich.

COMP Sentential or closed (nonpredicative) infinitival
complement

XCOMP An open (predicative) complement, often infinitival,

whose SUBJ function is externally controlled

OBJy A family of secondary OBJ functions associated with a

particular, language-specific set of thematic roles;

in English, only OBJTHEME is allowed, while other

languages allow more than one thematically
restricted secondary object

OBLy A family of thematically restricted oblique functions

such as OBLGOAL or OBLAGENT, often corresponding

to adpositional phrases at c-structure
In (8), the particular occurrence of the semantic form
for the word David as it is used in this sentence is
represented as ‘DAVID42.’ Another use of David will
be associated with a different unique identifier, per-
haps ‘DAVID73.’ Representing semantic forms with
explicit numerical identifiers clearly shows that each
word makes a unique contribution to the f-structure.
However, the identifiers also add unnecessary clut-
ter to the f-structure and, therefore, are usually not
displayed.

A verb or other predicate generally requires a par-
ticular set of arguments: for example, the verb
devoured requires a subject (SUBJ) and an object
(OBJ). These arguments are said to be governed by
the predicate; equivalently, the predicate is said
to subcategorize for its arguments. The semantic
form contributed by a verb or other predicate con-
tains information about the arguments it governs.
As shown in (8), the governed arguments appear in
angled brackets: ‘DEVOURhSUBJ,OBJi.’

The LFG requirements of completeness and coher-
ence ensure that all and only the grammatical functions
governed by a predicate are found in the structure of a
grammatically acceptable sentence. For example, the
unacceptability of example (9) shows that the verb
devoured cannot appear without an OBJ:
(9)
 *David devoured.
This sentence violates the principle of complete-
ness, according to which every grammatical function
governed by a predicate must be filled. Here, the OBJ
is not present, and the sentence is incomplete.

Furthermore, devour cannot appear with other
functions than the grammatical functions SUBJ and
OBJ that it governs. Example (10) shows that it can-
not appear with a sentential complement in addition
to its object:
(10)
 *David devoured a sandwich that it was raining.
This sentence violates the principle of coherence,
according to which only the grammatical functions
that are governed by a predicate can appear. Because
the sentence contains a grammatical function that the
verb devour does not govern, it is incoherent.
The grammatical functions that a predicate can
govern are called governable grammatical functions.
The inventory of universally available governable
grammatical functions is given in Table 1. Languages
differ as to which of these functions are relevant, but
in many languages, including English, all of these
functions are used.

Not all phrases fill argument positions of a predi-
cate. Modifying adjunct phrases are not required by a
predicate and hence are not governable. In (11), the
phrase yesterday bears the nongovernable grammatical
function ADJ (unct):
(11)
 David devoured a sandwich yesterday.
There are two nongovernable grammatical functions.
The function ADJ is the grammatical function of
modifiers such as in the park, with a hammer, and
yesterday. The function XADJ is the grammatical
function of open predicative adjuncts whose subject
is externally controlled; as with the governable gram-
matical function XCOMP, the X in the name of the
function indicates that it is an open function whose
SUBJ is supplied externally. The phrase filling the
XADJ role is in boldface in (12).
(12a)
 Having opened the window, David took a deep
breath.
(12b)
 David ate the celery naked.

(12c)
 David ate the celery raw.
In (12a) and (12b), the open adjunct XADJ is con-
trolled by the subject of the main clause: It is David
who opened the window, and it is David who is
naked. In (12c), the XADJ is controlled by the object:
It is the celery that is raw.

Unlike governable grammatical functions, more
than one adjunct function can appear in a sentence:
(13)
 David devoured a sandwich at noon yesterday.



86 Lexical Functional Grammar
Because the ADJ function can be multiply filled, its
value is a set of f-structures:
Ta

Per

Ge

Nu

Ca

Sur

Ver

Co

f

Ten

Asp

Pro
(14)
ble 2

son

nder

mber

se

face f

b form

mplem

orm

se

ect

noun
David devoured a sandwich at noon yesterday.
The same is true of XADJ; more than one XADJ
phrase can appear in a single sentence:
(15)
 Having opened the window, David ate the
celery naked.
Hence, the value of the XADJ feature is also a set
of f-structures.

The f-structures that have been presented so far
have included only a subset of their functional fea-
tures. In fact, it is common in LFG literature to display
only those features that are relevant to the analysis
under discussion because a full representation is often
too unwieldy. A full f-structure for these sentences
contains at least the features and values listed in
Table 2 and probably other language-specific features
and values as well. The values given in this chart are
the ones that are most often assumed, but some
authors have argued for a different representation of
the values of some features. For example, Dalrymple
and Kaplan (2000) argue for a set-based representa-
tion of the PERS and GEND features to allow for an
account of feature resolution in coordination and of
f-Structure features

Feature Value

PERS 1, 2, 3

GEND MASC, FEM, . . .

NUM SG, DUAL, PL, . . .
CASE NOM, ACC, . . .

orm FORM Surface word form

VFORM PASTPART, PRESPART, . . .

entizer COMPFORM Surface form of

complementizer: THAT,

WHETHER, . . .

TENSE PRES, PAST, . . .

ASPECT F-structure representing

complex description of

sentential aspect;

sometimes abbreviated,

e.g., PRES.IMPERFECT

type PRONTYPE REL, WH, PERS, . . .
the CASE feature to allow for case indeterminacy.
Some studies assume a PCASE feature whose value
specifies the grammatical function of its phrase. In
more recent work, Nordlinger (1998) provided a
theory of constructive case, according to which a
case marked phrase places constraints on its
f-structure environment that determine its grammati-
cal function in the sentence. This treatment supplants
the traditional treatment of obliques in terms of the
PCASE feature.

Functional Descriptions

As with c-structures, we draw a sharp distinction
between f-structures and their descriptions. The set
of f-structure constraints associated with the analysis
of some sentence is called a functional description or
f-description.

To refer to the value of a feature, say, TENSE, in
some f-structure, we use an expression like the
following:
(16)
 (f TENSE)
This expression refers to the value of the TENSE
feature in the f-structure f. If we want to specify the
value of that feature, we use an expression such as:
(17)
 (f TENSE)¼ PAST
This defining equation specifies that the feature
TENSE in the f-structure f has the value PAST.

We can also specify that an feature has a particu-
lar f-structure as its value. The expression in (18)
specifies that the value of the SUBJ feature in f is the
f-structure g:
(18)
 (f SUBJ)¼ g
Some features take as their value a set of functional
structures. For example, because any number of
adjuncts can appear in a sentence, the value of the
feature ADJ is a set. We can specify that an f-structure
h is a member of the ADJ set with the following
constraint, using the set-membership symbol 2:
(19)
 h 2 (f ADJ)
The constraints discussed so far are called defining
constraints because they define the required properties
of a functional structure. An abbreviated f-description
for a sentence such as David sneezed is:
(20)
 (f PRED)¼ ‘SNEEZEhSUBJi’

(f TENSE)¼ PAST

(f SUBJ)¼ g

(g PRED)¼ ‘DAVID’
This f-description holds of the following f-structure,
where the f-structures are annotated with the names
used in the f-description (20):



Lexical Functional Grammar 87
(21) David sneezed
Notice, however, that the f-description also holds of
the f-structure in (22), which also contains all the
attributes and values that are mentioned in the
f-description in (20):
However, the f-structure in (22) is not the minimal
or smallest solution to the f-description in (20) be-
cause it contains additional attributes and values
that do not appear in the f-description. We require
the f-structure solution for a particular f-description
to be the minimal solution to the f-description:
no additional attributes or values that are not men-
tioned in the f-description are included. Thus, the
correct solution to the f-description in (20) is the
f-structure in (21), not the larger one in (22). Formally,
the solution to an f-description is the most general
f-structure that satisfies the f-description, which sub-
sumes all other (larger) f-structures that satisfy the
f-description.

In addition to the defining constraints just de-
scribed, LFG also allows elements of the f-description
to check the properties of the minimal solution to the
defining equations. The expression in (23) is a con-
straining equation, distinguished from a defining
equation by the c subscript on the equals sign in the
expression:
(23)
 (f SUBJ NUM)¼ c SG
When this expression appears, the f-structure f that is
the minimal solution to the defining equations must
contain the feature SUBJ whose value has an feature
NUM with value SG. The constraining equation in
(23) does not hold of the f-structure in (21) because in
that f-structure the value of the NUM feature has
been left unspecified and the SUBJ of f does not
have a NUM feature with value SG.

In contrast, the functional description in (24a)
for the sentence David sneezes has a well-formed
solution, the f-structure in (24b):
(24a)
 (f PRED)¼ ‘SNEEZEhSUBJi’

(f TENSE)¼ PRES

(f SUBJ)¼ g

(g PRED)¼ ‘DAVID’

(g NUM)¼ SG

(f SUBJ NUM)¼ c SG
(24b)
Here, the value SG for the NUM feature for g is
specified in the second-to-last line of the functional
description. Thus, the f-structure in (24b) satisfies the
defining constraints given in the first five lines of
(24a). Moreover, it satisfies the constraining equation
given in the last line of (24a).

We can also place other requirements on the mini-
mal solution to the defining equations in some
f-description. The expression in (25a) requires f not
to have the value PRESENT for the feature TENSE,
which can happen if f has no TENSE feature or if f
has a TENSE feature with some value other than
PRESENT. When it appears in a functional descrip-
tion, the expression in (25b) is an existential con-
straint, requiring f to contain the feature TENSE,
but not requiring any particular value for this feature.
We can also use a negative existential constraint to
require an f-structure not to contain an feature, as in
(25c), which requires f not to contain the feature
TENSE with any value whatsoever.
(25a)
 Negative equation: (f TENSE) 6¼ PRESENT

(25b)
 Existential constraint: (f TENSE)

(25c)
 Negative existential constraint: :(f TENSE)
Functional descriptions can also be stated in terms
of the Boolean operations of conjunction, disjunction,
and negation. In the f-descriptions just given, we im-
plicitly assume that the constraints in the f-description
are interpreted conjunctively; if an f-description con-
tains more than one requirement, each requirement
must hold. LFG also allows disjunctions and negations
of sets of requirements. For example, a verb like
sneeze contributes the following f-description:
(26)
 sneeze
Disjunction is indicated by curly brackets, with the
alternatives separated by a vertical bar |. Negation for
a set of requirements is represented by prefixing :, and
the scope of negation is indicated by curly brackets.



88 Lexical Functional Grammar
This lexical entry allows two possibilities. The first is
for the base form of the verb, in which the value of the
VFORM feature is BASE. For the second possibility,
the value of the feature TENSE is PRES for present
tense, and a third-person singular subject is disallowed
by negating the possibility for the PERS feature to have
value 3 when the NUM feature has value SG.

The Constituent Structure–Functional
Structure Relation

There are clear crosslinguistic regularities relating con-
stituent structure positions to grammatical functions.
In particular, phrases and their heads are required to
correspond to the same f-structure, and specifier and
complement positions are associated with particular
grammatical functions. Such generalizations constrain
the relation between c-structure positions and the
f-structure positions they are associated with.

Structural Correspondences

To express these generalizations formally, relating
nodes in the c-structure tree and the f-structures they
correspond to, we can define a function called f (phi)
that relates nodes of the c-structure tree to parts of the
f-structure for a sentence. In (27), the f function from
the NP node to the f-structure it corresponds to is
represented by an arrow and labeled f.
(27)
 David sneezed
Each node of the c-structure tree corresponds to some
part of the f-structure. As shown in (28), more than
one c-structure node can correspond to the same
f-structure (the f function is many to one):
Further, there can be f-structures that have no cor-
responding c-structure node (the f function is into).
Example (29) shows the c-structure and f-structure
for a sentence of Japanese, a prodrop language
in which the verb optionally specifies functional
information about its subject. When there is no
overt subject phrase in the sentence, the information
specified by the verb supplies the SUBJ value for the
sentence. In (29), because there is no overt subject, all
of the information about the subject comes from
specifications on the verb, and there is no c-structure
node corresponding to the SUBJ f-structure.
(29)
 koware-ta

break-PAST

‘[it/something] broke’
Constituent Structure–Functional Structure
Correspondences

The f function is important in stating universally
valid relations between c-structure positions and the
functional roles associated with them. For example,
a phrase and its head always correspond to the same
f-structure. Furthermore, the complement of a func-
tional category is an f-structure cohead; the function-
al head and its complement correspond to the same
f-structure. This is shown in (30), where the function-
al category IP, its heads I0 and I, and its complement
VP map to the same f-structure.
(30) David is yawning.
The specifier position of the functional categories
IP and CP is filled by a phrase bearing a grammati-
cized discourse function: SUBJ, TOPIC, or FOCUS.
Within these limits, languages can differ as to the
particular grammaticized discourse function allowed
in each of these positions. In English, as we have seen,
the specifier position of IP is filled by the SUBJ.
(31)
 David yawned.



Lexical Functional Grammar 89
In Finnish, the specifier of IP is associated with the
TOPIC function, and the specifier of CP is associated
with FOCUS.
(32)
 Mikolta Anna sai kukkia.

Mikko Anna got flowers.

‘From Mikko, Anna got flowers.’
When a f-structure contains a FOCUS or TOPIC
function, the Extended Coherence Condition requires
it to be integrated into the f-structure by either ana-
phorically or functionally binding another f-structure
in the sentence. Here, the FOCUS also bears the
OBLSOURCE function, and the TOPIC is also the
SUBJ; these relations involve functional binding be-
cause the same f-structure fills both functions. In a
sentence such as Bill, I like him, the f-structure for Bill
anaphorically binds the f-structure him; the two
phrases Bill and him are syntactically independent
and each phrase has its own f-structure, but the ana-
phoric relation between the two satisfies the Extended
Coherence Condition.

The complements of a lexical category bear nondis-
course grammatical functions, that is, any grammati-
cal function other than SUBJ, FOCUS, or TOPIC. In
(33), the complements of V are associated with the
grammatical functions OBJ and OBJTHEME.
(33)
 David gave Chris a book.
Constraining the Constituent
Structure–Functional Structure
Relation

In describing the relation between c-structure and
f-structure, we use the following symbols for the
f-structure corresponding to the current node in a
phrase structure rule and the f-structure of its mother
node:
. the f-structure of the immediately dominating
node: "

. the f-structure of the current c-structure node: #

We can use these symbols to annotate the V0 phrase
structure rule with f-structure correspondence con-
straints.
This annotated rule licenses the configuration in (35).
In the c-structure, the V0 node dominates the V node,
as the phrase structure rules require. The V0 and
V nodes correspond to the same f-structure, as the
annotations on the V node require.
In the rule shown in (36), the V and the V0 node
correspond to the same f-structure, as specified by
the "¼# annotation on the V node. The annotation
on the NP node requires the f-structure #
corresponding to the NP to be the value of the OBJ
value in the f-structure " for the mother node.
The rule in (36) licenses the following configuration:
We can use the same formal vocabulary in the
specifications of lexical entries. The lexical entry for
the verb sneezed is shown in (38). It specifies that the
c-structure category of sneezed is V, and also specifies
constraints on the f-structure " of the preterminal
V node that dominates the terminal node sneezed:
(38)
 sneezed V
This lexical entry licenses the c-structure–f-structure
configuration in (39).
Syntax and Semantics

Several recent research strands in LFG have explored
the relation of constituent and functional structure



90 Lexical Functional Grammar
to other linguistic levels. Among these are the theory
of the relation between argument structure and syn-
tax, and the ‘glue’ approach to the interface between
syntax and semantics.

Mapping Theory and Argument Linking

Mapping theory explores correlations between the
semantic roles of the arguments of a verb and their
syntactic functions. If a language assigns the syntactic
function SUBJ to the agent argument of an active verb
such as kick, for example, it invariably assigns SUBJ
to the agent argument of semantically similar verbs
such as hit.

Early formulations of the rules of mapping theory
proposed rules relating specific thematic roles to spe-
cific grammatical functions, for example, that the
thematic role of AGENT is always realized as SUBJ.
Later work proposed more general rules relating the-
matic roles to classes of grammatical functions rather
than specific functions. It is most often assumed that
grammatical functions are crossclassified with the
features �R and �O. Several versions of mapping
theory have been proposed (Bresnan and Kanerva,
1989; Bresnan and Zaenen, 1990; Bresnan, 2001);
in the following, we describe the theory of Bresnan
and Zaenen (1990).

The feature �R distinguishes unrestricted (�R)
grammatical functions from restricted (þR) functions.
ions. The grammatical functions SUBJ and OBJ are
classified as unrestricted, meaning that they can be
filled by an argument bearing any thematic role.
These contrast with restricted grammatical functions
such as obliques or thematically restricted objects,
which must be filled by arguments with particular
thematic roles; for example, the OBLSOURCE function
must be filled by an argument bearing the thematic
role SOURCE and the thematically restricted object
function OBJTHEME is filled by a THEME argument.

The feature �O distinguishes objective (þO) gram-
matical functions from nonobjective (�O) functions.
The unrestricted OBJ function and the restricted
OBJy functions are objective, whereas the SUBJ and
the oblique functions are nonobjective.

These features crossclassify the grammatical func-
tions as in Table 3. These features are used to state
rules of intrinsic classification of particular thematic
roles. Such rules constrain the relation between the-
matic roles and the classes of grammatical functions
Table 3 Classification of grammatical functions

�R þR

�O SUBJ OBLy

þO OBJ OBJy
that these features delineate. For example, arguments
bearing the AGENT role are classified as intrinsically
nonobjective (�O), either SUBJ or OBLAGENT. Argu-
ments bearing the THEME role are disjunctively
classified, either as intrinsically unrestricted (�R),
bearing the SUBJ or OBJ function, or as intrinsically
objective (þO), filling the OBJ or OBJTHEME function.

In addition to these intrinsic classifications, default
mapping rules classify the arguments of a predicate
according to their relative position on the thematic
hierarchy (Bresnan and Kanerva, 1989):
(40)
 AGENT > BENEFACTIVE >
RECIPIENT/EXPERIENCER >
INSTRUMENT > THEME/PATIENT >
LOCATIVE
One of the default mapping rules requires the argu-
ment of a predicate that is highest on the thematic
hierarchy to be classified as unrestricted (�R). For
example, if a verb requires an AGENT argument and
a PATIENT argument, the AGENT argument themat-
ically outranks the PATIENT argument and, thus, the
AGENT argument is classified as unrestricted.

For a predicate with an AGENT and a PATIENT
argument, such as kick, this has the result in (41)
(Bresnan and Kanerva, 1989).
For simplicity, we consider only the intrinsically un-
restricted classification of the PATIENT argument,
leaving aside the option of considering the PATIENT
an intrinsically objective function. The AGENT argu-
ment is classified as intrinsically nonobjective. The
default rules add the unrestricted classification to
the thematically highest argument, the AGENT. Be-
cause the AGENT is classified as [�O, �R], it is the
SUBJ. The unrestricted classification of the PATIENT
argument allows it to bear either the SUBJ or the OBJ
role, but because the AGENT is assigned the SUBJ
role, the PATIENT must be realized as OBJ. Thus, the
argument classification rules, together with well-
formedness conditions such as the Subject Condition
requiring each verbal predicate to have a subject,
constrain the mapping between argument roles and
grammatical functions.

Glue: The Syntax–Semantics Interface

LFG assumes that the syntactic level that is primarily
involved in semantic composition is the functional
structure. That is, functional relations such as SUBJ



Lexical Functional Grammar 91
and OBJ rather than c-structure tree configurations are
primarily responsible for determining how the mean-
ings of the parts of a sentence combine to produce the
full meaning of the sentence.

The dominant theory of the syntax–semantics inter-
face in LFG is called the glue approach (Dalrymple,
1999, 2001), a theory of how syntax guides the pro-
cess of semantic composition. The glue approach
assumes that each part of the f-structure corresponds
to a semantic resource associated with a meaning and
that the meaning of an f-structure is obtained by as-
sembling the meanings of its parts according to a set
of instructions specifying how the semantic resources
can combine. These assembly instructions are pro-
vided as a set of logical premises in the ‘glue language’
of linear logic, and the derivation of a meaning for a
sentence corresponds to a logical deduction.

The deduction is performed on the basis of logical
premises contributed by the words in the sentence
(and possibly by syntactic constructions). Linear
logic, a resource-based logic, is used to state require-
ments on how the meanings of the parts of a sentence
can be combined to form the meaning of the sentence
as a whole. Linear logic is different from classical
logic in that it does not admit rules that allow for
premises to be discarded or used more than once in a
deduction. Premises in a linear logic deduction are,
then, resources that must be accounted for in the
course of a deduction; this nicely models the semantic
contribution of the words in a sentence, which must
contribute exactly once to the meaning of the sen-
tence and may not be ignored or used more than once.
A sentence such as David knocked twice cannot mean
simply David knocked; the meaning of twice cannot
be ignored. It also cannot mean the same thing as
David knocked twice twice; the meaning of a word
in a sentence cannot be used multiple times in forming
the meaning of the sentence.

The syntactic structures for the sentence David
yawned, together with the desired semantic result,
are displayed in (42).
(42)
 David yawned.
The semantic structure for the sentence is related to
its f-structure by the correspondence function s,
represented as a dotted line. This result is obtained
on the basis of the following lexical information,
associated with the verb yawned:
(43)
 lX.yawn(X): (" SUBJ)s —o "s
This formula is called a meaning constructor. It pairs
the meaning for yawned, the one-place predicate
lX.yawn(X), with the linear logic formula
(" SUBJ)s—o "s. In this formula, the connective —o
is the linear implication symbol of linear logic. This
symbol expresses a meaning similar to if . . . then, in
this case, stating that if a semantic resource (" SUBJ)s
representing the meaning of the subject is available,
then a semantic resource "s representing the meaning
of the sentence can be produced. Unlike the implica-
tion operator of classical logic, the linear implication
operator —o carries with it a requirement for con-
sumption and production of semantic resources; the
formula (" SUBJ)s—o "s indicates that if a semantic
resource (" SUBJ)s is found, it is consumed and the
semantic resource "s is produced.

We also assume that a name such as David contri-
butes a semantic resource, its semantic structure. In
an example like David yawned, this resource is con-
sumed by the verb yawned, which requires a resource
for its SUBJ to produce a resource for the sentence.
This accords with the intuition that the verb in a
sentence must obtain a meaning for its arguments in
order for a meaning for the sentence to be available.

The f-structure for the sentence David yawned,
together with the instantiated meaning constructors
contributed by David and yawned, is given in (44).
The left-hand side of the meaning constructor labeled
[David] is the proper noun meaning David, and the
left-hand side of the meaning constructor labeled
[yawn] is the meaning of the intransitive verb
yawned, the one-place predicate lX.yawn(X).

We must also provide rules for how the right-hand
(glue) side of each of the meaning constructors in (44)
relates to the left-hand (meaning) side in a meaning
deduction. For simple, nonimplicational meaning
constructors such as [David] in (44), the meaning on
the left-hand side is the meaning of the semantic
structure on the right-hand side. For meaning con-
structors that contain the linear implication operator
—o, such as [yawn], modus ponens on the glue side
corresponds to function application on the meaning
side:



92 Lexical Functional Grammar
With these correspondences between linear logic for-
mulas and meanings, we perform the following series
of reasoning steps:
(46)
 David: ds
 The meaning David is
associated with the
SUBJ semantic
structure ds.
lX.yawn(X): ds—o ys
 On the glue side, if we
find a semantic
resource for the
SUBJ ds, we
consume that
resource and
produce a semantic
resource for the full
sentence ys. On the
meaning side, we
apply the function
lX.yawn(X) to the
meaning associated
with ds.
yawn (David): ys
 We have produced a
semantic structure
for the full sentence
ys, associated with
the meaning
yawn(David).
By using the function application rule and the mean-
ing constructors for David and yawned, we deduce
the meaning yawn (David) for the sentence David
yawned, as desired.

Glue analyses of quantification, intensional verbs,
modification, coordination, and other phenomena
have been explored (Dalrymple, 1999). A particular
challenge for the glue approach is found in cases in
which there are apparently too many or too few
meaning resources to produce the correct meaning
for a sentence; such cases are explored within the
glue framework by Asudeh (2004).
Preferences and Parsing

From its inception, work on LFG has been informed
by computational and psycholinguistic concerns. Re-
cent research has combined LFG’s syntactic assump-
tions with an optimality–theoretic approach in an
exploration of OT-LFG (see Pragmatics: Optimality
Theory; Optimality-Theoretic Lexical-Functional
Grammar). Other work combines LFG with Data-
Oriented Parsing, a new view of language processing
and acquisition. There have also been significant
developments in parsing and generating with LFG
grammars and grammars in related formalisms.
Data-Oriented Parsing and Lexical Functional
Grammar

The framework of Data-Oriented Parsing (DOP),
developed primarily by Rens Bod and his colleagues,
represents a new view of the productivity of language
and how it can be acquired on the basis of a finite
amount of data. DOP views language acquisition as
the analysis of a pool of linguistic structures that are
presented to the language learner. The learner breaks
up these structures into all of their component pieces,
from the largest pieces to the smallest units, and new
utterances are assembled from these pieces. The like-
lihood of assigning a particular analysis to a new
sentence depends on the frequency of occurrence of
its component parts, both large and small, in the
original pool of structures.

LFG-DOP (Bod and Kaplan, 1998) specializes the
general DOP theory to LFG assumptions about lin-
guistic structures and the relations between them.
LFG-DOP assumes that the body of linguistic evi-
dence that a language learner is presented with consists
of well-formed c-structure–f-structure pairs. On this
view, language acquisition consists in determining
the relevant component parts of these structures
and then combining these parts to produce new
c-structure–f-structure pairs for novel sentences.

Parsing

Several breakthroughs have been made in the parsing
of large computational LFG grammars. Maxwell and
Kaplan (1991) examined the problem of processing
disjunctive specifications of constraints, which are
computationally very difficult to process. In the worst
case, processing disjunctive constraints is exponen-
tially difficult. However, this worst-case scenario
assumes that every disjunctive constraint can interact
significantly with every other constraint. In practice,
such interactions are found only very rarely. An am-
biguity in the syntactic properties of the SUBJ of a
sentence rarely correlates with ambiguities in the
OBJ or other arguments. This insight is the basis of
Maxwell and Kaplan’s algorithm, which works by
turning a set of disjunctively specified constraints
into a set of contexted, conjunctively specified con-
straints, in which the context of a constraint indicates
where the constraint is relevant. Solving these con-
texted constraints turns out to be very efficient for
linguistically motivated sets of constraints, in which
only local interactions among disjunctions tend to
occur.

Maxwell and Kaplan (1993, 1996) explored
the issue of c-structure processing and its relation to



Lexical Functional Grammar 93
solving f-structural constraints. It has long been
known that constituent structure parsing – determin-
ing the phrase structure trees for a given sentence – is
very fast in comparison to solving the equations that
determine the f-structure for the sentence. For this
reason, an important task in designing algorithms
for linguistic processing of different kinds of struc-
tures such as the c-structure and the f-structure is to
optimize the interactions between these computation-
ally very different tasks. Previous research often as-
sumed that the most efficient approach would be to
interleave the construction of the phrase structure
tree with the solution of f-structure constraints. Max-
well and Kaplan (1993) explored and compared a
number of different methods for combining phrase
structure processing with constraint solving; they
showed that in certain situations, interleaving the
two processes can actually give very bad results. Sub-
sequently, Maxwell and Kaplan (1996) showed that if
phrase structure parsing and f-structural constraint
solving are combined in the right way, parsing can
be very fast. In fact, if the grammar that results from
combining phrase structure and functional con-
straints happens to be context-free equivalent, the
algorithm for computing the c-structure and f-struc-
ture operates in cubic time, the same as for pure
phrase structure parsing.

Generation

Generation is the inverse of parsing. Whereas the
parsing problem is to determine the c-structure and
f-structure that correspond to a particular sentence,
work on generation in LFG assumes that the genera-
tion task is to determine which sentences correspond
to a specified f-structure, given a particular grammar.
Based on these assumptions, several interesting theo-
retical results have been attained. Of particular im-
portance is the work of Kaplan and Wedekind (2000),
who showed that if we are given an LFG grammar
and an acyclic f-structure (that is, an f-structure that
does not contain a reference to another f-structure that
contains it), the set of strings that corresponds to that f-
structure according to the grammar is a context-free
language. Kaplan and Wedekind also provided a meth-
od for constructing the context-free grammar for that
set of strings by a process of specialization of the full
grammar that we are given. This result leads to a new
way of thinking about generation; opens the way to
new, more efficient generation algorithms; and clarifies
a number of formal and mathematical issues relating to
LFG parsing and generation.

Wedekind and Kaplan (1996) explored issues in
ambiguity-preserving generation, in which a set of
f-structures rather than a single f-structure is consid-
ered, and the sentences of interest are those that
correspond to all of the f-structures under considera-
tion. The potential practical advantages of ambiguity-
preserving generation are clear. Consider, for
example, a scenario involving translation from
English to German. We first parse the input English
sentence, producing several f-structures if the English
sentence is ambiguous. For instance, the English sen-
tence Hans saw the man with the telescope is ambig-
uous: It means either that the man had the telescope
or that Hans used the telescope to see the man. The
best translation for this sentence would be a German
sentence that is ambiguous in exactly the same way as
the English sentence, if such a German sentence
exists. In the case at hand, we would like to produce
the German sentence Hans sah den Mann mit dem
Fernrohr, which has exactly the same two meanings
as the English input. To do this, we map the English
f-structures for the input sentence to the set of
corresponding German f-structures; our goal is then
to generate the German sentence Hans sah den Mann
mit dem Fernrohr, which corresponds to each of
these f-structures. This approach is linguistically ap-
pealing, but mathematically potentially problematic.
Wedekind and Kaplan (1996) showed that determin-
ing whether there is a single sentence that corresponds
to each member of a set of f-structures is in general
undecidable for an arbitrary (possibly linguistically
unreasonable) LFG grammar. This means that there
are grammars that can be written within the formal
parameters of LFG, even though these grammars may
not encode the properties of any actual or potential
human language, and, for these grammars, there are
sets of f-structures for which it is impossible to deter-
mine whether there is any sentence that corresponds
to those f-structures. This result is important in un-
derstanding the formal limits of ambiguity-preserving
generation.

See also: Constituent Structure; Declarative Models of

Syntax; Grammatical Relations and Arc-Pair Grammar;

Optimality-Theoretic Lexical-Functional Grammar; Prag-

matics: Optimality Theory; Syntactic Features and Fea-

ture Structures; Unification, Classical and Default; X-Bar

Theory.

Bibliography

Alsina A (1993). Predicate composition: a theory of syntac-
tic function alternations. Ph.D. diss., Stanford University.

Andrews A III & Manning C D (1999). Complex predicates
and information spreading in LFG. Stanford, CA: CSLI
Publications.



94 Lexical Functional Grammar
Asudeh A (2004). Resumption as resource management.
Ph.D. diss., Stanford University.

Bod R & Kaplan R M (1998). ‘A probabilistic corpus-
driven model for Lexical-Functional analysis.’ In Pro-
ceedings of COLING/ACL98. Montreal. 145–151.

Bresnan J (1978). ‘A realistic transformational grammar.’ In
Halle M, Bresnan J & Miller G A (eds.) Linguistic theory
and psychological reality. Cambridge, MA: MIT Press.
1–59.

Bresnan J (ed.) (1982). The mental representation of gram-
matical relations. Cambridge, MA: MIT Press.

Bresnan J (2001). Lexical–Functional syntax. Oxford:
Blackwell Publishers.

Bresnan J & Kanerva J M (1989). ‘Locative inversion in
Chicheŵ a: A case study of factorization in grammar.’
Linguistic Inquiry 20(1), 1–50. [Reprinted in Stowell
et al. (1992).]

Bresnan J & Zaenen A (1990). ‘Deep unaccusativity in
LFG.’ In Dziwirek K, Farrell P & Mejı́as-Bikandi E
(eds.) Grammatical relations: a cross-theoretical perspec-
tive. Stanford, CA: CSLI Publications. 45–57.

Butt M (1996). The structure of complex predicates in
Urdu. Stanford, CA: CSLI Publications.

Dalrymple M (1993). CSLI lecture notes 36: The syntax of
anaphoric binding. Stanford, CA: CSLI Publications.

Dalrymple M (ed.) (1999). Semantics and syntax in Lexi-
cal Functional grammar: the resource logic approach.
Cambridge, MA: MIT Press.

Dalrymple M (2001). Syntax and semantics 34: Lexical
Functional grammar. New York: Academic Press.

Dalrymple M & Kaplan R M (2000). ‘Feature indetermina-
cy and feature resolution.’ Language 76(4), 759–798.

Dalrymple M, Kaplan R M, Maxwell J T III & Zaenen A
(eds.) (1995). Formal issues in Lexical–Functional
grammar. Stanford, CA: CSLI Publications.

Falk Y N (2001). Lexical-Functional grammar: an intro-
duction to parallel constraint-based syntax. Stanford,
CA: CSLI Publications.

Kaplan R M & Wedekind J (2000). ‘LFG generation pro-
duces context-free languages.’ In Proceedings of the 18th
International Conference on Computational Linguistics
(COLING2000). Saarbruecken. 425–431.
Lexical Phonology and Morpholog
G Booij, Vrije Universiteit Amsterdam, Amsterdam,

Netherlands

� 2006 Elsevier Ltd. All rights reserved.

Lexical and Postlexical Phonology

The term ‘lexical phonology’ is used for two different
but related purposes. First, it refers to the range of
phonological processes or constraints in a language
King T H (1995). Configuring topic and focus in Russian.
Stanford, CA: CSLI Publications.

Kroeger P (1993). Phrase structure and grammatical
relations in Tagalog. Stanford, CA: CSLI Publications.

Kroeger P (2004). Analyzing syntax: a Lexical–Functional
approach. Cambridge, UK: Cambridge University Press.

Levin L S (1986). Operations on lexical forms: unaccusative
rules in Germanic languages. Ph.D. diss., MIT.

Levin L S, Rappaport M & Zaenen A (eds.) (1983).
Papers in Lexical Functional grammar. Bloomington,
IN: Indiana University Linguistics Club.

Manning C D (1996). Ergativity: argument structure and
grammatical relations. Stanford, CA: CSLI Publications.

Maxwell J T III & Kaplan R M (1991). ‘A method for
disjunctive constraint satisfaction.’ In Tomita M (ed.)
Current issues in parsing technology. Dordrecht: Kluwer
Academic Publishers. 173–190. [Reprinted in Dalrymple
et al. (eds.). 381–401.]

Maxwell J T III & Kaplan R M (1993). ‘The interface
between phrasal and functional constraints.’ Computa-
tional Linguistics 19(4), 571–590.

Maxwell J T III & Kaplan R M (1996). ‘An efficient parser
for LFG.’ In Butt M & King T H (eds.) On-line Proceed-
ings of the LFG96 Conference. Available at: http://csli-
publications.stanford.edu.

Mohanan T (1994). Arguments in Hindi. Stanford, CA:
CSLI Publications.

Nordlinger R (1998). Constructive case: evidence from
Australian languages. Stanford, CA: CSLI Publications.

Sells P (2001). Structure, alignment and optimality in
Swedish. Stanford, CA: CSLI Publications.

Simpson J (1991). Warlpiri morpho-syntax: a Lexicalist
approach. Dordrecht: Kluwer Academic Publishers.

Stowell T, Wehrli E & Anderson S R (eds.) (1992). Syntax
and semantics 26: Syntax and the lexicon. San Diego:
Academic Press.

Toivonen I (2003). Non-projecting words: a case study
of Swedish particles. Dordrecht: Kluwer Academic
Publishers.

Wedekind J & Kaplan R M (1996). ‘Ambiguity-preserving
generation with LFG- and PATR-style grammars.’
Computational Linguistics 22(4), 555–568.
y
that pertain to the domain of the word. In this use, it
is a synonym of ‘word phonology,’ and stands in
opposition to the term ‘postlexical phonology’ or
‘phrasal phonology.’ With the latter term we denote
the processes or constraints that apply across the
board, not only within the domain of the word, but
also across word boundaries in the domain of larger
constituents such as phrases. The distinction between
these two domains of phonology can be illustrated by
means of the following example. In Dutch, obstruents

http://cslipublications.stanford.edu.
http://cslipublications.stanford.edu.

	Lexical Functional Grammar
	LFG’s Syntactic Structures
	Constituent Structure
	Constituent Structure Representation
	Phrase Structure Rules

	Functional Structure
	Grammatical Functions and Their Representation
	Functional Descriptions

	The Constituent Structure-Functional— Structure Relation
	Structural Correspondences
	Constituent Structure-Functional Structure— Correspondences
	Constraining the Constituent �Structure-Functional Structure �Relation

	Syntax and Semantics
	Mapping Theory and Argument Linking
	Glue: The Syntax-Semantics Interface

	Preferences and Parsing
	Data-Oriented Parsing and Lexical Functional Grammar
	Parsing
	Generation

	Bibliography


