
29

P(figure 2.6) = 1/20⋅ 1/4 ⋅ 1/4 = 1/320

P(figure 2.7) = 1/20⋅ 1/4 ⋅ 1/2 = 1/160

P(figure 2.8) = 2/20⋅ 1/4 ⋅ 1/8 ⋅ 1/4 = 1/1280

table 2.1

This table shows that a model which defines probabilities over parse trees by
taking into account only one derivation, does not accommodate the frequencies of
all subtrees that may contribute to the generation of a parse tree. By taking into
account the probabilities of all derivations of a parse tree, no subtree that might
possibly be of statistical interest is ignored. How can we compute the probability
of a parse tree? The probability of a parse is equal to the probability that it is
generated by any of its derivations. Since these derivations are mutually exclusive,
the probability of a parse is the sum of the probabilities of all its derivations. (This
marks the difference with normal "stochastic grammars", where no distinction is
made between the probability of a parse tree and the probability of a derivation
which generates that tree; cf. §3.3-4). The calculation of the probability of the
above parse tree for "Mary likes Susan" is left to the reader. Finally, the
probability of a sentence or string is the sum of the probabilities of all its parses.

We want to conclude this chapter with an emerging property of DOP1, which
will turn out to be of interest for the rest of this thesis. In DOP1, the probability of
a parse depends on all derivations that generate that parse; therefore, the more
different ways in which a parse can be generated, the higher its probability tends
to be; this implies that a parse which can (also) be generated by relatively large
subtrees tends to be favored over a parse which can only be generated by
relatively small subtrees. Thus, given a sentence, there is a preference for the
parse which can be generated by the largest possible subtrees.

30

Chapter 3

Towards a Formal Language Theory of
Stochastic Grammars

In this chapter, we develop a theory in which the properties of stochastic
grammars can be formally articulated and compared. We describe DOP1 as a
projection of a corpus of tree structures into a Stochastic Tree-Substitution
Grammar (STSG), and we formally compare STSG with other stochastic
grammars.

3.1 Formal Stochastic Language Theory

The notion of a stochastic grammar usually refers to a finite specification of
possibly infinitely many strings and their analyses together with their
probabilities. If we want to compare the formal properties of different stochastic
grammars, we need a Formal Stochastic Language Theory. In such a theory, we
are not so much concerned with weak and strong generative capacity (as is the
case in traditional Formal Language Theory), but with weak and strong stochastic
generative capacity. The following definitions are therefore convenient.

31

Definitions:

The stochastic string language generated by a stochastic grammar G is the set
of pairs <x, p(x)> wherex is a string from the string language generated by G and
p(x) the probability of that string.

The stochastic tree language generated by a stochastic grammar G is the set of
pairs<x, p(x)> wherex is a tree from the tree language generated by G and p(x)
the probability of that tree.

In analogy to weak and strong equivalence, we define the following equivalences
for stochastic grammars:

Definitions:

Two stochastic grammars are called weakly stochastically equivalent1, iff they
generate the same stochastic string language.

Two stochastic grammars are called strongly stochastically equivalent2, iff they
generate the same stochastic tree language.

Note that if two stochastic grammars are weakly stochastically equivalent they are
also weakly equivalent (i.e. they generate the same string language). Moreover, if
two stochastic grammars are strongly stochastically equivalent they are also
strongly equivalent (i.e. they generate the same tree language) and weakly
stochastically equivalent.

1 What we call weak stochastic equivalence is called simply "stochastic equivalence" in (Fu,
1974).
2 In (Bod, 1993a), this type of equivalence is called "superstrong equivalence".

32

Now that we have mathematical notions for comparing the generative capacities
of stochastic grammars, we want to exclude the pathological cases of improper
andinfinitely ambiguous grammars.

Definition Properness of Grammars

A grammar is called proper iff only such nonterminals can be generated whose
further rewriting can eventually result in a string of terminals.

Example: the context free grammar <{S,A} , { a} , S, { S→Sa, S→a, S→aA} > is

not proper, since there is a generation S→aA which can never result in a string of
terminals.3

Definition Finite Ambiguity of Grammars

A grammar is called finitely ambiguous if there is no finite string that has
infinitely many derivations.

Example: the context free grammar <{ S} , { a} , S, { S→S, S→a} > is not finitely
ambiguous, since the string a has infinitely many derivations.

Convention
We will only deal with grammars that are proper and finitely ambiguous.

3.2 Stochastic Tree-Substitution Grammar

The way DOP1 combines subtrees into new trees and computes probabilities of
derivations and parses may very well be described by what we will call a
"Stochastic Tree-Substitution Grammar" (STSG):

3 In (Jelinek et al., 1990), an algorithm is given that determines whether or not a grammar may
be made proper by the elimination of rules (p. 31).

33

Definition Stochastic Tree-Substitution Grammar

A Stochastic Tree-Substitution Grammar G is a five-tuple <VN, VT, S, R, P>
where

VN is a finite set of nonterminal symbols.

VT is a finite set of terminal symbols.

S∈ VN is the distinguished symbol.

R is a finite set of elementary trees whose top nodes and interior nodes are labeled
by nonterminal symbols and whose yield nodes are labeled by terminal or
nonterminal symbols.

P is a function which assigns to every elementary tree t ∈ R a probability p(t). For

a tree t with a root α, p(t) is interpreted as the probability of substituting t on α.

We require, therefore, that 0 < p(t) ≤ 1 and Σt:root(t)=α p(t) = 1.

Substitution

If t1 and t2 are trees such that theleftmost nonterminal yield node of t1 is equal to
the root of t2, then t1°t2 is the tree that results from substituting t2 for this leftmost
nonterminal yield node in t1. The partial function ° is called leftmost substitution.
We will write (t1°t2)°t3 as t1°t2°t3, and in general (..((t1°t2)°t3)°..)°tn as
t1°t2°t3°...°tn. For reasons of conciseness we will use the term substitution for

leftmost substitution. Notice that the value p(t) for an elementary tree with root α
is the probability of substituting t for any nonterminal leaf node α in any
elementary tree in R.

Derivation

A leftmost derivation generated by an STSG G is a tuple of trees <t 1,...,tn> such
thatt1,...,tn are elements of R, the root of t1 is labeled by S and the yield of t1°...°tn

34

is labeled by terminal symbols. The set of leftmost derivations generated by G is
thus given by Derivations(G) = {<t 1,...,tn> | t1,...,tn ∈ R ∧ root(t1) = S ∧
yield(t1°...°tn) ∈ VT+ }. For convenience we will use the term derivation for
leftmost derivation. A derivation <t 1,...,tn> is called a derivation of tree T, iff
t1°...°tn = T. A derivation <t 1,...,tn> is called a derivation of string s, iff

yield(t1°...°tn) = s. The probability of a derivation <t 1,...,tn> is defined as p(t1) ⋅ ...
⋅ p(tn).

Parse tree

A parse tree generated by an STSG G is a tree T such that there is a derivation
<t 1,...,tn> ∈ Derivations(G) for which t1°...°tn = T. The set of parse trees,
or tree language, generated by G is given by Parses(G) =
{ T | ∃ <t 1,...,tn> ∈ Derivations(G) : t1°...°tn = T}. For reasons of conciseness we
will often use the terms parse or tree for a parse tree. A parse whose yield is
equal to string s, is called a parse of s. The probability of a parse is defined as the
sum of the probabilities of all its derivations.

String

A string generated by an STSG G is an element of VT+ such that there is a parse
generated by G whose yield is equal to the string. The set of strings,
or string language, generated by G is given by Strings(G) =
{ s | ∃ T : T ∈ Parses(G) ∧ s = yield(T)}. The probability of a string is defined as
the sum of the probabilities of all its parses. This means that the probability of a
string is also equal to the sum of the probabilities of all its derivations.

It may be evident that STSG is a generalization over DOP1: the model DOP1
projects a corpus of tree structures into an STSG, where the subtrees of DOP1 are
the elementary trees of the STSG, and where the substitution probabilities of the
subtrees of DOP1 are the probabilities of the corresponding elementary trees of
the STSG.

35

3.3 A Comparison between Stochastic Tree-
Substitution Grammar and Stochastic
Context-Free Grammar

The oldest and most well-known of all stochastic enrichments of context-free
grammars is the so-called "Stochastic Context-Free Grammar" or SCFG (Booth,
1969; Suppes, 1970). An SCFG enriches every rewrite rule of a CFG with a
probability which corresponds to the application probability of this rule. In an
SCFG, the stochastic dependences are limited to the scope of single rewrite rules.
It may be clear that SCFGs run into serious trouble if faced with solving
ambiguities that are beyond the scope of single rewrite rules. It is therefore almost
evident that SCFGs are stochastically weaker than STSGs. However, as an
example of how Formal Stochastic Language Theory may be used to formally
articulate this, we will compare SCFG and STSG in the context of this theory. Let
us start with the definition of SCFG4.

Definition Stochastic Context-Free Grammar

A Stochastic Context-Free Grammar G is a five-tuple <VN, VT, S, R, P> where

VN is a finite set of nonterminal symbols.

VT is a finite set of terminal symbols.

S∈ VN is the distinguished symbol.

R is a finite set of productions each of which is of the form α→β, where α ∈ VN

andβ ∈ (VN∪VT)+.

P is a function which assigns to every production α→β ∈ R a probability

p(α→β), for which holds that 0 < p(α→β) ≤ 1 and Σx p(α→x) = 1.

4 This definition follows (Booth, 1969), (Fu, 1974), (Levelt, 1974), (Wetherell, 1980),
(Fujisaki et al., 1989), (Jelinek et al. 1990).

36

The probability of a leftmost derivation (and its corresponding parse tree)
generated by an SCFG is equal to the product of the probabilities associated with
the productions applied. Note that, contrary to STSG, every parse tree is generated
by exactly one leftmost derivation. The probability of a string generated by an
SCFG is equal to the sum of the probabilities of all its derivations.

We will now compare STSG with SCFG in terms of respectively weak and
strong stochastic equivalence.

Proposition 1
For every STSG there exists a weakly stochastically equivalent SCFG.

Proof of Proposition 1
Given an STSGG, we convert every elementary tree t ∈ R into a context-free

productionroot(t)→ yield(t). This may lead to multiple occurrences of the same
production, since different elementary trees may have the same root and yield. To
every such production a probability is assigned which is equal to the probability
of the tree from which the production is derived. In order to eliminate multiple
occurrences of productions, we collapse equivalent productions and add up their
probabilities. The resulting SCFG G' generates the same string language as G. It
is now easy to see that the sum of the probabilities of all derivations of a string in
G is equal to the sum of the probabilities of all derivations of this string in G'.
This means that G and G' assign the same probability to every string in their
string language. Thus, G and G' are weakly stochastically equivalent.

Proposition 2
For every SCFG there exists a weakly stochastically equivalent STSG.

Proof of Proposition 2
Given an SCFG G, we convert every production α→β ∈ R into a unique

elementary tree t of depth one such that root(t) = α and yield(t) = β. To every
such tree a probability is assigned which is equal to the probability of the
production from which the tree is derived. The resulting STSG G' generates the
same string language and tree language asG. Now it is easy to see that for every

37

derivation in G there is a unique derivation in G' with the same probability. Thus,
the sum of the probabilities of all derivations of a string in G is equal to the sum
of the probabilities of all derivations of this string in G'. This means that G and G'
assign the same probability to every string in their string language. Thus, G and
G' are weakly stochastically equivalent.

From the propositions 1 and 2 the following corollary can be deduced.

Corollary 1
The set of stochastic string languages generated by STSGs is equal to the set of
stochastic string languages generated by SCFGs.

Corrollary 1 is significant in the sense that if we were only interested in the strings
and not in the trees (for instance for the task of string prediction in speech
recognition output), we might convert an STSG (and thus a DOP1 model) into a
more succinct SCFG.

Proposition 3
For every SCFG there exists a strongly stochastically equivalent STSG.

Proof of Proposition 3
Consider the proof of proposition 2. Since G and G' generate the same tree
language and every derivation in G corresponds to a unique derivation in G' with
the same probability, G and G' are strongly stochastically equivalent.

Proposition 4
There exists an STSG for which there is no strongly equivalent SCFG.

Proof of Proposition 4
Consider the following STSG G consisting of one elementary tree with a
probability equal to 1:

38

b

a

S

S

figure 3.1

The tree language generated by G is equal to the set containing only the above
elementary tree. An SCFG is strongly equivalent with G if it generates only the
above tree. An SCFG which generates the above tree should consist of the
productionsS→ Sb and S→ a. But such an SCFG generates more than just the
above tree. Contradiction.

Proposition 5
There exists an STSG for which there is no strongly stochastically equivalent
SCFG.

Proof of Proposition 5
Consider the proof of proposition 4. Since strong stochastic equivalence implies
strong equivalence there is no SCFG which is strongly stochastically equivalent
with G.

From the propositions 3 and 5 the following corollary can be deduced.

Corollary 2
The set of stochastic tree languages generated by SCFGs is a proper subset of
the set of stochastic tree languages generated by STSGs.

Though corollary 2 may seem a significant result, it mainly follows from the
property that STSGs are not always strongly equivalent with SCFGs. In the
context of stochastic language theory, however, we are not so much interested in
tree languages as in stochastic tree languages. Thus, it is more interesting to
compare stochastic tree languages of strongly equivalent grammars.

39

Proposition 6
There exists an STSG for which there is a strongly equivalent SCFG but no
strongly stochastically equivalent SCFG.

Proof of Proposition 6
Consider the following STSG G consisting of three elementary trees that are all
assigned with a probability of 1/3.5

b

a

S

S b

S

S a

S

 t1 t2 t3

figure 3.2

The string language generated by G is {ab* }. The only (proper) SCFG G' which
is strongly equivalent with G consists of the following productions.

S→ Sb (1)

S→ a (2)

G' is strongly stochastically equivalent with G iff it assigns the same probabilities
to the parse trees in the tree language as assigned by G. Let us consider the
probabilities of two trees generated by G, i.e. the trees represented by t1 and t3.6

The tree represented by t3 has exactly one derivation: by selecting the elementary
tree t3. The probability of generating this tree is hence equal to 1/3. The tree
represented by t1 has two derivations: by selecting elementary tree t1, or by
combining the elementary trees t2 and t3. The probability of generating this tree is

5 This STSG is also interesting because it can be projected from a DOP1-model whose corpus
of sentence-analyses consists only of tree t1.
6 Note that the trees t1 and t3 are both elements of the set of (elementary) trees R of G and of
the tree language generated by G.

40

equal to the sum of the probabilities of its two derivations, which is equal to 1/3 +
1/3⋅1/3= 4/9.

If G' is strongly stochastically equivalent with G, then it should assign the
probabilities 4/9 and 1/3 to the trees represented by t1 andt3 respectively. The tree
t3 is exhaustively generated by production (2); thus the probability of this
production should be equal to 1/3: p(S→a) = 1/3. The tree t1 is exhaustively
generated by applying productions (1) and (2); thus the product of the
probabilities of these productions should be equal to 4/9: p(S→Sb) ⋅ p(S→a) =

4/9. By substitution we get p(S→Sb) ⋅ 1/3 = 4/9, which implies that p(S→Sb)=
4/3. This means that the probability of production (1) should be larger than 1,
which is not allowed. Thus, G' cannot be made strongly stochastically equivalent
with G.

The (proof of) proposition 6 is an important result since it shows that STSGs are
not only stronger than SCFGs because there are STSGs for which there is no
strongly equivalent SCFG, but that STSGs are really stochastically stronger, also
with respect to SCFGs that might be strongly equivalent to STSGs. It makes also
clear why STSGs are stronger: SCFGs cannot attach a probability to a structure
larger than one rewrite rule, while STSGs can.

3.4 Other Stochastic Grammars

In this section, we informally compare STSG with two other stochastic language
models: Stochastic History-Based Grammar and Stochastic Tree-Adjoining
Grammar. These grammars have been proposed as alternatives to SCFG to
overcome the stochastic context-insensitiveness of SCFG.

3.4.1 Stochastic History-Based Grammar (SHBG)

Stochastic History-Based Grammars (SHBG7) are developed in (Black et al.,
1993; Black, Garside & Leech, 1993), though introduced earlier in (Smith, 1973).
In SHBG, the probability of applying a rewrite rule in a leftmost derivation is

7 My abbreviation.

41

made conditional on the rules that were used before in that derivation. In (Black et
al., 1993), it is said that SHBG provides "a very rich if not the richest model of
context ever attempted in a probabilistic parsing model". However, the limitation
to a leftmost derivation for conditionalizing the probability of a rule means that
still not all possible stochastic dependences are captured.

Let us illustrate this with the sentence The emaciated man starved, of which an
analysis is given in figure 3.3. The numbers in the figure refer to the order of
applications of the rules in a leftmost derivation of this sentence.

The emaciated man starved

Det A N V

Nbar VP

NP

S 1

2

3

4

5 6

7

8

figure 3.3

Suppose that there is a strong stochastic dependence between the words
emaciated and starved, appearing in sentences like the one above, and that these
words are largely independent of the words surrounding them (in this case The
andman). An adequate stochastic grammar should be able to account for this
specific dependence between emaciated and starved. It turns out that SHBG is not
able to do so. In order to show this, let us explain with somewhat more detail the
probabilistic background of SHBG. Suppose that the probability of rule 1 in
figure 3.3 (i.e. S→ NP VP) is given by p(1). Since in SHGB the rule probability
is made conditional on the former rules in the leftmost derivation, the conditional
probability of rule 2 is given by p(2|1). The conditional probability of rule 3 is
given by p(3|2,1) and so forth. The probability of the whole analysis is equal to
the product of the conditional probabilities of the rules: p(1) ⋅ p(2|1) ⋅ p(3|2,1) ⋅ ...⋅
p(8|7,6,5,4,3,2,1).

42

While SHBG can thus capture a dependence between all lexical items The,
emaciated, man and starved together, there is no way to account for the specific
dependence between emaciated and starved, without theandman. What would be
needed are conditional rule probabilities like p(8|7,5,4,2,1) where the probability
of rule 8 is made conditional on all former rules except 6 and 3. SHBG does not
account for such probabilities, due to the restriction to a leftmost derivation for
conditionalizing the probabilities of rewrite rules. Even if a so-called "finite
Markov history" is used, SHBG can only describe the relations between items
like starved and man, emaciated and man, or emaciated, man and starved, but not
betweenemaciated and starved alone, sinceman is produced after emaciatedand
before starvedin a leftmost derivation. Moreover, any restriction to another
canonical derivation (rightmost, leftcorner etc.) would yield analogous limitations.

In STSG, on the other hand, the dependence between emaciated and starved can
be captured by an elementary tree in which emaciated and starved are the only
lexical items, and where the and man are left out, as is shown in figure 3.4.

 emaciated starved

Det A N V

Nbar VP

NP

S

figure 3.4

This artificial example exemplifies a dependence which is strongly semantic in
nature. An example which expresses a dependence of a more (semi-)idiomatic
nature, is illustrated by the following sentence from the Air Travel Information
System (ATIS) corpus (Hemphill et al., 1990): Show me flights from Dallas to
Atlanta.The NP-construction flights from X to Y is almost idiomatic in the ATIS
domain and occurs extremely frequently. It may be clear that, analogous to the

43

previous example, SHBG can describe the dependences between all the words of
such an NP, but it cannot attach a probability to the NP-construction where Dallas
andAtlanta are left out. This is a serious shortcoming, since for the ambiguity
resolution of a sentence which contains an NP like flights from X to Y, it is
necessary to describe this NP as one statistical unit. STSG, on the other hand, can
easily describe this NP as a statistical unit by taking the probability of this
construction in the ATIS corpus.

3.4.2 Stochastic Tree-Adjoining Grammar (STAG)

Although STAG (Resnik, 1992; Schabes, 1992) is not a stochastic enrichment of
a context-free grammar, but of a tree-adjoining grammar (Joshi, 1987) which
belongs to the class of mildy context-sensitive grammars (Joshi et al., 1991), it is
interesting to deal with STAG because of its similarity with STSG. An STAG
assigns a probability to each elementary (initial or auxiliary) tree that corresponds
to the probability that this elementary tree is combined by substitution or
adjunction with another elementary tree. If we leave out the adjunction operation,
STAG is formally equivalent with STSG. Thus, it looks as if STAG captures at
least the stochastic dependences that can be captured by STSG. However, if we
look at current instantiations of STAG, we find two serious shortcomings:

(1) Since STAG is linguistically motivated by tree-adjoining grammar (TAG),
there are constraints on the form and use of elementary trees. For instance,
modifiers are usually represented by separate auxiliary trees, which means that in
analyzing the sentence The emaciated man starved, the modifier emaciated is
inserted in the NP the man by means of adjunction. Linguistically this may be
elegant, but statistically the dependence between emaciatedand starved is lost,
since they are not allowed to appear in one elementary tree.

(2) In current implementations of STAG, only the probability of a derivation is
accounted for (cf. Resnik, 1992; Schabes, 1992), and not the probability of a
resulting tree or of an interpretation. This is statistically inadequate, since, like in
STSG, the probability of a derivation is different from the probability of a tree in
STAG.

Thus, current instantiations of STAG seem still to be based on the assumption
that the statistical dependences coincide with the linguistic dependences of the
underlying competence model. In order to create an adequate performance model

44

based on TAG, it is not enough to attach probabilities to the competence units of
this model. Instead, competence and performance need to be carefully
distinguished, where the performance units must be taken as arbitrarily large trees
from a corpus of analyzed language utterances.

3.5 Open problems

There are still many problems to be solved regarding the relations between
stochastic grammars. So far, we have only designed the contours of a Formal
Stochastic Language Theory which allowed us to formally compare STSG with
SCFG. We believe that the following open problems need also to be treated
within such a theory (whose solutions fall beyond the scope of this thesis).

* Does there exist a stochastic enrichment of CFG which is stochastically
stronger than STSG? We haven't found one yet.

* Is there a stochastic hierarchy within the class of stochastic enrichments of
CFGs, where SCFG is at the bottom, STSG at the top, and SHBG somewhere in
between?

* If the former question can be answered positively, are there similar stochastic
hierarchies in the other classes of the Chomsky hierarchy?

