
Unit 6 Making statistical claims 
 

6.1 Introduction 

One of the most obvious advantages of using a corpus, as compared with intuition, is 
that a corpus can provide reliable quantitative data (cf. unit 1.5). In this unit we will 
consider what to do with the quantitative data that corpora provide. Our approach to 
this topic will be realistic – by and large most users of corpus data will not be capable 
of generating sophisticated statistical claims nor would they wish to do so. However, 
we want readers to be aware of what they should not claim on the basis of the simple 
descriptive statistics that they may use. Also, in this unit, we want to give guidance on 
how to interpret inferential statistics generated by the concordance programs used in 
Section C. 

While statistics can be intimidating for many readers, a basic awareness of 
statistics is essential when adopting a corpus-based approach as ‘the use of 
quantification in corpus linguistics typically goes well beyond simple counting’ 
(McEnery and Wilson 2001: 81). This unit will cover the basic statistical concepts and 
techniques required to understand some excerpts in Section B and the case studies 
presented Section C of this book while trying to avoid a complex, technical treatment 
of statistics. Some of these concepts and techniques, though, will be further discussed 
in the case studies presented in Section C of this book. 

6.2 Raw frequency and normalized frequency 

In corpus linguistics frequency refers to the arithmetic count of the number of 
linguistic elements (i.e. tokens) within a corpus that belong to each classification (i.e. 
type) within a particular classification scheme (e.g. the CLAWS tagset, see unit 4.4.1). 
It is the most direct quantitative data a corpus can provide. Typically, frequency itself 
does not tell you much in terms of the validity of a hypothesis. Yet data of this type 
can be used in both descriptive statistics and inferential statistics (see unit 6.3).  

Note, however, that frequency data must be interpreted with caution. It is 
possible to use raw frequency (i.e. the actual count) where no comparison between 
corpora is necessary. However, when comparing corpora (or segments in the same 
corpus) of markedly different sizes, raw frequencies extracted from those corpora 
often need to be normalized to a common base (see case studies 2, 4, 5 and 6). For 
example, the swear word fucker(s) occurs 25 times in the spoken section and 50 times 
in the written section of the BNC corpus (see case study 4). Can we say that the swear 
word is twice as frequent in writing as in speech? This is clearly not true, as writing 
accounts for around 90% of the BNC corpus whereas transcribed speech only takes up 
10% of the corpus (see unit 7.2): there is nine times as much written data than spoken 
data. If we compare these frequencies on a common base, e.g. per million words, then 
we find the normalized frequency of fucker(s) in speech is 2.41 per million words 
whereas it is 0.56 in writing. Clearly this swear word occurs much more frequently 
(over four times as often) in speech than in writing. Is this difference statistically 
significant? We will leave this question unanswered till we introduce tests for 
statistical significance (see unit 6.4).  

As the size of a sample may affect the level of statistical significance, the 
common base for normalization must be comparable to the sizes of the corpora (or 
corpus segments) under consideration (see case study 2). When we compare the 



spoken section (10 million words) and the written section (90 million words) of the 
BNC corpus, for example, it would be inappropriate to normalize frequencies to a 
common base of 1,000 words, as the results obtained on an irrationally enlarged or 
reduced common base are distorted.   

6.3 Descriptive and inferential statistics 

Given that we have mentioned descriptive and inferential statistics above, what is the 
difference between the two types of statistics? Basically, descriptive statistics are used 
to describe a dataset, as the term suggests. Suppose a group of ten students took a test 
and their scores are as follows: 4, 5, 6, 6, 7, 7, 7, 9, 9 and 10. We might need to report 
the measure of central tendency of this group of test results using a single score.  

There are different ways to do this. We can use the mean, the mode and the 
median. The mean is the arithmetic average, which can be calculated by adding all of 
the scores together and then dividing the sum by the number of scores. In our example, 
the mean is 7 (i.e. 70/10). The mean is the most common measure of central tendency. 
While the mean is a useful measure, unless one also knows how dispersed (i.e. spread 
out) the scores in a dataset are, the mean can be an uncertain guide. Under such 
circumstances other scores may help. For example, the mode is the most common 
score in a set of scores. In this example the mode is 7, because this score occurs more 
frequently than any other score. Another score one might use is the median. The 
median is the middle score of a set of scores ordered from lowest to the highest. For 
an odd number of scores the median is the central score while for an even number of 
scores, the median is the average of the two central scores. In the above example the 
median is 7 (i.e. (7+7)/2). 

There are three important ways to measure the dispersion of a dataset: the range, 
the variance and the standard deviation. The range (i.e. the difference between the 
highest and lowest frequencies) is a simple way to measure the dispersion of a set of 
data. In the above example the range is 6 (i.e. 10 – 4). However, the range is only a 
poor measure of dispersion because an unusually high or low score in a dataset may 
make the range unreasonably large, thus giving a distorted picture of the dataset. The 
variance measures the distance of each score in the dataset from the mean. For 
example, in the test results above, the variance of the score 4 is 3 (i.e. 7–4) while the 
variance of the score 9 is 2. For the whole dataset, however, the sum of these 
differences is always zero as some scores will be above the mean while some will be 
below the mean. Hence, it is meaningless to use variance to measure the dispersion of 
a whole dataset. Standard deviation is a useful measure in such circumstances. 
Standard deviation is equal to the square root of the quantity of the sum of the 
deviation scores squared divided by the number of scores in a dataset. It can be 
expressed as: 
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In the formula F is a score in a dataset (i.e. any of the ten scores in the above example, 
μ is the mean score (i.e. 7) while N is the number of scores under consideration (i.e. 
10). The standard deviation in our example of test results is 1.89. When one uses 
standard deviation to measure the dispersion of a normally distributed dataset, i.e. 
where most of the items are clustered towards the centre rather than the lower or 



higher end of the scale, 68% of the scores lie within one standard deviation of the 
mean, 95% lie within two standard deviations of the mean, and 99.7% lie within three 
standard deviations of the mean. In this sense, the standard deviation is a more 
reasonable measure of the dispersion of a dataset.  

While it may be time consuming to calculate these statistics manually, readers do 
not need to panic as they can be computed automatically using statistics packages 
such as SPSS, as shown in case study 5 of Section C. Note, however, that while 
descriptive statistics are useful in summarizing a dataset, it is inferential statistics that 
are typically used to formulate or test a hypothesis. Testing hypotheses in this way 
generally involves various statistical tests. These tests are typically used to test 
whether or not any differences observed are statistically significant. The sections that 
follow will briefly introduce the inferential statistical tests used in this book including 
the chi-square test, the log-likelihood (LL) test, Fisher’s exact test, the MI (mutual 
information) test, the t test and the z test. The procedures for conducting each test are 
presented in the relevant case studies in Section C.  

6.4 Tests of statistical significance 

In testing a linguistic hypothesis, it would be nice to be 100% sure that the hypothesis 
can be accepted. Sadly, one can never be 100% sure. There is always the possibility 
that, for example, the differences observed between two corpora have arisen by 
chance due to inherent variability in the data (cf. Oakes 1998: 1). Hence, one must 
state the ‘level of statistical significance’ at which one will accept a given hypothesis. 
In short, how likely is it that what you are seeing is statistically significant and what 
tolerance do you have for uncertainty? While we cannot be 100% sure, the closer the 
likelihood is to 100%, the more confident we can be. By convention, the general 
practice is that a hypothesis can be accepted only when the level of significance is less 
than 0.05 (i.e. p<0.05). In other words, one must be more than 95% confident that the 
observed differences have not arisen by chance. 

There are a number of techniques for testing statistical significance. The most 
commonly used statistical test in corpus linguistics is probably the chi-square test 
(also called the Pearson chi-square test). The chi-square test compares the difference 
between the observed values (e.g. the actual frequencies extracted from corpora) and 
the expected values (e.g. the frequencies that one would expect if no factor other than 
chance was affecting the frequencies - see case study 1 for further discussion). The 
greater the difference (absolute value) between the observed values and the expected 
values, the less likely it is that the difference is due to chance. Conversely, the closer 
the observed values are to the expected values, the more likely it is that the difference 
has arisen by chance.  

Another commonly used statistical test is the log-likelihood test (also called the 
log-likelihood chi-square or G-square test). The log-likelihood (LL) test is preferred 
in this book, as it does not assume that data is normally distributed (cf. Dunning 1993; 
Oakes 1998). The log-likelihood statistic has a distribution similar to that of the chi-
square, so the LL probability value (i.e. the p value) can be found in a statistical table 
for the distribution of the chi-square. To look up the p value, a further value is 
required, namely, the degree of freedom (or d.f.), which is computed by multiplying 
the number of rows less 1 with the number of columns less 1 in a frequency table (or 
contingency table) (see case study 1). For example, a contingency table with two rows 
and two columns has 1 degree of freedom. In both the chi-square and log-likelihood 
tests, the critical values with 1 d.f. are 3.83, 6.64 and 10.83 for the significance levels 



of 0.05, 0.01 and 0.001 respectively. A probability value p close to 0 indicates that a 
difference is highly significant statistically, whereas a value close to 1 indicates that a 
difference is almost certainly due to chance. In the BNC example in unit 6.2, the 
calculated chi-square score is 42.664, and the log-likelihood score is 28.841 (1 d.f.), 
much greater than the critical value 10.83 for the significance level 0.001. Hence, we 
are more than 99.9% confident that the difference in the frequencies of fucker(s) 
observed in the spoken and written sections of the BNC corpus is statistically 
significant. 

There are many web-based chi-square or log-likelihood calculators. Readers who 
use a standard statistics package like SPSS can even avoid the trouble of consulting a 
statistical table of distribution, as the program automatically gives (Pearson) chi-
square and log-likelihood scores in addition to indicating the degree of freedom and 
statistical significance level. It should be noted, however, that proportional data (e.g. 
normalized scores) cannot be used in the chi-square or log-likelihood tests. The 
discrepancies in corpus sizes are unimportant here, as these tests automatically 
compare frequencies proportionally. Note also that the chi-square or log-likelihood 
test may not be reliable with very low frequencies. When the expected value in a cell 
of a contingency table is less than 5, Fisher’s exact test is more reliable. SPSS 
computes Fisher’s exact significance level automatically if at least one of the cells of 
the contingency table has an expected value less than 5 when the chi-square test is 
selected. 

6.5 Tests for significant collocations 

The term collocation refers to the characteristic co-occurrence patterns of words, i.e., 
which words typically co-occur in corpus data (see units 10.2 and 17). Collocates can 
be lexical words or grammatical words. Collocations are identified using a statistical 
approach. Three statistical formulae are most commonly used in corpus linguistics to 
identify significant collocations: the MI (mutual information), t and z scores. In this 
section, we will briefly introduce these tests. Other statistical measures for collocation 
will be introduced in case study 1 of Section C. 

MI is a statistical formula borrowed from information theory. The MI score is 
computed by dividing the observed frequency of the co-occurring word in the defined 
span for the search string (so-called node word), e.g. a 4:4 window, namely four 
words to the left and four words to the right of the node word, by the expected 
frequency of the co-occurring word in that span and then taking the logarithm to the 
base 2 of the result. The MI score is a measure of collocational strength. The higher 
the MI score, the stronger the link between two items. The closer to 0 the MI score 
gets, the more likely it is that the two items co-occur by chance. The MI score can 
also be negative if two items tend to shun each other. Hunston (2002: 71) proposes an 
MI score of 3 or higher to be taken as evidence that two items are collocates.  

However, as Hunston (2002: 72) suggests, collocational strength is not always 
reliable in identifying meaningful collocations. We also need to know the amount of 
evidence available for a collocation. This means that the corpus size is also important 
in identifying how certain a collocation is. In this regard, the t test is useful as it takes 
corpus size into account. As such, an MI score is not as dependent upon the corpus 
size as a t score is. The t score can be computed by subtracting the expected frequency 
from the observed frequency and then dividing the result by the standard deviation 
(see unit 6.3 for a discussion of standard deviation). A t score of 2 or higher is 
normally considered to be statistically significant, though the specific probability 



level can be looked up in a table of distribution, using the computed t score and the 
number of degrees of freedom. 

While the MI test measures the strength of collocations, the t test measures the 
confidence with which we can claim that there is some association (Church and 
Hanks 1990). Collocations with high MI scores tend to include low-frequency words 
whereas those with high t-scores tend to show high-frequency pairs. As such Church, 
Hanks and Moon (1994) suggest intersecting the two measures and looking at pairs 
that have high scores in both measures. 

The z score is the number of standard deviations from the mean frequency. The z 
test compares the observed frequency with the frequency expected if only chance is 
affecting the distribution. In terms of the procedures of computation, the z score is 
quite similar to the t score whereas in terms of output, the z score is more akin to the 
MI score (see case study 1). A higher z score indicates a greater degree of 
collocability of an item with the node word. The z test is used relatively less 
frequently than the MI test in corpus linguistics, but it is worth mentioning as it is 
used in widely used corpus tools such as TACT (Text Analytic Computer Tools) and 
SARA/Xaira. 

Readers may wish to avoid computing the MI, t or z scores manually by taking 
advantage of publicly available statistics packages or corpus tools. All of the three 
tests for collocation introduced in this section can be undertaken using computer 
programs. SPSS can compute t and z scores. WordSmith calculates the MI score, 
while SARA and Xaira allow users to choose from the z and MI scores as a measure 
of significant collocations. Case study 1 in Section C of this book will show readers 
how to compute the z and MI scores using BNCWeb. 

6.6 Unit summary and looking ahead 

In this unit we introduced the basic concepts and techniques needed to make statistical 
claims on the basis of the quantitative data provided by corpora. We first noted that 
the frequencies extracted from corpora need to be normalized to a rational common 
base if corpora (or subcorpora) of different sizes are compared using descriptive 
statistics. The chi-square and log-likelihood scores to test statistical significance were 
then introduced. If the expected frequency in a cell of a contingency table has a value 
less than 5, Fisher’s exact test is recommended. Finally, three tests for significant 
collocations, namely the MI, t and z scores were introduced. Further tests for 
collocation will be discussed in case study 1 in Section C. 

This unit serves only as a very minimal introduction to quantitative analysis in 
corpus linguistics. Nevertheless, some of the concepts introduced in this unit are 
essential in the case studies presented in Section C of this book, where we will also 
show readers how to carry out statistical tests using statistical package such as SPSS. 
It is our hope that this unit will raise readers’ statistical awareness in taking a corpus-
based approach to language studies. Readers who wish to further explore the use of 
statistics in corpus linguistics can find useful discussions in Barnbrook (1996), Oakes 
(1998) and McEnery and Wilson (2001).  
 


