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reface 

This  is a book about learning  from  experimental data and about transferrin 
knowledge into analytical  models. ~ e r f o ~ i n g  such  tasks 
Neural networks (NNs) and support vector  machines (S 
st~ctures  (models) that stand behind  the  idea of lear 

re  aimed at embedding  structured  human  knowledge into workable  algo- 
wever,  there  is no clear  boundary  between  these  two  modeling  approaches. 

The  notions,  basic  ideas,  fundamental  approaches, and concepts  common to these 
two  fields, as well as the di~erences between  them, are discussed  in  some  detail. The 
sources of this  book are course  material  presented by the author in  under 
and graduate lectures and seminars, and the  research of the author and his 
students.  The  text  is  therefore both class- and practice-tested. 

The primary  idea of the  book  is that not  only  is  it  useful to treat support vector 
machines,  neural  networks,  and  fuzzy  logic  systems as parts of a c o ~ e c t e d  whole but 
it is in  fact  necessary.  hus, a systematic and unified  presentation  is  given  of  these 
seemingly  different  fie1  -learning from experimental data and transferring human 
knowledge into mathematical  models. 

Each chapter is  arranged so that the  basic  theory and algorithms are illustrated by 
practical  examples and followed  by a set  of  problems and simulation ex~e~ments .  In 
the author's experience,  this approach is  the  most  accessible,  pleasant, and useful  way 
to master  this  material,  which  contains  many new (and potentially d i~cul t )  concepts. 
To some  extent,  the  problems are intended to help  the  reader  acquire techni~ue, but 
most of them  serve to illustrate and develop further the  basic  subject matter of the 
chapter. The author feels that this  structure  is  suitable both for a textbook used in a 
formal  course and for self-study, 

w  should  one  read  this  book? A kind of newspaper  reading, starting with  the 
pages,  is  potentially  viable but not a good  idea.  However,  there are useful  sec- 

tions at the  back.  There  is an armory of mathematical  weapon 
a lot of  useful and necessary  concepts,  equations, and method 
trips to the  back  pages (chapters 8 and 9) are  probably  unav 
way of books,  one  should  most  likely  begin  with  this  preface and continue  reading to 
the  end of chapter 1. This  first chapter provides a pathway to the  learning and soft 
computing  field, and after that, readers  may  continue  with  any  chapters  they  feel  will 
be  useful. Note, however, that chapters 3 and 4 are connected and should be read  in 
that order. (See the figure,  which  represents  the  connections  between  the  chapters.) 

In senior undergraduate classes,  the  order  followed  was  chapters 1, 3, 4, 5, and 6, 
and chapters 8 and 9 when  needed. For graduate classes, chapter 2 on support vector 
machines  is  not  omitted, and the  order  is  regular,  working  directly through chapters 
1-6. 
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Rationale,  motivations,  needs,  basics, 

Case  studies- 
NN-based  control, 
financial  time  series, 

There  is  some  redundancy  in  this  book for several  reasons.  The  whole  subject of 
this  book  is a blend  of  diKerent areas.  The  various  fields  bound  together  here  used to 
be separate, and today  they are amalgamated  in  the  broad area of learning and soft 
computing.  Therefore,  in  order to present  each particular segment of the  learning 
and soft  computing  field,  one  must  follow  the  approaches,  tools, and teminology in 
each  specific area. Each area was  developed  separately by researchers,  scientists, and 
enthusiasts  with  different  backgrounds,  so  many  things were repeated.  Thus,  in  this 
presentation  there  are  some  echoes  but,  the author believ 
with  the  old Latin saying, Repetio est   at er studioru~ 
learning.  This  provides  the  second  explanation of 66redundancy” in  this  volume. 

This  book  is  divided into nine  chapters. Chapter 1 gives  examples  of  applications, 
presents  the  basic  tools of soft  computing (neural networks, support vector  machines, 
and fuzzy  logic  models),  reviews the  classical  problems of approximation of multi- 
variate  functions, and introduces  the standard statistical  approaches to regression 
and classification that are based on the  knowledge of probability-density  functions. 

Chapter 2 presents  the  basics of statistical  learning  theory when there  is no 
infomation about the  probability  distribution  but  only  experimental data. The VC 
dimension and structural risk  minimization are introduced. A description  is given  of 
the  ‘ng  algorithm  based quadratic p r o g r a ~ i n g  that leads to parsi- 
mo , that is, NNs or SV having a small  number of hidden  layer  neu- 
rons.  This  parsimony  results  from  sophisticated  learning that matches  model  capacity 
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to  data complexity. In this  way,  good  generalization,  meaning  the  performance  of  the 

Chapter 3 deals  with  two  early  learning  units-the  perceptron and the  linear 
neuron  (adaline)-as well as with  single-layer  networks.  Five  different  learning  algo- 
rithms  for  the  linear  activation  function  are  presented.  Despite  the  fact that the  linear 
neuron  appears to be  very  simple, it  is  the  constitutive part of almost all models 
treated  here and therefore  is a very  important  processing  unit.  The  linear  neuron can 
be  looked  upon as a graphical  (network)  representation of  classical  linear  regression 
and  linear  classification  (discriminant  analysis)  schemes. 

A genuine  neural  network (a multilayer  perceptron)-one that comprises at least 
one  hidden  layer  having  neurons  with  nonlinear  activation  functions-is  introduced 
in  chapter 4.. The  error-correction  type of learning,  introduced  for  single-layer  net- 
works  in  chapter 3, is  generalized,  and  the  gradient-based  learning  method  known as 
error backpropagation  is  discussed  in  detail  here. Also shown  are  some  of  the  gener- 
ally  accepted  heuristics  while  training  multilayer  perceptrons. 

with  regularization  networks,  which are better  known as 
) networks.  The  notion  of  ill-posed  problems  is  discussed 

n  leads to networks  whose  activation  functions  are 
are  provided on how to find a parsimonious  radial  basis 
hogonal  least  squares  approach. Also explored  is a linear 
ubset  (basis  function  or  support  vector)  selection that, 
rithm  for SVMs training,  leads to parsimonious NNs 

gic  modeling  is  the  subject  of  chapter 6. asic  notions of  fuzzy  modeling 
are  introduced-fuzzy  sets,  relations,  compositions  of  fuzzy  relations,  fuzzy  infer- 
ence, and defuzzification.  The  union,  intersection,  and  Cartesian  product  of a family 
of sets are described, and various  properties are established.  The  similarity  between, 
and sometimes  even  the  equivalence  of, RBF networks  and  fuzzy  models  is  noted  in 
detail.  Finally,  fuzzy  additive  models (FAMs) are presented as a simple  yet  power- 
ful fwzy model in^ technique. FA S are the  most  popular  type of  fuzzy  models  in 
applications  today. 

Chapter 7 presents  three  case  studies that show  the  beauty  and  strength of these 
modeling  tools.  Neural  networks-based  control  systems,  financial  time  series  predic- 
tion,  and  computer  graphics by applying  neural  networks or fuzzy  models  are  dis- 
cussed at length. 

Chapter 8 focuses on the  most  popular  classical  approaches to nonlinear  opti- 
mization,  which  is  the  crucial part of learning  from data. It also  describes  the  novel 
massive  search  algorithms  known as genetic  algorithms  or  evolutionary  computing. 

on  previously  unseen data, is  assured. 
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Chapter 9 contains  specific  mathematical  topics and tools that might  be  helpful 
for understanding  the  theoretical  aspects of soft  models, although these  concepts and 
tools  are not covered  in  great  detail. It is supposed that the  reader  has  some  knowl- 
edge of probability  theory,  linear  algebra, and vector 
only for easy  reference of properties and notation. 

A few words about the  accompanying  software a 
. All  programs run in  versions 5 

complete aproxim directory,  the  entire 
on, the  multilayer  perceptron  routine th 

gation learning,  all  first  versions of core  program 
inputs, and some  of  the  core  fuzzy  logic  models. 
1992, so they  may be not very  elegant.  owever,  all are effective and perfom their 
allotted  tasks  as well as needed. 

The author’s  students  took an important part in  creating  user-friendly  programs 
with attractive pop-up menus and boxes. At the  same  time,  those  students  were  from 

d, and the  software  w  ed  in different countries- 
tates, ~ e ~ a n y ,  and ost of the  software 
aland, These  facts  a  xplain why readers 

may  find  program  notes and comments  in E 
ever,  all  the  basic  comments  are  written  in E 
in  various  languages as nice traces of the  small  modern 
these  multilingual,  ingenious,  diligent  students and colleagues, 
would be  less  user-friendly and, consequently,  less adequate for learning  purposes. 

Around them,  many  pieces  of  user-friendly  software  were develo~ed as follows. 
As  mentioned  earlier,  most of the  core  programs were  developed  by  the author. 

ral  versions of a program  based on n-dimen 
boljub JovanoviC and Lothar Niemetz  took 
novski  wrote  the  first  appealing  lines of the 

networks.  This  program  was further deve 
static pro~lems and by Jo hner for dynamic  one 
of his  pop-up  menus on ~ c h a ~ e n b a c ~ s  and 

lo Jorge Furtado Correia  developed  t 
networks  in C ,  but  these  had to be omitted  from  the 

rote parts of modular networks. 
book, so a few software pieces 

are not  supplied at present. 

el  modified and created  original  programs for neural 
ote  software for recursive  least  squares for on-line 
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learning of  the output layer  weights.  Many  results  in  section 7.1 are obtained by 
applying  his  programs.  Dieter  Reusing  developed  a few user-friendly  routines  for the 
application of  five methods on’ the linear  neuron  in  section  3.2.2.  Chang Bing Wakg 
was  took  a  crucial part in developing  routines for computer  graphics.  The  graphs and 
animations  in  section  7.3 are results of  his curiosity.  Faimeen  Shah  developed 
appealing  pieces of software for financial  time  series  analysis.  He  based parts of  his 
program on routines  from  Lochner but made  large  steps  in  designing  user-friendly 
software  aimed  specifically at financial  time  series  analysis.  All  graphs  in  section 7 2  
are obtained by  using  his routines.  David  Simunic and Geoffrey Taylor developed  a 
user-friendly  fuzzy  logic  environment as a part of their  final-year  project.  The  reader 
will  enjoy  taking  the  first  steps  in  fuzzy  modeling king this  software  with  good- 
looking  frames and windows.  The author took part in  mathematical  solutions  during 

* the  design  of relational  matrices.  Routines fot fuzzy  logic control of mobile robots 
were  developed  by  Wei  Ming  Chen and Gary Chua. Zoran VojinoviC  is  devkloping 
applications of neural  networks  in  company  resources  management, and Jonathan 
Robinson is  using SVM for image  compression.  Finally,  Tim  Wu and Ivana HadiiC 
just became  members of the  learning and soft  modeling group in  the Department of 
Mechanical  Engineering,  University of Auckland. Wu’s part is  on  chunking  algo- 
rithms  in SVM learning, and HadiiC  is  investigating the linear p r o g r a ~ i n g  
approach in  designing  sparse NNs or SVMs. All  the  software that corresponds to this 
book  is for fair use  only and free for all  educational  purposes. It is not for use  in any 
kind of commercial  activity. 

The ~ o Z ~ t i o ~ ~  ~ a ~ ~ a Z ,  which contains the solutions to the  problems  in  this 
book,  has  been  prepared for instructors  who wish to refer to the  author’s  methods 
of solution. It is available  from  the  publisher  (The MIT Press,  Computer  Science, 
5 Carribridge  Center,  Cambridge, MA 02142-1493, U.S.A.).  The MAT LA^ pro- 
grams  needed for the  simulation  experiments. can be retrieved at ftp://mitpress*mit. 
edu/kecman/software.  This files can also be retrieved  from  the  book’s  site, m. 
support-vector.ws.  The  password  is learnscvk. 

The author is  very grateful to his  students,  colleagues, and friends for their 
unceasing  enthusiasm and support in  the  pursuit of knowledge  in  this  tough and 
challenging  field of learning and soft  computing.  A  preliminary draft of this  book 
was  used  in the author’s  senior undergraduate and graduate courses at various 
universities  in  Germany and New Zealand. The  valuable  feedback  from  the  curious 
students  who took these  courses  made  many parts of this  book  easier to read. He 
thanks them  for that. The author also  warmly  acknowledges  the  suggestions of all six 
unknown  reviewers.  He  hopes that some parts of the  book are more  comprehensible 
because of their  contributions. 

ftp://mitpress*mit


xvi Preface 

The author thanks the  University  of  Auckland’s  Research ~ommittee for its  sup- 
port. As is always  the  case,  he  could  have  used  much  more  money than was  allotted 
to him, but he  warmly  acknowledges  the  tender  support. The friendly  atmosphere at 
the Department of Mechanical  Engineering  made  the  writing of this  book  easier 
than is  typically  the  case  with  such an endeavor. he credit for the  author’s  sen- 
tences  being  more  understandable to English-speaki  readers  belongs  partly to Emil 
Mel~chenko, and the author thanks him.  The author also thanks Douglas  Sery and 
Deborah Cantor-Adams of The MIT Press for making  the  whole  publishing  process 
as smooth as possible.  Their support and care  in  developing  the  manuscript, and in 
reviewing and editing it, are highly  appreciated. 

In one  way or another, many  people  have  been  supportive  during  the  author’s 
work  in  the  fascinating and challenging  field  of  learning and soft  computing. It is 
impossible to acknowledge by name  all  these  friends, and he  gives  sincere thanks 

e is,  however,  particularly  indebted 
KokotoviC, Zoran GajiC,  Rolf Isemann, Peter 
Stanoje  Bingulac, and Dobrivoje PopoviC. 

And,  Ana  was  always around. 



In this  book no suppositions are made about preexisting  analytical  models.  There 
are, however,  no  limits to human cu~osity and the  need for mathematical  models. 
Thus, when  devising algebraic,  differential,  discrete, or any other models  from  first 
p~nciples is not feasible,  one  seeks other avenues to obtain analytical  models. 

uch  models are devised  by  solvin  two cardinal problems  in  modern  science and 
engineering: 

0 Learning  from  experimental data (examples,  samples,  measurements,  records, 
, or obse~ations) by neural  networks (N S) and support vector  machines 

* Embedding  existing  structured  human  knowledg  rience,  expertise, heu~stics) 
into workable  mathematics by  fuzzy logic  models 

These  problems seem to be  very differe~~t, and in  practice that may  well  be the  case, 
modeling  from expe~mental data is  complete, and after 

the  knowledge  transfer into an is fini~hed, these  two  models are mathematically 
very  similar or even eq~ivalent. This eq~ivalence? discussed in section 6.2, is a very 
attractive property, and it may  well  be  used to the benefit  of both fields. 

for a  book about these  topics  is  clear.  ecently,  many new ~~intelli~ent” 
eoretical  approaches,  software and ha are solutions,  conce 

syste~s, and SO e  been  launched  on  the market. eKort has  been  made at 
universities and departments around the  numerous  papers  have 
been  written  on  how to apply  d  the  related  ideas  of 
learning  from data and embedding s t ~ c t u r e ~  human  knowledge.  These  two  concepts 
and associated a l g o ~ t ~ s  form  the new  field  of soft  computing. 

ive alternatives to the standard, well-established “hard comput- 
itional hard computing  methods are often too cumbersome for 

today’s  problems.  They  alw S require a precisely  stated  analytical  model and often 
a lot of computation time.  oft com~uting techniques?  which  emphasize  gains  in 
understanding  system  behavior  in  exchange for unnecessary  pre 
be im~ortant practical  tools for many  contemporary  proble 
universal appro~mators of any  multivariate  function, NNs, F 
particular interest  for  modeling  highl  nonlinear,  unknow 
complex  systems,  plants, or processes.  any  promising  res 
The  whole  field  is  developing  rapidly, and it is  still  in  its  initial,  exciting  phase. 

At the  very  beginning, it should be stated  clearly that there are times  when there  is 
no  need  for  these  two  novel  model-building  techniques.  Whenever  there  is an ana- 
lytical  closed-form  model,  using a reasonable  number of e~uations, that can  solve  the 
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given  problem  in  a  reasonable  time, at reasonable  cost, and with  reasonable  accu- 
racy,  there  is no need to resort to learning  from  experimental data or fuzzy  logic 
modeling. Today, however,  these  two  approaches are vital  tools  when at least  one of 
those  criteria  is not fulfilled.  There are many  such  instances  in  contemporary  science 
and engineering. 

The  title of  the  book  gives  only a partial description of the  subject,  mainly  because 
the  meaning of Zearning is  variable and indeterminate.  Similarly,  the  meaning of soft 
c o m ~ ~ t i ~ g  can  change  quickly and unpredictably.  Usually, l e a r ~ i n ~  means  acquiring 
knowledge about a  previously  unknown or little  known  system or concept.  Adding 
that the  knowledge  will  be acquired  from expe~imental data yields  the  phrase statis- 
tical l e ~ r ~ i n g .  'Very often,  the  devices and algorithms that can learn  from data are 
characteri~ed as intelligent. The author wants to be cautious by stating that learning 
is  only  a part of  intelligence, and no  definition of intelligence  is  given  here.  This  issue 
used to be, and still  is,  addressed by many other disciplines (notably neuroscience, 
biology,  psychology, and philosophy).  However,  staying  firmly  in  the  engineering and 
science  domain,  a few comments on the  terms intelligent systems or smart machines 
are now  in  order. 

Without  any doubt the  human  mental  faculties of learning,  generalizing,  memo- 
rizing, and predicting  should be the foundation of any  intelligent  artificial  device or 
smart system.  Many  products  incorporating NNs, SVMs, and FLMs already  exhibit 
these  properties.  Yet we are still  far  away  from  achieving  anything  similar to human 
intelligence. Part of a  machine's  intelligence  in  the future should be an ability to 
cope  with  a  large amount of  noisy data coming sim~taneously from  different  sensors. 
Intelligent  devices and systems  will also  have to be able to plan  under  large  uncer- 
tainties, to set  the  hierarchy of priorities, and to coordinate many  different  tasks 
si~ultaneously. In addition, the  duties of smart machines  will  include  the  detection 
or early  diagnosis  of  faults,  in  order to leave  enough  time  for  reconfiguration of 
strategies,  maintenance, or repair.  These  tasks will  be  only a  small part of the smart 
decision-making  capabilities of the  next  generation of intelligent  machines. It is  cer- 
tain that the  techniques  presented  here  will be an integral part of these future intelli- 
gent  systems. 

Soft  computing is not a  closed and clearly  defined  discipline at present. It includes an 
emerging and more or less  established  family  of  problem-stating and problem-solving 
methods that attempt to mimic  the  intelligence  found  in nature. Learning from ex- 
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perime~tal data  (statistic~l learning) and fuzzy  logic  methods are two of the most 
important constituents of soft  computing. In addition, there  are, for example,  genetic 

o ~ t ~ s ,  probabilistic  reasoning,  fractals and chaos th 
t this  book  does  not treat these  methods  in  detail. 

S, which inco~orate the  ideas of learning  from data, and 
r embedding st~ctured human  nowl ledge into an analyt- 

t soft  computing  should  mimic  the  intelligence  found  in 
haracter of natural intelligence?  Is it precise, ~uantitative, 

rigorous, and computational? king just at human  beings,  the  most  intelligent 
species, the answer  is ~egative are very bad at calculations  or at any  kind of 

ligible perce~tage of human  beings can multiply  two  three-digit 
ads, The  basic  function of human  intelligence  is to ensure  survival 

in nature, not to perform  precise  calculations.  The  human  brain can process  millions 
of visual,  acoustic,  olfactory,  tactile, and motor data, and it shows astonis~ng abili- 
ties to learn  from  experience,  generalize  from  learned  rules,  recognize patterns, and 

t is  in  eEect a very  good enginee~ng tool that  perfoms these  tasks 
as well as it  can  using ad hoc  solutions  (heuristics), approximatio~s, low  precision, or 
less  generality,  depending  on  the  problem to be solved. We want to transfer  some of 
these  abilities into our models,  algorithms, smart machines, and intelli~ent artificial 
systems  in  order to enable  them to survive  in  highly  technological  environment, that 
is, to solve  given tasks,  based on previous  experience,  with  reasonable  accuracy at 
reasonable  cost  in a reasonable amount of time.  Here  is  the important notion of 
trading off precision for costs. 

we can cope  with  such an environment. The desire to mimic  such  coping  leads to the 
basic  premises and the guidin~ principles of soft  computing.  According to Zadeh 
(1994, the  basic  remises of soft  computing are 

ical  model. 

The  world around us is  imprecise,  uncertain, and randomly  changing. 

he real  world  is  pervasively  imprecise and uncertain. 
cision and certainty  carry a cost. 

and the  guiding pri~ciple of soft computin~, which  follows  from  these  premises,  is 

xploit  tolerance for im~recision,  unce~ainty, and partial truth to achieve 
tractability,  robustness, and low solution  costs. 

0th the  premises and the  guiding  principle  differ  strongly  from  those  in  classical 
hard computing,  which  require  precision,  certainty, and rigor.  However,  since  preci- 
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sion and certainty  carry a cost,  the  soft  computing approach to computation, rea- 
soning, and decision  making  should  exploit  the  tolerance  for  imprecision  (inherent  in 
human  reasoning) when  necessary. A long-standing tradition in  science  gives more 
respect to theories that are quantitative, formal, and precise than to those that are 
qualitative,  informal, and approximate.  Recently,  however,  the  validity of this tradi- 
tion has  been  challenged by the  emergence of new desires  (problems,  needs) and 
efficient  soft  computing  techniques to satisfy  them.  Many  contemporary  problems do 
not lend  themselves to precise  solutions  within  the  framework of classical hard com- 
puting,  for  instance,  recognition  problems of all  sorts  (handwriting,  speech,  objects, 
images),  computer  graphics,  mobile robot ~oordination, forecasting  (weather,  finan- 
cial, or any  other  time  series), and data compression, and combinatorial  problems 
like  “traveling  salesman.” 

This  last  problem,  which  is  concerned  with  finding an optimal route for a sales 
representative  visiting  thousands of cities,  clearly  shows a trade-off  between  precision 
and Computing  costs. For 100,000 cities and an accuracy  within 0.?’5%, computing 
time amounts to seven months.  Reducing  the  accuracy to within 1.09’0 lowers  the 
computing  time to just two  days.  An  extreme  reduction  can be  achieved for 1 million 
cities and an accuracy  within 3.50/0: the  time  needed to calculate  the  optimal  route is 
just 3.5 hours (Zadeh 1994, par asing New York ~ i ~ e s ,  

Yet, another novel  proble  1999) that replaces “the best  for  sure”  with 
“good  enough  with  high pro ” belongs  to  the  field of ordinal  optimization. 
This  “softening of the  goal”  considerably  eases  the computational burden  in  this 
problem; it is  much  easier to obtain a value  within  the top 5% than to get  the  best. 
Consider a search  space of  size I = 1 billion, and take N = 1000 random samples. 
What is the  probability that at least  one  sample will  be  in the top n? The  answer  is 
1 - ( l  - n/lwl)”, which  for  the  values  chosen  is  equal to 0.01 for n = 10,000, or the 
top 0.001%, but  decreases to for n = 1. Thus,  with a success  probability of  0.01, 
approximately 100 trials are required to guarantee success, but an insistence on the 
best  increases  the  number of trials by four  orders of magnitude. 

To be able to deal  with  such  problenls,  there  is  often no choice but to accept 
solutions that are s~bo~t imal  and inexact. In addition, even  when  precise solutions 
can be obtained,  their  cost  is  generally  much  higher than that of solutions that are 
imprecise and yet  yield  results  within  the  range  of  acceptability.  Soft  computing  is not 
a mixture of NNs, SVMs, and FLMs but a discipline  in  which  each of  these con- 
stituents  contributes a distinct  methodology for addressing  problems  in  its  own 
domain, in a complementary rather than a competitive  way.  The  common  element of 
these  three  models  is  generalization, through nonlinear  approximation and interpo- 
lation, in  (usually)  high”dimensiona1  spaces.  All  three  core  soft  computing  techniques 
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derive  their  power of generalization  from  approximating or inte~olating to pro- 
duce outputs from  previously  unseen inputs by  using outputs from  familiar (pre- 
viously  learned)  inputs. This issue  is  presented and discussed at length throughout the 
book. 

Attempting to incorporate humanlike  abilities into software  solutions  is  not an easy 
task. Only  recently,  after an attempt to analyze an ocean of data obtained by various 
sensors,  it  became  clear  how  complex are the  problems our senses  routinely  solve, 
and how  difficult it  is to replicate  in  software  even  the  simplest  aspects of human 
i n f o ~ a t i o n  processing,  How, for example, can one  make mac~ines “see,”  where 
“see’7  means to recognize  different  objects and classify  them into different  classes. For 
smart machines to recognize or to make  decisions,  they  must  be trained first on a  set 
of training  examples.  Each new smart machine  (software)  should be able to learn  the 
problem  in  its areas of operations. 

The  whole  learning part of this  book (the first five chapters)  shows  how  the  two 
, real-life  problems of primary  interest  (classification and regression)  can be reduced 

to approximation of a multiva~ate function.  However,  before  considering the most 
relevant  issues  in  statistical  learning  from  experimental data, let  us  analyze  a  few 
ways  in  which  human  beings  learn.  (The  following  example  paraphrases an example 

oggio and Girosi 1993.) 
ider  the  case of Jovo (pronounced “Yovo”), who  leaves his homeland and 

moves to a  country  where  everybody  speaks  some  strange  language  (say,  English). 
For the  sake of generality,  let  us  call  the  foreign  country  Foreignia.  The  first  thing 
Jovo  realizes is that he has to learn how to pronounce  Foreignian  words. 
problem can be stated as follows:  given  a  Foreignian  word,  find  its  pronunciation. 
Unlike  in  English,  the  problem  is well  defined in  the  Foreignian  language  in  the 
sense that there  is  a  unique map f :  X ”+ ;Y that maps  every  Foreignian  word x to its 
Foreignian  pronunciation y = f ( x ) ,  where X is  the  space of Foreignian  words and ;Y 
is the  space of Foreignian  pronunciation. X and Y are also  known,  respectively, as 
the input and output spaces. 

There are five options, or standard learning  methods, for Jovo to solve  this  learn- 
ing  problem (the reader  may  want to compare  her own  experience  in  learning  a for- 
eign  language) : 

1. Learn  nothing. 
2. Learn  all  the  pronunciation  rules. 



xxii Introduction 

emorize  all  the  word-pronunciation  pairs  in  the  Foreignian  language. 
k at random or choose  the  most  frequent  word-pronunciation  pairs P, and 

learn  (memorize)  them. 
ck at random a,set of P word-pronunciation  pairs, and develop a theory (a good 

theory, a model) of the  underlying  mapping y = f ( x )  in  the  Foreignian  language. 

Neither Jovo nor anyone  else  would be  pleased  with  the  first option. This  is a trivial 
zero-learning  solution, and since  this  is  not a no-learning  book,  this  alternative  is of 
no further interest. 

The second  learning  method  means that Jovo should  learn a complete  set of pro- 
nunciation  rules  in  the  Foreignian  language.  This  set of rules  is  almost  completely 
described  in  Foreignian  grammar  books, and when  applied to any  word x it  produces 
a pronunciation f (x). egrettably,  the  set of rules  is  extremely  complicated and parts 
of the  rules are hard to understand. There are also a number of exceptions, and very 
often  applying  some  rule to a word x differs  from  the  correct  rule-based  mapping 
f ( x ) .  Learning  the  known  underlying  rules,  meaning  the  ones  described  in  grammar 
books yi = f (x i ) ,  corresponds to  first-p~nciple model  building. ( 
the author learned  foreign  languages,) 

alternative  is to memorize  the  pronunciation of  every  single Foreignian 
ver,  there  are  two  basic  problems  with  such a look-up  table approach. 

First, there are 800,000 words  in  the  Foreignian lan~uage, and only about 150,000  of 
them are commonly  used.  Second,  memory  fades, and Jovo  in  common  with  every- 
one else  keeps forgetting  (unless he  goes through  the  learning  stage again) and cannot 
recover  the  forgotten  word,  not  even  approximately. 

The fourth option  is  much  closer to the standard problem  in  this  book.  Jovo 
builds a training data set 2, = {(xi, y i )  E: X x Y } ,  i = 1 with  the  property that 
yi = f ( x i ) ,  and he  is about to develop  some  theory  (m0 ) of the  Foreignian lan- 
guage  pronunciation  rules. (P stands for  the  number  of  the  training data pairs, i.e., 
the size  of the  training data set D.) The  simplest  learning  alternative or theory cor- 
responds to the ~emorizing (the look-up table) of all  provided  training data pairs. It 
is an inte~olative model or theory,  which,  however,  does not learn the  underlying 

y = f ( x ) ,  and it fails  whenever  the  new  word  is not from  the  training data 
other, this  learning  method  resembles  the  classical  artificial 

In the  fifth  method, as in  the fourth option, Jovo builds a training data set 
D = {(xi, y i )  E X x Y } ,  i = 1, P, that is,  he  knows  how to pronounce a subset of the 

but he  wants to develop a good  theory  based  upon  the  training 
postulates,  for  example, that similar  words  should  have  similar 
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pronunciations. In this  way,  when a new word  appears, he  finds  pronunciations of 
similar  words  in  the  training data set and produces a pronunciation for  the new word 
that is  similar to the  training data. Hence,  Jovo  builds a new approximate map 
(model) f * :  X ”+ Y ,  such that f * ( x )  f ( x )  for x 4 D, and f * ( x )  = f i x )  for x E D. 
The  last  learning  alternative  (combined  with  some  memorizing)  is  the  one Jovo 
should  apply to learn  fluent  Foreignian. 

Note that each of the  learning options wouWhave a different  implementation  in 
software.  The  second  one,  where  there  is  no  training data set,  would  probably 
be a long  list  of IF-THEN rules. The third method  is  simple and not aesthetically 
appealing, and it does not allow for any  noise  in data.  It requires a huge  noiseless 
data set as well as an efficient  structure for data retrieval.  Currently,  however,  with 
compact and fast  storage  devices of  high capacity, it does  represent a feasible 
modeling  process  in  this  problem.  Nevertheless,  no  human  being  is  known to learn 
languages  in  this  way. 

The  last  learning  option  is  close to the  kind of learning  from  examples  problem 
discussed  in  this  book.  Recall,  however, that the important constituents  required for 
this  model to be a good  one are as follows: 

l .  The size P of training data set D has to be  sufliciently large.  Having  only a few 
hundred  word-pronunciation  pairs  would be not enough. It is  clear that the  more 
training data pairs,  the  fewer  will  be  the  pronunciation  mistakes. In other words,  the 
number of errors is  inversely proportional to the size  of D. 
2. The assumption that similar  words  have  similar  pronunciations  must  hold.  Stated 
differently,  the  mapping f ( x )  and the  model f * ( x )  are both assumed to be smooth. 
3.  The set  of functions that models  assumptions (l)  and  (2)  has to be  sufficiently 
powerful, that is, it should  have  enough  modeling  capacity to realistically  represent 
the  unknown  mapping f ( x ) .  

Learning  from  examples, as presented  in  this  book,  is  similar to Jovo’s  problem  in  the 
fifth  learning  alternative, 

In introducing  the  basic  ideas of learning  from  experimental data, the author fol- 
lows a theoretically  sound approach as developed by Vapnik and ~hervonenkis in 
their  statistical  learning  theory and implemented by SVMs. NNs had a more  heuristic 
origin.  Paradigms of NN learning are discussed  in  detail in chapters 3,4, and 5. This 
does  not  mean that NNs are of  lesser  value for not  being  developed  from  clear 
theoretical  considerations. It just happens that their  progress  followed an experi- 
mental path, with a theory  being  evolved  in  the  course of time. SVMs had a reverse 
development:  from  theory to implementation and experiments. It is  interesting 
to  note that the very strong  theoretical unde~innings of SVMs did not make  them 
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widely appreciated at first.  he  publication of the  first  paper o 
and co-workers  went  largely  unnoticed  in  1992 be~ause of a wi 
statistical or machine  learning  comm 

S were irrelevant for practical a 
when  very  good  results on practical 
recognition,  computer  vision, and text  catego 

nd SVMs) show  comparable  re 
wever, it happened that the  the 

attractive and promi  rea of research. In its  most  reduced variant, the  lea 
a l g o r i t ~  used  in an an be thought of as a new learning  procedure for an 
neural  network or a fuzzy  logic  model. S have  many  other  highly 
esteemed  properties,  some of  which are discussed  in  this book, 

Thus,  the  learning  problem  setting  is as follows:  there  is  some  unknown  nonlin- 
ear dependency  (mapping,  function) y = 
vector x and scalar y or vector output y. re  is no informati 
ing joint pro~ability functions.  Thus, o 
The only i n f o ~ a t i o n  available  is a tr 
1, P, where P stands for  the n ~ b e r  of the  training data pairs and is  therefore 
equal to the size  of the train in^ data set D. 

This  problem  is  similar to classical  statistical  inference.  owever,  there are several 
very important di~erences between  the  kinds of problems to be  solved  here and the 
kinds of problems that are the  subject of investig~tion in  classical  statistics. 

Classical  statistical  inference  is  based  on  three  fundamental assum~tions: 

ata can be modeled by a set of linear  in  parameters  functions;  this i s  a founda- 
tion of a  parametric  paradigm  in l e a ~ i n g  from expe~m~ntal  data. 
2. In the  most  real-life  problems, a stochastic  component of data is  the  normal 
probability dist~bution law, that is,  the ~nderlying joint probability d i s t ~ b u t i o ~  is a 
~aussian.  

ecause of the  second  assumption,  the inductio~  ~aradigm for ~arameter estima- 
tion  is  the  maximum li~elihood method,  which  is  reduced to the  minimization of the 
s~m-of"error-squares cost  function  in  most  engineering a~plications. 

All  three  assumptions on which  the  classical  statistical  paradigm  relies  turned out to 
be inapprop~ate for  many  contemporary  real-life  problems  (Vapnik  1998)  because of 
the following  facts: 

l .  Modern  problems are high-dimensional, and if the ~nderlying  ma~ping is  not  very 
smooth,  the  linear  paradigm  needs an esponentially  increasing  number of terms  with 
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lity of the input space X (an  increasing  number  of  indepen- 
own as “the curse of di~ensionality.” 

al-life data generation  laws  may  typically be  very far from  the 
normal distribution, and a model  builder  must  consider  this  difference  in  order to 
constl~ct an effective  learning a l g o r i t ~ ,  
3. From the  first  oints it follows that the masimum likelihood  estimator (and 
consequently  the  f-error-squares  cost  function)  should be replaced by a new 
induction paradi t is u n i f o ~ l y  better,  in  order to model  non-Gaussian 
distributions. 

dition,  the new problem  setting and inductive  principle  should  be  developed for 

This  book  concentrates  on  nonlinear and non arametric models as e~e~pl i f ied by 
* r means  two  things. First, the  model  class  will not be 

maps, and second,  the  dependence  of  the  cost  func- 
S of the  model  will  be  nonlinear  with  respect to the 
nd no~inearity is  the part of  modeling that causes 

most of the  problems dealt within  this  b  k. ~ o ~ ~ u r u ~ e t r i ~  does  not  mean that the 
models do not have  parameters at all.  n  the contrary, their 
identification,  estimation, or tuning)  is  e  crucial  issue  here. 
classical  statistical  inference,  the  rameters are not predefined and their  number 
depends  on  the  training data used.  other  words, para~eters that define  the  capac- 

sparse data sets containi~g a  small n ~ ~ b e r  of training data pairs. 

h  a way as to match  the  model  capacit 
digm  of structural risk mini~zation 
nkis and their  co-workers.  The introductory 

perimental data to contem- 
S first  improved  the  theory of empirical  risk 
nition  problems.  This  included  the  general 

on,  with  tbe  necessary and sufficie~t conditions for 
consistency of the  n  principle, and the  general ~uantitativ~ theory that 

of the  (future)  test error for the  function 
e  application of E does not necessarily 
ce to the  best  possible  solution  with an 
der to ensure  the  consistency of learning 
loped the uniform  law of large  numbers 
nik 1998) for pattern recognition  prob- 
ression proble~s.) The  cornerstones  in 
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their  theory are the new capacity  concepts for a set of indicator functions. The most 
popular is  the Vapnik-Che~onen~is (VC) dimension of the  set of indicator  functions 
implemented by the  learning  machine (see chapter 2). They  proved that for the 
distribution-free  consistency of the ERM principle, it is  necessary and sufficient that 
the  set of functions  implemented by the  learning  machine (SVM, NN, or FLM) have 
a finite VC dimension.  The  most important result,  which  led to the new induction 

, was that distribution-free  bounds on the rate of uniform  conver- 
gence  depend on 

* The VC dimension 
The number of training errors (or the  empirical error, say  sum  of error squares) 

* The  number of training data (size P,of a training data set) 

Based on this,  they  postulated  the  crucial  idea  for  controlling  the  generalization 
ability of a learning  machine: 

To achieve  the  smallest  bound on the  test error by minimizing  the  number of 
training errors, the  learning  machine (the set of  predefined functions)  with  the 
smallest VC dimension  should be used. 

However,  the  two  requirements,  namely, to minimize  the  number of training errors 
and to use a machine  with a small VC dimension, are mutually contradictory. Thus, 
one  is  destined to trade off accuracy of appro~imation for capacity  (VC  dimension) 
of the  machine, that is,  of the  set  of  functions  used to model  the data. The new induc- 
tion  principle of SRM  is  introduced in order to minimize  the  test error by controlling 
these  two  contradictory  factors-accuracy  on  the  training data and the  capacity of 
the  learning  machine. 

Note that generalization  (performance on previously  unseen  test data) depends on 
the  capacity of the  set of functions  implemented by the  learning  machine,  not on the 
number of free  parameters.  This is one of the  most important results  of  the  statistical 
learning  theory (SLT), which  is  also  known as the VC theory.  Capacity  differs  from 
the complexity of the  machine,  which  is  typically proportional to the  number of  free 
parameters. A simple  function  having a single parameter with an infinite VC dimen- 
sion  (capacity)  is  shown later. The  opposite  may  also be true. Recall that a set of 
functions (a learning  machine  implementing it) with a high  capacity  typically  leads to 
the  very  undesirable  effect of overfitting.  On  the other hand, if the  capacity  is too 
small,  the  learning  machine  will  also  model  the data very badly.  These  issues are 
discussed at length later. 

This  book treats primarily  the  application  aspects of NNs and SVMs.  Many of 
their  theoretical  subtleties are left out here.  This  particularly  concerns  the SVMs that 
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originated  from S ere,  much  more attention is  given to the const~ction of 
S than to their  underlying  theory.  The  reader  interested  in a under- 
ing of the  theory of SLT and SRM should  consult  Vapnik  (1995; 

Furthermore, the  whole  field  of  unsupervised  learning  is not taken 
book  models  only  causal  relations  between input and output variables. 
problems  belong  to  the  two  large  groups of contempora~ tasks: pattern recognition 
(classification) and multivariate  function approximation (regressi~n). This  means that 
the  third standard problem  in  statistics,  density  estimation,  is not dealt  with  here. 
Also,  many  other  situations,  for  instance,  when for given inputs the speci~c correct 
outputs are  not  defined, are omitted.  Thus,  the  reader  is  deprived of a discussion  of, 
two  very  useful  unsupervised a l g o r i t ~ s ,  principal compo~ent analysis and cluster- 
ing.  The author feels that introducing  the unsupe~ised techniques  would  distract 
from the important topics of learning  from data and fuzzy  logic (the two  mo 
tools at the  opposite  poles of “not first  principles”  model  building), and from  the 
i~portant  property of the  similarity or e~uivalence of ~ ~ s / ~ V ~ s  and FL 

From the  many  possible  topics  in  fuzzy  logic (FL), this  book  chooses to focus 
on its d aspects, or FL in a narrow  sense.  The  reader  interested  in other 
facets of  fuzzy (multivalued)  logic  theory  should  consult  more  theoretically  oriented 

wever, an understanding of the  applied  elements and properties of t 
ill  ease  understanding  of  potentially  difficult  ideas  in FL theory. 

logic  arose  from  the  desire to emulate  human thought processes that are imprecise, 
deliberate, ~ncertain, and usually  expressed  in  linguistic terns. In ad~ition, human 
ways  of  reasoning are approximate, non~uantitative, linguistic, and dispositional 
(usually ~ual i~ed) .  

hy  is it that way? It is a consequence of the  fact that the  world we  live in  is  not a 
binary  world.  There  are  many  states  between  old and young,  good and bad, ill and 
healthy,  sad and happy,  zero and one,  no and yes, short and tall,  black and white, 
and so on. Changes  between  these  different  extremes  are gradual and have a great 
deal of ambig~ty. This state of affairs,  all  our  knowledge and ~derstanding of such 

orld, we express  in  words.  Language  is a tool  for  expressing  human  knowledge, 
rds  serve as a way  of  expressing and exploiting  the  tolerance for  precisi ion; they 

serve for expressing  imprecise  knowledge about the  vague  environment we  live 
use  numbers  only  when  words are not  sufficiently  precise.  Thus,  most 
knowledge  is  fuzzy and expressed  in  vague terns that are usually witho~t  ~uantita- 
tive ~ e a ~ n g .  So, for example,  temperature  is  typically  expressed as cold, wa 
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hot and usually  not  with  numbers. FL is a tool for transforming  such  linguistically 
expressed  knowledge into a workable  algorithm  called a fuzzy  logic  model. In its 
newest inca~ation, FL is  called  computing  with  words. 

The  point of departure in  fuzzy  logic  is  the  existence  of a human  solution to a 
problem.  If  there  is no human  solution,  there will  be no knowledge to model and 
consequently no sense in applying FL. However,  the  existence of a human  solution is 
not sufficient.  One  must  be  able to articulate, to structure, the human  solution  in  the 

e of  fuzzy  rules.  These are typically IF-THEN 
knowledge can be  expressed in the form of IF 

rules not only for practical  skills  but  also for social and cultural behavior. 

follows: 
The criteria,  in  order of relevance, as to when and where to apply FL are as 

an (structured) knowledge  is  available. 
2.  A mathematical  model  is  unknown or impossible to obtain. 
3. The  process  is  substantially  nonlinear. 
4. There  is a lack of  precise  sensor info~at ion.  
5. It is  applied at the  higher  levels of hierarchical control systems. 

t is  applied  in  generic decision-ma~ng processes. 

Possible  difficulties  in  applying FL arise from the  following: 

owledge  is a very  subjective. 
* For high  dimensional  inputs,  the  increase  in  the  required  number of rules  is  expo- 
nential  (the  curse of dimensionality). 

nowledge  must  be structured, but experts  bounce  between a few extreme  poles: 
they  have  trouble  structuring  the  knowledge;  they are too aware of their  “expertise”; 
they  tend to hide  knowledge; and there  may  be  some  other  subjective  factors  working 
against  the  whole  process of human  knowledge  transfer. 

Note that the  basic  premise of FL is that a human  solution  is  good.  When  applied, 
for example,  in control systems,  this  premise  means that a human  being  is a good 
controller.  Some  (distrustful)  scientists  question  this  premise,  calling  it  the  basic  fal- 

uman  beings are very poor  controllers,  they  say,  especially for complex, 
multiva~able, and marginally  stable  systems.  Even  today,  after  more than 30 years 

sands of  successful applications,  many  similar  objections are still 
techniques.  The author does not intend to argue about the advan- 

tages or failures of FL. Instead, he  will try to equip  readers  with  basic FL knowledge 
and leave  it  up to them to take a side  in  such  disputes. 



xxix 

Two  relevant  concepts  within FL are 

* Linguistic  variables are defined as variables  whose  values  are  words or sentences. 
EN rules,  comprising  the input (antecedent) and the output (conse- 

quent), are  propositions  containing  linguistic  variables. 

Chapter 6 introduces  all  the  basic  notions of FL and, together  with  the  accompany- 
ing  software,  provides a reliable  basis for further study of FL and its  application to 
real-life  problems.  There  is a remarkable  ability  in natural intelligence to improve 
existing  knowledge by learning  from  examples. In the  soft  computing  field,  this 
property  is  covered by neurofuzzy  models,  where  the  initial FL model  is  first  built 
and then  improved  using  the  available data. This  is  achieved by learning, that is,  by 
applying  some of the  established  techniques  from  the  domains of NNs or SVMs. 

ring  this  learning  sta  ally  crafts  (changes  the  shapes and positions of) 
input and output me ctions of the FL model. The former  corresponds 

er  weights and the latter to the  learning of the output layer 
. This  is  only  one out of many  shnilarities  between NN 

g among  the FL modeling  tools are fuzzy  additive  models 
VMs the  property of  being  universal approx- 

imators. After transfo~illg human  knowledge by a FAM, one can obtain the  non- 
linear  curve,  surface, or hypersurface for one-,  two-, or multidimensional  inputs. 
Here,  such  multidimensional  manifolds  are  called  hypersurfaces of knowledge, 
expressing  the  fact that such  multivariate  functions are obtained  after t ransfo~ing 
human  knowledge into an operational algorithm. FAMs are  discussed  in  section  6.3. 
There is an interesting  design  problem  in  building  FAMs. To achieve  higher  accuracy 
one  typically  uses  more input variables  or  more  membership  functions or both. 
However,  this  leads  to a rule  explosion that was  already  mentioned  as  the  curse  of 
dimensionality. The rule  explosion  limits  the further application of the  fuzzy  system. 
In  order to overcome  this  problem  when  there are many input variables,  fuzzy  prac- 
titioners use  the “patch the  bumps”  learning  technique (Kosko 1997).  The  basic  idea 
in  this approach is to get a sparse (and therefore  possibly  the optimal) number of 
rules that cover  the  turning  points or extrema of the  function  describing the surface of 
knowledge.  This “patch the  bumps”  heuristic  corresponds to optimal  subset  selection 
or support vectors  learned  in RBF NNs or SVMs. This  book  does not present  the 
“patch the  bumps”  algorithm in detail.  The thought is that learning can be better 
resolved  within  the  neurofuzzy approach by applying  well-developed  methods  from 
NNs and SVMs, in particular, subset  selection  techniques  based on quadratic and 
linear  programming  (see chapter 2 and section  5.3.4). 
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In conclusion,  there  is  nothing  fuzzy about fuzzy  logic.  is  fuzzy  or intrin- 
sically  imprecise night have  been  one of the  most erron ements about this 

oday,  the view  of FL has  changed,  primarily  for  two  reasons. 
FL is  firmly  based  on  multivalued  logic  theory and does not violate  any  well-p 
laws of logic.  Second, FL systems  produce  answers to any  requir 
racy.  This  means that these  models can be  very  precise  if  needed. 
aimed at handling  imprecise and approximate  concepts that cann 
any other known  modeling tool. Tn this  sense, FL models  are  invaluable  supplements 
to classical hard computing  techniques. In addition, when  given  vague variables  they 
go far beyond  the  power of classical AT approaches. 

Fuzzy  sets are not  vague  concepts  either.  They are aimed  only at model in^ such 
concepts.  They  differ  from  classic, or crisp,  sets  in that the 
degrees  of  belonging  (membership)  of  some  element to a 
computing are both very  precise at the  set  level, at the  in 
defuzzification  stage, or rather, as precise as needed.  There  is a trade-off  between 
precision and a cost  in FL modeling.  This  is  one  of  the  basic  postulates  in  the  soft 
computing  field,  making FL models a true  component of it. uch  precision control 
permits  the  writing of  fuzzy  rules at a rather high  level  of abs 

Fuzzy  logic  is a tool for  representing  imprecise,  ambiguous, and vague i n f o ~ a -  
tion. Its power  lies  in  its  ability to perform meanin~ful and reasonable  operations on 
concepts that are  outside  the  definitions of conventional  oolean or crisp  logic. 
techni~ues make  vague  concepts  acceptable to computers and have th 
widespread attention since  they  first appeared. At the  same  time as 
large  number of admirers, it secured  many  fierce  opponents. 
them. In summary,  fuzzy  logic  is a powerful and versatile  mod 
the tool for, or the  solution to, all  problems.  everth he less, 
numbers and meanings,  which is so natural to our  minds, 
modeling of problems that have  generally  been  extremely dificult or intractable for 
the hard computing  approaches of the  past. 

Y 

Terminology  in  the  field of learning  machines and soft  computing,  because of its 
roots in  the  different  areas of approximation  theory,  nonlinear  optimization, and 
statistics,  is  exceptionally  diverse, and very  often  similar  concepts  are  variously 
named. In this  book  different terns for similar  concepts are used  deliberately to equip 
readers  with  the  terminology and skills to readily  associate  similar  concepts  in  dif- 
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ferent  areas.  Here, just a few typical  uses  of  diverse  names for the same or very 
similar  notions are mentioned. 

Approximating  functions are models that are also  known as networks or machines. 
The  name network was  chosen  because  the  graphical  presentation  of  these  models 
resembles  a  kind of a  network. The use  of the  name machine is  more  peculiar. 
Apparently,  the very  first  use  of it was  partly  commercial,  in  applying  a  Boltzmann 
algorithm  in  learning.  Once  in use, machine was  added to a support vector  algorithm. 
Today, SV machine, or SVM, i s  a “trademark” for  application of statistical  learning 
theory  in  learning  from  experimental data. ~ a c h i n e  is  actually  the  correct  name for 
its use today. The  soft  computing  machine  (meaning  a  set of functions  implemented 
in  a  piece  of software or a program), when  some number  is  supplied,  does  what  all 
machines do: it  processes  the  number and manufactures  the  product that is another 
number. 

Similarly, Zearning denotes an approach to finding  parameters  (here  typically  called 
weights) of a  model by using  training data pairs. In various  scientific and engineering 
fields  the  same  procedure  for  learning  from data is  called  training, parameter adap- 
tation, parameter  estimation,  weights  updating,  identification,  neurofuzzy  learning, 
and tuning  or  adjusting of the  weights.  The  learning  can be performed  in  two  ways, 
which  have  various  names, too. The  off-line  method  (when  all the available data 
pairs are used at once)  is  also  called  explicit,  one-shot, or batch  procedure, while the 
on-line  method  (when  the  weights are updated  after  each data pair  becomes  avail- 
able)  is  also  called  implicit,  sequential,  recursive, or iterative. 

The weights  of  soft  computing  models  represent  the  parameters that define  the 
shapes and positions of the  activation  functions,  which are usually  called  either  basis 
functions or kernel  functions  in NNs, or membership  functions,  degrees  of  belonging, 
or possibility  degrees  in FLMs. All  these  differently  named  functions  perform  similar 
nonlinear  transformations of incoming  signals into neurons,  processing  elements, 
processing  units, or nodes.  Next-and  this  is another similarity  between  the  various 
soft  computing  tools-the  number of hidden  layer  units  (neurons)  in NNs turns out 
to be equivalent to the  number of support vectors  in SVMs and to the  number of 
fuzzy  logic  rules  in FLMs. 

Training data pairs  are  also  called  samples, patterns, measurements,  observations, 
records, and examples.  The  measure of goodness of approximating  functions  is 
known as cost  function,  norm, error function,  objective  function,  fitness  function, 
merit  function,  performance  index,  risk, and loss  function. The author does not claim 
that all  these  terms  denote  exactly  the  same  concepts,  but  all  of  them  measure  in  one 
way or another the distance  between  training data points and the  approximations. 
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In addition, a  major  topic of this  book  is  solving  regression and classification 
he  same or similar  procedures  in  regression are called  curve  (surface) 

fittings and ( ~ u l t i v a ~ a t e )  function a p ~ r o ~ i ~ a t i o n s ,  and classi~catio~ is  also  called 
pattern recognition, ~ iscr i~ inant  function  analysis, and decision  making. 

It’s  time to start reading  the  book. It will  tell the rest of the  learning and soft  com- 
story. To patient  readers  many i n t ~ g u i n ~  secrets of modeling data or embed- 

ding  human  knowledge  will  be  revealed. 
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Since  the late 1980s there  has  been an explosion  in  research  activity  in  neural 
networks (NNs), support vector  machines (SV 
Together  with new a l g o r i t ~ s  and statements of fundamental  principles  there  has 
been an increase  in  real-world  applications. Today, these areas are matu 
point  where  successful ap~lications are reported across a range of  fields. 

tions  in  diverse  fields are given  in  section  1.1. 
e three  modeling  tools  complement  one  other. 

of learning  tools. hey  recover  underlying  dependenci 
outputs by  using aining data sets.  After t r a i n i ~ ~ ,  
high-dimensional  nonlinear fu~ctions. They are mathematical  models  obtained  in 
an  experime~tal way.  If there are no data (examples, patte~s,   obse~ations,  or mea- 
surements),  there will  be no learning, and conse~uently no modeling by 
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owever,  one  can  still  model  the  causal  relations  (also  known as f~lnctions) be- 
tween  some  variables  provided  one  has an understand in^ about the  system or process 
under  investigation.  This  is  the  purpose of  fuzzy  logic. It is a tool for embed din^ 
existing s t ~ c t ~ r e d  human  knowledge into mathematical  models. f one  has  neither 
prior knowledge  nor  measurements, it may  be  difficult to believe t t the  problem at 
hand  may be  solved  easily.  This  is  by  all  accounts a very  hopeless situation indeed. 
This  book  does not cover  cases  where  both  measurements and prior  knowledge are 

owever,  even  when  faced with a mode~ing problem  without  either  experi- 
mental data or knowledge,  one  is  not  entirely  lost  because  there  is an old  scientific 
solution: if  one cannot solve  the  problem  posed,  one  poses another problem. In this 
book,  problems are not refo~ulated.  ather, the text  demonstrates how various 
real-world  (conceptual or practical)  task an be  solved  by learning from experime~" 
tal data or by embedding  structured human knowledge into mathematical  models. 

This chapter describes  some  typical  nonlinear and high-dimensional  problems 
from  various  fields  in  which  soft  models  have  been  successfully  applie 
problems that can be  solved by using  soft modeli~g approaches  is 
problems  belong to two major groups: pattern recognition  (classi 
functional appro~mation (regression)  tasks.  In  this  way,  soft  mod 
at as being  nonlinear  extensions to classic  linear re~ression and cla 
how these standard statistical  problems are introduced  in  section I .  
understanding of the  concepts, perfo~ance, and limitations o 

paration for understanding  nonlinear  modeling 
solve  regression and classification  problems by 

ters that co~trol how they  learn as they  cycle through train in^ d 
weights,  influence  how  well the  trained  model 
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to measure the model’s performance one must define some measure of goodness of 
the model. In mathematical terms, one should define some suitable norm. Here the 
cost or error (or risk) functional E is used, which expresses a dependency between an 
error measure and the weights, E = E(w) .  

Unfortunately, as mentioned in section 1.3, genuine soft models are nonlinear 
approximators in the sense that an error functional E = E(w) (the norm or measure 
of model goodness) depends nonlinearly upon weights that are the very subjects of 
learning. This means that the error hypersurface is generally not a convex func- 
tion with guaranteed minimum. Therefore, a search after the best set of parameters 
(weights) that will ensure the best performance of the model falls into the category of 
nonlinear optimization problems. 

As is well known, there is no general optimization method for nonlinear learning 
tasks. Section 1.3 introduces possibly the simplest to understand and the easiest to 
use: the gradient method. Despite being simple, the first-order gradient learning 
algorithm (also known as the error backpropagation algorithm) was the first learning 
procedure that made a key breakthrough in training multilayer neural networks. But 
this simplicity has a price: the learning procedure is too long and does not guarantee 
finding the best set of weights for a given NN structure. (Some improvements are 
discussed in chapter 8). It should be stressed that the only difference between NNs 
and SVMs is in how these models learn. After the learning phase, NNs and SVMs are 
essentially the same. 

1.1 Examples of Applications in Diverse Fields 

Soft computing, which comprises fuzzy logic modeling and the theory and applica- 
tion of the (statistical) learning techniques embedded in SVMs and NNs, is still in an 
early stage of development. Nevertheless, many research institutions, industries, and 
commercial firms have already started to apply these novel tools successfully to many 
diverse types of real-world problems. Practically no area of human activity is left 
untouched by NNs, SVMs, or fuzzy logic models. The most important applications 
include 

- Pattern (visual? sound, olfactory, tactile) recognition (i.e., classification) 
* Time series forecasting (financial, weather, engineering time series) 
* Diagnostics (e.g., in medicine or engineering) 
* Robotics (control, navigation, coordination, object recognition) 
* Process control (nonlinear and multivariable control of chemical plants, power 
stations, vehicles or missiles) 
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imization  (combinatorial  problems  like  resource  scheduling,  routin 
a1 processing,  speech and word  recognition 
hine  vision  (inspection  in  manufacturing,  check  reader,  face  recognition, target 

recognition) 
inancial  forecasting  (interest  rates,  stock  indices,  currencies) 

Financial  services  (credit  worthiness,  forecasting, data mining, data s e ~ e n ~ d t i o n ) ,  
services for trade (segmentation of customer data) 

In certain  application  areas,  such as speech and word  recognition, NNs, FL models, 
or SVMs outperform  conventional  statistical  methods. In other fields,  such as specific 
areas in  robotics and financial  services,  they  show  promising  application  in  real- 
world  situations. 

ecause of various  shortcomings of both neural  networks and fuzzy  logic  models 
the  advantages of combining  them  with other technologies,  hybrid and modular 

solutions  are  becoming popular. In addition, complex  real-world  problems  require 
more  complex  solutions than a single  network (or a one-sided approach) can  provide. 
The generic  soft  computing approach also supports the  design of solutions to a wide 
range of complex  problems.  They  include  satellite  image  classification,  advanced data 
analysis,  optical  character  recognition,  sales  forecasting, traEc forecasting, and credit 
approval prediction. 

The theoretical  foundations,  mathematics, and software  techniques  applied are 
common  for  all  these  different  areas. This book  describes  the  common  fundamental 
principles and underlying  concepts of statistical  learning,  neural  networks,  and  fuzzy 
logic  modeling as well as some  of the  differences  between  them. 

A natural and direct  connection  exists  between  soft  computing  models (NNs, 
S, and FL models) and classical  statistics.  The  models  presented  here can be 

viewed as nonlinear  extensions of linear  regression and classification  methods,  tools, 
and approaches.  owever,  introducing  nonlinearities  (i.e.,  nonlinear  dependence of 
the  approximating  models  upon  model  parameters)  increases  the  complexity of the 
learning  tools  dramatically.  Learning  usually  means  nonlinear  Optimization,  which 
becomes  the  most important task to solve  in  machine  learning  theory.  This  book 
deals  with  the  various  nonlinear  optimization  techniques  in  the  framework of learn- 

efore  considering  some  popular and successful  applications of NN models,  it  may 
be interesting to look at the  wide range of problems that classical  (linear)  statistics 
attempted to solve.  More  details on these and many  others,  may be found  in  the 
standard statistical literature (e.g.,  Anderson  1958;  Johnson and Wichern  1982). 

om  experimental data. 



4 Chapter 1. Learning  and Soft Computing 

* Effects  of drugs  on  sleeping  time 
onary function  modeling by measuring  oxygen  consumption 

*  omp par is on of head  lengths and breadths of brothers 
* ~lassification of the rahman, Artisan, and oma groups  based  on  physical 
measurements 
* ~lassification of  two  species  of  flies  using data on  biting  flies 

attery-failure data dependence and regression 
* Financial and market analyses (bankruptcy, stock  market  prediction,  bonds,  goods 
transportation cost data, production  cost data) 

tudy of  love and marriage  using data on  the  relationships and feelings  of  couples 
ir  pollution data classification,  college  test  scores  classification and prediction, 

crude  oil  consumption  modeling,  degree of relation  among  l  l  languages. 

This  is  only a short list,  but it shows  the  wide  diversity  of  problems to which  linear 
statistics  has  been  successfully  applied. In many  instances,  linear  models  perform 
well. In fact,  whenever  there are linear (or slightly  nonlinear)  dependencies  in  regres- 
sion  problems or when  separation  functions  between  the  classes are (closely)  linear, 
one can obtain very  good  results  by applying  conventional  statistical  tools. 

Today, equipped  with  powerful  computing t e c ~ i ~ u e s  and high-perfo~~ance 
sensors and actuators, we want to solve  much  more  complex  (highly  nonlinear and 
~gh-dimensional) problems.  owever,  this  is  even  more  risky  endeavor than solving 
a variety of classical  linear  problems;  this  book  introduces  the  reader to the very 
challenging and promising  field of nonlinear  classification and regression  based  on 

from expe~mental data. In addition, it presents, as a third  constituent of soft 
ng,  fuzzy  logic  modeling as a tool for embedding  structured  human  knowl- 

edge into workable  algorithms. 
To begin, it may  be  helpful to look at a few  successful  developments and applica- 

tions of neural  networks and fuzzy  logic  paradigms.  The  success of these  applications 
spurred  widespread  acceptance of these  novel and powerful  nonlinear  modeling 

his  short  review  is far from  conclusive. t discusses  only a few  of the 
ervised  learning NN models as well as some  early  pioneering  applica- 
dels  in  solving  practical  problems. 

The  construction of the  first  learning  machine,  called  the 
blatt in  late 1960s is  certainly a milestone  in  the  history of 
was  the  first  model  of a machine that learns  from  experimental data, and this  is 
when  mathematical  analysis of learning  from data began.  The  early  perceptron was 
designed for solving pattern recognition  problems, that is,  classification  tasks. 
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At the same  time, a philosophy  of  statistical  learning  theory  was  being  developed  by 
V. Vapnik  and A. Chervonenkis  (1968).  Unlike  the  experimental  approach  of  Rosen- 
blatt, their  work formulated essential  theoretical  concepts:  Vapnik-Chervonenkis 
entropy and  the  Vapnik-Chervonenkis  dimension,  which  in  1974  resulted  in a novel 
inductive  principle  called structural risk  minimization.  At  this  early  stage,  these tools 
were  also  applied to classification  problems  (see chapter 2). 

Concurrently, €3. Widrow  and  M. off developed the first adaptive learning  rule 
for solving  linear  regression  problems: the least  mean square (LMS)  learning  rule, 
also  known as the delta  learning  rule  (see chapter 3 ) .  It was a rule for training a 
(neural) processing unit called the a (adaptive linear neuron) for adaptive signal 
filtering  and adaptive equalization. e,  this  linear  neuron  was  performing  linear 
re  ression  tasks. 

y the mid-1980s a lot of  progress  had  been  made  in  developing  specialized hard- 
ware  and  software for solving  real-life  problems without the relevant  theoretical 
concepts  being  applied to the (mostly  experimental)  supervised  learning  machines. 
(Many  unsupervised  learning algorithms and approaches were  also  developed during 
that period.) Then, about  that time, a breakthrough in  learning  from data and in 
neural  network  development  came  when  several authors (Le Cun 1985; Parker 1985; 
Rumelhart, Hinton, and  iams 1986)  independently  proposed a gradient  method, 
called error backpropaga for training hidden  layer  weights  (see  section  4.1). 

Independently, continuing their  research  in the field  of  statistical  learning  theory, 
Vapnik  and  Chewonenkis  found  the  necessary  and  sufficient conditions for consis- 
tency  of the empirical  risk  minimization  inductive  principle  in  1989. In this  way,  all 
the  theory  needed for powerful  learning  networks  was  established,  and  in the early 
1990s  Vapnik  and  his  coworkers  developed support vector  machines  aimed at solving 
nonlinear  classification  and  regression  problems  (see chapter 2). 

A lot of  effort  was  devoted  in the late 1980s to developing  so-called  regularization 
networks,  also  known  as radial basis function networks  (Powell  1987; 
and Lowe  1988;  Poggio and  Girosi  1989  and later). These  networks  have fim theo- 
retical roots in  Tikhonov’s  regularization  theory  (see chapter 5). A few  well-known 
and successful applications are described  here.  The  common feature of  all  the 
models  (functions or machines)  in  these applications is that they learn complex,  high- 
dimensional,  nonlinear functional dependencies  between  given input and output vari- 
ables  from training data. 

One  of the first successful applications was the NETtalk  project  (Sejnowski  and 
Rosenberg  1987),  aimed at training a neural  network to pronounce  English  text 
consisting of  seven  consecutive characters from written text,  presented in a moving 
window that gradually  scanned the text.  Seven  letters  were  chosen  because  linguistic 
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studies  have  shown that the  influence of the fourth and fifth distant letters on the 
pronunciation of the middle  character  is  statistically  small. o simplify  the  problem 

synthesis,  the NETt etwork  recognized only 29 valid  characters:  the 26 
c characters from A and the  comma,  period, and space. No distinction 

was  made  between  upper and lower  case, and all characters that were not one of 
ere  ignored.  Thus,  the input was  a 7 x 29 = 203-d~ensional vector. 

ut was  a  phoneme  code to be directed to a  speech  generator  giving 
pronunciation of the  letter at the  center of the input window.  The  network  had 26 
output units,  each f o ~ n g  one of  the 26 codes  for  the  phoneme  sound  generation 

Ttalk network  is an error model  having  one 
processing  units (neurons). taken in this book, 

e that such  a structure represents  a  highly 
onal space into a 26-di~ensional space  (i.e. 
he neural  network  was  trained on 1,024  words and achieved 
0 training  epochs and 95% accuracy  after 50 epochs.  (An 
all  the  training data.) 

ejnowski  (1988)  trained  the  same  kin of multilayer  perceptron to 
ted sonar signals  from  two  inds of objects  lying at the 
and metal  cylinders.  gnal  was  the  frequency 

) of the reflected so e  network had 60 input 

one-out-of-two  classification (pattern recognition)  problem.  They  varied  the  number 
neurons  from  zero  (when an is  without  a  hidden  layer) to 

e  network  achieved about 8Oy0 correct p e ~ o ~ a n c e  on 
units,  the  network  reached  almost 100% accuracy on 

re  was no visible  i rove~ent  in  the  results on increasi~g the 
aining,  the  network  was  tested on new, 
, it achieved about 85% correct  classifi- 

athe~atical side  of the  problem  being 
at the sonar signals  recognition ne ork ~ e r f o ~ e d  a  highly 
a  60-dimensional  space into a  imensional  space (an 

results on designing an -based car driver  within  the 
(autonomous land  vehi a  neural  network)  project. 

one  for  rocks and one  for  cylinders. 

order to follow  the road. were  29 neurons  in  a  single  hidden  layer 
urons in the output layer. , the input vector  was 121 6-dimensional, 
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L ~ I N N  represented a nonlinea 
nto a   dimensional space ( 

andwritten character recogniti 
which NNs have  found wide appli 
to Le Cun and his col lea~es (l9 
256-dimensional  vect 

5.1%. It is  interesting 
benchmark  for  various 
reported by applying a1 kernel f~nctions, which 
racy of 4% on  test d e, Le Cun and his collea 

that are usually  sparse.  This  is  the  world of l e a r ~ n ~  from data net~orks  (m~dels, 
functions, and m a c ~ n e s ~ ,  where, at the  moment, no better alte~atives exist. 

brief  histo of  fuzzy lo ic and its  applications  follows. Fu 
e e l a b o r ~ t e ~  on his  ideas in a 

stic  variables, or fmzy sets.  Assi 
zy logic  rules, for contro~ing a 
tion followed  soon  after: imp1 
ark in 1975. Interestingly, at th 
ntry of their  theoretical  origins 

One explanation is that people  associated FL ~ o d e l s  and approaches  with ~ ~ i f i c i a l  
intelligence?  expert  systems, and kno~ledge-based engineeri~~, which at that point 
had not lived up to expect~tio ~oneous) associations 
lack  of  credibility for FL in 

In Japan, without  such p zy systems  was  much S 

might  have  been part of the  so-called  “invented  here”  syndrome,  in 
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tive  ideas  supposedly  get  more attention if  they  come from far away. In any  case, 
Hitachi’s  first  simulations,  in  1985,  demonstrated  the  superiority  of  fuzzy control 
systems for the  Sendai  railway.  Within  two  years,  fuzzy  systems had been adopted to 
control accelerating,  braking, and stopping of Sendai  trains. 

national meeting  in  1987  in  Tokyo, T. Yamakawa  demonstrated  the use  of  fuzzy 
control in an “inverted  pendulum”  experiment.  This  is  a  classic  benchmark  problem 
in  controlling  a  nonlinear  unstable  system.  e  implemented  a  set of  simple dedicated 
fuzzy  logic  chips  for  solving  this  nonlinear control task. 

Following  such  demonstrations of FL models’  capabilities,  fuzzy  systems  were 
built into many  Japanese  consumer  goods. ~atsushi ta  vacuum  cleaners  used  four-bit 
FL controllers to adjust  suction  power  according to dust  sensor information. Hitachi 
washing  machines  implemented  fuzzy  controllers  in  load-weight,  fabric-mix, and dirt 
sensors to automatically  set  the  wash cycle for  the  best  use of power,  water, and 
detergent. Canon developed an auto-focusing  camera that used a  charge-coupled 
device to measure  the  clarity of the  image  in  six  regions  of  its  field  of  view and with 
the i n f o ~ a t i o n  provided to determine if the  image  was  in  focus. The dedicated FL 
chip  also  tracked  the rate of change of  lens  movement  during  focusing and controlled 
its  speed to prevent  overshoot.  The  camera’s  fuzzy control system  used  12  inputs: six 
to obtain the current clarigy data provided by the  charge-coupled  device and six to 
measure  the rate of change of  lens  movement.  The output was  the  position of the 
lens. The fuzzy control system  used 13 rules and required  1.  l  kilobytes of memory. 
However,  for  obvious  reasons,  the  camera  was not advertised as a  “fuzzy”  camera. 
Instead, the  adjective “smart” was  used,  which  (because of the  application of smart 
fuzzy  rules)  this  camera  certainly  was. 

Another  example of a  consumer  product  incorporating  fuzzy  controllers  is an 
industrial air conditioner  designed by Mitsubishi that used  25 heating  rules and 25 
cooling  rules.  A  temperature  sensor  provided input, and fuzzy  controller outputs 
were  fed to an inverter,  a  compressor  valve, and a fan motor. According to Mitsubishi, 
compared to the  previous  design,  the  fuzzy  controller  heated and cooled  five  times 
faster,  reduced  power  consumption by one quarter, increased tempera~ure stability by 
a  factor of two, and used  fewer  sensors, 

Following  the  first  successful  applications,  many  others  were  reported  in  fields 
like  character and handwriting  recognition,  optical  fuzzy  systems,  robotics,  voice- 
controlled  helicopter  flight, control of  flow  of powders  in  film  manufacture, and ele- 
vator systems. 

Work on fuzzy  systems  also  proceeded  in  Europe and the  United  States, although 
not with  the  same  enthusiasm  as  in Japan. In Europe, at the  same  time as FL was 

Another  event  helped  promote  interest  in  fuzzy  systems  in Japan, 
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introduced  for control pu~oses,  ~immermann and his coworkers  found  it  useful 
an decision  processes.  owever,  they  realized that the  classical FL 
h was insu~cient for deling  complex human decision  processes, 

and they  developed  extensions, S compensato~ aggregation operators. As 
an immediate  result of this, IN ~orporation introduced a decision su~port  
system  for  banks  in  1986. 

The  list of large  European  companies that started fuzzy  logic task  forces  includes 

enz  of Gemany. S ~ S - ~ h o m p s o n  invested $20 million  in a fuzzy  logic  task 
force  in Catania, Italy. This  pro'ect ed FL hardware.  Siemens started 
an FL task force at its central  unich.  This  task  force e~phasized 
expanding FL theory as well as sup ations, The Siemens a~plications 
included  washing  machines,  vacuum  cleaners, automatic trans~ssion syst 
idle-speed  controllers,  traffic  controllers, paper-process in^ systems, and 
diagnosis  systems. A survey  done  in  1994  identified a total of 684  application^ of 
fuzzy  logic  in  Europe that were  classified into four categories:  industrial automation 
(440/0),  decision support and data analysis (300/0), embedded control (l9%), and pro- 
cess control (7%). 

The  Environmental  rotection  Agency  in  the  United  States has investigated  fuzzy 
control for e~ergy-e~cient motors, and  SA has  studied  fuzzy control for auto- 
mated space  docking:  simulations  show that a fuzzy control system  can  greatly  reduce 
fuel  cons 

improved  automotive trans~issions, and energy-efficient  electric motors. 
Research and development is continuing  apace  in  fuzzy  software  design,  fuzzy 

expert  systems, and integration of  fuzzy  logic  with  neural  networks  in  so-called  neu- 
rofuzzy or fuzzyneuro  systems.  These  issues are discussed  in  more  detail later in  the 
book. 

h  mpson of France and Italy as well as Klockner- 

In recent  years,  neural  networks,  fuzzy  logic  models, and support vector  machines 
have  been  used  in  many  diEerent  fields.  This  section  primarily  discusses NNs and FL 

S are discussed  in  depth  in chapter 2. However,  because of a very  high 
mblance  between NNs and S ~ M s ,  almost  all  comments about the  rep- 

resentational  ropert ties of NNs can also be applied to SV S. U ~ l i ~ e  their  repre- 
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sentational capabilities,  the  learning  stages of these  two  modeling  tools  are  different. 
Chapters 2, 3, and 4 clarify  the  differences. 

NNs and FL models are modeling  tools.  They  perform  in  the  same  way  after  the 
learning  stage of NNs or the  embedding of human  knowledge about some  specific 
task of FL is  finished.  They are two  sides  of the same  coin.' 
appropriate tool  for  solving a given  problem  is an NN or an FL 
the availability of previous  knowledge about the  system to be modeled and the 
amount of measured  process data. 

The  classical NN and FL system  paradigms  lie at the  two  extreme  poles of  system 
modeling  (see  table  1. l). At the NN pole  there  is a black  box  design situation in 
which  the  process  is  entirely  unknown but there are examples  (measurements, 
records,  observations,  samples, data pairs). At the other pole (the FL model)  the 
solution to the  problem  is  known, that is, s t~ctured human  knowledge  (experience, 
expertise,  heuristics) about the  process  exists.  Then  there  is a white  box situation. In 
short, the  less  previous  knowledge  exists,  the  more  likely it is that an NN, not an FL, 
approach will  be  used to attempt a solution, The more  knowledge  avail 
suitable  the  problem will  be for the  application of  fuzzy  logic  modeling. 
both tools are aimed at solving pattern recognition  (classification) and regression 
(multivariate  function approximation) tasks. 

For example,  when  they are applied  in a system control area or the digital  signal 
processing  field,  neural  networks  can be regarded as a nonlinear  identification  tool. 
This  is  the  closest  connection  with a standard and well-developed  field  of estimation 
or identification of linear control systems.  In  fact, if the  problem at hand  is a linear 
one, an NN would  degenerate into a single  linear  neuron, and in  this  case  the  weights 
of the  neuron  would  correspond to the  parameters of the  plant's  discrete  transfer 
function G(z) (see  example 3.6). When  applied to stock  market  predictions  (see sec- 
tion 7.2) the approach will  be the  same as for linear  dynamics  identification, but the 
network will  become a more  complex  structure.  The  underlying  dependencies  (if 
there are any) are usually far from  being  linear, and linear  assumptions  can  no  longer 

new,  hidden  layer of neurons will  have to be added. In this  way,  the  network 
el nonlinear  functions.  This  design  step  leads to a tremendous  increase  in 

modeling  capacity, but there  is a price: a nonlin r kind of learning will  have to be 
performed, and this  is  generally not an easy  task.  owever,  this  is  the  point  where  the 
world of neural  networks and support vector  machines  begins. 

In order to avoid too high (or too low)  expectations  for  these new concepts of 
computing,  particularly  after  they  have been  connected  with  intelligence, it might be 
useful to list  some  advantages and disadvantages that have  been  claimed for 
and FL models  (see  tables  1.2 and 1.3). ecause of the wide  range  of applicatio 
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Table 3.1 
Neural  Networks,  Support  Vector  Machines,  and  Fuzzy  Logic  Modeling  as  Examples of Modeling 
Approaches at Extreme  Poles 

Neural  Networks  and  Support  Vector  Machines  Fuzzy  Logic  Models 

Black  Box 
No previous  knowledge, but  there  are  measure- 
ments,  observations,  records,  i.e., data pairs 
(xi, di} are  known.  Weights 'v and W are 
unknown. 

Behind  NNs  and  SVMs stands  the  idea of learning 
from  the  training data. 

White  Box 
Structured knowledge  (experience,  expertise, or 
heuristics).  No data required. IF-THEN rules  are 
the  most  typical  examples of structured 
knowledge. 

Example: Controlling  the  distance  between  two 
cars: 
RI: IF the  speed  is low AND  the  distance is 
s ~ a l l ,  THEN the  force  on  brake  should be 
s ~ a l l .  
R2: IF the  speed  is m e d i ~ m  AND  the  distance 
is small, THEN the  force  on  brake  should  be 
big. 
R3: IF the  speed is high AND  the  distance  is 
small, THEN the  force  on  brake  should  be very 
big. 

Behind FL stands  the  idea  of  embedding  human 
knowledge into  workable  algorithms. 

In  many  instances, we do have  both some knowledge and some data. 

This  is  the  most  common gray box situation covered  by the  paradigm of  neuro-fuzzy or fuzzy-new0 
models. 

If  we do not have  any prior knowledge and we do not  have  any  measurements  (by  all  accounts,  a  very 
hopeless situation  indeed),  it may  be hard  to  expect or believe that  the  problem at hand may  be approached 
and solved  easily. This is a no-color box situation. 



12 Chapter 1. Learning  and Soft Computing 

Table 1. 
Some Ad~~ntages of Neural  Networks  and  Fuzzy  Logic  Models 

Neural  Networks Fuzzy  Logic  Models 

Have  the  property  of  learning  from  the  data, 
~micking  human  learning  ability 
Can approx~~ate  any  multivariate  nonlinear 
function 
Do not  require  deep  understanding  of  the  process 
or the  problem  being  studied 
Are  robust  to  the  presence  of  noisy data 

Have  parallel  structure  and  can  be  easily 
i~plemented in  hardware 
Same NN can  cover  broad  and  different  classes of 
tasks 

Are an efficient tool  for  embedding  human 
(structured) knowledge into useful algorithms 
Can  approximate  any  multivariate  nonlinear 
function 
Are  applicable  when m~thematical model  is 
unknown  or  impossible  to  obtain 
Operate successfully  under a  lack of  precise  sensor 
info~at ion 
Are  useful at the  higher  levels  of  hierarchical 
control systems 
Are appropriate  tool  in generic  decision-making 
process 

Table 1.3 
Some Dis~dvan~ges of Neural  Networks  and  Fuzzy  Logic  Models 

Neural  Networks  Fuzzy  Logic  Models 

Need  extremely  long training or learning  time 
(problem with  local  minima  or  multiple  solutions) 
with  little  hope  for  many  real-time  applications. 
Do not uncover  basic  internal  relations  of  physical 
variables,  and do not  increase  our  knowledge  about 
the  process. 
Are prone  to  bad  generalizations  (with  large 
number  of  weights,  tendency to overfit  the  data; 
poor  performance  on  previously  unseen data during 
the  test  phase). 
Little  or  no  guidance  is  offered  about NN structure 
or  optimization  procedure, or the  type  of NN to 
use for  a  particular  problem. 

Human  solutions  to  the  problem  must  exist,  and 
this  knowledge  must  be  structured.  Experts  may 
have  problems st~cturing the  knowledge. 
Experts  sway  between  extreme  poles: too  much 
aware  in field of expertise, or tending  to  hide  their 
knowledge. 
Number  of  rules  increases  exponentially  with , 
increase  in  the  number  of  inputs  and  number  of 
fuzzy  subsets  per  input  variable. 

Learning  (changing  membership  functions’  shapes 
and  positions, or rules)  is  highly  constrained; 
typically  more  complex  than  with NN. 
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these  modeling  tools, it is hard to prove or disprove  these  claims and counterclaims. 
Only  a part of the  answers  will  be found  in  this  book. It is  certain that everyone 
working  with NNs, SVMs, and FL models  will  form  their  own  opinions about these 
claims.  However,  the  growing  number of companies and products  employing NNs 
and FL models and the  increasing  number of new neural  network and fuzzy  com- 
puting  theories and paradigms  show that despite  the  still  many  open  questions NNs, 
SVMs, and FL models are already  well-established  engineering  tools and are becom- 
ing  a  common computational means for solving  many  real-life  tasks and problems. 

asks of Neural N e ~ o r k s  

Artificial  neural  networks are software or hardware models  inspired by the  structure 
and behavior of biological  neurons and the  nervous  system, but after  this  point of 
inspiration  all  resemblance to biologyical  systems  ceases. 

There are about 50 different  types of neural  networks  in  use today. This  book 
describes and discusses fee~forwar~ NNs with s ~ ~ e r v i s e ~  Zearning. This  section  deals 
with  the  representationaz ca~abilities of NNs. It shows  what NNs can model and how 
they  can  represent  some  specific  underlying  functions that generated  training data. 
Chapters 3, 4, and 5  describe  the probZem of learning-how the  best  set of  weights, 
which  enables an NN to be a  universal approximator, can be calculated (learned) by 
using  these  training data. Chapter 2 discusses  much broader issues  of statistical 
learning  theory and in that framework  presents support vector  machines as approx- 
imating  models  with  a  powerful  modeling  capacity. 

Feedforward  neural  networks are the  models  used  most  often for solving  nonlinear 
classification and regression  tasks by learning  from data. In addition, feedforward 
NNs are mathematically very  close, and sometimes  even  equivalent, to fuzzy  logic 
models.  Both NN and FL, approximation techniques  can be  given graphical  repre- 
sentation,  which can be called  a  neural  network or a  fuzzy  logic  model.  With  such  a 
representation of NN or FL, tools,  nothing new  is added to approximation theory, 
but from the  point of  view  of implementation (primarily in the sense  of parallel and 
massive  computing)  this  graphical  representation  is  a  desirable  property. 

There  is  a strong mathematical  basis  for  developing NNs in  the  form  of  the  famous 
Kolmogorov  theorem  (1957).  This  theorem  encouraged  many  researchers  but  is  still  a 
source of controversy  (see  Girosi and Poggio  1989;  Kurkova  199 1). The Kolmogorov 
theorem  states, 

Given  any  continuous  function f :  [O, l] ”+ !Rrn, f (x) = y, f can be implemented 
exactly by a  network  with n neurons  (fan-out  nodes)  in an input layer, (2n + 1) 
neurons  in  the  hidden  layer, and m processing  units  (neurons)  in  the output layer. 
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owever,  the  proof of this important theorem  is not constructive  in  the  sense that it 
cannot be  used for network  design.  This  is  the  reason 
const~ctive approaches  developed in the  framework 

Artificial  neural  networks are composed of many  computing  units  popularly (but 
perhaps  misleadingly)  called  neurons. The strength of the  connection, or link,  between 
two  neurons  is  called  the  weight. The values of the wei 
ters and the  subjects of the  learning  procedure  in NNs. 
they  have  different  physical  meanings, and s o m e t ~ e s  

11. Their  geometrical  meaning  is  much  clearer 
shapes of basis fun~tions in  neural  network an 

The  neurons are typically  organized into layers  in  which  all  the neuro~s usually 
possess  the  same  activation  functions (AFs). The genuine  neural  networks are those 

er and at least  two la ers of  neurons-a  hidden  layer ( 
-provided that the L neurons  have  nonlinear and differentiable 

h an NN has  two 
organi~ed as the  elements of the  weight 
matrix of the  hidden  layer  weights and 

degenerates into a 
S in  the  hidden  lay 

network to be a  universal approsimator. Thus the  n 
the  problems  of  representation. The differentiability o 

solution of nonlinear  learning.  (Today, 
e  the  genetic  algorithm,  one  may  also 
the AFs of the  hidden  layer  neurons  a 
he  most  typical  networks  having nondi~erentiable activation  functions.) 

units are merely  fan-out  nodes. ~enerally, there will not be any  processing  in  the 
input layer, and although in  its  graphical  representation it looks  like  a  layer,  the input 
layer  is not a  layer of neurons. Rather, it is an input vector,  eventually a u ~ e n t e d  
with  a  bias tern, whose com~one~ts  will  be  fed to the  next  (hidden or output) layer 
of neural  processing  units.  The  neurons  may be linear  ones  (for 

lems), or they can hav  oidal  activation  functions  (for 

ere,  the input layer is not treated as a  layer of neural  processin 

sed adaptive control schemes or for (financial) 
ons are typically  linear  units.  An  elementary (but 

powerful) feedfo~ard neural  network  is  shown  in  figure  1.1.  This  is  a 
representation of the approximation scheme  (1.1): 

J 

j = l  
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where aj stands for s i ~ o i d a l  activation  functions. This network  is  called  a  multilayer 
. J corresponds to the  number of 
we deliberately  stress  the  fact that 
(~nknown before  learnin contai 

and OL  weights  vector 

= [bl b2 * * 

t  this  point,  a few comments  may be needed.  Figure 1 .l represents  a  general 
structure of multilayer  perceptrons, radial basis  function ) networks, and 

S. In the  case  of  a  multilayer  perceptron, Xn+l will  be the ant term  equal to 
. The  bias  weights  vector can simply  be inte~rated into an HL weights 

n.  After  such  concatenation,  (1.1) can be  simplified to 
networks, x,+l = 0, meaning that there  is no bias input. 

L  bias  term  may be 
n  functions  shown in figure  1.1 are 

s i ~ o i d a l ,  indicating  presents  a  multilayer  perceptron. 
owever,  the struc F networks, and fuzzy  logic 

models are the S tion between si~moidal and 
radial basis  function  networks  is  how  the input to each particular neuron  is  calculated 
(see  (1.6) and (1.7) and fig.  1.2). 

The basic computation that takes  place  in an NN is  very  simple.  After  a  specific 
input vector  is  presented to the  network,  the input signals to all HL neurons uj are 
computed  either as scalar (dot or inner)  products  between  the  weights  vectors vj and 

or as Euclidean  distances  between  the  centers cj of 
ion  functions).  A radial basis AF is  typically para- 

meterized by two  sets of parameters:  the  center c, which  defines  its PO 

second  set  of parameters that d e t e ~ i n e s  the  shape  (width or form) of a 
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+l 

Figure 1.1 
Feedforward  neural  network  that  can  approximate  any sin" + ! B 1  nonlinear  mapping. 

case of a one-dimensional  Gaussian  function  this  second  set of parameters  is  the 
standard deviation 0. (Do not confuse the standard deviation  with  the  sigmoidal 
activation  function 0 given  in  (1.1) and shown  in HL neurons  in  fig.  1.1.) In the  case 
of a multiva~ate input vector x: the  parameters that define  the  shape of the  hyper- 
Gaussian  function  are  elements of a covariance  matrix I=. To put it simply,  the ratios 
of HL bias  weights and other HI, weights  of  sigmoidal  activation  functions  loosely 
correspond to the  centers of RBF functions,  whereas  weights uji, which  define the 
slope  of  sigmoidal  functions  with  respect to each input variable,  correspond to the 
width  parameter of the RBF. Thus,  the inputs to the HL neurons for sigmoidal AFs 
are given as 

ttj=v;x, j =  I ,..., J ,  ( 1 4 
and for RBF activation  functions  the  distances are calculated as 
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W, =c, 

Figure 1. 
Formation of  the  input 
input  to  the  neuron is a 
is a distance r between 
width  of  the  RBF. For 

signal U to the  neuron's  activation  function. Top, sigmoidal  type  activation  function; 
scalar  product U = wTx. Bottom, RBF  type  activation  function;  input  to  the  neuron 
x and  the  RBF  center c ( r  = / / x .  - cII), r depending  on  parameters  of  the  shape or 
a Gaussian  function,  the  covariance  matrix C contains  the  shape  parameters. 

The output from  each L neuron  depends on'the type  of  activation  function  used. 
The  most  common  activation  functions  in  multilayer  perceptrons are the  squashing 
sigmoidal  functions:  the  unipolar  logistic  function  (1.9) and the  bipolar  sigmoidal, or 
tangent  hyperbolic,  function (l.  10).  These  two AFs and their  corresponding  deriva- 
tives  are  presented  in  figure 4.3. 

1 
1 + e-u 

Q = -  

(1.10) 

Figure 1.2 shows  the  basic  difference  in  forming  the input signals U to the A 
multilayer  perceptron and an  RBF neuron. 

All  three  powerful  nonlinear  modeling  tools-a  multilayer  perceptron, an RBF 
network, and an -have  the  same structure. Thus,  their  representational capa- 
bilities are the  same or very  similar  after  successful  training.  All  three  models  learn 
from a set  of training data and try to be as good as possible  in  modeling  typically 
sparse and noisy data pairs  in  high-dimensional  space. (Note that none of the  three 
adjectives  used  eases our learning  from data task.) The output from  these  models  is a 
hypersurface3  in an (32" x space,  where y1 is  the  dimension of the input space and 
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Table 1.4 
Basic  Models  and  Their  Error  (Risk)  Functions 

Multilayer  Perceptron  Radial  Basis  Function  Network  Support  Vector  Machine 
P P P 

E = E (di -f(xi, W))' E = E (di -f(xi, +A@ E = (di "(xi, W ) ) 2  + Q ( l ,  h, v )  
i=1 i=l i=1 v 

Clo.rtmess to duta Closeness to data S~oot?lness CXoseness to data Cupucity of U machine 

m is  the  dimension of the output space.  In  trying to find  the  best  model,  one  should 
be able to measure  the  accuracy or performance of the  model. To do that one  typi- 
cally  uses  some  measure  of  goodness,  performance, or quality  (see  section  1.3). 

This  is  where  the  basic  difference  between  the  three  models  lies.  Each  uses a dif- 
ferent  norm (error, risk, or cost  function) that measures  the  goodness of the  model, 
and the  optimization of the  different  measures  results  in  different  models.  The  appli- 
cation of diRerent noms also  leads to different  learning  (optimization)  procedures. 
This is one of the  core  issues  in  this  book.  Table 1.4 tabulates  the  basic noms (risk or 
error functionals)  applied  in  developing  the  three  basic  networks. 

ic  lies at the  opposite  pole of system  modeling  with  respect  to  the NN 
methods. It is a white  box approach (see  table  1.1)  in  the  sense that it is 

assumed that there  is  already  human  knowledge about a solution.  Therefore,  the 
modeled  system  is  known  (i.e.,  white).  On  the  application  level, FL can be considered 
an efficient tool for embedding  structured  human  knowledge into useful  algorithms. 
It is a precious  engineering tool developed to do a good job of trading OR precision 
and significance. In this  respect, FL models do what  human  beings  have  been  doing 
for a very  long  time. As in  human  reasoning and inference,  the truth of any  state- 
ment, meas~rement, or observation  is a matter of degree.  This  degree  is  expressed 
through the  membership  functions that quantify  (measure) a degree  of  belonging  of 
some  (crisp) input to given  fuzzy  subsets. 

The field  of  fuzzy  logic  is  very broad and covers  many  mathematical and logical 
concepts underlyin~ the  applications  in  various  fields.  The  basics of these  conceptual 
foundations are described  in  chapter 6. In particular, the chapter presents  the funda- 
mental  concepts of crisp and fizzy sets,  introduces  basic  logical operators of con- 

), disjunction (OR), and implication (IF-THEN) within  the  realm of 
fuzzy  logic  (namely,  T-norms and T-conoms), and discusses  the  equivalence  of NNs 
and FL, models.  (However, a deep  systematic  exposition of the  theoretical  issues is 
outside  the  scope of this book.) Furthermore, fuzzy  additive  models (FAMs) are 
introduced,  which are universal approximators in  the  sense that they can approxi- 
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Figure 1.3 
Two different  nonlinear %’ x !R1 functions  (mappings)  to be modeled by a fuzzy  additive  model. 

mate  any  multivariate  nonlinear  function on a  compact  domain to any  degree of 
accuracy.  This  means that FA S are  dense  in  the  space of continuous  functions, and 
they  share  this very  powerful  property  with NNs and SVMs. 

This  section  discusses  how FAMs approximate any (not analytically but verbally 
or linguistically)  known  functional  dependency. A FAM is  composed  of  a  set  of  rules 
in  the  form of IF-THEN statements that express  human  knowledge about functional 
behavior.  Suppose we want to model the two  functions  shown in figure 
to model  verbally  the  functional  dependencies  shown  in  figure  1.3. 
would  contain at least  three IF-THEN rules.  Using  fewer  rules  would  decrease  the 
approximation  accuracy, and using  more  rules  would  increase  precision at the  cost of 
more  required computation time.  This  is  the  classical  soft  computing  dilemma-a 
trade-off  between  imprecision and uncertainty on the  one  hand and low solution  cost, 
tractability,  and  robustness on the other. The appropriate rules for the  functions  in 
figure  1.3  are as follows: 

Left Graph Right Graph 

IF x is low, THEN y is high. IF x is Zow, THEN y is h i g ~ .  
IF x is ~ e d i u ~ ,  T 
IF x is h i ~ h ,  THEN y is Zow. 

These  rules  define  three  large  rectangular  patches that cover the functions.  They are 
shown  in  figure  1.  together  with  two  possible a~proximators for each  function. 

at human beings do not (or only  rarely)  think  in  terrns of nonlinear  func- 
do not try to “draw these  functions  in our mind” or try to ‘‘see’’ them 

as geometrical artifacts. In general, we do not  process  geometrical  figures,  curves, 
surfaces,  or  hypersurfaces  while p e r f o ~ i n g  tasks or expressing  our  knowledge. In 
addition, our expertise  in or understanding of  some functional  dependencies  is  very 
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Y 

Two diEerent functio~s (solid  lines  in  both  graphs)  covered  by  three  patches  produced by I F - T ~ E ~  rules 
and modeled by two possible a~proximators (dashed  and  dotted  curves). 

often  not a structured  piece of  knowledge at all. 
tasks  without  being  able to express  how are we e 
should try, for  example, to explain to a colleague i 

rid in^ a bike,  recognizing  numerals, or s u ~ n g .  
ere are many  steps, both heu~stic and ~a the~a t i ca l ,   be t~een  knowledge or 

expertise and a final  fuzzy  model.  After  all  the  design  steps and computation h 
been co~pleted, this  final  model is a very  precisely  defined nonlinear  function. 
choosing  the  complexity of the  rule  basis,  one  can  control  the  precision of the  fuzzy 
model and trade tbat off against  solution costs. Thus,  one  first  defines  the most rele- 
vant input and output varia~les for a problem. n fuzzy  logic terns, one  must  define 
the  universes of discourse,  i.e.,  the  domains and the  ranges of relevant  variables. 
Then  one specifies  what  is low, ~ ~ ~ i u ~ ,  ~ i ~ ~ ,  ~ o ~ i ~ i v e ~  zero, hot, cold, and so on, in a 

In fuzzy  logic terns, one  defines  the  fuzzy  embers 
ttributes) for the  chosen input and output variables. 

ules, that is, fuzzy  rule 
the  numerical  part- 

)-and to defuzzify the 
ps are  crisp and precise 

~ a t h e ~ a t i ~ a l  o~erations, A soft part in  these  calculations is the  choice of member- 
'p  f~nctions as well  as approp~iate inference  and  defuzzification mechanisn~s. 
ain,  there  is a trade-off  between  simple and fast algorith~s having  low computa- 

tional costs and the  desired  accuracy.  Thus,  the  final ap roxi~ating function  depends 
any  design  decisions  (only  two out of many  po  ble  fuzzy approximators are 

he ~ e s i ~ n  decisions incl~~de the n u m ~ e r ,   s ~ a p ~ s ,  and place~ent§ 
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of the input and output membership  functions,  the  inference  mechanism  applied, and 
the  defuzzification  method  used. 

Let  us  demonstrate  the  fuzzy  modeling  of  a  simple  one-dimensional  mapping 
y = .x2, -3 < x < 0. Choose four fuzzy m e ~ b e r s ~ ~  functions (fuzzy  subsets or 
attributes) for input and output variables as follows: 

Input Variables Output Variables 

For -3 < x < -2, x is very negative. 
For -3 < x < -1, x is slig~tly negative. 
For -2 < x < 0, x is nearly zero. 
For -1 < x < 0, x is very  nearly zero. 

For 4 < y < 10, y is large. 
For 1 < y < 9, y is m e ~ i u ~ .  
For 0 y 4, y is s ~ a l l .  
For 0 < y < 1, y is very small. 

These  fuzzy  membership  functions are shown  in  figure  1 S .  The rule basis for a  fuzzy 
inference  in  the  form of four IF-THEN rules  is 

R1 : IF x is very  negative (VN) ,  THEN y is large (L). 

R2: IF x is slig~tly negative (SN) ,  THEN y is medium ( M ) .  

R3: IF x is nearly  zero (NZ) ,  THEN y is s ~ a l l  (S) .  

8 4 :  IF x is very  nearly  zero ( VNZ), THEN y is very sm~lZ ( VS). 

If  one  is  not  satisfied  with  the  precision  achieved,  one  should  define  more  rules. 
This will  be  accomplished  by  a  finer granulation (applying  smaller  patches) that can 
be realized by  defining more  membership  functions. The fuzzy appro~imation that 
follows  from  a  model  with  seven  rules  is  shown  in  figure 1.6. The seven  fuzzy  rnem- 
bership  functions  (fuzzy  subsets or attributes) for inputs and outputs, as well as the 
corresponding  rule  basis, are defined as follows: 

Input Variables Output Variables 

For -3.0 < x < -2.5, .x is extremely far  from For 6.25 < y < 9, y is very large. 
zero. 
For -3.0 x < -2.0, x is very jbrfrom zero. For 4 < y < 9, y is quite large. 
For -2.5 < x < - 1.5, x is quite far from zero. For 2.25 < y < 6.25, y is large. 
For -2.0 < x < - 1 .O, x is far  from zero. For 1 < y 4, y is m e d i u ~ .  
For -1.5 < x < -0.5, x is nearly zero. For 0.25 < y < 2.25, y is small. 
For - 1 .O < x < 0, x is very  nearly zero. For 0 y < l, y is quite small. 
For -0.5 < x < 0, x is extremely close to zero. For 0 < y < 0.25, y is very small. 
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Figwe 1.5 
Modeling  a  one-dimensional  mapping y = x2 by a fwzy model  with four rules. 



1.2. Basic Tools of Soft ~ o ~ p u t i n g  23 

Y 

10 

8 

6 

4 

2 

Fuzzy approxi~ation using  seven  rules 

- y = x 2 , f o r - - 3 < ~ < 0  

- Approximating curve 

gure 3.6 
Modeling a one-dimensional ~ a ~ p i n g  y = x2 by a fuzzy model with seven  rules. 

1 : IF x is extremely far from zero, THEN y is very large. 

2: IF x is very fur from zero, THEN y is quite large. 

3: IF x i s  ~ u i t e ~ u r  from zero, THEN y is large. 

4: IF x is fur from zero, THEN y is me~ium.  

5 :  IF x is  early zero, THEN y is smalZ. 

6 :  IF x is very  early zero, THEN y is quite small. 

7 :  IF x is e~tremely close to zero, THEN y is very  small 
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The  fuzzy  approximating  function that results  from  a  fuzzy  additive  model  with 
seven  rules  is  indistinguishable  from an original and known  functional  dependency. 
Recall,  however, that structured  human  knowledge  is  typically  in  the  form  of  the 
 linguistica all^ expressed)  rule  basis, not in  the  form of any mathe~atical expression. 
If  one  knew  the  mathematical  expression,  there  would not be a  need for designing  a 
fuzzy  model.  One  could  simply  use  this  known  dependency  in  a  crisp  analytical  form. 

The  fuzzy  additive  model can be represented  graphically by a  network  like  the  one 
shown  in  figure  1.1.  Section 6.2 discusses  such structural equivalence.  The  resem- 
blance,  which  follows from mild  assumptions, can be readily  seen  in  figure 6.25. The 
input membership  functions of a FAM correspond to the HL activation  (basis) 
functions  in MS, and the  centers of the FAM’s output membership  functions  are 
equivalent to the 01, weights  in an NN or SVM model. 

The  fields of learning  from data and soft  computing are mathematically  well-founded 
disciplines.  They are composed of several  classical  mathematics  areas,  shown as a 
“flower  of  learning and soft  computing”  in figure” 1.7.  One  could  say that both 
learning and soft  computing are nothing  but  value-added  applied  mathematics and 
statistics, although this  statement  may be  valid for many other fields as well. This 
book  arose  from a desire to show  how the  different areas depicted  in  figure  l  .7,  nicely 
connected,  compose  the  powerful  fields of learning  from data and soft  computing. 

Figure 1.7 
A ‘“flower  of  learning and  soft  computing”  and its basic  mathematical  constituents. 
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problem,  classical  issues  from approximation theory are considered  first.  This  section 
roughly  follows  Rice  (1 964) and Mason and Parks (1995). 

Two  major  items in an approximation problem are the type of approximating 
function  applied and the  measure of  goodness’  of an approximation. This  is  also 
known as the  question of choosing form and norm. 

The  choice of approximating  function (fom) is  more important than the  choice of 
a  measure of goodness, that is,  a  distance  function  or n o m  that measures  the  dis- 
tance  between f and fa. ~nfortunately, there  is no theoretical  method of determining 
which out of  many  possible  approximating  functions  will  yield  the  best approxima- 
tion. On  the other hand, there are fortunately  only  a few feasible  candidate  functions 
in  use or under  investigation today. The  most popular functions are tangent  hyper- 
bolic,  a few radial basis  functions  (notably  Gaussians and multiquadrics),  polyno- 
mial  functions, and three standard membership  functions  applied  in  fuzzy  models 
(triangle,  trapezoidal, and singleton).  These  functions  are  called  activation,  basis, and 
membership  functions in multilayer  perceptrons; radial basis  function (R 
ularization  networks, and fuzzy  logic  models.  These  models  are,  together  with  sup- 
port vector  machines,  the  most popular soft  modeling and learning  functions.  Their 
mathematical  forms  follow. 

A ~ ~ Z t i Z ~ y e r  ~ e r c e ~ t r o ~  is  a  representative of nonlinear  basis  function  expansion 
(appro~imation): 

N 

i= 1 
(1.11) 

where pi(x7 vi) is  a  set of  given functions  (usually  sigmoidal  functions  such as the 
logistic  function or tangent hyperbolic-see (2.6) and chapter 3), o is  the output from 
a  model, and N is  the  number of hidden  layer  neurons.  Both  the output layer’s 
weights Wi and the  entries of the  hidden  layer  weights  vector v are free  parameters 
that are subjects of learning. 

An   network is  a  representative of a  linear  basis  function  expansion: 

N 

i= i 
(1.12) 

where pi(x) is  a  fixed  (chosen  in  advance)  set of radial basis  functions  (e.g., 
Gaussians,  splines,  multiquadrics). Note that when the  basis  functions pi(s) are not 
fixed, that is,  when their  positions ei and shape  parameters are also  subjects of 
learning (pj = pi(x7 ei, j ) ) ,  RBF networks  nonlinear  approximation  schemes. 
(See chapter 5 for  a  more  detailed  discussi  BF  networks.) 
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A fuzzy logic model, like an BF network, can be a  representative of a  linear or 
nonlinear  basis  function  expansion: 

(1.13) 

where N is  the  number of rules, r is the rules, and basis  functions G(x, ei)  are the 
input membership  functions (attributes or fuzzy  subsets)  centered at ei (see  (2.7) and 
section 6.1). 

In addition to these  models,  two  classic  one-dimensional approximation schemes 
are  considered:  a  set of algebraic pol~nomials 

and a truncated Fourier  series 

+ a, sin(nx) + b, cos(nx). (1.15) 

All but  the  first  approximation  scheme  here are linear  approximations.  However,  all 
given  models are aimed at creating  nonlinear  approximating  functions.  Thus,  the 
adjective linear is  used  because  the  parameters (W, ai, bi, and ri) that are subjects 
of learning  enter  linearly into the  approximating  functions. In other words,  the 
appro~imation depends  linearly upon weights that are the subjects of learning.  This 
very important property of linear  models  leads to quadratic (convex)  optimization 
problems  with  guaranteed  global  minimums  when  the L2 n o m  is  used. 

The  second  major  question to be answered  is  the  choice  of n o m  (the distance 
between  the data and the  approximating  function f a ( x ,  W)). This  choice  is  less 
important than, the  choice of form fa(x, W). If fn(x, W) is  compatible  with an under- 
lying functionf(~) that produced  the  training data points,  then  almost  any  reason- 
able  measure  will  lead to an acceptable approximation to f(x). If f u ( x ,  W) is not 
compatible  with f ( x ) ,  none of the noms can  improve  bad  approximations to f ( x ) .  
However,  in  many  practical  situations  one n o m  of approximation is  naturally  pre- 
ferred  over another. 

The  norm of approximation is  a  measure of  how  well a specific approximation 
fa(x) of the  given  form  matches  the  given  set of  noisy data. Norms  are  (positive) 
scalars  used as measures of error, length,  size,  distance, and so on,  depending on 



28 Chapter 1. Learning  and  Soft  Computing 

context.  Here  a n o m  usually  represents an error. The  most  common  mathematical 
class of norms  in  the  case of a  measured  discrete data set  is  the LP ( 
The LP norm  is  a p-norm of an error vector e given as 

(1.16) 

where P indicates  the size  of the  training data set, that is,  the  number of training data 
and o stand for P-dimensional  vectors of desired 

l  network. Note that (1.16)  is  strictly  valid for an 
or for an NN with  a  single output layer neuron. For more OI, neurons,  a n o m  
would  be  defined as a  proper  matrix nom. Assuming that the  unknown  underly- 
ing  function f ( x )  is  given  on a  discrete data set  containing P measurements 
f ( x &  f ( x 2 ) ,  . . , f ( x p ) ,  the standard bp noms in  use are  defined as 

P 

h :  l l f  - f,lll = (absolute  value) 
i 

P 
L2: IIJ’ - .f;l12 = ( I f (x i )  - fa ( x i )  1 2, (Euclidean nom) 

i 

(1.17) 

(1.18) 

LW: I l f  - f ~ l l ~  = max I f (x i )  - J;(xi)I (Chebysbev, unifom? or 
infinity norm) (1.19) 

The noms used  during an optimization of the  models are not  only standard LP 
noms. Usually rather more  compl  ath he ma tical structures  are  applied  in the form 
of cost or e~or~functions that enforce  the  closeness to training data (most  typically 
measured by an L2 or L1 nom) and that measure  some  other  property  of an 
a~proximating function  (e.g.,  smoothness,  model  complexity,  weights magnitude). 
These noms (actually  variously  defined  functionals that do not possess  the  strict 
mathematical  properties  required for norms)  are  typically  composed of two parts. 
The first  component  is  usually  a standard L2 (or tl) nom, and the  second  is  some 
penali~ation term  (see  table  1 .4 and equations (2.26)-(2.28)).  Vapnik’s  8-insensitive 
loss  function (nom), which  is  particularly  useful for regression  problems,  is intro- 
duced  in chapter 2. 

The Chebyshev (or unifom) n o m  is an LP n o m  called an infinity  norm by virtue 
of the  identity 

(1 .20) 
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The  choice of the appropriate norm or a  measure of the  approximation’s  goodness 
depends  primarily  on  the data and on the  simplicity of approximation and opti- 
mization  algorithms  available.  The L2 norm  is  the  best  one for data corrupted with 
normally  distributed (Gaussian) noise. In this  case, it is  known that the  estimated 
parameters or weights  obtained  in L2 norm  correspond to the  maximum-likelihood 
estimates.  The L1 norm  is  much  better than the  Euclidean n o m  for data that have 
outliers  because  the L1 n o m  tends to ignore  such data. The Chebyshev  norm  is  ideal 
in  the  case of exact data with errors in  a  uniform  distribution. 

In many  fields,  particularly  in  signal  processing and system  identification and 
control, the L2 or Euclidean  norm  is  almost  universally  used, for two  reasons. First, 
the  assumption about the Gaussian  character of  the  noise  in  a control systems  envi- 
ronment is an acceptable and reasonable  one.  Second,  the L2 norm  is  mathematically 
simple and tractable. 

Very often,  a  measure of goodness or closeness  of approximation used  during  a 
learning  stage  does not satisfy (l 17)-(  1.19) or other known  properties of norms, 
and hence  is not a nom. For example,  the  most  common  deviation  from  a “pure” 
L2 norm  is  the  use of the  sum  of error squares as a standard cost  function  in NN 
learning.  The  sum of error squares  is the measure  derived  from  the  norm (it is  a 
slightly  changed  version of a  Euclidean  norm  without  square root operation), but its 
minimization  is  equivalent to the minimi~ation of the L2 norm  from  which it is 
derived. 

Now that the  concepts of form  (type of function  used to approximate data) and 
norm  (measure of  closeness  of approximation) have  been  introduced,  a natural 
question  is,  what  is  the  best  approximation?  Of  course,  in  order to achieve  better 
approximations,  the approximants will  generally  have to be  of higher  and  higher 
degree.  An  increase  in  degree,  usually  leads to overfitting,  however.  This  problem  is 
discussed  in  detail throughout the  book. 

Given  the  set Sn of approximating  functions  (say,  polynomials of sixth  order, or 
NNs with six HI, neurons, or fuzzy  models  with six rules, n = 6) ,  is  there  among the 
elements of S, (among  all  possible  polynomials of sixth  order, or NNs with  six HL, 
neurons,  or  fuzzy  models  with six rules)  one that is  closer to given data points f ( x i ) ,  
i = 1, P, than any other element  (function,  model,  network) of S,? If there  is, it is 
known  as  the best appro~i~at ion to f (x). 

Note, however, that the  best approximation property  depends  upon  the n o m  
applied.  Change  the  norm (the criterion of  closeness  of approximation) and the  best 
approximation will change.  Generally,  the  best approximation in  the LP norm  is not 
the  same as the  best approximation in  the L, norm ( p  $ 4 ) .  This  is  shown  in  the 
following  one-dimensional  continuous  example  (see  also  problems  1.8 and l .g). 
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.I ~pproximate y = x4 over [O, l] by a  straight  line &(x) so that 

1 lo (x4 - (x) ) 2 dx is ~ i ~ i m u m ,  

Note that y = x4 is  given as a continuous fu~ction, not as a  set  of  discrete  points. 
propriate here to use n o ~ s  ~efined over an i n t e ~ a l  that apply an 

integral operator instead of equations (1.17)-( 1.19), which comp~se a s u m ~ i n  
erator. Three  different  best approxi~ations (solutions) co~espon~ing to the  given 
cost  functions ( n o ~ s )  are 

- - (solid  line  in fig. 1 .S), 

(dashed  line  in  fig. 1 .S), 

&(x) = x - 0.236 (dotted line  in fig. 1.8). 

Y t  

6 

~ ~ u r ~  1.8 
Best  least  square  (solid),  penalized  least  square  (dashed),  and  uniform  (dotted)  linear approxi~ations to x4 
on  [0, l]. 
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The best approximation is  unique for all  strict  norms, that is, for 1 < p < 00. Thus, 
the  best  approximation  with an L2 n o m  is  unique, but this  property  is not, for 
example,  shared  with L1 and L,  noms. For more on the  problem of a norm's 
uniqueness, see the  related  problems  in  the  problems  section of this chapter. 

efore  examining  the approximation properties of models  used  in  this book, one 
can consider  some  basic  shortcomings of classical approximation schemes. 
torically,  there are two standard approximators: algebraic and t r i~onomet~c 
nomials.  The  interested  reader  should  consult  the  vast literature on  the  theory of 
approximation to find  discussions on the  existence and uniqueness of a solution,  the 
best approximation calculation and its  asymptotic  properties, and the  like. 
start with  polynomial approximators of a one-dimensional  function  given by discrete 
data. In  trying to learn about the  underlying  dependency  between  inputs and outputs 
we are concerned  with  the error at all  points  in  the  range, not only at the  sampled 
training data. Example  1.2  shows the deficiency  of  polynomial  approximations.  They 
behave  badly  in  the  proximity of domain  boundaries  even  though  they are perfect 
interpolators of  given training data points. 

Approximate  function f ( x )  = 1 /( 1 + 25x2) defined  over  the  range 
[- l ,   + l ]  and  sampled at 21 equidistant  points xi, i = 1, 21,  (i.e., P = 21)  by  poly- 
nomials of twelfth,  sixteenth, and twentieth  orders. 

For this particular function (see  fig.  1.9) it is  found that for any  point x # xi, where 
1x1 > 0.75,  the error Ifa(x) - f(x)I  of the approximation increases  without  bound as 
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Fi~ure 1.9 
Polynomial  approximations of a  function 1 /( 1 + 25x2). 
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the  order of the  approximating  polynomials n increases.  This  is  true  even though 
f@(xi) = f ( x i )  when the order of polyn~mial n = P - 1,  where P is the number of 
training data. In this  example f , ( x i )  = f ( x i )  for a  twentieth-order  polynomial,  which 
means that both L1 and L2 noms are equal to zero,  wrongly  suggesting  perfect 
errorless approxi~ation over the whole  domain of input variable x. 

When  considering an error over  a  whole  range, a more  satisfactory  objective  is to 
make  the  maximum error as small as possible.  This is the ~ i n i ~ u x  or Chebyshev  type 
of approximation where  the error is  defined  by  (1.19) and the  function f,(x) is  chosen 
so that L,  is ~ i n i m i ~ e d .  It is  in  this  context that the  Chebyshev  polynomials  have 
found wide application. 

There are also  many other polynomials,  notably  a  class  of orthogonal polynomials, 
that can be  used for approximations.  All of them  have  similar  deficiencies  in  the  sense 
that  as the  number of training  points P increases, the approximation  improves  near 
the center of the  interval  but  shows  pronounced  oscillatory  behavior at the  ends of 
the  interval. 

Another popular classical approximation scheme  involves rational functions (the 
ratio of two  polynomials)  given as 

(l  .21) 

i=O 

These  functions are much  more  flexible,  but  they are nonlinear  approxirnators  (with 
respect to the denominator weights vi) and learning of the  weights vi is not an easy 
task.  They are of historical  significance  but are not used as basis  functions in this 
book. 

Both  the  polynomials and trigonometric  sums  have  similar disa~vantages in that 
they cannot take sharp bends  followed  by  relatively  flat  behavior. 
defined  over  the  whole  domain  (i.e.,  they are globally  acting  activation  functions), 
and they  generally  vary  gently.  Such  characteristics can be circumvented by increas- 
ing  the  degree of  these  functions, but this  has as a  consequence  wild  behavior of the 
approximator close to boundaries  (see fig. 1 .g). 

The best  candidates for approximating  functions that naturally  originate  from 
polynomials are the piecewise ~ o l y n o ~ j u l  f~nctions, the  most  popular  being  various 
spline f~nctions. The  spline  functions are special  cases of RBF functions;  they are 
derived  in chapter 5. They are defined  by  dividing  the  domain  of  the input variable 
into several  intervals by a  set of points  called joints or knots. The approxi~ating 
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function  is  then a polynomial of  specified  degree  between the  knots.  The approxi- 
matiqn  is  linear  for  prespecified and fixed knots.  However,  the  whole  approximating 
scheme  is  nonlinear  when  the  positions  of  knots are subjects of learning.  The  learning 
of knot positions,  being a nonlinear  optimization  problem,  is  complex and generally 
not an easy task. 

t  is  interesting to note that in  the u~variate case  (for  one-dimensional inputs) 
braic  polynomials,  trigonometric  polynomials, and splines  all  have  the  property 

of providing a unique  interpolation  on  a  set of distinct  points  equal  in  number to the 
number of approximation pa~dmeters (weights).  However,  in  the  multivariate  case it 
is not usually  possible to guarantee a unique interpolant for these  basis  functions, and 
hence a best  approximation is not necessarily  unique.  Problem  1.1  1  deals  with  the 
uniqueness of a polynomial approximation in a bivariate  case.  However, it deliber- 
ately  emphasizes a kind of pathological  case. It is important to be aware of possible 
pitfalls,  but  there are some  very  nice  results  in  applying  polynomials  in support vec- 
tor machines  (see chapter 2) that exploit  their  properties. At the  same  time, RBFs 
uniquely  interpolate  any  set of data on a distinct input set  of training data points. 
This  is  but  one of  nice properties of F networks (RBF approximation models). 

Figure 1.10 shows an interpolati of  six (P = 6) random data points  using  a 
h order. A perfect inte~olation is  achieved  because  the  Vander- 

(1.22) is nonsingular.  (These  matrices  often  occur  in  polynomial 
nal  processing, and error-correcting  codes.)  owever,  this  matrix 

X 
-2 t , 

0 l 2 3 4 5 

Figure 1.10 
Interpolation  and approxi~ation polynomials of fifth  order  (dashed)  and  third  order  (dotted)  to  six  highly 
noise-contaminated data points  obtained by  sampling  the straight line  (solid). 
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is  notorious.  Even for modest  sizes of P, it  is  very  ill  conditioned  (its deteminant is 
very  small), and solutions  may be subject to severe  numerical  difficulties.  The  inter- 
polation  curve  (dashed)  is  a  solution of a  linear  system  of  equations, and it is  a 
(unique)  least-squares  solution, as is  the  approximation  curve (dotted). The latter is, 
however,  a  third-order  polynomial approximation curve. It is  also  the  best  approxi- 
mation in  the  least-squares sense but no longer  passes through the  training data 
points. 

An int~r~olating  solut~on results  from  solving  the  following  system of linear equa- 
tions: 

WO + w~x; + w 2 x ;  + w3x; + w 4 x i  4 + w5xi 5 = yi ,  i = 1,6, 

which  can  be  expressed  in  a  matrix f o m  as 

In this  case, input vector S = [O - 

(1.22) 

3  4 51 and output vector y = 
0.69  1.03 l .26  8.03 4.451 ”. A  nonsingular Vandemonde matrix 

1 0 0  0 0 0 
l 1 1  1 1  1 
1 2 4  8 16 32 
1  3  9 27 81 243 
1  4 16 64 256 1024 
1 5 25 125  625 3125 

The  solution  vector vv to (1.22) that ensures an interpolation is 

-‘y = 1-10.84  18.57  -11.60  2.99  -0.26 1.83IT. 

An a ~ ~ r o x i ~ a t j n g  solution using  a  polynomial of third  order  (shown  in  fig. l .  10 as 
a dotted curve)  is  obtained by solving  the  following  overdetermined  system of  six 
equations in four unknowns: 

WO + W I X ;  + w 2 x i  + w3xi = yi ,  i = l ,  6, 2 3 
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or in  matrix  form, 
- -. - 

1 0 0  0 

~ 

1.83 

1.03 

~~~~ 

0.69 

1 3 9  27 1.26 
l  4  16  64 ~3 8.03 
1  5  25  125  4.45 

__ - 

- - 

(1 23) 

The  best  solution, a weights  vector W, that results  from an approximation in  the  least 
squares sense  is obtained as follows: 

‘y = [--5.17  2.96  -0.36  2.25’JT, 

denotes  the  pseudoinversion of a rectangular  matrix 
e set  of training data points  is  interpolated by using ar  splines and cubic 

splines; the  interpolating  curves  shown  in  figure 1.1 1. 
The  fifth  column  in a matrix  belonging to linear  splines  in  (1.24)  corresponds 

to the  linear  spline  centered at x = 4  (thick dotted spline). Matrix 
design matrix. The interpolation functions that are obtained by using  spline  functions 
as shown  in  figure  1.11  belong to radial basis  functions  network  models. Chapter 5 

12T Y 
10 

Cubic  splines  interpolation 
P 

I Linear  splines  interpolation ‘\\ 

-~ 
1 2 3 4 5 

-2 

Figure 1.11 
Interpolation by linear  and  cubic  splines.  Training data set  is  the  same  as  in  figure 1.10. Fifth  linear  spline 
corresponds  to  fifth  column of a  matrix X given  in (1.24). 
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discusses  these  networks,  also  known as regularization  networks. Chapter 5  also 
presents  the  origins  of  the  linear and cubic  splines  applied  here. 

~ o ~ e s p o n d i n g  systems of linear  equations for both interpolations  in  matrix  form 
and solution  vectors vv are  as  follows. 

For linear  splines, 

0 1 2 3 4 5  
l 0 1 2 3 4  
2 1 0 1 2 3  
3 2 1 0 1 2  
4 3 2 1 0 1  
5 4 3 2 1 0  

For cubic  splines, 

1.83 
0.69 
1.03 
1.26 
8.03 
4.45 

i l25  64  27 8 1 A ~~a 64  27 8 1 0 

* 
l  .83 
0.69 
1.03 
1.26 

' 

8.03 
4.45 

- - 

- .,I 

(1.24) 

(1.25) 

The solution  vectors are 

WL = [0.06  0.74  -0.057  3.27  -5.17  2.4163IT. 

WC = E0.59 -1.66  2.55  -4.43  3.39 -0.9165]T. 

As long as the  dimensionality of input vectors is not too high,  many  classical 
approxi~ation tools  may be appropriate for modeling  training data points.  However, 
in  modern  soft  computing, the di~ensionality of input vectors is very  high; it may 
go to dozens of thousands. In such  high-dimensional  spaces, data are sparse, and 
modeling  underlying  dependencies  is  a  formidable task. NNs, SVMs, and FL models 
are approp~ate tools for such  tasks.  Their  theoretical interpolation and approxima- 
tion capacities are briefly  discussed  here. Chapters 2-6 treat these  issues  in  more 
detail. 

S and FL models are u ~ i v ~ r s a ~  a p p r o ~ i ~ a ~ o r s  in  the  sense that they can 
a p p r o ~ i ~ a t e  any  function to any  degree of accuracy  provided that there are enough 
hidden  layer  neurons or rules.  The  same can also be stated for SVMs. Without any 



1.3. Basic  Mathematics of Soft C o m p ~ t i ~ g  37 

doubt, such  powerful appro~imating faculties are the foundation of, and theoretical 
justification for, the wide application of NNs and FL models. 

Following are the  classic ~eierstrass theorem for the approximation by poly- 
nomials;  the Cybenko-Ho~k-Funahashi theorem  (Cybenko 1989; Hornik, Stinch- 
combe, and White 1989; Funahashi 1989), which  states  identical  abilities of  sigmoidal 
functions; and the  theorem for universal approximation properties  using  the  Gaussian 
(radial basis)  activation  functions. 

CLASSICAL  WEIERSTRASS THEOREM The  set Pia,b] of all  polynomials 
n 

j=O 
(1.26) 

is dense  in C[a, b]. In other words,  given f E C[a, b] and E > 0, there  is  a  polynomial p 
for  which 

I&) - f ( x )  I E ,  for all x E fa, b]. 

C ~ E N K O - H O R N I K - ~ ~ S H I  THEOREM Let cr be any  sigmoidal  function and Id  the 
d-dimensional  cube [0, 1 I d .  Then  the  finite  sum of the  form 

n 

j= l 
( 1  .a?) 

is  dense  in C[Id]. In other words,  given f E C[Id] and E > 0, there  is a surn &(x) for 
which 

Ifa(x) - f ( x ) l  E ,  for all x E I d ,  

where wj, v, and bj represent  OL  weights, L weights, and bias  weights  of  the  hidden 
layer,  respectively. 

THEOREM FOR THE DENSITY OF GAUSSIAN FWNCTIONS Let G be a  Gaussian  function 
and Id the  d-dimensional  cube [0, lid. Then  the  finite sum of the form 

n 

j=  1 
( l  .28) 

is  dense  in CIId]. In other words,  given f E C[Id] and E > 0, there  is  a  sum fa( 
which 

Ifa(x) - f ( x ) l  E ,  for all x E I d ,  
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where wi and Ci represent OL weights and centers of L multivariate  Gaussian 
functions,  respectively. 

The same  results of universal approximation properties  exist  for  fuzzy  models, too. 
Results of this  type can also be stated for many other different  functions (notably 
trigonometric  polynomials and various  kernel  functions).  They  are very c o m o n  in 
approximation theory and hold  under very  weak assumptions.  Density  in  the  space 
of continuous  functions  is  a  necessary  condition that every  approximation  scheme 
should  satisfy. 

However,  the  types of problems  in  this  book are slightly  different. In diverse  tasks 
where NNs and SV S are successfully  applied,  the  problem  is  usually not one of 
approximating  som ontinuous univariate f ( x )  or multivariate f ( x )  function  over 
some  interval.  The  typical  engineering  problem  involves  the interpolation or approxi- 
mation of  sets  of P sparse and noisy  training data points. 

S will  have to model  the  mapping  of  a  finite  training data set  of P 
training patterns x to the co~esponding P m-~i~ensional output 

(desired or target) patterns y. (These y are denoted by during  the  training,  where 
stands for desired.) In other words,  these  models  should  model  the  dependency (or the 
underlying  function,  i.e.,  the  hypersurface) f :  (31" "+ !Rrn. In the  case of classification, 
the  problem  is to find  the disc~minant hyperfunctions that separate m classes  in an E- 

dimensional  space. The learning (adaptation, training phase) of our models  corre- 
sponds to the  linear or nonlinear opti~ization of a  fitting  procedure  based on 
knowledge of the  training data pairs.  This  is  a  task of hypersurface  fitting  in  the 
generally ~gh-dimensional space (31" @ !R2". R F networks  have  a  nice  property that 
they can interpolate any  set of P data points.  The  same  is  also true for fuzzy  logic 
models, support vector  machines, or multilayer  perceptrons, and this  powerful prop- 
erty is the  basis for the  existence  of  these  novel  modeling  tools. 

To i ~ t e ~ ~ ~ Z ~ t e  the data means that the  interpolating  function f ,(x,)  must  pass 
through each particular point  in (31" @ !Rrn space.  Thus, an interpolating  problem  is 
stated as follows: 

of the input pattern vectors x E llZn and output desired 
An interpolating  function  is  such that 

Given  is  a  set of P measured  (observed) data: X = { xp, 

, p-  (l 29)  

Note that  an interpolating  function  is  required to pass through each  desired  point 
Thus,  the  cost or error function (nom) E that measures  the  quality  of  modeling (at 
this  point, we  use the  sum of error squares)  in the case of interpolation must be equal 
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to zero 

P P 
(1.30) 

p=l p==l 

Strictly  speaking, an interpolating  function ~ ~ ( x ~ )  and therefore the error function E, 
are  parameterized by approximation coefficients  here  called  weights, and a  more 
proper notation for these  two  functions  would  be J;(x, W, v) and E(x,  
W and v are typically  a  network’s output layer  weights and hidden 
respectively.  Writin  this  dependency  explicitly  stresses  the  fact that the  weights will 
be subjected to an timization  procedure that should  result  in  a  good fa and a  small 
E. (Generally,  weights are organized  in matric 

Note that in  order to interpolate data set X ,  ork, for example,  should 
have  exactly P neurons  in  a  hidden  layer.  Work  with Nlils typically  involves  sets 
of h~ndreds of thousands of patterns (measurements),  which  means that the  size  of 
such an interpolating  network  would  have to be large.  The  nurnerical  processing of 
matrices of  such  hi h  order  is  very intractable. There  is another important reason 
why the  idea of dat inte~olation is  usually  not  a  good  one.  Real data are corrupte~ 
by noise, and interpolation of  noisy data leads to the  problem of overfitting. What we 
basically  want NNs to do is to model  the  underlying  function  (dependency) and to 
filter out the  noise  contained  in  the  training data. There are many diAFerent techniques 
for  doing  this, and some  of  these  approaches are presented later. Chapter 2 is  devoted 
to this  problem  of  matching  the  complexity of a  training data set to the  capacity of an 
approximating  model.  he approach presented  there  also  results  in  models  with 
fewer  processing  units ( L neurons) than there are training patterns. 

er of neurons  in  a  hidden  layer and the  parameters that define  the  shapes 
activation  (basis)  functions are the  most important design  parameters 

with  respect to the approximation abilities of neural  networks. 
n u ~ b e r  of input com~onents (features) and the  number of o 

a1 determined by the very nature of the  problem.  At  the  same  time,  the  number 
neurons,  which  primarily  determines  the  real  representation  power of a neural 

network and its  generalization  capacity,  is  a  frce parameter. In the  case of general 
nonlinear  regression  performed by an NN, the  main  task  is to model  the  underlying 
function  between  the  given  inputs and outputs and to filter out the  disturbances 
contained  in  the  noisy  training data set.  Similar  statements can be made for pattern 
recognition  (classification)  problems. In the SVM field,  one can say that the model 
complexity  (capacity)  should  match  the data complexity  during  training. 
pacity  is  most  often  controlled by the number of neurons  in the hidden  layer. In 
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changing  the  number of HL nodes,  two  extreme  solutions  should be avoided:  filtering 
out the  ufiderlying  function (not enough HL, neurons) and modeling the noise or 
overfitting  the data (too many HL neurons). Therefore,  there  is  a  need to comment 
on appropriate measures of model  quality. 

In the  theory of learning  from data, the  problems of measuring  the  model's  per- 
formance are solved  by  using  different  approaches and inductive  principles.  Applying 
some  simple  norm, for instance,  any LP norm, is  usually not good  enough.  Perfect 
performance on training data does not guarantee good  performance on previously 
unseen inputs (see  example  1.3).  Various  techniques  aimed at resolving  the  trade-off 
between  performance on training data and performance on previously  unseen data 
are in use today. The  concept of simultaneous  minimization of a  bias and a  variance, 
known as the ~ius -uu~ iu~ce  ~ i Z e ~ ~ u ,  originated  from  the  field of mathematical sta- 
tistics  (see chapter 4). Girosi  analyzed  the  concepts  of an approximation error and 
an estimation error (see  section  2.3).  Finally,  in  the  field of S W "  one  applies  the 
structural risk ~ n i m ~ a t i o n  principle,  which  controls both the  empirical  risk and a 
confidence  interval at the  same  time. In all  three  approaches,  one  tries to keep both 
components of an overall error or risk as low as possible.  All  these  measures of the 
approximation performance of a  model are similar  in  spirit but originate  from  dif- 
ferent  inductive  principles, and they cannot be made  equivalent. 

One  more  classical  statistical tool for resolving  the  trade-off  between  the  perfor- 
mance on training data and the  complexity of a  model  is  the  cross-validation  tech- 
nique.  The  basic  idea of the  cross-validation  is  founded on the  fact that good  results 
on the training data do not ensure  good  generalization  capability.  Generalization 
refers to the  capacity of a  neural  network to give correct  answers on previously  unseen 
data. This  set of previously  unseen data is  called  a test set or uuZid~tio~ set of pat- 
terns.  The standard procedure to obtain this particular data set  is to take out a part 
(say,  one quarter) of all  measured data, which  will not be  used during  training but in 
the  validation or test  phase  only.  The  higher  the  noise  level  in  the data and the  more 
complex  the  underlying  function to be modeled,  the  larger  the  test  set  should  be. 
Thus,  in  the  cross-validation  procedure  the  performance of the  network  is  measured 
on the  test or validation data set,  ensuring  the  good  generalization  property of a 
neural  network. 

Example 1.3 demonstrates  some  basic  phenomena  during  modeling of a  noisy data 
set. It clearly  shows why the  idea of interpolation is not very sound. 

Ze 1.3 The dependency (plant or system to be identified)  between  two  vari- 
ables  is  given by y = x + sin( 2x). Interpolate and approximate  these data by an RBF 
network  having  Gaussian  basis  functions by  using a  highly corrupted training data 
set  (25% Gaussian  noise  with  zero  mean)  containing 36 measured patterns (x, d) .  
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Figure 1.12 
Modeling  of  noisy data by an RBF (reg~arization) network  with  Gaussian  basis  functions. Lejt, inter- 
polation  and ove~tting of noisy data (36  hidden  layer  neurons). Right, approximation  and s~oothing of 
noisy data (8 hidden  layer  neurons).  Underlying  function  (dashed)  is y = x + sin(2x). Number of training 
patterns  (crosses) P = 36. 

Figure  1.12  shows  the interpolation and the approximation solutions.  Clearly, 
during  the  optimization of the  network's  size,  one  of  the  smoothing  parameters  is  the 
number of HI, neurons that should be small  enough to filter out the  noise and large 
enough to model  the  underlying  function.  This  simple  example of a  one-dimensional 
mapping  may  serve as a  good  iilustration of overfitting. It is  clear that perfect  per- 
formance on a  training data set  does  not guarantee a  good  model  (see  left graph, 
where  the  interpolating  function  passes through the  training data). The same  phe- 
nomena will  be  observed  while fitting  multivariate  hypersurfaces. 

In  order to avoid  overfitting,  one  must  relax an interpolation requirement  like 
(1.29) while  fitting  noisy data and instead do an a ~ ~ r o ~ i ~ a t i o ~  of  the  training data 
set that can be  expressed as 

, p =  1, ..., P. (1.31) 

In the  case of approximationJ the error or cost  function is not required as E = 0. The 
requirement  is  only that the error function 

P P 

p=l p=1 
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be small and the  noise  be  filtered out as much as possible.  Thus, approximation is 
related to interpolation but with  the  relaxed  condition that  an approximant -(,(xp) 
does  not  have to go through all  the  training data points. Instead, it should approach 
the data set  points as closely as possible,  trying to minimize  some  measure  of  the 
error or disagreement  between  the  approximated  point &(xp) and the  desired  value 
These  two  concepts of curve  fitting are readily  seen  in  figure l .  12. In real  technical 
applications  the data set  is  usually  colored or polluted  with  noise, and it is better to 
use  approximation  because it is  a  kind of smooth  fit of  noisy data. If  one  forces an 
approximating  function to pass  each  noisy data point, one  will  easily  get a  model 
with  high  variance and poor  generalization. 

The interpolation and the  approximation  in  example 1.3 were done by an RBF 
neural  network as given  in  (1.28),  with 36 and 8  neurons  in  the  hidden  layer,  respec- 
tively.  Gaussian  functions (HL activation  functions  here) were  placed  symmetrically 
along  the  x-axis,  each  having  the  same standard deviation a equal to double  the  dis- 
tance  between  two  adjacent  centers.  With  such  a  choice of a, a  nice  overlapping of 
the basis (activation) functions  was  obtained. Note that both parameters  (centers ci 
and standard deviations ai) of Gaussian  bells  were  fixed  during  the  calculation  of  the 
best output layer  weights wi. (In terns of NNs and FL models,  the  hidden  layer 
weights and parameters that define  positions and shapes of membership  functions, 
respectively,  were  fixed or frozen  during  the  fitting  procedure.)  In  this  way,  such 
learning  was  the  problem of linear approximation because  the  parameters W i  enter 
linearly into the  expression for the  approximating  function f,(x). In other words, 
approx~ation error e(w) depends  linearly  upon  the  parameters  (here  the OL weights 
wi). Note that in  this  example  the approximation function &(x) represents  physically 
the output from  the  single OL neuron, and the approximation error for  a pth  data 
pair (xp,  dp) can be written as 

ep = ep(w) = dp - f;2(xp, W) = dp - o(xp ,w) .  (1.32) 

Generally, x will  be the (n + 1)-dimensional  vector x;. When approximation error e 
depends  linearly  upon  the  weights,  the error function E(w) ,  defined as the  sum of 
error squares,  is  a  hyperparaboloidal  bowl  with  a  guaranteed  single  (global)  mini- 
mum. The weights  vector W*, which  gives the  minimal  point Emin = E(w*), is  the 
required  solution, and in  this  case  the  approximating  function &(x) from  (1 28) or 
(1.33)  has  a  property of  best approximation. Note that despite  the  fact that this 
approximation problem  is  linear,  the  approximating  function &(x) is nonlinear, 
resulting  from  the  summation of  weighted nonlinear  basis  function pi. 

A variety of basis  functions for approximation. are available  for use  in NNs or FL 
models. (In the NN area, basis  functions are typically  called  activation  functions, and 
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in  the field  of FL models,  the  most  common  names are membership  functions,  pos- 
sibility  distributions, attributes, fuzzy  subsets, or degree-of-belonging  functions.)  The 
basic  linear  approximation  scheme, as given  by  (1.12)-(  1.15), can be rewritten as 

N 
(1.33) 

i= 1 

where N is  the  number of HL neurons, and x is an n-dimensional input vector. 
Equation (1.33)  represents an 93' "+ 93 mapping, and fa (x) is a hypersurface  in an 
(n  + 1 )-dimensional  space. 

In  the  learning  stage of a linear  parameters  model  the  weights wi are  calculated 
knowing  training patterns {xi, di}, i = 1, P, and equation  (1.33)  is  rewritten  in  the 
following  matrix  form for learning  purposes: 

where P is  the  number of training data pairs, and N is t 

W1 

W2 
(1.34) 

he number of neurons.  Typi- 
cally, P > N ,  meaning that is a rectangular  matrix  and  the  solution  vector W 

substituted  in  (1.33) produ S an approximating  hypersurface.  When P = N ,  
matrix X is  square and fa(x) is an interpolating  function  passing  through  each 
training data point. It is assumed that none of the  training data points  coincide,  i.e., 

# 4, i = l ,  P, j = l ,  P, i # j .  In this  case, and when P = N ,  a design  matrix 
is  nonsingular. 
The  solution  weights  vector W is  obtained  from 

(1 -35) 

where X' denotes  pseudoinversion of a design  matrix X. The solution  (1.35)  is  the 
least-squares  solution. For P = N ,  $- = X". Elements of a design  matrix 
the  values  (scalars) of a basis  function qi(x) evaluated at the  measured  values Xi of 
the  independent  variable.  The  measured  values of the  dependent  variable y ,  i.e., an 
unknown  function f(x), are the ele nts of a desired  vector Note that for an 
!Rn "+ 93' mapping, a design  matrix  is  always a (P x N )  arr , independently of 
the  dimensionality n of an input vector x. When P > N ,  the  system of linear equa- 
tions  (1.33)  has  more equations than unknowns  (it  is o ~ e ~ d e ~ e ~ ~ i n e ~ ) .  Equation 
(1.23)  is an example of such an overdetermined  system.  An important and widely 
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used  method for solving  overdetermined  linear equation systems  is  the ~ e t ~ o ~  of 
least s ~ ~ a r ~ s  (see a solution to (1  -23) and (1.34)). Its application  leads to relatively 
simple  computations, and in  many  applications it can be motivated by statistical 
arg~ments. 

Unlike  the  previous  linear  approximations,  the  one  given  in (1.2’7)  represents a 
nonlinear  multivariate  approximation  (now  is a vector and not a scalar): 

n 

(1.36) 

where of typically  denotes  sigmoidal, ( -shaped)  functions. ( ote that biases bi can 
be substituted into the  correspondillg  weights  vector i as the  last or the  first  entries 
and are not nieces  rily  expressed separately.  hus,  bias h is  meant  whenever  weights 
vector v is  used). S before, . ~ ~ ( x )  is a non1 r function? and its  characteristic as a 
nonlinear appro~imation results  from  the  fact that fa( is  no  longer  the  weighted 
sum  of $xed basis  functions.  The  positions and the  pes of basis  functions oi, 

weights  vectors vi (and biases bi), are also  the  subjects of the opti- 
due.  The approximating  function &(x) and the error function E 

depend now on  two  sets of  weights: 
linearly  upon  the HL weights  matrix 
one  wants to stress  this  fact,  one  may  write  these  dep 

). Now,  the  problem of finding  the  best 
problem?  which  is  much  more  complex 
ion, or searching  for  the  weights that result  in  the  smallest error func- 
will  now  be a  lengthy  iterative  procedure that does not guarantee 

finding  the  global mini~um. This  problem  is  discussed  in  section  1.3.2 to show  the 
need  for, and the  origins  of,  nonlinear  optimizatioll. Chapter 8 is  devoted to the 
methods of nonlinear  optimization? and these  questions  are  discussed  in  detail  there. 

ee a 

Most of the  complex,  very  sophisticated art of learning  from data is  the art of opti- 
mization. It is  the  second  stage  in  building  soft  computing  models,  after  decisions 
have  been  made about what  form-approximating  function,  model,  network  type, or 
machine-to  use. In this  second  stage,  one  first  decides  what is to be optimized,  i.e. 
what n o m  should be used.  There are many  possible  cost or error (risk)  functionals 
that can be applied  (see  (2.26)-(2.28)).  Then  optimization  aimed at ~nding the  best 
weights to minimize  the  chosen n o m  or function  can  begin. 
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The  previous  section  is  devoted  mostly to the  problem of representation of our 
models.  Here we present  the  origin  of, and need for, a  classic  nonlinear  optimization 
that is  a  basic  learning  tool.  Nonlinear  optimization  is not the  only tool currently 
used for training  (learning, adapting, adjusting, or tuning)  parameters of soft  com- 
puting  models.  Several  versions  of  massive  search  techniques are also  in  use,  the  most 
popular being  genetic  algorithms and evolutionary cokputing. But  nonlinear opti- 
mization  is  still an important tool. From the  material  in  this sectiojn the reader can 
understand why it was  needed  in  the  field  of  learning  from data and how it  came to 
be adopted for  this  purpose.  Here  a  classic  gradient  algorithm  is  introduced  without 
technicalities or detailed  analysis. Chapter 8 is  devoted to various  nonlinear opti- 
mization  techniques and discusses  a  few  relevant  algorithms  in  detail. 

There  are  two,  in  general ~gh-dimensional, spaces  analyzed  in the representational 
and learning parts of a  model.  Broadly  speaking,  the re~resentation~l problem ana- 
lyzes  differences  between  two ~ypersurfaces in  a (x, y )  hyperspace,  one  being  the 
approximated  unknown  function f ( x )  given  by  sampled data pairs, and the other the 
approximating  function f,(x). Both f ( x )  and &(x) lie  over an  dimensional space 
of input variable  uring  learning  phase,  however,  it  is  more impo~ant to analyze 
an error hypersu E(w) that, unlike f,(x), lies  over  the  weight  space.  Specifi- 
cally, we  follow E ( ~ )  changes  (typically,  how it decreases)  with  a  change of 
weights  vector W. representational and learning  space are introduced  in  exam- 
ple  1.4. 

The  functional  dependency  between  two  variables  is  given by y = 2x. 
A  training data set  contains 21 measured patterns (x, d )  sampled  without  noise. 
Approximate  these data pairs by a  linear  model y ,  = W I X  and show  three di~erent 
approximations for w1 = 0,2, and 4 as well as the  dependency E(w1) graphically. 

This  example is a  very  simple  one-dimensional  learning  problem that allows  visu- 
alization of both a  modeled  function y(x )  and a  cost  function E(w1). Here E(w1) is 
derived  from an L2 nom. It is  a  sum of error squares. (Note that the  graphical  pre- 
sentation of E ( ~ )  would  not  have  been  possible  with  a  simple quadratic function 
y(x) = WO + w1x + w2x2 for approximation. E ( ~ )  in  this  case  would be a  hypersur- 
face  lying  over  a  three-dimensional  weight  space,  i.e., it would  have  been  a  hyper- 
surface  in  a  four-dimensional  space.)  The  right graph in  figure  1.13,  showing 
functional de~endency E ( w l ) ,  is  relevant for a  learning  phase.  All  learning is about 
finding  the  optimal  weight w1* where  the  minimum8 of a  function E(w, ) occurs. 
Even  in  this  simple  one-dimensional  problem,  the character of a quadratic curve 
E(w) is  the  same for all  linear  in  parameters  models.  Hence,  this  low-dimensional 
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1.6 €(W,) is a sum of error  squares. 
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Figure 1.13 
Modeling 21 data  points  obtained by  sampling a straight  line y = 2x without  noise.  Three  models  are 
shown:  a  perfect  interpolant  when w1 = 2, and  two  (bad) ap~roxim~ting lines  with w1 = 0 and W [  = 4 that 
have  the  same s u m  of error  squares.  Number  of  training  patterns P = 21. 

example  is an appropriate representati~e of all  sum of error squares  cost  functions 
E(w1) = xi=1 ej * 

p 2  

E(w1, wz) is a paraboloidal bowl  when there  are  two  weights to be learned and a 
paraboloidal hyperbowl for more than two  weights.  (See equations (3.45)-(3.48) of a 
quadratic hyperbowl that are obtained  for a general  linear  neuron  with  n-dimensional 

owever,  in  all  three  cases, that is, for n = 1, 2 and yz > 2, an impor- 
tant and desirable  fact  related to the  learning  task  is that there  is a single  guaranteed 
global  minimum em in(^). Therefore,  there  is no risk  of  ending  the  learning  in  some 
local ~ ~ m u r n ,  which  is  always a suboptimal  soluti 

In example 1.4, there  is an interpolation for w1 
= 0. It is  always  like that for  all  interpolating  hypersurfaces J;(x). 
ready  mentioned,  the  goal  is not to interpolate data points.  Thus, i 
approxi~ating hypersurface f,(x) this  minimal error Emin ( ) > 0. Usually  one  is 
more  interested  in  finding an optimal W* that produces a ~ n i m u m  Emin = E ( ~ * )  
than in bowing the  exact  value of this  minimum. 

U~ortunately, genuine  soft  models are nonlinear approximators in  the  sense that 
an error function (a n o m  or  measure of model  goodness)  depends  nonlinearly  upon 
weights that are the  subjects of learning. Thus, the error hypersurface  is no longer a 
convex  function, and a search for the  best  set of parameters  (weights) that will  ensure 
the  best per fo~ance  of the  model  is  now a much harder and uncertain  task than the 
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search  for a quadratic (convex) error function  like  the  one  in  the  right graph of  figure 
1.13. 

Example  1.5  introduces a nonlinear  nonconvex error surface.  Again, for the  sake 
of  visua1ization, the  example  is  low-dimensional. In fact,  there are two  weights  only. 
It is  clear that an error surface E(wl, "2) depending on two  weights  is the last  one 
that can be  seen. o others of higher  order  can be visualized. 

ind a Fourier series  model  of  the  underlying  functional  dependency 
y = 2.5  sin( 1 . 5 ~ )  t the  function  is a sine  is  known,  but  its  frequency and ampli- 
tude are unhow nee,  using a training data set {x, d} ,  system  can be modeled 
with an NN model  consisti L neuron  (with a sine  as an activation 
function) and a single  linea  given in  figure  1.14. 

Note that the NN shown  in  figure  1.14  is  actually a graphical  representation of a 
standard sine  function y = w2 sin(w1 x). This  figure  could  also be  seen as a t ~ n c a t e d  
Fourier series  with a single tern only. 

There  is a very important diff'erence  between  classic Fourier series  modeling and 
N modeling  here,  even  when  the  activation  functions are trigonometric.  When 

sine and cosine  functions  are  applied  as  basis  functions  in NN models,  the  goal  is 
th frequencies and amplitudes.  Unlike  in  this  nonlinear  learning task, in 
urier  series  modeling  one  seeks to calculate  amplitudes  only.  The  fre- 

quencies are preselected  as  integer  multiples of  some  user-selected  base  frequency. 
Therefore,  because  the  frequencies are known,  classical Fourier series  learning  is a 
linear  problem. 

The problem  in  this  example  is  complex  primarily  because  the error surface  is 
nonconvex  (see  fig. 1-15). This  is  also a nice  exam*ple  of  why and how  the  concepts  of 
function,  model,  network, or machine are equivalent. A function y = w2 sin(w1x)  is 
shown as a network  in  figure  1.14,  which  is  actually a model of this  function. At the 
same  time,  this artifact is a machine that, as all  machines do, processes (transforns) a 

Neural  network  for  modeling  a data set  obtained  by  sampling  a  function y = 2.5 sin(l.5.x)  without  noise. 
Amplitude A = 2.5 and  frequency W = 1.5 are  unknown  to  the  model.  The  weights w1 and w2 that  repre- 
sent  these  two  parameters  should  be  learned  from  a  training  data  set. 
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Figure 1.15 
Dependence  of an error  function E(w1, w2) upon  weights  while  learning  from  training  data  sampled  from  a 
function y = 2.5 sin(l.5~). 
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given  input  into  some  desirable  product.  Here, a given  input is x, and a product  is an 
output of the  network Q that “equals”  (models) an underlying  function y for  correct 
values  of  the  weights w1 and w2. Here,  after a successful  learning  stage,  the  weights 
have  very  definite  meanings: w1 is a frequency a, and w2 corresponds to amplitude A .  
In  this  particular  case,  they are not just numbers. 

Now,  the error e can  readily  be  expressed  in  terms of the  weights as 

) = d - a = d - w2 sin(w1x).  (1.37) 

ere  is an obvious  linear  dependence  upon  weight w2 and a nonlinear  relation  with 
pect to weight w1. This  nonlinear  relation  comes  from  the  fact that error e “sees” 

the  weight w1 through  the  nonlinear  sine  function.  The  dependence of the  cost  func- 
tion E( w~ , w2) = 4 CL, e; on  the  weights  is  shown  in  figure  1.15 
 unction E(w1, w2) is not an explicit  function of input  variable x. 
value  calculated  for  given  weights w1 and w2 over  all  training data points, that is, for 
all  values  of  input  variable x. 

Note in  figure I. l5 a detail  relevant to learning:  the  error  surface  is  no  longer a 
convex  function and with a standard  gradient  method  for  optimization,  the  training 
outcome  is  very  uncertain.  This  means that besides  ending  in a global  minimum  the 
learning  can  get  stuck at some  local  minima. In the top graph of  figure l .  15, there  are 
five  local  minima  and  one  global  minimum  for a fixed  value  of  amplitude A = 2.5, 
and a learning  outcome  is  highly  uncertain.  Thus,  even  for  known  amplitude,  learn- 
ing  of  unknown  frequency  from a given  training data set  may  have a very  unsatis- 
factory  outcome.  Note that in a general  high-dimensional ( N  > 2) case, E(w) is a 
hilly  hypersurface that cannot be  visualized.  There are many  valleys  (local  minima), 
and  it  is diEcult to control  the  optimization  process. 

ne  of  the  first,  simplest,  and  most  popular  methods  for  finding  the  optimal 
* where  either  the  global or local  minimum  of an error function 

) occurs  is an iterative  method  based on the  principle  of  going  downhill to the 
st  point of an error surface.  This  is  the  idea of the ~ e t ~ o ~   o ~ ~ t e e ~ e ~ t  d e ~ c e ~ t )  or 

~ r ~ d i e n t   eth hod. his  basic  method  is  introduced  after  example  1.6,  which  sheds 
more  light on the  origins  of  the  nonlinear  characteristics  of an error  cost  function. 

owever,  in  considering  the  gradient-based  learning  algorithm,  one  should  keep  in 
mind  the  weakness  of  going down~l l  to find  the  lowest  point  of  the error surface. 
Unless by chance  one  starts  on  the  slope  over  the  global  minimum,  one  is  unlikely to 
find  the  lowest  point  of a given  hypersurface.  All that can be done  in  the  general  case 
with  plenty of local  minima  is to start at a number of random (or somehow  well- 
chosen)  initial  places,  then  go  downhill  until  there  is no lower  place to go,  each  time 
finding a local  minimum.  Then,  from  all  the  found  local  minima,  one  selects  the 
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lowest  and  takes  the  corresponding  weights  vector W as the  best  one,  knowing  that 
better  local  minima or the  global  minimum  may  have  been  missed. 

~ ~ f f ~ ~ Z e  2.6 Consider  a  simple  neural  network  having  one  neuron  with  a  bipolar 
signoidal activation  function as shown  in  figure  1.16.  The  activation  function  is 

(l .38) 

Assume  the  following  learning  task:  using  a  training data set {x, d},  learn  the 
weights so that the  network  models  the  underlying  unknown  bipolar  sigmoidal 
function 

(1.39) 

Note that (1.38)  is  a  standard  representative  of  S-shaped  functions gi given  in 
(l .36).  The  solution  is  clear  because  the  underlying  functioh  between  the  input x and 
the  output y is  known.  However,  for  this  network,  the  underlying  function (l .39)  is 
unknown, and the  optimal  weights  of  the  neuron wlopt = a, and wzOpt = b should be 
found by  using the  training data set. 

At this  point,  however, we are more  interested  in an error function  whose  mini- 
mum  should  evidently be at the  point (a, b)  in  the  weights'  plane.  Again  use as an 
error function  the sum  of error squares 

(1.40) 

where P is  the  number  of  patterns or data pairs used in  training. As in  (1.37), an error 
at some  training data pair ep is  nonlinear.  Here,  it  is  nonlinear  in  terms of both 
unknown  weights. 

x 

+l 

Figure 1.16 
Simple neural  network  with  a single neuron. 
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Figure 1.17 
Nonlinear  error  curve  and its quadratic  approximation. 
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Figure 1.18 
Nonlinear  error  surface  and  its  cuts  as  the  error  curves  for  constant w1. 
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It is  easy to see in  figure  1.17 that even  in  this  simple  example  the actual shape of a 
nonlinear error curve E(w1 , w2) is both nonquadratic and nonconvex. To make the 
analysis  even  simpler,  model  the  sigmoidal  function  with b = 0 first.  Then w2 = 0, 
and E = E(w1). This  one-dimensional  function  shows  the  nonlinear  character of E as 
well as the  character of the quadratic approximation of E in the neighborhood of its 
minimum.  (The quadratic approximation of an error function  is  a  common  assump- 
tion in  proximity to a  minimum. This can readily  be  seen  in  fig.  1.17). The figure  also 
shows that the  shape of E depends on the  value  of a (slope  of  the  sigmoidal  function 
to be approximated). 

In this particular case,  the error function E is  a  curve  over  the  weight w1 that has  a 
single  minimum  exactly at w1 = a. There  is no saddle  point, and all  convergent iter- 
ative  schemes for optimization, starting from  any  initial  random  weight w10, will  end 
up at this stationary point w1 = a. Note that the  shape of E, as well as its quadratic 
approximation, depends  on  the  slope a of an approximated  function.  The  smaller  the 
slope a, the  steeper  the quadratic approximation will  be.  Expressed  in  mathematical 
terms,  the curvature at w1 = a, represented  in  a  Hessian matrixg of second  derivatives 
of E with  respect to the  weight,  increases  with  the  decrease of a. In this  special  case, 
when an error depends on a  single  weight  only, that is, E = E(wl) ,  the Hessian 
matrix  is  a (1,l)  matrix, or a  scalar,  The  same  is true for the  gradient of this  one- 
dimensional error function. It is  a  scalar at any given point.  Also  note that a qua- 
dratic approximation to  an error function E(w1) in  proximity to an optimal  weight 
value wept = a may  be  seen as a  good  one. 

Now,  consider  the  case  where  the  single  neuron  is to model  the  same  sigmoidal 
function y ,  but with b # 0. This  enables  the  function y from  (1.39) to shift  along 
the  x-axis.  The  complexity of the  problem  increases  dramatically.  The error function 
E = E(w1, w2) becomes  a  surface  over  the (w1, w2) plane.  The  gradient and the 
Hessian of E are no longer  scalars but a (2,l)  column  vector and a (2,2) matrix, 
respectively. 

Let us analyze  the error surface E(w1, w2) of the  single  neuron  trying to model 
function  (1.39), as shown  in  figure l .  18. The error surface  in fig 1 .. 18 has  the  form of a 
nicely  designed  driver’s seat, and from  the  viewpoint  of opt~ization is  still  a  very 
desirable  shape  in  the  sense that there  is  only  one  minimum,  which can be  easily 
reached starting from  almost  any  initial  random  point. 

Now, we take up the oldest, and possibly the most  utilized,  nonlinear  optimization 
algorithm:  the  gradient-based  learning  method. It is  this  method that is  a f o ~ d a t i o n  
of the  most  popular  learning  method  in  the  neural  networks  field,  the error back- 
propagation method, which  is  discussed in  detail  in  section  4.1. 
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A gradient of an error function E(w) is a column  vector of partial derivatives  with 
respect to each of the n parameters  in W: 

(1.41) 

An important property of a gradient  vector  is that its  local  direction  is  always  the 
direction of steepest  ascept.  Therefore,  the  negative  gradient  shows  the  direction of 
steepest  descent.  The  gradient  changes  its  direction  locally  (from  point to point) on 
the error hypersurface  because  the  slope of this  surface  changes.  Hence, if one  is  able 
to follow  the  direction of the  local  negative  gradient,  one  should be  led to a local 
 minim^. Since  all  the  nearby  negative  gradient paths lead to the  same  local  mini- 
mum, it is  not  necessary to follow  the  negative  gradient  exactly. 

The method of steepest  descent  exploits  the  negative  gradient  direction. It is an 
iterative  method.  Given  the current point W;, the  next  point i+l is  obtained by a one- 
dimensional  search  in  the  direction of - (wi) (the gradient  vector  is  evaluated at the 
current point wi): 

(1.42) 

The  initial  point ~1 is  (randomly or more or less  cleverly)  chosen, and the  learning 
rate gi is d e t e ~ i n e d  by a linear  search  procedure  or  experimentally  defined.  The 
gradient  method  is very popular, but  there are many  ways it can be improved  (see 
section  4.1 and chapter 8). The  basic  difficulties  in  applying it are,  first, that it will 
always  find a local  minimum  only, and second, that even though a one-dimensional 
search  begins  in  the  best  direction,  the  direction of steepest  descent  is a local rather 
than a global  property.  Hence,  frequent  changes  (calculations) of direction  are  often 
necessary,  making  the  gradient  method  very  inefficient  for  many  problems. 

Both  these  difficulties are readily  seen  in  figure  1.19.  Starting  from a point A it is 
unlikely that an optimization,  following  gradient  directions,  can  end up in  the  global 
~inimum. Negative  gradient  vectors  evaluated at points A ,  , C, D, and E are along 
the  gradient  directions AA*, BB*, CC*, DD* and E"*. Thus the error function E(w) 
decreases at the  fastest rate in  direction AA* at point A but not at point B. The 
direction of the  fastest  decrease at point B is BB*, but this  is not a steepest  descent at 
point C, and so on. 

In applying  the  first-order  gradient  method,  convergence can be  very  slow, and 
many  modifications  have  been  proposed  over  the  years to improve  its  speed. In the 
first-order  methods  only the first  derivative of the error function,  namely,  the  gradient 
~ ~ ( w ) ,  is  used.  The  most  common  improvement  is  including  in  the  algorithm  the 
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Local minimum 

I D* W1 

I 

~ i ~ ~ e  1.19 
Contours of a nonlinear  error  surface E( w1, wz) and steepest  descent ~ in i~ iza t ion .  

second  derivatives  (i.e.,  Hessian  matrix) that define the curvature of the  function. 
This  leads to a second-order  Newton- aphson method and to various  quasi-Newton 
procedures  (see  section  4.1 and chapt 

The  most  troublesome parts of an error hypersurface are long,  thin,  curving 
valleys. In such  valleys,  the  successive  steps  oscillate  back and forth across  the  valley. 

such  elongated  valleys  the  eigenvalues ratio ;Imax/’;Imin of the  corresponding 
sian  matrix  is  much  larger than 1. For such an area, using a Hessian  matrix  may 

greatly  improve  the  convergence. 
In applying  the  steepest  descent  method  given by (1.42), the following  question 

imediately arises: ow large a step  should be taken in  the  direction - 
one current point to the  next. From (1.42) it is  clear that a learning rate yi determines 
the  length of a step. A more important question is whether  the  choice of a learning 
rate vi  can make  the  whole  gradient  descent  procedure an unstable  process. On a one- 
dimensional quadratic error surface as shown  in  figure  1.20,  the  graphs  clearly  indi- 
cate that training  diverges for learning  rates y > 2qopt. 

For a quadratic one”dimensiona1 error curve E(w1) the  optimal  learning rate can 
readily  be  calculated, and one  can  follow  this  calculation  in  figure  1.21. From (1.42), 
and when a learning rate is  fixed (vi = y), it  follows that the  weight  change at the  ith 
iteration step  is 

(1.43) 
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Figure 1.20 
Gradient  descent  for  a  one-dimensional  quadratic  error  surface E( w1) and  the  influence  of  learning rate y 
size  on  the  convergence of a  steepest  descent  approach. 
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Figure  1.21 
SchFrne for  the  calculation  of an optimal  learning  rate qopt for  a  one-dimensional  quadratic  error  surface 
E(w1) * 
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For a quadratic error surface  one can exploit that 

and ~ombining (1.43) and (1.44),  one obtains 

(1.44) 

(1.45) 

One  reaches  a  minimum  in  a  single  step  using  this  learning rate, but one  must  calcu- 
late a  second  derivative that is  a  scalar for an error function  E(w1).  When  there are 
two or more  (say, N )  unknown  weights, an error function  is  a  hypersurface E( W), 
and one  must  calculate  the  corresponding ( N ,   N )  symmetric  Hessian  matrix,  defined 
as 

( 1.46) 

d 

The symmetry%$, m the  fact that cross partial derivatives  are  inde- 
pendent of the ord 

a 2 ~ ( w )  ~ 2 E ( ~ )  
awidwj a w j a w ~  ’ ”P 

_I 

Note that E(w) is  a  nd that on a  general  hypersurface both gradient 
and Hessian  matrix (W), that is,  they  depend  on W (they are local  p 
and do change  over  the domain space !RftN, 

Gradient descent  in N dimensions can be  viewed as N independent  one- 
dimensional  gradient  descents  along  the  eigenvectors of the  Hessian. Conver~ence is 
obtained  for 2 / lmaX,  where h,,, is the largest  eigenvalue of the Hessian. The 
optimal  learning rate in N dimensions qopt that yields  the  fastest  convergence  in  the 
direction of highest curvature is qopt = 1 /Amax. 

Note that in a  one-dimensional  case the optimal  learning rate is  inversely propor- 
tional to a  second  derivative of an error function. It is  known that this  derivative  is  a 
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Figure 1.22 
Gradient  descent  on  a  two-dimensional non~u~dratic error  surface E(w1, w2). An  optimal  learning rate qopt 
defines  a m i ~ m ~  along  the  current  negative  gradient  line. 

measure of a curvature of a  function. Equation (1.45)  points to an interesting  rule: 
the  closer to a  minimum, the higher  the curvature and the  smaller  the  learning rate 
must  be. The maximum  allowable  learning rate for a  one-dimensional quadratic 
error curve  is 

Vmax = 2Vopt. (1.47) 

For learning rates higher than qmax, training  does not converge  (see  fig.  1.20). In a 
general  case,  the error surface  is not quadratic, and the  previous  considerations  only 
indicate that there are constraints on the  learning rate. They  also  show why should 
decrease  while  approaching  a  (usually  local) ~ n i m u ~  of an error surface. 

For a nonquadratic error surface  (see  figure  1.22),  calculation of a  Hessian at each 
step  may be  very t ~ e - c o n s u ~ n g ,  and an optimal  learning rate is  found by a  one- 
di~ensional search as follows. The negative  gradient at the ith step  is ~erpendicular 
to the  local contour curve and points  in  the  direction of steepest  descent. The best 
strategy  is  then to search  along^ this  direction for a  local  minimum. To do this,  step 
forward  applying  equal-sized  steps  until  three  points are found, and calculate the 
corresponding  values of the error functions. (A stricter  presentation of  Powell’s qua- 
dratic interpolation method  can be found  in  the literature.) Now  use a quadratic 
appro~imation and estimate  the  minimum  along  a current gradient  direction EL(,,t). 
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For a quadratic surface,  this  minimum  estimate EL(est) is  exact. For a nonquadratic 
error surface,  it  is an approximation of a  minim^ EL only,  but  there is a little  point 
in  being  very  accurate  because on a given  slope above  some  (local)  minimum of 
E~i , (w) ,  gradients at all  points are nearly  all  directed  toward  this particular mini- 
mum. (Note the  differences  between  the  minimum  of a nonconvex error surface 
Emi,(w), the  minimum  along a current gradient  direction EL, and the  minimum  esti- 
mate  along a current  gradient  direction EL(est).) 

At this  minimum  estimate  point EL(est), the current gradient  line  is  tangent to the 
local level  curve.  Hence, at this  point the new gradient  is  perpendicular to the current 
gradient, and the  next  search  direction  is orthogonal to the present  one  (see  right 
graph in  fig.  1.22).  Repeating  this  search pattern obtains a local or, more  desirable, a 
global  minimum E~,(w) of the error function  surface. Note that this  procedure 
evaluates  the error function E(w) frequently but avoids  frequent  evaluation of the 
gradient. 

Such  gradient  descent  learning  stops when a given  stopping  criterion  is  met.  There 
are many  different  rules for stopping  (see  section  4.3.5). 

The  algorithm of a steepest  descent  is as follows: 

1. Initialize  some  suitable starting point w1 (chosen at random or based on previous 
knowledge) and perform  gradient  descent at the ith iteration step (i = 2, K ,  where K 
denotes the iteration step when the  stopping  criterion  is  met; K is not known in 
advance) as in  the  following  steps. 
2. Compute  the  negative  gradient  in  each j direction ( j  = 1, N ,  where N denotes  the 
number of weights) 

3. Step  forward  (applying  equal-sized  steps)  until  three  points (a current point wj, a 
middle  point wj - bgii, and a last  point wj - Cgji) are found. Evaluate  the error 
function for these  three  points. (For a nonquadratic surface,  the  middle  point  should 
have the lowest  of  the  three  values of the error function.) 
4. Use quadratic approximation in  each j direction  with  Powell's quadratic interpo- 
lation method to find  the  optimal  learning  rate 

1 (b2 - c2)Ea + (c2 - " 2 ) E b  + (a2 - b2)Ec 
ropt = 2, ( (b  - c)Ea + ( c  - a)& + (a  - b)Ec 1 
where S is a step  length, a = 0, b = S, c = 2s, Ea = E(wj - asji), .Eb = E(wj - bgji), 
and Ec = E(wj - cgji). (See  fig.  1.23.) 



Chapter 1. Learning  and Soft C ~ ~ p u t ~ n g  

E 

60 

Figure 1.23 
Quadratic inte~olation about  the  middle  point  for  a  calculation of an  optimal  learning  rate qopt that 
defines a r n i n i ~ u ~  E(wj) along  the  current  negative  gradient  line. 

5. Estimate  the  minimum  along  the current gradient  direction  for  each j 

6. Evaluate error function E(wi+l), and if the  stopping  criterion  is  met, stop opti- 
mization; if not, return to step 2. In virtue of (1.45) as the iterations progress, we are 
closer to some  local  minim^, and it will  usually  be  necessary to decrease  the  search 
step S, which  will  result  in a smaller  optimal  learning rate qopt. 

Note that the  steepest  descent  shown  in  figure  1.19  was not performed by applying 
the  optimal  learning rate. Had qopt been  used,  the  first  descent  would  have  ended  up 
near point D. All  sliding  along  the nonquadratic surface  shown  in  figure  1.19  was 
done using < qopt. 

A major short~oming of the  gradient  method  is that no account  is  taken of the 
second  derivatives of ~(w), and yet  the curvature of the  function  (which d e t e ~ i n e s  
its  behavior  near  the  minimum)  depends  on  these  derivatives.  There  are  many  methods 
that partly  overcome  this  disadvantage  (see  section 4. Z and chapter 8). 
time,  despite  these  shortcomings, the gradient  descent  method  made a breakthrough 
in  learning  in  neural  networks  in  the  late 1980s, and as mentioned,  it  is  the founda- 
tion of the popular error backpropagation  algorithm. 

This  concludes  the  basic introduction to approximation problems and the  descrip- 
tion of the  need for nonlinear  optimization  tools  in  learning  from data, Section  1.4 
introduces  the  basics of classical  regression and classification  approaches that are 
based  on  known  probability  distributions. In this  way,  the  reader  will  more  easily  be 
able to follow  the  learning  from data methods when nothing or very little  is  known 
about the  underlying  dependency. 
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egression and ~ ~ a s s ~ ~ a t i o n  

There  are  many  theories and definitions of what  learning  is,  but the objective  here 
is to consider  how  artificial  systems,  mathematical  models, or generally,  machines 
learn.  Thus,  in  the  framework of this  book,  a  sound view  may  be that Zearning is 
inferring functio~al dependencies (regularities) from a set of train in^ e~amples (data 
pairs,  patterns,  samples,  measurements,  observations,  records). 

In ~uperv ise~  Zear~ing, a  set of training data pairs  typically  contains  the  inputs Xi 

and the  desired outputs yi = di. (A system's outputs yi that are used  in  the  training 
phase are also  called  desired  values.  Therefore,  when  referring to the  training  stage, 
this  book  alternatively uses both notations, yi and di, where di stands for desired.) 
There are many  different  ways and various  learning  algorithms to extract  underlying 
regularities  between  inputs and outputs. Successful  learning  ends  in  the  values of 
some  parameters of a  learning  machine" that capture these  inherent  dependencies. 
For a  multilayer  perceptron NN, these  parameters are usually  called  the  hidden and 
output layer  weights. For a  fuzzy  logic  model,  they are the  rules, as well as the 
parameters that describe  the  positions and shapes of the fuzzy subsets.  And for a 
polynomial  classifier,  these  parameters are the  coefficients  of  a  polynomial. 

The  choice of a particular type of learning  machine  depends  on  the  kind of prob- 
lem to be  solved.  They can be machines that learn system  dependencies  in  order to 
predict  future  outcomes  from  observed data. For example,  in control applications, 
signal  processing, and financial  markets,  learning  machines are used to predict 
various  signals and stock  prices  based on past  performance. In the  case of optical 
character recognition and for other recognition  tasks,  learning  machines are used to 
recognize (predict) particular alphabetic,  numeric, or symbolic  characters  based on 
the data obtained by scanning  a  piece of paper.  These  examples  involve  predictions 
of two  different  types of outcome: contin~ous variabZes in control applications,  signal 
processing, and stock  markets, and categoricaZ variables (class  labels)  in  optical 
character or pattern recognition. 

The prediction of continuous  variables  is  known as regression, and the  prediction 
of categorical  variables  is  known as cZass~cation. Because  of their  utmost  practical 
importance,  this  book  takes up only  regression and classification  models.  The  third 
important problem  in  statistics,  density  estimation,  is not the  subject of investigation 
here.  The  basics  of standard statistical  techniques of regression and classification are 
presented  first to aid  in  the  understanding of inferring by using data. ~raditionally, 
by using  training patterns, mechanical  fitting of the  prespecified  line,  curve,  plane, 
surface, or hypersurface  solved  these  kinds of learning  tasks.  Here,  these  estimation 
problems are approached by  using neural  networks,  fuzzy  logic  models, or support 
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vector  machines.  Thus,  sections  1.4.1 and 1.4.2, about the  basic and classical  theories 
of regression and classification,  may  give  sound  insights  on  learning  from data 
problems. 

The elementary  presentation of regression  is  given  using a two-dimensional  case. 
this way, vital  concepts can be shown grap~cally, which  should  ease  understanding 

nature of the  problem. ~onceptually nothing  changes  in  multivariate  cases 
r  dimensional inputs and outputs, but they cannot be visualized  with  the 

relevant  hypercurves or hypersurfaces, First, a theoretical  regression  curve  is  defined 
that will later  serve as a  model for ~derstanding the  empirical  re 
The short definition for this  curve  states that the theoretical regression curve is (a 
g r a p ~  of) the ~ e ~ n  of a conditi~nal probability-~ensity.f~nction  P( y x). 

A geometrical  insight into the  theory of regression  may  be  the  easiest  way to intro- 
duce  the  concepts that follow. In the two-dimensional  case  (where  only  two random 
variables are involved) the general joint probability-density  function12 P ( x ,  y )  can be 
thought of as a  surface z = P ( x ,  y )  over  the (x, y )  plane. If this  surface  is  intersected 
by a plane x = xi, we obtain a  curve z = P(xi,  y )  over  the  line x = xi in  the (x, y )  

he ordinates z of this  curve are proportional to the conditional  probability- 
density of y given x = xi. If x has  the fixed  value xi, then  along  the  line x = xi in  the 
(x, y )  plane  the  mean  (expected or average)  value of y will d e t e ~ i n e  a  point  whose 
ordinate is  denoted by pylxi. As diflferent  values  of x are sele d, diflferent mean 
points  along  the  corresponding  vertical  lines will  be obtained. nee, the ordinate 
pylx, of the  mean  point  in  the (x, y )  plane  is a function of the  value of xi selected. In 
other words, p depends  upon x, p = p(x). The locus of all  mean  points  will  be  the 
graph of pylx. This curve  is  called the ~ e g r e ~ s i o ~  curve of y on x. Figure  1.24  indicates 
the geometry of the  typically  nonlinear  regression  curve for a  general  density  distri- 
bution  (i.e.,  for  the  general joint probabili  ensity  function P(x, y ) ) .  Note that the 
surface P(., y )  is not shown  in  this  figure 0, the  meaning of the graph in  figure 
1.24  is that the  peak of the  conditional probabi~ity-density function P( y I x) indicates 
that the  most  likely  value of y given xi is pylxj. Analytically,  the  derivation of the 
regression  curve  is  presented as follows. 

Let x and y be random variables  with  a joint probability-density  function P(x, y ) .  
If  this  function  is  continuous in y ,  then  the conditional p~obability~density function of 
y with  respect to fixed x can be written as 

(1.48) 
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Figure 1.24 
Geometry  of  the  typical  regression  curve  for  a  general  density  distribution. 

where P ( x )  represents  the ~ a r g i ~ a l p r o b ~ b i l i t y - d ~ ~ ~ i t y  fu~ctio~ P ( x )  = S': P ( x ,  y )  dy. 
By using  this  function  the  regression  curve  is  defined  as  the  expectation of y for  any 
value of x 

This  function (l .49)  is  the  regression  curve of y on x. It can be  easily  shown that this 
regression  curve  gives  the  best  estimation  of y in  the  mean  squared error sense. Note 
that there  is no restriction  on  function pyl,. Depending  upon  the joint probability- 
density  function P ( x ,  y ) ,  this  function  belongs to a  certain  class, for example, the 
class of all  linear  functions or the  class of all  functions of a given algebraic or trigo- 
nometric  polynomial  form, and so on. Example l .7 gives a  simple  illustration of  how 
(1.49)  applies. 

le 1.7 The joint probability-density  function P ( x ,  y )  is  given as 

2 - x - y ,  O < x < l , O < y < l  
elsewhere 

Find the  regression  curve of y on x. 

In order to find pylx, first  find  the  marginal  probability-density  function 

3 
2 ( Z - x - y ) d y = - - x .  
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Joint  and  conditional p~obabiii~-densi~ function 
a..... 

1 

Figure 1.25 
The  joint  probability-d~nsity  function P(x,  y )  = 2 - x - y ,  the  corresponding  conditional  probability- 
density  function P ( y  I x) = (2 - x - v)/( 1.5 - x), and  the  regression  function  (curve) pylx.  

From (1,49), 

Thus, the  regression  curve  is  the  hyperbola.  The joint ~robability-density function 
P ( x ,  y ) ,  the conditional  probability-density  function P ( y  I x), and the  regression  curve 
pyIx are shown  in  figure  1.25. 

Example 1.8  shows that the  regression  function  for  jointly  normally  distributed 
variables  is  linear, that is, a straight  line.  This is an interesting  property that was 
heavily  exploited  in  statistics.  Linear  regression and correlation  analysis,  which are 
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closely  related, are both very  developed and widely  used  in  diverse  fields.  The  expla- 
nation for  such broad application of these  theories  lies  in  the  remarkable  fact that 
under  certain  circumstances  the  probability  distribution of the sum of independent 
random  variables,  each  having an arbitrary (not necessarily normal) distribution, 
tends  toward  a  normal  probability  distribution as the  number of variables  in  the sum 
tends  toward  infinity.  n  statistics,  this  statement,  together  with  the  conditions  under 
which  the  result  can be proved,  is  known as the central Zi~it  t ~ e o r e ~ .  These  condi- 
tions  are  rarely  tested  in  practice, but the  empirically  observed  facts are that a joint 
probability-density  function of a  great  many  random  variables  closely  approximates 
a  normal distribution, The  reason for the widespread  occurrence of normal joint 
probability-density  functions for random  variables is certainly  stated in the central 

t  theorem and in  the  fact that superposition  may be common  in nature. 
efore  proceeding to the  next  example  remember that the joint probability-density 

function for two  independent  variables  is P(x, y )  = P(x)P(y)*  If both variables are 
normally  distributed, it follows that the normal bivariate  (two-dimensional) joint 
probability-density  function for independent random variables x and y is 

(l S O )  

If the  variables x and y are not independently  distributed, it is  necessary to modify 
(l S O )  to take into account  the  relationship  between x and y.  This  is  done in (1 S1) by 
introducing  a  cross-product  term  in  the  exponent of (1 S O ) .  The l i ~ e a ~  correlation 
coe~cient  p of this  term  is  defined as p = oxy/oxoy, where oxy, ox, and cy are the 
covariance and variances  in  directions x and y ,  respectively. p is  equal to zero  when x 
and y are independent, and equal to +l  or - 1 when  these  two variables are deter- 
ministically  connected. Equation (1.51) is  defined  for - 1 < p < +l. For p = rfi l, 
(1.51)  does  not  have  any  sense. Note that the  correlation  coefficient p is  defined  for 
the  linear  dependence  between  two  random  variables, and it is  a  measure of the 
strength of this  linear  relationship.  Thus, p = 0 does not imply that two  variables are 
not closely  relate . It implies  only that these  variables are not linearly  related. For 
nonlinearly depend in^ variables,  the  linear correlation coefficient p as previously 
defined  is  equal to zero ( p  = 0). 

ote  also that the  statistical  functional  relationships  between  two (or more)  vari- 
ables  in  general, and the  correlation  coefficient p in particular, are completely  devoid 
of any cause-and-e~ect implications. For example, if one  regresses  (correlates)  the 
size of a  person’s  left  hand  (dependent  variable y )  to the size of her  right hand 
(independent  variable x), one  will  find that these  two  variables are highly  correlated. 

ut this  does not mean that the  size of a  person’s  right hand causes a  person’s  left 
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hand to be large or small.  Similarly,  one  can  try to find  the  correlation  between the 
death rate due to heart attack (infarction) and the  kind of sports  activity of a  player 
at the  moment of death. One  will  eventually  find that the  death rate while playing 
bowls or chess  (low  physical  activity)  is  much  higher  than  while  taking part in  boxing, 
soccer, or a  triathlon  (high  physical  activity).  espite  this  correlation,  the  conclusion 
that one  is  more  likely to suffer heart attack while  playing  bowls,  cards, or chess  is 
wrong,  for  there  is  no  direct  cause-effect  relationship  between  the  correlated  events  of 
suffering an infarction and taking part in  certain  sports  activities.  t  is far more  likely 
that, typically,  senior  citizens  are  more  involved  in  playing  bowls and the  cause of 
death is their  age  in  the  first  instance. In short,  note that two or more  variables  can be 
highly  correlated  without  causation  being  implied. 

Consider  two  random  variables that possess a  bivariate  normal joint 
probability-density  function 

(1.51) 

Show that both the  marginal ( P ( x ) ,  P( y ) )  and the  conditional (P( y 1 x), P ( x  1 y ) )  
probability-density  functions  are  normal  distributions. Show that the  curve of regres- 
sion is linear. 

The  marginal  probability-density  function  is defined as P ( x )  = JTz P ( x ,  y )  dy, 
where P ( x ,  y )  is  defined  in (1.51). Simplify this  integration by changing  the  variables 
to U = (x - ,u,)/ox and v = ( y  - py/oy). Then dy = ay dv and 

l 
P ( x )  = 

Adding  and  subtracting p2u2 to the  exponent  in  order to complete  the  square  in v 
gives 

l 
P ( x )  = exp( - 2( 1 - p2) (v - P U ) ~ )  dv 
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where 

v -pu  
z =  d v  and dv = d m & .  

Substituting  back  the  value of u in  terms of x and inserting the value for this 
familiar  integral, P(x)  finally  reduces to 

(1.52) 

The  corresponding  result for P( y )  follows  from symetry, and (1 S2) shows that the 
marginal  distributions  (probability-density  functions) of a joint normal  distribution 
are normal. Note that if one  sets p equal to zero  in  (1.51),  this equation reduces to 
(1.50),  which  is the joint normal  distribution  for  two  independent  normal  variables. 
Thus, if two  normal  variables are uncorrelated,  they  are  independently ~ is t~buted .  
Note, however, that from  the  preceding  discussion of correlation, it should be  clear 
that the  lack of a  linear  correlation  does not imply  a  lack of dependence  (relation- 
ship) of every  (notably  nonlinear)  kind  between  two, or more,  variables. 

For regression  problems,  the  conditional  probability  distribution  is of utmost 
importance, and in  the  case of the joint normal  distribution it possesses  interesting 
properties.  In  order to find P( y I x), use the  definition  (1.48) as well as the  substitu- 
tions U and v given  previously,  which  yields 
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Expressing U and 21 in  terms of the original  variables x and y and, in  order to stress  a 
dependence  of y on  the  selected  value of x, denoting y as y,, the  last  expression 
reduces to 

(l -53) 

In  order to find  the  regression  curve pYlx defined  in  (1.49) as the  expectation pYlx  = 
E ( y  ~ x), note that x is the fised  variable  in (l .53), and that this equation represents 
the  normal  density  function  for y,. Hence,  for  given x, the  mean of (1.53) is the  sum 
of the  second and third  terms  in  the n ~ e r a t o r  of the  exponent  in (1 S 3 ) .  According 
to the defi~tion of the  regression  curve,  being  the  locus of the  means of a  conditional 
probability-density,  the  regression  curve of y on x when x and y are jointly normally 
dist~buted is  the  straight  line  whose equation is 

(1 S4) 

y symmet~  a  similar  result  holds for x and y interchanged, that is, for the curve of 
regression of x on y .  The fact that the  regression  curve of two  normally  distributed 
variables  is  a  straight  line  helps to justify  the  frequent  use of linear  regression  models 
because  variables that are  approximately  normally  distributed are encountered 
frequently. 

The standard statistical  techniques for solving  classification  tasks  cover  the broad 
fields  of pattern recognition and decision-ma~ng problems.  Many  artificial  systems 
perform  classification  tasks:  speech or character recognition  systems, fault detection 
systems,  readers of magnetic-strip  codes  on  credit  cards,  readers of UPC bar codes, 
various alarm systems, and so on. In all  these  different  systems  the  classifier  is  faced 
with  different  observations  (measurements,  records, patterns) that should be  assigned 
mea~ing (class or category). CZass~c~tion or   at tern recognition is  inferring  meaning 
(category,  class)  from  observations. 

There  are  two  basic  stages in designing  a  classifier:  the  training  phase and the  test 
(generali~ation  or application)  phase. The most  general  schemes of  these  two  stages 
are shown  in  figure  1.26. 



1.4. Learning  and  Statistical  Approaches  to  Regression  and Classification 69 

I Data  preprocessing  and  features  extraction 

Observation 
feature  vector 

Feature 
vector  and 
class  labels 

Classifier 
sz = f(x, W) 

Classifier 1 design I 

Class  labels I 

a= 

Figure 1.26 
Classification’s  training  phase (tup) and  test  (application)  phase ( ~ u ~ ~ u ~ ) .  The  training  phase,  or  classifier 
design,  ends  up  in  a  set of parameters W that define  the  disjoint  class  regions. 
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During  the  training  phase  the  classifier  is  given  training patterns comprised of 
selected train in^ feature vectors x and desired  class  labels ad. The result  of  the train- 
ing  phase  is  the  set of  classifier’s parameters that are called  weights 
weights  define  the  general  discriminant  functions that form  the  class  boundaries 
between  disjoint  class or category  regions.  These  class  boundaries are points,  curves, 
surfaces, and hypersurfaces  in  the  case  of  one-,  two-,  three-, and higher-dimensional 
feature space,  respectively. In the  test  phase, or later in  applications,  the  classifier 
recognizes  (classifies)  the inputs in  the  form of (previously  unseen)  measured feature 
vectors x .  

Figure  1.26  indicates that classification  is  a  very broad field. Human beings  typi- 
cally  process  visual,  sound,  tactile,  olfactory, and taste  signals. In science and engi- 
neering  the  goal  is to understand and classify  these and many other signals,  notably 
different  geometrical  (shape and size) and temporal  (time-dependent)  signals. In order 
to’do this  the pattern recognition  system  should  solve  three  basic  problems:  sensing 
desired  variables,  extracting  relevant  features, and based on these  features,  perform- 
ing  classification.  While  the  first and second parts are highly  problem-dependent, 
the  classification  procedure  is  a  more or less  general approach. Depending  upon  the 
specific  problem to be solved,  measurement  (recording,  observation) and features 
extraction  would be done by different  sensing  devices:  thermocouples,  manometers, 
accelerometers,  cameras,  microphones, or other sensors. Today, using AID conver- 
ters,  all  these  different  signals  would be transformed into digital  form, and the 
relevant  features  would be extracted. It is  clear that this  preprocessing part is  highly 
problem-dependent. A good  features extractor for geometrical  shape  recognition 
would be  of no use for speech  recognition  tasks or for fingerprint  identification. 

At the  same  time, the classification part is  a  more  general tool. A pattern classifier 
deals  with  features and partitions (tessellates,  carves  up)  the  feature  space into line 
segments, areas, volumes, and hypervolumes,  called ~ e ~ ~ s i o ~  r e g i ~ ~ s ,  in the case of 
one-,  two-,  three-, or higher-dimensional  features,  respectively.  All feature vectors 

to  the  same  class are ideally  assigned to the  same  category  in  a  decision 
cision  regions  are  often  single  nonoverlapping  volumes or hypervolumes, 

However,  decision  regions of the  same  class  may  also be disjoint,  consisting of two or 
more  nontouching  regions. 

Only  the  basics  of  the  statistical approach to the  problem of feature pattern clas- 
sification are presented  here. The objects  are  feature  vectors xi and class  labels ai. 

The features  extraction  procedure is taken for granted  in  the  hope that the  ideal  fea- 
tures extractor would  produce the same  feature  vector x for each pattern in  the  same 
class and different feature vectors for patterns in  different  classes. In practice,  because 
of the  probabilistic nature of the  recognition  tasks,  one  must  deal  with  stochastic 
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(noisy)  signals.  Therefore,  even  in  the  case  of pattern signals  belonging to the  same 
category,  there will  be different  inputs to the  features extractor that will  always  pro- 
duce  different  feature  vectors x, but, one  hopes that the  within-class  variability  is 
small  relative to the  between-class  variability. In this  section,  the  fundamentals of the 
Bayesian  approach for classifying  the  handwritten  numerals  l and 0 are presented 
first.  This  is  a  simple  yet important task of two-class (binary) classification (or 
dichotomization).  This  procedure  is  then  generalized for multifeature and multiclass 
pattern classification.  Despite  being  simple,  these  binary  decision  problems  illustrate 
most of the  concepts that underlie  all  decision  theory. 

There  are  many  different but related  criteria  for  designing  classification  decision 
rules.  The  six  most  frequently  used  decision  criteria  are  maximum  likelihood,  Neyman- 
Pearson, probability-of-(class~cation)error, min-max, ~ ~ x i ~ ~ ~ - ~ - ~ o s t e r i o r i  ( ~ ~ P ) ,  
known  also as the Bayes’  decision criterion, and finally,  the Bayes’  risk  decision  cri- 
terion. This  book cannot cover  all  these  approaches, and it  concentrates on the 
rule-based  criteria  only. We start with  a  seventh  criterion,  maximum-a-priori,  in 
order to gradually  introduce  the  reader to the MAP or Bayes’  classification  rule. The 
interested  reader  can  check  the  following  claims  regarding  the  relationships  among 
these  criteria: 

* The  probability-of-(classification)-error  decision  criterion is equivalent to the MAP 
(Bayes’)  decision  criterion;  this is shown  later  in  detail. 

For the  same  prior  probabilities, P(co1) = P(coz), the  maximum  likelihood  decision 
criterion  is  equivalent to the  probability-of-(classification)-error  decision  criterion, 
that is, to the  MAP  (Bayes’)  decision  criterion. 
* For the  same  conditional  probability-densities, P(x  I c o l )  = P(x I coz), the  maximum- 
a-priori criterion  is  equivalent to the MAP (Bayes’)  decision  criterion. 
* The ~eyman-Pearson criterion  is  identical  in  form  (which  is  actually  a  test of like- 
lihood ratio against a threshold) to the  maximum  likelihood  criterion.  They  differ  in 
the  values of thresholds and, when the  threshold  is equal to unity, the N-P criterion  is 
equivalent to the maximum  likelihood  criterion. 
* The Bayes’  risk  decision  criterion  represents  a  generalization of the  probability-of- 
(classification)-error  decision  criterion, and for a 0-1  loss  function  these  two  classifi- 
cation methods are equivalent.  This  is  shown later. 

After the Bayes’ C MAP^ classification  rule  has  been  introduced,  the  subsequent 
sections  examine an important concept  in  decision  making:  a cost or Zoss regarding a 
given  classification.  This  leads to the  classification  schemes that minimize  some risk 
function.  This approach is important in  all  applications  where  misclassification of 
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I 

some  classes  is  very  costly  (e.g.,  in  medical or fault  diagnosis and in  investment 
decisions,  but  also  in  regression and standard classification  problems  where  the  risk 
would  measure  some error or discrepancy  regarding  desired  values or misclassifica- 
tion of data). 

Finally,  the  concepts of discri~inant functions are introduced and an important 
class  of  problems  is  analyzed:  classification  of  normally  distributed  classes that gen- 
erally  have quadratic decision  boundaries.  A  more  detailed treatment of  these topics 
may  be  found  in  Cios,  Pedrycz, and Swiniarski  (1998, ch. 4) and in  Schiirmann  (1996) 
as well as in  classical  volumes on decision and estimation  (Melsa and Cohn 1978) or 
on classification (Duda and Hart 1973).  The  development  here  roughly  follows  Cios 
et al. and Melsa and Cohn. 

ayesian C l a s s ~ € ~ ~ o n  in  the  Case of Two Classes The Bayesian approach to clas- 
sification  assumes that the  problem of pattern Jclassification  can  be  expressed  in 
probabilistic  terms and that the  a  priori  probabilities P(,),) and the conditional 
probability-density  functions P ( x  I mi), i = 1,2, of feature pattern vectors are known. 
As  is the  case  in  regression,  this  initial  assumption  will  generally not be  fulfilled in 
practice.  Nevertheless,  a  sound  understanding of the  classical  Bayesian approach is 
fundamental to grasping  basic  concepts about learning  from  training data sets  with- 
out knowledge  of  any  probability distribution. 

Assume  recognition  of  two  handwritten  numerals (or any characters): 1 and 0. In 
the experiment,  the  optical  device  is  supplied  with  typical  samples (on, say,  a  16 x 16 
grid), as shown  in  figure  1.27.  The 0’s generally  cover  a  larger total area of the  grid 
than do the  l’s, and the total area covered by the  numeral  is  chosen as a  suitable 
feature in  this  example. 

The  task  here  is to devise an algorithm for the  classification of handwritten char- 
acters into two  distinct  classes: l’s and 0’s. Assume that the  characters  emerge  in 

v =  

- .  
0 
0 

0.1 
0.2 

1 0 .  
Figure 1.27 
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- 0 .  
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Typical  samples  for  a  two-class  recognition  with  pattern  vectors vi and  features xi. 
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random sequence  but that each can be  only a l or a 0. In statistical terns, a state of 
nature (or class  space) , an emerged  character,  has  only  two  distinct  states-either it 
is “a  l,’  or “a 0”’: 

= (01 ) w2} = {“a l”, “a O”}. (l .55) 

fz is a random  variable  taking  two  distinct  values, m1 for a 1 and c02 for a 0. cui can be 
assigned a numerical  coding,  for  example, 01 = l (or 0, or - 1, or any), and 022 = 0 
(or - 1, or 1, or any). Note that a numeral  is  perceived as an object, an image, or a 
pattern. This pattern will then be analyzed  considering  its  features.  (There  is a single 
feature, XI, for this  two-class  task at the  moment. In the  next  section, on multiclass 
classification, a second feature is  introduced and the feature space  becomes  two- 
dimensional.)  Since  characters  emerge  in a random way, fz is a random  variable. So 
are the  features, and the  whole  task  is  described  in  probabilistic terns. 

The goal of the  Bayesian  method  is to classify  objects  statistically  in  such a way as 
to minimize  the  probability of their  misclassification.  The  classification  ability of  new 
patterns will  depend on prior statistical infornation gathered  from  previously  seen 
randomly  appearing  objects. In particular, such  classification  depends  upon prior (a 
priori) probabilities P(.)j) and on condition~l probability-density  functions P(x ~ mi), 
i = 1’2. The  prior  probability P(c01) corresponds to the  fraction n,, of l’s in  the total 
number of characters N .  Therefore,  the  prior  probabilities can be  defined as 

= YlW, 
N ’  

i = 1,2. (l S 6 )  

Thus, P(.)j) denotes  the unconditional probability  unction that an object  belongs to 
class  without  the  help of any other i~ormation about this  object  in  the forn of 
feature measurements. A. prior  probability P(.),) represents prior knowledge  (in 
probabilistic terns) of  how  likely it is that the pattern belonging to class i may appear 
even  before  its actual materialization.  Thus, for example, if one  knew from  prior 
experiments that there are four times  more 1,s than 0’s in  the  strings of numerals 
under  observation,  one  would  have P(c01) = 0.8 and P(02) = 0.2. Note that the  sum 
of prior  probabilities  is  equal to 1 : 

N 
P(.),) = 1. 

i= 1 
(1.57) 

Let  us start classifying 
under  the  most  restricted  assumption  first.  Suppose that the  optical  device is out of 
order and there  is  no infornation about feature x of a materialized  numeral.  Thus, 
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the  only  available  statistical  knowledge of the character strings to be  classified  is the 
prior probabilities P(co1) = 0.8 and P(co2) = 0.2. It is  difficult to believe that the 
classification  will  be  very  good  with so little  knowledge,  but  let us try to establish  a 
decision  strategy that should  lead to the  smallest  misclassification error. The  best and 
natural decision  now  is to assign  the  next  character to the  class  having  the  higher 
prior probability.  Therefore,  with  only the prior  probabilities P(co1) and P(co2) 
known,  the  decision  rule  would be 

Assign  a  character to 

class c o l  if P(co1) > P(co2), or to (1.58) 

class co2 if P(m2) > P(co1). 

If P(co1) = P(co2), both classes are equally  likely, and either  decision  would be 
correct. 

The task  is to minimize  the  probability of a  classification error, which can be 
expressed as 

P(co2) if  we decide R = c o l ,  

P(co1) if  we decide G+ = m2. 
P( classification error) = (1 S9) 

Thus,  selecting  a  class  with  a  bigger  prior  probability  gives  a  smaller  probability of 
classification error. If  one  chooses  class c o l  in  this  example  without  seeing  any  fea- 
tures,  the  probability of misclassification  is P(co2) = 0.2.  This  is  the  best  classification 
strategy  with so little infomation-P(co~) only-about  the  objects to be  classified. 

Frankly, one  would  never attempt to solve  real-life  classification  problems  with so 
little  knowledge, and typical  problems are those  with  available  features. 

esian ~ l a s s ~ ~ a t i o n  sed  on ~ r i o r  ~ r o ~ a ~ i l i t i e s   an^ a t~res  It is clear that 
by including infomation on the total area covered by a  numeral  in  the  problem of 
classifying 1’s and O’s, one  can.  increase  classification  accuracy and consequently 
minimize  the  number  of  misclassified  characters. Note that characters are stochastic 
images.  Each  person  writes  differently and writes  the  same  characters  differently  each 
time.  Thus,  a  feature x (the total area of a  grid  covered by a character) takes ran- 
dom  values.  This  is  a  continuous  variable  over  a  given  range, and experimentally by 
extracting  features  from 500 samples of each character, discrete  cZass-conditional 
probability-~ensity  functions in  the  form of two  histograms  are  obtained, as shown  in 
figure  1.28.  If the  number of  samples  is  increased to infinity,  these  discrete  distri- 
bution  densities  converge into two continuous class-conditional probability-density 
functions P(x I mi), as shown  in  figure  1.28. P ( x  I coi) can  also be called  the data 
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Figure 1.28 
Typical  histograms (left ordinate) and  class-conditional  probability-density  functions P(x mi) (right  ordi- 
nate) for two-class  recognition  with a single feature XI. The decision boundary, shown as a point XI = 6, is 
valid  for  equal  prior  probabilities P(w1) = P(m2) = 0.5. 

generator’s co~ditional probability-density functions or the likelihood of class mi with 
respect to the  value x of a  feature  variable. 

The  probability  distributions  presented  in  figure  1.28 are fairly  similar, but 
depending  on  the state of nature (the specific data generation  mechanism),  they can 
be rather different.  The  probability-density 

is  the  probability-density  function for a  value of a  random  feature  variable x given 
that the pattern belongs to a  class mi. The  conditional  probability-density  functions 
P ( x  I o l )  and P ( x  I m2) represent  distributions of variability of a total area of the 
image  covered by a  1 and a 0, These areas are thought to be different, and P ( x  1 c o l )  
and P ( x  I co2) may capture this  difference  in  the  case  of  l’s and 0’s. Thus, information 
about this particular feature will  presumably  help  in  classifying  these  two  numerals. 

Remember that the joint probability-density  function P(coi, x) is  the  probability- 
density that a pattern is  in  a  class coi and has  a feature variable  value x. Recall  also 
that the  conditional  probability  function P(mi I x) denotes  the  probability (and not 
probability-density) that the pattern class  is  given that the  measured  value of the 
feature  variable is x. The  probability P(Ui I x) is  also  called  the posterior (a posteriori) 
probability, and its  value  depends  on  the  a  posteriori  fact that a  feature  variable  has  a 
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concrete  value x. ecause P(mi 1 x) is  the  probability  function, 

i= 1 

Now, use the  relations 

(l .61) 

(1.62) 

where P(x) denotes  the unconditional probability-density fun~t ion for a feature  vari- 
able x 

The posterior  probability P(mi 1 x) is  sought  for  classifying  the  handwritten char- 
acters into corresponding  classes. From equations (1.62)  this  probability  can be 
expressed in the form of a 

(1.64) 

( l  ,65) 

The probabi1ity-density  function P(x) only  scales  the  previous  expressions,  ensuring 
in  this  way that the s m  of posterior  probabilities  is 1 (P(m1 1 x) + P(m2 I x) = 1). 
The practicabi~ity of these  ayes’  rules  lies  in  the  fact t the  conditional  probability 
function P(oi  I x) can be c ulated  using P(x  I mi) and i ) ,  which can be estimated 
from data much  more  easily than P(mi I x) itself.  quipped with (l .65) and having  the 
feature  measurement x while  knowing  probabilities P(oj )  and P(x I ai), one  can  cal- 

aving  the  posterior  probabilities P(oi  1 x), one can formulate  the 
following classi~cation decision  rule  based on both prior pro~ability and  observed 
features: 

Assign a character to a class mi having  the  larger  value of the  posterior  conditional 
probabilit~ P(ai  1 x) for a given feature x. 
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This  is  called  the  Bayes,  classification  rule, and it is  the  best  classification  rule for 
minimizing  the  probability of misclassification. In other words,  this  rule  is  the  best 
one for minimizing  the  probability of classification error. In the  case  of  two-class 
handwritten character recognition, for a given numeral  with  observed  feature x, the 
conditional  probability of the  classification error is 

P(02 I x) if  we decide SZ = cu1, 

P(q I x) if  we decide SZ = 0 2 .  
P(c1assification error I x) = (1.66) 

Note that for equal  prior  probabilities P(co1) = P(02),  the  decision  depends  solely on 
the  class-conditional  probability-density  functions P ( x  I mi), and the  character  is 
assigned to the  class  having the bigger P ( x  I mi). Thus,  in  this  classification task, 
having P(q) = P(02)  = 0.5, the decision  boundary  in  figure  1.28  is at the inter- 
secting  point (x = 6) of the  two  class-conditional  probability-density  functions. (In 
the  case  of  a  one-dimensional  feature,  the  decision  regions are line  segments, and the 
decision  boundary  is  a point.) 

Analyzing  many  differently  written l's and 0's will  yield  different feature values x, 
and it is important to see whether  the  Bayes'  classification  rule  minimizes  the average 
~robabizity of error, because it should  perform well for all  possible patterns. This 
averaging  is  given by 

+CO 
P(c1assification error) = .I P(c1assification error, x) dx 

"CO 

Clearly, if the  classification  rule as given  by  (1.66)  minimizes  the  probability of  mis- 
classification for each x, then  the  average  probability of error given  by  (1 57) will also 
be minimized.  Thus,  the  Bayes'  rule  minimizes  the average probability of a  classifi- 
cation error. In the  case  of  two-class  classification, 

P(c1assification error I x) = min(P(0~ I x), P(w2 I x)). (1.68) 

Using  Bayes' rule  (1.64), 

(1.69) 

Note that P ( x )  is  not  relevant  for  the  final  decision. It is  a  scaling  only, and in  the 
case of two-class  decisions  the  Bayes'  classification  rule  becomes 
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Decide 

class m1 if P ( x  

class m2 if P ( x  
(1.70a) 

By making  such a decision  the  probability of a classification error and consequently 
the average probability of a classification error will  be  minimized.  One obtains another 
common  form of this  rule by  using the Z i ~ e Z i ~ o o ~  ratio A(x) = P ( x  I m1)/P(x  1 0 . 4 :  
Decide 

The  decision  rule  given by (l .70b) can also be rewritten  as 

(1.70b) 

( l  .70c) 

For equal  prior  probabilities, a threshold of likelihood ratio is  equal to l ,  and this 
rule  becomes  identical to the  maximum  likelihood  decision  criterion. 

A good  practical  point about this  rule  is that both the  prior  probabilities P(.),) and 
the class-conditional  probability-density  functions P ( x  I mi) can be more  easily  esti- 
mated  from data than the  posterior  probability P(mi I x) on which  the  whole  rule  is 
based. 

a ~ ~ s i a n  ~ l a ~ ~ c a ~ o n  Real pattern recognition  problems  today  often 
involve patterns belonging to more than two  classes and high-dimensional  fea- 
ture vectors. In the  case  of  handwritten  numerals  there are ten  diEerent  classes, and 
using a single feature as in  the  previous  case of two-class  classification, it would be 
relatively  difficult to separate all  ten  numbers  reliably.  Suppose that in addition to 
the l’s and O’s, one  wants to classify  the  handwritten  number 8, as shown  in  figure 
1.29. 

Now,  the  single  feature x1 (the total area covered by the character) is  insufficient to 
classify  all  three  numbers,  since  the 0’s and the 8’s seem to cover  almost  the  same 
total grid area. Defining another feature x2 as  the  sum of the  areas of the character 
on the  diagonal  grid  cells and combining  these  two  features  in  the  two-dimensional 
feature vector  may  sufiice for the  classification of all  three  numerals. 
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Figure 1.29 
Left? typical  sample of a handwritten  number 8 on a 16 x 16  grid. Right, the  decision  regions  and  decision 
boundaries  for a three-class  character ( l? 0, and 8) recognition  problem. 

Figure  1.29  depicts  the  positions of the  training patterns in  two-dimensional feature 
space.  Despite  its  simplicity,  this  problem  involves  all  the  relevant  concepts for solv- 
ing  problems  with  higher-dimensional  feature  vectors and more than three  classes. By 
means of this introductory multifeature and multiclass  example,  the  theory of classi- 
fication  is  developed  in  general  terms and later applied to cases  involving  normal or 
Gaussian  distributions. 

The  two  straight  lines  shown  in  figure  1.29 are the decisio~ b o ~ n d ~ r ~  functions that 
divide  the  feature  space into disjoint  decision  regions.  The latter can be readily  asso- 
ciated  with  three given  classes.  The  shaded area is a so-called  indecision  region  in  this 
problem, and the patterns falling  in  this  region  would be not  assigned to any  class. 

When  objects  belong to more  classes  (say k, and for numerals k = lo), we have 

ayes’  classification  rule  will  be  similar to the  rule  for  two  classes. In the  case 
of multiclass and multifeature  tasks, P(.->,) denotes  the prior probability that the 
given pattern belongs to a class mi, and it  corresponds to the fraction of characters 
in an ith  class.  The  class-conditional  probability-density  function  is  denoted for 
all k classes  by P(x I CO,) and the joint probability-density  function by P(coi, x), 
i = l ?  . . . , k. P(@,, x) is  the  probability-density that a pattern is  in  class mi and has a 
feature  vector  value x. The  conditional  probability  function P(oi  I x) is  the  posterior 
probability that a pattern belongs to a class L U ~  given that the  observed  value of a 
feature  is x, and 

k 
P(60i 1 x) = 1. 

i= 1 
( l  .72) 
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As in  the  two-class  case  the  prior and posterior  probabilities are connected by 

(1.73) 

where P(x) is  the  unconditional  probability-density  function for a  feature  vector x: 

From (l .73)  follows  Bayes’ theorem for a  multifeature and multiclass  case 

(1.75) 

or 

Now, for a  multifeature and multiclass  case,  Bayes’  classification  rule  can  be  gener- 
alized as follows: 

Assign  a pattern to a  class mi having  the  largest  value of the  posterior  conditional 
probability P(mi I x) for a given feature x. 

In other words,  assign a given pattern with an observed feature vector x to a  class mi 
when 

~ ( m j ~ x ) > P ( m j ~ X ) ,  j = 1 , 2  ,... ? k , ’ i + j .  (1.77) 

Within  the  framework of learning  from data it is  much  easier to estimate prior 
probability and class-conditio~al probability-density  functions than the  posterior 
probability  itself.  Therefore,  a Bayes’  classification  rule  (1.7’7) for a  multifeature and 
multiclass  case  should  be  expressed as follows: 

For a  given feature vector x, decide  class mi if 

P(x I m j ) ~ ( m j )  > P(x 1 mj)P(mj), j = 1,2, . .  . , k ,  i + j .  ( l  .78) 

This  final  expression  was  obtained by using  (1.75)  after  neglecting  a  scaling factor 
P(x). Again, Bayes’  classification  rule  is  best for minimizing  classification error. 
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P 

i ~ ~ r ~  1.30 
Bayes’  classification  rule  for  three  classes  may  result  in  three  single  nonoverlapping  decision  regions (left) 
or  in  three  nonoverlapping  disjoint  decision  regions  consisting  of  two  (or  generally  more)  nontouching 
regions (right). Other  configurations of decision  regions  are  possible,  too. 

Figure  1.30  illustrates (I .78)  for  three  classes and, for the  sake of clarity,  only a single 
feature. 

For problems  containing unce~ainties, 
decisions  are  seldom  based on probabiliti~s alone. In most  cases,  one  must be aware 
of the consequences  (namely,  the errors, potential  profits or losses,  penalties,  or  re- 
wards  involved).  hus,  there  is a need for combining  probabilities and conse~uences, 
and for  this  reason,  the  concepts of cost or Zoss, and of risk (defined as expected loss) 
are introduced  here.  This  is important in  all  decision-making  processes. ~ntroducing 
the  minimization  criterion  involving  potential loss into a classification  decision made 
for a given  true state of nature (for a given  feature  vector x) acknowledges  the  fact 
that  isc classification of  classes in  some  areas  may be more  costly than in  others. The 
loss  function can be  very di~erent in  various  applications, and its  form  depends  upon 
the nature of the  problem,  efore  considering  the  theory  involving  loss and risk 
functions,  let  us  first  study  them  inductively  in  example  1.9. 

Eleven  boiler  units  in  a  plant are operating at different  pressures. 
Three are operating at 101 bar, two at 102 bar, and others at 103,  105,  107,  110,  11  1, 
and 1 12 bar. A single  process  computer  is,  with  the  help of  specific  boiler  pressure 
sensors  (manometers),  randomly  reading the corresponding  pressures, and the last 
eleven  recorded  samples are (101,  112,  101,  102,  107,  103,  105,  110,  102,  101,  111 
bar). The  pressures  in  the  various  boilers are mutually indep~ndent. In order to check 
a young  engineer’s understand in^ of this  process and its  random  characteristics, his 
superior asks him to predict  the  next  manometer  reading  under  three  different  deci- 
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l .  A reward of  $10 ( I  = r = + 10) if the  next  reading  is  exactly  the  one  he  predicts, 
and a fine  of  $1 ( E  = f = - 1) if a  different  pressure  is  measured 
2. A reward of  $10 ( E  = r = +lo) if the  next  reading  is  exactly  the  one  he  predicts, 
and a fine equal  in  dollars to the size  of  his prediction error ( I  = f = -/el) 

3. A reward of  $10 ( E  = r = + 10) if the  next  reading  is  exactly  the  one  he  predicts, 
and a  fine  equal  in dollars to the  square of  his prediction error ( E  = f = - ( e 2 ) )  

The engineer  needs to make  a  good  decision  because  there are penalties for being 
wrong.  His  boss  knows that if there were no penalty for being  wrong  or  rewards for 
being  right or close,  nothing  would be at stake and the  engineer  might just as well 
predict  manometer  readings of 50, 103.4, or 2 10.5  even though he  knows that there 
will  be  no  such  readings.  Therefore,  in  each  case,  the  engineer  should  select  the  best 
possible  decision to maximize  expected  profit (or to minimize  expected  loss). 

Note that the  different  character of the  loss  functions  in  this  example  will  lead 
to different  decisions. In case  1,  there  is  no  reward for coming  close to the  correct 
manometer  reading, so the size  of the  decision error does not matter. In  case 2, the 
loss  is proportional to the size  of the error, and in  case 3, the  loss  increases  with  the 
square of the error. (Note that the last fine  resembles the  sum-of-error-squares  cost 
function.) What should  the  engineer  decide  in  order to maximize  expected  profit? 

In the  first  case, if  he predicts  a  manometer  reading of  101 (the  mode,  or  most  fre- 
quent observation, of the  eleven  samples),  he stands to make $10 with  a  probability 
of  311 1 and to lose  $1  with  a  probability of 8/11.  Now,  his  expected  profit (EP)I3 is 

11 3  8 
l1 11 lo-+  (-l)-= $2. 

i= 1 

It can be  easily  verified that this  is  the  best  possible  prediction  given  the  loss  func- 
tions E = 10 and I = - 1 for a  right and a  wrong  decision,  respectively.  Checking,  for 
example,  the  prediction  of  103 bar, one  finds that EP = $0. Note in  this  example that 
regardless of the  value of the  specific  loss,  the  prediction of  101 bar will  always  be  the 
best  one,  ensuring  maximal  profit or minimal  loss. So, for example, if a  correct  pre- 
diction were  rewarded  by  $1 and a  bad  one  fined by  $10, the  expected  profit  would be 
negative: 
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denoting  the  expected  loss of $7.  Now, if the  engineer  predicts a reading of  103, the 
expected  loss (or risk)  is  1 / l  l - 10(  10/  1 l )  = $9, and for a predicted  reading of  102 
the  expected  loss  is $8. Hence,  the  expected  loss  is  again  the  smallest  when  101 bar is 
predicted,  given that the h e  does not depend on the size  of  the estimation error. 
Note also that other predictions  like  102.5 or 108 bar would  now  entail a certain loss 
of  $10.  (Recall that the  manometers can display  only  the  integer  values of the  oper- 
ating  boiler  pressures, and none  is  operating at these  two  pressures.)  Thus,  when 
there  is no reward for coming  close to some  characteristics of the  sample,  the  best 
decision  is to use the mode, or the  most  frequent  measurement. 

In the  second  case,  when  the  fine  is proportional to the  possible error, E = f = -le[, 
it  is  the median (103 bar here) that maximizes  the  expected  profit.  Thus, if the  engi- 
neer  predicts that the  next  displayed  reading  will  be  103,  the  fine  will be  $2,  $1,  $2, 
$4, $7, $8, or $9,  depending on whether  the  reading is  101,  102,  105,  107,  110,  111, or 
1 12, and the  expected  profit is 

l1 3 2  l 1 1  1 l  1 
11  11 11 11 l1  l1 11  11 

Ei~i=-2--1-+10--2--4--~"8--9-= "$2.55. 
i= 1 

In other words,  in  this  second  case,  the  best  decision cannot make  any  profit but 
would  only  entail  the  least  possible  loss of  $2.55.  If the  reward  were  $38,  the  maximal 
expected  profit  would be $0. Again,  regardless of the  reward  assigned to the  decision, 
the  best  possible  prediction,  given that the  fine  is proportional to the  size of the  pre- 
diction error, is a median  (103 bar). 

The  expected  fine or loss would  be greater for any  number other than the  median. 
For instance, if the  engineer  predicts that the  next  reading  will  be  105,  the  mea^ of 
the  eleven  possible  readings,  the  fine  will  be  $4,  $3,  $2,  $2,  $5,  $6, or $7, depending 
on  whether  the  reading  is  101,  102,  103,  107,  110, l1 l, or 112, and the  expected 
profit  is 

11 3 2 1  l 1 ' 1  1  1 Eipi = -4"- - 3- - 2- + 10"- - 2- - 5- - 6- - 7- = "$2.73. 
11 l1 11  11  11  11  11  11 i= 1 

Case  3  describes  the  scenario  when  the  fine  increases  quadratically  (rapidly)  with 
the  size of the error. This  leads  naturally to the method of least s q ~ a r e ~ ,  which  plays a 
very important role  in  statistical  theory. It is  easy to verify that for such a loss  func- 
tion  the  best  possible  prediction  is  the  mean,  105, of the  eleven  sample  manometer 
readings.  The  engineer  finds that the  fine  will  be  $16, $9, $4, $4, $25,  $36, or $49, 
depending  on  whether  the  reading  is  101,  102,  103,  107,  110,  111, or 112, and the 
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expected  profit  is 

1 1  3 2 1   1 1  1  1  1 l~~~~-16--9--4-+10--4--25--"36"-49-~-$12.10. 
11  11  11 l1  l1 11  11  11 i= 1 

Again,  in  this  third  predicted  scenario  the  best  decision, to predict the mean, cannot 
make  any  profit but would  only  entail  the  least  expected loss of  $12.10,  given the 
reward of only  $10 for the correct  prediction. It is  left to the  reader to verify  this 
claim by calculating  the  expected  profit (or loss) for any other possible  decision. Note 
that, in  the  case when the fine  increases  quadratically  with  the  size of the error, the 
expected  profit  is $0 only if the  reward  is  $143. 

The final  decision (or simply  a  result)  depends on the loss function  used. As men- 
tioned  in  section  1.3,  the  best  solution  depends  upon  the n o m  applied. 
and 1.9 illustrate  this important observation  in  a nice graphical  way. 

The last  two  scenarios  indicate that the  reward  defined by the  engineer's  superior 
is not very  generous.  But  one can hope that using  the  correct  prediction  strategy- 
mode,  median, and mean are the  best  decisions  to  maximize  expected  profit  given 
various  loss  functions-will  benefit  the  engineer  more  in  his  future  professional  li 
than his superior's  present  financial  offer. 

Now,  these  questions of the best  decisions  in  classification  tasks  while  minimizing 
risk  (expected  loss) can be  set into a  more  general  framework. First, define  a loss 
function 

Lji = L(decision  classj I true  classi)  (1.79) 

as a  cost or penalty for assigning  a pattern to a  class cl)j when a true class  is mi, In the 
case of an I-class  classification  problem,  define an I x I loss matrix 

(1.80) 

, or the  selection of the L,,  is  highly problem-depe~dent, At this 
ecific  penalties or rewards  is  less important than understanding  the 

concept of risk that originates  from  decision  theory while  combining  probabilities 
with  consequences (penalties or rewards).  Recall that until now the  best  decision 
strategy  was  based  only on the  posterior  probability P(0i  I x), and using 
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P(0j  1 x) was  expressed  in terns of the  prior  probability P(@,) and a  class-conditional 
probability-density P(x I cui). Now,  using the posterior  probability P(0i  I x) in  a  simi- 
lar way as previously,  one can define  the conditio~al risk, or expected  (uverage) 
c o n d ~ ~ i ~ n a ~  loss,  associated  with  a  decision that the observed pattern belongs to class 

nen in  fact  it  belongs to a  class mi, i = l ,  2, . . . , E ;  i # j :  

I I 
L(decision  classj I true  classi)P(coi I x) = (1.81) 

i= 1 i= l 

Thus,  the  conditional  risk of making  a  decision c;ifi, Rj = R(wj 1 x), is  defined as the 
expectation of loss that is, through the  use of P(0i  I x), conditioned  on  the  realization 
x of a feature vector.  ence,  the  best  decision now  should  be a  classification  decision 
coj that minimizes  the  conditional  risk Rj, j = 1,2, . . . , l .  The overall  risk  is  defined as 
the  expected loss associated  with  a  given  classification  decision and is  considered for 
all  possible  realizations x of an n-dimensional feature vector  from  a  feature  vector 
space !Rx: 

R =  (1.82) 

where  the  integral  is  calculated  over an entire feature vector  space !Rx. 

The overall  risk R is  used as a  classification  criterion for the  risk mini~zation 
while  making  a  classification  decision.  The  integral  in  (1.82)  will be minimized if a 
classification  decision aj minimizes the conditional  risk R(cq I x) for each  realization 
x of a  feature  vector. 

This  is  a  generalization of the Bayes’  rule for mini~zation of a classi~cation error 
(1.67), but here  the  minimization  is of an overall  risk R, or an expected  loss. For this 
general  classification  problem we have  the  following  Bayes’  procedure and classifi- 
cation  rule: 

For a  given feature vector x evaluate  all  conditional  risks 

l 

i= 1 

for all  possible  classes q ,  and choose  a  class  (make  a  decision) ay for which  the 
conditional  risk R(wj I x) is  minimal: 

R(0jjX) <R(CO&L), k =  1,2, . .*,1,  k # j .  (1.83) 
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Such  classification  decisions  guarantee that the  overall  risk R will  be minimal.  This 
minimal overall risk is  called Bayes’ risk. 

The last equation can be rewritten as 

I 1 

LkiP(coiIx), k =  l , 2  ,..., I ,  k # j ,  
i= 1 i= 1 

(1 .84) 

and using  Bayes’  rule, ( 1-64), 

can be written as 

Canceling  the  positive  scaling factor P ( x )  on both sides  of  this  inequality  yields  the 
final  practical  form of  Bayes’  classification  rule,  which  minimizes  overall  (Bayes’) 
risk. 

Choose  a  class  (make  a  decision) coj for which 

l I 
LjiP(x I m i ) P ( ~ i )  < LkiP(x I Wi)P(cUi), k = l ,  2,. . . , l ,  k # j .  (l   36) 

i= 1 i= 1 

For binary  classification  decision  problems,  Bayes’  risk  criterion  (1.86)  is  given as 
follows.  Let Lg be the loss (cost) of making  decision mi when mj is true. Then for the 
binary  classification  problem  there are four  possible  losses: 

L11 = loss (cost) of deciding col when,  given x ,  c o l  is true, 

L12 = loss (cost) of deciding col when,  given x ,  co2 is true, 

L21 = loss (cost) of deciding c02 when, given x ,  c o l  is true, 

L22 = loss (cost) of deciding co2 when,  given x ,  co2 is true, 

or 
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Note that there  is  nothing  strange  in  associating a loss  or  cost  with a correct  decision. 
One can often  set L11 = L22 = 0, but there will also be  very  common  problems  when 
both the  correct and the  wrong  decisions are associated  with  certain  costs.  The  Bayes' 
risk  criterion  will  result  in a (classification)  decision  when  the  expected  loss or risk  is 
minimal. 

The  risk  (expected or average  loss) that should be minimized  is 

R(U2 

or 

R = R(0l I x) + R(02 I x) 

The Bayes'  risk formulation can be  viewed as a generalization of a maximum-a- 
posteriori (MAP), or probability-of-error,  decision  criterion as given  by  (1.67). To 
show that, (l .67) can be rewritten as 

P(c1assification error) = P(c1assification error I x)P(x) dx 
"-00 

"-00 

(P(W1 I x) + P(w2 I x))P(x) dx. 
"-00 

Clearly, by minimizing  the  probability of misclassification for each x (as  the  classifi- 
cation  rule  given by (1.66)  requires),  the  average  probability of error given  by (1.67) 
(and by the  preceding equation) will also be  minimized. 

At the  same  time, by assigning  the  losses L11 = L22 = 0 and L12 = L21 = 1,  the  risk 
( 1-87) becomes 

and this  is  exactly  the  argument of the  preceding  integral. In other words, by mini- 
mizing a risk,  given a zero-one loss function, the  average  probability of classification 
error is  also  minimized. 

Thus, for a zero-one  loss  function, a classification  (decision) by minimizing  risk 
is identical to the  Bayes' (maximum-a-poste~ori) classification  decision  criterion 
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that ~ n i m i z e s  the  average  (expected)  probability of classification error. Note that 
in  dichotomization  (two  classes  only or binary)  tasks, as long as Lii = 0, that is, 
-4511 = -4522 = 0, the  risk  minimization  criterion  can be  nicely  expressed  in a  known 
form of a  likelihood ratio 

( 1  38)  

Hence,  whenever  the  likelihood ratio A(.) = P(x I w1)/P(x  1 w2) is  larger than the 
product of the  two ratios on the  right-hand  side of (1  .SS), the  decision  will  be  class 1. 
The last  expression  follows  from  (1.86), or after  applying  ayes’  theorem ( 1.64)  in 
(1.87). Note that the  costs -4512 and -4521 do not necessarily  h  e to be equal to 1 now. 
Also, both the MAP (Bayes’  decision  criterion) and the  maximum  likelihood  crite- 
rion are just special  cases  of  the  risk mi~mization criterion  (1.88).  Namely,  the MAP 
rule  follows  when -4512 = -4521 = 1, and the  maximum  likelihood  criterion  results  when 
-4512 = -4521 = 1 and P(c01) = P(co2). 

Finally, note that in  more  general  multiclass  problems,  the  zero-one  loss  matrix 
(1.80)  is  given as 

0 

L =  ~1 

1 

1 
0 

1 

0 . .  

. * *  

(1.89) 

aut F ~ u c ~ o n s  Pattern recognition  systems  perform 
multiclass,  multifeature  classification  regardless of the  type  of  decision  rule  applied. 
Recall that there are various  decision  rules that, depending on information about the 
patterns available,  may be applied. Six  different  rules  were  listed at the  beginning of 
section  l  .4.2, and both the Bayes’  rule for  minimizing  the  average  probability of error 

A pattern classifier  assigns  the feature vectors x to one of a  number of possible 
classes ct)i, i E { 1 )  2, . . . , l} ,  and in  this  way partitions feature  space into line  segments, 
areas,  volumes, and hypervolumes,  which are decision  regions RI, R2, . . . ) RI, in the 
case af one-,  two-,  three-, or ~gher-dimensional features,  respectively.  All feature 
vectors  belonging to the same  class  ideally  assigned to the  same  category  in  a 
decision  region.  The  decision  regions are often  single  nonoverlapping  volumes or 
hypervolumes, and decision  regions  of  the  same  class  may  also be disjoint,  consisting 
of  two or more  nontouching  regions  (see  fig. 1.30). The boundaries  between adja- 
cent  regions are called  decision  boundaries  because  classification  decisions  change 

ayes’  rule for minimizing  risk  have  been  studied  in  more  detail. 
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Figure 1.31 
Class-conditional  probability-density  functions (left) and decision  regions Ri and decision boundaries 
( r ~ ~ ~ ~ )  for  three  classes  result  in  three  single  nonoverlapping  decision  regions. 

across  boundaries.  These  class  boundaries are points,  straight  lines or curves,  planes 
or surfaces, and hyperplanes or hypersurfaces  in  the  case  of  one-,  two-,  three- and 
~gher-dimensional feature  space,  respectively. In the  case  of  straight  lines,  planes, 
and hyperplanes,  the  decision  boundaries are linear. 

Figure  l .3 1  shows  three  class-conditional  probability-density  functions  (likelihood 
functions) as well as the partitioning of t~o-dimensional feature space into three 
separated  decision  areas.  The  likelihood  functions are three normal distributions  with 
equal  covariance  matrices and centers at (2, 2), (8, 2) and (2, 8). Because  of the  equal 
covariance  matrices,  the  three  decision  boundaries are straight  lines  (why  this  is  so  is 
explained later). In the  case of three- and higher-dimensional feature space,  the  deci- 
sion  regions are volumes and hypervolumes,  respectively, and vis~alization is no 
longer  possible.  Nevertheless,  the  classification  ,decision  procedures and the  underly- 
ing  theories are the  same.  The  optimal  classification  strategy  will  most  typically  be 
the  one that minimizes  the  probability of classification error, and the latter will  be 
minimized  if, for P ( x  I col)P(ol) > P ( x  [02)P(02), x is  chosen to be in  the  re 

More  generally,  classification  decisions  based on feature  vector x may  be stated 
using  a  set of explicitly  defined discriminant functions 

di(x), i = I ,  2 , .  . , I ,  (1.90) 
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Figure 1.32 
~i sc~minan t  classifier  for  multiclass  pattern  recognition. 

where  each  discriminant  is  associated  with  a particular recognized  class cot, i = 
1,2, .**,1.  

The  discriminant  type of  classifier  (i.e.,  the  classifier  designed  using  the  discrimi- 
nant functions)  assigns  a pattern with  feature  vector x to a  class coj for which  the 
corresponding  discriminant  value 4 is  the  largest: 

Such  a  discriminant  classifier can be  designed as a  system  comprising  a  set of l dis- 
criminants d~(x), i = l ,  2,. . . , l ,  associated  with  each  class coi, i = 1,2,. . . , l ,  along 
with  a  module that selects  the  largest-value ~iscriminant as a  recognized  class  (see 
fig. 1.32). 

Note that the  classification  is  based  on  the  largest  discriminant  function 4(x) 
regardless  how  the  corresponding d i s c ~ i n a n t  functions are defined.  Therefore,  any 
monotonic  function of a  discriminant  function J ’ ( d ( ~ ) )  will  provide  identical  classi- 
fication  because of the  fact that for the  monotonic  function J’(*), the  maximal 4(x) 
gives  rise to the  maximal ~ ( 4 ( x ) ) .  It may  be  useful to understand  this  basic  property 
of discriminant  functions. If  some di(x), i = 1, . . . , l ,  are the  discriminant  functions 
for a given  classifier, so also  are  the  functions In di (x), di (x) + C, or Cdi (x) for any 
class-in~epe~dent constant C. This  is  widely  explored  in  classification  theory  by  using 
the natural logarithmic  function  ln d(x) as a  discriminant  function.  Thus,  in  the  case 

ayes’  classifier,  instead  of 
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the natural logarithm of P ( o ~  I x) is  used as a discriminant  function, that is,  the  dis- 
criminant  function is defined as 

di(x) = In P(oi  I x) = ln(P(x I w,)P(oi)) 

=lnP(x/mi)+lnP(coi), i =  42,  ..., Z. (1.92) 

Discriminant  functions  define  the  decision  boundaries that separate  decision  regions. 
Decision  boundaries  between  neighboring  regions Rj and R; are obtained by equal- 
izing  the  corresponding  discriminant  functions: 

4(x) = di(X). (1.93) 

These  boundaries  between  the  decision  regions are the  points,  lines or curves,  planes 
or  surfaces, and hyperplanes or hypersurfaces  in  the  case of one-,  two-,  three-, and 
higher-dimensional  feature  vectors,  respectively. 

Depending  upon  the  criteria for choosing  which  classification  decision  rule to 
apply,  the  discriminant  function  may be 

di(x) = P(mi I x) in  the  case of  Bayes' (MAP) classification, (l .94a) 

di(x) = "(x I 01) in  the  case of maximum  likelihood  classification,  (1.94b) 

d i ( ~ )  = P(wi) in  the  case of maximum-a-priori  classification,  (1.942) 

dj(x) = ---R(coi 1 x) in  the  case of  Bayes'  minimal  risk  classification, (l .94d) 
i = 1,2,. . . , l .  

Many  other (not necessarily  probabilistic)  discriminant  functions  may  also be  defined. 
Note the  minus  sign  in  the last definition of the  discriminant  function,  which  denotes 
that the  maximal  value of the  discriminant  function di(x) corresponds to the  minimal 
conditional  risk R ( o ~  1 x). 

In the case of two-class or binary  classification  (dichotomization),  instead of two 
discriminants dl (x) and &(x) applied  separately,  typically a d ic~o to~ i zer  is  applied, 
defined  as 

d ( x )  = d1(x) - &(x). (1.95) 

A dichotomizer  (1.95)  calculates a value of a single  discriminant  function d(x) and 
assigns a class  according to the sign of this  value.  When dl (x) is  larger than d2 (x), 
d(x) > 0 and a pattern x will  be  assigned to class 1, otherwise it is  assigned to class  2. 

ayes'  rule-based  discriminant  functions  (1.94a),  the  dichotomizer for a 
binary  classification  is  given as 
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Accordingly,  the  decision  boundary  between  two  classes  is  defined by 

dl(x) = d2(x) or by d(x) = 0. (1.96) 

Checking  the  geometrical  meaning of (1.96)  in the right graph in figure 1.33 for two- 
dimensional  features,  one sees that the  separating  function, or the  decision boundary, 
is  the  intersecting  curve  (surface or hypersurface  for  three- and ~gher-dimensional 
features,  respectively)  between  the dichoto~zer d(x) and the  feature  plane.  Another 
usefd form of the  dichotomizer that uses  a ) classification  decision  cri- 
terion can be obtained  from  (1.92) as follows: 

d(x) = ln P(m1 I x) - In P(co2 I x) = ln(P(x I col)P(col)) - ln(P(x I @ 2 ) P ( ~ 2 ) )  

or 

d(x) = In ( l  .97) 

For a  given feature vector x, a  dichotomizer ~ ( x )  calculates  a  single  value and assigns 
a  class  based on the sign  of  this  value. In other words,  because d( 
the  diEerence dl ( ) - d2(x), when d(x) > 0 the pattern is  assigned to class c o l  and 
when d(x) < 0 the pattern is  assigned to class co2. 

The  next  section  takes  up discri~nant functions for normally  distributed  classes, 
which are very  common.  Solving  classification  tasks  involving  Gaussian  examples 
can yield  very  useful  closed-form  expressions  for  calculating  decision  boundaries. 

es In the  case 
of normally  distributed  classes (~aussian classes) ~iscriminant functions are qua- 
dratic. These  become  linear (straight lines,  planes, and hyperplanes  for  two-,  three- 
and ~-di~ensional feature vectors,  respectively)  when  the  covariance  matrices of 
corresponding  classes are equal.  The quadratic and linear  classifiers  belong to the 
group of ~ ~ r a ~ e t ~ i c  c Z a ~ s ~ e r ~  because  they are defined  in  te S of Gaussian  distri- 
bution ~arameters-mean vectors and covariance  matrice 

Let  us start with  the  simplest  case of a  binary  classification  problem  in  a  one- 
dimensional feature space  when  two  classes are generated by two  Gaussian proba- 
bility  functions  having the same  variances a: = a2 but  different  means p1 # p2 
(see  fig.  1.28,  a  classification  of l’s and 0’s). his case,  the  class-conditional 
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probability-density  functions P ( x  I wi) are given as 

and applying (l .97)  results  in 

or 

= In + In 

(1.98) 

Hence, for a  one-dimensional feature vector,  given  equal  variances of normal  class- 
conditional  probability-density  functions P ( x  mi), the  dichotomizer  is  linear  (straight 
line). The decision  boundary as defined  by (l .96) or by d(x )  = 0, is  the point 

(1.99) 

Note that in  the  equiprobable  case when P(w1) = P(w2), the  decision  boundary  is 
a  point xDB in  the  middle of the  class  centers xDB = (pl + p2)/2. Otherwise,  the 
decision  boundary point XDB is  closer to the  center of the less probable  class. So, for 
example, if P(o1) > P(w2), then 1 1 1 1 2  - XDB/ < /p1 - X D B I .  

In the  case  of  the  multiclass  classification  problem  in an n-dimensional  feature 
space14  when  classes are generated  according to Gaussian  distributions  with  different 
covariance  matrices i and different  means p1 $ p2 Z e * $ p j ,  the 
class-conditional  probability-density  function P ( x  I mi) is  described by 

Now x and pi are (n, 1) vectors and the  covariance  matrices Ci are square and sym- 
metric (n,n) matrices. 1x1 denotes  the  determinant of the  covariance  matrix. In the 
most  general  case  for  normally  distributed  classes,  the  discriminant  function  defined 
as d(x) = In. P(w I x) = In P(x I w)P(w) becomes 
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or after  expanding  the  logarithm, 

The constant term n ln(2n)/2 is  equal for all  classes  (i.e., it cannot change  the  classi- 
fication), and consequently  it  can  be  eliminated  in  what  results as a ~uadratic dis- 
  rim in ant function, 

l 
2 

j /  - - ( X  - pi) T X i  - 1  (X - p i )  +In P(.),), i = 1,2,. . . , l .  (1.102) 

Decision  boundaries (separation hypersurfaces)  between  classes i and j are  the  hyper- 
quadratic functions  in  n-dimensional feature space  (e.g.,  hyperspheres,  hyperellipsoids, 
hyperparaboloids) for which di(x) = c$(x). The specific  form of discriminant  func- 
tions and of  decision boundaries  is  determined by the  characteristics of covariance 
matrices. 

The second  term  in  (1.102)  is  the ~ a ~ a l a n o ~ i s  distance, which  calculates  the  dis- 
tance  between  the feature vector x and the  mean  vector i. Recall that for  correlated 
features,  covariance  matrices X i  are nondiagonal  symmetric  matrices  for  which off- 
diagonal  elements 05 # 0, i = 1, . . . , l ,  j = 1, . . , , l ,  i # j .  

The quadratic discriminant  function  is  the  most  general  discriminant  in  the  case of 
normally  distributed  classes, and decisions are based  on  the  Bayes'  decision  rule that 
minimizes  the  roba ability of error or the  probability of misclassification.  This  is  also 
known  as  the minimum error rate class$er. 

The  classification  decision  algorithm  based on the quadratic ayes' discri~inants 
is  now  the  following: 

1. For given  classes  (feature  vectors x), calculate  the  mean  vectors and the  covari- 
ance  matrices. 
2. Compute  the  values of the quadratic discriminant  functions  (1.102)  for  each  class. 
3. Select  a  class coj for  which c$ ( x )  = max( di (x)), i = 1,2, . . . , 1. 

Example  1.10  illustrates  how equation (l.  102)  applies to the  calculation of quadratic 
discriminant  functions. The computation of decision  boundaries  between  two  classes 
in  the  case of the  two-dimensional feature vector X is  also  shown. 
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0 Feature vectors X of two  class S are generat by Gaussian  distribu- 
ing  parameters  (covariance  matrices 

025  0 
2"-  [ 0 

Find the  discriminant  functions and decision  boundaries.  Classes are equiprobable 
(P(w,) = P(w) = P). (Recall that the  covariance  matrices are diagonal when the 
features  are  statistically  independent. The geometrical  consequence of this  fact can be 
seen in  figure  1.34,  where  the  principal  axes of the contours of  the  Gaussian  class 
densities are parallel to the feature axes.) 

uadratic discriminant  functions for two  given  classes are defined  by  (1.102). The 
constant and the  class-independent tern In P(wi) can be ignored, and the  two  dis- 
criminants  are  obtained as 

1 dl(x) = -- 1n1&1 -- 
2 :([:i] - [ ~ ] ) ' [ b  0~5]-l([:i] - [ ~ ] )  

1  1 0 x1 

0 4 x2 
= 0.693 - [x1 x21 [ ] [ ] = 0.693 - 0.5(x; + 4x3, 

Both  discriminant  functions and the dichoto~i~ing discriminant  function are shown 
in  figure  1.33. 

The  decision  boundary, or separation line,  in  the  feature  plane  follows from 
d(x) = &(X) - 4 ( x )  = 0 as 

d ( ~ )  = dl (X) - d2(x) = 1.54 - 1 . 5 ~ ;  - 2x2 + 2 = 0. 

Note that the  decision  regions  in  the  feature  plane,  shown  in  figure  1.34,  are  non- 
overlapping  patches.  The  decision  region for class 2 comprises  two  disjoint  areas. It is 
not  surprising that region R2 is  disjoint.  This  can be  seen in  figure  1.33, and it also 
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~ u ~ d r a t i c  dichotomiz~n~ function 

Figure 1.33 
Classification  of  two  Gaussian  classes  with  different  covariance  matrices C1 Z C2. Top, quadratic  discrimi- 
nant  functions dl (x) and dz (x). ~ o t t o ~ ,  quadratic ~chotomizing discriminant  function d(x) = dl (x) - d2(x). 
The  decision  boundary  (separation  curve) d(x) = dl (x) - &(x) = 0 in  the  right  graph  is  the  intersection 
curve  between the  dichotomizer d(x) and  the  feature  plane.  Note  that  the  decision  regions  in  the  feature 
plane  are  nonoverlapping  parts of the  feature  plane,  but  the  decision.  region  for  class 2 comprises  two  dis- 
joint  areas. 
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ecision  boundary  (separ  on  curve) d(x) = dl (x) - &(x) = 0 for  two  Gaussian  classes  with 
different  covariance  matrices I l l  f: . This decision  boundary is obtained by the  intersection of the 
dichotomizing  discriminant  function d(x) and  the  feature  plane.  Note  that  the  decision  region  for  class 2 
comprises  two  disjoint  areas. 

follows  from  these  considerations:  the  prior  probabilities are equal, and the  decision 
rule,  being  the  minimum error rate classifier,  chooses  the  class  whose  likelihood 
function P ( x  I CO) is larger.  Since  the  variance  in  the x2 direction  is  larger for class 
2 than for class 1 , the  class-conditional  probability-density  function  (likelihood) 
P ( x  1 0 2 2 )  is  actually  larger than P( 1 C O ~ )  for most of the  lower  half-plane  in  figure 
1.34,  despite  the  fact that all  thes  oints are closer  (in  the  sense of the Euclidean 
distance) to the  mean  of  class l .  The quadratic separation  function  shown  in  figure 
1.34  is  obtained  from d(x) = 0. All  points  in the feature  plane  for  which d(x) 0 
belong to class l ,  and when d ( ~ )  > 0 the  specific pattern belongs to class  2.  This can 
be readily  checked  analytically as well as in  figures  1.33 and 1.34. 

There are two  simpler,  widely  used  discriminant  functions, or decision  rules, that 
under  certain  assumptions  follow  from  the quadratic discriminant  function.  (1.102). 

~ ~ ~ c e s  When  the  covariance 
so is  the  first  term  in  (1.102) 

equal  for  all  classes, and being class-independe~t, it  can be dropped  from  (1.102), 
yielding a discriminant of the  form 

i )  +In P(.>,), i = l , & .  . . ,L  (1.103) 
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This discri~nant function is linear,  which can be  readily  seen  from  the  expansion 

The quadratic term x’ -lx is class-independent and can be dropped  from  this 
. Furthermore, since  the  covariance  matrix is symmetric, so is its  inversion 

-‘x. This  results  in a set  of  linear  discriminant  functions 

The classi~catio~ decision  algorithm for normally  distributed  classes  having  the 
same  covariance  matrix is now the following: 

lasses  (feature  vectors x), calculate  the  mean  vectors and the  covari- 

2. Compute the values of the  linear discri~inant functions  (1.104) for each  class. 
3. Select a class oj for which 4(x) = max(di(x)), i = 1, 2 , .  . I E .  

ecision  boundaries  corresponding to di(x) = c$(.) are hyperplanes. In the  case of 
a two-dimensional feature vector  x,  these  boundaries are straight  lines  in a feature 
plane.  Linear  discriminant  functions and linear  boundaries are closely  related to 
neural  network  models  (see chapter 3). Here  the  linear d i s c r ~ n a n t  functions are 
presented  in  the “neural” f o m  

(1.105) 

where 

+ 1n P(oi ) .  

The  decision  boundary  between  classes S12i and SZj in  neural  form is given as a 
hype~lane, 

(1.106) 

where 



1.4. Learning  and  Statistical  Approaches to Regression  and  Classification 99 

It is  straightforward to show that in the case of a one-dimensional  feature  vector x, 
equation (1.99),  which  defines  the  separation point, follows  from  (1.106). In the  case 
of two  feature  patterns, ( l .  106)  represents  straight  lines.  Example  1.1  1  shows  this. 

Figure  1.31  depicts  the  classification of three  normally  distributed 
classes that result  in  three  linear separation lines and in  the  tessellation (partition) of 
a two-dimensional  feature  space (plane) into three  separated  decision  regions.  The 
likelihood  functions of the  three normal distributions  have  equal  covariance  matrices 

2 and centers  (means) at (2,2), (8,2), and (2,8). Check the validity of the  right 
graph in  figure  1.3  1  by applying  (1.105) and (l .  106)  for  the equi~robable classes. 

Having  identity  covariance  matrices and equiprobable  classes  (meaning that the 
last  terms In P(co,) in  (1.105)  can be eliminated),  three  linear  discriminant  functions 
(planes) that follow  from  (1.105) are 

or 

Linear discri~inant functions 

Figure 1.35 
Linear  discriminant  functions  (decision  planes di(x) in  the  case of  two-dimensional  features)  for  three 
Gaussian  classes  with  the  same  covariance  matrix C = 12 as  in  figure 1.31. Three  corresponding  decision 
boundaries  obtained  as  the  planes’  intersections  divide  the  feature  plane  into  three  single  nonoverlapping 
decision  regions.  (The  two  visible  separation  lines, dl2 and d13, are  depicted  as  solid  straight  lines. 
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~ i ~ l a r l y ,  the  decision  boundaries or the separation lines that follow  from  (1.106) are 

d12(x) = dl(x) - d2(x) = “6x1 + 30 = 0, or x1 = 5, 

Three  discriminant  planes d~(x), i = 1,2,3, together  with  the  two  visible  decision 
b o u n d a ~  lines that separate given  classes, are shown  in  figure  1.35.  (All  three  sepa- 
ration lines are shown  in  the  right graph in  figure  l  .3  l .) 

Eance ~ l a s s ~ e ~ s  Two particular 
cases for the classification of normally  distributed (~aussian) classes  follow  after 
applying  several additional assumptions  regarding  their  class  distribution  properties. 
If there are equal  covariance  matrices for all  classes ( , i = 1,2, . . , Z) and also 
equal  prior  probabilities for all  classes (P(wJ = P(@) = P), then  the  second  term on 
the  right-hand  side of  (1.103) can be eliminated.  Additionally,  being  class-independent, 
the constant l/:! can be  neglected, and this  results  in  the  following  discriminant 
functions: 

-l(x-pi)) i =  1)2)‘. .)Z.  ( l .  107) 

Thus, classification  based on the ~ a x i ~ a t i o n  of these  discriminants will  assign  a 
given pattern with  a feature vector x to a  class wk, for which  the ~ahalanobis dis- 

(x - p k )  of x to the mean  vector  is  the  smallest. Note that 
minus  sign in (1.107),  minimization of t ~ahalanobis distance cor- 

responds to maximization of the  discriminant  function d ( ~ ) .  In other words, a pattern 
will  be  assigned to the  closest  class  center pk in  the Mahalanobis sense. Note also that 

ahalanobis distance  is  relevant for correlated  features, or whe 
elements of the  covariance  matrix E are not equal to zero (or when 
nal  matrix,  i.e.,  when o$ + 0, i = 1,. . , I ,  j = 1,. . , I ,  i + j ) .  

The classifier  (1.107)  is  called a rni~irnu~ ~a~aZa~obis distanc~ classifier. In the 
same  way as (1.104),  the Mahalanobis distance  classifier can be  given  in linear  form 
as 

i =  1,2 ,..., I ,  (1.108) 

Applying an even  more  restrictive  assumption for the  equiprobable  classes (P(o i )  = 
P(co) = P), namely,  assuming that the covariance  matrices for all  classes are not 
only  equal but are also  diagonal  matrices,  meaning that the features are statisti- 
cally in~ependent ( = cr21,, i = 1,2,. . . , I ) ,  one obtains the  simple  discriminant 
functions 
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The class-independent  coefficient  variance a2 is  neglected  in  the  fina 
classifier  design. 

. ,l. (1.109) 

l stage of the 

Thus (1.109)  represents  the ~ i n i m u ~   ~ u c l i d e a ~  distance class~er because  the  dis- 
criminants  (1.109) will  assign  a  given pattern with  a  feature  vector x to a  class cuk for 
which  the ~uclidean  dista~ce 11. - of x to the  mean  vector pk is  the  smallest.  As 
in  the  preceding  case  of  a  nondiagonal  covariance  matrix, and because  of  the  minus 
sign,  the  minimal  Euclidean  distance  will  result  in  a  maximal  value for the  discrim- 
inant function di(X), as given  in  (1.109).  In other words,  a ~ n i m ~  (Euclidean) 
distance  classifier  assigns  a pattern with  feature x to the  closest  class  center 

A  linear form of the minimum  distance  classifier  (neglecting  a  class-ind 
variance a2) is given as 

i, i =  1,2 ,..., l. (1.110) 

The algorithm  for both the Mahalanobis and the  Euclidean  distance  classifiers  is 
the  following.  The  mean  ectors  for  all  classes pi, i = 1,2, . . . , l ,  a feature vector 
and a  covariance  matrix 

1. Calculate  the  values of the  corresponding  distances  between x and means 
classes.  The Mahalanobis distance for correlated  classes  is 

nondiagonal. 

The Euclidean  distance for statistically  independent  classes  is 

diagonal. 

2. Assign  the pattern to the  class cok for which  the  distance L) is  minimal. 

Both of these  minimum  distance  classifiers are m i ~ m ~ m  error rate classifiers. In 
other words, for given ass~pt ions ,  they are the Bayes’  minimal  probability  of an 
error classifier. F~thermore, for both classifiers  the  mean  vectors pi, i = 1, . . . , l ,  act 
as te~plates or ~rototypes for l classes. By measuring  the  distances  between  each new 
pattern x and the  centers,  each new feature  vector x is  matched to these  templates. 
Hence, both the ahalanobis and the  Euclidean  distance  classifiers  belong to the 
group of template  matching c l a s s ~ e ~ s .  

Template  matching  is  a  classic, natural approach to pattern classification.  Typi- 
cally,  noise-free  versions  of patterns are used as templates or as the means of 
the  corresponding  classes. To classify  a  previously  unseen and noisy pattern, simply 
compare  it to given templates  (means) and assign  the pattern to the closest  template 
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(mean, center). Template  matching  works well  when the  variations  within a class  are 
due to additive  noise. ut there are many  other  possible  noises  in classi~cation and 
decision-making  probl S. For instance,  regarding  geometrically  distorted patterns, 
some  common  distortions of feature  vectors are translation, rotation, shearing, 
warping,  expansion, contraction, and occlusion. For such  patterns,  more  sophisti- 
cated tec~iques must be used.  However,  these are outside  the  scope of this book. 

Almost  all  the 
serious  practical 

limitation. In order to apply  the  most  general Bayes’ ~ n i m u m  cost or minimum  risk 
procedure (and related  approaches)  practically  everything about the underlying ana- 
lyzed  process  must  be  known.  This  includes  the priors P(oi )  and the  class-conditional 
probability-densities (or likelihoods) P ( x  1 mi) as well as the  costs of making errors 
L(mj I ai). The  fact that pattern recognition and regression  problems  are of random 
character and therefore  expressed  in  probabilistic  terms  does not make  the  task 
simpler. 

se one  wants to perform fault detection  in  engineering or in  medical  diag- 
must h o w  how probable  the  different faults or  symptoms  (classes) are a 

priori (P(Wi)  are required). In other  words,  the  prior  probability  of a system  under 
investigation to experience  different  faults  must be known.  This is an intricate prob- 
lem  because  very  often it is  difficult to distinguish  priors P(.),) from  class-conditional 
probability-densities P ( x  I oi). One  remedy  is to use  decision  rules that do not contain 
priors (or to ignore  them). The m a s i ~ u m  likeli~ood  classi~cation d e  is  such a rule. 
Similarly,  in  regression, other approaches that require  fewer  assumptions can be 
tried,  such as Markov estimators or the  method of least  squares. 

The amount of  assumed  initial  knowledge  av  able on the  process  under  inves- 
tigation  decreases  in  the  following  order:  for  the yes’ procedure  one  should  know 
everything;  for  the  maximum  likelihood approach one  sh  know  the  class- 
conditional  probability-density  functions  (likelihoods); for the  ov  techniques  in 
regression  problems  one  should  know  the  covariance  matrix of  noise; and for the 
least  squares  method  one  need  only  assume that random processes can be approxi- 
mated  sufficiently by the model  chosen. ut even in such a series  of simpli~cations 
one  must  either h o w  some  distribution  characteristics  in  advance or estimate  the 
means,  covariance  matrices, or likelihoods  (class-conditional  probability  densities) by 
using  training patterns. 

However,  there are practical  problems  with  density  estimation  approaches. To 
implement  even  the  simplest  Euclidean  nimum  distance  classifier,  one  must  know 
the  mean  vectors  (centers or templates , i = 1, . . . , I ,  for all  the  classes. For this 
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approach  it  is  assumed that the  underlying  data-generating  distribution  is a ~auss ian  
one, that the  features  are  not  correlated,  and that the  covariance  matrices are equal. 
(This  is too many  assumptions  for  the  simplest  possible  method.) To take  into 
account  eventually  correlated  features, or in  considering  the  effects  of  scaling and 
linear transfomation of data for  which  the  Euclidean  metric  is  not  appropriate,  the 

ahalanobis  metric  should be  used.  owever,  in  order to implement  a  minimum 
ahalanobis  distance  classifier,  both  the  mean  vectors  and  the  covariance  matrices 

must  be  known.  Recall that all that is  typically  available  is  training data and  even- 
tually  some  previous  knowledge.  Usually,  this  means  estimating  all  these  parameters 
from  examples  of  patterns  to be  classified or regressed. 

Yet  this  is  exactly  what  both  statistical  learning  theory  (represented by support 
vector  machines)  and  neural  networks are trying to avoid.  This  book  follows  the 
approach of  bypassing or dodging  density  estimation  methods.  Therefore,  there  is 
no  explicit  presentation  of  how to learn  means,  covariance  matrices, 
statistics  from  training data patterns.  Instead,  the  discussion  concerns S 
tools that provide  novel  techniques  for  acquiring  knowledge  from  training data 

erns,  records, measure~ents, observations,  examples,  samples). 
owever,  it  should  be  stressed that the  preceding  approaches  (which  in  pattern 

recognition  problems  most  often  result  in  quadratic or linear  discriminant  functions, 
decision  boundaries  and  regions,  and  in  regression  problems  result  in  linear  approx- 
imating  functions)  still  are  and will  remain  very  good  theoretical  and  practical  tools  if 
the  mentioned  assumptions are valid.  Very  often,  in  modern  real-world  applications, 
many  of  these  postulates are satisfied  only  approximately,  However,  even  when  these 
assumptions are not  totally  sound,  quadratic and linear  discriminants  have  shown 

fomance as classifiers, as have  linear  approximators  in  regression 
use  of  their  simple  (linear or quadratic)  structure,  these  techniques do 
training data set, and for  many  regression  tasks  they  may  be  good 

starting  points or good  first  estimates  of  regression  hyperplanes. In classification,  they 
may indicate  the  structure of  complex  decision  regions that are typically  hyper- 
volumes  in  n-dimensional  space  of  features. 

= [-2 11 , ;Y == [-3 l] ', V = [4 -3 2IT, W = [5 6 -llT. T 

a. 

b. 
C. 

x T ~  xTy 
Compute - and -x. 

xTx XTX 

Calculate a unit  vector  in  the  direction  of v. 
Are  vectors v and W orthogonal? 
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Calculate  the L1, L2, and L,  noms of the  following  vectors: 
a. x = 1-2 1 3 2lT.  

b. y = [-3 
c. v = [4 -3 21'. 
d. W =  1-5 -6 -1 -3 -51 . T 

1.3. Let x1, x2, . . . , x, be  fixed  numbers. The Vandemonde matrix 

... 

. . .  

= d2 . . . dn] T ,  suppose that W E %" satisfies 
polynomial 

y ( x )  = WO + w1x + W2X2 + * ' + w,-lXR-l. 
a. Show that y(x1) = d l , .  . , y(x,) = d, (i.e., that the  polynomial y(x) passes 
through each  training data point). 
b. Show that when x1, ~2~ . . , x, are distinct,  the  columns of 
independent. 
c.  Prove that if x1, xz7 . . . , x, are distinct  numbers and is an arbitrary vector, 
then  there  is an inte~olating polynomial  of  degree S n l  for  all  pairs (x1 , dl) ,  
(x2, d2), * * , (x,, 4 ) .  

. For the training data pairs ( l ,  2), (2, l),  (5,lO) find 
a. the inte~olating polynomial  of  second  order, 
b.  the  best  least  squares  approximating straight line. 

1.5. Compute L ,  and L2 noms for the  function f ( x )  = (1 + x)" on the  interval 
[0, l]. (See hint  in  problem  l  .6b.) 

1.6. Find the  best  approximating  straight  lines to the  curve y = ex such that 
a. the L2 (Euclidean) n o m  of the error function on the  discrete  set x = 
[-l -0.5 0 0.5 l] is as small as possible, 
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b.  the L2 (Euclidean) n o m  of the error function on the  interval [--l, l] is as small 
as possible. (Hint: Use f," IE( W )  I dw for the L2 (Euclidean) n o m  of the continuous 
error function on the  interval [a, b].) 

.7. Figure P1 .l shows  the  unit  sphere  of  the L2 n o m  in 'S'. 
raw  unit  spheres of LP norms for p = 0.5,1,10, and CO. Comment on the  geo- 
cal  meaning of these  spheres. 

b. Draw unit  spheres of LP noms for p = 1,2, and CO in ' S 3 .  

. Consider  vector x in 'S2  shown  in  figures  P1.2a and P1.2b. Find the  best 
approximation to x in  a  subspace SL (a straight  line)  in 
a. L1 norm, 
b. L2 nom, 
c. L,  nom. 
Draw  your  result and comment  on  the  equality or difference of the  best  approxima- 
tions  in given norms. 

Figure Pl.l 
Graph  for  problem 1.7. 

x SL 

F i ~ ~ e  P1.2 
Graphs  for  problem 1.8. 
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1 

Graph  for  problem 1.9. 

Chapter 1. Learning  and  Soft  Computing 

Graph  for  problem 1.10. 

. For a  given  vector x find  a  subspace (a straight  line SI,) of 'B2 for which  the  best 
approximations to x in. SI,, in L1 and L2 noms, are  equal.  Comment  on  the  best 
approx~ation in L,  norm  in  this  straight  line. (See  figure  P1.3.) 

Consider four measurement  points  given  in  figure  P1.4. Find the  weights 
correspond in^ to four linear  splines that ensure an interpolating  (piecewise linear) 
curve y ,  (x). 

. It was  shown that there  is  a  unique  polynomial interpolant for a  one-dirnen- 
sional input x (i.e.,  when y = y(x)). There is no  theorem about a  unique  polynomial 
interpolation for an ' B n  "+ 'B' mapping (n  > 1) (i.e., for y = y(x ) ) .  Check  whether 
four given points  in  figures  P1.5a and P 1.5b  can be uniquely  interpolated by a 
bilinear ~olynomial ya = w1 + ~2x1 + ~ 3 x 2  + ~ 4 x 1 ~ 2 .  Training data pairs are given 
as 



Problems 107 

Graphs  for problem 1. 1 1 

Figure  1.5a Figure 1 .5 b 

dl d2 d3 d4 dl d2 d3 d4 

1  -1 -1  1 l Q -1 Q 
1 l -1  -1 0 1 Q -1 

(Hint: For both  problems  write  down a system  of  four  equations  in four unknowns 
and  check  whether  there  is a unique  solution.) 

. Many  phenomena  are  subject to seasonal  fluctuations  (e.g.,  plant  growth, 
monthly  sales  of  products,  airline  ticket  sales). To model  such  periodic  problems,  the 
preferred  approximating  scheme  is 

a. Show this  model  graphically as a network. 
b.  Give  the  design  matrix 
c. Is the  approximation  problem  linear? 

3. (a) Expand a function ,(x) about x0 in a Taylor  series,  and  show  this  expan- 
sion  graphically as a ("neural")  network,  retaining  the  first  three terns only.  An  input 
to  the  network  is Ax, and  the output is A , .  
(b) Show as a network a Taylor  expansion of a function ekx, retaining  the  first  four 
terns only. 
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termine  the  gradient  vector and the  essian  matrix for each error function 

= In(wf + ~ 1 ~ 2  + W,”). 

minimizing  the  elliptic paraboloid 
rves (contours) and the  gradient  pa 

W that the  gradient path is orthogonal to the  level  curves. (Hint; Use  the 
fact that if the  curves are orthogonal, then  their n o ~ a l  vectors  are also orthogonal.) 

how that the  optimal  learning rate yopt for minimizing  the quadratic error 
function 

(Hint: Express  the  value of the error function at step i + 1, and minimize  this  ex- 
pression  with  respect to learning rate y. Use that for quadratic forms 

erform  two iterations of the  optimal  gradient  algorithm to find  the  minimum 
of E(w)  = 2wf + 2wl wz + SW,”. The starting point  is 
tours, and show your  learning path graphically.  Che 
vectors at the  initial  point and at the  next one. (Hint: Exp 
and use  the  expression for yopt from  problem l. 16.) 

bich  of  the four given functions  in  figure Pl.7 are probabilit~-densit~ func- 
tions? (Hint: Use that JI*,” P ( X )  dx = 1 .) 

The 
W2 

Error  surface contours 
4- 2w; 

Graph for problem l. 15. 
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Figure P1.7 
Graphs for  problem 1.18. 

Figure P1.8 
Graph for  problem 1. 19. 

Consider  a  continuous  variable that can take on values on the  interval from 2 
to 5.  Its p~ob~bility-density function  is  shown  in  figure  P1.8.  (This  is  called  the  uni- 
form  density.) What is the probability that the  random  variable will take on a  value 
a) between 3 and 4, 
b)  less than 2.8, 
c) greater than 4.3, 
d) between 2.6 and 4.4? 

1.20. The three  graphs  in  figures  P1.9a,  P1.9b, and P1.9c  show uniform,  normal, and 
triangular probabi~ity-density functions,  respectively. Find the constants Ci for each 
function. 

1. A random variable x is  defined  by its  probability-density  function 

l 0  otherwise. 

a) Calculate constant C and comment on the  results. 
b) Find a  mean ,ux and a  variance 0;. 
c)  Calculate  the pro~ability P( - l S x < 2). 
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Cl "lSXS5 
P(x)  = 

0 otherwise 

Graphs for problem 1.20. 

2. Let x and y have the joint probability-density  function 

5 O < x < y < l ,  
0 otherwise. 

a) Find the  marginal and conditional  probability-density  functions P(.), P ( y ) ,  and 

b) Find the  regression  function x = f (y )  (i.e.,  find  the  conditional  mean of x given 
P(x, Y )  * 

Y =Yo>. 

3. Consider  two random variables  defined as 1x1 5 4 and 0 5 y 5 2 - OS/xI. Let 
them  have a joint probability-density  function 

C over the sample  space, 
0 elsewhere. 

a) Draw the joint probability-density  function. 
b) Find C. 
c)  Are random variables x and y independent? 
d) ~alculate a  orr relation coefficient p. 

. The joint probability-density  function of two  variables  is given as 

a) Draw the  sample  space. 
b) Find q. 



Problems 111 

c)  Calculate  the  marginal  probability-density  function P ( x )  . 
d) Find a  mean p, and a  variance 0;. 

Hint: 

. Let  two  random  variables be  defined  by the joint probability-density  function 

raw the graph of P ( x ,  y ) .  
b) Calculate IC, P ( x ) ,  and P( y ) .  
c) Find p,, p,, axV = E { x y } ,  G;, and 0:. 
d) Are x and y dependent  variables?  Are  they  correlated? 

. Consider  two  random  variables  having  the joint probability-density  function 

x + y  O < x < l , O < y < l ,  
elsewhere. 

Find the correlation coefficient p of x and y .  

7. The joint probability-density  function P ( x ,  y) is  given as 

3xy o < x < 2 , o < y < x ,  
P ( x 7 y )  = { 0 otherwise. 

a) Draw the  sample  space  in an (x, y )  plane. 
b) Find the  marginal  probability-density  functions P ( x )  and P(y ) .  

. Find the equation of a  regression  curve pyIx = y =f(x) in  problem 1.27. 

. A  theoretical  correlation  coefficient  is  defined as p = O , Y / ~ , C J - ~ .  Apply  this 
expression to example  1.7 and find p. 
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M 

figure 
Graph 

1 *30. 

~ l " l 0  
for problem 1.30. 

A  beam  in  figure  P1.10  is  subjected to two random loads L1 and La, which 
are statistically  independent  with  means and standard deviations pl, 0 1 ,  and p2 ,  02, 
respectively.  Are  the  shear  force F and bending  moment M correlated? Find the 
correlation coefficient. For 0 1  = 0 2 ,  is  there no correlation at all?  Art: F and M 
just correlated, or are they  highly  correlated?  Are  they  causally  related? (Hint: 
F = L1 + L 2 ,  M = K 1  + 2 L 2 .  Find the  means and standard deviations of force and 
m o ~ e n t y  calculate  the  correlation  coefficient, and discuss  your result,) 

1.31. The probability-density  function P ( x )  of a  multivariate ~ - d ~ e n s i o ~ a l  Gauss- 
ian  distribution  is  given by 

1 P ( x )  = exp(--0.5(x - p> *X? (x - 

that is, it is par~meterized by the  mean  vector p and covariance  matrix C, For a  two- 

dimensional  vector x, = [pl p2] and - . Sketch the contours of 

P(x) in an (XI, ~ 2 )  plane for the  following four distributions: 
a) p = 12 31 T ,  0 1 2  = 0 2 1  = 0,011 = 0 2 2  = 0. 

[ 0 ~ ~  4 1 
b) = 1-2  21 *, 0 1 2   0 2 1  = 0, 0 1 1  > 0 2 2 .  

C) p 1-3 -3IT, 0 1 2  = 021 = 0, 011 < 0 2 2 .  

d) p = [3 -21 , ~ 1 2  = 0 2 1  > 0, T 

1.32. Find the equations of P ( x ) ,  and of the contours for which P ( x )  = 0.5, for the 
following  three  two-dimensional  Gaussian distri~utions: 
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Given  the  covariance  matrix and mean  vector of a four-dimensional noma1 
dist~bution 

determine  the  probability-density  function P ( x ) .  (Hint: Calculate 
not leave  the  exponent  of P( ) in  matrix  form.) 

. Consider a three-di~ensional Gaussian  probability-density  function 

nd the  covariance  matrix . (Hint: Note that in  this  problem P = P1 (XI) 

, Q), meaning that r712 = r7 

temine the  locus of points  for  which the probability-density  is  0.01. 

. Consider  the  multivariate  n-dimensional  Gaussian  probability-density  function 
P ( x )  for which  the  covariance  matrix  is  diagonal  (i.e.7 ap = 0, i Zj). 
a) Show that P ( x )  can be  expressed as 

hat are  the contours of constant probability-density?  Show  graphically  the  con- 
= [-2 31 T ,  and a2 = 201. 

c)  Show that the  expression  in  the  exponent of P ( x )  in (a) is a ~ahalanobis distance. 

. Consider  three  classes  with  Gaussian  class-conditional  probability-density 

functions  having  the  same  covariance  matrix = [ l  1; i =  1,2,3, and 
0 0.5 
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a) Draw the contours of Pi(.) in an (XI, Q) plane. 
b) Find both the  decision  (discriminant)  functions and the  equations of decision 
boundaries. Draw the  boundaries  in  the graph in (a). 

. ~ ~ .  The  calculation of a Bayes's  classifier  requires  knowledge  of  means and co- 
variance  matrices.  However,  typically  only  training data are known.  The  following 
two feature patterns (x E !R2) from the two  equiprobable  normally (~aussian) dis- 
tributed  classes  (class 1 = 0, and class 2 = 1) have  been  drawn: 

Class 1 Class 2 
X1 X2 d x1 x2 d 

1 2 0 6 8 l 
2 2 0 7 8 1 
2 3 0 8 ? 1 
3 l 0 8 8 l 
3 2 0 7 9 1 

a) Find discriminant  (decision)  functions for both  classes. 
b) Calculate  the dic~oto~izing function. Draw (in an (XI,  xz) plane)  the  training 
data pairs,  the  dichotomizing function, and the  intersections of the  two  discriminant 
functions  with an (XI, x2) plane. 
c)  Test  the  performance of your dic~otomizer by classifying  the  previously  unseen 
pattern x1 = (4 l] ', 1x1 = 16 '71 '. (Hint: Calculate  the  empirical  means and co- 
variance  matrices  from  the data first, and then  apply appropriate equations for 
calculation of discriminant  functions.  Use 

for a  covariance  matrix  calculation.  Subscript  (est)  denotes an esti~ate.) 

A two-d~ensional random vector y has the probability-density  function 
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Another  two-dimensional  random  vector x related to y has  the  conditional  density 
function 

Find the  posterior  probability-density  function P ( y  I x). Is there a closed  form  solu- 
tion? (Hint: Find the joint ~robability-density function. P ( x ,  y) first, and use it for 
computing P ( y  I x). If this  problem  seems to be too diEcult, go to the  next  problem 
and return to this  one later.) 

. Assign  the  feature x = 0.6 to the  one of two  equiprobable  classes by using  the 
maximum  likelihood  decision  rule  associated  with  classes that are given  by the  fol- 
lowing  class-conditional  probability-density  functions: 

0.5 
P(x Iml)  = (k) exp( - ;) and P(x Im2) = (&r5 exp (- 
Draw  the  class-conditional  probability-density  functions, and show the decision 
boundary. ( H ~ ~ t :  Assuming  equal prior probability-densities (P(m1) = P(m2)), the 
maximum  likelihood  decision  rule  is  equivalent to the MAP ( 
criterion.) 

. Determine  the  maximum  likelihood  decision  rule  associated  with  the  two 
equiprobable  classes  given by the  following  class-conditional  probability-density 
functions: 

P(xIm1) = (kr5 exp("-x:> and P(xIm2) = (&r5 exp(--g).  

raw  the  class-conditional  probability-density  functions and show  the  decision 
boundaries. (Hint: Note that the  means  are equal.) 

. The  class-conditional  probability-density  functions of two  classes are given  by 

Prior  probability  for a class l is P(m1) = 0.25. Find the  decision  boundary by rnini- 
mizing a probability of classification error, that is,  use  the 
criterion. (Hint: Use (l .70b).) 
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. The  class-conditional  probability-density  functions of  two  classes are  given by 

1 
P ( x  1 c o l )  = exp( --lxl) and P ( x  1 0 2 )  = exp( ”-2lxl). 

Prior probability for a  class  1  is P(&]) = 0.25, and the  losses are given as L11 = 
L22 = 0, L12 = l, and L21 = 2. Find the decision  boundaries by minimizing 
risk. (~~~~~ Use  (1.86).) 

The class~conditional probability-density  functions of  two  classes are given  by 

P ( x  I c o l )  = 2 exp(--2x) and P(x I co2) = exp(--x), 

both for x 2 0; otherwise both art:  equal to zero). 
a) Find the  maximum  likelihood  decision  rule. 
b) Find the ~ i n i m a l  probability of error decision  rule. Prior probability for a  class  1 
is P(c01) = 2/3. 
c) Find the  minimal  risk  decision  rule for equally  probable  classes and with  the  losses 
L11 = 0, L22 = l, L12 = 2, and L21 = 3. 
( ~ o l v i n ~  this  problem,  you will  confirm that here  (as  in  the  case of function  approxi- 
mation tasks),  the  best  solution  depends  upon  the  norm  applied. Note that in (a) the 
best  means maximi~ation, and in  (b) and (c)  the  best  is  the  minimizing  solution.) 

. Find the posterior  probability-density  functions “(col I x) and P(02 I x) for the 
two eq~probable one-dimensional  normally  distributed  classes  given by likelihood 
functions  (class-conditional  probability-density  functions that are also  known as data 
generation mechanis~s) 

ayes’  rule,  plug  in  the  given  likelihoods, and find  the  desired  pos- 
terior  probability-density  functions  in  terms of distribution  means and standard 
deviation.) 

erive  the  posterior  probability-density  function P(co1 I x) for the  likelihood 
functions  defined  in  problem  1.44  but  having  different  variances (01 + ~ 7 2 ) .  
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. Find the  posterior  probability-density  function P(ol  I x) for a  binary  (two 
es  only)  classification  problem  when x is an n-dimensional  vector.  The  two 

Gaussian  multivariate  class-conditional  probability-densities  have arbitrary mean 
j ,  i = 1,2, equal prior probabilities, and the  same  covariance  matrix 2. 

Sketch  the  classification  problem  in an ( , x2) plane, and explain  your graph for the 
case of an identity  covariance  matrix = I). (Hint  Start by  plugging  the multi- 
variate Gaussian  likelihood  functions into Bayes’  rule. At the  end of the  derivation, 
shilar to the  previous  one-dimensional  case,  the  posterior probability-~ensity func- 
tion P(wl I x) should  have  a  form of  logistic  function and should be  expressed  in 
terms of vector  quantities  comprising  means and covariance matrix.) 

The  simulation  experiments  in chapter l  have  the  purpose of familiari~ing the  reader 
with interpolation/approximation, that is,  nonlinear  regression.  (Nonlinear  regres- 
sion and classification are the  core  problems of soft  computing.) The programs  used 
in chapter 2 on support vector  machines  cover both classification and regression by 

technique.  There  is no need for a  manual  here  because  all  routines 
are simple  (if  anything  is  simple about p r o g r a ~ n g ) .  The experiments are aimed at 
reviewing  many  basic  facets  of  regression  (notably  problems  of  over- and under- 
fitting,  the  influence of noise, and the  smoothness of ap~roximation). The first  two 
approximators are classic  ones,  namely,  one-dimensional  algebraic polyno~als  and 
Chebyshev  polynomials. The last three are radial basis  function approxhators: linear 
splines,  cubic  splines, and Gaussian radial basis  functions. In addition, there  is  a 
fuzzy  model that applies five different  membership  functions. 

Be aware of the  following  facts about the  program aproxim: 

l. It is  developed for interpolation/approx~ation problems. 
2. It is  designed for one-dimensional input data ( y  = f ( x ) ) .  
3. It is  user-friendly,  even  for  beginners  in  using  MATLAB, but you  must  cooperate. 
It prompts you to select, to define, or to choose  different  things. 

Experiment  with  the  program apraxim as follows: 

1. Launch M AT LAB. 
2. Connect to directory learnsc (at the matlab prompt, type cd learnsc 
(RETURN)). learnsc is  a  subdirectory of matlab, as bin, toolbox, and 
uitools are. While  typing cd learnsc, make  sure that your  working  directory  is 
matlab, not matlab/bin, for  example. 
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3. Type start (RETURN). 

4. The pop-up  menu will prompt you to choose  between  several  models.  Choose 1D 
Approximation. 
5. The pop-up  box  offers  five approximators (networks,  models, or machines).  Click 
on one. 
6. Follow the prompting pop-up menus to make  some  modeling  choices. Note that if 
you  want to have  your  function  polluted by  15% noise,  type 0 .15. 

Now  perform  the  following  experiments (start with  the demo function): 

l.  Look at the  difference  between  the inte~olation and approximation. Add 25% 
noise  (noise = 0.25), and in  order to do interpolation, choose  the  model  order for 
polynomials to be n = P - 1,  where P equals  the  number of training data. (The 
number will  be printed on the  screen.) For radial basis  functions, interpolation will 
take place  when  you  choose t = 1. Choosing t = 1  means that you are placing  one 
radial basis  function at each  training data point.  If  you  want to approximate  the 
given  function,  you  select n < P - 1 and t > 1 for polynomials and R 
tively. It is  clear that t < P. 

eat ~ y ~ e  I Start with  any demo function  with 25% noise. Interpolate it first. 
Reduce  the  order of the  polynomial  gradually, and observe  the  changes  in  modeling 
quality.  Always  check  the  final error of  models. Note that if there  is  a  lot of noise, 
lower-order  models do filter  the  noise out. But  don’t  overdo it. At some  stage, further 
decreasing  the  model’s  order (or the  capacity of the  model)  leads to underfitting.  This 
means that you are starting to filter out both the  noise and the  underlying  function. 

2 Now  repeat  experiment  l  with an RBF model.  Controlling  the 
model to avoid  overfitting  noisy data is  different for polynomials 
he order of the  model  controls  the ~olynomial capacity, and the 

number of basis  functions i s  the  smoothing  parameter (the parameter  for  capacity 
Fs. It is  not  the  only  parameter,  however.  This  is  one of the  topics  in 

chapter 5. 
Compare  the  smoothness of linear  splines approximators and cubic  splines ap- 

proximators.  When  using  Gaussian  basis  functions,  you  will  have to choose kQ. 
Choosing, for example,  the  value for this  coefficient k, = 2, you  define  a standard 
deviation of Gaussian  bells CT = 2A.c. This  means that CT of all  bells  is  equal to two 
distances  between  the  Gaussian  bell  centers. For good  (smooth)  approximations, 
0.75 < CT < 10. This  is both a  broad and an appro~imate span for CT values. CT is 
typically  the  subject of learning.  However,  you  may  try e~pe~menting with  various 
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values for the standard deviation CT. You will  be also  prompted to choose an  RBF 
with  bias or without it. Choose  both, and compare the  results.  Many  graphs  will be 
displayed,  but  they are not that complicated to read.  Try to understand  them.  More 
is explained  in chapter 5. 
2. Look at the effects  of  different  noise  levels  on various interpolators or approxi- 
mators. Note that noise = 1.0 means that there is 100% noise. For many  practical 
situations,  this  is too high a noise  level.  On  the other hand,  in  many  recognition  tasks, 
pollution by  noise  may  be  even  higher. Repeat all  experiments  from (l) with a dif- 
ferent  noise  level. 
3. You are now  ready to define  your  own  functions and to perform  experiments that 
you  like or are interested  in. 



This Page Intentionally Left Blank



The  classical  regression and ayesian  classification  statistical  techniques  presented 
in chapter 1 were  based on t very strict  assumption that probability  distribution 
models or probability-~ensity functions are known. Unfortunat in  many  practical 
situations,  there  is  not  enough  information about the  underly dist~bution laws, 
and ~ i s ~ r i b ~ t i o n ~ r e e    egression or e I ~ s s ~ e ~ t i o n  is  needed that does not require  knowl- 
edge  of probability  distributions.  This  is  a very  serious  restriction but very c o ~ o n  in 
real-world  applications.  ostly,  all we have are recorded  training patterns, which are 
usually  high-dimensional and scarce  in  present-day ap~lications. High-dimensional 
spaces  seem  terrifyingly  empty, and our learning algoriths (machines)  must be able 
to operate in  such  spaces and to learn from  sparse data. It is  said that redundancy 
provides  knowledge,  so  the  more data pairs are available, the better  the  results will 

hese  essentials  are  depicted  in  figure  2.1. 
sic perfornance of  classical  statistical  techniques  is  only  roughly  sketched in 

figure  2.1.  Very  small  sample  size  is  exceptionally  unreliable and in  practical terns 
little  better than a  random data set. It usually  results  in  high error. In section  2.2 
sample  size  is  defined  more  precisely as the ratio of the  number of training patterns I 
to the VC (Vapnik-Chervonenkis)  dimension h of functions of a le 
(neural network,  polynomial approximator, radial basis  function (R 
work, fmzy model).  When  this ratio is  larger than 20, the data set  is  considered to 
be  of medium  size.  The  higher  the  noise  level, or the  more  complex  the  underlying 
function,  the  more data are needed  in  order to make good  approximations or classi- 
fications.  The  same  is  valid for the  dimensionality of input vector  space, A large 
data set  is  the  one that comprises  enough  training data pairs to yield optimal  results, 
By increasing  the  number of training data patterns, the best that can be  achieved 

Error 

Final 

Small sample I ~ e d i u m  sample I Large sample 
I 
l 
I 
I 

Noiseless  data 

""""+""""" 

set 

Figure 2.1 
Dependence of modeling  error  on  training data set size. 
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is an error that converges to o be on  the  safe  side,  one  must 
develop  worst-case  techniques worst-case refers to techniques 
that are  expected to perform  in  in  high-dimensional  spaces  and 
with  sparse  training  patterns.  The  presentation of  methods that promise  acceptable 
performance  under  such  conditions  is  the  main  point  of  interest  in  this  section. 

A relatively new promising  method  for  learning  separating  functions in pattern 
recognition  (classification)  tasks or for  per  ng  functional  estimation  in  regression 
problems  is  the  support  vector  machine ( ). This  originated  from  the statistical 

can  also be  seen as  a new  method for training  polynomial  models,  neural 
S), fuzzy  models, or F classifiers/regressors.  ere  the  practical,  con- 

esent  novel  learning  techniques that have  been  introduced  in  the 
tructural  risk minimization ( ) and in  the  theory of VC bounds. 

ore precisely,  unlike  classical adaptation hms that work  in an L1 or L2 norm 

ry (SLT) developed  by  Vapnik  and  Chervonenkis.' 

structive  aspects of this new tool  are of  chief interest. 

imize the  absolute  value  of an error or of an er 
ay, it creates  a  model  with  a ~ i n i ~ i z e d  

ik  1995;  1998)  shows that when the 
probability of error is  low as well, 

unseen data, (good  generalization).  This  property  is of particular  interest to the  whole 
soft  computing  field  because  the  model that generalizes  well  is  a  good  model  and  not 
the  model that performs well  on training data pairs.  ood  performance  on  training 

t  condition  for  a  good  model. 
osi  (199'7b)  has  shown that under  some  constraints 

can also be  derived in  the  framework of regularization 
tical  learning  theory or structural risk mini~ization. 

orks that naturally  follow  from  this  theory  are  discussed 
is  presented  as  a  learning  technique that originated  from 

the  theoretical  foundations of the  statistical  learning  theory and structural risk  mini- 
proaches to learning  from data are based  on  the new induction 

ciple and on the  theory of  VC bounds. 
n  the  simplest pattern recognition  tasks,  support  vector  rnachin 

separating  hyperplane to create  a classiJier with a maximal margin. 
at, the  learning  problem is cast  as  a constrained  nonlinear optimization problem. 
this  setting  the  cost  function is quadratic and the  constraints  are  linear  (i.e.,  one 

o solve a quadratic programming  problem). 
cases  when  given  classes cannot be linearly  separated  in  the  original  input 

first  nonlinearly  transforms  the  original input space into a  higher- 
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dimensional  feature  space.  This transfo~ation can be achieved by using  various 
nonlinear  mappings:  polynomial,  sigmoidal as in  multilayer  perceptrons, RBF map- 
pings  having as basis  functions  radially  symmetric  functions  such as Gaussians,  dif- 
ferent  spline  functions, or multiq~adrics. After  this  nonlinear transfo~ation step,  the 
task of an SVM in  finding  the  linear  optimal  separating  hyperplane  in  this  feature 
space  is  relatively  trivial.  Namely,  the  optimization  problem to solve  will  be  of the 
same  kind as the  calculation of a  separating  hyperplane  in  original input space for 
linearly  separable  classes.  The  resulting  hyperplane  in  feature  space  will  be  optimal  in 
the  sense  of  being a  maximal  margin  classifier  with  respect to training data:  How 
nonlinearly  separable  problems  in input space can become  linearly  separable prob- 
lems  in feature space  after  specific  nonlinear transfo~ation is  shown  in  this  chapter 
and in chapter 3  (see  section  2.4.3 and figs.  3.9 and 3.10). 

Sections  2.1-2.3  present  the  basic  theory and approach of SRM and SVMs as 
developed  by Vapnik,  Chervonenkis, and their  co-workers:  Vapnik  (1995;  1998), 
Cherkassky  (1997),  Cherkassky and Mulier  (1998),  Scholkopf  (1998),  Burges  (1998), 
Gunn (1997),  Niyogi and Girosi  (1994),  Poggio and Girosi (l 998), and Smola and 
Scholkopf  (1997).  The  reader  interested  primarily  in  the  application of  SVMs  may 
skip  directly to section  2.4,  which  describes  how  SVMs  learn  from data. 

The standard learning  stage can be set  graphically  as  in  figure  2.2. From this  point 
on,  the  book  deals  with  distribution-free  learning  from data methods that can be 
applied to both regression and classification  problems. 

y its very nature, learning is a  stochastic  process.  The  training data set  is  formed 
of two (random) sets of  variables-the input variable xi, which  is  randomly,  with 

drawn  from  the input set X ,  and the  system’s  response yi, which 
set Y. yi is  observed  with  probability P(yi I xi). This  measured, 

‘- .<_ \ 
‘ ~ ~ s ~ ~ t i o n - ~ a s e d  

Classical  Statisti niques 
Distribution-Free 

~ e a ~ n j n g . ~ o ~  Data 

here is a  “teacher” in  training 
of known  desired  outputs 

rning: No ‘reacher”;  raw  data  only. 
(regression)  or  known  class  labels  (classification). 

Clustering  Principal  components  analysis 

Figure 2.2 
Standard  categorization  of  learning  from data tasks. 
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or obse~ed,  response yi is  denoted by di (for d e ~ ~ ~ e d )  during  the  training  phase.  Thus, 
P(di I xi) = P(yf I xi). The scalar  value of the output variable y is  used  here  only for 
simplicity. A11 derivations  remain  basically  the  same  in  the  case of vector output y. 

The  probability of collecting  a  training data point (x, d )  is  therefore2 

The  observed  response of a  system  is  probabilistic, and this is described by the  con- 
ditional probability P ( y  1 x), which states that the  same input x generates  a  different 
output y each  time. In other words,  there  is no guaranteed  response y for  the  same 
input x. Four reasons that the  same input x would  produce  different outputs y are as 
follows: 

l .  There  is dete~inistic underlying  dependence but there  is  noise in measurements. 
2. There  is  deterministic  underlying  dependence but there are uncontrollable  inputs 
(input noise). 
3. The underlying  process  is  stochastic. 
4. The underlying  process  is  deterministic, but incomplete i n f o ~ a t i o n  is  available. 

The  handwritten  character  recognition  problem,  for  example,  belongs to the  case of 
stochastically  generated data (reason  3). It is  a  typical  example of random  patterns: 
we each  write  differently, and we write  the  same characters differently  each  time. 

The  randomness due to additive  measurement  noise  (reason 1) is  typically  described 
as follows.  Suppose  the actual value of the  temperature  measured  in  a  room at loca- 
tion x is $(x). (Vector x that describes  a  point  in  three-dimensional  space  is  a (3, l )  
vector; it has three  rows and one  column  here.)  Under  the  assumption of Gaussian 
( n o ~ a l l y  distributed)  noise,  one will actually  measure 

where  additive  noise E has  a  Gaussian  distribution  with standard deviation CT. In this 
case,  the  conditional  probability P ( y  I x) will  be proportional to 

This assumption about the  Gaussian dist~bution of E is  most  common  while  Sam- 
pling  a  function  in  the  presence of noise.  The  dashed  circle around the output y(x) in 
figure  2.3  denotes both the area of the  most  probable  values of the  system’s  response 
and the  probabilistic nature of data set L). 
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Input  space X Output  space Y 

Figure 2.3 
Stochastic  character of learning  while  collecting  a  training data set. 

In such  a  probabilistic  setting,  there are three  basic  components  in  learning from 
data: a generator of random inputs x, a s y s t e ~  whose  training  responses y are used 
for training  the  learning  machine, and a ~ e ~ r n i ~ g   ~ a c ~ i n e  that, using inputs x and 
the  system’s  responses y ,  should learn (estimate,  model)  the  unknown  dependency 
between  these  two  sets  of  variables  (see  fig. 2.4). This  figure  shows  the  most  common 
learning  setting  in  various  fields,  notably control system  identification and signal 
processing. 

During  the  (successful)  training  phase  a  learning  machine  should be able to find the 
relationship  between X and Yusing data D in  regression  tasks or find  a  function that 
separates data in classification  tasks.  The  result  of  a  learning  process  is an approxi- 
mating  function &(x, W), which  in  statistical literature is  also  known as a ~ y p o t ~ e s i s  
Jh(x, W). (This  function  approximates  the underlyin~ (or true) dependency  between 
the input and output in  regression or the decision boundary, or separation fwction, 
in  classification.)  The  chosen  hypothesis &(x, W) belongs to a ~ y ~ o t ~ e s i s  space of 
f ~ ~ c t i o n s  H (fa E: H ) ,  and it  is  a  function that minimizes  some risk f~nc t ion  R(w). A 
risk R(w) is also  called  the  average  (expected)  loss or the  expectation of a  loss, and it 
is  calculated as 

where  the  specific loss f ~ n c t i o ~  L ( y ,  &(x, W)) is  calculated on the  training  set 
D ( x ~ ,  yi). Note that this  is  the  continuous  version  of  the  risk fmction (1.81) that was 
used  in  the  case of a  (discrete)  classification  problem  comprising  a  finite  number of 
classes. 
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This  connection is present  only  during  the  learning  phase. 

System 

Figure 2.4 
Model  of a  learning  machine W = w(x,y) that during  the  training  phase (by  observing  inputs x to,  and 
outputs y from,  the  system)  estimates  (learns,  adjusts)  its  parameters W thus  learns  mapping y = f ( x )  per- 
formed by the  system. fa(x, W) - y denotes that one  will  rarely  try to interpolate  training data pairs  but 
would rather seek an approximating  function  that  can  generalize well.  After  training, at the  generalization 
or  test  phase,  the  output  from  a  machine o = &(x, W) is  expected to be a  good  estimate  of a system’s true 
response y.  

The  loss  function L(y ,  o) = L ( y ,  fa@, W)) typically  represents  some  classical or 
standard cost (error, objective,  merit)  function.  Depending  upon  the character of the 
problem,  different  loss  functions are used. 

In regression,  two  functions  in  use are the  square error (L2 nom), 

and the  absolute error (L1 norm), 

In a  two-class  classification,  a  0-1 error (loss)  function is 

L ( y , o )  = O  if o = y ,  

L (y ,o )  = l if o # y .  

(2.4a) 

(2.4b) 

(2.4~) 

o denotes  a  learning  machine’s output, or o = fn(x, W). Later in  this  section,  in 
designing an SVM for regression,  a  loss  function  more appropriate for regression 
tasks  is  introduced:  Vapnik’s  &-insensitive  loss  function. 

Under the  general  name “appro~imating f~nction’~ we understand  any mathemat- 
ical structure that maps inputs S into outputs y .  Thus,  in  this  book, “approxi~ating 
function9’ can mean  a  multilayer  perceptron,  a  neural  network, an RBF network, an 
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, a  fuzzy  model,  a ries,  a  polynomial  approximating  func- 
or a  hypothesis. A is the  subject of learning, and generally 

these  parameters  are  called weigh As mentioned,  these  parameters  have digerent 
geometrical  or  physical  meanings. epending  upon  the  hypothesis  space of functions 
H, the  parameters 

The  hidden  layer  and output layer  weights  in  multilayer  perceptrons 
0 The  rules and the  parameters  describing  the  positions and shapes of fwzy subsets 
* The coefficients  of a  polynomial or Fourier series 
0 The centers and variances or covariances of Gaussian  basis  functions as well as the 
output layer  weights of this 

Some  typical  hypothesis  spaces  (mathematical  models, classi~cation/regression 

An RBF ~ ~ t ~ o r ~  is  a  representative of a  linear  basis  function  expansion 
schemes, or computing  machines)  are  summarized  here. 

N 

i= 1 

where q j ( ~ )  is  a fixed set  of radial basis  functions (Caussians, splines,  multiquadric 
e  basis  functions qi (x)  are notfixed (when  their  pos 
are  also  subjects of  learning-when qi = q,(x, ei, 

F network  becomes  a  nonlinear  approximation  scheme. 
A ~ u l t i l ~ y e r   ~ e r c e ~ t r o n  is a  representative of a  nonlinear  basis  function  expansion 

N 

i= 1 

where q j (x , v j )  is  a  set of  given functions  (usually  sigmoidal  functions  such as the 
logistic  function or tangent hyperbolic-see chapter 3). 0th the output layer's 
weights wi and the  entries of the  hidden  layer  weights vec r v are  free  parameters 
that are  subjects of learning. 

A fuzzy logic ~ o d e l ,  like an F network, can be a  representative of linear or 
nonlinear  basis  function  expansion): 

N 

? 

i= l 
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where N is  the n u b e r  of  rules. The model  given  by  (2.7)  corresponds to the  case 
where 

The input membership  functions  are, for example, ~aussians G(x, C j )  centered at cf. 

a The output ~ e m b e r s ~ p  functions are singletons. 
0 The algebraic  product  was  used for the AND operator. 
0 The defuzzification  was  performed by applying  the  “center-of-area for singletons” 
a l g o r i t ~  (see  section 6. l .7). 

Other hypothesis  spaces are a  set of aZgehraic poZyno~iaZs 

f(x) = a0 + alx + a2x2 + a3x3 + + an-lxn-‘ + a,xn (2.8) 

and a tr~ncated Fourier  series 

f(x) = a0 + a1 sin(x) + h1 cos(x) + a2 sin(2x) + b2 cos(2x) + - + * 

+ a, sin(nx) + h, cos(nx) (2.9) 

There is another important class of functions  in  learning  from  examples  tasks, A 
learning  machine  tries to capfure an unknown target function f o ( x )  that is  believed to 
belong to some  target  space T, or class T, also  called  a concept  class. The target space 
T is  rarely  known, and the learning  machine  generally  does  not  belong  to  the  same 
class  of  functions as the  unknown target function &(x). Typical  examples  of target 
spaces  are continuous fu~ctions with s continuous  derivatives  in n variables,  Sobolev 
spaces (comp~sing square integrable  functions  in n variables  with S square  integrable 
derivatives),  band-limited  functions,  functions  with  integrable Fourier transforms, 

oolean  functions, and so on. In what  follows, it is  assumed that the  target  space Tis 
a  space of di~erentiable functions. The main  problem  is that very little  is  known 
about the  possible  und?rlying  function  between the input and the output variables. 
All that is  available i s  a  training data set of labeled  examples  drawn by independ~ntly 
sampling  a ( X  x Y )  space  according to some  unknown  probability distribution. 

The following  sections  present the basic  ideas and techniques  of  the  statistical 
learning  theory  developed by Vapnik and C h ~ ~ o n e ~ i s ,  which  is  the  first  compre- 
hensive  theory of learning  developed for learning  with  small  samples. In particular, 
the  following are discussed: 

0 Concepts  describing  the  conditions  for  consistency  of  the  empirical  risk  minimiza- 
tion principle 

ounds of the  generalization  ability of a  learning  machine 
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uctive  principles for small  training data sets 
* ~onstructive design  methods for implementing  this  novel  inductive principl~ 

Learning can be considered a problem of finding  the  best estimator f using  available 
data. In order to measure  the  goodness of an esti~ator f ,  one  must  define an appro- 
priate measure.  The  most  common  measures, or norms, are given  by (2.4). 
presentation of the  theoretical  concepts of  risk ~inimization for regression  problems7 
for  which the most  common n o m  is  the L2 n o m  (2.4a)74 an explanation  is  given of 

nd  how  results  change  when  all  information  is  contained  only  in  training data. 
e average error or expected  risk of the  estimator f given  by  (2.3)  is  now I 

(2.10) 

he domain of the  estimator f is  the target space T, and using the pr 
the  objective  is to find  the  best  element f of T that minimizes R [ f ] .  
explicit  dependency of the  estimating  function f ( x )  upon  weight 
define  the  relevant appro~imating features of f ( x )  is  stated.  Thes 
are primarily  the  geometrica1 propert 
tion of  these multiva~ate functions. 

E T is  sought, and subsequently stimating  function  is  defined and analyzed 
~ a r a ~ e t e ~ i ~ e ~  f ~ ~ c t i o n  f = f that actually  depends  upon.  the  weight 

he  expected  risk  (2.10)  can  now  be  decomposed as 

(2.1 1) 

ata pairs and fo (x)  is the  (theoretical)  regression  function that in 
section  1.4.1  (see  equ ) was  defined as the  mean  of a conditional proba- 
bility-density  functio ation (2.11)  indicates that the  regression  function 
minimizes  the  expected  risk  in T, and it is  therefore  the  best  possible  estimator. Thus, 

) = arg  min R [ f ] .  
f ET 

(2.12) 

Equation (2.12)  states that the  regression  function fo (  

function) that belongs to the  target  space T and that 
easy to follow  this  assertion. Note that there are two s u ~ a n d s  in  (2.11).  The  first 
one  depends on the  choice of the  estimator f and does not depend  upon a system's 
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outputs y. The  second  does  depend on a noisy  system's output y ,  and it  is  this  term 
that limits  the  quality of the  estimation, In noise-free, or deterministic,  situations 

, that is,  the  mean of a conditional  probabili  density  function P(y I x) is 
exactly and the  second tern is  equal to zero.  nce,  this  second  stochastic 

ght  side of (2. l l )  acts as an intrinsic  limitation and vanishes  only  when 
e conclusion that the  best  estimator is the  regression  function f ,(x) is 

obvious  because for f = f o ( x )  the  first  term on the  right  side of (2.1 1) is equal to 
zero,  Therefore,  in a general pr~babilistic setting, when input and output variables 
are random  variables, even  the  regression  function  makes an error. Namely, for 

aining part E[( y - f, (x)) '1 is error due to noise and is  equal to the 

owever,  there  is a problem  in  applying  (2.10).  The joint probability  function 
unknown, and distribution-free  learning  must be p e r f o ~ e d  based  only on 

the  training data pairs. 
The  supervised  learning  algorithm  embedded  in a learning  machine attempts to 

learn  the input-output relationship  (dependency or function) &(x) by  using a train- 
ing data set 1) = {[x( i ) ,y ( i ) ]  E %' x %? i = l , , .  . ? l }  consisting of l pairs5 ( X I ,  yl),  

m responses) y E (3E are continuou dues for regression  tasks and 
oolean) for classification  problems. th the  only  source of informa- 

tion a data set, the expected  risk R [ f ]  must  be a p p r o ~ i ~ a t e d  by the e ~ ~ i ~ i c ~ Z  risk 

ce,  the  bigger  the  noise-to-signal ratio, the  larger the error. 

y l ) ,  where  the inputs x are  n-dimensional  vectors x E 

(213) 

(x, y )  is  unknown, an i n ~ u c t i ~ n  ~ ~ i n c ~ l ~  of ~ ~ p i ~ i c a l  risk ~ i n i ~ i -  
laces  the  average  over P ( x ,  y )  by an average  over  the  training 

sample. Note that the estimating  function f is  now  expressed  explicitly as the para- 
meterized  function that depends  upon  the  weight  parameter 
cussion  of  the  relevance  of  the  weights  in  defining  the  concept  of  the  uniform 
convergence of the  empirical  risk Re,, to the  expected  risk R follows. To start with, 
recall that the  classical  law of large  numbers  ensures that the  empirical  risk Rem, 
converges to the  expected  risk R as the  number of data points  tends  toward  infinity 
(l  "j m): 

(2.14) 
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This  law  is a theoretical  basis for widespread  and  often  successful application of 
the  least-squares  estimation approaches provided that the training data set  is  large 
enough. 

owever,  (2.14)  does not guarantee that the  function Amp that minimizes  the 
empirical  risk Remp converges to the true (or best)  function f that minimizes  the 
expected  risk R. The  previous statement applies as well for the parameters Wemp and 
wo, which  define  functions femp and f ,  respectively.  What  is  needed  now  is a s y ~ ~ t o t j c  
consistency or u n i f o r ~  converge~ce. This property of  consistency  is  defined  in the 
key  learning the or el^ for bounded  loss  functions  (Vapnik  and Che~onenkis 1989; 
Vapnik  1995;  1998), for bounded  loss  functions  which states that the ~ R ~ ~ r i n c ~ l e  
is consistent i f  and only i f  ~ ~ ~ i r i c u l  risk converg~s uniformZy to true risk  in the fol- 
lowing  probabilistic  sense: 

1 1  > .)l = 0, V& > 0. (2.15) 

P denotes  the probability, and  (2.15) states the  convergence “in probability”. Remp 

and R. denote the  empirical  and  the  expected (true) risk for the same parameter W. 

(The sup re mu^ of  some  nonempty  set S designated by sup S is  defined  by the 
smallest  element S such that S 2 x for all x E S.  If  no  such S exists, sup S = 00). 
Equation  (2.15)  and the underlying  VC  theory  assert that the consistency  is deter- 
mined  by the worst-case  function  from  the  set  of approximating functions that pro- 
vides the largest error between the empirical  risk  and the true expected  risk. This 
theory  provides  bounds  valid for any  learning  machine,  expressed  in  terms  of the size 
of the training set Z and the VC  dimension h of the learning  machine. 

The condition of  consistency  (2.15) has many  interesting  theoretical  properties, 
One  of  the  most important results is that the  necessary  and  sufficient  conditio^ for a 
fast rate of  convergence  and for distribution-independent  consistency  of E 
ing  is that the  VC  dimension of a set  of approximating functions  be  finite.  The  VC 
dimension  is  discussed  in  section  2.2. A detailed, in-depth presentation of  the  consis- 

principle  can  be  found  in  Vapnik  (1995)  and  in  Cherkassky  and 
owing  the presentation of  Vapnik (1999, it can be stated that with 

the probability (1 - v ) ,  the following  two  inequalities are satisfied si~ultaneously: 

(2.1 6) 

(2.17) 

where the weight emp minimizes the empirical  risk Remp (2.13),  and 
true expected  risk R (2.1 1). From the last two equations it follows that 
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(2.18) 

because Wemp and W, are optimal  values for corresponding  risks  (meaning that they 
define  mal points). By adding (2.16) and (2.17), and using (2. IS), the  following  is 
obtained  with  probability (1 - q):  

In other words, the u n i f o ~  convergence  theorem  states that the weights  vector 
obtained by minimizing the empirical  risk  will  minimize  the  true  expected  risk a 
number of data increases. Note this important consistency  property,  which  ensures 
that the set  of parameters  minimizing  the  empirical  risk  will  also  minimize  the true 
risk  when I ”+ 00. 

However,  the  principle  of ERM consistency (2.15) does not suggest  how to find a 
const~ctive procedure for model  design, First, this  problem  of  finding  the  minimum 
of the  empirical  risk  is an ill-posed  problem.  (See  section 5.1). Here, the “ill-posed’’ 
chara~teristic of the  problem  is  due to the  infinite  number of possible  solutions to the 

problem. At this  point, just for the  sake  of  illustration,  remember that all 
functions that interpolate data points will  result  in a zero  value  for &mp. Figure 2.5 
shows a simple  example  of  three out of i ~ n i t e l y  many difEerent interpolating  func- 
tions of training data pairs  sampled  from a noiseless  function y = si@).  Each 

Three d i ~ e r ~ n t  inte~olations of noise-free  training  data 

-1.5‘ 
-3 -2 -1 0 1 2 3 

Figure 2.5 
Thee out of i n~ i t e ly  many inte~olating functions  resulting  in R,,, = 0 (thick  solid,  dashed,  and  dotted 
curves)  are  bad  models of  a true  function y = sin(x)  (thin  dashed  lines). 
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interpolant results  in emp = 0, but at the  same  time,  each  one  is a very bad model  of 
the  true  underlying  d  endency  between x and y, because  all  three  functions  perform 
very  poorly  outside  the  training  i  uts. In other words,  none  of  these  three particular 
interpolants can generalize  well.  wever, not only  interpolating  functions can mis- 
lead.  There are many other approximating  functions  (learning  machines) that will 
minimize  the  empirical  risk (approximation or training error) but  not  necessarily  the 
generalization error (true, expected or guaranteed risk).6 This  follows  from  the  fact 
that a  learning  machine  is  trained by using  some particular sample of the  true  under- 
lying  function, and consequently it always  produces  biased  approximating  functions. 
These approximants depend  necessarily on the  specific  training data pairs (the train- 
ing  sample)  used. 

A solution to this  problem  proposed  in  the  framework of the  statistical  learning 
theory  is  restricting  the  hypothesis  space H of approximating  functions to a  set 
smaller than that of the  target  function 1' while  simultaneously  controlling  the  flexi- 
bility  (complexity) of these  approximating  functions.  The  models  used are para- 
meterized, and with an increased  number of parameters,  they f o m  a  nested s t ~ c t u r e  
in  the  following  sense 

Thus,  in  the  nested  set of functions,  every  function  always contains the  previous,  less 
complex,  function  (see  fig. 2.6). Typically, HR may be the  set of polynomials  in  one 
variable of degree y1 - 1; a  fuzzy  logic  model  having y1 rules;  multilayer  perceptrons; 

F network  having IZ hidden  layer  neurons.  inimizing Rem, Over the  set Hn 
approximates  the  regression  function fo by the  function 

(2.20) 

S can be  represented as the  linear  combination of 
:=l ~ , ~ , ( x ) ,  or more  generally,  as  the  linear  corn- 
sting  functions f,& W, v) = x:=l ~ , ~ , ( x ?  v,). The 

first  scheme  is linear  in  parameter and consequently  easier to optimize;  in  the  second 
scheme  the approximation function  depends no~inearly upon  the  hidden  layer 

ultilayer  perceptrons are the  most  typical  examples of the latter models. 
For linear  in  parameters  models,  the VC dimension. h, which.  defines the  complexity 
and capacity of approxi~ating functions,  is  equal to y1 + 1. This  is an attractive 
property of linear  in  parameters  models. 

For these  typical  models, equation (2.20) can be rewritten as given in  Niyogi and 
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Error 

I l 
i . I I 

Estimation ekor %M ,., Variance 

Figure 2.6 
Structure of  nested  hypothesis  functions  and  different  errors  that  depend  on  the  number  of  basis  functions y1 

for fixed  sample  size 1. h denotes  the VC  dimension,  which  is  equal to a + l, for  the  linear  combination of y1 
fixed  basis  functions.  Confidence is a  confidence  interval  on  the  training error. 

Instead of minimi~ing the expected  risk by estimating the regression  function f, over 
the large  target  space T, the  function i,l is  obtained by minimizing the empirical  risk 
over  the  smaller  set of functions Hn. Consequently,  there  will  always  be a general- 
izati#n error egen, which can be decomposed into two  components: 

(2.22) 

This is shown  in  figure 2.6 as the  vector sum of the  two  sources of  possible errors in 
learning from data tasks. 

The  first  source of error is  trying to approximate  the  regression  function f,, which 
is an infinite ~imensional structure  in T, with a function f, E .Hn,  which  is para- 
meterized  with  a  finite  number of parameters.  This  is an a ~ ~ r # ~ i ~ a t i o n  error, which 
can be measu~ed as the L,z(P) distance  between  the  best  function .fn in 
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regression  function f o .  The L2(P) distance,  where P stands  for  “in ~robability,~, is 
defined as the  expected  value  of  the  Euclidean  distance 

(2.23) 

The  approximation error depends  only on the  approximating  power of the  chosen 
hypothesis  class Hn, not on the  training data set.  Assume that the  hypothesis  space 
HR is  dense  in  the  sense that one  can  always  approximate  any  regression (or dis- 
criminant)  function  in T, to any  degree  of  accuracy, by taking  a  sufficiently  rich 
hypothesis  space of the  approximating  functions Hn. Corresponding  theorems about 
the  universal  approximation  capability of different  modeling  schemes  are  given  in 
section  1.3. 1. 

The  second  source of error stems  from  not  minimizing  the  expected  risk that would 
result  in f n ,  which  is  the  best  approximant  in  the  set Hn. Instead,  the  empirical  risk  is 
minimized  using  a  finite and usually  sparse  training data set.  Such  learning  results  in 
L,/ E HE,  which  is  the  best  approximation  function  given  the  particular  training data 
set.  The  approximating  function L,] will perform  better and better as the  number of 
training data I increases. In accordance  with  the  theorem of uniform  convergence, 
when I increases, an estimate of  the  expected  risk,  the  function i,], improves,  and  the 
empirical  risk ReITlp converges to the  expected  risk R. 

The  measure  of  the  discrepancy  between  these  two  risks  is  defined as the e ~ t i ~ ~ t i o n  
error eest 

(2.24) 

‘Vapnik and  Chervonenkis  have  shown that a  bound on the  estimation  error  in  the 
following  form  is  valid  with  probability 1 - v: 

(2.25) 

The  particular  form of ( I ,  n, v )  depends  upon  the  problem  setting,  but  it  is  generally 
a  decreasing  function of sample  size I and an increasing  function  of  the  number  of 
free  approximating  function  parameters n. The  relationship  between  the  goodness  of 
the  approximating  function  and y1 is  not that simple.  As  the  capacity  of & 
increases  (by  using  higher-order  terms  in  polynomial  expansion or by applying  more 
fuzzy  rules  or  taking  more  hidden  layer  neurons),  the  approximation  capability of the 
learning  machine  increases by using  additional  adjustable  parameters. At the  same 
time,  however,  this  larger  set  of  parameter  values  must  be  optimized  by  using  the 
same  amount of training data, which  in  turn  worsens  the  estimate  of  the  expected 
risk.  Therefore, an increase  in n requires an increase  in I in  order to ensure  uniform 
convergence. At what  rate  and  under  what  conditions  the  estimator will improve 
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depends  on  the  properties of the  regression  function  (target  space T )  and  on  the 
particular  approximation  scheme  used ( etailed  analysis of this  relatio 
between  generalization  error,  hypothesis  ty, and sample  complexity  for 

iven  in  Niyogi and Cirosi the  case of binary  classification, a 
, n, v )  is  shown  in  figure 2.13. 

igure 2.6 illustrates  the  relationships  between  model CO exity,  expressed  by n, 
and two  differently  named  measures  of  model  performance. use  of the  “approxi- 
mately  equal”  sign, -, suggests  the  similarity  in  spirit, or the ogy,  between  various 

rmulating  the  trade-off  between  the  approximation error and the  estimation 
imilar  concept,  known as the  bias-variance  dilemma, is  presented  in  section 
following  suggest  the  similarities  between  the  different  nomenclatures: 

Approximation, or training, error eapp - empirical risk - 
Estimation error est - variance - confidence  on  the  training  error - VC  confidence 
interval. 

eneralizatio~ (true,  expected) error egen - bound  on  test  error - guaranteed, or 
true,  risk. 

At this  point,  it is  worthwhile to consider  some  general  characteristics  of  the 
problem of learning  from  training data. egarding  model  complexity,  one  can 
choose  between  two  extremes  in  modeling a ta set:  a  very  simple  model and a very 
complex  model.  Simple  models do not  have  enough  representational  power  (there are 
too few adjustable  paranleters-small n),  and they  typically  result  in  high  approxi- 
mation  (training) error. These are the  models  with a high  bias. 
rather robust-data-insensitive-in that they do not depend  heavi 
training data set  used.  Thus,  they  have  low  estimation error (lo 
other  hand,  the  application of  complex, higher-order  models, for which n is large, 
results  in low training error because  more  ammeters can be adjusted,  resulting  in 
very  good  modeling  of  training data points.  model  interpolates data 
points,  the  training error (empirical  risk) is  ted  differently,  complex 
models can model not only  t data originating  from  the  underlying  function but also 
the  noise  contained  in data. aving a lot of approximation  power,  complex  models 

to model  any data set  provided for training.  Complex  models  overfit  the 
erefore,  each  particular  training data set  will  give  rise to a different  model, 

meaning that the  estimation error (variance) of  these  complex  structures  will be high. 
roposed  concepts of errors (or of various  risks as their  measures)  suggest that 

there is  always a trade-off  between n and l for a certain  generalization  error. 
fixed  sample  size I ,  an increase  in n results  in a decrease  of the approxil~atioll error, 
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but an increase in the  estimation error. Therefore, it is  desirable to determine an y1 
that defines an optimal  model  complexity,  which  in turn is  the  best  match for given 
training data complexity.  This  question of matching  the  model  capacity to the train- 
ing  sample  complexity  is  optimally  resolved  in  the  framework of the  statistical 
learning  theory and structural risk mini~zation. 

efore  considering  the  basics of these  theories and their  constructive  realization  in 
the  form of SW", recall that there  are  many other methods (or inductive  principles) 
that try to resolve  this  trade-off.  The  regularization approach, presented  in  chapter 5, 
tries to minimize  the  cost  function 

I l 

7 

i= 1 
Closeness to data Smoot~ness 

(2.26) 

where A is a small,  positive  number (the Lagrange  multiplier)  also  called  the reg~Za- 
ri~atio~ ~ara~eter. The  function  in (2.26), that is,  the error or cost  function, or risk 
R[f '] ,  is  composed of  two parts. The first part minimizes  the  empirical  risk  (approxi- 
mation  or  training error, or discrepancy  between  the data d and the  approximating 
function ~ ( ~ ) ) ,  and the  second part enforces  the  smoothness of this  function. 

The  simplest  form of regularization  is  known as ridge regre~~ioy1 (also  called weight 
decay in  the NNs field),  which is  useful for  linear  in  parameters  models  (notably for 

F networks).  Ridge  regression  restricts  model  flexibility by ~ n i ~ z i n g  a cost 
function  containing a (regularization)  term that penalizes  large  weights: 

l n 

i= l i= 1 
(2.27) 

Another, more  heuristic but not necessarily  inefficient,  method for d e s i ~ i n g  a learn- 
ing  machine  with  the  smallest  possible  generalization error is  the cro~~-vaZi~atio~ 
technique. A cross-validation can be applied, and it is  particularly  efficient,  when 
data are not scarce and can therefore be divided into two parts: one part for training 
and one for testing. In this  way,  using  the  training data set,  several  learning  machines 
of different  complexity are designed.  They are then  compared  using  the  test  set and 
controlling  the  trade-off  between  bias and variance.  This approach is  discussed  in 
section 4.3.2. 

The  goal of these  three  inductive  principles-minimization of cost  function,  ridge 
regression, and cross-validation-is to select  the  best  model  from a large  (theo- 
retically,  infinite)  number of possible  models  using  only  available  training data. In 
addition to these,  three other well-known  inductive  principles are s t~ctural  risk 
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ayesian  inference, and minimum  descriptive  length ( 
All  the  previously  mentioned  inductive  principles  differ  (Cherkassky 199’7) in  terms of 

* Embedding  (representation) of a  priori  knowledge 
* The  mechanism  for  combining  a  priori  knowledge  with data 
* Applicability  when  the  true  model  does not belong to the  set  of  approximating 
functions 

Availability of constructive  learning  methods 

The  remainder of  this  chapter  analyzes  the S principle and its  algorithmic  real- 
ization  through  SVMs. SRM also  tries to minimize  the  cost  function,  now  called  the 
~~n~ral i za t ion  b o ~ n ~  R, comprising  two terns: 

(2.28) 

In (2.28)  the  VC  dimension h (defining  model  complexity)  is  a  controlling  parameter 
for mi~imizing the  generalization  bound R. This  expression  is  similar to (2.25)  with 
the  difference that instead of parameter n, which  defines  model  complexity,  it  uses  the 
VC  dimension h, which  is  usually  but not always  related to n. The  statistical  learning 
theory  controls  the  generalization  ability of learning  machines by minimizing  the  risk 
function  (2.28);  it  is  specifically  designed  for  a  small  training  sample.  The  sample  size 
l is  considered to be  small if the ratio Z/h is  small,  say, E/h - < 20. [ / h  is  the ratio of 
the  number of training  patterns E to the VC  dimension h of learning  machine  func- 
tions  (i.e.,  of an W, a  polynomial  approximator, an BF NN, a fuzzy  model).  The 
analysis  of  the  term Q(E, h, yl) is  deferred  until  later,  after  the  important  concept  of  the 
VC  dimension h has  been  discussed. 

ensio 

The VC (Vapnik-Che~onenkis) dimension h is  a  property  of  a  set of approximating 
functions of a  learning  machine that is  used  in  all  important  results  in  the  statistical 
learning  theory.  Despite  the  fact that the VC dimension  is  very  important,  the  unfor- 
tunate  reality  is that its  analytic  estimations  can be  used  only  for  the  simplest  sets  of 
functions.  The  basic  concept of the  VC  dimension  is  presented  first  for  a  two-class 
pattern  recognition  case and then  generalized  for  some  sets  of  real  approximating 
functions. 

function that can  assume  only  two  values,  say, i ~ ( x ,  
Let  us  first  introduce  the  notion  of an in~icator function i ~ ( x ,  

(A standard example of an indicator  function  is  the  hard  limiting  threshold 
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Figure 2.7 
The  indicator  function i~ (x ,wj  = sign(uj  is  the  stainvise  function  shown  in  the  left  graph.  In  the  input 
plane (XI ? x2 j, &(x, W) is  specified by the  oriented  straight  line U = 0, also  called  a  decision  boundary  or  a 
separating  fumtion.  The  direction  of  the  weights  vector W points to the  half-plane ( X I  xz), giving  positive 
values  for  the  indicator  function. 

function given as iF(x, ) ; see  fig.  2.7 and section  3.1 ,) In the  case  of 
two-class  classification  tasks,  the VC di~ension of a set of in~icator functions iF(x, W) 

is  defined as the largest n u ~ b e r  h of points that can be sepa~ated ( ~ ~ ~ a t t e r e ~ )  in all 
possible ways. For two-class  pattern  recognition, a set of l points can be  labeled  in 2l 

possible  ways.  According to the  definition of the  VC  dimension, given  some  set  of 
indicator  functions iF(x, ), if there  are  members of the  set that are able to assign  all 
labels  correctly,  the  VC  dimension of this  set of functions h = l. 

Let  us  analyze  the  concept of shattering  in  the  case of a two-di~e~sional 
input vector [ X I  x21 *. he  set of planes  in "3t3 is  defined as U = ~ 1 x 1  + ~ 2 x 2  + WO, 

or U = ( x ~ ~ ) ,  where xT = [x1 x2 l] and w T  = [wl W:! W O ] .  A  particular  set of 
indicator  functions  in !R3 is  defined as 

iF(x,~) = sign(u) = sign(wlx1 + ~ 2 x 2  + W O )  = sign  (2.29) 

This  set  can be graphically  presented as the  oriented  straight  line  in  the  space of fea- 
tures "3t2(xl, xz), so that all  points on one  side are assigned the value +l (class l)  and 
all  points on the  other  side  are  assigned  the  value -l (class  2)  (see  fig.  2.7).  An  arrow 
line  of  the  weights  vector  indicates  the  positive  side of the  indicator  function. Note 
that the  indicator  function  is not shown  in  the  right graph in  figure  2.7.  Comparing 
the  left and right  graphs  in  the  figure,  note  how  the  orientation of the  indicator 
function  changes if the  assignments  of  the  two  classes  change.  Figure 2.8 shows  all 
23 = 8 possible  variations  of  the  three  labeled  points  shattered by an indicator  func- 
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Three  points  in 93’ shattered  in  all  possible 23 = 8 ways  by an  indicator  function I’F(x, W) = sign(@)  repre- 
sented by the  oriented  straight  line U = 0. For this i ~ ( x ,  W),  h = 3. The  direction of the  weights  vector W 
points  to  the  half-plane ( X I  ) Q), giving  positive  values  for  the  indicator  function. 
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Le@, an indicator  function it;(x, W) = sign(u)  cannot  shatter  all  possible  labelings of the  three  co-linear 
points;  two  labelings  that  cannot be shattered  are  shown. R i ~ ~ ~ ,  &(x, W) = sign(@)  cannot  shatter  the 
depicted  two  out  of  sixteen  labelings  of  four  points. A quadratic  indicator  function  (dashed  line)  can  easily 
shatter  both  sets of points. 

) = sign(u). Note that if the ‘VC dimension  is h, then  there  exists at least 
one  set of h points  in input space that can be shattered. his  does not mean that every 

nts can be shattered by a given  set  of indicator  functions  (see  left  side of 
fig. 2.9). 

The left  side  of  figure 2.9 shows  two out of eight  possible  labelings of the  three 
co-linear  points that cannot be shattered by an indicator function it;.( 
(The reader  should  try to show that the r e ~ a i n i n ~  six  possible  labelings can be shat- 
tered by this  function.) The right  side of  figure 2.9 shows  the  set of four points that 
cannot be separated by i ~ ( x ,  ) = sign(u). In fact, there  is no a r r a n ~ e ~ e n t  of four 
points  in a two-dimensional i ut space (XI, xz) all of  whose  possible  labelings  can 
be separated by this  indicator  function. In other words,  the ‘VC 
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indicator  function i ~ ( x ,  W) = sign(u) iri a  two-dimensional  space of inputs is 3, In an 
n-dimensional input space,  the VC dimension of the  oriented  hyperplane  indicator 
function, i~(x, W) = sign@),  is  equal to n + 1, that is, h = B +  l .  

Note that in an n-dimensional  space of features  the  oriented  straight  line indicator 
function i ~ ; ( x ,  W) = sign(u)  has  exactly h = n + l  unknown  parameters that are ele- 
ments of the  weights  vector W = [WO w1 wz . . . ~ ~ - 1  wn] ? T ~ S  conclusion 
suggests that the VC dimension  increases as the  number of  weights  vector  parameters 
increases. In other words,  one  could  expect that a  learning  machine  with  many 
parameters will  have a  high VC dimension,  whereas  a  machine  with few parameters 
will  have a  low  VC  dimension.  This  statement  is far from true. The following  exam- 
ple  shows that a  simple  learning  machine  with just one  parameter can have an infinite 
VC dimension. (A set of indicator functions  is  said to have  infinite  VC di~ension if it 
can shatter (separate) a  deliberately  large  number  of E points.) So, for example,  the  set 
of indicator functions i ~ ( x ,  W) = s i ~ ( s i n ( ~ x ) ) ,  x, W E 93, has an infinite VC dimen- 
sion.  Recall that the  definition of a VC dimension  requires that there be just one  set 
of E points that can be shattered by a  set  of  indicator  functions.  Thus, if one  chooses I 
points  placed at xi = i = l ,  . . . , E ,  and if one  assigns random (any)  labelings 
y l ,  y 2 , .  . , y l ,  and yi E {-l,  +l), then an indicator function i ~ ( x ,  W) = sign(sin(Wx)) 
with 

will  be  able to separate  all E points.  This is shown  in  figure  2.10. Note that the 
parameter  (frequency) W is  chosen as the  function of random y labeiings.  The  exam- 
ple is due to Denker and Levine  (see  Vapnik  1995). 

The VC dimension of the  specific  loss  function L [ y ,  &(x, W)] is equal to the VC 
dimension of the  approximating  function &(x, W) for both classification and regres- 
sion  tasks  (Cherkassky and Mulier  1998). It is  interesting to note that for regression 
the VC dimension of a  set of RBFs as given  by  (2.5): 

N 

i= 1 
(2.30) 

is  equal to N + 1, where N is  the  number of hidden  layer  neurons. Equatio~  (~.30) 
is  given to separately  show  the  bias  term  (in  this  way  it  is  similar to (2.~9)). In an 
N-dimensional  space  spanned by R FS (Dj(X) = {(D~(x), (D,(x), . . , (DN(x)>, equation 
(2.30)  is  equivalent to linear  functions  (2.29).  Hence,  for  a  linear  basis  function 
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~eparation of ten points by indicator function i f( 
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Shattering of ten  points, l = 10, An  indicator  function &(x, W) = sign(sin(wx))  has  only  one  parameter, 
but it can  separate  any  number l of randomly  labeled  points,  i.e., its VC dimension  is  infinite.  The  figure 
shows  one  random  labeling  only: y = +l (solid  circles), y = -1 (void  circles).  However, by an  appropri- 
ately  calculated  parameter W any  set of randomly  labeled y's will  be correctly  separated. 

expansion  the VC dimension h = N + l ,  where N stands for  the  number of hidden 
layer  neurons. 

The VC dimension of an RBF network  increases  proportionally to the  number of 
neurons.  This  means that theoretically an network can have an infinitely  large 
VC di~ension or that for a binary  classification  problem an F network  can shatter 
any  possible  labeling of I training data. Thi 
having E neurons  in the hidden  layer,  place 
i = 1, Z-and take  the  shape para~eter (standard deviation CT in the  case of Gaussian 
basis  functions) to be smaller than the  distance  between  adjacent  centers.  Figure 2.1 1 
shows  two di~erent random  labelings of data pairs (top) and 41 data pairs (bottom) 
in  the  case of  one-dimensional input x. asis  functions are Gaussians  placed at the 
corresponding inputs xi. Note that the  graphs do not  represent  indicator  functions. 
They can be  easily redrawn by sketching  the indicator functions 
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Figure 2. I I 
Shattering of 21 points (top) and 41  points (bot~om) by  using an RBF network  having  Gaussian  basis 
functions.  The RBF network  has  21  parameters (top) and 41 parameters (bottom). These are  the  output 
layer  weights.  Thus,  its VC dimension  is  21 (top) and 41 (bottom). The figure  shows  two digerent  random 
labelings: y = +l for class 1, and y = -1 for  class 2.  Any set  of l randomly  labeled y's will  be  always  sep- 
arated  (shattered)  correctly by an RBF network  having E neurons. 
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instead  of  the  interpolating  functions  shown as 

i= l 

where E = 21 (top) and 1 = 41 (bottom). 
The  calculation  of  a VC dimension for nonlinear  function  expansions,  such  as  the 

one  exemplified  by multilayer  perceptrons given  by (2.6), is  a  very  difficult  task,  if 
possible at all.  Even,  in  the  simple  case of the  sum  of  two  basis  functions,  each  having 
a  finite  VC  dimension,  the  VC  dimension of the  sum  can  be  infinite. 

In the  statistical  learning  theory,  the  concept of growth function also  plays an 
important role.  Consider 1 points (XI ,  x2, . . . , xl)  and a  set S of indicator  functions 
iF(x, W). Let Nd(x) denote  the  number of  different  labelings that can be  classified 
binarily  (shattered,  dichotomized) by the  set S. Then  (because for two-class  pattern 
recognition  a  set of 1 points  can be  labeled  in  2l  possible  ways), Nd(x) 5 2l. The 
(distribution-independent)  growth  function G(1) is  now  defined as 

(2.31) 

where  the  maximum  is  taken  over  all  possible  samples  of  size 1. Therefore, 

G(1) S 1 In 2.  (2.32) 

In presenting  the  condition of  consistency  (2.15),  it  was  mentioned that a necessary 
and sufficient condition  for  a  fast rate of  convergence and for distribution-independent 
consistency  of ERM learning  is that the VC dimension of a  set  of  approximating 
functions be finite. In fact,  this  definition  results  from  the  consistency  condition 
expressed  in terns of the  growth  function,  stating that the  necessary and sufficient 
condition for a  fast rate of  convergence  and  for  distribution-independent  consistency 
of ERM learning  is that 

(2.33) 

Vapnik and Chervonenkis  (1968)  proved that for  a  set of indicator  functions,  the 
growth  function can be either  linear or bounded by a  logarithmic  function of the 
number of training  samples 1. Nothing  in  between  linear  growth and logarithmic 
growth  is  possible. In other  words, G(1) can  only  change as the  two  solid  lines  in 
figure  2.12 do but cannot behave  like  the  dashed  line. For G(1) = 1 In 2, a  learning 
machine  is  able to separate  (shatter) 1 chosen  points  in  all  possible 2z ways.  If there 
exists  some  maximal E for  which  this  shattering  is  possible,  this  number  is  called  the 
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The  growth  function  can  either  change  linearly  as  the  straight  line I In 2 or be  bounded  by  a l o g ~ ~ t ~ c  
function h( 1 + ln(Z/h)). When G(Z) changes  linearly,  the VC dimension  for  the  corresponding  indicator 
functions is infinite. 

VC dimension and is  denoted by  h. From this  point on, or for E 2 h, the  growth 
function G(1) starts to slow down, and the  bounding  logarithmic  function is 

(2.34) 

The growth  function of the  indicator  function i ~ ( x ,  W) = s ign(s in(~~))  shown  in 
figure  2.10  is  equal to G(2) = E In 2, or it increases  linearly  with  regard to the  number 
of samples E. This is a  consequence of the  already stated fact that this indicator 
function can shatter any  number of training data pairs.  Hence,  the  growth  function 
G(2) is  unbounded, or the VC dimension  is  infinite.  The  practical  consequence  is that 

) = s ign(s in(~~))  is  not  a  good candidate for this dichotomi~ation task because 
this particular indicator  function  is  able to shatter (to separate or to overfit)  any 
training data set. 

ecause  all  results  in  the  statistical  learning  theory  use  the VC dimension, it is 
important to be able to calculate  this  learning parameter. ~nfortunately, this  is  very 
often not an easy task. This quantity depends on both the  set of  specific approxi- 
mating  functions f a ( x ,  W) and the particular type of learning  problem  (classification 
or regression) to be solved.  But  even  when  the 'VC dimension cannot be calculated 
directly,  results  from  the  statistical  learning  theory  are  relevant for an intro~uction of 
structure  on  the  class of approximating  functions. 

Structural risk mi~mization is  a  novel  inductive  principle for learning  from  finite 
training data sets.  t  is  very  useful  when  dealing  with  small  samples. The basic  idea of 
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SRM is to choose,  from  a  large  number of candidate models  (learning  machines),  a 
model of the  right  complexity to describe  training data pairs. As previously  stated, 
this can be done by restricting  the  hypothesis  space H of approximating  functions 
and simultaneously  controlling  their  flexibility  (complexity). Thus, learning  machines 
will  be those  parameterized  models that, by increasing  the  number of parameters 
(called  weights W here),  form  a  nested  structure  in  the  following  sense: 

In such  a  nested  set of functions,  every  function  always  contains  a  previous,  less 
complex,  function  (for  a  sketch of this  nested  set  idea,  see  fig. 2.6). Typically, I f f i  may 
be a  set of polynomials in one  variable of degree n; a  fuzzy  logic (FL) model  having n 
rules;  multilayer  perceptrons;  or an RBF network  having n hidden  layer  neurons.  The 
definition of nested  sets (2.35) is  satisfied for all  these  models  because,  for  example, 
an NN with n neurons  is  a  subset of an NN with n + 1  neurons, an FL model  com- 
prising n rules  is  a  subset of an FL model  comprising n + 1 rules, and so on. The goal 
of learning  is  one of subset selection, which  matches  training data complexity  with 
approximating  model  capacity. In other  words,  a  learning a l g o r i t ~  chooses an 
optimal  polynomial  degree or an optimal  number of hidden  layer  neurons or an 
optimal number of FL model  rules. 

For learning  machines  linear  in  parameters,  this  capacity,  expressed by the VC 
dimension,  is  given  by  the  number  of  weights (the number of  free parameters). For 
approximating  models  nonlinear  in  parameters,  the  calculation of the VC dimension 
is  perhaps  feasible.  Even for these  networks, by  using simulation  experiments,  one 
can find  a  model of appropriate capacity. 

The optimal choice  of  model  capacity  ensures  the ~inimization of  expected  risk 
(generalization error) in  the  following  way.  There are various  generalization  bounds 
for a  learning  machine  implementing ERM that analytically  connect  generalization 
error ~ ( ~ f i ) ,  ap~roximating error ~ ~ ~ ~ ( w ~ ) ,  VC  dimension h, number of training 
samples l, and probability (or, level  of  confidence) 1 - r)  for all a~proximating func- 
tions  for both binary  classification and regression. The minimization of these  bounds 
is the essence  of structural risk  minimization. 

The generalization  bound for binary  classification  given  by (2.36) holds  with  the 
probabi~ity of at least 1 - for  all  approximating  functions  (weights 
fine  these functions)  including  the  function (a weight w ~ )  that minimizes  empirical 
risk: 

(2.36a) 
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where  the  second  term on the  right-hand  side  is  called  a VC confidence (confidence 
term or confidence  interval)  defined as 

(2.36b) 

The notation for  risks  given  previously  using R(w,) says that risk  is  calculated  over  a 
set  of functions f n ( x ,  W,) of increasing  complexity.  Different  bounds can also be for- 
mulated  in terns of other concepts,  such as growth f~nc t ion  or anneaZed VC entropy. 
Bounds  also  difler for classification and regression  tasks and according to the char- 
acter of approximating  functions.  More  details can be found  in  Vapnik  (1995) and 
Cherkassky and Mulier  (1998).  However,  the  general  characteristics of the  dependence 
of the  confidence  interval on the  number of training data Z and on the VG dimension 
h are similar  (see  fig.  2.13). 

Equations (2.36)  show that when the  number of training data increases, that is, for 
Z -+ 00 (with other parameters  fixed),  true  risk R(w,) is  very  close to empirical  risk 
~ ~ ~ ~ ( w ~ )  because SZ -+ 0. On  the other hand, when  the probability l - v (also  called 
a confidence Zet~eZ)~ approaches  l , the  generalization  bound  grows  large,  because  in 
the  case  when -+ 0 (meaning that the  confidence  level 1 - "+ l), the  value of 

VC confidence  or  estimation  error  bound 
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Figure 2.13 
Dependence of VC  confidence Q(h, I ,  v )  on  the  number of training  data I and  on  the VC  dimension h, h < I ,  
for a fixed  confidence  level 1 - y~ = 1 - 0.1 = 0.9. 
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”+ 00. This  has an intuitive inte~retation (Cherkassky and ulier  1998)  in that 
any  learning  machine  (model,  estimates)  obtained from a  finite  number of training 
data cannot have an arbitrarily high  confidence  level.  There  is  always  a  trade-off 
between  the  accuracy  provided by bounds and the  degree of confidence  (in  these 
bounds).  Figure  2.13  also  shows that the VC  confidence  interval  increases  with an 
increase  in  a VC dimension h for  a fixed number of the  training data pairs 1. 

Now,  almost  all  the  basic  ideas and tools  needed  in  the  statistical  learning  theory 
and in structural risk ~nimization have  been  introduce^. 
clearer  how an SRM works-it  uses the VC dimension as a  controlling parameter 
(through a d e t e ~ n a t i o n  of confidence  interval)  for  minimizing  the  generalization 

i n f o ~ a t i o n  about 
e  needs to show that 

actually  minimizes both the VC  dimension  (confidence  inte  estimation error) and 
the approximation error (empirical  risk) at the  same  time S proof is  given later. 

eanwhile, it is  useful to s ~ a r i z e  two  basic  approaches to designing  statistical 
learning  from data models, that is,  two  ways to minimize  the  right-hand  side of 
(2.36a)  (Vapnik  1995): 

* Choose an appropriate structure (order of polynomials,  number of hidden  layer 
ne~ons ,   nmber  of  fuzzy  logic  rules), and keeping  the  confidence  interval  fixed, 
~ n i ~ z e  the  training error (empirical  risk). 

eeping  the  value of the  training error fixed (equal to zero or to some  acceptable 
level),  minimize  the  confidence  interval. 

Classical NNs implement  the  first approach (or some  of its  sophisticated variants), 
and SVMs ~ p l e ~ e n t  the  second  strategy. In both cases,  the  resulting  model  will 
resolve  the  trade-off  between unde~tting and overfitting  the  training data. The final 
model  structure (order) should  ideally  match the learning  machine’s  capacity  with  the 
complexity of the  training data. Today, both approaches are ~eneralizations of 
learning  machines  with  a  set  of  linear  indicator  functions that were constructed  in  the 
1960s. 

This  section  begins  the  presentation  of  a new type of learning  machine-the SV 
which  implements the second  strategy-keeping  the train in^ error fixed  while  mini- 
mizing  the c o ~ d e n c e  interval. First, an example  is  presented of linear  decision  rules 
(Le., the  separating  functions will  be hyperplanes) for binary  classification  (dichoto- 
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mization) of linearly  separable data. In such  a  problem, data pairs can be  perfectly 
classified, that is, an empirical  risk can be  set to zero. It is  the  easiest  classification 
problem and yet an excellent introduction to all  the important ideas  underlying the 
statistical  learning  theory, structural risk mi~mization, and SV 

The presentation  gradually  increases  in  complexity. It begins  in  section  2.4.  l  with  a 
linear  maximal  margin  classifier  for  linearly  separable data, where  there  is no sample 
overlapping.  Then,  in  section  2.4.2,  some  degree of overlapping of training data pairs 
is  allowed  while  classes are separated  using  linear hype~lanes: a  linear  soft  margin 
classifier for overlap pin^ classes.  In  problems  when  linear  decision  hyperplanes are 
no longer  feasible  (section 2.4.3), an input space  is  mapped into a  feature  space (the 
hidden  layer  in NN models),  resulting  in  a  nonlinear  classifier.  Finally,  in  section  2.4.4, 
the  same t e c ~ i ~ u e s  are considered for solving  regression  (function approxi~ation) 
problems. 

ea 

Consider  the  problem of binary  classification, or dichotom~ation. Training data are 
given as 

(x17 Y l ) ,  (XZ? YZ), . - 7 ( W 7  Yz),  x %"? Y E {+l? -11. (2.37) 

For the  purpose of vis~alization, the  case of a  two-dimensional input space, x E 5R2, 

is considered. Data are  linearly separab , and there are many  different hype~lanes8 
that can perfom separation  (see  fig.  2. . How  can  one  find  the  best  one? 
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with a small margin. 
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Remember  only  sparse  training data are available.  Thus,  the  optimal  separating 
function  must be found  without  knowing  the  underlying  probability  distribution 
P(x, y ) .  There  are  many  functions that can  solve  given pattern recog~tion (or func- 
tional approximation) tasks.  In  such a problem  setting,  the  statistical  learning  theory 
shows that it is  crucial to restrict  the  class of functions  implemented by a learning 
machine to one  with a complexity  suitable for the amount of available  training data. 

In the case of classification of linearly  separable data, this  idea  is  transformed into 
the  following approach: among  all  the  hyperplanes that ~inimize the training error 
(empi~cal risk),  find  the  one  with.  the  largest  margin.  This  is an intuitively  acceptable 
approach. Just by looking at figure  2.14,  one can see that the  dashed se~aration line 
shown  in  the  right graph seems to promise a good  classification  with  previously  unseen 
data (in  the  generalization  phase). Or, at least, it seems to promise  better  perfor- 
mance  in  generalization than the dashed  decision  boundary  havi a smaller  margin, 
shown  in the left  graph.  This can also be  expressed as the  idea t a classifier  with a 
smaller  margin  will  have a higher  expected  risk. 

Using  the  given  training  examples  during  the  learning  stage,  the  machine  finds 
= [“l “2 . . . W.] IT and b of a discriminant or decision  function 

d(x, W, b)  given as 
n 

d ( x , ~ ,  h)  = ~ I T x  + b = 
i= 1 

(2.38) 

and the  scalar b is  (possibly  wrongly)  called a bias. (Note that the 
dashed  lines  in  fig.  2.14  represent  lines that follow  from d( , h)  = 0 (see  explana- 
tion later). Mter the  successful  training  stage,  using the weights obtained, the  learn- 
ing  machine,  given a previously  unseen pattern , produces output o according to an 
indicator function  given as 

it; = o = sign(d(x, W, h) ) ,  (2.39) 

where o is  the standard notation for the output from a learning  machine. In other 
words,  the  decision  rule  is 

If d ( ~ p ,  W, b) > 0, pattern xp belongs to a class 1 (i.e., U = yl = +l), and if 
d(xp ,  ~, b)  < 0, it belongs to a class 2 (i.e.? o = y2 = -1). 

Note that the indicator function o given  by  (2.39)  is a stepwise  function  (see  figs.  2.15 
and 2.16). At the  same  time,  the  decision (or discriminant)  function d(  
hype~lane. Also, a decision  hyperplane d “lives  in” (B + 1)-dimensional  space or it 
lies  “over” a training  pattern’s  n-dimensional  space of features.  There  is another 
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The decision  boundary or 
Desired  value y lndicato  nction jF(x, W, b)  = sign(d) . separating  line is an 

Figure 2.15 
Definition  of  a  decision (disc~minant) function  or  hyperplane d(x,w,b), decision  (separating)  boundary 
d ( x ,  W, h) = 0, and  indicator  function i~ = sign(d(x, W, b) )  whose  value  represents  a  learning,  or  support 
vector,  machine’s  output 0. 

Target (= d )  SV Classification for One-Dimensional  inputs 

The  indicator  function iF = sign(d(x, W, 6)) is a 
$stepwise function. It is an SV machine  output 0. 

The  two  dashed  lines  represent 
decision  functions  that  are  not 

I hyperplanes.  However,  they 
the  same  decision  boundary 

as  the  canonical  hyperplane here. 

F i g ~ e  2.16 
Graphical  presentation of a  canonical  hyperplane. For one-dimensional  inputs, it is  actually a canonical 
straight  line  (solid)  that  passes  through  points (+2, +l )  and ( + 3 ,  -1) defined  by support  vectors  (solid 
circle  and  solid  square  for  class 1 and  class 2, respectively).  The  dashed  lines  are  two  other  separating 
hype~lanes, i.e.,  straight  lines.  The  training  input  patterns (x1 = 1, x2 = 2) E class 1 have  a  desired  or 
target  value  (label) yt = +l .  The  inputs (x3 = 3 ,  x4 = 4, x5 = 5 )  E class 2 have  the  label y~ = -1. The  two 
support  vectors  are  filled  training  data,  namely, x2 = 2 i s  SVI, and x3 = 3 is SV2. 
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mathematical  object  in  classification  problems,  called  a deci~ion  bo~ndary (see  section 
1.4.2), that “lives in” the  same  n-dimensional  space of features, that is,  it  is  in  a  space 
of input vectors x, and it separates  vectors x into two  classes. 
linearly  separable data, this  decision  boundary  is  also  a  (separating)  hyperplane but 
of a  lower  order than d(x, W,  b). This  decision  boundary  is an intersection of deci- 
sion  function d(x, W, b) and a  space  of  features. It is  given  by 

d(x, W, b) = 0. (2.40) 

All  these  functions and relationships can be followed, for two-dimensional inputs x, 
in  figure  2.15. In this particular case,  the  decision  boundary  (separating  hyperplane) 
is  actually  a  separating  line  in  a (XI, x2) plane, and a  decision  function d(x, W, b) is  a 
plane  over  this  two-dimensional  space of features, that is,  over an (x1 , x2) plane. 

In the  case of one-dimensional  training patterns x  (i.e., for one-dimensional inputs 
x to a  learning  machine),  the  decision  function d(x, W ,  b) is  a  line  in an (x,  y )  plane. 
An  intersection of this  line  with  the  x-axis  defines  a point that is  a  decision  boundary 
between  two  classes.  This can be  followed in  figure  2.16. 

Before  seeking an optimal separating  hyperplane  having  the  largest  margin,  con- 
sider  the  concept of the canonic~Z ~ ~ ~ e r ~ Z a n e .  This  concept  is  depicted  with  the  help 
of the  one-dimensional  example  shown in figure  2.16. Not quite  incidentally, the 
decision  plane d(x, W, b) shown  in  figure  2.15  is  also  a  canonical  plane.  Namely, the 
values of d and of iF are the  same, and both are equal to I1 I for  the support vectors 
depicted by stars. At the same  time,  for  all other training patterns [dl > / iF I .  To 
understand  the  concept of the  canonical  plane,  first  note that there are many  hyper- 
planes that can correctly  separate data. In figure  2.16 three di~erent separating 
functions d(x, W, b) are shown.  There are infinitely  many  more. In fact, if d(x, W, b) is 
a separatin~ function,  then  all  functions d(x, k ~ ,  kb), where k is  a  positive  scalar, are 
correct  decision  functions, too. Also, for any k 0, the  hyperplanes  given  in  (2.41) 
are the  same  hyperplanes 

{ x / W ~ X + b = O } ~ { x ~ k W ~ X + k b = 0 ) .  (2.41) 

ecause  parameters (W, b) describe  the  same  hyperplane as ~arameters (kw, kb), 
there  is  a  need for the notion of a c ~ ~ o n i c a Z   ~ y ~ e r ~ Z a ~ e .  A hyperplane  is  in  canonical 
form  with  respect to training data x E X if 

The  solid  line d(x, W, b) = -2x + 5 in  figure  2.16  fulfills  (2. 2) because  its  minimal 
absolute  value for the given  five training patterns belonging to two  classes  is  1. It 
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achieves  this  value  for  two  patterns,  namely for x2 = 2, and x3 = 3. For all other 
patterns, /dl > 1. 

Note an interesting  detail  regarding  canonical  hyperplanes that is  easily  checked. 
There are many  different  hyperplanes (planes and  straight  lines  in figs.  2.15 and 2.16) 
that have  the  same  decision  boundary  (solid  line and in  figs,  2.15  (right) and dot in 
figure  2.16). At the  same  time,  there are far fewer  hyperplanes that can be  defined as 
canonical  ones  fulfilling  (2.42). In figure  2.16, for a  one-dimensional input vector x, 
the  canonical  hyperplane  is  unique.  This  is  not  the  case for training patterns of higher 
dimension.  Depending  upon  the  configuration  of  a  class's  elements,  various  canonical 
hyperplanes  are  possible. 

Therefore,  there  is  a  need to define an o p t i ~ u l   c u ~ o ~ i c u l   ~ y p e r p Z ~ ~ e  as a  Canonical 
hyperplane  having  a ~ u x i ~ u l   ~ u r g i ~ .  This  search for a  separating,  maximal  margin, 
canonical  hyperplane  is  the  ultimate  learning  goal  in  statistical  learning  theory  under- 
lying SVMs. Carefully note the  adjectives  in  the  previous  sentence.  This  hyperplane 
obtained  from  limited  training data must  have  a ~ u x ~ ~ u Z  ~ u r g i ~  because, it will 
probably  better  classify new data.  It must be  in cu~o~ic f fZ form because  this  will  ease 
the  quest for signi~cant patterns,  here  called support vectors.  The  canonical form of 
the  hyperplane will also  simplify  the  calculations.  Finally,  the  resulting  hyperplane 
must  ultimately ~ep f f r f f t e  training patterns. 

In  order to introduce  the  concepts of a  margin and optimal canonical hy~erplane, 
some  basics of analytical  geometry are presented.  The  notion of distance  between  a 
point  and  a  hyperplane  is very  useful and important. In 48' let  there be a  given  point 
P(xlp,  ~ 2 ~ , .  . . , xnp) and a  hyperplane d(x, W, b)  = 0 defined  by wlxl + ~ 2 x 2  + + 
w,x, f 6 = 0. The distance D from  point P to hyperplane d is  given as 

(2.43) 

Thus,  for  example,  the  distance  between  the  point (1,1,1,1) and a  hyperplane 
x1 + 2x2 + 3x3 + 4x4 - 2 = 0 is 

D =  
[[l 2 3 4j(1  1  1 l]" -21 8 

m m' - - 

At this point, we can  consider an optimal  canonical  hyperplane, that is,  a  canonical 
hy~erplane having  a  maximal  margin.  Among  all  separating  canonical  hyperplanes 
there is a  unique  one  having  a  maximal  margin.  The  geometry  needed for this  pre- 
sentation  is  shown  in  figure 2.17. 

The margin M that is to be maximized  during  the  training  stage  is  a  projection, 
onto the  separating  hyperplane's  normal  (weights)  vector  direction, of a  distance 
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Optimal separating hyperplane with 
the largest  margin  intersects  halfway x:! 
between  the  two  classes. 

Figure 2.1'7 
Optimal  canonical  separating  hyperplane (OCSH) with  the  largest  margin  intersects  halfway  between  the 
two  classes.  The  points  closest to it (satisfying yjlwTxj + bl = 1, j = 1, N ~ v )  are  support  vectors,  and  the 
OCSH satisfies Yi(wTxi + b) 2 1, i = l, 1 (where l denotes  the  number of training data and NSV stands  for 
the  number of support  vectors).  Three  support  vectors (x1 from  class 1, and x2 and x3 from  class 2)  are 
training  data  shown  textured by vertical  bars.  The  margin M calculation  is  framed at left. 

between  any  two support vectors  belonging to different  classes. In the  example  shown 
in  the  framed  picture  in  figure  2.17,  this  margin A4 is  equal to 

A4 = (x1 - x2)w = (x1 - X3)Iw, (2.44) 

where  the  subscript W denotes  the  projection onto the  weights  vector W direction. The 
margin M can now  be found  using support vectors x1 and x2 as follows: 

D1 = llXlII cos@), 0 2  = llx2ll cos(B), A4 = Dl - D2, (2.45) 

where a and p are the  angles  between W and x1 and between W and x2, respectively as 
given  by 

x,Tw XTW 

11x1 l1 llwll IIx2(I llwll * 

cos(a) = and cos(B) = 

~ubstituting (2.46) into (2.45)  results in 

x,Tw - XTW 

IIWII 
A4= 7 

(2.46) 

(2.47) 
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and by  using the  fact that x1 and x2 are support vectors  satisfying yj1w *xj + 61 = l ,  
j = 1,2, that is, w ~ x ~  + b = 1 and wTx2 + b = -1,  we finally obtain 

2 
M = - .  

llwll 
(2.48) 

In  deriving  this important result, a geometric and graphical approach was taken. 
Alternatively, a shorter,  algebraic approach could  have  been  employed to show  the 
relationship  between a weights  vector  norm llwll and a margin M: (2.43)  expresses  the 
distance D between  any support vector and a canonical  separating  plane.  Thus, for 
example, for the  two-dimensional  inputs  shown  in  figure  2.17,  the  distance D between 
a support vector x2 and a canonical  separating  line  is  equal to half  of a margin M,  
and from  (2.43) it follows that 

This  again gives M = 2/11wll, using  (2.42), that is,  the  fact that x2 is a support vector. 
In this  case,  the numerator in  the  preceding  expression  for D is  equal to 1. 

Equation (2.48)  represents a very interesting  result,  showing that minimization of a 
n o m  of a hyperplane  normal  weights  vector 1 1  W 1 1  = m = dw; + W; + + W: 

leads to a maximization of a margin M. Because fi is a monotonic function,  mini- 
mization of fi is  equivalent to minimization of f .  Consequently,  minimization of 
norm l l v v l l  is  equal to minimization of w*w = (ww) = EL, W: = W ;  + W; + + + W:, 

and this  leads to a maximization of a margin M. 
Therefore,  the  optimal  canonical  separating  hyperplane (OCSH), that is, a sepa- 

rating  hyperplane  with  the  largest  margin  defined by M = 2/ l I  W II, specifies support 
vectors (training data points  closest to it) that satisfy yj [W *xj + b] 1, j = l, N ~ v .  At 
the  same  time,  the  OCSH  satisfies  inequalities 

'xi+bJ 2 I ,  i =  I,Z, (2.49) 

where l denotes  the  number of training data and NSV stands for  the  number of 
support vectors.  The  last equation can be checked  visually  in  figures  2.15 and 2.16 for 
two-dimensional and one-dimensional input vectors x, respectively. 

Thus,  in  order  to  find the optimal  separating  hyperplane  having a maximal  margin, 
a learning  machine  should  minimize llw112 subject  to  inequality  constraints  (2.49). 
This  is a classic nonlinear op t i~ i~a t ion  p r o b l e ~  with i n e ~ ~ a l i t y  ~onstraints. Such an 
optimization  problem  is  solved by the ~ ~ a ~ ~ l e  point of the  Lagrange  function 
(Lagrangian) O 
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(2.50) 

where  the ai are Lagrange  multipliers.  The  search for an optimal  saddle  point 
(wo, bo, a*) is  necessary  because  Lagrangian L must be ~ i n i ~ i z e d  with  respect to W 
and b and ~ a x i ~ i z e ~  with  respect to non-negative ai (i.e.,  maximal ai 2 0 should be 
found). This  problem can be  solved either  in a ~ r i ~ ~ l  space (which  is  the  space of 
parameters W and b) or in a dual space (which  is  the  space of Lagrange  multipliers ai). 
The second approach gives  insightful  results, and the  solution  is  considered  in a dual 
space. The Ka~sh-Kuhn-Tucker  (KKT) conditions  for  the  optimum of a con- 
strained  function are used. In this  case, both the  objective  function  (2.50) and con- 
straints (2.49) are convex, and the KKT conditions are necessary and sufficient for a 
maximum of (2.50).  These  conditions are as follows. At the  saddle  point ( 
derivatives of Lagrangian L with  respect to primal  variables will  vanish, whch leads 
to, 

8L I 
" - 0, or wo = 
8w0 i= 1 

Also, the complementa~ty conditions  must be satisfied: 

(2.51) 

(2.52) 

(2.53) 

~ubstituting (2.51) and (2.52) into a p r i ~ ~ l  variables ~ a g r a n g i ~ n  L( 
obtain the dual vari~bles Lagrangian L d (  a): 

(2.54) 

In order to find  the  optimal  hyperplane, a dual La~~angian Ld(a) must be maximized 
with  respect to non-negative ai (i.e., ai in  the  non-negative quadrant) 

under  constraints  (2.52). Note that the dual Lagrangian L ~ ( a )  is  expressed  in  terms  of 
training data and depends  only on the  scalar  products of input patterns (xixj). This 
property of L&x) will  be  very handy later when analyzing  nonlinear  decision  bound- 
aries and for  general  nonlinear  regression. Note also that the  number of unknown 
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variables  is  equal to the  number of training data 1. After  learning, the number of  free 
parameters  is  equal to the  number of SVs but does not depend on the  dimensionaility 
of input space. 

This  is a standard quadratic optimization  problem that can be  expressed  in  matrix 
notation and formulated as follows: 

Maximize 

(2.56a) 

subject to 

;y a = 0 ,  

a 2 0, (2.56~) 

T (2.56b) 

denotes  the  Hessian  matrix (HQ = yi$(XiXi) = y ~ $ x ~ x i )  of this 
unit  vector f = 1 = [l 1 , l] '. (Some standard optimiza- 

tion  programs  typically minimize the  given  objective  function, but suc 
be applied, and the same  solution  would be obtained if &(a) = 0.5a 
minimized,  subject to the same  constraints.) 

of the optimal  hyperplane  according to (2.51) and (2.53) as follows: 
Solutions aoi of this dual optimization  problem  determine the parameters W, and bo 

(2.57a) 

(2.57b) 

NSV denotes  the  number of support vectors. Note that an optimal weights  vector 
W,, the same as the bias tern b,, is  calculated  using support vectors  only  (despite 
the  fact that the  summations  in  (2.57a)  go  over  all  training data patterns). This 
is  because  Lagrange  multipliers for all  non-support  vectors are equal to zero 
(aoi = 0, i = NSV + l ,  l ) .  There are also other ways to find bo. Finally,  having  calcu- 
lated W, and bo, we obtain a decision  hyperplane d(x) and an indicator function 
iF = o = sign(d(~)): 

I l 

i= 1 i= 1 

iF = o = sign(d(x)). (2.58) 
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Training data patterns having  nonzero  Lagrange m~tipliers are  called s ~ ~ ~ Q r t  uec- 
tors. For linearly  separable  training data, all support vectors  lie  on the margin, and 
they are generally just a small portion of all  training data (typically, NSV << I ) .  Figure 
2.18  shows standard results far  nono~erlapping classes.  The  dashed  line is the  sepa- 
ration line  obtained by the  least  mean  square (L S) algorithm  (see chapter 3). The 
LMS line  is  the  best appro~imation in  the L2 n o m  of a theoretical  decision  boundary 
for these  two  Gaussian  classes that can be obtained  from  available data. A theoreti- 
cal  decision  boundary  can be calculated  using  (1.106).  The top graph of  figure  2.18 
shows that with a large  number of training data points,  the  decision  boundaries 
obtained by the  two  methods approach each other. owever,  in  the  case  of an SV 
the co~esponding separation  line  (solid)  is  dete  ed by only  the  three  supp 
vectors  closest to the  class  boundaries.  Training  samples  in both graphs  originate 
from two  Gaussian  classes  having  the  same  covariance  matrices  but  different  means 
(pl = [0 01 ', p2 = [5 51 '). For small data sets,  decision  boundaries  obtained by 
an SVM and a linear  neuron  implementing an LMS learning  rule  disagree a lot (see 
fig.  2.18, bottom). 

Interestingly,  there are several  specific CO ellations of training data sets for which 
separation  lines  obtained by LMS and S algorithms  coincide.  Generally,  when- 
ever  all  the  training data are chosen as support vectors, th 
are equivalent.  This can be  seen in the top graph in  figur 
of  figure  2.19, not all  the  training  examples a support vectors  (there  are  only  two 
support vectors,  one  belonging to each  class).  owever,  because of the  symmetrical 
configuration of training data, the  decision  boundaries  obtained by the two  methods 
(SVM and LMS)  coin e in  the bottom graph, too. 

The  Hessian matri of a dual Lagrangian  functional,  belonging to the  problem 
shown  in  the  right graph of  fig.  2.19,  is 

0 0 0 0 0 0  
0 2 4 -6  -8  -10 
0 4 8 -12  -16  -20 
0 -6  -12  18  24 30 
0 -8  -16  24  32  40 
0 -10  -20 30 40 50 

is  badly  conditioned. In fact,  in  this particular example,  its  conditional 

must be regularized by  some standard numerical  technique.  This  is  typically  accom- 
plished by adding a very  small (random) number to the  diagonal  elements of 

a1 to infinity, and before  solving a quadratic p r o g r a ~ i n ~  problem, 
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SV classification 
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Decision  boundaries  for a dichotomization  problem  with (top) plenty of data  and ( b o ~ t o ~ )  a sparse  data 
set.  The  solid  separation  line is obtained by the SVM algorithm,  and  the  dashed  line  is  the LMS solution. 
Support  vectors  are  encircled  training  data  points. Top, 100 data  in  each class, W, = [--1.76 -2.681 ', 
b, = 9.41, ~ o t z o ~ ,  two  examples in each  class, W, = [-0.3506 -0.28591 ', bo = 1.2457. 
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Chapter 2. Support Vector Machines 

Rigure 2.19 
Decision  boundaries  for  a  dichotomization  problem  for  two  specific  configurations  of  training  patterns. 
Separation  lines  obtained by the SVM algorithm  and  the LMS method  coincide.  Support  vectors  are 
encircled  training data points. Top, W, = [-2 -21 T ,  bo = 3. BQtfOm, w0 = [-l b, =I 5.  
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efore  applications of 0th overlapping  classes 
nonlinear  decision  bound S are presented,  it  must be shown t 

ssifiers  actually  implement th principle. In other words, we must  prove that 
machine  training  actually m S both the VC dimension and a generalization 

error at the  same  time. In section  2.2, it was  stated that the VC dimension of the 
oriented h y ~ e ~ l a n e  indicator  function,  in an M-dimensional spa 

, h = M + 1 . It was  also  demonstrated that the 
F kernels) can shatter infinitely  many  points  (its VC 
e, h = m). Thus, an SVM could  have a very  high  VC 

e,  in  order to keep the generali~ation error (bound on the 
nce interval (the second  term on the  right-hand  side of 

(2.36a))  was  minimized by imposing a structure on the  set of approximating  functions 
(see  fig.  2.13). 

Therefore, to p ~ r f o ~  S , one  must  introduce a structure on the  set of canonical 
hype~lanes and then,  during  training,  choose  the  one  with a minimal 

s t~c ture  on the  set of canonical hype~lanes is  introduced by c 
ous hy~erplanes having di~erent 1 1   1 1 .  In other words,  sets SA are  analyzed  such that 

(2.59) 

Then, if 2 A2 2 A3 2 e .  5 A,, a nested  set c SA2 c &'~3  c a * c s~~ results. 
the  distance D from a point P(xl,, x2p, . . . , x,,) to a 

ed  by wlxl + ~ 2 x 2  + * a * + w,x, 3- b = 0 is  given as 
1 1 .  Thus,  imposing  the  constraint 1 1  )I 5 A, the  canonical 

hype~lane cannot be closer than 1/A to any of the  training  points 
from  the  definitions of both a canonical  hyperplane  (2.42) and a ma 

ce  of the  closest  point to a canonical hyp~rplane is  equal to 1 / IIw 11. 
on  the  capacity of the  classifier is  shown in  figure  2.20, 

Vapnik  (1995)  states that the VC dimension h of a set  of canonical  hyperplanes  in 

(2.60) 

where  all  the  training data points  (vectors)  are  enclosed by a sphere of the  smallest 

n other  words,  during  training, a minimiza- 
11 results  in a small h, and mi~imization of 11 

tion of the  canonical hype~lane weight  norm 1 1  I maximizes  the margi~ giv 
(2.48) and mi~mizes the VC dimension  accordi to (2.60) at the  same  time. 
on this can be found  in  Vapnik  (1995;  1998) an 
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% ,I \ 
Training poiny 

Figure 2.20 
Constraining  hyperplanes to remain  outside  spheres of radius l /A around  each  training  data  point, 

There  is  a  simple and powerful  result  (Vapnik  1995)  connecting  the  generalization 
ability of learning  machines and the  number of support vectors.  Once  the support 
vectors  have  been  found,  the  bound on the  expected proba~ility of committing an 
error on a  test  example can be calculated as follows: 

E[number of support vectors] 
E E;i[P(error)] I 9 (2.61) 

where El denotes  expectation  over  all  training data sets of  size E. Note how  easy it  is 
to estimate  this  bound,  which  is  independent of the  dimensionality of the input space. 
Therefore, an S~~ having  a  small  number of support vectors  will  have good gener- 
alization  ability even  in  very ~gh-dimensional space. 

The  learning  procedure  presented  in  the  preceding  section  is  valid for linearly 
separab~e data, that is,  for  training data sets  without  overlapping.  Such  problems 
are rare in  practice. At the  same  time,  there  are  many  instances  when  linear separat- 
ing  hyperplanes  can be  good  solutions  even  when data are overlapped.  (Recall, for 
example,  from  section  1.4.2,  normally  distributed  classes  having  the  same  covariance 
matrices.)  However,  the quadratic programming  solutions  presented  previously can- 
not be  used in  the  case of overlapping  because  the  constraints yi [W T ~ i  + b] 2 1 ) i = 1 ) 
I ,  given  by  (2.49) cannot be satisfied.  Lagrangian  multipliers ai are highest for support 
vectors. For overlapping,  some data points cannot be correctly  classified, and for  any 
misclassified  training data point Xi, the  corresponding ai will  be at the  upper  bound. 
This particular data point  (by  increasing  the  corresponding ai value) attempts to exert 
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a  stronger  influence on the decision  boundary  in  order to be  classified correctly. 
hen  the a i  value  reaches  the  maximal bound, it can no longer  increase  its  eEect, and 

this  point will stay  misclassified.  In  such  a situation, the  algorithm  introduced  in  the 
previous  section  chooses  (almost)  all  training data points as support vectors. To find 
a  classifier  with  a  maximal  margin,  this  algorithm  must  be  changed,  allowing  some 
data  to be  unclassified, or on the  "wrong"  side of a  decision  boundary. In practice, 
we  allow a soft ~ a r g i ~ ,  and all data inside  this  margin  (whether on the  correct or 
wrong  side of the  separating  line)  are  neglected  (see fig. 2.21).  The  width of a  soft 
margin can be controlled by a  corresponding  penalty parameter C that determines 
the  trade-off  between  the  training error and the VC dimension of the  model. 

The  optimal  margin  algorithm  is  generalized  (Cortes 1995; Cortes and Vapnik 
1995) to nonseparable  problems by the introduction of non-negative sEack ~a~iffbEes 
ti ( i  = 1,E)  in  the  statement of the  optimization  problem.  Now,  instead of  fulfilling 
(2.49),  the  separating  hyperplane  must  satisfy 

T X i  + b] 2 l - t i ,  i = 1, E ,  t i  2 0, (2.62) 

or 

T X i  + b 2 + l  - t i ,  foryi = +l ,  (2.63a) 

(2.63b) 

For such  a  generalized  optimal  separating  hyperplane,  the  function to be minimized 
comprises an extra term  accounting  the  cost of overlapping errors. The  changed 
objective  functional  with  penalty  parameter C is 

1 
, t ) = " w T w + c  (2.64) 

subject to inequality  constraints  (2.61). C is a  design  weighting  parameter  chosen by 
the  user.  Increasing C corresponds to assigning  a  higher  penalty to errors, simulta- 
neously  resulting  in  larger  weights.  This  is  a  convex  programming  problem, and by 
choosing  exponent k = 1, neither  slack  variables ti nor their  Lagrange  multipliers pi 
appear in  a dual Lagrangian L d .  As for a  linearly  separable  problem,  the  solution to 
a quadratic programming  problem  (2.64),  subject to inequality  constraints  (2.62),  is 
given  by the  saddle  point of the  primal  Lagrangian Lp(w, b, 6, a, 

(2.65) 
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Figure 2.21 
Soft  decision  boundaries  for dichotom~ation problems  with  data  overlapping,  for  two  different  config- 
urations of training  patterns.  Separation  lines  (solid),  margins  (dashed),  and  support  vectors  (encircled 
training  data  points)  are  obtained by an SVM algorithm. Top, seven  examples  in  each  class; C = 1, 
W, = [-1.19 -0,641 T ,  b ,  = 0.88; two  misclassifications  in  each  class. ~ o t t o ~ )  six  examples  in  class 1 (+) 
and  twelve  examples  in  class 2 (*); C = 10, W, = [--0.68 O S ]  T ,  bo = -0.12; four  misclassifications  in  class 
1 and  two  in  class 2. 
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where ai and pi are the  Lagrange  multipliers,  Again,  one  should  find an ~ ~ t i m a Z  
saddle  point (W,, bo, to, a,, ,) because  the  Lagrangian LP must be m~~imized  with 
respect to W, b, and 5, and maximized with  respect to non-negative ai and pi. This 
problem can also be  solved in  either  a  primal  space or dual space  (which  is  the  space 
of Lagrange  multipliers ai and / l i ) .  As before,  a  solution in dual space  is  found  using 
standard conditions  for an optimum of a  constrained  function 

dl; 
a b  - = O ,  or W, = 

l 

i= l 

and the KKT complementarity 

a i { y i [ w T X i  + b] - 1 + T i }  = 0, 

The dual variables  Lagrangian 
before: 

i 1  

(2.66) 

(2.67) 

(2.68) 

i= 1 

conditions 

i =  1,Z. (2.69) 

l ; d ( a )  is  now not a  function of pi and is  the  same as 

(2.70) 

In order to find  the  optimal  hyperplane,  a dual Lagrangian &(a) must  be  maximized 
with  respect to non-negative ai (i.e., ai in  the  non-negative quadrant) 

C 2 ai 2 0, i =  1,Z, (2.71) 

under  the  constraints (2.67). 
Therefore, the final quadratic optimization  problem  is  practically  the  same as the 

separable  case,  the  only  diEerence  being  in  the  modified  bounds of the  Lagrange 
multipliers ai. The  penalty parameter C, which  is  now the  upper  bound on ai, is 
determined by the  user. Note that in the previous  linearly  separable  case  without data 
overlapping,  this  upper  bound C = 00. This can also be expressed  in  matrix notation, 
as  in  equations (2.56). Most important, the  learning  problem  is  expressed  only  in 
terms of unknown  Lagrange  multipliers ai and known inputs and outputs. Further- 
more,  optimization  does not solely  depend  upon  inputs X i ,  which can be  of a very 
high  dimension,  but it depends  upon  a  scalar  product of input vectors X i .  This  prop- 
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erty will  be  very  useful in  section 2.4.3, which  considers SVMs that can create  non- 
linear separation boundaries. 

Finally,  expressions for both a decision  function d(x) and an indicator  function 
iF = sign(d(x)) for a soft  margin  classifier,  given by (2.58), are the  same as for 
linearly  separable  classes. 

The  linear  classifiers  presented  in  the  two  previous  sections are very  limited.  Mostly, 
not  only are classes  overlapped  but  the  genuine  separation  lines are nonlinear  hyper- 
surfaces. A nice characteristic of the  preceding approach is that it can be extended 
in a relatively straightfo~ard manner to create  nonlinear  decision  boundaries. 
The motivation  for  such an extension  is that an SVM that can create a nonlinear 
decision  hypersurface  will  be  able to classify  nonlinearly  separable data. This will 
be  achieved  by  considering a linear  classifier  in feature space. A very  simple  example, 
shown  in  figure 2.22, is  the  previous  linearly  separable  example  in  figure 2.19 but 
here  with  the  exchanged  positions  of  training data points  chosen as support vectors. 
It is  clear that no errorless  linear  separating  hyperplane can now  be found. The 
best  linear  hyperplane,  shown as a dashed  line,  would  make  two  misclassifications. 
Yet,  using  the  nonlinear  decision  boundary  line,  one can separate  two  classes  with- 
out any error. Generally, for  dimensional input patterns, instead of nonlinear 

must be able to create  nonlinear  separating  hypersurfaces. 

Nonlinear SV classification 
5 

0 1 2 3 4  5 
Feature XI 

Fi 
Nonlinear SV classification.  A  decision  boundary  in  input  space  is  a  nonlinear  separation  line.  Arrows 
show  the  direction of the  exchange of two data points,  from  previously  linearly  separable  positions 
(dashed)  to new  nonlinearly  separable  positions  (solid). 
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ne  basic  idea  in  designing  nonlinear SV 
vectors z of a hi~her-dimensional feature S 

+ 'illf), and to solve a linear  classification  problem  in  this  feature  space: 

(2.72) 

(x) is  chosen  in  advance; it is a fixed function. (For constants ai, see (2.78)). 
Note that an input space  (x-space)  is  spanned by components xi of an input v 
and a feature  space F (z-space)  is  spanned by components #i(x) of a vector a;. 
forming  such a mapping,  one  hopes that in a z-space  the  lea  algorithm will  be able 
to linearly separate images of x by applying the linear rmulation. This ap- 
proach  is  also  expected to lead to the  solution of a quadratic optimization  problem 
with  inequality  constraints  in  z-space.  The  solution  for an indicator function i ~ ( x )  = 

which  is a linear  classifier  in a feature  space F, will create a non- 
linear  separating  hypersurface  in  the  original input space  given  by (2.73). ( ~ o ~ p a r e  this 
solution  with (2.58) and note  the  appearances of scalar  products  in both expressions.) 

5-point  and  4-point  stars  denote 
support  vectors  for  class 1 and  class .tion 

and 

(2.73) 

line 
input 

is an 
plane. 

Figme 2.23 
~ o n ~ i n e a r  SV classi~cation. The  decision  boundary  in  input  space is a  nonlinear  separation  line.  The  real 
separation  line  was  a  sine  function,  and  the  one  shown  was  obtained by using  Gaussian (RBF) kernels 
placed at each  training  data  point  (circles).  Most SYs for class 1 are  hidden  behind i ~ ( x ) .  
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~ x ~ ~ ~ Z e  2.1 A three-dimensional input vector x = [x1 x2 x3] is  mapped into the 
feature vector z(x) = [#l(x) #2(x) . . . # 9 ( ~ ) ] T  E !R9, where #,(x) are given as 

#r(x) = x1, Q)&) = x2, # 3 ( 4  = x37 4dx) = # 5 ( 4  = (x2I2, 

#6(x) = (x3)2, (&(x) = xIx2, #g(x) xlx37 #9(x) = x2x3. 

Show that a linear  decision  hyperplane  in feature space I;  corresponds to a nonlinear 
(polynomial) hypersurface  in an original input space x. 

Second-order  polynomial 

I.( 
I hypersurface d(x) in input  space 

t Mapping  Hyperplane in a feature 

b 

I +l 

Figure 2.24 
SVMS arise  from  mapping  input  vectors x = [x1 x2 . . . xn] into  feature  vectors z = @(x). 
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A decision  hyperplane  in a nine-dimensional  feature  space  is  given as d(z) = 
~ T z  + b. Calculating  weights  vector W and bias b in a feature  space, and substituting 
z = z(x) into the  last  expression for d(z), a decision  hypersurface  over a three- 
dimensional  original  space  (x-space)  is  the  second-order  polynomial  hypersurface 

This transformation is  presented  graphically  in  figure  2.24. 

The graphical  appearance of an SV classifier  in  figure  2.24  is  the  same as the  one 
for feedforward  neural  networks (notably multilayer  perceptrons and RBF networks). 
Arrows,  connecting  x-space  with (feature) z-space,  denote a convolution operator 
here and correspond to the  hidden  layer  weights  in  neural  networks. The output layer 
connections are the  weights Wi, and their  meaning  in  SVMs and NNs is  basically  the 
same  after  the  learning  stage. 

There are two  basic  problems  in  taking  this approach when  mapping  an input 
x-space into higher-order  z-space:  the  choice of mapping i(x), which  should  result 
in a rich  class of decision  hypersurfaces; and the  calculation of the  scalar  product 
z*(~)z(x), which can be computationally very discouraging if the  number of features 
f (the dimensionality f of a feature  space)  is  very  large.  The  second  problem  is  con- 
nected  with a phenomenon  called  the  “curse  of  dimensionality.’’ For example, to 
construct a decision  surface  corresponding to a polynomial of degree 2 in an input 
space, a dimensionality of a feature  space f = n(n + 3)/2. In other words, a feature 
space  is  spanned by f coordinates of the  form z1 = X I ,  . . . , z, = x, (n coordinates), 
z,+l = (x*) , . , 22, = (x,) (next n coordinates), z2,+l = ~ 1 x 2 , .  . . , zf = x,xB-l 
(n(n - 1)/2 coordinates), The separating  hyperplane  created  in  this  space  is a second- 
degree  polynomial  in  the input space  (Vapnik  1998).  Thus,  constructing a polynomial 
of degree 2 in a 256-dimensional input space  leads to a dimensionality of a feature 
space f = 33,152.  Performing a scalar  product operation with  vectors  of  such (or 
higher)  dimensions  is not an easily  manageable task. (Recall that a standard grid for 
optical character recognition  systems as given  in  fig.  1.29  is  16 x 16,  resulting  in a 
256-dimensional input space.)  The  problems  become  serious (but fortunately  solvable) 
if one  wants to construct a polynomial of  degree 4 or 5 in  the  same  256-dimensional 
space,  leading to the  construction of a decision  hyperplane  in a billion-dim~nsional 
feature  space. 

2 2 
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This  explosion  in  dimensionality can be avoided by noticing that in  the quadratic 
optimization  problem  given by (2.54) and (2.70), as well as in  the  final  expression 
for a classifier (2,58), training data only appear in  the  form of scalar  products 
$ ‘ X . .  These  products are replaced by scalar  products zTzi = ~#~ (x ) ,   #2 (x ) ,  . . . , #,(x)] 
1#1 (xi) ,   #2(xi) ,  . . . , 4, (xi)]  in a feature  space F, and the latter is  expressed  by  using 
the kernel function 

K ( x ~ ,  xj) = ZTZj = (2.74) 

Note that a kernel  function K(Xi,  xj) is a function  in input space.  Thus,  the  basic 
advantage  in  using a kernel  function K(x i ,  X j )  is  in  avoiding  having to perform a 

( x ) .  Instead,  the  required  scalar  products  in a feature  space 
ed  directly by computing  kernels K(xi ,   x j )  for given  training 

in an input space.  In  this  way,  one  bypasses  the  possibility of an extremely 
dimensionality of a feature space F. Thus,  using  the  chosen  kernel K(Xi, X j ) ,  an 
can be constructed that operates  in an infinite  dimensional  space. In addition, as will 

by applying  kernels  one  does  not  even  have to know  what  the actual 

In utilizing  kernel  functions,  the  basic  question  is: What lunds of kernel  functions 
are admissible? or Are  there  any  constraints on the  type of kernel  functions  suitable 
for application  in SVMs? 

The answer  is  related to the  fact that any s y ~ ~ e t r i c  function K ( x ,   y )  in input space 
can represent a scalar product in jkature space if 

(2.75) 

where g(.) is  any  function  with a finite 11.2 n o m  in input space,  meaning a function 
for which g2 ( x )   d x  < 00. The  corresponding  features  in a z-space F are  the  eigen- 
vectors of an integral operator associated  with K 

and the  kernel  function K has  the  following  expansion  in tems of the bi: 

(2.76) 

(2.77) 

Therefore, if there  exists a set  of functions {#i}zl such that 

Y ) # ~ ( X )  dx  = M i ( X ) ,  
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Table 2.1 
Admissible  Kernels  and  Standard  Type  of  Classifiers 

Kernel  Functions  Type of  Classifier 

K ( x ,  Xi) = [(XTXj) + l ] d  Polynomial of degree d 
~ ( x ,  xi> = e-l/2[(x-xi)"~" (x--x~)] Gaussian RBF 

K(x, xi) = tanh[(xTxi) + b7 * Multilayer  perceptron 

* Only  for  certain  values  of b. 

then  features 

z(x) = [f i#1( . )  Jn242(4 * - * 6 4 f i ( x )  * * *l 
are admissible  in  the  sense that the  scalar  product  can be computed as 

(2.78) 

(2.79) 

These Mercer conditions, according to Hilbert-Schmidt  theory,  characterize admis- 
sible s y ~ ~ e t r i c  functions (kernels) K ( x ,  y). The Mercer kernels belong to a set  of 
r e ~ ~ o d u c i n ~  kernels. For further  details, see Mercer  (1909),  Aizerman, 
and Rozonoer (1964, Smola and Scholkopf  (1997), and Vapnik ( l  998). 

Many candidate functions can be applied to a convolution of an inner  product 
(i.e.,  for  kernel  functions) K ( x ,  Xi) in an SVM. Each of these  functions  constructs a 
different  nonlinear  decision  hypersurface  in an input space.  Interestingly, by choosing 
the  three specific functions given in  table  2. l ,  SVMs, after  the  learning  stage,  create 
the  same  type of decision  hypersurfaces as do some  well-developed and popular NN 
classifiers. Note that the  training of these  diverse  models  is  different.  However,  after 
the  successful  learning  stage,  the  resulting  decision  surfaces  are  identical. It is inter- 
esting to observe  the  differences  in  learning and the  equivalence  in  representation. 
These  two  aspects of every  learning  machine are not  necessarily  connected,  in  the 
sense that different  learning  strategies do not  have to lead to diaerent models. It is 
not an easy task to categorize  various  learning  approaches  because  increasingly 
mixed  (blended)  techniques are used  in  training  today.  However,  let  us  trace  the  basic 
historical  training  approaches for three  different  models  (multilayer  perceptrons, 
RBF networks, and SVMs). Original  learning  in  multilayer  perceptrons  is a steepest- 
gradient  procedure  (also  known as error backpropagation). In RBF networks, as well 
as in  polynomial  classification and functional  approximation  schemes,  learning  is 
(after fixing  the  positions and shapes of radial basis  functions, or the  order of a 
polynomial) a linear  optimization  procedure.  Finally, SVMs learn by solving a qua- 
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dratic  optimization  problem.  evertheless,  after  the  learning  phase, a s s ~ i n g  the 
same  kernels,  these di~erent models  construct  the  same  type  of  hypersurfaces. 

e  can  consider  learning  in  nonlinear  ifiers  (the  ultimate  object  of 
learning  algorithm  for a nonlinear 

design  of an ~ ~ t i ~ a l   ~ e ~ ~ r a t i n ~   ~ y ~ e r p ~ a ~ e  in a ~ ~ a t ~ r ~  
cedure as the  construction  of a hard  and a soft  margin 
z-space,  the  dual ~agrangian, given  in  (2.54) and (~.70), is 

(2.80) 

and, according to (2.74), by  using  chosen  kernels,  one  can  maximize  the 

l 1 1  

i= 1 

subject to 

I 
aiy, = 0. 

(2.81) 

(2.82) 

i= l 

Note that in  the  case that one  uses ~auss ian  kernels  (i.e.,  basis  functions)  there  is 
no need  for  equality  constraints  (2.67)  because  aussian  basis  functions do not 
necessarily  require  bias  terms.  In  other  words,  there are no  equality  constraints 

aiyi = 0 in  equations  (2.82)  and  (2.83)  while maxi~zing dual  Lagrangian  (2.80). 
In a more  general  case,  because  of  noise or the  features of a generic  class,  training 

data points will overlap.  Nothing  but  constraints  change, as for  the  soft  margin 
classifier.  Thus,  the  nonlinear  soft  margin  classifier  will be the  solution of the qua- 
dratic o~timization problem  given by (2.81) subject to constraints 

l 

i= l 

(2.83) 

Again,  the  only  diEerence  from  the  separable  nonlinear  classifier  is  the  upper  bound 
C on the ~agrange multipliers ai. In  this  way,  one  limits  the in~uence of training data 
points that will remain on the  wrong  side  of a separating  nonlinear  hypersurface.  The 
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decision  hypersurface d(x) is  determined by 

(2.84) 

and the indicator function  (2.85),  which  is  generally  also  a  hypersurface  for n > 3, 
will  define the nonlinear SV classifier. 

~F(x) = sign(d(x)) = sign  xi) + b 
i- I 

(2.85) 

Note that the summation  is  not  actually  performed  over  all  training data but rather 
over  the support vectors  because  only for them do the  Lagrange  multipliers  differ 
from  zero.  The  calculation  of  a  bias b is  now not a  direct  procedure  as it is  for  a  linear 
hyperplane.  Depending  upon  the  applied  kernel,  the  bias b can be implicitly part of 
the  kernel  function. If, for example,  Gaussian RBFs are chosen as kernels,  they can 
use a  bias  term as the (f + 1)th feature  in  z-space  with  a constant output = +l, but 
not necessarily  (see chapter 5). 

Therefore, if a  bias  term can be accommodated  within the kernel  function,  the 
nonlinear SV classifier  is 

The  last  expression  in  (2.86)  is  presented  merely to stress that the summation is 
actually  performed  over  the support vectors  only. 

Figure  2.23  shows  all  the important mathematical  objects of a  nonlinear SV clas- 
sifier  except  the  decision  function d(x). Example  2.2, by means of a  classic XOR 
(exclusive-or)  problem,  graphically  shows  (see  fig.  2.25)  all the mathematical  func- 
tions  (objects)  involved  in  nonlinear  classification,  namely,  the  nonlinear  decision 
function d(x), the indicator  function i ~ ( x ) ,  training data (xi), support vectors ( x ~ v ) ~ ,  
and separation  lines. 

E x ~ ~ ~ Z e  2.2 Construct an SV classifier,  employing  Gaussian fmctiom as kernels, 
for a  two-dimensional XOR problem  given as 

x1 = P 01, x2 = [l  l], x3 = [l 01, x4 = [O 11, 

S =  [l l -1 "l] * 
T 
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essian  matrix  required  in  this  example for the maxi~zation of a 
dual ~agrangian (2.81)  is  given as 

r 1.0000  0.0183  -0.1353  -0.13531 
4 0.0183  1.0000  -0.1353  -0.1353 

-0.1353  -0.1353  1 .OOOO 0.0183 ' 

i, j =  1 
1-0.1353  -0.1353  0.0183 1.00OOj 

t  is  interesting to compare  the  solution  obtained  using 
solution that results  after  applying  a  polynomial  kernel  of  order.  This  poly- 
nomial  decision  function,  the corres~onding indicator function  (classifier), and the 

essian  matrix are shown  in  figure  2.26. 

Decision  and  indicator  function of a nonline~r SVM 

1.5 

1 

0.5 

0 

-0.5 

-1 

--I .5 
1.5 

Nonlinear SVM classifier  having  Gaussian  kernel  (basis)  functions G(xi, xj) solving  an XOR problem.  The 
covariance  matrix of  kernels G: Z: = diag([0.25 0.251). All  training  data  are  selected  as  support  vectors. 
one sv of each  class is shown:  a  five-point star (class 1, y = + l )  and  a  four-point star (class  2, y = - 1); 
two  (one  belonging  to  each  class)  are  hidden  behind  the  indicator  function. 
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Decision  and  indicator  functon  of a nonlinear SVM 

1.5 

Y l  

0.5 

0 

-0.5 

-1 

--I .5 

-2 
1.5 

4 

iJ=1 

i 1 1 -1 -i 
1 9 -4 -4 

-1  -4 4 1 
- - 

1-1 -4 l 4 

~ i ~ ~ r e  2.26 
Nonlinear SVM classifier  with  polynomial  kernel  of  second  order  solving  an XOR problem.  The  decision 
function is a  second-order  (quadric)  “saddle”  surface.  All  four  training  data  are  selected  as  support  vectors. 
One  shown  as  a  five-point star corresponds to class l ( y  = +l), and  both SVs from  class 2 ( y  = -1) are 
shown  as  four-point  stars. A second SV from  class 1 is  bidden  behind  the  indicator  function. All training 
points ( x , y )  lie  on  both  a  decision  function  and an indicator  function  (dotted grid). 

Thus,  nonlinear  classification  problems can be  successfully  solved  by  applying one 
out of several  possible  kernel  functions.  Using kernels in input space, one  calculates a 
scalar pr~duct  re~uired in a ~~ igh-~ imens iona l~  feature space and avoids  mapping 

). One  does not have to know  explicitly  what  mapping  is at all.  Also,  remem- 
ber that the  kernel “trick” applied  in  designing an SVM can be utilized  in  all other 
algorithms that depend on a scalar  product  (e.g.,  in  principal  component  analysis or 
in  the nearest”n~ighbor procedure). 

n addition to the  three  admissible  kernels,  given  in  table  2.1, that can be applied 
in  the field  of learning an neural  networks,  there  are  many  others, for instance, 
additive  kernels,  spline an -spline  kernels, and slightly refo~ulated Fourier series. 
The  reader can find  the  the  specialized  literature.  Here, highlight in^ a link 

S and other soft  computing  models  like  fuzzy  logic  models,  consider 
multidi~ensional tensor product kernels that result  from  tensor  products of one- 
dimensional  kernels, 

rl 

j=  l 
(2.87) 
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where n is  the  dimensionality of input space, and ki are one-dimensional  kernels 
(basis fmctions that in  the  fuzzy  logic  field are also  known as membership or char- 
acteristic  functions).  These  kernels ki, located  in input space, do not  strictly  have to 
be functions of the  same  type. 

All that can be said at this  point  regarding  the  choice of a particular type  of  kernel 
function  is that there is no clear-cut  answer, No theoretical  proofs  yet  exist support- 
ing or suggesting  applications  for  any particular type of kernel  function.  Presumably 
there will  never  be a  general  answer.  Many  factors  determine  a particular choice of 
kernel  function-the  class  of  problem,  the  unknown  underlying  functional  depen- 
dency,  the  type and number oftdata, the  noise-to-signal ratio, the  suitability for on- 
line or off-line  learning, the computational resources, and experience-the  expertise 
and software  already  developed for some  specific  kernels.  Very  often,  such  sympathy 
factors have  a  decisive  role. For the  time  being, one can only  suggest that various 
models be tried  on  a given data set and that the  one  with  the  best  generalization 
capacity be  chosen. 

The kernel  "trick"  introduced  in  this  section  is  also very  helpful  in  solving  func- 
tional approxi~at~on (regression)  problems. 

2.4.4 Regression by Support  Vector  Machines 

Initially  developed for solving  classification  problems, SV techniques can also be 
successfully  applied  in  regression  (functional approximation) problems (Drucker 
et al. 1997; Vapnik,  Colowich, and Smola 1997). Unlike pattern recognition  prob- 
lems,  where  the  desired outputs yi are discrete  values  like  Booleans,  here  there are 
reaI-vaI~e~ functions.  The  general  regression  learning  problem  is  set as follows. 
The  learning  machine  is  given I training data, from which it attempts to learn  the 
input-output relationship  (dependency,  mapping, or function) f'(x). A  training data 
set I) = { ~ x ( i ) , y ( i ) ~  E '$ln x '$l, i = 1,. . . , I }  consists of I pairs ( X I ,  yl), (xz, y2), . . . , 
(XI, yr  ), where  the inputs x are  n-dimensional  vectors x E ' $ ln ,  and the  system 
responses y E '$l are continuous  values. The SVM considers  approximating  functions 
of the  form 

N 

i= 1 
(2.88) 

where  the  functions (Pi(x) are called  features, as in  nonlinear  classification. Note that 
this,  the  most  general  model,  corresponds  entirely  with RBF models and to some 
extent  with  fuzzy  logic  models, and it is  close  in  appearance to multilayer  perceptron 
network  models. Note also that the  bias  term b is not shown  explicitly.  When  there is 
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a bias  term b, it will  be incorporated in  the  weights  vector . The  function f ( x ,  
(2.88)  is  explicitly  written as a function of the  weights that are the  subjects of 
learning.  This equation is a nonlinear  regression  model b use the  resulting  hyper- 
surface  is a nonlinear  surface  hanging  over  the  n-dimensional  x-space. 

To introduce  all  relevant and necessary  concepts of SV regression  in a gradual 
way,  linear  regression  is  considered  first. 

(2.89) 

Now,  in  regression,  typically  some  measure, or error of ~ ~ ~ r o ~ i ~ f f t i o n ,  is  used instead 
n between an o timal  separating  hyperplane and support vectors,  which 

classifiers.  Recall that there are ~ifferent error (loss) 
functions  in use and that each  one  results  in a diRerent  final  model.  Two  classic error 
functions were  given in (2.4)-a square error (L2 nom, (y 2, and an absolute 
error (L1 norm,  least  modulus Iy - f l ) .  The latter is  related to ber’s error function. 

uber’s error function  results  in  robust  regression. I 
othing specific  is  known about the  model of noise. 

function  is not presented  here  in  analytic  form, but it  is  shown as the  dashed  curve  in 
figure  2.27a.  Figure  2.27  shows  the  typical  shapes of all mentioned error (loss)  func- 
tions,  including  Vapnik’s  &-insensitivity  (fig. 2.27~). 

Vapnik  introduced a general  type of error (loss) function,  the lineffr loss f ~ n c t i o ~  
with  &-insensitivity  zone: 

(2.90) 

The loss i s  equal to zero if the  difference  between  the  predicted f (  
measured  value  is  less than E. Vapnik’s  &-insensitivity loss function  (2.90)  defines an E 

tube  (see  fig.  2.28).  If  the  predicted  value  is  within  the  tube,  the loss (error or cost)  is 
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Figure 2.28 
The  parameters used  in (one-di~ensional) support  vector  regression. 

zero. For all other predicted  points  outside  the  tube,  the  loss  is  equal to the  magni- 
tude of the difEerence  between the  predicted  value and the  radius E of the  tube. Note 
that for E = 0, Vapnik's  loss  function  is  equivalent to a  least  modulus  function.  Fig- 
ure 2.28  shows a  typical graph of a  regression  problem and all  relevant  mathematical 
objects  required  in  learning  unknown  coefficients wi. 

An SV algorithm for the  linear  case  is  formulated  first, and then  kernels are applied 
in  constructing  a  nonlinear  regression  hypersurface.  This  is  the  same  order of pre- 
sentation as for classification  tasks. In order to perform SVM regression,  a new 
empirical  risk  is  introduced: 

1 1  

(2.91) 

The €-insensitivity  function (g),  is  given  by  (2.90) and shown  in  figure 2.27~. Figure 
2.29  shows  two  linear  approximating  functions  having  the  same  empirical  risk  R&p. 

In formulating an SV algorithm for regression,  the  objective  is to minimize  the 
empirical  risk RErnp and ( ( ~ 1 1 ~  simultaneously.  Thus,  estimate  a  linear  regression 
hyperplane f(x, W) = wTx + b by minimizing 

(2.92) 

Note that the  last  expression  resembles  the  ridge  regression  scheme  given by (2.27). 
However,  here  Vapnik's  e-insensitivity  loss  function  replaces  squared error, and 
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Predicted fix, W) 
‘+ 

risk  as  predicted fix, (solid) 

Measured  training 

X 

Figure 2.29 
Two  linear  approximations  inside an E tube  have  the  same  empirical  risk R&,p. 

C l/A. From (2.90) and figure  2.28 it follows that for  all  training data outside an E 

tube, 

ly - f ( x ,  W ) ]  - E = < for data “above” an E tube, 

Iy - f ( x ,  w)l - E = <* for data “below” an E tube. 

Thus,  minimizing  the  risk R in  (2.92)  is  equivalent to minimizing  the  risk ( ~ a p n i  
1995;  1998) 

(2.93) 

under  constraints 

< 2 0, i = 1,Z, (2.94~) 

<* 2 0, i =  1,Z, (2.94d) 

where < and <* are slack  variables,  shown  in  figure  2.28  for ~easurements “above” 
and “below” an E tube, Both  slack  variables are positive  values.  Lagrange ~ u l t i ~ l i e r s  
ai and a;, corresponding to < and <*, will  be nonzero  values  for  training 
“above” and “below” an E tube.  Because no training data can be on both sides  of the 
tube,  either ai or a: will  be nonzero. For data points  inside  the  tube, both multi~liers 
will  be equal to zero. 
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Note also that the constant C, which  influences  a  trade-off  between an approxi- 
mation error and the  weights  vector n o m  ilwll, is  a  design  parameter  chosen by the 
user.  An  increase  in C penalizes  larger errors (large c and t*) and in  this way leads to 
a  decrease  in approximation error. However,  this  can be achieved  only by increasing 
the  weights  vector n o m  I1 W 1 1 .  At the  same  time, an increase  in II W 1 1  does not guaran- 
tee  good  generalization  performance of a  model.  Another  design  parameter  chosen 
by the  user  is  the  required  precision  embodied  in an E value that defines  the  size  of an 
E tube. 

As with  procedures  applied to SV classifiers, this constrained  optimization  problem 
is  solved  by foming a  primal  variables  Lagrangian LP ( W, 6, g*): 

(2.95) 

A  primal  variables  Lagrangian Lp(wi, b, 4,  G*, a, a* *) has to be ~ i ~ i ~ i z e ~  with 
respect  to  primal  variables W, b, 5, i ~ i ~ e ~  with  respect to non- 
negative  Lagrange  multipliers  gain,  this  problem  can be  solved 

1 space or in  a dual space.  A  solution  in  a dual space  is  chosen  here. 
~Sh-Kuhn-Tuc~er  (KRT ) conditions for regression,  maximize  a 

dual variables  Lagrangian L ~ ( a ,  a*): 

subject to constraints 

I 1 

i= 1 i= 1 
(2.97a) 

0 5 E,* S c, i = l , &  (2.97b) 

O 2 ai 5 C, i =  1,Z. (2.9’7~) 

Note that a dual variables  Lagrangian &(a, a*)  is  expressed  in tems of Lagrange 
multipliers a and a* only.  However,  the  size  of  the  problem,  with  respect to the size 
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of an SV classifier  design  task,  is  doubled  now.  There are 21 unknown  multipliers  for 
linear  regression,  and  the  Hessian  matrix  of  the  quadratic  optimization  problem 
in  the  case of  regression  is  a  (21,2E)  matrix.  This  standard  quadratic  optimization 
problem  can  be  expressed  in  a  matrix  notation  and  formulated as follows: 

Maximize 

(2.98) 

subject to (2.97),  where  for  a  linear  regression, 

Again, if one uses  some standard  optimization  routine that typically  minimizes  a 
given  objective  function,  (2.98)  should  be  rewritten as ~ ~ ( a )  = 0.5a' 
solved  subject to the  same  constraints. 

Learning  results  in E Lagrange  multiplier  pairs (a ,   a*) .  After  learning,  the  number 
of free  (nonzero)  parameters ai or a: is  equal to the  number of SVs. However,  this 
number  does  not  depend on the  dimensionality  of  input  space, and this  is  particularly 
important  while  working  in  high-dimensional  spaces.  Because at least  one  element of 
each  pair (ai, a:), i = 1, E ,  is  zero,  the  product  of ai and a: is  always  zero. 

After  calculating  Lagrange  multipliers ai and a:, find an optimal  desired  weights 
vector  of  the  regression  hyperplane  as 

l 

i= 1 

and an optimal  bias b, of the  regression  hyperplane  as 

(2.99) 

(2.100) 

The  best  regression  hyperplane  obtained  is  given by 

2 = f ( x ,  W) = wTx + b. (2.101) 

A  more  challenging  (and  common)  problem  is  solving  a  nonlinear  regression  task.  As 
with  nonlinear  classification,  this  is  achieved by considering  a  linear  regression 
hyperplane  in  feature  space. 

Thus,  in  designing SV machines for creating  a  nonlinear  regression  function, 
map input  vectors x E illtz" into vectors z of  a  higher-dimensional  feature  space F 

represents  a  mapping i l l n  "-$ i l l f ) ,  and  solve  a  linear  regression 
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problem  in  this  feature  space. A mapping (x) is  again  chosen  in  advance; it is a 
fixed function. Note that an input space  (x-space)  is  spanned by components xi of an 
input vector x, and a feature  space P (x-space)  is  spanned by components ~ j ( ~ )  of a 

y performing  such a mapping,  one  hopes that in a z-space  the  learning 
algorithm will  be able to obtain a linear  regression  hyperplane by applying  the  linear 

formulation.  This approach is  expected to lead to the  solution of a 
quadratic optimization  problem  with  inequality  constraints  in  z-space.  The  solution 
for a regression  hyperplane f = W *x(x) + 6, which  is  linear  in a feature space P, will 
create a nonlinear  regressing  hypersurface  in  original input space. The 
popular kernel  functions are polynomials and E;s with. Gaussian  kernels, 
kernels are given  in  table  2.1. 

In  the  case of nonlinear  regression,  (2.98)  is  used,  the  only  change  being  in  the 

(2.102) 

denotes the corresponding  kernel  (design) matr 
After  calculating  Lagrange  multiplier  vectors a and 

weights  vector of the ~ e ~ n e ~ s  exp~ns~on as 

o =  * -  (2.103) 

and an optimal  bias bo as 

(2.104) 

o ,  and the  matrix  is a corresponding  design  matrix of  given 
kernels. In the  case of Gaussian  basis  (kernel)  functions,  one  does not need a bias 
tern b. Similarl~, if one  uses  expression  for a polynomial  kernel as given  in  table  2.1, 
b is not needed. 

The best  nonlinear  regression  hyperfunction is given  by 

(2.105) 

here are a number of learning  parameters that can be  utilized  in const~cting SV 
machines  for  regression. The two  most  relevant  are  the  insensitivity  zone e and the 
penalty  parameter C, which d e t e ~ n e s  the  trade-off  between  the traini 
VC dimension of the  model. 0th parameters are chosen by the  user. 

ure  2.30  show  how an crease  in an insensitivity  zone e has  smoothing  effects 



2.4. Support  Vector  Machine Algor i th s  183 

One-dimensional support vector  regression 

-2 ' 1 
-4 -2 0 2 4 

X 

One-dimensional support vector  regression 
, ...-B) 

-4 -2 0 2 4 
X 

Figure 2.30 
Influence  of an  insensitivity  zone e on modeling quality. A nonlinear SVM creates  a  regression  function 
with  Gaussian  kernels  and  models  a  highly  polluted (25% noise)  sine function  (dashed). Seventeen  mea- 
sured  training data points  (plus  signs)  are  used. Left, E = 0.1, fifteen SV are  chosen  (encircled  plus  signs). 
~ i g ~ t ,  E = 0.5, six chosen SVs produced a much  better  regressing  function. 

on modeling  highly  noisy  polluted data. An  increase  in e means a reduction  in  re- 
quirements  for the accuracy of approximation. It also  decreases  the  number of SVs, 
leading to data compression. 

.3 Construct an SV machine for modeling  measured data pairs. 
underlying  function  (known to us but not to the SVM) is a sine  function corrupted 
by  25% of normally  distributed  noise  with a zero  mean.  Analyze  the  influence of an 
insensitivity  zone  on  modeling  quality. 

The application of kernel  functions  introduces  various  parameters that define 
them. For the  polynomial  kernels  this  is  the  degree d, and for the Gaussian 
the  variance  matrix C, whose  entries  define  the  sh 

, which  defines  the 
hosen  by  placing t 

choice of the  design  parameters d and I: is experime~tal: train the SVM for digerent 
values  of d and C, estimate  the VC dimension, and select  the  model  with  the  low 
VC di~ension (Vapnik  1995). 

ox  2.1 s u ~ a r i z e s  the  design  steps for traini an SVM. The SV training 
works  almost  perfectly for not too large'data bases.  owever,  when  the  number of 
data points  is  large  (say I > 2000), the quadratic programming  problem  becomes 



184 Chapter 2. Support  Vector  Machines 

Step 1. Select  the  kernel  function  that  determines  the  shape  of  the  decision  function  in  classification 
problems  or  the  regression  function  in  regression  problems, 
Step 2. Select  the  shape  (the  smoothing  parameter)  of  the  kernel  function  (e.g.,  the  polynomial  de- 
gree for  polynomials  or  the  variance  of  the  Gaussian RBF for RBF kernels. 
Step 3. Choose  the  penalty  factor C, and select  the  desired  accuracy  by  defining  the  insensitivity 

extremely  difficult to solve  with standard methods. For example,  a  training  set of 
50,000 examples amounts to a  Hessian  matrix x lo9 (2.5  billion)  elements. 
Using an eight-byte  floating-point  representat  equire 20,000 MI3 = 20 GB 
of memory  (Osuna, Freund, and Girosi  1997).  This cannot be  easily  fit into the 
memory of standard computers at present, and this  is  the  single  basic  disadvantage of 

method.  Three  approaches  resolve  the quadratic programming  problem for 
large data sets.  Vapnik  (1995)  proposed  the c ~ u ~ ~ i ~ g  ~ e t ~ o ~ ,  which  is  a  decomposi- 
tion approach. Another  decomposition approach was  proposed by Osuna  et al. 
(1997).  The  sequential  minimal  optimization  algorithm (Platt 1998)  is  of a dif3erent 
character; it seems to be an error backpropagation  algorithm for SVM learning. 
These  various  techniques  are not covered  in  detail  here.  The  interested  reader can 
consult  the  mentioned  references or investigate an alternative  linear  programming 
approach presented  in  section 5.3.4. 

. Three  co-linear  points are given in  figure  P2.1.  Show  graphically  all  possible 
labelings and separations by an indicator function iF(x, W) = sign(u)  represented by 
an oriented  straight  line U = 0. 

0 

0 

0 

Graph  for  problem 2.1, 
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Two difGerent  sets comprising four points  each  are given in  figure P2.2. For each 
set,  show  graphically  all  possible  labelings and separations by an indicator  function 
iF(x, W) = sign(u)  represented by an oriented  straight  line U = 0. 

. In figure  2.10, it was  shown  how an indicator  function i ~ ( x ,  W) = sign(s 
ing  one  parameter  only can separate  any  number I of randomly  labeled 

This shows that a VC dimension of this specific indicator  function  is  infinit 
ever,  check  whether &(x, W) = sign(sin(~~))  can separate  the  four  equally  spaced 
points  given  in  figure P2.3. 

. The  graphs  in  figure P2.4 represent  three difGerent one-~i~ensional classifica- 
tion (dichotomi~ation) tasks. What is  the  lowest-order  polynomial  decision  func- 
tion that can correctly  classify  the  given data? Black dots denote  class 1 with  targets 
yl = +l,  and white dots depict  class 2 with  targets y2 = - 1. What are the  decision 
boundaries? 

0 0 

0 0 

l 
I 
l 
l 
l 
I 
I 
l 
I 
l 
I 
I 
l 

0 0 

0 

0 

Figure P2.2 
Graphs  for  problem 2.2. 

I n n A A  
I 

x = o  1 2 3 4  

Figure P2.3 
Graph  for  problem 2.3. 

Graphs  for  problems 2.4 and 2.5. 
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anted to classify  the  three data sets  shown  in  figure P2.4 using SVMs 
basis  functions, how  many  hidden  layer  neurons  would  you  need for 

er polynomial that can classify (shatter) any  possible 
I one-dimensional data points? Support your  answer  with  a graph for two, 

C dimension of the following  two  sets of functions: 
= WO + w1 sin(x) + w2 sin(2x) + w3 sin(3x). 
= WO + w1 sin(x) + w2 sin(2x) + w3 sin(w4x). 

1 

3 

ii 



Problems 187 

(Hirzt: First find out whether  the  set  is  linear  with  respect to weights, and then use the 
statements  made  in  the chapter about the VC dimension.) 

2.9. Determine  the VC dimension of the  set of indicator  functions  defined by quadric 
functions  (conics)  in ! R 2 .  In particular, find it for circles,  ellipses, and hyperbolas  in 
!R2.  

2.10. Find the  distance  from  a  point x to a  (hyper)plane.  Check  your  result  in (a) 
graphically. 
a. x = [O l] , a  plane or hyperplane  is  a  straight  line y = x. 
b. x = [-2  2 31 T ,  a  plane or hyperplane  is  a  plane z = x + y + 3. 
c. x = [l 1 l 1 11 , a  hyperplane  is x1 - x2 + x3 - x4 + x5 + 1 = 0. 

T 

T 

2.11. Two  different  one-dimensional  classification  tasks are given  in  the  follow- 
ing  tables. Draw the  two-class data points  in an (x, y )  plane. (Draw two  separate 
graphs.) Find analytically and sketch  the  optimal  canonical  hyperplanes  belonging to 
these  two  classification  tasks.  Determine  the equations for  decision  boundaries. 
(Hint: Identify  the SVs first;  the  OCSH  is  defined by them.) 

a. x y = d  b. x y = d  

2  1 
-1 -1 
-2  -1 

1  1 

3 l 
1 -1 

-1  -1 

2.12. Two  one-dimensional data shown  in  figure  P2.6  should  be  classified by apply- 
ing  the  first-order  polynomial as given  in  table  2.1.  Solve  (2.81) for a, and find  the 
decision  function. (Hint: K = 12 0; 0 21. Maximize L d . )  

.13. Solve  problem  P2.12 by applying  B-spline  functions as shown  in  figure  P2.7. 
(Hint: Find K (the G matrix) and maximize L d . )  

. Three  different  binary  classification  problems  are  given in figure  P2.8.  Calcu- 
late the  OCSH for each  problem. (Hint: Identify SVs. Find the  maximal  margin M .  

Figure P2.6 
Graph for problem 2.12. 
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-5 -3 -1 0 1  3 5 x  

Graph  for  problem 2.13. 

x2 

Graphs  for  problem 2.14. 

Use (2.49) to find wi and b. After  deriving equations for the 
correctness by plugging  in  the SV coordinates.) 

required  in  problem 2.14 for the max- 
imi~ation of a dual ~agrangian. 

xample 2.1 shows a mapping of a three-dimensiona1 input vector 
-order  polynomials. Find a mapping of a two-dime~sional input vect 

I.1 x21 into third-order  polynomials.  Show  the  resulting SV 

xample 2.2 shows  how  the XOR problem  can be  solved 
ernels and a polynomial of the  second-order  kernel.  The 

= [O 0l3', dl = +l, x2 = [l 
li T ,  4 = - 1. In calculating  the 

Txi + 112 was  applied. Find the 
) = I x ~ x ~ ] ~ ,  and explain  the  differences.  Why  is a kernel 
eferred? Find the  essian  matrix  applying th 

) = x: + 4.; subject to the constrai~t 
ue  of Lagrange  multipliers, 
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2.19. Verify the  validity of KKT theorem  in  finding  the  maximum of the  function 
f ( x )  = --x; - x; subject to the  constraints 

2x1 + x2 2 2, 

2.20.  Using  the KKT stationary conditions,  find  the  minimum  of  the  function 
f ( x )  = (x1 - l )2  + (x2 - 2)2, subject to the  following  constraints.  Check  your 
answer  graphically. 

x2 - x1 = 1. 

2.21. Derive equation (2.1 l), which  describes  the  decomposition of the  expected  risk 
(2.10). (Hint: Add and subtract the  regression  function to the  squared error on the 
right-hand  side of (2.10), and continue  devising  the  final  decomposed  expression 
(2.1 l).) 

The simulation  experiments  in chapter 2 have  the  purpose  of  familiarizing  the  reader 
with support vector  machines.  Two  programs  cover  classification and regression 
(svc1ass.m and svregress.m) by applying  the SVM technique  in  the  MATLAB 5 
or MATLAB 6 version.  There  is no need for a manual here  because both programs 
are user-friendly.  The  experiments are aimed  particularly at understanding  basic 
concepts  in  the SVM  field: support vectors,  decision  functions,  decision  boundaries, 
indicator  functions, and canonical  hyperplanes.  One- and two-dimensional patterns 
(classification) and 93 -+ 93' mappings  (regression)  are  employed for ease of 
visualization. 

You  should  meticulously  analyze  all  resulting  graphs,  which  nicely  display dificult- 
to-understand  basic  concepts and terminology  used  in  the  SVM  field. Be aware of the 
following  facts about the  programs svc1ass.m and svregress.m. 

l .  They are developed for classification and regression  tasks,  respectively. 
2. They are designed for one-dimensional and two-dimensional  classification and 
one-dimensional  regression  problems. 
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3. They are user-friendly,  even for beginners  in  using 
cooperate.  They prompt you to select, to define, or to choose  different  things. 

Experiment  with  the  program svc las s .m as follows: 

1. Launch M ~ T L ~ ~ .  
2. Connect to directory learnsc (at the matlab prompt, type cd learnsc 
(RETURN)). learnsc is  a  subdirectory of matlab, as bin, toolbox, and 
uitools are. While  typing cd learnsc, make  sure that your  working  directory  is 
matlab, not m~tlab/bin, for  example. 
3. Type start (RETURN). This will start the program. Choose  Choose 
Classification. 
4. The pop-up  menu will prompt you to decide about the of training data in 
a  class.  You  will  be  prompted to choose data with  ove or without  over- 
lapping  in  the  first  example  only. 
5. You will obtain two  graphs. The first graph shows support vectors and decision 
boundaries  obtained by an SVM and by the  L S method (dashed). The  second 
graph shows  many other important concepts  su as decision  functions,  indicator 
functions, and canonical  planes. For one-dimensional inputs 
canonical  straight  line and your  decision  boundary  will  be  a  poi 
find an angle  when  all important concepts are shown  in  a  three 

There are 12 different  prepared  one- and two-dimensional  training data sets.  You 
may add several  more. The first  seven  examples are for application of linear (hard and 
soft)  margin  classifiers.  Cases 10-1 5 are one- or two-dimensional  examples  of  non- 
linear  classification  with  polynomial  kernels or R Fs with ~aussian basis  functions. 

Experiment  with  the  program svregress as follows: 

l .  Launch M ~ T L ~ ~ .  
2, Connect to directory learnsc (at the matlab prompt, type c 
(RETURN)). learnsc is  a  subdirectory of matlab as bin, toolbox, and 
uitools are. While  typing cd learnsc, make  sure that your  working  directory  is 
Matlab, not matlab/bin, for  example. 
3. Type start (RETURN). Choose SVM. Choose  his  will start a  pop- 
up menu to select  one out of three  demo  examples. The program can generate  a  lin- 

r  regression  model. In the  case  of  nonlinear  regression, an 
kernels.  You  will  be  prompted to define  the  shape  (wi 
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Gaussians by  defining the  coe  cient ks. The standard deviation of Gaussian  kernels 
= ks*Ac, where Ac stands for a  distance  between  the  two  adjacent  centers,  Using 

ks < 1  results  in  narrow  basis  functions  without  much  overlapping and with poor 
results. 

Now perfom various e~periments (start with  prepared  examples),  changing  a few 
design para~eters. un  repeatedly  the  same  example,  e ri~enting with  different 
parameters. For instance,  change SV insensitivit~ E, S margin  upper  bound C 
(default = inf), or the  width of Gaussian  basis  functions (kernels). The  general  advice 
in p e r f o ~ n g  such  a  multivariate  choice of parameters  is to change  only one pa- 
rameter at time. 

Again,  meticulously  analyze  all  resulting  graphs  after  each  simulation run. 
useful g e o ~ e t ~ c a l  objects are shown that depict intricate theoretical  concepts. 

You are now  ready to define  your  own  one- and two-dimensional data sets for 
classification or one-dimensional  functions for linear or nonlinear  regression by 
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This  chapter  describes  two  classical  neurons, or neural  network  structures-the 
per~eptron and the linear neuron) or a ~ a l i n ~  (adaptive  linear neuron). They  differ  in 
origin and were  developed  by  researchers  from rather different  fields,  namely,  neuro- 
physiology and e~gineering. Frank Rosenblatt’s  perceptron  was  a  model  aimed to 
solve  visual perc~ption tasks or to perform  a  kind of pattern recognition  tasks. 
In mathematical terns, it  resulted  from  the  solution  of  the  classification  problem. 

idrow’s  adaline  originated  from  the  field of signal  processing or, more 
specifically,  from  the  adaptive  noise  cancellation  problem. The mathematical prob- 
lem of learning  was  solved by finding  the  regression  hyperplane on which  the tra- 
jectories of the inputs and outputs from  the  adaline  should  lie.  This  hyperplane  is 
defined  by the  coefficients  (weights)  of  the  noise  canceller (linear filter,  adaline) that 
should be learnt. 

The roots of both the  perceptron and the  adaline were  in the  linear  domain.  The 
perceptron is the simplest  yet  powerful  classifier  providing  the linear ~epara~ili ty of 
class patterns or examples.  The  adaline  is the best  regression  solution if the  relation- 
ship  between  the input and output signals  is  linear or can be treated as such. It also 

e  best  classification  solution  when  the  decision  boundary  is  linear. 
owever,  in  real  life we are faced  with  nonlinear  problems, and the  perceptron  was 

by more  sophisticated and powerful  neuron and neural  network stmc- 
races of it can.  be  recognized  in  a  popular  neural  network  used  today- 

the  multilayer  perceptron  with  its  hidden  layer of neurons  with  sigmoidal  activation 
functions (AFs). These AFs are nothing  but  softer  versions of the  original  percep- 
tron’s  hard  limiting or threshold  activation  function. 

An even more important connection  between  the  classical and the  modern 
perceptrons  may be found  in  their  learning  algorithms.  This chapter extensively 
discusses  this important concept of learning and related  algorithms. 
cornerstone of the  whole  soft  computing  field, but here it results  from 
arguments than those  presented  in chapter 2. Additionally)  the  concepts of decision 
lines and decision  surfaces are discussed  here.  Their  geometrical  significance and their 
connections  with  the  perceptron’s  weights  are  explained. Graphical presentations and 
explanations of  low (two)-dimensional  classification  problems  should  ensure  a  sound 
understanding of the  learning  process.  Typical  problems  in the soft  computing field 
are of  much  higher  order, but the  insights  given by two-dimensional  problems  will be 
of great use  because in  high-dimensional patterns one  can no longer  visualize  decision 

owever,  the  algorithms  developed for the  classification of two-dimensional 
patterns remain  the  same. 

The  adaline  being  a  neuron  with  a  simple  linear AF, it  is  still  in  widespread  use. 
Equipped  with  a  simple  yet  powerful  learning  law, it is a part of both neural  networks 
and fuzzy  models.  Typically,  these  linear  neurons  are  the  units  in  the output layer of 
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the  neural  networks or fuzzy  models.  The  linear AF has an important property:  it  is 
the  simplest  differentiable  function, and thus one  can  construct an error function or 
cost  function  dependent  on  adaline  weights.  Learning is the  name  for  the  algorithm 
that adapts and changes  the  weights  vectors  in  order to minimize  the error function. 
As well  known  from  the  classical  optimization  field,  this  minimization can be achieved 
by  using  first  or  second  derivatives  of  the  cost  function  in  respect to the  parameters 
(weights) that should be optimized.  This  scheme is simple,  given  the  differentiable 
activation  function.  The  linear AF possesses  this  nice property. Although  such  learn- 
ing  is  simple  in  idea,  there  are  different  ways  to  find  the  best  weights that will  mini- 
mize the error function  (see  section 3.2). 

The  perceptron  was  one of the  first  processing  elements that was  able to learn.  At  the 
time of its  invention  the  problem of learning  was a difficult and unsolved  task, and 
the very  idea  of autonomous adapting of  weights  using data pairs  (examples, pat- 
terns,  measurements,  records,  observations,  digital  images)  was a very  exciting  one. 
Learning  was an iterative super~ised leurning paradigm. 

In such a supervised adapting scheme,  the  first  or  initial  random  weights  vec- 
1 is  chosen and the  perceptron  is given a randomly  chosen data pair (input 

1) and desired output dl.  The  perceptron  learning  algorithm  is an 
errOr-correction  rule that changes  the  weights proportional to the error el = dl - 01 

between  the actual output 01 and the  desired output dl.  After  the new  weights  vector 
is  calculated  according to the  simple  rul + y(d1 - 01)x1, the 
next data pair  is  drawn  randomly  from th scheme is repeated. 
Constant y is  called leurning rate. It determines  the  magnitude of the  change A~ 
but  not  its  direction.  re,  with  the  classical  perceptron, &pes not  have a big impact 
on  learning,  but be e it is an important part f the  more  sophisticated error- 
correction  learning  schemes, it is  given  explicitly.  re,  with  perceptron  learning, it 
can be set to l .  The  reader  may  investigate  the  influence of the  learning rate y on the 
weight-adapting  process.  Some  time  may be saved  in  believing  the  claim that with 
larger y the  number of training iteration steps  increases. 

Such a weight-adapting  procedure  is an iterative  one and should  gradually  reduce 
the error to zero.  The  classical  perceptron attempted to recognize and classify pat- 
terns  autonomously and was  very  successful  given that the  two  classes of patterns 
were Zi~eurZy sep~ru~ le .  The  concept of linear  separability  is an important one, and it 
is  given  in detail later. Let  us  first  analyze  the  mathematical  model and the  graphical 
representation of the  perceptron. 
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The  computing  scheme of the  perceptron  is a simple  one.  Given  the input vector x, 
it  computes a weighted  sum of its  components 

and produces an output of +l if U is positive;  otherwise, an output of -1 results.  (The 
last  entry of x is not the  feature  component of the input pattern but  the constant 
input x,+l = +l called bias. 

In  ath he ma tical terns, the output from a perceptron is  given  by 

Sign stands for  the  signum  function  (known  also as the  eaviside  function.) 

c +l for U > 0, 
-1 for U < 0, 

sign(u) = 

and its standard graphical  representation  is  given by a hard limiting  threshold  func- 
tion that can be  seen  inside  the neuron  in  figure  3.1. (The argument U = 0 of the 
signum  function  is a kind of singular  point  in  the  sense that its  value can be chosen. 
Here, if U = 0, the output from  the  perceptron  is  taken as o = +l .) 

ecause it is not evident,  the  following  point  deserves  comment.  Vector x com- 
prises  the  features  component xi (i = l ?  . . . ? n) ,  and the constant input component 
xn+l = +l.  (xn+l = - 1 may  be  used, too. The sign  of this constant input is not 

Figure 3.1 
Single  perceptron  and  single-layer  perceptron  network. 



196 Chapter 3. Single-Layer Networks 

important. Its real  impact will  be taken into account  in the sign  of the  weight w,+1.) 
In the  neural  networks field this  component  is  known as bias, ofiet, or t ~ r e s ~ Q Z ~ .  
These  three terns may  be  used interchangeably.  Thus,  in  this  book  (unless stated 

* otherwise)  the (n + l)-dimensional input vector x and its corresponding  weights 
vector W, connecting  the input vector x with  the (neural) processing  unit, are defined 
as the  following  column  vectors: 

x = [x1 x2 * *  * x, +l]? t 3.4) 

Fv == [W1 W2 * * W, wn+l] * (3.5) 
T 

Thus, both x and W will almost  always be augmented by +l and wn+l, respectively, 
and the  argument U of the  signum function can be rewritten as 

t 3.6) 

Note that the  choice  of x and W as column  vectors  is  deliberate.  They  could  have  been 
chosen  differently.  Actually, the notation will soon  change so that a  weights  vector 
will  be written as a  row  vector.  Such  choices of notation should be natural ones  in  the 
sense that they  should  ensure  easier  vector-matrix  manipulations; and they are not of 
paramount importance.  However, it is important to realize that (3.1), or its  vector 
notation (3.6), represents  the  scalar (or dot) product of x and W, that is,  the  result of 
this ~ultiplication is  a  scalar. 

If W had  been  defined as a  row  vector, (3.6) would  have had the  following  form: 

u = w x = x  W * 
T T  (3.7) 

(3.7)  results  in  the  same  single  scalar  value  for U as (3.6) does. In another words,  the 
whole input vector x, after  being  weighted by W, is  transformed into one  single 
number that is  the  argument U of the activation  function of a  perceptron. 

The activation  function of a  perceptron  is  a hard limiting  threshold or signum 
function, and depending on whether U is  positive or negative,  the output of a  per- 
ceptron will  be + 1 or - 1, respectively,  Remember that the  perceptron  is  aimed at 
solving  classification  tasks; by prohibiting  its output from  having  a  value  of 0, one 
basically  throws out from  the  training data set  all  training patterns whose  correct 
classificat~on is  unknown. 

3.1, 

The  first  question at this  point  may  be,  in terns of learning, or solving  classification 
tasks,  what  does  this  simple  mathematical  operation-finding  the  inner  product and 
then  taking  the sign  of the  resulting  single  scalar-represent? 
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~ a p p i n g  1 

0 

Figure 3.2 
Geometry of perceptron  mapping. 

Let US analyze  the  geometry of these  two  operations.  Suppose  one  wants to classify 
two  linearly  separable  classes,  represented  in figure  3.2 as hearts (class  1) and clubs 
(class 2). In this  case,  (3. l), or (3.6),  represents the plane U in  a three-di~~nsional 
space (XI, x 2 ,  U ) :  

W l X l  + w 2 x 2  - U + W3 = 0, (3.8) 

or 

u(x)  = [W1 W21 + W3 = W 3  + w 3 ,  i"n:i 
where W stands for the  weights  vector.  The equation u(x) = 0 defines  the decision 
boundary, or sepuration line, that separates  the  two  classes. In the case of data having 
only  two  features (XI, x 2 ) ,  the  discriminant  function  is  the straight line 

(3.10) 

Note the  geometry  of  the  classification  task  in  figure  3.2,  where  the  plane u divides 
two  classes  passing through the  origin  in  feature or pattern space. In this  case, w 3  is 
equal to zero ( w 3  = 0), and the  linear  discriminant  function,  represented  in  figure 3.2 
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by a  thick  line,  is  given by 

(3.1 1) 

or 

WTX = 0. (3.12) 

Let  us  take  two data points, x1 and x2, on  the  discriminant  function,  (The  vectors 
XI,  742 and (741 - x2) are not represented  in  fig.  3.2.) From (3.12) it follows that 

WT(XI - x2) = 0. (3.13) 

This  scalar  product  is  equal to zero,  meaning that the  weights  vector vv is  normal to 
the linear  discriminant  function. 

Some  things are apparent in  figure  3.2. First, the  weights  vector vv and the feature 
lie  in  the  very  same feature (XI, x2) plane.  Second,  the actual magnitude (or 
f  vector W does  not  have  any  impact on classification.  However, the orien- 

tation or direction of this  weights  vector  is important. The  vector W is  normal (per- 
pendicular) to the  discriminant  line and always.  points to the ~ositive side of the U 
plane.  Thus,  the  scalar  product of W and any  vector x belonging to hearts, or class  l , 
will  always  be  positive, U > 0. The resulting output from the perceptron o = sign(u) 
will  be +l. (On  the  right-hand  side of  fig.  3.2  this  is  shown  by the  small  upward 
arrow above  the heart.) Note, too, that the  magnitude of U (and U is an a r g ~ e ~ t  of 
the  activation  function of the perceptron)  is  not  relevant.  This  is  the  most  significant 
feature of the  signum  function. It maps the  whole  positive  semiplane U (or the posi- 
tive part of the  u-axis  of  the  perceptron's AF) into one  single  number, +l.  In this 
way,  the  whole  semiplane  with  the  vertical pattern lines  in  figure  3.2  will  be  mapped 
into a  single output value  from  the  perceptron o = +l.  In mathematical  terms,  two 
basic  mappings for the  hearts pattern are taking place  inside  the  perceptron:  (3.1) 
represents map~ing 1, and (3.2) repre~ents mapping 2. This can also be  said for all 
patterns x belonging to clubs, or class  2.  They  lie in the  semiplane  with  the  horizontal 
pattern lines  in  figure  3.2.  All  the  class  2 data vectors x and the  weights  vector 
point  in  opposite  directions, and their  scalar  (inner)  product  is  always  negative 
(U < 0). Thus,  the  perceptron's output for  clubs will  be o = - 1. In this  way, after 
learning,  the  perceptron  maps  the  whole (XI, x2) plane into a  stainvise  surface  in 
three-dimensional  space {XI, x;?, U} that can have  two  values  only: + 1 or - 1. In the 
general  case  (see  fig.  3.3)  the a~angement of two  classes  is  such that, after  learning, 
the  linear  discriminant  function will  be  shifted out of origin.  This  shift will  be enabled 
by the consta~t input term x,+] = +l (offset,  bias)  in input vector x, and it will  be 
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Figure 3.3 
Linear  decision  boundary  between  two  classes. 

represented  in the weights  vector's  component wn+l. The  distance of  the  separation 
line  from  the  origin  is 

(3.14) 

It is  easy to show that all hearts lie on the  positive  side of the U plane.  The  length of 
the  projection of any pattern vector x (see  (2.45) and (2.46)) onto the  line  through the 
origin and weights  vector W is 

With  (3.9)  this  results  in 

(3.15) 

(3.16) 

(3.17) 

Thus, for all data x from  class  2, U will  be  always  negative, and the  corresponding 
perceptron's output o = -1.  Similarly,  all hearts will  result  with o = +l.  

Two'  questions about the  perceptron (or any other neuron) are, What can this  simple 
processing unit represent? and How  can it be made to represent  it? The first  is  the 
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problem of representation,  discussed  in  the  previous  section.  The  second  is  the prob- 
lem  of learning.  Here, both parts are connected  in  the  sense that a  perceptron will 
always be able to learn  what it is  able to represent.  More  precisely, the famous  Per- 
ceptron  Convergence  Theorem (Rosenblatt 1962)  states, 

Given an elementary  a-perceptron,  a  stimulus  world W) and any  classification 
C( W )  for which  a  solution  exists,  let  all  stimuli W occur  in  any  sequence,  provided 
that each  stimulus  must  reoccur  in  finite  time. Then, beginning  from an arbitrary 
initial  state, an error-correction  procedure will  always  yield  a  solution to C( W )  in 
finite  time. 

It might be  useful to reformulate  this  theorem  in  terms  used  in  this  book: 

Given  a  single  perceptron  unit,  a  set  of  training data X comprising  linearly 
separable input pattern vectors xi aad desired outputs di, let  the  training  pairs 
(Xi, di) be drawn  randomly  from  a  set X .  Then,  beginning  from an arbitrary initial 
weights  vector W 1, error-correction  learnihg (training, adapting) will  always 
correctly  classify data pairs  in  finite  time. 

The  proof of this important theorem  is as follows.  If the  classes are linearly  separable, 
then  there  exists  the  solution  weights  vector vV*. (Note that this  vector  is not unique.) 
The magnitude of this  vector  does not have  any  impact on the  fmal  classification. 
Thus, it is  convenient to work  with  a  normalized  solution  vector I/ W* / /  = 1) where  the 
scalar  product of this  vector  with  any pattern vector x will  be 

W * ~ X  2 a > 0 for each x E Cl, 

W * ~ X  5 - a  0 for each x E: C2, 
(3.18) 

where  a  is  a  small  positive constant. The  scalar product of the  solution  vector W* and 
any  weights  vector  during  learning  is  given as 

(3.19) 

After  the  first  learning  step, and starting from w1 = ) the  scalar product may  also 
be written as 

Note that the  weight  increment  is  calculated  as Aw = yx, where = 1.  This  is  one  of 
a few slightly  different  forms  in  which  the  perceptron  learning  rule  may appear (see 
box  3.1). 

After  the  second  learning  step, 
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w * T w ~  = w * ~ ( w 2  + x2) = w*Tw2 + W*TX2 2 2a. (3.21) 

Thus, w * ~ w ~ + I  can be written as 

w * ~ w ~ + ~  2 na. (3.22) 

From the  Cauchy-Schwarz  inequality, and taking into account Ilw* 11 = 1,  it  follows 
that 

or 

IIwn+l 1 1 2  2 n2a2. 

Note that during  learning  the  following  is  true: 

(3.24) 

w2 = w~ + Aw = vv1 + x1 = x1 if x1 was  misclassified, 

~2 = w1+ AW = W I +  = 0 if x1 was  correctly  classified  (recall w1 = 

or 

llW21l2 2s llXl 1 1 2 .  (3.25) 

Si~ilarly, it can be written that for any  value of W during  the  learning  process or 
generally, 

n 

k=l  

If the pattern vector x is  defined  with  maximal n o m  

(3.26) 

(3.27) 

(3.26) can be rewritten as 

IlWn+t 1 1 2  2s nP. (3.28) 

Hence,  the  squared  Euclidean n o m  of the  weights  vector  increases  linearly at most 
with  the  number  of iterations n. Equations (3.24) and (3.28) are contradictory, and 
after  sufficiently  large  values of iteration steps n, they  can and will  be  satisfied at some 
Nmax-th iteration step when  the equality  sign  holds: 

(3.29) 
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Thus, the  number of learning  steps cannot grow  indefinitely, and training  must  con- 
verge  in a finite  number of steps.  This  maximal  number of learning  steps Nmax 
depends  on  the  learning rate q and the  initial  weights  vector vv~, and on  the  generally 
random  sequence of training patterns submitted.  The  convergence  theorem  is  valid 
for any  number of  classes  provided that all are mutually  linearly  separable. 

There  are a few more  characteristics of the  perceptron's  learning  process to con- 
sider.  Let  us start with a classification  task that can be  solved according to the  given 
convergence  theorem. 

The  two  classes  shown  in  figure  3.4 are said to be linearly  separable  because  there 
is  no  overlapping of data points and the  decision  boundary that separates  these  two 
classes  is a straight  line.  In  mathematical  terms,  this  classification  task  is an i l Z - ~ o ~ e ~  
 roble^ in  the  sense that the  number of solutions to this  problem  is  infinite.  Accord- 
ing to the  perceptron  convergence  theorem,  once  learning  is  completed,  the  resulting 
decision  boundary  will  be  any  line that separates  these  two  classes.  Figure  3.4  shows 
three out of an infinite  number of possible straight lines that would  solve  the prob- 
lem.  Visual  inspection  would  suggest that line b might  eventually be the best  solution. 

owever,  the  perceptron  learning  does not optimize a solution.  The  final  weights 
vector  does not result  from  any  optimization  task.  During  learning no attempt is 
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Figure 3. 
Simple  data  set  consisting  of  two  linearly  separable  classes  drawn  from two normal  distributions: Cl, void 
circles, 50 data, ,al = (O,O), 01 = 0.5; C2, solid  circles, 50 data, ,a2 = (3 ,3) ,  0-1 = 1. 
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made to minimize  any  cost or error function.  The  objective  is  only to find  the  line 
that separates  two  linearly  separable  classes. As soon as the  first  solution  weights 
vector W*, which  separates all the data pairs correctly,  is  found,  there  will be no fur- 
ther  changes  of  the  vector *. This  vector  will not be optimal  in  the sense that some 
predefined  error  function  would  take  some  minimal  value  for  this  particular W". 

Simply,  there  was  no  predefined error function  during  learning. 
Let  us  discuss  the  relation  between  class  labeling  and  both  the  resulting  decision 

boundary  and  the  weights  vector W" that defines  this  line  of  separation  between 
classes.  Clearly,  how  labels are assigned to classes  must not affect  the  classification 
results.  Figure 3.5 shows  two  classes,  hearts and clubs, that are to be  classified.  The 
resulting  decision  boundary  between  these  two  classes  is  defined by 

u(x) = 0 (3.30) 

The  left  graph  shows  the  resulting  decision  plane U when  the  desired  value +l was 
assigned  to  class 1, and correspondingly,  the  desired  value  of  class 2 was - 1.  The 
labeling  in  the  right  graph  is  opposite to the  first  one,  and so is  the  resulting  decision 
plane.  But  the  labeling  does  not  affect  the  decision  boundary  between  the  classes or 
the  position  of  the  resulting  weights  vector W*, which  is  always  perpendicular to the 
decision  boundary.  owever,  the  direction of W* does  change.  This  weights  vector W *  

always  points  in  the  positive  direction  of  the  plane U .  Because  this  positive  (negative) 
part of the U plane  pends  upon  the  labeling  of  the  classes,  so  does  the  orientation  of 
the  weights  vector 

dure.  This  recursive  technique,  organized  in  training  sequences,  is  shown  in  box 3.1. 
The  learning  algorithm of a single  perceptron  is an on-line or patte~n-~ased proce- , 

Direction of the  weights  vector W* 

Direction of the  weights  vector W* 

Figure 3.5 
Influence of class  labeling  on  perceptron  learning  results. 
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ox 3.1 
S u ~ a r y  of  Perceptron  Learning 

Given  is  a  set  of P measured data pairs that are used for  training: 

X = ( x j , d j , j =  l ,..., P},  

consisting  of  an  input  pattern  vector x and  output  desired  response d. 

x = [x1 x2 . . . x, + q T ,  W = [W1 W2 .. . wn ~ n + l ] ~ .  

Perform  the  following  training  steps  for p = l ,  2,3, . . . , P: 
Step 1. Choose  the  learning  rate > 0 and  initial weights  vector w1. ( w ~  can be random or w1 = 0.) 
Step 2.  Apply  the  next  (the  first  one  for p = 1) training  pair (x t ,  dp) to  the  perceptron,  and  using 
(3.1) and  (3.2),  find  the  perceptron’s  output  for  the data pair  applied  and  the  given  weights  vector W. 

Step 3. Find  the  error,  and adapt the  weights  vector W using  one  of  the  two  most popular  methods: 

el, = d, - op. 

Method 1: wp+l = W, + Aw, = wp + q(d, - op)xp, 

or 

Method 2: wp+l = wp + Awp = wp + qx, if o + d, w,,~ = W, otherwise. 

Step 4. Stop  the  adaptation of  the  weights  if e = 0 for aZZ data pairs.  Otherwise go back to step  2. 

In  this variant of learning  the  training data pairs,  consisting of the input pattern and 
desired output (xn, dB), are considered  in  sequence or selected at random  from  the 
training data set X. Perceptron output and error as well as weight  changes are 
reevaluated at eac  learning  step.  Learning  stops at the  first * that classifies all 
 pattern^ perfectly.  ere, perfectly means that there will  be no isclassified pattern 
after  training.  In  accordance  with  the  perceptron  convergence  theorem, when the 
data are linearly  separable,  this W* will  be reached  in a finite  number of learning 
steps. Note that this  solution  is not unique and that the  word o p t i ~ a l  is not used  here. 
In  figure 3.4 all  three  discriminant  functions  perfectly  classify the data from  two  given 
classes,  but it is  clear that line b separates  classes 1 and 2 better  then  lines a and c do. 
There  actually  is  one  optimal  discriminant  function  (in L2 nom) in  figure  3.4, and 
line b is  very,  very  close to it. 

occasionally  come  across  slightly  different  expressions for the  weight 
in  the literature, but  the  two  given as methods 1 and 2 in box  3.1 are  the 

most  commonly  used, and both methods  work  well. 
~ d a ~ t a t i o n  of weights  using  method I in  box  3.1  is  in  the fom of an error- 

correction  rule that changes  the  weights proportional to the error e = d - o between 
the actual output o and the  desired output d. This  rule  is an interesting  one. The 
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Figure 3.6 
Classification  of  three  linearly  separable  classes  consisting  of  data  drawn  from  three  normal  distributions 
(ten data in  each  class). 

weight  change AwP is  determined by three  components:  learning rate v ,  error signal e, 
and actual input x to the perceptron.  Here, fof the  perceptron,  the error signal  is 
equal to the actual error e, but in  the error back propagation algorithm,  presented  in 
chapter 4, this error signal  is  not  generally  equal to the actual error and is  instead 
called delta, Later,  a very  similar  learnirig  rule  is  obtained as a  result of the ~ i n i ~ j -  
zation of some  predefined  cost or  error function. 

Note that the  learning  preceding  rule  is  in  a  form that is  exact for a  single  perceptron 
having  one  scalar-valued output 0. Therefore  the  desired output d is  also a scalar 
variable.  But  the  algorithm  is  also  valid for a  single-layer  perceptron  network as 
given  in  figures 3.1 and 3.6.  When perceptrons are organized and connected as a  net- 
work,  the  only  change  is that the actual and desired outputs o and d are then  vectors. 
Furthermore, with  more than ane perceptron  unit (neuron), there will  be more 
weights  vectors W connecting input x with  each  neiiron  in an output layer.  These vec- 
tors can be arranged  in  a  weights  matrix W consisting of row (or column)  vectors W. 

To be more  specific,  let  us  analyze  a  single-layer  perceptron  network for the  clas- 
sification  of  three  linearly  separable  classes as given  in  figure  3.6. A weights  matrix W 
is  comprised of three  weights  vectors. As stated earlier,  they can be arranged as row 
vectors or as column  vectors.  If x and d are column  vectors,  the  following arrange- 
ments of a  weights  matrix  can  be  made: 

W =  [E] (weights  vectors are row vectors), (3.31) 

W = Iw1 W:! wj] (weights  vectors are column  vectors). (3.32) 
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The appropriate evaluation of perceptron output using  these  two  differently  com- 
posed  eights matrices  is  given as 

(for weights  matrix as in (3.31)), (3.33) 

ts matrix as in (3.32)). (3.34) 

aerent sets of discriminant  functions are presented  in  figure^ 3. 
denoted as l ,  2, and 3 are separation  lines  determined by  weights  vecto 

3. The orientation of the dividing  (hyper)planes'  is ~ e t e ~ i n e d  by n 
(by  the  first n components of  weights  vectors,  where n represents  the  number  of  fea- 
tures), and their  location  is  determined by the  threshold  (offset,  bias) com~onent of 
these  weights  vectors (the (n  + 1)th component of W; see  fig.  3.3).  After  training,  each 
particular separation  line  separates  its own  class  from  the other two.  This  kind  of 
nonoptimal splitting of a  feature  plane  results in large  areas  without  decision (the 
gray  patches  in  the  left graph of fig. 3.6). The regions  where  classification  is  undefined 
result  from  each particular neuron  taking  care of its  class  only. For example,  region 

re 3.6  is on the ~egative side of all  three disc~minant functions.  None  claims 
of the  plane as belonging to any of the  three  classes. The u n d e ~ e d  character 

is  of a  different  kind. In this  case, separation lines 2 and 3  claim  this  ter- 
ritory as belonging to class  2  or 3, respectively. ~ i ~ i l a r  conclusions  can  be  drawn for 
all other regions  without  decision. 

owever,  there  is  a  set  of disc~minant functions  in  figure  3.6  (dashed  lines).  They 
are obtained as the se~aration lines  between  classes i and j using  the  fact that the 
boundary  between  classes i and j must be the portion of the (hyper)plane 
by 

(3.35) 

or 

- w3j = 0. (3.36) 

The dashed  lines  in  figure  3.6  follow  from  (3.36). 
What is  the  soft  computing part of a  erceptron and its  learning a l g o r i t ~ ?  This  is 

the very character of the  problem to be solved.  The  classification  task  is an ill-posed 
problem.  There are many  (in  fact, an infinite  number of) solutions to this  problem, 
and a  perceptron will stop learning as soon as it finds  the  first  weights  vector W" that 
correctly  separates  its particular class from the  others. It should be admitted that 
in  choosing  a  good or better  solution  there are not too many  choices  left.  One 
must  accept  any ~rst-obtained solution, or if not satisfied  with it, repeat  the  learning 
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process  while  remaining  aware that its  final  outcome cannot be controlled. Later, 
using  a di~erentiable activation  function,  some  measure of the  performance of the 
learning  process will  be obtained, and the  solutions will  become  less soft. (It is  pos- 
sible to construct and use  a  perceptron's error function as well, but this  is  beyond 
the  scope of this  book.  Details can be found  in Duda and Hart (1973) and Shynk 

owever,  the  reader  may attempt to solve  problems  3.8 and 3.9 related to this 
issue.) 

This  example  traces the classification of three  linearly  separable  classes 
consisting of data drawn  from  three  normal distrib~tions (see  fig.  3.7). In order for 
this  example to be tractable, there are just two data in  each  class. Thus, the  charac- 
teristic  features of a  normal  distribution are unlikely to be seen.  The  perceptron  net- 
work  is  structured as in  figure  3.6. 

3 
2.5 

2 
1.5 

Patterns x from  three classes, two data  per  class 
0.3456  -0.3793 3.0154  2.1201 2.41170 2.6505 

-0.0485 -0.17035 2.9371  2.8806  -1.6612  -1.6842 
1.0000  1  .0000 1.0000 1.0000  1.0000  1.0000 

Desired  target  values d 
1  l -1  -1 -1  -1 

-1  -1 1 1 -1  -1 
-1  -1  -1  -1  1 1 

F i ~ u r ~  3.7 
Graph for Example 3.1. 
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The calculations for the  training are as follows. 

Initial Random Weights Pattern x1 output 0 1  Error el 

-0.8789 0.0326 -0.0120 0.3456 1  2 
0.8093 -0.3619 -0.4677 -0.0485 -1 0 
0.0090  0.9733 -0.8 185 l .oooo 1 0 

Change of Weights 
Matrix A W ~  after the New  Weights Matrix W2 

First Pattern Presented 

0.6912 -0.0970  2.0000 -0.1877 -0.0644 1.9880 
0 0 0 0.8093 -0.3619 -0.4677 
0 0 0 0.0090 0.9733 -0.8185 

These  calculations  should be repeated  until  all  the data are correctly  classified.  Here, 
after  cycling four times through the data set  (four epochs), the first  weights  matrix 
that achieved  perfect  classification  was 

-5.5274  -6.0355  1.9880 
W* = [ 2.0060  8.8347  -0.4677 , 

0.3295  -5.4094  -4.8185 1 
Note that further cycling through the data cannot change  the very  first  correct 

The  perceptron  learning  rule  stops adapting after  all the training data are corr 
Aw(i, j )  = 0). By using  weights  vectors  of  each particular perceptron 
) in equations (3.17) and (3.36) , one can draw  separation  lines  similar to 

the  discriminant  functions  (solid or dashed)  in  figure  3.6. 
The perceptron  learning  rule  is  simple, and its  appearance  on  the  scene  excited 

researchers, but not for long. It suffers  from  severe  problems: it cannot separate pat- 
terns when there  is an overlapping of data or when  classes are not linearly  separable. 
Minsky and Papert (1969)  devoted  a  whole  book to perceptron  problems and proved 
mathematically that a  single-layer  perceptron cannot model  complex  logic  functions. 
They  realized that by introducing  one  more  layer (a hidden one), a  perceptron can 
represent  the  simple  XOR  problem, but at that point there  was no method for weight 
adaptation (learning)  in  such  a  layered structure. Because  of its inability to learn in a 
multilayered  structure,  the  perceptron,  having  a hard limiting, not differentiable, 
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Table 3.1 
Logic Functions of Two Variables 

x1 x2 f i  A f3 h fs fs h h h f i o  f i l  f i 2  h 3  f i 4  f i s  f i 6  

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1  
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1  
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1  
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1  

AND  OR XOR 

Figure 3.8 
Possible partitions for three  basic  logic  functions. 

activation  function,  fell into obscurity, and the  whole  field of neural  computing  lost 
momentum as well. 

Let  us  examine  the  origins of  these troubles, or analyze  what  a  perceptron can do 
when  faced  with  the  simplest  logic  functions of two  variables  only.  Table 3.1  presents 
all 16  possible  logic  functions of two  variables  (e.g., fs is the AND, f i s  is  the 0 
f7 is  the  exclusive OR, or XOR, function). Two out of these  16  functions cannot be 
represented by a  perceptron (XOR and the  identity  function^^). The  separability  is 
clear  for  the  three  two-dimensional  examples  presented  in  figure 3.8, and the  problem 
does not change  in  higher-dimensional  feature  spaces. A perceptron can represent 
only  problems that can be  solved  by linear  partitioning  a  feature (hyper)spa~e into 
two parts. This  is not possible  with  a  single-layer  perceptron  structure  in  the  cases of 
functionsf7 and f i o .  The separation lines  in  figure 3.8 for AND and OR problems  are 

out of an infinite  number of lines that can  solve  these  problems. For the 
oblem,  neither of the  two  lines (a or b) can separate  the 0’s from  the l’s. 

There  is no linear  solution for this  parity  problem,2 but the  number of nonlinear 
separation lines  is  infinite.  One out of many  nonlinear  discriminant  functions  for  the 

problem  is  the  piecewise-linear  line  consisting  of  lines a and b taken  together. 
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Figure 3.9 
Nonlinear  discriminant  function  for  the XOR (parity) problem  in (XI, x;?) plane. 

However,  the  XQR  problem can be  solved  by  using a  perceptron ~ ~ t ~ o ~ ~ .  This can 
be done by introducing  one additional neuron  in  a  special  way. 

Now,  the  structure  counts.  This  newly  introduced  perceptron  must be  in a  hidden 
layer. It is  easy to show  this  by  following  a  kind  of  heuristic path. 

Note that XQR  is  a  nonlinearly  separable  problem. Many different  nonlinear  dis- 
criminant  functions that separate l's from 0's can be drawn  in  a  feature  plane.  Sup- 
pose  the  following  one  is  chosen: 

f(x) = x1 + x2 - 2x1x2 - 4 t (3.37) 

This  separation  line  is  shown  in  figure 3.9. Functionfis a  second-order  surface  with 
a  saddle  point, and the orientation of its  positive part is  denoted by arrows.  Replac- 
ing the nonlinear part (~1x2) by the new variable 

(3.38) x3 = x1x2, 

(3.37)  can be written as 

f(x) = X I  +x2 "2x3 -4. (3.39) 

In a new, three-dimensional  space ( X I )  x2, x3), the  XQR  function f7 from  table 3.1 
can be  represented as shown  in  figure  3.10. Note that x3 is  equal to 1  only  when both 
x1 and x2 are equal to l .  Clearly,  in  accordance  with  the  perceptron  convergence 
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0 

0 

Figure 3.10 
Discriminant  function  for  the XOR problem after the  introduction of a new variable x3. Note  that  the 
separation  “line”  is a plane  in a new (x,, x2, x3) space. 

theorem,  a  single  perceptron  having as input variables x1, x2, and x3 will  be  able to 
model  the XOR function. In three-dimensional  space  the 1 ’S and the 0’s are linearly 
separable.  However,  there are two  problems at this point. 

First, how can  one  ensure that, in  the  framework of a  neural  network, x3 is per- 
manently  supplied?  Second, can one  learn  inside  this new structure?  The  answer to 
the  first part is  positive and to the  second  basically  negative. (More than 30 years 
ago,  the  second  answer  was  a  negative  one  indeed.  Today,  with  random  optimization 
algorithms,  e.g.,  with  the  genetic  algorithm,  one  may  think about learning  in  per- 
ceptron networks  having  hidden  layers,  too.  However, at the  moment,  this  is  not  the 
focus  of  interest.) 

The  signal x3, which  is  equal to the  nonlinearly  obtained x3 = ~ 1 x 2  from (3.39), 
can be produced  in  the  following  way: 

x3 = sign(x1 -I- x2 - l .5). (3.40) 

For the  given inputs from  table  3.1,  the  last x3 is  equal to the  one  obtained  in (3.38), 
avoiding  any  multiplication.  Unlike equation (3.38), (3.40) can be realized by a  single 
perceptron.  The  resulting  perceptron  network  is  shown  in  figure 3.1 1. 

Thus trying to solve the XOR problem  resulted  in  a  perceptron  network  with  a 
layered  structure. It is an important and basic  structure  in  the  soft  computing  field. 
The most  powerful and popular artificial  neural  networks and fuzzy  logic  models 
have  the  same  structure,  comprising  two  layers  (hidden and output) of neurons.  (The 
structure of SVMs, shown  in fig. 2.24, is  the  same.)  An important fact to notice  is that 
the  neuron  in  the  hidden  layer  is  nonlinear.  Here,  it  has  a hard limiting  activation 
function, but many  others can be used, too. There  is no sense  in  having  neural pro- 
cessing  units  with  a  linear  activation  function  in  the  hidden  layer  because  simple 
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Layers 
Input f f i ~ ~ ~ n  output 

X 3  = +l- constant  input, bias 

l?igure  3.11 
Perceptron  network  with  a  hidden  layer  that  can  solve  the XOR problem. 

matrix  multiplication can restructure  such  a  network into one  with input and output 
layers  only.  The  appearance of the  hidden  layer (the name is due to Hinton and is 
borrowed  from  “hidden Markov chains”) is  intriguing. It does  not  have  any contact 
with  the  outside  world; it receives  signals  from  the input layer  nodes and sends 
transformed  variables to the output layer  neurons. The whole  power  of neural  net- 
works  lies  in  this  nonlinear  mapping of an (n + 1)-dimensional input pattern vector 
into an m-dimensional  imaginary  vector,  where m denotes  the  number of hidden 
layer  neurons.  This  number of hidden  layer  units  is  a  typical  design parameter in  the 
application of neural  networks.  (This  problem  is  deferred to chapter 4.) 

Thus,  with  a  hidden  layer,  a  perceptron can solve  the XOR problem.  Many other 
(not necessarily  neural or fuzzy)  computing  schemes can do it, too. The basic  ques- 
tion is  whether  the  perceptron  learning  rule, by using  a  training data set, can find  the 
right  weights. It cannot in  its  classic  form, as presented  in  box  3.1.  After  this  simple 
fact was  proven  by  Minsky and Papert (1969))  the  perceptron and the  neural  net- 
works field  went off the stage.  A dark age for neurocomputing  had  begun.  Almost 
two  decades  passed  before  its  resurrection  in  the  late  1980s. 

There  was  a  simple  yet  basic  reason  for  the  insufliciency of the  existing  learning 
rule. The introduction of  hidden  (imaginary)  space,  which  solves  the  problem of 
representation,  brought  in an even  more  serious  problem of learning  a particular set 
of hidden  weights that connect input with  the  hidden  layer of a  perceptron. (In fig. 
3.11 there  are  three  such  weights.) In both methods for adapting perceptron  weights 
(see  box  3.1)  one  needs information about the error at the  perceptron output unit 
caused by a  given  weights  set.  With  this  information,  the  performance of the  specific 
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weights  is  easy to measure: just compare  the  desired (or target) output value  with the 
actual output from  the  network, and in  the  accordance  with  the  learning  law,  change 
the  weights.  The  serious  problem  with  the  hidden  layer  units  is that there  is no way  of 
knowing  what  the  desired output values  from  the  hidden  layer  should be for  a given 
input pattern. This is a crucial  issue  in  neurocomputing, or to be more  specific,  in  its 
learning part. If  the  desired outputs from  the  hidden  layer  units for some particular 
training data set  were  known,  the adaptation or learning  problem  would  eventually 
not  exist.  The  same  perceptron  learning  rule for the adaptation of hidden  layer 
weights  could  be  used. The algorithm  would  remain  the  same, but there  would be 
two error signals:  one for the output layer  weights and another for  the  hidden  layer 
weights  (all  the  weights  connected to the output and hidden  layer  neurons,  respec- 
tively). At the  time of the perceptron  there  was no algorithm  for  finding  the error 
signal  for  hidden  layer  weights. 

The  classical approach to this  problem  is to define  some ~ e r f ~ r ~ a ~ c e   ~ e a s u r e  
(error or cost f u ~ c t i o ~ )  for a  network that depends  upon  the  weights  only, and by 
changing (adapting, optimizing,  learning,  training)  the  weights,  try to optimize  this 
performance  measure.  Depending  upon  what error function  is  chosen,  optimization 
may  be either  minimization  (e.g., of sum  of error squares or absolute  value of error) 
or maximization  (e.g., of  maximum  likelihood or expectation).  With  the error func- 
tion, the standard approach in  calculus for finding  the  optimal  weights  matrix 
is to use  the  first (and eventually  the  higher-order)  derivatives of this  function  with 
respect to the  weights wg. In the  framework of neural  networks  weights  learning, the 
second  derivatives are the  highest  ones  in  use. 

Thus,  the  activation  function of neurons  must be a  differentiable  one. Unfortu- 
nately,  this  is  exactly  the  property that a  perceptron  activation  function (a signum 
function)  does not possess.  The  simplest  one  having  this  property  is  the  linear  acti- 
vation  function of Widrow-Hoff’s  adaline  (adaptive  linear neuron). The  name ada- 
line  is  rarely  used today. What remains are the  last  two  words of the  original  name: 
linear  neuron.  However,  the  adjective a ~ a ~ t i v e  is  a  good  one  in  this  case. It describes 
the  most  essential  property of this  simple  processing  unit-the  ability to learn.  This 
ability  is  the  core of intelligence, and a ~ a ~ t i v e  at least  deserves  a  place  in  the  title  of 
the  next  section. 

aptive  Linear ~euron  ( ~ ~ a ~ n e )  an 

The  adaline  in  its  early  stage  consisted of a  neuron  with  a  linear AF, a  hard  limiter (a 
thresholding  device  with  a  signum AF), and the  least  mean  square (LMS) learning 
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rule for adapting the  weights.  During  its  development  in  the  1960s, it was  a  great 
novelty  with  a  capacity for a wide range of applications  whenever  the  problem at 
hand could be treated as linear  (speech and pattern recognition,  weather  forecasting, 
adaptive  control  tasks,  adaptive  noise  canceling and filtering, and adaptive  signal 
processing;  all  these  problems are treated as nonlinear today). All  its  power  in the 
linear  domain  is  still  in  full  service, and despite  being  a  simple  neuron, it is  present 
(without  a  thresholding  device)  in  almost  all  neural or fuzzy  models. 

This section  discusses  the  two  most important parts of the  adaline-its  linear 
activation  function and the LMS learning  rule. The hard limiter  is  omitted  in  the  rest 
of the  presentation, not because it is  irrelevant,  but  for  being of  lesser importance to 
the  problems to be  solved  here. The words a~aZine and Zinear neuron are both used 
here  for  a  neural  processing  unit  with  a  linear  activation  function and a  correspond- 
ing  learning  rule (not necessarily LMS). More about the  advanced  aspects of the 
adaline can be found  in  Widrow and Walach  (1  996),  Widrow and Stearns ( 1985), and 
Widrow and HoK ( 1960). 

e~resentational ~ a ~ a ~ i l i t i e s  of the A 

The  processing  unit  with  a  lifiear  activation  function  is  the  most  commonly  used 
neuron  in  the  soft  computing  field. It will almost  always be the  only  type of neu- 
ron in  the output layer of neural  networks and fuzzy  logic  models. Its mathe- 
matics  is  simpler than that of the  perceptron.  Because  the  signum part, or hard 
limiting  quantizer, of the  classical  adaline  is  missing  here,  the  linear  neuron  model  is 
given  by 

(3.41) 

or 

o = w  x = x  W. T T (3.42) 

The  model  of  a  single-layer  network  (without  hidden  layers)  with  a  linear  neurons  is 
given  by 

(3.43) 

where  the  weights  vectors W connecting  the  components of the input vector x with 
each particular linear  neuron  in  the output layer are the  row  vectors  in  the  weights 
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X1 
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Om 

Figure 3.12 
Top left, linear  processing  neuron. ~ o t t o ~  left, equivalency  between  the  graphs of a  linear  neuron  and 
summation. ~ i g ~ ~ ,  single-layer  neural  network. 

The  linear  processing  neuron  in  figure  3.12 (top left)  has a one-dimensional or scalar 
input x, and the  inputs  in  the other two parts of the  figure are n-dimensional  feature 
vectors  augmented  with  bias +l.  Note that x and VY are n-dimensional  vectors  now. 
The  neuron  labeled  with  the  summation  sign  is  equivalent to a linear  neuron.  The 
single-layer  network  in  figure  3.12  is a graphical (or network)  representation of the 
standard linear transfo~ation given  by the  linear  matrix equation (3.43). 

Despite  the  fact that the linear  neuron  is  mathematically very  simple, it is a very 
versatile and powerful  processing unit. Equipped  with an effective  learning  rule, it 
can successfully  solve diferent kinds of linear  problems  in  the  presence of  noise. It 
can be eficient in  the  modeling of slight  nonlinearities, too. Thus it may  be instruc- 
tive to show diferent problems that the  adaline can solve,  deferring  study of the 
learning  rule  until  section  3.2.2.  This will demonstrate  the  representational  capability 
of a simple  linear  neuron. In order to better  understand the results  obtained,  note that 
unlike  in  the  case of perceptron  learning,  the  adaline adapts weights  in  order to 
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minimize  the  sum-of-error-squares  cost  function. Thus we work  in L2 norm  here.  The 
final  weights  vector  results as a  solution of an optimization  task,  though  sometimes 
the optimal  result  does  not  necessarily  mean  a  good  solution  (see  example  3.2). 

The  examples  in  this  section  originate  from  different  fields. The input (feature) 
vector  is  low-dimensional to enable  visualization of the results.  There  is no difference 
in  the  representational  power of a  linear  neuron when  faced  with  high-dimensional 
patterns at the input layer or target  vectors at the output layer.  If  the  problem at 
hand can be treated as linear,  the  adaline will  always  be able to provide  the  solution 
that is  the  best  in  the  least-squares  sense. In other words,  the errors that result  will  be 
such that the sum of error squares will  be the smaZZest one.  With input patterns and 
targets of higher  dimensions,  the  only  difference  with  respect to the  solutions will  be 
in  computing  time, and generally  visualization of ~gh-dimensional spaces  will not 
be possible.  (Some  readers are eventually  able to imagine  hyperspaces, separation 
hyperplanes, or error hype~araboloidal surfaces.)  Even  so,  some of the  problems 
expressed through high-dimensional input patterns can be properly  visualized,  such 
as identification of linear  dynamic  systems or linear  filters  design.  Examples 3.2 and 
3.3 are classification  problems, and in  examples  3.4-3.6  a  linear  neuron  is  performing 
regression  tasks. 

~ x ~ ~ ~ Z e  3.2 Consider  the  classification  of  two  linearly  separable  classes drawn 
from two  normal  distributions: Cl, 25 data, ,ul = (1, -l), 01 = 0.5, and C2, 25 data, 
p2 = (3,2), 0 2  = 0.5. The  adaline  should  find  the  separation  line  between  these  two 
classes for two  slightly  different data sets:  without an outlier, and when  there is a 
single  outlier data point  in  class 2. The  classes are linearly  separable. 

The classes  in  this  example  (with and without  outlier  in  class 2) are linearly  sepa- 
rable, and a  perceptron  would be able to solve  this  classification  problem  perfectly. It 
is not like that with  adaline  solutions.  When  there are no  outliers and the data are 
drawn  from  Gaussian  distributions,  the  adaline  solution will  perfectly  separate  two 
classes.  This  kind of solution  is  represented by a  solid  line  in  figure  3.13.  When  there 
is an outlier,  the separation line  (dashed  in fig.  3.13)  is not  a  good  one.  The  adaline 
solution  is  always  one  in  the  least-squares  sense, and its  learning  rule  does  not  have 
the ability to reduce  the  effect  of  the  outlier data points.  Thus,  the  separation  line 
when there  is an outlier  is  optimal  in  the  least-squares  sease but may  not  be  very 
good.  This  is  a  well-known  deficiency of the L2 norm when  faced  with  non-Gaussian 
data. This  norm cannot reduce  the  influence  of  outlier data points  during  learning. 
Fortunately, in  many  real-world  problems the assumption about the  Gaussian  origin 
of the data may  very often be an acceptable  one. 
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Figure 3.13 
Classi~cation of two  linearly  separable  classes  drawn  from  two  normal  distributions: C1 (circles), 25 data, 
p1 = (1 ,  - l) ,  c r l  = 0.5; C2 (crosses), 25 data, p2 = (3 ,2) ,  = 0.5. I 

The real  advantage of  using a linear  neuron for the  solution of classification  tasks 
will  be in  cases  when  classes are not linearly  separable. A perceptron cannot solve 
these  problems, and the  adaline  provides  the  solution  in  the  least-squares  sense. 

~ ~ ~ ~ ~ Z e  3.3 Consider  the  classification of two  not  linearly  separable  classes  with 
over~apping, drawn  from  two normal distributions: Cl, 100 data, p1 = (1, -l), 

2 ,  100 data, p2 = (3,2), 0 2  = 2. The  adaline  should  find  the  separation 
line  between  these  two  classes.  (Recall that an SVM is  able to solve  such a problem 
with  the  soft  margin  classifier.) 

The solid  separation  line  shown  in  figure 3.14  is the one that ensures  the  minimal 
sum  of error squares of  misclassified data points. 

Linear or nonlinear  regression  is a prominent  method for fitting data in  science, 
statistics, or engineering.  The  adaline  will be in  charge of linear  regression. 
sion  provides  the  answer to how  one or more  variables are related to, or affected  by, 
other variables. The following  examples  present  linear  regression  solutions  obtained 
by an adaline.  The  examples are restricted to one or two  features and one output 
variable,  Consideration of hi~~-dimensional,  nonl linear regression (the basic  problem 
in soft  computing)  is  deferred to chapter 4.  (Recall that chapter 2 discussed  how 
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Figure 3.14 
Classification  of  two  not  linearly  separable  classes  with  overlapping  drawn  from  two  normal  distributions: 
C1 (circles), 100 data, p, = ( l ,   - l ) ,  01 = 2; C2 (crosses), 100 data, p, = (3,2), 02 = 2. 

SVMs solve  nonlinear  regression  tasks.) As in the case of a perceptron or of examples 
3.2 and 3.3,  the  end  result of the  learning  process  will be the  set of weights, or the 
weights  vector W, that defines  the  least-squares  regression  line,  plane, or hyperplane. 

Consider  the  problem of finding  the  underlying  function  between  two 
variables x and y.  The  training data consist of 200 measured data pairs and 10 mea- 
sured data pairs  from  the  process  described by the  linear functiow = 2 . 5 ~  - l + n, 
x E lo, lo], where n is a Gaussian random variable  with a zero  mean and such  vari- 
ance that it corrupts the  desired output y with 20% noise. The structure of the  adaline 
is  the  same as in  figure  3.12 (top left).  Using the data set,  find (learn) the  weights w1 
and W:! that ensure  the  modeling  of  the  unknown  underlying  function  (known to us 
but not to the  linear neuron). 

The  solutions to this  one-dimensional  regression  problem are shown  in  figure  3.15. 
They were obtained  by  the  adaline  learning  procedure  using  two  training data sets 
(200 data pairs and 10 data pairs). Note that the  more data used,  the  better  will  be 
the  estimation of the  adaline  weights. 

Redundancy  in data provides  knowledge.  This  is a standard fact  in  the  field  of 
estimation, that is,  in  learning  from data tasks  like  the  ones  shown  here.  The prob- / 

/’ 
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Figure 3.15 
Solution  of  a  regression task for  the  underlying  function y = 2 . 5 ~  - 1 + y1 using (top) 200 data pairs,  and 
(bottom) 10 data pairs.  True  function  (solid  line);  regression  function  (dashed  line). 



220 Chapter 3.  Single-Layer  Networks 

Estimated W, and W, in dependence on the  number 
of data  points  and  noise in a  regression  problem 

I I I I 

0 0.2 0.4 0.6 0.8 1 
Noise = abscissa * 100% 

Figwe 3.16 
Dependence of weights  estimates  upon  the  noise  level  and  the  size of the  data  set. 

lem in  real-world  applications  is that the  number of data required  increases  expo- 
nentially  with  problem  dimensionality,  but  typical  learning  environments  (usually of 
a very  high order) provide  only  sparse  training data sets.  This  is  only  one of the 
curses of dimensionality.  (Recall that one  remedy,  shown  in chapter 2, was  applying 
kernel  functions.)  Figure  3.16  shows how the  quality of  weight estimation  depends 
upon the  noise  level and the size  of the data set.  Clearly,  the  higher the noise  level,  the 
more data are needed  in  order to find a good  estimate. Note that the  estimation of 
bias  weight w2 is  much  more  sensitive to both noise  level and the  number  of  training 
data. 

The geometrical  meaning of  weight components  in  regression  tasks  is  different 
from that in  classification  problems. In figure  3.16, W €  represents  the  slope and w2 
represents  the  intercept of the  regression  line.  This  will be similar  for patterns of 
higher  dimension. 

Let  us  now  analyze a two-dimensional  regression  problem,  which  might  provide 
better  understanding of what a linear  neuron  does  in  hyperspace (hint: it  models 
regression hyperplan~s). 

Ze 3.5 Consider  the  problem of finding  the  underlying  function  between  three 
variables: x and y are the input, or independent,  variables, and z is  the  dependent, 
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output variable.  The  training data consist of  200 measured data pairs  from  the  process 
described by linear  function z = 0.004988~ + 0.995~ + n, x E [0, l], y E [-0.25,  +0.25], 
where n is  a  Gaussian  random  variable  with  a  zero  mean and such  variance that it 
corrupts the  desired output z with 20% noise.  The  structure of the adaline  is  the  same 
as in figure  3.12 (bottom left), with x and W being  two-dimensional (do not  forget  the 
constant input term + 1 and its  corresponding  weight w3). Using  the data set,  learn  the 
weights w1, w2, and w3 that ensure the modeling of the  unknown  underlying  plane. 

The optimal  solution to this  problem  is  presented  with  two  graphs  in  figure  3.17. 
The bottom graph is  given  under  the  angle  along  the  plane to show that the  adaline 
drew  the  plane through the  noisy data in  the  least-squares  sense.  The character of the 
solution  is  equivalent to the  solution in a  one-dimensional  regression  problem, and 
the same  will  be true for similar  regression  tasks of any  dimension.  Provided that 
there are enough  training data pairs (x, y), where x is an n-dimensional input vector 
and y  is  a on~-dimensional output vector, after the  learning  phase  the  resulting 
(n + 1)-dimensional  hyperplane will  pass through the  cloud of data points  in an 
(n + 1)-dimensional  space. 

Let  us  conclude  the  examination of the  representational  capability of a  single  linear 
processing unit with  a standard control problem-the  identification of linear plant 
dynamics. 

~ x ~ ~ ~ Z e  3.6 Linear  single  input-single output dynamic  systems can be  described 
by the  following  generic  discrete  equation: 

where Yk-i and uk-i are past inputs and outputs, and n k  is  additive  white  noise.  The 
system  identification  problem of determining a's and b's can be  viewed as a  regression 
(functional appro~imation) problem  in % n f n f * .  (In a  more  general  case,  the  orders of 
the input and output delays  diEer and % = %"+'+l). Now,  consider  the  identification 
of the following  second-order  system: 

Y(s)  = 
3 

s 2 + s + 3  

With the sampling rate AT = 0.25s,  we obtain the discrete  equation 

Using  a  set of 50 input-output data pairs,  a  linear  neuron  estimates  the  values of 
the  parameters a and b. The  training input U was  a pseudo-random-bina~-si~al 



3.2. The  Adaptive  Linear  Neuron  (Adaline)  and  the  Least  Mean  Square  Algorithm 223 

u k -  l 

uk-2  

Y k -  l 

Y k - 2  

l””” bl 

”””a2 

Figure 3.18 
Structure of a linear  neuron  for  the id~nti~cation of a second-order  system. 

S), and the output of the  system  was c o r ~ p t e d  by  5% white  noise  with a zero 
mean. 

For this  problem  the input patterns are four-dimensional  vectors CO 

Uk-1 Uk-2,yk-l ,yk-2 for each instant k and k E [3, $ K ] ,  where the subscript 
the  number of discrete  steps. S ~ u l a t i o n  time  is  equal to he output from  the 
linear  neuron  is yk. The  structure of the  linear  neuron to be  used  is 
3.18. Note that in  this  type of discrete  difference equation the  const 
term  is  missing.  This  expresses  the  fact that the hype~lane in a five-dimensional 
space  is a homogeneo~s one, that is,  this  hyperplane  passes through the  origin  with 
no shift  along  any  axis.  All  possible  trajectories y for the  correspondi 
U will  lie  on  this hype~lane if there  is no noise. In the  presence  of  di 
trajectories will  lie around it. The expressions wi X ai and W i  x bi in  figure  3.18  denote 
that by the  end  of  the  learning,  the wi will  be the e s t ~ ~ a t e s  of the parameters ai and bi. 

ence the physical m e a ~ n ~  of the  weights,  which a the  subjects  of l e a ~ n g ,  is 
again  different than it was  in  the  previous  examples.  oreover,  in  this particular 
identification  problem, the weights can be thought of two  different  ways: as co- 
efficients  of the hype~lane in a five-dimensional  space on which  all  possible tra- 
jectories of the  given  second-order  dynamics  would  lie, or as the constant coefficients 
of the  given  second-order  difference equation. h views are correct, and the  task 
is to learn  the  weights w1, w2, w3, and w4 that re the modeling  of  the  unknown 
under1  ing plane by using  the data set.  The  training  results are presented  in  figure 

th graphs  show that a linear  neuron can be a reliable  model of a linear  dy- 

he  same  phenomena as in  figure  3.16,  concerning  the  dependence of the  relative 
error of the  estimated  parameters for a second-order  linear  discrete  dynamic  system 
upon  the size  of the data set,  may  be  seen  in  figure  3.20. I 
tion error when  using  fewer than 150 data pairs  may  be 
considerable error, and in  order to have a good  model of this  second-order  system, a 
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Figure 3.19 
Identification of a  linear  second-order plant. Left, training  results. Right, test  results. 
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Figure 3.20 
Dependence  of  the  relative error of estimated  parameters  for  a  second-order  linear  discrete  dynamic  system 
upon  the  size  of  a data set. 
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larger data set  must be used. ( ecall from chapter 2 the ratio Z/h, which  defines  t 
size  of a  training data set.) 

The  previous  section  discussed  the  representational  capability of a  neural ~rocessin.~ 
unit with  a  linear  activation  function (the adaline). In the  world of neural  computing, 
the  learning part is  of the same, or even  greater,  importance as the  representation. 
part. Adapting  weights of a  linear  neuron  using  a data set  can be done  in  several 
different  ways. (This is  also true for other types of processing  units.)  How  weights 
learning  can be  solved for a neuron  having  a  linear  activation  function  is  the  subject 

Consider  the  single  linear  neuron  in  figure 3.2 l .  An input signal x comprising  fea- 
tures and augmented by a constant input component  (bias)  is  applied to the  neuron, 
weighted, and summed to give an output signal 0. 

A learning  problem  is  a  problem of parameter  estimation of a chosen.  model  be- 
tween  the input vectors x and the outputs 0. Using  linear  activation  functions  in  a 
neuron  the  underlying  function  between  these  variables  is  expected to be satisfactorily 
modeled by a  linear  regression  line,  plane, or hyperplane. 

Thus the  learning task is to find  the  weights of the  neuron  (estimate  the  parameters 
of the  proposed  linear  model)  using aJinite number of measurements,  observations, 
or patterns. Note that the  weights Wi result  from an esti~ation procedure, and in  the 
literature on statistics or identification  in control, these  estimated  parameters are 
typically  denoted as For the  sake of simplicity  this  circumflex  is  not  used  here,  but 

ive methods are demonstrated. 

Input  Weights  Output  Desired  output 
x: W 0 d 

X i  

x n  
..l.... ’ ................................................ I...... 

e = d - o  
Error 

Figure 3.21 
Learning  scheme  for  a  linear  neuron.  Dashed  arrows  indicate  that  weights  adaptation usually depends  on 
the  output error. 
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one  must not forget the statistical character of the weights.  They are random values 
depending  upon  the  samples or patterns used  during  training  (see  figs.  3.16 and 
3 20). 

The  learning  environment  comprises a training  set of measured data (patterns) 
1, . . , P} consisting of an input vector x and output, or system 
and the  corresponding  learning  rule for the adaptation of the 

weights. (In what  follows  learning algoriths are for the  case of one  neuron  only, 
the  desired output is a scalar  variable d. The  extensions of the  algorithms  for 
vector, are straightforward and are presented  subsequently.)  The  choice of a perfor- 
mance  criterion,  or  the  measure of goodness of the  estimation,  may be made  between 
a few different  candidates. For example,  one can minimize  the  sum of error squares, 
maximize  the  likelihood  function, or maximize  expectation.  (Alternatively, as shown 
in chapter 2, one can minimize  more  complex  functionals.) 

In the neural  networks  field,  the  most  widely  used  performance  criterion for the 
estimation of model  parameters  (here, a vector W) is  the  sum of error squares. It is 
relatively  straightforward to show that if the data are corrupted with  Gaussian  noise 
with a zero  mean,  minimization of the  sum of error squares  results  in  the  same pa- 
rameters  as  maximization of the  likelihood  function. (To show  this,  solve  problem 

owever,  in  the  case of maximal  likelihood  estimates  one  must  know and take 
into account  the  statistical  properties of  noise.  Nothing about the  character of dis- 
turbances  need be assumed  when  working  with a sum-of-error-squares  cost  function, 
and no statistical  model  is  assumed for the input variable x. 

Following  are five different  methods for adapting linear  neuron  weights  using a 
training data set.  The  first  three  methods are batch (off-line,  explicit,  one-shot) ~ e t ~ o d s ,  
which  use all  the data at once, and the  last  two  are on-line (implicit,  sequential, 
recursive,  iterative) procedures. The latter are of great  interest  for  real-time control, 
signal  processing, and filtering  tasks, or more  generally, for applications  where  there 
is a need to process  measurements or observations  as  soon as they  become  available. 

Note that the  sum of error squares  is  taken as the  cost  function to be minimized, 
meaning that the  derivation of the  learning  rule will  be made through dete~inistic 
arguments  only.  The  resulting  least-squares  estimates  may be preferred  to  other  esti- 
mates  when  there  is n possibility  of, or need for, assigning  probability-density 
functions to x and d (or in  the  case of a single-layer  network of linear neurons-see 
fig.  3.12 (right)). 

oin~e~se Assume that a data set 
of P measurements d (P must be equal or larger than the  number of  weight compo- 
nents to be estimated) can be  expressed  as a linear  function of an (n  + 1)-dimensional 
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input vector x (n features + bias  term)  plus a random additive  measurement error 
(disturbance or noise) e: 

d = wTx-t-e? (3.45) 

where both x and W are (n  + 1, l )  vectors. Note that assumption  (3.45) is the ratio- 
nale for using a linear  neuron.  Using o = wTx from (3.42), an error at the pth pre- 
sented data pair  may be  expressed  as 

e, = d, - 0, = d, - W x,, T (3.46) 

where  the  weights W are fixed during  the pth epoch, or during  the pth presentation of 
the  whole  set  of  training data pairs (p = l P) Now,  the  cost  function is formed as 

P 

i 

or using that W Tx = xTw, 

P 

( w ~ x ,  - d,)(WTx, - d,) 
1 

/ P  P P 

(3.47) 

(3.48) 

For the  sake of simplicity and generality of the  learning  model, a matrix of input 
vectors x, (known  also as a data matrix of desired outputs dp are 
introduced as follows: 

E !Rp> l .  Note that columns of are the input patterns x,. 
have  been  arranged so that its  rows  were 

S way  only to make  clear  the  connection  between 
are class  labels for classification  tasks.  In  regres- 

sion  problems,  they are the  values of dependent  variables.  Now,  the error function 
can be rewritten  in matrix f o m  as 

(3.50) 

In this  least-squares  estimation  task  the  objective  is to find  the o p t i ~ ~ Z  
mizes E. The  solution to this  classic  problem  in  calculus  is  found by setting  the  gra- 
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dient of E, with  respect to W, to zero: 

(3.51) 

In the  least-squares  sense,  the  best or optimal  solution of (3.5 l), W*, results  from  the 
n o r ~ a l   e q ~ ~ t i o n  (XX 

(3.52) 

where  the  matrix X' is an (n + 1, P) pseudoinverse  matrix of the  matrix X T  and it  is 
assumed that the  matrix XX is  nonsingular. The optimal  solution W * in  (3.52)  is 

Wiener-~opf solution  in  the  signal  processing  field  (Widrow and Walach 
kin  1991).  Extended  discussion  of  learning  in  a  linear  neuron  may  also be 

When  the  number of training  samples  is  equal to the  number of  weights to be 
is  a  square  matrix and X' = (XT)-'. Thus,  the  optimal  solution 

results as a  unique  solution of a  set  of  linear  equations.  This  is  of  little  practical 
interest.  Training patterns will almost  always be corrupted with  noise, and to reduce 
the  influence of these  disturbances,  the  number of training  samples  must be (much) 
larger than the  number of adapted weights  (see  figs.  3.16 and 3.20). From a  com- 
putational point of  view, the  calculation of optimal  weights  requires  the  pseudo- 
inversion  of  the (P, n + 1)-dimensional  matrix.  With  respect to computing  time,  the 
critical part is  the  inversion of the (n + l ,  n + 1) matrix XX '. In the  application of 
neural  networks  it  is  quite  common for input vectors to be  of a very  high  dimension, 
and in  such  a situation this part of the  calculation  may not be  easy.  One  possible 
solution to this  type  of  problem  is  shown  in  method 5 in  this  section. 

It is useful to look at the  geometry of the  cost  function E (hyper)surface.  Recall 
that the  objective  is to find  the  weights  vector that defines  its  minimum, and it may 
save  some  time to ask  only  two  basic  questions:  does  the error (hyper)surface E have 
a  minimum at all, and is  this  minimum  unique? Fortunately, in  the  case of a  linear 
activation  function, E is  a quadratic surface4 of the weight  components  with  a  guar- 
anteed  unique ninimum. The  proof  is  simple. From (3.46) it is  clear that the error ep 
for each particular data pair (xp ,  4 )  is  a  linear  function of the  weight  components. 
The cost  function E from (3.47)  is  a  result of squaring and sumrning  individual errors 
ep. Thus, E will contain maximally  second-order  terms of weights  vector  components. 
Generally,  in  the  case of a  linear  neuron, E is  a (hyper)paraboloidal bowl  hanging 
over an (n + 1)-dimensional  space  spanned by the  weights  vector  components wi, 
i = 1, n + 1. The  picture is much  less  complex for a  one-dimensional  weights  vector 

found  in  Widrow and Steams (1  985) and Widrow and Walach  (1996). 
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when E is  a parabola over  the w1 axis.  When  there are only  two  components  in  a 
weights  vector, W = [w1 w2] T ,  E is an elliptical paraboloid (bowl-shaped  surface) 
over  the  plane  spanned by w1 and w2. 

The  unique  minimal  sum of error squares Emin is  determined by W* from  (3.52): 

(3.53) 

Using  (3.46) and (3.49), it is  easy to show that without  noise E(w*) = 0. 

~ e t h o ~  2: ~ewton-Raphson ~ p t i ~ z a t i o n  Scheme One  of  the  second-order opti- 
mization  methods  is Newton7s iterative learning  scheme. It is described  in chapter 8 
for the  general  case  when  the error (hyper)surface  depends  nonlinearly on the  weights 
vector,  Here,  devising  this  learning  law  is  relatively  straightforward for the  sum-of- 
error-squares  cost  function. 

First, rewrite  the  expression for the  gradient of  the error function  from  (3.5 1): 

The second  derivative of E with  respect to the  weights  vector W, known  also as a 
Hessian  matrix,  is 

After  multiplying  (3.54)  from  the  left by 

(3.55) 

(3.56) 

where  the  second  term on the  right-hand  side of  (3.56)  is the  optimal  solution W *  

given  by (3.52).  Now,  rewrite  (3.56) as 

(3.57) 

Equation (3.57),  which  results  in  the  optimal  weights  vector W*, is  exactly  the  Newton- 
Raphson optimization  algorithm. It is  simple  in  form and yet  a  powerful  tool, par- 
ticularly for quadratic cost  surfaces and when  the  Hessian  is  a  positive  definite  matrix. 
This  is  always  the  case  with  a  sum-of-error-squares  cost  function, and (3.57)  shows 
that starting from  any  initial  weights  vector W, the optimal  one, W*,  will  always  be 
found  in  one iteration step  only.  (This  is not true for a  general  nonlinear  cost  function, 
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where  more iteration steps are usually  required.  Also,  using  the Newton-Ra~hson 
method  does not guarantee that the  global  minim^ will  be  reached  when the  cost 
function  depends  nonlinearly  upon  the  weights.) 

A classical  optimization  method that 
has  become  widely  used  in  the  field  of  soft  computing  is  the  method  of  steepest 
descent  (for mini~zation tasks) or ascent (for maximization tasks)? Changes of the 
weights are made  according to the  following a l g o ~ t ~ :  

(3.58) 

where y1 denotes  the  learning rate, and p stands for the actual iteration step. Note 
that here  the pth iteration step  means  the pth epoch, or the pth presentation of the 
whole  training data set.  Thus, the gradient  is  calculated  across the entire  set of 
training patterns. 

here are many  different  strategies in the  neural  networks field  concerning  what 
to start the optimi~ation should be. Much can be said about 
is  a standard design parameter during  learning.  Moreover it is 

highly pro~lem-de~endent. Two  alternatives are either to keep  the  learning rate y 
small and fixed, or to change it (usually to decrease it) during  the  iterative adaptation 

he  smaller y is,  the  smoother  but  slower  will be the approach to the 
script 1 is  used for the sake of notational simplification  only. It will  be 

Introducin~ the  expression for the  gradient  (3.54) into equation (3.58) and 
lost  in  the  next  line  while  deriving  this  gradient  learning  rule. 

changing  the notation for the  learning rate to y = 2y,, 

(3.59a) 

n- I I -  

m=O 
(3.59b) 

from  the  initial  weight vvl = and with  a  sufficiently  small  learning rate y, 
which  ensures  a  convergence of (3.59), 
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cx) 

lim wP+1 = wcx) = 
P"'* m=O 

(3.60) 

x+ 

or 

W, = W *  = (3.61) 

In other words,  under  these  conditions,  the  ideal  gradient  procedure will ultimately 
end up with  the  same  optimal  solution  vector W* as methods  1 and 2  did.  (The intro- 
duction of the pseudoinverse  matrix in (3.60) as well as many  other  interesting 
properties of pseudoinverse  matrices are covered  in  the literature; see, for example, 
Rao, and Mitra (1971)). 

The learning rate q controls  the  stability and rate of adaptation. The  ideal  gradient 
learning  algorithm  converges as long as 

2 
O < q <  (3.62) 

How  different  learning rates affect  the  decrease  in  the error cost  function  is  shown  in 
example  3.7.  Very  similar error trajectories are found  during  learning  in  a  nonlinear 
environment and in  optimizing  a  much  higher  number of weights. The general 
approach in  choosing q is to decrease  the  learning rate as soon as it is  observed that 
adaptation does  not  converge. In the  nonlinear  case,  there are other sources of trou- 
ble,  such as the ~ossibility of staying at a  local  minim^. Nonlinear opti~zation 
problems are discussed in more  detail in chapter 8. For a  detailed  study of conver- 
gence  while adapting the  weights  in  a  linear  neuron,  the  reader  is  referred to 
and Stearns  (1985))  Widrow and Walach  (1996), and Haykin  (1991). 

~~~~~2~ 3.7 Dependency (the plant or system to be identified)  between  two  vari- 
ables  is  given  by y = 3x - 1.  Using  a  highly corrupted (25% noise)  training data set 
contain in^ 41 measured patterns (x, d ) ,  estimate  the  weights of a  linear  neuron that 
should  model  this plant by using  the  ideal  (off-line)  gradient  procedure.  Show  how 
the  learning rate q affects  the  learning  trajectory  of  the error. 

The optimal  solution to this  problem,  obtained by method 1, that is,  by  using a 
pseudoinverse  of  the input matrix X T ,  is W I  = 2.92 w2 = - 1.04, and minimal  squared 
error E ~ n ,  obtained  from  (3.53),  is  equal to 179.74.  The  trajectories  presented  in 
figure  3.22  clearly  indicate that the  smaller q is,  the  smoother but slower  will  be the 
approach to the  optimum.  Beyond  the  critical  learning rate qc = 2/tr~ce( 
learning  is  either  highly  oscillatory (v being  still  close to qc) or unstable. 
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Linear  neuron.  Trajectory  of  the  error cost  function  decrease 
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Figure 3.22 
Influence of learning  rate  on  the  adaptation of weights  in  a  linear  neuron. 
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also  known as the  idr row-~o~learning rule or the 
delta learning rule), is a gradient  descent adapting procedure,  too, but unlike  the 
ideal  gradient  method, it is  not a batch method:  the  gradient  is  evaluated  after  every 
sample is presented.  Thus, LMS is  used  in an on-line or stochastic  mode  where  the 
weights are updated  after  every iteration. In this  way,  the error on the training data 
generally  decreases  more  quickly at the  beginning of the  training  process  because  the 
network  does not have to wait for all  the data pairs (the entire  epoch) to be processed 
before  it  learns  anything.  This  early  reduction  in error may  be  one  explanation why 
on-line  techniques  are  common  in  soft  Computing. The possibility of adapting the 
weights  in an on-line  mode  is  very  popular  in  the  fields  of control and signal  pro- 

learning  rule  is  similar to (3.58), 

(3.63) 

the  only  difference  being that the  subscript p now denotes  the iteration step  after 
single  training data pairs  (usually  randomly drawn) are presented. Thus, the  calcula- 
tion of the  weight  change ~ w p ,  or of the  gradient  needed for this,  is  att tern-based) 
not epoc~-ba~ed as in  method 3. It is  relatively  easy to show that the  ideal  gradient 
(method  3)  is  equal to the  sum of the gradients  calculated  after  each pattern is  pre- 
sented  for  fixed  weights  during  the  whole  epoch. (To see this,  solve  problem  3.27.) 

S algorithm  is  also  known as the delta learning rule, which  was an early 
powerful  strategy  for adapting weights  using data pairs  only.  The  variable (or signal) 
6 designates an error ~ i g n ~ l ,  but not the error itself as defined  in  (3.46) and shown  in 
figure  3.21.  Thus, 6 will  generally not be equal to the error ep = dp - op. Interestingly, 
the  equality 6 = e does  hold for a linear  activation  function. In the  world of neural 
computing,  the error signal 6 used to be  of the  highest  importance.  After a hiatus  in 
the development of learning  rules  for  multilayer  networks for almost 20 years,  this 
adaptation rule  made a brea~through in 1986 and was named  the generalized delta 
learning rule. Today,  this  rule  is  also  known as the error backpropagation (EBP) 
learning  rule (see chapter 4). 

It is  now appropriate to present  the  basics  of  the error-correction delta rule, which 
uses a gradient  descent  strategy for adapting weights  in  order to reduce  the error 
(cost)  function.  The  EBP  algorithm  is  demonstrated for a single  neuron  having any 
di~erentiable activation  function  (see  fig.  3.23).  This will  be just a small  (nonlinear) 
deviation  from  the  derivation of adaptation rules  for  the  linear  activation  function 
and the  corresponding  hyperbowl-shaped error performance  surface.  Including  this 
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Figure 3.23 
Neural  unit with  any  differentiable  activation  function. 

small  deviation  is a natural step  in  presenting a gradient  descent-based L 
rithm  for a linear  neuron.  After an EBP algorithm  for  any  activation  function  has 
been  derived  the LMS rule  will  be  treated as one  particular  case  only,  when  the  acti- 
vation  function is a linear  one. 

Thus,  the  problem  is to find  the  expression  for, and to calculate,  the  gradient 
V,EI,, given in (3.63),  using a training  set  of  pairs  of  input and output  patterns. 
Recall that learning is  in an on-line  mode.  First,  define  the error function 

(3.64) 

The  constant 4 is  used for  computational  convenience  only;  it will  be  canceled  out 
by the  required di~erentiation that follows. Note that E(wp) is a nonlinear  function 
of  the  weights  vector  now,  and  the  gradient  cannot  be  calculated  using  expressions 
similar to (3.54).  Fortunately,  the  calculation of  the  gradient  is straightfo~ard in  this 
simple  case. For this  purpose,  the  chain  rule is 

(3.65) 

where  the  first  term  on  the  right-hand  side  is  called  the error signal 6. It is a measure 
of an error change  due to the  input to the  neuron U when thepth 
The  second  term  shows  the  influence of the  weights  vector wP on 
up. Applying  the  chain  rule  again, 

pattern  is  presented. 
that particular  input 

(3.66) 

or 

(3.67) 
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The last tern follows  from  the  fact that up = ~ ~ x ~ ,  and the deEta Z e a r ~ i ~ g  ruk can be 
written as 

(3.68) 

This  is  the  most  general  learning  rule that is  valid for a single  neuron  having  any 
nonlinear and differentiable  activation  function and whose input is forned as a scalar 
product of the pattern and weights  vector.  Because of its  importance  in  the  develop- 
ment of the  general EBP algorithm  for a multilayer  neural  network, it might be  useful 
to separately  present  the  expression for the error signal S, here: 

(3.69) 

The calculation of a particular change of a single  weights  vector  component w j  is 
straightfo~ard and follows  after  rewriting  the  vector equation (3.68)  in terns of the 
vectors'  components: 

Note that the error signal S, is  the  same  for  each particular component of the  weights 
vector.  Thus,  the very change of W j  is  determined  by, and is proportional to, its 
corresponding  component of the input vector x j .  

The LMS learning  rule  for a linear  neuron,  taking into account that f'(u,) = 1, is 
given as 

The LMS is an error-correction  type of  rule  in  the  sense that the  weight  change A ~ p  is 
proportional to the error ep = (dp - op). A similar  learning  rule  was  presented for a 
single  perceptron  unit  (see  method 1 in  box  3.1).  However,  the  origins and the  deri- 
vation of these  rules are difGerent. Unlike  the  heuristic  perceptron  learning  rule,  the 
LMS results  from  the  minimization of a predefined error function  using  the  gradient 
descent  procedure. (It can be shown that the  perceptron  learning  rule can also be 
obtained by minimizing  its error function, but that was  not  how  this  rule  was  origi- 
nally  developed.) 

Concerning  the  learning rate y, which  controls  the  stability and the rate of adap- 
tation, the  criterion  given  in  (3.62)  is  valid  here, too. The LMS algorithm  converges 
as long as y < yc = 2/trace( "). For y < O.ly,, the LMS results are equivalent 
to those  obtained by method  3,  the  ideal  gradient  method.  The  learning  process  is 
always of a random character, and e ~ u ~ ~ a Z e ~ c e  denotes  equality  in  the  mean. 
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Methods 3 and 4 in  this  section are iterative  learning  schemes that use  the  gradient 
or the  first  derivative  of  the error function  with  respect to weights. Thus, they  be- 
long to the group of first-order  optimization  algorithms. For on-line  application,  the 
LMS  has  been  a  widely  used  algorithm  for  years, and it still  is.  Provided that the 
learning rate is  smaller than qc, both methods  converge to the  optimal  solution 

It is  well  known that by  using  the  information about the curvature of the error 
function to be optimized,  one can considerably  speed up the  learning  procedure. 
Information about the curvature is  contained  in  the  second  derivative of the error 
function  with  respect to the  weights, or in  the  Hessian  matrix (3.55). For the qua- 
dratic cost  function,  the  Newton-Raphson  solution (3.57) is  equal to the  optimal W * .  

The  Newton-Raphson  method  is  a  second-order  optimization  scheme, but the  solu- 
tion  given by (3.57) is an off-line  solution that uses a  batch  containing  all  the  training 
patterns. Thus,  a natural question  may  be,  is  it  possible to make an on-line  estima- 
tion of the  parameters by using  second-order  descent  down  the error surface?  The 
answer  is  yes, and this  method  is  known as the  recursive  least  squares  algorithm. 
This  method  may well  be the best  on-line  algorithm  (whenever  the error depends 
linearly  on  weights) for a wide range of applications. 

W* = (XXT)-l 

ecursive  Least  Squares  Algorithm The recursive  least  squares (RLS) 
algorithm  is the last  learning  method  presented  here for a  linear  processing unit. For 
most  real-life  problems it might  well  be  the  best  on-line weight-adapting  alternative, 
provided that there  is  a  linear  dependency  between  the  sets of input and output 
variables. 

The  RLS  method  shares  all the good  on-line  features of the  LMS  method, but its 
rate of convergence (in t e k s  of iteratiofi  steps)  is an order of magnitude  faster.  The 
price for this  is  increased computational complexity, but whenever  the amount of 
calculation can be carried out within  one  sampling  interval,  this  complexity  is  not 
important in  the  framework of on-line  applications. 

In the  derivation of the  RLS  algorithm,  a  basic  result  in  linear  aigebra  known as 
the matrix-inver~i~n lemma is  used.  Let us start with  the optimal solution (3.52), 
which  can  be  calculated  having  a  set of P training data pairs 

(3.72) 

where  the  subscript p denotes  the  fact that the  training  set  having P patterns is  used 
for the  calculation of wP. In what  follows,  the  off-line  procedure (note that X and 
contain a batch of P data pairs), which  requires  the  inversion of an (n + 1, n + l )  
input data matrix,  is  transformed into an on-line  algorithm that avoids  this  matrix 
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ecall that there are n features and that the (n + l)th component  is a bias 
t this constant input term  the  matrix to be inverted  is an (n, n)  

At the pth iterative  step, and using wp from  (3.72),  the  desired  value will  be equal to 
matrix; see example  3.6). 

the output from  the  linear  neuron  plus  some error: 

(3.73) 

ith the new measurement or pattern (xp+l, dp+l) and using  weight 

dp+l = (3.74) 

or 

%+l = dp+l - xp+l 
T (3.75) 

The critical  point  is  when  the new output and corresponding error at step p + 1 are 
predicted  using  the  weight  found at step p. Fortunately, with  proper initiali~ation of 
the  iterative  procedure,  the  process  converges to the  correct  weights  vector  in  the 
(n + l)th iterative  step. 

where 

(3.77) 

(3.78) 

withp + 1 measurements,  the  solution  weights  vector +l ,  which can be obtained by 
using  the  whole  batch of p + 1 data, would be 

(3.79) 

The  basic  strategy  from  the  very  beginning  has  been to avoid  the  batch part, meaning 
the operation of matrix  inversion. In order to do that, rearrange  (3.79) by the  sepa- 
ration of the new measurement  from  the  batch ofp past data: 

(3.81) 
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From (3.76), 

WP * 
1 - - (3.82) 

from (3.82)  with  (3.74) and (3.81), 

A-" (3.86) 

ewrite  (3.80) as 

(3 37)  

and compare  the  matrices  (3.86) and (3.87). Note that A = P;', 
= Also, on the right  nd  side of (3.86),  the  only  "serious"  inversion 

"l ,  which  is  equal to 

(3.88) 

Thus, starting from an initial matri +l can be calculated  in  a  recursive 
manner  avoiding  any  matrix  inve . The  inversion  present  in  (3.88)  is not an 
inversion of the  matrix  because +l is  a  scalar. The order  in  which particular 
variables or matrices  in  the RLS algorithm are calculated  is important, and it may  be 
useful to summarize  the RLS algorithm  (see  boxes  3.2 and 3.3).  Two  slightly difEerent 
versions of the RLS procedure are summarized.  They are theoretically  equivalent but 
possess  different  numerical  properties.  The  size of the data set,  the  noise-to-signal 
ratio in data, and whether  the plant to be modeled  is stationary or not are the factors 
that influence  the perfomance of each  version. 

Both  versions  introduce  a ~ ~ r g e ~ t ~ ~ g  factor A. As A approaches l, the  memory of 
the  learning  process  tends to be a  perfect  one  equaling  all  past  measurements  with 
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Box 3.2 
Summary  of  the  Recursive  Least  Squares A1gorithw”ersion 1 

Given  is  a  set  of P measured  data  pairs  that  are  used  for  training: 

x= (Xj,dj,j=. l ,“., P}, 

x = [x1 x2 . . . x, + q T ,  W = [W1 W2 ... WE W,+llT. 

consisting  of  the  input pattern  vector x and  output  desired  response d. 

Perform  the  following  training  steps  for p = l ,  2,3, . . . , P: 
Step 1. Initialize  the  weights  vector w1 = 0 and  the  matrix P1 = CXI(~+,), where CI should be a  very 
large  number,  say c1 = IO8 - l0 1 5 .  

Step 2.  Apply  the  next (the first  one  for p = 1) training  pair (xp ,  dp)  to the  linear  neuron. 
Step  3. By using  (3.75)  caIcuIate the  error  for  both  the  data  pair  applied  and  the given  weights 
vector wp: 

ep+1 = dp+l - x;+iwp. 

Pp+l = P p  - PpXp+l P + x ~ I P p x p + l ) - l x ~ l P , ) / ~ .  

Step  4.  Find  the  matrix Pp+* from  (3.88): 

Step 5. Calculate  the  updated  weights  vector wp+l from  (3.85): 

Wp+l = wp + Pp+lXp+lep+l* 

Step 6. Stop  the  adaptation of  the  weights  if  the error E from  (3.47) is smaller  than  the  predefined 
Ede,.  Otherwise  go  back to step 2. 

more  recent  ones.  If the process  is  known to be a stationary one (no significant 
changes  in  the  process parameters), working  with L =  l will  result  in  good  estimated 
weights. In a n o n s t a t i o n a ~   e n v i r o ~ ~ n t ,  with  changing  system  dynamics,  the  influ- 
ence  of past  observations will  be  reduced and L will  be  smaller than l .  In this  way,  the 
present  measurements are given a  heavier  weighting and have  a  stronger  influence on 
the  weight  estimates than the  past  ones. What the  value of il should be  if one  wants 
some amount of forgetting  during  learning  is  highly  problem-dependent. A good  rule 
of thumb is il = 0.92 f 0.99. 

The  two  versions of the RLS algorithm are quite  similar. The value yp+l (in  box 
3.3) is  the  first part of the  second  term  on  the  right-hand  side of (3.88) for  the  calcu- 
lation of a  matrix Pp+*. However,  the  order of the  calculation of  the  variables  in  the 
two versions  is  slightly  different,  resulting  in  their  different  numerical  behavior. In a 
stationary environment  the  forgetting factor L = 1. 

The RLS is the best  alternative for on-line  applications  when  there  is no change  in 
system  dynamics  (for stationary problems). In the  case of nonstationary problems 
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ox 3.3 
Summary  of  the  Recursive  Least  Squares  Algorithm-Version 2 

Given  is  a  set  of P measured  data  pairs  that  are  used  for  training: 

x={sj)dj) j= l) . , . )P}, 

x = [XI x2 . . . x, +l] T ,  W = [W1 W2 . * . W ,  ~ n + I l ~ *  

consisting of the  input  pattern  vector S and  output  desired  response d. 

Perform  the  following  training  steps  for p = I ,  2,3, . . . , P (steps 1, 2, and  3  are  the  same as in  ver- 
sion  l-see  box  3.2): 

Step  4.  Calculate  the  value yp+l as  follows: 

Yp+l = Ppx-p+I (A + x;+&7xp+1 )-l. 

Step 5. Calculate  the  updated  weights  vector wp+l: 

Wp+l = W p  + Yp+lep+l. 

Step 6. Find  the  matrix PP+1 : 

%+l = (PP - Y p + l X , T i . l P p ) l ~ *  

Step 7. Stop  the  adaptation of the  weights  if  the error E from  (3.47)  is  smaller  than  the  predefined 
Ede,. Otherwise  go back to step 2. 

with  changing  system  dynamics, it is  difficult to say  whether  the  LMS or the RLS 
method  is  better-possibly  the latter. Both  LMS and RLS possess  advantages and 
drawbacks.  One  should  experiment  with both methods  before  deciding  which  one  is 
more  suitable for the  problem at hand. There  have  been  claims that if the  signal  is 
highly corrupted with  noise,  the  LMS  may  be  more  robust.  These and other inter- 
esting  properties and comparisons of both on-line  algorithms are discussed  in  detail 
in the literature. For an in-depth  study of the RLS and LMS  algorithms,  the  reader  is 
referred to the  many  books  in  the  fields of adaptive control, identification, and signal 
processing,  for  instance,  rogan  (1991),  Eykhoff  (1974), and Haykin  (1991). 

So far the  discussion  has  concerned  learning  algorithms for a  single  linear pro- 
cessing  unit as given  in  figure  3.21,  which  represents  a  mapping of the  n-dimensional 
input vector x into a  one-dimensional output o. In other  words,  assuming  a  linear 
dependency  between x and 0, the  linear  neuron  has  been  modeling  the  (hyper)plane 
in (n + 1)-dimensional  space. By augmenting x with  a constant input (bias)  the 
hyperplane  could be  shifted out of the  origin.  Otherwise,  without  a  bias  term,  one 
would  only be able to model  a  homogeneous  (hyper)plane  passing through the  origin. 
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In the  general  case,  one  might  want to model  the  mapping of an n-dimensional pat- 
tern  vector x into an  dimensional output vector o. On an abstract mathematical 
level,  a  matrix  is  a  tool that provides  mapping  from  one  vector  space to another. 
Therefore,  the  required  mapping  may be  defined  by a  simple  linear  matrix equation 

(3.89) 

Equation (3.89)  is  the  same as (3.43).  At  this  point, it might be  useful to rewrite 
(3.44),  combine it with  (3.89), and comment  on  the  graphical  representation of the 
resulting equation (3.90)  in terns of a  single  layer of neurons  neural  network.  (Because 
the  subject of learning  is  weights,  perhaps  a  more appropriate name  would  be a  single 
layer of  weights neural  network.) 

(3.90) 

Equation (3.90) is  graphically  represented  in  figure  3.24,  which  is  equivalent  to  figure 
3.12 (right). There  is  a  slight  difference  only  in that there  is no bias  term  in  figure 
3.24.  If  the input vector x were augmented by a  bias,  there  would be one  more 

and one  more row in x. In terns of linear  algebra,  the output vector o is 

Figure 3.24 
Single-layer  neural  network  with  linear activation  functions. 
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a linear  cornbination of the  column  vectors of or it  is  in  the  column  space of 

0 = XlWl + X2W2 + * * + X,W,. (3.91) 

In terns of neural  networks,  the  weights  matrix can be  seen  in  two  different  ways. 
It is forned of  row and column  vectors.  The  components wji of ajth r the 
weights cowling  in to the j th output neuron and going out from  the i on. 

are  the inco~ing  eights vectors to the output neurons, and columns 
oing  weights  vectors from  the input units. Equation (3.91) can be 

vector  is  equal to a linear  combination of  the  outgoing  weights 
vectors  from  the input units” (Jordan 1993).  Here, for conve  nce, weights  vectors 
refers to the  incoming  ones, or the  rows of the  weights  matrix 

Equation (3.90) and its  graphical  representation are the  best  tools for modeling or 
solving  multivariate  linear  regression  problems.  One of the important commonplaces 
in  the  neural  networks field  is that the  multilayer  neural  network  (meaning  two  layers 
of  weights at least,  with a hidden  layer  neuron  having  nonlinear  activation  functions) 
can approximate  any  nonlinear  function to any  degree of accuracy.  Such a statement 
does not have  any  meaning for a network  with  linear  activation  functions, and it is 
easy to show that for linear  problems  there  is no sense  in  using  more than one  layer of 
neurons (an output one  only). 

Consider  the  network that represents  the ! R 5  ”+ !R3 mapping given  in  figure  3.25. 
For the  sake  of  simplicity,  only  three  of  the  five input nodes are shown.  The  left 
network  in  figure  3.25  is  arranged  in a cascade. The output y of the  first  (previously, 
output) layer  is  the input to the  next  layer. In this  way,  the  first output layer  becomes 
the  hidden  one.  The  composite  system  is  now a two-layer  system, and it is  described 

Figure 3.25 
Neural  network  with  two  layers of neurons  and  all  linear  processing  units is equivalent  to  a  single-layer 
neural  network. 
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by the  two  matrix  transformations 

y = V x  and o =  (3.92) 

where  the  hidden  layer  weights  matrix  V  is  a (45)  matrix and the output layer 
is  a (3,4) matrix. ~ubstituting Vx for y in  the  last equation, 

(3.93) 

where  the (3,5) weights  matrix U follows  from  the standard multiplication of the two 
V. Equation (3.93)  indicates that when all  the  activation  functions 

are linear,  the  two-layer (or any-layer)  neural  network  is  equivalent to a  single-layer 
neural  network.  This  equivalency  is  shown  in  figure 3.25. 

Insofar as learning  is  concerned,  when  there are more output layer  neurons,  all  the 
methods  presented in this  section can be  used either  separately for each output neuron 
(the algorithms are repeated m times) or for all output neurons at once.  If  one  pur- 
sues  the latter path, care  must be taken about the appropriate arrangements of the 

Linear  networks are limited  in  their computational and representational capa- 
bilities.  They  work well  if the  problem at hand may  be treated as a  linear  one. In that 
case, as demonstrated,  multilayer  linear  networks  provide no increase  in  modeling 
power  over  a  single-layer  linear  network. Unfort~ately, the  assumption about linear 
dependency  is  only  valid for a  subset  of  problems that one  might  wish to solve. 

Real-world  problems are typically  highly  nonlinear, and if one  wants to expand  a 
network’s  capability  beyond that of a  single-layer  linear  network,  one  must  introduce 
at least  one  hidden  layer  with  nonlinear  activation  functions. Chapter 4  is  devoted to 
multilayer  neural  networks  with at least  one  hidden  layer of neurons  having  non- 
linear  activation  functions. 

, and weights W matrices. 

3.1. Find the input U to the  perceptron  activation  function for following input 
vectors x and weights  vectors W: 

a. x =  1-1 o 21T, W = [-I o 21T. 
b. X = =  [0 2]“, W = [l 0 2IT. 
C. x=r[--l 0 2 41 T , W =  [-l -3 2 ---5IT. 
d. X = I-1 0 2IT, W = [4 0 2IT. 

. Calculate  the outputs of the  perceptron  network  shown  in  figure P3.1. Activa- 
tion  functions are bipolar  thresholding  units (a = - 1 for U < 0; o = +l for U > 0). 
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Figure P3.1 
Network  for  problem 3.2. 

3.3. For the  perceptron  network  in  problem 3.2,  find  the equation of the  separating 
straight  line and its  normal  vector, and draw  all  three  separating  lines  in  the ( X I ,  x2) 

plane. Find the  segments of the (XI) x2) plane that are assigned to each  neuron.  Show 
also  the  indecision  regions. 

3.4. Four one-dimensional data points  belonging to two  classes,  the  corresponding 
desired  values  (labelings), and the  initial  weights  vector are given as 

X = [l -0.5 3 -2jT, d = [l -1 1 -1IT; W = [-2.5 1.75jT. 

Applying  perceptron  learning  rules,  find  the  decision  line that separates  the  two 
classes. Draw the  changes  of both separating  lines and weights  vectors  during  the 
learning  in  two  separate  graphs.  Use  the  following  learning  rule W,+I = "vp + dx,. It 
will take four  epochs (four times  sweeping through all  given data points) to obtain 
the  first  separating  line that perfectly  separates the classes.  Check the first  learning 
steps by applying  either of the  two  learning  rules  given  in  box  3.1. (Note that the 
weight  changes and results  will not be the  same.) What is a decision  boundary  in  this 
problem? 

3.5. What is the same and what  is  different  in  the  two  perceptrons  shown  in  figure 
P3,2? Draw the  separating  lines  (decision  boundaries) for both neurons,  together  with 
the  corresponding noma1 vectors. Draw separate  graphs for each  perceptron. Draw 
the  decision  functions U for each graph. 

3.6. Consider  the  two  classes  shown  in  figure  P3.3. Can they be separated by a single 
perceptron?  Does  the  learning rate influence the outcome?  Does  the  class  labeling 
have an effect on the  performance of the  perceptron? Show  graphically  the  decision 
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X1 

X2 

+l 

Figure P3.2 
Networks  for  problem 3.5. 

Class 2 

Figure P3.3 
Graph  for  problem 3.6. 

plane U = ~ 1 x 1  + ~ 2 x 2  + w3 when  class  l  is  labeled as positive (dl = + 1) and class 2 
as negative (d2 = - 1). Draw the  decision  plane U when  the  labeling  is  opposite. 

3.7. A network of perceptrons  (fig.  P3.4,  left)  should  solve  the XOR problem (fig. 
P3.4, right). 
a. Show the decision  lines  defined by the  network.  (Sketch  these  lines  in  the  right 
graph and express  them  analytically). 
b. Can this  network  solve  the  problem  successfully? Support your  conclusion  with 
the  corresponding  calculus, and show  why it can or cannot. 
c.  Cornment  whether  learning  is  possible. 

. Two adaptation methods  (learning  rules) are given  in  box  3.1 for the  perceptron. 
Both d e s  are obtained  from  heuristic  arguments.  Show that the  first  method  in  box 
3.1 can be derived by minimizing  the  following error function at the pth iteration 
step: 
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Figure P3.4 
Network and graph  for  problem 3.7. 

- + U  

U 

-+ 

R p e  P3.5 
Network  for  problem 3.10. 

3.9. Show that minimization of an error function E(w) I p  = lupl - dpup leads to the 
same  learning  rule as does  the error function  in  problem  3.8. 

3.10. The  perceptron  network  shown  in  figure  P3.5  maps  the  entire (x1 ) x2) plane 
into a  binary  value U. Draw the  separating  lines, and find  the  segment of the (XI) x;?) 
plane for which o = +l. 

1. Table 3.1  shows all 16  possible  logic  functions  of  two  variables.  All  but  two can 
be  implemented  by a  perceptron.  Which  two  logic  functions cannot, and why? Design 
perceptrons for realizing AND, OR, and COMPLEMENT functions. 
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L 

Class 2, d = - 1 

I 

a 

i=1,3 

Figure P3.6 
Graphs  for  problem 3.12. Left, classification  task; right, regression  problem. 

3.12. A linear  neuron (adaline) can  solve both classification and regression  problems 
as long as the  separating  hyperplanes and regression  hyperplanes are acceptable. 
Figure  P3.6  shows  three data points that should be  classified, or linearly  separated 
(left), and approximated by a straight regression  line  (right).  Give the matrix X and 

for both cases.  Each data point  is  given as a  pair (xli,  xzi), i = 1,3. 

3.13. Three  different  experiments  produced  three  sets of data that should be  classified 
by using  a  linear  neuron: 

0 0 +l  
0 l -1 

0 0 +l 
1 1 -1  

0 0 +l 
l 1 -1 
2 2 -1 

Calculate  the  least-squares  separation  line, and draw  your  result  in an ( X I ,  x2) plane. 

. Find the equation y ,  = w1 + w2x of the least-squares  line that best  fits the 
following data points: 
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Figure P3.7 
Graph  for  problem 3.1 5 .  

0 1 2 3  x 

Figure P3.8 
Graph  for  problem 3.16. 

Draw the  corresponding  linear  neurons, and denote  the  weights  with  calculated 
values. 

. It is  believed that the output o of a plant, shown  in  figure  P3.7,  is  linearly 
related to the input i, that is, o = w1 i + W:!. 

a. What are the  values of w1 and w2 if the  following  measurements are obtained: 
i = 2 , 0 = 5 ; i = - 2 , 0 = 1 .  
b.  One  more  measurement  is  taken:  i = 5, o = 7. Find a  least-squares  estimate of w1 
and w2 using  all  three  measurements. 
c, Find the  unique  minimal sum of error squares  in  this  linear  fit to the three  points. 

3.16. Design  a  linear  neuron for separating  two  one-dimensional data x = 1, 
d = +l;  x = 3, d = -1  (see  fig. P3.8). 
a. Find the  optimal  values of the  linear  neuron  weights, and draw  the  neuron  with 
numerical  weights at corresponding  weight  connections  between input layer and 
neuron. 
b. What is  the  geometrical  meaning of input U to the  linear  neuron? (Hifit:  see  fig. 
2.16 and fig. 3.2). 
c. Draw the U line  in an (x, U) plane. What is  a  decision  boundary  in  this  problem? 
Draw it in the same  graph. 
d. Find the  unique  minimal sum of error squares  in  this  classification task. 

3.17. Design  a  linear  neuron for separating  three  one-dimensional data shown  in  the 
following  table and in  figure  P3.9. Repeat all  calculations  from  problem 3.16, that is, 
find the weights and draw  the U line  in an (x, U) plane. Draw the decision  boundary  in 
the  same graph, and find  the  unique  minimal sum of error squares. 
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0 1 2 3 4 x  

Graph  for  problem 3.17, 

Figure P3.10 
Graph for problem 3.19. 

x d  

1 +l  
3 -1 
4 -1 

. What would  have  been the sum of error squares  after  successful  learning  in 
problem 3.17 had  you  applied  a  perceptron  with  a  bipolar  threshold  unit?  Comment 
on differences  with  respect to a  linear  neuron. 

. Design  a  linear  neuron for separating  three  two-dimensional data shown  in 
figure  P3.10.  The  circles  belong to class  1,  with d = + 1, and the  square  is an element 
of class 2, with d = - 1. Find the  optimal  weights, and draw the U plane  in an (x, U ) -  

space.  Draw the decision  boundary in the same graph, and calculate the unique 
minimal sum of error squares. 

is  symmetric,  solve  for ELT 
ax 2 
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mum 

a 1  
ax 2 Solve for - - (y - 

What is the  difference  between  the  probability-density  function and a maxi- 
likelihood  function?  Express both functions  in  the  case of one-dimensional and 

n-dimensional normal (Gaussian) probability  distributions,  respectively. In section 
3.2.1,  the  sum  of error squares  was  used as a cost  function. The text  stated, “It is 
relatively  straightforward to show that if the data are corrupted with  Gaussian  noise 
with a zero  mean,  minimization of the  sum of error squares  results  in  the  same 
parameters as maximization of the  likelihood  function.”  Prove  this  statement. 
(Hint:  Express  the  Gaussian  probability-density  function for P independent  identi- 
cally  distributed data pairs,  take  its  logarithm, and maximize it. In this  way,  you  will 
arrive at the  sum-of-error-squares  function. Do it for both one- and n-dimensional 
dist~butions,) 

3.23. The  network  in  figure  P3.11  represents an %” ”+ mapping. What is 
dimension m of the input space, and what  is  dimension n of the output space? 
a. Organize  the  weights  vectors Wit  i = 1,4, as rows of the  weights  matrix 
write  the  matrix equation (model) that this  networks  represents. 
b.  Organize  the  weights  vectors wi as columns of the  weights  matrix 
model that this  networks  represents. 
c.  Write  the  matrix  form of the LMS rule  (3.71) for both cases. 

. Design  perceptron  networks that can separate  the  given  classes  in  the  two 
graphs of  figure  P3.12.  (Hint:  The  number  of input neurons  is  equal to the  number of 

X1 

x2 

1 

Figure P3.11 
Network  for  problem 3.23. 



252 Chapter 3. Single-Layer Networks 

t Class 2 

l 1 

Figure P3.12 
Graphs for problem 3.24. 

features, but do not forget  the  bias  term.  The  number of outputs is  determined by the 
number of  classes, and the number of hidden  layer  neurons  corresponds to the 
number of separating  lines  needed to perform  a  classification.  Thus, just find  correct 
values for the  weights.) 

. Both  the  LMS  learning  rule  given by (3.71) and the learning  rule that was 
presented for a  single  perceptron unit in  box  3.1, method 1, are the  error-correction 
types of rules  in  the  sense that the  weight  change Awp is proportional to the error 
ep = (dp - op). Compare  these  similar  rules in terns of the features of input to the 
neuron U, output signal  from  neuron 0, desired  response d, and error (function) e at 
each  updating  step. 

3.26. Learning  rule  (3.71),  which  calculates the weights  vector  after  the pth training 
data pair  is  presented, can be rewritten  in  a  normalized  version as 

Wp4-l = wp + ~ w p  = wp + q(dp - op) - 
ilx1,ll2 ’ 
ILP 

where  the  learning rate 0 < q < l .  Prove that if the  same  training data pair (xp ,  dp) is 
repeatedly  applied at the iteration steps p and p + 1, the error is  reduced (1 - q)  
times. 

y using  the  expression  (3.54)  for  a  gradient,  show that the  ideal  gradient  cal- 
by using  the batch containing the whole data training  set  is  equal to the  sum 

of gradients  calculated  after  each  sample  is  presented. As 
during the  whole  epoch. (Hint: Start with  (3.54),  express 
perform  the  required  multiplications.) 
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No program  is  provided for learning and modeling  using  a  perceptron or a  linear 
neuron.  They are the  simplest  possible  learning  paradigms, and it may  be  very  useful 
if the  reader  writes his own  routines,  beginning  with  these. 

Write  the  numerical  implementations of the  perceptron  learning  algorithms as 
given  in  box  3.1.  Also,  design your own learning  code for a  linear  neuron. Start with 
method  1  in  section  3.2.2. It is just about calculating  the  pseudoinversion of an input 
data matrix X T .  Implement  method 4 in that section to be closer to the  spirit of 
iterative  learning. It is an on-line,  recursive,  first-order  gradient  descent  method. 

Generate a data set  consisting of a  small  number of vectors (training data pairs 
in  one or two  dimensions,  each  belonging to one of two  classes).  There are many 
learning  issues to analyze. 

1.  Experiment  with  nonoverlapping  classes and the  perceptron  learning  rule  first. 
Start with  random  initial  weights  vector (it can also be WO = 0) ,  keep  it constant, and 
change  the  learning rate to see whether an initialization  has  any effect on the  final 
separation of  classes.  Now  keep  a  learning rate fixed, and start each  learning  cycle 
with  different  initial  weights  vectors. 
2. Generate classes  with  overlapping, and try to separate  them  using  a  perceptron. 
3. Repeat all  the  preceding  calculations  using  your  linear  neuron  code. In particular, 
check  the  influence of the  learning rate on the  learning  process. 
4. Generate data for  linear  regression, and experiment  with  linear  neuron  modeling 
capacity.  Try  different  noise  levels,  learning  rates,  initializations of  weights, and so on. 

In particular, compare  method  3  in  section  3.2.2 (the ideal  gradient  learning in 
batch version)  with  method 4 (on-line  version of a  gradient method). Compare  the 
differences  while  changing  the  learning rate. 

Write  numerical  implementations of recursive  least  squares  algorithms  as  given  in 
boxes  3.2 and 3.3.  Compare  the  performance of the RLS and the  LMS  algorithms  in 
terms of number of iterations and computing  times on a given data set. 
5. Now,  repeat  all  the  examples  from  this chapter by applying  your  software. 

The  general  advice  in  designing  programs for iterative  learning  is that you  should 
always control what  is  happening  with  your error function E. Start by using  the  sum 
of error squares, and always  display both the  number of iteration steps and the 
change of error E after  every iteration. Store  the error E, and plot  its  changes  after 
learning. 

While  solving  two-dimensional  classification  problems, it may  also be  helpful to 
plot both the data points and the  decision  boundary  after  every iteration, 
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Genuine  neural  networks are those  with at least  two  layers of ne~rons-a hidden 
nd an output:  layer ( ), provided that the  hidden  layer  neurons  have 

nonlinear and differentia~le activation  functions.  The  nonlinear  activation  functions 
in a hidden  layer  enable a neural  network to be a universal appro~imator. Thus,  the 
nonlinearity of the  activation  functions  solves  the  problem of representation, The 

of the  hidden  layer  neurons9  activation  functions  solves  the  nonlinear 
S me~tioned in chapter 3, by the  use of modern  random  optimization 

a l g o ~ t ~ s  like  evolutionary  comput  learning  hidden  layer  weights  is  possible 
even  when the  hidden  layer  neurons’  vation  functions are not differentiable. The 
most  typical  networks that have  nondifferentiable  activation  functions  (membership 
functions) are fwzy logic  models. 

t  layer  is not treate as a layer of neural  processin 

units.  The output layer  neurons  may be linear  (for  regression  problems), or they can 
have s i ~ o i d a l  activation  functions  (usually for classification or pattern recognition 

here  is a theoretically  soun is for the wide application of two-layered  net- 
works,  which  asserts that a ne with an arbitrarily lar ber  of nonlinear 
neurons  in  the  hi imate  any  continuous 

le,  Cybenko (1989) 

basis  functions. 
us consider  first a neural rk9s intrig~ng and i ~ p o ~ a n t  ability to learn, 

which  is  introduce^ via a most elementa~ gradient  descent  algorithm,  the error 

he  basic  idea  behind  the error backpropagation ( ) algorithm  is that the error 
., 6,) for  hidden  layer  neurons  are  calculated by backpropagating 

S of the output layer  neurons 6,. 
S still  the  most  common1  used  learning algo~thm in  the  field of 
development of the  algorithm  shares  the  destiny of many 
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achievements  in  the  history of  science. The backpropagation of error through non- 
linear  systems  was  used  in  the  field  of variational calculus  more than a  hundred  years 
ago.  This approach was  also  used  in  the  field  of  optimal control long  before  its 
application  in  learning  in  neural  networks  (see, for example,  Brysan and Ho 1969; 
19'75). The EBP  algorithm  has  been  independently  reinvented  many  times by different 
individuals or groups of researchers  (e.g.,  Werbos  1974;  Le Cun 1985; Parker 1985; 
Rumelhart, Hinton, and ~ i l l i a m s  1986). The paper by Rumelhart et al. is  a popular 
one  because it was  developed  within  the  framework of learning  in  neural  networks. It 
is  the  core chapter of a  seminal and very influential  two-volume book (Rumelhart 
and McClelland,  eds.,  1986) that revived  interest and research  in the whole  neural 
computing field after  almost  two  decades of dormancy.  The formulation of the  EBP 
learning  rule can be found  in  many  books  in  the  neural  networks  field.  The  develop- 
ment  here  is  closest to Rumelhart and McClelland  (1986) and to Zurada (1992). 

Let us  first  examine the learning  algorithm for a  neural  network (W) without  a 
hidden  layer, that is,  with  only input and output layers.  Starting  from  the output 
layer  with  nonlinear  activation  functions  is  certainly  in the spirit of backpropagation. 
Basically  this  derivation  is  the  same as the  one for the  least  mean  square (I") 
algorithm,  presented as method  4 in section 3.2.2. Hence,  this  first  step  toward  the 
most  general  learning  procedure  is  a  first-order  method. The learning  law  is  devel- 
oped for the  case  when  there are multiple  neurons  having  a  nonlinear  activation 
function  in  the output layer.  (The  multiple  neural  processing  units  in an output layer 
typically  correspond to the  classes  in  a  multiclass pattern recognition  problem.) 

Consider  the  single-layer NN presented  in  figure  4.1.  (Now  the notation y is  used 
for the input signal to the output layer,  keeping x for the input to the  whole  network 
comprising the input, hidden, and output layers). The sum-of-error-squares  cost 
function for this  neural  network,  having K output layer  neurons and P training data 
pairs, or patterns, is 

Equation (4.1)  represents  the total error over  all the 
summation  sign) and all  the output layer  neurons 

training data patterns (the first 
(the second sum~ation sign). 

Typically,  the  EBP  algorithm adapts weights  in an on-line  mode, and in this  case  the 
first  summation  sign  in  (4.1)  should be  left out. The  EBP  algorithm  is  a  first-order 
optimization  method that uses  the  gradient  descent  technique for weights  adjustment. 
Thus, an individual  weight  change  will be in  the  direction of a  negative  gradient, and 
at each iteration step it will  be calculated as 
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Single-layer  neural  network  with  nonlinear  activation  function. 

The  derivation  here  is of the  learning  law for the adaptation of  weights  in an on-line 
mode.  Thus, for reasons of brevity,  the  subscript p is  omitted  during  the  derivation. 
The input signal Uk to each output layer  neuron (k  = 1, . . . , Ikc) is  given as 

J 

j=l 
(4.3) 

As in  the  case of the L S algorithm,  the error signal term for the kth neUrOn CTok is 
defined as 

where  the  subscript o stands for the output layer.  The use  of this  subscript  is  neces- 
sary  because  the error signal terns for output layer  neurons  must be distinguished 
from  those for hidden  layer  processing  units. 
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Applying  the  chain  rule,  the  gradient of the  cost  function  with  respect to the  weight 
Wkj is 

and 

The  weight  change  from  (4.2)  can  now be written as 

Applying  the  chain  rule,  the  expression for the error signal 6ok is 

where  the  term .f’(uk) represents  the  slope dOk/dUk of the kth neuron’s  activation 
inally,  the error adjustments can be calculated  from 

=L= wkj f v60/cy, k =: 1, . . . , K ,  j 1, . . . , J .  (4.10) 

This  is  the  most  general  expression for the  calculation of  weight  changes  between  the 
hidden  layer  neurons and the output layer  neurons. Note that (4.10)  is  valid  provided 
that the  cost  function  is  the  sum of error squares and that the input to the kth (output) 
neuron  is  the  scalar  product  between  the input vector y and the  corresponding  weights 

k .  The  graphical  representation of (4. lo), for adapting weights  connecting  the 
Jth hidden  layer  neuron  with  the kth output layer  neuron,  is  given  in  figure 4.2. Note 
that the  weight  change AWkj  is proportional to both the input vector  component y j  

and the error signal  term B&, and it does  not  directly  depend  upon  the  activation 
function of the preceding neuron. 
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Figure 4.2 
Weight wkj  connecting  the j th  hidden  layer  neuron  with  the kth output  layer  neuron  and  its  adaptation 
AI\wkj. 

Logistic  functions  and  their  derivatives Bipolar  sigmoidal  functions  and  their  derivatives 
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X 

Figure 4.3 
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X 

Unipolar  logistic  and  bipolar  sigmoidal  activation  functions  and  their  derivatives, 

The  most  common  activation  functions are the  squashing  sigmoidal  functions: 
the unipola~ logistic function (4.1  1) and the bipolar s i g ~ o i d ~ l  function (related to a 
tangent  hyperbolic)  (4.12),  which  together  with  their  derivatives are presented  in 
figure  4.3. 

2 o=-- 1. 
1 +e-" 

(4.11) 

(4.12) 

The  term s i ~ ~ o i d a l  is  usually  used to denote  monotonically  increasing and S-shaped 
functions.  The  two  most  famous  ones are the  logistic  function and the  tangent  hyper- 
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bolic.  But  instead of a  sigmoidal  function,  any  nonlinear,  smooth,  diEerentiable, and 
preferably  nondecreasing  function can be  used. The sine  between -x12 and x/2, 
the error function erf(x), and the  function x/(l + 1x1) belong to this  group, too. The 
requirement for the  activation  function to be  differentiable  is  basic for the  EBP 
algorithm.  On  the other hand, the  requirement that a  nonlinear  activation  function 
should monoto~cally increase  is not so strong, and it is  connected  with  the  desirable 
property that its  derivative  does not change  the  sign.  This  is of importance  with  regard 

P  algorithm  when  there are fewer problems  getting  stuck at local  minima  in 
the  case of an always  positive  derivative of an activation  function  (see fig.  4.3). Note 
that because w2 = 0, all  activation  functions  in  figure  4.3  pass through the  origin.  The 
bipolar squashing  function  (4.12)  is  in  close  relation to a  tangent  hyperbolic  function. 
(Note that the  derivative  functions  in  fig. 4.3 are in  terms of U, not x.) 

Equation (4.10) for the adaptation of weights  is in scalar form. In vector notation, 
the  gradient  descent  learning  law  is 

(4.13) 

is  a ( K ,  J )  matrix, and y and 6, are the ( J ,  1) and the ( K ,  l )  vectors, 
respectively. 

4. 

Now  let  us  analyze  the  feedforward  network that has at least  one  hidden  layer of 
neurons.  When  there are more  hidden  layers,  each  layer  comprises  neurons that 
receive inputs from  the  preceding  layer and send outputs to the  neurons  in  the  suc- 
ceeding  layer.  There are no feedback  connections or connections  within the layer. 
The  simplest and most popular such  structure  is  a  network  with  one  hidden  layer 
(see  fig.  4.4).  Fuzzy  logic  models are basically  of  the  same  structure, but their  activa- 
tion  functions  (membership,  grade of  belonging, or possibility  functions) are usually 
closer to radial basis  functions than to sigmoidal  ones. 

The  derivation of the  learning  rule or of the equation for  the  weight  change Avji of 
any  hidden  layer  neuron (the same as for an output layer neuron) is  the  first-order 
gradient  procedure 

(4.14) 

(Note that the Jth node  in  fig.  4.4  is  the  augmented  bias tern y~ = +l and that no 
weights  go to this “neuron.” That is why the  index j in  (4.14)  terminates at J - 1.  If 
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Figure 4.4 
Multilayer  neural  network. 

there  is no bias tern, the last, that is,  the Jth neuron is a  processing  unit  receiving 
signals  from the preceding  layer, and j = 1, . . , J , )  

As in (4.9, 

(4.15) 

Note that the inputs to the  hidden  layer  neurons are xi and that the  second tern on 
the  right-hand  side of  (4.15)  is equal to xi. NOW, the  weights  adjustment  from  (4.14) 
looks  like  (4.8): 

aE Avji = -v- = vaYjxi, j = 1,.  . . , J  - 1, i = 1,. . . , I 7  (4.16) 
av,, 

and the error signal tern for the  hidden  layer  weights is 

(4.17) 
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The problem at this  point  is to calculate  the error signal  term s,i as given  in  (4.17). 
This step  is the most important one in the general~ed delta  rule:  the  derivation of the 
expression for S , j  was  a  major  breakthrough  in  the  learning  procedure  for  neural 
networks. Note that now u j  contributes to the errors at all output layer  neurons  (see 
the bold  lines  fanning out from  the jth hidden  layer  processing  unit  in fig. 4.4),  unlike 
in  the  case of the output layer  neurons  where uk affected  only  the &h neuron’s output 
and its  corresponding error eke Applying  the  chain  rule,  from  (4.17)  there  follows 

(4.1 S) 

The calculation of the  derivative  given  in  the  second  term on the right- and side  of 
(4.18)  is  relatively straightfo~ard: 

(4.19) 

Error E is  given  in  (4. l), and the  first  term on the  right-hand  side of (4.18) can be 
written as 

The calculation of the  derivatives  in  brackets  results in 

(4.20) 

(4.21) 

(4.22) 

~ o m b i ~ n g  (4.18),  (4.19), and (4.23), 

(4.23) 

I(: 

k= l 
(4.24) 
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Finally  the weight’s adjustment  from  (4.16)  is  given by 

K 
6okwkj ,  j = l , .  . . , J - 1, i = 1,.  . . , I .  

k= l 

Equation (4.25)  is  the  most important equation of the  generalized  delta  learning  rule. 
It explains  how to learn (adapt, change, train, optimize)  hidden  layer  weights. In each 
iteration step,  the new  weight vji will  be adjusted by using the equation 

In  vector notation this  gradient  descent  learning  rule  for  hidden  layer  neurons  is 

(4.2’7) 

where V is a ( J  - l ,  I )  matrix, and x: and S, are the ( I ,  1) and the ( J  - 1 , l )  vectors, 
respectively. 

The  derivatives of the  activation  functions  in  the  hidden  layer or output layer 
neurons,  required  in  the  calculation of the  corresponding error signal  terms 6 if these 
activation  functions are unipolar or bipolar  sigmoidal  functions  given  by  (4.11) and 
(4.12), can be  expressed in  terms of the output from  the  neuron as follows: 

f ’ ( u )  = ( l  - o)o (for the  unipolar  (logistic) function), (4.28) 

f ’ ( U) = ‘/2 ( 1 - 02) (for the  bipolar  sigmoidal function), (4.29) 

where for the  hidden  layer  neurons o = y .  

in  which a training pattern is  presented at the input layer, and then  in  the  back- 
propagation part, all  weights are updated  before  the  next pattern is  presented.  This  is 
inc~e~entaZ learning.  An  alternative, s m a r i z e d  in  box  4.1 b, is to employ ~ ~ - Z i n e  or 
batch learning,  where the weight  changes are accum~ated over  some  number  (over a 
batch) of training data pairs  before  the  weights are updated.  Typically  the batch may 
contain all data pairs.  The  weights adaptation equations and the  whole  EBP 
algorithm  basically  remain  the  same.  The  only  digerence  is  in  the  calculation of the 
weight  changes  in  steps 6-9 (step 10 has no meaning if the batch contains all data 
pairs).  The  overall error function  is  given by (4.1). 

It may be helpful to remember that 6y j  and &k are the error signal t e r ~ ~ ,  not errors 
of any  type.  (As  mentioned  in chapter 3,6 is  equal to the error e at the correspon~ing 
neuron  only  when  the  neuron  activation  function  is  linear and with  slope l.) At the 

Box 4. l a  summarizes  the  procedure and equations for the on-line E 
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Box 4.la 
Summary  of  the Error  Backpropagation  Algorithm-On-line  Version 

Given  is  a  set  of P measured  data  pairs that are used  for  training: 

X = { ~ , , d , , p =  l )... ) P ) ,  

consisting  of  the  input pattern  vector 

x = [XI x2 . . * x;, + l ] T  

and  the  output  desired  responses 

d = [dl d2 . .. d ~ ] ‘ .  

Feedforward Part 

Step  1.  Choose  the  learning rate q and  predefine  the  maximally  allowed,  or  desired,  error Edc8. 
Step 2. Initialize  weights  matrices Vp(J - l ,  I )  and W p ( K ,  J ) .  
Step 3. Perform  the  on-line  training  (weights  are  adjusted  after  each  training pattern), p = l ,  . . . , P. 
Apply  the  new  training  pair (xp, dp)  is  sequence or  randomly  to  the  hidden  layer  neurons. 
Step 4. Consecutively  calculate  the  outputs  from  the  hidden  and  output  layer  neurons: 

Yjp = h ( u j p ) ,  okp = f O ( u k p ) ,  

Step 5. Find  the  value  of  the sum of errors  square  cost  function E’ for  the  data  pair  applied  and  the 
given  weights  matrices V, and W, (in  the  first  step  of an epoch  initialize E, = [ I): 

Note that the  value of the  cost  function  is  accumulated  over  all  the  data  pairs. 

~ackprOpagation  Part 

Step 6. Calculate  the  output  layer  neurons’  error  signals cTokp: 

6okp = (dkp - Okp)  .&(ukp), k = 1,. . ) K .  - 
ekP 

Step 7. Calculate  the  hidden  layer  neurons’  error  signal cTyj,: 

dy jp  L=: . f ,(Ujp) x6okpwkjp, j = 1, J - 1. 

Step 8. Calculate  the  updated  output  layer  weights Wkj,p+l :  

x: 

k=l 

wkj, p+ 1 = wkjp + qaokp rjp 

Step 9. Calculate  the  updated  hidden  layer  weights ~ j i , ~ + l :  

Vji ,p+l  = vjip + qSyjpxip. 
Step  10. l f  p P,  go to step 3. Otherwise  go to step 11, 
Step  11.  The  learning  epoch  (the  sweep  through  all  the  training  patterns)  is  completed: p = P .  For 
Ep < E&, terminate  learning.  Otherwise  go to step 3 and start a new learning  epoch: p = 1. 
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Box 4.lb 
S ~ a ~  of the  Error  Backpropagation Algorit~-O~-line Version 

~a~kpropagat ion Part 

Weights w~ and wji are  frozen,  or  fixed,  for  the  whole  batch of training  patterns: 

Step 6 .  Calculate  the  output  layer  weight  changes Awkj: 

P 

Step 7. Calculate  the  hidden  layer  weight  changes Avji: 

P K 
j =  1, ..., J -  1, i =  1, ... 

p= 1 k= 1 

Step 8. Calculate  the  updated  output  layer  weights wkj: 

wkj = wkj $- VAWkj. 

Step 9. Calculate  the  updated  hidden  layer  weights vji: 

vji =I: Vji + YAvji. 

same  time, as example 4.. l shows,  these 6 variables are extremely  useful  signals, and 
because of their  utility  the  whole  algorithm  was  named  the  generalized  delta  rule. 
This  following  example  should  elucidate  the  application  of the EBP  algorithm and 
the  usefulness  of  the output layer and hidden  layer  neurons’  delta  signals. 

~~~~~2~ 4.1 For the  network  shown  in  figure 4.5, calculate  the  expressions  for  the 
weight  changes  using  the  EBP  algorithm  in an on-line  learning  mode.  The  training 
data, consisting of the input pattern vectors x = [x1 x21 and the output desired 
responses d = [dl d2] T ,  are given as X = {xp ,  dp7 p = 1, . . . , P } .  hj and ok denote the 
HL and OL  activation  functions,  respectively. 

After  presenting input vector x = [x1 x*] T ,  the output vector o = [o1 021 is 
calculated fist. Knowing  the  activation  functions  in  neurons,  their  derivatives can be 
readily  calculated, and using  the  given  desired  vector d = [dl d2] T ,  the  delta  signals 
for the OL neurons can be calculated: 

Having (T&, one  can  find  the  hidden  layer  neurons’  deltas (error signals) as follows: 
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- Y3 

Figure 4.5 
Scheme  of  variables  for  error  backpropagation  learning  in  a  multilayer  neural  network. 

Only  now can the  weight  changes for specific  weights  be  calculated.  Thus, for 
example, 

A V 1 2  = f I i sh lX2,  

After  the  first data 

v12n = v120 + A v 1 2 ,  

pair has been  used,  the new  weights obtained are 

where  the  subscripts n and o stand for new and old. 

ractical Aspects of the Error 

Multilayer  neural  networks are of great  interest  because  they  have  a  sound  theo- 
retical  basis,  meaning that they are general  multivariate  function approximators in 
the  sense that they  can  uniformly  approximate  any  continuous  function to within an 
arbitrary accuracy,  provided that there are a  sufficient  number  of  neurons  in  the 
network. 

Despite  this  sound  theoretical foundation concerning  the  representational capa- 
bilities of neural  networks, and notwithstanding  the  success  of  the E 
algorithm,  there are many  practical  drawbacks to the EBP algorithrn. The most 
troublesome  is the usually  long  training  process,  which  does not ensure that the 
absolute  minimum of the  cost  function  (the  best  performance of the network) will 
be achieved.  The  algorithm  may  become  stuck at some  local ~ n i m u m )  and such  a 
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te~ina t ion  with a suboptimal  solution will  require  repetition of the  whole  learning 
process by changing  the  structure or some  of the  learning  parameters that influence 
the  iterative  scheme. 

As in  many other scientific and engineering  disciplines, so in  the field  of artificial 
neural  networks,  the  theory (or at least part of it) was  established  only  after  a  number 
of practical  neural  network  applications  had  been  implemented. 
questions  still  remain  open, and for a broad  range of engineering  tasks  the  design of 
neural  networks,  their  learning  procedures, and corresponding  training  parame- 
ters  is  still an empirical art. In this  respect,  the  E  algorithm  is a genuine  represen- 
tative of nonlinear opti~ization schemes.  The  discussion  in the following  sections 
concerning  the  structure of a network and learning  parameters  does not yield  con- 
clusive  answers,’but it does  represent a useful  aggregate of experience  acquired  during 
/’ the.4ast decade of  extensive application of the  EBP  algorithm and many  related 

”’learning  techniques.  The  practical  aspects of E  P  learning  considered  are  the  number 
of hidden  layers,  the  number of neurons in a hidden  layer,  the  type of activation 
functions,  weight  initialization,  choice of learning rate, choice of the error stopping 
function, and the  momentum  term. 

ore 

One of the  first  decisions to be made  is  how  many  hidden  layers are needed  in  order 
to have a good  model. First, it should be stated that there  is  no  need to have  more 
than two  hidden  layers.  This  answer is supported both by the  theoretical  results and 
by many  simulations  in  different  engineering  fields, although there  used to be debates 
about networks  with  three and more  hidden  layers  having  better  mapping  properties 

uang and Lipmann  1988). The real  issue at present  is  whether  one or two 
hidden  layers  should be used.  A  clear  description of the  disagreement  over  this prob- 
lem  can be found  in  two  papers:  Chester  (1990) and Hayashi, Sakata, and Gallant 

0th papers were  published  in  the  same  year  but  were  presented at different 
nferences. The title of the  first  one  is  very  explicit:  “Why  Two  Hidden  Layers  Are 
tter Than One.”  The  second,  besides  claiming that for certain  problems  the  single- 

layer NN gives a better  performance,  states,  “Never  try  a  multilayer  model for fitting 
data until  you  have  first  tried a single-layer  model.’’  This  claim  was  somehow  soft- 
ened by calling it a rule of thumb, but this  is  very  often  the  case  in  the NN field 
because  there  is  no  clean-cut  theoretical  proof for many  experimentally  obtained 
results. 

th architectures are theoretically  able to approximate  any  continuous  function 
desired  degree of accuracy. As already stated, Cybenlco  (1989), Funahashi et  al. 

omik et al. (1989)  independently  proved  this approximation property 
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for a  single  hidden  layer  network, and rkova  (1992)  gave  a  direct  proof of the  uni- 
versal approximation capabilities of a  feedforward  neural  network  with  two  hidden 
layers. She also  showed  how to estimate  the  number of hidden  neurons as a  function 
of the  desired  accuracy and the rate of  increase  of  the  function  being  approximated. 
These  proofs are reflected  in  many  papers  using  networks  with  one or two  hidden a 

layers.  There are some  indications (Hush and Horne 1993) that for  some  problems  a 
small  network  with  two  hidden  layers can be  used  where  a  network  with  one  hidden 
layer  would  require an infinite  number of nodes.  At  present,  there  are not many 
sound  results  from  networks  having  three or more  hidden  layers.  owever,  there are 
exceptions  (see  Le Cun et al. 1989). 

It is d i ~ c u l t  to say  which  topology  is  better.  A  reasonable  answer  would  specify 
the cost  function for a  neural  network’s perfor~ance, including  size of the NN, 
learning  time,  implementability  in  hardware,  accuracy  achieved, and the  like. 
on  the  author’s  experience (and intuition), the  rule of thumb stating that it  might  be 
useful to try  solving  the  problem at hand  using an NN with  one  hidden  layer  first 
seems appropriate. 

The number of neurons  in  a  hidden layer2 (HI,) is the  most important design  parame- 
ter  with  respect to the approximation capabilities of a  neural  network.  Recall that 
both the  number of input components  (features) and the  number of output neurons is 
in  general  determined by the nature of the  problem.  Thus,  the  real  representational 
power of an NN and its generalization  capacity are p~marily determined by the 

L neurons. In the  case of general  nonlinear  regression (and similar 
statements  can be made  for pattern recognition,  i.e., classi~cation problems)  the  main 
task is to model  the  underlying  function  between  the  given inputs and outputs by 

nodes,  two  extreme  solutions  should be avoided:  filtering out the 
tion (not enough HL neurons) and modeling of  noise or overfitting 

the data (too many HI, neurons). In mathematical  statistics,  these  problems are dis- 
cussed  under the rubric of ~ i a ~ - ~ ~ r i a ~ c e   ~ i Z e ~ ~ ~ ,  which  (strictly spea~ng)  has  been 
developed for the  squared  loss  function  only.  Geman,  Bienenstock, and 
(1992)  discussed  this  issue  of  the error decomposition into bias and variance  compo- 
nents at length.  This  section  first  presents the basic  statistical  characteristics and 
nature of  these  two  components,  which  are  related to learning  procedure, and then 
presents  the  mathematics of error ~ecomposition into bias and variance. The focus  is 
on  least-squares  estimators, but the  issues are generally  valid  for  a  much broader 
class of neural  networks and fuzzy  logic  models). 

e  disturbances  contained  in  the  noisy  training data set. 
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One of the  statistical  tools to resolve  the  trade-off  between  bias and variance  is  the 
c~oss-validation technique. The basic  idea of cross-validation  is  founded  on  the  fact 
that good  results  on  training data  do not ensure  good  generalization  capability. By 
generalization  is  meant  the  capacity of an NN to give correct  solutions when  using 
data  that were not seen  during  training.  This  previously  unseen data set  is  a test or 
validation set  of patterns. The standard way to obtain this data set  is to hold out a 
part (say,  one third) of all  the  measured data and use it, not during  training, but in 
the  validation or test  phase  only.  The  higher  the  noise  level  in the data and the  more 
complex  the  underlying  function to be modeled,  the  larger  the  test  set  should  be. 
Thus, by using  the  cross-validation  procedure,  the  performance of a  network  is 
measured  on  the  test or validation data set,  ensuring  in  this way a good  generaliza- 
tion  capability. 

The basic  ideas are presented  for  the  simplest  possible  nonlinear  regression  task-a 
mapping  from !R' "+ !R', or the  modeling of the  one-dimensional  function y = f ( x )  
using an  NN. The low  dimensionality  of  the  problem  does not annul the  validity of 
the  concepts  in the case of high-dimensional or multivariate  functions.  All  relevant 
results are valid  in  the  more  complex  mappings  also, and the  simple  examples  are 
useful  mostly  because  they  allow  visualization of the  problems. 

Let us first  discuss  the  concept of the  bias-variance  dilemma as given  in  example 
4.2. The  network  with  one HL neuron  (dashed  curves) and the  network  with 26 HL 
neurons (dotted curves)  in  figure  4.6  represent  different  kinds of bad  models of the 
underlying  function f ( x ) .  In terms of the  mathematical  theory of approximation, the 
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Pigure 4.6 
Curve  fittings  based  on  two  different data sets  (26  patterns  represented by  crosses,  25%  noise).  Underlying 
functionf(x) = x + sin(2x)  (solid  curves);  approximation by neural  network  with  one  hidden  layer  neuron 
(dashed  curves)-high  bias,  low  variance;  interpolation  by  neural  network  with 26 hidden  layer  neurons 
(dotted curves)-low  bias,  high  variance. 
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E 
Test  Set  Performance 
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Cross  validation  curve of 
total error 

Area pf optimal  parameters +. 
I \  

DeSign parameters: # of WL neurons 
- 
ar or 

## of learning  steps 

Sketch of typical  dependence of bias  and  variance  upon  neural  network design parameters  (smoothing 
pa~ameters) . 

dashed  curves  represent  the a ~ ~ ~ ~ x i ~ ~ t i ~ g  function and the dotte 
the i ~ t e r ~ ~ Z ~ t i ~ g  function that passes through each  training dat 
dotted curve  suffers  from  poor  generalization  capability although it is a perfect 
interpolant. 

ver,  whether to make an inte~olation or an  ~pproximation is not of crucial 
i nce in  curve  fitting. Good or bad surface  reconstruction can be  achieved  with 
both methods, and from a statistical  point of  view the most im~ortant task is to 
understand and resolve  the  bias-variance  dilemma;  the  objective is to fit a curve or 
surface  having both small  bias and small  variance.  The  trade-off  between  these  two 
components of approximation error arises  from para~eters giving  low  bias and high 
variance, or vice versa.  The  dependence of bias and ~ ~ r i a ~ c e  upon  some  design 

ing  nonlinear  regression or pattern recognition  problems  is  shown 
cal  design  parameters,  also  called  smoothing,  parameters,  related 

to the  learning  phase of neural  networks are the  number of L neurons and the 
number of learning  steps.) 

The task of cross-validation,  or the test  phase,  will  be to find  the area of optimal 
~arameters for which both bias and variance (the total error) are reasonably  low. 

dentify  (model,  fit, or reconst~ct) the u n ~ o w n  relation or process 
y = f ( x )  = x + sin(2x) between (just) two  variables x and y .  In other  words,  design a 
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neural  network  such that its output o z f ( x ) ,  having  a  set of  26 data pairs  from 
measurements  highly corrupted by  25% white  noise  with  zero  mean. (More accu- 
rately,  the  problem  is to fit  the  ensemble  from  which  the data were drawn.  In figs.  4.6 
and 4.8  the data sets are represented  graphically by crosses.)  Model  the data using 1, 

L  neurons  having  tangent  hyperbolic  activation  functions. 

Using  artificial PJNs with  different  numbers of HL neurons  in  order to recover 
this particular functional  dependency f ( x )  = x + sin(2x), two  extreme  results  are 
obtained,  shown  in  figure  4.6. The solid  curves,  representing  the  underlying  function, 
would  probably be the  ideal  fit and the  best approximation of f ( x ) .  (In the field  of 
soft  computing  such  a  perfect  fit  is  not a realistic  goal.  Moreover,  closely approach- 
ing  such  perfect  solutions  is  usually  very  costly  in  terrns of computing  time and 

wever,  one  should  try to come as close as possible to such  a  solu- 

 prox xi mating curves  would  have  large bias-a great error 
or disagreement  with  the data set-but  small  variance-the  difference  between the 
approximating  functions  obtained  using  different data sets  will not be large. (Note 
the  ‘‘closeness9’  of  the  two  dashed  lines  in  the  left and right  graphs  in  figure  4.6.) At 
the  same  time,  the dotted interpolation  curves are not pleasing  either,  because  neither 

r  fit. In this  case,  the  function reconst~ction has  a  very  small  bias. 
L  neurons,  there  is no disagreement or error at all  between  the 
tion and the  training data for  the  given data points, and the error 

for the given data set  is  equal to zero.  However,  the  variance  is  large  because for the 
different data sets of the  same  underlying  function  there are always  very  different 

ompare the  two dotted inte~olating curves  in  the  left and right 
graphs in fig. 4.6,) 

Generally,  from  the point of  view  of neural  network  design,  the  dashed  curves  in 
figure  4.6  correspond to NNs with  a  small  number of neurons  leading to a  rough and 
imprecise  model that has  filtered out both the  noise and the underlying  function. 
The dotted curves  represent NNs with an excessive number of neurons  leading to 
the ove~tting of data (noise  is  also  modeled but not filtered out), which not only 
provides  poor  generalization  after  training  but  also,  with  a lot of HL weights to be 
trained, makes  learning  very  slow. 

In practical  applications of NNs one  should  build and train many  differently 
structured NNs that differ  in  bias-variance and then  pick  the  best  one.  (This  is part of 
the  cross-validation  procedure.)  Figure 4.8  shows the  results of fitting  two  different 

iginating  from  the  same  process, f ( x )  = x + sin(2x), using  eight 
. In this  simple  example,  this  is  the  network that can reconstruct 
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Figure 4.8 
Curve  fittings  based  on  two  different  data  sets  (26  patterns  represented  by  crosses,  25%  noise).  Underlying 
function f ( x )  = x + sin(2x)  (solid  curves);  approximation by neural  network  with  eight  hidden  layer 
neurons-reasonable  bias  and  variance  (dashed  curves). 

the  function  with  a  dashed  approximating  curve that is  actually  the  best  compromise 
in  balancing  bias and variance and keeping  each as low as possible. 

The  cross-validation  technique  is widely  used in  the  neural  networks  field, although 
there  is no guarantee that it will produce an optimal  model. The smaller  the  test or 
validation data set and the  higher  the  noise  level,  the  more  likely it is that cross- 
validation will  result  in  a far from  optimal  model.  Despite  this, it has been and still  is 
a popular technique.  Recently,  many other techniques for the  determination of the 
optimal  number of HL neurons  have  been  developed,  the  most popular being  differ- 
ent ~ r ~ ~ ~ n g  procedures  (Le Cun, Denker, and Solla  1990;  Hassibi and Stork 1993). 
The basic  idea of  these algorithms  is to start with  a  relatively  large  number of hidden 
layer  neurons and gradually  reduce  their  number. The opposite  idea  (called  the 
g ~ o ~ i n g  algorithm)  is to start with  a few HL neurons and then add new ones  (Bello 
1992). 

The mathematical  presentation  here of a  classical  bias-variance  decomposition 
follows that given  in Geman et al. (1992). A standard learning  problem  in an NN 
involves an input (features)  vector x, a  desired output d, and a  learning  task to find 
the  network's  structure as well as a  set  of  the NN's weights  capable  of  modeling  the 
underlying  relationship  between  the input and output variables.  The  training data 
pairs  obey  some  unknown joint probability distribution, PD. Typically,  training and 
test data patterns (x, d )  are independently  drawn  from PD. The fact that d is  a  scalar, 
meaning that there  is  a  single  neuron  in  the output layer,  does not restrict  the  results. 
The conclusions and remarks that follow  apply  generally, and the  choice of d as a 
scalar  is for the  sake  of  simplicity  only.  The  neural  network  is  solving  a  nonlinear 
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ression  task  in  which  the re~ress io~  of d on x is a function of x, which  gives the 
mean  value of d conditioned on x, E[d I x], where E denotes the expectation operator 
with  respect to PD. The use  of the  statistical  expectation operator E states that the 
desired  value d will  be  realized on average,  given a particular input vector x. Taking 
into account  the  statistical character of the  learning,  the  cost  function to be mini- 
mized  for  the  regression task is  the  mean  squared error 

MSE = E [ ( d  - o(x ) )~ ] ,  (4.30) 

where both d and o are conditional on x, and the output from an NN Q is para- 
meterized by the  network  weights.  (Because of the  dependence on the  weights, 
o = o(x, W), but  this  dependence  is  obvious  in an NN, and W is  omitted for the  sake 
of brevity.) 

First, it should be shown that regression  is a proper  tool for fitting data (actually, 
for  modeling  the  underlying  function or an ensemble of observations  from  which  the 
data are drawn  during training). In  order to show  the  property of regression, a useful 
expression for the  mean  squared error (MSE) is  derived for any  function o(x) and 
any k e d  x: 

MSE = E[(d- o ( x ) ) ~  I X] 

= E[(@-- E[d  I x]) + (E[d  I x]. 

= E[(d - E[d I x])2 1 x) + (E[d  

= IE[(d- E[d I I x) + (E[d 

.Q(x>)>2 I XI 

x] - o(x))2 + 2E[(d 

x] - o(x))2 +2(E[d 

= E[(d - E[d I x])2 I x] + (E[d  1 x] - o(x))2 

2-2 E[(d-E[d I x])2 I x]. (4.31) 

Thus,  among  all  the  functions of x, regression  is  the  best  model  of d given x, in  the 
m~an-squared-error sense.  After  the  learning,  the  solution of a regression  problem 
will  be the  set  of an NN’s weights that models  the  function o(x). 

The NN output o(x) depends  upon  the  training data set D = {(xi, dj), j = l ,  . . . , P}, 
too, and this  dependence  will  be  stressed  by  explicitly  writing o = o(x; D). Given D, 
and  given a particular x, the  cost  function that measures the effectiveness  of o(x; D) is 
the  mean  squared error 

MSE = E[(d - @(X; D ) ) 2  I x,D]. (4.32) 

To emphasizing  the  dependence of the NN model  on D, the  penultimate  line  in  (4.31) 
can be written as 
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where  the  first tern on  the  right-hand  side  in  (4.33),  namely, E[(d  - 
is  the  variance  of  the  desired  output d given x, which  does not depend  on  the data D 
or on the NN model o(x, D). ence,  the  effectiveness  of  the NN model 
measured by the  squared  distance to the  regression  function 

and the  mean  squared  error  of o as an estimator of the  regression E[d 

(4.34) 

] is 

(4.35) 

The  subscript D denotes an expectation E with  respect to a training  set D, or in  other 
words, ED represents  the  average  over  the  ensemble  of  possible D for a fixed  sample 
size P. The  dependence  of  the  approximating  function o(x, D) on different  training 
data sets  is  given  in  figs.  4.6  and  4.8,  and  generally o(x, D) varies  substantially  with 
D. This  may  result  in  the  average of o(x, D) (over  all  possible  training  patterns D) 
being  rather far from  the  regression E[d  1 x]. These  effects  will  be  more  pronounced 
for a high  level  of  noise  in data, and the  mean  squared  error  (4.35)  can  be  very  large, 
making  the  approximating  function o(x, D) an unreliable NN model  of d. A useful 
way to assess  these  sources  of  estimation  error  is  via  the  bias-variance  decomposition 

SE, which  can  be  derived  similarly to (4.31): 

= (ED[O(x; D)] - E[d I x])2 +ED 0 x; D - E D  0 x; D * 

2 (4.36) 

Bias of the  approximating  function  represents  the  difference  between  the  expecta- 
tion of  the  approximating  function,  i.e.,  the NN output, o(x; D) and the  regres- 
sion  function E[d I x]. Vizriance is  given  by the  ensemble-averaged  term 
ED[(o(x; D) - E ~ [ o ( x ;  D)]>”], where  the  first  term  represents  the N N  output on a 
given  particular  training data set D, and  the  second is the  average  of  all  training 
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patterns used.  All  the  preceding  discussion is related to finite  training data sets that 
are  typically  used  in  the  training of an NN. 

Thus, an appropriate NN should  balance  the  bias and variance,  trying to keep 
each as low as possible. It has  been  shown that for any  given  size  of data patterns 
(figs.  4.6-4.8) there  is  some  optimal  balance  between  bias and variance. In order to 
reduce both bias and variance,  one  must use larger  training data sets. Neural net- 
works  belong to the  class of consistent estimators,  meaning that they can approxi- 
mate  any  regression  function to an arbitrary accuracy  in  the  limit as the  number of 
data goes to infinity (White 1990). 

Unfortunately,  in  practice  the  number of training data is  limited and other  tech- 
niques  should be  used to balance  bias and variance.  Few out of many  statistical 
techniques  aimed at resolving  the  bias-variance  dilemma  have  been  mentioned. The 
newest  approaches to training  (learning) are based on smaZZ s ~ m ~ Z e  statistics. By 
taking into account  the  size  of  the data set,  which  is  very  often  small  with  respect to 
problem  dimensionality,  one can obtain better  solutions to most pattern recognition 
or regression  tasks.  Whole new statistical  learning  techpiques for small  training data 
sets are being  developed  with  promising  results,  This approach was  introduced  in 
chapter 2. For more  details,  the  reader  should  consult, for example,  Vapnik  (1995; 
1998) and Cherkassky and Mulier  (1998). 

As  with  many other practical  questions  in  the  neural  networks  field,  there are no 
definite  answers  concerning  the  choice of activation  functions (AFs) in  a  hidden  layer. 
Many  different  nonlinear  functions can be  used, ensuring  the  universal  approxima- 
tion  capacity of a  specific  network. It is not so difficult to choose AFs for output layer 
neurons-they are typically  linear  (for  regression  types of problems) or sigmoidal 
(mostly for classification or pattern recognition  tasks, although linear  neurons  may 
perform well in  the  case of  classification, too). The  two  most popular activation 
functions,  the  unipolar  logistic and the  bipolar  sigmoidal  functions, were introduced 
in  section  4.1 for the multilayer  perceptrons (MLPs) that learn using  the EBP algo- 
rithm or related  iterative  algorithms.  (The  most  famous of the  bipolar  sigmoidal 
functions  is  the  tangent  hyperbolic  function.) It was  also  mentioned that instead of 
a  sigmoidal  function,  any  nonlinear,  smooth,  differentiable, and preferably  non- 
decreasing  function  can be used,  but  the  most  serious  competitors to the MLPs are 
the  networks that use radial basis  functions (RBFs) in  hidden  layer  neurons. 

Let  us  consider  the  basics  of  sigmoidal and radial basis activation functions.  The 
most  representative and popular RBF is  a  (multivariate)  Gaussian  function,  known 
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from  courses on probability as the  function of (multivariate) noma1 distribution. 
This  function  is  representative of many other RBFs. 

Whether a sigmoidal or a  Gaussian  activation  function  is  preferable  is  difficult to 
0th types  have  certain  advantages and shortcomings, and the  final  choice 

depends  mostly  on  the  problem (data set)  being  studied.  A  notable  difference  is  in the 
way the input signal U to a  neuron  is  calculated.  The input to a  sigmoidal  unit  is  a 
scalar  product U = W%, and the input to  an  RBF is  the  distance  (usually  a  Euclidean 
one)  between  the input vector x and the  center of the  corresponding  Gaussian c. 

It is  commonly  held that a  fundamental  difference  between  these  two  types of NNs 
that feedforward MLP NNs are representatives of global approximation schemes, 
whereas NNs with RBFs (typically  with  Gaussian  activation  functions) are repre- 
sentatives of local approximation schemes.  (But  note that not all RBFs are localized, 
e.g.,  multiquadric RBFs are not.) The adjectives ~Zo~aZ and ZocaZ are  connected 
with  the  region of input space of the  network for which  the NN has  nonzero out- 
put.  (Here, ~ o ~ ~ e r o  means  a  computationally  relevant, not very  small output.) For 
Gaussians,  nonzero output is  a  small  region around the  centers, and for sigmoidal 
logistic  functions it is  always  one  half of input space. From a  statistical  point of  view, 
the difference  may  be that global approximation schemes are likely to have  high  bias 
and low  variance and local  ones  high  variance and low  bias.  However,  these  aspects 
are not crucial.  With  different  smootlxng  parameters  (e.g.,  number of neurons,  num- 
ber  of iteration cycles during  training, or the  regularization  parameter  in RBF 
networks)  these  differences  may be controlled.  Also, at least part of the  popularity 
of RBF networks  stems  from  their firm theoretical  grounding  in  the  framework of 
regularization  theory  (Tikhonov and Arsenin  1977). 

From a  learning  perspective,  sigmoidal and Gaussian  activation  functions  differ 
antially.  Unlike  multilayer  perceptrons, RBF networks  usually do not use the 
algorithm. For example,  the  change of  sign  of the  Gaussian  function's  deriva- 

tive,  which  is  necessary  in  the  EBP  algorithm,  does not support the  fast and smooth 
convergence  of  the  algorithm  in RBF networks.  Also, for RBF networks,  when  the 
centers of Gaussian  functions  in  neurons are fixed (one  neuron,  a  center of the  spe- 
cific Gaussian  bell,  belongs to a  single  training pattern, and each  center  represents  the 
connection  strength, or weight,  between'the input and hidden  layers),  only  the output 
layer  weights  (connections  between  the  hidden and output layers) are learned  during 
training. The solution  (P-dimensional output layer  weights  vector)  is  obtained by 
solving  the  linear  system of P equations by matrix  inversion  (Broomhead and Lowe 
1988;  Poggio and Girosi  1989a;  1989b;  1990a;  1993). P, as previously  noted,  corre- 
sponds to the  number of data pairs or patterns in  a  training  set. In terns of CPU time 
and memory  needed,  this  method  is  computationally  acceptable  with  several  hundred 
or a  maxim^ of a few thousand data pairs. In many  applications,  the  number of 
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patterns is  much  larger  (tens or even hundreds of thousands), and it  is no longer 
computationally tractable to perform  matrix  inversion  with,  say,  23,456  rows and 
columns.  This  is  the  case when there are exactly  23,456 data pairs or patterns, 
(P = 23,456). Chapter 5 presents  details about appropriate learning  algorithms for 
RBF networks. 

There  is a stronger  connection  between  the  feedforward MLP and RBF networks 
than just their  similarity  in  architecture (both have  one  hidden  layer of neurons) or 
their  shared  property of being  general approximators of any  multivariate  function. 
Recently, Maruyama, Girosi, and Poggio  (1992)  showed that for ~ o r ~ f f Z i z e ~  input 
feedforward NILPs are RBF networks  with a nonstandard radial  function,  which  is a 
good approximation of the  Gaussian  basis  function for a range of values of the  bias 
parameter. It was  also  shown that for normalized input a feedforward MLP with a 
sigmoidal  activation  function can always  approximate arbitrarily well a given RBF 
and that the  converse  is  true  only for a certain  range of the bias  parameter  in  the 
sigmoidal  neuron.  The authors stated that for  normalized input MLP networks are 
more  powerful than RBF networks but noted why this  property of being  more 
powerful  might not necessarily  be an advantage.  More about this  connection  can be 
found  in  the  Maruyama  report, but it should be  stressed that the  normalization of 
signals  has  been  used by many  researchers  with  good  results  despite  the  fact that a 
theoretically  strong  explanation  is  still  lacking or is  not  yet  well  understood. 

The  rest of this  section  considers  the  geometry of  learning-what happens  with 
sigmoidal  activation  functions  during  learning. 

First consider a problem that can be  visualized, a network  with a one-dimensional 
input vector  (one  feature  only) and one-dimensional output (see  fig. 4.9). As usual, 
the input vector  is  augmented by a bias  term.  The  activation  function  is  the  bipolar 
sigmoidal  function 

(4.37) 

x1 =x \ W11 

Figure 4.9 
Single  nonlinear  neuron  with  a  bipolar  sigmoidal  function. 
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Through linear transformation U = 2u* (4.37)  becomes  a  tangent  hyperbolic  function 
whose  weights are scaled  by 0.5, or wT1 = 0 . 5 W l l  and wr2 = 0 . 5 ~ 1 2 .  

(4.38) 

The subjects  of  learning  in  this  simple  case are the  weights w11 and w12. The geo- 
metrical  meaning of these  changes  is  interesting and important. The  bipolar  sigmoi- 
dal AF will change both its  slope and its  shift  along  the  x-axis  during  the  learning 
(Smith  1993). 

The slope of the  bipolar  sigmoidal AF (4.37),  defined as the ratio of infinitesi~al 
change  in o to a  correspondingly  infinitesimal  change  in  x,  is  determined 
w11 in  the  following  way: 

do 
dX 

slope = - = O S (  1 - o ~ ) w ~ ~ .  

by the  value 

(4.39) 

Note that at the  shift  point x* the  slope = 0.5~11 and that the  slope  is proportional to 
~ 1 1  for a  tangent  hyperbolic  having the same  weights  vector as a  bipolar  sigmoidal 
function. A shift x* along  the  x-axis  is  the  same for a  bipolar  sigmoidal  function and 
a  tangent  hyperbolic  (given  the  same  weights  vector) and is  determined by the ratio 
- -w1&~1~ (see  fig.  4.10): 

(4.40) 

Thus, by changing  a  (hidden  layer)  weights  vector,  one can craft a  sigmoidal (or any 
other) activation  function to meet  any  need.  With  more  neurons  in  the  hidden  layer, 
the corresponding AFs will  change  their  shapes and positions to fit  the data as well as 
possible. At the same  time,  they  will be supported by the output layer  weights  vector 
vv (or, for  more output neurons, by the  weights  matrix 

The output o from  the NN in the case of a  network  with  a  linear output neuron 
(usually  in  regression  tasks; see  fig.  4.1 1) is  given as 

(4.41) 

andyJ = 1. 
As to whether  the  logistic or the  tangent  hyperbolic  activation  function  should 

be chosen for HL neurons,  there  is  plenty of  evidence to suggest that the tangent 
hyperbolic  performs  much  better  in  terms  of  convergence of learning, that is,  in  the 
number of iteration steps  needed. It has  also  been  shown that the  tangent  hyperbolic 



4.3. Heuristics  or  Practical  Aspects of the  Error  ~ackpropagation Algorithm 

Bipolar  sigmoidal  function - - - Tangent hyperbolic - 
004 1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

- ” - 
X 

Bipolar  sigmoidal  function 

279 

Rpre 4.10 
Crafting  sigmoidal  functions by changing  weights: slopes and  shifts as functions  of  the  weights  vector W. 
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X 

+l 

y.J=+l  

Figure 4.11 
Multilayer  perceptron for modeling  one-dimensional  mapping % ”-$ %, o = .(x). 

has  much  better approximation properties than the  logistic  function  in  applying an 
NN for dynamic  systems  identification  (Kecman  1993a), and similar  conclusions 
can be found  in  many other papers  applying NNs in  different  fields. It is  generally 
recognized that the  tangent  hyperbolic (or its relative  the  bipolar  sigmoidal  function) 
always  gives  better appro~imation properties, and it  is  because of this  better  perfor- 
mance that practitioners  tend to use it even  though  the  logistic  function  was  the  first 
to make  a breakthrough with  the  EBP  algorithm. At first  sight,  this  is  a rather sur- 
prising  result  because it had seemed  there  were no substantial differences  between 
these  two  functions. For theoretical  details on these  differences,  see  Bialasiewicz and 
Soloway  (1990) and Soloway and Bialasiewicz  (1  992). 

It was just demonstrated that by changing  weights  one can produce  a  sigmoidal 
function of any  shape.  With  more  neurons  in  the  hidden  layer, or by combining  more 
sigmoidal  functions  having  different  shapes and shifts,  one can design  a  network that 
models  any  nonlinear  function to any  degree of accuracy.  Example  4.3  shows how 
HI, activation  functions  place  themselves  along  the  x-axis,  trying to model  a  training 
data set  well  by  following  changes  of HI, weights. Note that starting from an initial 
random position,  almost  all  the AFs try to place  their  nonlinear parts inside  the 
domain of the input variable x during  learning  (compare  the  positions of the AFs 
after  initialization,  shown  in fig. 4.12, and after  learning,  shown  in fig. 4.13a). 

~ ~ ~ ~ ~ Z e  4.3 Consider  modeling  (fitting,  reconstructing) the same  unknown  relation 
or process y = f ( x )  = x + sin(2x) between  two  variables  x and y as in  example  4.2, 
with  a  neural  network  structured as in figure  4.11  (now  having  five HL neurons)  such 
that its output o *f(x). The  training data set  comprises 36 data pairs  from  mea- 
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Figure 4.12 
Outputs  from  hidden  layer  neurons,  or  the  positions of activation  functions, after initialization. 

surements  corrupted by  10%  white  noise  with zero  mean. (More accurately,  the 
problem  is to fit  the  ensemble from which  the data were drawn. In fig.  4.13c,  the data 
set  is  represented  graphically by crosses.)  Model  the data using HL neurons  with 
tangent  hyperbolic  activation  functions. 

Learning starts with  some  initial  (usually 'random) weights.  The  problem of 
weights  initialization is the  subject of much  research  in  the  field.  The  reason for such 
interest can be  seen in  figure  4.12,  where,  after random initialization,  the AFs of the 
first,  second, and fifth  neurons are almost  lost as serious  candidates for modeling  the 
highly  nonlinear  dashed  function  x + sin(2x). Two  vertical  lines  denote  the  domain 
of the input variable  x. In this  domain,  these  three AFs are constant values - 1, +l,  
and +l, and they cannot model  any  nonlinearity.  Within  this  initialized  position,  all 
three AFs together  have  a  modeling  power of a  single  bias  term  only.  The  task of 
learning  is to shift  their  nonlinear parts into the area between  the  vertical  bars, 
the  domain of the function. In that case,  these  nonlinear parts could  participate  in 
modeling  the  training data. These  shifts  occured  after 70 epochs, and the  resulting 
AF curves  are  given  in  figure  4.13a. 

The  final  placement  of  the HL activation  functions  depends on the HL weights, 
shown  in  Fig  4.13d.  The  components  of  the  first  column v1 determine  the  shape of the 
correspond in^ tanh. (The  signs control the  directions of the  slopes, and the magni- 
tudes  define  their  steepness.) At the  same  time,  together  with  the  components  of  the 
second  coluinn of  weights v2, and according to (4.40),  they  determine  the  shifts of 
these tanh functions,  too. 
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(a) Positions  and  shapes of hidden  layer  outputs yj after  learning. (b) Hidden  layer  outputs  after  multipli- 
cation by the  output  layer  weights  but  before  summation.  (c)  Approximating  function after s ~ a t i o n  of 
the  curves  from (b), error, and  training  data. (d) The  weights after training. 
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The  direction of the  slopes  depends  also  upon  the  signs of the  components of the 
output layer  weight W. Note in  figure  4.13b that the directions (but not  the  steepness) 
of the  third and fifth AFs are changed  after  being  multiplied by w3 and w5, respec- 
tively.  The  amplitudes  given  in  figure  4.13b  are  the  result  of  multiplying  the output§ 

L neurons, as given  in  figure  4.1321,  by the QL weight  components wj in 
The  resulting  approximating  function  for  the  training patterns, which 

are  represented by crosses  in  figure  4.13c, is obtained  after  all  the c 
4.13b  are  summed up. These last two  steps,  multiplication of the 
summation of the  corresponding  product  functions, are carried out in  the  sin  le 
linear QL neuron  shown  in  figure 4. l l .  

The  basic  learning  scheme and the way the  multilayer  perceptron  models  any 
underlying  nonlinear  function  between  the input and the output data set are basically 

F and fuzzy  logic  models.  The  geometrical  meaning  of  the  weights 
between  the input and the  hidden  layer, and the  difference  between  types of 
HL neurons, is  of  lesser  relevance.  All learning  is about crafting  the 
functions  findi in^ their  proper  shapes and positions) and finding  the 
order to reduce  the  chosen  cost  function E below  some 
because of the  nonlinear  dependence of the  cost  function 
and  the output layer  weights,  the  task  is  not an easy  one. 

The  problem  of  learning  when  there are more QL neurons  is  the  same  in  geomet- 
rical terns. The  whole  learning  procedure  should be done  simultaneously  for  all  the 
QL neurons  because  they  share  the  same  hidden  layer  neurons.  The  solution (the 

L weights  matrices)  should  now  minimize  the  cost  function E(V, 
that in  the  case of the  multidimensional output vector 0, one cannot train 

ticular output ok, k = l ?  . . , , K ,  separately  because  the 
will  necessarily  be a different  one for every output o k .  

ular output variable will  rarely  ever  be  the  best  one 
for  the  rest of the outputs from  the NN. (This is  known  from  classic  optimization 
theory.)  Thus,  the  learning  (optimization)  procedure  must be done  for  all  the outputs 
simultaneously.  The  resulting HL weights  matrix , which  is  shared by all  the QL 
neurons, will perform  best on average. 

As in  the  case of a one-dimensional input, an NN with a two-dimensional input 
vector  (two-feature data set) will  be able to approximate  any  nonlinear  function of 
two  independent  variables, and the  same  is true for the input vectors of any 

he  two-dimensional input and one-dimensional output, or a mapping 
?R2 ”+ ?R1, is the  highest-order  mapping that can be visualized.  Therefore, it may  be 
useful to understa~d the  geometry of the  learning  in  the NN having  two  inputs and 
to examine  the  similarities to the  results  presented  for  the  one-dimensional input. 
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Figure 4.14 
Single  tanh  neuron  with  two-dimensional input. The  activation  function  is  a  surface  over  the ( X I ,  xz) plane. 

The increase  in  the  complexity of presentation  is not a  linear  one, but the  underlying 
principles  eventually  are. This may  be  of  help in discovering  the  ideas,  principles, 
and methods that generalize to the  more  complex  multidimensional input vectors. 

Let us first  examine  the  basic  functioning of a  single  neuron  having  a  two- 
dimensional input augmented  with  a  bias  term  (see  fig.  4.14).  The  features are des- 
ignated by x1 and x2, and a  classical  mathematical notation for  the  two-dimensional 
input x and y is  also  used.  (This  should not be confused  with  the standard notation in 
this  book,  where y denotes  the outputs from  the  hidden  layer  neurons.)  The  func- 
tioning of a  two-dimensional  neuron  is  the  same as with  a  one-dimensional input. 
Input to the  neuron  is  a  scalar product U = ~ T x ,  and its output is  a  result of the 
nonlinear transformation o = f(u). In figure  4.14, f (u )  = tanh(u). 

The weights Wi determine  the  position and shape of this two-~imensional surface, 
as in  the  previous  case.  This  surface  will  move  along  the x and y axes,  tilting  in both 
directions as a  result of the  weight  changes  during  the  learning  phase.  The  process 
and the  mathematics are practically  the  same as in  the  one-dimensional  case.  The 
tangent  hyperbolic (or any other nonlinear  activation)  surfaces of all  the 
will  try to find  the  best  position and shape to model  the data. 

Figure  4.15a  shows the intersections of a  two-dimensional  bipolar  sigmoidal  func- 
tion  with  the  plane o = 0 for three  different  weights  vectors, and figure  4.15b  repre- 
sents  the  surface of the  same  function  having  the  weights  vector W = [2 2 21. The 
intersections  show  how  the  sigmoidal  surface  shifts  along  the x and y axes and rotates 
with  the  change of the  weights.  Similarly to (4.40),  the  points at which  the  intersec- 
tion  line  crosses  the  axes (the intersection  lines'  intercepts) are given as 

(4.42) 

(4.43) 
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Intersections  of 20 bipolar  sigmoidal  functions 
with  a  plane  for  three  different  weight  sets 

21 

Y 

Figure 4.15 
Two-dimensional  bipolar  sigmoidal  activation  function. 

The arrow in  figure  4.15a  indicates  the  direction  of  the  surface  increase.  This  direc- 
tion  may  be  checked  in  figure  4.15b.  The  surface  increases  with both inputs because 
the  weight  components w1 and w2 are positive. The bigger  the  magnitude of the 
weight,  the  steeper  the  surface  in  a  specific  direction. The surface  corresponding to 
the  diagonal  dashed  intersection  line  in  figure  4.15a  decreases  with x (w1 is  negative) 
but  increases  with y .  The surface  corresponding to the  vertical  dashed  intersection 
line  in  fig.  4.15a  does not change  with y (w2 is  equal to zero) and decreases  with x 
because w1 = -1. Note that the  shifting  is  enabled by the  bias  term, or the  weight 
component w3. For w3 = 0, a  sigmoidal  surface cannot shift  along  any  of  the  axes 
and always  passes  through  the  origin. h 

Each input vector  maps into one  single  value o = f ( x ,  y )  at the  neuron output. The 
mappings of two input vectors x1 = [0 01 , u1 = 2, and x2 = [-4  -41 T ,  U:! = -14, 
are  represented by points P1 and P2, respectively, on the  surface  in  figure  4.15b. 

By combining  more  neurons  in  the  hidden  layer,  one can design an NN as in  figure 
4.1 l that will  be able to approximate  any  two-dimensional  function to any  degree of 
accuracy  provided that it has  enough HI, neurons. A simple  example of  how four HL 
neurons can form  a  three-dimensional  surface  is  presented  in  figure  4.16. 

Figure  4.17  presents  intersection  lines  with  the  plane o = 0, indicating  the orienta- 
tion of the  corresponding  sigmoidal  surfaces. The signs of the  weight  components 

T 
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Figure  4.16 
Crafting t~o-di~ensional surf+aces by using  four  hidden  layer  neurons  with.  bipolar  sigmoidal  activation 
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figure 4.16 (continued) 
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Intersections of 2D bipolar  sigmoidal  functions with a plane o = 0 

Weight  vectors 
v1 = [ 1 l 2IT 
v p = [ - l  "I 2f- 
v3=[ -1 I 21T 
v p q  1 -1 2IT 

Shift x* Shift y* 
-2 -2 v1 
2 2 v2 
2 -2 v3 

-2 2 v4 

Figure 4.17 
Intersection  lines and weights  vectors of the  sigmoidal  surfaces  from  figure 4.16. 

given  in  figure 4.1'7 indicate  the  increases and decreases of these  surfaces  along  the 
axes. 

The  surface  shown at the bottom right  in  figure  4.16  merely  corresponds to the  sum 
of the outputs 01, j = 1, . . ,4, from the HI, neurons,  meaning that all  the OL weights 
are equal to 1. 

Typical  networks  in  the  soft  computing field  have to cope  with  high-dimensional 
input vectors  having  hundreds or thousands of components, when visualization  is  no 
longer  possible.  However,  the  geometry of the  model  remains  the  same. 

In the  general  case of a  multidimensional input (I-dimensional input vector  in 
figure  4.4,  with  the Ith component  being the bias XI = l)3 the activation  functions yj 
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in  the HL neurons  are  hypersigmoidals, or the sigmoid-shaped  hypersurfaces  in an 
( I  + 1)-dimensional  space. As in  the  one- and two-dimensional  examples,  the  shifts 
along  the  axes, or the  shifts of the  intercepts of intersection  hyperplanes  with  the 
hyperplane y = 0, are determined by 

where vji denotes  the  components of the jth HL weights  vector.  Thus,  the  bias  weight 
components V j I  control the  distances of the  hypersigmoidals  from  the  origin, and the 
weight  components Vji control their orientation and steepness,  along  each of the I 
dimensions.  When  all  the OL neurons are linear,  each output yj  of the 
sigmoidals  (including  the HL bias  term)  is  multiplied by its  corresponding  OL  weight 
Wkj and summed  up to form  the outputs ole, k = 1, . . . , K ,  of the  network. 

Yl  

Y2 

Yj  

Y J  . 

(4.45) 

For classification (pattern recognition)  tasks,  the output layer  neurons are usually of 
the  same  type as the L neurons-hypersi~moidals f ( u )  in a ( J  + 1)"dimensional 
space,  with an input vector to the OL neurons  defined as in  (4.45): 

(4.46) 

and the  Kth  dimensional output vector o will  have components  given as 

ok  = f ( u k ) .  (4.47) 

Using  matrix notation, the  network output is  expressed as 

(4.48) 

e nonlinear  diagonal operator 

,'(e) 0 - * *  0 
0 f ( * )  * * 0 

0 0 * * .  f ( . )  

. . .  (4.49) 
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Now  the standard choice  for  the AFs will  be bipolar  hypersigmoidals, or the  multi- 
dimensional  tangent  hyperbolic f = tanh(u). 

There  is  no  great difl‘erence with  respect  to  lower-order  mapping as far as the  basic 
functioning of a network  having  high-dimensional  inputs and outputs is  concerned. 
In both cases  the input signal to the  hypersigmoidals is a single  scalar  value U, which 
results  from  the  scalar  product of a specific input vector and the  corresponding 
weights  vector. At the  same  time,  the output from  the  neuron  is  neither  complex nor 
a high-dimensional  vector  or  function, but rather a single  scalar  value yj or for  the 

L neurons,  respectively. The high-dimensional,  nonlinear, and unknown 
relation  between  the input and output vectors  is  mediated through the  hidden  layer, 
which  enables  the  reconstruction  of  the  underlying  function  (if  there  is a one) 
by creating  many  simpler and, more important, known  functions.  These  functions 
will  be the  components of the  approximating  function to the  training data. Thus, 
the  dimensional input vector x is  mapped into a hidden (internal, imaginary) J- 
dimensional  vector y, which  is  subsequently  transformed into a  dimensional output 

The  learning  procedure  using  the EBP algorithm  begins  with  some  initial  set of 
weights,  which  is  usually  randomly  cho  owever,  the  initialization  is a controlled 
random one.  This  first  step  in  choos  ights  is important because  with  “less 
lucky”  initial  weights  matrices  training  will  last  forever  without  any 
significant  learning or adaptin ts,  or it will stop soon at some  local 
minima.  (The  proble  not  related  only to initialization.) The 
initialization of the of particular importance  because  the 
weights vji detemine the  positions and shapes of the  corresponding  acti 
tions, as can be  seen  in  figure  4.18. Consequently,  the  initialization of the 
is  discussed  first. 

The  left graph in  figure  4.18  shows a typical  example of  very bad  initialization of 
. The  nonlinear parts of all five L outputs are shifted  outside 

the domain of the approximated  nonlinear  function,  which  has  the  magnitudes +l or 
-1  inside  this  domain, and their  derivatives  are  almost  equal to zero.  (The  left and 
right  graphs  in fig.  4.18 are both examples of extremely  bad  initializations. It is  very 
unlikely that all the neurons  would  be so badly  initialized sim~taneously.) 

ractically  no  learning  will  occur  with h a bad  initializati 
use the error signal  terms of both the neurons dyj = ( uj 

OI, neurons d,k = (dk - o k ) ~ ~ ( ~ ~ )  depend  directly upon the  derivatives  of  the  acti- 



4.3. Heuristics  or  Practical  Aspects of the  Error  Backpropagation  Algorithm 29 1 

Approximated  function --- and  the HL outputs vii Approximated  function --- and  the HL outputs yi, 
shifted  outside  the  function's  domain 
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Figure  4.18 
Two  different  bad  initializations. Left, hidden  layer  outputs  shifted  outside  the  function's  domain. Right, 
hidden  layer  outputs  with  large  initial  weights.  Approximated  function  (dashed  curve)  and  its  domain  (two 
vertical  dashed  bars). 

vation  function f' (see  box  4.1). Restarting the  weights  initialization will  be the best 
one can do in  such  a situation. To avoid  the  repetition of a  similar situation it would 
be  useful to find  a  suitable  choice of initial  weights that will  lead to faster and more 
reliable  learning.  The  positions of the HL activation  functions  after  learning, as given 
in  figure  4.13a  (which  will  also be the  case for high-dimensional  mappings),  suggest 
that the  slopes, or the  nonlinear parts, of the L activation  functions  should be inside 
the  domain of the approximated  function. That can successfully  be  achieved,  but care 
must  also be  given to weight  magnitudes. In the  right graph of  figure 4.18 all five 
sigmoidals  lie  inside  the  function's  domain, but all  have  large  weights,  resulting  in 
steep  functions.  Such  functions  for  most of the  domain of the  approximated  function 
also  have  the  derivatives  almost  equal to zero. 

Therefore,  the  basic  strategy  would be to ensure that after  initialization  most of the 
sigmoidals are not too steep and are  inside  the  domain of the  approximated data 
points. In this  way,  one  avoids  extreme output values from the  neurons that are 
connected  with  small  activation  function  derivatives.  All  these  always  produce  small 
initial  weight  changes and consequently  very  slow  learning.  rst  guess, and a  good 
one,  is to start learning  with  small  initial  weights  matrices w small  the  weights 
must be depends  on  the  training data set and particularly  upon how large  the  inputs 
are. Learning  is  very  often  a  kind  of  empirical art, and  there  are  many  rules of thumb 

l1 the  weights  should  be.  One  is that the  practical  range of initial 
neurons  with an I-dimensional input vector  should be [-2/1,2/I] 
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(Gallant 1993). A. similar  *criterion  given by Russo  (1991)  suggests that the  weights 
should be uniformly  distributed  inside  the  range [-2.4/1,2.4/1j. These and similar 
rules for a large I may  lead to very  small HL weights,  resulting  in  small  slope  linear 
activation  functions,  which  again  leads to slow learning.  Bishop  (1995)  suggests that 
initial  weights  should be generated by a normal dist~bution with a zero  mean and 
with a standard deviation c that is proportional to 1/1-1/2 for the n o r ~ ~ Z i z e ~  input 
vectors, to ensure that the  activation of the  hidden  neurons  is  determined by the 
nonlinear parts of the  sigmoidal  functions  without saturation. 

owever,  the  initialization of the OL weights  should  not  result  in  small  weights. 
There  are  two  reasons for this. If the output layer  weights are small,  then so is  the 
contribution of the HL neurons to the output error, and consequently  the  effect  of  the 
hidden  layer  weights  is not visible  enough.  Next,  recall that the OL  weights are used 
in  calculating  the error signal  terms for the  hidden  layer  neurons S,j. If the  OL 
weights are too small,  these  deltas  also  become  very  small,  which in turn leads to 
small  initial  changes  in  the  hidden  layer  weights.  Learning  in  the  initial  phase will 
again be too slow. Thus,  Smith  (1993)  proposes that a randomly  chosen  half of OL 
weights  should  be  initialized  with +l,  and the other half  with - 1. If there  is an odd 
number of OL weights,  then  the  bias  should  be  initialized at zero. 

Initialization by  using random  numbers  is  very important in  avoiding  the  effects 
of  symmetry  in  the network. In other words,  all  the HL neurons  should start with 
guaranteed  different  weights.  If  they  have  similar (or, even  worse,  the  same)  weights, 
they  will perform  similarly (the same) on all data pairs by changing  weights  in  similar 
(the same)  directions.  This  makes  the  whole  learning  process  unnecessarily  long (or 
learning  will be the same  for  all  neurons, and there  will  practically  be no l e a ~ i n ~ ) .  

The  author’s  experience  is that very  small HL initial  weights  must  also be avoided. 
Many iteration steps can be saved  in  the  case  of not ~ o r ~ ~ Z i z e ~  input vectors by 
controlling  the  initial  shifts of the  nonlinear parts of the  activation  functions and by 
moving  these  nonlinear parts into the  domain of the approx~ated function.  With a 
on~-dimensional input vector  this  task  is  easily  solvable  using  (4.40). First randomly 
initialize  the HL weights ujl as well as the  required  shifts  along  the  x-axis x;, and then 
calculate  all  the  weights  connecting  the  bias input +l with  all the HL neurons uj2 

using  (4.40).  The  same  strategy  is  applied for high-dimensional input vectors. 

In  section 4.l,> the  EBP  algorithm  resulted  from a combination of the  sum of error 
squares as a cost  function to be optimized and the  gradient  descent  method for 
weights adaptation. If the  training patterns are  colored by Gaussian  noise,  the  mini- 
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mization of the  sum of error squares  is  equivalent to the  results  obtained by maxi- 
mizing  the  likelihood  function. A natural cost  function  is  cross-entropy.  Problems 
4.18 and 4.19 analyze it. Were, the  discussion  concerns  the  choice of function  in  rela- 
tion to the  learning  phase  stopping  criterion  in  solving  general  nonlinear  regression 
tasks,  The  sum of error squares and the  resulting  EBP are basic  learning  tools for 

any  digerent  advanced  algorithms can be  used instead of the  first- 
order  gradient  procedure,  but  here  the  focus  is on a  measure of a  quality of approxi- 
mation, i.e.,  a  stopping  criterion, not the  learning  procedure. 

The  learning  process  is  always  controlled by the  prescribed  maximally  allowed or 
desired error E d e s  (step  1  in  box  4. la). Therefore,  the  final  modeling  capability of the 
network  is  assumed  in  the  very  first  step.  More  precisely,  one  should  have an expec- 
tation about the magnitude of the error at the  end of the  learning  process  while 
approximating the data points. As in  all  estimation  tasks,  one  usually  knows or can 
guess  the amount of  noise  in data. This  information  is  usually important in  defining 
Edes .  (The  cross-validation  technique can be  used  if  this  is unknown.) It may  therefore 
be  useful to link Ep and Edes with  the amount of  noise  in data, defining as a 
percentage. For instance, EdeS = 0.20 denotes  a  modeling error of around 20%. 

The sum of error squares  across  all  the OL neurons and over  all  the train- 
ing data pairs  is  accumulated  in an on-line  version of the EBP algorithm 
(Ep = 0.5 - okp)2 + E’-step 5 in  box 4.la). After  the  learning  epoch (the 
sweep through all  the  training patterns) is  completed ( p  = P), the total error Ep is 
compared  with  the  desired  one, and for E p  < E d e s ,  learning  is  terminated  (step l1 in 
box 4. la); otherwise,  a new learning  epoch  is started. The  sum of error squares  is  not 
good as a  stopping  criterion  because E p  increases  with  the  increase of the  number of 
data pairs.  The  more data, the  larger  is E p .  

Henceforth, it is good to define an error function that is  related to the amount 
of noise  in data for  the  assessment of the  network’s  performance.  The  connection 
between  the error function and the amount of the  noise  will  only  require  the  scaling 
of the error function  (4.1), and there will  be no need to change  the  learning  algo- 
rithm.  Now,  the  relation of  some  possible  stopping (error) functions E p  to the 
amount of  noise in data is  analyzed, and an error function that contains  reliable 
information about noise  is  proposed. 

The root mean square error (RMSE) is  a  widely  used error function 

E R M S o  PK (4.50) 
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where P is  the  number  of patterns in the training data set and K is  the  number  of OL 
neurons. It is  convenient to use a  slightly  changed  expression for the stopping  crite- 
rion for the  purpose of connecting  the error (stopping)  functions E p  with  noise  in  a 
data set: 

(4.51) 

Next,  consider four more error stopping  functions and their  relations to the amount 
of noise (or noise-to-signal ratio in the control and signal  processing  fields)  in  the 
training data. 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

where ad and d denote the standard deviation and the mean of the  desired  values, 
respectively. 

Consider  now,  in  figure  4.19,  two  noisy  (25%  Gaussian  noise  with  zero  mean) 
underlying  processes:  left graph, ya = sin(x), and right graph, y b  = x3, x = [0, 271.3, 
and analyze  the  performance  of  the  given  stopping  criterion  for  the  original  func- 
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Figure 4.19 
Two ~derlying processes  and  sampled  training  data  sets (25% noise, n = 0.25). L e ! ,  y = sin(x). Right, 
y = x3. 

tions y and the  same  functions  shifted  along 10 and 200 units,  respectively, that is, 
ysa = 10 + si@), ysb  = 200 + x3. (Analyze  the  influence  of d on the error function 
using  these  shifts and keeping ad constant.) 

From table 4.1 it  follows that the root mean square error ERMS cannot be a  good 
measure for the amount of  noise in data.  It is  highly dependent on both the standard 
deviation 0- and the  mean d of the  desired  values.  Both Eo and E d  are also  dependent 
on the mean d of the  desired  values. The larger d is,  the  higher  is Eo. The error 
function E d  performs well  unless d is  close to zero. The closer d is to zero,  the  higher 
is E d .  E(o+d) avoids  problems for both small and high  values of d; it is  consistent,  but 
it reproduces  scaled information about the  noise.  Only  the error function E(exp do) is 
consistently  related to the amount of  noise  in the  training data set, and it is the  least 
dependent  on  the ma~i tudes  of both a and d.  

Therefore, the error stopping  function E p  = E(exp do) is  calculated  in  step 5 of  box 
P algorithm, and it is  used  in  step 1 1 as a  stopping  criterion E p  < Edes of 

the  learning  phase. 
A  word of caution is  needed  here.  The  noise-to-signal ratio (noise  variance) in 

standard learning  from data problems  is  usually  unknown.  This  means that, in  the 
most elementa~ approach, defining Edes is  usually  a trial-and-error process  in  the 
sense that a few learning  runs will  be required to find an appropriate Edes. However, 
using  the  function E(exp do) as a  stopping  criterion  ensures  a  relation to noise  content, 
provided that the approximating  function  is  very  close to a  genuine  regression 
function. 
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Table 4.1 
The  Performance  of  Five DiAFerent Error  Functions  in  Estimating  Noise 

Noise = 0.25  y = sin(x)  y = 10 + sin(x)  y = x3 y=200+x3 

0.1521 
ERMS -good 

0.2141 
EcT good 

E d  
200.8643 
very  bad 
0.4277 

E(cT+d) not  bad 

0.2140 
do) good 

2.4544 
bad 
3.4545 
bad 
0.2455 
good 
0.4583 
not bad 
0.2455 
good 

15.1136 
very  bad 
0.2069 
good 
0.2422 
good 
0.2231 
good 
0.2422 
good 

63.5553 
very  bad 
0.8699 
bad 
0.2422 
good 
0.3789 
-good 
0.2422 
good 

Note: Results  are  the  mean  values of  100 random  samplings  for  each  function. 

In section 3.2 on the  linear  neuron  the  influence of the  learnirig rate y on  the  learning 
trajectory  during  optimization  was  analyzed. The error function E, defined as a sum 
of error squares  (when  the error e = d - o(w) depends  linearly  upon  the  weights), 
is a parabola, paraboloidal bowl, or pa~aboloidal hyperbowl  for  one,  two, or more 
weights,  respectively.  There  is a strong  relationship  between  the curvature of the error 
function ~ ( w )  and the  learning rate even  in  the  simplest  case. The learning rate for 
the quadratic error function  must be  smaller than the  maximally  allowed  learning 
rate ymax = 2/Amax, where Amax represents  the  maximal  eigenvalue  of  the error func- 
tion’s  Hessian  matrix  of  second  derivatives. (Note that in  section 3.2 a stronger and 
more  practical  bound  was  used  for  the  convergence yT maX = 2/truce( 
corresponds to yT max = 2/truce( ). One  is on the  safe  side  concerning  the  opti- 
mization  convergence as long as the Hessian matrix is  positive  definite,  meaning that 
the error function  is a hyperbowl  with a guaranteed  minimum, and using yTmax 
smaller than ymax.) The higher  the curvature, the  larger  the  eigenvalues,  the  smaller y 
must  be.  Obtaining  information about the shape of the error function  is  usually  time- 
consuming, and it can be  easier and faster to run the  optimization and experimentally 
find out the  proper  learning rate y. 

However,  there  is a simple  rule.  The  smaller y is,  the  smoother  the  convergence of 
the  search  but  the  higher  the  number of iteration steps  needed. We have  already  seen 
these  phenomena  for  the  linear  neuron  (fig. 3.22). Descending by small y will lead to 
the  nearest  minimum  when  the error E(w)  is a nonlinear  function of the  weights. 
Usually that will  be a local  minimum of the  cost  function, and if this ~ m i ~ ( w )  is  larger 
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than the  predefined  maximally  allowed  (desired) error E&s, the  whole  learning pro- 
cess  must  be repeated starting from  some other initial  weights  vector 
working  with  small q may  be rather costly  in terns of computing  time. 
of thumb is to start with  some  larger  learning  rate q and reduce it during opti- 
mization.  (Clearly,  what  is  considered  a  small or a  large  learning rate is  highly 
problem-dependent, and proper q should be established  in  the  first few runs for a 
given  problem.) 

Despite  the  fact that the  EBP  algorithm  triggered  a  revival of  the  whole  neural 
networks  field, it was  clear  from  the  beginning that the standard E 
not  a  serious  candidate for finding  the  optimal  weights  vector (the glo 
the  cost  function)  for  large-scale  nonlinear  problems.  Many  improved  algorithms 
have  been  proposed in order to find  a  reliable and fast  strategy for optimi~ing the 
learning rate in  a  reasonable amount of computing  time.  Details  are  not given  here. 
Instead, one of the  first,  simple  yet  powerful,  improvements of the standard EBP 
algorithm  is  presented here-the ~ o ~ e n t u ~  tern (Plaut, Nowlan, and Hinton 1986; 

olyak  1987). 
The use  of momentum  has  a  physical  analogy  in  a  heavy  ball  rolling  down  the 

inside of a bowl (Polyak  1987). The heavier  the  ball,  the  greater is its  momentum, and 
the  optimizing path does not follow the direction of the instant gradient.  Thus,  the 
oscillatory  behavior of a  light  ball (no momentum)  is  avoided.  The  descending tra- 
jectory of a  heavy  ball  is  much  smoother and results  in  faster  convergence (a smaller 
number of iterative  steps  needed to reach  the  minim^) than if a  light  ball  were  used. 

Formally, the modified  gradient  descent  is  given as 

(4.56) 

where rm denotes  the ~ o ~ e n t u ~  learn~ng rate and VEw = ~ E / ~ w .  
The  omentum tern is  particularly eiTective with error functions that have  sub- 

stantially  different  curvatures  along  different  weight  directions. In such  a  situation, 
the error function  is no longer  radially  symmetric, and it has the shape of an elon- 
gated  bowl.  The  eigenvalues ratio ~ m ~ ~ / ~ m i ~  of the  corresponding  Hessian  matrix  is 
now larger than 1. A simple  gradient  descent  procedure  progresses  toward  the  mini- 
mum  very  slowly  in  such  valleys, and with  higher  learning rates q this i s  an oscillatory 
descent. 

Figure 4.20 shows  the  effect of the introduction of momentum for a  second-order 
quadratic error function  surface  with an eigenvalues ratio ~ ~ ~ ~ / ~ ~ i ~  = 3.5/0.5 = 7. 
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q = O ,  

q=O. 

- q v 4  + v ~ A w ,  = 
--9VE2+qm(-rVE,) 

,5429, qm = 0, no. of steps = 47 

,5429, qm = 0.5, no. of steps = 16 - - - 
Newton-~aphson solution in one  step - - - - .. - l 

Optimization  on  quadratic  surfaces  without  momentum  (solid  line)  and  with  momenturn  (thick  dashed 
line). 

The subscripts  indicate  the  solutions wi obtained  without the momentum tern, and 
the  superscripts  correspond to those  obtained  using  the  momentum W'. 

The choice of both learning  rates q and qm is  highly  problem-dependent 
and usually a trial-and-error procedure.  The  moment^ learning rate is  typically 
0 < qm < 1.  There  is a relatively strong relationship  between  the symetry of the 
error function and the  momentum  learning rate qm, which can be  expressed as the 
lower  the  symmetric error function,  the  higher  is qm. Figure  4.21 and table 4.2  show 
that for  the  highly  elongated error bowl (jtmax/;imin = 3.9/0.1 = 391, the  optimal qm 
is about 0.7. ~imilarly, the  results for the symetric error function ( j t ~ a x / j t ~ ~ n  = l )  
are presented  in  figure  4.22 and table  4.3.  Here, for given  learning  rates q, the  optimal 
qm is about 0.2. 

In a real  high-dimensional  optimization  problem,  the  shape of the error function is 
usually not known. The calculation of the  essian  matrix that measures  the  curva- 
ture of the error hyperbowl  is  possible  in  principle, but in a nonlinear  case  this cur- 
vature is  permanently  changing, and besides  being  expensive, it is  generally  difficult 
to determine  the  proper  momentum  learning rate qm. Thus,  the  usual  practice  is to 
work  with 0.5 < qm < 0.7. Note that working  with  the  momentum  term  makes  opti- 
mization  more  robust  with  respect to the  choice of the  learning rate q. 
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Opti~ization on  quadratic  surface: 
influence  of  step  rate 
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Optimization  on  quadratic  surface: 
influence  of  step  rate 

l 
0 5 
W2 

With momentum q m  = 0.7 

Figure 4.21 
Optimization  on  highly  elongated  quadratic  surface;  influence of learning  rates. 

Table 4.2 
Optimization  on  Highly  Elongated  Quadratic  Surface 

qm = 0.8 qm = 0.9 

q = 0.4872 41 step 93  steps 

q = 0.2436 44 steps 94 steps 

The  utilization of the  momentum  term  is  a  step  toward  a  second-order  method at 
less cost. In the  standard  EBP  algorithm,  the  information  obtained  in  the  preceding 
iterations  is  not  used at all.  Unlike  the  gradient  method of the  EBP  algorithm,  the 
method  using  the  momentum  term  takes  into  accouxit  the  “prehistory”  of  the  opti- 
mization  process. In this  way,  it  improves  convergence  without  additional  computa- 
tion.  (There  is no need to calculate  the  essian,  for  example.) Polyak;  (1987)  showed 
that both  the  gradient  procedure  and  the  heavy  ball  method  (gradient  with a momen- 
tum)  for an optimal  choice of learning  rates q and qm, have a geometric  rate of con- 
vergence,  but  the  progression  ratios  without momentu~ ( r ~ )  and with   omentum 
( ~ H B )  are  diaerent;  they are given as 

(4.57) 
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Opti~ization on  quadratic  surface: 
influence of step  rate 

in 1 step 

Opti~ization on quadratic  surface: 
influence of step  rate 
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~ i t ~ o u t  momentum With momentum q m  = 0.7 

Optimization  on  symmetric  quadratic  surface;  influence of learning  rates. 

Table 4.3 
Opt~ization on Symmetric  Quadratic  Surface 

qln = 0.5 qm = 0.8 

= 0.95 14  steps 41 step 
V = 0.475 17  steps 39 steps 

~ ~- 

where Amax and Amin represent  the masimal and minimal  eigenvalue of the  Hessian 
matrix,  respectively.  The  progression ratios are equal for a  symmetric error function 
with  equal  eigenvalues, and the  minimum  will  be  reached  in  one  step  only  by  using 
optimal learning  rates.  The less symetric the  hyperbowl,  the  higher  is  the ratio 
rA = Amax/’Amin, and for  such  ill-posed  problems  the  heavy  ball  method  yields  a 
roughly fi-fold payoff  versus  the standard gradient-based EBP algorithm. A very 
strong point  for  the  heavy  ball  method  is that it represents  a  kind of on-line  version of 
the  powerful  batch c ~ ~ j ~ g u t e  g r u ~ i e ~ t  method  (see chapter 8). 

As in  the  case  of  learning rate v, there  have  been  many  proposals on how to 
improve  learning by calculating and using  the  adaptive  moment^ rate qm, which 
varies for each iteration step. In other words,  the  moment^ rate follows and ad- 
justs to changes  in  the  nonlinear error surface.  ne  of the  most popular algorithms 
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for the  calculation of an adaptive or dynamic  momentum rate is  the ~~~c~~~~~ 
method (Fahlman 1988).  This  heuristic  learning  algorithm  is  loosely  based on the 
Newton-Raphson  method;  its  simplified  version is presented  here.  More  details can 
be found  in Fahlman (1988) or Cichocki and Unbehauen  (1993). The adaptive  mo- 
ment~m rate y,(n) is given by 

(4.58) 

The quickprop method can miss  direction and start climbing up to the  maximum 
because it originates  from  the  second-order approach. Thus,  bounds,  constraints, and 
several other measures are needed to assure appropriate learning  in  real  situations. 

The error function E(w) is  a  nonlinear  function of weights, and the  whole opti- 
mization  procedure  is  much  more  complex  in  the  case of more  common and stan- 
dard learning  problems  when  hidden  layer  weights are the  subjects of optimization. 
This  is  discussed at length  in chapter 8. Here  ohly  a few typical  phenomena  with 
nonlinear opti~ization are presented. In figure  4.23 the nonlinear error function 
E(w) = -w1 cos(wl) + sin(wa),  depending on two  weights  only, is shown.  There are 
two  minima m1 = i0.863  --7c/2j T, m2 = 1-3.426  --71/2] T ,  two  maxima, and a few 
saddle  points in the  given  domain of W. The optimization  procedure can have  many 
different  outcomes,  all  of  them  depending on the method  applied, starting point (or 
initialization), learning rate q, and momentum  learning rate q,. 

There are four  trajectories  shown in figure  4.23.  Two of them  use  gradient  learning 
without  momentum, and they  end  in  two  different  minima.  The  two  others  use  the 
Newton-Raphson  method;  the  first  one  ends in the  closest  maximum 
other trajectory  ends  in  the  saddle  point SP. The  solid  line  ending  in  the  closest 
minimum m1 represents  the  trajectory for small q (q = 0.05)  without  the  momentum 
term (or with qm = 0). The dotted trajectory that ends  in  minimum m2 is  obtained 
with q = 0.9, qm = 0. It is  interesting to note that the  second-order ~ewton-Raphson 
procedure  using  learning rate qH = 0.2 ends  in  the  closest  maximum 
standard Newton-~aphson procedure,  with  learning rate qH = l ,  starting from Eo, 
ends at the  saddle  point SP (black dot). Thus,  this  second-order ~ewton-Raphson 
procedure  reaches  the  closest  minimum  only when the starting point  is  very  close to it 
(the Hessian  matrix at starting point EO is  positive  definite).  Otherwise it may  end  in 
the  closest  maximum or the closest  saddle  point. 

This  nonlinear  optimization  example gives an idea of the  variety of possible opti- 
mization  outcomes. Chapter 8 is  devoted to such  problems, and the important issues 
of nonlinear  optimization  in  the field  of  soft  models  is  discussed  in  much  more  detail 
there. 
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Nonlinear  error  function E = - q*cos( w;)csin( W,) 

O~timization of  nonlinear  error  function 

x5 -4  -3 -2 -1 0 1 2 3 
W1 

Figure 4.23 
Opti~ization on  a  nonlinear  surface;  influence  of  learning  rates. 
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S 

nd the outputs o from  the  two  networks  shown  in  figures  P4. la and 
hidden  layer  activation  function  is  a  bipolar  sigmoidal  function  given by 

(4.12) * 
b. For the  network  in  figure  P4. lb, find outputs for  diRerent  activation  functions 
o = f (  U) when f ( u )  is  a  linear AF; f ( u )  is  a  bipolar  sigmoidal  function given  by 
(4.12); andf(u) is  a  logistic  function  given  by  (4.1  1). 

. Find the updating equations Awg for  the  weights ~ 4 1 ,  w53, and w54 in  figure 
P4.2a,  for  the  weights w41, ~ 3 2 ,  w54, and W63 in  figure  P4.2b, and for the  weights ~ 4 1 ,  

~ 3 2 ,  w63, w76, and wg5 in  figure P4.2~. Inputs i and desired  values d are  known.  All 
neurons  have  the  same AF, o = f (u ) .  ( ~ i ~ t ;  First express  the  delta error signals for 
the output layer  neurons and then  find  the equations for  the HL deltas.  With the 
deltas  known,  a  calculation of the  weight  changes  is s t ra ig~tfo~ard.)  

3 .  The NN consisting of a  single  neuron  with  a  sine as an activation  function, 
o = sin(w1x + w2) is given  in  figure  P4.3,  Using  the  gradient  procedure,  find  the 
weights  in  the  next  step  after  the input vector y = [ ~ / 8  l] is  provided at the input. 
Learning rate q = 0.5. Desired  value d = 1. 

. Calculate  the new  weights for the  neuron  in  figure  P4.4.  Cost  function  is not a 
sum of error squares but L 1  nom, i.e., J = Id - 01. Input x = [l 1 l] ', desired 

(b) x = 3  

+l 

x =  -1 

"l 

"1 

Figure P4.1 
Graph  for  problem 4.1. 
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4 

6 

5 

4 6 8 

Figure P4.2 
Graph  for  problem 4.2. 

Figure P4.3 
Graph  for  problem 4.3. 
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Figure P4.4 
Graph.  for  problem 4.4, 

Figure P4.5 
Graph.  for  problem 4.6. 

output d = 5, and the  learning  rate q = 1.  (Hint: When y = IJ’(x)l), then 

. Derive equations (4.28) and (4.29). Find the  values of f ’ ( u )  at the  origin. Find 
the  slopes f ’ ( x )  at the  origin  when w1 = 10. 

.6. A processing  unit  with  a  one-dimensional input in  figure  P4.5  has  a  shift x* = 5 
along  the  x-axis, and at that point  the output is  declining at the rate 0.5. What are the 
values of w1 and w2? 

.7. A two-dimensional  bipolar  sigmoidal  function  has  a  shift x* = 5  along  the 
-axis and y* = - 1 along  the  y-axis. w1 = -1. What is  its  weight w2? 

What  is  the  number of  weights in  the  fully  connected  feedforward NN with  one 
hidden  layer  havi J neurons?  There are K neurons  in  the output layer. Input vector 
is  n-dimensional. th the input vector x and the HL output vector y are augmented 
with  a  bias tern. What is  the  dimension of the error function E(w) space? (All 
unknown  weights are collected  in  a  weights  vector W.) 
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4.9. Consider  the  feedfonvard NN in  figure  P4.6.  Justify  the  statement that this 
network  is  equivalent to an NN with  only input and output layers (no hidden  layer) 
as long as 1x1 < 5 and for any output layer  weights  matrix . (H&: See  figure  4.10 
and find out what  is  the operational region of the HL neurons when 1x1 < 5.) 

4.10. The NN shown  in  figure  P4.7  uses the bipolar  sigmoidal  AFs.  The outputs have 
been  observed as 01 = 0.28 and 02 = -0.73. Find the input vector x that has  been ap- 
plied to the  network. Find also  the  slope  values of the AFs at the activations u1 and 242. 

4.11. Perform  two  training  steps for a  single  neuron  with  a  bipolar  sigmoidal a d -  
vation  function. Input x1 = j2 0 - l] , dl = - 1, x2 = [l -2 - l] , d2 = 1, ini- 
tial weight WO = [l 0 l] T ,  and the  learning rate 7 = 0.25. 

T T 

X 

+l 

+l 

Figure P4.6 
Graph  for  problem 4.9. 

1 

Figure P4.7 
Graph for problem 4.10. 
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Figure P4.8 
Graph for problem 4.13. 

The error function to be minimized  is  given by E(w) = W ;  - w1 - w1  w2 + 
0.5. Find analytically  the  gradient  vector VE(w) and the  optimal  weights 
* that minimizes  the error function. 

. The NN in  figure  P4.8  is  trained to classify  (dichotomize) a number of two- 
dimensional,  two-class  inputs. 
a. Draw the  separation  lines  between  the  two  classes  in  the (XI, x2) plane,  assuming 
that both the HL and the  OL  activation  functions  are  discrete  bipolar  functions, that 
is,  threshold  functions  between - 1 and +l. 
b.  Assume  now that all  the AFs are  bipolar  sigmoidal  functions. Find the  region of 
uncertainty  in  the (XI, x;?) plane  using  the  following  thresholding  criteria: if a > 0.9, 
then the input pattern belongs to class  1, and if o < -0.9,  then  the input pattern 
belongs to class 2. For the  sake of simplicity,  assume a = b = 0. 

. Show analytically that the  decision  boundary  in  the input space '$in imple- 
mented by a single  neuron  with a logistic  function  (depicted  in  figure  P4.9)  is a 
hyperplane. 

Show analytically that the output from  the  perfectly  trained  neuron  in  figure 
represents  the  posterior  probability of a Gaussian  distribution  in  the  case of a 

binary  classification.  Work  with  the  one-dimensional input x. Assume  same  prior 
probabilities, that is,  the data from both classes are equally  likely. (~~~~~ Data from 
both classes are produced  according to Gaussian normal distributions.  Express  like- 
' ood  functions for each  class.  Assume  different  means and the  same  variance.  Use 
ayes'  rule and show that the  posterior  probability  is a logistic  function.) 
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X n  

+l 

Graph for problems 4.14 and 4.15. 

. In  the  case of a  multiclass clas~ification, instead of the  logistic  function we  use 
the softmax  function  (also  known as the  Pott's distribution), given as 

where i = 1 ,  . . . , n, and n is  a  number of  classes. Find the  derivatives ( ~ y ~ / ~ ~ j ) .  Ex- 
press  your  result  in  terms of yi and yj. Sketch  the graph yi in  the  two-dimensional 
case. 

n important issue  in  neural  networks  learning  is  the  relation  between  the error 
(cost)  function E and the OL activation  functions for various  tasks. A lot of experi- 
mental  evidence  shows that learning  improves  when  the  delta  signal  is  linear  with 
respect to the output signal y from  the OL neuron. Find the delta signals  in  regression 
tasks  (when  the error function  is  a  sum of error squares) for 
a. a  linear OL activation  function, 
b.  a  logistic 02, activation  function. 
(~~~~~ Start with  the instantaneous s~-of-error-squares cost  function E = 
' / ~ ( d  - Y ) ~ ,  and find  the delta signals for the  two  AFs. The notation y is  used  in- 
stead of the  usual notation for  the output signal Q, for your  convenience. The use 
of y may  be more  familiar and should  ease  the  solution of this and the  following 
problem.) 

Discuss  which of the two  proposed OL activation functio~s is  better  in terns of the 
preceding  comrnents about experimental  evidence. 

. Find the delta  signals in a  classification task when  the appropriate error 
nction  is  a cross-entr~~y given for stochastic,  or  on-line,  learning as E = 

- [d log y + ( l  - d)  log( 1 - y ) ] ,  where d denotes  a  desired  value and y is  the 
neuron output. Find the  delta  signals for 
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(a) a  linear QL activation  function, 
(b) a  logistic OL activation  function, 
(c)  a  tangent  hyperbolic  activation  function. 
Discuss  which  of  the  three AFs is  best  in terns of the  comments  in  problem  4.17. 

. Derive  the  cross-entropy error function E given  in  problem  4.18. (Hint: For the 
two-class  classification, data are generated by the  Bernoulli  distribution. Find the 
likelihood of P independent  identically  distributed data pairs, take its  logarithm  (find 
the  log-likelihood I) ,  and the error (cost)  function for the whole data set  is E = -2.) 

. Show that using  a  pair of softmax output neurons  is  mathematically  equivalent 
to using  a  single QL neuron  with  a  logistic  function.  Express  the  connections  between 
the  weights  vectors and biases  in  the  softmax  model and the  weights  vector and bias 
in the logistic  model. 

The  simulation  experiments  in chapter 4 have  the  purpose of familiarizing  the  reader 
with  EBP  learning in multilayer  perceptrons  aimed at solving one~dimensional 
regression  problems.  However,  the  learning  algorithm  is  written  in  matrix fom, i.e., 
it is  a  batch  algorithm, and it works  for  any  number of inputs and outputs. The 
examples  in  the ebp.m routine ate one-dimensional for the  sake of visualization. 
Three  examples are supplied. See the  description of all input variables in the  program 
e bp .m. 

The experiments are aimed at reviewing  many  basic  facets  of  EBP  learning (nota- 
bly the  learning  dynamic  in  the  dependence of the  learning rate q, the  smoothing 
effects  obtained by decreasing  the  number of HL neurons,  the  influence of  noise, and 
the  smoothing  effects of early  stopping). It is important to analyze  the  geometry of 
learning, that is,  how the HL activation  functions  change  during  the  course of learn- 
ing. Be aware of the  following  facts about the  program ebp.m: 

1. It is  developed for one-dimensional  nonlinear  regression  problems. 
2. However,  the  learning part is  in  matrix fom, and it can be  used for more  complex 
learning  tasks. 
3. The learning  is  the  gradient  descent  with  momentum. 
4. The  program  is  user-friendly,  even for beginners  in  using  MATLAB,  but  you  must 
cooperate. Read carefully  the  description part of the ebp.m routine  first.  Giving  the 
input data will  be  easier. The ebp.m routine  prompts  you to select, to define, or  to 
choose difTerent things  during  the  learning. 
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5. Analyze  carefully  the  graphic  windows  presented.  There  are  answers to many 
issues  of learning  in  them. 

Experiment  with  the  program ebpm as follows: 

1. Launch  MATLAB. 
2. Connect to directory learnsc (at the matlab prompt, type cd learnsc 
(RETURN)). learnsc is  a  subdirectory of matlab, as bin, toolbox, and 
uitools are. While  typing cd learnsc, make  sure that your  working  directory 
is matlab, not matlabfbin, for example). 
3. Type start (RETURN). 

4. Input data for three  different  functions are given. You will  be able to define  any 
other function, too. You will also  have to make  several  choices. 
5. Take care about the  magnitudes of  your output training data.  It is  clear that if 
they are larger than 1, you cannot use tgh or the  logistic  function.  However,  try 
using  them, and analyze  the  results obtained. 
6. After  learning, five  figures  will  be  displayed.  Analyze  them  carefully. 

Now  perform  various  experiments by changing  a few design  parameters. Start with 
the prepared  examples. Run the  same  example  repeatedly and try out different 
parameters. 

l .  Analyze  the  learning  dynamics  in  the  dependence of the  learning rate v* Start with 
very  low  one  (say, = 0.001) and increase it gradually  up to the point of instability. 
2. Analyze  the  smoothing  effects  obtained by increasing  the  number of HL neurons. 
Start with  a  single HL neuron and train it with  a  small  learning rate, say, 5,000 iter- 
ation steps. Repeat the  simulations,  increasing the number of neurons and keeping  all 
other training  parameters fixed (learning rate and number of iteration steps). 
3. Analyze  the  smoothing  effects of early  stopping, Take the  number of neurons 
to be (P - l),  or approximately (0.75 - 0.9)*P, where P stands for the number of 
training data points. Start modeling  your data by performing 500 simulation  runs. 
Repeat simulations by increasing  the n u b e r  of iterations and keeping  all other 
training  parameters fixed (learning rate and number of HI., neurons). 

In all  the  preceding  simulational  experiments,  there  must not be the  influence of 
random initialization and noise.  Therefore, run all  simulations  with  the  same r ~ n ~ o ~  
n ~ ~ ~ e r  g e ~ e ~ ~ t o r  seed; that is,  select  a  fixed  seed that ensures  the  same  initial  con- 
ditions and starting points. 
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l .  Now,  disable the random  nurnber  generator  seed. Run the  experiments  without 
noise and analyze  the  effects of different  random  initializations of the  weights,  Keep 
all other parameters  unchanged. 
2. Look at the  effects  of  different  noise  levels on various  approximators. Note that 
defining  noise = 0.2 means that there  is 20% noise. For many  practical  situations, 
this  is too high  a  noise  level. Repeat some  of the experiments  with  a  different  noise 
level. 
3, Analyze  the  influence of the  momenturn  term on learning  dynamics. 

Generally,  in  performing  simulations  you  should  try to change  only m e  parameter at 
a  time. ~eticulously analyze  all  resulting  graphs  after  each  simulation  run.  There are 
many  useful  results  in  those  figures. 

You  are  now  ready to define  your  own  one-dimensional  functions to do nonlinear 
regression by applying  multilayer  perceptrons.  This  is  the  name given to l?+lNs with 
sigmoidal  activation  functions  in  a  hidden  layer that learn by applying  the  first-order 
gradient  (steepest  descent)  method  with  momentum.  In  the  neural  networks  field,  this 
gradient  procedure  is  also  known as the error back~ropagation learning  algorithm. 
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Radial basis  function (R F) networks  have  gained  considerable attention as an 
alternative to multilayer  perceptrons  trained by the backpropagation algorithm. 

0th multilayer  perceptrons and RBF networks are the  basic  constituents of the 
feedforward  neural  network.  They are structurally  equivalent.  Both  have  one  hidden 
layer1 (HL) with a nonlinear  activation  function (AF) and an output layer (OL) 
containing  one or more  neurons  with  linear AFs. Hence,  figure 4.4 might  well  repre- 
sent an  RBF network,  provided that instead of the  S-shaped AF there were 
functions  in  the  hidden  layer’s  neurons. In the  case of an  RBF network,  also,  one 
does  not  augment both t dimensional input vector x and the HI, outgoing  vector 
y with a bias  term +l. ever,  sometimes  one can find RBF networks  having 
the HL outgoing  vector y augmented  with a bias  term.  And for classification  tasks, 
instead of the  linear AF in  OL  neurons  one can use  the  S-shaped  logistic  function. 
But it should be stressed that the  All; in  the OL neurons of an  RBF network  derived 
from  regularization  theory  is  strictly  linear.) 

One important feature of RBF networks  is  the  way  the input signal U to a neuron’s 
AF is  formed. In the  case of a multilayer  perceptron,  the input signal U is  equal to 
wTx.  In other  words, U is  equal to the scalar product of the input vector x and a 
weights  vector W. The input signal U to the  radial  basis  function  is  equal to the  distance 
between  the input vector x and a center of the specific AF c, or uj = f (  Ilx - ejli). 
Note that for an BF network,  centers cj of the neuron’s AF represent  the 
weights. 

The advantages of RBF networks,  such as linearity  in the parameters (true in 
their  most  basic  applications  only) and the  availability of fast and efficient  training 
methods,  have  been  noted  in  many  publications,  Like a multilay~r perceptron, an 

F network  has  universal approximation ability (Har t~an ,  Keeler, and Kowalski 
1990; Park and Sandberg  1991).  Unlike  the  former, an RBF network  has the best 
approximation property  (Girosi and Poggio  1990).  But  the  most  appealing  feature of 
RBF networks  is  their  theoretical foundation. Unlike  multilayer  perceptrons,  which 
originated  from  the  more  heuristic  side of engineering, RBF networks  have a sound 
theoretical foundation in regulari~ation theory,  developed by the  Russian  mathema- 
tician  Tikhonov and his  coworkers  (Tikhonov  1963;  1973;  Tikhonov and Arsenin 
1977; Morozov  1993). 

Thus,  let  us  consider  first  the nature of ill-posed  problems and the  regularization 
approach to solving  such  problems, and then how RBF networks  fit  naturally into 
the  framework of the  regularization of interpolation/approx~ation tasks. For these 
problems, regularization means the s ~ o o t ~ i n g  of the. inte~olation/approximation 
curve,  surface, or hypersurface.  This approach to  RBF networks,  also  known as 
~egUZari~atio~ n e t ~ o r ~ s ,  was  developed by Poggio and Girosi  (1989a;  1989b;  1990a; 
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1990b; 1990~). Their  research  focused on the  problem  of  learning  a  multivariate 
function  from  sparse data. Poggio and Girosi’s  group  developed  a  theoretical  frame- 
work,  based on regularization  theory, that has roots in  the  classical  theory of 
function approximation. Subsequently,  they  showed that regularization  networks 
encompass  a  much broader range of appro~imation schemes,  including  many of the 
popular general  additive  models,  some  tensor  product  splines, and some  neural  net- 
works  (Girosi,  Jones, and Poggio  1996).  This  result  is important because it provides  a 
unified  theoretical  framework for a broad spectrum of neural  network  architectures 
and statistical  techniques. 

Independently, and not from  a  regularization approach, RBF networks  have  been 
developed and used  in  many  diRerent  areas.  They  were  used  in  the  framework  of  the 
interpolation of data points  in  a ~gh-dimensional space  (Powell  1987).  An RBF type 
of network  developed as a  neural  network  paradigm  was  presented by Broornhead 
and Lowe  (1988).  An  early important theoretical  result on the  nonsingularity of 

matrix,2 which  is  the  core  component of an RBF network,  was  presented by 

re, the presentation of RBF networks  in  the  framework of regularization  theory 
follows  Poggio and Girosi  (1989a;  1993) and Girosi  (1997). 

The concept of ill-posed p ~ o ~ l e ~ s  was  originally  introduced  in the field  of partial 
differential  equations by Wadamard  (1923). In accordance  with  his  postulates,  a 
problem  is well-posed when a  solution 

0 Exists 
0 Is unique 

epends ~ontinuously on the initial data (i.e.,  is  robust  against  noise) 

herwise,  if the  problem  fails to satisfy  one or more of  these  criteria,  it  is  ill-posed. 
-posed  problems  have  been an area of mathematical  curiosity for many  years 

because  many  (especially  inverse)  practical  problems  turned out to 
Classical  problems  in  mathematical  physics are usually  well-posed  by 
criteria  (e.g.,  the forward problem  for  the heat equation, the Dirichlet  problem for 
elliptic  equations, and the  Cauchy  problem for hyperbolic equations). Actually, 

damard believed that real-life pr ems are well-posed and that ill-posed  problems 
merely  mathematical  oddities. other direct  problems are well-posed but 

some  are not, for example,  differentiation,  which  is an ill-posed  direct  problem  because 
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/"\ Constraints 

Figure 5.1 
Regularization of the  ill-posed  inverse  problem d f  = direct  map, f" = regularized  inverse  map). 

its  solution  does not depend  continuously on the data. Inverse  problems are typically 
ill-posed  problems.  Two  examples are in  robotics  when  one  needs to calculate  the 
angles  given  the  positions of both the  robot's  base and the  final  position of the  robot's 
hand, and in  vision  when  one  tries to recover a three-dimensional  shape  from  two- 
dimensional  matrices of light  distribution  in an image  measured by a camera.  (The 
latter problem  is  the  inverse of the standard problem  in  classical  optics when one 
wants to determine  two-dimensional  images of three-dimensional  physical  objects.) 

The  problems  in  which  one  tries to recover an unknown  dependency  between 
some input and output variables are typically  ill-posed  because  the  solutions  are not 
unique.  The  only way  one can  find a solution to an ill-posed  problem  is to r e g ~ ~ ~ r i ~ e  
such a problem by introducing  generic  constraints that will restrict  the  space of 
solutions  in an appropriate way.  The character of the  constraints  depends  on a priori 
knowledge  of the  solution.  The  constraints  enable  the  calculation of the  desired, or 
admissible,  solution out of other (perhaps an infinite  number of) possible  solutions. 
This  idea  is  presented  graphically  in  figure 5.1 for  the  solution of the  inverse  problem 
when there is a one-to-many  mapping  from  the  range Y to the  domain X. 

An  everyday  regularized  solution  results  in  calculating  the  distance  between  two 
points x1 and x2 in a two-dimensional  plane  when,  using  the  fact that the  distance  is a 
positive  value (a kind of a priori  knowledge  in  this  problem),  one  takes  the  positive 
one  only out of the  two  solutions: 

d = d ( X 1 1  - + (x2, - 

Another  classic  example of regularized  solutions  is  the  solution to the standard 
overdetermined  system of m equations in n unknowns (m > n): 
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where  for  the  given y and A one  should h d  x. Out of an infinite  number of solutions 
to this  problem  the  most  common r e g ~ Z ~ r i ~ e ~  ~ o Z ~ t i o ~  is  the  one  in  the  least-squares 
sense, or the  one that satisfies  the constraint that the  sum  of  squares  of  the error com- 
ponents ei is  minimal. In other words,  the  solution x should ninimize lls112 = eTe = 

x) T ( y  - Ax). This  least-squares  solution  is  known to be x = ( ~ T A ) - l A T ~ .  
Standard learning  problems,  inferring  the  relationships  between  some input and 

output variables,  are  ill-posed  problems  because  there  is  typically an infinite  number 
of solutions to these interpolation/approximation tasks. In figure 5.3 only  two  possi- 
ble  perfect inte~olation functions are shown. Note that both interpolation functions 
strictly interpolate the examples and that the errors on these  training  points for both 
interpolants are  equal to zero.  Despite  this  fact,  one  feels that the  smooth interpolant 
is  preferable. The idea of smoothness  in  solving  learning (inte~olation/approxima- 
tion) problems  is  seductive, and the  most  common  a  priori  knowledge  for  learning 
problems  is  the  assumption that the  underlying  function  is  smooth  in  the  sense that 
two  close (or similar) inputs correspond to two  close (or similar) outputs. Smoothness 
can also be  defined as the absence of oscillations. 

Now,  the  basic  problems are how to measure  smoothness and how to ensure that 
the inte~olation/ap~roximation function  is  smooth.  There are many  ways to mea- 
sure  smoothness; the most c o ~ o n  one  is to introduce  a s ~ o ~ t ~ ~ e ~ ~   f ~ ~ c t i o ~ ~ 1 3  
~ ( f ( x ) )  that will map different  functions f ( x )  onto real and positive  numbers.  The 
interpolation/appro~imation function  with  the  smallest  functional  value 
then be the  function of choice.  This  is  shown  in  figure 5.2. 

Figure 5.2 
The  smoothness  functional a>(f(rr)) maps  functions  onto  positive  real  numbers. 
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Smoothness  functionals  should  assume  large  values for nonsmooth  functions and 
small  ones for smooth  functions. It is  well  known that taking  derivatives  of  a  function 
amplifies  the  oscillations, that is,  results in less smooth  functions.  Therefore, natural 
smoothness  functionals that should  emphasize  a  function’s  nonsmoothness are the 
ones that use the functions’  derivatives.  Three  smoothness  functionals that use dif- 
ferent  functions’  derivatives or their  combinations are 

(5.2a) 

(5.2b) 

(5.2~) 

where f ( s )  stands for the Fourier transform of f ( t ) .  More  generally,  the  smoothness 
functional can be  given as 

where n represents the dimensionality of the input vector x and d(s) is  a  positive 
symetric function  in  the S domain  decreasing to zero at infinity. In other words, 
l/G(s) is  a  high-pass  filter. The smoothness  functional @ ( f )  can also be  expressed as 

where  the  constraints operator P is  (usually)  a  differential operator 
P = d2/dx2, or P = d22/dx22, and 11 * 1 1 2  is  a  norm on the  function  space to which Pf 
belongs  (usually  the L2 norm). 

In order to measure  their  smoothness, the functional @ l ( f )  from  (5.2a)  is  applied 
to two  different interpolation functions  (see  figs. 5.3 and 5.4). The procedure  is 
simple. In accordance  with  (5.2a),  one  initially  calculates  the  first  derivatives of the 
functions (fig 5.4, top graph), squares  them, and finds  their  integrals  (fig. 5.4, bottom 

Note that the  choice  of  the  smoothing  functional @ ( f )  (i.e., of the  constraints 
operator P) is  a  very important step  in  neural  network  design  because  the  type of 

graph) * 
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interpolation of the  training  data 
41 I I l I I I l 

3- 

2 -  

1 -  

0- 
4 4  
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-2 - 

-3. 

interpolation 

Smooth 
interpolation 

True  function 

.3 - .2 - 1 0 1 2 3 4  
X 

Figure 5.3 
Interpolation of the  training  data  (circles) by a  smooth  interpolant  and  a  nonsmooth  interpolant.  True 
function y = x + sin(2x). 

basis (or activation)  function in a  neuron  strictly  depends upon the  functional 
(or P) chosen. So, for example,  in  the  case  of  a  one-dimensional input 
tional ( D 1  ( j ' )  from  (5.2a)  results  in  a  linear  spline  basis  function, and 
(5.2b)  results  in  a  cubic  spline  basis  function. 

The idea  underlying  regularization  theory  is  simple:  among  all  the  functions that 
interpolate  the data, choose the smoothest  one (the one that has  a  minimal  measure 
of smoothness or a  minimal  value  of  the  functional dD(f)). In doing  this, it is 
believed,  the  solution can be obtained  from the variatio~aZ ~ r i ~ c i ~ Z e  that contains 
both data and prior  smoothness  information. 

The r~~ularization approach to solving  learning (interpolation/approximation) 
problems can now  be  posed as a  search  for the function f ( x )  that appro~imates the 
training  set of measured data (examples) D, consisting  of  the input vector x E %' and 
the output or system  response d E %, D = { [x ( i ) ,  d(i)]  E 3' x %, i = 1, . . . , 
~ n i m i ~ e s  the  functional 

P P 
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irst  derivatives of inter~olation functions 
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The  squares of first  derivatives of in te r~o~ 
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Calculation of the  smoothness  functional @(f) .  Top, first  derivatives,  smooth  interpolant  {thin  solid  curve), 
nonsmooth  interpolant  (thick  solid  curve). ~ o t t ~ ~ ,  areas below  the  squares  of  the  first  derivatives  are  equal 
to  the ma~nitudes of @(f). For smooth  interpolant  {horizontal  stripes), CS,(f) = 20; for nonsmoot~ 
interpolant  (shaded area), @ ~ s ( f )  = 56. True fxmction y = x + sin(2x)  (dotted  curve). 
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where A is a small,  positive  number (the Lagrange  multiplier),  also  called  the regula- 
rization parameter. The  functional H [ f ]  is  composed of two parts. The  sum  minimizes 
the e ~ ~ i r i c a Z  risk, error or  discrepancy  between the data d and the approximating 
function ”(x), and the  second part enforces the smoothness of this  function.  The 
second part of H ,  AllPfl12, is  also  called a stabilizer that stabilizes  the interpolation/ 
approximation function f(x) by forcing  it to become  as  smooth as possible.  The 
regularization  parameter A, which  is  usually proportional to the amount of noise  in 
data, determines  the  influence  of  this  stabilizer and controls  the  trade-off  between 
these  two  terms.  (The  smoothness can be controlled by the  number of the  neurons, 
too, although in a different  manner). The smaller  the  regularization  parameter A, 
the  smaller  the  smoothness of the approximating function f(x) and the  closer  the 
approximating  function f(x) to the data. Taking A = 0 (i.e.,  no  constraints on the 
solution)  results  in a perfect interpolation function or in an “approximating” func- 
tion that passes  through  the  training data points (f(xi) = di).4 

Before  looking at the  theoretical  derivation,  let  us  consider  the  general  result of this 
approach. The  function that minimizes  the  functional H [ f ]  has  the  following  general 
fom: 

P h- 

W&; X i )  + p(x),  p(x) = 
i= 1 j= 1 

where G (the Fourier inverse  transform of G )  i s  the  conditionally  positive  definite 
function  (c.p.d.f.)  Green’s  function of the  differential operator 
tered at x. and the  linear  combination of functions that spans  the  null  space of the 

, p ( x )  = ci”l_, ajyj(x), is  in  most  cases a basis  in  the  space  of  polynomials 
of  degree m - 1. Note that in  order to arbitrarily approximate well any  continuous 
function  on a compact  domain  with  functions of the  type (5.6), it is 
include  this  second,  “polynomial”  term  belonging to the  null  space o 
Girosi  1989b). In fact, one  of  the  most  popular RBF networks,  when G(x,xi) is a 
Gaussian  function,  does not have  this  term at all.  Hence,  the  resulting f(x) is a linear 
combination of  Green’s  functions G(x, xi) eventually aumented with  some  function 

The  approximating  function f (x)  given  in (5.6) results  from  the  minimization  of 
the functional H [ f ]  by calculating the J’~nctionaZ deri*a~i*e as follows. 

Assume that the  constraints operator is  linear and that f is  the  solution that 
minimizes  the  functional U[f’]. Then,  the  functional H[J’ + ag] has a (local)  mini- 
mum at a = 0, or 

P(x>. 
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d 
"Wf+ agll,,, = 0 dcc 

for any  continuous  function g. Now,  it  follows that 

and with a = 0, 

Now,  consider  the  well-known  syrnbolics  for  the  functional  scalar  product ( f ,  g) = 
Jf(x)g(x) dx as well as the notion of  the a ~ o i n t   o ~ e r a t o ~  

g). With  this notation it follows  from (5.8) that 

or 

This  is  the Euler-~agrange (partial) differential equation for the  functional (SS), 
which can be  solved  by  using the  Green's  function  technique.  Before  solving (5.9), 
consider  the  basics of this approach in  solving  differential  equations.  Green's  function 
G(x; xi) of an operator is the function that satisfies  the  following partial 
differential equation (in  the  distribution  sense): 

where 6 denotes a Dirac 6 function.  Hence, G(x; xi) = 0 everywhere  except at the 
i. When  the  differential operator is s ~ ~ - a ~ o i n t ,  Green's  function 
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is  symmetric. Note that (5.10)  resembles  the  relationship  with  the  linear  algebra 
or that G(x; Xi) represents  a  kind  of  inverse  of  the  differential operator 
the  calculation of the  solution to the  linear equation Ax = y, where 

solution  is  given as x = A-ly), the  solution of f = h has  the  form f = G*h, where 
the  superscript * stands for the  convolution, or 

Using  (5.10) and the definition of the Dirac 6 function, f 6(x - v)h(v) = h(u), 

G)*h = &*h = h(x) .  

Now,  applying  this  technique while looking for Green’s  function of the operator 
in (S.!$), the  solution  is  given as 

or 

(S. 11) 

where G(x; xi) is  the  value of Green’s  function  centered at the  vector X i .  Defining  the 
first factor on the  right-hand  side as the  weight wi, 

the  solution can be rewritten  as 

P 

i= 1 

(5.12) 

(5.13) 

Note, however, that (5.j 3) is not the complete  solution (5.6) to this m i ~ m i ~ a t i o n  
problem.  The  second  term on the  right-hand  side of (S.6), which  lies  in  the  null  space’ 

is  invisible to the  smoothing  term of the  functional H[f’] .  
the  interpolating  function  in  (5.13), both Green’s  function G(x; xi) 

and the  weights W i  are need . Green’s  function G(x; Xi) depends  only  upon  the  form 
of the  constraint operator chosen. For the trunsluti~nully  in~uriunt operator 
G(x; xi) = G(x - xi), i.e.,  Green’s  function  depends  only on the  difference  between x 
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and X i .  In the  case of the tran~lutionully  i~variant and rotationally invariant operator 
) G(x; xi) = G( /Ix - X i  \ I ) ,  or Green’s  function  depends  only on the  Euclidean norm 

of the  difference X i .  In other  words,  for  the  translationally and rotationally 
invariant operator reen’s  function  is  the RBF and  the  regularized  solution  (5.13) 
takes  the  form of the  linear  combination of the RBFs: 

(5.14) 
i= 1 

In order to calculate the weights wj, j = 1) . . . ) P, of the  regularized  solution,  assume 
that the specific  Green’s function G(x; X i )  is  known. Note that there  are P unknown 
weights and P examples.  Now,  from (5 .  l  1) and (5.12),  two  systems of P equations in 
P unknowns are formed as follows: 

L 

G11 G12 

G21 G22 

GP1 GP2 

1 
A. 
” 

... 

... 

... 

h 
f 2  

fJ 

f P  

? (5.15a) 

... 
... 

. . .  

(5.15b) 

where fJ = f ( x j )  is  the  value of the interpolation/approximation function f from 
(5.13) at the input vector X . ,  and Gji = G(xj; xi) is  the  value of Green’s  function 
centered at the  vector X i  at the  vector xj. In the  case of the  one-dimensional input 
vector x = [x]) figure 5.5 shows  how  the  entries of a  matrix G are formed  for  the  two 
different  basis  functions.  Substituting f from  (5.15b) into (5.15a)  the  unknown 
weights  vector W is  found  as 

(5.16) 
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Linear  splines  interpolation.  The  entries of matrix G are 
shown  as  circles. 

0.00 1.57 3.14 4.71 6.28 

1.57 0.00 1.57  3.14  3.71 6 
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4 
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Gaussian BF interpolation.  The  entries of matrix G are 
shown  as  circles. 
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Figure 5.5 
Forming  a  matrix G for (top) linear  splines  basis  functions  and (bottom) Gaussian  basis  functions.  Under- 
lying  function y = sin(x) (dotted  curve).  The data set  comprises  five  noiseless data.  Second  (bold)  row of G 
denotes  outputs  from G(x2, S), i = 1,5; fourth  (bold)  column of G denotes  outputs  from  the  fourth  basis 
function  (thick  solid  line) G(xj ,  cq), i = 1,5. 
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When  the operator int, then  because  Green’s  function G 
symmetric, so is Gr in  (5.15b),  with  the  property 
also that without  any constraints (A = 0), the  function f ( x )  interpolates  the data, or 

Sometimes,  depending  upon  the operator applied,  the  complete  solution  as given 
in (5.6) consists of a linear  combination of Green’s  functions and of the  “polyno- 
mial”  term p(.;), i.e.,  there are two  sets of unknown  coefficients: W and a. In this  case, 
weights wi and ai satisfy  the  following  linear  systems: 

f ( x i )  = di. 

(5.17) 

where  the  entries of the matrices are given as G(i,  j )  = G(xi; xj) and 
T(i, j )  = yi(x.), the  weights wi connect  the ith HL neuron  with  the OL neuron, di 
are the  measured  system’s  responses, and ai are the appropriate parameters of  the 
“polynomial”  term p(x ) .  As mentioned  earlier,  when  the RBFs are Gaussians  there  is 
no additional term and (5.14)  completely  describes  the  regularization (RBF) network. 

A graphical  representation of (5.14),  where a training data set D, consisting of only 
five  examples  with  one-dimensional  inputs x E % and with outputs or system  re- 
sponses d E %, D = { (x( i), d( i ) ]  E % x %? i = 1, . . . , 5 } ,  is  given in  figure 5.6. There- 
fore,  (5.14)  corresponds to a neural  network  with  one  hidden  layer and a single 
linear output layer  neuron.  The RBF is placed at centers ci that coincide  with  the 
training data inputs xi, meaning that the  basis  functions are placed  exactly at the 
inputs xi. The  bias  shown  in  figure  5.6  does not strictly  follow  from equation (5.14) 
but can be augmented to the HL output vector y. Thus,  the  solution to the  minimi- 
zation of the  functional  (5.5),  given as (5.14, can be implemented  as a network. 

Nothing changes  in the graphical  representation for a high-dimensional input 
vector x. The input node  represents  the input vector x. The  hidden  layer  neurons 
receive  the  Euclidean  distances (11. - qll) and compute  the scaZar values of the  basis 
functions G(x;  S) that form the HL output vector y. Finally,  the  single  linear OL 
neuron  calculates  the  weighted  sum of the  basis  functions as given  by (5.14).  There  is 
only a change  in notation in  the  sense that the centers ci and the  width  parameter CT 
(which for the  Gaussian  basis  function  is  equal to its standard deviation)  become  the 

i (of  the  same  dimension as the input vector x )  and the (n  x n) covariance 

A regularization  network  (5.14)  strictly  interpolates  the data by summing  the 
weighted  basis  functions,  where  the  weights are determined by (5.16) or (5.17). The 
geometry of such a strict interpolation, in  the  case of a two-dimensional input vector 
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d 

Figure 
A strict inte~olating  re~larization network (5.14) for a one-dimensional  input x. The  data set  comprises 
five  examples.  Centers ci correspond  to  inputs xi (ci = xi), and  all  variances  are  equal (q = 0). Bias  shown 
is not  mandatory  and  does  not  follow  from (5.14). 

x = [XI ~~i when the basis  functions are two-dimensional  Gaussians,  is  shown  in 
ote that during  training or learning,  the  network  was given  only data D 

comprising P training  pai d). In other words,  the  surface  presented  in  figure 
5.7 is reconst~cted by the network as the weighted  sum  of the  Gaussian  basis 
functions  shown.  uring  learning,  the  netwo 

e. Note that because  the 
merely  calculating th weights  vector W. Fur the~ore ,  

ian basis  functions an gle training data point  are  shown 
5.7. For the  sake of clarity  in  the  graphical  presentation,  the  overlapping of 
S is not visible  in  this  figure.  Only 10%  of the  two-dimensional  Gaussian 
tions  is  shown.  Typically,  the over1 

ote also an impo~ant characteristic of the  model  regarding  the  matrix 
espite  the  fact that the input is a vector no 

remains a two-dimensional array, that is,  it  is  still a (P ,  P )  matrix as in 
(5.15b) and in  figure 5.5. 
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1 ‘(x) = f( 

f Unknown and  reconstructed  surface f(x,, x 

Cnown data Doint d, 

Y x2 

A regularization (RBF) network  reconstructs  the  unknown  underlying  dependency f ( x )  as the  weighted 
sum of the  radial  basis fu~ctions G(x; Q) by  using  the training data set ( 0 ) .  Only a part of the  basis  func- 
tions  and a single training data point  are  shown. 

The neural  net  architecture  given  in  figure 5.6 can easily  be expanded to approxi- 
mate  several  functions = (J; , f2 ,  . . . , fK]  ’ by using  the same set of centers ei. 
case, K output layer  neurons are needed.  Such an 9%’ ”+ !RK mapping can be  modeled 
by the  network  shown  in  figure  5.8.  The input vector x is  presented  in  component- 

are two  sets of known ~ a r a ~ e t e r s  in e hidden  layer:  entries of a 
and elements of a covariance  matrix  The  entries of an output 

layer  weights  matrix are unknown.  The  problem  is  linear  again, and the  solution 
is  similar to (5.16): 

(5.18) 

comprises  all  the  desired output trainin 
k = [ d l k ,  d2k, . . . , dpk] k = 1 K .  Note that all  neurons  share  the 

radial basis  functions and that the same  matrix ( is  used for the  calculation 
of each  weights  vector vvk, k = 1, K .  The per fo~ance  of a regularizati 
network  is   em on st rated in  example  5.1. 
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Figure 5.8 
Architecture of a  regularization (RBF) network  for  an !Rn "-f !RiK mapping.  The  n-dimensional  input 
vector x is shown  componentwise,  and  the  n-dimensional  Gaussian  basis or activation  functions  are  shown 
as  two-dimension~l  Gaussian bells. 

Ze 5.1 Model  (reconstruct)  the  unknown and simple  relation y = f ( x )  = 
sin(x) between (just) two  variables x and y ,  using an RBF network  with  Gaussian 
basis  functions,  having  a  set of ten data pairs  from  measurements  highly  corrupted by 
50% white  noise  with  zero  mean  (see  fig. 5.9). Examine  the  smoothing  effects  achieved 
by  using  different  parameters A. 

According to (5.5) and (5.6) an RBF network  comprises  ten  neurons  with  Gaussian 
basis  functions  centered at inputs xi. Without  regularization (A = 0, or no constraints) 
the  network  purely  interpolates  the data points.  As  the  regularization  parameter A 
increases, the regularized  solution  becomes  smoother, and with  the  noise  filtered out, 
it will approximate the data points.  If it is too high,  the  regularization  parameter A 
acts to disregard  the data points as unreliable and results  in an a~proximating func- 
tion that filters out both the  underlying  function and the  noise.  One  usually  finds  the 
optimal  value of the  parameter A by the cross-vaZi~~tio~ technique. 

The next  section  takes  up  the  still  unresolved  issue of the  relation  between the 
stabilizer d[> (i.e., operator ) and Green's  function G(x; xi>. 
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RBF fitting of noisy  training  data 

A = 0.5, smoothed  approximation 

--l .5 1 1 l & 

-4 -2 0 2 4 6 
X 

Figure 5.9 
RBF  network  and  regularized  solutions  to an underlying  function y = sin(x) for  a  data  set  (crosses) of  ten 
noisy  examples  using  three  different re~larization parameters A: A = 0, which  results  in  a  strict  interpola- 
tion  function,  and  with  error = 0.3364.  Smoothed approx~ation functions  achieved  with  two  different 
lambdas: A =I 0.175, error = 0.2647; A = 0.5, error = 0.3435  (smoothing  too  high).  Number  of  Gaussian 
RBFs is  equal to the  number  of  examples.  Noise  filtering is achieved  through  parameter A. 

First recall that during  the  derivation of the  expressions  (5.16) and (5.17)  Green’s 
basis  function G(x; xi) was  assumed  known for the  calculation of the re~ulari%ation 
network’s OI, weights. It was  also  mentioned that Green’s  function  is  the RBF for 
the  translationally and rotationally invariant operator P. Radial stabilizers are the 
most  common  ones, and they a priori  assume that all  variables are of equal  concern, 
or that no directions are more  relevant  (privileged) than others in  n-dimensional 
examples. 

Radial stabilizers are not the  only  types of smoothing operators. There are other 
types of smoothing  functionals  belonging to the  class (5.3) that do not lead to radial 
basis  functions.  Consequently, the outcomes of such nonradial stabilizers are not RBF 
networks.  Each of these  different  stabilizers  corresponds to different a priori  assump- 
tions about smoothness. The two  kinds of stabilizers are t ~ n ~ u r ~ r u ~ ~ c t  stabilizers and 
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~ddit ive  stabilizers.  Consideration of these  is  outside  the  scope of this  book;  the 
interested  reader  is  referred to the  work of Girosi,  Jones and Poggio  (1996). 

Here,  the  focus  is  on  stabilizers that have a radial symmetry as we11 as on  the  cor- 
responding RBF  interpolation/appro~imation technique.  Example  5.2  demonstrates 
that the  classical approximation techniques for an !R’ ”+ %’ mapping,  linear and 
cubic  spline  interpolations,  belong to regularization RBF networks. 

~ x ~ ~ ~ Z e  5.2 Show that the  smoothing  functionals d D 1  [ f ]  = f R  dx + ( f ’ ( ~ ) ) ~  given  in 
(5.2a) and dD2Ef] = f’dx I ( f ” ( ~ ) ) ~  given  in  (5.2b)  lead to RBF network  models for 
an !R ”+ %l mapping of P data pairs  (see fig. 5.10). 

In the  first  case, (5.2a), the smoothing operator = df/dx and the  functional d D 1  [ f ]  
can be written as 

Linear and cubic splines interpolations 

I l i I I 1 

-3 -2 -1 0 1 2 3 
X 

Figure 5.10 
Interpolation of noisy  examples  by  two RBF networks  having  piecewise  linear  and  piecewise  cubic  poly- 
nomial  basis  functions. 
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In other words, d(s) = l/s2, and its  inverse  corresponds to G(x, xi) = Ix - xil. 
Hence,  a  regularization  network (an interpolation function)  has  the  form of a  piece- 
wise‘ linear  function 

P 

i= 1 

Note that a  polynomial of zero  order p(x)  = a is  in  the  null  space of the operator 
= df /dx. Speaking  colloquially,  the  const  t  term a is  not  visible to the operator 
When  the  smoothing  functional (D2 [ f ] ,  = d2 f /dx2 )  the very  same procedure 

leads to  an interpolation  function  in  the  form of a piecewise  cubic  polynomial 

or G(s)  = l/s4, and its  inverse  corresponds to G(x, xi) = Ix - xi13, which  results  in 

As with  the  case  of  linear  splines, d 2 p ( ~ ) / d x 2  = d2(ax + b)/dx2 = 0, that is,  the 
polynomial  term  is  in  the  null  space of the  smoothing operator = d2f /dx2. It is 
clear that a  nonsmooth interpolation function will  be punished  more  strongly by using 
a  second  instead of a  first  derivative. In other words,  a  piecewise cubic  polynomial 
interpolation function will  be smoother than a  linear  one. 

Generally,  a  class of admissible RBFs is  a  class of conditionally  positive  definite 
functions  (c.p.d.f.) of any  order  because for c.p.d.f.  the  smoothness  functional  (5.3)  is 
a  seminorm and the  associated  variational  problem  is well  defined (Madych and 
Nelson 1990). Table 5.1  gives the most important examples of stabilizers and result- 
ing RBFs. Note that for  a  positive  definite  n-dimensional  Gaussian  function,  (5.3) 
defines  the  norm, and since ( D [ J ’ ]  is  a  norm,  its  null  space  contains  only  zero  elements. 
Therefore, when a  basis  function  is  a  Gaussian  function,  the additional null  space 
term p(x) is not needed  in  (5.6).  Gaussian  basis  functions are the  most  popular  ones 
for at least  the  following  reasons: 

* They  show  much  better  smoothing  properties than other known RBFs. This  is  clear 
from  the  exponentially  acting  stabilizer d(s) = l / e l~s~12~~ ,  which  will  heavily 
or punish,  any  nonsmooth  interpolation  function f ( x )  in areas of  high  frequencies S. 
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0.8 - 
0.6 - 
0.4. 

Figure 5.11 
Two-dimensional  radial  basis  fmctions. Left, Gaussian Right, inverse  muftiquadric.  Both  activation  func- 
tions  are  normalized  here:  their  maximum  is  equal to 1. 

+, They  are  local  in  the  sense that they  model data only  in  a  neighborhood  near  a 
center. 

They are more  familiar to everyday  users than other RBFs. 
+, There  is  a  sound  geometrical  understanding  even of n-dimensional  Gaussian 
functions. 
* They do not  require additional null  space terns. 
+, Because  of their  finite  response, it seems as though  they  may be more  plausible 
biologically. 

The disadvantage of Gaussian RBFs is that they  require  determination of width 
parameters or shape p ~ r ~ m e t e r s :  standard deviation CT or covariance  matrix E: in  the 
case of one- and n-dimensional input vectors,  respectively. At this point, the very 
design or learning of appropriate width  parameters  is an heuristic,  basically  good 
approach that results  in  suboptimal  but  still  reliable  solutions.  An inverse multi- 
quadric function  is  similar to a  Gaussian  one, and for the  two-dimensional input x, 
these  two  functions are shown in figure  5.1 1. 

5.3 ~ e n ~ r a ~ ~ e d  asis ~ u n c ~ o n  Networks 

Regularization  networks  have  two  practical  shortcomings. First, there are as many 
basis  functions  (neurons) as there are examples  in  a  training data set.  Therefore, 
having  a  training data set  containing  several  thousands of examples  would  require 
the  inversion of  very large  matrices  (see  (5.16))  for  example).  This operation is far 
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outside  the  capacity of most  computing  machines  available  tod 
data are usually  imprecise r contaminated by noise. 
contaminated examples an in  this  way  avoid  model 
with  noise  can  be  resolved by  using an appropriate regula~zation parameter A, the 
only  way to escape  the  problem of modeling a large data set, that is, to have a net- 
work  with a computationally  acceptable  num  er of neurons  in an 

network  with  appreciably  fewer  basis  functions  (neurons)  in 

ere, a few  difEerent approaches are presented for the  selection of the  best basis 
t or the  design of a network of ap~ropriate size.  These  involve  reducing 

ecall that the  problem of subset  selection  was  success- 
t vector mac~ines to both classification and re~ression 
.3.4 will introduce  linear  programmin 

selection, too. 

random or semirandom  choices, not necessarily  the  best.  Using a strictly r 
procedure, a ran do^ subset of p training data is chosen out of P exa~ples. 
case of semirandom  selection,  basis  functions are placed at each rth (at each  third, 
fifth) t~enty-fifth) training data point.  noth her possibility is to evenly  spread  the 

S over a domain  space,  in  which  case  they do not correspond to 
. Yet another selection  method is to preprocess  training data by 

hm  first k means, for example,  where k corres  onds to the 
L neurons~ p) .  In the  framework of 

First, a few early and c o ~ o n  subset  selections are describe that are strictly 

aches are suggested by 

e centers,  the  shape  parameters (p, i.e., cr) are de te~ined .  The 
basic  idea  now is to ensure  suitable  overlapping of a basis  function. 
rule of thumb is to take CT = Ac or some other multiple of Ac that 
character of  the  modeled  surface or hypers~rface, wh denotes  the  (average)  dis- 
tance  between  the  centers  (for a one-dimensional x). case of an  dimensional 

, the diagonal elements of a covariance m a t ~ x  , that is, the standard 
deviations flit can be  selected as ai Aci. Note that for  the  equal  units of the  com- 

= diag(a2) and the  the  in ut vector  com- 
ponents’  dimensions d (this is the  most c o ~ o n  sit 
oi will  be  difEerent a = diag(cr;).  The  correspon 
be radial  functions. In more  complex  ents  of input vector 
(features)  may be correlated, and in t be a diagonal  matrix 
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his is but one part of an overall  problem;  these  points are taken up in  more 
detail later. 

Nevertheless,  many  problems  may  successfully be  solved  with the preceding 
heuristic  methods. A basic  idea  in  selecting  smaller  number  of RBFs is to find an 
approximation to  regulari~ed solutions  where,  instead of using  a  strict interpolation 
function 

P 

i= 1 

to implement  a  smooth approximation function,  the  following  function  is  used: 

P 

j= 1 
(5.19) 

where p << P and the  centers ej and the  shape  parameters  (elements of the  covariance . 
matrix  aussians)  are  selected by using  one of the  approaches  proposed  earlier. 
The  m  is no longer  square as in  (5.15b) and in  figure 5.5 but a  rectangular 
(P, p )  matrix. (Note that the notation is  slightly  changed to explicitly  stress  the 
quadratic dependence of fa on the  distance /I a 11). Having fixed  centers and shape 
parameters  (for fixed HL weights)  only p OL  weights wj are calculated.  The  problem 
is  still  linear  in  parameters (W), and the  best  solution  is  the  renowned  least-squares 
solution,  which  results in a Z e ~ ~ t - s ~ ~ ~ ~ e s  RBF that follows  from  the minim~ation of 
the  cost  function 

P 

i= 1 

As in  solving  (5.14),  this  is  a  convex and quadratic problem  in wj, and the solution 
that follows  from  the  requirement that ~ ~ / ~ w j  = 0 is 

(5.20a) 

(5.20b) 

where gjk = G(cj, c k ) .  Note that there are two  smoothing  parameters  in  (5.20b), il and 
L neurons p .  The most  common approach is to neglect il and to 

achieve  the  smoothing  eEects by choosing  the  right  number of HL neurons p .  As 
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already  stated,  the  smoothing  effects of A and p are  different, and it may  sometimes 
be worthwhile to try  using both parameters. 

A  least-squares RBF represents an approximation function that results  from  pre- 
viously  fixed HL weights.  Sometimes,  the  preceding  heuristics  result  in  poor RBF 
network perfomance. Generally,  the  modeling  power of RBF networks  with fixed 
HL weights  is  likely to decrease  with an increase  in  the  dimensionality of the input 
vector x. Furthermore, having  a  basis  function  with  the  same  shape  parameters  over 
the whole input space cannot guarantee proper  modeling of multivariate  functions, 
which  differ  over  the input space.  This  is  shown  in  figure  5.12,  where  for x 0 the 
function  displays  oscillatory  behavior and for positive  values of x the  dependency 
between y and x is smooth. An RBF network  with  a fixed and same  shape parameter 
for all  the  basis  functions  could not model  this  function  equally  over  the  whole input 
space. 

The  poor  performance of  the RBF in figure  5.12 could be significantly  improved 
with  basis  functions  having  different  shape  parameters.  Essentially,  having  examples 
but no infomation about the  underlying  dependency,  these  width  parameters  would 
also be subjects of training. 

Thus,  in  most  real-life  problems,  during the learning  phase it may  be practical to 
s~ultaneously adapt both the  centers and the shape  parameters (the HL weights) as 
well as the OL weights.  The  difficult part of learning  is  the  optimization of the HL 
weights,  because  the  cost  function  depends  nonlinearly  upon  these  position and shape 
parameters. The learning of  the  OL  weights  is for RBF models  always  a  linear 
problem,  which can be  solved  in batch  (off-line)  mode by  using all  the  examples at 
once, as given  by  (5.16) or (5.20), or in  on-line  mode by iterative  implementation. 

m Y 

Figure 5.12 
Modeling  using an RBF network  with 20 Gaussian  basis  functions  having  the  same  fixed  standard  devia- 
tion c. The  underlying  function (thin curve)  behaves  differently  over  the  input  space,  and  the  approximat- 
ing  function  (thick  curve) is not  able  to  model  the  data  equally  over  the  whole  input  space. 
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S in  the  case of t  ection of centers and shape  parameters,  the now nonlinear 
F weights can be perforrned  via  many  different  approaches. 

First, for  the  learning of t  weights,  the standard error back-propagation (the 
first-order  gradient)  algori  n be applied;  this  method  is  usually  called ~ o v i n g  
centers l ~ a ~ n i n ~ .  ogonal  least s ~ ~ a r e s  (OLS) method for finding an 
optimal  subset of p basis  functions can be  implemented.  Another  common approach 
utilizes  nondeterrninistic  controlled  random  search  methods  such as genetic  algo- 

* S or evolutionary  computing  techniques  (see chapter 8). Recall  also that the 
approach can be  used to solve quadratic programming  problems for optimal 
selection  (see chapter 2).  

e  following  sections  discuss  moving  centers  learning,  regularization  with  non- 
radical  basis  functions, orthogonal least  squares, and a  linear p r o g r a ~ i n g  (L 
based  algorithm for subset  selection that is  a  promising approach for NN and SVM 

-based  learning i s  computationally  more  efficient and simpler than the 
quadratic programming a l g o r i t ~  applied  in standard SVM training, and it seems 
to produce  models  with  a  generalization  capacity  similar to that of quadratic 
progra~ing-based trained  networks or machines. 

Now,  in addition to the L weights wj, the  centers ej and the  shape  parameters 
(elements of the  covariance  matrix are unknown and subjects of the  optimization 
procedure.  The  problem  is  nonlinear and, for the standard cost  function 

P 

i= 1 

no longer  convex and quadratic. Therefore,  many  local  minima can be expected, and 
the error backpropagation (E ) algorithm  (with an appropri 
merely  guarantees  convergenc  the  closest  local  minimum. Th 

and the  solutions  must  satisfy ~ ~ / ~ ~ j  = 0, ~ ~ / ~ e j  = 0, and 
P algorithms for learning  the OL weights wj and the  centers cj 

are presented  first.  Then  the  learning  algorithm for shape  parameters ( a j k )  adapta- 
tion, which  involves  departing  from  the  strictly radial basis  function,  is  discussed. A 
separate  section  is  devoted to nonradial basis  functions  because of their  immense 
importance. In many  practical  cases,  the  radially  nonsymmetric  basis  function  will 
result  from  learning. Note that for simplicity  the  regularization  parameter  is taken as 
A =  0. Thus,  smoothing will  be  achieved  using  fewer RBFs than in  previous  exam- 
ples,  although  in  a  diRerent  manner than when applying parameter A. 
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The  cost  function that follows from (5.5) is equal to 

i= 1 

(5.21) 

ei 

and the standard EBP  learning  algorithms for the OL weights and centers that result 
after  the  calculations of aE/awi and aE/aCj are given as 

wj""l = wj" + 2q X e,"G( llxi - ~ j " 1 1 ~ ) ,  
P 

i= 1 

P 

' j  '"l = C; - 4qwj" C .:G'( /Ixi - cj"/i2)(xi - C;), 

where S stands for the iteration step and G' denotes the 
however, that the OL weights W j  do not necessarily  need 

i= 1 

(5.22) 

(5.23) 

derivative of G ( . ) .  Note, 
to be calculated  using an 

EBP  algorithm as given  in  (5.22). The weights wj can,  simultaneously  with  (5.23), be 
computed by using the iterative  second-order  recursive  least  squares  (RLS)  method 
(see  section  3.2.2). In fact, by combining  the  second-order RLS method for the 
adaptation of the  weights wj with  a  first-order  EBP  algorithm for the  calculation of 
the centers as given  by  (5.23),  one  usually obtains faster  convergence.  Despite  the 
fact that it is  simple to implement an EBP  algorithm for RBF network  training,  this 
gradient  descent  method  suffers  from  more  difficulties  in  this  application than when 
applied to multilayer  perceptron  learning.  One of the reasons for such  poor  perfor- 
mance  is that the  derivative of the RBF G' (an important part of an EBP  learning 
algo~thm) changes  sign.  This  is not the  case for sigmoidal  functions.  Therefore, an 
EBP approach is  rarely  used for training an  RBF network.  Many other deterministic 
techniques  instead of the  first-order  gradient  procedure  can be  used. In particular, 
second-order  methods  (Newton-Raphson or quasi-Newtonian  algorithms)  can be 
implemented,  though  all of them  can  easily  get  stuck at some  local minimum There 
is  a standard heuristic  in  moving  centers  learning: restart optimization  from  several 
different  initial  points and then  select  the  best  model.  Despite  these standard prob- 
lems  in  a  nonlinear  learning  environment,  the  moving  centers  technique  may  produce 
good  models at the  expense of higher computational complexity and a  longer  learn- 
ing  phase. 
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Next to the QP based  algorithms that originate  in  the  framework of  SVMs, the 
most popular and reliable  method for RBF network  training  used to be the  OLS 
technique  (see  section  5.3.3).  However,  the  LP-based  learning  (presented  in  section 
5.3.4)  seems to produce  model  with  better  generalization  ability at lower computa- 
tional costs than the  OLS  method.  Other  alternatives are the  non-deterministic 
massive  ‘random’  search  techniques  such as CA (EC) or, simulated  annealing  (see 
chapter 8). 

It is  sometimes  useful to relax (or abandon) the  concept of strictly  radial  basis  func- 
tions. In many  practical  instances, HL neurons’  basis  functions  will depart from 
radiality, and such nonradial functions  constitute an important class of regularization 
networks. 

Radial basis  functions  follow  from  the  assumption that all  variables  have  the  same 
relevance and the  same  dimensions.  There are many  practical  situations when 

There  is  a  different  dependence on input variables, f ( x ,  y )  = z = 5  sin(.nx) + y 2  
(see  fig.  5.13, top graph). 
* Variables  have  different  units of measure  (dimensions,  scales), f = f ( x ,  X’, x”). 
* Not all  the  variables are relevant, f ( x ,  y )  f ( x )  (see  fig.  5.13, bottom graph). 
* Some  variables are dependent or only  some (linear) combinations of variables are 
important, f ( u ,  x, y )  = g(u, x, y(u,  x)) or f ( u ,  x, y )  = sin(u + x + y ) .  

In order to overcome the problem of the  choice of relevant  variables when the 
components of the input vector x are of different  types, it is  usually  useful to work 
with  linearly  transformed  variables Sx instead of the  original  variables x. In such 
cases  the natural norm  is not the  Euclidean  one but a weighted norm defined as 

11. - ells = (x - e) S S(x - e). 2 T T  (5.24) 

Note that in  general S Z I, and the  basis  functions are no  longer radial. (In  strict 
mathematical  terms,  the  basis  functions are radial in  the new metric  defined  by 
(5.24)). 

Nonradial geometry  is  visible  in  the  level  curves of basis  functions that are no 
longer  (hyper)circles but rather (hyper)ellipses,  whose  axes  (in  the  most  general  case 
when  some of the input components  may be correlated) do not have to be aligned 
with  the coordinate axes  (see  the  third  Gaussian  in  fig.  5.14). For uncorrelated  inputs, 
S’S is  a  diagonal  matrix,  with  generally  digerent  diagonal  elements.  Only for equal 
diagonal  entries of the  matrix S’S will the  basis  functions be radial. For the  Gaussian 
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z = 5sin(nx) + y2 
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4 -4 

Rgum 5.13 
Examples of (top) different  dependence  upon  input  variables  and ( ~ o t ~ o ~ )  two-di~ensional dependence 
with  a  practically  irrelevant  variable y over a given  domain. 
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Figure 5.14 
L&, three  different  normalized  Gaussian  basis  functions. Right, their  corresponding  level  curves  or 
contours.  The  first RBF with  a  covariance  matrix X = [2.25 0;0 2.251, (cx = cj, = 1.5), is  placed at 
the  center (9,l). The  second  Gaussian  is  nonradial,  with  a  covariance  matrix C = (0.5625 0;  0 2.251, 
(cx = 0.75 cy = 1 .S) and  with  a  center at (1,9). The  third  one  is  also  nonradial,  centered at (9, g), with 
correlated  inputs ( p  = 0.5)  and  with  a  covariance  matrix C = [2.25  1.125;  1.125  2.251, (cx = cy = 1.5). 

-l ,  that is,  the  matrix S'S is  equal to the  inverse  covariance 
matrix, and its  diagonal  elements  correspond to l / S - .  

When,  together  with  centers e, the  elements  of S are known  either  from  some prior 
knowledge  (which  is  rarely the case) or from  assumptions, the solution (OL weights 
vector)  is  the  same as in  the  case of the  strictly radial basis  function  given by (5.20). 

A more  interesting and powerful  result  may be obtained when the  parameters of a 
matrix S are unknown and are  the  subject of learning  from  training  examples.  Now 
the  problem can be ulated as in  section  5.3. l.  In other words,  the  cost  function 
(5.21)  is  now E( ) = H w , c , p  [fa], an -' that minimizes  it  must  be found. 
Note that the mat ver appears separate  but  always  in  the  form S'S (usually 

-l). Using  the  same EBP proced as for  centers,  it can be shown that 
of the  parameters of the matri can be  achieved  as, 

(5.25) 

When a covariance  matrix  differs  from an identity  matrix, and when it is  the  subject 
of an optimization  algorithm  (5.25),  the EBP solution for the  centers cj given in 
(5.23) becomes 

P 

e;+1 = e; - 4qw; 
i= 1 

(5.26) 
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Note also that (5.25) can be  expressed  in  terms  of a transfo~ation matrix 
lows: 

D P 

(5.27) 

More on the  theoretical  aspects of nonradial stabilizers and on  the  solution to the 
corresponding  regularization  problem  can be found  in  Girosi  (1992).  There  is no 
exact  closed  form  solution  now, and from a mathematical point of  view, this  is a 
much  more  di&cult  problem to study than the standard regularization  problem. 
Nevertheless,  usually a good  approximate  solution of the  following form can be 
found: 

P 

j= 1 
(5.28) 

Parameters c and S (i.e., E-') can now  be computed  using  (5.25)-(5.27). The OL 
weights W can be found by applying a second-order RLS method or by using a first- 

algorithm  (5.22).  The  solution s i m ~ l i ~ e s  a lot if the input variables are 
mutually  independent  (when  there  is no correlation). Then a diagonal  matrix 
chosen that takes into account  the  possibly  different  scales of the input va 
special and important case  for  uncorrelated input variables  is  given for 
basis  functions  placed at a center cj, when the  diagonal  entries of matrix 
reciprocals of the  variances  along  the input coordinates: 

Note that the Gaussian  basis  functions are typically  normalized,  missing a scaling 
factor, which  in  the  framework  of a probability-density  function  ensures that the 
integral  over  the  entire  dimensional input space XI ,  x2, . . . , x, is  unity.  The output 
of each particular Gaussian  basis  function  is  always  multiplied by the co~esponding 
OL weight Wj,  and the standard scaling factor of the Gaussian probability-d~nsity 

In terms of learning  time and computational complexity,  the OLS method, starting 
I ' l2 (27r)  will  be part of the OL weight W j .  

with a large  number of basis  functions  placed  over a domain at different (ra 
chosen or preprocessed)  centers and having  different  covariance  matrices 
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Table S. 
The  Character of a  Learning  Problem  in  a ~ e ~ l a r i z a t i o n  (RBF) Network 

Fixed" Unknown Cost  Surface 

c and C OL weights W Convex.  Single  minimum.  Solution  by  least 
squares. 

C Centers e and OL weights W Not  convex.  Many  local  minima.  Solution  by 
nonlinear  optimization: (1) dete~inistic-~rst- or 

C weights and shape  parameters second-order  gradients,  OLS, SVMs, LP; (2) 
None  Centers e, OL, weights W, and  shape stochastic-massive  random  search,  genetic 

parameters X algorithms,  simulated  annealing. 

a After  preprocessing or randomly. 

often  finds an acceptable s u b o p t ~ a l  subset of p basis  functions.  These  basis  func- 
tions are either radial or nonradial, and the  chosen  subset  is  problem-dependent, or in 
statistics  terms, it is  data-driven. Table 5.2 shows  the character of a learning  problem 
in a regularization  network.  Learning  complexity  increases  down through the table. 

Training data sets  in  use today can be  huge  even  by modern  computing standards. 
network by taking as many R Fs as there are data pairs  would 
unsolvable  tasks. In addition, e always  want to filter  the  noise 

from data and to perform sm approxi~ation. This  smoothing  is  also  achieved by 
reducing  the  number of the  neurons.  Therefore,  the  objective is to select  the 
smallest  number p of basis  functions that ea  the  training data to the  desired 
degree of accuracy.  These are the  most  relev S; finding  them  is a similar task 
to searching for p support vectors (and p << P) in  designing SVMs. 

An  interesting and powerful  method  for  choosing  the  subset p out of P basis 
functions  is  the orthogonali~ation procedure (Chen, Cowan, and Grant 1991).  The 
presentation  here  follows that paper. owever,  there are improved  versions of this 
approach (e.g., Orr 1996).  An arbitra selection of centers  is  clearly  unsatisfactory. 

ization  avoids  many  drawbacks of early  methods  in RBF network train- 
er, it does not guarantee the optimal  selection of p RBFs. It often  results 

he orthogonal least  squares  ethod  involves  sequential  selection of 
F centers,  which  ensures that center  chosen  is orthogonal to the  pre- 

in  suboptimal  solutions  (see  Shersti 

vious  selections.  This  is  the  well c b d t  orthogonalization m 
in  applied  mathematics. In choo Fs, the contribution of each 
to the model in^ error decrease  is  measured.  Each  chosen  center  maximally  decreases 
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the  squared error of the  network output, and the  method  stops  when  this error 
reaches an acceptable level or when the  desired  number of centers  have  been 
chosen. 

It may  be  useful to present  the  geometry of the  modeling by an  RBF network and 
to consider  this  modeling as a  linear  algebra  problem.  Hence,  recall that the original 
problem  was to solve equation (5.13) y = GOW, where y = f ( x )  are known  values. 
When  there are exactly P RBFs placed at each  noncoinciding input vector Xi (i.e., 
ci = Xi), a  design  matrix GO is  a (P, P) nonsingular  matrix and the  solution  vector W 

ensures  interpolation of the  training data points.  However, an interpolation, or per- 
fect  approximation, of the  training data points  does not guarantee a  good  model. 
Therefore,  one  wants to design an  RBF network  having  fewer  neurons than data 
points.  Now, data cannot be interpolated and the  model  is  given as 

P 
(5.30) 

i= I 

where y is a (P, 1)  desired  target  vector,  is  now  a (P, p )  matrix, and 
weights  vector that can be calculated by  using the pseudoinverse that guarantees  the 
best  solution  in L2 norm, that is,  the  best  sum-of-error-squares  solution. We pre- 

this  solution  in  method 1 of section  3.2.2  (see  (3.52)).  Here,  the  design  matrix 
'. Thus,  the  best  least-squares  solution  follows  from  (5.30)  after  its  left  multi- 

'. The resulting equation is known as the normal equation 

(5.31) 

and its  solution is 

(5.32) 

is  a symetric ( p ,  p )  matrix  with  elements mu 
(5.3 1) gives p linear equations for the unk 
onsingular if and only if the  columns  of 

independent. In the  case of the RBF networks  the  columns of are linearly  inde- 
pendent (~icchelli 1986) and (5.3 l )  can always  be  solved.  The  timal  solution W *  

approximates  the data in the sense that it minimizes  the  Euclidean  length  of  the error 
e (also  known as the  residual  vector r), that is, 11e112 = is  minimal,  where 

serious  problem in designing  the optimal R F network in the  sense that 
there are a  lot of  different  possible  ways to choose p columns  from  a (P, P) matrix. In 
fact,  there are 
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nc = (i) = p ! ( P -  p ) !  
P! 

possible  arrangements of P columns taken p at a t h e .  For practical  purposes,  calcu- 
lating  all  the nzc possible  combinations and choosing the one that results  in  the  smallest 
error emin is  not  feasible  because nc is  a  huge  number.  Even for a very  small data set 
containing  only 50 training data pairs (P = 50)  there are 126,410,606,437,752 (or 
about 126 trillion)  possible  ways to form  a  matrix G with 25 columns.  This  number 

matrices when there are several  thousand  training data patterns and the 
desired  selection  is  only  a few hundred  basis  vectors  (columns of a  matrix 
unthinkingly  huge.  Thus,  the combinatorial solution  is  not  feasible, and 
native  is to try to orthogonalize  the  columns of 0 first and then to select  the  most 9 

relevant orthogonal columns. 
Figure 5.15  shows the  column  geometry and the essence  of an orthogonalization. 

Two  interpolations of a quadratic function y = x2 are given. Narrow Gaussian  basis 
functions are obtained  when  the standard deviation of all  three  Gaussian  functions  is 
chosen to be CT = 0.25Ac,  where Ac is  a  distance  between  the  acent  centers.  Such 
narrow  basis  functions  result  in an orthogonal design  matrix and a  bad interpo- 
lation (top left graph). Gaussian  basis  functions  with  high  overlapping (CT = 2 
produce  a  good interpolation and a nonorthogonal matrix GO (top right graph). The 
first  property  is  good news but  the  second  is not. Nonorthogonality of matrix 
columns  makes the selection of p << P basis  vector  a  very  diflicult  task. 

The  interpolated  function,  interpolating  function, and the three  Gaussian  basis 
functions  are  also  shown  in  the  figure.  Three  different  normalized  Gaussian  basis 
functions  are  placed at the training data. The  column  vectors  of GO span the  three- 
dimensional  space.  They are mutually orthogonal or nonorthogonal (see  the  matrix 
equations that follow).  The nonorthogonal matrix GO belonging to broad Gauss- 
ian  basis  functions  is  orthogonalized, and a new orthogonal basis  is  obtained by 
selecting as a  first  basis  vector  the  third  column of GO (see  light  dashed  curves  in 
fig.  5.15, bottom right graph). Then  the  second  column  is  orthogonalized  with  re- 
spect to the  third  one, and finally the first  column  is  orthogonalized  with  respect to 
the  plane  spanned by the  orthogonalized  third and second  vectors.  This  plane  is 
shown as a  shadow  plane  in  the  figure.  The  desired  vector y is  shown as an arrow 
line. 

l .OOOO 0.0003 0.0000 1 .OOOO 0.8825 0.6065 
0.0003 1.OOOO 0.0003 0.8825 1.0000 0.8825 
0 , O O ~ O  0.0003 1 .OOOO 0.6065 0.8825 1 .OOOO 
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RBFs fitting of 3 training  data  pairs  (crosses) 
obtained  by  sampling a quadratic  curve  (dashed 

CT = 0.25A~ 

Orthogonalization of a nonorthogonal  basis 

0 
X1 

Figure 5.15 
Two  interpolations of a  quadratic  function y = x2. Top left, narrow  Gaussian  basis  functions  result  in  an 
orthogonal  design  matrix GO and  a  bad  interpolation. Top right, Gaussian  basis  functions  with  high  over- 
lapping  produce  both  a  good  interpolation  and  a  nonorthogonal  matrix GO. Interpolated  function (thin 
dashed  curve),  interpolating  function  (solid  curve),  and  the  three  Gaussian  basis  functions  (thick  dashed 
curves).  Three  different  nomalized  Gaussian  basis  functions  are  placed at the  training  data.  Column  vec- 
tors of GO span  the  three-dimensional  space.  They  are (bottom left) mutually  orthogonal  or (bottom  right) 
nonorthogonal.  Desired  vector y is  shown as an arrow  line. 
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Thus,  the  general  design  problem  is to select p columns of 0 that span a p -  
dimensional  subspace U in RP in  such a way that the orthogonal projection of the 
P-dimensional  desired  vector y onto a subspace U results  in  the  smallest error vector 
e. The error vector e is orthogonal to the  subspace U ,  and its ma~nitude is  the  value 
of the error function E .  There  is a useful  matrix  related to Orthogonal  projections 
called a proj~ction ~ a t r i x  that follows  from 

“ y -  + (5.33) 

The symmetric  projection  matrix 

(5.34) 

Note that the  matrix ( ) in  the  expression for the error vector  in  (5.33)  is  also a 
projection  matrix. It projects  the  desired  vector y ont ogonal  complement of 
a subspace U. This  projection is the error vector e Hence,  the  preceding 
expressions  split a desired  vector into two  perpendic 

subspace U ,  and the  other  component, e in  the  left  null  space 
which  is orthogonal to the  column  subsp  details  on  projection 

Thus,  using a projection  matrix, the projection of a desired  vector y onto the 
matrices can be found  in standard linear  algebra  books.) 

subspace U can be expressed  as 

(5.35) 

Note that in the  case  pictured  in  figure 5.15 (P = 3, p = L?), there are three  different 
t~o-dimensional subspaces Ui that can be spaked by taking  two  columns of a 

0 at time. In the  left graph (a = 0.25Ac, low overlapping, bad inte~olation 
but orthogonal columns)  the  projection of y onto a two-dimensional  subspace U 
spanned by the  third and first  column  vectors  results  in  the  smallest error e, In the 
right  graph, (a = M C ,  high  overlapping,  good interpolation but nonortho~onal col- 
umns)  the  projection of y onto a two-dimensional  subspace U spanned by the  third 
and second  column  vectors  results  in  the  smallest error e. 

Finally,  the  technical part of the orthogonali~ation should be  discussed.  The  basic 
idea  is to select  the  columns  according to their contributions to the error of approxi- 
mation. The following  algorithm  is  based on the  classic Gram-~chmidt orthogonali- 
zation as given in  Chen,  Cowan, and Grant (1991).  The  graphs and pseudocode are 

The method  is a sequential  selection of R F centers  (columns of a 
), which  ensures that each new center  chosen  is orthogonal to the 

previous  selections and that each  selected  center  maximally  decreases  the  squared 
error of the  network output. After  selecting  such  columns,  the  desired  vector y can be 



5.3. Generalized  Radial Basis Function  Networks 349 

represented as 

where G = [ g l  

9 1 2  

9 2 2  

g P 2  

... 

... 

. . .  

... g i  ... gp]  and g ,  = [ g l i   g 2 i  ... gpil and the g, are the 
individual,  often nonorthogonal column  (regressor)  vectors.  (The use  of the  name 
regressor  vectors for column  vectors  of GO is  borrowed  from  Chen's  paper  but it is 
common.)  The  least-squares  solution of W* maps Gw* as the projection of y onto the 
space  spanned by the  chosen  regressor  basis  vectors.  Since  a  number of regressor 
vectors are added to provide  the  desired output y, the contribution from  individual 
regressor  vectors  needs to be calculated.  Once the relative contributions from  indi- 
vidual  regressor  vectors are found,  the  vectors  with  higher contributions are found to 
be more important in  the RBF approximation than the  vectors  with  lower contribu- 
tions.  (This  is  similar to the  search for support vectors  in  the SVM approach or in  the 
linear  programming  method that follows  in  section 5.3.4.) 

To find the contributions and the output from  diKerent  regressor  basis  vectors, 
these  vectors  need to be first  orthogonalized  relative to each  other.  Here,  the OLS 
method uses the Cram-Schmidt  method to transform  the  set of g, into a  set of 
orthogonal basis  vectors by Cholesky  decomposition of the  regressor  matrix G as 
follows: 

G = SA, 

where 

A =  

0 1 a 2 3  . . . . . .  R2P 

0 0 . . .  
. .  : l :  
. .  . .  
. .  * .  . .  : 0 1 q p - l  

0 . . . . . .  0 0 1 

is  a ( p ,  p )  upper triangular matrix and 

S = [ s 1  . . .  Si ... 9 1  
is  a (P, p )  matrix  with orthogonal columns  satisfying 

(5.37) 

(5.38) 

(5.39) 
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is a positive  diagonal ( p ,  p )  matrix.  The  matrix  is  the o~hogonalized 
matrix, where  selection  of  orthogonalized  columns  depends on the  approxi- 
mation outputs of individual  regressor  vectors. Fo le,  in  figure 5.15, SI = 
has the masimum approximation output from  the o~~ogonalized columns of matrix 
S. The  relevance of columns  decreases  from  left to right  with  the  least approximation 
contribution provided by sp. 

The  space  spanned by the orthogonal reg  sor  basis  vectors si is  the  same  space 
spanned by the nonorthogonal basis  vectors , and consequentl~ (5.36) can now  be 
rewritten as 

(5.41) 

where  the  least-squares  solution Q is  given  by 

or 

(5.43) 

Therefore,  the  parameter  estimates  (weights) are computed  from  the  triangular 
system 

Ai+ = Q, (5.44) 

r a m - ~ c ~ i d t  procedure  calculates  one  column at a time and ortho- 
At the kth step,  the kth column  is  made orthogonal to each of the k - 1 

previously  orthogonalized  columns, and the operation is  repeated  for k = 2, . . . , p .  
This  procedure  is  represented as 

(5.45) 

The main  reason  for  using the OLS method 
from a large  number  of  regressors  (columns 

is to obtain the  optimal  subset  selection 
0) for adequate modeling. 
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e  regressors  providing  the  best a ~ p r o ~ i ~ a t i o n  to the output y must be found. 
S already orthogonali~ed, the  sum of squares of the  dependent  variable y is 

(5.46) 

where ps is the  number of signi~cant regressors  in  the  model, The error reduction 
ratio [err]  due to i can  now  be  defined as 

[err], = ) 1 <i<:p, .  (5.47) 

selection is summarized in box  5.1, and the ~eometric 
~rocedure is shown  in  figures 5.16 and 5.1’7. 

Orthogonal  Least  Squares  Learning ~ l g o r i t ~  

Step l .  Selection o j  the First ~rthogonal Vector 

k=l; 
r i=l to p, 

sk ( :  ,i)=G(; ,i); 

errk(i)=yz*sk(:  ,ilT*sk(:  yi)/(yT*y); 
Yk=Sk(:ri) *y/(sk(:,i)T*sk(:,i)); 

errak,ind]=max(errk); 
s(:,k)=G(:,ind); 
index(l)=ind; 

Step 2. General Selection of ~rthogonal Vectors 

a(jyi)=s(:yj)T*G(:,i)/(s(:~j)T*s(:,j)); 

sk(:,i)=G$:,i)-s*a(:,$); 
y=sk(:,i) *y/(Sk(:#i) *sk(:,i)); 
errk(i)=y”Sk( :,I)T*sk( :,i)/(yT*y); 

S(:,k)=Sk(:,ind): 

A(1:k-l,k)=y(:,ind); 
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Basis 1 
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Basis 3 
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OLS 
selection 

l j t y <  I h y < & y  

Figure 5.16 
Initial regressor  selection  where  three  nonorthogonal  regressors g,, g,, and g, are given  relative to  target 
y and  the  angles Ol,, 8zy, and 83, are  shown.  The  system of orthogonal  basis  vectors xi represents  any 
orthogonal  system  and  is  shown  merely to stress  the  nonorthogonality  of  the  column  vectors g,. First 
selected  is  regressor g, (angle 81, is  the  smallest,  i.e., g, is  the  closest to y). 

X1 

I OLS 6 
seliection since  the 1.g2 is the  only  orthogonal  basis left, s3 = .lg2 

Figure 5.17 
Regressors (g2, g3) are  orthogonalized  as "g2 and kg3 relative  to gl .  The  orthogonalized  basis  vector J-g, 
and  the  previously  selected  regressor g, form  a  plane,  as  do  the  orthogonalized  basis  vector "g2 and  the 
previously  selected  regressor g,. These  two  planes  are  shown. A third  column  vector g3 is  chosen as  the 
second  orthogonal  basis sz = "g, because  the  angle 813, between  the  desired  vector Y and  the  Plane St 
is smaller  than  the  angle 61zy formed  between  the  plane s1_Lg2 and  the  target  vector Y. The  least  significant 
basis  vector "g2 is  selected last, s3 = "g2. 
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The  initial  selection of the  regressor  is  illustrated  in  figure  5.16.  The  original  non- 
orthogonal regressor  basis  vectors are represented by gl, g,, and g,. Angles &,, &,, 
and 03, between  the  basis  vector and the  desired  vector y are computed, and the 
regressor  whose  angle  is  the  smallest  is  selected as the  most  significant  regressor. 
Here, 81, is  minimal for the  first  basis  vector,  denoting that this  is  the  one  closest to 
the target y, so the  first orthogonal basis  vector  is s1 = g,. Selecting  regressor g, 
results  in  the  least  squared error and in  the  maximal output y compared to other 
available  regressors.  After  the  first  selection  is  made,  the  first  chosen  column  from  a 

0 (first  regressor) and any other previously  selected  regressors cannot 
be  selected again.  Every  selection  made  hereafter  would  be orthogonal to the  sub- 
space  spanned by the previously  selected  regressor  basis  vectors and would  maxi- 
mally  decrease  the  squared error. 

Figure 5.1’7  shows the sequential orthogonalization of the  regressor  basis  vectors 

viously, and the  angle  created  between  the  (hyper)plane  formed by the  basis  vector 
and the previously  selected  regressors and the target y is  minimized.  This  minimiza- 
tion  results  in the best approximation to the target y in an L2 norm. 

,. These  two  basis  vectors are orthogonalized to the  vector 

5.3. 

The previous  section  discussed  the  application  of  the  OLS  method  in  choosing  a 
subset p out of P basis  functions  in  the RBF network  design.  The  OLS  method pro- 
vides  a  good  parsimonious  model as long as the  design  matrix G is not far from  being 
orthogonal. In the  case  of  the  Gaussian  basis  function,  this  will  happen for not-too- 
wide Gaussian  (hyper)bells. Unfortunately, in order to achieve  a  good  model,  the 
matrix  is  typically  highly nonorthogonal, and OLS will  achieve  a  suboptimal  solution 
at considerable computational cost for large data sets. Another theoretically 
approach was  presented  in chapter 2-one that uses quadratic p r o g r a ~ i n g  ( 

port vectors.  This support vector  selection  is  similar to the  choice of 
by orthogonalization,  but  the  QP-based  learning  in support vector 

machines (SVMs) controls the capacity of the  final  model  much  better:  it  matches 
model  capacity to  data complexity.  There  is  a  price to pay for such  a  nice  algorithm, 
and, as mentioned  in  section 2.4, QP-based  training  works  almost  perfectly  for 
not-too-large  training data sets.  However,  when  the  number of data points  is  large 
(say, I > 2000),  the QP problem  becomes  extremely  difficult to solve  with standard 
methods. 

The  application of linear programing (LP) in  solving approximation and clas- 
sification  problems  is not a  novel  idea.  One  of  the  first  implementations of mathe- 
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matical  programming to statistical  learning  from data was  described by Charnes, 
Cooper, and Ferguson  (1955), and many  others  have  independently  applied LP to 
approximation problems  (Cheney and Goldstein  1958;  Stiefel  1960;  Kelley  1958; 
Rice  1964).  These  results  follow  from  minimizing  the L1 norm  in  solving  regression 
problems. A summary and very  good  presentation of mathematical  programming 
application  in  statistics are given  by Arthanari and Dodge  (1993). 

Interestingly,  the  first  results  on L1 norm  estimators were  given as early as 1757  by 
Yugoslav  scientist BoSkoviC  (see Eisenhart  1962). 

Early  work on LP-based  classification  algorithms  was  done  in  the  mid-1960s  (see 
Mangasarian 1965).  Recently, a lot of work  has  been  done  on  implementing  the LP 
approach in support vectors  selection  (Smola,  Friess, and Scholkopf  1998;  Bennett 
1999;  Weston  et l, 1999; Graepel  et  al.  1999).  All  these  papers  originate  from  the 
same  stream of ideas for controlling  the  (maximal)  margin.  Hence,  they  are  close to 
the SVM constructive  algorithms. 

The  LP-based approach is  demonstrated  here  using  the  regression  example.  How- 
ever,  the  same  method  can  also be applied to classification  tasks.  This is currently 
under  investigation by  Had256 (1999). A slight  difference  between standard QP-based 
SVM learning and the LP approach is that instead of minimizing  the L2 norm of 
the weights  vector I I w I / ~ ,  the L1 norm /lwl/l is  minimized.  This  method for optimal 
subset  selection  shares  many  nice  properties  with SVM methodology.  Recall that the 
minimization of the L2 norm  is  equivalent to minimizing w~~ = W ;  = W ;  + 
W ;  + * + W:, and this  results  in  the QP type of problem. In chapter 2,  it  was  shown 
that the  minimization of / / w / / ~  leads to a maximization of a margin M. The  geomet- 
rical  meaning of the  minimal L1 norm  is not clear  yet, but the  application of the LP 
approach to subset  selection of support vectors or basis  functions  results  in very  good 
performance by a neural  network or an SVM. At the  same  time,  there  is  no  theoret- 
ical  evidence that mini~zation of either  the L1 norm  or L2 norm of the  weights 

produces  superior  generalization.  The  theoretical  question of generalization 
properties  is  still  open.  Early  comparisons  show that the L1 norm  results  in  more 
~ a r s i ~ o n i o u s  models  containing  fewer  neurons (support vectors,  basis  functions)  in a 
hidden  layer. In addition to producing  sparser  networks,  the  main  advantage of 
applying  the L1 norm  is  the  possibility of  using state-of-the-art  linear  program  solvers 
that are more robust, more eficient, and capable of solving  larger  problems than 
quadratic program  solvers.  The  basic  disadvantage of the LP approach is  the  lack of 
the  theoretical  understanding of the  results obtained. 

Here,  the  application of the LP method for the  best  subset  selection  follows  Zhang 
and Fuchs  (1999).  They  use LP in an initialization  stage of the  multilayer  perceptron 
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network.  Interestingly,  in  order to start with a good  initial  set of  weights,  they  use a 
much  larger  number of basis  functions than there are available  training data. This 
means that the  initial  design  matrix  (kernel  matrix (xi ,  x j )  , denoted  here  as 
rectangular. In fact,  they use  100 times  as  many  basis  functions as training 
points, and they  mention app ations with  even  1,000  times as many. In other words, 
the  number of columns of a matrix n, is  approximately l00 to 1,000 times  larger 
than the  number of its  rows . (Note that in an LP approach matrix 
strictly  have to satisfy  the  Mercer  conditions for kernel  functions.)  Here,  in  order to 
be in  accordance  with standard procedure  in  designing SVMs, the  number of basis 
functions  (neurons)  is taken as equal to the  number of the  training data P. 
there  are  no  restrictions on the  number of G matrix  columns  insofar as th 
rithm is concerned. 

The  original  problem,  the  same as in  the  OLS  method,  is not to interpolate data by 
solving  the equation y = is a (P, P) matrix and P is the  number of 
training data, but rather to design a parsimonious  neural  network  containing  fewer 
neurons than data points.  The  sparseness of a model  follows from minimization of 
the L1 norm of the  weights  vector W. In other  words,  the  objective  is to solve y = 
such that IlCw - y/I is  small for some  chosen norm and such that IIwli1 = x:=l Iwpl is 
as  small  as  possible.  In  order to perform  such a task,  reformulate  the  initial  problem 
as follows, 

Find a weights  vector 

W = arg min llwlll subject to 1 1  (5.48) 

where E defines  the ~ u x i ~ u Z Z y  allowed error (that is  why the L,  norm  is  used) and 
corresponds to the  &-insensitivity  zone  in an SVM. This  constrained  optimization 
problem  can  easily be transformed into standard linear  programming  form. First, 
recall that I I w  11 = x;=, lwp 1; this  is  not an LP problem  formulation  where  typically 
cTw = x;=l cpwp is  minimized and c is  some  known  coefficient  vector, In order to 
apply  the LP algorithm,  replace wp and I wpl as follows: 

wp = W; -W;, (5.49a) 

Iwpl = w; + W;, (5.49b) 

where W: and W; are  two  non-negative  variables, that is, W: > 0, W; > 0. Note that 
the  substitutions  in  (5.49) are unique-for a given wp there  is  only  one  pair (W:, W;) 

that fulfills both equations. Furthermore, both variables cannot be larger than zero at 
the  same  time. In fact,  there are only  three  possible  solutions for a pair of variables 
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(W;,  W;), namely, (O,O), (w;,O) or (0, W;). The constraint in  (5.48)  is  not  in  a stan- 
dard formulation either, and it should  also be reformulated as follows. Note that 
1 1  Gw - y 1 1  S E in  (5.48)  defines an E tube  inside  which  the  approximating  function 
should  reside.  Such  a constraint can be rewritten as 

(5.50) 

umn  vector  filled  with l's. Expression (5.50) represents  a stan- 
dard set of linear  constraints, and the LP problem to solve  is  now  the  following. 

Find a pair 

P 
(w+,w-) = arg ~n x(w: + W;) 

W+, W- p=l 

subject to (5.51) 

(W+ -W") S y + d ,  W+ > 0) W" > 0, 

where W+ = [W;'  W: . . . W:]' and W- = [WT W; . . . wp]'. 

LP program  solver as follows: 
LP problem (5.51) can be presented  in  a  matrix-vector  formulation  suitable for an 

subject to 

1 1 * * .  

P columns 

(5.52) 

W+ > 0, W" > 0, 

where both W and c are (2P, 1)-dimensional  vectors. The vector c = 1(2P, l),  that is, 
c is  a ( P ,  1) vector  filled  with l's, and W = [ w + ~  W"] '. Note that in  the LP 
problem  formulation  the  Hessian  matrix  from  the QP learning for SVMs is  equal to 
the  matrix of the LP constraints. 
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One-di~ensional LP-based SV selection in regression 
m. 

0 
x 

2 4 

Figure 5.18 
The SV selection  based  on  an.  LP  learning  algorithm  (5.52).  Hermitian functionf(x) = 1 .1 (1  - x + 2x2) 
exp(--0.5x2) polluted  with  a 10% Gaussian  zero  mean  noise  (dashed  curve).  The  training  set  contains 41 
training  data  points  (crosses).  An  LP  algorithm  has  selected  ten SVs, shown  as  encircled  data  points. 
Resulting  approximation  curve  (solid).  Insensitivity  zone  is  bounded by dotted  curves. 

In figure  5.18,  the SV selection  based  on an LP learning  algorithm  (5.52)  is  shown 
for a  Hermitian  function J'(x) = 1.1 (1 - x + 2x2) exp(-0.5x2) polluted  with  a 10% 
Gaussian  zero  mean  noise. The training  set  contains 41 training data pairs, and the 
LP algorithm  has  selected  ten SVs. The resulting graph is  similar to the standard QP- 
based  learning  outcomes. 

This  section on LP-based  algorithms  is  inconclusive  in  the sense that much  more 
investigation and comparison  with  QP-based SV selection on both real and artificial 
data sets are needed. In particular, the  benchmarking  studies  should  compare  the 
performances  of  these  two  approaches  depending  upon  the  complexity of the  modeled 
underlying  dependency,  noise  level,  size  of  the  training data set,  dimensionality of the 
problem, and the computation time  needed for performing  the  QP- and LP-based 
training  algorithms.  Despite  the  lack of  such an analysis at present,  the  first  simula- 
tion  results  show that LP subset  selection  may  be  a  good  alternative to QP-based 
algorithms when. working  with  huge  training data sets. In sum, the  potential  benefits 
of applying  LP-based  learning  algorithms are as follows: 

* LP algorithms are faster and more  robust than QP algorithms. 
* They  tend to minimize  the  number of  weights (SVs) chosen. 



358 Chapter 5. Radial Basis Function Networks 

* They  share  many  good  properties  with an established  statistical  technique  known 
as basis  pursuit. 
* They  naturally incorporate the  use of kernels  for creation of nonlinear separation 
and regression  hypersurfaces  in pattern recognition and function approximation 
problems. 

. Show  why differentiation  is an ill-posed  problem. 

5.1,  why  is the  mapping of the  grip  position (x, y )  onto links’  angles 
(a,@) of the  two-links planar robot an ill-posed  problem? 

. Find the  Euler-Lagrange equation of the  following  regularized  functional for the 
o~e-dime~sional input x: 

. Derive equations (5.22) and (5.23). 

.5, It was stated that an advantage in applying Gaus BFs  is that “they  show 
much  better  smoothing  properties than other known  This  is  clear from the 
exponentially  acting  stabilizer d(s) = l / ~ ~ ~ s ~ ~ z ~ ~ ,  which  will  heavily damp, or punish, 
any  nonsmooth interpolation function f ( x )  in areas of  high  frequencies S.” Prove  this 
statement by analyzing  the  product of an interpolation/approximation function f ( s )  
and a  Gaussian  stabilizer G(s) = l / e ~ ~ s ~ ~ 2 ~ ~  in the S domain. 

. In figure P5.2, the  recorded data (represented by small  circles)  should  be  inter- 
polated  using an  RBF network. The basis  (activation)  functions of the neurons are 
triangles  (also  known as B-splines). 

4 

Graph  for  problem 5.2. 
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I 

6 -1 0 1 2 3 X 

~ i ~ ~ r e  P5.2 
Graph for problems 5.6 and 5.7. 

a. Find the  weights that will  solve  this inte~olation problem. Draw the interpolating 
function on the given diagram. 
b. Draw the RBF network and show  the  value of each  weight on this plot. 
c.  Select  the  first and the  third  triangle as the  basis  functions, and model  the  given 
data pairs  with  them.  Namely,  find  the  corresponding  weights and draw  basis  func- 
tions, data pairs, and approximating  function  in  the (x, y )  plane. 

5.7. Repeat the  calculations in problem 5.6 (a),  (b), and (c) by augmenting  the 
hidden  layer output vector  with  a  bias  term,  i.e., y4 = +l. Draw networks and the 
corresponding graphs in the (x, y )  plane. 

. Model  (find the weights  of the RBF network for) the  training data from prob- 
lems 5.6 and 5.7 using  linear  splines,  i.e.,  using  the  basis  functions g(x, xi) = /x - xi / ,  
where  the X i  are the given  training  inputs. 
a, Find the  weights by placing  the  splines at each  training data input (no bias). 
b. Find the  weights  by  placing  the  splines at the  first and third inputs only (no bias). 
c. Repeat the calculation  in (b) augmenting  the HL output vector  with  a  bias  term. 
d. Find the  weights by placing  the  splines at the  second and third inputs only (no 
bias). 
e. Repeat the  calculation  in (d) augmenting  the HL output vector  with  a  bias  term. 
Draw the co~esponding graphs in the (x, y )  plane  containing data pairs and inter- 
polation or approximation functions.  Comment on the  influence  of  the  bias  term. 
(Note that the  training data set  is  chosen  deliberately  small.  There are only  three data 
pairs.  Therefore,  you do not need  a  computer for problems 5.6-5.8, and all  calcu- 
lations can be done  with  pencil and paper only). 
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5.9. It was stated that a desired  vector y can be split into two  perpendicular  compo- 
nents by implementation of a projection  matrix : the error vector e and the  projec- 
tion of JJ onto the  column  subspace U?. Prove that e is orthogonal to y. 
5.10. The  columns of a matrix 

span a three-dimensional  space. Find three orthonormal systems that span  the  same 
space,  selecting  the  new orthonormal basis  in  this  order: [g1Ng2N 

tions of vector y = [3 2 l] LT in  these  three orthonormal systems. 
The  subscript N denotes  normalized.  Express  the 

5.11. Let U be the  space  spanned by the U'S, and write y as the  sum  of a vector  in U 
and a vector orthogonal to U .  
a. y = [l 3 5]', u1 = [l 3 -2IT, u2 = [S 1 4IT. 
b. y =  [4 3  3 -1IT, ~1 = [l l 0 lIT, ~2 == [-l 3 1 -2IT, 
U3 = [-l 0 l l] . T 

Lt. The  columns of a matrix 

2 
G =  [o 

0 

-2 
2 
0 :l 1 

span a three-dimensional  space. The desired  vector  is y = [l l 01 '. Find the  best 
projection of y onto a two-dimensional  subspace U spanned by two  columns of G. 
Show that the  OLS  learning  algorithm as given  by  (5.45) or as code  in  box  5.1  will 
result  in a suboptimal  selection of the  best  regressors  (columns of ) . (Hint  Draw  all 
given  vectors,  meaning gi, i = 1,3, and JJ in a three-dimensional  space,  find the best 
selection of  two  columns, and follow  the  given  algorithm.  If  you  make a careful 
drawing, the best  selection of two  columns  will  be  obvious.) 

5.13. Section  4.3.3  mentioned that for normalized  inputs,  feedforward  multilayer 
perceptrons  with  sigmoidal  activation  functions can always  approximate arbitrarily 
well a given Gaussian RBF, but that the  converse  is true only for a certain  range of 
the  bias parameter in  the  sigmoidal  neuron.  Prove  this  statement. 
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5.14. Consider an RBF network  given by (5.13).  Derive  expressions for the  elements 
of the Jacobian matrix  given by Jg = afl/axj. 

5.15. Equation (5.14) 

P 

i= I 

represents an RBF interpolation scheme.  Show that, on the  interval [ 1 , 31, this radial 
basis  function  expansion can also be written  in the f o m  

P 

i= 1 

where  the yi are the  values to be interpolated. Take the data points given  in  problem 
5.6, i.e., yl = 1, y2 = 3, y3 = 2. Derive and draw  the  explicit f o m  for the dual 
kernels (x). 

5.16. Consider  the  following  kernel  regression approximation scheme 

P 

where G, is  the  Gaussian 

= ~ “ l  /g . 2 2  

Derive  the  behavior of this approximation in the cases CT -+ 0 and CT ”+ 00. 

The  simulation  experiments  in chapter 5 have  the  purpose  of  familiarizing  the  reader 
with  the  regularization  networks,  better  known as RBF networks.  The  program 
rbf 1.m is  aimed at solving  one-dimensional  regression  problems  using  Gaussian 
basis  functions. The learning  algorithm  is  a standard RBF network batch algorithm 
given  by  (5.16).  One-dimensional  examples are used for the  sake of visualization of all 
results. A single demo function  is  supplied but you  may  make as many  different  one- 
dimensional  examples as you  like. Just follow  the  pop-up  menus and select  the inputs 
you want. 
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The experiments are aimed at reviewing  many  basic  facets  of 
ing (notably the  influence  of the  Gaussian  bell  shapes on the approximation, the 
smoothing  effects  obtained by decreasing  the  number of HL neurons,  the  smoothing 

tained by changing  the  regularization parameter 1, and the influence  of 
aware of the  following  facts about the  program rbf 1.m: 

1. It is  developed for one-dimensional  nonlinear  regression  problems. 
owever,  the  learning part is  in  matrix fom, and it can be  used for more  complex 

learning  tasks. 
3. The  learning  takes  place  in an off-line (batch) algorithm  given by (5.16). 
4. rbf 1.m is a user-friendly  program,  even for beginners  in  using  ATL LAB, but 
you  must  cooperate. Read carefully  the  description part of the rbf 1.m routine  first. 
The  program prompts you to select, to define, or to choose  different  things  during  the 
learning. 
5. Analyze  carefully  the  resulting  graphic  windows.  There  are  answers to various 
issues  of learning and R F network  modeling  in  them. 

Experiment  with  the  program rbf 1.m as follows: 

2. Connect to directory learnsc (at the matlab prompt, type cd learnsc 
(RETURN)). learnsc is a subdirectory of matlab, as bin, toolbox, and 
uitools are. While  typing cd learnsc, make  sure that your  working  directory  is 
matlab, not matlab/bin, for  example). 
3. Type start (RETURN), and pop-up  menus will  lead  you  through  the  design pro- 
cedure.  You  should  make  some  design  decisions. Do them  with  understanding and 
follow  all  results obtained. 
4. After  learning, five  figures  will  be  displayed.  Analyze  them  carefully. 

Now perfom various  experiments by changing  some  design  parameters. Start with 
the demo example and then  create  your  own. Run the  same  example  repeatedly, and 
try out different  parameters. 

erfom the interpolation first ( t  == l ,  i.e.,  you will  have P BFs, where P stands 
for the  number of training data points). Start with  overlapping  Gaussian  basis  func- 
tions (ks = 1 to 3). Repeat simulations  with  differently  shaped  Gaussians.  Use  narrow 
(ks << 1) and broad (ks >> 1) ones. 
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2.  Analyze  the  smoothing  effects  obtained by decreasing  the  number  of 
(Gaussian  basis  functions).  Pollute  the  function  with  more than 25% noise ( E  > 0.25). 
Start with P RBFs ( t  = 1)  and  reduce.  the  number  of  Gaussians by taking t = 2, or 
greater.  Repeat  the  simulations,  decreasing  the  number of neurons  and  keeping  all 
other  training  parameters  (noise level and shape)  fixed.  In  order to see the  effects  of 
smoothing,  run an example  with 50-100 training data pairs. 
3. Analyze  the  smoothing  effects  of  regularization  parameter A. Take  the  number of 
neurons to be P. Choose ks = 2 and keep  it  fixed  for  all  simulations.  Start  modeling 
your data without  regularization (A. = 0) and  gradually  increase  the  regularization 
factor.  Keep  all  other  training  parameters  fixed. 

In all  the  preceding  simulation  experiments,  there  must not be the  influence  of 
random  noise.  Therefore,  run  all s i ~ ~ l a t i o n s  with  the  same r ~ E d u ~   er g e ~ e r ~ ~ o r  
seed$xed, which  ensures  the  same  initial  conditions  for  all  simulations.  Generally,  in 
performing  simulations  you  should  try to change  only one parameter at time. 
ulously  analyze  all  resulting  graphs  after  each  simulation  run.  There are many  useful 
results  in  those  figures. 
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Together  with  neural  networks,  fuzzy  logic  models  constitute  the  modeling  tools of 
soft  computing, and it seems appropriate to start with  a short definition of  fuzzy 
logic: Fuzzy logic is a tool for embedding str~ctured human knowledge into workable 
algorithms. 

One  can  say, ~araphrasing Zadeh  (1965;  1973), that the  concept of  fuzzy  logic  is 
used  in  many  different  senses. In a  narrow  sense,  fuzzy  logic (FL) is  considered  a 
logical  system  aimed at providing  a  model for modes of human reasoning that are 
approximate rather than exact. In a  wider  sense, FL is  treated as a fuzzy  set theory of 
classes  with unsharp or fuzzy  boundaries.  Fuzzy  logic  methods  can be  used to design 
intelligent  systems on the  basis of knowledge  expressed  in  a  common  language.  The 
application areas of intelligent  systems are many.  There  is  practically  no area of 
human  activity  left  untouched by these  systems today. The  main  reason for such 
versatility  is that this  method  permits  the  processing of both symbolic and numerical 
information. Systems  designed and developed  utilizing FL methods  have  often been 
shown to be more eficient than those  based on conventional  approaches. 

Here,  the  interest  is chiefly in  the  role of FL as a  technique  for  mathematical 
expression of linguistic  knowledge and ambiguity. In order to follow  the  presenta- 
tion, it is  first  useful to understand  the  relation  between  human  knowledge and basic 
concepts  such as sets and functions. A graphical  presentation of  these relations  is 
given  in  figure  6.1. It seems natural to introduce FL modeling  following  the bottom- 
up approach outlined  in  the  figure:  from  sets,  their operations and their  Cartesian 
products to relations,  multivariate  functions, and IF-THEN rules as a  linguistic  form 
of structured human  knowledge. 

Consequently,  in  section  6.1,  the  basics of  fuzzy  set  theory are explained and 
compared  with  classic  crisp  logic. The important concept of the  membership  function 
is  discussed. The representation of  fuzzy  sets  by  membership  functions  will  serve as 
an important link  with  neural  networks.  Basic  set  operations  (notably  intersection 
and union) are presented and connected  with  the  proper operators (for  example, 
MIN and MAX). Then  the  concepts of (fuzzy)  relations,  the  relational  matrix, and 
the  composition of  fuzzy relations are examined. A formal treatment of  fuzzy IF- 
THEN statements,  questions of  fuzzification and defuzzification, and the  composi- 
tional rule of  fuzzy  inference  with  such  statements  concludes  the  section on the  basics 
of fwzy logic  theory. 

In earlier  chapters it was  mentioned that neural  networks and fuzzy  logic  models 
are based on very similar,  sometimes  equivalent,  underlying  mathematical  theories. 
This very important and remarkable  result,  which  has  been  discovered by different 
researches  independently,  is  discussed  in  section  6.2. The development  follows  a 
paper by Kecman and Pfeiffer  (1994),  which  shows  when and how  learning  of  fuzzy 
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in which  we  are  interested, is 

which  represent 

The  latter 

all ordered  pairs  from two (or  more) 

Therefore,  it  seems  as  though  the  best  way to present  the  ideas  and  the  calculus of fuzzy  logic, 
as well  as to understand  the  structure of the  pyramid  with  a  base in set  theory  and a tip 

re~resenting structured  human  knowledge, is the 

Figure 6.1 
Pyramid  of  structured  human  knowledge in the world  of  fuzzy  logic. 

rules  from nunerica1 data is  mathematically e~uivalent to the  training of a radial 
basis  function, or re~ularization, network. ~l though these  approaches  originate  in 
different p a r a d i ~ s  of intelligent i n f o ~ a t i o n  processing, it is  demonstrated that the 
mathematical structure is  the  same.  The  presentation  in  section  6.2 can be readily 
extended to other, not necessarily radial, activation  functions. 

Finally,  in  section  6.3 fwzy additive  models (F S) are introduced.  They are 
naturally  connect  h, and represent an extension  of,  the  soft-radial  basis  models 
from  section  6.2. S are universal approx~ators. They are very  powerful  fuzzy 

and unlike  early  fuzzy  models that used  the 
-parts of all  active  rules, that is,  they  use  the 
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The  theory of  fuzzy  sets  is a  theory of graded  concepts-“a  theory  in  which  every- 
thing  is  a matter of degree, or everything  has  elasticity” (Zadeh 1973). It is aimed at 
dealing  with  complex  phenomena that ‘6do not  lend  themselves to analysis by a 
classical  method  based on bivalent  logic and probability  theory.”  Many  systems  in 
real  life  are too complex or too ill-defined to be susceptible to exact  analysis.  Even 
where  systems or concepts seem to be unsophisticated,  the  perception and under- 
stan~ing of such  seemingly  unsophisticated  systems are not necessarily  simple.  Using 
fuzzy  sets or classes that allow  intermediate  grades of membership  in  them,  opens  the 
possibility of analyzing  such  systems both qualitatively and quantitatively by allow- 
ing  the  system  variables to range  over fwzy sets. 

Sets’ or classes in  a universe of discourse (universe, domain) 77 could be variously 
defined: 

y a  list of elements: 

S1 = {Ana, John, Jovo, Mark}. S:! = (beer, wine, juice, slivovitz}. 

S3 = (horse, deer, wolf, sheep}. S4 = (1,2,3,5,6,7, 8,9,  l l}. 

y definition of some  property: 

S5={xE. i??Ix< 15). s 6 = { x E R l x 2  <25}. 

Note that S4 E Ss. 

S7 = {x E R I x > 1 A x < 7}. sf3 = (x E R I “x is  much  smaller than io7’}. 

(The  symbol A stands for logical AND, the operation of intersectio~.) 

sets  (see  fig.  6.2,  left graph), 
y a ~ e ~ b e r s h ~  funct io~ (in  crisp  set  theory  also  called  a c~aracteristic). For crisp 

For fuzzy  sets  (see  fig.  6.2,  right graph), ps(x) is  a  mapping of X on [0, l], that is,  the 
degree of belonging  of  some  element x to the  universe X can be any  number 
0 5 p&$(“) 2 1. 
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4111 Y 
x is much  smaller  than 10. 

0.8 
0.6 
0.4 
0.2 
0 
0 5 10 15 

Figure 6.2 
Membership  functions of (left) crisp  and (right) fuzzy sets. 

1 

0.8 

0.6 

0.4 

0.2 

0 

close to 12 

0 10 20 30 

Figure 6.3 
Membership  function  of  fuzzy  set S “all real  numbers  close to 12”. 

In engineering  applications,  the  universe of discourse U stands for the domain of 
(linguistic) input and output variables,  i.e., for antecedent and consequent  variables, 
or for the IF and the THEN variables of the  rule.  Membership  functions  (possibility 
distributions,  degrees of belonging)  of  two  typical  fuzzy  sets are represented  in  figure 
6.2, right graph, and in  figure 6.3. The latter shows  a  fuzzy  set S of “all real  numbers 
close to 12”: 

Note the similarities  between  the  two  membership  functions and sigmoidal and radial 
basis  activation  functions  given  in  previous  chapters. 

In  human  thinking, it is  somehow natural that the  maximal  degree  of  belonging to 
some  set cannot be higher than 1.  Related to this  is  a  definition of ~ o r ~ f f Z  and not- 
normal fuzzy  sets.  Both  sets are shown  in  figure 6.4. Typically,  the  fuzzy  set  of input 
variables (the IF variables of IF-THEN rules)  is  a  normal  set, and the  fuzzy  set  of 
output variables (the THEN variables of IF-THEN rules)  is  a not-normal fuzzy  set. 

There  is an important difference  between  crisp  sets and fuzzy  sets  (see  table  6.1). 
Fuzzy  logic  is a tool for modeling human knowledge, or human understanding and 
concepts about the  world.  But  the  world  is  not  binary:  there is an infinite  number of 
numbers  between 0 and 1; outside of  Hollywood  movies,  people are not divided into 
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lu h N o t - n o r m a l  FS 
P Normal FS 
1 

0.8 
0.6 
0.4 
0.2 
0 
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0.8 
0.6 

0.4 
0.2 
0 

Figure 6.4 
 embers ship functions of normal  and  not-normal  fuzzy  sets. 

Table 6.1 
Differences  Between  Crisp  Sets  and  Fuzzy  Sets 

Crisp  Sets  Fuzzy  Sets 

either  or and 
bivalent multivalent 
yes or  no more  or  less 

1 2 3 4  

Figure 6.5 
f ember ship functions of the  set “x smaller  than 3” as  discrete  pairs ,u/x. 

only good and bad; there  is a spectrum of colors  between black and ~ ~ ~ t e ;  we are 
usually not absolu~ely healthy or ter~inally ill; our statements are not utterly false or 
~bsolutely true. Thus,  binary  concepts  like yes-no or 0-1, as well as the very  wording 
while  dealing  with  such  graded  concepts,  should  be  extended to cover a myriad of 
vague  states,  concepts, and situations. 

In fuzzy  logic an e l e ~ e n t  can be a member  of  two or more  sets at the  same  time. 
Element x belongs to A AND to B, not only to one of these  two  sets.  The  very  same x 
is just more or less a member  of A and/or B. See table 6.1 

Another notation forfinite fuzzy  sets  (sets  comprising a finite nmber of elements) 
is  when a set S is  given as a set  of pairs p/.- (see  fig. 6.5). Note that p is a function of x 

p = p(x):  S = {@/x1 x < 3}, e.g., S = {(l/l), (0.5/2), (0/3)}. 
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Usually,  human  reasoning  is very approximate.  Our  statements  depend  on  the  con- 
tents, and we describe our physical and spiritual  world  in  a rather vague  terms. 
Imprecisely  defined  “classes” are an important part of human  thinking.  Let us  illus- 
trate this  characteristic feature of human reasoning  with  two  more  real-life  examples 
that partly  describe  the  subjectivity  with  which we conceive  the  world, 

The modeling of the  concept  “young  man’’  is  both  imprecise and subjective.  Three 
different  membership  functions  of  this  fuzzy  set, or class,  depending  on  the  person 
using it, are given  in  figure 6.6. (Clearly,  the  two  dashed  membership  functions  would 
be  defined  by  persons  who are  in  their late thirties or in  their  forties. The author 
personally  prefers  a  slightly  broader  membership  function,  centered at age z= 45.) 
Similarly, the order  given in a pub, “’Bring  me a  cold  beer,  may  have  dif- 
ferent  meanings  in  different parts of the  world. It is  highly  subjective, too. The 
author’s  definition of this  fuzzy  class  is  shown  in  figure 6.7. The membership  func- 
tions  may  have  different  shapes. The choice of a  shape for each particular linguistic 
variable (attribute or fuzzy  set)  is both subjective and problem-dependent. The most 
common  ones in engineering  applications are shown  in  figure 6.8. 

Any  function p(xj ”+ (0, l] describes  a  membership  function  associated  with  some 
fuzzy  set.  Which particular membership function is  suitable  for  fuzzy  modeling can 

U 

0 IO 20 30 40 50 Age 

Figure 6.6 
Three  different  membership  functions p(x) of the class “young  man”. 

cold not-so-cold 
very cold warm 

0 10  20 30 

Figure 6.7 
Membership  functions p(x)  for S (“cold  beer”) = {very cold,  cold, not-so-cold, warm}. 
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Standard Fuzzy Sets in Engineering 
Trapezoid  (on  corner)  Trapezoid  Triangle  Singleton  Gaussian  bell  Triangle  (on  corner) 

P 1  
0.8 
0.6 
0.4 
0.2 
0 
0 2 

Tolerance 7- 

4 4  6 8 10 12 14 16 
Universe of discourse X 

support S 

Figure 6.8 
The  most  common fmzy sets  in  engineering  applications. 

be determined  in  a  specific  context.  Here,  the  most  general triangular and trapezoidal 
membership  functions are defined. Note that all  membership  functions  in  figure  6.8 
(except  the  Gaussian  one) are specific  cases  of the following  expressions. 

~riangular ~ e m b e r s h ~  Functions Trapezoidal ~ e m b e r s h ~  Functions 

0 i f x < a  
x - a  
c - a  
b-X 
b - c  

if x E [a, c] 

if x E [c7 b] if x E [c7 b] 
b - c  
0 i f x > b  

0 i f x < a  
x - a  
m - a  

if x E [a, m] 

b-X 
b - n  

if x E [n, b] 

0 i f x > b  

where a and b denote  lower and upper  bounds  (i.e.,  they are “coordinates” of a  sup- 
port S) ,  c is a “center” of a  triangle, and rn and n denote “coordinates” of a  tolerance 
(see  fig.  6.8). 

Out of  many  set operations the  three  most  common and important are co~pZement 
S c  (or not-S), intersection, and union. Figure  6.9  shows  the  complement Sc  of crisp 
and fuzzy  sets  in  Venn  diagrams and using  membership  functions.  Figure 6.10 shows 
the  intersection,  union, and complement  operations  using  membership  functions. 
The  graphs  in  figure  6.10 are obtained by  using the MIN operator for an intersec- 
tion  (interpreted as logical AND) and the MAX operator for a union (interpreted as 
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Crisp S C  

-.m* ........ . I  .... I .............................. a.. 

Figure 6.9 
Two  different  ways  of  representing (left) crisp  and (right) fuzzy  sets S and  corresponding  complement  sets 
Se. Top, Venn  diagrams. Bottom, membership  functions.  The  brightness  of  the  fuzzy  set  patch  in  the  right 
graph  denotes  the  degree  of  belonging, or membership  degree p, of  elements  of U to  the  fuzzy  set S 
(black - ,U = 1 and  white - p = 0). For the  complement  set,  the  following is true: f isc = pnu,,t,s = 1 - p,. 

P P 

A A S  

P P 

P 
i i / '  

=AC NOTA E 

F i ~ ~ e  6.10 
Intersection  and  union  as well as  complement  of A operations  for (left) crisp  and (right) fuzzy  sets  repre- 
sented  by  the  corresponding  membership  functions. 
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logical OR): 

These  are  not the only operators that can be  chosen to model  the  intersection and 
union of a fuzzy  set, but they are the  most  commonly  used  ones  in  engineering 
applications. For an intersection, a popular alternative to the MIN operator is  the 
a ~ ~ e b r a ~ c  product 

which  typically  gives  much  smoother  approximations. In addition to MIN, MAX, 
and product operators there are many  others that can be used. In fuzzy  logic  theory, 
intersection operators are called T-norms, and union operators are called T-conorms 
or S-norms. Table  6.2  lists  only  some  classes of T-norms and S-norms. 

Before  closing  this  section on basic  logical operators, it is  useful to point out some 
interesting  differences  between  crisp and fuzzy  set  calculus.  Namely, it is  well  known 
that the  intersection  between a crisp  set S and its  complement Sc  is an empty  set, and 
that the  union  between  these  two  sets  is a universal  set.  Calculus  is  digerent  in  fuzzy 

Table 6.2 
T-Noms and S-Noms 
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P 

Figure 6.11 
Interesting  properties of fuzzy set calculus. 

logic.  Expressed by membership  degrees,  these  facts are as follows: 

Crisp Set Calculus 
p ~ p " = ~ .  p v p C = 1 .  

This can be  verified  readily for fwzy sets, as shown  in  figure  6.11. 

Let  us  consider  the notion of an ordered pair. When  making  pairs of anything, the 
order of the  elements  is  usually of great  importance  (e.g.,  the  points (2,3) and (3 ,2)  
in an (x, y )  plane are different). A pair of elements that occur  in  a  specified  order  is 
called an ordered pair. A relation is  a set of ordered pairs. 

Relations  express  connections  between  different  sets. A crisp  relation  represents  the 
presence or absence of association,  interaction, or interconnectedness  between  the 
elements of two or more  sets (Klir and Folger  1988). 

If this  concept  is  generalized,  allowing  various  degrees or strengths of relations 
between  elements, we  get  fuzzy relations.  Because  a rel~tion itself is a set, all  set 
operations can be applied to it without  any  modifications.  Relations are also  sub- 
sets  of  a  Cartesian product, or simply  of a  product  set. In other words,  relations are 
defined  over Cartesian products or product sets. 

The Cartesian product of  two crisp  sets X and Y, denoted by X x Y ,  is  the  crisp  set 
of all  ordered  pairs  such that the  first  element  in  each pair is  a  member of X and the 
second  element  is  a  member of Y: 

Let X = { 1, 2 )  and Y = {a, b, c} be two  crisp  sets. The Cartesian product is  given  as, 
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Now,  one  can  choose  some  subsets at random, or one  can  choose  those that satisfy 
specific  conditions  in  two  variables. In both cases,  these  subsets are relations.  One 
typically  assumes that variables are somehow  connected  in  one  relation, but the 
random  choice  of,  say,  three  ordered  pairs { (1, h) ,  (2, U ) ,  (2, c ) } ,  being  a  subset of the 
product set X x Y ,  is  also  a  relation. 

A Cartesian  product can be generalized  for n sets,  in  which  case  elements of the 
Cartesian  product are n-tuples (XI, x2, . . , xn).  ere,  the  focus  is  on  relations  between 
two  sets,  known as a binary reZutio~ and denoted R ( X ,  Y ) ,  or simply R. Thus the 
binary  relation R is  defined  over  a  Cartesian product X x Y .  

If  the  elements of the latter come  from  discrete  universes of discourse,  this  partic- 
ular relation R can be presented  in  the  form of a ~e~utionuZ ~ u t ~ i x  or graphically as a 
discrete  set of points  in  a t~ee-dimensional space ( X ,  Y ,  ,uR(x, y ) ) .  

6.1 Let X and Y be two  sets  given as follows.  Present  the  relation R: “x is 
smaller than y” graphically and in the  form of a  relational  matrix. 

X={l,2,3},  Y={2,3,4}, R : x < y .  
i 

Note that R is  a  set of pairs and a  binary  relation.  The  relational  matrix, or 
membership array, in  this  crisp  case  comprises  only l’s and 0’s. Figure 6.12  shows the 
discrete  membership  function ,uR(x, y )  of this  relation. 

Figure 6.12 
The  discrete ~ e ~ b e r s ~ p  function pR(x, y )  of the  relation R: ‘‘X is smaller  than y”.  
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1 
0 1 1  2 
1 1 1  

0 0 1  3 

The  elements  of  the  relational  matrix are degrees of membership p,(x, y ) ,  that is, 
possibilities, or degrees of belonging, of a  specific  pair (x, y )  to the  given  relation R. 
Thus, for example,  the  pair (3,l) belongs  with  a  degree 0 to the  relation “x is  smaller 
than y”, or the  possibility that 3  is  smaller than 1  is  zero. The preceding  relation  is  a 
typical  example  of  a  crisp  relation. The condition  involved  in  this  relation  is  precise 
and one that is  either  fulfilled or not  fulfilled. 

The  common  mathematical  expression “x is  approximately  equal to y”, or the 
relation R: x x y ,  is  different. It is  a  typical  example  of an imprecise, or fuzzy,  rela- 
tion.  Example  6.2  is  very  similar to example  6.1,  the  difference  being that the  degree 
of belonging of  some pairs (x, y )  from  the  Cartesian  product to this  relation can be 
any  number  between 0 and 1. 

~ ~ ~ ~ ~ Z e  6.2 Let X and Y be two  sets  given as follows.  Present  the  relation R: “x is 
approxhately equal to y” in  the fom of a  relational  matrix. 

X =  {1,2,3}? Y = {2,3,4}, R: x x y  

1 
1 0.66 0.33 2 
0.66 0.33 0 

0.66 l 0.66 3 

The  discrete  membership  function pR(x, y )  is  again  a  set of discrete  points  in  a  three- 
dimensional  space ( X ,  Y ,  p,(x, y ) )  but with  membership  degrees that can  have  any 
value  between 0 and 1. 

When  the  universes of discourse  (domains) are c ~ n t i n u ~ u ~  sets comprising an infi- 
nite  nwnber of elements,  the  membership  function pR(x, y )  is a s u ~ a c e  over  the 
Cartesian  product X x Y,  not  a  curve as in  the  case of one-dimensiooal  fuzzy  sets.3 
Thus,  the  relational  matrix  is an ( K  “c) matrix and has no practical  meaning.  This 
is a  common situation in everyday  practice,  which  is  resolved by appropriate dis- 
cretization of the  universes  of  discourse.  Example  6.3  illustrates  this. 
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2 1  

Figure 6.13 
Membership  function pR(x,y)  of  the  relation R: “x is  approximately  equal  to y” over  the  Cartesian  prod- 
uct  of  two  continuous  sets X and Y. 

~ x ~ ~ ~ Z e  6.3 Let A’ and Y be  two  sets  given as follows.  Show  the members~p 
function of the  relation R: “x is  approximately  equal to y” and present the relational 
matrix  after  discretization, 

Figure 6.13  shows  the  membership  function, and the  relational  matrix  after  dis- 
cretization by a  step of  0.5  is 

X \ Y  1 2  2.5  3  3.5  4 
1 

0.6667  0.8333  1.0000  0.8333  0.6667 3 
0.8333  1.0000  0.8333  0.666’7 0.5000 2.5 
1.0000  0.8333  0.6667  0.5000  0.3333 2 
0.8333  0.6667  0.5000  0.3333  0.1667  1.5 
0.6667 0.5000 0.3333  0.1667  0.0000 

In the  preceding  examples,  the  sets are defmed on the same  universes of discourse. 
But  relations can be  defmed  in  linguistic variables  expressing  a  variety of different 
associations or interconnections. 

Relation R is  given as an association or interconnection  between fruit 
color and, state. Present R as a  crisp  relational  matrix. 

X = {green,  yell^^, red}, Y = {unripe, semiripe, ripe}. 
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green 

0 0 1 red 
0 1 0 yellow 
1 0 0 

This  relational  matrix can be interpreted as a notation, or model, of an existing 
empirical  set  of IF-THEN rules: 

RI: IF (the tomato is) green, THEN (it is) unripe. 

R2: IF yellow, THEN semiripe. 

R3 : IF red, THEN ripe. 

In fact,  relations are a  convenient tool for modeling IF-THEN rules.  However,  the 
relational  matrix  in  example 6.4  is a  crisp  one and not in total agreement  with our 
experience. A better  interconnection  between fruit color and state may  be  given  by 
the  following fwzy relational  matrix: 

green 

0 0.2 1 red 
0.3 l 0.4 yellow 
l 0.5 0 

~ x ~ ~ ~ Z e  6.5 Present  the  fuzzy  relational  matrix  for  the  relation R that represents 
the  concept  “very far” in  geography.  Two  crisp  sets are given as 

X = {Auckland, Tokyo, Belgrade}. 
8 

Y = {Sydney,  Athens,  Belgrade, Paris, New  York}. 

Hence,  the  relational  matrix  does  not  necessarily  have to be square.  Many  other 
concepts can be modeled  using  relations on different  universes  of  discourse. Note 
that, as for  crisp  relations, fwzy relations are fwzy sets  in product spaces. As an 
example,  let  us  analyze  the  meaning  of  the  linguistic  expression “a young tall man” 
(Kahlert and Frank 1994). 
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15  20  25 30 35 175 180 185 190 

Figure 6.14 
The  fuzzy  sets, or linguistic  terms,  “young  man”  and  “tall  man’’  given by  corresponding  membership 
functions. 

~ x ~ ~ ~ Z e  6.6 Find the  relational  matrix of the  concept “a young  tall man”. 

Implicitly,  the  concept “a young  tall man” means  “young AND tall man”. 
Therefore,  two  fuzzy  sets,  “young man” and “tall man”, are defined  first,  and  then 
the  intersection operator is  applied to these  two  sets  defined on different  universes  of 
discourse,  age and height.  One out of  many operators for  modeling a fuzzy  intersec- 
tion is the MIN operator. (Another commonly  used  one  is  the  algebraic  product.) 
Thus, 

pu,(age, height) = MIN(p, (age),p,(height)). 

After  discretization,  as  in  figure  6.14, 

the  relational  matrix  follows  from 

- 0 -  
0.5 

- 0 -  - 0 -  
0.5  0.5 

PI = X [0 0.5 1 l l], (6.5)  1 = p1 X p: = 1 ,  7 P2= 1 
0.5 0.5 1 

- 0 -  - 0 -  - 1 -  

or 

I 170  175  180  185  190 

15 
0 0.5 0.5 0.5 0.5 20 
0 0 0 0 0 

0 0 0 0 0 35 
0 0.5 0.5 0.5 0.5 30 
0 0.5 1  1  1 25 
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The relational  matrix  in  example 6.6 is  actually  a  surface  over  the  Cartesian product 
age x height,  which  represents  the  membership  function, or a  possibility  distribution 
of a  given  relation.  Generally,  one can graphically obtain this  surface  utilizing  the 
extension  principle  given the different  universes  of  discourse  (cylindrical  extension,  in 
particular). However,  this part of  fuzzy theory  is  outside  the  scope  of  this  book. 

Fuzzy  relations  in  different  product  spaces can be combined  with  each other by 
c o ~ ~ o ~ i t i o ~ .  Note that fuzzy  sets can also be combined  with  any  fuzzy  relation  in  the 
same  way.  A  composition  is  also  a  fuzzy  set  because  relations are the  fuzzy  sets.  (This 
is  the  same attribute as the product of matrices  being  a matrix.) 

Many  different  versions  of  the  compositional operator are possible.  The  best 
known  one  is  a MAX-MIN composition. M ~ - P R O D  and MAX-AV 
also be used. The MAX-PROD composition  is  often  the  best  alternative:  A  discus- 
sion of these  three  most important compositions  follows. 

Let R1 (x, y ) ,  (x, y )  E X x Y and R2(y, z ) ,  ( y ,  z )  E Y x Z be two  fuzzy  relations. 
The M A X - M ~  composition  is  a  fuzzy  set 

and is  a  membership  function of a  fuzzy  composition on fuzzy  sets. 
The MAX-PROD composition  is 

AX-AVE  composition  is 

Later, while making  a f u z zy   i~ f e re~ce ,  a  composition of a  fuzzy  set and a  fuzzy 
relation (and not one  between  two  fuzzy  relations)  will be  of practical  importance. 
Example 6.7 will facilitate  the  understanding of the  three  preceding  compositions. 

~ ~ ~ ~ ~ Z e  6.7 R1 is  a  relation that describes an interconnection  between  color x and 
ripeness y of a tomato, and R2 represents an interco~ection between  ripeness y and 
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taste z of a tomato (Kahlert and Frank 1994).  Present  relational  matrices for the 
MAX-MIN and MAX-PROD compositions. 

The relational  matrix 1 (x-y connection)  is  given as 

green 

0 0.2 1 red 
0.3 1 0.4 yellow 
1 0.5 0 

The  relational  matrix 2 (y -z  connection)  is  given as 

R2(Y,Z) I &!mw sweet-sour  sweet 

unripe 

0 0.7 1 ripe 
0.7 1 0.3 semiripe 
1 0.2 0 

The MAX-MIN composition R = 1 o R2 results  in  the  relational  matrix 

R(x, z )  sour  sweet-sour  sweet 

green 1 0.5  0.3 
yellow 0.7 1 0.4 
red 0.2 0.7 1 

The  entries of the relational  matrix R were calculated as follows: 

rll = M ~ X ( M I N (  1, l), MIN(O.5,0.7), MIN(0,O)) = MAX( 1,0.5,0) = 1, 

r23 = MAX(MIN(0.3,0),  MIN(l,O.3), MIN(0.4,l)) = MAX(O,0.3,0.4) = 0.4. 

The MAX-PROD composition will  give a slightly  different  relational  matrix: 

i (1 a 1,0.5*0.7,0*0) (1  *0.2,0.5*  1,0.0.7) 

=h.IAX (0.3*1,1*0.7,0.4*0)  (0.3-0.2,1*1,0.4*0.7) 

(0+1,0.2-0.7,1 S O )  (0*0.2,0.2.1,1*0.7) 

(1,0.35,0)  (0.2,0.5,0)  (0,0.15,0) 

(0,0.14,0)  (0,0.2,0.7)  (0,0.06,1) 1 (0.3,0.7,0) (0.06,1,0.28) (0,0.3,0.4) = 

(1 * 0,0.5 0.3,O * 1) 
(0.3 * 0 , l  * 0.3,0.4 1) 

(0 * 0,0.2 * 0.3,1* 1) 

0.5  0.15 [ 0:7 1 0; ~ (6.9) 

0.14  0.7 



382 Chapter 6.  Fuzzy Logic Systems 

Note that the  resulting MAX-MIN and M 
little  only  in  two  elements; r13 and r31. It is  nteresting to compare  the  result of 
the ~ A ~ - P R O D  composition  with  the  cla  the  two  matrices 

2. Recall that in standard matrix operator is  used 
instead of the  MAX operator, after the  multiplication of the  specific  elements  in 
corresponding  rows and columns.  Thus,  matrix  multiplication  would  result  in 

(1*1+0.5*0.7+0*0) (1*0.2+0.5*1  t-0-0.7) (1.0+0.5*0.3+0.1) 

(0~3~1+1*0.7+0.4.0) (0.3.0.2+1*1+0.4*0.7) (0.3*0+1.0.3+0.4*1) 

(0.1+0.2*0.7+1*0) (0*0.2+0.2*1+1*0.7) (0 .0+~.2*0.3+1*1)  

1.35  0.7 0.15 

l 1.34  0.7 

0.14 0.9 1.06 1 
The linguistic inte~retation of the resulting  relational  matrix 

forward  one,  corresponding to our experience, and can be  given in 
THEN rules. Ths example  clearly  shows that fwzy relations are a  suitable  means of 
expressing  fuzzy (unce~ain, vague)  implications. A linguistic interpretation in the 
form of  rules for the  relational  matrices (6.9) is as follows: 

RI:  IF the tomato is green, THEN it is sour, less  likely to be sweet~sour, and 
unlikely to be sweet. 

R2: IF the tomato is  ello ow, T EN it  is sweet- sou^, possibly sour, and unlikely 
to be sweet. 

R3: IF the tomato is red, THEN it is sweet, possibly sweet-sour, and u ~ i ~ e l y  
to be sour. 

The  fuzzy  sets  (also  known as attributes or linguistic  variables) are shown  in i t ~ l i c ~ .  
Note the multival~ed characteristic of the  fuzzy  implications.  omp pare the  crisp 
relational  matrix  in  example 6.4 with  the 1 given  here, and compare  their corre- 
sponding  crisp and fuzzy  implications. 

In classical  propositional  calculus  there are two  basic  inference  rules:  the ~u~~~ 
ponens and the ~ o d u s  tollens. odus  ponens  is  associated  with  the  implication “ A  
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follows  from A”’, and it is the  more important one for enginee~ng 
applications. 

odus  ponens  can  typically be represented by the  following  inference  scheme: 

Fact or premise “X is A99 
mplication 

 ons sequence or conclusion 

In  modus  tollens  inference,  the  roles are interchanged: 

‘‘y is not B” 

t on sequence or conclusion ‘‘X is not A” 

The  modus  ponens  from standard logical p~opositional calculus cannot be  used  in the 
fuzzy  logic e n v i r o ~ e n t  because  such an inference can take  place  if, and only  if,  the 
fact or premise  is  exactly  the  same as the  antecedent of the IF-T EN rule. In fuzzy 
logic  the ge~er~Zized m o ~ u s  ~ o ~ e ~ s  is  used. It allows an inference  when  the a 
is  only  partly  known or when the  fact  is  only  similar  but  not  equal to it. 
problem  in  fuzzy a proximate reason in^ is as follows: 

Im~lication IF the tomato is red, T EN it is sweet, possibly sweet-sour, and 
unlikely to be sour. 

Premise or fact  The tomato is more or Zess red (pRe = 0.8). 
 onc cl us ion Taste = ? 

The  question now  is,  aving a state of nature (premise, fact) that is not exactly  equal 
to the  antecedent, and the IF-  EN rule  (implication),  what  is  the  conclusion? 

In traditional logic  (classical  propositional  calculus,  conditional  statements) an 
” is  written as A =+= B, that is, A implies 

uch an i ~ ~ Z i c ~ t i o ~  is  defined  by the  following truth table: 

T T T  
T F F  
F T  
F 

The following  identity  is  used  in  calculating  the truth table: 
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Note the  “strangeness” of the last  two  rows.  Conditional  statements, or implications, 
sound  paradoxical when the  components are not related. In everyday  hurnan  rea- 
soning,  implications are given to combine  somehow  related  statements, but in  the  use 
of the  conditional  in  classical  two-valued  logic,  there  is no requirement for related- 
ness.  Thus, “unusual” but correct  results  could be produced  using  the  preceding 
operator. Example 6.8 illustrates  this  curious  character of standard Boolean  logic. 

~ x ~ ~ ~ l e  6.8 The statement “IF 2 x 2 = 5, THEN cows are horses”  is true (row 4 in 
the truth table), but “IF 2 x 2 = 4, THEN cows are horses”  is false (row 2 in  the 
truth table). 

In Boolean  logic  there  does not have to be any  real  causality  between  the  ante- 
cedent (IF part) and the  consequent (THEN part). It is  different  in  human  reasoning. 
Our rules  express  cause-effect  relations, and fuzzy  logic  is  a tool for transferring  such 
structured  knowledge into workable  algorithms.  Thus, fuzzy logic cannot be and  is 
not Boolean logic. It must go beyond  crisp  logic.  This  is  because in engineering and 
many  other  fields,  there  is no effect (output) without  a  cause (input). 

Therefore,  which operator is to be  used for fwzy conditional  statements  (implica- 
tions) or for fwzy  IF-THEN rules? In order to find an answer to this  question,  con- 
sider  what the result  would be  of everyday (fwzy) reasoning if the crisp implication 
algorithm  were  used. Starting with the crisp  implication  rule 

A + B = A C v B ,   A C = l - - p A ( ~ ) ,  

and 

A V B = MAx(pA (x), ,U&)) (fuzzy OR operator), 

the f u z zy   i~~ l i ca t ion  would  be 

This  result  is  definitely not an acceptable  one for the related  fuzzy  sets that are sub- 
jects of  everyday  human  reasoning  because  in  the  cases  when  the  premise  is not ful- 
filled ( p A ( x )  = 0), the  result  would  be  the truth value  of  the  conclusion ,uB( y )  = l .  
This doesn’t  make  much  sense  in  practice,  where  a  system input (cause)  produces  a 
system output (effect). Or, in other words, if there  is PO ‘cause,  there  will  be  no  effect. 
Thus,  for p A ( x )  = 0, pg( y )  must  be  equal to zero. For fuzzy   i~~l ica t ion ,  the  impli- 
cation rule  states that the truth value of the conclusion must not be larger than that of 
the premise. 
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here are many  diKerent  ways to find  the truth value of a premise or to calculate 
the  relational  matrix that describes a given  implication.  The  minimum and product 
implications  are  the  two  most widely  used today. (They  were  used  by ~ a m d a n i  and 
Larsen,  respectively). 

(6.10) 

(6.11) 

If R is a fuzzy relation  from  the  universe of discourse X to the  universe of discourse 
Y, and x is a fuzzy  subset of X, then  the  fuzzy  subset y of Y, which  is  induced  by x,  is 
given  by  the c o ~ ~ o s i t i o ~  

y = x o R .  

As mentioned  earlier,  the operator of this  composition  is ~ ~ - M ~ ~ ,  with alter- 
or -AVE. 

Show a compositional  rule of inference  using the ~ A ~ - ~ I N  opera- 
tor. R represents  the  relation  between  color x and taste z of a tomato, as given  in 
example  6.7, and the state of nature (premise,  fact, or input x )  is 

The tomato is red, 

First, this  premise  should  be  expressed as the input vector x. Note that X has  three 
possible  linguistic  values: green, yellow, and red. Thus,  the  fact that the tomato is  red 
is  expressed  by the  vector x = [O 0 l]. This  is a ~ u z z ~ c ~ t i o ~  step, which  transforms 
a crisp  value into a vector of membership  degrees. 

Premise or fact: x = [0 0 l]. 

sweet-sour  sweet 

yellow 
0.7 

The linguistic inte~retation of this impli~ation (or of this  relational  matrix)  is given 
in  the  form of IF-T  EN rules  in  example  6.7. 
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The  conclusion 
operator): 

is a result of the  following  composition (m denotes a MIN 

l] 0 0.7 1 0.4 [ 012 1:: o~~ 

m( 1,0.7), m(0,0.3), m(O,O.4), m( 1, l)] 

= [0.2 0.7 l]. (6.12) 

Example  6.9  showed a composition  between x and a given  relational  matrix 
Thus, when  modeling structured human knowledge, the IF-THEN rules  (in  their 
most c o m o n  form for expressing  this  knowledge) s h o ~ l d ~ r s t  e t~ans~ormed into 
relationa~  ma~rices. Only  after  the appropriate relational  matrix 
culated  can a fuzzy  inference  take  place.  How to find  this  relati 
IF-THEN rules  is  shown  in  example  6.10. In section 6.3, however,  the FAMs that are 
introduced do not use  relational  matrices in modeling human ~ n o ~ l e d g e  at all.  They 
are closer to the  ways  in  which  neural  networks  model data. 

~U Find the  relational  matrix of the  following  rule  (implication); 

R: IF x = small, THEN y = high. 

First, the  fuzzy  sets low and high should be defined.  These are shown  in  figure  6.15 
by their  membership  functions. In order to obtain a matrix of finite  dimension, 
each  membership  function  must  be  discretized.  The  discrete  points  shown  in  figure 
6.15 (but not the  straight  lines of the  triangles) now  represent  the  fuzzy  sets low and 

-40 0 40 -4 0 4 

Figure 6.15 
Fuzzy  sets, or linguistic terns, “low” and  “high” given  by  corresponding  membership  functions  in  different 
universes  of  discourse. 



6.1. Basics of Fuzzy Logic Theory 387 

high (see  fig.  6.5).  Thus,  the  universes  of  discourse X and Y now  have five (or a finite 
number of) elements  each: 

X = { -40, -20,0,20,40}, Y = { -4, -2,0,2,4}. 

n order to calculate  the  entries of the  relational  matrix , recall that the truth 
e of the con~lusion must be smaller than, or equal to, the 

or PROD operator, for example.  The  result 
rndani  implication)  is 

(6.13) 

The  relational  matrix  can be calculated by a vector product, udng the  same pro- 
cedure as in  example  6.6: 

= ~ I N { , u ~ ( ~ )  T ~ H ( y ) }  = IN{[O 0.5 1 0.5 01 TIO 0.5 1 0.5 01). 

For example, for x = -20 and y = 0, the  membership  degree of the  relational  matrix 
will  be 

,u,(x = - 2 0 , ~  = 0) = MIN{,uL(-~O),U~(O)} = MIN(O.5, l} = 0.5. 

0.5  0.5 0 

The fwzy inference for x‘ = -20 (the framed  row of ) is  the  result of  th 
composition: 

e following 

(6.14) 

- 0 0  0 0 0  
0 0.5 0.5 0.5 0 

, u L / ~ R ( Y )  = , ~ H t ( y )  = [0 1 0 0 01 0 0.5  1  0.5 0 
0 0.5 0.5 0.5 0 

_ o o  0 0 0  

= l0 0.5 0.5  0.5 01. 
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Figure 6.16 
~ A ~ " ~ 1 ~  fuzzy  inference.  The  conclusion  is  not  a  crisp  value  but  a  not-normal  fuzzy  set. 

Figure 6.17 
MAX-PROD fuzzy  inference.  The  conclusion is not  a  crisp  value  but  a  not-normal  fuzzy  set. 

Note that the  crisp  value x' = -20  was fuzzijied, or t ran~ for~ed  into a ~ e ~ b e r s h ~  
vector ,uLt = [0 1 0 0 01, first. This is  because  x  is  a  singleton at x' (see fig. 6.16). 

Another popular fizzy inference  scheme  employs MAX-PROD (the Larsen  impli- 
cation),  which  typically  results  in  a  smoother  model. The graphical  result of the  MAX- 
PROD inference  is  given in figure  6.17, and the relational matrix 

I -20 ~ 0 0.25  0.5  0.25 0 I 
0 0  

0 0 0 0 0 40 
0 0.25 0.5 0.25 0 20 

0.5 l  0.5 0 

Typical  real-life  problems  have more input variables, and the  corresponding  rules 
are given  in  the form of a  rule  table: 

RI: IF x1 = low AND x2 = ~ e d i u ~ ,  THEN y = ~ i g h .  

R2: IF x1 = low AND x2 = high, THEN y = very h i g ~ .  
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Now,  the  rules R are three-tuple  fuzzy  relations  having  membership  functions that 
are  hypersurfaces  over  the  three-dimensional  space  spanned by XI ,  x2, and y .  For 
instance,  for  rule RI,  

The  relational  matrix  has a third  dimension  now. It is a cubic array. This  is  studied  in 
more  detail later but is  illustrated  in  example 6.11 with  two inputs and one output. 

~ x ~ ~ ~ Z e  6.11 Find the  consequent of the  rule RI.  The  membership  functions of two 
fuzzy  sets  “low” and “medium”  are  shown  in  figure  6.18, arrd rule R1  is 

RI:  IF x1 = low AND x2 = ~ e ~ i u ~ ,  THEN y = high. 

Figure 6.18 shows  the  results of a fuzzy  inference for the  two  crisp  values xi = 2 
and xi = 600.4 The  objective  is to find  the output for the  two  given input values, or 
y(xi  = 2, xi = 600) = ? At this point, nothing can be said about the  crisp  value of y .  
A part of the  tool,  the ~ e ~ u z z ~ c a t i o n   ~ e t h o ~ ,  is  missing at the moment. It is  dis- 
cussed  in  section 6.1.7. But the consequent of rule R1 can be found. First note that 
the  antecedents 1 and 2 ( s ~ a l l  and ~ e ~ i u ~ )  are connected  with an  AND operator, 
meaning that the  fulfillment  degree of rule R1  will  be calculated  using a MIN operator, 
H = MIN( pL(2), pM(600)) = 0.5. Thus,  the  resulting  consequent  is a not-normal 
fuzzy  set pk, as shown  in  figure 6.18. 

In actual engineering  problems  there  are  typically  more input variables and 
fuzzy  sets  (linguistic  terms) for each  variable. In such a situation,  there are NR = 
nFS1 x nFS2 x x ~ 2 ~ ; s ~  rules,  where nFsi represents  the  number of  fuzzy  sets for the 
ith input variable xi, and U is  the  number of input variables. For example,  when 
there are three (U = 3) inputs with  two,  three, and five  fuzzy  sets  respectively,  there 
are NR = 2 x 3 x 5 = 30 rules.  During the operation of the fuzzy  model,  more  rules 
are generally  active  simultaneously. It is important to note that all  the  rules  make a 
union of rules. In other words,  the  rules  are  implicitly  connected by an OR operator. 

P 

1 

0.5 

0 2 4 6 8  

Figure 6.18 
Construction of  the  consequent  membership  function pH( for  the  rule RI. 
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Example 6.12  shows a fuzzy  inference  in a simple  case  with  one input and one 
+ !R' mapping). A slightly  more  complex  generic situation with  two 

inputs and one output (an '93' ---+ !R' mapping)  pertains  in  example  6.13. 

le ~.~~ For x' = 20,  find the output fuzzy  set  of the single-input,  single- 
output system  described by the  two  following  rules: 

Figure 6.19 ill~strates the  ons sequent of these  rules, and the equations are as 
follows: 

Rule  R I: 

Resulting  conseqient p(') MAX 
Rule R2: 
Consequent pyMt (y) from b l e  R2: 

' -40 -20 0 i 40 
x' = 20 

' -4 0 4 

F i ~ r e  6.19 
Construction of  the  consequent  membership  function  from  the  two  active  rules  for  a  single-input,  single- 
output system (MAX-PROD inference). 
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Note that the result of this  fuzzy  inference  is  a n o t - ~ o r ~ ~ l  fuzzy  set. In real-life 
problems,  one  is  more  interested  in  the  single  crisp  value of the output variable, 
to find  this  crisp  value y is  discussed  in  section  6.1.7. 

le ~ . ~ 3  Find the output fuzzy  set for a  system  with  two inputs (having  two 
fuzzy  sets for each input) and one output, described by the  following four rules: 

2: IF x1 = low OR x 2  = ~ i g ~ ,  T 

Rs: IF XI = zero AN 

R4: IF x1 = zero OR x 2  = ~ i g ~ ,  T H ~ N  y = ~ i g ~ .  

The output fuzzy  set  is  shown in figure  6.20. 

p( y ) ,  or how  one can defuzzify p( y ) ,  will  be introduced  below. 
Finally, how  one  finds  the crisp output value y from  the  resulting  not-normal  sets 

In the last few examples,  the  conclusions  happened  to  be not-normal fuzzy  sets. For 
practical  purposes,  a  crisp output signal to the actuator or decision  maker  (classifier) 
is needed.  The  procedure for obtaining  a  crisp output value  from  the  resulting  fuzzy 
set  is  called ~ e ~ u z ~ ~ c ~ t j o n .  Note the  subtle  difference  between  fuzzification  (as  in 
examples 6.9 and 6.10) and defwzification: ~ ~ ~ z ~ c ~ t i o n  represents  the transforma- 
tion of a crisp input into a  vector of m~mbership degrees, and ~ e ~ u z z ~ e ~ t i o n  trans- 
forms  a  (typically not-normal) fuzzy  set into a  crisp  value. 

Which  method  is to be  used to find  the  crisp output value?  Several  methods are in 
ere  the four most popular are  presented. It may  be  useful  first to get an 

intuitive  insight into defuzzi~cation. What would be a  crisp output value for the 
resulting  not-normal  fuzzy  set  in  example  6.13? Just by observing  the  geometry of the 
resulting  fuzzy  set  (fig.  6.21)  one  could  conclude that the  resulting output value y 
might be  between y = 50 and 80 and that the  right  value  could be y = 58. At  this 
value  is  actually  the c e n t e r - o ~ ~ r e ~  (or c e n t e r - o ~ g r ~ ~ i ~ y )  of the  resulting  consequent 
from  the  four  rules  given  in  example 6.13. This  is  one of the  many  methods of de- 
fuzzification.  Figure 6.22  shows three of the  most  common  defuzzification  methods. 
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Y 

x2 Y 

................................... *.. 

Y 

Y 

Figure 6.20 
Construction of  the  consequent  membership  function  from  four  active  rules  for  a  system  with  two  inputs 
and  one  output. 

Center-of-area,  or 
Center-of-gravity,  results 
in a  crisp  value y =  58. 0 50 1 00 

58 

Figure 6.21 
Defuzzification, or obtaining  a  crisp  value  from a fuzzy  set:  center-of-area  (or  center-of-gravity)  method. 
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First-of-maxima  Middle-of-maxima  Center-of-area  for  singletons 

Figure 6.22 
Graphical  representation of three  popular  defwzification  methods. 

Each of these  methods  possesses  some  advantages  in  terms  of, for example,  com- 
plexity,  computing  speed, and smoothness of the  resulting approximating hypersur- 
face.  Thus, t h e ~ r ~ t - o f ~ a ~ i ~ a  o et hod is  the  fastest  one and is  of interest for real-time 
applications, but the  resulting  surface  is  rough.  The center-ofarea for ~ingZeton~ 
method is  eventually  the  most  practical  because it has  similar  smoothness  properties 
as the center-ofarea method but is  simpler and faster. 

When  the  membership  functions of the output variables are singletons and when 
the PROD operator is  used for inference) it is  relatively  easy to show  the  equality of 
the  neural  network and fuzzy  logic  models  (see  section  6.2).  The  resulting  crisp 
output in  this particular case  is  calculated  as 

(6.16) 

where N is  the  number of the output membership  functions. Equation (6.16)  is 
also  valid if the MIN operator is  used  when  singletons are the  consequents. Note 
the important distinction  between the relational  matrices  models  used  in  section 
6.  l and the  fuzzy  additive  models (FAMs) used  in  section  6.3.  Here,  AX-PROD 
or M A ~ - ~ I N  implication  is  used, but FAMs use SUM-PROD or S ~ M - M I N  or 
S~M-any-other-~-norm implication. The practical  difference  regarding  (6.16)  is that 
in  the  case of FAMs, N stands for the  number of  rules. 

At the  beginning of this chapter it was  stated that human  knowledge  structured 
in  the  form of IF-THEN rules  represents  a  mapping, or a multiva~ate function) that 
maps the input variables (IF variables,  antecedents,  causes) into the output ones 
(THEN variables,  consequents,  effects).  Now,  this  is  illustrated by  showing  how our 
common  knowledge  in  controlling  the  distance  between our car and the  vehicle  in 
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front of  us  while  driving  is  indeed a function. It is a function of  which  we are usually 
not aware. To show  it  graphically,  the input variables are restricted to the  two  most 
relevant to this control task:  the  distance  between  the  two  vehicles and the  speed. 

The  surfaces  shown  in  figure  6.23 are surfaces of ~ n o ~ l e d g e  because  all  the control 
actions (producing the  braking  force,  in  this task) are  the  results of sliding on this 
surface.  Normally, we are totally  unaware of the  very  existence  of  this  surface,  but  it 
is  stored  in our minds, and all  our  decisions  concerning  braking are in  accordance 
with  this  two-dimensional  function. In reality,  this  surface  is a projection of one 
hypersurface of  knowledge onto a three-dimensional  space. In other words, addi- 
tional input variables are involved in this control task  in  the  real  world. For example, 
visibility,  wetness, or the state of the road, our mood, and our  estimation of the 
quality of the  driver  in  the car in front. Taking into account  all  these input variables, 
there  is a mapping of  five more input variables  besides  the  two  already  mentioned 
into the  one output variable (the braking  force).  Thus,  in  this  real-life  situation,  the 
function  is a hypersurface of knowledge  in  eight-dimensional  space (it is actually an 

mapping).  Let  us  stay  in  the  three-dimensional  world and analyze a fuzzy 
model  for  controlling  the  distance  between  two cars on a road. 

Develop a fuzzy  model for controlling  the  distance  between  two cars 
traveling on a road. Show the  resulting  surface of knowledge  graphically. 

There are two input variables  (distance and the  speed) and one output variable 
(braking force), and five chosen  fuzzy  subsets  (membership  functions, attributes) for 
each  linguistic  variable.  The  membership  functions for the input (the IF) variables 
are triangles.  The fwzy subsets (attributes) of the output variable are singletons. 

Fwzy subsets (attributes) of distance [very small, small? moderate, large,  very 
large] 

Fuzzy  subsets (attributes) of  speed [very low, low, moderate, high, very high] 

Fuzzy  subsets (attributes) of braking [zero, one~ourth, one-haK th~ee~ourths,  
force full1 

Now,  the  rule  basis  comprises 25 rules of the  following  type: 

RI: IF distance very smalZ AND speed very low, THEN braking  force one-hag 

The inference  was  made  using a  IN operator. Two  surfaces of knowledge 
are shown  in  figure  6.23.  The  smooth  one  (left graph) is  obtained by center-of-gra~ity 
defuzzification, and the  rough  one  (right graph) is obtained by first-of-maxima 
defuzzification. 
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Figure 6.23 
Fuzzy  model for  controlling  the  distance  between  two  cars. Top, the  fuzzy  subsets of the  two  input  vari- 
ables  (distance  and  speed)  and  one  output  variable  (braking  force). Bottom, the  two  surfaces of knowledge 
obtained by different  defuzzification  methods. 
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Some  comments and conclusions  can  now be stated.  First,  using  fuzzy  logic 
models,  one  tries to model s t~ctured human  knowledge.  This  knowledge  is  highly 
imprecise.  We  all  drive a car differently.  Even at the  very  first  step,  each  of us would 
differently  define  the  universes  of  discourse, that is, the  domains  of  the  input and 
output variables.  Younger or less  cautious  drivers  would  definitely  consider  distances 
of 100 meters  intolerably  large.  They  would  drive very close, meaning that the  maxi- 
mal  value of the  distance’s  fuzzy  subsets (very large) would  perhaps  be 50 m.  On  the 
other  hand,  more  cautious  drivers  would  probably  never  drive at velocities  higher 
than 120 km/h.  Second,  the  choice  (shapes and positions) of the  membership  func- 
tions  is  highly  individual.  Third,  the  inference  mechanism and the  defuzzification 
method  applied will also  have an impact  on  the  final  result.  espite  all  these  fuzzy 
factors,  the  resulting  surface of  knowledge that represents our knowledge  with  regard 
to the  solution of the given  problem  is  usually an acceptable  one. If there is  usable 
knowledge,  fuzzy  logic  provides  the  tools to transfer it into an efficient algorithm. 

Compare  the  two  surfaces  shown  in  figure 6.23. Both  surfaces  model  the  known 
facts: a decrease  in  distance or  an increase  in  driving  speed, or both,  demands a larger 
braking  force. 

Note that where  there are several  input and output variables,  nothing  changes 
except  required  computing  time and required  memory. If the  resulting hy~ersurfaces 
reside  in  four- or higher-dimensional  space,  visualization is not  possible  but  the 
algorithms  remain  the  same. 

As  mentioned,  neural  networks and fuzzy  logic  models are based  on  very  similar, 
sometimes  equivalent,  underlying  mathematics. To show  this  very important result 
the  presentation  here  follows a paper  by  Kecman and Pfeiffer (1994) showing  when 
and how the learni~g offuzzy rules (LFR) from  numerical data is mathematically 
equivalent to the  training of a radia~ basis fun~tion (R F) or regularization,  network. 
Although  these  approaches  originate  in  different  paradigms of intelligent  information 
processing,  their  mathematical  structure  is  the  same.  These  models  also  share  the 
property of  being a universal  approximator  of  any  real  continuous  function  on a 
compact  set to arbitrary accuracy. In the LFR algorithm  proposed  here,  the  subjects 
of learning are the  rule  conclusions, that is, the  positions of the  membership 
of output fuzzy  sets  (also  called  attributes) that are in  form  of  singletons. For the 
fixed  number,  location,  and  shape  of  the input membership  functions  in  the FL 
model or the  basis  functions  in an  RBF network, LF F training  becomes a 
least-squares  optimization  problem that is linear  in  unknown  parameters,  (These 
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Figure 6.24 
Training  data  set  (asterisks),  basis  functions y, or  membership  functions p, and  nonlinear  approximating 
fuction F ( x ) .  Note  that  with  fixed y, (or p) this  approximation is linear  in  parameters. 

parameters are the  OL  weights W for RBFs or rules r for LFR).  In this  case,  the 
solution  boils  down to the  pseudoinversion of a  rectangular matrix. The  presentation 
here can be readily  extended to the other, not necessarily  radial, activation functions. 

Using  these  two  approaches, the general  problem of approximating  or  learning 
mapping f from an n-dimensional input space to an m-dimensional output space, 
given  a  finite  training  set of P examples off{ (XI,  yl),  (x2,  y2), . . . , (xp, yp), yp = f ( x p ) } ,  
is  exemplified  by  the  one-to-one  mapping  presented  in  figure 6.24. 

For real-world  problems  with  noisy data, one  never  tries to find  the  function P that 
interpolates  a  training  set  passing through each  point  in the set, that is,  one  does  not 
demand F(xp)  = yp, Vp E { 1, . . , P}. The approximating  function F of the  underlying 
function f will  be obtained on the  relaxed  condition that F does dot have to go 
through all  the  training  set  points but should  merely  be as close as possible to the 
data. 

Usually,  the  criterion of  such  closeness  is  least  squares. It is  clear that in the  case of 
noisy  free data, inte~olation is the better  solution.  This will  be true as lohg as the 
size  of  the data set  is not too large.  Generally, in the  case of large data sets  (say,  more 
than 1,000 data patterns) because of numerical  problems,  one  is  forced to find an 
approximation solution. 
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F approximation techniques  (which  resulted  from  the  regularization  theory 
of Tikhonov* and Arsenin  (1977), a good  theoretical  framework for the treatment of 
approximation or inte~olation problems),  after  making  some  mild  assumptions  the 
expression for an appro~imating function  has  the  following  simple  form: 

N 

i= l 
(6.17) 

where W i  are weights to be learned and ei are the  centers  of the radial basis  functions 
F pi can have  different  explicit  forms  (e.g.,  spline,  Gaussian, multi~uadric). 

It is important to realize that when the  number N, the  positions Ci, and the  shapes 
(defined by the parameter CT and by the  covariance  matrix for o~e-dimensional and 
higher-d~ensional Gaussian  basis  functions,  respectively) are fixed  before  learning, 
the  problem of approximation is  linear  in  the  parameters  (weights ~ i ) ,  which are the 

ct of learning. Thus, the  solution  boils  down to the  pseudoinversion  of  matrix 
, N). This  matrix  is  obtained  using  (6.17) for the  whole  training  set.  If  any of the 

parameters ei or ai, which are “hidden”  behind  the  nonlinear  function pl, become 
part of the training for any  reason,  the  problem of learning will  have to be  solved  by 
nonlinear  optimization.  Certainly  then it will  be  much more  involved. 

Consider a scalar output variable  in  order to show  the  equality of neural  networks 
and fuzzy  logic  models  without  loss of generality.  The F network  modeling  the 
data set  is  given as 

N 
(6.18) 

If p is a Gaussian  function  (usually  the  normalized  Gaussian  with ~ p l i t u d e  
G(q, ci) = 1 is  used),  one can write 

N 

i= 1 
(6.19) 

Figure 6.24 presents  (6.19)  graphically. For N = I“ and N < P an interpolation or an 
approximation, respectively,  will occur. 

The  same approximation problem  can be considered a problem of learning 
fuzzy  rules from examples.  Figure 6.24 still  represents  the  problem  setup but now 
the  Gaussian  bumps are interpreted as membership  functions pi of the  linguistic 
attributes (fuzzy  subsets) of the input variable x (input is  now a one-dimensional 
variable). 
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For reasons of computational efficiency,  the attributes of the  linguistic output 
variable are defuzzified  oE-line  by  replacing  the  fuzzy  set  of  each attribute with  a 
singleton at the center of gravity of the  individual  fuzzy  set  (as  in  fig.  6.23,  the brak- 
ing  force graph). 

The parameters to be learned are the  positions ri of the  singletons  describing 
the  linguistic  rule  conclusions.  The  corresponding  continuous  universes of discourse 
for linguistic input and output variables Input,, . . , Input,, and Output, are called 
XI, . . . , X,, Y ,  respectively.  Rule  premises  are  formulated as fuzzy AND relations on 
the  Cartesian  product  set X = X1 x X2 x - x X,, and several  rules are connected by 

. F~zification of a  crisp  scalar input value x1 produces  a  column  vector of 
mem~ership grades to all  the attributes of Inputl, and similarly for all other input 
dimensions, for instance, 

(6.20) 

The degrees  of  fulfillment  of  all  possible AND combinations of rule  premises are 
calculated and written into a  matrix . For ease of notation, the  following  consid- 
erations are formulated for only  two input variables, but they can be  extended to 
higher-dimensional input spaces.  If  the aZgebraic ~ r o ~ u c t  is  used as an AND opera- 
tor, this  matrix can be directly  obtained by the  multiplication of a  column and a  row 
vector: 

Otherwise,  the m i ~ m u m  or any other appropriate operator from  table  6.2 can be 
applied to all  pairs of membership  values.  Because  the attributes of the  linguistic 
output variable are singletons,  they appear as crisp  numbers  in  the fuzzy  rule  base. 
The  first  rule, for example,  reads 

RI:   IF Input1  is  attribute1  AN  Input2  is attrib~te2,  THEN Output is r l l .  

and its  conclusion  is  displayed as the  element rll in  the  relational  (rule)  matrix 

= [ r21 r12 
r22 : : : l .  (6.22) 
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R has  the  same  dimensions as M. IF-THEN rules are interpreted as AND relations 
on X x Y ,  that is,  the  degree of membership  in  the output fwzy set  of a  rule  is  limited 
to the  degree up to which  the  premise  is  fulfilled.  A  crisp output value y is  computed 
by the  center-of-area for singletons, or center-of-singletons,  algorithm  (6.16) as a 
weighted  mean  value 

(6.23) 

where pjl = Hi and rjl = yi. The sum covers  all  elements of the  two  matrices 
El. If  the  membership  functions of the input attributes are Gaussians,  the pjl are space 
bumps Gi(X, S) representing  the joint possibility  distribution of each  rule.  Moreover, 
if the  elements  of  matrix R are collected  in  a  column  vector 

= ( m ,  r12,. * . r21, r22, * .) = @l, r2, * * ’ , r N >  , T T (6.24) 

the approximation formula becomes 

(6.25) 

The structural similarity of (6.19) and (6.25)  is  clearly  visible:  the  rule  conclusions 
ri correspond to the trainable weights wi. These  two equations could be  given a 
graphical  representation  in  the  form of “neural” networks. For bivariate  functions 
y = f (x1,  x2) this  is  done  in  figure  6.25. 

The  structures of both networks are the  same  in  the  sense that each  has just one 
hidden  layer and the  connections  between  the input and the  hidden  layer are fixed 
and not  the  subject of learning. The subjects of learning are the  connections W or r 
between  the  hidden  layer and the output layer. It must be stressed that the  seemingly 
second  hidden  layer in a  fuzzy (or soft RBF) network  is not an additional hidden 
layer but the  normalization part of the  only  hidden  layer.  Because  of  this  normal- 
ization,  the sum of  the outputs from  the  hidden  layer  in  a  soft RBF network  is equal 
to l ,  that is, EoiF = 1. This  is not the  case  in  a  classic RBF network. 

The  equivalence of these  two  approximation  schemes  is  clear if  (6.19) and (6.25) 
are compared. The only  difference  is that in  fuzzy approximation the output value 
from the  hidden  layer y is  “normalized.”  The  word n u r ~ a Z i z e ~  is  in quotation marks 
because y is  calculated  using  the  normalized output signals OiF (fig. 6.25) from neurons 
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Figure 6.25 
Networks  for  the  interpolation ( N  = P)  or approxi~ation ( N  P)  of a  bivariate  function y = f ( x l ,  x*). 
Left, an  RBF. ~ i g ~ t ,  a fuzzy network  or  soft  RBF.  Here N = 3. 

whose  sum  is  equal to l .  This  is not the  case  with  a standard RBF network. 
of the  effect of normalization, fuzzy approximation is  a  kind of soft  approximation, 
with the approximating  function  always  going through the  middle  point  between  the 
two  training data. As an analogy to the  softmax  function  introduced to the  neural 
network  community for the  sigmoidal  type of activation function  (Bridle  1990),  fuzzy 
approximation is  called  a  soft RBF approximation scheme. 

The mathematical  side of the  solution  is  defined as follows: for a fixed  number N, 
positions ci, and width ci of the  basis  function ql or membership  function pi, the 
problem  of appro~imation is  linear  in  learned  parameters W or r and will  be  solved  by 
the  simple  inversion of the  matrix A given in (6.30). (In the  case of interpolation, i.e., 
when the  number N of basis or membership  functions (attributes) for each input 
variable  is  equal to the  number P of data pairs, A is  a  square  matrix.  When  there are 
fewer  basis or membership  functions than data pairs, A is  rectangular.  The latter type 
of approxi~ation is  more  common  in  real-life  problems.)  This  property of  being 
linear  in  parameters  is not afXected  by the  choice of the  algebraic  product as a  fuzzy 

operator. This  algorithm  remains  the  same  for  the  minimum operator. 
It seems as though the  soft RBF is  more  robust  with  respect to the  choice of the 

width  parameter and has better approximation properties  in  cases  when  there  is no 
large overlap~ing of basis  functions q or membership  functions p, In such  a situation 
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(for small CT in  the  case  of  Gaussian  functions)  the  approximation  obtained  with  the 
classic RBF given  by  (6.19)  will  be  much  more  spiky than the  one  obtained  with 
fuzzy  approximation, or the  soft RBF given  by (6.25). 

There  is a significant  difference  in  the  physical  meaning  of  the  learned (or trained) 
weights wi or rules ri in  these  two  paradigms.  Approaching  the  problem  from a 
fuzzy  perspective, the rules  have  from  the  very start of problem f o ~ u l a t i o n  a clear 
physical  meaning,  stating that an output variable  must take a certain  value  under 
specified  conditions of input variables.  There  is no such  analogy  in  the  classic RBF 
approach to functional approximation. In the latter case,  the  meaning of  weights Wi is 
more abstract and depends on such  small  subtleties as whether  normalized  Gaussians 
G ( q 7  ci) = 1 are used.  Generally,  in both methods,  with  increased  overlapping of the 
basis or membership  functions,  the  absolute  values  of  the  parameters W or r will  in- 
crease.  But,  in  the  fuzzy  case,  when  the  resulting output variables are rules r, we are 
aware of their  physical  limits, and these  limits  will  determine  the actual overlapping 
of the  membership  functions  in input space.  There are no such caution signs  in a 
classic RBF because that approach is  derived  from a mathematical domain. 

In order to apply a standard least-squares  method in the spirit of parameter  estima- 
tion  schemes,  the  dedicated  fuzzy  identification  algorithm for the  center-of-singletons 
def~zification method  must be  slightly  reformulated by collecting the elements of 
in a column  vector 

P = [P11 P12 * ' * P21 P22 ' * -1 7 (6.26) 
T 

and by  defining a vector of l's with  the  same  dimension = (1 1 . .. 1)'. Using 
these  vectors,  (6.23)  can be written  with  the numerator and denominator  calculated 
as scalar  products 

which  is  equivalent to 

j lTr  = P ly. T 

(6.27) 

(6.28) 

The input data are  fuzzified  according to the attributes of the  linguistic  variables 
Input1 and Input:!. For each  sample p ,  and input data set xp ,  a corresponding  vector 
pp is  obtained by applying  formulas  (6.20),  (6.21), and (6.26)  successively, and an 
equation of the  form  (6.28)  is stated as 

(6.29) 
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From this equation a system  of linear equations is  constructed for p = 1) . . . , P 

(6.30) 

This  system  is  in  linear  form,  with a known  rectangular  matrix 

(6.31) 

Now  (6.31)  can be  solved for  the  unknown  vector r by any  suitable  numerical  algo- 
rithm, for instance, by taking  the  pseudoinverse as an optimal  solution  in a least- 
squares  sense: 

(6.32) 

Finally,  the  elements of vector r can be regrouped into the  rule  matrix 
actually  contains  degrees of fulfillment of all  es. For a system  with N rules, its 

lmensions  are (P, N )  . Therefore  the  matrix A ’ of  the  dimension ( N ,  N )  and can 
be easily  inverted, for very large  numbers of data samples.  This  explains  the 
equivalence of the and FL models and also  shows  how  the  weights or rules can 
be adapted (trained). The  final  learning  rule (the matrix in (6.22))  was a relatively 
simple  one  because  the  hidden  layer  weights  were  fixed. 

The structural equivalence  of a certain  type of learning  fuzzy  system  with trainable 
F neural  networks  is of considerable  importance to the  neural  network and fuzzy 

A regularization (R F) network can be interpreted  in  terms of  fuzzy  rules  after 
learning,  providing an nsight into the  physical nature of the  system  being  modeled 
that cannot be obtained  from a black-box  neural  network.  Moreover,  the  “linear” 
training  algorithm  (6.32) can be transformed to recursive notation according to 
method 5 in  section  3.2.2.  This  opens the door to recursive  training 
in  real  time  with  much  better  convergence  properties than error 
networks. From an R F perspective, a recursive  formulation will avoid  the prob- 
lems of pseudoinversion  of  large  matrices  when  dealing  with a large  number of basis 
functions.  Also,  in  using  soft RBFs there  is  no  requirement  for  basis  functions to be 
radial. Experiments by the author and colleagues  used  logistic and tangent  hyperbolic 
functions  with an approximation quality  comparable to radial Gaussian  functions. 
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The relevance of this  result for the fwzy logic  community  is of another nature, It 
suggests  preference for a  certain  type of membership  function  (e.g., Gaussian); fuzzy 
operator (e.g.,  algebraic product); and a  specific  kind  of  inference and defwzification 
scheme  (e.g.,  the  center-of-singletons  algorithm)  for  modeling  tasks.  Namely, for fuzzy 
models,  good approximation qualities are guaranteed by the  equivalence to regulari- 
zation networks,  whose  mathematical  properties are fimly established.  Moreover, 
this  equivalence  provides new insight into the inte~olation/approximation aspects of 
fuzzy  models and into such  questions as the  selection of a  suitable  number of  mem- 
bership  functions and degrees  of  overlapping.  If  the  nonlinear  learning  techniques 
known  from  neural  networks are applied to such fwzy systems,  they  allow  the leam- 
ing of input membership  functions as well. 

A fuzzy  model  given  by  (6.23) or (6.25)  is  equivalent to an  RBF model.  This  means 
that fwzy logic  models are also  universal approximators in  the  sense that they can 
model  any  multivariate  function to any  desirable  degree  of  accuracy.  The  higher 
the  required  accuracy,  the  more  rules  are  needed.  This  expression  is  valid for any 
!R" -+ !R" mapping. In the  case of an !R" "+ ! R 1  function,  (6.25)  becomes 

(6.33) 

where  the notation p is  used  for  a  membership  function  (degree of belonging)  instead 
of G. N denotes  the  number of rules, and ri stands for  the  center of area  (center 
of gravity,  centroid) of the  ith output singleton.  When  modeling an !Rti" -+ !R' rela- 
tion,  equation  (6.33)  describes  a standard fuzzy IF-THEN rule: F X = Sxi,  THEN 
y = Syi, where Sxi  and Syi  are the  antecedent and consequent  membership  functions, 
respectively. 

This  is  the  sirnplest  form of a fuzzy a ~ ~ i t i v e   ~ o ~ e Z  (FAM), also  known as a 
~ t a ~ ~ a r ~  a ~ ~ i t i v e   ~ o ~ e Z  (SAM).'  The  adjective a ~ ~ i t i v e  refers to the s ~ a t i o n s  
that take place  in  (6.33).  Hence,  this  model can also be  called  a S ~ M - P R ~ ~  or 

IN implication  model.  All  the  models  in  section  6.1  are  based  either on the 
i  implication (MA~-MIN)  or the  Larsen  inference  method ( M ~ - P R ~ ~ ) .  

Consequently,  they are not additive  models. It is important to realize that so far only 
additive  models  are  proven  universal approximators for fuzzy  membership  functions 
of any  shape. 
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The  simplest FAM model as given  by  (6.33)  is  valid  when the output membership 
functions  are  singletons. A more  general  model for an !Rtz" "+ IIZ' mapping  (when  the 
output fuzzy  subsets,  i.e., attributes or membership  functions, are fuzzy  subsets of 
any  shape)  is  given by 

(6.34) 

where N denotes  the  number of rules, Wi stands for the  relative  rule  weight  (if  the  ith 
rule  is  more  relevant than thejth rule, Wi > W j ) ,  Ai is  the area of the  corresponding  ith 
output fuzzy  subset  (membership function), and mi stands for the  mode, that is,  the 
center of area  (center of gravity,  centroid) of the  ith output fuzzy  subset. 

In  the  case of an '8' "+ !Rm mapping, a FAM given  by  (6.34)  becomes 

(6.35) 

where V; is  the  volume  of  the  corresponding ith output fuzzy  subset  (membership 
function). When  all  rules are equally  relevant, wi = wj, i = 1, N,  j = 1, N ,  and when 
the output fuzzy  subsets  have  equal  volumes (or areas  in  the  case of an !Rm = !R1 

mapping),  (6.35)  reduces to (6.33). 
The basic  description of  how this  additive  model  achieves  the  desired  accuracy is 

given  in  example  6.15 for an IIZ1 "+ !R' mapping.  The  design  steps  in  fuzzy  modeling 
are shown  in  box  6.1. 

Box 6.1 
Design  Steps  in  Fuzzy  Modeling 

Step 1. Define  the  universes  of  discourse  (domains  and  ranges,  i.e.,  input  and  output  variables). 
Step 2. Specify  the  fuzzy  membership  functions  (fuzzy  subsets or attributes)  for  the  chosen  input 
and  output  variables. 
Step 3. Define  the  fuzzy  rules  (i.e.,  the  rule  base). 
Step 4. Perform  the  numerical  part  (SUM-PROD, S ~ M - ~ I ~ ,  MAX-MIN, or some other)  infer- 
ence  algorithm. 
Step 5. Defuzzify  the  resulting  (usually  not-normal)  fuzzy  subsets. 
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esign a fuzzy  controller for controlling a distance  between  two cars 
traveling on a road. 

Example 6.14 demonstrated how the  braking  force B depends  upon  the  distance 
D and the  velocity v, but it did not give details.  Here,  in  order to get a geometrical 
impression of a FAM works and to enable  visualization, it is  assumed that the  dis- 
tance D is constant, and only  the  mapping, B = f ( u ) ,  is  modeled.  Figure 6.26 shows 
the  scheme for this  model. 

In the  case of a mapping B = f ( u ) ,  a very  simple (rough)  model can be obtained by 
having thee rules  only.  Both  the fwzy subsets and the  rule  base are shown  in  figure 
6.27. The  rule  base  is  linguistically  expressed  everyday  driving  expertise on how to 
brake depending  upon  the  velocity of the car. 

c 

c 
..” 

c - 
Figure 6.26 
Scheme for modeling  a  fuzzy braking  force  controller. 

Velocity Braking  Force 

low m e d i u ~  high  small m ~ d i u m  large 

1 1 

0 120 0 100 
IF velocity is low, THEN  braking  force is s ~ a l l .  

IF Velocity is me~ium, THEN  braking  force  is ~ e d i u ~ .  
IF  velocity is high, THEN  braking  force is large. 

Figure 6.27 
Fuzzy  subsets ( m e m ~ r s h i ~  functions)  and  a  rule  base  for  a  fuzzy  braking  force  controller. 
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The  fuzzy  patches  define  the  function. 

l00 
66.67 

large 

m e ~ i u ~  
B = 38.33 

~ ~ a ~ l  
16.6’7 

r possible  dependencies  between 
Band v 

of us drives  differently  and  brakes 
in a  different way each  time. 

v =  49.5 120 
low me~ium high 

gure 6.28 
Fuzzy rules  define  the fuzzy patches.  More  rules  result  in  smaller  patches. This means  finer  granulation, 
i.e.,  more  precise  knowledge. 

Figure 6.28  shows the four possible  mapping  curves that may  result  from a FAM’s 
having  three  rules  only. A much  finer  (more  accurate)  model  could  have  been ob- 
tained  with  finer  discretization  (more  membership  functions and rules). The rules 
and the  fuzzy  subsets  with  high  overlapping  produce  the  three  square  patches  in  a 
(B, U) plane  inside  which  must  lie the function B = f ( u ) ,  the  desired ! R 1  ”+ 

ping.  The  very  shape of a  function B = f ( u )  depends  on the shapes of the  membership 
functions  applied, on the  implication  mechanism, and (heavily)  on  the  defuzzification 
method  used.  Figure  6.28  shows four possible  solutions.  This  is  the  soft part of the 
fwzy modeling that models  the  basic  dependency  stating that with an increase  in 
velocity  there  must  be an increase  in  braking  force.  Patch  size  generally  defines  the 
vagueness or uncertainty  in  the  rule. It is  related to the  number of rules:  more  rules, 
smaller  patches.  There  is no unique or prescribed  way to brake. We all  drive  differ- 
ently, and the  way each of us applies  the  force to the  brakes  is  different  each  time. 
Hence,  many  possible  functions  result  from  different  experiences, and the  fuzzy 
models that are based on expertise  will  also  be  different.  Some  of  the  possible  variety 
can be  seen in  figure  6.28. 
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Consider now  how the FAM models  the  braking  force  controller. For the output 
fuzzy  subsets,  three  singletons are chosen,  placed as follows: ~maZ2 (rl = 16.67%), 
m e ~ i ~ m  (r2 = 50%), large (r3 = 66.67%).  These  singleton  membership  functions are 
chosen to be at the  centers of gravity of the  corresponding  triangle  fuzzy  subsets 
(i.e., ri = mi) and are shown as thick  lines  exactly at these  given  locations. (Note they 
are not shown  in  the  fig.  6.27.) For a particular crisp input v = 49.5 b / h ,  shown  in 
figure  6.28,  only  two  rules,  namely R1 and R2, will  be active. In other words,  their 
corresponding  degrees of  belonging pi, i = 1,2, will  be  diflerent  from  zero, or only 
these  two  rules  will  “fire.” The output-a  braking  force B-for this particular input 
v = 49.5,  follows from the FAM model  (6.33) as 

(0.35 * 16.67) + (0.65 * 50) + (0 - 66.7) B = f ( u  = 49.5) = 
0.35 + 0.65 = 38.33%. 

It is important to realize that the FAMs do not perform very  complex  calculations. 
After  the  membership  functions are selected,  the  volumes K and centroids mi can be 
computed  in  advance.  Now, the N membership  degrees p i ( x ) ,  i = 1, N, are calculated 
for each  specific input x. Finally,  having  defined  the  rule  weights wi, the  correspond- 
ing output value y is  found  using  (6.35) and (6.34) for an !Rn ”+ !Rm mapping and for 
an Itz” ”+ Itz’ mapping,  respectively. Note that only a part of the corresponding 
degrees pi will  be  diEerent from  zero,  meaning that only a part of  rules  will  be 
active. 

The most  serious  problem in applying FAMs is a rule e ~ ~ Z o ~ i o ~  phenomenon.  The 
number of rules  increases  exponentially  with  the  dimensions  of  the input and output 
spaces.  Thus, for example, if there are four input variables (x is a four-dimensional 
vector) and a single output y ,  and if one  chooses  five  fuzzy  subsets for each input 
variable,  one  has to define 54 = 625  rules.  In other words,  according to figure  6.25, 
this  represents a network  with  625  hidden  layer  neuron. Another serious  problem  is 
the learning part in  fuzzy  models.  Theoretically,  because  of  the  equivalence  of 
networks and FL models,  one  can  apply  any  learning approach from  the  neural  field, 
including  the  gradient  descent  method.  However,  the standard membership  functions 
are not smooth  diflerentiable  functions, and error backpropagatio~ is  not as popular 
in  the  fuzzy  logic  field as it is  in the neural  field.  Genetic  algorithms  may be viable 
techniques, as may other methods for RBF networks  training. In particular, a linear 
programming approach, as given  in  section  5.3.4,  seems  promising  for  selecting  the 
most  relevant  rules  in FAM. 

The  single important computational step  in  applying FAMs is  the  calculation of 
membership  degrees pi(x), i = 1, N .  In performing  this  task  the  most popular oper- 
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ators are MIN and PROD. A standard fuzzy  rule  is  expressed  separately for each 
input variable, for instance, 

R: IF x1 is  all AND x2 is large AND, . . . , X, is ~ e ~ i u ~ ,  THEN y is 
p o ~ i ~ i v e ~  

In other words, a typical IF-THEN rule operation is a conjunc~ion (interpreted 
as  logical AND), and any  T-norm operator can be  used in the calculation of 
membership  degrees pi(x), i = 1, N .  The two  most popular operators (shown 
here for an n-dimensional input vector x) are the MIN operator px, A X 2  ,, ,.. - 
MIN( p X , ,  pxz . . . ? p,) and the PROD (algebraic product) operator pxl ,, x2 ,, ... ,, x, _I - 
pxlpxz pxn . If the IF part contains an OR  connection,  the MIN operator must be 
replaced  with a MAX operator or some other S-nom. However, an application of 
the OR in an IF part rarely  happens  in  practice. 

The  algebraic  product gives  much smoother approxi~ations because it does 
not ignore infomation contained  in  the IF part as the MIN operator does.  How  the 
two operators use  the  information  contained  in an input vector  is  shown by a simple 
example  here. 

Suppose that an input vector  results  in  following  membership  degrees  (activations) 
pl = [ p l  p2 p3 p4 ps] = [0.7 0.4 0.4 0.5 0SjT  and that another input 

= [0.7 0.4  0.9  0.9  1.01 '. The MIN operator re 
hile  the PROD operator gives p1 (x) = 0.028 and 

Hence,  the MIN operator does  not  differentiate  the joint strength of 
both cases  results  in  the  same  activation  despite  the  obvious  fact 
much  stronger  activations. 

The  product p(.) = pl (xl)pz(xz) + * p,(Xn) gets  smaller for larger input dimension 
n, but this  does not affect the FAM output because p(x) is a part of both the 
numerator and denominator in (6.33)-(6.35). Note an important fact that by  using 
the product of n scalar  embers ship functions p(x) = pi(xi), the possible corre- 
lations  among  the input components X i  were ignored. 

The relational  matrix approach as given  in  section  6.1  does not add the  result- 
(typically) not-normal fuzzy  sets, and instead of the SUM operator it 

. Figure  6.19  shows the resulting  consequent  not-normal  fuzzy  member- 
ship  function  after  the  MAX operator has  been  applied.  This M ~ - P R O D  result- 
ing  consequent  fuzzy  subset  is  shown in figure  6.29  together  with the resulting 
consequent not-normal fuzzy  membership  function  after  applying  the SUM operator. 

There are two  distinct  advantages  in  using FAMs (SUM-MIN or S~M-PROD 
or S U ~ - a n y - o t h e r - ~ - n o ~  model)  with  respect to an application of the relational 

- 
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Consequent pyHl (y )  from  rule R, Consequent p y M ~ ( ~ )  from  rule R2 MAX-PROD inference 
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Resulting consequent p(y) 
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Consequent pyHt ( y )  from rule RI Consequent p y M 8 ( y )  from  rule R2 SUM-PROD  inference 

~igure 6.29 
Constsuction  of  the  consequent  membership  functions  from  example 6.12 for  a  single-input,  single-output 
system. Top, MAX-PROD inference. Bottom, SUM-PROD inference. 

models  presented  in  section  6.1 (MAX- IN or ~ A ~ - P R O ~  models). First, on 
theoretical  level, FAMs are universal  approximators, and there  is no proof of this 
capacity for the  relational  models  yet.  Second,  the computational part of a  reasoning 
scheme  is  simplified through bypassing  the  relational  matrix  calculus. 

On  a  cold  winter  morning,  your  mother  tells  you, “The temperature  is about 
- 10 “C today.” Represent  this  piece of information by 
a. a  crisp  set (a crisp  membership  function), 
b.  a  fuzzy  set. 

uman  linguistic  expressions  depend  upon both the  context and individual 
epresent  the  following  expressions by membership  functions: 

a. “large  stone”  (while  you are in  the  mountains) 
b.  “large  stone”  (while  you are in  a  jewelry  store) 
c.  “high  temperature today” (winter  in  Russia) 
d. “high  temperature today” ( s u m e r  in  Greece) 
e. “high  temperature today” (summer  in  Sweden) 
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6.3. Given  is  the  fuzzy  set S for a  power plant boiler  pressure P (bar) with  the 
following  membership  function: 

(P - 200) if  200 S P S 225 
--& (P - 200) if  225 P S 250 
0 otherwise 

a. Sketch  the graph of this  membership  function, and comment  on  its  type. 
b.  Give  the  linguistic  description for the  concept  conveyed by S. 

. Let  three  fuzzy  sets  be  defined by an ordered  set of pairs,  where  the  first  number 
denotes  the  degree of belonging (the membership  degree) and the  second  number  is 
the  element: 

A = {1/3,0.2/4,0.3/5,0.4/6,0.6/7,0.8/8,1/10,0.8/12,0.6/14). 

B = {0.4/2,0.6/3,0.8/4,1/5,0.8/6,0.6/7,0.4/8}. 

C = {0.4/2,0.8/4,1/5,0.6/7). 

Determine  the  intersections and unions of 
a. the  fuzzy  sets A, B, and C, 
b.  the  complements of  fuzzy  sets B and C if both sets are defined on the  universe of 
discourse X = { 1,2,3,4,5,6,7,8,9, lo}. ( H i ~ t :  First express  the  complements BC 
and Cc,  taking into account X.) 

. Let  the  two  fuzzy  sets A = {x is considerably  larger than lo} and B = {x is 
approximately l l} be  defined  by  the  following  membership  functions: 

a. Sketch  the  graphs of these  fuzzy  sets, and draw  the  graphs of a  fuzzy  set C = {x is 
considerably  larger than 10 AND x is approximately 1 l}; and a  fuzzy  set I> = {x is 
considerably  larger than 10 OR x is  approximately l l}. 
b.  Express  analytically  the  membership  functions pc and pD. 

Mv 

. Let  two  fuzzy  sets be  defined  as  follows: 

A = {0.4/2,0.6/3,0.8/4,1/5,0.8/6,0.6/7,0.4/8}. 

B = { 0.4/2,0.8/4, l /S, 0.617). 
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Determine  the  intersections of A and B by applying  three  different  T-norms: 
a. minimum, 
b. product, 
c.  Lukasiewicz AND (bounded  difference). 

etermine  the  unions of A and B from  problem 6.6 by applying  three  different 
T-conorms  (S-norms): 
a. maximum, 
b.  algebraic  sum, 
c.  Lukasiewicz OR (bounded  sum). 

. Prove that the following  properties are satisfied  by  Yager’s  S-norm: 

a. P A  v&) = P A  ( 4  for P&) = 0. 
b. pAVB(x) = 1  for p&) = 1. 

c* P A  v B ( X )  2 P A  (x> for P A  ( X >  = P B ( x ) *  

d. For b ”+ 0, the  Yager’s  union operator (S-norm) reduces to a  drastic s m .  

.g. Show that the drastic sum and drastic  product  satisfy  the  law of excluded 
middle and the  law of contradiction. (Hint: The law  of  excluded  middle  states that 
A U A c = X ,  and the  law of contradiction  says that A n A c = G). 

. Prove that De Morgan’s  laws are satisfied if  we take the  union  MAX operator 
and the  intersection MIN operator, with  the  negation  defined as 

b. N ( x )  = ?E, ;I“ E (0, W). 

e  Morgan’s  laws state that A U B = k: n ii3 and A n B = k: v B). 
Let X = { 8,3,10} and Y = { 2,1,7,6}. Define  the  relational  matrices for the 

following  two  relations: 1 1 1  : “x is  considerably  larger than y” and 112: “y is  very  close 
to x”. Now  find  the  relational  matrices for these  two  relations: 
a. “x is considerably  larger OR is  very  close to y” 
b. “x is  considerably  larger AND is  very  close to y” 

. Consider  a  fuzzy  rule: IF x is A ,  THEN y is B. The  two  fuzzy  sets are given as 
follows: 
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A = {0/170.1/2,0.4/3,0.8/4,1/5}, 13 = {O/-2,0.6/-1,1/0,0.6/1,0/2}. 

Find the  relational  matrices  representing  this  rule by applying 
a.  MIN (Mamdani) implication ( Rm), 
b.  Lukasiewicz  implication ( RL), 
c.  Fuzzy  implication MIN( 1 , l  - ,uA (x) + ,uB(x)) (RF). 

6.13. Consider the input fuzzy  set for the  rule  in  problem  6.12. A' = {O/l, 0.2/2, 
0.8/3,1/4,0. 1/5}.  Apply  the  three  compositional  rules of inference, and find the 
output fuzzy  set  (consequent) for a 
a. MAX-MIN composition by  using Rm from  problem 6.12, 
b. MAX-Lukasiewicz T-nom by using RL from  problem  6.12, 
c.  MAX-Lukasiewicz T-nom by using RF from  problem  6.12. 

. Two fuzzy  relations are given as 

0*3 OW7 O S 3 ]  and 
R1 = [ 0 1 0.2, 0 

Find the  composition of these  two  relations  using 
a. MAX-MIN composition, 
b. MAX-PROD composition, 
c. MM-AVERAGE composition. 

6.15. Find and present  graphically  the output fuzzy  set for the  system  in  figure  P6.1 
with  two  inputs  (having  two  fuzzy  sets  per  each input) and one output described by 

2 Y 

Figure P6.1 
Graphs for problem 6.15. 
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Figure P6.2 
Graph  for  problem 6.16. 

following  four  rules: 

RI: IF x1 = ZOW AND x2 = low, T 

R2: IF x1 = low AND x2 = ~ i ~ ~ ,  THEN y = medium. 

R3: IF x1 = zero AND x2 = low, THEN y = medium. 

R4: IF x1 = zero OR x2 = ~ i ~ ~ ,  T 

.16. Figure P6.2 shows  the  functional  dependency  between  two  variables: y = y(x). 
Make  a  fuzzy  model  of  this  function by  using proper  fuzzy  tools and algorithms. In 
particular, use  three  membership  functions for the Input x and three memb~rship 
functions  for  the Output y .  Choose  the  shapes and positions of the membership 
functions that you  think can solve  the  problem.  Make  the  corres  onding  rule  base, 
find  the  relational  matrices if needed, and for x = 10,  using your  fuzzy  model,  find 
the  crisp  value of y ,  Use  any operator, inference  rule, or defuzzification  method you 
think  is  proper  for  modeling  the  given  function. 

.17. The  fuzzy  controller  is  acting  according to the  followin  rule  basis ( N  = 

= m ~ d i ~ ~ ,  P = p o ~ i t i ~ e ~ :  



Problems 415 

1 

0 1 2 3  4 x1 0 1 2 3 4  x2 

Input  (antecedent)  membership  functions  for  problems 6.17 and 6.18. 

1: IF x1 is IV AN 

R3: IF x1 is P 

The members~p functions  (possibility  distributions) of the input variables  are  given 
6.3, and the ~ e ~ b e r s h i p  functions of the output variable  (whic 
on) U are singletons  placed at U is  equal to l,  2, and 3 for iV, 

respectively.  Actual inputs are XI Which  mles  are  active, and 
what  will  be the  controller  action  nd U by applying  both  the  relational  models 

ence  between  the 
( N or nt whether  there  is  any  differ- 

Consider a fuzzy  controller  acting  according to the  following  rule  basis ( N  = 

U is P. 

4: IF x1 is P 

The members~p functions of the input variables are same as in  problem 6.17 and 
are  shown  in  figure 6.3. The ~ e ~ b e r s h i p  functions of the output variable  (which  is 
a controller action) U are singletons  placed at U i to 2 and 4 for N and P, 
respectively.  Actual  inputs  are x1 = 2 and x2 = 4. rules are active, and what 
will  be the  controller  action U? Find U b applying both the  relational  models 
( IN or 
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, / l  I \  I I  

Figure P6.4 
Plant scheme for problem 6.19. 

6.19. Design  the  fuzzy  controller for a  water level control  shown  in  figure P6.4 using 
three  rules  only.  The input value to the  controller  is an actual water level perturba- 
tion AH (meters) E [-l, l], and the  controller output is  the  valve  opening V (%) E 

[0, 1001. For AH = -0.25,  calculate  the actual valve  opening V by  using a FAM. 
(Hint: Follow  the  design  steps  in  box  6.1.) 

6.20. Equation (6.32) can be  used for off-line (batch) learning of the output single- 
tons’  positions Ti  having  fixed input fuzzy  subsets and data (the “activations” p i  and 
the  desired outputs ydi, namely,  a  matrix A and a  vector by are known).  Derive  the 
on-line  gradient  descent error backpropagation adapting algorithm for the output 
singletons’  positions ri given  by  (6.33)  when  the error function  is  a  sum of error 
squares E = 1 /2( yd - y ) 2 ,  (Hint: Start with riNew = ri(Jld - vVrE, and find the gra- 
dient VrE.) 

.21. A Cauchy  bell-shaped  function  may be a  good candidate for an input mem- 
bership  function. In the  case of an ‘8’ + ! R 1  mapping,  this  function  is  given by 

1 

It is  placed at mi and acts  locally, and the area of activation  is  controlled by the  width 
parameter di, which  corresponds to the standard deviation at the  Gaussian  function. 
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l t  

Graph for problem 6.23. 

In addition, it is di~erentiable, and both the  centers mi and the  width  parameter di 
can be adapted by applying  the error backpropagation (E 
mi and di correspon to the  hidden  layer wei hts of neural n 
l e a ~ i n g  laws for adapting mi and di in a F 
The error functio~ is a sum of error square 

(6.33).  This  means that the output me~bership functions  are  singletons.) 
, e.g., for mi with mi(p+I) = - ~~~i 

learning  laws for a FA to adapt both the 
centers mi and  the  width ~ a r a ~ e t e r  di of the  sine members hi^ function  defined as 

sin (7) 
Pi(4 = x __ mi - 

4 
The error function is a sum  of error squares E = 1 /2( yd - Y ) ~ .  Use the F 
(6.33). 

. ~onsequents (output ~ e ~ b e r s h i p  functions)  are  given  in  figure 
crisp output y' by apply in^ 
a. center-of-gravit~ def~~zification method for a 
b. method, 
c. height  eth hod for a IN inference that calculates the crisp output as 

Y' N '  

i- 1 
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where  the ci are the  centers of gravity or means of the  resulting  rule  consequents, and 
Hi are their  maximal  heights. N stands for the  number of output membership  func- 
tions. If the  consequents  are  singletons,  the  preceding equation is equal to (6.16). 

. ~pproximate the  two  functions  presented  in  figure 6.6 by  fuzzy  models. 
Choose  the  membership  functions and type of  fuzzy  inference  you  think  will  work 
best.  Make  one  rough  (small  number of rules) and one  finer  approximation  for  each 
function. 

esign a fwzy logic pattern recognition  model for a classification of  two letters 
V and U, shown  in  figure P6.7. First, make a class  description and define  only  two 
features  based  on  this  description.  These  two  features  will be your  two  inputs to the 
fuzzy  classifier.  Then  define  the  membership  functions.  Choose  two  membership 
functions  for  each input. Define  the  rules, 

1 
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The simulation  experiments  in chapter 6 have  the  purpose of familiarizing  the  reader 
with  the  fuzzy  logic  modeling  tools.  There are two  programs  for  performing a variety 
of  fuzzy  modeling  tasks.  They can be found  in  two  directories: f uzzyl and f uzzy2. 
In addition, there is a program f uzf am in aproxim file.  Both  programs  were 
developed  as  the  final-year  projects at the  University of Auckland  under  the  super- 
vision,  guidance, and gentle cooperation of the author. (It is  interesting to mention 
that the  students had only a half-semester’s introduction to fuzzy  logic  before  com- 
mencing  the  final-year  thesis.) 

The f uz  zy 1 program  was  created by D. Simunic and G. Taylor, and it was  aimed 
at the application of  fuzzy  logic to a vehicle  turning  problem.  The f uzzy2 program 
was  developed  by W. . Chen and G. Chua for guidance of mobile  robots  using 
fuzzy  logic  theory. 
Fuzzy 1 can be  used to  develop other fuzzy  logic  models,  whereas f uzzy2 is 

merely a demo  program  simulation of a given  problem and cannot be  used  by the 
reader to create  models.  wever, f uz  zy2 can be  used to explore  various  aspects 
of FL modeling. 0th programs  have a nice graphic  interface, and they are user- 
friendly.  The  user  need  only  follow the pop-up  menus and graphic  windows. 

You can perform  various  experiments  aimed at reviewing  many  basic  facets of 
fuzzy  logic  modeling,  notably  the  influence  of  the  membership  functions’  shape and 
overlap  on  the  accuracy of model,  the  influence of the  rule  basis on model  perfor- 
mance, and the effect  of  inference and defuzzification operators on the  final  modeling 
results. 

Experiment  with  the  programs f uzzyl and fuzzy2 as follows: 

1.  Launch  ATL LAB. 
CL. Connect to directory learnSC (at the matlab prompt, type cd l e a r n s c  
(RETURN)). learnSC is a subdirectory of matlab as bin,   toolbox,  and 
u i t o o l s  are. m i l e  typing cd l ea rnsc ,  make  sure that your  working  directory is 
matlab, and not matlab/bin,  for example). 

To start the  program  type s tar t  (RETURN). Pop-up  menus will  lead  you through 
a design  procedure.  There are several  options.  You can either  design  your  own  fuzzy 
model or run  one of several  demo  programs. It may  be  best to begin  with  the  simplest 
~ e a t i ~ ~  demo.  This  is a model of  how  one controls  the  temperature  in a room by 
changing  the  heat  supplied. 

Click to file - open - heating.mat. The input and output membership 
functions will  be  displayed.  Click  on model - i n fe rence ,  and you  will  see 
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surface of knowledge, or in  the  case of a one-dimensional input, curve of 
y activating  the  slide bar, you can follow  the fuzy calculations. 

Active  rules are shown by red bars over  the  corresponding output membership 
functions. 

To see the  effects of applying  various  inference and defwzification  mechanisms,  go 
to options and select  any of the  given operators. Choose  merely  one  change at 
time, that is, do not  change both inference and defwzification operators at the  same 
time  (unless  you  really  want to). Analyze  the  change  in  the  resulting curve of 
knowledge. 

Note that all  changes  during  the  simulation  should  go through the pop-up menu. 
ence, if you  want to run another example, do not  kill  the  existing  window by 

clicking  the x-corner button. Rather, click options - main  menu, and begin 
a new simulation. 

When  you are done  with  the  one-dimensional  example,  you  may  run  the  applica- 
tion of  fuzzy  logic to a vehicle  turning  problem.  Select  one  of  the  demos starting 
with car**.mat, e.g.,  click file - open - cartes55.mat. Click model - 
anim~tion for 2-D car, and drive  the car around the  corner  from  various  initial 
positions.  You can trace  the car paths and keep  the  traces. Just try out various 
options of the  program.  Choose  various operators, and keep  the  traces to compare 
them. Note that the car is not allowed to go  backward, and this  makes  some  initial 
positions  impossible to solve,  even for humans. 

You  can  also  repeat  example  6.14 by selecting  one  of  the  two  prepared  demos, 
namely brake5 5.mat or brake3 5.mat. Choose  some operators from options 
and analyze  the surfaces of knowledge obtained. 

Program f uzzy2 controls the movement of several  mobile robots in a workshop. 
They  service  several  machines and must  avoid  collision  with  each other. 

Run several  simulations,  trying out different  numbers of robots on the  floor and 
different  numbers of machines. Repeat the  simulations  with  various  inference and 
defuzi~cation operators. Carefully  analyze  the t~ee-dimensional graphs of the 
surf  aces  of  knowledge obtained. 

There are small p r o g r a ~ n g  bugs  in both routines. None is  of  crucial  impor- 
tance,  but  some do influence  the  performance  of  the  fuzzy  model created. This will  be 
readily  visible  in  following  the  trajectories of the  mobile robots. Note that all robots 
have  different, constant, and randomly  chosen  velocities.  There  will  be  odd  solutions 
in the situations when the  faster robot is  closing  the  distance to the  slower  one.  The 
very overtaking will  be unusual  because  all robots are programmed to turn to the 
right  only  in  order to avoid  collision. 



ase ies 

This  section  focuses  on  neural  networks-based  adaptive control and also  addresses 
the  class of  fuzzy  logic  models that are equivalent to neural  networks  (see  section 
6.2). In particular, after a review  of  the  basic  ideas  of  NN-based control, the adaptive 
~ a c k t ~ r o u g ~  control (ABC) scheme  is  introduced. ABC is  one of the  most  serious 
candidates for the future control of the large  class of nonlinear,  partially  known, 
time-varying  systems.  Recently,  the area of NN-based control has been  exhaustively 
investigated, and there are many  different  NN-based control methods.  Rigorous  com- 
parisons  show that NN-based  controllers  perform far better than well-established 
conventional  alternatives when plant characteristics are poorly  known (BoSkoviC and 
Narendra 1995). A systematic  classification of the  different  NN-based  control  struc- 
tures  is a formidable task (Agamal 1997).  Here,  the  focus  is on an approach based 
on feedfonvard  networks  having static neurons, as given in  figures 4.4 and 5.6. This 
section  follows  the  presentation  in  Kecman  (1997). 

A standard control  task and basic  problem  in  controlling an unknown  dynamic 
plant is to find  the  proper, or desired, control (actuation) value ud as an input to the 
plant that would  ensure 

where  the  subscript d stands for desired. y ( t )  and yd(t) denote  the plant output and 
desired  (reference)  plant output, respectively.  The  best  controller  would be one that 
could  produce  the  value ud that ensures  (7.1),  when  the output of  the plant exactly 
follows  the  desired  trajectory yd. In  linear control, (7.1) will  be  ensured  when 

Hence,  the  ideal  controller  transfer  function GC-($) should be the  inverse of the plant 
transfer  function GP($). Because  of  many  practical  constraints,  this  is an idealized 
control structure (Kecman  1988).  However,  one can try to get as close as possible to 
this  ideal  controller  solution, GC($). The ABC approach, which  is  presented  in  sec- 
tion 7.1.4, can achieve a great  deal  (sometimes even  nearly  all) of this  ideal  controller. 
The  block  diagram of the  ideal control of any  nonlinear  system  is  given  in  figure  7.1. 

output y(t) .  In the  general  case of a dynamic  system, f(u, y )  represents a system  of 
nonlinear  differential  equations.  Here,  the  focus  is  primarily  on  discrete-time  systems, 
and the  model of the plant i the  discrete-time  domain  is  in the form of a nonlinear 
discrete equation y(k  + 1) (u(k)  , ~ ( k ) )  . Now,  the  basic  problem  is  how to learn, 
or obtain, the  inverse  model of the  unknown  dynamic  plant by using an  NN. 

, y )  in  the  figure stands for any  nonlinear  mapping  between an input 
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Figure 7.1 
The  ideal  (feedfonvard)  control  structure  for any plant. 

The wide application of NN in control is  based  on  the  universal approximation 
capacity of neural  networks and fuzzy  logic  models (FLMs). Thus,  the  learning 
(identification, adaptation, training) of plant dynamics and inverse  plant  dynamics 
represents both the mathematical tool and the  problem to be  solved.  Therefore, the 
analysis  presented  here assues  a  complete  controllability and observability of the 
plant. To represent  a  dynamic  system,  a NARMAX model  is  used.' In the  extensive 
literature on  modeling  dynamic  plants, it has been  proved,  after  making  some  mod- 
erate assumptions, that any  nonlinear,  discrete,  time-invariant  system  can  always be 
represented by a NAR 

or 

where yk and uk are the input and the output signals at instant k, and yk-i and Uk-j, 

i = 1, . . . n, j = l ,  . . , m, represent  the  past  values of  these  signals.  Typically,  one 
can work  with n = m. Equation (7.3)  is  a  simplified  deterministic  version of the 

model  (there  are no noise  terms  in it), and it is  valid for dynamic  systems 
uts and L inputs. For K = L = l, one obtains the SISO (single-input, 

In reality,  the  nonlinear  function f from  (7.3)  is  very  complex and generally  un- 
he  whole idea  in  the  application of NNs is to try to a~proximate f by 
e  known and simple  functions,  which  in  the  case of the  application of NNs 

This  identification  phase of the  mathematical  model  (7.3) can be  given a  graphical 
representation  (fig.  7.2). Note that two  difl'erent identification  schemes are presented 
in the figur~: ~ e r ~ e s - ~ ~ r ~ l l e Z  and ~ a r ~ l l e l .  (The  names are due to ~ a n d a ~  (1979)) 
Identification can be  achieved  by  using  either  of  the  two  schemes: 

single-o~tput) system,  which  is  studied  here. 

e  their  activation or membership  functions. 

j ( k  + l )  = f {  y ( k ) ,  . . . , y (k  - n); u(k),  . . . ) u(k - n)}  (series-parallel),  (7.4) 

j ( k  + l )  = f { j ( k ) ) .  . . , j ( k  - E ) ;  u(k),  . . , u(k - n)} (parallel). (7.5) 
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Figure 7.2 
Identification  scheme  using  neural  networks. 

It is hard to say  which  scheme  is  a  better  one. Narendra and Annaswamy  (1989) 
showed  (for  linear  systems)  the  series-parallel  method to be globally  stable, but 
similar  results are not  available for the  parallel  model  yet.  The  parallel  method  has 
the advantage of avoiding  noise  existing  in  real-plant output signals.  On  the other 
hand, the  series-parallel  scheme  uses actual (meaning  correct)  plant outputs, and this 
generally  enforces identi~cation. It should be  said that questions of performance, 
advantages, and sho~comings of the  series-parallel  model (as advanced and used  by 
Narendra and Parthasarathy (1990), for example) and the  parallel  model are still 
open. 

Seemingly  the  strongest  stream of NN-based control strategies  is ~ e e ~ ~ o r ~ a r ~  con- 
trol, where a few relatively  independent and partly  dissimilar  directions  were  followed 
in  the  search  for a good control strategy. The main  idea  was  the  same  in  all  these 
otherwise diAFerent control schemes: to determine a good  inverse  model  of  plant  dy- 
namics f-l (U, y), as required  in  the  ideal  feedforward control structure in  figure 7. 1. 

7. 

Figure 7.3 shows  how the inverse plant model of a stubEe plant can be trained  using 
the generaE Z~arning urc~itecture, introduced by Psaltis,  Sideris, and ~amamura  
(1988).  Another  name for the  same approach, independently  developed by Jordan 



Chapter '7. Case  Studies 

t inverse model 

- - 

Figure 7.3 
General  learning  architecture, or direct  inverse  modeling. 

and Rumelhart (1994, is direct  inverse ~ o d e Z i n ~ .  This  is  basically an OR-line proce- 
dure, and for nonlinear  plants it will  usually  precede  the  on-line  phase.  (If  the plant is 
unstable,  stabilization  with a feedback loop must be done  first.  This can be done  with 
any standard control algorithm.) To learn  the  inverse  plant  model, an input signal U 
is  chosen and applied to the input of the  plant to obtain a corresponding output y .  
In the  following  step,  the  neural  model  is  trained to reproduce  this  value U at its 
output. 

After  this  training  phase,  the structure for an on-line operation looks  like  the  one 
shown  in  figure 7.1, that is,  the NN representing  the  inverse  of  the plant precedes  the 
plant. The  trained  neural  network  should be able to take a desired input value yd 
and produce  the appropriate U = ud as an input to the plant. This  architecture  is 
unfortunately not goal-directed. Note that one  normally  does not know  which output 
ud of the  controller  corresponds to the  desired output y d  of the  plant.  Therefore,  this 
learning  scheme  should  cover a large  operational  regime of the plant, with a limita- 
tion that a control system cannot be  selectively  trained to respond  accurately  in a 
region of interest.  Thus,  one important part of learning  with  the  general  learning 
architecture  is  the  selection of adequate training  signals U ,  which  should  cover  the 
whole input range.  Because  this  is an OR-line approach unsuitable  for  on-line  appli- 
cations,  the  controller cannot operate  during  this  learning  phase.  Besides,  because 
of the use of the error backpropagation (EBP)  algorithm  (which  minimizes  the sum- 
of-error-squares  cost function), this  structure  may be unable to find a correct  inverse 
if the  plant  is  characterized by many-to-one  mappings  from  the control inputs U 

to the  plant outputs y .  Despite  these  drawbacks,  in a number of domains  (stable sys- 
tems and one-to-one  mapping plants), this  general  learning  architecture is a viable 
technique. 
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Only  a  copying 
and  not  a  learning 4" 

Figure 7.4 
Indirect  learning  architecture. 

7. 

Psaltis,  Sideris, and ~amamura  (1988)  introduced an indirect  leurning ~rchitecture as 
a second  concept. In this adaptive control Structure,  the  controller or network NN1 
(which  is a copy of the  trained  inverse plant model N N 2 )  produces,  from  the  desired 
output yd, a control signal u d  that drives the plant to the  desired output y = yd (see 
fig. 7.4). The  aim of learning  is to produce a set  of  NN2  weights,  which  will  be  copied 
into network NN1 in  order to ensure a correct  mapping y d  "+ U over  the  range of the 
desired  operation. 

The positive  feature of this  arrangement  is that the  network  can be trained  in a 
region  of  interest, that is, it is  goal-directed. Furthermore, an advantage of the 
indirect  learning  architecture  is that it  is an on-line  learning  procedure. 
Psaltis  et  al.  unfortunately  conclude that this  method  is not a valid  training  procedure 
because  minimizing  the  controller error el = U - zfi does  not  necessarily minim~e the 
performance error e3 = yd - y .  (Actually,  the  name of this  architecture ~ ighl i~hts  the 
fact that the  subject of minimization  is not directly the  performance error e3 between 
the  desired and actual plant output but rather the controller error el). This s t ~ c t ~ r e  
also uses  the EBP  algorithm, and it has  problems  similar to the  general  learning 
architect~re if the plant performs  many-to-one  mappings  from  control  inputs U to 
plant outputs y .  

A third approach presented by Psaltis  et al. (1988)  is a s~e~ial ized learning u~chitecture 
(see  fig. 7.5). This structure  operates  in an on-line  mode, and it trains a neural  network 
to act as a controller  in  the  region of interest, that is, it is  goal-directed. In this  way, the 
scheme  avoids  some of drawbacks of the two  previous  structures.  Here,  in a specialized 
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Figure 7.5 
Specialized  learning  architecture. 

learning  architecture,  the  controller no longer  learns  from its input-output relation but 
from a direct evaluation of the system’s performance error e3 = y d  - y .  The  network  is 
trained to find  the  best control value U that drives  the plant to an output y = yd. This 
is  accomplished by using a steepest  descent E P learning  procedure. 
that a specialized  architecture  operates  in an on-line  mode, a pretra 
phase  in  the  case of a nonlinear  plant  is  usually be  useful and hig 

A critical  point  in  specialized  learning  architecture  is that the 
r i t h  requires  knowledge of the Jacobian matrix of the plant. (F 
Jacobian matrix  becomes a scalar that represents  the  plant’s  gai 
the Jacobian is  clear.  The  subjects of learning are NN weights, and in  order to correct 
the  weights  in  the  right  direction, a learning  algorithm  should  contain i n f o ~ a t i o n  of 
errors caused by wrong  weights. ut there  is  no  such  direct i n f o ~ a t i o n  available 
because  the plant intervenes  between  the  unknown NN outputs, or control signals U, 
and the  desired  plant outputs y ,  The  teacher  in  the E P algorithm  is  typically an 

or e3 = yd - y ) ,  and this  teacher  is  now a distal  one 

ithm for a general distaZ teacher learning situation. In 
, the NN and the plant are  treated as a single  neural 

network  in  which  the plant represents a fixed (u~odifiable) ou 
this  way,  the  real OL of the NN becomes  the  hidden  layer (HL). 
concerned  with  the  calculation of proper  deltas, or error signals 6, associated  with 
each  neuron  (see  box  4.1 and example  4.1). In order to find  these  signals,  the  delta 
signals 6,1; for true OL neurons of the NN should be determined  first. For the  sake of 
simplicity  (avoiding  matrix notation), it is  demonstrated how  this can be done  for a 
SISO plant. Having Bok enables a relatively straightfo~ard calculation of all other 
deltas and specific  weight  changes  (see  (4.24)-(4.26)). 

Assume that an NN is a network  operating  in  parallel  mode  having 2n inputs 
(where y1 represents  the  model order), or that an NN is  given  by the  nonlinear  discrete 
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model 

There  are  enough HL neurons that can  provide  a  good approxi~ation, and there  is 
one h e a r  OL neuron  with an output U .  The plant is  given as y = g(u, y ) .  An E 
algorithm  for  learning NN weights, as given  in.  box 41, is  a  steepest  descent  proce- 
dure, and the  cost (error) function to be optimized is 

Note that y = g(u,y)  and U = foL(uoL), so that y = g[JbL(uoL),y], where foL and 
uoL stand for the  activation  function  of, and the input signal to, the  OL  neuron, 
respectively. (For a  linear OL neuron, foL represents an identity, U = u o ~ . )  

In order to calculate  the OL neuron's error signal 6,, apply  the  chain  rule to 
calculate  the  cost  function's  gradient: 

The error signal of the OL neuron 6, is  determined  in  accordance  with (4.9). f& 
stands for the  derivative of the  OL  neuron  activation  function, and here for a 
linear  neuron, fAL = 1. For a  multilayer  perceptron  LP)  network,  where the 
input signal to the  neuron  is  obtained  as  a  scalar  produ 

F networks  this  expression for the  OL  e 
be a diflierence  between the MLP and R 

in  the  expressions  for HL neuron  weights  learning. 
tant to realize that the  derivative dg(u,y)/du represents  the Jacobian of 
re, for a SISO plant, this  is  a  scalar or, more  precisely,  a (1,l) vector. 

Generally,  plant  dynamics and the Jacobian are unknown,  which  is  a  serious short- 
coming of this  final  result that is otherwise  useful.  There are two  basic  approaches to 
overcome  this  difliculty. 

First, some  final  comments  concerning  weights addptation in a  specialized  learning 
architecture  with  the  following  assumptions:  the Jacobian is known,  the OL neuron 
is  linear, and the input to the  neuron  is  calculated as a  scalar  product.  With  these 
assumptions,  box 4.la can be  used directly. Note that the calc~ation of 6, in (7.7) 
means that step 6 in this box  is completed.  Knowing  the  structure of an NN and 
following  box 4. la, steps 7- 1 l, results  in HL deltas and in  new  weights adapted 
by their  corresponding  weight  changes bwi = @xi. Hence,  in  this ~ a c ~ ~ r o ~ a ~ ~ ~ i o ~  
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t h r o U ~ ~  a ~ l a n t  a l g o r i t ~ ,  the dete~ination of the  networks' L delta  signal  is  the 
most important step. In order to do this,  the Jacobian of the  plant 

~enerally the  preceding  assumptions do not hold, and two  alternative  approaches 
for handling a plant with an unknown Jacobian are ~ ~ ~ r o x i ~ a t i o n  of the ~ l a ~ t  
Jaco~ian by its si~n and the distal  teacher ~ ~ ~ r o a c ~ ~  

~pecialized learning  with 
through a plant can ximating  the partial derivatives of the Jacob- 
ian by their  signs ( 99 l). In principle,  the  same  basic equations 
for the  calculation of deltas are used,  with  the  dif5erence that sensitivity  derivatives 
in a Jacobian matrix are approximated by their  signs,  whi are generally  known 
when ~ualitative knowledge about the plant is  available.  practice,  this  means 
that the  entries  in a Jacobian rix are +l or - 1. The  main  disadvantage of this 
approach is  slower  training.  is a consequence of the  fact that this approach 
does not use  all of the  available info~at ion.  

The  structure and concept  presented by Jordan and 
ficantly from the precedin~ method,  using  a Jaco~ian of 

the ~ l ~ n t  forward ~ o d e l  instead of a real  plant's Jacobian or instead of the  signs of 
Jacobian derivatives of real  plants. The whole feedfo~ard control system  now  com- 
prises  two  neural  networks.  One  is a model of the p1 
with  the  help of the  first  network,  acts as a  controller. 
same as that of A 

~ e a ~ i n g  or modeling  proceeds  in  two  phases.  n  the  first  phase, a f o r w a ~ d   ~ o d e l  of 
a plant mapping  from  inpu U to outputs y is  l arned by  using the standard super- 
vised learning  algorithm, E . In the  second  phase,  the  inverse  model and the  for- 
ward  model are combined  d  identity  mapping  is  learned  across  the  composed 

ote that the  whole  learning  procedure  is  based on the  performance errors 
the  desired plant outputs yd and the actual outputs y .  

The  learner or controller (NNl) is  assumed to be able to obs 
outputs, and can therefore  model  the  inverse plant dynamics. 
terized by a many"to-one  mapping from the input to the outp 
number of possible  inverse  models. In their  paper, Jordan 
how  the  distal  teacher approach resolves  this  problem  of  finding  a particular solution. 
(~nfortunately, they  don't  give  details.) An important feattire of this app 
the feedfo~ard model of a plant (NN2) can be an approx~ate  model. 
of the per fo~ance  error e3 that ensures that 
of the plant even though the  forward  model  i 
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survey of the  basic  approaches to NN or FLM control, a few comments  concerning 
the  practical  aspects of NN implementation  may be in  order. 

In the  case  where  the plant is  nonlinear,  the standard approach is to combine  the 
general and the  specialized  learning  architectures.  This  method  combines  the advan- 
tages of both procedures.  A  possible  way to combine  these  two  approaches  is to first 
learn  (with  a  general  architecture)  the  approximated  behavior of the  plant.  After that, 
the  fine-tuning of the  network  in  the  opefating  region of the  system  should be done 
by specialized  traihing  (Psaltis,  Sideris, and Yamamura 1988). The advantage  is that 
a  general  learning  architecture  will  produce  a  better  set of initial  weights for special- 
ized  learning. In this  way,  one  will  be  able to cover  a  spacious  range of input space as 
well as make  specialized  learning  faster.  The  same approach is  used  in  the  ABC 
scheme,  discussed  in  the  next  section. In the  case of nonlinear  plants,  pretraining both 
the  controller  (NN1) and the  plant  model  (NN2)  is  essential.  After  this  pretraining 
step  the  on-line  ABC adaptatioi? can be started with  these  previously  learned  weights. 
In the  case of a  linear plant, this  pretraining  is not essential. 

Sometimes it may  be  useful to iritroduce  a  reference  model, too. This  step  is not 
crucial for an AB% approach, but an important result  with  a  reference  model  could 
be that fine-tuning of the control effort  is  possible.  This  will be  necessary for many 
real  systems  because  the actuators usually operate only  within  a  specific  range, and 
leaving  this  range  is  either not possible or can h a m  a  system’s  performance. 

~ckthrou~h Control 

NN-based control typically  uses  two  neural  networks, as shown  in  figure  7.6. The 
depiction of the  ABC  structure  with  two  networks  is  in  the  line  with  the  previous 
approaches, but it is  suggested later in  this  section that ABC can perform even better 
with  only  one NN and that there  is no need for NN1,  which  acts as an illverse of 
plant dynamics. 

The control loop structure  pictured  in  figure  7.6  comprises  NN2,  which  represeizts 
the (approximate) model of the plant, and NN1,  which  acts as a  controller.  NN1 
represents an approximate  inverse of N N z ,  that is,  of the plant model and not of the 
plant itself.  The  structure  shown  in  figure  7.6  is  a standard one  in  the  field of neuro- 
fuzzy  control. In this  respect,  the  ABC  structure  shown  in  the  figure  is iB line  with the 
basic  results and approaches of Psaltis,  Sideris, and Yamamura (1988),  Saerens and 
Soquet  (1991), Garcia and Morari (1982), Jordan (1993), Jordan and Rumelhart 
(1992), Hunt and Sbarbaro (1991), Narendra and Parthasarathy (1990),  Saerens, 
Renders, and Bersini  (1996), and Widrow and Walach  (1996). 

While it is  similar  in  appearance to other IVN-based control methods,  the  ABC 
approach has  a few distinctive  features that differentiate  it  from  them.  The  principal 
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Figure 7.6 
Neural networks-based adaptive  backthrough  control (ABC) scheme. 

C method is that, unlike other approaches, it does not use standard 
training errors (e.g., e3) as learning  signals for adapting controller (NNI) weights. 
Rather, the true desired  value yd (the signal that should be tracked,  the  reference 
signal)  is  used for the  training of NNl. In  this manner, the  desired  but  unk 
control signal ud results  from  the ~ a c ~ ~ a r ~  transfor~ation of the y d  t~rough 
The origin of the  name for this approach as lies  in  this  back- 
ward  step for the  calculation of ud. Thus, A C basically  repre S a younger (and 

ntly  more  direct and powerful)  relative of the  distal  teacher  idea of Jordan 
elhart (1992) and Jord approach of Saerens and Soquet 

Saerens,  Renders, a sides  using different error signals 
they  use  the  steepest  descent for opti~ization. 
, as long as the control problem  is  linear  in  parameters (linear depen- 

dence of the  cost  function  upon  weights),  the  recursive  least  squares ( 
learning  algorithm  is  strictly  used. S is a second  interesting feature of the 
approach. Note that in  many  cases, for both an NN-based and a fuzzy  logic  model- 
based  controller,  this  assumption about the  linear  in  parameters  model  is a realistic 
and acceptable  one.  This  is  typically  the  case when  the  hidden 

shapes of basis  functions or  embers ship functions  in 
cman and Pfeiffer  1994). 

depend on the  use  of  the RLS  technique.  The standard gradie 
learning  procedure can also be used.  RLS-based  learning  in  the 
behave  much  better on a quadratic error e than any  gradient-based  search 
procedure.  This  is another reason why the  algorithm  seems  more  promising 
than the  first-order E 
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aptive  inverse control (AIC), devised  by  Widrow  (1996),  the A 
ive as long as the  plant  is a stable  one. It solves  the  problem 

tracking and disturbance  rejection for any  stable plant. The  same  will  be  true  in the 
case of unstable  plants as long as the  unstable  plant  is  stabilized by  some  classic 
control method  first. It seems as though  the  rithm can handle  nonminimum 
phase  systems  more  easily than the  AIC.  is an adaptive control  system 
design  algorithm  in a discrete  domain, and as long as a suitable (not too small) 
sampling rate is  used,  there are no difficulties  with  discrete  zeros  outside  the unit 
circle.  The control structure in  figure 7.6 has  some of the  good  characteristics of an 

em  design  with a positive  internal  feedback that does not require 
2 to be a perfect  model of the plant (Tsypkin  1972).  The latter 
tructurally  equivalent to the  internal  model control (I 
t besides a structural resemblance  there  is  the  learning ( 

C system to behave di~erently (better). In addition, 
uses  fewer  weights than either  the AIC or  IMC 

approach. Also,  there is no d for the  explicit  design of first-order  filters that is  the 
typical  design ~ractice in (The reference  block  shown  in  figure '7.6 is not 
required,  unless  some  control of the actuator signal  variable U is  needed.  All  the 
results that follow  btained by using  ref(^) = l). 

The basic  idea o is to design an adaptive controller that acts as the inverse of 
the plant. In order to learn  the  characteristics of the plant and to adapt the  controller 
to the  plant's  changes,  the  neural  network that works as a controller  must be told 

ontrol value  should  be. In general,  this  value u d  is not available, 
approach, desired control values ud can be found that will  usually 

be  very  close to the  ideal  ones. 
During  the  operation of the  whole  system (the adaptation or learning of both the 

plant  model and the  controller  parameters)  there are several error signals that may  be 
used for adjusting  these  parameters.  As  in Jordan and Rumelhart (1992),  several 
errors are defined  in  table  7.1.  (If  the  reference  model  is  used,  the  value yd should be 
replaced  with  the output value of the  reference  model yref.) 

Table 7.1 
Definition  of Errors 

Controller  error et = iid - ii 
Prediction  error e2= y - 9  
Performance  error e3 = Y d  -Y 
Predicted  performance  error e4 = Y d  - 9  
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Other researchers  (Psaltis,  Sideris, and Yamamura 1988;  Widrow and Walach  1996; 
Saerens and Soquet  1991; Jordan and ~umelhart 1992)  use di~erent approaches 
in  order to find  the error signal  term that can be  used to train the  controller.  Psaltis 
et al. (1988)  make  use  of  the  performance error e3 modified  by the plant Jacobian to 
train the controller.  Saerens and Soquet  (1991)  use  a  similar approach when  using  the 
performance error e3, but unlike  Psaltis  et  al.,  they  multiply e3 by the  sign of the plant 
Jacobian only. Jordan and Rumelhart (1992),  in  their  distal  teacher  method,  differ 
appreciably  from  the  preceding  two  approaches  in  using  the Jacobian of the plant 
model and not the  one of the  real plant. They  discuss  the  application of three errors 
in  training  of  the plant model and controller. For plant forward  model  learning,  they 
use  the  prediction error e2 (which  is  the  usual  practice  in  identification  of  unknown 
systems), and for controller  learning,  they  propose  either  the  use of performance error 
e3 or predicted  performance error e4. 

In the  approaches  proposed by Widrow and his colleagues  (Widrow and Walach 
1996; performance error e3 for controller  training  is  used. As far as the  structure of 
the  whole control system  is  concerned,  they  use  different  structures  depending  upon 
whether  the plant is  a n o ~ n i m u m  phase and whether  there  is  a  need for noise 
canceling. The adaptive  neural  networks  in  Widrow’s approach are primarily of the 
FIR (finite  impulse  response)  filter  structure. In the ABC approach sented  here,  the 
IIR (infinite  impulse  response) structure is typically  used. 

The ABC structure  originated from the  preceding  structures  with  a few basic and 
important differences. The estimate of the  desired control signal ud can be calculated, 
and an error (delta) signal, as found  in  the  distal  teacher approach, is not needed. For 
ABC of linear  systems,  the  calculation of Ud is straightforward. 
N N 2  is  given as 

The forward  model 

(7.8) 

where n is  the  order of the model, N = 2n, and x2 is an input vector to NN2 com- 
posed  of present and previous  values of U and y .  For the  calculation of the  desired 
value Gd, this  equation  should be rearranged  with  respect to the input of the  neural 
network N N 2 :  
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Therefore, when  applied to the control of linear  systems,  the  calculation of the  con- 
trol signal ud  usin  (7.9)  is  similar to the  predictive (deadbeat) controller approach. In 

ion of the  best  estimates of the  desired  control  signal ~ d ( k )  to the plant 
, the  desired output values  of  the  system yd(k + l) ,  yd(k ) ,  . . . , yd(k  - n)  

are used. It is  interesting to note that instead of  using the  present and previous ~ e s i r e ~  
values,  one  can  use  the  present and previous actual ~Zunt   out~uts  y ( k ) ,  . . . , y ( k  - n). 
This  second  choice of variables  is a better  one.  (Kecman, VlaEiC, and 
give a detailed  analysis of various  controller  algorithms.) 

In the  case  of  nonlinear  systems control, the  calculation of the  desired control 
signal Ud that corresponds to the desired output from  the plant y,f is a much  more 
involved task. For b ono tonic nonlinearities  (for  one-to-one-mapping of plant inputs 
U into its outputs y ) ,  the  control  signal ud can be calculated by an iterutive algorithm 
that guarantees  the  finding of the  proper ud  for any  desired yd. 

This iterative ~ o n - l i ~ e )   ~ l ~ o r i t h ~  is the most i~portant  result  in the A 
WO other alte~ative approaches to the  calculation of the  desired 

basically  represents a gradient  search 
model as given  in (7.4) or (7.5). The 

j ( k  + l )  = f { y ( k ) ,  . . . 7 y (k  - n); u(k) ,  * ' 7 u(k - n)}.  (7.10) 

f the  function f of an identified plant model  is a monotone  increasing or decreasing 
one,  then  this NA model  represents a one-to-one  mapping of the  desired 

rol signal ud  (and corresponding  previous  values of U and y )  into the  desired y d .  

ow,  the  basic  idea  of an adaptive backthrough  calculation of u d  for any  given yd 
is  the  same as in  the  linear  case. ut unlike the linear  example,  where  the  solution is 
given  by (7.9), in  the  case of a ge rul nonlinear ~ o ~ e l ,  which  is  represented by NN2, 
it is  no  longer  possible to express Ud explicitly  refore,  the  solution  should be 
obtained by some  numerical  iterative  procedure.  the  use  of a standard gradient 
algorithm is proposed. 

~ ~ O ~ O S I T I O ~  In the  case of monotonic  nonlinearity,  it  is  always  possible to find  the 
desired  control  signal u d  to any  desired  degree of accuracy by  using a su~ciently 
sm~ZZ optimization  step of the  gradient  optimization  method. 

Proof A proof  follows  from  the standard properties of gradient  optimization  algo- 
aving NN2 as a NAR AX model  (7.10),  define  the  function 
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e(k) = y (k  + 1) -f = 0, (7.11) 

and the  problem to solve  is to find ud(k) for known yd(k + 1). Note that all  past 
values of y and U that appear in f are known, and the  objective  is to find  the root 
ud(k) of (7.1 1). This  one-dimensional  search  problem  is  solved by finding  the  mini- 
mum  of  the  function 

E = e(k>2. (7.12) 

Thus,  the  problem of finding  the root of the  nonlinear equation (7.11)  is  transformed 
into the  minimization  problem of equation (7.12).  In  this specific  case  of monotonic 
mapping f ,  the  “hypersurface” E is a convex  function  having a known  minimum 
E ( u ~ )  = 0. For a given yd(k + 1) and known  past  values of y and U ,  the root Ud rep- 
resents  the  mapping f” of the  known  point  from a 2n-dimensional  space into a one- 
dimensional  space !R2” ”+ %. For a monotonic  nonlinear  mapping 

f { Y ( k ) ,  ’ * ?Y(k - 4 ;  u(k) ,  ’ * * 7 u(k - 4 1 7  

the  solution ud is  unique and can be obtained by any  one-dimensional  search  tech- 
nique.  Here, a massive random search  is  combined  with a gradient  method.  (The 
solution  in  the  case of nonmonotonic  functions  is  the  subject of current research.) 

Figure  7.7  demonstrates  the  geometry of the  procedure for the  simplest  case of an 
NN representing an % ”+ Ctz mapping and having  two  neurons  with  Gaussian  acti- 
vation  function  only. The graphs on the  left of the  figure  show a convex  function 
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Figure 7.7 
Iterative  calculation of Ud with  a  gradient  method. Top, graphs show  the  shapes  of  the  cost  function. 
Bottom Zeft, monotonic  nonlinear  function. Bottom right, nonmonotonic  nonlinear  function. 
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E = e2 for a monotonic  nonlinear  function f ,  and the  graphs on the  right  show  the 
solutions for a nonmonotonic  nonlinear  mapping f .  The  mathematics  in  the  case 
of nonlinear  dynamic  systems  is  much  more  involved and without  great  hope for 
graphical  presentation. In the  case of the  lowest  (first)-order  dynamic  system,  graph- 
ical  representation  is  possible,  but  only  the  numerical part of the  backthrough  calcu- 
lation of ud is  given  here. 

For a first-order  dynamic  nonlinear  discrete  system,  the output j j  from a neural 
network NN2 can be calculated as follows: 

(7.13) 

where K denotes  the  number of HL neurons and the use  of the  circumflex  denotes 
that all  variables of  NN2 are estimates. c and CT denote  the  centers and standard 
deviations of the  Gaussian  activation  function. 

To find  the  estimate of the  desired control signal iid for a given  desired NN output 
yd, solve  the  following  nonlinear equation: 

(7.14) 

The  solution will  be found by minimizing  the  function E = e(k)2. A minimum E = 0 
will  be  achieved  by the  following  gradient  optimization  rule 

aE 
From the  chain  rule  for  the  expression - there  follows dG 

The derivative - follows as @ 
ac 

(7.15) 

(7.16) 

Before starting the  calculation of the root Ud using  this  gradient  procedure, a massive 
search for U that is  closest to the desired ud is  usually  useful.  Then  the  iterative  cal- 
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culation of U is  continued  until  the error is  below  some  prescribed  limit Emin. If  this 
error limit  is  reached, the calculated  value 6 is  equal to the  estimate of the  desired 
control signal 6d. 

This  iterative  method  works very  well for monotonic  nonlinearities.  If  the  function 
is not monotonic,  the  inverse  function  is  ambiguous  for  every yd, and for a  single 
desired output yd several  solutions for the  desired control signal ud  can be obtained. 
In such  a  case  this  method  will  always  find  one out of -many  possible  solutions, 
which  may not be the  best  solution.  Some additional assumptions, or some  con- 
straints on the character of the  solution for U d ,  can ensure  the  calculation of the  best 
control signal ud. One  possible  limitation  for  very  fast  processes  may be the  calcu- 
lations of u d  in  real t h e .  (The  method  may be a  time-consuming  one, and this  may 
be critical  because  the  value 2̂ ld has to be calculated  within  each iteration step.) Note, 
however, that there  is no danger of getting trapped at a  local ~ n i m u m  in  the  case 
of the n o ~ o n o t o n i c  nonlinear  function f ,  because it is  known that for the correct 
solution ud the error E must be equal to zero.  (Because of lack of space, no specifics 
details are given  here.  Instead,  the  performance of ABC will  be demonstrated  in  a 
number of examples.) 

One  of  the additional important features of ABC is that output layer  weights 
adaptation is  strictly  based on the RLS algorithm,  though  any other established NN 
learning  algorithm, for example,  first-order  gradient EBP, may  be  used. 

ABC uses  different error signals for forward  plant  model (NN2) learning and for 
controller adaptation (NN1). A prediction error e2 is  used for the  training of N N 2 ,  

and the  controller error el is  used for the adaptation of the  controller NNl. All  pre- 
vious ~ e t ~ o d s  do not use el in c o ~ b i n a t i ~ n  with a ~ o r w ~ r d  plant  ode^ during  learning 
at all. This  is an interesting  advantage, and it seems  a  powerful  novelty,  because  there 
is no  direct influence  of plant output disturbance on the  learning of controller  weights 
as in  the  distal  teacher  procedure  from Jordan and Rumelhart (1992).  Theoretically, 
it is  clear that in  linear  systems, for any  Gaussian  disturbance at the output (provided 
that one  has an infinitely  long  learning  time,  the  orders of the plant model and of the 
real  plant are equal, and the  training  signal U is  rich  enough and uncorrelated  with 
noise),  there will  be no influence from noise at all, and the  controller will  perfectly 
produce the desired u d .  

Let us  consider  the  performance of ABC for a nmber of different  systems. First, in  a 
linear third~order n o n ~ i n i ~ u ~  phase oscillatory  system it is  demonstrated that A 
in  the  linear  case,  when  the  orders of the plant and plant model (or emulator NN2) 
are the  same and without  noise,  results  in  perfect ~ d ~ p t i v e  poles-zeros canceling 
(example  7.1). In the presence of uncorrelated  noise,  perfect  canceling  will  be 
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Figure 7.8 
Perfect  poles-zeros  canceling  by ABC. Sampling  rate  was 2.25s. Plant model (emulator N N z )  was  of third 
order,  too.  The  resulting  controller (NNl) perfectly  cancels  the  poles  of  the  system. 

achieved  after  a  longer  training  time.  The  larger  the  noise,  the  longer  the  learning 
should  take.  Example  7.2  presents  the  capabilities of ABC  with ~ i s m a t c ~ e d  model 
orders of a plant and of an emulator NN2. Here,  the plant is a  seventh-order  linear 
system, and both NNs are second-order IIR filters.  Example  7.3  shows  the  results of 
ABC  in  a   ono tonic nonlinear~rst-order plant (one-to-one  mapping of the plant). 

le 7.1 Consider  the ABC  of a  third-order  nonminimum  phase  linear  system 
given  by the  transfer  function 

S - 0.5 
S 3  + S 2  + 5s + 4 '  G(s)  = 

The results are shown  in  figure  7.8.  Thus,  when  the  order of plant and NN model 
are equal,  the  ABC  ensures  perfect  canceling of the  system's  poles. 

 le 7.2 Consider  the ABC  of a  seventh-order  plant  using  a  second-order 
model  (NN2) and a controller ( N N ' l ) .  Both  networks are IIR filters. 

The  plant  is  a  stable  linear  system  without  zeros and with  poles at 
[--l, -2, --5? -8, -10,  -12, -15i. Plant gain Kplant = 0.5.  Additive output measure- 
ment  noise  during  training n2 = 5%. Note the  extremely  large errors at the  beginning 
of learning and very  good performance at the  end of learning  (fig.  7.9).  After  only  750 
learning  steps, A C  performs well. It tracks  desired yd with  a  settling  time - 2s 
(fig.  7.9, bottom graph). The  settling  time of a  seventh-order  plant i s  -7s.  Sampling 
rate is  1.75s. 
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Figure 7.9 
Top, desired  output yd, actual  plant  output y ,  and  error e3 = yd - y in  the  first 25 and  the  last 25 learn- 
ing  steps.  utt tu^, tracking of the  unit  step  input  signal  without a controller  (solid)  and  with a controller 
(dashed).  Noise y12 = 5%. 
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of training, and because  learning  indeed started from  the  scratch, 
repancies  between  the NN model and the  real plant output (fig. 

7.9, top graph). But  after  only  a few hundred  steps,  the  whole  system  has  adjusted, 
and shows  acceptable  behavior.  Thus,  when the order of the emulator is  lower than 
the  one of the actual plant (typical  real-life situation) the ABC  scheme  performs  well. 
It is  robust  with  respect to unmodeled plant dynamics as well as additive  measure- 
ment  noise. 

~ ~ ~ ~ ~ Z e  7.3 A  nonlinear  first-order  dynamic plant given  by the  following  difference 
equation is to be controlled by an ABC  structure: 

y(k  + 1 )  = O.ly(k) + tan(~(k)) 

0th neural  networks  were RBF networks  with 100, HL neurons  having  two- 
dirnensional  Gaussian  activation  functions  each. (It should be mentioned that ABC 
worked well with  networks  having  fewer HL neurons after optimi~ation by the 
orthogonal least  squares  method; see section 5.3.3). All  Gaussians  were  symmetri- 
cally  placed and had fixed  centers and width. In other words, HL weights  were not 
subjects of learning. 

During learning  only  the output layer  weights  were  changed. Retraining was done 
using 1,000 random  uniformly  distributed input signals yd. After  this  off-line  learning 
phase,  two  tests by previously  unseen ramp signals  were  done. In both simulations, 
the  hidden  layer  weights  were  not  subjects of learning. In the  first  sirnulation  (fig. 
7.10,  left graph) the OL weights  were  fixed, and in  the  second both networks  operated 
in  a  learning  mode by adapting the OL weights  (fig.  7.10,  right graph). The graphs  in 
figure  7.10  show that the  whole  ABC  structure can be  successfully trained  in  on-line 
mode as long as the plant surface 

.2 Test  with  fixed OL weights 

is  monotonic. 
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Figure 7.10 
Test  results  with  previously  unseen  ramp yd (left) without  on-line  training  and (right) with  on-line  training. 
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The top graph of  figure  7.11  shows that an NN is  a  good  model  of  this  nonlinear 
plant. There  is no big  difference  between the actual plant  surface and the  one  modeled 
by N N 2 .  Note that all  the  trajectories of the  controlled plant lie on this  surface.  The 
graphs  in  figure 7.1 1 are obtained by implementing  off-line  learning  first. For non- 
linear  systems  this  pretraining of both networks  is  necessary.  The  A 
two  networks  performs  well  when  faced  with  monotonic  nonlinear 

All  former  results  were  obtained  using an ABC structure  comprising  two  networks, 
as shown  in  figure  7.6.  This structure is  inherited from previous  approaches, and it is 
directly  related to classical  EBP  learning.  The  task of a  network N N 1 ,  which  acts as a 
controller,  is to learn  the  inverse  dynamics of the  controlled plant. Having  been 
properly  trained and after  receiving  the  desired  plant output signal y d ,  NN1 should be 
able to produce  the  best control signal ud that would  drive  the plant to output this 
desired y d .  However,  ABC  learning  is  different  from an EBP  algorithm. Note that in 
an ABC  algorithm  the  best control signal ud is  calculated  in  each  operating  step and 
is  used for the adaptation of an NNl's weights  so that this  controller can produce an 
output signal U, which  should be equal or very  close to the ud. Thus, there  is  a  great 
deal of redundancy, and it seems as though both the structure of the  whole control 
system and the  learning can be  halved. 

Having  calculated the signal U d ,  the controller  network NN1  is not needed  any 
longer.  An  ABC  structure  with  only  one NN that sim~taneously acts as a plant 
model and as a  controller  (inverse plant model)  is  shown  in  figure  7.12. 

The  performance of an ABC  scheme  with  one NN is  superior to the  structure 
comprising  two  networks as given in  figure  7.6. The redundant part of the  training 
and of the  utilization of NN1 is  avoided  here, and this  contributes to overall eE- 
ciency.  This  is  demonstrated  in  the  following  examples. 

Example  7.4  shows that for  time-invariant  plants an ABC perfectly"  tracks  any 
desired  signal, and that ABC can cope  with  nonlinear  time-variant  plants as well, 
which  is  one  of the  toughest  problems  in  the  control  field.  Example  7.5  shows  a 
series  of simulation  results of  ABC performance  while  controlling  nonlinear  plants 
described by n o ~ o n o t o n i c  mappings.  Both  examples use first-order  systems  only, 
for the  sake of the  graphical  visualization of the  results obtained. 

A  nonlinear  first-order  dynamic plant is to be controlled by an ABC 
scheme  comprising  one  network  only: 
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Figure 7.11 
Top, modeling of a  nonlinear  plant by NN2. ~ o t t o ~ ,  modeling of its inverse by N N l  , or controller. 
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Figure 7.1 
Neural  (or f m y )  network-based ABC scheme  with  one  network  that  simultaneously  acts  as  a  plant  model 
and  as  a  controller  (inverse  plant  model). 

A  neural  network that simultaneously  acts as a  plant  model and as its  controller 
comprises 39 neurons  in  a  hidden  layer.  Basis  functions  in  all HI, neurons  are  two- 
dimensional Caussians with  the  same  covariance  matrix = diag(0.2750,0.0833), 
with  positions  determined by an orthogonal least  squares  selection  procedure (Orr 
1996).  The  was  pretrained  using 1,000 data pairs. The training input signal  was  a 
uniformly  distributed random signal. (Note that the ABC control structure is much 
simpler than the  one  found  in Narendra and Parthasarathy (1990).  They  used  two 
NNs for identification and one as a  controller.  Each of their  networks  had 200 neu- 
rons. In the  off-line  training  phase  they  used  25,000  training  pairs.) 

After  the  training,  a  number of simulation  runs  showed  very  good  performance 
of the AI3C  scheme  while controlling  this ti~e-invariant n5nlinear system.  Figure 
7.13  (left graph) shows  the plant response  while  tracking input yd = sin(2nk/25) + 
sin(2nk/10). The plant response  is  indistinguishable  from the desired  trajectory.  One 
can say that the  tracking  is  perfect. 

A  much  more  complex  task  is  controlling  a t j~e -~ar ian t  nonZinear plant. There 
is no general  theory or method for the  adaptive control of nonlinear  time-variant 
plants.  These  are very tough control problems.  Here, the author presents  initial 
results  on  how an ABC  scheme  copes  with  such  plants  without  claiming to answer 
open  questions  in  this  field. In particular, problems of convergence or the  stability 
of  ABC  with  respect to a  nonlinear  time-variant plant are not  discussed. Rather 
some  light  is  cast on the  performance of  ABC under  these  conditions. (Note that the 
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Performance of the ABC scheme.  No  on-line  learning. 
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Figure 7.13 
ABC. Left, perfect  tracking  in  the  case of a  nonlinear  monotonic  tirne-invariant plant. Right, performance 
error  for fixed pretrained NN controlling  a  time-variant plant. (The  tirne-variant  plant is halving  its  gain 
every 500 steps.) 

problems of NN-based control of a time-variant  plant are rarely  discussed  in  the 
literature.) 

Figure  7.13  (right graph) shows  the error when a pretrained  but fixed NN tries to 
control a fast-changing plant as given  by 

This  is a model of a plant which  halves  plant  gain  in 500 steps.  Without  any adap- 
tation the  performance error e3 = y d  - y increases  rapidly  (fig.  7.13,  right graph). 

Figure  7.14  shows e3 in  the  case  of  the  on-line adaptation of a neural  network. 
Results are obtained by  using a forgetting factor A = 0.985. The adaptation and 
control process  is a stable  one, and in  comparison to the error in  figure  7.13,  the  final 
error in  figure  7.14  is  three  times  smaller. The process  is a “hairy” one, and this 
problem of smoothing the adaptation procedure  should be investigated  more  in  the 
future. (Readers who are familiar  with  the  identification of linear  systems  are well 
acquainted  with  the wild character of identification  procedures.  In  the  case of non- 
linear  system  identification,  one can only  expect  even  rougher  transients.) 

There are many  open  questions  in  the  adaptive  control of nonlinear  time-variant 
processes.  All important questions  from  linear  domains are present  here (dual char- 
acter of adaptive  controller,  identifiability,  persistency of escitation, and so on). One 
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Performance  error  while  controlling  a  time-variant  plant  with  an  on-line  adaptation  of  output  layer 

weights.  Forgetting  factor L = 0.985. The  scale  in  the  right  graph is the  same  as  in  figure 7.13, right  graph. 

specific  question  in  nonlinear  domains  is  the  choice of the input signals  for  the 
he standard binary  signals  used  in  linear  systems  identification are 

not good  enough.  During  pretraining  the  entire  region of a plant operation should be 
covered, and the  best  choice  would be the  use  of  uniformly dis t r i~~ted random sig- 
nals.  (Figures 7.15-7.17 (bottom graphs)  show  what parts of a  plant  d 
are properly  covered by  using three  different  desired  signals yd.) 
prevents  detailed  presentation  ese important details  here. Instead, a few more 
simulated  results are shown of controlling  a n o ~ o n o t o n i c  nonlinear plant. In 
this  way,  the  reader  will  be  able to understan at least  a part of the important 
erties and specific features of an NN-based G of nonlinear  dynamic  systems. 

C of the ~ o ~ i n e a r  dynamic plant given 

yk+l = sin(yk) sin(uk) - uk/n. (7.18) 

The  characteristic feature of this  plant  is that there  is  a o 
its  inverse, that is, uk = f" ( yk ,   yk+l )  is  a  nonmonotonic 
time,  the  function yk+l = f ( u k ,  y k )  represents  a  one-to-one 
optimized by  using a  feedforward orthogonal least  squares 
tions  in  all  neurons are two-dimensional Caussians with  the  same  covariance  matrix 

= diag(O.0735,O.  181 5 ) .  At  the  beginning  of the F selection,  there  were 169 
s y ~ e t r i ~ a l l y  placed  neurons  in  a  hidden  layer  (stars  in  fig.  7.18, top graph), and at 
the  end 4.7 centers  were  chosen (dots in fig.  7.18, top graph). Such  a  network  models 
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Desired  output yd, actual  plant  output y, and  error = yd - y 

445 

Figure 7.15 
ABC. Top, perfect  tracking of the  desired  signal y d  = sin(27tk/25) + sin(2nk/l0) for  a  tirne-invariant  plant 
given  in  (7.18).  Pretrained NN weights  are  fixed. No adaptation. Bottom, trajectory  shown by dots  lies  on 
the  surface  described by  (7.18). 
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Figwe 7.16 
ABC. Top, perfect  tracking of the  desired  rectangular signal for  a ti~e-invariant plant given  in  (7.18). 
Pretrained N-N weights  are  fixed. No adaptation. ~ o t t o ~ ,  Trajectory  shown by dots lies on the  surface 
described  by  (7.18). 
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Figure 7.17 
ABC. Top, perfect  tracking  of  a  desired  ramp  signal [-2,2] for  a ti~e-invariant plant given  in (7.18). Pre- 
trained NN weights are fixed. No adaptation. Control signal  (dashed  curve). Bottom, trajectory shown by 
dots lies on, or "sneaks thro~gh,~'  the  surface  described by (7.18). 
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the plant very  well  (fig.  7.18, bottom graph). Note that this structure corresponds to 
the  fuzzy  logic  model  with a rule  basis  comprising 47 rules. 

Note the wild  dynamics  of the control signal ud in  the  nonmonotonic part of a 
nonlinear  surface.  This  is a consequence of the  unconstrained  iterative  design  algo- 
rithm, as given  by  (7.13)-(7.17) and shown  in  figure  7.7 (right graph). Simply,  with- 
out any constraint, the  algorithm uses  one out of the  two  possible  control  signals ud. 

his  results  in  perfect  tracking  but  with a wild actuator signal ud.  t is  relatively  easy 
to smooth  this  control  signal U& by imposing constraints on its  behavior. 
two or more  solution  control  signals ud, the  simplest to choose  is  the  one that is 
closest to the  previous actuator signal U. 

The  objective of this  section is to give a brief  introduction to the  application of NNs 
in  forecasting  share  market or any other (weather,  biomedical,  engineering,  financial) 

ed, and a (more or le  successful  application 
stock  exchange (NZ ) indices  is  presented. 

One of the  strengths of that has  been ident~ed is tha 
approximate  any  nonli ny desired  degree of accuracy. 
the  basic  question  when  applying  these  odeling  tools to financial  time  series is 
whether  there  is  any  dependency at all. e share market behaves  wildly; it cycles 
from  coherence to chaotic  activity  in an unpredictable manner. Experts  disagree 
about the  fundamental  phenomena  in  the  share market. Some  economists  sa 
are no dependencies at all  because  the  financial  market  has  random  behavior. 
say  the  financial  market  shows  definite patterns and these patterns can be  exploited to 
generate excess  profits, although this  may  take  considerable  experience to achieve. 

Such  questions are not considered  here. ather, the  objective is to use  recorded 
stock  market data to find  whether  there are any  functional  relations  in a financial 
market. Although  is approach may  seem to be a “brute force”  methodology,  there 
has  been an upsur of interest  in new promising  techniques for forecasting  in  recent 
years,  This  was e possible by the  arrival of fast  powerful  computers as well as 
new nonlinear tec~iques of learning  from data. 
fessionals  have  tried to extract  nonlinear  relation 
develop  profitable strategies~ 
to the  weak  efficient  market 
entirely  on  the  results of a 
market prediction as given  by Shah  (1998). 
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Table 7.2 
Some Factors Mecting the Perfommce of the  Share  Market 

Economic  Factors  Seasonal  Factors  Miscellaneous  Factors 

Population  growth 
Balance  of trade 
Government  policy 
Budget  policy 
Credit  policy 
Import  controls 
Wage  settlements 
Interest  rates 
International  conditions 

Tax  payments 
Budget  time 
Annual  reports 

Market  sentiment 
Industry  trading 
Company  expectations 
Take-overs 
New flotations 
Company  failures 
Mineral  discoveries 
Financial  advisers 
Media 

Sell Here I 
2600 

2500 

2400 

2300 

2200 

Figure 7.19 
Optimal  buy  and  sell  times  for  NZSE-40  from  January  to  October 1997. 

The  seemingly random character of share market time  series  is  due to many  factors 
that influence  share  prices.  Some  relevant factors are shown  in  table 7.2. Financial 
market modeling  is  a d i ~ c u l t  task because of the  ever-changing  dynamics of the 
fundamental  driving  factors.  Because of many  different and partly  uncontrollable 
factors,  a  typical  financial  time  series  has  a  noisy  appearance  (see  fig.  '7.19).  There  is 
evidence to suggest that financial  markets  behave  like  complex  systems  in  the  sense 
that they are partly random and partly ordered. Random systems  are chaotic and 
unpredictable,  whereas  ordered  mathematical  rules and models  are  capable of cap- 
turing  ordered  systems.  The  discussion  here  exploits  this  ordered part of a  share 
market. 
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There  is a simple  idea and a law  of  survival for all participants in  share market 
trades that can be reduced to ‘‘Buy  low and sell high.”  These  two  significant trading 
points for NZSE-40 are given in  figure  7.19.  However,  the  basic  problem for any 
stockbroker  in  achieving  the  goal of buying  low and selling  high  is to predict or 
forecast  these  significant  points.  Stockbrokers are faced  with  the  problem of investing 
funds for clients so that the return from  the  investment  is  maximized  while  the  risk 
is  kept to a minimum.  Usually an increase  in  risk  means  higher  returns, and often 
clients are only  prepared to gamble  with a risk that they  can  afford to lose. 

There  are  two  basic  approaches to share  market  prediction, to the  forecasting of 
the  two  significant  points:  fundamental  analysis and experimentation. Fundamental 
analysis  is  the  basic  tool for economists  in  valuing  assets.  In  this approach, the mar- 
ket  is  assumed to be an ordered  system, and each  company  is  characterized by its 
fundamental  factors,  such  as  the  company’s  strategic  plan, new products,  antici- 
pated gain,  long- and short-term optimism, to determine  share  value  compared to its 
market price.  Accounting ratios and the  latest  measures of earnings to show  the 
company’s  value  have  become  fundamental  factors  in  this  analysis.  However,  this 
approach often  leads to different  conclusions by different  economists,  pointing  up  the 
uncertainties  in  the arbitrary measures  used as the  basis of this approach. 

A more  complex and arguably  more powerfd approach in  valuing  assets  is  the 
experimental  (technical)  one,  in  which  statistical and other  expert  systems  such  as 
NNs, SVMs, and fwzy logic  inference  systems are involved.  This approach uses  his- 
torical data or expert  knowledge to make  predictions. 

To represent a dynamic  system (and time  series  belong to this  class), a NARMAX 
model  is  used  (see  section  7.1). A financial  time  series  is  represented by the  following 
NARMAX model: 

(7.19) 

where Y k  and Uk are  the input and the output signals at instant k, and yk- i  and UlC-j, 

i = 1,. . . , H ,  j = l ,  . . ,m, represent  the  past  values of these  signals.  The  basic input 
and output signals are used  here to model  NZSE-40. 

The  nonlinear  function f from (’7.20) is  very  complex and generally  unknown.  The 
whole  idea  in  the  application of the RBF NNs is to try to approximate f by  using 
known  Gaussian  functions.  The  graphical  representation of any  time  series  identifi- 
cation is  given in  figure  7.2.  Here  the  series-parallel  scheme  (7.19),  or  (7.20)  is  applied. 
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Figure 7.20 
Wuhite  noise input  signal U and  second-order  linear  plant  output  response y with 5% noise. 

Before a nonlinear NZSE-40 time  series  is  modeled,  let  us  consider  the  perfor- 
mance of an  RBF network  in  modeling and predicting  the  behavior of a linear  sec- 
ond-order  system that is known to us but not to the RBF network. The unknown 
dependency  between  the input and the output is  given  by the  transfer  function 

2s + 1 
3x2 + 2s + 1 * 

G(s) I= 
b 

This  transfer  function  can be represented  in a discrete-time  domain  (sampling  time  is 
2s) as 

0.9921.~"' - 0.3318~-~ 
G(2) I= 1 - 0.6033~"~ + 0.2636~-~ * 

This  z-transfer  function can be rewritten as the ~ z ~ e r e ~ c e  equation (ARMA model)3 

The input signal to this plant is a white  noise and output response is polluted  with 
0th signals  are  shown  in  figure 7.20. They are the  only i n f o ~ a t i o n  for 
work about the  process.  Using  these  two data sets,  the RBF network  is 

to model  the  unknown  system  dynamics and predict  the  response to the  previously 
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Figure 7.21 
Identification  and  prediction of a  second-order  linear  plant  response by using  an RBF model  with an 
orthogonal  least  squares  selection  method  and  genetic  algorithm  parameter  optimization. 

unseen input. During  learning,  the HL weights  were  fixed, and two  techniques for 
RBF subset  selection  were  used: orthogonal least  squares  (OLS) and a genetic  algo- 
rithm (GA). Note that the difference equation represents an $l4 "+ $l1 mapping.  This 
means that the  Gaussian  basis  functions are four-dimensional  bells. 

The  result of a prediction  is  shown  in  figure  7.21, and it illustrates  the  good  iden- 
tification  capabilities of an RBF network  trained by both OLS and GA, Here,  the 
GA optimization  resulted  from  only 25 Gaussian  basis  functions for a test error of 
0.2035,  whereas  the  OLS  method  used 60 Gaussian  basis  functions for a test error of 
0.1992.  Computing  time on a Pentium 233 MHz PC for a GA optimization  was 421 
seconds, and the  OLS  method  took 334 seconds. 

Figure  7.21  shows that both the  OLS and CA subset  selections  almost  perfectly 
model  the  unknown plant. Having  fewer RBF bells  in  the  network  decreases both the 
connplelrity  of  the network and the  training  time.  However,  the  computing  time  may 
still  cause  difficulties  in  modeling  real-time  series that typically contain large data 
sets.  This  is  always  the  case  when  modeling  financial  time  series. 

Note that an  RBF network  (which  is a nonlinear  modeling tool) was  used for 
modeling a linear  system  here. Had a single  linear  neuron  like  the  one  shown  in  figure 
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3.18  been applied for modeling  this  linear  second-order plant, the  training  would 
have  been  much  faster and a better  model  wuuld  have  been obtained. However, the 

F network  did not know that the actual plant dynamics  were  linear, and figure 
7.21  shows that the  nonlinear R F network  can also successfully  model  linear 
dynamic  dependencies. 

Let us go  back to the  world of NNs and SVMs-to the  modeling and forecasting 
of nonlinear  dependencies.  ere,  in  modeling a financial  time  series, it seems  likely 
that there  is an underlying ( nlinear)  function and that the R ~ F  network can grasp 
this  dependency. 

To provide a co~~prehensi~e measurement of price  trends  for  all  equity  securities 
listed  on  the market, the NZSE gross and capital indices  were  developed  in  1986. The 
indices  had a base  value  of 1000 on July l ,  1986, and included  all  New  Zealand  listed 
and quoted  ordinary  shares,  NZSE-40,  which  covers 40  of the  largest and most  liquid 
stocks  listed and quoted, weighted  by  the  number of securities on issue,  is  the  main 
public  market  index. (The NZSE-10  index  comprises  selected  securities of the top 
ten  companies and is  used as the  basis  for  the NZSE-l0 Capital Share  Price  Index 
Futures Contract offered  by  the  New Zealand Futures and Options  Exchange.  This 
index  reflects  the  movem  of  prices  in  the  selected  securities and accounts for the 
majority of the turnover. er  indices  monitored by the  NZSE  are  the  NZSE-30 and 
the NZ~E-SCI for smaller  companies.  ere  the  objective  is to model and predict  the 
NZSE-40  index.) 

The  share  market  index  is a good  example of a time  series  system that is  difficult to 
predict.  The  factors  affecting  the  market  are  many  (see  table  7.2), and model 
these  factors at once  is  well out of  reach  for  even  today's  supercomputers. 
there  is a need to select  the  most  relevant  factors for a given  time  series. This  is 
(possibly)  the  most important preprocessing part and relies  heavily on expert  knowl- 
edge. In this  section,  the  most i ~ u e n t i a l  factors that affect  the  New Zealand  share 
market are used to create a model of the capital NZSE-40  indices. 

F networks  are  capable of creating  models of a system  from  the 
given inputs and outputs. However,  the  network  model  is  only as good as the  training 
it  goes through. Therefore, it is  extremely important to select  suitable  training data 
carefully.  Ideally,  the  greater  the  numb of inputs or share market factors  included, 
the  more  complete  the  model  becomes.  owever, an increase  in  the  number of inputs 
leads to an  ex~onential increase in model  complexity.  Since it is  impossible to  do the 
required  complex computatiQns even  with  the  most  powerful  computers,  the  number 
of inputs relative to the  number of training data is  very  much  restricted.  Only the 
essential  factors are used as training inputs and the h a 1  share market indices as 
outputs during  training of the  share  market  models. 
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The  factors thought by fund  managers at 
ank to be most  influential to the New Zealand  share market, including  the  NZSE- 

40 indices,  in  order of merit are 

a1 NZSE-40 data 
S financial  markets 

3. Currency  movements 
4.  Economic  activity 

The past perfo~ance, or the  history, of the NZS~-40 index  is important in  under- 
standing and predicting  future  indices.  This  is  the  autoregressive part in  (7.20). 
Because  of the size  of the  NZSE  relative to other leading  financial  markets of the 

SE  is  very  much  dependent  on  overseas  share market ~ o v e ~ e n t s .  The 
ets  modeled by Shah  (1998)  are  the U.S. S&P 500 and the 
r relations~ps to the NZSE-40 are illustrated in figure '7.22. 

ple,  shows  the  strongest  correlation  between  NZSE-40 and Australian 

omic  stability  the  currency  movement  in New 
nk.  The  exchange rate influences  the trading range of the 

hich  is  adjusted to match  increasing or decreasing  interest 
ghted  Index ~ T ~ I )  and the  New  Zealand to ~ n i t e d  States 
e are also  used as inputs for modeling and representing  the 

currency  movements  within and outside of  New Zealand. Past relations~ps between 
the  NZSE-40 and TWI and NZ-US exchange  rates  are  also  presented  in  figure  7.22. 

Economic  activity  is  measured by Gross  Domestic Product (GDP), whi 
value of all  products  produced  in  the  country  during a year, as well as the 90 
Rate and 10-Year  ond Rate. A short-term view of interest  rates  is given  by the 90- 
Day Rate, whereas  the  10-Year Rate gives a longer-term view. The  model  for  the 
NZSE-40  indices  here  uses  the 90- ay Rate and the 10-Year ate because  the G 

ed  only  every thre onths.  The  relationships  between  the  NZSE-40 and the 
Rate and 10-Yea  tes are also  shown  in  figure  7.22. 

The network  model inputs are some  more  or  less astute selection and combination 
of the  factors  discussed,  because  modeling of the  NZSE-40  indices is experimental, 
that is,  from  the  recorded data. It is not known  in  advance  which factor is  actually 
the  most  influential,  and it is  merely  the  performance of different  models that can 
provide  evidence  of  any  existing  level  of  dependency.  Predictions  obtained  by  models 
with  different  network  structures or complexity are used to explore  this  unknown 
domain  bridging  the gap between  reality and speculation. 
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Figure 7.22 
Relationships  between NZSE-40 stock  indices  and  other  factors  affecting  the  New  Zealand  share  market. 

A general  structure of an  RBF network for an NZSE-40 prediction  is  shown  in 
figure 7.23. Both data preprocessing and features  extraction are important parts 
of any NN modeling. To improve  the  success and enhance  the RBF network  model 
of the  share market, preprocessing  is  employed on the raw data. Leaving  aside a 
detailed  description of this  preprocessing  stage,  one  can state that the  best  results are 
obtained when a good  compromise  is  made  between 

1. The  number of factors as inputs to the  model (order of the  model) 
2. The size  of  the training data 
3. The  number of  basis  functions  for  approximation 
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Figure 7.23 
A typical RBF network  for  forecasting  NZSE-40  indices  with  multiple  inputs, N Gaussian  bells  in  the 
hidden  layer,  and k outputs.  Hidden  layer  weights  are  centers  and  covariance  matrices  that  are  fixed. 
Output  layer weights W are  subjects  of  learning. Not all  connections  are  shown. 

All  these  factors  are  used  in  simple  autoregressive  models and more  complex,  higher- 
order ARMA models by Shah (1998); only  some  of the  results  are  shown  here.  The 
first  simulation attempts were  performed  by  applying  the  simplest  second- and third- 
order  autoregression  models.  These  models  assume that the  system  is  dependent  only 
on itself;  in other words,  they  use  only  the  autoregressive part of the input vector. The 
models are given as 

where y in  this  case  is  the  NZSE-40  index.  The  order of the  system n is  the  number of 
previous NZSE-40 values  used as inputs for the RBF network. 

The  two  stages of modeling,  namely,  the  training and the  testing  phase,  are  shown 
in  figure  7.24. In the  training  stage, the recorded  previous  values of NZSE-40 and the 
selected  inputs  form  the input vector to the RBF model. In the  test or prediction 
phase,  the input vector  is  formed of the  previous  values of  selected inputs and the 
previous  values of the actual NN predicted output j .  
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Figure 7.24 
Typical RBF network  structures  for NZSE-40 index  forecasting  in  a (top) training  phase  and (bottom) a 
test  or  prediction  phase. 
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It is hard to believe that simple,  low-order  autoregressive  models  can  satisfactorily 
predict the NZSE-40  index.  Indeed,  the  autoregressive  modeling of only  NZSE-40 
capital indices  did not give  good  results  but at least  provided a starting point for the 
many  models and simulations  performed by Shah  (1998).  The  results  from  the  second- 
and third-order autore~ression models  show that the RBF network  is  incomplete and 
needs other share  market  factors to be included  in  the  model  in  order to satisfactorily 
model  the  NZSE-40  indices.  However,  there  is  enough correlation, even  though  the 
test  results  were  poor, to encourage continuation of the  search for an NZSE-40 
model that can  predict  future  indices  more  accurately or at least  indicate  any  major 
trends that may  lie ahead. 

Results  from  two of Shah’s  reasonably  good  models  follow. 

0 Many  complex  higher-order 
models  were  designed.  As  mentioned,  share market indices  such as the S&P 500, the 
Australian All-Ords, TWI, NZ-US exchange rates, 90-Day Rate, and 10-Year Rate 
were  considered to be the  factors  influencing  share  prices and share  market  indices. 
The  fundamental and statistical  analysis of these  relationships  is  difficult,  but RBF 
network  modeling  has  the  capability to extract  relevant information in  creating a 
model of the  NZSE-40  indices  using  these  factors. 

Because  of the  experimental nature of these  models, a structured  search  was  per- 
formed,  with  the  overseas  share  market  indices  modeled  first and the  New Zealand 
currency  movements  next.  Past  economic trends were  also  modeled  using the 90-Day 
Rate and 10-Year Rate to find  any  dependencies  between  economic  stability and the 
NZSE-40  index.  Although  these  basic  models  may  seem  trivial,  the  extraction  of 
relevant  information  from  individual  share  market  factors  is  the key to a successful 
final  model.  As  emphasized  earlier,  it is always  difficult to calculate how  much and in 
what  way a factor affects  the  final  share  market  index, but NNs, including RBF 
networks,  have  the  capability to solve  this  formidable task. 

The  objective of modeling  different  share market factors  is to find  the  main factors 
in  some  order of merit  based  on  model  performance. A number of simulations were 
carried out, and the  models  presented  here  performed  the  best. 

The  TWI  values were  modeled  in relation to the  NZSE-40  index.  Two  previous 
TWI  values,  together  with  two  previous  values of the  NZSE-40  index  formed  the 
network’s input vector.  Thus,  the  model  is of the fourth order and is  given as the 
following NARMA model: 
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NZSE-40 A 20-day  forecast 
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Fourth-order  NARMA RBF network  model of NZSE-40  indices  using  delayed  values of NZSE-40  index 
and TWI. Graph shows a 20-day  forecast. 

Six hundred  training data pairs  containing 600 days'  records 
T 

( [ Y k - l ,  Yk-27 Uk-l 9 Uk-21 7 Y k )  

were  used during  the  training.  Initially, at each  second  training data pair, five four- 
sian  bells  with  different  covariance  matrices  were  placed.  This 
S selection  procedure started with  1,500 ~aussian bells. At the  end 

were  selected.  The  learning  stage  tools l hour 

After  training, 50 selected ~aussian bells  produced an ap~roximation to NZS 
with an error of 0.0587, which  compared to previous  models is small. 
test  on  training data gave an error of 1 l 14.5 and this is regarded as p 
nificant  difference can be attrib~ted to the  length of the  test as well as to ove~tting of 
training data, Close  fitting of training data during  learning can cause  small  variances 
from  the actual values to lead to an inaccurate  result.  the  other hand, this  model 
gave a much  better  forecast than other models.  The  cast for the  next 20 days, 
inclu~ing the actual N -40 capital indices, is shown  in  figure 7.25. As marked by 
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the  arrows,  the  upward  trend  on  day 14  was  predicted  a  day  earlier,  exhibiting  the 
good  prediction  ability of an RBF network. 

In  the  previous  model,  the  modeling or mapping  is  incomplete  because  only  one 
factor (TWI) was  used as a  delayed input together  with  the  autoregressive  inputs of 
the  NZSE-40 capital index.  As  mentioned  earlier,  the  NZSE-40  index  is  affected by a 
number of factors,  but  modeling  all  these  factors  in  one  model  is  almost  impossible. 
Not all  the  factors are known, and most cannot be measured,  such as market senti- 
ment and political  unrest.  The  next RBF network  combines  more  factors to model 
the  NZSE-40 capital index. 

A  higher-dimensional  model  with five factors as inputs and the  NZSE-40  index as 
an output was  created  using  a  sixth-order RBF model. In this  model, uov, which  is the 
average  overseas  share market index  of  the S&P 500 and All-Ords,  plus  the NZ-US 
exchange rate and the  90-Day Rate and 10-Year Rate were  used to model  the  NZSE- 
40 capital index. As with  the  average  overseas  share market index,  the  90-Day  Bill 
Rate and the  10-Year  Bond Rate formed  a  single input into the  network by taking 
the  average of the  two  rates: 

90daybill-t 1  Oyearbond 
2 

f,p = 

The  model  used  two  delayed inputs each of the  NZSE-40  index and uov and one input 
each of the NZ-US exchange rate unzus and urt to form  the  six-dimensional input 
vector to the RBF network that should  represent  the  following  nonlinear  function: 

Training of this  model  was  carried out with  725  sets  of input and output data repre- 
senting  the  period  between  beginning of  1992 to middle of April 1995.  Test data are 
for the  period just after  training to mid-May  1995.  Thus, 725 training data pairs 
containing  the  records 

were  used during  learning. Seven  six-dimensional  Gaussian  basis  functions  were  ini- 
tially  placed at every  third  training data pair, giving  a total of  1,687  bases for OLS 
selection.  All  Gaussian  basis  functions  had standard shape  factors  in  the  range  from 
0.5 to 30 Aci, where Aci denotes  the  average  distance  between  the data in  each 
direction.  This  defines  the  covariance  matrices.  Therefore, standard covariances that 
use factor 30 give  very  wide Gaussian  bells  with  a  high  degree of overlapping.  This 
ensures adequate covering of any  hyperspace or high-dimensional input space,  such 
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Figure 7.26 
Forecasting  results of NZSE-40  indices.  The  RBF  network  is  a  sixth-order NARMA model  that  uses  two 
delayed  NZSE-40  indices,  two  delayed  average  overseas  share  market  indices,  the  NZ-US  exchange rate, 
and  the  average of the  90-Day  Rate  and  10-Year  Rates as inputs.  Graph  shows a 33-day  forecast. 

as in  this  six-input  model.  Wide  Gaussian  bells  are  required to provide  satisfactorily 
smooth output mapping. At the  end of the OLS learning, 100 Gaussian  bells  were 
selected.  The  learning  took 9 hours and 21 minutes  on a Pentium 233 M 
the  huge  increase  in  computing  time  with  respect to the  previous  case. 

This  model  gave a much  better  forecast than other  models.  The  forecast for the 
next 33 days,  including  the actual NZSE-40 capital indices,  is  shown  in  figure 7.26. 
The dotted line  shows  good  trend anticipation even  though  the  extent of a reciation 
or depreciation of the  NZSE-40  index  was not always  perfectly  modeled. 
trends are captured  here,  but  any  improvement  in  the  model  during  training  would 
enhance  the  performance of this  forecast.  Utilizing  this  forecast, an investor  should 
buy  in the  first few days and sell after 20 days to extract  reasonable  returns  in a short 
time. 
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any  other  models  did not perform  very  well.  Such  weaknesses are mainly attrib- 
utable to the  lack of training data. nly  765 data sets  were available for the  model- 
ing. A lot  more data are  required  for  mapping  such  a  high-dimensional  hypersurface. 

hile  the  findings  in  this  section are promising,  it cannot be claimed that this 
approach would be  successful in  general. For simplicity,  the  models  focused  on 
NZSE-40 and its  factors  between  1990 and 1997,  using OLS and CA for  basis  selec- 

iven  enough  computer  capacity and time, a host of other strategies  can be 
applied to these  models to improve  their  performance,  such as other identifiers  in 
extraction of features  from  share market factors  used by fund  managers. 

owever,  there  is  still  reason to be cautiously  optimistic about the  heuristic 
ted  here,  with a number of promising  findings and directions  for future research. 

Perhaps  the  most attractive result  from  the  models  is  trend anticipation. 
demonstrated  reliable  anticipation of upward and downward  trend  movement, even 
though  the  magnitude of  these  changes  was not well emphasi~ed. Therefore,  the 
predictions  must be looked at  ~ualitatively rather than quantitatively. 

er lies 

Fundamental advances  in computational power and new techniques of learning  from 
examples  have  made  possible  the  wide  application of NNs’ approximation  power 
in  the  computer  graphics domain. NNs can be applied  successfully  in  the  fields  of 
computer  graphics,  vision, and animation. The  basic  idea  in  utilizing NN models for 
these  tasks is to replace  the  tedious  drawing of many  similar  pictures  with  approxi- 
mations  between  training  frames.  Such an application  in  graphics  is  also  known as 

oggio and Cirosi 1993).  This  section  presents part of the  results from 
particular, it  describes  how an RBF network can perfom morphing 

tasks  (between  the  human,  horse,  tiger, and monkey  facial  masks) as well as human 
figure animation and human  facial  expression and pose ~ynthesis.~ In addition, the 

F networks  for  synthesizing  technical  (e.g.,  mechanical and archi- 
tectural) drawings  is  described. 

Let us  consider a simple  example of in-betweening to clarify  the  whole  proce- 
dure for motion  synthesis  using an RBF neural  network. In figure  7.27  one triangle 
is  placed  between  two  rectangles, and the  three  shapes are taken as training  pic- 
tures.  The NN should  draw as many  pictures as needed  between  these  three 
training  frames.  This  is a classical  approximation task. Each  shape  is  defined by four 
feature  points that define  the  shapes  marked  with  circles. For the computational 
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Figure 7.27 
Training  and  test  feature  points  for  a  simple  one-dimensional  in-betweening. 

i~plementation, the  first point is  repeated as the last one,  which  results  in five feature 
points. 

The one-dimensional input learning  domain  is  set to be I = [0, 11, and the  three 
shapes are placed at Z = [0,0.5, l], as shown  in  figure  7.27. The RBF network  has  one 
input I, three HL neurons  placed at the  three  training data vectors, and ten output 
neurons  corresponding to the (x, y )  coordinates of the five feature points‘ 

Training patterns D in  matrix  form and the  design  matrix G are as follows: 

x1 Yl  x2 y2 x3 y3 x4 y4 -765 y5 

5 0 6 0 5.5 0.5 5.5 0.5 
10 0 11 0 l1 1  10  1 

0 0 1 0 1   1 0 1  left  rectangle 

1 .OOOO 0.9460 0.8007 
0.9460 1.0000 0.9460 . 
0.8007 0.9460 1 .OOOO 1 

At the  learning  stage, the RBF network  weights are learned  (calculated)  from  these 
three  examples  in  the data matrix.  Thus,  the  weights  matrix W is  obtained by multi- 

y the  pseudoinverse of G (here,  the  matrix G is  square,  i.e., G’ = G”*) and 

-0.66 0 4.23 0 46.99  47.66  -43.43  47.66  -0.66 0 
-41.23 0 -49.47 0 -130.89  -89.66  40.19  -89.66  -41.23 0 

49.53 0 54.41 0 97.18  47.66  6.76  47.66  49.53 0 1 
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Figure 7.28 
RBF network-generated  results  with  three  training  and six in-between  pictures. 

At  the  synthesis  stage,  this  weights  matrix  is  used to generate as many  as  needed 
in-betweens  from a newly  assigned input vector.  Thus, for example, if a new input 
vector is 

new = [0 0.1250  0.2500  0.3750 0.5000 0.6250  0.7500  0.8750 l.OOOO] 

nine  figures  are obtained. Note that three out of  these  nine  graphs  should be the 
training  frames  because 0, 0.5, and 1 are part of the new input vector.  This new input 
vector  results  in  the R F network output vector 0, which  contains  the  coordinates of 
the  nine  in-between  shapes as follows: 

- 
0.0000 0 1.0000 0 1.0000 1.0000 
1.1630 0 2.1634 0 1.9512 0.7882 
2.3991 0 3.3993 0 3.0294 0.6304 
3.6861 0 4.6862 0 4.2191 0.5329 

0 = 5.0000 0 6.0000 0 5.5000 0.5000 
6.3147 0 7.3148 0 6.8477  0.5329 
7.6038 0 8.6040 0 8.2341  0.6304 
8.8406 0 9.8410 0 9.6289  0.7882 

10,0000 0 11.0000 0 11.0000  1.0000 

The  resulting  graphs  are  shown  in  figure  7.28. 

0 .oooo 
1.3752 
2.7690 
4.1533 
5.5000 
6.7819 
7.9737 
9.0528 

10.0000 

1 .oooo 
0.7882 
0.6304 
0.5329 
0.5000 
0.5329 
0.6304 
0.7882 
1 .oooo 

0.0000 
l. 1630 
2.3991 
3.6861 
5 .OOOO 
6.3147 
7.6038 
8.8406 

10.0000 

Next,  consider  the  application of NNs to morphing  tasks.  Here,  also,  the  inputs to 
the NN are the  vectorized  image  representation.  With  this  technique,  information 
about the  shape of an. object  is  represented as a set of feature  points that are identified 
in  each  training  picture.  This  identification  can be done  manually or automatically. 
The  vectorized  representation  is an ordered  vector of image  measurements, that is, 
the feature points  have  been  enumerated 01,02,  . . . , ON and the  vector  representation 
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Figure 7.29 
Feature  detection of  horse  facial  mask.  The  circles  denote  feature  points. 

first  contains  measurements  from 01) then 02 ,  and so on. The  measurements of a 
feature include  its (x, y )  location,  which  defines  the  shape.  The key part of this 
vectorized  representation  is that the  features 01 , 0 2 ,  . . . , ON are effectively  identified 
across  all  training  pictures  being  vectorized. 

Figure  7.29  shows  a  horse  facial  mask,  where 1 12 points are taken as feature 
points to represent  the  horse  facial  shape.  These feature points are the  impor- 
tant points  in  the  mask,  including  eye,  nose, mouth, ear, and base  shape.  Given 
the  locations of features 01,02,  . . . , ON, the  shape  is  represented by the  vector o 
of length 2N consisting of the  concatenation of x and y coordinate  values as follows: 
0 = [x1 Yl x2 y2 * * * X N  Y N I T .  

im~nsional Morphing 

The simplest  use  of the  technique  is to morph  between  two  pictures or shapes.  This  is 
one-dimensional approximation in  the  sense that there  is  only  one  input-which  can 
be thought of as degree of morph-that  controls  the  relative contribution of  merely 
two  training  pictures.  Thus,  the  approximation  network  has  in  this  case  only  one 
input and is  trained  using  only  two  examples. 
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Figure 7.30 
Manually  detected  feature  points  (circles)  in  horse  and  monkey  masks. 

Figure  7.30  is an example of manually  detected  feature  points  from  horse and 
monkey  facial  masks.  Both  pictures contain 112  related  feature  points.  The 
network  is  structured  with  only  one input I (degree of morph), two  Gaussian  bells  in 
HL, and 224 OL neurons (x and y coordinates of the 112 feature points), as  shown 
in  figure  7.31. The  degree of morph  is  set to be  between 0 and 1. At the  learning 
stage,  the RBFs network  maps  from input I = [0, l] to corresponding  training 
picture  feature  points. At the  second  stage,  the  trained RBF network  generates  in- 
between  pictures  according to a given  new input vector new = [O 0.333  0.667 11. 
These  in-betweens are shown  in  figure  7.32.  The  two  framed  pictures of the  horse 
and monkey are originally  given as training  pictures, and the  two  in-betweens are 
generated by the RBF network.  The  second  picture,  obtained by a degree of morph 
33.3%, can be described as 33.3%  monkey and 66.7% horse. 

Figure  7.33  shows  the  moving paths of all  training  feature  points  in  morphing from 
horse to monkey. It can be  seen that morphing  here  is not simply traditional linear 
interpolation. Instead,  the paths are smooth  transients  between  examples,  which  may 
contribute to the  final  more  realistic  effect, 

Five other one-dimensional  morphing  results are depicted  in  figure  7.34  (horse- 
tiger,  horse-man,  monkey-tiger,  monkey-man, and tiger-man).  The RBF networks 
have  the  same  structure as in  figure  7.31.  The  framed  pictures are the training 
examples, and the RBF network  generated  the  in-betweens. 
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One-dimensional rnorphing RBF network  structure  with  one  input,  two  hidden  layer  neurons,  and 224 
outputs. 
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Figure 7.32 
One-~imensional morphing from  horse  mask  to  monkey  mask. 

The approximation/interpolation ability of an R F network can be  used to 
synthesize  images  in  a multi~imensional input space, too. Figure 7.35 shows  the 
four training  example  frames of the facial  masks and their  position  parameters 
in  a  two-dimensional input space.  Here, Imonkey = [o, 01, I&er = [ l ,  01, IhorSe = lo, l], 
Ihman = [l, l], The  learning  stage  is  again  a  lculation of the  weights that should 

ing  from  these input states I to R network output feature points.  The 
network is then  used to generat vel  in-between  pictures for the new 

desired  inputs.  These inputs are the t ~ o - d ~ e n s i o n a l  vectors.  The  network structure 
comprises  two input neurons, four HL, neurons, and 224 01, neurons. 
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Figure 7.33 
Morphing  paths  from  horse  to  monkey.  The crosses denote  feature  points. 
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Figure 7.34 
Several  different  one-dimensional  morphing  examples  (horse-tiger,  horse-man,  monkey-tiger,  monkey- 
man,  and  tiger-man).  The  framed  pictures  are  the  training  examples. 
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Figure 7.35 
Training  picture  positioning in a two-dimensional  rnorpbing  example. 

Figure  7.36  shows  the  result of a two-dimensional  morphing.  The  four  training 
pictures,  which are framed,  have  been  placed at the  corners of the  unit  square  in an 
(11,12) plane.  All  the  other  pictures are generated by the F network, whkh can 
produce as many  pictures as needed. 

The multidimensional interpolation/approximation capability of an NN has  made 
possible  the  creation of  new pictures  in  the  morphing  world.  As  shown  in  figure  7.36, 
the newly  synthesized  in-between  pictures  have  some  similarity to all  the  training 
examples. 

uman animation is  becoming  increasingly important for the  purpose of  design 
evaluation,  occupational  biomechanics  tasks,  motion sim~lation, choreography, and 
the  understanding of motion, In the  evaluation of  design alternatives, animation 
provides a noninvasive  means of evaluating  human-environment  interaction.  This 
will  result  in a final  design  with  improved  safety  features,  greater  acceptance, and 
higher  comfort level  of  use. Human animation includes  the  human  figure animation 
and human  facial animation. Here,  some  results  from Wang (1998) about these  two 
parts of human animation are  described. 

The realistic animation of a human  figure  has  always  been a challenge that requires 
an in-depth  understanding of physical  laws.  Animated characters are usually  modeled 
as articulated  figures,  comprising  rigid  rods  connected by  flexible joints. This is the 
kind of physical  model  used  for  human  walking,  running, and jumping animation. 
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Figare 7.36 
A two-dimensional  morphing  synthesis  with an RBF network  having  two  inputs,  four  hidden  units,  and 
224 outputs.  The  four  training  examples  are  framed.  The  others  are  in-betweens. 

Animators  generally  use  one  of  the  two  techniques for generating  realistic and 
natural-looking  human  motion: key framing and dynamic  simulation.  These  tech- 
niques  vary  in the control given to the animator, in  the  realism of the  generated 
motion, and in the  ease of generalizing  from  one  motion to another. Key  frame 
animation allows  greater ~exibility in  designing  the  motion  but is unable to gen- 
erate highly  coordinated  motions  such as walking and grasping.  This  is  because  the 
method  is  based  on  geometrically  interpolating  the  parameters of motion  (e.g.,  posi- 
tion,  velocity)  between  the key postures.  Geometric interpolation methods  such as 
splines,  quaternions, and ezier  curves, although producing  smooth  motion, do not 
produce animation that has  the  features of  realistic  motion. 

Methods  using  the  law  of  dynamics  suEer  two  serious  drawbacks. First, solution of 
the  dynamic  equations of  the  human  figure  consumes signi~cant computation time. 
Second,  the  user  is  required to specify  the  external  forces that produce  the  desired 
motion. Most  solutions to this  problem are adopted from control theory  applied to 
robotics.  Thus,  the  same require~ents as in  robotics  apply,  This  means that the  user 
would  still  need to supply i n f o ~ a t i o n  such as optimization  function, control energy 
function, and desired  end  effect  trajectory, 
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Both  the  kinematics and dynamic  approaches  lack  the  ability to integrate param- 
eters other than geometrical and force data, correlate  them to key postures, and 
consequently  interpolate  the  in-between  values. 

The approach here  used  the  preceding RBF network for motion  synthesis to 
produce  realistic  human  figure animation, such as walking,  running,  jumping, and 
vaulting.  This  method  oEers  the  flexibility of  key +frame animation and has  the  ability 
to accommodate  more  parameters,  such as dynamic  strength, when the  need  arises. 
An  example of running animation created  using an RBF network  follows. 

~ r n ~ ~ o n  Figure  7.37  shows  six  training  pictures of the  legs  in  one 
broken  lines  represent  the  left  leg, and the  solid  lines  represent  the 

right  leg.  Each joint point in  the  figure  is  denoted by a circle  numbered 1-7, and has 
an (x, y )  coordinate that forms the 14 desired outputs for the RBF neural  net- 
work  training.  The input vector  is  set to be the  running  history and has a value of 
I = [O 0.2 0.4 0.6 0.8 l] corresponding to the six training  pictures.  The 
resulting RBF network  has a single input ( I  is a phase of the  run  cycle), six  hidden 
neurons, and fourteen outputs. Six HZ, Caussians are  placed at six training  pictures. 

using  the  frames  coordinates and given input vector that defines  the  design  matrix G. 
At the  second  stage, a new input vector is  given to generate 30 in-between  pictures. 
The resulting outputs are the 30 pictures  shown  in  figure '7.38  of an entire  running 
cycle. 

The  moving path of the  seven joint points in this  running cycle  is  given in  figure 
7.39,  which  shows the  smooth and realistic  trajectories of the  mapping.  This is par- 
ticularly  visible for the  left and right  heels (points 2 and 6, respectively).  Such  smooth 
mappings cannot be  realized  by standard animation based on straight-line  con- 

At the  learning  stage,  the RBF network  calculates  the OZ, weights  matrix 

0 0.2 0.4 0.6 0.8 1 I  

Figure 7.37 
Human  running  training  pictures.  Broken  lines  represent  the  left  leg,  and  solid  lines  represent  the  right  leg. 
The  circles denote  feature  points. 
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Figure 7.38 
Human  running  animation  with 30 generated  in-between  pictures, 

Figure 7.39 
Giving 
straight 
mations 

paths of joint  points  in  human  running.  The  crosses  denote  leg  joints  in  training  pictures.  The  thick 
line  depicts  the  conventiona~  (rigid  and  unnatural)  path of the  left  heel  obtained by linear  approxi- 
between training  points.  The RBF path is a  naturally  smooth  movement of the  left  heel (path 2) .  

nections  of  training  points.  The  thick  straight  line  depicts  the  conventional  (rigid and 
unnatural) path obtained by linear  approximations  between  training  points for the 

F path represents the naturally smooth move~ent of joint 2. 

Facial animation is an essential part of human animation, 

standard methods can be ~ lass i~ed  as a mixture of three  separate  categories: key 
framing, ~aramete~zation, and muscle-based  modeling.  These and other interesting 
approaches to facial  animation. are extensively  treated  in  the  specialized literature, 
Our approach for human  facial a~mat ion  again  takes  advantage of a multiva~ate 
mapping  technique by an RBF neural  network.  The  conventional  method for h ~ a n  
facial animation usually cannot work  well  with both face  shape and ~xpression of 

done on methods for g~nerating facial animation. 
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Figure 7.40 
Human  facial  animation.  The  crosses  denote  feature  points. 

feelings at the  same  time,  which  leads to difficulties  in  real-time animation. The 
solution to this  problem  is  very important for the cartoon industry. 

Here, a simplified  example  of  human  facial  expression  (from  happy to angry) and a 
rotation angle  (which  reflects  the  shape  changes)  serve as the two inputs to the RBF 
network.  The x and y coordinates of the  characteristic  feature  points  in the human 
face  drawings  are taken to be the  network outputs. Figure  7.40  shows 67 feature 
points for five training  examples.  These  examples are located  in a two-dimensional 
input plane.  The  first input 11 corresponds to facial  expression and varies  from -1 
(happy), through 0 (moderate or neutral feeling) to +l  (anger). (The  choice of  signs  is 
not related to the author's nature.) The another input, 12,  corresponds to the rotation 
angle,  from Oo through 45O to 90° (see  fig.  7.41).  Figure  7.42  shows  the  result of 
animation of human  expressions of  feelings.  Twenty-five  faces are  generated.  The 
framed  pictures are reproduced  originals that were  used as training  examples. 

asis F ~ n c ~ o n   ~ e t ~ o r ~ s  for ~ n ~ i n e e r i n ~  

rawings  of  engineering and architectural  designs are usually  presented as ortho- 
graphic  projections, that is, as parallel  projections  in  directions that will present 
an object  in top (or plan), front (or front elevation),  side, bottom, and back views. 
Because  most  items  are  designed  in  rectangular  shapes, orthographic projections 
often  show  features  in true length that can be readily  dimensioned. 
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Figure 7.41 
Training  pictures  for h u w n  facial  animation. 

Orthographic views  may  be drawn as separate  two-dimensional  drawings, or they 
may  be  displayed  as  special  views  of  a  three-dimensional CAD object.  Because  they 
may  be hard to visualize  from orthographic projections,  complex  objects  are  often 
presented in projections that provide  a  three-dimensional  representation,  such as an 
isometric  projection, an oblique  projection, or the  more  general  axonometric  projec- 
tion. The difl'erent projections can be calculated from algebraic  formulas that represent 
transformations from  the  three-dimensional  space of the object to the t~o-di~ensional 
projection  plane of the  computer  screen or plotter paper. 

Here,  the  previously  introduced RBF network  synthesis  method  is  used to generate 
the  axonometric  projection  from  normally  available  engineering  drawings. The pre- 
sentation  here  follows the work of Wang  (1998). For comparison,  a  brief  introduc- 
tion to the  conventional way  of solving  this  problem by geometrical rotation and 
transformation is  given first. 

~on~entional Approach  for  Axonometric  rojection For an axonometric  projection, 
the  viewpoint or camera-coordinate  system  shown  in  figure 7.43 is  used.  This 
(x,, y, ,  zc) coordinate system  is  left-handed,  with  its  z-axis  pointing  toward  the 
origin of the  world-coordinate  system.  The transformation from  the  world-coordinate 
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of human  expressions  of  feelings. All pictures  are  produced by an RBF model  that  was  trained 
using  the  five  framed  faces. 

Z W  

X C  

Y w  

Figure 7.43 
Camera-coordinate  system (x,, y , ,  z,) based at viewpoint V. 
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Figure 7. 
Transformation  from  world  coordinates to camera  coordinates. 

system to the  camera-coordinate  system  may be  achieved  by  combining a translation, 
two rotations, and a reflection.  These  transformations are illustrated  in  figure  7.44. 
First, a translation of the origin  from (x,,,, y,,,,~,,,) = (070, 0 )  to (xw7 y,,,,~,,,) = 
(x,, y,, z,) is  achieved  by the  matrix operator [T(-x, ,  -yU7 -z,)]. Here x,, y,, and z,  
are the  coordinates of the  viewpoint V in  the  world-coordinate  system.  Negative 
signs are used in  the translation matrix  because  moving  the  coordinate  system 
from (O,O,O) to (xu7 yU7zt ; )  is  equivalent to moving  the  objects  from (O,O, 0) to 

From the  geometry  shown  in  figure  7.43,  the  following  expressions  may be derived 
between  the  Cartesian  coordinates (x,, y ,  z,) and the  spherical  coordinates ( r ,  0,cf,) of 
the  viewpoint V: 

(-xu, "YU, "ZU). 

x, = r sin cf, cos 0, y ,  = r sin cf, sin 0, z ,  = r cos cf,. (7.21) 



478 Chapter 7. Case  Studies 

After  the  origin  is translated to (x,, y,, z,), a rotation is  used to bring  the  y-axis into a 
plane that contains both the  z-axis and the  line  joining V and the  origin of the  world 
coordinates. That is,  the  y-axis of the  camera-coordinate  system  is rotated about 
the  z-axis by the amount 90° - 8 in  the  clockwise  direction  (see  fig.  7.44b).  Next, a 
rotation about the  x-axis  is  performed to point  the  camera  z-axis  toward  the  world 
origin  (see  fig. 7.44~). This rotation angle  is 180° - # in  the  counterclockwise  direc- 
tion. Finally,  the mirror reflection  is  used to reflect  the  x-axis  across  the x = 0 plane 
to forn the  left-handed coordinate system  shown  in  figure  7.43  and  figure  7.44d. 

The  complete transfo~ation between  the  world-coordinate  system (xw, y,, 2.;) 

and the ca~era-coordinate system (x,, y,, 2,) is  given  by 

-sin 8 -cos Ur, cos 8 -sin #cos 8 0 
cos 8 -cos # sin 6' -sin Ur, sin 8 0 

= [x, Y ,  z w  11 0 sin Ur, -cos # 0 
0 0 r 1 

(7 22) 

Because  the xy plane  is pe~endicular to the viewing direction, an axonometric pro- 
jection  defined by the  angles # and 8 may  be obtained  from equation (7.22)  by  setting 
xplot = x,, yplot = y,. Also,  all terns involved  in  the equation for the z,  coordinate  are 
set  equal to zero  because  they  are not relevant to the  axonometric  projection. 

-sin 8 -cos # cos 8 0 0 
cos 8 -cos # sin 8 0 0 

sin Ur, 0 0 
0 0 0 1  

[Xplot Yplot 0 11 = [x, y ,  2, 11 (7.23) 

In practice,  users of such pro- 
jection f o ~ a t i o n  should  not be  pressed into mastering  the  complexities  behind  the 
mechanism of producing  such transfo~ations. 

As an application of the  neural  network  motion  synthesis  method, 
work  is  used to generate  the axonomet~c projections  from  some orth 
tures,  which are normally  available  from standard engineering  drawing 
simple  example of a beveled  cube  is  presented to explain  the  novel approach. 

Four orthographic drawings are taken as training  pictures,  as  shown  in  figure 
F network  has  two  inputs,  four  hidden  neurons, and 18 out uts. The 18 
spond to the (x, y )  coordinates of the  nine feature points. 

orlc can create  as  many  three-dimensional  projections of the  beveled 
cube  as  needed.  Figure  7.46  shows 25 projections;  the four training  pictures  are 
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Training  pictures of a  beveled  cube.  The  circled  vertices are  the  feature  points. 
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Figure 7.46 
~ x o n o ~ e t r i c  projections of a  beveled  cube  generated  by an RBF neural  network. 
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framed.  The  results are identical  with  those from conventional  geometrical trans- 
formations, so the conventional  ones are not need  repeated  here.  This  method  pro- 
vides  a  short-cut to the  conventional  method.  Because  the  same  principle  applies to 
more  complicated  structures  in  real  situations,  this  methodology  could  be  extended to 
actual mechanical or architectural structures. 

This  last  case  studies  section  presented  the  capabilities of RBF networks  in  solving 
various  problems  in  computer  graphics. The RBF network  solves  these  problems 
in  the  same  fashion as it solves  problems  in other areas. It learns  from  training 
examples. 

All  the  human animation results  show that the  resulting  human  motion  is smooth 
and realistic.  The  advantage  over  conventional key frame animation is apparent. In 
conventional key frame animation, key postures  are  recalled and in-between  values 
are interpolated. In the neural  network approach, only the set  of  weights corre- 
sponding to the  desired  behavior  is  retrieved.  This  means that after  the  training 
phase,  the computation of the output pictures  is not very  difficult. 

In the  case  of  facial animation, the  network approach can successfully  synthesize 
the  in-between  pictures  within  a  specified input parameter  space (both facial  expres- 
sion and pose). To some  extent,  this  can  solve  the  problems  in the conventional 
method when the  facial  position cannot be changed simultan~ously with  facial 
expression. In fact,  because  the RBF network  has the ability for any  multivariate 
mapping,  more  parameters  could be  included  in  the  model, and the NN can guar- 
antee  the  best approximation results.  Once  the  weights are trained  in  the  learning 
stage,  the new desired  pictures  come out very  quickly.  This  enables  the  realization of 
real-time animation. 

Human facial animation could be  combined  with  human  figure animation. All  the 
necessary state parameters  could be included  in  one  network  model to deal  with  the 
whole  human  body, and a  more  comprehensive human animation RBF network 
model  could  be  built. 

The  last  example  shows that the same  principle of learning  from  examples can be 
used for solving  various  graphics  problems,  including  two- and three-dimensiopal 
transfo~ations. 



~ptimization theory and its difTerent techniques are used to find  the  values of a set  of 
parameters  (here  called  the  weights) that minimize or maximize  some error or cost 
function of interest.  The  name error or cost ~ ~ n c t i ~ n ,  stands for a measure of  how 
good  the  solution  is  for a given  problem.  This  measure  is  also  called merit or o~~ect ive  
~ ~ ~ c t i o n  and ~ e r ~ o r m ~ n c e   i n ~ e ~  or risk. In  the  genetic  algorithms and evolutionary 
computing  community, a well-established  name  for  the error or cost  function isfit- 

can also  loosely  use  the  word norm. The problem of learning  some 
n (mapping,  dependency, or degree of relatedness  between input 

wn to the  nonlinear  search  (estimation,  identification) 
Therefore,  the  theory of nonlinear opti- 

rstanding  the  overall  learning  process of 
soft  models. 

The  problem of finding an optimal  (best) or suboptimal  (close to best)  set of 
weights  in  soft  models  may be approached in  various  ways. The fact that in a math- 
ematical  workshop  there  are  many  diEerent  nonlinear  optimization  tools  is of help. 

owever, as with  any other tool,  unless we understand  its  purpose and how to apply 
it, not too much  use  will.  be  made  of it. This chapter gives a brief and solid intro- 
duction to nonlinear  optimization  algorithms that at present stand behind  learning 
from  experimental data. It does  not  pretend to provide a comprehensive  review  of 
such a broad field, but the  material will  prove to be a useful and sound  basis 
for better  understanding and further improvement of the  learning  process  in  soft 
models. 

This  chapter  actually  began  in  section 1.3, which  placed  the  nonlinear o~~imization 
problem into the framewor~ of training  (learning) of soft  model  weights.  The  highly 
nonlinear  character of the  cost or error function E ( ~ )  was  illustrated  in  examples 1.5 

was  the  weights  vector and E was a scalar  cost  function.  There, the 
simplest  one-dimensional input neural  networks  with  sine and bipolar  sigmoidal 
activation  functions were  used.  Such  choices  of  low-dimensional input act 
functions  enabled  graphical  representation of the  nonlinear error surfaces, 
however, that in  real-life  applications,  the error function E is a hypersurface  repre- 
senting  the  mapping of a high-dimensional  weights matrix into the  measure of 
goodness.  Thus, E is  typically a nonlinear  hypersurface that cannot be visualized. 

The fact that there are no general  theories or theorems for analyzing  nonlinear 
optimization  methods  leads to the introduction of a local quadratic approximation to 
a nonlinear error function.  There are two  basic  reasons and justifications  for intro- 
ducing  such a ~uadratic function. First, quadratic approximations  result  in  relatively 
simple  theorems  concerning  the  general  properties of various  optimization  methods. 
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Second,  in  the  neighborhood of local  minima (or maxima), quadratic approximations 
behave  like  the  original  nonlinear  functions.  Therefore,  the  theory  developed for 
quadratics might be appliqable to the  original  problem, too. 

This chapter continues  the  presentation of a gradient  (steepest  descent)  method 
given  in  section  1.3 and discusses  second-order  iterative  methods for finding  the 
minima of general  high-dimensional  nonlinear and nonquadratic error surfaces. It 
presents  the  two  most important variable  metric  methods and two  conjugate  gradient 
algorithms that are widely  used in  soft  computing.  Two  special  methods  (Gauss- 
Newton and Levenberg-Marquardt) for finding  the  sum-of-error-squares error func- 
tion are discussed  in  detail.  These  methods  have  much  better  performance on the 
sum-of-error-squares  hypersurface than very  good  general  nonlinear  optimization 
algorithms.  Finally, an overview  is  given  of the  direct-search and massive-search 
methods  called  genetic  algorithms (GAS) or evolutionary  computing (EC), which 
have  proved to be  useful for training  soft  models. 

The  concept of an error function E(w)  is  basic  in an optimization of soft  models. 
After  choosing  the  structure and activation (members~p) functions of  such  models, 
the  network  is  characterized by the ( N ,  1) weights  vector W. The  weights Wi can be 
arranged  in a matrix  also. We usually  diflierentiate  between  two  groups  of  weights, 
the  hidden  layer (I-IL) and the output layer (OL) weights.  The  difficult part is  learning 

L weights that describe  the  positions and shapes of the HL activation  function 
) depends  nonlinearly  upon  this  set of  weights.  An error function E(w)  

represents  the transfo~ation from  the  vector  space  spanned by the  elements of the 
ector into the  space of a real  scalar E(w) .  Geometrically,  this  mapping 
represents an error hypersurface  over  the  weight  space. E(w)  was  shown  in 

figures  1.15, l. 17, and 1.18 for N = 1 or 2 as a nonlinear  curve or surface,  respec- 
tively.  This error surface  is  typically  nonlinear and nonquadratic, meaning that it 
does  not  look  like a paraboloidal bowl  with a guaranteed  minim^. At  the  same 
time,  near a minimal point, a quadratic approximation might  be a good  one  (see 
fig.  1.17). 

Only  in  very  special  cases  will  the error hypersurface  be quadratic (convex)  with a 
guaranteed  single ~ n i m u m  (or possibly a continuum of degenerate  minima  lying on 
the principal  hyperplane). In the  case of the  quadratics,  the  point of minimal error, or 
the optimal point, can be calculated as discussed  in  section  3.2.2.  This particular 
quadratic hypersurface  will  occur  only  in  two  cases: 
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e When  all  the  activation  functions  in  neurons are linear and the error function is 
expressed as the  sum  of error squares 
e When  the  activation  functions in the HL neurons are nonlinear but fixed (not the 
subjects of learning),  the OL neurons are linear, and the error function  is  expressed as 
the  sum of error squares 

Generally,  the error function of the  soft  models  having  hidden and output layer 
neurons  with  nonlinear  activation  functions (at least  in  the  hidden  layer)  will be a 
highly  nonlinear  hypersurface that may  have  many  local  minima,  saddle  points, and 
eventually  one  global  minimurn.  Figure  8.1  shows  the  kind of rough error terrain that 
results  from  the  mapping of just two  weights to the error function E (an !R2 ”-+ !R1 

mapping  from  the  weight  space to the error). In the  general  case,  which  is of greater 
importance  in  the  world of soft  computing,  there will  be an RN ”+ 

Neural networks  will  have  hundreds (or thousands) of  weights, or in  fuzzy  logic 
systems  there  will  be  as  many  rules, and the  dimension of the  weight  space iV will  be 
of the  same  order.  owever,  the  basic  task to solve  remains  the  same:  finding  the 
optimal  set of  weights wept that guarantees  the  model’s  making  the  best  approxima- 
tionS, of the  desired  underlying  function f ,  

Typical  learning  in a neural  network starts with  some  random  initial  weight  (see 
points El or E2 in  fig. 8.1). If  this  first ~0 lies  on  the  slope  leading to the  global  mini- 
mum, as point El does, a global  minimum  will  definitely  be attained using estab- 
lished  methods  from  the  neural  networks  learning  tools.  This  is a lucky  case. A less 
fortunate case  is  if  one starts to descend  the  slope  of  some local  minima  (there are a 
few  of them  in  fig. 8.1). It will  be  even  worse  if the  optimization starts from  point E2, 
in  which  case  one  might  stay  on a plateau  high  over  the  global  minimum. 
even  in  such a situation, one  is  not  lost.  If  this  happens,  there  is a simple  solution. 
The  learning  sequence  should be started again  with a dif5erent initial  random  weight. 
This  may  have to be repeated  many  times at the  cost of more computation time. 
Recall that in  the  case  of a high-dimensional error hypersurface  very  little  is  known. 
But  if  the  underlying  function to be approximated were  known,  there  would be no 
need for neural  networks or fwzy logic  models.  One  would  simply  write  the  program 
containing  the  known  function and that would  solve  the  problem, 

Therefore, it is  clear that a good  understanding of following  issues  is of crucial 
importance:  what  the error surface  is  like, can it be approximated by quadratics, and 
if so, what  algorithms are the  most  convenient and promising for finding  the  general 
quadratic error function. 

y now the  reader  should be familiar  with  the  answer to the  first  question:  the 
error hypersurface E ( ~ )  is  nonlinear and nonquadratic. There  are no good  algo- 
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Generic nonlinear nonquadratic error surface E( W,, w2) 
Error 
function 
Ww19 W21 

Figure 8.1 
Two-dimensional  error  function E(w1, wz) having  many different stationary  points. 

r i t h s  for such a general  nonlinear nonquadratic E(vv). At the  same  time, an 
abundance of nonlinear  optimization  methods  have  been  developed for quadratic 
hypersurfaces.  All  of  them can be applied to optimization of the nonquadratic error 
function E(vv) after  its quadratic approximation about some  local  point  is obtained. 

This  leads to the introduction of a local quadratic approximation to the  nonlinear 
error function E(w) .  Quadratic approximations  result  in  relatively  simple  theorems 
and algorithms  concerning  the  general  properties of various  optimization  methods. 
In addition, in  the  neighborhood of local  minima,  they  behave  like  the  original  non- 
linear  function.  Therefore,  the  theory  developed for quadratics might  also be appli- 
cable to the  original  problem. 

In order to get a quadratic approximation to the nonquadratic error function 
E ( w ) ~  expand E(w)  about some  point WO in a Taylor  series,  retaining  only  first- 
and second-order  terms.  Starting  with a simple  two-dimensional  weights  vector vv = 
[wl w2ITy for the  sake of simplicity,  yields 
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where 

dE d2E 
EWi = - and E=,@ = ~ 

dwi 
i ,  j = 1'2. 

dwidwj ' 

Equation (8.1) can be rewritten  in  matrix notation for an N-dimensional  vector W as 
follows: 

(8.2) 

where EO = E(w0) is scalar, g is an ( N ,  1)  gradient  vector, and is an ( N ,  N )  Hessian 
matrix of E(w) defined  by  (1.41) and (l.46), respectively, and both are evaluated at 
W = WO. It is  easy to find  a stationary point of a quadratic approximation Eqa(w) to 
the  original nonquadratic error function E(w). This  is  done by equating  the  deriva- 
tive of Eqa(w) with  respect to W to the  null  vector.  Suppose that E,,(w) takes its 
minimum  value at W = W * . Then VE,, (W *) = (W* - WO) + g = 0, which  yields 

The  Newton-Raphson  method uses W*, which  is  a  minimum  of  the quadratic 
approximation E,,(w) and not of the  original nonquadratic error function E=(w), as 
the  next  current  point,  giving  the  iterative  formula 

A better variant of (8.4) that is  often  used  is 

where  the  learning rate is  determined by a  line  search  from wk in  the  direction 
(The  line  search can be a quadratic one, as in  section  1.3.2.) The convergenc 
Newton-Raphson  algorithm  is  rapid when w k  is  near  the  optimal  point WO. However, 
the  convergence to a  minimum  is not guaranteed, and if H k  is not positive  definite, 
the  method can fail to converge  (see fig. 8.2). 

Figure 8.2  shows  a quadratic approximation and the  first five Newton-Raphson 
steps.  The  first  three  steps  converge to the  minimum, but the fourth step  resulted  in  a 
negative  definite  Hessian  matrix . This  leads to a  backward  divergent  step.  This 
does not necessarily  mean that t  fifth  step  will  not  again  be  in  a  direction  of  a 
global  minimum.  However,  it can also  diverge  again, as shown  in  figure  8.2. 

The method of steepest  descent  presented  in  section l .3.2 and the Newton-Raphson 
algorithm are identical when ;l is  a unit matrix ( = I). This  fact and the  desire 
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Figure 8.2 
Quadratic approxi~ation of a nonquadratic  error  function and the  first  five ~e~ton-Raphson steps. 

to avoid  calculation of the  Hessian matrix in  every  step  leads to a large  class of gra- 
dient  methods  known as quasi-Newton or variable  metric  methods. 

Note that the Newton-Rap~son stationary points  computed at each iteration 
step can be minimum,  maxim^, or saddle  point  depending  on  the character of the 
Hessian  matrix. For negative  definite , the  maximum  is  like  the  one  obtained  in 
the fourth iteration step  in  figure 8.2. If  this  happens, iteration diverges and the 
method can fail. In addition, a calculation of the  Hessian matrix in every  step can be 
high computational burden.  Many  methods  have  been  proposed to replace 
a positive  definite  symmetric  matrix that is  updated  in  each iteration step  with- 
out the  need  for  matrix  inversion.  The  resulting  (variable  metric)  iterative  formula 
1s 

with  randomly  chosen  initial WO and 0. Many  choices are available for construction 
. The two  best  known  are  the n avid on-Fletcher-Powell method ( 

known as Fletcher-Powell) and a related  algorithm that goes  by the  nam 
Fletcher-Coldfarb~Shano (BFCS). All  the  variable  metric  methods are batch algo- 
rithms that use all  available data. 
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The DFP method starts W that is, it begins as steepest  descent and changes 
over to the ~ e w t o n - ~ a p  during  the  course of a number of iterations by 
continually  updating an approximation to the  inverse of the  Hessian  matrix  (matrix 
of second  derivatives) at the m~nimum.  DFP does it in  such a way as to ensure that 

ositive  definite. For a quadratic error surface E(w) ,  where W is 
P converges to the  minimum  after N iterations. 

The  steps of the DFP method are as follows: 

1. Start with  the matrix S the  initial  guess 0. For the kth step  proceed as follows. 
2. Compute  the  gradien 
3. Compute  the new direction vk = - 

4. Find the  variable  learning rate qlc that minimizes E(wk + ~ k v ~ ) .  
5. Compute  the new  wei 

7. Compute  the  matrix 

8. Check the stopping  criterion, and if it is  not  satisfied,  go to step 2 for the  next 
iteration. 

The  most important formula  in  the DFP method  is  given  in  step 7 for the  updating 
. Note that all  quasi-Newton  methods  avoid  the  calculation of the 
and this  leads to huge  savings in computing  time,  particu1arly for 

large  networks. Updating of the matrix looks  complicated but, apart from  the 
computation of the  gradient  vector g, merely 2N2 multiplications are needed  in  each 
iteration step,  while a classic  Newton-Raphson a l g o r i t ~  requires N 3 / 6  multi- 
plications  plus  the computation of the  gradient and the  Hessian. 

Ze 8.1 Find the  minimum  point of a positive  definite quadratic error function 
= [3 - 1 ; - 1 11, using  the DFP method. 

a minimum  in  two  steps  only.  Check  whethe 

At the start, k = 0. 

1. We start with 0 = [l0 101' as the  initial  estimate of the  minimum  point  and 
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2. The gradient  vector  is go = Aw = [3wl - w2 - w1 + w2lT = 120 
ogo = 4 2 0  O] . T 

4. The variable  learning rate qo that minimizes E(w0 + qovo) follows  from 

which attains a  minimum  with  respect to q at qo = 0.33. 
5. A new  weight wl = WO + qovo = 13.34 101~.  
6. u0 = qovo = -[6.6 01 T , g, = [0.02 6.66]', and yo = g, - go = -[20 -6.66IT. 

0.33 0 
7. A o = ~ -  

"0 Yo - [ 0] and -0.3 0.01 
0.43 0.3 
0.3 0.99 * 

The  matrix for the  next iteration o =  [ ] 
8. Go to step  2 for the  next iteration. 

NOW, k = 1. 

2. The gradient  vector g, is  given  in  step  2 of the  preceding  list. 
1 = -[2.22 6.65IT. 

4.  The  variable  learning rate ql that minimizes E(iv1 + qlvl)  = 
E([3.34 - 2.22q1 10 - 6.65qJ') and q1 = 1.5. 
5. A new  weight w2 = W, + qlvl  = [-0.01  0.15IT. Note that in  theory we should 
have w2 = [0 01 '. Here, # 0 because of computational roundoff  errors.  Check 
whether  the  final  matrix  is equal to the  exact  inverse of A, which  is  a  Hessian 
matrix. If not, Continue  with  step 6. 
6. U, = qlvl  = -[3.33  9.85IT, g2 = [-0.18  0.16jT, and y1 = g2 - g1 = 
--[0.2 6.5IT. 

0.17  0.51 0.1  0.31 
0.51  1.5 l = - [  0.31 0.99 ] ' 

0.5 0.5 

7. Al = [ ] 
Finally,  the  matrix 

= [ 0.5 1.51 
, and this  is  exactly  the  inverse A-'. 

The key step  in  a DFP algorithm  is  step 7,  where the new direction  matrix 
calculated.  An  alternative  formula for updating k ,  which  seems to be superior to the 
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DFP approach) is  the  improvement  proposed  independently  in  the 
The BFGS iteration steps are same as in DFP, but there  is a change  in  step 7: 

7. Compute  the  matrix for the  next iteration 

where 

The  updating  in  the  BFGS  method  avoids  the  tendency that is  present  in  the DFP 
method for the  matrices to become  singular.  There are variants of the  BFGS 
method that do not require  line  search  provided that suitable  step  lengths are chosen. 
This is an important property  because of savings  in  computing  time  by  dispensing 
with  linear  search.  The  most important requirement  fulfilled  here  is that the  matrices 

k remain  positive  definite. This is  ensured for quadratic error surfaces. For non- 
quadratic functions,  the  property  is  ensured by imposing  some  mild  extra  conditions 
(see the  specialized literature on  nonlinear  optimization). 

A possible  disadvantage of the  quasi-Newton  methods  is that they  require  the 
storage and updating of ( N ,  N )  matrices k ,  where N is  the  number of unknown 
weights  (i.e.?  they  are O(N2)  methods).  This  may  become a serious  problem for 
large  networks  having a few thousand  weights.  The  BFGS  method  is  the  best out of 
many  variable  metric  algorithms. It possesses  the  same  basic  numerical  features as 
the  others: it iteratively  computes an estimate of the  inverse  Hessian) it usually  re- 
quires  line  search) it works in batch mode  only, and it is an O(N2)  method. 

Another group of algorithms  with  smaller computational requirements ( O ( N )  
order  only) are the  conjugate  gradient  methods. 

The  main  disadvantage of the standard gradient  method  (i.e., of an E 
that it does not perform well on  hypersurfaces that have  different  curvatures  along 
different  weight  directions. The error function  is no longer  radially  symmetric; it has 
the  shape of an elongated  bowl.  Therefore)  section 4.3.6 introduced a close  relative of 
the  class of conjugate  gradient (CG) algorithms  in  order to avoid  highly  oscillatory 
paths on such  bowls.  This  was  the  momentum  method,  which  can be considered an 
on-line variant, of the CC method.  Another  reason  for  applying  conjugate  gradients 
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can be  seen in  figure  1.22:  after  line  search  is  applied,  the  iterative  steps  are orthogonal 
to each other, and this  necessarily  leads to the  unwanted sharp changes  in  descent 
directions. 

At the  same  time,  all  variable  metric  methods  show another kind of  difficulty.  They 
must  calculate  some ap~roximation to the  Hessian  matrix , which for large  net- 
works  with  several  thousand  weights,  is  computationally  not  welcome. 

CC methods are popular in  the  soft  computing  community for a few important 
reasons: 

* They attempt to find  descent  directions that minimally disturb the  result of the 
previous  iterations. 
* They do not use the  essian  matrix  directly. 
0 They  are O ( N )  methods. 

Some  common  features  in  variable  metric  methods are as follows: 

0 CG methods  also  need  line  search  (i.e.,  they  rely  on  calculation of the  optimal  step 
length). 
0 CG methods  also  use ali the  training data at once,  meaning that they operate only 
in batch mode, 

With  the CC method, one can modify  well-known  descent  methods,  such as the 
gradient  method, to take  advantage of mutually  conjugate  directions of descent. To 
do that, one  must  generate  mutually  conjugate  gradients.  Algorithms that use  only 
error function  values E ( ~ )  and gradient  vectors  in  calculation of CG directions 
of search are desirable  because  these  quantities can usually be readily  computed. In 

r,  such  algorithms  should  avoid computation of the  matrix of S 

in  order to generate  mutually  conjugate  vectors  with  respect t 
and Reeves (1964) proposed  such a method of minimization, and there  is  also a 
~ola~-Ribiere algorithm that seems to perform  better  on nonquadratic error hyper- 
surfaces  (see  following  sections).  The pr~sentation of conjugate  gradients  here  follows 
Walsh  (1 975). 

Consider  finding  the  minimum  value of a quadratic function 

is positive  definite and symmetric.  The contours E(w)  = c are for  diKerent 
values of c concentric  ellipses  (see  fig. 8.3). 

Suppose that the  search for a minimum  begins at point A in  the  direction AD, that 
this  minimum  occurs at B, and that C is  the  minimal (optimal) point.  Then  the  direc- 
tion BC is c o ~ j ~ g a t e  to the  direction AD since, for any  ellipse ~ ( ~ )  = c, the  diameter 



8.1. Classical Methods 49 1 

D 

Figure 8.3 
Conjugate directions. 

through B is  conjugate  (in  the  geometrical  sense) to the  diameter  parallel to AD. The 
idea of conjugate  directions can be extended to n dimensions. 

Let U and v denote  two  vectors  in ! R N .  As noted  earlie and v are  said to be 
mutually orthogonal if their  scalar  product  is e ual to zer TV = 0). NOW, for an 
( N ,   N )  symmetric  positive  definit  nd V are said to be 
mutually   on jug at^ with  respect to t~ogonal, that is,  if 

( 8 4  

Clearly, if U and v are mutually  conjugate  with  respect to the  identity  matrix,  they are 
mutually orthogonal. Hence,  the  concept of mutual orthogonality can be thought of 
as a special  case  of  the mutual conjugacy of vectors. It is  clear, for 
eigenvectors S and y of a square  symmetric  positive  definite matri 

an be sure of the  exis  ce  of at least  one  set of vectors 

Several  methods  are  available for generating  sets of mutually  conjugate  directions. 
The DFP method  also  produces a set  of mutually  conjugate  directions.  Fletcher 
and  Reeves (1 964) derived a simple  recurrence  formula that generates  sequence of 
mutually  conjugate  directions.  This  method  locates  the  minimum of a given function. 
Note that if a set of mutually  conjugate  vectors  in !RN does not span ! R N ,  the 
could be searching  in a proper  subspace of !RN not  containing  the  minimum. 
ever, it is  easy to show that this  is  not  the  case,  since a set of mutually  conjugate 
vectors  in !RN constitutes a basis and therefore  spans ! R N .  In  designing CG methods 
the  basic approach is  similar to the  variable  metric  methods  in  the  sense that the 
crucial  computing  step  is  calculation of  new directions.  The  basic  formula  is  always 

spect to given matrix 
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the  same, or very  similar, and it calculates  the new search  direction as follows: 

(8.9) 

gradient, ck-1 is a previous  coefficient  of  conjugacy, and uk-1 is 
a previous  search  direction.  Various CG methods  differ  in how one  calculates  the 
coefficient  of  conjugacy c. 

The iterative  steps for the  Fletcher-Reeves  method are as follows: 

0 denote  the  first  approxim  his  can be a  randomly 
chosen  vector.  Compute  the  gradien 
2. For the k = l ,  . , N - 1 step,  proceed as follows: 

y. (This  is the line  search part of a CG algorithm.) 
b.  Compute  the  gradient 
c.  hen k < N ,  define 

k = vvk-1 + yk-1 Vk-1 , where rk-1 minimizes E ( w ~ -  I + iyvk-1) with  respect to 

(8.10) 

3. Replace WO by N and go to step  l  unless  the  stopping  rule is satisfied. 

Thus,  the  most  relevant  difference  with  respect to a standard gradient  descent  proce- 
dure (where  one  moves from k+l along Vk = - k ) ,  i.e.,  along  the 
negative gradient) is that in a CC method  the  gradient  is  modified by adding 

) is  a  positive  definite quadratic function,  this ~odification results  in  a  set 
of mutually  conjugate  vectors vk, k = 1, . . . , N .  When  used  h nonquadratic error 
functions,  the  preceding CG method  is  iterative.  Fletcher an eves  suggest that the 
direction of search  should  revert  periodically to the  direction of steepest  descent,  all 
previous  directions  being  discarded.  With  this  procedure,  the  algorithm  retains  the 
property of quadratic t ~ ~ i n a t i o n  provided that such restarts are not made  more 
often than every Nth iteration. Thus,  satisfactory  results  are  obtained if the  direction 
of steepest  descent is  used for VO, v ~ + l ,  ~ 2 ~ ~ 1 ,  . . . . For line  search, quadratic or cubic 
methods can be used. 
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~ x ~ ~ ~ Z e  8.2 Consider  a  positive  definite quadratic form E(w) = 0.5~' 

CC method. 
= [ 1 1; l 21. Find the  minimum  point of this  function by the  Fletcher-Reeves 

It is  clear that the  minimum of E(w) is  located at [0 01'. The  reader  may  check 
whether  the  optimal  gradient  method can locate  this  minimum point starting from 
any  random  weight WO. 

The  convergence of the CG method  is not affected by the  choice of initial point, so 
WO = [ 10 -51' can be chosen arbitrarily. First, find  the  analytical  expression for a 
gradient g = VE(w) = = [W1 + W2 W1 + 2W2]*. 

In step  1, v0 = -go = -VE(wo) = -[5 01' is  defined and a  line  search  is  per- 
formed  with  respect to a  learning rate q for 

l 1 1 10-5q 1 
E(W0 + qvo) = j [lo - 5q "51 [ l  2] [ -5 ] = j [ 5 0 -  75r]+50q21* 

This  function attains a  minimum at qo = 0.75. 
Therefore, w1 = WO + yOvo = 16-25 -5]', and the  gradient gl = VE(w1) = 

[1.25 -3.751'. Now,  in  order to use  (S.lO),  find IlVE(wl)l12/llVE(wo)l12. Here, 
~ ~ V E ( w 0 ) ~ l 2  = 52 + O2 = 25, and IIVE(w1)112 = 1.252 + (-3.75)2 = 15.55. Now, 
according to (S. lo), 

v1 = --[1.25 - 3.751' + (15.55/25)[-5 01' = 1-4.36 3.751'. 

Now  compute E(ftl + qvl) = 4 [26.55 - 38.9511 + 1 4 . 4 5 ~ ~ 1 ,  which attains a  minimum 
at ql = 1.34. Then W:! = ~1 + qlvl = [0.4 0.01~'. Note that a  genuine  minimum 
point wopt = [0 OIT should  have  been  obtained.  This  was  not  accomplished,  because 
of computational roundoff  errors.  However,  this CG descent  can be continued by 
replacing WO by w2 and repeating  the computation. 

8.1.7 Pola~-Ribier~ Method 

The Polak-Ribiere  method  differs  with  respect to the  Fletcher-Reeves  method  merely 
in  how  one  calculates  the  coefficient of conjugacy c in (S.9), or in (8. lo). Thus, itera- 
tion  step 2c in  the  Polak-Ribiere  method  is 

When k < N ,  define 

(S. l l )  

For quadratic error surfaces, both methods  perform  the  same. For (more  realisti- 
cally) nonquadratic error hypersurfaces, equations (S. 10) and (S. 1 1 )  show  different 
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numerical  properties.  Many  experimental S 

method to give  slightly  better  results than the 
CG methods  require  the computation of a gradient ~ ~ ( w ~ )  at each iteration to 

generate  the  direction of  descent.  This amounts to computing N + 1 function  values 
at each  step.  Powell  (1964)  has  developed an alternative  method,  generating CG 
directions by one-dimensional  searches at each iteration. The  interested  reader  can 
find  more  on  Powell's and other variants of the CG method in the  specialized  litera- 
ture on nonlinear  optimization  (e.g.,  Fletcher 1987 or  isme er and Chattergy  1976.) 

rror- 

All  the  preceding  methods  are  developed for the  general  form of the error function 
owever,  one of the  most  used noms or error functions  in  the  soft  computing 

field  is a sum-of-error-squares  function,  given as 

~ ( w )  = e ( w ) ~ e ( ~ ) .  (8.12) 

Several  minimization algo~thms exploit  the  special  properties of the error function 

the  first  derivatives can be  expressed as 
ecause e(w) is  usually a differentiable  function of the  weights 

(8.13) 

which  is  known  as  the Jacobian matrix,  or  the Jacobian. A matrix of  second deriva- 
tives  is  the  Hessian  matrix . It is  interesting to express both the  gradient and the 
Hessian of ~ ( ~ )  = e(w)~e(w) in  vector notation. Thus, di~erentiating (8.12), one 
obtains 

= ~ E ( w )  = Ew = 2 (8.14) 

(8.15) 

The specific error function  (8.12)  is  minimized  during  the iteration, and one  usually 
assumes that the errors ei are small  numbers.  With  such an assumption  the  second 
term on the  right-hand  side of (8.15)  can be neglected,  meaning that the 
be a~proximated as 

(8.16) 

The last  expression  is  equivalent to making a linear approximation to  the  errors. It 
exploits  in  this way the  structure of the  sum-of-error-squares  function  (8.12). Note an 
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important feature of this  expression. It uses a matrix of first  derivatives J to calculate 
a matrix of second  derivati . Recall that all  quasi-Newton  methods  might take IV 
iteration steps to estimate  isfactorily. The straight  calculation of 
(8.16)  will  result  in  faster  convergence  of  the  Gauss-Newton  method. 

Plugging  the  expressions for a gradient 
16) into the  iterative  Newton-Raphson  algo 

obtains the  Gauss-Newton  algorithm  for  optimizing  the  sum-of-error-squares  cost 
function as follows: 

(8.17) 

The ~auss-Newton updating  method  (8.17)  is  also  known as a ~ e ~ e r a l i z e ~  least- 
squares ~ e t ~ o ~ .  It is  particularly  good when  one  is  close to the mi~mum,  for two 
reasons:  the errors ei are small and the error surface E(w)  is  almost  linear.  The iter- 
ative  procedure can be improved if a line  search (as shown  in the previous  methods) 
is  performed.  Such an algorithm  is  superior to the  best  quasi-Newton  methods that 
use the  same information. 

The Gauss-Newton  method can also  diverge if the Jacobian J loses rank during the 
iterations, and because of possible  problems a further modification  is  proposed.  One 
of the  best  modifications  is the  evenb berg-Marquardt method. 

Very  often  the  neglected errors ei are not small and 
the  second-order  term on the  right-hand  side of  (8.15) cannot be ignored.  In  this  case, 
the ~auss-Newton method CO S very  slowly or diverges.  Hence,  it  may be better 
to use  the  full  Hessian matri he  evenb berg-~arquardt method  avoids  the  cal- 

and uses the  regularization approach when  the 
ad of  using (8.17),  Levenberg (1 944) and Mar- 

quardt (1963)  proposed  the  following iteration scheme: 

(8.18) 

where hk is a scalar that may  be adjusted to control the  sequence of iterations, and I 
is an (IV, IV) identity  matrix. Note that (8.18) approaches  the  steepest  descent as & is 
increased  because ; thus ~ k + l  = wk - (l/&)JTe = VVk - (1/2&)& 

expression  is a steepest  descent  where  the  learning 
;Ik "+ 0, the  evenb berg-~arquardt algorithm  tends to the 

~auss-Newton m or a nonquadratic error surface,  this  is  shown  in  figure  8.4. 
y changing /Zk at each iteration one can control the  convergence  properties.  Using 

jlk to control the  iterative  procedure  enables  the  method to take  advantage of the 
reliable  improvement  in  the error function E(w) given  by steepest  descent  when  still 
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w2 t 

Ak = 0, Gauss- 
Newton direction 

Figure 8.4 
Levenberg-~arquardt descent  directions  fall  between  steepest  descent  and  Gauss-Newton  directions. 

far from  the  minimum and the  rapid  convergence of the Gauss-Newton  method when 
close to the minimum. Marquardt (1963)  describes  a  scheme for selecting Ak at each 
iteration, which  seems to be  very  efficient, although Fletcher  (1987)  has  pointed out 
possible  difficulties. 

The following  strategy  has  been  proposed  specifically for neural  network  training 
(Hagan, Demuth, and Beale  1996). At the  beginning of training  the  regvlarization 
parameter Ak is  set to some  small  value,  say, Ak = 0.01.  If  the iteration does not 
decrease  the  value of the error function E(w), the  step  is  repeated  with  a  larger Ak 
value,  say, nr" = lo&. The  larger  values of Ak move  in  the  direction of steepest 
descent and E(w) may  decrease.  Once an iteration step  produces  a  smaller error 
function  value,  the  value of /zk is  decreased, so the  algorithm  would approach Gauss- 
Newton  directions for faster  convergence.  Because  the  Levenberg-Marquardt  algo- 
rithm  was  specifically  designed  for  the  sum-of-error-squares  cost  function it can be 
expected to converge  faster than general  methods. 

8.2 Genetic  Algorithms  and  Evolutionary  Computing 

Genetic  algorithms (GAS) are optimization  algorithms  based on the  mechanics of 
natural selection and natural genetics.  They  combine  the  idea  of  survival  of  the  fittest 
(in  classical  optimization  terms,  survival of the  best  set of weights)  with  a  structured 
yet  randomized  information  exchange to form a search  algorithm  with  some of the 
talent of human  search. GAS efficiently  exploit  historical information to speculate 
on new search  points  with  expected  improved  performance.  The CA techniques 
are subdivided into evolutionary  strategy (ES) and genetic  algorithms (GenA). The 
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interest  in  heuristic  search  algorithms  with unde~innings in natural and physical 
processes  arose  in  the 1970s, when Holland first  proposed  GenA.  This  technique of 
optimization  is  very  similar to ES,  which  was  developed  by  Rechenberg and Schwefel 
about the  same  time.  ES  encodes  the  strings  with  real  number  values, and GenA 
encodes  the  strings  with  binary  values. 

As mentioned, GAS are another nonlinear  optimization  tool  used to find  the  best 
solution  (set of network  parameters)  for a given data set and network  structure.  They 
can also be  used to optimize  the  structure of the  network. The CA, algorith begins 
with the random initialization of a set of possible  solutions  (see fig. 8.5). Each  solu- 
tion (or gene st~ing) with  its  parameters  (e.g.,  shape  parameters of membership  func- 
tions  in FL models, or centers and standard deviations of Gaussian  bells  in 
networks)  produces a special  point of the error, cost, or fitness  function  in  the  search 
space  (weights  space).  This  set of different  weights  in  each iteration is  called a popu- 
lation. Further, from a part (say,  one  half or one quarter) of the  best  solutions of one 
population, c ~ i l ~ ~ e ~  (new  weights  parameters)  will be produced. It is  expected that 
these new  weights (children) will  be better than the  old  ones  (their parents). ( ~ e  all 
know that this  is not necessarily  the  case  in  biology  or  in human~nd, but that is how 
the  algorithm  is  set up.) 

A simple CA consists of three  operations: selection,  genetic ope~ation, and replace- 
ment (see  fig. 8.6). The population P ( t )  = {wl, w2, . . . , W,} comprises a group of  gene 

eing a candidate to be  selected  as a solution of the prob- 
e, W is a vector that contains  network  parameters (the 

centers and standard deviations of Gaussian  bells  in a RBF network, or the HL and 
OL weights  of an MLP). The  fitness  values for all  the  gene  strings are the corre- 
sponding  values of the error (cost)  function.  Thus, to each  gene  string wi a corre- 
sponding  fitness Ji(w) is  assigned. Further, a new population (the next  set  of  network 
parameters at iteration t + 1) is  produced  through  the  mechanisms of selection,  genetic 
operation, and replacement.  After a certain  number of iterations (generations),  the 
GA should be able to find a gene string  (weights  vector) that’is a solution  close to the 
global min i~um of the m~tidimensional error function. 

As mentioned,  the  simple CA passes  through  the loop of three  operations: 

1. Selection of the  best  gene  strings  (by,  for  example,  using a so-called  roulette  wheel) 
2. Genetic  operation  (crossover or resemblance, ~utat ion)  
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Genetic aigorithm-~ff~tiaiizat~off step  with 8 random  weights 
Error 
function 

0.2 

0 

-0.2 

5 

Genetic ~~g~ritbm-final step  with 8 optimized  weights 
Error 
function 
E(w1 t vvz) 

0.2 

0 

-0.2 

5 

Figure 8.5 
~aximization by genetic  algorithm. Initial population  comprises  a  set  with  eight  randomly  produced  two- 
dimensional  weights.  At  each iteration step,  the four best  weights  produce  four  The  generation 
o b t ~ i n ~ d  in  this way (four parents  and  four  children)  calculates  the  four  best  weights  again,  which  act  as 
parents  for  the  next  generation.  The whole  procedure  repeats  until  the  stopping  criterion  is  met. 



8.2. Genetic Algor i ths   and  Evolutionary  Computing 499 

I I 
Initialization of first  population P(t). 

Evaluation of fitness J(P(t)). 
t =  0 

Selection of the  best  gene  strings 
(roulette  wheel). 

t = t +  

Genetic  operation to produce 
children.  Crossover  or 

insert  children into population 
(replacement).  Evaluation of 

Figure 8.6 
Simple  genetic  algorithm  structure. 

3. Replacement of bad  gene  strings of the  old  population  with new  gene strings 
(children) 

Before  the  optimization loop begins,  the  parameters that should be optimized  have to 
be transformed into a  corresponding  form.  This  is  called  encoding.  The  encoding  is 
an important issue  in  any GA because it can severely  limit  the  window  of  information 
that is  observed  from  the  system.  The  gene  string  stores  the  problem-specific  infor- 
mation. Usually it is  expressed as a  string of variables,  each  element of  which  is  called 
a  gene.  The  variable can be represented by a  binary or a  real  number, or by other 
forms  (e.g.,  embedded  list for factory  scheduling  problems), and its  range  is  usually 
defined  by the specified problem. The two  most  common  ways for encoding  the 
parameters  are  binary or real  number  forms  (see  fig. 8.7). 

The  principal  difference  between ES and GenA  is that ES encodes  the  strings  with 
real  numbers,  whereas  GenA  encodes  the  string  with  binary  numbers.  This  difference 
has  significant  consequences for the mutation. 

The GA works  with an aggregation of  gene  strings,  called  a population. Initially, 
a  population  is  generated  randomly.  However,  this  randomness  is  controlled.  The 
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Binary  encoding 

Genes 

Real  number  encoding 1431 4 1 9   / l 6 1 3 0 1 2 2 1 5 9 1 1 2 1  

Encoding of parameters in gene strings. 

fitness  values of all  the  gene  strings are evaluated by calculating error functions for 
each  set of parameters  (gene string). Some  of the gene strings  with the highest  fitness 
values are selected  from  the  population to generate  the  children.  The standard genetic 
algorithm uses a  roulette wheel method for selection,  which  is  a  stochastic  version of 
the survival-of-the-fittest  mechanism. In this  method of selection, candidate strings 
from the current generation P(t )  are selected for the  next  generation P(t  + l )  by 
using  a  roulette  wheel  where  each  string  in  the population is  represented on the wheel 
in proportion to its  fitness  value.  (Here,  one  string  is  one  column  vector  containing 
one  set of HL weights.) 

Thus,  the  strings (HL weights) that have  a  high  fitness,  meaning that make  a  good 
approx~ation, are  given  a  large  share  of  the  wheel,  while  the  strings  with  low  fitness 
are given a  relatively  small portion of the  roulette  wheel.  Finally,  selections  are  made 
by spinning  the  roulette  wheel m times and accepting as candidates  those  strings that 
are indicated at the  completion of the  spin (m may  be  one  half  of  a  population or any 
other chosen ratio). 

The  reason that the  stochastic  version  is  used rather than just deterministically 
always  choosing  the  best  strings to survive,  gets at the  crux of the  underlying  theory 
and a s s ~ p t i o n s  of genetic  search.  This  theory  is  based on the notion that even 
strings  with  very  low  fitness  may contain some  useful partial i n f o ~ a t i o n  to guide  the 
search. For this  reason, the survival  probability of lowquality weights  is  small, but 
they are not altogether  excluded  from  the  search. 

The selected  gene  strings  have to pass through the  genetic  operations of either 
crossover or resemblance and mutation to create  the  children for the  next  generation. 

C r o ~ ~ o ~ e r  is a  recombination operator that combines subparts of two  parents  gene 
strings,  which  were  chosen  by the  selection, to produce  children  with  some parts of 
both parents’  genetic material. The  simplest form is  the  single-point  crossover.  Both 
the parents  from P(t )  and the  so-called  crossover  point are randomly  selected.  The 
portions of the  two  gene  strings  beyond  the  crossover point are exchanged to form 
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Crossover  point 

Parents 

Figure 8.8 
A  simple  one-point  crossover. 

Children 

mm Crossing  by ES ”+ 

1511101 
Parents in real  number  Children 

Parents in binary  number  Children 

Figure 8.9 
Crossover  in ES and  GenA. 

the  children  (see fig. 8.8). Multipoint  crossover  is  similar to single-point  crossover 
except that several  crossover  points are randomly  chosen.  Figure 8.9 shows an 
example of the  crossover  in CenA and ES. 

It can be  seen that ES does not change  the  real  number of the  next  generation 
because the crossover  point  is  always  between  the  real  numbers.  This  means that both 
parents and children contain the same  numbers  (1 , 5,  10, and 14).  With  Gem%  the 
crossover  point can be at any  place, and the  newly produced  real  value  is  typically 
different. In figure 8.9, one can see that the  parents’  numbers  (1, 5 ,  10, and 14) are 
different  from  the  children’s  weights (2, 5,  9, and 14). 

The ~ e ~ e ~ ~ Z ~ ~ c e  operator seems to be a part of nature, and it can be  applied 
to  data encoded by real  numbers.  Typically the resemblance operator recomputes 
(changes)  the  parents’  values,  applying  a  normal  distribution operator in  the  sense 
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P, = 0.05 

Gene  string  before  mutation 

Random  vector 

Gene  string  after  mutation 

Figure 8.10 
Bit  mutation of one  bit. 

Parents in real  number  Children 

1~ ~1 
14  4 ~utat ion - 6 0 

by  GenA 1~ 1 1 1 0 1 0 1 1  
3 1 11 9 

Parents in binary  number  Children 

Mutation  in ES and  GenA. 

that the  parents’  values are treated as a  mean of some normal distribution and the 
children’s  values are calculated as VY&il&en = ~ ( ~ ~ ~ ~ e ~ ~ ~ ,  of), where i denotes  the  gen- 
eration (iteration step) and bi is  decreasing  toward  the  end of the  calculation.  The 
smaller  is,  the  higher  the  degree of resemblance  between parents and children will 
be.  Applying  the  resemblance operator on parents  (see  fig. 8.9) [l4 101 and [S l], 
one obtains children [ 11.3 10.57 and [6.2 1.11. 

~ ~ t ~ t i o ~  is an operator that introduces variations into the gene string.  The  oper- 
ation occurs  occasionally,  usually  with  a  small  probability Pm. Each  bit  in  a  gene 
string will  be  tested and, if necessary,  inverted.  An  easy  way to test  the  bits  in  a  gene 
string  is as follows.  A  vector of the  same  size as the  gene  string  is  created,  which 
consists of random  numbers  between 0 and l .  This  vector  is  compared  bit  for  bit  with 
the mutation probability Pm. If  a  value of the  generated random vector  is  smaller 
than Pm, the  bit  in  the  same  place  in  the  gene  string  is  inverted.  An  example  is  shown 
in  figure  8.10.  As  crossover  does, mutation has  different  effects  in  ES and CenA. In 
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Table 8.1 
Summary  of  Properties  of  the  Genetic  Algorithm and  Orthogonal  Least  Squares  Optimization 

Genetic  Algorithm  Orthogonal  Least  Squares 

~ e s c r ~ t i ~ n  
Searches  globally  using  a  probabilistic  random 
search  technique  analogous  to  the  natural 
evolution  for  optimum  solution. 
Search Strategy 
Employs  a  multipoint  search  strategy  to  continu- 
ously  select  the  set  of  solutions  with  higher  fitness. 
This  approach is  similar  to  natural  reproduction 
from  two  parents  in  creating  children,  which  are 
expected  to  be  better  than  their  parents.  The  fittest 
survive  whereas  the  rest  are  “disqualified.”  The 
whole  selection  procedure,  from  choosing  parents 
for  reproduction to disqualification of  unfit 
solutions,  is  carried  out  in  a  probabilistic  random 
manner. 
Search Space 
Since  this  is  a  random  probabilistic  method  that 
searches  globally,  there  are  no  restrictions  on  the 
search  space.  If  an  optimal  solution  exists,  GA  is 
capable of  finding it. 

Eficiency 
Although  GA  is  powerful  in  finding  the  optimal 
solution,  the  path it takes  to  get  to  this  solution is 
complicated  and  may  not be repeatable  because of 
the  random  nature of this  technique.  There  are 
often  several  paths  the opt~ization algorithm 
could  take  to  arrive at the  same  solution,  making 
this  a  very time-consu~ng, ineflicient,  but 
effective  procedure. 

~ e s c r ~ t i ~ n  
Searches  locally,  selecting  from  the  given  or 
offered  set  of  basis  functions  (regressors)  to  find an 
optimal  subset of basis  functions. 
Search Strategy 
A  set  of  basis  functions  is  selected  for  a  network 
from  a  previously  defined  set  of  basis  functions 
(regressors)  that  have  varying  shapes  and 
locations,  usually  evenly  scattered  inside  the  input 
training  space.  The  selection of  basis  functions 
depends  on  the  associated  approximation  levels 
of the  basis  function.  The  selection  procedure 
maximally  selects  the  basis  functions  with  higher 
approximation  levels to form  a  subset  of  bases. 

Search Space 
OLS  is  a  structured  search  technique  that  only 
searches  locally,  i.e.,  inside  a  predefined  set  of 
basis  functions, to find an optimal  solution.  Unless 
the  global  optimal  solution  is  contained  in  the  set 
of  basis  functions,  OLS  is  not  capable  of  finding it. 
E ~ c i e n c y  
Unlike  GA, OLS does  not  guarantee  an  optimal 
solution  but  a  solution  close to it if the  initial 
set  of  basis  functions  covers  the  input  space 
adequately.  However,  the opt~ization is  a  lot 
faster  than  GA,  and  the  solution  is  more  practical 
in  the given  time. This optimization  procedure is 
easily  repeatable  because of the  nature of  the 
search. 

ES mutation can be understood as a  fine  adjustment  in  the  sense that the  values 
of the gene  strings  will  be  modified through adding  a  small  normally dist~buted ran- 
dom  number. In enA an inversion of a  bit can have  a  large  effect  (see  fig. 8.11). 
The imitation of  biological mutatio~ can be understood as an attempt to jump out 
of a  local m i ~ m u m  at the  beginning of the opti~ization and later  make  a  fine 
adjustment. 

After  the  selection and the  genetic operations by  which the new children are pro- 
duced,  they  will  replace  a bad part of the parents’  generation and become  a  compo- 
nent of the  following  generation P ( t  + 1). Each  sequence  produces  the new set of 
weights  (gene  strings), and one  must  check  whether  the new weights are better than 
the  ones  in  last  generation. If so, this new  set should be kept  in  case  a  better  one  is  not 
found. These  weights  would  be  the  result of the  optimization and thus the  solution of 
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the problem.  Each  sequence can also  calculate  the  average  fitness of the whole  gen- 
eration, which  can be  used to measure  the  quality  of  the  generation.  This  shows  also 
the  trends of the  optimization. 

To finish  the  optimization,  various  criteria can be used. A common way  is to stop 
the  algorithm  after  a  certain  number of generations. Another criterion  could be a 
predefined  fitness  value that the  algorithm  has to reach.  Yet another possibility  is that 
the  algorithm  finishes  after  the  fitness  value  has not changed  for  a  certain  number of 
generations. 

GAS have  been  applied to a  diverse  range of problems.  The author and his students 
have  been  using GA  to optimize RBF networks and FL models. In particular, GA 
was  used for learning  the HL weights (parameters that define  positions and shapes 
of activation or membership  functions). A11 these  parameters are encoded as real 
numbers, as in  evolutionary  algorithms.  Once the HL weights  have  been  calculated, 
the  OL  weights are computed by a  simple  pseudoinverse operation in  each iteration 
step. 

There are various  ways of using  GA-based  optimization  in  neural  networks.  The 
most  obvious  way  is to search  the  weights  space of a  neural  network  with  a  pre- 
defined  architecture. GA is  capable of global  search and is not easily  fooled  by local 
minima. GAS do not use the  derivative of the  fitness  function.  Therefore,  they are 
possibly  the  best  tool  when  the  activation  functions are not differentiable  (e.g., for 
hard limiting  threshold  functions,  triangles, and trapezoidals) . 

A comparison of the CA (actually,  ES  because  all computation was  done  with 
real  numbers) and the OLS optimization  techniques  is  presented  in  table  8.1  (Shah 
1998). GA was  applied for finding  optimal  centers and standard deviations of the 
HL Gaussian  basis  functions.  The output layer  weights for an R 
obtained by a  pseudoinverse operation. As discussed, GA and OLS  each  have  their 
own  strengths and weaknesses but in Shah  (1998),  the  OLS  method  of  optimization 
was  preferred  for  share market forecasting  because of the  large amount of data and 
the highly  complex nature of the RBF network.  However,  recall that there  is no 
guarantee that OLS will  find  the  best  subset at all and that it can take an unrealisti- 
cally  huge  processing  time for CA to find  the  best  solution. 
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In  this chapter, the  focus  is on specific  topics that might be helpful for understanding 
the  mathematical parts of soft  models.  Since  each of these  concepts and tools  is  a 
broad subject,  they cannot be covered  in  detail.  However,  a  summary of the  basic 
and important mathematical  techniques  is  necessary not only for understanding the 
material  in  the  previous  chapters but also  for further study and research  in  learning 
and soft  computing. It is  supposed that the  reader  has  some  knowledge of probability 
theory,  linear  algebra, and vector  calculus.  This chapter is  designed  only for easy 
reference of properties and notation. Its contents are used  freely  in  this  text  without 
further reference. 

We start with  a  classic  problem:  the  task of solving  a  system of linear  equations. It 
is an very important concept and set of techniques  because it is  eventually  the  most 
commonly  encountered  problem  in  modern  applications. 

Insight into the  geometry of  systems  of linear equations helps  a lot in  understanding 
the (matrix) algebra and concepts  involved.  Recall that x + y = 3 is  a  straight  line, 
x + y + z = 3 is  a  plane, and for more than three  variables, x + y + z + W + 
U + = 3 is  a  hyperplane. In solving  systems  of  linear  equations, we  seek an n- 
dimensional  solution  vector x that satisfies  all  the m equations. 

Clearly, an infinite  number  of  vectors  exist that satisfy  a  single (m = 1) equation 
ax + by = c, in two  unknowns (n = 2 ) ,  where a, b, and c are known. 
equations  in  two  unknowns  (meaning  two  straight  lines),  the  variety of solutions  is 
larger-two  lines can intersect (Uni~Ue solution), can be parallel (no solution), or can 
lie  one  over  the other (an infinity of the  points,  i.e.,  vectors,  satisfies both equations). 
If there  are  more  lines,  there are still  only  the  three  kinds  of  solutions  (unique,  none, 
or an infinity of solutions). 

The same  reasoning  applies for three  unknowns,  but  now  instead of straight  lines 
in  a  two-dimensional  space,  there are planes  in  a  three-dimensional  space.  These 
planes  can  intersect at a  single  point (but there  must be at least  three of them to do 
that), can be parallel, can intersect  along  a  single  line  (imagine  the  pages  of  your 
opened  book  as,  say, 325 planes  intersecting  along  the  single  binding  axis), or can 
mutually  intersect  each other along  different  straight  lines.  Two  planes can never 
intersect at a  single point, just as n - l  hyperplanes can never  intersect at a  single 
n-dimensional  point  (vector).  The  algebra  describing  all  these  different  kinds of' 
solutions  is  simple, and the  geometry just described  may  help  in  understanding  the 
language of matrices.  Consider now the  system 
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a l l x l  + ~ 1 2 x 2  + + a l n x n  = y l  

~ 2 1 x 1  + ~ 2 2 x 2  + + a2nxn = y 2  
7 

a m l X l  + a m 2 ~ 2  + * * t- amnxn = y m  

which  in  matrix notation is  simply Ax: = y.' Entries ag of the (m,   n )  matrix 
known, as are the  elements y i  of the (m,  1) vector y. When y = 0, the  system is 
 homogeneous^ otherwise it is nonhomogeneo~s. Any  system  of m linear  equations  in n 
unknowns (xi> may 

1.  Have no solution,  in  which  case it is an inconsistent system 
2. Have exactly one solution (a unique solution) 
3. Have an infinite  number of solutions 

In the  last  two  cases,  the  system  is consistent. (See  fig.  9.1.) 

n o ~ n s  Consider  the  following  systems,  corresponding  matrices,  ranks, 
solutions, and geometries. 

~ 

x + y = 2 ,  

x - y = o .  
X 

Figure 9.1 
Conditions  for  the  existence of solutions  to  a  system  of  linear  equations. 
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r(A)  = (Ay) = n = 2. There  is  unique  solution [x y ]  = [l l]. It is  a  section of the 
two  lines. 

L1 x - y = 2 )  

x - y = o *  
X 

The  first equation changes to x - y = 2, and matrices A, y, and A, change, too. 
r(A) = 1 and r (AJ)  = 2. Inconsistent  system. No solution.  Two  lines are parallel. 

~ 

x - y = 2 ,  

x - y = o ,  

x + y = l .  X 

This  is an ~verdetermined system (m = 3 > n = 2). r(A) = 2 and r(Ay) =I 3. Incon- 
sistent  system. No solution.  Two out of three  lines are parallel. 

x + y = 2 ,  

x - y = 0 7  

2 x - y =  1. x 

This  is an Q~er~etermined system (m = 3 > n = 2). But  now r(A) = r ( A ~ )  = 2, Con- 
sistent  system.  Unique  solution, [x y ]  = [ l  l]. 

x + y = 2 ,  

2x + 2y = 4, 

3x+ 3y = 6.  

This  is an over~etermined system (m = 3 > n = 2). Now r(A)  = r(Ay) =r: 1. Consis- 
tent system  but an infinity of solutions. All three  lines  lie  over  each other, The& is a 
single  specific minimaZ length solution x = [x y ]  = [l  l], which can be obtained 
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using  the ~ s e ~ ~ ~ i n v e r s e  A’ of the matrix ‘y. Note that out of all (out of an 
infinite  number of) solutions,  there  is  one  having  the  minimal  length (or the  one 
closest to the  origin) x = A’y. 

A Y  

~ 

x + y = 2 .  
x 

This  is an. ~ ~ ~ e r d e t e r ~ i n e ~  system (m = 1 < n = 2). r( 
system  but an infinity of solutions.  There  is a specific 
x = [x y ]  = [l l], which can be obtained  using  the  pseu 

same as the  preceding x = A’y = [l l]. 
‘y. This  minimal  length  solution (or the  one  closest to the origin)  is  the 

ore owns Nothing  changes  when  there are more  unknowns  except 
that when n > 3,  visualization of the  solutions  is no longer  possible.  Figure  9.2 
depicts  a few different  cases for n = 3. 

~ 

x + y +  z = 3 ,  

2y+ z = 2 ,  

y + 2% = 2. 

This  is a consistent  system  with a unique  solution: [5/3 2/3 2/31. r( 
3  (see  fig.  9.2, top graph). 

This  is a consistent  system (r(  ) = ~ ( A ~ )  = 2 < n)  with an infinite  number of 
solutions. Note that the  matrix A is a ran~-de~cient matrix, = 0. All  three 
planes  intersect  along a single  line  (see  fig.  9.2, bottom graph). er, it is  possible 
to calculate  the  minimal  length  solution: [--1.667 0.333 0.8671. 
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Consistent  system of three  equations  with 
a  unique  solution 

1 

Consistent  system  of  three  equations  with 
an  infinite  number  of  solutions 

-.._ ._. 
. e < . .  - 

0.5 y 

X 
3 0  

Figure 9.2 
Two  solutions  to  the  system of three  linear  equations  in  three  unknowns.  Other  cases  are  possible, too. 
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A vector defined  as  a  column (n ,  1) vector and an (m,  n)  matr i~  that has m rows 
and n columns are given as follows: 

is  called square if m = n, or A is an (n ,  n) matrix.  An (m,  n) matrix  is  a 
r matrix.  Vectors  may  also be  viewed as particular rectan~ular matrices 

(m = 1). [aqlm,, is an entry  (element)  from  the ith row and j th  CO 

A. W e n  the  entries of a  matrix are real, A E !Rmqn,  the  columns 
a.  l "  - E ! R r n q  = !Rrn, i = 1 , 2, . . . , n, and A can be  expressed  in  terms  of  its  columns  by 

of the (m,  n) matrix is an (n, m )  matrix. Its (i, j)th entry  is aji 
A = [a1 a2 . . . a,]. 

his  property  is  defined for square  matrices  only. 

AAT = I, then A is orthogonal. 
If AT = --A, then A is  skewsymmetric. 

= A, then A is  idempotent. 
I is an identity, or unit,  matrix. 

A matrix  is ~ i a g o n a ~  if aq = 0 for i f j ,  that is, = diag(alla22.. .ann).  If aii = 1, 
the  matrix  is an identity (unit) matrix. 
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Ad~ition, ~ u ~ ~ a c ~ o n ~  and ti~lication of Matrices 

, or cg =a@ h,. 

kA = Ak = [kag]. kA + k 

of an (m, B) matrix A by an (n ,p)  matrix  is an (m,p) matrix C: 
n 

ai&, i = 1,. . . , m ,  j = 1,. . . ,p.  
r= 1 

C). (A + B)C = AC + 
For symetric and diagonal matrices, 

rodwt The inner (scalar, dot) product of two  n-dimensional  vec- 
tors x and W is  a scalar a: a = xTvv = W Tx. The outer product of x and W is  a matrix 
A. (x E !Rim and W E !Rn.) 

The results of ma lti~~cation are as follows: 

,, An  expression  ending  with  a  column  vector  is a column  vecto 
* An  expression  beginning  with a row  vector  is  a  row  vector: y 
* An  expression  beginning  with  a  row  vector and ending  with  a  column  vector  is  a 
scalar: x T ~ y  = S. 

Linear Inde~en~ence of Vectors a l ,  a2,. . . , an are vectors  in !Rim, and 0 1 1 ,  012, . . . , En 

are scalars. The vectors a are  linearly  independent if 
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The columns  (rows)  of A E are linearly  independent if and only if  A'A is a 
nonsingular matrix, det(ATA) = IA'Al $ 0. 

The rank of an (m,   n )  matrix  is  equal to the  maximal  number of linearly  indepen- 
dent  columns or, equivalently,  the  maximal  number of linearly  independent  rows. 
Apparently, the rank can be at most  equal to the  smaller  of  the  two  integers m and n. 
If rank(A) = min(m, n) ,  A is  of full rank. 

rank(A) = rank(AT) = rank(A'A) = rank(AA'). 

Vector  Norms Noms are (positive)  scalars and are used as measures of length,  size, 
distance, and so on, depending on context.  An LP nom).  is a p-nom of an (n,  1) 
vector  x: 

Mostly, p = 1,2, or GO, and these n o p s  are called one-, two-, or infinity norms. 

n 

i= 1 
(absolute  value, one-nom, 
L1 nom) 

llxiiw = dFRGi, W symmetric  positive.  (weighted  Euclidean norm) 

llxll, = (infinity,  Chebyshev, L,  
nom) 

Ilxll 2 0 if x $0 ,  Ilaxil = la1 llxll for any a. (any nom) 

/Ix + Yll Ilxll + IlYll. (triangular inequality) 

A syFmetric matrix A is positive (or negative) definite if the quadratic form  xTAx 
satisfies  xTAx > 0 (or <0) for x # 0, positive semi~efinite if xTAx 2 0, and negative 
semidefinite if  X'AX 5 0. 

verse  and P ~ u d o ~ v e ~  Matrices A, B E (square  matrices).  If 
is the inverse of A, denoted as A". If  A-'  exists, A is  nonsingular. 

For every  rectangular  matrix A E a unique A' exists that is  called  the pseu- 
its  determinant IAI = 0, that is, if rank(A) < n. 

doinverse of A (or the Moore-Penrose generalized inverse): 
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= A-? If  ATA or is nonsingular, 

+ could be interpreted by a set  of  linear equations 

x = Y7 x E !Rn ,  y E !R'"'', m > n. 

m > n denotes  the overdetemined system, that is,  there  are  more  equations than 
unknowns xj, j = 1, . . . , n, rank(A) = n (see  "singular  value  decomposition"  follow- 
ing).  Recall that in  examples  in  earlier  chapters, a typical  linear equation was  con- 
nected  with  the  calculation of the output layer  weights, and it was  given as 
An  unknown  vector x* = A+y  solves  this  system  in  the  sense that the  scalar error 
(cost,  objective, or merit)  function J(x) becomes a minimum for x": 

1 
2 

.(X): = -(AX - y) T ( A ~  - J ) .  

The minimal  sum of quadratic errors is  equal to Jmi,(x*) = y T (  

For scalar a, a+ = if a # 0, a+ = 0 otherwise.  More properties 

# 0, (A')T = ( .AT)+. 

T ,  ( A + ) ~ A ~ A  = A, A ~ A  

A set (Xi) E !R" is o~thogonal if X T X j  = 0, i # j .  A set  is o~thono~mal if X T X j  = 6,. 
6i. = 1 for i = j and zero  otherwise. A real  matrix A is orthogonal if 

. This  implies that det(A) = 1, that is, A is  nonsingular. 

 vector$ A E ! R n x n .  If 3, exists  such that AV = AV, v # 
and v is  the  corresponding  eigenvector. Ai are  solutions of 
is normal, that is, if AAT = ATA,  then A can be 
gonal  matrix  with 3, - S on the  diagonal. A = V 

sition A set of linear  equations  is  given by 
is  very  close to singular, that is,  when det 

Gaussian  elimination (or LU decomposition) will fail, and singular  value  decompo- 
sition  techniques  will  solve  the  problem.  Any (m, n) matrix A(m 2 n)  can be written 
as a product 
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U is an (m, n) column-o~hogonal matrix, and S is an (n, n) diagonal  matrix  with 
Gii 2 0. V' is a transpose of an (n,  n) orthogonal matrix. U and V are orthonormal 
matrices, 

U'U = V'V = I = [U'][U] = [V'][V] = il l , 1 *  

For a square  matrix A = (B, n), 

The Qi are  singular  values,  which are square roots of the  nonzero  eigenvalues of A'A 
or AA'. For an (m, n) matrix A, A' (pseudoinverse)  is  related to the  singular  value 
decomposition of A by the  formula 

A' = VS'U', + = S-', i.e., S' = diag- . 
Gi 'I 

An important use  of singular  value  decomposition  is the solution of a system  of linear 
equations (in  the  sense  of  the  minimum L2 norm). This  is  particularly  reliable for 
badly  conditioned  matrices 

Linear Least-S~uares Problem The last result  solves  the  minimization  problem 
called  the  linear  least-squares  problem. Find x that minimizes 11 Ax - yi122, that is, x 
should  minimize the error function 

E(x) = 4 (AX - y) '(AX - y). 

- = 0 =  aE d(Ax - y) '(Ax - y) - a(y - Ax)(y - Ax) ' 
ax ax ax 

- 

= 0 + 2A'Ax - A'y - A'y = 0. 

2(ATAx - A'y) = 0. 

X* = (ATA)-'ATy. 
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egression, Estimation, Identifica~on The  approximating 
function 

N 

i= 1 

is  shown  in  figure 9.3. We form an error, cost, objective, merit,  fitness function or a 
performance index of approximation J(w), or E(w). Note that different  names are 
used  in  different  fields for the  same J(w) . Measurement errors or source errors are 
usually  called noise. 

"""""""""- 
n appro xi mat in^ function. 

- basis  functions in RBF networks 

- membership functions in FLMs 
- kernels in SVMs 

There are N basis  functions. 

""""""""" 

Figure 9.3 
Nonlinear  regression  (interpolation  or  approximation)  with  linear  combination of nonlinear  basis  functions 
(one-dimensional  case). 
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The subject of optimization  is W. Find W in  order that J(w)  = min, by pseudo- 

The solution  is  a  one-step  proc  ure. (Note that this  is  valid for linear  in  parameters 
regression). A few different  cases  follow: 

P = N as many  basis  functions as  data (inte~olation); no filtering of noise. 
P > 2v one  least-squares  solution for W; filtering of  noise. 
P < N infinite  number of solutions or no solution. 

inear  Algebra  and  Analytic ~ e o ~ e ~ y  

Consider  two (n, 1) vectors a and b. The scalar  (inner or dot) product  is  given as 

*a = albl + a2b2 + + anbn. 

The length of vector a is  given as 11 a/[ = 6% = d a :  + a22 + a + a i .  The  angle a 
between  the  two  vectors a and b can be obtained  from a'b = llall 1 1  

Clearly,  when the two  vectors  are orthogonal, then cos a = 0. In other words,  when 
'a = albl + a262 + - - + anbn = 0, the  two  vectors are orthogonal. 

The  scalar product is  also  equal to the  absolute  value (the length) of one of vectors 
multiplied by the algebraic  projection of  the other vector on the  direction of the  first: 
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~ e r ~ l a n e  The set  of points (XI, x 2 ,  . . . , xn) E !Rn satisfying  the equation 

where  the wi are not all  zero,  form  a  hyperplane (a linear  manifold of dimension 
n - 1). Conversely,  any  plane  in %" can be  defined  by  the  preceding equation. 

The equation of the  plane through the  point ( ~ 1 0 ,  x20, . . . , x , ~ )  normal to a  vector n 
given  with  coordinates [ w l ,   w 2 ,  . . . , wN] is LT 

w1 (XI - x10) + w 2 ( x 2  - ~ 2 0 )  + * * + wn(xn - xno)  = O 

Conversely,  given (HP) we can determine  a  vector orthogonal to the  plane as 
n = [wl ,  w 2 ,  . . . , W,] '. Thus, for example,  in  a  two-dimensional  classification prob- 
lem,  a  decision  plane 

defines  the  separation  line  in  the  feature  plane (x, y )  with  a  unit  normal  vector 

The  vector n, = [0.89 - 0.451 points to the  feature (x, y )  half-plane for which 
z > 0. For the  decision  plane  4x + (-2y) + (-42) - 6 = 0, nu = [-0.89 0.451 '. 

atie  for^ A quadratic form  is  a quadratic function of the  form 

n n  

where x is an (n, 1) vector and A is  a  symmetric  matrix  of  order n. The  (real) qua- 
dratic form  is  said to be positive definite if xTAx > 0 for all  nonzero  vectors x. It is 
said to be negat~ve definite if x'h < 0 for all  nonzero  vectors x, and it is  said to be 
positive s e ~ i d e ~ n i t e  if xTAx 2 0 for all  nonzero  vectors x. The definiteness of the 
matrix A is the  same as the  definiteness of the quadratic form.  Both can be deter- 
mined by analyzing  the  eigenvalues of A: 
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Eigenvalues Ai 
Positive  Zero  Negative  Type of Form atrix A of Form 

e Positive  definite  Nonsingular 
e e Positive  semidefinite  Singular 
e e Indefinite  Nonsingular 
e e Indefinite  Singular 

Negative  definite  Nonsingular 
e e Negative  semidefinite  Singular 
e Null  Singular 

Every quadratic form  has  a  diagonal  representation, that is, it can be reduced to a 
sum of squares.  There  exists  a  nonsingular  matrix 
is a diagonal  matrix of order n. Letting y = x quadratic forms  becomes 

n 
x = X*AX = z/lix;. 

i= l 

u l ~ ~ a ~ a ~ l e  Analysis 

F u n ~ ~ o n s  Set  of  real-valued  functions F1 (x))   F~(x))  . . , Fm(x) on !Rn can be  re- 
garded as a  single  vector  function (x) = [FI  ~2 . . F: '31" "+ 

~ r a ~ e n t  F(x) = F(x1 x2. . . x,), l? '31" "+ (52. Note that Fis scuZur function of a  real 
vector x E (52". 

The  gradient  is  a  column  vector. 

is  now a  vector  function F: '31' "+ 'illm. 
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e$$ian F(x) = F(x1 x?. . . x,), F: 93' --$ 93. F is scalar function  again. The Hessian 

matrix of F(x) is  defined as the  symmetric matrix with  the (i,j)th element -. a2F(x) * dxiaxj 

(W) = ~ ~ F ( x )  = 

"(!E)T 8x1 dx 

L (!?E)T 
ax, ax 

a2F(x) 
ax; 

aX2aXI 

a2F(x) 

d2F(x) 
ax,ax1 

a2F(x) 
~ . . .  
axl ax2 

8x22 
a2F(x) 

~ . .. 

a2F(x) 
~ . . .  
ax,ax2 

a"F(x) 
ax, ax, 

a2F(x) 
dX2dX' 

a2F(x) 
dX,2 

The Hessian  of F(x) is  the Jacobian of the  gradient VF(x). A typical  application of 
the  Hessian matrix is in. nonlinear  optimization  (minimization  or ma~imization) 
tasks, when the  Hessian of cost  function J ( w )  is  used. 

Scalar Func~on with  espect  to  a  Vector 

a(xTAx) 
dX 

6. -- - (A + A T ) ~  if A is not symmetric. 

7 .  - a(xTAx) - - 2xTA = 2Ax if A is  symmetric. 
ax 

In the preceding  expressions, a(x) and b(x) are (m, l)  vector  functions of x. 
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d e  Let F(x) = h(g(x)), x E %”, and F, h, and g are scalar  functions. 

aF ah ag 
”” - 
dxi dg dxi * 

In the general  case, h: %‘ ”+ !Rrn, and g: %” ”+ i R r .  Thus, I;: !RZn ”+ !Rrn. The chain 
rule  now  looks  like  this: W(x) = V ~ h ( g ( x ) ) ~ ~ g ( x ) .  

ob ab^^ Theory 

Sets A set  theory  describes  the  relations  between  events.  There are sets,  subsets, 
elements,  empty  sets. 

Set  Operations 

2 Complement of A 
A U B Union of A and B 
A n B Intersection of A and B 

Properties 

Commutative  Associative  Distributive 

A u B = B u A  ( A u B ) u C = A u ( B u C )  A n ( B u C ) = ( A n B ) u ( A n C )  
A n B = B n A  ( A n B ) n C = A n ( B n C )  A u ( B n C ) = ( A u B ) n ( A u C )  

P r o b a b ~ i ~  To each eveit A of a  class of possible  events  in  a  simple  experiment,  a 
number PIA] is  assigned.  This  number  is  called  probability if it satisfies 

1. P[A] 2 0. 
2. P[G] = 1 if G is  a  certain  event. 

3. P [ A  U B] = P[A] + P[B] if A n B = 0 (if the  events  are  mutually  exclusive), 
P[#] = 0 if # is an impossible  event. 

and when there  is an infinite  number  of  events, 

4. PIA1 u A 2  u A 3  U . . . l  = P[Ai] if Ai n A j  = 0 for  each i Z j .  

 combine^ E x ~ e r ~ e n ~  The  outcomes of two  simple  experiments, Ai and Bj, are 
considered  a  (combined)  event [Ai, Bji .’ 
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r o ~ ~ ~ i l i ~  Defined as 

consequently, 

For independent  events, 

A ~ f f ~ d o ~  ~ f f r i ~ ~ Z e  x is  a quantity that can have  different  values  in  such  a  way that 
for  each  given  real  number X the  probability P[x 5 X ]  is  defined. The random  vari- 
able x can be discrete, that is, it can  have  a  finite  set, of distinct  values, or it can be 
c ~ ~ ~ i ~ ~ o ~ s .  The basic  probability  functions and parameters  for both discrete and 
continuous  variables are given in  tables 9.1 and 9.2. In many  cases,  it  is  useful to 
work  with  probability  parameters  instead of probability  functions  (see  table 9.2). 

Table 9.1 
Probability  Functions  for  a  Random  Variable x 

Discrete  Continuous 

~ne-D~mensi~nal  Case 

Distribution  function F ( X )  = P [ x  5 X ]  

Probability-density Pi = P[x = Xj] 
function (PDF) 

Probability Pi 
same i 

Properties O I p , < I  

X P j = . I  
1 

F ( x )  = x 
all x; rl;x 

F ( X )  = PIX 5 X ]  



Table 9.1 (continued) 

Discrete  Continuous 

Examples  of  density 
functions 

Binomial Normal 

x = O , l ,  ..., 12 
Poisson 

. .  
- C O I x I C O  

Exponential 

P(x)  = A&-h O < X l C O  

C O  -CO<x<o 
Ax&-A 

X !  
P[x] =-, x=0 ,1 ,2  ,'.. 

~Wo-Dirnensionu~ Case 

(Joint) distribution 
function 

(Joint) probability- 
density  function 

F ( X ,  Y )  = P[x I x, y Y ]  F ( X ,  Y )  = P[x 5 x, y 5 Y ]  

Pij = P[x = x,, y = y ; . ]  

(Joint) probability P ( X ,   Y ) A X A  Y 
~ P P [ X < x < X + A X , Y < y <   Y + A Y ]  

Properties 

F ( X ,  CO) = P[x I x, y I C O ]  
= P[x I x] 

F(CO, Y )  = P[x I 00,y I Y ]  
= P [ y  5 Y ]  

P i = E P i j  
j 

P j = x P i j  

F ( X I Y ) = P [ x I X I y =   Y ]  
F ( Y I X ) = P [ y <   Y l x = X ]  

r 

P(X = xi I y = y;.) = 9 
Pj 

P(y=  y ; . I x=x , )=-  pij 
9 

Marginal  distribution 
function 

Marginal  probability- 
density  function 

Conditional  distribution 
function 

F ( X I Y )  = P[x I X I  y = Y ]  
F ( Y I X ) = P [ y I   Y l x = X ]  

Conditional  probability- 
density  function 

Independence  of X 
and Y 

v) = F(X)F(Y) 
Y> = P(X>P(Y> 

h important  example of a  continuous 
PDF is  a  bivariate  normal  (Gaussian)  PDF: 
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Table 9.2 
Probability  Parameters for a  Random  Variable X 

Discrete  Continuous 

One-Dimensional  Case 
Expectation +m 

E[...] =x ...e E[. . .] = /-m . . P(x)  dx 

Linearity of the 
expectation  operator 

nth  moment 

First  moment  (mean, 
expectation) 

nth  central  moment 
First central  moment 
Second  central  moment 

Variance 

Standard  deviation  or 
spread 

Two-Dimensional  Case 

Mean 

Variance 

Covariance 

E[xn]  = S ~ m  x"P(x) dx 
m 

+m 
p = /- xP(x)  dx 

m 

+m 
a2 = / x2P(x)  dx - p2 

-m 

d 

Correlation  coefficient 
PXY = "xov 
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Table 9.2 (continued) 
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Discrete  Continuous 

c XiP# 

Pj 
Conditional  expectation E[xly = yj] = ”-.- 

Property E[E[XlYll  = E[Xl 
Independence of x and y E[xy] = IE[x]E[  y] 

Pxv = 0 

= PxPy 



Selected Abbreviations 

ABC adaptive backthrough control 
AF activation  function 
AIC adaptive inverse control 
ARMA 
BF 
CG 
EBP 
EC 
ERM 
FAM 
FIR 
FLM 

auto-regressive  moving  average 

basis  function 
conjugate  gradient 
error backpropagation 
evolutionary  computing 
empirical  risk  minimization 
fuzzy  additive  model 
finite  impulse  response 
fuzzy  logic  model 

GA genetic  algorithm 
GRBF generalized radial basis  function 
HL hidden  layer 
IIR infinite  impulse  response 
IMC 
LFR 
LMS 
LP 
MAP 
MLP 
MSE 
NARMAX 
NN 

internal model control 
learning of  fuzzy  rules 
least  mean square 
linear  programming 
ma~imum-a-posteriori (decision  criterion) 
muitiiayer  perceptron 
mean  squared error 
nonlinear  auto-regressive  moving  average  (with)  exogenous  variable 
neural  network 

NZSE New Zealand  stock  exchange 
OCR optical character recognition 
OCSH optimal  canonical  separating  hyperplane 
OL output layer 
OLS orthogonal least  squares 
PDF probability-density  function 
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QP 
RBF 
RLS 
SLT 
SRM 
SVM 
VC 

Selected Abbreviations 

quadratic programming 
radial  basis fmction 
recursive  least  squares 
statistical  learning  theory 
structural risk minimi~ation 
support vector  machine 
V a p n i k - C h e ~ o n e ~ ~ s  



Notes 

reface 

1.  This  language  is  sometimes  called  Serbocroatian  or  Croatian.  Soon,  unfortunately,  there  may be  some 
more  recently  created  names  for  the  unique  Serbian  language. 

1. In  different  references  in  the  literature,  one  may  find  examples  of  confusion  in  presenting  novel  com- 
puting  techniques.  A  typical  one  is  equating  the  genetic  algorithm  (GA)  or  evolutionary  computing (EC) 
techniques  with  NNs  and FL models. NNs and FL models  are  modeling  tools,  whereas  GA  and  EC  are 
two  out of  many  optimization  algorithms  that  can  be  applied  for  parameter  adjustment  during  the  learning 
(training, adaptation)  phase  of  neural  or  fuzzy  models. 
2.  Note  the  simplicity of this  notation.  The use  of  the  summation  sign  is  avoided.  Product Vx is  a  column 
vector of the  inputs  to  the  HL  neurons.  After  these  inputs  have  been  transformed  through  the  HL  activa- 
tion  functions  (here  sigmoidals),  the NN output is obtained  as  a  scalar  product W*G between the  OL 
weights W and  the HL neurons  output  vector G, where G = y. 
3. The  prefix hyper is  used  whenever  the  space  dimensionality  is  higher  than  3.  In  these  cases,  nothing  can 
be  visualized.  But the  math  works  in  any  space,  and  this  makes  the  problems  solvable. 
4.  The  difference  between  interpolation  and  approximation  is  discussed later. In  short,  interpolation  is just 
a  special  case  of  approximation  when F(x,  W) passes  through  the  given  training data points. 
5. Instead of “measure of goodness~”  “closeness of approximation”  or  simply  “error”  is  also  in  use. 
6. Throughout  this  book  the  black  square  marks  the  end of an example. 
7.  Equations  (1.27)  and  (1  .28)  represent  the  two  most  popular  feedforward  neural  networks  used  today- 
the  multilayer  perceptron  and  the  radial  basis  function NN. Their  graphical  representations  are  given  later. 
A  multilayer  perceptron  is an  NN with  one  or  more  hidden  layers  comprising  neurons  with  sigmoidal 
activation  functions.  A  typical  representative of  such  functions  is  a  tangent  hyperbolic  function.  The 
structure of RBF  networks  is  the  same,  but  the  HL  activation  functions  are  radially  symmetric. 
8. Optimization  implies  either  maximizing  or minim~ing. Because  the  maximum  of  a  function f ( x )  occurs 
at the  same  place  as  does  the  minimum  of -f(x), it  is  convenient  to  discuss  only  the  minimization. 
9. The  Hessian  matrix  is  formally  introduced  by  (1.46)  and  used  in  chapter 8. 
10. Learning  machine means  all  the  different  models  one  can  use  (neural  networks,  fuzzy  logic  models,  any 
mathematical  function  with  unknown  parameters,  RBF  networks  and  the  like)  in  trying to find  the  regu- 
larities  between  the  input  and  the  output  variables. 
1  1. Note  that  in  presenting  the  theoretical  regression  curve,  the  basic  assumption,  which  will  hardly  ever be 
met  in  real  applications  while  learning  from  a  finite  data  set,  is  that  the  joint  probability-density  function 
P ( x ,  y )  is  known. 
12. It is  supposed that  readers  has  some  knowledge of probability  theory.  If  not,  they  should  consult 
chapter 9, which  is  designed  for  easy  reference of properties  and  notation.  The  contents of chapter 9 are 
used  freely  in  this  text  without further  remark. 
13.  Note  that  the  form of the  expression  for  expected  (average,  mean)  profit  is  a  sum  of  the  products 
between  the  corresponding loss functions  and  probabilities.  This  may be  useful  in  understanding  more 
complex  expressions  for  risk  that  follow. 
14.  Figure  1.31  shows  a  three-class  classification  in  a  two-dimensional  feature  space  for  classes  having  the 
same  covariance  matrices X1 = C2 = X3 but  different  means. 
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Chapter 2 

l. The  theory  of  SLT, structural risk  minimization,  and  support  vector  machines  has  been  developed  since 
the  late  1960s  by V. Vapnik  and A. Y. Chervonenkis  (see  the  references at the  end  of  the  book). 
2. In many  practical  problems,  inputs xi are  usually  selected  before  the  experiment  is  conducted,  and  the 
training  data  consist of  predetermined  input  values X and  measured  output  values Y conditioned  on X.  The 
model (2.1) is  general  and  covers  this  situation  as  a  special  case. 
3. More  on  this  issue,  including  when  and why  these  models are  linear  or  nonlinear,  as well as on the 
similarity of RBF  networks  and FL models,  can be found  in  chapter  6. 
4. The  presentation  that  follows  is  also  valid  for  classification  problems  using  the  corresponding  norm,  and 
in  that  case,  the  target  (regression)  function  is  the Bayes’ discriminant  function. 
5. In  this  book,  the  number of training  data  pairs  or  patterns  are  generally  denoted by P. However,  in  the 
literature on  SLT  and SVMs, the  usual  notation  for  sample  size  is 1. In  order to accord  with  the  standard 
notation  in  those  fields, I is  used as  the  notation  for  sample size  (the  number  of  training data pairs  or  pat- 
terns)  in  this  section. 
6.  Terminology  in  the  field  of  learning  machines,  which  has  roots  in  both  approximation  theory  and sta- 
tistics, is exceptionally  diverse,  and  very  often  the  same  or  similar  concepts  are  variously  named.  Different 
terms  are  deliberately  used  in  this  section  to  equip  the  reader  with  terminology  and  skills to readily  asso- 
ciate  similar  concepts  with  different  names.  The  most  notoriously  inconsistent  terminology  here  concerns 
the  terms risk and error. They  describe  different  mathematical  objects,  but  in  spirit  minimizing  generaliza- 
tion  error is very  like  minimizing  true  (expected,  guaranteed)  risk.  On  the other  hand,  both  minimization 
procedures  also  minimize  the  bound  on  test error. 
7, Confidence  level l - should  not be  confused  with  the  confidence  term Q. 
8. Actually,  for x E ‘ill2, the  separation  is  performed by  planes ~1x1 + ~ 2 x 2  + b = 0. In  other  words,  the 
decision  boundary  (separation  line  in  input  space)  is  defined  by  the  equation ~ 1 x 1  + ~ 2 x 2  + b = 0. 
9. In  the  rest  of  this  book  the  following  alternative  notation  is  used  for  a  scalar  or  dot  product: w T x  = 
xTw = (wx) = (xw). This  use  is  mostly  contextual  and  will,  one  hopes,  not  be  confusing. 
10. In  forming  the  Lagrangian  for  constraints  of  the  form h > 0, the  inequality  constraints  equations  are 
multiplied  by ~ o ~ - ~ e g a t i u e  Lagrange  multipliers ai 2 0 and subtracted from  the  objective  function. 

Chapter 3 

1.  This  should  be  read  as  “planes  or  hyperplanes.” 
2. The  parity  problem  is  one  in  which  the  output  required  is  1 if the  input  pattern  contains an odd  number 
of l’s,  and  is 0 otherwise.  This  problem  is  a  difficult  one  because  the  similar  patterns  that  differ by a  single 
bit  have  different  outputs.  This is pronounced  with an increase  in  the  dimension  of  feature  space (Rumelhart 
Hinton,  and  Williams  1986). 
3. Very often,  particularly  in  the literature on  identification,  signal  processing,  and  estimation,  the  appear- 
ance of this  optimal  solution  vector W* may  be  slightly  different than  shown  in (3.25). One can come 
across  such an expression  as W: = (XTXe)-’ XTD = X:D, where  subscript e is  used  only to differentiate 
expressions  for W: and W*. This is merely  a  consequence  of  a  differently  arranged  input  data  matrix X,. In 
fact,  changing  notation  such  that X, = X ‘, the  notations  for W * and w: are  equivalent. 
4. Quadratic  surfaces  are  described by equations that combine  quadratic  terms only  with  linear  terms  and 
constants. 
5. The  adjective ideal with  regard to this  method  is  used  to  mean  that  the  gradient  is  calculated after all  the 
data  pairs  from  the  training data set  have  been  presented.  Thus,  the  gradient  is  calculated  in  an  off-line,  or 
batch,  mode. 
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ter 

1. Just  for  curiosity,  what  might  ""scient" be? Cybenko  (1989)  felt  "quite  strongly  that  the  overwhelming 
majority of approximation  problems  would  require  astronomical  numbers of  terms."  Fortunately,  it  turns 
out  that  this feeling  was just  a  cautious  sign  of  scientific  concern  and  that  in  many  applications  the  practical 
problems  can  be  solved  with a  technically  acceptable  number  of  neurons. 
2. Most  heuristics  presented  in  this  section  are  related to another  important  class of multilayer  neural 
networks-radial  basis  function (RBF) neural  networks.  The  RBF  network  is  a  network  with  a  single 
hidden  layer,  comprising  neurons  having  radial  basis  activation  functions.  The  input to these  neurons u is 
not  the  scalar  product of the  input  and  the  weights  vector  but  rather  the  distance  between  the  center of the 
radial  basis  function  (which  now  represents  the  HL  weight)  and  the  given  input  vector. 
3. With  the  RBF  and FL models,  the  use  of  the  bias  term  is  optional,  but  with  the  multilayer  perceptron  it 
is mandatory. 

1 .  Multilayer  perceptrons  can  have  two  or  more  HLs,  but  RBF  networks  typically  have  only  one  HL. 
2. See the G matrix  in (5.15) and  figure 5.5. 
3, A functional  is an operator  that  maps  a  function  onto  a  number. 
4. The  constraints  that  one h d s  in  classical  optimal  control  theory  are  similar:  while  minimizing  the 
quadratic  performance  criterion  given  as J = 0.5 j,"(xTQx + u'Ru) dt, Q 2 0, R 2 0, one  tries  to  mini- 
mize both  the  deviations of the state vector x and  the  control  effort U. Taking Q = I, the  only  design 
parameter  left  is  the  weighting  matrix R, which  corresponds to the  regularization  parameter A here.  The 
influence  of  the  fegularization  parameter /z (or of matrix R) on  the  overall  solution  of  these  two  different 
problems  is  the  same:  an  increase  in A (or in R) results  in  an  increase of the  error  term (d - f ( ~ ) ) ~  or of the 
deviations of  the state vector x in  optimal  control  problems. 
5. The  null  space  of  the  operator P comprises  all  functions .(X) for  which Pn(x) is  equal  to  zero. 
6. In  the  case of  piecewise  functions,  the  domain  is  broken up  into  a  finite  number of (here P) subregions 
via  the  use  of  centers  or  knots,  and  the  same  number  of  (here P) piecewise  functions are  placed at these 
centers. 
7. FCr a  one-dimensional  input x, compare  the  exponential  damping c;'($ = e-lls112/~ with  a  polynomial 
one G(s) = r4, which  corresponds to a piecewise  cubic  splines  approximation. 
8. For two-d~ensional input  the  covariance  matrix of the  Gaussian  basis  function I: = 
[G: 0 ; c 5 ~ p ;  qxayp $1, where p denotes  the  correlation  coeEcient  between  the  input  variables. For 
independent  input  varrables p = 0. 

ter 

1. Notation:  Sets  are  denoted by  uppercase  letters  and  their  members  (elements)  by  lowercase  letters.  Thus, 
A denotes  the  universe of  discourse, or  a  collection of  objects, that  contains  all  the  possible  elements  a of 
concern  in  each  particular  context. A is  assumed to  contain  a$nite  number  of  elements  a  unless  otherwise 
stated. 
2. The  author  would  rather  order hot slivovitz as  a nice  rememorari a  patriu mea. 
3. Note  also  that if there  are n independent  universes of discourse (n linguistic  or  input  variables)  the 
membership  function  is  a  hypersurface  over an n-dimensional  Cartesian  product. 
4. Note  the  unlike  units of x1 and x2 intentionally  defined  on  different  universes  of  discourse. 
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5. Kosko  (1997)  has  written  a  whole  book  based  on SAMs. Interestingly,  there  is  not  a  single  line  in  it 
c o ~ e n t i n g  on  or  describing  relational  matrices. 

1. NARNAX stands  for  nonlinear  auto-regressive  moving  average  with  exogenous  variable. 
2. Similar  approaches  and  structures  have  been  proposed  and  used  in  many  publications by  Widrow and 
his  co-workers  under  the  global  name  of adaptive inverse control. 
3, ARMA stands  for  auto-regressive  moving  average. 
4. Only  running  animation  is  described.  Details  on  walking,  jumping,  and  vaulting  animation  can be found 
in  Wang  (1998). 

Chapter 9 

l. In  the  neural  networks  and f m y  logic  fields,  this  equation is typically Gw = d, where  the  elements of G 
are  the  hidden  layer  outputs (for neural  networks)  or  the  membership  function  degrees  (for  fuzzy  logic 
models), d is a  vector of the  desired  values,  and W denotes  the  unknown  output  layer  weights  (or  the  rule 

2. The  symbols & and &,j mean  summation  over  all i, that is,  all  combinations i, j .  
~ conclusions P for  fwzy  logic  models). 
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adaline,  2  13 
additive  noise,  124 
animation, 470-474 
approximating  function, 126 
approximation, 29,  34-41 
approximation error, 134,  136 
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back  propagation  through  a plant, 427-428 
Bayes  decision  criterion, 71, 78 
Bayes  risk,  71,  86 
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best  approximation,  29 
BFGS  optimization  method,  488 
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canonical  hyperplane, 152 
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binary, 71 
dichotomization, 91 

parametric, 92 
template  matching, 101 
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composition  in  FL, 380-382 
computer  graphics, 463-480 
conjugate  gradient  method,  430,489-494 
consistent  estimators,  275 
covariance  matrix,  93, 334,  341,  529 
crafting  sigmoidal AF (learning), 280-283 
cross-validation,  40,  137,  269,  272 

Davidon-Fletcher-Powell  method,  487 
decision  boundary, 15 1 
decision  regions,  70,  88 
defuzzification  methods,  393 
center-of-area, 393 
center-of-gravity, 393 
first-of-maxima,  393 
middle-of-maxima,  393 

degree  of  belonging,  372,  376 
delta  signal,  &-signal,  234,  257 
design  matrix,  3  5 
dichotomization,  91 
discriminant  function,  89 

distal  teacher,  426,  428 
for  normally  distributed  classes,  93-95 

&-insensitivity  zone,  177 
EBP  error  back  propagation, 255-266 
empirical  risk m ~ ~ i ~ t i o n  ERM, 130 
epoch, 6,208,230 
equality of NNs  afld  FLMs, 396 
error  correction  lecrning,  194,  204,  234, 236 
error  signal  term ( S  signal),  234,  257 
error  stopping  function, 292 
error  surface, 44-53,  302,  484 
estimation error, 135 
evolutionary  computing, 496-504 

facial  animation,  473 
FAM, fuzzy  additive  model,  404-410 
financial  time  series,  449-463 
Fletcher-Powell  method,  487 
Fletcher-Reeves CG method,  492 
Fourier  series  and N N ,  47 
fizzy  logic  systems 
composition, 380-382 
defwzification, 391-394 
center-of-area, 393 
center-of-gravity, 393 
first-of-maxima,  393 
middle-of-maxima,  393 

degree  of  belonging,  372,  376 
design  steps  for FL models, 405 
fuzzification,  385,  391 
fuzzy  additive  models  (FAM),  386,404-410 
IF-THEN  rules, 378 
implication, 383-385 
inference,  382-391 
membership  function,  21-24,367-371 
normal f. sets,  368 
not-normal f.  sets,  368 
possibility  degree,  376 
relational  matrix, 376-382 
relations, 374 
rule  explosion,  408 
S-norm,  373 
set  operations, 371 
sets,  367 
surface of  knowledge,  394-396 
T-norm, 373 
trapezoidal  membership  function, 371 
triangular  membership  function, 37 1 

Gauss-Newton  method, 495 
generalization error, 134 
generalization  of  NNs  and SVMs, 40,  269 
generalized  delta (S) rule,  260,  263 
generalized  least  squares,  495 
genetic  algorithms, 496-504 
geometry  of  learning,  277-288 
gradient  method, 49,54-60,230-237,301-302,518 
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~ramm-Schmidt  orthogonal~ation, 348 
graphics by RBF  networks, 463-480 
Green’s  function, 320 
growth  function,  144 

Hessian  matrix,  57,  229,  296,  301,  485,  495 
human  animation, 470-474 
hypothesis  space,  134 

ideal  control, 421 
identification  of  linear  dynamics 
IF-THEN  rules, 378 
ill-posed  problem,  202,  314 
indicator  function,  138,  150 
insensitivity  or E zone,  177 
interpolation, 34-41 

Jacobian, 428-430 

Karush-Ku~-Tucker condition, 156 
kernels,  170 
key learning  theorem, 131 
Kolmogorov  theorem,  13 

Lagrangian 
dual, 156,  163,  172,  180 
primal,  156,  163,  172,  180 

1. of linear  neuron  weights  (5  methods), 225 
1. rate v ,  194,  296 
l. by  subset  selection,  146,  334,  353 
momentum  term,  296-301 
moving  center  learning,  337 

learning  fuzzy  rules  (LFR),  396 
learning  machine,  126 
Leven~rg-Marquardt method,  495 
likelihood ratio, 78 
linear  dynamic  system,  223 
linear  neuron,  2  13 
linear  programming  (LP), 353-358 
linear  separability, 202 
LMS  learning  algorithm,  234 
logistic  (unipolar  sigmoidal)  function, 259 
loss function,  81,  84,  126 
LP noms, 28-31,  512 

Mahalanobis  distance,  94,  100 
MAP  maximal-a-posteriori  decision  criterion,  71 
margin,  153 
mat~x-inversion l e m a ,  237,  239 
~aximal-a-priori decision  criterion,  7  1 
maximal  margin  classifier,  149 
membership  function,  21-24,  367-371 
Mercer  kernels,  170 

learning, 61 

MLP  multilayer  perceptron, 15-18,  26,  255 
momentum  term, 296-301 
morphing, 466-470 
multiclass  classification, 80 

NARMAX  model,  422,433,451 
nested  set  of  functions,  114 
Newton-Raphson  method,  229,  301-302,485 
NNs based  control, 421 
adaptive  backthrough  control  ABC, 429-449 
ABC of time-variant plant, 440-443 
backpropagation  through  a plant, 427-428 
dead-beat  controller,  433 
direct  inverse  modeling,  423 
distal  teacher,  426,  428 
errors, defition of,  431 
controller error, 43  1 
perfomance error, 43  1 
prediction error, 43  1 
predicted  performance error, 43  1 

general  learning  architecture,  423 
ideal  linear  controller, 421 
IMC  internal  model  control,  431 
indirect  learning  architecture, 425 
Jacobian of the plant, 428-430 
parallel  model, 422 
series-parallel  model,  422 
specialized  learning  architecture,  425 

noise  influence  on  estimation,  220,  224 
nonradial  BFs,  337,  339 
norm, 28-31,  512 
normal  equation, 228,  344 

OLS orthogonal  least  squares, 343 
orthogonali~ation, 350-352 
overfitting,  4 l, 269 

parametric  classifier,  92 
penalty  parameter  C,  163 
perceptron,  194 
convergence  of  the  p.  learning  rule,  199 
p.  learning  algorithms, 204 

Polak-Ribiere CG method,  493 
possibility  degree,  376 
Powell’s quadratic  approximation, 58-61 
projection  matrix, 348 

quadratic programing, 156-158,  163-165,  172- 

quasi-Newton  methods, 486 
173,  180-181 

radial  basis  functions  (RBFs)  network, 15-18,  26, 

regression,  62-68,  176,  354-357,  515 
33-41, 313-358,463,478 
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regularization,  3  14 
regularization  parameter 2, 137,  320,  329 
reproducing  kernels,  170 
ridge  regression,  137 
risk,  85 
RLS  recursive-least-squares, 237-241 
rule  explosion, 408 

second  order  optimization  methods, 483-496 
share  market, 450 
sigmoidal  functions 
bipolar S. f.,  259 
logistic  (unipolar)  function, 259 

similarity  between  RBFs  and  FLMs,  395-404 
soft  margin, 162 
SRM,  structural risk  minimization,  145,  161 
stabilizer  (in  RBFs  network),  320, 329 
subset  selection,  146,  334,  353 
support  vector,  157 
support  vector  machines, SVMs, 148 
for  classification,  149,  162,  166 
for  regression,  176 

surface  of  knowledge,  394-396 
system  of linear  equations, 505 

underfitting, 269 
uniform  convergence,  13  1 
universal  approximation, 36-37 
universe  of  discourse,  367 

variable  metric  method, 486 
variance, 134-  136 
VC dimension,  138 
vectors  and  matrices, 510-514 

weight  decay,  137 
weights 
geometrical  meaning  of  weights,  14,  16,  280-283 
initialization, 290 




