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Preface

Neural Networks, or artificial neural networks to be more precise, represent a technol-
ogy that is rooted in many disciplines: neurosciences, mathematics, statistics, physics,
computer science, and engineering. Neural networks find applications in such diverse
fields as modeling, time series analysis, pattern recognition, signal processing, and con-
trol by virtue of an important property: the ability to /earn from input data with or
without a teacher. ]

This book provides a comprehensive foundation of neural networks, recognizing
the multidisciplinary nature of the subject. The material presented in the book is sup-
ported with examples, computer-oriented experiments, end-of-chapter problems, and a
bibliography.

The book consists of four parts, organized as follows:

1. Introductory material, consisting of Chapters 1 and 2. Chapter 1 describes, largely

~ In qualitative terms, what neural networks are, their properties, compositions, and

how they relate to artificial intelligence. This chapter ends with some historical

notes. Chapter 2 provides an overview of the many facets of the learning process

and 1ts statistical properties. This chapter introduces an important concept: the

Vapnik—Chervonenkis (VC) dimension used as a measure for the capacity of a
family of classification functions realized by a learning machine.

2. Learning machines with a teacher, consisting of Chapters 3 through 7. Chapter 3
studies the simplest class of neural networks in this part: networks involving one
or more output neurons but no hidden ones. The least-mean-square (LMS) algo-
rithm (highly popular in the design of linear adaptive filters) and the perceptron-
convergence theorem are described in this chapter. Chapter 4 presents an
exhaustive treatment of multilayer perceptrons trained with the back-propagation
algorithm. This algorithm (representing a generalization of the LMS algorithm)
has emerged as the workhorse of neural networks. Chapter 5 presents detailed
mathematical treatment of another class of layered neural networks: radiai-basis
function networks, whose composition involves a single layer of basis functions.
This chapter emphasizes the role of regularization theory in the design of RBF

12



Preface 13

networks. Chapter 6 describes a relatively new class of learning machines known
as support vector machines, whose theory builds on the material presented in
Chapter 2 on statistical learning theory. The second part of the book finishes in
Chapter 7 with a discussion of committee machines, whose composition involves
several learners as components. In this chapter we describe ensemble averaging,
boosting, and hierarchical mixture of experts as three different methods of build-
ing a committee machine.

3. Learning machines without a teacher, consisting of Chapters 8 through 12.
Chapter 8 applies Hebbian learning to principal components analysis. Chapter 9

‘applies another form of self-organized learning, namely competitive learning, to

the construction of computational maps known as self-organizing maps. These
two chapters distinguish themselves by emphasizing learning rules that are
rooted 1n neurobiology. Chapter 10 looks to information theory for the formula-
tion of unsupervised learning algorithms, and emphasizes their applications to
modeling, image processing, and independent components analysis. Chapter 11
describes self-supervised learning machines rooted 1in statistical mechanics, a sub-
ject that is closely allied to information theory. Chapter 12, the last chapter in the
third part of the book, introduces dyrnamic programming and its relationship to
reinforcement learning.

4. Nonlinear dynamical systems, consisting of Chapters 13 through 15. Chapter 13
describes a class of dynamical systems consisting of short-term memory and lay-
ered feedforward network structures. Chapter 14 emphasizes the 1ssue of stabil-
ity that arises in nonlinear dynamical systems involving the use of feedback.
Examples of associative memory are discussed in this chapter. Chapter 15 describes
another class of nonlinear dynamical systems, namely recurrent networks, that
rely on the use of feedback for the purpose ot input-output mapping.

The book concludes with an epilogue that briefly describes the role of neural networks
in the construction of intelligent machines for pattern recognition, control, and signal
processing.

The organization of the book offers a great deal of flexibility for use in graduate
courses on neural networks. The final selection of topics can only be determined by the
interests of the instructors using the book. To help in this selection process, a study

guide is included in the accompanying manual.
There are a total of 15 computer-oriented experiments distributed throughout

the book. Thirteen of these experiments use MATLAB. The files for the MATLAB
experiments can be directly downloaded from |

ftp://ftp.mathworks.com/pub/books/haykin

or alternatively

http:// www.mathworks.com/books/

In this second case, the user will have to click on “Neural/Fuzzy” and then on the title

of the book. The latter approach provides a nicer intertace.
Each chapter ends with a set of problems, Many of the problems are of a chal-
lenging nature, designed not only to test the user of the book for how well the material



14  Ppreface

covered in the book has been understood, but also to extend that material. Solutions to
all of the problems are described in an accompanying manual. Copies of this manual
are only available to instructors who adopt the book, which can be obtained by writing
to the publisher of the book, Prentice Hall.

The book should appeal to engineers, computer scientists, and physicists. It is

- hoped that researchers in other disciplines such as psychology and neurosciences will
- also find the book useful.

Simon Haykin
Hamilton, Ontario
February, 1998.
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SRN simple recurrent network (also referred to as Elman’s recurrent network)
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IMPORTANT SYMBOLS
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Jacobian matrix

error covariance matnx in Kalman filter theory

square root of matrix K

transpose of square root of matrix K

Boltzmann constant

[6garithm

log-likelihood function of weight vector w

log-likelihood function of weight vector w based on a single example

controllability matrix

observability matrix
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probability of state i in statistical mechanics

transition probability from state i to state j

stochastic matrix
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probability of error -
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probability that the visible neurons of a Boltzmann machine are in
state a, given that the network is in its clamped condition (i.e., posi-
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probability that the visible neurons of a Boltzmann machine are in

state «, given that the network is in its free-running condition (i.e.,
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estimate of autocorrelation function of x,(n) and x,(n)
estimate of cross-correlation function of d(n) and x,(n)
correlation matrix of an input vector
continuous time
temperature
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trace of a matrix operator
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Lyapunov function of state vector x
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optimum value of synaptic weight vector
synaptic weight of synapse j belonging to neuron k
optimum weight vector
equilibrium value of state vector x
average of state x; in a “thermal” sense
estimate of x, signified by the use of a caret (hat)
absolute value (magnitude) of x
complex conjugate of x, signified by asterisk as superscript
Euclidean norm (length) of vector x
transpose of vector x, signified by the superscript T
unit delay operator
partition function
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d(n) local gradient of neuron j at time n
Aw small change applied to weight w
gradient operator
Laplacian operator
J gradient of J with respect to w
- K divergence of vector F
learning-rate parameter
cumulant
policy
threshold applied to neuron k (i.e., negative of bias b, )
regularization parameter
kth eigenvalue of a square matrix
nonlinear activation function of neuron &
symbol for “belongs to”
symbol for “union of”
symbol for “intersection ot”
symbol for convolution
superscript symbol for pseudoinverse of a matrix
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Open and closed intervals

* The open interval (a, b) of a variable x signifies that a < x < b.

e The closed interval [a, b] of a variable x signifies that a = x < b.

e The closed-open interval {a, b) of a variable x signifies that a = x < b; likewise
for the open-closed interval (a, b].

Minima and Maxima

¢ The symbol arg min f(w) signifies the minimum of the function f(w) with respect

to the argument vector w.
¢ The symbol arg max f(w) signifies the maximum of the function f(w) with respect
W

to the argument vector w.






Introduction

1.1 WHAT IS A NEURAL NETWORK?

Work on artificial neural networks, commonly referred to as “neural networks,” has
been motivated right from its inception by the recognition that the human brain com-
putes in an entirely different way from the conventional digital computer. The brain is
a highly complex, nonlinear, and parallel computer (information-processing system). It
has the capability to organize its structural constituents, known as neurons, so as to
perform certain computations (e.g., pattern recognition, perception, and motor con-
trol) many times faster than the fastest digital computer in existence today. Consider,
for example, human vision, which 1s an information-processing task (Marr, 1982;
Levine, 1985; Churchland and Senowski, 1992). It is the function of the visual system
to provide a representation of the environment around us and, more important, to sup-
ply the information we need to inferact with the environment. To be specific, the brain
routinely accomplishes perceptual recognition tasks (e.g., recognizing a familiar face
embedded in an unfamiliar scene) in approximately 100-200 ms, whereas tasks of
much lesser complexity may take days on a conventional computer.

For another example, consider the sonar of a bat. Sonar 1s an active echo-location
system. In addition to providing information.about how far away a target (e.g., a flying
insect) is, a bat sonar conveys information about the relative velocity of the target, the
size of the target, the size of various features of the target, and the azimuth and eleva-
tion of the target (Suga, 1990a, b). The complex neural computations needed to extract
all this information from the target echo occur within a brain the size of a plum.
Indeed, an echo-locating bat can pursue and capture its target with a facility and suc-
cess rate that would be the envy of a radar or sonar engineer.

How, then, does a human brain or the brain of a bat do it? At birth, a brain has
great structure and the abality to build up 1ts own rules through what we usually refer
to as “experience.” Indeed, experience is built up over time, with the most dramatic
development (i.e., hard-wiring) of the human brain taking place during the first two
years from birth; but the development continues well beyond that stage.

A “developing” neuron is synonymous with a plastic brain: Plasticity permits the
developing nervous system to adapt to its surrounding environment. Just as plasticity
appears to be essential to the functioning of neurons as information-processing units in

23
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the human brain, so it is with neural networks made up of artificial neurons. In its most
general form, a neural network is a machine that is designed to model the way in which
the brain performs a particular task or function of interest; the network is usually
implemented by using electronic components or is simulated in software on a digital
computer. Our interest in this book is confined largely to an important class of neural
networks that perform useful computations through a process of learning. To achieve
good performance, neural networks employ a massive interconnection of simple com-
puting cells referred to as “neurons” or “processing units.” We may thus offer the fol-
lowing definition of a neural network viewed as an adaptive machine':

A neural network is a massively parallel distributed processor made up of simple processing
units, which has a natural propensity for storing experiential knowledge and making it avail-
able for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.
2. Interneuron connection strengths, known as synaptic weights, are used to store the ac-

quired knowledge.

The procedure used to perform the learning process 1s called a learning algo-
rithm, the function of which is to modify the synaptic weights of the network 1n an
orderly fashion to attain a desired design objective.

The modification of synaptic weights provides the traditional method for the
design of neural networks. Such an approach is the closest to linear adaptive filter the-
ory, which is already well established and successfully applied in many diverse fields
(Widrow and Stearns, 1985; Haykin, 1996). However, it is also possible for a neural net-
work to modify its own topology, which is motivated by the fact that neurons in the
human brain can die and that new synaptic connections can grow.

Neural networks are also referred to in literature as neurocomputers, connection-
ist networks, parallel distributed processors, etc. Throughout the book we use the term
“neural networks”; occasionally the term “neurocomputer” or “connectionist net-

work” 1s used.

Benefits of Neural Networks

It is apparent that a neural network derives its computing power through, first, its mas-
sively parallel distributed structure and, second, its ability to learn and therefore gen-
eralize. Generalization refers to the neural network producing reasonable outputs for
inputs not encountered during traming (learning). These two information-processing
capabilities make it possible for neural networks to solve complex (large-scale) prob-
lems that are currently intractable. In practice, however, neural networks cannot pro-
vide the solution by working individually. Rather, they need to be integrated into a
consistent system engineering approach. Specifically, a complex problem of interest is
decomposed into a number of relatively simple tasks, and neural networks are assigned
a subset of the tasks that match their inherent capabilities. It is important to recognize,
however, that we have a long way to go (if ever) before we can build a computer archi-
tecture that mimics a human brain.

The use of neural networks otters the following useful properties and capabilities:

1. Nonlinearity. An artificial neuron can be linear or nonlinear. A neural net-
work, made up of an interconnection of nonlinear neurons, is itself nonlinear. Moreover,
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the nonlinearity i1s of a special kind in the sense that it 1s distributed throughout the
network. Nonlinearity is a highly important property, particularly if the underlying
physical mechanism responsible for generation of the input signal (e.g., speech signal)
1s inherently nonlinear. '

2. Input-Output Mapping. A popular paradigm of learning called learning with a
teacher or supervised learning involves modification of the synaptic weights of a neural
network by applying a set of labeled training samples or task examples. Each example
consists of a unique input signal and a corresponding desired response. The network 1s
presented with an example picked at random from the set, and the synaptic weights
(free parameters) of the network are modified to minimize the difference between the
desired response and the actual response of the network produced by the input signal
in accordance with an appropriate statistical criterion. The training of the network i1s
repeated for many examples in the set until the network reaches a steady state where
there are no further significant changes in the synaptic weights. The previously applhed
training examples may be reapplied during the training session but in a different order.
Thus the network learns from the examples by constructing an input—output mapping
for the problem at hand. Such an approach brings to mind the study of nonparametric
statistical inference, which 1s a branch of statistics dealing with model-free estimation,
or, from a biological viewpoint, tabula rasa learning (Geman et. al., 1992); the term
“nonparametric” is used here to signify the fact that no prior assumptions are made on
a statistical model for the input data. Consider, for example, a pattern classification task,
where the requirement is to assign an input signal representing a physical object or
event to one of several prespecified categories (classes). In a nonparametric approach
to this problem, the requirement is to “estimate” arbitrary decision boundaries in the
input signal space for the pattern-classification task using a set of examples, and to do
so without invoking a probabilistic distribution model. A similar point of view 1s
implicit in the supervised learning paradigm, which suggests a close analogy between
the input—-output mapping performed by a neural network and nonparametric statisti-
cal inference.

3. Adaptivity. Neural networks have a built-in capability to adapt their synaptic
- weights to changes in the surrounding environment. In particular, a neural network
trained to operate in a specific environment can be easily refrained to deal with minor
changes in the operating environmental conditions. Moreover,when it 1s operating in a
nonstationary environment (i.e., one where statistics change with time), a neural net-
work can be designed to change 1ts synaptic weights in real time. The natural architec-
ture of a neural network for pattern classification, signal processing, and control
applications, coupled with the adaptive capability of the network, make it a useful tool
in adaptive pattern classification, adaptive signal processing, and adaptive control. As a
general rule, it may be said that the more adaptive we make a system, all the time
ensuring that the system remains stable, the more robust its performance will likely be
when the system 1s required to operate in a nonstationary environment. It should be
emphasized, however, that adaptivity does not always lead to robustness; indeed, it
may do the very opposite. For example, an adaptive system with short time constants
may change rapidly and theretfore tend to respond to spurious disturbances, causing a
drastic degradation in system performance. To realize the full benefits of adaptivity, the
principal time constants of the system should be long enough for the system to ignore
spurious disturbances and yet short enough to respond to meaningful changes in the
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environment; the problem described here is referred to as the stability—plasticity
dilemma (Grossberg, 1988b).

4. Evidential Response. In the context of pattern classification, a neural network
can be designed to provide information not only about which particular pattern to
select, but alsc about the confidence in the decision made. This latter information may
be used to reject ambiguous patterns, should they arise, and thereby improve the classi-
fication performance of the network.

8. Contextual Information. Knowledge is represented by the very structure and
activation state of a neural network. Every neuron in the network is potentially
affected by the global activity of all other neurons in the network. Consequently, con-
textual information is dealt with naturally by a neural network.

6. Fault Tolerance. A neural network, implemented in hardware form, has the
potential to be inherently fault tolerant, or capable of robust computation, in the
sense that its performance degrades gracefully under adverse operating conditions.
For example, if a neuron or its connecting links are damaged, recall of a stored pat-
tern is impaired in gquality. However, due to the distributed nature of information
stored in the network, the damage has to be extensive before the overall response ot
the network is degraded seriously. Thus, in_principle, a neural network exhibits a
oraceful degradation in performance rather than catastrophic failure. There i1s some
empirical evidence for robust computation, but usually it is uncontrolled. In order to
be assured that the neural network is in fact fault tolerant, it may be necessary to take
corrective measures in designing the algorithm used to train the network (Kerlirzin
and Vallet, 1993).

7. VLSI Implementability. The massively parallel nature of a neural network
makes it potentially fast for the computation of certain tasks. This same feature makes
a neural network well suited for implementation using very-large-scale-integrated
(VLSI) technology. One particular beneficial virtue of VLSI is that it provides a means
of capturing truly complex behavior in a highly hierarchical fashion (Mead, 1989).

8. Uniformity of Analysis and Design. Basically, neural networks enjoy universal-
ity as information processors. We say this in the sense that the same notation 1s used in
all domains involving the application of neural networks. This feature manifests itself
in different ways:

¢ Neurons, in one form or another, represent an ingredient common to all neural
networks.

e This commonality makes it possible to share theories and learning algorithms in
different applications of neural networks. '

e Modular networks can be built through a seamless integration of modules.

9. Neurobiological Analogy. The design of a neural network is motivated by
analogy with the brain, which is a living proof that fault tolerant parallel processing 1s
not only physically possible but also fast and powerful. Neurobiologists look to (arti-
ficial) neural networks as a research tool for the interpretation of neurobiological
phenomena. On the other hand, engineers look to neurobiology for new ideas to
solve problems more complex than those based on conventional hard-wired design
techniques. These two viewpoints are illustrated by the following two respective
examples:
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* In Anastasio (1993), linear system models of the vestibulo-ocular reflex are com-
pared to neural network models based on recurrent networks that are described
In Section 1.6 and discussed in detail in Chapter 15. The vestibulo-ocular reflex
(VOR) 1s part of the oculomotor system. The function of VOR is to maintain
visual (1.e., retinal) image stability by making eye rotations that are opposite to
head rotations. The VOR is mediated by premotor neurons in the vestibular
nuclei that receive and process head rotation signals from vestibular sensory neu-
rons and send the results to the eye muscle motor neurons. The VOR is well
suited for modeling because its input (head rotation) and its output (eye rota-
tion) can be precisely specified. It 1s also a relatively simple reflex and the neuro-
physiological properties of ifs constituent neurons have been well described.
Among the three neural types, the premotor neurons (reflex interneurons) in the
vestibular nuclei are the most complex and therefore most interesting. The VOR
has previously been modeled using lumped, linear system descriptors and control
theory. These models were useful 1n explaining some of the overall properties of
the VOR, but gave little insight into the properties of its constituent neurons. This
situation has been greatly improved through neural network modeling. Recurrent
network models of VOR (programmed using an algorithm called real-time recur-
rent learning that is described in Chapter 15) can reproduce and help explain
many of the static, dynamic, nonlinear, and distributed aspects of signal process-
ing by the neurons that mediate the VOR, especially the vestibular nuclei neu-
rons (Anastasio, 1993).

e The retina, more than any other part of the brain, 1s where we begin to put

together the relationships between the outside world represented by a visual

sense, 1ts physical image projected onto an array of receptors, and the first neural
images. The retina is a thin sheet of neural tissue that lines the posterior hemi=—
sphere of the eyeball. The retina’s task is to convert an optical image into a neural
image for transmission down the optic nerve to a multitude of centers for further
analysis. This is a complex task, as evidenced by the synaptic organization of the
retina. In all vertebrate retinas the transformation from optical to neural image
involves three stages (Sterling, 1990):
(i) Photo transduction by a layer of receptor neurons.
(i) Transmission of the resulting signals (produced in response to light) by
chemical synapses to a layer of bipolar cells.

(iit) Transmission of these signals, also by chemical synapses, to output neurons

that are called ganglion cells.

At both synaptic stages (1.e., from receptor to bipolar cells, and from bipolar to
ganglion cells), there are specialized laterally connected neurons called horizon-
tal cells and amacrine cells, respectively. The task of these neurons is to modily
the transmission across the synaptic layers. There are also centrifugal elements
called inter-plexiform cells; their task is to convey signals from the inner synaptic
layer back to the outer one. A tew researchers have built electronic chips that
mimic the structure of the retina (Mahowald and Mead, 1989; Boahen and
Ardreou, 1992; Boahen, 1996). These electronic chips are called neuromorphic
integrated circuits, a term coined by Mead (1989). A neuromorphic imaging sen-
sor consists of an array of photoreceptors combined with analog circuitry at each
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picture element (pixel). It emulates the retina in that it can adapt locally to
changes in brightness, detect edges, and detect motion. The neurobiological anal-
ogy, exemplified by neuromorphic integrated circuits is useful in another impor-
tant way: It provides a hope and belief, and to a certain extent an existence of
proof, that physical understanding of neurobiological structures could have a
productive influence on the art of electronics and VLSI technology.

With inspiration from neurobiology in mind, it seems appropriate that we take a
brief ook at the human brain and its structural levels of organization.

1.2 HUMAN BRAIN

The human nervous system may be viewed as a three-stage system, as depicted in the
block diagram of Fig. 1.1 (Arbib, 1987). Central to the system is the brain, represented
by the neural (nerve) net, which continually receives information, perceives 1t, and
makes appropriate decisions. Two sets of arrows are shown in the figure. Those point-
ing from left to right indicate the forward transmission of information-bearing signals
through the system. The arrows pointing from right to left signify the presence of feed-
back in the system. The receptors convert stimuli from the human body or the external
environment into electrical impulses that convey information to the neural net (brain).
The effectors convert electrical impulses generated by the neural net into discernible
responses as system outputs.

The struggle to understand the brain has been made easier because of the pio-
neering work of Ramoén y Cajal (1911), who introduced the 1dea of neurons as struc-
tural constituents of the brain. Typically, neurons are five to six orders of magnitude
slower than silicon logic gates; events in a silicon chip happen in the nanosecond (107 s)
range, whereas neural events happen in the millisecond (107 s) range. However, the
brain makes up for the relatively slow rate of operation of a neuron by having a truly
staggering number of neurons (nerve cells) with massive interconnections between
them. It is estimated that there are approximately 10 billion neurons in the human cor-
tex, and 60 trillion synapses or connections (Shepherd and Koch, 1990). The net result
is that the brain is an enormously efficient structure. Specifically, the energetic effi-
ciency of the brain is approximately 10~ joules (J) per operation per second, whereas
the corresponding value for the best computers in use today is about 107° joules per
operation per second (Faggin, 1991).

Synapses are elementary structural and functional units that mediate the interac-
tions between neurons. The most common kind of synapse is a chemical synapse, which
operates as follows. A presynaptic process liberates a transmitter substance that diffuses
across the synaptic junction between neurons and then acts on a postsynaptic process.
Thus a synapse converts a presynaptic electrical signal into a chemical signal and then
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FIGURE 1.1 Block diagram representation of nervous system.
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back into a postsynaptic electrical signal (Shepherd and Koch, 1990). In electrical ter-
minology, such an element is said to be a nonreciprocal two-port device. In traditional
descriptions of neural organization, it is assumed that a synapse 1s a simple connection
that can impose excitation or inhibition, but not both on the receptive neuron.

Earlier we mentioned that plasticity permits the developing nervous system to
adapt to its surrounding environment (Eggermont, 1990; Churchland and Sejnowski,
1992). In an adult brain, plasticity may be accounted for by two mechanisms: the cre-
ation of new synaptic connections between neurons, and the modification of existing
synapses. Axons, the transmission lines, and dendrites, the receptive zones, constitute
two types of cell filaments that are distinguished on morphological grounds; an axon
has a smoother surface, fewer branches, and greater length, whereas a dendrite (so
called because of its resemblance to a tree) has an irregular surface and more branches
(Freeman, 1975). Neurons come in a wide variety of shapes and sizes in different parts
of the brain. Figure 1.2 illustrates the shape of a pyramidal ceil, which 1s one of the
most common types of cortical neurons. Like many other types of neurons, 1t receives
most of its inputs through dendritic spines; see the segment of dendrite in the insert in
Fig. 1.2 for detail. The pyramidal cell can receive 10,000 or more synaptic contacts and
it can project onto thousands of target cells.

The majority of neurons encode their outputs as a series of brief voltage pulses.
These pulses, commonly known as action potentials or spikes, originate at or close to
the cell body of neurons and then propagate across the individual neurons at constant
velocity and amplitude. The reasons for the use of action potentials for communication
among neurons are based on the physics of axons. The axon of a neuron 1s very long
and thin and is characterized by high electrical resistance and very large capacitance.
Both of these elements are distributed across the axon. The axon may therefore be
modeled as an RC transmission line, hence the common use of “cable equation” as the
terminology for describing signal propagation along an axon. Analysis of this propaga-
tion mechanism reveals that when a voltage is applied at one end of the axon it decays
exponentially with distance, dropping to an insignificant level by the time 1t reaches
the other end. The action potentials provide a way to circumvent this transmission
problem (Anderson,1995).

In the brain there are both small-scale and large-scale anatomical organizations,
and different functions take place at lower and higher levels. Figure 1.3 shows a hierar-
chy of interwoven levels of organmization that has emerged from the extensive work
done on the analysis of local regions in the brain (Shepherd and Koch, 1990;
Churchiand and Sejnowski, 1992). The synapses represent the most fundamental level,
depending on molecules and ions for their action. At the next levels we have neural
microcircuits, dendritic trees, and then neurons. A neural microcircuit reters to an
assembly of synapses organized into patterns of connectivity to produce a functional
operation of interest. A neural microcircuit may be likened to a silicon chip made up of
an assembly of transistors. The smallest size of microcircuits 1s measured in microme-
ters (um), and their fastest speed of operation is measured in milliseconds. The neural
microcircuits are grouped to form dendritic subunits within the dendritic trees of
individual neurons. The whole neuron, about 100 pwm in size, contains several dendritic
subunits. At the next level of complexity we have local circuits (about 1 mm in size)
made up of neurons with similar or different properties; these neural assemblies perform
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FIGURE 1.2 The pyramidal cell.

operations characteristic of a localized region in the brain. This is followed by interre-
gional circuits made up of pathways, columns, and topographic maps, which involve
multiple regions located in different parts of the brain.

Topographic maps are organized to respond to incoming sensory information.
These maps are often arranged in sheets, as in the superior colliculus, where the visual,
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auditory, and somatosensory maps are stacked 1n adjacent layers in such a way that stim-
uli from corresponding points in space lie above or below each other. Figure 1.4 presents
a cytoarchitectural map of the cerebral cortex as worked out by Brodmann (Brodal,
1981). This figure shows clearly that different sensory inputs (motor, somatosensory,
visual, auditory, etc.) are mapped onto corresponding areas of the cerebral cortex in an
“orderly fashion. At the final level of complexity, the topographic maps and other interre-
gional circuits mediate specific types of behavior in the central nervous system.

It is important to recognize that the structural levels of organization described
herein are a unique characteristic of the brain. They are nowhere to be found in a digi-
tal computer, and we are nowhere close to re-creating them with artificial neural net-
works. Nevertheless, we are inching our way toward a hierarchy of computational
levels similar to that described in Fig. 1.3. The artificial neurons we use to build our
neural networks are truly primitive in comparison to those found in the brain. The
neural networks we are presently able to design are just as primitive compared to the
local circuits and the interregional circuits in the brain. What is really satisfying, how-
ever, 1s the remarkable progress that we have made on so many fronts during the past
two decades. With neurobiological analogy as the source of inspiration, and the wealth
of theoretical and technological tools that we are bringing together, it is certain that in
another decade our understanding of artificial neural networks will be much more
sophisticated than it 1s today.

Our primary interest in this book is confined to the study of artificial neural net-
works from an engineering perspective.” We begin the study by describing the models
of (artificial) neurons that form the basis of the neural networks considered in subse-
quent chapters of the book. |
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different areas are identified by the thickness of their layers and types
of cells within them. Some of the most important specific areas are as
follows. Motor cortex: motor strip, area 4; premotor area, areab6;
frontal eye fields, area 8. Somatosensory cortex: areas 3, 1, 2. Visual
cortex: areas 17, 18, 19. Auditory cortex: area 41 and 42. (From A.
Brodal, 1981; with permission of Oxford University Press.)

1.3 MODELS OF A NEURON

A neuron 1s an mformation-processing unit that is fundamental to the operation of a
neural network. The block diagram of Fig. 1.5 shows the model of a neuron, which
forms the basis for designing (artificial) neural networks. Here we identify three basic -

elements of the neuronal model:

1. A set of synapses or connecting links, each of which is characterized by a weight
or strength of 1ts own. Specifically, a signal x; at the input of synapse j connected
to neuron & 1s multiplied by the synaptic weight w,. It is important to make a note
of the manner 1n which the subscripts of the synaptic weight w,; are written: The
first subscript refers to the neuron in question and the second subscript refers to
the input end of the synapse to which the weight refers. Unlike a synapse in the
brain, the synaptic weight of an artificial neuron may lie in a range that includes

negative as well as positive values.

2. An adder for summing the input signals, weighted by the respective synapses of

the neuron; the operations described here constitute a linear combiner.

3. An activation function for limiting the amplitude of the output of a neuron. The
activation function is also referred to as a squashing function in that it squashes
(limits) the permissible amplitude range of the output signal to some finite value.
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Typically, the normalized amplitude range of the output of a neuron is written as
the closed unit interval [0,1] or alternatively [—1,1].

The neuronal model of Fig. 1.5 also includes an externally applied bias, denoted by b,.
The bias b, has the effect of increasing or lowering the net input of the activation func-
tion, depending on whether it is positive or negative, respectively.

In mathematical terms, we may describe a neuron k by writing the following pair
of equations:

== Z%kaxf (1.1)
j=1
and _
= @(u; + by) _ (1.2)

where x;, x,, ..., x,, are the input signals; w,, Wy,, ..., Wy, are the synaptic weights of
neuron k; i, is the linear combiner output due to the input signals; b, is the bias; ¢( - ) 1
the activation function; and y, is the output signal of the neuron. The use of bias b, has
the effect of applying an affine transformation to the output u, of the linear combiner
in the model of Fig. 1.5, as shown by

Vi = Up + bk (13)

In particular, depending on whether the bias b, is positive or negative, the relationship
between the induced local field or activation potential v, of neuron k and the linear
combiner output u, is modified in the manner illustrated in Fig. 1.6; hereafter the term
“induced local field” is used. Note that as a result of this affine transformatmn the
graph of v, versus u, no longer passes through the origin.
The bias b, is an external parameter of artificial neuron k. We may account for its
presence as in Eq. (1.2). Equivalently, we may formulate the combination of Egs. (1.1)
to (1.3) as follows: '

Ve = D, Wi X; (1.4)
j=0 _
and
Yi = @(Vg) o (1.5)
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In Eq. (1.4) we have added a new synapse. Its input is

Xg — + 1 (1.6)

and 1ts weight is

We may therefore reformulate the model of neruon & as in Fig. 1.7. In this figure, the
effect of the bias is accounted for by doing two things: (1) adding a new input signal fixed
at +1, and (2) adding a new synaptic weight equal to the bias b,. Although the models
of Figs. 1.5 and 1.7 are different in appearance, they are mathematically equivalent.

Types of Activation Function

The activation function, denoted by ¢(v), defines the output of a neuron in terms of the
induced local field v. Here we identify three basic types of activation functions:

1. Threshold Function. For this type of activation function, described in Fig. 1.8a,
we have '

{1 Hv=0 | ;
o(v) = {0 fo<0 (1.8)

In engineering literature, this form of a threshold function is commonly referred toas a
Heaviside function. Correspondingly, the output of neuron k employing such a thresh-
- old function is expressed as '

1 ifv, =0 |
= 1.9
Tk {O ifv, <0 | | (1.9)

where v, 1s the induced local field of the neuron; that is,

Vi = Ewijf + b, | (1.10)
j=1 .
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Such a neuron 1s referred to in the literature as the McCulloch—Pitts model, in recogni-
tion of the pioneering work done by McCulloch and Pitts (1943). In this model, the
output of a neuron takes on the value of 1 if the induced local field of that neuron is
nonnegative, and 0 otherwise. This statement describes the all-or-none property of the

McCulloch - Pitts model.
2. Piecewise-Linear Function. For the piecewise-linear function described in Fig. 1.8b

we have
1, V= +;
o(v) =4v, *+3>v> -1 (1.11)
0, v -1 |

where the amplification factor inside the linear region of operation is assumed to be
unity. This form of an activation function may be viewed as an approximation to a non-

linear amplifier. The following two situations may be viewed as special forms of the
piecewise-linear function:

* A linear combiner arises if the linear region of operation is maintained without
running into saturation.

e The piecewise-linéar function reduces to a threshold function if the amplification
factor of the linear region is made infinitely large.

3. Sigmoid Function: The sigmoid function, whose graph is s-shaped, is by far the
most common form of activation function used in the construction of artifical neural
networks. It 1s defined as a strictly increasing function that exhibits a graceful balance
between linear and nonlinear behavior.” An example of the sigmoid function is the
logistic function,” defined by

1
1 + exp(—av)

¢(v) = (1.12)
where a 1s the slope parameter of the sigmoid function. By varying the parameter a, we
obtain sigmoid functions of different slopes, as illustrated in Fig. 1.8c. In fact, the slope
at the origin equals a/4. In the limit, as the slope parameter appreaches infinity, the sig-
moid function becomes simply a threshold function. Whereas a threshold function
assumes the value of O or 1, a sigmoid function assumes a continuous range of values
from 0 to 1. Note also that the sigmoid function is differentiable, whereas the threshold
function is not. (Differentiability is an important feature of neural network theory, as
described in Chapter 4.) '

The activation functions defined in Eqgs. (1.8), (1.11), and (1.12) range from 0 to
+1. It 1s sometimes desirable to have the activation function range from —1 to +1,in
which case the activation function assumes an antisymmetric form with respect to the -
origin; that 1s, the activation function is an odd function of the induced local field.
Specitically, the threshold function of Eq. (1.8) is now defined as

1 dv>0 |
e(v) =4 0 ifv=0 (1.13)
| —-1 ifv<( '
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which is commonly referred to as the sighum function. For the corresponding form of a
sigmoid function we may use the hyperbolic tangent function, defined by

¢(v) = tanh(v) ‘ t1.14)

Allowing an activation function of the sigmoid type to assume negative values as pre-
scribed by Eq. (1.14) has analytic benefits (as shown in Chapter 4).

Stochastic Model of a Neuron

The neuronal model described in Fig. 1.7 is deterministic in that its input-output behav-
10r 1s precisely defined for all inputs. For some applications of neural networks, it is
desirable to base the analysis on a stochastic neuronal model. In an analytically
tractable approach, the activation function of the McCulloch-Pitts model is given a
probabilistic interpretation. Specifically, a neuron is permitted to reside in only one of
two states: +1 or —1, say. The decision for a neuron to fire (i.€., switch its state from
“off” tc “on”) is probabilistic. Let x denote the state of the neuron, and P(v) denote the
probability of firing, where v 1s the induced local field of the neuron. We may then write

. { +1 with probability P(v)
—1  with probability 1 — P(v)

A standard choice for P(v) is the sigmoid-shaped function (Little, 1974):

1
1 + exp(—v/T)

where T is a pseudotemperature that is used to control the noise level and therefore the
uncertainty in firing. It is important to realize, however, that 7 1s nof the physical tem-
perature of a neural network, be it a biological or an artificial neural network. Rather,
as already stated, we should think of T'merely as a parameter that controls the thermal
fluctuations representing the effects of synaptic noise. Note that when 7— 0, the sto-
chastic neuron described by Eq. (1.15) reduces to a noiseless (i.e., deterministic) form,
namely the McCulloch-Pitts model.

P(v) = (1.15)

1.4 NEURAL NETWORKS VIEWED AS DIRECTED GRAPHS

The block diagram of Fig. 1.5 or that of Fig. 1.7 provides a functional description of the
various elements that constitute the model of an artificial neuron. We may simplify the
appearance of the model by using the idea of signal-flow graphs without sacrificing any
of the functional details of the model. Signal-flow graphs with a well-defined set of
rules were originally developed by Mason (1953, 1956) for linear networks. The pres-
ence of nonlinearity in the model of a neuron limits the scope of their application to
‘neural networks. Nevertheless, signal-flow graphs do provide a neat method for the
portrayal of the flow of signals in a neural network, which we pursue in this section.
A signal-flow graph is a network of directed links (branches) that are intercon-
nected at certain points called nodes. A typical node j has an associated node signal x;.
A typical directed link originates at node j and terminates on node k;1t has an associated
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transfer function or transmittance that specifies the manner in which the signal y, at
node k depends on the signal x; at node j. The flow of signals in the various parts of the

graph is dictated by three basic rules:
Rule 1. A signal flows along a link oﬁly in the direction defined by the arrow on the iink.
Two different types of links may be distinguished:

e Synaptic links, whose behavior is governed by a linear input—output relation.
Specifically, the node signal x; 1s muitiplied by the synaptic weight w,; to produce
the node signal y,, as illustrated in Fig. 1.9a. .

o Activation links, whose behavior is governed 1n general by a nonlinear input-

output relation. This form of relationship is illustrated in Fig 1.9b, where ¢( - ) is
the nonlinear activation function.

Rule 2. A node signal equals the algebraic sum of all signals entering the pertinent node |
via the immcoming links.

~ This second rule ts illustrated in Fig. 1.9¢ for the case of synaptic convergence or
fan-in.

Rule 3. The signal at a node is transmitted to each outgoing link originating from that
node, with the transmission being entirely independent of the transfer functions of the

outgoing links.
ij -
(a)
P -
Aj Oy O VL= Gﬂ(xj)
(b)
Hﬂ“a Yi
> Ye=Yi Y
(c}
X, - ”
_ X, <
FIGURE 1.9 Illustrating basic J
rules for the construction of | BN

signal-flow graphs. - (d)
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This third rule is illustrated in Fig. 1.9d for the case of synaptic divergence or
fan-out.

For example, using these rules we may construct the signal-flow graph of Fig 1.10
as the model] of a neuron, corresponding to the block diagram of Fig. 1.7. The represen-
tation shown in Fig. 1.10 is clearly simpler in appearance than that of Fig. 1.7, yet it con-
tains all the functional details depicted in the latter diagram. Note that in both figures,
the input x, = +1 and the associated synaptic weight w,, = b,, where b, is the bias
applied to neuron k.

Indeed, based on the signal-flow graph of Fig. 1.10 as the model of a neuron, we
may now offer the following mathematical definition of a neural network:

A neural network is a directed graph consisting of nodes with interconnecting synaptic and
activation links, and is characterized by four properties:

1. Each neuron is represented by a set of linear synaptic links, an externally applied bias,
and a possibly nonlinear activation link. The bias is represented by a synaptic link con-
nected to an input fixed at +1.

2. The synaptic links of a neuron weight their respective input signals.

3. The weighted sum of the input signals defines the induced local field of the neuron in

~question.
4. The activation link squashes the induced local field of the neuron to produce an output.

The state of the neuron may be defined in terms of its induced local field or its output
signal. |

A directed graph so defined 1s complete in the sense that it describes not only the
signal flow from neuron to neuron, but also the signal flow inside each neuron. When,
however, the focus of attention is restricted to signal flow from neuron to neuron, we
may use a reduced form of this graph by omitting the details of signal flow inside the
individual neurons. Such a directed graph is said to be partially complete. It is charac-
terized as follows: |

1. Source nodes supply input signals to the graph.

2. Each neuron is represented by a single node called a computation node.

3. The communication links mterconnecting the source and computation nodes of the
graph carry no weight; they merely provide directions of signal flow in the graph.

FIGURE 1.10 Signal-flow
graph of a neuron.
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A partially complete directed graph defined in this way is referred to as an architec-
tural graph, describing the layout of the neural network. It 1s illustrated in Fig. 1.11 for
the simple case of a single neuron with m source nodes and a single node fixed at +1
for the bias. Note that the computation node representing the neuron is shown shaded,
and the source node is shown as a small square. This convention is followed through-
out the book. More elaborate examples of architectural layouts are presented in
Section 1.6.
To sum up, we have three graphical representations of a neural network:

o Block diagram, providing a functional description of the network. _

e Signal-flow graph, providing a complete description of signal flow in the net-
work. | |

e Architectural graph, describing the network layout.

1.5 FEEDBACK

Feedback is said to exist in a dynamic system whenever the output of an element in the
system influences in part the input applied to that particular element, thereby giving
rise to one or more closed paths for the transmission of signals around the system.
Indeed, feedback occurs in almost every part of the nervous system of every animal
(Freeman, 1975). Moreover, it plays a major role in the study of a special class of neural
networks known as recurrent networks. Figure 1.12 shows the signal-flow graph of a
single-loop feedback system, where the input signal x;(n), internal signal x{(n), and out-
put signal y,(n) are functions of the discrete-time variable n. The system is assumed to
be linear, consisting of a forward path and a feedback path that are characterized by
the “operators” A and B, respectively. In particular, the output of the forward channel
determines in part its own output through the feedback channel. From Fig 1.12 we
readily note the following input—output relationships:

yi(n) = Alxj(n)] (1.16)

FIGURE 1.11 Architectural
graph of a neuron.

x/'(n) A

FIGURE 1.12 Signal-flow Xi(n) =0 Y1)
graph of a single-loop feedback | %

system., _ R
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xj(n) = xi(n) + Blyi(n)] (1.17)

where the square brackets are included to emphasize that A and B act as operators.
Eliminating x;(n) between Eqgs. (1.16) and (1.17), we get

A

yin) = 7z lx(7) o (118)

We refer to A/(1 — AB) as the closed-loop operator of the system, and to AB as the open-
loop operator. In general, the open-loop operator is noncommutative in that BA # AB.

Consider, for example, the single-loop feedback system shown in Fig. 1.13, for
which A is a fixed weight, w; and B is a unit-delay operator, 77!, whose output is
delayed with respect to the input by one time unit. We may then express the closed-
loop operator of the system as

A - W
1 —-AB 1 —wz !

= w(l — wz )™

Using the binomial expansion for (1 — wz~!)™!, we may rewrite the closed-loop opera-
tor of the system as
A X

— = 7! 1.19)
—r ngwz (1.19)

Hence, substituting Eq. (1.19) in (1.18), we get

il) = w3, 'z ()] ' (1.20)

where again we have included square brackets to emphasize the fact that z ™' is an oper-
ator. In particuldr, from the definition of z 7" we have

2 x(m)] = x(n = I (1.21)

where x(n — [) is a sample of the input signal delayed by / time units. Accordingly, we
may express the output signal y,(n) as an infinite weighted summation of present and

past samples of the input signal x;(n), as shown by

yiln) = szixj(n — I) (1.22)
/=0
. x.(n) o—» xjr{n} J:J o v.(h) FIGURE 1.13. Signal-flow
! U graph of a first-order,
infinite-duration impuise

Z response (liR) filter.
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w< 1

4
yk(n) f.f

| R M w> |
FIGURE 1.14 Time response  wx(0)¢-~ T
of Fig. 1.13 for three different
values of forward weight w. - -
(a) Stable. (b) Linear ——n
divergence. (c) Exponential 6 1t 2 3 4

divergence. (c)

We now see clearly that the dynamic behavior of the system is controlled by the weight
w. In particular, we may distinguish two specific cases:

1. |w| <1, for which the output signal y,(n) is exponentially convergent; that is, the
system 18 stable. This is illustrated in Fig. 1.14a for a positive w.

2. |w| = 1, for which the output signal y,(n) is divergent; that is, the system is unsta-
ble. If lw| =1 the divergence is linear as in Fig. 1.14b, and if jw| > 1 the diver-
gence 1s exponential as in Fig 1.14c.

Stability features prominently in the study of feedback systems.

The case of |w| < 1 corresponds to a system with infinite memory in the sense
that the output of the system depends on samples of the input extending into the infi-
nite past. Moreover, the memory is fading in that the influence of a past sample is
reduced exponentially with time n.

The analysis of the dynamic behavior of neural networks involving the applica-
tion of feedback is unfortunately complicated by virute of the fact that the processing
units used for the construction of the network are usually nonlinear. Further consider-
ation of this issue is deferred to the latter part of the book.
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1.6 NETWORK ARCHITECTURES

The manner in which the neurons of a neural network are structured is intimately
linked with-the learning algorithm used to train the network. We may therefore
speak of learning algorithms (rules) used in the design of neural networks as being
structured. The classification of learning algorithms is considered in the next chapter,
and the development of different learning algorithms is taken up in subsequent chap-
ters of the book. In this section we focus our attention on network architectures
(structures). -

In general, we may identify three fundamentally different classes of network
architectures:

1. Single-Layer Feedforward Networks

In a layered neural network the neurons are organized in the form of layers. In the sim-
plest form of a layered network, we have an input layer of source nodes that projects
onto an output layer of neurons (computation nodes), but not vice versa. In other words,
this network is strictly a feedforward or acyclic type. It is illustrated in Fig. 1.15 for the
case of four nodes in both the mput and output layers. Such a network is called a sin-
gle-layer network, with the designation “single-layer” referring to the output layer of
computation nodes (neurons). We do not count the input layer of source nodes
because no computation 1s pertormed there.

2. Multilayer Feedforward Networks

The second class of a feedforward neural network distinguishes itself by the presence
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