ELoD+D EOimilms

-

SIMON HAYKIN

NE U RAL NETWORK S

- A Comprehensive Foundation

Second Edition

Simon Haykin
McMaster University
Hamzlton Ontarzo Canada

:"'PEARS'ON;

P1 entlce '
Hall

An imprint of Pearson Education

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The author and publisher shall not -bE: liable 1n
'any event for incidental or consequential damages in connection with, or arising out of, the furnishing,

performance, or use of these programs.

Copyright © 1999 by Pearson Education, Inc.
This edition is published by arrangement with Pearson Education, Inc. Pearson Prentice Hall. ThlS book 1s

sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out. or
otherwise circulated without the publisher’s prior written consent in any form of binding or cover other
than that in which it is published and without a similar condition including this condition being imposed on
the subsequent purchaser and without limiting the rights under copyright reserved above, no part of this
publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or
by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior written
permission of both the copyright ownet and the above-mentioned publisher of this book.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.
Pearson” is a registered trademark of Pearson Plc. |
Prentice Hall® is a registered trademark of Pearson Education, Inc.

ISBN 81-7808-300-0

First Indian Reprint, 2001
Second [ndian Reprint, 2001
Third Indian Reprint, 2002
Fourth Indian Reprint, 2003
Fifth Indian Reprint, 2004
Sixth Indian Reprint, 2004
Seventh Indian Reprint, 2004
Eighth Indian Reprint, 2005
Ninth Indian Reprint, 2005

This edition is manufactured in Indiq and is authorized Jfor sale only in India, Bangladesh, Bhutan,
Pakistan, Nepal, Sri Lanka and the Mafdives.

Published by Pearson Education (Singapore) Pte Ltd., Indian Branch, 482 F.I.E. Patparganj,
Deihi 110 092, India.

Printed in India by Sai PrintoPack Pvt. Ltd.

To the countless researchers in neural networks
for their original contributions,

the imany reviewers ior their critical iputs,
my many graduate students for their keen interest,
and

my wife, Nancy, for her patience and tolerance.

B

[

e i
S

Contents

Preface 12
Acknowledgments 15
Abbreviations and Symbols 17

Introduction _ S 23

1.1 What Is a Neural Network? 23
1.2 Human Brain 28
1.3 . Models of a Neuron 32
1.4 Neural Networks Viewed as Directed Graphs 37
1.§ Feedback 40 |
1.6 Network Architectures 43
1.7 Knowledge Representation 45
1.8 Artificial Intelligence and Neural Networks 56 -
1.9 Historical Notes 60 |
Notes and References 67
Problems 67

Learning Processes - 72

2.1 Introduction 72
2.2 Error-Correction Learning 73
2.3 Memory-Based Learning 75

2.4 Hebbian Learning 77
2.5 Competitive Learning 80
2.6 Boltzmann Learning 82

-

6

Contents

3

2.7

29

2.10
2.11
2.12
2.13
2.14
2.15
2.16

Single Layer Perceptrons

Credit Assignment Problem 84

Learning with a Teacher 85

Learning without a Teacher 86 |

Learning Tasks 88

Memory 97

Adaptation 105

Statistical Nature of the Learning Process 106
Statistical Learning Theory 111

Probably Approximately Correct Model of Learning 124
Summary and Discussion 127

Notes and References 1 28

Problems 133

139

4 Muitilayer Perceptrons

3.2

3.1

3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

311

| Introduction 139

Adaptive Filtering Problem 140
Unconstrained Optimization Techniques 143
Linear Least-Squares Filters 148
Least-Mean-Square Algorithm 150
Learning Curves 155

Learning Rate Annealing Techmques 156
Perceptron 157

Perceptron Convergence Theorem 159

- Relation Between the Perceptron and Bayes Classifier for a Gaussian

Environment 165

Summary and Discussion 170
Notes and References 172
Problems 173

178

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

4.10
4.11
4.12

Introduction 178

Some Preliminaries 181

Back-Propagation Algorithm 183 e
Summary of the Back-Propagation Algonthm 195
XOR Problem 197 '
Heuristics for Making the Back-Propagation Algorithm Perform
Better 200

Output Representation and Decision Rule 206
Computer Experiment 209 |
Feature Detection 221 |
Back-Propagation and Differentiation 224
Hessian Matrix 226 -
Generalization 227

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4,20

5 Radial-Basis Functioh Networks

Contents = 7~

230

Approximations ot Functions
Cross-Validation 235
Network Pruning Techniques 240

Virtues and Limitations of Back-Propagation Learning 248
Accelerated Convergence of Back-Propagation Learning 255
Supervised Learning Viewed as an Optimization Problem 256
Convolutional Networks 267 |

Summary and Discussion 269

Notes and References 270

Problems 274 -

278

5.1 Introduction 278
5.2 Cover’s Theorem on the Separability of Patterns 279
5.3 Interpolation Problem 284
5.4 Supervised Learning as an Ill-Posed Hypersurface Reconstruction
Problem 287
3.8 Regularization Theory 289
5.6 Regularization Networks 299
5.7 Generalized Radial-Basis Function Networks 300
58 XOR Problem (Revisited) 304
5.9 Estimation of the Regularization Parameter 306
5.10 Approximation Properties of RBF Networks 312
5.11 Comparison of RBF Networks and Multilaver Perceptrons 315
3.2 Kermnel Regression and Its Relation to RBF Networks 316
5.13 Learning Strategies 320
. 514 Computer Experiment 327
... 515 Summary and Discussion 330
Notes and References 330
Problems 334 '
Support Vector Machines 340
6.1 Introduction 340
6.2 Optimal Hyperplane for Linearly Separable Patterns 341
6.3 Optimal Hyperplane for Nonseparable Patterns 348
- 6.4 How to Build a Support Vector Macnine for Pattern Recogmtton 351
6.5 Example: XOR Problem (Revisited) 357
6.6 Computer Experiment 359
6.7 e-Insensitive Loss Function 361 |
6.8 Support Vector Machines for Nonlinear Regression 362
6.9 Summary and Discussion 365

Notes and References 369
Problems 370

Contents

7 Committee Machines

7.1
7.2
7.3
7.4
1.5
7.6
1.7
7.8

373

Introduction 373

Ensemble Averaging 375

Computer Experiment I 377

Boosting 379

Computer Experiment I1 386

Associative Gaussian Mixture Model 388
Hierarchical Mixture of Experts Model 394

Model Selection Using a Standard Decision Tree 396

7.9
710
7.11
112
7.13
7.14

A Priori and a Posteriori Probabilities 399
Maximum Likelihood Estimation 390 =
Learning Strategies for the HME Model 402

EM Algorithm 404

Application of the EM Algorithm to the HME Model 405

Summary and Discussion 408

8.6

8 Principal Components Analysis

8.1
8.2
8.3
8.4
8.5

8.7
8.8
8.9
8.10
8.11

Self-Organizing Maps

9.1
9.2
9.3
9.4
9.5
9.6

97

- 98

-Problems

Notes and References 409
Problems 411 -

414

Introduction 414 - -
Some Intuitive Principles of Self—-Orgamzatmn 415
Principal Components Analysis 418
Hebbian-Based Maximum Eigenfilter 426 .-
Hebbian-Based Principal Components Analysis 435
Computer Experiment: Image Coding 441
Adaptive Principal Components Analysis Using Lateral Inhibition 444
Two Classes of PCA Algorithms 452 -
Batch and Adaptive Methods of Computation 452
Kernel-Based Principal Components Analysis 454
Summary And Discussion 459
Notes And References 461

462 |

465

Introduction 465

Two Basic Feature-Mapping Models
Self-Organizing Map 468

Summary of the SOM Algorithm 475
Properties of the Feature Map 476
Computer Simulations 483

Learning Vector Quantization 488
Computer Experiment: Adaptive Pattern ClaSSIﬁcatlon 490

466

11

9.9
9.10
911

10 information-Theoretic Models

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15

Contents 9

Hierarchical Vector Quantization 492
Contextual Maps 496 |
Summary and Discussion 498

Notes and References 499

Problems 501

506

Introduction 506

Entropy 507

Maximum Entropy Principte 512

Mutual Information 514

Kullback-Leibler Divergence 517

Mutual Information as an Objective Function To Be Optimized 520
Maximum Mutual Information Principle 521
Infomax and Redundancy Reduction 525
Spatially Coherent Features 528

Spatially Incoherent Features 530
Independent Components Analysis 532
Computer Experiment 545

Maximum Likelihood Estimation 547
Maximum Entropy Method 551

Summary and Discussion 335

Notes and References 557

Problems 563

Stochastic Machines And Their Approximates

Rooted In Statistical Mechanics

____—_—_—.—_—_____—————f——--——-_-'-—-—-'—————ﬂ_-_-“_

11.1
11.2
113
114
11.5
11.6
11.7
118
11.9
11.10
11.11
11.12
11.13
11.14

567

Introduction 567
Statistical Mechanics
Markov Chains 570
Metropolis Algorithm 578
Simulated Annealing 580
Gibbs Sampling 583
Boltzmann Machine 584
Sigmoid Belief Networks
Helmholtz Machine 596
Mean-Field Theory 598
Deterministic Boltzmann Machine 600
Deterministic Sigmoid Belief Networks 601
Deterministic Annealing 608 -
Summary and Discussion 614

Notes and References 616

Problems 619

568

391

10 Contents

12 Neurodynamic Programming

12.1
12.2
12.3
12.4
12.5
- 12.6
12.7
12.8
12.9
12.10

13 Temporal Processing Using Feedforward Networks

13.1
13.2
133
13.4
13.5
13.6
13.7
13.8
13.9
13.10

Introduction 625

Markovian Decision Processes 626
Bellman’s Optimality Criterion 629
Policy Iteration 632

Value Iteration 634
Neurodynamic Programming 639
Approximate Policy Iteration 640
Q-Learning 644

Computer Experiment 649
Summary and Discussion 651
Notes and References 653
Problems 654

Introduction 6357
Short-term Memory Structures 653

Network Architectures for Temporal Processing 662

Focused Time Lagged Feedforward Networks 665

Computer Experiment 667

Universal Myopic Mapping Theorem 668
Spatio-Temporal Models of a Neuron 670
Distributed Time Lagged Feedforward Networks
Temporal Back-Propagation Algorithm 674

Summary and Discussion 681
Notes and References _682
Problems 682 -

14 Neurodynamics

14.1
14.2
14.3

144

- 14.5
14.6
14.7
14.8
14.9

14.10

14.11

14.12

14.13

Introduction 636
Dynamical Systems 688
Stability of Equilibrium States 691

Attractors 696

Neurodynamical Models 698

Manipulation of Attractors as a Recurrent Network Paradigm

Hopfield Models 702
Computer Experiment I 718

Cohen-Grossberg Theorem 723 -
Brain-State-in-a-Box Model 725

Computer Experiment II 731
Strange Attractors and Chaos 731

673

Dynamic Reconstruction of a Chaotic Process 736

625

657

686

700

Contents 11

14.14 Computer Experiment I[II 740

14.15 = Summary and Discussion 744
Notes and References 747
Problems 749

15 Dynamically Driven Recurrent Network’s"" - 754

15.1 Introduction 754
15.2 Recurrent Network Architectures 755
153 State-Space Model 761 -
15.4 Nonlinear Autoregressive with Exogenous Inputs Model 768
15.5 Computational Power of Recurrent Networks 769
- 15,6 Learning Algorithms 772
- 18.7 Back-Propagation Through Time 773
158 Real-Time Recurrent Learning 778
159 Kalman Filters 784
15.10 Decoupled Extended Kalman Filters 787
15.11 Computer Experiment 792 '
18.12 Vanishing Gradients in Recurrent Networks 795
15.13 System Identification 798 '
15.14 Model-Reference Adaptive Control 802
15.1§ Summary and Discussion 804
Notes and References 805
Problems 807

Epilogue 812

Index 818

T R B e, ey e S P P - v o Ty L b e s

Preface

Neural Networks, or artificial neural networks to be more precise, represent a technol-
ogy that is rooted in many disciplines: neurosciences, mathematics, statistics, physics,
computer science, and engineering. Neural networks find applications in such diverse
fields as modeling, time series analysis, pattern recognition, signal processing, and con-
trol by virtue of an important property: the ability to /earn from input data with or
without a teacher.]

This book provides a comprehensive foundation of neural networks, recognizing
the multidisciplinary nature of the subject. The material presented in the book is sup-
ported with examples, computer-oriented experiments, end-of-chapter problems, and a
bibliography.

The book consists of four parts, organized as follows:

1. Introductory material, consisting of Chapters 1 and 2. Chapter 1 describes, largely

~ In qualitative terms, what neural networks are, their properties, compositions, and

how they relate to artificial intelligence. This chapter ends with some historical

notes. Chapter 2 provides an overview of the many facets of the learning process

and 1ts statistical properties. This chapter introduces an important concept: the

Vapnik—Chervonenkis (VC) dimension used as a measure for the capacity of a
family of classification functions realized by a learning machine.

2. Learning machines with a teacher, consisting of Chapters 3 through 7. Chapter 3
studies the simplest class of neural networks in this part: networks involving one
or more output neurons but no hidden ones. The least-mean-square (LMS) algo-
rithm (highly popular in the design of linear adaptive filters) and the perceptron-
convergence theorem are described in this chapter. Chapter 4 presents an
exhaustive treatment of multilayer perceptrons trained with the back-propagation
algorithm. This algorithm (representing a generalization of the LMS algorithm)
has emerged as the workhorse of neural networks. Chapter 5 presents detailed
mathematical treatment of another class of layered neural networks: radiai-basis
function networks, whose composition involves a single layer of basis functions.
This chapter emphasizes the role of regularization theory in the design of RBF

12

Preface 13

networks. Chapter 6 describes a relatively new class of learning machines known
as support vector machines, whose theory builds on the material presented in
Chapter 2 on statistical learning theory. The second part of the book finishes in
Chapter 7 with a discussion of committee machines, whose composition involves
several learners as components. In this chapter we describe ensemble averaging,
boosting, and hierarchical mixture of experts as three different methods of build-
ing a committee machine.

3. Learning machines without a teacher, consisting of Chapters 8 through 12.
Chapter 8 applies Hebbian learning to principal components analysis. Chapter 9

‘applies another form of self-organized learning, namely competitive learning, to

the construction of computational maps known as self-organizing maps. These
two chapters distinguish themselves by emphasizing learning rules that are
rooted 1n neurobiology. Chapter 10 looks to information theory for the formula-
tion of unsupervised learning algorithms, and emphasizes their applications to
modeling, image processing, and independent components analysis. Chapter 11
describes self-supervised learning machines rooted 1in statistical mechanics, a sub-
ject that is closely allied to information theory. Chapter 12, the last chapter in the
third part of the book, introduces dyrnamic programming and its relationship to
reinforcement learning.

4. Nonlinear dynamical systems, consisting of Chapters 13 through 15. Chapter 13
describes a class of dynamical systems consisting of short-term memory and lay-
ered feedforward network structures. Chapter 14 emphasizes the 1ssue of stabil-
ity that arises in nonlinear dynamical systems involving the use of feedback.
Examples of associative memory are discussed in this chapter. Chapter 15 describes
another class of nonlinear dynamical systems, namely recurrent networks, that
rely on the use of feedback for the purpose ot input-output mapping.

The book concludes with an epilogue that briefly describes the role of neural networks
in the construction of intelligent machines for pattern recognition, control, and signal
processing.

The organization of the book offers a great deal of flexibility for use in graduate
courses on neural networks. The final selection of topics can only be determined by the
interests of the instructors using the book. To help in this selection process, a study

guide is included in the accompanying manual.
There are a total of 15 computer-oriented experiments distributed throughout

the book. Thirteen of these experiments use MATLAB. The files for the MATLAB
experiments can be directly downloaded from |

ftp://ftp.mathworks.com/pub/books/haykin

or alternatively

http:// www.mathworks.com/books/

In this second case, the user will have to click on “Neural/Fuzzy” and then on the title

of the book. The latter approach provides a nicer intertace.
Each chapter ends with a set of problems, Many of the problems are of a chal-
lenging nature, designed not only to test the user of the book for how well the material

14 Ppreface

covered in the book has been understood, but also to extend that material. Solutions to
all of the problems are described in an accompanying manual. Copies of this manual
are only available to instructors who adopt the book, which can be obtained by writing
to the publisher of the book, Prentice Hall.

The book should appeal to engineers, computer scientists, and physicists. It is

- hoped that researchers in other disciplines such as psychology and neurosciences will
- also find the book useful.

Simon Haykin
Hamilton, Ontario
February, 1998.

Acknowledgments

L

I am deeply indebted to the many reviewers who have given freely of their time to
read through the book, in part or in full. In particular, I would like to express my deep
gratitude to Dr. Kenneth Rose, University of Californmia at Santa Barbara, for his many
constructive inputs and invaluable help.

I am grateful to Dr. S. Aman, RIKEN, Japan; Dr. Sue Becker, McMaste:
University; Dr. Ron Racine, McMaster University; Dr. Sean Holden, University
College, London; Dr. Michael Turmon, JPL, Pasadena; Dr. Babak Hassibi, Stanford
University; Dr. Paul Yee, formerly of McMaster University; Dr. Edgar Osuna, MIT;
Dr. Bernard Scholkopf, Max Planck Institute, Germany; Dr. Michael Jordan, MIT;
Dr. Radford Neal, University of Toronto; Dr. Zoubin Gharhamani, University of Toronto;
Dr. Marc Van Hulle, Katholieke Universiteit Leuven, Belgium; Dr. John Tsitsiklis,
MIT; Dr. Jose Principe, University of Florida, Gainsville; Mr. Gint Puskorius, Ford
Research Laboratory, Dearborn, Mich.; Dr. Lee Feldkamp, Ford Research Laboratory,
Dearborn, Mich.; Dr. Lee Giles, NEC Research Institute, Princeton, NJ; Dr. Mikel
Forcada, Universitat d’Alacant, Spain; Dr. Eric Wan, Oregon Graduate Institute ot
Science and Technology: Dr. Yann LeCun, AT&T Research, NJ; Dr. Jean-Francoss
Cardoso, Ecole Nationale, Paris; Dr. Anthony Bell, formerly of Salk Institute, San
Diego; and Dr: Stefan Kremer, University of Guelph. They all helped me immeasur-
ably in improving the presentation of material in different parts of the book.

I also wish to thank Dr. Ralph Linsker, IBM, Watson Research Center; Dr. Yaser
Abu-Mostafa, Cal Tech.; Dr. Stuart Geman, Brown University; Dr. Alan Gelford,
University of Connecticut; Dr. Yoav Freund, AT&T Research; Dr. Bart Kosko,
University of Southern California; Dr. Narish Sinha, McMaster University; Dr. Grace
Wahba, University of Wisconsin; Dr. Kostas Diamantaras, Aristotelian University of
Thessaloniki, Greece; Dr. Robert Jacobs, University of Rochester; Dr. Peter Dayan,
MIT; Dr. Dimitris Bertsekas, MIT; Dr. Andrew Barto, University of Massachusetts;
Dr. Don Hush, University of New Mexico; Dr. Yoshua Bengio, University of Montreal;
Dr. Andrew Cichoki, RIKEN, Japan; Dr. H. Yang, Oregon Graduate Institute of
Science and Technology; Dr. Scott Douglas, University of Utah; Dr. Pierre Comon,

15

16

Acknowledgm‘ents

Thomson-Sintra Asm., France; Dr. Terrence Sejnowski, Salk Institute; Dr. Harris

Drucker, Monmouth College; Dr. Nathan Intrator, Tel Aviv University, Israel;

Dr. Vladimir Vapnik, AT&T Research, NJ; Dr. Teuvo Kohonen, Helsinki University of
Technology, Finland; Dr. Vladimir Cherkassky, University of Minnesota; Dr. Sebastian
Seung, AT&T Research, NJ; Dr. Steve Luttrell, DERA, Great Malvern, United
Kingdom; Dr. David Lowe, Aston University, United Kingdom; Dr. N. Ansari, New
Jersey Institute of Technology; Dr. Danil Prokhorov, Ford Research Laboratory,
Dearborn, Mich.; Dr. Shigeru Katagiri, ATR Human Information Processing Research
Lab, Japan; Dr. James Anderson, Brown University, Dr. Irwin Sandberg, University of
Texas at Austin; Dr. Thomas Cover, Stanford University; Dr. Walter Freeman,
University of California at Berkeley; Dr. Charles Micchelli, IBM Research, Yorktown
Heights; Dr. Kari Torkkola, Motorola Phoenix Corp.; Dr. Andreas Andreou, Johns
Hopkins University; Dr. Martin Beckerman, Oak Ridge National Laboratory; and
Dr. Thomas Anastasio, University of IHinois, Urbana.

I am deeply indebted to my graduate student Hugh Pasika for performing many
of the MATLAB experiments in the book, and for preparing the Web site for the book.
The help received from my graduate student Himesh Madhuranath, Dr. Sadasivan -
Puthusserypady, Dr. J. Nie, Dr. Paul Yee, and Mr. Gint Puskorius (Ford Research) in
performing five of the experiments is much appreciated.

I am most grateful to Hugh Pasika for proofreading the entire book. In this
regard, I also thank Dr. Robert Dony (University of Guelph), Dr. Stefan Kremer
(University of Guelph), and Dr. Sadasivan Puthusserypaddy for proofreading selected
chapters of the book. ' '

[am grateful to my publisher Tom Robbins and editor Alice Dwaorkin for their full
support and encouragement. The careful copy editing of the manuscript by Julie Hollist
is much appreciated. I would like to thank the tireless efforts of Jennifer Maughan and
the staff of WestWords Inc. in Logan, Utah in the production of the book.

I wish to record my deep gratitude to Brigitte Maier, Thode Library, McMaster
University, for her untiring effort to search for and find very difficult reterences that
have made the bibliography all the more complete. The help of Science and
Engineering Librarian Peggy Findlay and Reference Librarian Regina Bendig is also
much appreciated.

Last but by no means least, I am most grateful to my secretary Lola Brooks for
typing so many different versions of the manuscript. Without her dedicated help, the
writing of this book and its production would have taken a great deal longer.

' ﬁ*ﬁfp

-
:
"
e
X
E
Z

A

Abbreviations and Symbols

ABBREVIATIONS

Al artificial intelligence

APEX adaptive principal components extraction
AR autoregressive

BBTT back propagation through time

BM Boltzmann machine

BP ack propagation

b/s its per second _

BOSS ounded, one-sided saturation
BSB rain-state-in-a-box

BSS Blind source (signal) separation
CART classification and regression tree
cmm correlation matrix memory

cross-validation

DEKF decoupled extended Kalman filter

DFA deterministic finite-state automata

DSP digital signal processor

EKF extended Kalman filter

EM expectation-maximization

FIR inite-duration impulse response
requency-modulated (signal)

GEKF lobal extended Kalman filter

GCV eneralized cross-validation

GHA eneralized Hebbian algorithm

GSLC eneralized sidelobe canceler

18

HME
HMM
Hz

1CA
Infomax

KR

LMS
LR
LTP
LTD
LR
LVQ

MCA
MDL
ME
MFT
MIMO
ML
MLP
MRAC

NARMA
NARX
NDP
NW
NWKR

OBD
OBS

OCR
ODE

PAC
PCA
pdf
pmi

RBF
RMLP
RTRL

SIMO
SISO
SNR
SOM

Abbreviations and Symbols

hierarchical mixture of experts
hidden Markov model
hertz

independent components analysis
maximum mutual information

kernel regression

least-mean-square
likelihood ratio

long-term potentiation
long-term depression
likelithood ratio

learning vector quantization

minor components analysis
minimum description length
mixture of experts

mean-field theory

multiple input—multiple output
maximum hkelihood

multilayer perceptron

model reference adaptive control

nonlinear autoregressive moving average
nonlinear autoregressive with exogenous inputs

neuron-dynamic programming
Nadaraya—Watson (estimator)

Nadaraya—-Watson kernal regression

optimal brain damage
optimal brain surgeon

optical character recognition
ordinary differential equation

probably approximately correct

principal components analysis
probability density function
probability mass function

radial basis function
recurrent multilayer perceptron
real-time recurrent learning

single input-multiple cutput
single input-single output
signal-to-noise ratio
seif-organizing map

Abbreviations and Symbols 19

SRN simple recurrent network (also referred to as Elman’s recurrent network)
SVD singular value decomposition
SVM support vector machine

TDNN time-delay neural network
TLFN time lagged feedforward network

VC Vapnik—Chervononkis (dimension)

VLSI very-large-scale integration

XOR exclusive OR

IMPORTANT SYMBOLS

a action

a’b inner product of vectors a and b

ab’ outer product of vectorsaand b

(’;) binomial coefficient

AUB unions of A and B

B inverse of temperature

b, bias applied-tc neuron &

cos(a,b) cosine of the angle between vectorsaand b

D depth of memory

D, Kullback-Leibler divergence between probability density functions
N fand g

D adjoint of operator D

E energy function

E, energy of state i in statistical mechanics

E statistical expectation operator

(E) average energy

erf error function

erfc complimentary error function

exp exponential

€, average squared error or sum of squared errors
é(n) instantaneous value of the sum of squared errors
Crotal total sum of error squares

F free energy

fx(x) probability density function of random vector X
ek subset (network) with the smallest minimum empirical risk
H Hessian matrix

H! inverse of matrix H

I square root of —1, also denoted by j

| identity matrix

I Fisher’s information matrix

J mean-square error

20 Abbreviations and Symbols

Jacobian matrix

error covariance matnx in Kalman filter theory

square root of matrix K

transpose of square root of matrix K

Boltzmann constant

[6garithm

log-likelihood function of weight vector w

log-likelihood function of weight vector w based on a single example

controllability matrix

observability matrix

discrete time

probability of state i in statistical mechanics

transition probability from state i to state j

stochastic matrix

probability of correct classification

probability of error -

conditional probability of error e given that the input is drawn from
class €

probability that the visible neurons of a Boltzmann machine are in
state a, given that the network is in its clamped condition (i.e., posi-
tive phase)

probability that the visible neurons of a Boltzmann machine are in

state «, given that the network is in its free-running condition (i.e.,
negative phase) -
estimate of autocorrelation function of x,(n) and x,(n)
estimate of cross-correlation function of d(n) and x,(n)
correlation matrix of an input vector
continuous time
temperature
training set (sample)
trace of a matrix operator
variance operator
Lyapunov function of state vector x
induced local field or activation potential of neuron j
optimum value of synaptic weight vector
synaptic weight of synapse j belonging to neuron k
optimum weight vector
equilibrium value of state vector x
average of state x; in a “thermal” sense
estimate of x, signified by the use of a caret (hat)
absolute value (magnitude) of x
complex conjugate of x, signified by asterisk as superscript
Euclidean norm (length) of vector x
transpose of vector x, signified by the superscript T
unit delay operator
partition function

Abbreviations and Symbols 21

d(n) local gradient of neuron j at time n
Aw small change applied to weight w
gradient operator
Laplacian operator
J gradient of J with respect to w
- K divergence of vector F
learning-rate parameter
cumulant
policy
threshold applied to neuron k (i.e., negative of bias b,)
regularization parameter
kth eigenvalue of a square matrix
nonlinear activation function of neuron &
symbol for “belongs to”
symbol for “union of”
symbol for “intersection ot”
symbol for convolution
superscript symbol for pseudoinverse of a matrix

<1 <1 <

PE X 3 g

~
=

o
~—
e’

+ * D C M

Open and closed intervals

* The open interval (a, b) of a variable x signifies that a < x < b.

e The closed interval [a, b] of a variable x signifies that a = x < b.

e The closed-open interval {a, b) of a variable x signifies that a = x < b; likewise
for the open-closed interval (a, b].

Minima and Maxima

¢ The symbol arg min f(w) signifies the minimum of the function f(w) with respect

to the argument vector w.
¢ The symbol arg max f(w) signifies the maximum of the function f(w) with respect
W

to the argument vector w.

Introduction

1.1 WHAT IS A NEURAL NETWORK?

Work on artificial neural networks, commonly referred to as “neural networks,” has
been motivated right from its inception by the recognition that the human brain com-
putes in an entirely different way from the conventional digital computer. The brain is
a highly complex, nonlinear, and parallel computer (information-processing system). It
has the capability to organize its structural constituents, known as neurons, so as to
perform certain computations (e.g., pattern recognition, perception, and motor con-
trol) many times faster than the fastest digital computer in existence today. Consider,
for example, human vision, which 1s an information-processing task (Marr, 1982;
Levine, 1985; Churchland and Senowski, 1992). It is the function of the visual system
to provide a representation of the environment around us and, more important, to sup-
ply the information we need to inferact with the environment. To be specific, the brain
routinely accomplishes perceptual recognition tasks (e.g., recognizing a familiar face
embedded in an unfamiliar scene) in approximately 100-200 ms, whereas tasks of
much lesser complexity may take days on a conventional computer.

For another example, consider the sonar of a bat. Sonar 1s an active echo-location
system. In addition to providing information.about how far away a target (e.g., a flying
insect) is, a bat sonar conveys information about the relative velocity of the target, the
size of the target, the size of various features of the target, and the azimuth and eleva-
tion of the target (Suga, 1990a, b). The complex neural computations needed to extract
all this information from the target echo occur within a brain the size of a plum.
Indeed, an echo-locating bat can pursue and capture its target with a facility and suc-
cess rate that would be the envy of a radar or sonar engineer.

How, then, does a human brain or the brain of a bat do it? At birth, a brain has
great structure and the abality to build up 1ts own rules through what we usually refer
to as “experience.” Indeed, experience is built up over time, with the most dramatic
development (i.e., hard-wiring) of the human brain taking place during the first two
years from birth; but the development continues well beyond that stage.

A “developing” neuron is synonymous with a plastic brain: Plasticity permits the
developing nervous system to adapt to its surrounding environment. Just as plasticity
appears to be essential to the functioning of neurons as information-processing units in

23

24 Chapter 1 introduction

the human brain, so it is with neural networks made up of artificial neurons. In its most
general form, a neural network is a machine that is designed to model the way in which
the brain performs a particular task or function of interest; the network is usually
implemented by using electronic components or is simulated in software on a digital
computer. Our interest in this book is confined largely to an important class of neural
networks that perform useful computations through a process of learning. To achieve
good performance, neural networks employ a massive interconnection of simple com-
puting cells referred to as “neurons” or “processing units.” We may thus offer the fol-
lowing definition of a neural network viewed as an adaptive machine':

A neural network is a massively parallel distributed processor made up of simple processing
units, which has a natural propensity for storing experiential knowledge and making it avail-
able for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.
2. Interneuron connection strengths, known as synaptic weights, are used to store the ac-

quired knowledge.

The procedure used to perform the learning process 1s called a learning algo-
rithm, the function of which is to modify the synaptic weights of the network 1n an
orderly fashion to attain a desired design objective.

The modification of synaptic weights provides the traditional method for the
design of neural networks. Such an approach is the closest to linear adaptive filter the-
ory, which is already well established and successfully applied in many diverse fields
(Widrow and Stearns, 1985; Haykin, 1996). However, it is also possible for a neural net-
work to modify its own topology, which is motivated by the fact that neurons in the
human brain can die and that new synaptic connections can grow.

Neural networks are also referred to in literature as neurocomputers, connection-
ist networks, parallel distributed processors, etc. Throughout the book we use the term
“neural networks”; occasionally the term “neurocomputer” or “connectionist net-

work” 1s used.

Benefits of Neural Networks

It is apparent that a neural network derives its computing power through, first, its mas-
sively parallel distributed structure and, second, its ability to learn and therefore gen-
eralize. Generalization refers to the neural network producing reasonable outputs for
inputs not encountered during traming (learning). These two information-processing
capabilities make it possible for neural networks to solve complex (large-scale) prob-
lems that are currently intractable. In practice, however, neural networks cannot pro-
vide the solution by working individually. Rather, they need to be integrated into a
consistent system engineering approach. Specifically, a complex problem of interest is
decomposed into a number of relatively simple tasks, and neural networks are assigned
a subset of the tasks that match their inherent capabilities. It is important to recognize,
however, that we have a long way to go (if ever) before we can build a computer archi-
tecture that mimics a human brain.

The use of neural networks otters the following useful properties and capabilities:

1. Nonlinearity. An artificial neuron can be linear or nonlinear. A neural net-
work, made up of an interconnection of nonlinear neurons, is itself nonlinear. Moreover,

Section 1.1 What is a Neural Network? 25

the nonlinearity i1s of a special kind in the sense that it 1s distributed throughout the
network. Nonlinearity is a highly important property, particularly if the underlying
physical mechanism responsible for generation of the input signal (e.g., speech signal)
1s inherently nonlinear. '

2. Input-Output Mapping. A popular paradigm of learning called learning with a
teacher or supervised learning involves modification of the synaptic weights of a neural
network by applying a set of labeled training samples or task examples. Each example
consists of a unique input signal and a corresponding desired response. The network 1s
presented with an example picked at random from the set, and the synaptic weights
(free parameters) of the network are modified to minimize the difference between the
desired response and the actual response of the network produced by the input signal
in accordance with an appropriate statistical criterion. The training of the network i1s
repeated for many examples in the set until the network reaches a steady state where
there are no further significant changes in the synaptic weights. The previously applhed
training examples may be reapplied during the training session but in a different order.
Thus the network learns from the examples by constructing an input—output mapping
for the problem at hand. Such an approach brings to mind the study of nonparametric
statistical inference, which 1s a branch of statistics dealing with model-free estimation,
or, from a biological viewpoint, tabula rasa learning (Geman et. al., 1992); the term
“nonparametric” is used here to signify the fact that no prior assumptions are made on
a statistical model for the input data. Consider, for example, a pattern classification task,
where the requirement is to assign an input signal representing a physical object or
event to one of several prespecified categories (classes). In a nonparametric approach
to this problem, the requirement is to “estimate” arbitrary decision boundaries in the
input signal space for the pattern-classification task using a set of examples, and to do
so without invoking a probabilistic distribution model. A similar point of view 1s
implicit in the supervised learning paradigm, which suggests a close analogy between
the input—-output mapping performed by a neural network and nonparametric statisti-
cal inference.

3. Adaptivity. Neural networks have a built-in capability to adapt their synaptic
- weights to changes in the surrounding environment. In particular, a neural network
trained to operate in a specific environment can be easily refrained to deal with minor
changes in the operating environmental conditions. Moreover,when it 1s operating in a
nonstationary environment (i.e., one where statistics change with time), a neural net-
work can be designed to change 1ts synaptic weights in real time. The natural architec-
ture of a neural network for pattern classification, signal processing, and control
applications, coupled with the adaptive capability of the network, make it a useful tool
in adaptive pattern classification, adaptive signal processing, and adaptive control. As a
general rule, it may be said that the more adaptive we make a system, all the time
ensuring that the system remains stable, the more robust its performance will likely be
when the system 1s required to operate in a nonstationary environment. It should be
emphasized, however, that adaptivity does not always lead to robustness; indeed, it
may do the very opposite. For example, an adaptive system with short time constants
may change rapidly and theretfore tend to respond to spurious disturbances, causing a
drastic degradation in system performance. To realize the full benefits of adaptivity, the
principal time constants of the system should be long enough for the system to ignore
spurious disturbances and yet short enough to respond to meaningful changes in the

26 Chapter 1 introduction

environment; the problem described here is referred to as the stability—plasticity
dilemma (Grossberg, 1988b).

4. Evidential Response. In the context of pattern classification, a neural network
can be designed to provide information not only about which particular pattern to
select, but alsc about the confidence in the decision made. This latter information may
be used to reject ambiguous patterns, should they arise, and thereby improve the classi-
fication performance of the network.

8. Contextual Information. Knowledge is represented by the very structure and
activation state of a neural network. Every neuron in the network is potentially
affected by the global activity of all other neurons in the network. Consequently, con-
textual information is dealt with naturally by a neural network.

6. Fault Tolerance. A neural network, implemented in hardware form, has the
potential to be inherently fault tolerant, or capable of robust computation, in the
sense that its performance degrades gracefully under adverse operating conditions.
For example, if a neuron or its connecting links are damaged, recall of a stored pat-
tern is impaired in gquality. However, due to the distributed nature of information
stored in the network, the damage has to be extensive before the overall response ot
the network is degraded seriously. Thus, in_principle, a neural network exhibits a
oraceful degradation in performance rather than catastrophic failure. There i1s some
empirical evidence for robust computation, but usually it is uncontrolled. In order to
be assured that the neural network is in fact fault tolerant, it may be necessary to take
corrective measures in designing the algorithm used to train the network (Kerlirzin
and Vallet, 1993).

7. VLSI Implementability. The massively parallel nature of a neural network
makes it potentially fast for the computation of certain tasks. This same feature makes
a neural network well suited for implementation using very-large-scale-integrated
(VLSI) technology. One particular beneficial virtue of VLSI is that it provides a means
of capturing truly complex behavior in a highly hierarchical fashion (Mead, 1989).

8. Uniformity of Analysis and Design. Basically, neural networks enjoy universal-
ity as information processors. We say this in the sense that the same notation 1s used in
all domains involving the application of neural networks. This feature manifests itself
in different ways:

¢ Neurons, in one form or another, represent an ingredient common to all neural
networks.

e This commonality makes it possible to share theories and learning algorithms in
different applications of neural networks. '

e Modular networks can be built through a seamless integration of modules.

9. Neurobiological Analogy. The design of a neural network is motivated by
analogy with the brain, which is a living proof that fault tolerant parallel processing 1s
not only physically possible but also fast and powerful. Neurobiologists look to (arti-
ficial) neural networks as a research tool for the interpretation of neurobiological
phenomena. On the other hand, engineers look to neurobiology for new ideas to
solve problems more complex than those based on conventional hard-wired design
techniques. These two viewpoints are illustrated by the following two respective
examples:

Section 1.1 What is a Neural Network? 27

* In Anastasio (1993), linear system models of the vestibulo-ocular reflex are com-
pared to neural network models based on recurrent networks that are described
In Section 1.6 and discussed in detail in Chapter 15. The vestibulo-ocular reflex
(VOR) 1s part of the oculomotor system. The function of VOR is to maintain
visual (1.e., retinal) image stability by making eye rotations that are opposite to
head rotations. The VOR is mediated by premotor neurons in the vestibular
nuclei that receive and process head rotation signals from vestibular sensory neu-
rons and send the results to the eye muscle motor neurons. The VOR is well
suited for modeling because its input (head rotation) and its output (eye rota-
tion) can be precisely specified. It 1s also a relatively simple reflex and the neuro-
physiological properties of ifs constituent neurons have been well described.
Among the three neural types, the premotor neurons (reflex interneurons) in the
vestibular nuclei are the most complex and therefore most interesting. The VOR
has previously been modeled using lumped, linear system descriptors and control
theory. These models were useful 1n explaining some of the overall properties of
the VOR, but gave little insight into the properties of its constituent neurons. This
situation has been greatly improved through neural network modeling. Recurrent
network models of VOR (programmed using an algorithm called real-time recur-
rent learning that is described in Chapter 15) can reproduce and help explain
many of the static, dynamic, nonlinear, and distributed aspects of signal process-
ing by the neurons that mediate the VOR, especially the vestibular nuclei neu-
rons (Anastasio, 1993).

e The retina, more than any other part of the brain, 1s where we begin to put

together the relationships between the outside world represented by a visual

sense, 1ts physical image projected onto an array of receptors, and the first neural
images. The retina is a thin sheet of neural tissue that lines the posterior hemi=—
sphere of the eyeball. The retina’s task is to convert an optical image into a neural
image for transmission down the optic nerve to a multitude of centers for further
analysis. This is a complex task, as evidenced by the synaptic organization of the
retina. In all vertebrate retinas the transformation from optical to neural image
involves three stages (Sterling, 1990):
(i) Photo transduction by a layer of receptor neurons.
(i) Transmission of the resulting signals (produced in response to light) by
chemical synapses to a layer of bipolar cells.

(iit) Transmission of these signals, also by chemical synapses, to output neurons

that are called ganglion cells.

At both synaptic stages (1.e., from receptor to bipolar cells, and from bipolar to
ganglion cells), there are specialized laterally connected neurons called horizon-
tal cells and amacrine cells, respectively. The task of these neurons is to modily
the transmission across the synaptic layers. There are also centrifugal elements
called inter-plexiform cells; their task is to convey signals from the inner synaptic
layer back to the outer one. A tew researchers have built electronic chips that
mimic the structure of the retina (Mahowald and Mead, 1989; Boahen and
Ardreou, 1992; Boahen, 1996). These electronic chips are called neuromorphic
integrated circuits, a term coined by Mead (1989). A neuromorphic imaging sen-
sor consists of an array of photoreceptors combined with analog circuitry at each

28 Chapter 1 Introduction

picture element (pixel). It emulates the retina in that it can adapt locally to
changes in brightness, detect edges, and detect motion. The neurobiological anal-
ogy, exemplified by neuromorphic integrated circuits is useful in another impor-
tant way: It provides a hope and belief, and to a certain extent an existence of
proof, that physical understanding of neurobiological structures could have a
productive influence on the art of electronics and VLSI technology.

With inspiration from neurobiology in mind, it seems appropriate that we take a
brief ook at the human brain and its structural levels of organization.

1.2 HUMAN BRAIN

The human nervous system may be viewed as a three-stage system, as depicted in the
block diagram of Fig. 1.1 (Arbib, 1987). Central to the system is the brain, represented
by the neural (nerve) net, which continually receives information, perceives 1t, and
makes appropriate decisions. Two sets of arrows are shown in the figure. Those point-
ing from left to right indicate the forward transmission of information-bearing signals
through the system. The arrows pointing from right to left signify the presence of feed-
back in the system. The receptors convert stimuli from the human body or the external
environment into electrical impulses that convey information to the neural net (brain).
The effectors convert electrical impulses generated by the neural net into discernible
responses as system outputs.

The struggle to understand the brain has been made easier because of the pio-
neering work of Ramoén y Cajal (1911), who introduced the 1dea of neurons as struc-
tural constituents of the brain. Typically, neurons are five to six orders of magnitude
slower than silicon logic gates; events in a silicon chip happen in the nanosecond (107 s)
range, whereas neural events happen in the millisecond (107 s) range. However, the
brain makes up for the relatively slow rate of operation of a neuron by having a truly
staggering number of neurons (nerve cells) with massive interconnections between
them. It is estimated that there are approximately 10 billion neurons in the human cor-
tex, and 60 trillion synapses or connections (Shepherd and Koch, 1990). The net result
is that the brain is an enormously efficient structure. Specifically, the energetic effi-
ciency of the brain is approximately 10~ joules (J) per operation per second, whereas
the corresponding value for the best computers in use today is about 107° joules per
operation per second (Faggin, 1991).

Synapses are elementary structural and functional units that mediate the interac-
tions between neurons. The most common kind of synapse is a chemical synapse, which
operates as follows. A presynaptic process liberates a transmitter substance that diffuses
across the synaptic junction between neurons and then acts on a postsynaptic process.
Thus a synapse converts a presynaptic electrical signal into a chemical signal and then

Stimulus —»{ Receptors Neural Effectors [Response
<« Del L

e

FIGURE 1.1 Block diagram representation of nervous system.

Section 1.2 Human Brain 29

back into a postsynaptic electrical signal (Shepherd and Koch, 1990). In electrical ter-
minology, such an element is said to be a nonreciprocal two-port device. In traditional
descriptions of neural organization, it is assumed that a synapse 1s a simple connection
that can impose excitation or inhibition, but not both on the receptive neuron.

Earlier we mentioned that plasticity permits the developing nervous system to
adapt to its surrounding environment (Eggermont, 1990; Churchland and Sejnowski,
1992). In an adult brain, plasticity may be accounted for by two mechanisms: the cre-
ation of new synaptic connections between neurons, and the modification of existing
synapses. Axons, the transmission lines, and dendrites, the receptive zones, constitute
two types of cell filaments that are distinguished on morphological grounds; an axon
has a smoother surface, fewer branches, and greater length, whereas a dendrite (so
called because of its resemblance to a tree) has an irregular surface and more branches
(Freeman, 1975). Neurons come in a wide variety of shapes and sizes in different parts
of the brain. Figure 1.2 illustrates the shape of a pyramidal ceil, which 1s one of the
most common types of cortical neurons. Like many other types of neurons, 1t receives
most of its inputs through dendritic spines; see the segment of dendrite in the insert in
Fig. 1.2 for detail. The pyramidal cell can receive 10,000 or more synaptic contacts and
it can project onto thousands of target cells.

The majority of neurons encode their outputs as a series of brief voltage pulses.
These pulses, commonly known as action potentials or spikes, originate at or close to
the cell body of neurons and then propagate across the individual neurons at constant
velocity and amplitude. The reasons for the use of action potentials for communication
among neurons are based on the physics of axons. The axon of a neuron 1s very long
and thin and is characterized by high electrical resistance and very large capacitance.
Both of these elements are distributed across the axon. The axon may therefore be
modeled as an RC transmission line, hence the common use of “cable equation” as the
terminology for describing signal propagation along an axon. Analysis of this propaga-
tion mechanism reveals that when a voltage is applied at one end of the axon it decays
exponentially with distance, dropping to an insignificant level by the time 1t reaches
the other end. The action potentials provide a way to circumvent this transmission
problem (Anderson,1995).

In the brain there are both small-scale and large-scale anatomical organizations,
and different functions take place at lower and higher levels. Figure 1.3 shows a hierar-
chy of interwoven levels of organmization that has emerged from the extensive work
done on the analysis of local regions in the brain (Shepherd and Koch, 1990;
Churchiand and Sejnowski, 1992). The synapses represent the most fundamental level,
depending on molecules and ions for their action. At the next levels we have neural
microcircuits, dendritic trees, and then neurons. A neural microcircuit reters to an
assembly of synapses organized into patterns of connectivity to produce a functional
operation of interest. A neural microcircuit may be likened to a silicon chip made up of
an assembly of transistors. The smallest size of microcircuits 1s measured in microme-
ters (um), and their fastest speed of operation is measured in milliseconds. The neural
microcircuits are grouped to form dendritic subunits within the dendritic trees of
individual neurons. The whole neuron, about 100 pwm in size, contains several dendritic
subunits. At the next level of complexity we have local circuits (about 1 mm in size)
made up of neurons with similar or different properties; these neural assemblies perform

38 Chapter 1 Introduction

__.-—-""""F
—
gt
/
/

Synaptic
4 inputs

Apical _ \
dendrites

Segment
of dendrite

| Cell

| body |
@ @ BﬁSﬁl
\- J dendrites

Axon

Synaptic
terminals

<

FIGURE 1.2 The pyramidal cell.

operations characteristic of a localized region in the brain. This is followed by interre-
gional circuits made up of pathways, columns, and topographic maps, which involve
multiple regions located in different parts of the brain.

Topographic maps are organized to respond to incoming sensory information.
These maps are often arranged in sheets, as in the superior colliculus, where the visual,

Section 1.2 Human Brain 31

Central nervous system
A

Interregional circuits }

T

L Local circuits

T

Neurons

T

L Dendritic trees

!

Neural microcircuits

A
[Synapses
T FIGURE 1.3 Structural
Molecul organization of levels in the
e brain.

auditory, and somatosensory maps are stacked 1n adjacent layers in such a way that stim-
uli from corresponding points in space lie above or below each other. Figure 1.4 presents
a cytoarchitectural map of the cerebral cortex as worked out by Brodmann (Brodal,
1981). This figure shows clearly that different sensory inputs (motor, somatosensory,
visual, auditory, etc.) are mapped onto corresponding areas of the cerebral cortex in an
“orderly fashion. At the final level of complexity, the topographic maps and other interre-
gional circuits mediate specific types of behavior in the central nervous system.

It is important to recognize that the structural levels of organization described
herein are a unique characteristic of the brain. They are nowhere to be found in a digi-
tal computer, and we are nowhere close to re-creating them with artificial neural net-
works. Nevertheless, we are inching our way toward a hierarchy of computational
levels similar to that described in Fig. 1.3. The artificial neurons we use to build our
neural networks are truly primitive in comparison to those found in the brain. The
neural networks we are presently able to design are just as primitive compared to the
local circuits and the interregional circuits in the brain. What is really satisfying, how-
ever, 1s the remarkable progress that we have made on so many fronts during the past
two decades. With neurobiological analogy as the source of inspiration, and the wealth
of theoretical and technological tools that we are bringing together, it is certain that in
another decade our understanding of artificial neural networks will be much more
sophisticated than it 1s today.

Our primary interest in this book is confined to the study of artificial neural net-
works from an engineering perspective.” We begin the study by describing the models
of (artificial) neurons that form the basis of the neural networks considered in subse-
quent chapters of the book. |

32 Chapter1

Introduction

"""""

el A
. i_' o :‘I - _'_":"'{'_'EE

ey -

G.

« TN PER R ' O
O 5
a4 TR
|

9
ok
- .y "‘ﬁl iy

ot L
Nt

L 12
. T
% » 17T Ty TTTTTTTTTTT

8 T‘;‘:}T YTy
AN

: NI _
= iwf 20

FIGURE 1.4 Cytoarchitectural map of the cerebral cortex. The

L
LK
[]
L 3
| | -'.
[|

|]
LJ™ 4

L 4

| 3
.l

different areas are identified by the thickness of their layers and types
of cells within them. Some of the most important specific areas are as
follows. Motor cortex: motor strip, area 4; premotor area, areab6;
frontal eye fields, area 8. Somatosensory cortex: areas 3, 1, 2. Visual
cortex: areas 17, 18, 19. Auditory cortex: area 41 and 42. (From A.
Brodal, 1981; with permission of Oxford University Press.)

1.3 MODELS OF A NEURON

A neuron 1s an mformation-processing unit that is fundamental to the operation of a
neural network. The block diagram of Fig. 1.5 shows the model of a neuron, which
forms the basis for designing (artificial) neural networks. Here we identify three basic -

elements of the neuronal model:

1. A set of synapses or connecting links, each of which is characterized by a weight
or strength of 1ts own. Specifically, a signal x; at the input of synapse j connected
to neuron & 1s multiplied by the synaptic weight w,. It is important to make a note
of the manner 1n which the subscripts of the synaptic weight w,; are written: The
first subscript refers to the neuron in question and the second subscript refers to
the input end of the synapse to which the weight refers. Unlike a synapse in the
brain, the synaptic weight of an artificial neuron may lie in a range that includes

negative as well as positive values.

2. An adder for summing the input signals, weighted by the respective synapses of

the neuron; the operations described here constitute a linear combiner.

3. An activation function for limiting the amplitude of the output of a neuron. The
activation function is also referred to as a squashing function in that it squashes
(limits) the permissible amplitude range of the output signal to some finite value.

Section 1.3 Models of a Neuron 33

Bias
~ b,
X ¢ @ 0
Activation
¥ @ function
2 -
v
¥nput < 3 Kyl o) Output
signals Ik
Summing -
junction
o> .
S Synaptic FIGURE 1.5 Nonlinear model
welghts of a neuron.

Typically, the normalized amplitude range of the output of a neuron is written as
the closed unit interval [0,1] or alternatively [—1,1].

The neuronal model of Fig. 1.5 also includes an externally applied bias, denoted by b,.
The bias b, has the effect of increasing or lowering the net input of the activation func-
tion, depending on whether it is positive or negative, respectively.

In mathematical terms, we may describe a neuron k by writing the following pair
of equations:

== Z%kaxf (1.1)
j=1
and _
= @(u; + by) _ (1.2)

where x;, x,, ..., x,, are the input signals; w,, Wy,, ..., Wy, are the synaptic weights of
neuron k; i, is the linear combiner output due to the input signals; b, is the bias; ¢(-) 1
the activation function; and y, is the output signal of the neuron. The use of bias b, has
the effect of applying an affine transformation to the output u, of the linear combiner
in the model of Fig. 1.5, as shown by

Vi = Up + bk (13)

In particular, depending on whether the bias b, is positive or negative, the relationship
between the induced local field or activation potential v, of neuron k and the linear
combiner output u, is modified in the manner illustrated in Fig. 1.6; hereafter the term
“induced local field” is used. Note that as a result of this affine transformatmn the
graph of v, versus u, no longer passes through the origin.
The bias b, is an external parameter of artificial neuron k. We may account for its
presence as in Eq. (1.2). Equivalently, we may formulate the combination of Egs. (1.1)
to (1.3) as follows: '

Ve = D, Wi X; (1.4)
j=0 _
and
Yi = @(Vg) o (1.5)

34 Chapter 1 Introduction

Induced ,
Bias b, > 0
b, =0
b, <0
// , Linear combiner's
, output, Uy

FIGURE 1.6 Affine

transformation produced by

the presence of a bias; note

that Vk — bk at Uk — 0.
In Eq. (1.4) we have added a new synapse. Its input is

Xg — + 1 (1.6)

and 1ts weight is

We may therefore reformulate the model of neruon & as in Fig. 1.7. In this figure, the
effect of the bias is accounted for by doing two things: (1) adding a new input signal fixed
at +1, and (2) adding a new synaptic weight equal to the bias b,. Although the models
of Figs. 1.5 and 1.7 are different in appearance, they are mathematically equivalent.

Types of Activation Function

The activation function, denoted by ¢(v), defines the output of a neuron in terms of the
induced local field v. Here we identify three basic types of activation functions:

1. Threshold Function. For this type of activation function, described in Fig. 1.8a,
we have '

{1 Hv=0 | ;
o(v) = {0 fo<0 (1.8)

In engineering literature, this form of a threshold function is commonly referred toas a
Heaviside function. Correspondingly, the output of neuron k employing such a thresh-
- old function is expressed as '

1 ifv, =0 |
= 1.9
Tk {O ifv, <0 | | (1.9)

where v, 1s the induced local field of the neuron; that is,

Vi = Ewijf + b, | (1.10)
j=1 .

Section 1.3 Models of a Neuron

Output
Yk

FIGURE 1.7 Another

35

nonlinear model of a neuron.

Fx
—@
Activation
x function
A
v, ‘
Inputs < | p() >
: Summing
junction
me s Wi
Synaptic
weights
(including bias)
1.2

-2 =15 -1 -05

p(v)

1 15

2 -15 -1 -05 0
. v
(b)
1.2 ~ —
1 .
0L |)
0.6 -

Increasing

FIGURE 1.8 (a) Threshold

10 function. (b) Piecewise-linear
function. (¢) Sigmoid function

for varying slope parameter a.

36 Chapter1 Introduction

Such a neuron 1s referred to in the literature as the McCulloch—Pitts model, in recogni-
tion of the pioneering work done by McCulloch and Pitts (1943). In this model, the
output of a neuron takes on the value of 1 if the induced local field of that neuron is
nonnegative, and 0 otherwise. This statement describes the all-or-none property of the

McCulloch - Pitts model.
2. Piecewise-Linear Function. For the piecewise-linear function described in Fig. 1.8b

we have
1, V= +;
o(v) =4v, *+3>v> -1 (1.11)
0, v -1 |

where the amplification factor inside the linear region of operation is assumed to be
unity. This form of an activation function may be viewed as an approximation to a non-

linear amplifier. The following two situations may be viewed as special forms of the
piecewise-linear function:

* A linear combiner arises if the linear region of operation is maintained without
running into saturation.

e The piecewise-linéar function reduces to a threshold function if the amplification
factor of the linear region is made infinitely large.

3. Sigmoid Function: The sigmoid function, whose graph is s-shaped, is by far the
most common form of activation function used in the construction of artifical neural
networks. It 1s defined as a strictly increasing function that exhibits a graceful balance
between linear and nonlinear behavior.” An example of the sigmoid function is the
logistic function,” defined by

1
1 + exp(—av)

¢(v) = (1.12)
where a 1s the slope parameter of the sigmoid function. By varying the parameter a, we
obtain sigmoid functions of different slopes, as illustrated in Fig. 1.8c. In fact, the slope
at the origin equals a/4. In the limit, as the slope parameter appreaches infinity, the sig-
moid function becomes simply a threshold function. Whereas a threshold function
assumes the value of O or 1, a sigmoid function assumes a continuous range of values
from 0 to 1. Note also that the sigmoid function is differentiable, whereas the threshold
function is not. (Differentiability is an important feature of neural network theory, as
described in Chapter 4.) '

The activation functions defined in Eqgs. (1.8), (1.11), and (1.12) range from 0 to
+1. It 1s sometimes desirable to have the activation function range from —1 to +1,in
which case the activation function assumes an antisymmetric form with respect to the -
origin; that 1s, the activation function is an odd function of the induced local field.
Specitically, the threshold function of Eq. (1.8) is now defined as

1 dv>0 |
e(v) =4 0 ifv=0 (1.13)
| —-1 ifv<('

Section 1.4 Neural Networks Viewed as Directed Graphs 37

which is commonly referred to as the sighum function. For the corresponding form of a
sigmoid function we may use the hyperbolic tangent function, defined by

¢(v) = tanh(v) ‘ t1.14)

Allowing an activation function of the sigmoid type to assume negative values as pre-
scribed by Eq. (1.14) has analytic benefits (as shown in Chapter 4).

Stochastic Model of a Neuron

The neuronal model described in Fig. 1.7 is deterministic in that its input-output behav-
10r 1s precisely defined for all inputs. For some applications of neural networks, it is
desirable to base the analysis on a stochastic neuronal model. In an analytically
tractable approach, the activation function of the McCulloch-Pitts model is given a
probabilistic interpretation. Specifically, a neuron is permitted to reside in only one of
two states: +1 or —1, say. The decision for a neuron to fire (i.€., switch its state from
“off” tc “on”) is probabilistic. Let x denote the state of the neuron, and P(v) denote the
probability of firing, where v 1s the induced local field of the neuron. We may then write

. { +1 with probability P(v)
—1 with probability 1 — P(v)

A standard choice for P(v) is the sigmoid-shaped function (Little, 1974):

1
1 + exp(—v/T)

where T is a pseudotemperature that is used to control the noise level and therefore the
uncertainty in firing. It is important to realize, however, that 7 1s nof the physical tem-
perature of a neural network, be it a biological or an artificial neural network. Rather,
as already stated, we should think of T'merely as a parameter that controls the thermal
fluctuations representing the effects of synaptic noise. Note that when 7— 0, the sto-
chastic neuron described by Eq. (1.15) reduces to a noiseless (i.e., deterministic) form,
namely the McCulloch-Pitts model.

P(v) = (1.15)

1.4 NEURAL NETWORKS VIEWED AS DIRECTED GRAPHS

The block diagram of Fig. 1.5 or that of Fig. 1.7 provides a functional description of the
various elements that constitute the model of an artificial neuron. We may simplify the
appearance of the model by using the idea of signal-flow graphs without sacrificing any
of the functional details of the model. Signal-flow graphs with a well-defined set of
rules were originally developed by Mason (1953, 1956) for linear networks. The pres-
ence of nonlinearity in the model of a neuron limits the scope of their application to
‘neural networks. Nevertheless, signal-flow graphs do provide a neat method for the
portrayal of the flow of signals in a neural network, which we pursue in this section.
A signal-flow graph is a network of directed links (branches) that are intercon-
nected at certain points called nodes. A typical node j has an associated node signal x;.
A typical directed link originates at node j and terminates on node k;1t has an associated

38 Chapter1 Introduction

transfer function or transmittance that specifies the manner in which the signal y, at
node k depends on the signal x; at node j. The flow of signals in the various parts of the

graph is dictated by three basic rules:
Rule 1. A signal flows along a link oﬁly in the direction defined by the arrow on the iink.
Two different types of links may be distinguished:

e Synaptic links, whose behavior is governed by a linear input—output relation.
Specifically, the node signal x; 1s muitiplied by the synaptic weight w,; to produce
the node signal y,, as illustrated in Fig. 1.9a. .

o Activation links, whose behavior is governed 1n general by a nonlinear input-

output relation. This form of relationship is illustrated in Fig 1.9b, where ¢(-) is
the nonlinear activation function.

Rule 2. A node signal equals the algebraic sum of all signals entering the pertinent node |
via the immcoming links.

~ This second rule ts illustrated in Fig. 1.9¢ for the case of synaptic convergence or
fan-in.

Rule 3. The signal at a node is transmitted to each outgoing link originating from that
node, with the transmission being entirely independent of the transfer functions of the

outgoing links.
ij -
(a)
P -
Aj Oy O VL= Gﬂ(xj)
(b)
Hﬂ“a Yi
> Ye=Yi Y
(c}
X, - ”
_ X, <
FIGURE 1.9 Illustrating basic J
rules for the construction of | BN

signal-flow graphs. - (d)

Section 1.4 Neural Networks Viewed as Directed Graphs 39

This third rule is illustrated in Fig. 1.9d for the case of synaptic divergence or
fan-out.

For example, using these rules we may construct the signal-flow graph of Fig 1.10
as the model] of a neuron, corresponding to the block diagram of Fig. 1.7. The represen-
tation shown in Fig. 1.10 is clearly simpler in appearance than that of Fig. 1.7, yet it con-
tains all the functional details depicted in the latter diagram. Note that in both figures,
the input x, = +1 and the associated synaptic weight w,, = b,, where b, is the bias
applied to neuron k.

Indeed, based on the signal-flow graph of Fig. 1.10 as the model of a neuron, we
may now offer the following mathematical definition of a neural network:

A neural network is a directed graph consisting of nodes with interconnecting synaptic and
activation links, and is characterized by four properties:

1. Each neuron is represented by a set of linear synaptic links, an externally applied bias,
and a possibly nonlinear activation link. The bias is represented by a synaptic link con-
nected to an input fixed at +1.

2. The synaptic links of a neuron weight their respective input signals.

3. The weighted sum of the input signals defines the induced local field of the neuron in

~question.
4. The activation link squashes the induced local field of the neuron to produce an output.

The state of the neuron may be defined in terms of its induced local field or its output
signal. |

A directed graph so defined 1s complete in the sense that it describes not only the
signal flow from neuron to neuron, but also the signal flow inside each neuron. When,
however, the focus of attention is restricted to signal flow from neuron to neuron, we
may use a reduced form of this graph by omitting the details of signal flow inside the
individual neurons. Such a directed graph is said to be partially complete. It is charac-
terized as follows: |

1. Source nodes supply input signals to the graph.

2. Each neuron is represented by a single node called a computation node.

3. The communication links mterconnecting the source and computation nodes of the
graph carry no weight; they merely provide directions of signal flow in the graph.

FIGURE 1.10 Signal-flow
graph of a neuron.

40 Chapter 1 Introduction

A partially complete directed graph defined in this way is referred to as an architec-
tural graph, describing the layout of the neural network. It 1s illustrated in Fig. 1.11 for
the simple case of a single neuron with m source nodes and a single node fixed at +1
for the bias. Note that the computation node representing the neuron is shown shaded,
and the source node is shown as a small square. This convention is followed through-
out the book. More elaborate examples of architectural layouts are presented in
Section 1.6.
To sum up, we have three graphical representations of a neural network:

o Block diagram, providing a functional description of the network. _

e Signal-flow graph, providing a complete description of signal flow in the net-
work. | |

e Architectural graph, describing the network layout.

1.5 FEEDBACK

Feedback is said to exist in a dynamic system whenever the output of an element in the
system influences in part the input applied to that particular element, thereby giving
rise to one or more closed paths for the transmission of signals around the system.
Indeed, feedback occurs in almost every part of the nervous system of every animal
(Freeman, 1975). Moreover, it plays a major role in the study of a special class of neural
networks known as recurrent networks. Figure 1.12 shows the signal-flow graph of a
single-loop feedback system, where the input signal x;(n), internal signal x{(n), and out-
put signal y,(n) are functions of the discrete-time variable n. The system is assumed to
be linear, consisting of a forward path and a feedback path that are characterized by
the “operators” A and B, respectively. In particular, the output of the forward channel
determines in part its own output through the feedback channel. From Fig 1.12 we
readily note the following input—output relationships:

yi(n) = Alxj(n)] (1.16)

FIGURE 1.11 Architectural
graph of a neuron.

x/'(n) A

FIGURE 1.12 Signal-flow Xi(n) =0 Y1)
graph of a single-loop feedback | %

system., _ R

Section 1.5 Feedback a4

xj(n) = xi(n) + Blyi(n)] (1.17)

where the square brackets are included to emphasize that A and B act as operators.
Eliminating x;(n) between Eqgs. (1.16) and (1.17), we get

A

yin) = 7z lx(7) o (118)

We refer to A/(1 — AB) as the closed-loop operator of the system, and to AB as the open-
loop operator. In general, the open-loop operator is noncommutative in that BA # AB.

Consider, for example, the single-loop feedback system shown in Fig. 1.13, for
which A is a fixed weight, w; and B is a unit-delay operator, 77!, whose output is
delayed with respect to the input by one time unit. We may then express the closed-
loop operator of the system as

A - W
1 —-AB 1 —wz !

= w(l — wz)™

Using the binomial expansion for (1 — wz~!)™!, we may rewrite the closed-loop opera-
tor of the system as
A X

— = 7! 1.19)
—r ngwz (1.19)

Hence, substituting Eq. (1.19) in (1.18), we get

il) = w3, 'z ()] ' (1.20)

where again we have included square brackets to emphasize the fact that z ™' is an oper-
ator. In particuldr, from the definition of z 7" we have

2 x(m)] = x(n = I (1.21)

where x(n — [) is a sample of the input signal delayed by / time units. Accordingly, we
may express the output signal y,(n) as an infinite weighted summation of present and

past samples of the input signal x;(n), as shown by

yiln) = szixj(n — I) (1.22)
/=0
. x.(n) o—» xjr{n} J:J o v.(h) FIGURE 1.13. Signal-flow
! U graph of a first-order,
infinite-duration impuise

Z response (liR) filter.

42 Chapter 1 Introduction

w< 1

4
yk(n) f.f

| R M w> |
FIGURE 1.14 Time response wx(0)¢-~ T
of Fig. 1.13 for three different
values of forward weight w. - -
(a) Stable. (b) Linear ——n
divergence. (c) Exponential 6 1t 2 3 4

divergence. (c)

We now see clearly that the dynamic behavior of the system is controlled by the weight
w. In particular, we may distinguish two specific cases:

1. |w| <1, for which the output signal y,(n) is exponentially convergent; that is, the
system 18 stable. This is illustrated in Fig. 1.14a for a positive w.

2. |w| = 1, for which the output signal y,(n) is divergent; that is, the system is unsta-
ble. If lw| =1 the divergence is linear as in Fig. 1.14b, and if jw| > 1 the diver-
gence 1s exponential as in Fig 1.14c.

Stability features prominently in the study of feedback systems.

The case of |w| < 1 corresponds to a system with infinite memory in the sense
that the output of the system depends on samples of the input extending into the infi-
nite past. Moreover, the memory is fading in that the influence of a past sample is
reduced exponentially with time n.

The analysis of the dynamic behavior of neural networks involving the applica-
tion of feedback is unfortunately complicated by virute of the fact that the processing
units used for the construction of the network are usually nonlinear. Further consider-
ation of this issue is deferred to the latter part of the book.

Section 1.6 Network Architectures 43

1.6 NETWORK ARCHITECTURES

The manner in which the neurons of a neural network are structured is intimately
linked with-the learning algorithm used to train the network. We may therefore
speak of learning algorithms (rules) used in the design of neural networks as being
structured. The classification of learning algorithms is considered in the next chapter,
and the development of different learning algorithms is taken up in subsequent chap-
ters of the book. In this section we focus our attention on network architectures
(structures). -

In general, we may identify three fundamentally different classes of network
architectures:

1. Single-Layer Feedforward Networks

In a layered neural network the neurons are organized in the form of layers. In the sim-
plest form of a layered network, we have an input layer of source nodes that projects
onto an output layer of neurons (computation nodes), but not vice versa. In other words,
this network is strictly a feedforward or acyclic type. It is illustrated in Fig. 1.15 for the
case of four nodes in both the mput and output layers. Such a network is called a sin-
gle-layer network, with the designation “single-layer” referring to the output layer of
computation nodes (neurons). We do not count the input layer of source nodes
because no computation 1s pertormed there.

2. Multilayer Feedforward Networks

The second class of a feedforward neural network distinguishes itself by the presence
of one<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>