
Genetic Programming
An Introduction

On the Automatic Evolution of Computer Programs and Its Applications

Wolfgang Banzhaf

Peter Nordin

Robert E. Keller

Frank D. Francone

dpunkt.verlag
-

Morgan Kaufmann Publishers, Inc. dpunkt
San Francisco, California Verlag fuer digitale Technologie GmbH

Heidelberg

Copublished by dpunkt.verlag and Morgan Kaufmann Publishers, Inc.

dpunkt.verlag
Sponsoring Editor
Production Manager
Copyeditor

Michael Barabas
Josef Hegele
Andrew Ross

Morgan Kaufmann Publishers, Inc.
Sponsoring Editor Michael B. Morgan
Production Manager Yonie Overtoil
Production Editor Elisabeth Beller
Cover Design Ross Carron Design
Cover Photo Chris Howes/Masterfile
Cover Illustration Cherie Plumlee
Proofreader Robert Fiske
Printer Courier Corporation

This book has been author-typeset using LaTEX.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks.
In all instances where Morgan Kaufmann Publishers, Inc. and dpunkt GmbH are aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

Available in Germany, Austria, and Switzerland from
dpunkt —Verlag fur digitale Technologic GmbH
Ringstrasse 19
D-69115 Heidelberg
Germany
Telephone +49/6221/1483-12
Facsimile +49/6221/1483-99
Email hallo@dpunkt.de
WWW www.dpunkt.de

Available in all other countries from
Morgan Kaufmann Publishers, Inc.
Editorial and Sales Office
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205
USA
Telephone 415/392-2665
Facsimile 415/982-2665
Email mkp@mkp.com
WWW www.mkp.com

Order toll free 800/745-7323

© 1998 Morgan Kaufmann Publishers, Inc. and dpunkt—Verlag fur digitale Technologic GmbH
All rights reserved
Printed in the United States of America

02 01 5 4 3

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of the
publisher.

Library of Congress Cataloging-in-Publication Data
Genetic programming—an introduction : on the automatic evolution of

computer programs and its applications / Wolfgang Banzhaf... [et al.].
p. cm.

Includes bibliographical references and index.
ISBN 1 -55860-510-X
1. Genetic programming (Computer science) I. Banzhaf, Wolfgang, date.
QA76.623.G46 1998
006.3'1—dc21 97-51603

CIP

MKP ISBN:
dpunkt ISBN:

1-55860-510-X
3-920993-58-6

To Pia, Teresa, Benedikt and Judith,
who had to sacrifice many evenings and weekends for this
book to become possible.

Wolfgang Banzhaf

To my family and friends, who were
there when times got tough. To the lovely Miss Christina
Espanto, who makes even the tough times good.

Frank D. Francone

To those who missed me while I was working on this book.

Robert E. Keller

To my parents Set and Inga.

Peter Nordin

Foreword by John R. Koza

Genetic programming addresses the problem of automatic program¬
ming, namely, the problem of how to enable a computer to do useful
things without instructing it, step by step, on how to do it.

Banzhaf, Nordin, Keller, and Francone have performed a remark¬
able double service with this excellent book on genetic programming.

First, they have written a book with an up-to-date overview
of the automatic creation of computer programs by means of
evolution. This effort is especially welcome because of the rapid
growth of this field over the past few years (as evidenced by
factors such as the more than 800 papers published by some
200 authors since 1992).

G Second, they have brought together and presented their own in¬
novative and formidable work on the evolution of linear genomes
and machine code in particular. Their work is especially im¬
portant because it can greatly accelerate genetic programming.

The rapid growth of the field of genetic programming reflects
the growing recognition that, after half a century of research in the
fields of artificial intelligence, machine learing, adaptive systems, au¬
tomated logic, expert systems, and neural networks, we may finally
have a way to achieve automatic programming. When we use the
term automatic programming, we mean a system that

1. produces an entity that runs on a computer (i.e., either a com¬
puter program or something that is easily convertible into a
program),

2. solves a broad variety of problems,

3. requires a minimum of user-supplied problem-specific informa¬
tion,

4. in particular, doesn't require the user to prespecify the size and
shape of the ultimate solution,

5. implements, in some way, all the familiar and useful program¬
ming constructs (such as memory, iteration, parameterizable
subroutines, hierarchically callable subroutines, data structures,
and recursion),

6. doesn't require the user to decompose the problem in advance,
to identify subgoals, to handcraft operators, or to tailor the
system anew for each problem,

7. scales to ever-larger problems,

8. is capable of producing results that are competitive with those
produced by human programmers, mathematicians, and spe¬
cialist designers or of producing results that are publishable in
their own right or commercially usable, and

9. is well-defined, is replicable, has no hidden steps, and requires
no human intervention during the run. w

Genetic programming is fundamentally different from other ap¬
proaches to artificial intelligence, machine learning, adaptive systems,
automated logic, expert systems, and neural networks in terms of
(i) its representation (namely, programs), (ii) the role of knowledge
(none), (iii) the role of logic (none), and (iv) its mechanism (gleaned
from nature) for getting to a solution within the space of possible
solutions.

Among these four differences, representation is perhaps the most
important distinguishing feature of genetic programming. Computers
are programmed with computer programs - and genetic programming
creates computer programs.

Computer programs offer the flexibility to perform computations
on variables of many different types, perform iterations and recur¬
sions, store intermediate results in data structures of various types
(indexed memory, matrices, stacks, lists, rings, queues), perform al¬
ternative calculations based on the outcome of complex calculations,
perform operations in a hierarchical way, and, most important, em¬
ploy parameterizable, reusable, hierarchically callable subprograms
(subroutines) in order to achieve scalability.

In attacking the problem of automatic programming, genetic pro¬
gramming does not temporize or compromise with surrogate struc¬
tures such as Horn clauses, prepositional logic, production rules,
frames, decision trees, formal grammars, concept sets, conceptual
clusters, polynomial coefficients, weight vectors, or binary strings.
Significantly, human programmers do not commonly regard any of
the above surrogates as being suitable for programming computers.
Indeed, we do not see computers being ordinarily programmed in the
language of any of them.

My view is that if we are really interested in getting computers to
solve problems without explicitly programming them, the structures
that we need are computer programs.

This book will be coming out almost exactly ten years since my
first run of genetic programming in October 1987 (solving a pair of
linear equations and inducing the Fibonacci sequence). Certainly
I could not have anticipated that this field would have grown the
way it has when I thought of the idea of genetic programming while
flying over Greenland on my return from the 1987 meeting of the
International Joint Conference on Artificial Intelligence in Italy.

We know from Yogi Berra that predictions are risky, particularly
when they involve the future. But, it is a good guess that genetic
programming will, in the future, be successfully expanded to greater
levels of generality and practicality.

In trying to identify future areas for practical application, the
presence of some or all of the following characteristics should provide
a good indication:

1. areas where the interrelationships among the relevant variables
are poorly understood (or where it is suspected that the current
understanding may well be wrong),

2. areas where finding the size and shape of the ultimate solution
to the problem is a major part of the problem,

3. areas where conventional mathematical analysis does not, or
cannot, provide analytic solutions,

4. areas where an approximate solution is acceptable (or is the
only result that is ever likely to be obtained),

5. areas where small improvements in performance are routinely
measured (or easily measurable) and highly prized,

6. areas where there is a large amount of data, in computer read¬
able form, that requires examination, classification, and inte¬
gration (such as molecular biology for protein and DNA se¬
quences, astronomical data, satellite observation data, financial
data, marketing transaction data, or data on the World Wide
Web).

1 Genetic Programming
as Machine Learning

Contents

1.1 Motivation 4

1.2 A Brief History of Machine Learning 7

1.3 Machine Learning as a Process 9

1.4 Major Issues in Machine Learning 12

1.5 Representing the Problem 12

1.5.1 What Is the Problem Representation? 12

1.5.2 Boolean Representations 14

1.5.3 Threshold Representations 17

1.5.4 Case-Based Representations 19

1.5.5 Tree Representations 20

1.5.6 Genetic Representations - 21

1.6 Transforming Solutions with

Search Operators 23

1.6.1 Generality/Specificity Operators 23

1.6.2 Gradient Descent Operators 24

1.6.3 Genetic Programming Operators 24

1.7 The Strategy of the Search 25

1.7.1 Blind Search 25

1.7.2 Hill Climbing 26

1.7.3 Beam Search 27

1.8 Learning 28

1.9 Conclusion 29

1 Genetic Programming as Machine Learning

Evolution is Nature's ijiistake. Intelligence is its insistence on mak¬
ing the same mistake.

S.LEM, GOLEM XIV, 1981

1.1 Motivation

Automatic programming will be one of the most important areas
of computer science research over the next twenty years. Hardware
speed and capability has leapt forward exponentially.(Yet software
consistently lags years behind the capabilities of the hardware. The
gap appears to be ever increasing. Demand for computer code keeps
growing but the process of writing code is still mired in the modern
day equivalent of the medieval "guild" days. Like swords in the 15th
century, muskets before the early 19th century and books before the
printing press, each piece of computer code is, today, handmade by
a craftsman for a particular purpose.

The history of computer programming is a history of attempts
to move away from the "craftsman" approach - structured program¬
ming, object-oriented programming, object libraries, rapid prototyp¬
ing. But each of these advances leaves the code that does the real
work firmly in the hands of a craftsman, the programmer. The ability
to enable computers to learn to program themselves is of the utmost
importance in freeing the computer industry and the computer user
from code that is obsolete before it is released.

Since the 1950s, computer scientists have tried, with varying de¬
grees of success, to give computers the ability to learn. The umbrella
term for this field of study is "machine learning," a phrase coined
in 1959 by the first person who made a computer perform a serious
learning task, Samuel.

Originally, Samuel used "machine learning" to mean computers
programming themselves [Samuel, 1963]. That goal has, for many
years, proven too difficult. So the machine learning community has
pursued more modest goals. A good contemporary definition of ma¬
chine learning is due to Mitchell: "[machine learning] is the study
of computer algorithms that improve automatically through experi¬
ence" [Mitchell, 1996].

Genetic programming, GP for short, aspires to do precisely that
- to induce a population of computer programs that improve au¬
tomatically as they experience the data on which they are trained.
Accordingly, GP is part of the very large body of research called
machine learning (ML).

Within the machine learning community, it is common to use "ge¬
netic programming" as a shorthand for any machine learning system

that evolves tree structures. The focus on tree structures is really a
tribute to the immense influence of Koza. In 1992, he wrote a treatise
entitled "Genetic Programming. On the Programming of Comput¬
ers by Means of Natural Selection." Before this work, a number of
researchers had used genetic or evolutionary operators to induce com¬
puter programs. But these earlier works went largely unrecognized
because they were, in effect, buried in the mass of genetic algorithm
research. In his seminal book, Koza was the first to recognize that GP
was something new and different - he even gave the new discipline its
name. Koza's results were achieved by evolving tree structures. It is
not surprising, therefore, that many use the term "genetic program¬
ming" to mean the evolution of tree structures, nor is it surprising
that most of the work in this discipline is with various tree-based
systems.

The definition of GP used in this book will be less restrictive than
the definition referred to above.

1. First and foremost we will consider the induction of computer
programs by evolutionary means. Accordingly, in this book, the
term "genetic programming" shall include systems that con¬
stitute or contain explicit references to programs (executable
code) or to programming language expressions. So, for exam¬
ple, evolving LISP lists are clearly GP because LISP lists con¬
stitute programming language structures and elements of those
lists constitute programming language expressions. Similarly,
the common practice among GP researchers of evolving C data
structures that contain information explicitly referring to pro¬
grams or program language tokens would also be GP.

2. It is already clear from the GP literature that programs or
programming language structures may be represented in ways
other than as trees. Research has already established the effi¬
cacy of both linear and graph-based genetic programming sys¬
tems. Therefore, we do not limit our definition of GP to include
only systems that use (expression) trees to represent programs.
Instead, all means of representing programs will be included.

3. Not all algorithms running on computers are primarily pro¬
grams. For example, neural networks are (learning) algorithms,
but their implementation is usually of secondary concern. Nev¬
ertheless, we shall riot exclude these algorithms from being le¬
gitimate members of the GP family. There already exist nu¬
merous applications in the algorithmic domain, and excluding
them would unnecessarily deprive GP of an important source
of inspiration.

1 Genetic Programming as Machine Learning
4. We do not limit our definition of GP to include only systems

that use certain operators, such as crossover. As long as there
is a population of programs or algorithms used for the benefit
of the search, and as long as some kind of indeterminism is
applied to generate new variants, we think we can legitimately
call a system a genetic programming system.

With the above discussion in mind, it is possible to define genetic
programming as the direct evolution of programs or algorithms for the
purpose of inductive learning. Thus, in a very real sense, GP returns
to Samuel's original goal for machine learning in 1959 - teaching
computers to program themselves.

Today, we program by telling the computer exactly how to do
every possible thing that we think it might need to do - how to
respond to every possible request from a user or a network. Not
only is this cumbersome, it is impossible for software packages that
routinely occupy fifty megabytes of hard disk space. The great goal of
machine learning, and especially GP, is to be able to tell the computer
what task we want it to perform and to have it learn to perform that
task. GP would do so by letting the computer program itself or other
computers.

Is GP capable of such a feat today? In a general sense, no. That
is, there is no GP system that will generically accept any problem
and then automatically generate computer code that addresses that
problem. It is clearly not a human programmer. Notwithstanding
this limitation, in only a few short years since the publication of
Koza's book, GP has already changed the wisdom on the range of
problems machine learning can solve and has equaled or exceeded
the performance of other machine learning systems in various stud¬
ies. In fact, GP has already evolved programs that are better than
the best programs written by people to solve a number of difficult
engineering problems. Finally, GP has introduced a level of freedom
of representation into the machine learning world that did not previ¬
ously exist. That is why we urge the reader to look carefully at this
exciting and dynamic new branch of computer science.

This chapter will describe some of the central issues in machine
learning and will show where genetic programming fits in. Our pur¬
pose is not to describe the entire field of ML exhaustively - this
chapter will paint with a very broad brush. Rather, we intend to
place GP in the context of the overall field.1

1A good general discussion of artificial intelligence, machine learn¬
ing, and genetic programming's place in machine learning is contained in
[Angeline, 1994]. «;: „

We will begin with a brief history of machine learning from the
1950s until the present. After that, we will look at machine learning
as a process. This process is remarkably similar from one machine
learning paradigm to another. Moreover, understanding this process
will be essential to understanding GP itself. Finally, we will examine
some of the details of the machine learning process. It is in the details
that machine learning paradigms diverge and genetic programming
becomes quite distinctive.

1.2 A Brief History of Machine Learning

Although genetic programming is a relative newcomer to the world of
machine learning, some of the earliest machine learning research bore
a distinct resemblance to today's GP. In 1958 and 1959, Friedberg
attempted to solve fairly simple problems by teaching a computer to
write computer programs [Friedberg, 1958] [Friedberg et al., 1959].

Friedberg's programs were 64 instructions long and were able to
manipulate, bitwise, a 64-bit data vector. Each instruction had a
virtual "opcode" and two operands, which could reference either the
data vector or the instructions. An instruction could jump to any
other instruction or it could manipulate any bit of the data vector.
Friedberg's system learned by using what looks a lot like a modern
mutation operator - random initialization of the individual solutions
and random changes in the instructions.

Friedberg's results were limited. But his thinking and vision were
not. Here is how Friedberg framed the central issue of machine learn¬
ing:

If we are ever to make a machine that will speak, understand
or translate human languages, solve mathematical problems with
imagination, practice a profession or direct an organization, either
we must reduce these activities to a science so exact that we can
tell a machine precisely how to go about doing them or we must
develop a machine that can do things without being told precisely
how... . The machine might be designed to gravitate toward those
procedures which most often elicit from us a favorable response.
We could teach this machine to perform a task even though we
could not describe a precise method for performing it, provided
only that we understood the task well enough to be able to as¬
certain whether or not it had been done successfully. . . . In short,
although it might learn to perform a task without being told pre¬
cisely how to perform it, it would still have to be told precisely
how to learn.

R.M. FRIEDBERG, 1958

Friedberg's analysis anticipated the coming split between the ar¬
tificial intelligence community (with its emphasis on expert knowl¬
edge) and machine learning (with its emphasis on learning). Just
a few years after Priedberg's work, ML took a back seat to expert
knowledge systems. In fact, artificial intelligence (AI) research, the
study of domain-knowledge and knowledge systems, was the domi¬
nant form of computational intelligence during the 1960s and 1970s.
Expert system domain-knowledge in this era was generally human
knowledge encoded into a system. For example, an expert system
might be developed by polling human experts about how they make
particular kinds of decisions. Then, the results of that polling would
be encoded into the expert system for use in making real-world deci¬
sions.

The type of intelligence represented by such expert systems was
quite different from machine learning because it did not learn from
experience. In paraphrasing Friedberg's terms, AI expert systems
attempt to reduce performing specific tasks "... to a science so exact
that we can tell a machine precisely how to go about doing them"
[Friedberg, 1958].

The expert system approach, in the 1960s and thereafter, has had
many successes, including:

MYCIN - Diagnosis of Infectious Diseases

MOLE - Disease Diagnosis

PROSPECTOR - Mineral Exploration Advice

DESIGN ADVISOR - Silicon Chip Design Advice

Rl - Computer Configuration

Notwithstanding this success, expert systems have turned out
to be brittle and to have difficulty handling inputs that are novel
or noisy. As a result, in the 1970s, interest in machine learning
reemerged. Attention shifted from the static question of how to rep¬
resent knowledge to the dynamic quest for how to acquire it. In short,
the search began in earnest to find a way, in Friedberg's words, to
tell a computer "precisely how to learn."

By the early 1980s, machine learning was recognized as a distinct
scientific discipline. Since then, the field has grown tremendously.
Systems now exist that can, in narrow domains, learn from experience
and make useful predictions about the world. Today, machine learn¬
ing is frequently an important part of real-world applications such
as industrial process control, robotics control, time series prediction,
prediction of creditworthiness, and pattern recognition problems such

as optical character recognition and voice recognition, to name but a
few examples [White and Sofge, 1992] [Biethahn and Nissen, 1995].

At the highest level, any machine learning system faces a similar
task - how to learn from its experience of the environment. The
process of machine learning, that is, the defining of the environment
and the techniques for letting the machine learning system experience
the environment for both training and evaluation, are surprisingly
similar from system to system. In the next section of this chapter,
we shall, therefore, focus on machine learning as a high-level process.
In doing so, we will see what many ML paradigms have in common.

On the one hand, many successful machine learning paradigms
seem radically dissimilar in how they learn from the environment.
For example, given the same environment some machine learning
systems learn by inducing conjunctive or disjunctive Boolean net¬
works (see Section 1.5.2). The implicit assumption of such systems is
that the world may be modeled in formal Aristotelian and Boolean
terms. On the other hand, connectionist systems such as fuzzy adap¬
tive or neural networks create models of the same environment based
(loosely) on biological nervous systems. They regard the world as
non-linear, highly complex, and decidedly non-Aristotelian (see Sec¬
tion 1.5.3). The variety does not end there because various systems
also search through possible solutions in different ways. For exam¬
ple, blind search, beam search, and hill climbing are principal search
paradigms (see Section 1.6). Each may be broken into many subdis-
ciplines and each has grown out of different philosophies about how
learning works, and indeed, what learning is.

Accordingly, later in this chapter we shall overview the ways in
which machine learning systems are distinct from each other. In other
words, we will look at the details of how different machine learning
systems attack the problem of learning.

1.3 Machine Learning as a Process

Machine learning is a process that begins with the identification of
the learning domain and ends with testing and using the results of
the learning. It will be useful to start with an overview of how a
machine learning system is developed, trained, and tested. The key
parts of this process are the "learning domain," the "training set," the
"learning system," and "testing" the results of the learning process.
This overall process of machine learning is very important for the
reader to understand and we urge special attention in this section if
the reader is not already familiar with the subject matter.

Machine learning systems are usually applied to a "learning do-

main." A learning domain is any problem or set of facts where the
researcher is able to identify "features" of the domain that may be
measured, and a result or results (frequently organized as "classes")
the researcher would like to predict. For example, the stock market
may be the chosen domain, the closing S&P index2 for the past 30
days may be the features of the domain selected by the researcher,
and the closing S&P index tomorrow may be the result that the re¬
searcher wants to predict. Of course, the features (past index values)
ought to be related in some manner to the desired result (the future
index value). Otherwise, a machine learning system based on these
features will have little predictive power.

In the GP world, a "feature" would more likely be referred to as
an "input" and the "class" would more likely be referred to as the
"output." These are mostly differences of terminology.3 Regardless of
terminology, once the features (inputs) are chosen from the learning
domain, they define the overall dimensions of the environment that
the ML system will experience and from which it will (hopefully)
learn.

But the selection of features (inputs) does not completely define
the environment from which the system will learn. The researcher
must also choose specific past examples from the learning domain.
Each example should contain data that represent one instance of
the relationship between the chosen features (inputs) and the classes
(outputs). These examples are often referred to as "training cases"
or "training instances." In GP, they are called "fitness cases." Col¬
lectively, all of the training instances are referred to as the "training
set." Once the training set is selected, the learning environment of
the system has been defined.

Machine learning occurs by training. An ML system goes through
the training set and attempts to learn from the examples. In GP, this
means that the system must learn a computer program that is able
to predict the outputs of the training set from the inputs. In more
traditional machine learning terminology, GP must find a computer
program that can predict the class from the features of the learning
domain.

Finally, the researcher must appraise the quality of the learning
that has taken place. One way to appraise the quality of learning is

2 A leading stock market indicator in the United States.
3The use of the term "class" is actually due to the historic focus of

mainstream machine learning on classification problems. We will main¬
tain that terminology here for simplicity. Both GP and many other ML
paradigms are also capable of dealing with domains that require numeric
output for problems that are not classification problems. In this case, the
terminology would be problem specific.

to test the ability of the best solution of the ML system to predict
outputs from a "test set." A test set is comprised of inputs and
outputs from the same domain the system trained upon. Although
from the same domain, the test set contains different examples than
the training set. The ability of a system to predict the outputs of
the test set is often referred to as "generalization," that is, can the
learned solution generalize to new data or has it just memorized the
existing training set? Much of Chapter 8 is devoted to this very
important issue. There, we shall also see that using a training set
and a test set only oversimplifies the problem of generalization.

An example might be useful here: the "Iris data set."4 The Iris
data set presents a "classification" problem - that is, the challenge
is to learn to identify the class of Iris to which a photograph of a
particular iris plant belongs. The set itself is based on a sample of
150 different photographs of irises. The photos represent irises from
three different classes - class 0 is Iris Setosa, class 1 is Iris Versicolour,
and class 2 is Iris Virginica. The data set itself is comprised of
measurements made from these 150 photos.

The learning domain is, in this example, all photos of irises of
these three types. The 150 photos are not the learning domain -
they are just specific examples drawn from the domain. When the
researcher chose what measurements to make off the photos, he or
she identified the features of the domain. Here are the inputs (or
features) that were chosen:

Q Input 1. Sepal length in cm.

Q Input 2. Sepal width in cm.

Q Input 3. Petal length in cm.

Q Input 4. Petal width in cm.

There is, of course, a value for each of these inputs in each of the 150
training instances.

The 150 instances are then divided into two groups, a training
set and a test set. At this point, a machine learning system is given
access to the training data and its training algorithm is executed.

4 A word of caution: the Iris data set is often referred to in the machine
learning literature as a "classic." This may imply to the reader that it
might be a good idea actually to use the Iris data to test an ML system.
However, the Iris domain is trivially simple, at least for GP, and its use
as a test of ML systems is discouraged [Francone et al., 1996]. We use
the example in the text only because it is a simple example of a learning
domain.

The goal in training is to take the sepal and petal measurements (the
features) in the training set and to learn to predict which of the three
classes a particular iris belongs to. Not only must the system predict
the class of Iris for the training set, it should also be able to do so
for the test set in a manner that is statistically significant.

With this overview of the process of machine learning in place,
we can now look at some of the details of learning for various machine
learning paradigms.

1.4 Major Issues in Machine Learning

Until this time, the manner in which learning occurs has been ignored
so that we could focus on issues common to all ML systems. But
the choices made in designing a learning algorithm are crucial. The
learning algorithm defines the system in which it is used more than
any other single factor. Not only that, the learning algorithm is where
ML systems diverge. GP systems use a learning algorithm based on
an analogy with natural evolution. "Multilayer feedforward neural
networks" are based on an analogy with biological nervous systems.
Bayes/Parzen systems are based on statistics.

There are many ways to classify learning algorithms. Here, we
will classify them by how they answer the following four questions
about the "how to" of learning:

1. How are solutions represented in the algorithm?

2. What search operators does the learning algorithm use to move
in the solution space?

3. What type of search is conducted?

4. Is the learning supervised or unsupervised?

Each of these four questions raises important and sometimes con¬
tentious issues for learning algorithm design. In looking at some of
the different ways in which different ML systems have answered these
questions, the place of GP in machine learning will become clearer.

1.5 Representing the Problem

1.5.1 What Is the Problem Representation?

An ML system's problem representation is its definition of what pos¬
sible solutions to the problem look like - what kinds of inputs do
the solutions accept, how do they transform the inputs, how do they

The four authors are to be congratulated on producing a fine
book and the reader will be rewarded by reading it.

John R. Koza
Stanford University
July 8, 1997

Contents

Foreword by John R. Koza vii

Preface xv
Acknowledgments xix

I Prerequisites of Genetic Programming 1

1 Genetic Programming as Machine Learning 3
1.1 Motivation 4

1.2 A Brief History of Machine Learning 7

1.3 Machine Learning as a Process 9

1.4 Major Issues in Machine Learning 12

1.5 Representing the Problem 12

1.6 Transforming Solutions with

Search Operators 23

1.7 The Strategy of the Search 25

1.8 Learning 28

1.9 Conclusion 29

2 Genetic Programming and Biology 33
2.1 Minimal Requirements

for Evolution to Occur 35

2.2 Test Tube Evolution - A Study

in Minimalist Evolution 35

2.3 The Genetic Code - DNA as a Computer Program 39

2.4 Genomes, Phenomes, and Ontogeny 45

2.5 Stability and Variability of

Genetic Transmission 48

2.6 Species and Sex 53

3 Computer Science and Mathematical Basics 57
3.1 The Importance of Randomness

in Evolutionary Learning 58

3-2 Mathematical Basics 60

3.3 Computer Science Background
and Terminology 67

3.4 Computer Hardware 72
3.5 Computer Software 76

4 Genetic Programming as Evolutionary Computation . . 87

4.1 The Dawn of Genetic Programming —
Setting the Stage 88

4.2 Evolutionary Algorithms:
The General View 91

4.3 Flavors of Evolutionary Algorithms 95

4.4 Summary of Evolutionary Algorithms 102

II Genetic Programming Fundamentals 105

5 Basic Concepts — The Foundation 107
5.1 Terminals and Functions - The Primitives of Genetic Pro¬

grams 109
5.2 Executable Program Structures 112

5.3 Initializing a GP Population 118

5.4 Genetic Operators 122
5.5 Fitness and Selection 126

5.6 The Basic GP Algorithm 133

5.7 An Example Run 135

6 Crossover — The Center of the Storm 143
6.1 The Theoretical Basis for the

Building Block Hypothesis in GP 145
6.2 Preservation and Disruption of Building

Blocks: A Gedanken Experiment 148

6.3 Empirical Evidence of Crossover Effects 151
6.4 Improving Crossover - The Argument

from Biology 156

6.5 Improving Crossover - New Directions 158

6.6 Improving Crossover - A Proposal 166

6.7 Improving Crossover - The Tradeoffs 169
6.8 Conclusion 170

7 Genetic Programming and Emergent Order 175
7.1 Introduction 176
7.2 Evolution of Structure and

Variable Length Genomes 177
7.3 Iteration, Selection, and Variable Length

Program Structures 179

7.4 Evolvable Representations 180

7.5 The Emergence of Introns,

Junk DNA, and Bloat 181

7.6 Introns in GP Defined 185

7.7 Why GP Introns Emerge 187

7.8 Effective Fitness and Crossover 188

7.9 Effective Fitness and Other Operators 190

7.10 Why Introns Grow Exponentially 191

7.11 The Effects of Introns 194

7.12 What to Do about Introns 199

8 Analysis — Improving Genetic Programming with Statis¬
tics 203

8.1 Statistical Tools for GP 205

8.2 Offline Preprocessing and Analysis 209

8.3 Offline Postprocessing 216

8.4 Analysis and Measurement of Online Data 219

8.5 Generalization and Induction 229

8.6 Conclusion 235

III Advanced Topics in Genetic Programming 237

9 Different Varieties of Genetic Programming 239

9.1 GP with Tree Genomes 240

9.2 GP with Linear Genomes 243

9.3 GP with Graph Genomes 265

9.4 Other Genomes 267

10 Advanced Genetic Programming 277

10.1 Improving the Speed of GP 279

10.2 Improving the Evolvability of Programs 282

10.3 Improving the Power of GP Search 299

11 Implementation — Making Genetic Programming Work 309

11.1 Why Is GP so Computationally Intensive? 310

11.2 Computer Representation

of Individuals 314

11.3 Implementations Using LISP 316

11.4 Some Necessary Data Structures 319

11.5 Implementations With Arrays or Stacks 325

11.6 Implementations Using Machine Code 330
11.7 A Guide to Parameter Choices 334

12 Applications of Genetic Programming 339
12.1 General Overview 340
12.2 Applications from A to Z 340
12.3 Science-Oriented Applications of GP 341
12.4 Computer Science-Oriented

Applications 354
12.5 Engineering-Oriented Applications of GP 363
12.6 Summary 376

13 Summary and Perspectives 379
13.1 Summary 380
13.2 The Future of Genetic Programming 381
13.3 Conclusion 383

A Printed and Recorded Resources 385
A. I Books on Genetic Programming 385

A.2 GP Video Tapes 386
A.3 Books on Evolutionary Algorithms 386
A.4 Selected Journals 387

B Information Available on the Internet 389
B.I GP Tutorials 389
B.2 GP Frequently Asked Questions 389
B.3 GP Bibliographies 389
B.4 GP Researchers 390
B.5 General Evolutionary Computation 390
B.6 Mailing Lists 390

C GP Software 393
C.I Public Domain GP Systems 393
C.2 Commercial GP Software 394
C.3 Related Software Packages 394
C.4 C + + Implementation Issues 394

D Events 395
D.I GP Conferences 395
D.2 Related Conferences and Workshops 395

Bibliography 399
Person Index 445
Subject Index 451

Preface

When we first conceived of this text, we were concerned it might be
too early for such an undertaking. After all, genetic programming
(GP) had grown very rapidly in the few years since 1992. Would not
such a young discipline be much too fluid for being pinned down in
a text book? The published literature in the field is diverse. Differ¬
ent approaches to genetic programming manifest varying degrees of
complexity. Finally, there are no firmly established paradigms that
could serve as guide posts.

At the same time, however, we could not escape the impression
that genetic programming had accumulated enough real substance for
a systematic overview to be of use to the student, to the researcher,
and to engineers interested in real-world applications of this field. So
we proceeded despite the relative newness of genetic programming.
The results of our effort can be seen here.

We have written this text for more than one audience. Accord¬
ingly, the book has many entry points, depending on the level of
knowledge the reader brings to the table (see Figure 1).

The text's core is divided into three parts with four chapters each.
Where appropriate, a chapter ends with exercises and recommenda¬
tions for further reading.

Q Part I describes fundamentals we regard as prerequisites to a
deeper understanding of genetic programming. This part is
intended to set the groundwork for our main theme without
actually describing genetic programming in detail. While the
chapters in this part are recommended for newcomers to genetic
programming, they should also contain useful information for
readers who are more familiar with the field.

As a general introduction we recommend Chapter 1. This chap¬
ter should also serve well for those readers who seek a better
understanding of how genetic programming fits into the overall
discipline of machine learning. Chapter 2 should be of impor¬
tance to readers interested in the connection between genetic

Figure 1
Navigating the book.

Italic text indicates entry

points.

programming, evolution, development, and molecular biology.
Chapter 3 offers background in aspects of mathematics and
computer science that are important in genetic programming,
while Chapter 4 provides a general description of the field of
evolutionary computation, of which genetic programming is a
part. Each of these chapters may be read separately, depending
on the background and interests of the reader.

Preface
Q Part II is central to this book. Chapter 5 introduces three ba¬

sic paradigms of genetic programming - tree, linear and graph
based systems - while the remaining chapters introduce and
analyze the important problems in the field. Readers who al¬
ready have basic knowledge might want to start with Chapter
5 directly.
Chapter 6, 7 and 8 focus on prominent unsolved issues in gene¬
tic programming, such as the effect and power of the crossover
operator, introns, genetic programming as an emergent system,
and many others. These three chapters should be read sequen¬
tially and only by those with a firm understanding of the basics
of genetic programming described in Chapter 5. In addition, we
emphasize that the materials in Chapter 6 to Chapter 8 would
best be understood by a reader well versed in the principles of
evolution and molecular biology described in Chapter 2. It is,
however, possible to skip Chapter 6 to Chapter 8 in the first
pass through the book and nevertheless have the background
to move on to Part III.

Q Part III offers material for readers familiar with genetic pro¬
gramming and comprises a more subjective selection of topics.
Chapter 9 provides a detailed look at various genetic program¬
ming systems, followed in Chapter 10 by a discussion of ad¬
vanced techniques to improve the basic algorithm. Chapter 11
discusses important implementation issues. As such, it is a pos¬
sible starting point for computer scientists who want to explore
genetic programming from a technical perspective. Chapter 12
describes an - admittedly subjective and incomplete - spectrum
of applications to which genetic programming has already been
applied with at least some degree of success. Engineers familiar
with genetic programming might want start with this chapter
and then digest other parts of the book at their leisure.

Q Four appendices summarize valuable resources available for the
reader: Appendix A contains printed and recorded resources,
Appendix B suggests web-related resources, Appendix C dis¬
cusses GP software tools, including Discipulus"", the GP soft¬
ware developed by the authors, and Appendix D mentions events
most closely related to the field of genetic programming. URLs
can be found online at http://www.mkp.com/GP-Intro.

It took us approximately two years to complete this project. Con¬
sidering that two of the authors live in Germany, one in Sweden, and
one in the United States of America, our collaboration was remark¬
ably smooth. During that time, the four of us met only twice in

person. Instead, we made heavy use of the Internet. Aside from our
co-authors, our most frequent "professional" companions during the
past two years were e-mail, FTP, TELNET and the World Wide Web.
It would be fair to say that this book would probably not exist had
it not been catalyzed by modern communications technology.

Cooperating this way is not atypical of what is happening in many
newly emerging fields in science and technology. We are convinced
that electronic means for collaboration greatly accelerate the pace of
progress in the particular fields involved. As for this book, we hope
that readers from all over the world will find it both useful and enjoy¬
able. May genetic programming continue to thrive on international
cooperation.

Wolfgang Banzhaf Peter Nordin
Dortmund, Germany Goeteborg, Sweden

Robert E. Keller Frank D. Francone

Dortmund, Germany Oakland, California

August 1997

Acknowledgments

First and foremost, we would like to express our gratitude to
John R. Koza from Stanford University, California, for investing a
significant amount of his time reviewing the text and for writing his
foreword to this book.

We are further indebted to Peter J. Angeline, Markus Brameier,
Markus Conrads, Jason M. Daida, Brian Dilkes, Jiirgen Friedrich,
David E. Goldberg, Larry Gritz, Frederic Gruau, James K. Harm, Ul-
rich Hermes, August Ludvikson, Holger Kemper, Thorsten Michaelis,
Stefan Mintert, Kathy Nelton, William F. Punch, Hilmar Rauhe,
Michael L. Raymer, Justinian P. Rosca, Lee Spector. Astro Teller,
and Michael Walper for their help with various stages of producing
this book.

We are very grateful to the friendly team at our German publisher
dpunkt, Michael Barabas, Ulrike Meuer, Christa Preisendanz, Ger¬
hard Rossbach, and Maren Seyfahrt, to Andrew Ross, our copy edi¬
tor, and to Michael Morgan and the wonderful staff at our U.S. pub¬
lisher Morgan Kaufmann in San Francisco, especially Marilyn Alan,
Elisabeth Beller, Cyd Harrell, Patricia Kim, and Yonie Overton, for
making this book possible.

While the above-mentioned persons have much contributed to
this book, only the authors claim responsibility for the mistakes that
may have sneaked into the final product. Any suggestions for im¬
provement are most welcome.

We also would like to acknowledge that we made use of LaTeX
for typesetting under the dpunkt style. It is amazing what LaTeX
can do if one keeps talking to it in a friendly manner; it is equally
amazing what one can do after some time if M^X keeps responding
in unfriendly ways. Figures were incorporated by using the EPSFIG
package. The contents tables at the beginning of each chapter were
generated by the MINITOC package. Producing many indexes, like this
book's person and subject index, is easily done by using the MULTIND
package. Some of the tree figures were designed with the DAVlNCi
visualization tool. Most figures were done with ISLANoDRAW, XFIG,

and GNUPLOT. Postprocessing of certain figures was accomplished
using xv and ISLANDDRAW.

The Deutsche Forschungsgemeinschaft (DFG) provided support
under grant Ba 1042/5-1 and within the Sonderforschungsbereich
Computational Intelligence under grant SFB 531 - B2. A sabbat¬
ical stay of W.B. at the International Computer Science Institute,
UC Berkeley, CA was very helpful in the last stage of this project.

1 Genetic Programming
as Machine Learning

Contents

1.1 Motivation 4

1.2 A Brief History of Machine Learning 7

1.3 Machine Learning as a Process 9

1.4 Major Issues in Machine Learning 12

1.5 Representing the Problem 12

1.5.1 What Is the Problem Representation? 12

1.5.2 Boolean Representations 14

1.5.3 Threshold Representations 17

1.5.4 Case-Based Representations 19

1.5.5 Tree Representations 20

1.5.6 Genetic Representations - 21

1.6 Transforming Solutions with

Search Operators 23

1.6.1 Generality/Specificity Operators 23

1.6.2 Gradient Descent Operators 24

1.6.3 Genetic Programming Operators 24

1.7 The Strategy of the Search 25

1.7.1 Blind Search 25

1.7.2 Hill Climbing 26

1.7.3 Beam Search 27

1.8 Learning 28

1.9 Conclusion 29

1 Genetic Programming as Machine Learning

Evolution is Nature's ijiistake. Intelligence is its insistence on mak¬
ing the same mistake.

S.LEM, GOLEM XIV, 1981

1.1 Motivation

Automatic programming will be one of the most important areas
of computer science research over the next twenty years. Hardware
speed and capability has leapt forward exponentially.(Yet software
consistently lags years behind the capabilities of the hardware. The
gap appears to be ever increasing. Demand for computer code keeps
growing but the process of writing code is still mired in the modern
day equivalent of the medieval "guild" days. Like swords in the 15th
century, muskets before the early 19th century and books before the
printing press, each piece of computer code is, today, handmade by
a craftsman for a particular purpose.

The history of computer programming is a history of attempts
to move away from the "craftsman" approach - structured program¬
ming, object-oriented programming, object libraries, rapid prototyp¬
ing. But each of these advances leaves the code that does the real
work firmly in the hands of a craftsman, the programmer. The ability
to enable computers to learn to program themselves is of the utmost
importance in freeing the computer industry and the computer user
from code that is obsolete before it is released.

Since the 1950s, computer scientists have tried, with varying de¬
grees of success, to give computers the ability to learn. The umbrella
term for this field of study is "machine learning," a phrase coined
in 1959 by the first person who made a computer perform a serious
learning task, Samuel.

Machine Learning and Genetic Programming
Originally, Samuel used "machine learning" to mean computers

programming themselves [Samuel, 1963]. That goal has, for many
years, proven too difficult. So the machine learning community has
pursued more modest goals. A good contemporary definition of ma¬
chine learning is due to Mitchell: "[machine learning] is the study
of computer algorithms that improve automatically through experi¬
ence" [Mitchell, 1996].

Genetic programming, GP for short, aspires to do precisely that
- to induce a population of computer programs that improve au¬
tomatically as they experience the data on which they are trained.
Accordingly, GP is part of the very large body of research called
machine learning (ML).

Within the machine learning community, it is common to use "ge¬
netic programming" as a shorthand for any machine learning system

that evolves tree structures. The focus on tree structures is really a
tribute to the immense influence of Koza. In 1992, he wrote a treatise
entitled "Genetic Programming. On the Programming of Comput¬
ers by Means of Natural Selection." Before this work, a number of
researchers had used genetic or evolutionary operators to induce com¬
puter programs. But these earlier works went largely unrecognized
because they were, in effect, buried in the mass of genetic algorithm
research. In his seminal book, Koza was the first to recognize that GP
was something new and different - he even gave the new discipline its
name. Koza's results were achieved by evolving tree structures. It is
not surprising, therefore, that many use the term "genetic program¬
ming" to mean the evolution of tree structures, nor is it surprising
that most of the work in this discipline is with various tree-based
systems.
Our Definition of GP

The definition of GP used in this book will be less restrictive than
the definition referred to above.

1. First and foremost we will consider the induction of computer
programs by evolutionary means. Accordingly, in this book, the
term "genetic programming" shall include systems that con¬
stitute or contain explicit references to programs (executable
code) or to programming language expressions. So, for exam¬
ple, evolving LISP lists are clearly GP because LISP lists con¬
stitute programming language structures and elements of those
lists constitute programming language expressions. Similarly,
the common practice among GP researchers of evolving C data
structures that contain information explicitly referring to pro¬
grams or program language tokens would also be GP.

2. It is already clear from the GP literature that programs or
programming language structures may be represented in ways
other than as trees. Research has already established the effi¬
cacy of both linear and graph-based genetic programming sys¬
tems. Therefore, we do not limit our definition of GP to include
only systems that use (expression) trees to represent programs.
Instead, all means of representing programs will be included.

3. Not all algorithms running on computers are primarily pro¬
grams. For example, neural networks are (learning) algorithms,
but their implementation is usually of secondary concern. Nev¬
ertheless, we shall not exclude these algorithms from being le¬
gitimate members of the GP family. There already exist nu¬
merous applications in the algorithmic domain, and excluding
them would unnecessarily deprive GP of an important source
of inspiration.

4. We do not limit our definition of GP to include only systems
that use certain operators, such as crossover. As long as there
is a population of programs or algorithms used for the benefit
of the search, and as long as some kind of indeterminism is
applied to generate new variants, we think we can legitimately
call a system a genetic programming system.

Genetic Programming
is a Kind of Program

Induction

With the above discussion in mind, it is possible to define genetic
programming as the direct evolution of programs or algorithms for the
purpose of inductive learning. Thus, in a very real sense, GP returns
to Samuel's original goal for machine learning in 1959 - teaching
computers to program themselves.

Today, we program by telling the computer exactly how to do
every possible thing that we think it might need to do - how to
respond to every possible request from a user or a network. Not
only is this cumbersome, it is impossible for software packages that
routinely occupy fifty megabytes of hard disk space. The great goal of
machine learning, and especially GP, is to be able to tell the computer
what task we want it to perform and to have it learn to perform that
task. GP would do so by letting the computer program itself or other
computers.

Is GP capable of such a feat today? In a general sense, no. That
is, there is no GP system that will generically accept any problem
and then automatically generate computer code that addresses that
problem. It is clearly not a human programmer. Notwithstanding
this limitation, in only a few short years since the publication of
Koza's book, GP has already changed the wisdom on the range of
problems machine learning can solve and has equaled or exceeded
the performance of other machine learning systems in various stud¬
ies. In fact, GP has already evolved programs that are better than
the best programs written by people to solve a number of difficult
engineering problems. Finally, GP has introduced a level of freedom
of representation into the machine learning world that did not previ¬
ously exist. That is why we urge the reader to look carefully at this
exciting and dynamic new branch of computer science.

This chapter will describe some of the central issues in machine
learning and will show where genetic programming fits in. Our pur¬
pose is not to describe the entire field of ML exhaustively - this
chapter will paint with a very broad brush. Rather, we intend to
place GP in the context of the overall field.1

1A good general discussion of artificial intelligence, machine learn¬
ing, and genetic programming's place in machine learning is contained in
[Angeline, 1994].

We will begin with & brief history of machine learning from the
1950s until the present. After that, we will look at machine learning
as a process. This process is remarkably similar from one machine
learning paradigm to another. Moreover, understanding this process
will be essential to understanding GP itself. Finally, we will examine
some of the details of the machine learning process. It is in the details
that machine learning paradigms diverge and genetic programming
becomes quite distinctive.

1.2 A Brief History of Machine Learning

Although genetic programming is a relative newcomer to the world of
machine learning, some of the earliest machine learning research bore
a distinct resemblance to today's GP. In 1958 and 1959, Friedberg
attempted to solve fairly simple problems by teaching a computer to
write computer programs [Friedberg, 1958] [Friedberg et al., 1959].

Friedberg's programs were 64 instructions long and were able to Early Attempts at
manipulate, bitwise, a 64-bit data vector. Each instruction had a Program Induction
virtual "opcode" and two operands, which could reference either the
data vector or the instructions. An instruction could jump to any
other instruction or it could manipulate any bit of the data vector.
Friedberg's system learned by using what looks a lot like a modern
mutation operator - random initialization of the individual solutions
and random changes in the instructions.

Friedberg's results were limited. But his thinking and vision were
not. Here is how Friedberg framed the central issue of machine learn¬
ing:

If we are ever to make a machine that will speak, understand
or translate human languages, solve mathematical problems with
imagination, practice a profession or direct an organization, either
we must reduce these activities to a science so exact that we can
tell a machine precisely how to go about doing them or we must
develop a machine that can do things without being told precisely
how... . The machine might be designed to gravitate toward those
procedures which most often elicit from us a favorable response.
We could teach this machine to perform a task even though we
could not describe a precise method for performing it, provided
only that we understood the task well enough to be able to as¬
certain whether or not it had been done successfully. . . . In short,
although it might learn to perform a task without being told pre¬
cisely how to perform it, it would still have to be told precisely
how to learn.

R.M. FRIEDBERG, 1958

Artificial Intelligence Priedberg's analysis, anticipated the coming split between the ar-
Rules the Day tificial intelligence community (with its emphasis on expert knowl¬

edge) and machine learning (with its emphasis on learning). Just
a few years after Priedberg's work, ML took a back seat to expert
knowledge systems. In fact, artificial intelligence (AI) research, the
study of domain-knowledge and knowledge systems, was the domi¬
nant form of computational intelligence during the 1960s and 1970s.
Expert system domain-knowledge in this era was generally human
knowledge encoded into a system. For example, an expert system
might be developed by polling human experts about how they make
particular kinds of decisions. Then, the results of that polling would
be encoded into the expert system for use in making real-world deci¬
sions.

The type of intelligence represented by such expert systems was
quite different from machine learning because it did not learn from
experience. In paraphrasing Friedberg's terms, AI expert systems
attempt to reduce performing specific tasks ". . . to a science so exact
that we can tell a machine precisely how to go about doing them"
[Friedberg, 1958].

The expert system approach, in the 1960s and thereafter, has had
many successes, including:

G MYCIN - Diagnosis of Infectious Diseases

Q MOLE - Disease Diagnosis

Q PROSPECTOR - Mineral Exploration Advice

Q DESIGN ADVISOR - Silicon Chip Design Advice

Q Rl - Computer Configuration

The Reemergence of Notwithstanding this success, expert systems have turned out
Learning to be brittle and to have difficulty handling inputs that are novel

or noisy. As a result, in the 1970s, interest in machine learning
reemerged. Attention shifted from the static question of how to rep¬
resent knowledge to the dynamic quest for how to acquire it. In short,
the search began in earnest to find a way, in Friedberg's words, to
tell a computer "precisely how to learn."

By the early 1980s, machine learning was recognized as a distinct
scientific discipline. Since then, the field has grown tremendously.
Systems now exist that can, in narrow domains, learn from experience
and make useful predictions about the world. Today, machine learn¬
ing is frequently an important part of real-world applications such
as industrial process control, robotics control, time series prediction,
prediction of creditworthiness, and pattern recognition problems such

as optical character recognition and voice recognition, to name but a
few examples [White and Sofge, 1992] [Biethahn and Nissen, 1995].

At the highest level, any machine learning system faces a similar
task - how to learn from its experience of the environment. The
process of machine learning, that is, the defining of the environment
and the techniques for letting the machine learning system experience
the environment for both training and evaluation, are surprisingly
similar from system to system. In the next section of this chapter,
we shall, therefore, focus on machine learning as a high-level process.
In doing so, we will see what many ML paradigms have in common.

On the one hand, many successful machine learning paradigms
seem radically dissimilar in how they learn from the environment.
For example, given the same environment some machine learning
systems learn by inducing conjunctive or disjunctive Boolean net¬
works (see Section 1.5.2). The implicit assumption of such systems is
that the world may be modeled in formal Aristotelian and Boolean
terms. On the other hand, connectionist systems such as fuzzy adap¬
tive or neural networks create models of the same environment based
(loosely) on biological nervous systems. They regard the world as
non-linear, highly complex, and decidedly non-Aristotelian (see Sec¬
tion 1.5.3). The variety does not end there because various systems
also search through possible solutions in different ways. For exam¬
ple, blind search, beam search, and hill climbing are principal search
paradigms (see Section 1.6). Each may be broken into many subdis-
ciplines and each has grown out of different philosophies about how
learning works, and indeed, what learning is.

Accordingly, later in this chapter we shall overview the ways in
which machine learning systems are distinct from each other. In other
words, we will look at the details of how different machine learning
systems attack the problem of learning.

High-Level
Commonalities among
ML Systems

Implementation
Differences among
Machine Learning
Systems

1.3 Machine Learning as a Process

Machine learning is a process that begins with the identification of
the learning domain and ends with testing and using the results of
the learning. It will be useful to start with an overview of how a
machine learning system is developed, trained, and tested. The key
parts of this process are the "learning domain," the "training set," the
"learning system," and "testing" the results of the learning process.
This overall process of machine learning is very important for the
reader to understand and we urge special attention in this section if
the reader is not already familiar with the subject matter.

Machine learning systems are usually applied to a "learning do- The Learning Domain

main." A learning domain is any problem or set of facts where the
researcher is able to identify "features" of the domain that may be
measured, and a result or results (frequently organized as "classes")
the researcher would like to predict. For example, the stock market
may be the chosen domain, the closing S&P index2 for the past 30
days may be the features of the domain selected by the researcher,
and the closing S&P index tomorrow may be the result that the re¬
searcher wants to predict. Of course, the features (past index values)
ought to be related in some manner to the desired result (the future
index value). Otherwise, a machine learning system based on these
features will have little predictive power.

In the GP world, a "feature" would more likely be referred to as
an "input" and the "class" would more likely be referred to as the
"output." These are mostly differences of terminology.3 Regardless of
terminology, once the features (inputs) are chosen from the learning
domain, they define the overall dimensions of the environment that
the ML system will experience and from which it will (hopefully)
learn.

But the selection of features (inputs) does not completely define
the environment from which the system will learn. The researcher
must also choose specific past examples from the learning domain.
Each example should contain data that represent one instance of
the relationship between the chosen features (inputs) and the classes
(outputs). These examples are often referred to as "training cases"
or "training instances." In GP, they are called "fitness cases." Col¬
lectively, all of the training instances are referred to as the "training
set." Once the training set is selected, the learning environment of
the system has been defined.

Machine learning occurs by training. An ML system goes through
the training set and attempts to learn from the examples. In GP, this
means that the system must learn a computer program that is able
to predict the outputs of the training set from the inputs. In more
traditional machine learning terminology, GP must find a computer
program that can predict the class from the features of the learning
domain.

Finally, the researcher must appraise the quality of the learning
that has taken place. One way to appraise the quality of learning is

2 A leading stock market indicator in the United States.
The use of the term "class" is actually due to the historic focus of

mainstream machine learning on classification problems. We will main¬
tain that terminology here for simplicity. Both GP and many other ML
paradigms are also capable of dealing with domains that require numeric
output for problems that are not classification problems. In this case, the
terminology would be problem specific.

to test the ability of the best solution of the ML system to predict
outputs from a "test set." A test set is comprised of inputs and
outputs from the same domain the system trained upon. Although
from the same domain, the test set contains different examples than
the training set. The ability of a system to predict the outputs of
the test set is often referred to as "generalization," that is, can the
learned solution generalize to new data or has it just memorized the
existing training set? Much of Chapter 8 is devoted to this very
important issue. There, we shall also see that using a training set
and a test set only oversimplifies the problem of generalization.

An example might be useful here: the "Iris data set."4 The Iris
data set presents a "classification" problem - that is, the challenge
is to learn to identify the class of Iris to which a photograph of a
particular iris plant belongs. The set itself is based on a sample of
150 different photographs of irises. The photos represent irises from
three different classes - class 0 is Iris Setosa, class 1 is Iris Versicolour,
and class 2 is Iris Virginica. The data set itself is comprised of
measurements made from these 150 photos.

The learning domain is, in this example, all photos of irises of
these three types. The 150 photos are not the learning domain -
they are just specific examples drawn from the domain. When the
researcher chose what measurements to make off the photos, he or
she identified the features of the domain. Here are the inputs (or
features) that were chosen:

Q Input 1. Sepal length in cm.

Q Input 2. Sepal width in cm.

Q Input 3. Petal length in cm.

Q Input 4. Petal width in cm.

There is, of course, a value for each of these inputs in each of the 150
training instances.

The 150 instances are then divided into two groups, a training
set and a test set. At this point, a machine learning system is given
access to the training data and its training algorithm is executed.

4 A word of caution: the Iris data set is often referred to in the machine
learning literature as a "classic." This may imply to the reader that it
might be a good idea actually to use the Iris data to test an ML system.
However, the Iris domain is trivially simple, at least for GP, and its use
as a test of ML systems is discouraged [Francone et al., 1996]. We use
the example in the text only because it is a simple example of a learning
domain.

The goal in training is to take the sepal and petal measurements (the
features) in the training set and to learn to predict which of the three
classes a particular iris belongs to. Not only must the system predict
the class of Iris for the training set, it should also be able to do so
for the test set in a manner that is statistically significant.

With this overview of the process of machine learning in place,
we can now look at some of the details of learning for various machine
learning paradigms.

1.4 Major Issues in Machine Learning

Until this time, the manner in which learning occurs has been ignored
so that we could focus on issues common to all ML systems. But
the choices made in designing a learning algorithm are crucial. The
learning algorithm defines the system in which it is used more than
any other single factor. Not only that, the learning algorithm is where
ML systems diverge. GP systems use a learning algorithm based on
an analogy with natural evolution. "Multilayer feedforward neural
networks" are based on an analogy with biological nervous systems.
Bayes/Parzen systems are based on statistics.

There are many ways to classify learning algorithms. Here, we
will classify them by how they answer the following four questions
about the "how to" of learning:

1. How are solutions represented in the algorithm?

2. What search operators does the learning algorithm use to move
in the solution space?

3. What type of search is conducted?

4. Is the learning supervised or unsupervised?

Each of these four questions raises important and sometimes con¬
tentious issues for learning algorithm design. In looking at some of
the different ways in which different ML systems have answered these
questions, the place of GP in machine learning will become clearer.

1.5 Representing the Problem

1.5.1 What Is the Problem Representation?

An ML system's problem representation is its definition of what pos¬
sible solutions to the problem look like - what kinds of inputs do
the solutions accept, how do they transform the inputs, how do they

produce an output? In short, the problem representation defines the
set of all possible solutions to a problem that a particular ML system
can find. We will frequently refer to possible solutions to a problem
as "candidate solutions." In other words, the representation of the
problem defines the space of candidate solutions an ML system can
find for a particular problem.

A simple example illustrates this point. Suppose we wanted to
predict the value of variable y from values of variable x. In the terms
of the previous section, y is the output and x is the input. A very
simple representation of this problem might take the form of a second
order polynomial such as:

y = ax2 + bx + c (1.1)

The types of solutions this system could find would be very limited
- all the system could do would be to optimize the parameters a, 6,
and c. One possible candidate solution in this representation would
be:

y = 2.01z2 + 6Ax + 7 (1.2)

The representation could be made more complex by allowing the sys¬
tem to change the order of the polynomial. Then, it could explore
a solution space that included both higher and lower order polyno¬
mials. In other words, the representation of the problem defines and
limits the space of possible solutions the system is capable of finding.

There are actually three different levels on which a problem may
be represented [Langley, 1996].

1. Representation of the input and output set
In the polynomial example above, the training set would be
pairs of numbers, one value for the input x and another for
the output y. The representation of the inputs and outputs
would, therefore, be an integer or real number representation.
It is also common to represent inputs as Boolean values, real
numbers between 0 and 1, enumerated sets, or in many other
ways.

2. Representation of the set of concepts the computer may
learn
This may be referred to as the "concept description language."
The manner in which learned concepts can be expressed in
machine learning is diverse. Likewise, the complexity of the
organization of the learned concepts varies widely. Different
systems use, among other things, simple conjunctive Boolean
expressions, disjunctive lists of features, class summaries, case-
based descriptions, inference trees, threshold units, multilayer

feed forward networks, decision trees, and in GP, computer pro¬
grams.

3. Interpretation of the learned concepts as outputs
Concepts are important, but they need to be converted to re¬
ality. The interpreter does just that. For instance, a medical
diagnosis system may take as input: whether the patient has
chest pain, numbness in the extremities, and is more than 20
pounds overweight. The three inputs may be held in simple
concepts such as:

if chest_pain = TRUE then
high_heart_attack_risk := TRUE
else

high_heart_attack_risk := FALSE;

It is not clear from such concepts how to generate an output
when the concepts are combined. What should be done, for
example, where a patient has chest pain and is thirty pounds
overweight but no numbness is occurring? That is what the
interpreter would do. An interpreter could predict risk of heart
attack (that is, generate an output) by requiring that all three
concepts be true (a Boolean interpretation). On the other hand,
it could require only that two of the three be true (a threshold
interpretation).

It would be impossible to survey even a substantial portion of the
types of representational schemes that have been implemented in var¬
ious machine learning systems.5 A survey would be made even more
complex by the fact that many systems mix and match types of rep¬
resentations. For example, a system could represent the inputs and
outputs as Boolean while the concepts could be stored as case-based
instances and the interpretation of the concepts could use threshold
units.

We will try to follow the above three threads through the exam¬
ples below.

1.5.2 Boolean Representations

Some machine learning systems represent problems in Boolean terms.
By Boolean, we mean that each training instance contains an indica¬
tion whether a feature (or input) of the system is true or false. In a

5 An excellent discussion of the details of these and many other machine
learning systems and other issues may be found in [Langley, 1996], from
which this chapter draws heavily.

1.5 Representing the Problem

pure Boolean system the inputs (or features) are expressed in Boolean
terms and the system describes the concepts that it has learned as
Boolean conjunctions or disjunctions of the input features (the con¬
cept description language). We will examine how Boolean systems
might represent features of the comic strip world of Dick Tracy as a
machine learning problem.

We begin by describing a conjunctive Boolean system and how it
might describe the features of Dick Tracy's world. By conjunctive,
we mean that the system uses the Boolean AND to join features (or
inputs) together into concepts and outputs.

Assume that a researcher wants to be able to predict whether a
cartoon character in the Dick Tracy comic strip is a "bad guy." The
researcher carefully examines years of old comic pages and determines
that the following features might be useful in distinguishing the class
of "bad guys" from everyone else:

Feature

Shifty eyes
Scarred face
Skull tattoo

Slouches while walking
Hooked nose

Wears two-way wrist radio

Value

True or False
True or False
True or False
True or False
True or False
True or False

Conjunctive Boolean

Representations

Table 1.1
Inputs for classification

All of these features (inputs for classification) are Boolean (true
or false) values. A completely Boolean system would also express
the concepts that could be learned as Boolean values. A conjunctive
Boolean system might learn the following concepts in classifying good
guys from bad guys:

Concept 1

Concept 2

Shifty eyes AND Scarred face AND Has skull tattoo |

Hooked nose AND Wears two-way wrist radio |
Table 1.2
Conjunctive concepts

But the descriptions themselves do not suffice; the concepts have
to be interpreted into classifications arid the interpretation may be
represented in different ways.

Here is an example of how a Boolean Dick Tracy might go about
classifying the above concepts. Dick Tracy himself would immedi¬
ately recognize that a value of TRUE for Concept 1 was indicative
of criminality from his "crime watchers" guide. On the other hand,
Concept 2 (hooked nose arid two-way wrist radio) is consistent with

Table 1.3
Classification concepts

& good guy - Dick Tracy himself. So here is how Dick Tracy would
use the concepts to classify suspects as bad guys:

Concept

1
2

Value

True

True

Bad guy?

True

False

Disjunctive Boolean

Representations

Table 1.4
Disjunctive concepts

In Concept 1, there are three factors that indicate criminality -
shifty eyes, scarred face, and skull tattoo. Must all three be true
before we declare someone a bad guy? In a conjunctive Boolean
system, the answer is yes. Therefore, without a scarred face, a man
with shifty eyes and a skull tattoo would not be classified as a bad
guy.

Now we may look briefly at a disjunctive Boolean system. By
disjunctive, we mean that the interpreter joins the simpler concepts
with the Boolean OR function. In a disjunctive Boolean system, if any
of the simple learned concepts evaluate as true in a particular training
instance, the interpreter evaluates the training instance as having an
output of true also. Three simple concepts from Dick Tracy's world
might be represented as follows:

Concept

Concept 1
Concept 2
Concept 3

Description

Shifty eyes
Scarred face

Has skull tattoo

Value

True or False
True or False

True or False

In this example, if any one of the three concepts in the list eval¬
uated as true, the system would evaluate the entire training instance
as true. Of course, disjunctive Boolean systems would ordinarily be
applied to a list of concepts considerably more complex than those
in the above table. In that event, the list holds the concepts and it
dictates the order in which the concepts are evaluated.

Disjunctive systems can describe more complex learning domains
using conjunctive concepts and vice versa. For example, in Figure 1.1,
the two classes A and B are linearly separable - that is, one could
draw a line (or in three or more dimensions, a plane or a hyperplane)
that separates all instances of one class from those of the other.

Both conjunctive and disjunctive systems can fully describe a
domain that is linearly separable. On the other hand, in Figure 1.2,
the two classes are not linearly separable. Although this is a more
difficult task, Boolean systems can completely describe the domain
in Figure 1.2.

Figure 1.1
Two classes (A and B)
that are linearly separable

Figure 1.2
Two classes (A and B)
that are not linearly
separable

1.5.3 Threshold Representations

Numeric threshold representations are more powerful than Boolean
representations. A threshold unit produces a value only if its input
exceeds some threshold. When its outputs are expressed in Boolean
terms, a threshold unit has a value of TRUE only if the input to that
unit exceeds a particular value. Note that the use of the term "unit"
makes the threshold approach very general. A threshold unit may
appear as an input, a concept, or an interpreter in a machine learning
system.

The Dick Tracy example illustrates how a threshold unit may be
used as an interpreter in the problem representation. In the discussion
above, the conjunctive Boolean interpreter of concept 1 (shifty eyes
AND skull tatoo AND scarred face) required that all of the features of
concept 1 be t rue before the interpreter could evaluate the concept
itself as being true. In short, if there are n features in a conjunctive
Boolean concept, n of n features must be true for the expression to
evaluate as true. In a disjunctive Boolean system, 1 out of n features
needed to be true.

Dick Tracy Revisited

Multilayer Feedforward

Neural Network

A simple threshold interpreter unit produces quite a different
result. Where 1 < m < n, one type of threshold unit requires that
only m of the n features in a concept be true for the interpreter to
evaluate the entire concept as being true. Such an m of n interpreter
would apply to concept 1 from our Dick Tracy example as follows.
Suppose that m = 2. A threshold unit would assess a suspect with
shifty eyes AND a skull tattoo as a bad guy, even though the suspect
did not have a scarred face. In other words, only two of the three
elements in concept 1 above would have to be t rue for the threshold
interpreter to evaluate the concept as t rue.

The previous paragraph discusses a simple threshold interpreter
for a Boolean concept description language. But as noted above,
threshold units may be used in any part of a representation, not just
for the interpreter. In multilayer feedforward neural network, thresh¬
old concepts are used in all parts of the problem representation. A
multilayer feedforward neural network uses "neurons" as its threshold
units. Figure 1.3 shows a simple example with three input neurons,
two "hidden" neurons, and one output neuron.

Figure 1.3
A multilayer feedforward
neural network with
nodes 1 ... 6 and weights

Wl,4 . - W5,6

Each neuron sums all of its inputs together and then determines
whether its total input exceeds a certain threshold. If it does not, the
output value of the neuron is typically 0. But if the inputs do exceed
the threshold, the neuron "fires," thereby passing a positive value on
to another neuron. Multilayer feedforward neural networks can be
very powerful and can express very complex relationships between
inputs and outputs.

1.5.4 Case-Based Representations

Another type of machine learning stores training instances as repre¬
sentations of classes or stores general descriptions of classes by aver¬
aging training instances in some way. A very simple instance averag¬
ing system for two classes, represented by A and £?, is illustrated in
Figure 1.4.

Figure 1.4

Classification based on

instance averaging

Each class has two inputs, the x and y values on the two axes.
The average of the inputs for the A class is the circle. The average
of the inputs for the B class is the square. To classify a new set of
inputs, the system simply calculates how close the new inputs are to
each of the two averages. The closer of the two averages determines
the class of the new input.

While this simple averaging system may be fine for simple learn¬
ing domains as shown in Figure 1.4, it would clearly have a difficult
time dealing with the linearly non-separable classes shown in Fig¬
ure 1.2. The problem with using instance averaging on the learning
domain demonstrated in Figure 1.2 is how to determine a value for
class A. A simple average is obviously unacceptable for class A.

Other case-based learning systems handle linear non-separability
much more gracefully. For example, the K-nearest neighbor approach
does so by storing the training instances themselves as part of the
problem representation. A new input is classified by finding the class
of the input's K nearest neighbors in the stored training instances.
Then the new input is classified as a member of the class most often
represented among its K nearest neighbors. For example, suppose a
particular K-nearest neighbor system looks at the 3 nearest neighbors
of a new input; if 2 of those 3 neighbors were from class A, then the
system would classify the new input as being in class A also (this is
a threshold interpreter combined with a case-based system).

In Figure 1.5 the training instances for the classes A and B are
linearly non-separable. A K-nearest neighbor classifier with K = 3

K-Nearest Neighbor

Method

Figure 1.5
Using K-nearest
neighbors to classify
inputs

would classify the three new inputs / i , 1%, and 1$ as being in classes
A, B, and A, respectively. However, if K = 5, /i would be classified
as a member of class B.

Bayes/Parzen Bayes/Parzen classification is treated at length in many statistics
Classification textbooks and is loosely related to the ff-nearest neighbor system

[Masters, 1995a]. Bayes proved that if we know the true probabil¬
ity density function for each class, then an optimal decision rule for
classification may be formulated.

Of course, the problem is approximating that probability density
function. In 1962, Parzen determined an excellent method for esti¬
mating such functions from random samples. In fact, as the sample
size increases, Parzen's method converges on the true density func¬
tion [Parzen, 1962]. Parzen uses a potential function for each train¬
ing instance [Meisel, 1972]. The function is centered on the training
instance and decreases in value rapidly as it moves away from the
training instance. Parzen's estimator is simply the scaled sum of the
potential function for all sample cases from a class. So in a sense,
Parzen's method is a very sophisticated relative of the K-nearest
neighbor systems. Parzen's estimator has been extended to multi¬
ple variable situations [Cacoullos, 1966] and is the backbone of two
neural network paradigms, the "probabilistic neural network" and the
"general regression neural network" [Specht, 1990] [Specht, 1991].

1.5.5 Tree Representations

Many problem space representations are based on decision trees.
Consequently some of the most popular and successful machine learn¬
ing systems use tree representations, including Quinlan's IDS algo¬
rithm [Quinlan, 1979] and its variants.6 In the IDS algorithm, the

6The most recent version of the IDS Algorithm is called C4.5
[Quinlan, 1993].

concepts are represented as a decision tree - a type of directional
graph. Each internal node in the tree is a feature of the domain.
Each edge in the graph represents a possible value of an attribute of
the node above it. Each leaf node of the tree is a classification.

Let us look again at the Dick Tracy comic book example from
above. Internal nodes in a decision tree are features of the system.
So a node could be labeled Shifty eyes. The edges below that node
would be the attributes of the feature - TRUE or FALSE. The tree
below each of the attribute edges would represent the path in the
decision tree consistent with Shifty eyes being true or false.

The IDS learning algorithm chooses the best feature for each new
node by sorting the training set by the attributes of each potential
feature. It measures how much extra information about the training
set each feature adds. The feature that adds the most useful informa¬
tion about the training set is added to the decision tree as the next
node.

1.5.6 Genetic Representations

Genetic or evolutionary representations have been applied in a num¬
ber of ways. Here we shall mention only one of them. We shall go
into more detail about other possible representations in Chapter 4.

A genetic algorithm (GA) has fixed length binary strings. Each
bit is assigned a meaning by the researcher. Bits may be freely as¬
signed any meaning and this lends great freedom to the representa¬
tion. For example, the GA need not have any of the inputs repre¬
sented in the bit string - the bit string could also represent a series
of transformations to perform on the inputs. The bit string can rep¬
resent the weights, biases, and structure of a neural network or it can
represent transformations to be performed for a Boolean multiplexer
type problem. The bit string is the concept definition language for
the GA and the meaning assigned to the bits would be analogous to
the interpreter.

There are good theoretical reasons for supposing that the low
cardinality of the bit string representation is optimal for GA search.
In practice, however, many researchers have used higher cardinalities
in their GA representations with great success [Goldberg, 1989].

Genetic programming, on the other hand, represents its concepts
and its interpreter as a computer program or as data that may be
interpreted as a computer program.7 GP systems are capable of rep-

7GP sometimes interprets the output of its evolved solutions. That
occurs in a wrapper that takes the output of the program and transforms
it in some manner [Koza, 1992d]. In this case, the interpreter resides, in a
sense, outside of the program.

The GA Representation

The GP Representation

resenting the solution to a problem with any possible computer pro¬
gram. In fact, at least two GP systems evolve programs in languages
provably Turing complete [Teller, 1994c] [Nordin and Banzhaf, 1995b].

All machine learning systems other than GP are or may be run
on computers. This means that all other systems of machine learning
may be represented as a computer program. We could say, therefore,
that GP is theoretically capable of evolving any solution that may be
evolved by any of the above machine learning representations.

This is more than a theoretical consideration. For example:

Q GP systems may (and often do) include Boolean operators.
Boolean representations are, therefore, easy to evolve in GP.

Q A threshold function is no more than a particular instantiation
of an IF/THEN structure. Given the proper form of inputs,
GP could evolve threshold functions or the researcher could
make threshold functions an explicit part of the function set
(see Chapter 5).

Q Conditional branching structures such as IF/THEN or SWITCH
statements make it possible for GP to evolve decision trees, or
the researcher could constrain the GP search space to permit
only program structures that permit decision trees to evolve.

Q GP systems may be implemented so that memory is available
for a solution to store aspects of the training set, as would a
case-based system.

The point here is that the GP representation is a superset of all
other machine learning representations. Therefore, it is theoretically
possible for a properly designed GP system to evolve any solution that
any other machine learning system could produce. The advantage of
this is almost complete freedom of representation - the only limits
are what a Turing-complete computer can do, and the speed of the
computer. On the other hand, there are advantages to constrained
representations when it comes to conducting the search, as we will
see in the next section.

One other key aspect of the GP representation is that, unlike
many other machine learning systems, the programs that GP evolves
are variable in length. For example, a neural network, while training,
usually has a fixed size. This feature may be the source of much
of GP's power. We will spend some time addressing this issue in
Chapter 7.

GP Is a Superset of
Other ML

Representations

1.6 Transforming Solutions with
Search Operators

The representation issue discussed in the previous section defines the
set of all candidate solutions that may be evaluated as possible solu¬
tions to the problem. It should be clear by now that the number of
candidate solutions that can be evaluated by most ML systems is huge
for non-trivial problems. Evaluating the entire space of all candidate
solutions is, however, usually completely impractical. Therefore, each
system must define how it will search through a limited portion of
such large solution spaces. That is, which candidate solution will it
evaluate first, which next, and next, and when will it stop?

Search operators define how an ML system chooses solutions to
test and in what order. Assume that an ML system starts at step 0
and chooses a candidate solution to evaluate for step 1. It evaluates
that solution. It then repeats that process n times for n steps or until
some termination criterion is met. So where 0 < i < n, the search
operators define what solution will be chosen for each step i + 1 from
each step i. Search or transformation operators, therefore, define
and limit the area of the representation space that actually will be
searched. It should be obvious that a good machine learning system
would use search operators which take a path through solution spaces
that tends to encounter good solutions and to bypass bad ones. Some
of the different types of search operators used in machine learning are
discussed below.

1.6.1 Generality/Specificity Operators

In both Boolean and threshold representations, it is possible to con¬
duct a search from the most general possible solution to the most
specific.8 For example, in a conjunctive Boolean system, every time
a new conjunctive term is added to a concept, the concept is more
specific than previously. Likewise, in a threshold system, increasing
the threshold makes the concept described by the threshold unit more
specific and vice versa [Langley, 1996]. It is on observations such as
these that general to specific transformation operators were devised.

8 Searches may also be conducted from the most specific to the most
general. However, such searches are of limited interest because they tend
to overfit with solutions that are far too specific. See Chapter 8.

In a small problem domain, one could start a general to spe¬
cific search with all possible concept expressions that contained one
feature. The next level of search could add one feature, expressed
conjunctively, to each expression. Those expressions that were incon¬
sistent with the training set could be discarded and then yet another
term could be added at a third level of search. Effectively, what this
search is doing is starting very general and becoming more and more
specific.

1.6.2 Gradient Descent Operators

Many neural network systems use gradient descent operators to trans¬
form the networks. The weights of the network are adjusted according
to a gradient descent algorithm such as back propagation or cascade
correlation until a termination criterion is met [Rao and Rao, 1995].

Recall Figure 1.3, the multilayer feedforward neural network with
three inputs, two hidden neurons, and one output. During training
of this network, the values of the weights (w^) between the neurons
would be adjusted in small amounts by a deterministic hill climber
until improvement stops. To apply this procedure in multilayer feed¬
forward neural networks, the error on a training instance is "back-
propagated" through the weights in the network, starting at the out¬
put. Because of this, the effect of each adjustment in the weights is
usually small - the system is taking little steps up the local hill.

Crossover and the
Building Block

Hypothesis

1.6.3 Genetic Programming Operators

In GP, the primary transformation operators are "crossover" and
"mutation" (see Chapter 5). Mutation works by changing One pro¬
gram; crossover by changing two (or more) programs by combining
them in some manner. Both are, to a large extent, controlled by
pseudo-random number generators.

The predominant operator used in GP is crossover. In fact, the
crossover operator is the basis of the GP building block hypothesis.
That hypothesis is an important part of the basis upon which GP
makes its claim to be more than a massively parallel hill climbing
search. In crossover, two parents are chosen and a portion from each
parent is exchanged to form two children. The idea is that useful
building blocks for the solution of a problem are accumulated in the
population and that crossover permits the aggregation of good build¬
ing blocks into ever better solutions to the problem [Koza, 1992d].
If the building block hypothesis is correct, then GP search should
be more efficient than other machine learning search techniques (see
Chapter 6).

Mutation is the other of the two main transformation operators
in GP. Although not as popular as crossover, mutation is actually
quite important. For our purposes here, we shall define mutation as
being any sort of (random) manipulation that can be performed on
one program alone. We shall argue later that it is actually mutation
that brings innovation to GP.

Elements of general/specific search operators do appear in GP.
For example, the operators devised by Koza in creating and modifying
automatically defined functions are expressly based on the general¬
ity/specificity approach [Koza, 1994a]. In addition, many of the gene¬
tic operators in GP could be viewed as having generality/specificity
effects. For example, adding an if-conditional at the bottom of a
subtree is very likely to make that subtree more specific. Remov¬
ing it has the opposite effect. Aside from the automatically defined
functions, however, all such exploration on the basis of generality and
specificity happens only as a side-effect of the other genetic operators.
Such exploration has not been deliberately designed into the system.

1.7 The Strategy of the Search

While the search operators define what types of jumps a system can
make through the search space, the extent of the search conducted is
quite a different matter. There are different types of search used in
machine learning systems. We will look at only three here:

Q Blind search,

Q Hill climbing,

Q Beam search.

1.7.1 Blind Search

Blind search means searching through the solution space and picking
a solution using no information about the structure of the problem
or results from previous steps in the search. In other words, blind
search proceeds without knowledge of the search space or the benefit
of heuristics (rules of thumb) to direct the search. Often, blind search
moves through a tree representing the search space. In that tree,
each node represents a candidate solution and the edges represent
permissible jumps through the search space among nodes. The edges,
therefore, represent the effect of the search operators.

Blind search proceeds through a tree by applying a specific strat¬
egy for movement based only on the tree structure and what nodes
have been previously visited in the search. Two such strategies are

Mutation

Other Operators

Blind Search is Based
on Structure Only

breadth-first and depth-first tree search. The former searches each
level of the tree until a good solution is found. The latter goes to
the maximum depth of the tree down the first path dictated by the
tree. If it reaches a dead end (a branch without an acceptable solu¬
tion) , depth-first search backtracks up the tree until it finds a branch
not yet taken. It takes that branch. The process continues until the
search space is completely explored or the algorithm finds an accept¬
able solution. In this form, both depth-first search and breadth-first
search represent a type of "exhaustive search" because they search
the tree until it is finished or an acceptable solution has been found.9

Needless to say, exhaustive search works only where the solu¬
tion space is very small. For genetic programming, exhaustive search
would be completely impractical. GP works in a combinatorial space
suffering from the so-called curse of dimensionality. That is, the vol¬
ume of the solution space increases so quickly with the addition of
new dimensions that here is no practical way to do an exhaustive
search of that space. This problem exists for most machine learn¬
ing systems. For nearly all interesting learning domains, the search
space of possible solutions is far too large for exhaustive search to be
completed in reasonable time frames.

1.7.2 Hill Climbing

Hill climbing starts in one spot in the search space, transforms that
solution, and keeps the new solution if it is a better solution. Oth¬
erwise the new solution is often (although not always) discarded and
the original solution is again transformed, evaluated, and discarded
or kept until a termination criterion is met. No record is kept of the
path that has been traversed already.

Simulated annealing (SA) and many neural network training al¬
gorithms are typical of this approach. Only one solution is considered
at a time and only one path through the solution space is explored.

Simulated annealing [Kirkpatrick et al., 1983] is based on an anal¬
ogy with the cooling of metal in a process called annealing. Early in
the cooling, the molecular structure of the metal changes in large
steps. By analogy, early in an SA run, the changes are "large"

9 Blind search techniques need not be exhaustive. For example, iterative
deepening is a hybrid version of depth-first search and breadth-first search
that combines the strengths of both search strategies by avoiding the ex¬
tensive storage requirements for breadth-first search and the extensive time
requirements for the depth-first search. In a nutshell, it is a constrained
depth-first search. As such, it is an example of an entire class of search
strategies, namely, partial searches that deal with the trade-off between
search time and search space.

steps. As the metal cools, the changes in the metal settle down.
SA makes random changes to an existing solution, retains the trans¬
formed solution if it is better than the original solution, and some¬
times retains the transformed solution if it is worse. As an SA run
continues, the temperature parameter is decreased to make the like¬
lihood of retaining negative transformations less and less. SA has
been applied with real success to program induction by O'Reilly
[O'Reilly and Oppacher, 1994a]. Because simulated annealing does
not use a crossover-type operator or maintain a population of can¬
didate solutions, however, it is usually not classified as genetic pro¬
gramming, even though it attacks the same problem as does GP -
program induction from experience of the problem domain.

Neural networks are frequently trained with search algorithms
such as back propagation or cascade correlation. Although these
algorithms seek the bottoms of valleys instead of the tops of hills in
the fitness landscape, they are properly categorized as hill climbing
algorithms. Unlike SA, which uses random steps, these algorithms
use deterministic steps. That is, as soon as the parameters and the
starting point are chosen, the paths the algorithms take through the
search space are already determined.

Back propagation and cascade correlation train the network in
many dimensions simultaneously by varying the values of the weights
(wij) of the network (see Figure 1.3) in fixed step sizes. The di¬
rection of each step is chosen using derivatives to find the optimal
direction for the step. When a neural network is trained using such
an algorithm, the run will start at one point in the solution space
and proceed along one path through the space to the bottom of the
nearest valley.

1.7.3 Beam Search

All of the foregoing algorithms are single point-to-point searches in
the search space. GA, GP, and beam search maintain a population
of search points. Beam search is a compromise between exhaustive
search and hill climbing. In a beam search, some "evaluation metric"
is used to select out a certain number of the most promising solutions
for further transformation. All others are discarded. The solutions
that are retained are the "beam." In other words, a beam search
limits the points it can find in search space to all possible transforma¬
tions that result from applying the search operators to the individuals
in the beam. Beam search has been a well-established technique in
heuristic machine learning systems for many years [Langley, 1996].

Angeline recognized in 1993 that GP is a form of beam search
because it retains a population of candidate solutions that is smaller

Back Propagation and
Cascade Correlation

than the set of all possible solutions [Angeline, 1993] [Tackett, 1994]
[Altenberg, 1994b]. His insight revealed a fundamental similarity be¬
tween GP and machine learning that had previously been concealed
because of GP's roots in evolutionary algorithms. That is, the evo¬
lutionary nomenclature used in GP tended to conceal that GP is a
flavor of this very popular machine learning method. In particular:

Q The machine learning evaluation metric for the beam is called
the "fitness function" in GP.

Q The beam of machine learning is referred to as the "population"
inGP.

Machine learning systems have operators that regulate the size,
contents, and ordering of the beam. GP of course regulates both the
contents and ordering of the beam also. The contents are regulated by
the genetic operators and the ordering is, for the most part, regulated
by fitness-based selection. Simply put, the more fit an individual, the
more likely it will be used as a jumping-off point for future exploration
of the search space.10

1.8 Learning

It may suffice here to quickly name three major approaches to learn¬
ing that can be used with genetic programming.

1. Supervised learning
Supervised learning takes place when each training instance is
an input accompanied by the correct output. The output of a
candidate solution is evaluated against that correct answer.

Many GP applications use supervised learning - the fitness
function compares the output of the program with the desired
result.

2. Unsupervised learning
Unsupervised learning takes place when the ML system is not

10GP incorporates a "reproduction" operator, in which an individual is
allowed to duplicate itself unchanged - so that, after reproduction, there
would be two copies of the individual in the population. Reproduction
is not a search operator - it makes no change to the individual. It is
best viewed as a way of regulating the ordering and contents of the beam.
It regulates the contents because reproduction doubles the number of a
particular individual in the beam. It also increases the likelihood that the
individual will be chosen for future genetic transformations, thus it also
regulates the ordering of the individuals in the beam.

told what the correct output is. Rather, the system itself looks
for patterns in the input data.

The operation of a Kohonen neural network [Kohonen, 1989] is
a good example of unsupervised learning. Given a set of train¬
ing instances to be classified and a specification of the number of
classes to be found (note no outputs are given to the network),
a Kohonen network will devise its own classes and assign the
training instances to those classes.

GP is not normally used for unsupervised training. However,
it would be possible to use it for that purpose.

3. Reinforcement learning
Reinforcement learning [Barto et al., 1983] falls between super¬
vised and unsupervised learning. Although correct outputs are
not specified as in supervised learning, a general signal for qual¬
ity of an output is fed back to the learning algorithm. Thus,
there is more information than in unsupervised learning, al¬
though it is rather unspecific.

Many of the fitness functions in GP are more complex than just
comparing the program output to the desired output. These
systems could be considered as reinforcement learning systems.

1.9 Conclusion

From the above it is apparent that, viewed as just another machine
learning system, GP may be described as follows:

Q GP represents a problem as the set of all possible computer pro¬
grams or a subset thereof that are less than a designated length.
This is one of its great strengths. The GP representation is a
superset of all other possible machine learning representations;

Q GP uses crossover and mutation as the transformation opera¬
tors to change candidate solutions into new candidate solutions.
Some GP operators explicitly increase or decrease the general¬
ity of a solution;

Q GP uses a beam search, where the population size constitutes
the size of the beam and where the fitness function serves as
the evaluation metric to choose which candidate solutions are
kept in the beam and not discarded;

G GP typically is implemented as a form of supervised machine
learning. However, this is no more than convention. It is per-

fectly possible to use GP as a reinforcement or an unsupervised
learning system.

GP is therefore most distinctive in its use of variable length pro¬
grams to represent candidate solutions during training and in its ex¬
plicit use of analogies to evolutionary genetics in its search operators.
Chapter 2 will look closely at the analogy with biology. Chapter 7
will discuss the power of variable length problem representation.

Exercises

1. Is GP concept representation a superset of conjunctive/disjunctive
Boolean and threshold concept representations?

2. Why is GP concept representation a superset of a decision tree
concept representation?

3. What is the interpreter in a GP system?

4. Devise two rules, other than GP populations with natural se¬
lection, for maintaining a beam during a search. List the ad¬
vantages and disadvantages of each relative to GP.

5. Would you expect crossover or gradient descent to produce big¬
ger jumps (on average) in the quality of a solution. Why?

6. Design a gradient descent training system for GP. In doing so,
consider what sort of operators could work on a program along
a gradient.

7. Design a constrained syntax for programs so that a GP system
could only evolve conjunctive Boolean solutions.

8. Would a switch-statement be a helpful program structure to
use to constrain GP so that it evolved only threshold represen¬
tations? Would it be helpful for evolving a disjunctive Boolean
system? Why?

9. Design a generality/specificity mutation operator for genetic
programming. When would you use it and why?

Further Reading

E.A. Bender,
MATHEMATICAL METHODS IN ARTIFICIAL INTELLIGENCE.

IEEE Computer Society Press, Los Alamitos, CA, 1996.

L. Pack Kaelbling, M. Littman, A. Moore,
REINFORCEMENT LEARNING: A SURVEY.

J. Artificial Intelligence Research 4 237-283, 1996.

P. Langley,
ELEMENTS OF MACHINE LEARNING.

Morgan Kaufmann, New York, NY, 1996.

T. Masters,
ADVANCED ALGORITHMS FOR NEURAL NETWORKS.

Wiley, New York, NY, 1995.

T. Mitchell,
MACHINE LEARNING.

McGraw-Hill, New York, NY, 1996.

V.B. Rao and H.V. Rao,
C++ NEURAL NETWORKS & FUZZY LOGIC, 2ND ED.

MIT Press, New York, NY, 1995.

S. Shapiro (ed.),
ENCYCLOPEDIA OF ARTIFICIAL INTELLIGENCE.

Wiley, New York, NY, 1996.

D. White and D. Sofge (eds.),
HANDBOOK OF INTELLIGENT CONTROL.

NEURAL, FUZZY AND ADAPTIVE APPROACHES.

Van Norstrand Reinhold, New York, NY, 1992.

2 Genetic Programming
and Biology

Contents

2.1 Minimal Requirements
for Evolution to Occur 35

2.2 Test Tube Evolution — A Study
in Minimalist Evolution 35

2.3 The Genetic Code - DMA as a Computer
Program 39

2.3.1 The DNA Alphabet 40

2.3.2 Codons and Amino Acid Synthesis 41

2.3.3 Polypeptide, Protein, and RNA Synthesis 42

2.3.4 Genes and Alleles 43

2.3.5 DNA without Function - Junk DNA and Introns 45

2.4 Genomes, Phenomes, and Ontogeny 45

2.5 Stability and Variability of

Genetic Transmission 48

2.5.1 Stability in the Transmission of Genetic Material 48

2.5.2 Genetic Variability 49

2.5.3 Homologous Recombination 50

2.6 Species and Sex 53

Looking back into the history of biology, it appears that wherever
a phenomenon resembles learning, an instructive theory was first
proposed to account for the underlying mechanisms. In every case,
this was later replaced by a selective theory. Thus the species
were thought to have developed by learning or by adaptation of
individuals to the environment, until Darwin showed this to have
been a selective process. Resistance of bacteria to antibacterial
agents was thought to be acquired by adaptation, until Luria and
Delbriick showed the mechanism to be a selective one. Adaptive
enzymes were shown by Monod and his school to be inducible
enzymes arising through the selection of preexisting genes. Finally,
antibody formation that was thought to be based on instruction
by the antigen is now found to result from the selection of already
existing patterns. It thus remains to be asked if learning by the
central nervous system might not also be a selective process; i.e.,
perhaps learning is not learning either.

N.K. JERNE, 1967

Genetic programming is the automated learning of computer pro¬
grams. GP's learning algorithm is inspired by the theory of evolution
and our contemporary understanding of biology and natural evolu¬
tion. Viewed as a learning process, natural evolution results in very
long-term learning from the collective experience of generations of
populations of organisms. In other words, every living creature is the
result of millions of years of learning by its ancestors about how to
survive on Earth long enough to reproduce.

Information learned through biological evolution is regularly stor¬
ed in DNA base pairs. Sequences of DNA base pairs act like instruc¬
tions or partial instructions in computer programs, mediating the
manufacture of proteins and the sequence of manufacture [Eigen, 1992].
This program-like nature of DNA, together with the variable length
structure of DNA, explains the appeal of biological evolution as a
model for computer program induction.

Our choice of words above was deliberate - GP's learning algo¬
rithm was inspired by the theory of evolution and molecular biology.
No claim is made here or in the GP community that the GP learning
algorithm duplicates biological evolution or is even closely modeled
on it. At most we can say that GP learning algorithms have been
loosely based on biological models of evolution and sexual reproduc¬
tion. This chapter touches on some aspects of evolution and biology
that may help the reader understand GP.

2.1 Minimal Requirements
for Evolution to Occur

Darwin argued that

. . . if variations useful to any organic being do occur, assuredly
individuals thus characterized will have the best chance of being 4^}
preserved in the struggle for life; and from the strong principle of
inheritance they will tend to produce offspring similarly charac¬
terized. This principle of preservation, I have called, for the sake
of brevity, Natural Selection.

C. DARWIN, 1859

In other words, there are four essential preconditions for the occur¬
rence of evolution by natural selection:

1. Reproduction of individuals in the population;

2. Variation that affects the likelihood of survival of individuals;

3. Heredity in reproduction (that is, like begets like);

4. Finite resources causing competition.

Those factors, Darwin [Darwin, 1859] [Maynard-Smith, 1994] ar¬
gued, result in natural selection which changes (evolves) the charac¬
teristics of the population over time. To some extent, the remainder
of this chapter will be about one or more of these factors.

We begin by looking at evolution at work in a very simple envi¬
ronment - laboratory test tubes.

2.2 Test Tube Evolution — A Study
in Minimalist Evolution

Evolution occurs even in simple non-living systems, such as in vitro
(test tube) environments. For example, evolution may be observed in
simple experiments using the enzyme Q/3 replicase and RNA. Orgel
has done a series of such experiments [Orgel, 1979] which are an ex¬
cellent starting point for our considerations because they bear many
similarities to GP systems. The significance of the Qj3 replicase ex¬
periments may only be understood with some knowledge of the ex¬
perimental setup, hence we shall discuss them here in more detail.

Q(3 replicase will make an adequate copy of any strand of RNA
(as long as it has a supply of the monomers from which the new
RNA may be made). Imagine a series of test tubes. Each tube

Fast Replicating RNA

contains a solution of Q(3 replicase and the proper monomer mix.
Although there are many different types of RNA, an initial RNA
template containing only one type of RNA is introduced to test tube
1. The Q/3 replicase immediately begins making copies of the RNA
template. After 30 minutes, take a drop out of test tube 1 and place
it into test tube 2. Thirty minutes later, repeat that process from
test tube 2 to test tube 3 and so on.

Four features of the Q/3 replicase experiments are noteworthy
here [Orgel, 1979] [Maynard-Smith, 1994] because genetic program¬
ming runs exhibit much the same behavior.

1. The structure and function of the RNA in the test tubes evolves,
often dramatically. For example, in one experiment, the size of
the RNA molecules in test tube 75 were only one-tenth as long
as the molecules in the original RNA template and the Qf3
replicase was making new RNA molecules at more than twenty
times the rate in test tube 1. Clearly, the RNA population had,
in less than a day, evolved to be much shorter and to replicate
much faster.

2. The mix of RNA in the last test tube varies. However, each
experiment evolves to a stable and repeatable final state that
depends on the initial conditions of the experiment. Evolution
ceases when that state has been reached.

3. Different initial conditions result in a final mix specifically adap¬
ted to those conditions. For example:

Q By reducing the amount of solution transferred from one
test tube to the next, the experiments isolated a strain of
RNA that could reproduce successfully even if only one
RNA molecule was transferred to a new tube.

Q When the amount of CTP1 in the monomer mix was re¬
duced, the final mix contained an RNA strain that repro¬
duced rapidly but had relatively low cytosine content.

Q When an antibiotic was included in the test tubes, the final
mix contained RNA that was resistent to the antibiotic.

4. Finally, the RNA that evolves in these test tube experiments
would have been extremely unlikely to evolve by random chance.

One common end product in the Q/3 replicase experiments illus-

*CTP (for cytosine triphosphate) is an energy-rich monomer containing
the nucleotide cytosine. Its energy is consumed when cytosine is added to
a string of RNA. Similarly, ATP, GTP, and UTP are used to elongate RNA
strings. . i ., >l:-Ji:n :xj V

trates these points. This end product (call it "fast RNA") is copied
very quickly by the Qf3 replicase enzyme for two reasons:

Q Fast RNA is only 218 bases long and is, therefore, very short
compared to the original RNA template (> 4000 bases). The
shorter the RNA, the faster it replicates.

Q The three-dimensional structure of fast RNA makes it especially
easy for Q(3 replicase to copy quickly.

In many of the Q/3 replicase experiments, fast RNA evolves from
the initial RNA template until it completely dominates the mix, even
though it was not in the initial RNA template [Maynard-Smith, 1994].

RNA is not alive. It cannot copy itself. More important, there is
little or no variation in the initial RNA template population. If mul¬
tiplication and variation are supposedly two necessary preconditions
for the occurrence of evolution, how is it that fast RNA evolves?

The key lies in the fact that copies of RNA produced by Q(3 repli¬
case are not always perfect copies. About one in every ten thousand
replications results in errors - bases are inadvertently added, deleted,
or improperly transcribed. It is these errors that introduce variability
into the population of RNA. Variants of RNA that reproduce faster
in a Q/3 replicase solution have an evolutionary advantage - over any
period of time they will, on average, produce more copies than other
types of RNA. Although it may take many replication errors to move
from the initial RNA template (over 4000 base pairs in length) to
fast RNA (only 218 base pairs in length), natural selection operating
on tiny variants is able to accomplish such a transition in fairly short
order.

Inducing the fast RNA structure in less than geologic time scales
is, by itself, a remarkable accomplishment. Consider the magnitude
of the task. There are more than 10128 possible RNA molecules of
218 base pairs in size. To sample them one by one would take longer
than the age of the universe. Accordingly, finding the form of fast
RNA would be very unlikely using random search, even if we knew
the correct number of base pairs (218) in advance. We may safely
conclude that evolutionary search can, therefore, learn good solutions
much more rapidly than random search and with no knowledge about
what the final product should look like.

Eigen writes that the power of evolutionary search resides in the
population. In exploring the search space from many points in paral¬
lel, evolutionary search can allocate more trials to superior mutants,
with the result that:

The (quantitative) acceleration of evolution that this brings about
is so great that it appears to the biologist as a surprisingly new

The Power of Simple
Evolutionary Search

"Test Tube" Evolution
with an Explicit Fitness

Function

Lessons for Genetic
Programming

quality, an apparent ability of selection to 'see ahead', something
that would be viewed by classical Darwinians as the purest heresy!

M. ElGEN, 1992

Orgel's evolution of fast RNA was an early demonstration of the
power of simple evolutionary search. Orgel's mechanism was different
from GP in that Orgel did not use a defined fitness function for selec¬
tion. Rather, Orgel's selection mechanism was inherent in the exper¬
imental setup, which selected for fast replicating RNA molecules. By
way of contrast, Tuerk and Gold [Tuerk and Gold, 1990] have devised
techniques to evolve RNA and protein translation complexes using
an expressly designed selection mechanism - in GP terms, a "fitness
function." Tuerk and Gold call their procedure SELEX, which stands
for "systematic evolution of ligands by exponential enrichment."

SELEX starts with a diverse population of RNA molecules. This
brew of RNA molecules is then passed through an "affinity column,"
in which RNA molecules that bind (at least weakly) to a target
molecule are recovered and then replicated. This procedure is re¬
peated by passing the replicated RNA through the affinity column
again and again. Note: all of the elements for evolution are present
in Tuerk and Gold's SELEX algorithm - variation and selection, repli¬
cation and heredity. Their results were, in retrospect, not surprising.
After four rounds of selection and replication Tuerk and Gold had
evolved a population of RNA molecules with strong, selective bind¬
ing to the target molecule in the affinity column.

Bartel and Szostak have used a SELEX approach to evolve ri-
bozymes customized to catalyze a particular chemical reaction. Bar¬
tel and Szostak characterize their approach as "iterative in vitro se¬
lection." The customized ribozymes were evolved from a random
population of ribozymes. The evolved ribozymes were very effective
at catalyzing the chosen reaction - two to three orders of magnitude
more effective than the most effective ribozyme located by random
search [Bartel and Szostak, 1993].

There are a number of important lessons for genetic programmers
in these simple but elegant experiments:

Q A simple system may evolve as long as the elements of multi¬
plication, variance, and heredity exist.

Q Evolutionary learning may occur in the absence of life or of
se//-replicating entities.

Q Evolutionary learning may be a very efficient way to explore
learning landscapes.

Q Evolution may stagnate unless the system retains the ability to
continue to evolve.

Q The selection mechanism for evolutionary learning may be im¬
plicit in the experimental setup (Orgel) or may be explicitly
defined by the experimenter (SELEX).

The evolution of a simple population of RNA in test tubes is,
of course, a "toy" model in comparison to the complexity of actual
evolution occurring in populations of living organisms. But so too
is genetic programming. In fact, in many ways, these simple RNA
models are good starting points for studying genetic programming be¬
cause they ignore many of the complexities encountered in studying
evolution in living organisms - the separation of genotype and phe-
notype, the apparatus for reproduction, sexual recombination, and
ontogeny to name but a few.

We will, of course, move on and discuss some aspects of the evolu¬
tion of living organisms. But it is important to keep in mind that the
complexity that accompanies natural evolution is not a condition for
the occurrence of evolution. Biological evolution as we have come to
understand it is the manner in which evolution expresses itself given
the complex set of constraints imposed by organic chemistry, DNA
synthesis and replication, protein manufacture and functionality, and
the fitness landscape encountered by living organisms. Evolution is
not the complexity itself. Evolution is a process, an algorithm if
you will, that occurs spontaneously both in complex populations of
living organisms and in much simpler systems such as the in vitro
RNA experiments and genetic programming runs as long as certain
conditions are met.

Nevertheless, biological evolution is the single best example we
have of evolution at work. GP has deliberately imitated its mecha¬
nism in a number of ways. So we will now take a look at important
aspects of natural evolution. Our trip through molecular biology and
population genetics will necessarily be brief and greatly oversimpli¬
fied.

2.3 The Genetic Code - DNA as a Computer
Program

DNA, the principal constituent of the genome, may be regarded as a
complex set of instructions for creating an organism. Human DNA
is comprised of approximately three billion base pairs. Many species
have DNA many times longer than human DNA. While the num¬
ber of instructions contained in one strand of DNA probably dwarfs

Occam's Evolutionary
Razor

The Genetic Code in
Brief

Figure 2.1
Base pairs in a DNA
segment

the number of instructions in all software ever written by humans,
the mechanism by which DNA stores instructions for the creation of
organisms is surprisingly simple.

In brief overview, the basic unit of the genetic code is the DNA
base pair. Three DNA base pairs combine to form a codon, which
codes for the production of an amino acid. Sequences of codons code
for the assembly of amino acids into RNA, polypeptides (protein
fragments), proteins, or functional RNA. The products so formed
mediate the growth and development of organisms.

2.3.1 The DNA Alphabet

Base pairs are the low-level alphabet of DNA instructions - each pair
representing, say, part of an instruction for the creation of a particular
amino acid. A base pair is comprised of two nucleic acid bases that
are chemically bonded.

Only four different bases appear in DNA, adenine, guanine, cy-
tosine, and thymine, abbreviated A, G, C, and T, respectively. The
rules for base pairings are simply A pairs with T; G pairs with C.2

Thus, any one of the following four base pair configurations comprises
a single piece of information in the DNA molecule:

The base pairs then bond to each other, forming a ladder of base
pairs that, because of the three-dimensional properties of the strands,
forms a double helix. A section of DNA of six base pairs in length is
shown in Figure 2.1.

Each base (pair) could thus be regarded as the equivalent of a
bit in the DNA computer. Each DNA information element has a car¬
dinality of-fpur because there are four possible base pairs. Note the

Actually, other pairings are possible, but much less stable.

elegance of this structure. Each of the strands of DNA is redundant -
for example, if a G appears in one strand, a C must appear in the same
position in the other strand. The entire DNA molecule could be re¬
constructed from just one of the two strands. In fact, DNA has many
repair mechanisms that exploit this redundancy [Watson et al., 1987,
pages 347-348].

2.3.2 Codons and Amino Acid Synthesis

In a computer program, a bit is only part of an instruction to the
CPU. The entire instruction is comprised of a sequence of bits. The
same is true in DNA. Each low-level instruction in DNA is actually
comprised of a sequence of three base pairs. Three consecutive RNA
bases are a "codon." Using the abbreviations for the base pairs above,
a typical codon would be represented by biologists as "AGA," which
would symbolize a codon comprised of an adenine, guanine, adenine
sequence.

A codon is a template for the production of a particular amino
acid or a sequence termination codon. A few examples of codons
and the amino acids for which they code are: ATG which codes for
methionine; CAA which codes for glutamine; CAG which also codes
for glutamine.

In all, there are sixty-four different codons - that is, there are
sixty-four different ways to order four different bases in three different
locations. But, there are only twenty amino acids for which DNA
codes. This means that all amino acids and a stop order codon (a
codon that says "quit here") could be specified with only twenty
codons. What happens to the rest of the codons? The answer is that
there are often several different codons that produce the same amino
acid. An example is shown above: the codons CAG and CAA both
code for the production of the amino acid glutamine.

This redundancy in DNA's coding for the same amino acids may
be of some importance in GP for two reasons:

Q The efficiency of different codons in producing the same amino
acid can vary widely from codon to codon. Multiple codons
that transcribe for the same amino acid at different rates may
be of some importance in mutation. Simply put, this effect
allows random mutation - normally a highly destructive event -
to accomplish a relatively small change in phenotypic behavior.
When one codon that produces glutamine is mutated to another
codon that also produces glutamine, the most that changes is
the rate of production of the protein in which the glutamine is
included. The protein itself is not changed.

Codons

Codon Redundancy

Small or Neutral
Mutations

DNA Instruction
Sequencing

Q Kimura has noted the possible importance that neutral muta¬
tion plays in evolution [Kimura, 1983]. Where the translation
rate of two different codons that produce the same amino acid
is roughly balanced, redundancy in coding for amiiio acids pro¬
vides one important route for such neutral mutations. That
is, if the segment of base pairs that produces a codon for ser-
ine is mutated to produce another one of the serine producing
codons, the functionality of the DNA is unchanged although
the structure of the DNA has been changed.3

If DNA were no more that a collection of codons that amount to
"instructions," the analogy between DNA and a computer program
would be weak indeed. A computer program has an additional ele¬
ment - the instructions have a sequence of execution. So, too, does
DNA. This sequence arises from the fact that adjacent base pairs
bind from a 5 prime site to a 3 prime site. That bond is directional
from the 5 prime to the 3 prime site. This directional vector is used
by the organism in protein synthesis. In short, DNA not only has
instructions with specific meanings, the instructions have an implicit
order of execution also.

DNA Transcriptional
Segments

2.3.3 Polypeptide, Protein, and RNA Synthesis

Codons produce amino acids. But the end product of DNA instruc¬
tions is not to produce amino acids. Rather, DNA acts on the rest
of the world by providing the information necessary to manufacture
polypeptides, proteins, and non-translated RNA (tRNA and rRNA)
molecules, each of which carry out various tasks in the development
of the organism. Proteins are complex organic molecules that are
made up of many amino acids. Polypeptides are protein fragments.
Non-transcribed RNA is an RNA molecule (similar to DNA but hav¬
ing only a single strand) that is not merely an intermediate step in
the production of a protein or a polypeptide.

The intricacies of how DNA causes the production of proteins,
polypeptides, and RNA is far beyond the scope of this chapter and
this discussion glosses over many complexities such as the synthesis
of messenger RNA, tRNA, and the like. Generally speaking, DNA
transcribes RNA molecules, which then translate into one or more
proteins or polypeptides. The point here is that there are segments

3In many circumstances, further redundancy lies in the protein struc¬
tures that are produced by the sequences of codons. Some amino acids in
a protein may be replaced by another with little or no change in protein
functionality. In this case, a mutation ihat switched for coding from amino
acid 1 to amino acid 2 would be functionally neutral [Watson et al., 1987].

of DNA that engage in transcriptional activity. Transcriptional ac¬
tivity is necessary, for the direct or indirect synthesis of the brew of
polypeptides, proteins, and RNA molecules produced by DNA. As
Watson et al. put it:

DNA molecules should thus be functionally regarded as linear col¬
lections of discrete transcriptional units, each designed for the syn¬
thesis of a specific RNA molecule.

J.D. WATSON ET AL., 1987

2.3.4 Genes and Alleles

This brings us to the difficult task of defining genes and alleles. In
popular literature, a gene is a location on the DNA that decides
what color your eyes will be. Slight variations in that location make
your eyes green or brown. The variations are called "alleles." This
explanation greatly oversimplifies what we know about DNA and
the manner in which it mediates the creation of an organism. Such a
notion of a gene is misleading, particularly when it comes to designing
a GP system around such an explanation. What biologists try to
express with the concepts of "gene" and "alleles" is more complex:

Q Adjacent sequences of DNA do act together to affect specific
traits. But a single gene can affect more than one trait. More¬
over, DNA at widely scattered places on the DNA molecule may
affect the same trait. For example, the synthesis of the amino
acid arginine is mediated by eight separate enzymes (proteins).
Each of those enzymes is created by a different gene located in
a different place on the DNA [Watson et al., 1987, pages 218-
219].

Q The portions of the DNA that engage in transcriptional activity
(the genes) are separated by long sequences of DNA that have
no apparent function called "junk DNA." Junk DNA is, for all
we know, just inert. It does not ever activate to transcribe or
affect the transcription process. Clearly, junk DNA does not
qualify as a gene.4

Q The portions of DNA that engage in transcriptional activity are
located in the regions between the long junk DNA sequences
referred to above. Genes are, therefore, located in these regions
also. However, not all of the intragenic DNA sequence engages

4There is discussion in the biological community whether junk DNA is
really junk or not; see later sections of this chapter.

in transcription. These intragenic sequences are comprised in
part of alternating sections of "exons" and "introns."

Put simply, exons transcribe for proteins, polypeptides or mRNA.
Introns, on the other hand, are removed from the RNA before
translation to proteins. Junk DNA has no apparent effect on
the organism. It is, apparently, inert. Although it would seem
that introns should be equally inert (they are not transcribed
to mRNA and are therefore not expressed as proteins), the is¬
sue is not so clear. The presence of and contents of introns
frequently have a measurable effect on the amount and biolog¬
ical effect of proteins produced by the gene in which they oc¬
cur [Watson et al., 1987, 867-868] [Maniatis, 1991] [Rose, 1994]
[McKnight et al., 1994]. It may also be that introns play a role
in preventing damage to exons during recombination and in en¬
abling the evolutionary process to experiment with shuffling and
combining slightly different variations of the functional parts
that make up a protein [Watson et al., 1987, 645-646]. We will
deal with this issue at somewhat greater length in Chapter 7.

U DNA's functions - even those we know about - are much more
complex than the translation of polypeptides and proteins. The
intragenic sequences referred to above also contain "control se¬
quences" that turn the translation of proteins and polypep¬
tides in other DNA sequences on and off [Watson et al., 1987,
page 233], almost a "wet" form of conditional branching or of
GOTO statements. Whether to include these control sequences
as "genes" is not at all clear.

Needless to say, these ambiguities have lead to more than one
definition of a gene among biologists. For example, biologists have at
various times defined a gene as the segment or segments of DNA that
produced a single protein - the "one gene-one protein" rule. More
recently, others have suggested that, in reality, DNA sequences often
code for less than a protein. They code for polypeptide sequences,
which may be combined into proteins. This has lead to the "one
gene-one polypeptide" rule [Watson et al., 1987, page 220].

Watson et al. conclude that the best working definition would:

.. . restrict the term gene to those DNA sequences that code for
amino acids (and polypeptide chain termination) or that code for
functional RNA chains (e.g. tRNA and rRNA), treating all tran-
scriptional control regions as extragenic elements. DNA chromo¬
somes, so defined, would be linear collections of genes interspersed
with promoters, operators, and RNA chain termination signals.

J.D. WATSON ET AL., 1987

The One Gene-One
Protein Rule

The lesson here, with respect to genes, alleles, and other DNA
structures is to be very careful when applying such concepts to an¬
other medium such as digital computers. Biologists are hard pressed
to agree on a definition. The first question in applying such concepts
to new media is to define clearly what is meant in the first medium
and then to determine whether the term has any meaning at all when
applied to the other medium. As we will see in later chapters, these
terms may have little or no meaning in a GP population made up of
randomly generated computer programs.

2.3.5 DNA without Function - Junk DNA and Introns

We have been speaking above about sequences of DNA that have
a function - they create proteins or polypeptides or control their
creation. But much of the DNA of many organisms apparently just
sits there and does nothing. This is referred to as junk DNA and as
introns. The word apparently is important here. We know that junk
DNA and introns are not "transcriptional segments" of DNA - they
do not code for proteins. On the other hand, proving that they do
not code for proteins does not prove that junk DNA and introns do
not have functions of which we are unaware.

All but a few percent of the DNA of eukaryotic organisms (all
higher organisms are eukaryotic) consist of non-coding DNA com¬
prising junk DNA, control regions, and introns. On the other hand,
procaryotes (many of the bacteria species) have no introns at all.

The reason for the existence of junk DNA and introns is the sub¬
ject of debate in the biological community. We have noted above that
introns have some role in increasing the efficiency of protein transla¬
tion. In any event, junk DNA and introns will have some importance
later as we examine apparent GP analogs of the intron structures
that emerge spontaneously during GP evolution, in Chapter 7.

We have spent some time in the molecular world of DNA, polypep¬
tides and the like. It is now time to discuss the relationship between
the tiny-scale world of DNA and the much larger world of the organ¬
isms DNA creates.

2.4 Genomes, Phenomes, and Ontogeny

In 1909, Johannsen realized that it was important to distinguish be¬
tween the appearance of an organism arid its genetic constitution. He
coined the words phenotype and genotype to label the two concepts
[Johannsen, 1911]. The distinction is still an important one. Evo¬
lution interacts differently with the genotype and the phenotype in

biological evolution. In GP, the distinction is more elusive. Some GP
systems explicitly distinguish between the genotype and phenotype
[Gruau, 1992a] [Banzhaf, 1993a] [Keller and Banzhaf, 1996], whereas
others [Koza, 1992d] [Nordin et al., 1995] do not.

The genome or genotype of an organism is the DNA of that or¬
ganism.5 Half of the genome (DNA) is passed from parent to child.
Thus, heredity is passed through the genome. The genome is also the
principal mechanism for variance within a population because genetic
changes caused by mutation and recombination are passed with the
genome.

The phenome or phenotype is the set of observable properties
of an organism. In a colloquial sense, the phenotype is the body
and the behavior of the organism. Natural selection acts on the
phenotype (not on the genotype) because the phenotype (the body)
is necessary for biological reproduction. In other words, the organism
(the phenotype) must survive to reproduce.

Ontogeny is the development of the organism from fertilization
to maturity. Ontogeny is the link between the genotype (DNA), the
phenotype (the organism's body and behavior), and the environment
in which the organism's development takes place. The organism's
DNA mediates the growth and development of the organism from
birth to death. The environment of the organism is frequently an
important element in determining the path of development dictated
by the DNA.

In biological evolution, ontogeny is a one-way street. That is,
changes in an organism's DNA can change the organism. However,
except in rare instances [Maynard-Smith, 1994], changes in the organ¬
ism do not affect the organism's DNA. Thus, the village blacksmith
may have a large son. The son is large because his father passed
DNA for a large body to the son, not because the father built up
his own muscles through a lot of physical labor before siring his son.
The blacksmith's acquired trait of large muscles is, emphatically, not
passed on to the blacksmith's son. Ignoring the complication of sex¬
ual reproduction, Figure 2.2 diagrams this mechanism.

All of the mechanisms of biological heredity (copying the parent's
DNA and passing it to the child, mutation of the parent's DNA, and
recombination of the parent's DNA) take place at the genotype (G)
level. On the other hand, natural selection acts only at the level of the

5This simple definition glosses over the difference between procaryotic
and eukaryotic organisms. For eukaryotes, it would be more accurate to
define the genome as the genes contained in a single representative of all
chromosome pairs. Because the most important constituent in the chromo¬
some pairs is DNA, the definition in the text is sufficient for our purposes\

G = Genotype (DNA)
P = Phenotype (the organism)

phenotype (P). Therefore, natural selection acts upon the genotype
only indirectly.

The RNA in vitro experiments discussed above have much to
say about the design of GP systems in regard to separation of the
genotype and the phenotype and in regard to ontogeny:

Q Evolution is possible even where there is no physical
difference between the genotype and the phenotype.
In biological evolution, the DNA (genotype) is quite distinct
from the organism's body and behavior (phenotype). By way
of contrast, the RNA in Orgel's experiments has no phenotype
that is separate from the genotype (the RNA itself).6 The
RNA does, however, engage in behavior that could be regarded
as phenotypical. Similarly, in GP, the genotype is the evolved
program and, in many systems, there is no separate phenotype.
But the behavior of the GP program when it executes is, like
the RNA's behavior after folding, phenotypical behavior.

While some phenotypical behavior on which natural selection
can act appears to be a necessary component of evolution, a
separate structure that may be labeled the "phenotype" is not.

G Evolution is possible with or without ontogeny.
The RNA experiments also suggest that ontogeny is not a re¬
quirement of evolution. In the Orgel experiments, the RNA
did not undergo any development process between reproduc¬
tion events.7

6One could argue that the folded RNA strand is physically different
from the unfolded strand and thus constitutes a phenotype.

7One could argue that the temperature conditions required for folding
of RNA are the appropriate environment and the folding process itself is
ontogeny.

The lesson here for GP is that it is not necessary to create a
separate phenotype structure from a genotype by some sort of onto-
logical process. However, ontogeny and a separate phenome are tools
that may be used by the GP researcher to improve the quality of GP
search. One example of GP's use of such tools is the cellular encoding
technique, which explicitly uses the genotype (a tree GP structure)
to define a process of ontogeny by which a single "primordial" neu¬
ron develops into an elegantly complex neural network structure (the
phenotype) [Gruau, 1992a]. More recently, finite automata have been
treated in a similar way [Brave, 1996].

2.5 Stability and Variability of

Genetic Transmission

The way genetic material is passed from the parent to the child is the
most important factor in determining genetic stability (like begets
like) and the genetic variability in a population. For evolution to
occur, genetic transmission must be simultaneously stable and vari¬
able. For example, the transmission of genetic material from parent
to child must, with high probability, pass parental traits to the child.
Why? Without such stability of inheritance, natural selection could
select a parent with good traits but the children of that parent would
not be likely to inherit that good trait. At the same time, there must
also be a chance of passing useful new or different traits to the child.
Without the possibility of new or different traits, there would be no
variability for natural selection to act upon.

This section explores the mechanisms of stability and variation.

2.5.1 Stability in the Transmission of Genetic Material

In natural evolution, reproduction involves copying the parent's DNA
and transmitting all or part of that DNA to the child. We have
already pointed to some of the principal mechanisms of stability in
heredity: /

Q Redundancy

The elegant redundancy of the base pair structure of DNA.

Q Repair
Complex repair mechanisms reside in the DNA molecule for
repairing damage to itself and for the correction of copying
errors. This function is so important that several percent of
some bacteria's DNA is devoted to instructions for DNA repair
[Watson et al., 1987, page 339 onward].

Q Homologous Sexual Recombination
Sexual recombination is often regarded as a source of genetic
variability, and it is. But recombination is also a major factor
in the genetic stability of a species. It tends to prevent the
fixing of negative mutations in the population (thereby reducing
variability) [Maynard-Smith, 1994]. In addition, Watson et al.
argue that recombination's most vital function is probably the
repair of damaged DNA [Watson et al., 1987, page 327].

2.5.2 Genetic Variability

Genetic variation in a population is the result of three principal forces.

Mutation

Entropy-driven variation, such as mutation, is the principal source of
variability in evolution. There are many types of mutation, including
[Watson et al., 1987, pages 340-342]:

Q Changes from one base pair to another. These often produce
neutral or useful variations. Although a base pair switch occurs
about once every ten million replications or less, there are hot
spots where base pair switching is up to twenty-five times the
normal rate.

Q Additions or deletions of one or more base pairs. This is called
a frameshift mutation and often has drastic consequences on
the functioning of the gene.

Q Large DNA sequence rearrangements. These may occur for any
number of reasons and are almost always lethal to the organism.

Homologous and Non-Homologous Genetic Transfer
in Bacteria

The exchange of genetic material among bacteria through mecha¬
nisms such as phages, plasmid conjugation, and transposons is also a
source of bacterial genetic variability. Of particular interest are:

Q Hfr Conjugation
A bacterium in the Hfr state actually injects a copy of part of
its genetic material into another bacterium, where homologous
recombination occurs. The bacteria need not be of the same
species.

Q Transposons
A transposon is able to insert entire genes into the genetic se¬
quence of the recipient bacterium. Transposons are thought to
be responsible for conveying the genes for antibiotic resistance
among bacteria of different species.

These mechanisms have been mostly ignored by GP programmers
because of the GP focus on sexual reproduction. The authors believe
that this is an area ripe for research because these are the methods
of genetic exchange in the simpler evolutionary pattern of asexual
production and may be more appropriate to the complexity level of
a GP run.

Homologous Sexual Reproduction

Exchange of genetic material in sexual reproduction happens through
recombination. The DNA from both parents is recombined to pro¬
duce an entirely new DNA molecule for the child. GP crossover mod¬
els sexual recombination in the sense that there are two parents and
that portions of the genetic material of each parent are exchanged
with portions of the other. On the other hand, GP does not model
the homologous aspect of natural recombination, as will be discussed
in detail below.

2.5.3 Homologous Recombination

The concept of homologous genetic transfers is clearly an important
one. Most recombination events seem to be homologous. The reason
for that will become clear in this section. Homology appears through¬
out procaryotic and eukaryotic genetic exchanges and is an important
element in the stability/variability mix of natural evolution.

Homologous genetic exchange occurs during "crossover" in sexual
recombination. It also occurs in bacteria during events such as plas-
mid conjugation. Homology is the teason that genetic exchange is a
source of both genetic variation ana genetic stability in a population.

We have seen that mutation causes random changes in DNA -
normally quite damaging changes. Homologous exchange is com¬
pletely different - it encourages changes in DNA of a very narrow
and specified type. Although we will go into more detail later, in ho¬
mologous exchange, genetic material is exchanged in a manner that
preserves the function of the all-important DNA transcription seg¬
ments (genes) and the length of both DNA molecules. The result
of this highly controlled exchange is that sexual recombination has

a success rate in generating successful variations that is remarkable.
Most children of sexual recombination are viable.8

Homologous exchange will not work unless two requirements are
met:

1. Homologous exchange can only occur between two identical
or almost identical DNA segments. In higher organisms, this
means that horses mate with horses, not dogs. Why? One
horse's DNA can be matched up closely with another's so that
recombination preserves gene functionality. In a nutshell, this
preservation of gene functionality is why clearly defined species
evolve for organisms that reproduce sexually.

2. Homologous exchange can occur only if the two DNA segments
to be exchanged can be matched up so that the swap point
is at functionally identical points on each strand. In fact,
DNA strands are able to align themselves where their base
pairs are identical or almost identical before recombination.
[Watson et al., 1987] [Maynard-Smith, 1994],

Figure 2.3 demonstrates the first point - the DNA strands that
engage in genetic exchange must be identical or nearly identical. Fig¬
ure 2.3 shows what happens when the DNA segments are dissimilar.
Suppose we recombined the DNA from two species, a horse and a
finch. Short DNA sequences from each species are shown in Figure
2.3. Before recombination, the horse (species 1) has genes that tran¬
scribe for: protein A (Pr A), polypeptide B (Pp B), and protein C (Pr
C). The finch (species 2) has genes that transcribe for: polypeptide
D (Pp D), polypeptide E (Pp E), and an rRNA molecule of type F
(rRNA F). The swap point for recombination is shown in the figure.

After crossover, the horse's foal would be able to make finch
polypeptide E and finch mRNA F. But it would likely have lost the
ability to make horse polypeptide B or protein C. If polypeptide B
or protein C are at all important to the horse, this non-homologous
recombination would likely be a disaster for both the horse and the
finch and is probably a good reason for a horse not to mate with a
finch.

In fact, non-homologous recombination is nothing more than a
massive mutation. It affects not just one or two base pairs but the
entire strand of DNA from the crossover point on. Thus, it falls into

With three exceptions (transposons, integrative viruses and agro-
bacterium tDNA) the known forms of genetic exchange among individ¬
uals involve homologous exchange. Even these three mechanisms appear
to involve homologous-like mechanisms.

Species 1 DNA Before Non-Homologous Exchange

PrA PPB PrC

PPD PPE rRNA F

Species 2 DNA Before Non-Homologous Exchange

Species 1 DNA After Non-Homologous Exchange

PrA PPE rRNAF

PPD PPB PrC 1
i

Species 2 DNA After Non-Homologous Exchange

the category of mutation identified above as a sequence rearrange¬
ment, and a massive one. Such mutations are normally fatal.

Figure 2.4, on the other hand, illustrates how stability and genetic
variability may be the result of homologous recombination. Note
that each DNA strand in the figure is a little different. DNA One
has Variant 1 of the gene to produce Pr A and Pp B. DNA Two
has Variant 2 of the same genes. The Variant 1 genes are alleles of
the Variant 2 genes in this example. Before the recombination, the
two DNA strands have aligned themselves correctly along similar or
identical base pair sequences.

When DNA One and DNA Two recombine, the integrity of the
gene structure is preserved. More important, each DNA strand gets
a working version of a functional gene to make Pr A and Pp B the
versions are just a little different. So the children of this recombina¬
tion will probably be viable. Finally, the recombination has created a
small amount of variability. Before the recombination, Variant 1 of Pr
A may never been combined with Variant 2 of Pp B. This testing of
different combinations is the essence of genetic variability introduced
by crossover.9

Even the process of transposon recombination, a non-homologous
process in bacteria where entire intact genes are inserted by the trans-

9This example is a little simplistic. The swap in Figure 2.4 is intergenic
(between genes). Intragenic homologous recombination also occurs but it
has the same property of preserving essential structure.

Individual 1 DMA Before Homologous Exchange

Pr A (variant 1) Pp B (variant 1) PrC

Pr A (variant 2) Pp B (variant 2) PrC

Individual 2 DNA Before Homologous Exchange

Individual 1 DNA After Homologous Exchange

Pr A (variant 1) Pp B (variant 2) PrC

Pr A (variant 2) Pp B (variant 1) PrC

Individial 2 DNA After Homologous Exchange

poson into the DNA of another bacterium, is the exception that
proves the importance of preserving structure in recombination. An
entire working gene or set of genes is inserted into the bacterium.10

We have addressed homology here because it may be found in al¬
most all forms of genetic exchange, from the lowest bacteria to sexual
reproduction in mankind. The ubiquity of homologous exchange and
the clear importance of structure preservation raise troubling ques¬
tions for GP crossover. GP crossover is clearly not homologous. We
discuss the problems this has led to and solutions in some detail in
Chapter 6.

2.6 Species and Sex

Our treatment of biology will end with a brief discussion of species
and sex.11

We classify organisms that reproduce asexually in species. For
example, we refer to E. coli bacteria and Shigella and the like. But
in many ways, the concept of species is elusive in asexual organisms.
We can tell if two sexual organisms are members of the same species

10This is the process by which bacteria are believed to transfer antibi¬
otic immunity among themselves - even among different species. Some
transposons carry resistence to as many as five strains of antibiotic.

11For example, we shall not delve into the very interesting question of
diploidy.

by mating them and seeing if they have viable offspring - that is
the definition of a species. On the other hand, absent mating trials,
our definition of the E. coli "species" is based on appearance and
function, not on its genetic structure. In fact, there is often more
genetic variation between two different E. coli bacteria than there
is between either of them and a completely ''different" species of
bacteria. Population studies of E. coli suggest that most E. coli
bacteria are literal clones of successful E. coli variants. In the Q/3
replicase experiments, was the fast RNA the same "species" as the
initial RNA template? How would we even begin to answer that
question?

In asexual populations, mutation is the primary driving force of
evolution. But as we have noted above, most mutations are damaging
to the organism, or worse, lethal. In smaller populations, a strong
argument may be made that slightly deleterious mutations will tend
to accumulate, becoming fixed over time, and that the process will
continue to worsen ad infinitum. This is referred to as "Muller's
rachet" [Muller, 1932] [Haigh, 1978]. In enormous bacterial popula¬
tions this may be of little consequence and this may be why sexuality
has never evolved for many such species. But in higher animals with
much smaller populations, Muller's rachet may be an important force.

By way of contrast, speciation could not be more specific in pop¬
ulations of sexually reproducing organisms. Can two organisms mate
and produce viable offspring? That is the question. Why is a well-
defined species important for sexual reproduction? Sexual recombi¬
nation may be of great value to a species for two reasons:

1. Sexual recombination allows the species to combine numerous
favorable mutations into one individual much more rapidly than

asexual reproduction.

2. Sexual recombination probably ameliorates the effect of Muller's
rachet.

But recall our earlier discussion of homology. If the DNA in the
two parents does not match closely, most matings will result in disas¬
ter, as in Figure 2.3. Thus, to get the benefit of sexual reproduction,
a species must maintain a group of mating individuals that have iden¬
tical or close to identical chromosomal and DNA structures. It will
not work any other way.

Genetic programming, from the start, has relied principally 011
the crossover between two parent programs (sexual reproduction) to
cause evolution (see Chapter 5 and [Koza, 1992d]). The difficulty of
finding or even defining a homologous species in GP is discussed at
some length in Chapter 6.

Exercises

1. Which molecules carry and store the genetic information in na¬
ture?

2. Which are the two main sources of genetic variation (the equiv¬
alent of genetic operators) in nature?

3. How do bacteria transfer genetic information?

4. Explain the concept of homology. What is homologous recom¬
bination?

5. Describe the genetic code in nature. How many "letters" does
it use? What do they code for?

6. What is a gene? What is an intron?

7. Explain protein synthesis. Outline the path from gene in DNA
to protein.

8. What is a genotype and what is a phenotype?

9. Explain natural selection. Are there other kinds of selection?

10. Explain the concept of fitness.

Further Reading

C. Colby,
INTRODUCTION TO EVOLUTIONARY BIOLOGY.
http://wcl-l.bham.ac.uk/origins/faqs/faq-intro-to-biology.html

P. Coveney and R. Highfield,
T H E ARROW OF TIME.
W.H. Allen, London, 1990.

R. Dawkins,
THE BLIND WATCHMAKER.
Norton, New York, NY, 1987.

M. Eigen,
STEPS TOWARD LIFE: A PERSPECTIVE ON EVOLUTION.
Oxford University Press, Oxford, 1992.

B. Lewin,
GENES V.
Oxford University Press, Oxford, 1994.

J. Maynard Smith and E. Szathmary,
T H E MAJOR TRANSITIONS IN EVOLUTION.
W.H. Freeman, Oxford, 1995.

J. Medina,
THE CLOCK OF AGES.
Cambridge University Press, New York, NY, 1996.

L. Orgel,
EVOLUTION OF THE GENETIC APPARATUS.
in JOURNAL OF MOLECULAR BIOLOGY, vol. 38, pp. 381-393, 1968.

J. Watson, N. H. Hopkins, J. W. Roberts, J. Argetsinger-Steitz,
A. M. Weiner,
MOLECULAR BIOLOGY OF THE GENE.
Benjamin/Cummings, Menlo Park, CA, 1987.

3 Computer Science and
Mathematical Basics

Contents

3.1 The Importance of Randomness

in Evolutionary Learning 58

3.2 Mathematical Basics 60

3.2.1 Combinatorics and the Search Space 60

3.2.2 Random Numbers 61

3.2.3 Probability 63

3.3 Computer Science Background
and Terminology 67

3.3.1 The Turing Machine, Turing Completeness, and

Universal Computation 67

3.3.2 The Halting Problem 69

3.3.3 Complexity 70

3.4 Computer Hardware 72

3.4.1 Von Neumann Machines 72

3.4.2 Evolvable Hardware 75

3.5 Computer Software 76

3.5.1 Machine Language and Assembler Language . . . 76

3.5.2 Higher Languages 77

3.5.3 Data Structures 79

3.5.4 Manual versus Genetic Programming 82

Anyone who considers arithmetical methods of producing random
numbers is, of course, already in a state of sin.

J. VON NEUMANN, 1951

In this chapter we shall introduce some fundamental notions of com¬
puter science and mathematics necessary for understanding the GP
approach. The leading question therefore is: What are the mathe¬
matical and information-processing contexts of GP, and what are the
tools from these contexts that GP has to work with?

3.1 The Importance of Randomness

in Evolutionary Learning

As we have seen in the last chapter, organic evolution is one of the
effective means of "automatic" learning that we observe in nature.
GP is based on a crude model of what we understand to be the
mechanisms of organic evolutionary learning. The principle dynamic
elements of that model are:

Q Innovation caused by mutation, combined with

Q Natural selection.

Together and by themselves, these two dynamics appear to be
sufficient to cause organic evolution to occur in self-replicating enti¬
ties. Asexual single cell reproduction, mutation, and natural selection
were the sole mechanisms of evolutionary learning for many millions
of years [Watson et al., 1987].

In addition to mutation and natural selection, the model on which
GP is based also includes sexual reproduction. Sexual reproduc¬
tion and the related mechanism of gene crossover obviously confer
some evolutionary advantage, at least for organisms with diploid gene
structures - sexual reproduction has been a very successful strategy
for hundreds of millions of years.

These different mechanisms of evolutionary learning (mutation
and sexual recombination) operate in nature and in the computer.
In nature, mutation is basically free. It is a byproduct of entropy.
For example, DNA is not always replicated accurately and UV light
randomly flips nucleotide "bits" and so forth. In short, the tendency
in nature toward disorder will always tend to cause changes in or¬
dered entities and in their offspring. So, random change comes for
free in organic evolutionary learning. In contrast, a large amount
of the energy expended in evolutionary learning is used to conserve
the phenotype despite the entropic tendency toward disorder. This

learned stability of the phenotype is an extremely important achieve¬
ment of evolution.

Sexual reproduction is another matter altogether. The physical
mechanisms of biological sexual reproduction are complex and must
be self-maintained against the pull of entropy. The mechanism of
sexual selection also imposes great cost on the individual and the
species. Species evolve "tags" to enable members of the species to
identify other members of the species. Some of those tags come at
the expense of certain fitness-related aspects like speed. Bird calls
can identify the location of a bird to predators. A male peacock's
tail slows it down. So, sexual reproduction is decidedly not "free."

In computer programs, on the other hand, stability is an ingrained
feature, at least for the time frames relevant to us with respect to
computerized evolutionary learning. In such a time frame, we cannot
count on entropy causing bits to flip. Of course, if we were willing to
wait for the actual physical mechanism of the RAM to deteriorate, we
might achieve this effect. But this would be far too slow with respect
to our life expectancy. So as a practical matter, computer programs
will not change in the time scale required unless we explicitly add
a driving force for evolutionary learning.1 Of course, that separate
driving force is simulated mutation and perhaps simulated sexual
reproduction.

How can we simulate entropic change in the context of a com¬
puter program? After all, entropy measures the effects of random
processes. GP simulates entropic change by using a pseudo-random
number generator. Increasing order and decreasing entropy (that
is, causing learning) by randomly changing computer programs may
look counter-intuitive. But driving a search process by a randomness
engine is, in a way, the most general procedure that can be designed.
When random changes are combined with fitness-based selection, a
computerized system is usually able to evolve solutions faster than
random search [Eigen, 1992] [Koza, 1992d); see Chapter 2.

The above argument is independent of whether the search space
is small enough to allow exhaustive search or so large that only sam¬
pling can resonably cover it: on average, it is better to visit locations
non-deterministically. By "non-deterministic," we mean that the al¬
gorithm, after visiting a location, always has a choice where to go

"'Note, however, the interesting hypothesis put forward by Belady and
Lehman [Belady and Lehman, 1985] that, in fact, a real but unnoticed
"natural selection" is acting on computers which results in co-adaptation
of components (e.g., periphery and system) or of hardware and software to
the effect that most changes in the configuration cause system failure.

next. Non-deterministic algorithms are presently being developed in
different areas of computer science with considerable success.

In conclusion, GP as a general search process in the space of all
possible programs/algorithms will depend heavily on randomness in
different flavors. For this reason, we shall see in the next section how
random numbers can be generated within a computer.

3.2 Mathematical Basics

The mathematical basis for randomness is probability theory. Its ori¬
gins go back well into the 17th century. Stimulated by problems of
gambling, Blaise Pascal and Pierre Fermat were the first to concep¬
tualize probability. The field only later developed into an important
branch of mathematics where the laws of random events are studied.

Because random events play such a prominent role in GP, we
shall take a closer look at probability. Before going into details of
probability, however, we should consider discrete elements and their
combinations.

3.2.1 Combinatorics and the Search Space

In GP, it is often necessary to estimate the size of the search space
and the difficulty of the problem being solved. The search space is,
simply put, the set of all programs that could be found by the GP
algorithm, given a certain programming language.
* Combinatorics is a mathematical basis for calculating the size of
the search space. Combinatorics answers the question: Given a set
of discrete elements - function symbols, for instance - in how many
different ways can we order them? We are thus concerned, in the
simplest case, with linear orderings of a set of elements.

Let us represent elements by lowercase letters, listed in alphabetic
order. For instance, consider E = {a, b, c}, the set of 3 elements a, 6, c.

Definition 3.1 A permutation is an arbitrary ordering of the el¬
ements of a set E that uses each element once.

N different elements constituting the set E can be ordered in Nl
different permutations.

If we select a subset of K out of N elements from the set we
consider a combination of order K.

Definition 3.2 A combination of order K is an arbitrary selec¬
tion of K out of N elements from the set E without replacement.

3.2 Mathematical Basics

different combinations if we do not consider replacement and order
of selection. C(K,N) is called the binomial coefficient.

If, however, the order of those K elements is additionally consid¬
ered, there is a factor K! between the former combinations and what
we call variations.

Definition 3.3 A variation of order K is an ordered selection of
K out of N elements from a set E.

There are

variations and

combinations if repetition of elements is allowed.
Combinatorics is important for GP when we want to compute

the size of a search space and, therefore, the difficulty of a search
problem. How we can use combinatorics to gain information will
be shown after we have introduced some basic concepts of computer
science.

3.2.2 Random Numbers

As mentioned before, randomness is of utmost importance in genetic
programming. This section is devoted to a discussion of the essentials
of random numbers and their generation through algorithms. We are
interested here in mechanisms which lead to a distribution of numbers
within a given interval that looks as much as possible like the outcome
of a random process. Since we shall employ deterministic algorithms
to generate those numbers, we are in fact not dealing with random
numbers but with quasi-random or pseudo-random numbers. Knuth
[Knuth, 1981] has studied in detail what we need to consider if we
wish to generate random numbers.

The first message from Knuth is that a complicated and random-
looking algorithm does not guarantee the generation of good se¬
quences of random numbers. Instead, very simple algorithms perform
surprisingly well in generating random numbers. The simplest is the
linear congruential method with suitably chosen parameters.

The linear congruential method of generating a sequence of equally
distributed numbers between 0 and 1 goes back to Lehmer

There are

(3.1)

(3.2)

(3.3)

3.3 Computer Science Background
and Terminology

All computers are created equal.

UNKNOWN

This section provides basic computer science concepts and terminol¬
ogy relevant to genetic programming.

3.3.1 The Turing Machine, Turing Completeness, and
Universal Computation

Although the Turing machine (TM) is one of the best known types of
computing machines, no one has ever built one.2 The Turing machine
is an extremely simple computer, and the surprising fact is that a TM
can simulate the behavior of any computer. So, any computer that
can simulate a TM can also simulate any other computer. However,
the TM is a very inefficient computer, and it is generally not useful
for calculations. Rather, the concept of a Turing machine has been
an invaluable tool for mathematicians analyzing computers and what
they can and cannot do.

The TM was introduced by the British mathematician
Turing in his milestone 1936 paper "On computable numbers, with an
application to the Entscheidungsproblem" [Turing, 1936]. His simpli¬
fied computer consists of only four parts (see Figure 3.2):

J A long tape of paper where symbols can be read, written and
changed (overwritten). The tape is divided into squares that
contain exactly one symbol or that are empty.

Q A read/write device for reading one symbol from the tape or
writing/changing one symbol on the tape. The device can move,
one step at a time, over the tape to read the contents of other
squares, illustrated with the box in Figure 3.2.

Q A finite set of states.

Q A set of state transition rules. This set can be interpreted as the
"program" of the Turing machine that defines a certain action
the TM must perform depending on the symbol it is currently
reading and on what state it is in. An action is a state change
along with either a change of the device position or a write on
the tape.

2 However, a well-meaning clerk at the Library of Congress has set aside
a whole category number for books on "marketing of Turing machines."

3 Computer Science and Mathematical Basics

Figure 3.2
Schematic view of a
Turing machine

Turing Completeness

Structure and Function
of a Turing Machine

Each rule specifies a combination of state and tape square content
and an action to perform if this combination matches the current
state and tape square content. Some authors assume the tape to be
of infinite length, but all that is needed is that the tape can grow to
an arbitrary length by addition of new squares to either end.

A programming language is said to be Turing complete if it allows
to write a program that emulates the behavior of a certain arbitrary
TM. A Turing complete language is the most powerful form of a pro¬
gramming language. All commercial programming languages, such
as FORTRAN or C, are Turing complete languages. In fact, only a
few simple program constructs are needed to make a language Turing
complete.

On the one hand, a too-simple language (such as one containing
addition and no other operator) is not Turing complete. It cannot
simulate a Turing machine and is, therefore, unable to represent an
arbitrary algorithm. On the other hand, a program language with
addition and a conditional jump operator is Turing complete. The
expressiveness of a language is an important property to consider
when choosing functions for the function set of a GP experiment. In
general, it seems desirable to work with a Turing complete language
when doing genetic programming.

Teller proved in 1994 [Teller, 1994b] [Teller, 1994c] that a GP sys¬
tem using indexed memory and arithmetic operators is Turing com¬
plete Note that the equivalence of different Turing complete languages
only holds for functionality, not for efficiency or time complexity of
the words from the languages. Languages may also have different
properties with respect to evolution of algorithms in a GP system.

Formally, a Turing machine T can be defined as

(3.22)

where I is an input alphabet, O is an output alphabet with I C O,
Q is a finite set of all states of T, qo £ Q is the initial state, F C Q
is the set of finite states, and

(3.23)

is a state transition function. S may be a partial function, in which
case there is at least one (q, a) £ (Q — F) x O not mapped on any
(r,c) £ Q x (O U {l,r}). l,r ^ O denote a move of the read/write
device - also called the head - by one tape square to the left or right.
There is a blank b £ O — I. Each tape square is considered to be
initialized with b.

Given the structure of T, we now consider its function. At the
outset, the initial word w £ I*,w = So..sn, is on the tape. All tape
squares not used by w contain b. T has state 50 > and the head is on
«o- Each processing step of T works as follows. T has state q\ 0 F.
The current square, the square the head is on, contains symbol GI.
If <5(<7i,aj) is defined and gives (<?2,02), T makes a transition into q%
and processes a^ as follows. If 02 £ O, then T replaces ai by a?.
If a2 £ {l,r}, then the head moves one square in the corresponding
direction. If 8(qi, ai) is not defined, or if q\ £ F, then T terminates.

A universal Turing machine U can emulate any Turing machine
T. To that end, U is given an initial w £ /* that defines T and
x, which is T's initial word. In this sense, U is said to be able to
perform universal computation. Obviously, in the case of £/, there is
no need to change U in order to perform a different computation.
Thus, a universal Turing machine is a mathematical model for a
modern computer. The working memory is analogous to a TM's
tape, a program is analogous to the emulated Turing machine T, and
the program's input is analogous to x. Note, however, that a real
computer may not have enough memory for some programs, while a
Turing machine always has enough tape squares.

3.3.2 The Halting Problem

The motivation for Turing's work with respect to the TM was not
so much to find a universal computing machine that could be shown
to be as powerful as any other machine. Instead, he wanted to clar¬
ify whether such machines had limitations and whether there were
problems computers could not solve. Turing's objective in his fa¬
mous paper mentioned above was to show that there are functions
that cannot be computed by a Turing machine.

An important example of a problem that cannot be solved by
a TM is the halting problem. It asks if there is a program that
can determine whether another program halts or not. One result of

Universal Turing
Machine and Universal
Computation

Turing's work is that there is no program that can determine the
termination properties of all programs. There are many programs
whose halting property can be decided with a mechanized procedure,
but the halting problem is unsolvable in the general case.

The halting theorem also has important implications for the evo¬
lution of programs with a GP system. If we are evolving programs
with a terminal set and function set that make the underlying pro¬
gramming language Turing complete, then we cannot know before¬
hand which programs will terminate and which will not. For a GP
run, we must therefore use one of the methods available for ensur¬
ing time bounded execution of an evolved program. Time bounded
execution is further described in Section 10.2.8.

3.3.3 Complexity

The size of a computer program in GP is often referred to as the
program's complexity.3 There are various measures of complexity or
size in the GP literature. One of the most natural and commonly used
is simply the number of nodes in a tree-based genetic programming
system. Other definitions of complexity that have been used are the
number of bits needed to express a program in linear form, or the
number of instructions, for example, in machine code; see Figure 3.3.

The complexity of a computer program is arguably related to the
capability of the program to generalize from a set of given data. A
shorter program is more likely to show a feasible behavior with data
it has not been explicitly trained on than a longer program would.
Chapter 8 will discuss the generalization issue for programs in more
depth.

Kolmogorov Complexity and Generalization

It has been argued that a short program with low complexity has a
higher probability of generalizing well. In general, the mathemati¬
cal property "complexity of a computable object" can be said to be
the shortest program that produces the object upon execution. Note
that this complexity concept differs from the complexity definition
discussed above for programs. The complexity of a chunk of infor¬
mation is a property of this information regardless of the type of
information, and it is applicable to many other kinds of objects than
computer programs. We call this complexity property of an object
the Kolmogorov complexity of the object. Synonyms for Kolmogorov
complexity are algorithmic information, algorithmic complexity, or
Kolmogorov-Chaitin complexity.

3Very often, a logarithmic function of the size is used.

Figure 3.3
Different complexity
measures: number of
nodes, instructions, or
bits

In GP, we are interested in selecting a program - which can be
viewed as a model or hypothesis - that fits the data we have ob¬
served. For instance, we might want to predict the next number in
a data series given the presently known data points. Or, in symbolic
regression, we might like to fit a function to a set of fitness cases such
that the function - with high probability - accurately models the
underlying problem outside of the domain of the given fitness cases.

It can be shown that the probability of guessing a program that
correctly models some fitness cases or other observed data is domi¬
nated by the probabilities of the shortest programs consistent with
these data. In other words, if two programs model the same data, the
shorter one can be argued to have a higher probability of being gen¬
eral with respect to the underlying problem. However, this subject
is still in debate in the scientific community [Li and Vitanyi, 1997].

An interesting question is the relation between the complexity
of a program and that of its environment. In nature, the complex¬
ity of phenotypes seems to draw heavily on the complexity of the
environment. The genome, in other words, seems to "harness" the
complexity of the environment to generate an organism. Can a simi¬
lar process help to produce complex programs in GP?

Figure 3.4
Schematic view of a
computer's RAM memory

3.4 Computer Hardware

3.4.1 Von Neumann Machines

A von Neumann machine is a computer where the program resides
in the same storage as the data used by that program. This ma¬
chine is named after the famous Hungarian-American mathematician
von Neumann, and almost all computers today are of the von Neu¬
mann type.

The group of which von Neumann was a member at the time
of this invention4 was pondering ways to facilitate programming of
computers. They considered it too tedious to reconnect banks of
cables and to reset myriads of switches to reprogram a computing
device. By contrast, input of data via punched cards or paper tapes
was much easier. So the idea was born of simply inputting and storing
programs in the same way as data.

The fact that a program can be regarded as just another kind of
data makes it possible to build programs that manipulate programs
and - in particular - programs that manipulate themselves. The
memory in a machine of this type can be viewed as an indexed array
of integer numbers, and thus a program is also an array of integers
as depicted in Figure 3.4.

This approach has been considered dangerous in the history of
computing. A contemporary book on computer hardware explains:

The decision of von Neumann and his collaborators to represent
programs and data the same way, i.e. interchangeable, was of
captivating originality. Now a program was allowed to modify
itself, which caused speculations about learning, self-reproducing
and, therefore, "living" systems. Although these ideas were en¬
ticing and still are, their consequences are dangerous. Not only .
are programs that modify themselves unfathomable (incompre¬
hensible), but they also lead to an unpredictable behavior of the
computer. Fortunately, at least when the output is being printed,
this regularly ends in a chaos of confusing columns of numbers
and erroneous data which can be thrown away immediately. This

4The ENIAC project at Moore School, with J.P. Eckert, J.W. Mauchly,
and H.H. Goldstine.

chaos is, of course, not acceptable in large and sensitive technical
systems. Already when programming these systems, manifold se¬
curity measures have to be taken such that the system does not
become autonomous.

H. LIEBIG AND T. FLIK, 1993, translated from German

It is not unreasonable to hope that genetic programming will
change this attitude completely.

Different machines use integers of different maximal sizes. Cur¬
rently, 32-bit processors are the most common type of processor avail¬
able commercially. The memory of such a machine can be viewed as
an array of integers, each with a maximal size of 232 — 1, which is
equal to 4294967295, and a program in such a machine is nothing
more than an array of numbers between zero and 4 294 967 295. A
program that manipulates another program's binary instructions is
just a program that manipulates an array of integers. This is an im¬
portant fact for manipulating binary machine code in GP and will
be taken up again in Chapter 9 and in more detail in Chapter 11.
Figure 3.5 illustrates the principle of a von Neumann machine and
also how it can be used for meta-manipulation.

The Processor

The processor is the black box doing all the "intelligent" work in
a computer. The principles of different present-day processors are
surprisingly similar. To simplify somewhat we can say that the pro¬
cessor consists of three parts. First, it has a device for storing and
retrieving integers from the memory array. Then it has a number of
registers for internal storage of integers and a unit for arithmetic and
logic operation between the registers, the ALU, as shown in Figures
3.5 and 3.6.

Figure 3.5
The CPU and what it
does

A register is a place inside the processor where an integer can be
stored. Normally, a register can store an integer with the same size

as the word size of the processor. For instance, a 32-bit processor has
registers that can store integers between 0 and 4294967295. The
most important register is the program counter (PC) which gives the
index to the next instruction to be executed by the processor. The
processor looks at the contents of the memory array at the position
of the program counter and interprets this integer as an instruction,
which might be to add the contents of two registers or to place a
value from memory into a register. An addition of a number to the
program counter itself causes transfer of control to another part of
the memory, in other words, a jump to another part of the program.
After each instruction the program counter is incremented by one
and another instruction is read from memory and executed.

The ALU in the processor performs arithmetic and logic instruc¬
tions between registers. All processors can do addition, subtraction,
logical and, logical or, etc. More advanced processors do multiplica¬
tion and division of integers and some have a floating point unit with
corresponding floating point registers.

In Figure 3.5 we can see the overall activity of the processor
working on memory cells. Integers in memory become instructions to
the processor when the CPU reads and interprets them as commands.
Figure 3.6 shows more details. The memory retrieval device uses a
register or some arithmetic combination of registers to get an index
number. The contents of the memory array element with this index
number are then placed in one of the registers of the processor.

Figure 3.6
Schematic view of the
central processing unit
(CPU)

All the behavior we see in today's computers is based on these
simple principles. Computers doing graphics or animations, control¬
ling a washing machine, or monitoring a car's ignition system all do
the same memory manipulations and register operations.

RISC/CISC

At present, both CISC processors (Pentium) and RISC processors
(SPARC or PowerPC) are used in commercial computers. CISC is
an acronym for Complex Instruction Set while RISC is an acronym
for Reduced Instruction Set. As indicated by the acronym, RISC
processors have fewer and less complex instructions than CISC pro¬
cessors. This means that a RISC processor can be implemented with
less complex hardware and that it will execute its instructions faster.
The RISC approach follows some advice on instruction set design
given by von Neumann:

The really decisive consideration in selecting an instruction set is
simplicity of the equipment demanded by the [instruction set] and
the clarity of its application to the actual important problems,
together with [its] speed in handling those problems.

J. VON NEUMANN, 1944

One of the central ideas of RISC architectures is the extensive use
of registers in the code. The late Seymour Cray, one of the pioneers
of high performance computing, made the following remark:

[Registers] made the instructions very simple.... That is somewhat
unique. Most machines have rather elaborate instruction sets in¬
volving many more memory references than the machines I have
designed. Simplicity, I guess, is a way of saying it. I am all for
simplicity. If it's very complicated, I can't understand it.

S. CRAY, 1975

3.4.2 Evolvable Hardware

Recently, interest has grown rapidly in a research field that has evo¬
lution of electronic hardware as its topic. With the advent of in¬
creasingly cheaper freely programmable gate array chips (FPGAs), a
whole new area for evolutionary algorithms is opening up.

For the first time it seems feasible to actually do trials in hard¬
ware, always with the possibility in mind that these trials have to
be discarded due to their failure. Evolvable hardware (EHW) is one
important step, because with it, there is no need to discard the entire
hardware; instead one simply reprograms the chip. The EHW field is
developing quickly, and the interested reader should consult original
literature [DeGaris, 1993] [Hirst, 1996].

3.5 Computer Software

Of all the elements that make up the technology of computing,
none has been more problematic or unpredictable than software.
... The fundamental difficulty in writing software was that, until
computers arrived, human beings had never before had to prepare
detailed instructions for an automaton - a machine that obeyed
unerringly the commands given to it, and for which every possible
outcome had to be anticipated by the programmer.

M. CAMPBELL-KELLY AND W. ASPRAY, 1996

With the exception of EHW, hardware is too rigid to represent chang¬
ing needs for computer functionality. Use of software is the only way
to harvest the universality of computers. In this section we discuss
the most basic aspects of software.

First, we take a look at the most elementary representation of
software: machine language, the "native language" of a processor,
which it speaks fast. Also, we shall introduce assembly language.
Second, we shall look at classes of higher languages. They are easier
to use for humans, but they have to be translated into a machine
language program. Third, elementary data structures - structures
that allow the storing, reading, and writing of data in certain logical
ways - will be presented. Fourth, we shall air some thoughts on
manual versus genetic programming.

3.5.1 Machine Language and Assembler Language

A program in machine language is a sequence of integers. These
integers are often expressed in different bases - decimal, octal, hex¬
adecimal, or binary - in order to simplify programming and reading
machine language programs. By binary machine code, we mean the
actual numbers stored in binary format in the computer.

However, it is often impractical to use numbers for instructions
when programming in or discussing machine language. Remember¬
ing, for instance, that the addition instruction is represented by
2 416 058 368 in the SUN SPARC architecture is not natural to the hu¬
man mind (what was that number again?). If we represent the same
instruction in hexadecimal base (90022000), it will be more compact
and easier to reason about, but it is still not natural to remember. For
that purpose, assembly language was developed. Assembly language
uses mnemonics to represent machine code instructions. Addition is
represented by the three letters ADD. The grammar for assembly lan¬
guage is very simple, and the translation from assembly language to
machine code is simple and straightforward. But assembly language

is not machine language, and cannot be executed by the processor
directly without the translation step.

It is worth noting that different processors implement different
word sizes, instructions, and coding of the instructions, but the dif¬
ferences between instructions for processors of different families are
surprisingly small.

3.5.2 Higher Languages

Both machine language and assembler are called low-level language
because hardware aspects are important when writing a program.
Low-level languages are machine-oriented languages. In contrast,
high-level languages or problem-oriented languages do not require de¬
tailed knowledge about the underlying hardware. A problem-oriented
language, like FORTRAN [Morgan and Schonfelder, 1993], allows for
modeling by use of abstract representations of operators and operands.

We can further distinguish between general-purpose and special-
purpose high-level languages. The former provide problem-indepen¬
dent language elements, while the latter supply elements that are tai¬
lored for modeling situations from a certain problem domain. For in¬
stance, Pascal [Sedgewick, 1992] is a general-purpose language, while
SQL [Celko, 1995] is a special-purpose language used in the database-
query domain. All general-purpose languages are Turing complete,
of course.

High-level languages can be classified by the differing sets of prin¬
ciples they obey. We mention a few prominent language classes in
the chronological order of their development. Table 3.1 summarizes
the situation.

General and Special

Purpose

Class

imperative
functional
predicative

object-oriented

Entity

variable
function

predicate inference rule
instance, class, state, method

Principle |

von Neumann architecture
lambda calculus

logic
object-oriented reality

Ada [Barnes, 1982], BASIC, C [Kernighan et al., 1988], FOR¬
TRAN, Pascal, or SIMULA [Kirkerud, 1989] are examples of impera¬
tive languages. Program statements explicitly order (Latin impemre)
the computer how to perform a certain task. Since imperative lan¬
guages are the oldest high-level languages, they are closest to low-level
languages.

Table 3.1
Language classes
Imperative Languages

Functional, Applicative

Languages

Predicative Languages

Object-Oriented

Languages

Principles underlying the von Neumann computer architecture
influenced the design of imperative languages. For instance, an es¬
sential entity of any imperative language is a variable, and typical
statements semantically look like:

put value 42 into variable universalAnswer

The existence of variables results from the von Neumann principle
of dividing memory into equal-sized cells, one or more of which may
represent a variable.

LISP, LOGO, ML, and BETA are examples of functional or ap¬
plicative languages. Program statements define a certain task. In
mathematics, a function is a relation between a set A and a set B
such that each element in A is associated with exactly one element
in B. In other words, a function maps A onto B.

A program represents a function that maps input data and in¬
ternal data into output data. This is the main point of a functional
language. Its essential entity is called a function. Using a function
on its arguments is called application, so a functional language is also
called applicative. Functions can be combined into composed func¬
tions. A value can be a function, too. The lambda calculus is the
mathematical foundation of functional languages.

Like a functional language, a predicative language is based on
mathematical principles. PROLOG is such a language. Program¬
ming means describing to the computer what is wanted as result. It
does not mean saying how to get to the result. An example from
[Stansifer, 1995] should illustrate this.

mortal (X) :- man (X) /* if X i s a man then X i s mortal */
man (socra tes) . /* Socrates i s a man. */

mortal (socrates)? /* question to system */
yes /* system answer */

The basic idea of predicative languages is to represent a program
by valid statements (predicates) and inference rules. The rules de¬
scribe how to deduce predicates from predicates. Getting a certain
result r from a predicative program implies asking a question like:
"for which value(s) of r is a certain predicate true?"

SMALLTALK-80, C++, and JAVA are examples of object-orien¬
ted programming languages. The principle behind these languages
is modeling a system by objects. An object represents a certain
phenomenon. It may have states. Objects may communicate by
sending messages to each other. An object receiving a message may
react to this event by executing a method. As a result of a method

execution, the receiving object may, for example, send an object to
the other object.

Each object is an instance of a class that defines states and meth¬
ods of each of its instances. A subclass of a class defines its instances
as special cases of the corresponding superclass. Instances of a sub¬
class inherit all methods and states of all corresponding superclasses.

Table 3.2 shows some instances of high-level languages and how
they have been used in connection with genetic programming.

Language

C
C++

FORTRAN
LISP

PROLOG

Individual
•

•

•

•

Implementation
•

•

•

•

Source |

[Keller and Banzhaf, 1996]
[Keith and Martin, 1994]

[Banzhaf, 1994]
[Koza, 1992d]

[Osborn et al., 1995]

3.5.3 Data Structures

Any stupid boy can crush a bug. However, all the professors in
the world cannot make one.

UNKNOWN

Table 3.2
GP systems that allow for
evolving high-level
language individuals
and/or are implemented
in a high-level language

Maybe artifical evolution will be able to come up with a structure
as complex as a hemipterous insect some day. Currently, GP is al¬
ready challenged when trying to manipulate comparatively primitive
data structures in a meaningful way. This section discusses some
prominent data structures offered by many common programming
languages.

A data structure is either a value range or a structure of data
structures and a set of constructors. In the former case, the data
structure is called simple; in the latter case, composed. A constructor
constructs a composed data structure from other data structures.

From the point of view of the von Neumann architecture, program
code and data are binary sequences. The primitive organization of
eight bits giving a byte and of a machine-dependent byte number
giving a memory word are the only forms of structure in this se¬
quence. Most real-world situations, however, are phenomena with
complex structure. Data structures for use in modeling these situ¬
ations should be problem oriented. Just as mathematical concepts
underlie high-level languages, data structures in particular are drawn

from mathematical structures and operators. Figure 3.7 shows a hi¬
erarchy of data structures. An arrow running from a structure A to
a structure B means that B is a special case of A.

Figure 3.7
Data structure hierarchy.
An arrow running from a
structure A to a
structure B means that
B is a special case of A.

Typical simple concrete structures are integer, real, Boolean,
character, enumerated, and subranges of these. The kinds of values
contained in integer, real, and character are obvious. Boolean
contains just two values: true and false. True denotes that a certain
condition is given, false the opposite. Enumerated is a simple ab¬
stract structure. It contains a finite linear-ordered set of values. For
instance, red, yellow, green with order red > yellow > green is
an enumerated structure color. A subrange is a contiguous interval
of a value range. For instance, red, yellow is a subrange of color.

There are many potential constructors and composed structures.
Five prominent constructor classes and the corresponding structure
classes are discussed next. Many high-level languages offer instances
of these classes as language elements.

Aggregation builds a Cartesian product of structures, called a
record. For instance, (1, 3.14) is an element in the record IN x H. If all
structures of a record are identical, the record is called an array. For
instance, (2.718, 3.141,1.414) is an element in the array R x I I x B,.

A person profile like

f i r s t name: Smith
surname: John
age (yrs) : 32
height (meters): 1.95
weight (kg) : 92

is an element from a record NxNxAxHxW. N is an array of
twenty characters, A is a subrange from 0 to 150 of integer, H is a
subrange from 0.3 to 2.72 of real,5 W is a subrange from 0 to 300.

Generalization unites structures. (2.718,3.141,1.414) and 10, for
instance, are elements in the united structure 1R x]R x H U IN. Re¬
cursion constructs a structure consisting of an infinite discrete value
range. Recursive structures can be constructed in several high-level
languages, like LISP or C.

A structure can be modeled by a structure called a graph. A graph
is a set of nodes and a set of edges that connect certain nodes with
each other. A node represents a part of an instance of the structure.

For example, consider the record R := IN x R, or R := N. This
is a - potentially infinite - recursive structure IN x IN x IN x An
instance of this structure is (1,836,947,37, 7959739793457,...). Such
a linear recursive structure can be modeled as a list. A list is a special
case of a graph: it is cycle-free and each node is connected, at most,
to two different other nodes. In the example, each integer value can
be represented by a node.

For another instance, consider the expression a + b * c. Let us
represent each symbol in this expression by a specific node. Now,
connect the PLUS node with the a-node and the MULT node. Then,
connect the MULT node with the 6-node and the c-node. Finally,
explicitly mark exactly one node as a special node. What you get
is a tree, which is a very important special case of a graph: it is
cycle-free, and one of its nodes is explicitly marked as the root node.

Thus, a tree is a hierarchical graph: all nodes connected to the
root node are called the children of the root node. Of course, these
children can be seen as root nodes of their own children, and so on.
Obviously, a tree may be composed of subtrees. That is, a tree is a
recursive structure. In particular, a list is a special case of a tree.

5Memorializing Robert P. Wadlow 1918-1940, whose attested height
defines the upper range limit.

Aggregation

Generalization,
Recursion

Graph, Tree, List

In the example of the arithmetic expression, the PLUS node may
be the root node. Then, the subtrees a and b*c model subexpressions.

In general, graphs can be used as models of structures and pro¬
cesses from real-world applications. For instance, certain complex
industrial processes may be modeled as Petri nets, which are power¬
ful instances of general graphs. A tree can model a decision process:
each node represents an option set, and depending on the chosen op¬
tion, the process branches to a child node. A list may model a stack
of engine parts that are successively being popped from the stack by
an engine-building robot.

A power set of a set 5 is the set of all subsets of S. The
power set constructor gives the power set of a structure as a new
structure. For instance, the power set of {red, yellow, green}
is {0}, {red}, {yellow}, {green}, {red, yellow}, {red, green},
{yellow, green}, {red, yellow, green}. A power set can help
in modeling an archetype that implies combinations of entities. For
instance, consider a set of chess players. In order to compute all pos¬
sible player combinations, one simply constructs the power set and
isolates all subsets of size 2.

A function space is a set of mathematical functions. The function
set constructor gives a corresponding structure. For instance, the set
of all continuous functions is a function space.

A selector selects a value of a component of a composed structure.
For instance, the selector [i] selects component i in an array and
answers z's value.

Data structures are an essential topic in computer science, and
it remains to be seen how GP can make use of them. Some studies
already indicate that a connection can be made (see Chapter 10).

3.5.4 Manual versus Genetic Programming

Programming by hand is the traditional method of generating useful
programs - it is what we call the craftsman approach to programming.
After the invention of the von Neumann machine, this programming
method was greatly facilitated by allowing programs to be input in
the same way as data were handled. By this time, programs consisted
of numbers symbolizing machine instructions to be executed directly
by the processor.

A first step in abstraction took place, when instead of machine
instruction bits, assembler code could be written to instruct the pro¬
cessor. A translation step had to be added to the processing of pro¬
grams that transformed the memo code of assembler into machine-
understandable sequences of instructions.

Later, high-level languages were used for writing programs, e.g.,
ALGOL - a language for defining algorithms - or COBOL and FOR¬
TRAN, all of them particularly suited to specific applications of the
computers available at that time. Also, LISP appeared at this time,
but, for some time, remained a language to be interpreted instead of
compiled. Compilation was a technique developed with the arrival of
high-level languages.

The introduction of high-level languages was a big step in making
programmers more efficient, since writing an abstract program that
could later be compiled into machine language allowed an average
manual programmer to produce more lines of code per time unit in
terms of machine language.

An even more abstract language level is provided by tools for
algebraic specification. Using algebraic specification, the program¬
mer does not even have to write high-level code. Instead, he or she
specifies the desired behavior in an abstract behavioral description
system which then generates source code to be compiled by a regular
compiler.

One might reasonably ask whether GP could be applied to alge¬
braic specification. In other words: Would it be possible to evolve
programs on the level of an algebraic specification that only later on
would be translated into code? To our knowledge, nobody has tried
GP on this level yet, but it might be a fruitful area to work in.

If we now confront the manual method of writing programs with
an automatic one like GP, the similarities are striking.

Consider, for instance, the method programmers use who do not
have a good command of a certain programming language. As an
example of such a language, let us imagine a macro-assembler lan¬
guage that, without insulting anyone, we can consider to be nearly
obsolete in the late 1990s. Nevertheless, suppose that many appli¬
cations in a certain domain, say databases, are written with this
macro-assembler language. In order to adapt such an application -
a program - to a new environment, say another query type or other
content and user type, the code segments written in macro-assembler
have to be rewritten.

How do programmers do this job? The most productive way
to do it is by what is known as "cut and paste." They will take
useful segments from older applications and put them together for
the new one. They will also change those segments slightly in order to
make them viable in the new application. Slight changes might mean
using different variables or changing a very few lines of subroutines
already in existence. Sometimes it might be necessary to write a new
subroutine altogether, but those events will be kept to a minimum.

Some older subroutines will get copied over to the new appli¬
cation, but the corresponding calls will never be made since their
functionality has ceased to be important in the new environment.
Programmers will either see this by analyzing the code, and cut the
routines out, or they will comment these routines out, or they will
not dare to decide and will simply leave them in for the application
to choose whether or not to use them.

After everything has been put together, a programmer will com¬
pile the resulting code, debug it. and test whether the new function¬
ality has been reached or not. Typically, this is an iterative process
of adding and deleting segments as well as testing different aspects
of the application, moving from easy to hard ones.

The last few paragraphs have described in terms of a database
programmer [Ludvikson, 1995] a procedure that may be identified
with actions taken by a genetic programming system. Cut and paste
translates into crossover of applications, generation of new segments
or lines of code translates into mutations, and debugging and testing
correspond to selection of those programs that function properly. On
the other hand, one would hope that a good programmer would take
more informed steps through the search space than would random
mutation.

Incidentally, the fact that much code is unused or commented out
finds its correspondence in so-called introns automatically evolving in
GP programs.

The main difference between programming by hand in this way
and automatic tools like a GP system is that GP can afford to evolve
a population of programs simultaneously, which is something a single
programmer could not do.

One major point to understand from this example is that a pro¬
grammer would only work in this way if

Q the environments changed only slightly between applications,
or

Q the programming language was hard to handle.

We can conclude that it must be very hard for a GP system to gen¬
erate code without any idea of what a given argument or function
could mean to the output.

Exercises

1. Give two elementary components of evolutionary learning.

2. How many permutations of the list of natural numbers smaller
than 10 are there?

3. Give the number of programs represented as binary trees with
L terminals and K functions.

4. What is the best-known method for generating random num¬
bers? How does it work?

5. What is conditional probability?

6. Explain the term probability distribution. Define two different
probability distributions.

7. What is a Turing machine, and in what sense is it similar to a
modern computer?

8. Is it always possible to decide if an individual in a GP system
will end execution? Explain.

9. Give an example of a computer language that is Turing com¬
plete and of one that is not.

10. What is a tree data structure, and what are its basic compo¬
nents?

11. What is the difference between assembly language and binary
machine code?

12. Give at least two different computer language paradigms.

Further Reading

W. Feller,
AN INTRODUCTION TO PROBABILITY THEORY

AND ITS APPLICATIONS, VOLUMES 1 AND 2.

Wiley, New York, NY., 1968 and 1971.

M. Li and P.M.B. Vitanyi,
INDUCTIVE REASONING AND KOLMOGOROV COMPLEXITY.

JCSS 44(2): 343-384, 1992.

R. Motwani and P. Raghavan,
RANDOMIZED ALGORITHMS.

Cambridge University Press, Cambridge, 1995.

I. Niven,
THE MATHEMATICS OF CHOICE.

MMA, Washington, DC., 1965.

E. Sanchez and M. Tomassini (Eds.),
TOWARDS EVOLVABLE HARDWARE.

LNCS 1062, Springer, Berlin, 1996.

R. Stansifer,
THE STUDY OF PROGRAMMING LANGUAGES.

Prentice Hall, London, 1995.

A.M. Turing,
ON COMPUTABLE NUMBERS, WITH AN APPLICATION

TO THE ENTSCHEIDUNGSPROBLEM.

Proceedings of the London Mathematical Society, Series 2, Vol. 42,
1939.

N. Wirth,
ALGORITHMS -f DATA STRUCTURES = PROGRAMS.

in PRENTICE-HALL SERIES IN AUTOMATIC COMPUTATION.

Prentice Hall, Englewood Cliffs, NJ, 1976.

1

4 Genetic Programming
as Evolutionary
Computation

Contents

4.1 The Dawn of Genetic Programming —
Setting the Stage 88

4.2 Evolutionary Algorithms:

The General View 91

4.3 Flavors of Evolutionary Algorithms 95

4.3.1 Genetic Algorithms 95

4.3.2 Evolutionary Strategies 98

4.3.3 Evolutionary Programming 100

4.3.4 Tree-Based GP 101

4.4 Summary of Evolutionary Algorithms 102

A process which led from amoeba to man appeared to philosophers
to be obviously a progress, though whether the amoeba would
agree with this opinion is not known.

B. RUSSELL, 1914

The idea of evolving computer programs is almost as old as the com¬
puter itself. Pioneering computer scientist Turing envisioned it al¬
ready in the early 1950s, but the field was not systematically explored
for another 40 years. We have already briefly looked at Friedberg's
work from the late 1950s [Friedberg, 1958] [Friedberg et al., 1959],
and this work can be considered the embryonic stage of program evo¬
lution, or genetic programming. Friedberg's work at this time was
only one of many efforts toward automatic program induction.

The idea of automatic programming is natural, once you have
learned how complex and tedious manual programming is. It has
been a part of the artificial intelligence and machine learning fields
ever since. The quest has searched down many different roads. One
track has lead to the creation of the "art" of compiler writing. In
this chapter, however, we will focus on the background of genetic
programming in the light of other techniques for simulating evolution.
But first a few words on the name GP.

The term genetic programming was coined independently by Koza
and de Garis, who both started using the term in papers in 1990 to
label their own, different techniques. When Koza's definition of the
term started to dominate after his important 1992 book, de Garis
switched to "evolutionary engineering" and after that GP - to many
people - represented the evolution of program structures in tree or
LISP form. However, as should be clear by now, in this book we use
genetic programming as an umbrella term for all forms of evolutionary
program induction.

4.1 The Dawn of Genetic Programming —
Setting the Stage

Genetic programming is one of many techniques for computer simu¬
lation of evolution. Lately the general term evolutionary algorithms
(EA] has emerged for these techniques. EAs mimic aspects of natural
evolution, natural selection, and differential reproduction. In Chap¬
ter 2 we have seen how Darwin's principle of natural selection is used
to explain the evolution of all life forms on Earth. Various aspects
of this principle have been simulated in computers, beginning with
Friedberg's work.

Until recently, most efforts have been in areas other than pro¬
gram induction, often as methods for optimization. Evolutionary
algorithms work by denning a goal in the form of a quality criterion
and then use this goal to measure and compare solution candidates
in a stepwise refinement of a set of data structures. If successful, an
EA will return an optimal or near optimal individual after a number
of iterations. In this sense, the algorithms are more similar to breed¬
ing of, let us say. dogs than to natural selection, since breeding also
works with a well-defined quality criterion.

When dogs are bred to have, for example, long hair and short legs,
the breeder selects - from a group of individuals - the best individuals
for reproduction according to this quality criterion. In this case, he or
she selects the ones with the longest hair and shortest legs for mating.
The process is repeated with the offspring over many generations of
dogs until a satisfying individual is found - and a Siberian Husky has
been turned into an Angora Dachshund. The same method has given
our pigs an extra rib in only 30 years.

This approach is very similar to the basic principle of all evolu¬
tionary techniques. The process of selecting the best individuals for
mating is simply called selection or, more accurately, mating selec¬
tion. It will be discussed in detail in the next chapter. The quality
criterion is often referred to as fitness in EAs and it is with this
standard we determine which individuals shall be selected. We also
need a technique for mating and reproduction. In the reproduction
process it is important to have a mechanism for variation - to gen¬
erate a differential and to make sure that children do not become
identical copies of their parents, which would render improvements
impossible.

The two main variation operators in EAs - and in nature - are
mutation and exchange of genetic material between individuals. Mu¬
tation changes a small part of an individual's genome while crossover
(recombination and sexual reproduction) exchanges genetic material
usually between two individuals, to create an offspring that is a com¬
bination of its parents. Different EA techniques usually emphasize
different variation operators - some work mostly with mutation while
others work mostly with crossover. An illustration of a basic EA can
be seen in Figure 4.1.

Sometimes the boundaries between EAs and other search algo¬
rithms are fuzzy. This is also true for the boundaries between EAs
that are GP and those that are not. In any case, Friedberg in 1958
can be considered one of the pioneers of EAs and GP, even though
his work lacks some of the presently more common EA and GP in¬
gredients and even though he was hampered by the constraints of the
computer power available at that time.

Figure 4.1
Basic evolutionary
algorithm

The Bremermann Limit

The objective of Friedberg's system was to induce an assembler
language on a virtual one-bit register machine. Due to the limited
computer resources in his day, the induced structures - his programs -
could only tackle modest problems like adding two bits.

But the situation was not as bad as one might think. At least,
this was the argument of another pioneer at the time, Bremermann.
Bremermann asked himself whether there is a principal limit to com¬
putation that computers will never be able to break through. In his
seminal paper [Bremermann, 1962], he noted that no data processing
system, whether artificial or living, can process more than 2 x 1047

bits per second per gram of its mass. He arrived at that surprising
conclusion by an energy consideration, taking into account Heisen-
berg's uncertainty principle in combination with Planck's universal
constant and the constant speed of light in vacuum. Bremermann's
argument continued that if we'd had a computer the size and mass of
the Earth at our disposal computing from the Earth's birth, we would
anyway not be able to process more than 1093 bits of information.
Considering combinatorial problems, this so-called Bremermann limit
is actually riot very large. Concluding his paper, Bremermann wrote:

The experiences of various groups who work on problem solving,
theorem proving, and pattern recognition all seem to point in the
same direction: These problems are tough. There does not seem
to be a royal road or a simple method which at one stroke will
solve all our problems. My discussion of ultimate limitations on
the speed and amount of data processing may be summarized like
this: Problems involving vast numbers of possibilities will not be
solved by sheer data processing quantity. We must look for quality,
for refinements, for tricks, for every ingenuity that we can think

of. Computers faster than those of today will be of great help. We
will need them. However, when we are concerned with problems
in principle, present day computers are about as fast as they will
ever be.

H. BREMERMANN, 1962

Returning to Friedberg, his structures were fixed-size virtual as¬
sembler programs. His algorithm was started like most EAs with
random creation of one or more random structures. As a variation
operator he used mutation - a random change in a bit of his program
structure.

Priedberg's approach has a serious drawback: he employs "bi¬
nary" fitness, that is, a program is either perfect or it is not. The
feedback information from a certain program cannot be used for guid¬
ing the subsequent search process. Thus, the process has similarities
to simple random search.

Though the results from his system were modest, it definitely
represents great pioneering work in the field of EAs, GP, and ML. He
even considered topics that advanced genetic programming research
is concerned with today, like parsimony of programs; see Chapter 10
of this book.

In the next decade - the 1960s - several of today's best known
EAs were created. In this chapter we will take a look at three of
them: genetic algorithms, evolutionary programming, and evolution
strategies. But first we dig deeper into the concept of evolutionary
algorithms.

4.2 Evolutionary Algorithms:

The General View

Natural evolution has been powerful enough to bring about biologi¬
cal phenomena as complex as mammalian organisms and human con¬
sciousness. In addition to generating complexity, biological systems
seem so well adapted to their environments and so well equipped
with sensory and motor "devices" that the impression of purposeful
optimization is evoked. This has caused an ongoing controversy in
biology about whether evolution is indeed optimizing structures or
not [Dupre, 1987].

For millennia, engineers have been inspired to learn from nature
and to apply her recipes in technology. Thus, evolution stimulated
two questions:

Gleaning Recipes from
Evolution

1. Does copying evolution help in the optimization of technical
devices, such as airplane wings, car motors, or receptors and
sensors for certain physical signals?

2. Does copying evolution provide us with the creativity to gen¬
erate new and complex solutions to well-known difficult prob¬
lems?

Brought into the realm of computer science, these questions could
read as:

1. Does simulating evolution (with "evolutionary algorithms") pro¬
vide us with a tool to optimize problem solutions?

2. Does it provide a tool to build solutions by generating complex¬
ity through combination of program constructs? '

Evolutionary algorithms are aimed at answering these questions.
Based on very simple models of organic evolution, these algorithms
aim to catch the basic success ingredients of natural evolutionary
processes. Equipped with those basic ingredients, EAs are applied to
various problems in computer science that are not easy to solve by
conventional methods, such as combinatorial optimization problems
or learning tasks.

Different flavors of EAs have been developed over the years, but
their main ingredients can be summarized as:

Q Populations of solutions

Q Innovation operations

CJ Conservation operations

Q Quality differentials

Q Selection

Consider an optimization problem. The first decision to be made
is how to represent a solution. In EAs, solutions are represented by
genotypes, genomes, or chromosomes.1 Once a representation for a
solution has been fixed, a judgment of a solution candidate should
be possible, based on the problem to be solved. The representation
allows us to encode the problem, e.g., by a set of parameters that are
to be chosen independently from each other. A particular instantia¬
tion of this representation should be judged, giving a quality of the
solution under consideration. The quality might be measured by a

1Note that genotypes and solutions often are not identical!

physical process, by an evaluation function to be specified in advance,
or even by a subjective juror, sitting in front of the computer screen.

Usually, EAs work with a population of solutions, in order to
enable a parallel search process. Indeed, the right choice for the
size of a population is sometimes decisive, determining whether a
run completes successfully or not. We shall learn more about this in
the context of genetic programming. Population size is generally an
important parameter of EAs.

Once a representation has been chosen that can be plugged into
a decoder, resulting in a rating of individual solutions, corresponding
operators have to be defined that can generate variants of the solu¬
tion. We have mentioned two classes of operators above, innovation
operators and conservation operators.

Innovation operators ensure that new aspects of a problem are
considered. In terms of our optimization problem above, this would
mean that new parameter values are tried, in either one or more of
the different parameter positions. The innovation operator in EAs is
most often called mutation, and it comes with three EA parameters
determining:

Q its strength within a component of a solution,

Q its spread in simultaneous application to components within a
solution,

Q and its frequency of application within the entire algorithm.

A very strong mutation operator would basically generate a ran¬
dom parameter at a given position within a solution. If applied to all
positions within a solution, it would generate a solution completely
uncorrelated with its origin, and if applied with maximum frequency,
it would erase all information generated in the population during the
EA search process so far.

Conservation operators are used to consolidate what has already
been "learned" by various individuals in the population. Recombi¬
nation of two or more solutions is the primary tool for achieving this
goal. Provided the different parameters in our solution representation
are sufficiently independent from each other, combinations of useful
pieces of information from different individuals would result in better
overall solutions. Thus, in the ideal case, a mixing of the informa¬
tion should take place that will accelerate the search for the globally
optimal solution.

There are different ways to achieve a mixing of solutions. For the
sake of simplicity, here we shall concentrate on two individuals recom-
bining their information, although multi-recombinant methods also

Linkage and Epistasis

Quality Differentials

Selection

EA as Dynamical

Systems

exist in the literature. Well-known recombination methods are one-
point, two-point, or n-point crossover for binary (discrete) parameter
values between two individuals, as well as discrete and intermediate
recombination for n-ary or continuous parameter values. Depend¬
ing on these features, these operators carry a set of EA parameters
governing:

Q type of recombination

Q its frequency of application within the entire algorithm

Given these two means of exploring the search space, a solution
should be found quite efficiently. Unfortunately, reality is not usually
so simple, and there are many interrelationships between various com¬
ponents of a problem solution. This is called linkage and prohibits
efficient search, since the variation of one parameter might have a
negative influence on overall fitness due to its linkage with another.
In effect, we are dealing with non-linear problems here, with an in¬
teraction between components. In the literature, this phenomenon is
sometimes called epistasis.

With the generation of genotypic variants one would expect dif¬
ferences in phenotypic behavior to appear in the population. As
Priedberg's work has demonstrated, however, this is not necessarily
the case. If there was only a binary fitness function (stating a solu¬
tion by "1" and no solution by "0"), then there would not be enough
difference between individuals in the population to drive an evolu¬
tionary search process. An algorithm of this kind would degenerate
into a multi-membered blind search. Thus, a very important aspect
of EAs is a graded fitness function that distinguishes a better solution
from a good one.

It is on these differentials that selection can work on. Due to
the finiteness of a population, not all the variants generated by the
means mentioned above can be stored. This forces us to select from
the variants both the candidates to be included and the individuals
from the population that are due for replacement. Following Darwin,
this process is called selection.

From a dynamical systems point of view, the operators of an EA
work to destabilize a population, and the selection operator works
to stabilize it. Thus, if one is looking for good solutions to an opti¬
mization problem, good solutions should tend to be stable whereas
bad solutions should tend to be unstable. The art of choosing an ap¬
propriate representation and an appropriate set of operators is often
a matter of experience and intuition, and can only be mastered by
working with the algorithms.

4.3 Flavors of Evolutionary Algorithms

Even if the basic ingredients of EAs are quite similar, there are hun¬
dreds of variants to EAs. In this section, we look at three early
approaches that were most influential and illustrate the climate in
which GP was born.

4.3.1 Genetic Algorithms

One of the best known EAs is the genetic algorithm (GA) devel¬
oped by Holland, his students, and his colleagues at the University
of Michigan [Holland, 1992], The GA is an important predecessor of
genetic programming, from which the latter derived its name. GAs
have proved useful in a wide variety of real-world problems.

The original GA has two main characteristics: it uses a fixed
length binary representation and makes heavy use of crossover. The
simple representation of individuals as fixed length strings of zeros
and ones (Figure 4.2) puts the spotlight on an important issue of all
EAs mentioned in Chapter 1 - the encoding of the problem. In GAs
we must find a suitable way to code a solution to our problem as a
binary string. Finding good coding schemes is still an art, and the
success of a GA (and EA) run often depends on the coding of the
problem.

Figure 4.2
Problem representation in
the binary string of a GA

The commonest form of crossover is called one-point crossover
and is illustrated in Figure 4.3. Two parent individuals of the same
length are aligned with each other and a crossover point is chosen at
random between any of their component positions. The tails of the
two individuals from this point onward are switched, resulting in two
new offspring.

Like many GP systems, GAs focus on the crossover operator. In
most applications of GAs, 95% of operations are either reproduction,
i.e., copying strings, or crossover. Usually, only a small probability is
used for mutations.

Another key ingredient to GAs, at least until the late 1980s, was
fitness-proportional selection. Fitness-proportional selection assigns
reproduction opportunities to individuals based on their relative fit¬
ness in the present population. Thus, it is a stochastic process of

Fitness- Proportional
Selection

Figure 4.3
The one-point crossover
operator in genetic
algorithms

selection, which will draw individuals on the basis of their perfor¬
mance as compared to other individuals. It is also called roulette
wheel selection. Each individual gets a part of a roulette wheel in
proportion to its fitness and the average fitness of all other individ¬
uals. The roulette wheel spins, and if an individual has the lucky
number it is allowed to reproduce itself into the next generation.
This simple selection mechanism contains one of the basic principles
of EA selection - more individuals than the best one have a chance
to reproduce. This principle has been shown to be essential in guar¬
anteeing genetic diversity and helps keep the search away from local
optima.

After reproduction has taken place, a certain percentage of the
population is allowed to vary by crossover (mostly) and mutation
(rarely); see Section 4.3. Different forms of selection are discussed in
more depth in the next chapter.

Schemata

Theoretical Aspects

Fitness-proportional selection is also a key ingredient in one of the
main theoretical achievements of GAs: the notion of building blocks
and schemata.

The idea is that, given a certain problem representation, the GA
is able through repeated crossover and reproduction to combine those
parts of a solution that are necessary to form a globally optimal
solution. The argument is that each individual in the population
participates in numerous ways in the search process in every given
generation by exposing different schemata to the evaluation process.

A schema is a string that contains 0, 1, and * (i.e., "don't care")
symbols. In fact, * symbols are the characteristic feature of schemata,
coming about by projections into different subspaces of the entire
search space. Clearly, each individual is always moving in many sub-

spaces at the same time. Holland argued [Holland, 1975] that the
GA actually progresses by this sampling of subspaces.

Holland formulated a theorem, the schema theorem of GAs, stat¬
ing that, provided fitness-proportional selection is used, the probabil¬
ity of certain schemata to appear in the population shifts over time in
such a way as to approach the overall fitness optimum. The schema
theorem is even more specific in giving a lower bound on the speed
for selecting better schemata over worse.

The schema theorem has, among other things, motivated the use
of binary representation in GAs. It can be argued from this theorem
that the alphabet in a GA should be as small as possible. Naturally,
the binary alphabet with only two members is the smallest. This
principle is disputed, but we can note that nature uses a quite small
alphabet of four letters in its DNA code.

The schema theorem has been criticized heavily in recent years for
not being able to explain why GAs work. One of the main reasons
was its extrapolation of fitness developments from generation n to
generation n + k. It is generally not possible to apply a difference
equation recursively k times and have an accurate measure of the
probabilities of schemata occurrence in the long term without very
restrictive assumptions about the underlying process.

Representation of Individuals and Genetic Operators

The usefulness of binary strings as representations of optimization
problems has been challenged over the years. Within the last decade,
more and more variants of genetic algorithms have been put forward
that do not use binary representations. For example, constraint opti¬
mization problems as they appear in most practical applications have
shown a tendency to favor other representations [Michalewicz, 1994].

A representation should always reflect fundamental facts about
the problem at hand. This not only makes understanding of the
search easier but it is often a precondition of successful GA runs.

Correspondingly, genetic operators have to be chosen that allow
unrestricted movement in the problem space spanned by the chosen
representation.

Classifier Systems

In his 1975 book [Holland, 1975], Holland mentioned AI as one of the
main motivations for the creation of genetic algorithms. He did not
experiment with direct use of GAs to evolve programs but contributed
to the creation of another research field with the invention of the

classifier systems. Holland and Reitman proposed this type of system
in 1978 [Holland and Reitman, 1978].

A classifier system induces a general-purpose Turing complete
algorithm comprising three components: a rule-based programming
language, a simulated market economy, and a genetic algorithm. The
rules are the individuals in the genetic algorithm. Together, all the
rules can be seen as a program performing a task. When certain rules
fire in response to some input, the system generates some output.
Any "reward" for the output gets accredited a fitness proportional
to the contributing rules, which are the individuals. The genetic al¬
gorithm then operates on the rules. Rules resulting from the genetic
algorithm build the next potentially modified classifier system. The
metaphor is borrowed form a market economy where many individ¬
uals co-operate and compete to achieve higher efficiency in solving a
goal and each individual is rewarded for its part in the success.

A classifier system is not regarded as evolutionary program in¬
duction since the complete program is not evolved in the individuals
of the population. The individual rules in a classifier system are not
capable of solving the task by themselves.

However, in 1980, Smith [Smith, 1980] invented a variant of a
classifier systems introducing variable-size strings as individuals. In
his approach an individual is a complete rule-based program that can
solve the task defined by the fitness function. Since his system uses
variable length representation of Turing complete individuals, each
aiming alone at solving a problem, his approach can be considered
an important step toward genetic programming.2 Smith applied his
technique to the objective of finding good poker playing strategies
and rules, with some success.

4.3.2 Evolutionary Strategies

Evolutionary strategies (ES), developed in the 1960s, are another
paradigm in evolutionary computation. Newer accounts of the work
of its pioneers, Rechenberg and Schwefel, can be found in
[Rechenberg. 1994] [Schwefel, 1995].

The idea of using evolution as a guiding principle and thus of de¬
veloping evolutionary strategies arose from problems in experimental
optimization. Rechenberg and Schwefel were working with hydrody-
namic problems when they hit upon the idea of using random events
by throwing dice to decide the direction of an optimization process.
Thus, discrete mutations were the first evolutionary variations to be
applied within evolutionary strategies. Due to the limitations of the

We shall call those systems "early genetic programming."

basic experimental setup, only one object could be considered at a
time, so the population consisted of one individual only. But the
selection process was already in place, keeping track of the "fitness"
of an experimental configuration and its variation due to the random
mutations applied.

Soon afterwards, digital computers became valuable tools and
evolutionary strategies were devised that were able to operate with
continuous variables. Following closely the trains of thought al¬
ready established, individuals were represented as real-valued vectors,
and mutation was performed by adding normally distributed random
numbers with expectation value 0. In this approach, small variations
are much more frequent than large variations, expressing the state of
affairs on the phenotypic level in nature.

In fact, it was always considered a hallmark of evolutionary strate¬
gies to emphasize causality, i.e.. the fact that strong causes would
generate strong effects. Translated into evolutionary strategies, large
mutations should result in large jumps in fitness, and small mutations
should result in small changes in fitness.

In later years, the benefit of using populations of individuals was
recognized in evolutionary strategies by introducing different sorts of
recombination operators. Discrete recombination selects the (contin¬
uous) features from different parents alternatively, with an additional
parameter for the specification of 1-, 2-, or n-point recombination.
Intermediate recombination, on the other hand, involves mixing the
features stemming from the parents in a different way, shuffling sin¬
gle features component-wise, by taking either the arithmetic mean
or other kinds of weighting. Recently, multi-recombinant strategies
have been studied as well [Beyer, 1995].

Although selection will be discussed in more detail later (Sec¬
tion 5.5), a short remark is in order here: In evolutionary strategies,
selection is a deterministic operator, which chooses the /z < A individ¬
uals to constitute the population in the next generation. // denotes
the number of (present and future) parents; A denotes the number
of offspring. Thus, selection in ESs is over-production selection, not
mating selection as in GAs. As such, it is nearer to what Darwin
called "natural selection" [Schwefel and Rudolph, 1995].

One other key aspect of advanced ESs is to allow a learning pro¬
cess on the level of "strategy parameters" of the algorithm. Whereas
so far evolutionary strategies have concerned themselves with adapt¬
ing phenotypic variables (object variables), it is possible to assign
strategy parameters, like mutation rate(s) or recombination method,
to each individual. Doing this results, over time, in a selection of
better adapted individuals, in both the domain of object variables
and the domain of strategy parameters.

By extending the representation of individuals to include strat¬
egy parameters, however, a distinction has been introduced between
phenotype and genotype. And although the strategy parameters are
subjected to the same variation policy (mutation and recombination)
as are the object parameters, information in the domain not expressed
in the phenotype does evolve differently than in the other domain.
Selection indirectly favors the strategy parameter settings that are
beneficial to make progress in the given problem domain, thus de¬
veloping an internal model of the environment constituted by the
problem.

In the realm of evolutionary strategies, structure evolution has
been considered by Lohmann [Lohmann, 1992].

4.3.3 Evolutionary Programming

Another important EA and predecessor of GP is evolutionary pro¬
gramming (EP) also created in the early 1960s by Fogel, Owens, and
Walsh [Fogel et al , 1965] [Fogel et al., 1966], EP uses the mutation
operator to change finite state machines (FSM). A finite state ma¬
chine or finite automaton is a very simple computer program that con¬
sists of a machine moving around in a graph of nodes called states.
The state automaton has many similarities with a Turing machine
and under the right circumstances an FSM program may be con¬
sidered to be Turing complete. EP uses a collection of mutations
that manipulate specific components of the representation. It op¬
erates more directly on the representation than GAs. Evolutionary
programming employs random creation, mutation, and fitness-based
reproduction: on average, a better individual gets reproduced more
often.

In its original form, EP was used to solve sequence prediction
problems with the help of finite state machines. The FSMs - repre¬
sented by transition tables and initial states - were allowed to vary
through mutation in various aspects, e.g., number of states, initial
state, state transition, or output symbol. We can see here that EP
has realized a symbolic representation of computer programs, for¬
mulated as automata. It has successfully applied the evolutionary
principles of variation and selection to a problem from artificial in¬
telligence.

More specifically, EP started with a population of FSMs that
were allowed to change state according to input and present state,
and were then evaluated according to whether the output symbols
produced by the FSMs agreed with the following input symbol or
not. In this way, the entire symbol sequence was run and a fitness
was assigned to each FSM. Offspring FSMs were generated by copy-

ing machines and applying mutations with uniform probability dis¬
tribution to these copies. Gaussian mutations were used to modify
numeric components similar to how it is done in ES. The Poisson
distribution was used to select how many mutations will be applied
to create a new FSM. The mutations to FSMs manipulated the avail¬
able representational components, like, e.g., add state, delete state,
change transition, change initial state, change output symbol. In a
typical run, the better performing half of the population was kept
and the rest was substituted by variants of the better half.

One specific feature of mutation in EP is that, as the optimal
value for fitness is approached, the mutation rate is decreased. This
is achieved by letting the fitness influence the spread of mutations, for
example, by tying it to the variance of the Gaussian distribution. The
nearer the optimum, the sharper the distribution becomes around 0.

In recent years, EP has expanded in scope and has taken up other
methods, e.g., tournament selection, and has allowed other, different
problem domains to be addressed by the algorithm, but still refrains
from using recombination as a major operator for generating variants
[Fogel, 1995]. Self-adaptation processes are put into place by allowing
meta-algorithmic variation of parameters.

4.3.4 Tree-Based GP

With Smith's development of a variant of Holland's classifier systems
where each chromosome (solution candidate) was a complete program
of variable length we might have had the first real evolutionary system
inducing complete programs, even though this approach was still built
on the production rule paradigm.

Two researchers, Cramer [Cramer, 1985] and Koza [Koza, 1989],
suggested that a tree structure should be used as the program rep¬
resentation in a genome. Cramer was inspired by Smith's cross¬
over operator and published the first method using tree structures
and subtree crossover in the evolutionary process. Other innova¬
tive implementations followed evolving programs in LISP or PRO¬
LOG with similar methods for particular problems [Hicklin, 1986]
[Fujiki and Dickinson, 1987] [Dickmanns et al., 1987].

Koza, however, was the first to recognize the importance of the
method and demonstrate its feasibility for automatic programming in
general. In his 1989 paper, he provided evidence in the form of several
problems from five different areas. In his 1992 book [Koza, 1992d],
which sparked the rapid growth of genetic programming, he wrote:

In particular, I describe a single, unified, domain-independent ap¬
proach to the problem of program induction - namely, genetic

programming. I demonstrate, by example and analogy, that ge¬
netic programming is applicable and effective for a wide variety
of problems from a surprising variety of fields. It would proba¬
bly be impossible to solve most of these problems with any one
existing paradigm for machine learning, artificial intelligence, self-
improving systems, self-organizing systems, neural networks, or
induction. Nonetheless, a single approach will be used here - re¬
gardless of whether the problem involves optimal control, plan¬
ning, discovery of game-playing strategies, symbolic regression,
automatic programming, or evolving emergent behavior.

J. KOZA, 1992

4.4 Summary of Evolutionary Algorithms

| Year

1958
1959
1965
1965
1975
1978
1980
1985
1986
1987
1987

1992

Inventor

Friedberg
Samuel

Fogel. Owens and Walsh
Rechenberg, Schwefel

Holland
Holland and Reitmann

Smith
Cramer
Hicklin

Fujiki and Dickinson
Dickmanns, Schmidhuber

and Winklhofer
Koza

Technique

learning machine
mathematics

evolutionary programming
evolutionary strategies

genetic algorithms
genetic classifier systems

early genetic programming
early genetic programming
early genetic programming
early genetic programming
early genetic programming

genetic programming

Individual |

virtual assembler
polynomial
automaton

real-numbered vector
fixed-size bit string

rules
var-size bit string

tree
LISP
LISP

assembler

tree

Table 4.1
Phytogeny of genetic
programming GP has many predecessors, and above we have looked at the most

influential ones. Table 4.1 summarizes the history that led up to the
present situation. Today there exists a large set of different genetic
programming techniques which can be classified by many criteria,
such as abstracting mechanisms, use of memory, genetic operators
employed, and more [Langdon and Qureshi, 1995].

In the following chapters we will take a closer look at the com¬
monest GP algorithm, Koza's tree-based system, but will also look
into GP's many variants in existence today, each of them with its
own specific benefits and drawbacks.

Exercises

1. Which evolutionary algorithms other than GP exist? What was
their respective original application area?

2. Which evolutionary algorithm uses only mutation?

3. Give a basic example of a mutation operator in ES.

4. Describe the representation of a GA.

5. What is fitness-proportional selection?

6. What is a schema, and what does the schema theorem state?

7. What is a classifier system? Which are its main components?

8. Explain self-adaptation of parameters in EAs. What does it
have to do with the mapping between genotypes and pheno-
types?

9. What is epistasis?

10. What would you consider to be the main differences between
GP and other EAs?

Further Reading

T. Back,
EVOLUTIONARY ALGORITHMS IN THEORY AND PRACTICE.
Oxford University Press, New York, NY, 1996.

D. Fogel,
EVOLUTIONARY COMPUTATION.
IEEE Press, New York, 1995.

L. Fogel, A. Owens, and M. Walsh,
ARTIFICIAL INTELLIGENCE THROUGH SIMULATED EVOLUTION.
John Wiley, New York, NY, 1966.

D. Goldberg,
GENETIC ALGORITHMS IN SEARCH, OPTIMIZATION
fe MACHINE LEARNING.
Addison-Wesley Publishing Company, Inc., Reading, MA, 1989.

J. Holland,
ADAPTATION IN NATURAL AND ARTIFICIAL SYSTEMS.

The University of Michigan Press, Ann Arbor, MI, 1975.
New Edition 1992.

M. Mitchell,
AN INTRODUCTION TO GENETIC ALGORITHMS.
MIT Press, Cambridge, MA, 1996.

I. Rechenberg,
EVOLUTIONSSTRATEGIEN.
Holtzmann-Froboog, Stuttgart, Germany, 1975.
New Edition 1994.

H.-P. Schwefel,
NUMERICAL OPTIMIZATION OF COMPUTER MODELS.
John Wiley & Sons, Chichester, UK, 1981.
New Edition 1995.

Part II

Genetic Programming
Fundamentals

5 Basic Concepts — The
Foundation

Contents

5.1 Terminals and Functions - The Primitives

of Genetic Programs 109

5.1.1 The Terminal Set 109

5.1.2 The Function Set 110

5.1.3 Choosing the Function and Terminal Set Ill

5.2 Executable Program Structures 112

5.2.1 Tree Structure Execution and Memory 113

5.2.2 Linear Structure Execution and Memory 114

5.2.3 Graph Structure Execution and Memory 116

5.2.4 Structure as Convention 117

5.3 Initializing a GP Population 118

5.3.1 Initializing Tree Structures 118

5.3.2 The Ramped Half-and-Half Method 119

5.3.3 Initializing GP Linear Structures 120

5.4 Genetic Operators 122

5.4.1 Crossover 122

5.4.2 Mutation 125

5.4.3 Reproduction 126

5.5 Fitness and Selection 126

5.5.1 The Fitness Function 126

5.5.2 The Selection Algorithm 129

5.6 The Basic GP Algorithm 133

5.7 An Example Run 135

But Natural Selection, as we shall hereafter see, is a power inces¬
santly ready for action, and is as immeasurably superior to man's
feeble efforts as the works of Nature are to those of Art.

C. DARWIN, 1859

In the short time since the publication of Koza's 1992 book, over eight
hundred GP papers have been published. Researchers have devised
many different systems that may fairly be called genetic programming
- systems that use tree, linear, and graph genomes; systems that use
high crossover rates; and systems that use high mutation rates. Some
even blend genetic programming with linear regression or context free
grammars while others use GP to model ontogeny, the development
of a single cell into an organism.

The purpose of this chapter is to boil this diversity down to the
essential common themes. The important features shared by most
GP systems are:

G Stochastic decision making. GP uses pseudo-random num¬
bers to mimic the randomness of natural evolution. As a result,
GP uses stochastic processes and probabilistic decision mak¬
ing at several stages of program development. The subjects of
randomness, probability, and random number generation were
discussed in Chapter 3 and we use them here.

Q Program structures. GP assembles variable length program
structures from basic units called functions and terminals. Func¬
tions perform operations on their inputs, which are either ter¬
minals or output from other functions. The actual assembly of
the programs from functions and terminals occurs at the begin¬
ning of a run, when the population is initialized.

G Genetic operators. GP transforms the initial programs in
the population using genetic operators. Crossover between two
individual programs is one principal genetic operator in GP.
Other important operators are mutation and reproduction. Spe¬
cific details and more exotic operators will be discussed in Chap¬
ters 6, 9, and 10.

G Simulated evolution of a population by means of fitness-
based selection. GP evolves a population of programs in par¬
allel. The driving force of this simulated evolution is some form
of fitness-based selection. Fitness-based selection determines
which programs are selected for further improvements.

This chapter will look at these common themes at some length,
both theoretically and practically. By the end of the chapter, the
reader should have a good idea of how a typical GP run works.

5.1 Terminals and Functions - The Primitives
of Genetic Programs

The functions and terminals are the primitives with which a pro¬
gram in genetic programming is built. Functions and terminals play
different roles. Loosely speaking, terminals provide a value to the
system while functions process a value already in the system. To¬
gether, functions and terminals are referred to as nodes. Although
this terminology stems from the tree representation of programs, its
use has spread to linear and graph structures as well.

5.1.1 The Terminal Set

Definition 5.1 The terminal set is comprised of the inputs to the
GP program, the constants supplied to the GP program, and the zero-
argument functions with side-effects executed by the GP program.

It is useful to think for just a moment about the use of the word
terminal in this context. Input, constant and other zero-argument
nodes are called terminals or leafs because they terminate a branch
of a tree in tree-based GP. In fact, a terminal lies at the end of every
branch in a tree-structured genome. The reason is straightforward.
Terminals are inputs to the program, constants or function without
argument. In either case, a terminal returns an actual numeric value
without, itself, having to take an input. Another way of putting this
is that terminal nodes have an arity of zero.

Definition 5.2 The arity of a function is the number of inputs to
or arguments of that function.

The terminal set is comprised, in part, of inputs. Chapter 1
spoke at length about the learning domain and the process of select¬
ing features (inputs) from the learning domain with which to conduct
learning. Recall that the selected features (inputs) became the train¬
ing set - that is, the data upon which the system learns. Viewed
this way, GP is no different from any other machine learning sys¬
tem. When we have decided on a set of features (inputs), each of
these inputs becomes part of the GP training and test sets as a GP
terminal.

Genetic programming is quite different from other machine learn¬
ing systems in how it represents the features (inputs). Each feature
(input) in the training set becomes part of the terminal set in a GP
system. Thus, the features of the learning domain are just one of the
Primitives GP uses to build program structures. The features are not

Constants as Terminals

represented in any fixed way or in any particular place. In fact, the
GP system can ignore an input altogether.

The terminal set also includes constants. In typical tree-based
GP, a set of real-numbered constants is chosen for the entire popula¬
tion at the beginning of the run. These constants do not change their
value during the run. They are called random ephemeral constants,
frequently represented by the symbol 5R. Other constants may be con¬
structed within programs by combining random ephemeral constants
using arithmetic functions.

By way of contrast, in linear GP systems, the constant portion
of the terminal set is comprised of numbers chosen randomly out of
a range of integers or reals. In these systems, the constants may
be mutated just like any other part of the program. Thus, linear
constants can change, unlike typical tree system random ephemeral
constants.

Function Set

The Range of Available

Functions

5.1.2 The Function Set

Definition 5.3 The function set is composed of the statements,
operators, and functions available to the GP system.

The function set may be application-specific and be selected to fit
the problem domain. The range of available functions is very broad.
This is, after all, genetic programming. It may use any program¬
ming construct that is available in any programming language. Some
examples follow:

Q Boolean Functions

For example : AND, OR, NOT, XOR.

U Arithmetic Functions

For example : PLUS, MINUS, MULTIPLY, DIVIDE.

Q Transcendental Functions

For example: TRIGONOMETRIC and LOGARITHMIC FUNCTIONS.

Q Variable Assignment Functions

Let a be a variable available to the GP system, a := 1 would
be a variable's assignment function in a register machine code
approach. The same function would appear in a tree-based
system with an S-expression that looked something like this:
(ASSIGN a 1)

where 1 is an input to the ASSIGN node. Of course, there would
have to be a corresponding READ node, which would read what¬
ever value was stored in a and pass it along as the output of
the READ node.

Q Indexed Memory Functions
Some GP systems use indexed memory, i.e., access to memory
cells via an index. Chapter 11 will provide details. But note
that it is straightforward to manipulate indexed memory in GP.

Q Conditional Statements
For example: IF , THEN, ELSE; CASE or SWITCH statements.

Q Control Transfer Statements
For example: GO TO, CALL, JUMP.

Q Loop Statements
For example: WHILE . . . D O , REPEAT . . . U N T I L , FOR . . .DO.

Q Subroutines
The range of functions is considerably broader than the pre¬
ceding list. Any function that a programmer can dream up
may become a part of the function set in GP. For example,
in a robotics application, primitives could be created by the
programmer that were specific to the problem, such as read
sensor, turn lef t , turn r ight , and move ahead. Each of
those primitives would become part of the function set or of
the terminal set, if its arity were 0. The freedom to choose the
function set in GP often reduces the need for pre- and postpro¬
cessing.

5.1.3 Choosing the Function and Terminal Set

The functions and terminals used for a GP run should be powerful
enough to be able to represent a solution to the problem. For ex¬
ample, a function set consisting only of the addition operator will
probably not solve many very interesting problems. On the other
hand, it is better not to use too large a function set. This enlarges
the search space and can sometimes make the search for a solution
harder. An approximate starting point for a function set might be
the arithmetic and logic operations:

PLUS, MINUS, TIMES, DIVIDE, OR, AND, XOR.

The range of problems that can be solved with these functions is
astonishing. Good solutions using only this function set have been
obtained on several different classification problems, robotics control
problems, and symbolic regression problems. This set of primitives
does not even include forward or backward conditional jumps! In
conclusion: A parsimonious approach to choosing a function set is
often wise.

Sufficiency and

Parsimony

Choosing the Constants

Closure of the Function
and Terminal Set

Some Practical Advice

A similar parsimonious approach is also effective in choosing the
constants. For example, many implementations use 256 nodes for
encoding functions and terminals. If there are 56 node labels used for
functions that leaves a maximum of 200 nodes for constants. In many
cases, this number of constants has proven to be able to solve difficult
problems. GP has a remarkable ability to combine the constants at its
disposal into new constants. It is not necessary, therefore, to include
all constants that may be needed.

Another important property of the function set is that each func¬
tion should be able to handle gracefully all values it might receive
as input. This is called the closure property. The most common
example of a function that does not fulfill the closure property is
the division operator. The division operator cannot accept zero as
an input. Division by zero will normally crash the system, thereby
terminating a GP run. This is of course unacceptable. Instead of
a standard division operator one may define a new function called
protected division. Protected division is just like normal division ex¬
cept for zero denominator inputs. In that case, the function returns
something else, i.e., a very big number or zero.1 All functions (square
root and logarithms are other examples) must be able to accept all
possible inputs because if there is any way to crash the system, the
boiling genetic soup will certainly hit upon it.

One final piece of practical advice about the function and termi¬
nal set might be helpful. At the beginning of a project, one should
not spend too much time designing specific functions and terminals
that seem perfectly attuned to the problem. The experience of the
authors is that GP is very creative at taking simple functions and
creating what it needs by combining them. In fact, GP often ignores
the more sophisticated functions in favor of the primitives during
evolution. Should it turn out that the simpler set of functions and
terminals is not working well enough, then it is time to begin crafting
vour terminals and functions.

5.2 Executable Program Structures

The primitives of GP - the functions and terminals - are not pro¬
grams. Functions and terminals must be assembled into a structure
before they may execute as programs. The evolution of programs is,
of course, common to all genetic programming. Programs are struc¬
tures of functions and terminals together with rules or conventions
for when and how each function or terminal is to be executed.

If one works with certain floating point instruction sets, manufacturers
have sometimes already built in the protection.

The choice of a program structure in GP affects execution order,
use and locality of memory, and the application of genetic operators
to the program. There are really two very separate sets of issues
here. Execution and memory locality are phenomic issues - that is,
issues regarding the behavior of the program. On the other hand,
mutation and crossover are genomic issues - that is, how the "DNA"
of the program is altered. In most tree-based GP systems, there is no
separate phenotype. Therefore, it appears that structural issues of
execution, memory, and variation are the same. But that similarity
exists only because of an implicit choice to blend the genome and the
phenome. Chapters 9 and 12 shall treat other approaches in detail.

The three principal program structures used in GP are tree, lin¬
ear, and graph structures. However, GP program structures are often
virtual structures. For example, tree and graph structures are exe¬
cuted and altered as i/they were trees or graphs. But how a program
executes or is varied is a completely different question from how it
is actually held in computer memory. Many tree-based systems do
not actually hold anything that looks like a tree in the computer
(see Chapter 11). Here, we will examine the manner in which the
virtual program behaves. Of the three fundamental structures, tree
structures are the commonest in GP. Beginning with trees, we shall
describe all three in some detail now.

5.2.1 Tree Structure Execution and Memory

Figure 5.1 is a diagram of a tree-based phenome.2 It has many dif¬
ferent symbols that could be executed in any order. But there is a
convention for executing tree structures.

The standard convention for tree execution is that it proceeds by
repeatedly evaluating the leftmost node for which all inputs are avail¬
able. This order of execution is referred to as postfix order because
the operators appear after the operands. Another convention for exe¬
cution is called prefix order. It is the precise opposite of postfix order
and executes the nodes close to the root of the tree before it executes
the terminal nodes. The advantage of prefix ordering is that a tree
containing nodes like IF/THEN branches can often save execution time
by evaluating first whether the THEN tree must be evaluated. Apply¬
ing postfix order to Figure 5.1, the execution order of the nodes is: d
->e->OR-» a ->-b-) -c ->- + - » x - > - - .

This same tree structure also constrains the usage of memory on
execution. Figure 5.1 uses only local memory during execution. Why?

2When using arithmetic operators we shall variously use mul, MUL, x, *
to mean multiplication.

Figure 5.1
A tree structure phenome

Local memory is built into the tree structure itself. For example, the
values of b and c are local to the + node. The values of b and c
are not available to any other part of the tree during execution. The
same is true for every value in the tree.

5.2.2 Linear Structure Execution and Memory

A linear phenome is simply a chain of instructions that execute from
left to right or - depending on how the picture is drawn - from top
to bottom. The particular example of a linear genome discussed here
is a machine code genome of our AIMGP (for "Automatic Induction
of Machine Code with Genetic Programming") system.3 Figure 5.2
shows such a linear phenome in operation.

The linear program in Figure 5.2 is identical in function to the
tree program in Figure 5.1. But unlike a tree structure, the linear
phenome has no obvious way for a function to get its inputs. For
example, a node in a linear phenome that contained just a + function
would be a plus with nothing to add together. What is missing here
is memory - a place to hold the inputs to the + and other functions.

There are many ways to give memory to the instructions, but the
most prominent in GP is to make the genome a two- or three-address
[Nordin, 1994] [Banzhaf and Friedrich, 1994] [Huelsbergen, 1996] reg¬
ister machine. A register machine uses a linear string of instructions
operating on a small number of memory registers. The instructions
read and write values from and to the registers. The reason a reg-

3AIMGP was formerly known as Compiling Genetic Programming Sys¬
tem (CGPS). . -

Figure 5.2
AIMGP type linear
phenome and five CPU
registers. The registers
are shown as holding
integer values.

ister machine is an excellent way to implement linear phenomes is
that every commercial computer in existence contains a CPU that
has memory registers operated upon by linear strings of instructions.
A register machine represents the most basic workings of a CPU
executing machine code instructions. Since we are doing genetic pro¬
gramming, it makes sense to try to use a system that makes direct
use of the basic operation of the computer.

In Figure 5.2 the first instruction is b=b+c. The effect of this
instruction is to add the values in registers b and c together and to
place the sum in register b.

The linear program begins execution at the top instruction and
proceeds down the instruction list, one at a time. The only exception
to this rule is if the program includes jump instructions. Then the
execution order becomes very flexible. At the end of the execution,
the result is held in register a.

There is one other big difference between the linear and the tree
approach. The memory in the tree system is, as we said, local. But
in a register machine, any of the instructions may access any of the
register values. So the values of b and c, which, as we saw above, are
local values in a tree structure, may be accessed by any instruction.
Therefore, registers contain global memory values.

5.2.3 Graph Structure Execution and Memory

Of the fundamental program structures, graphs are the newest arrival.
PADO [Teller and Veloso, 1995b] is the name of the graph-based GP
system we shall discuss here. Curiously enough, the name PADO
does not have anything to do with the fact that graphs are used for
evolution. Graphs are capable of representing very complex program
structures compactly. A graph structure is no more than nodes con¬
nected by edges. One may think of an edge as a pointer between two
nodes indicating the direction of the flow of program control.4

PADO does not just permit loops and recursion - it positively
embraces them. This is not a trivial point; other GP systems have
experimented with loops and recursion only gingerly because of the
great difficulties they cause.

Figure 5.3
A small PADO program

Figure 5.3 is a diagram of a small PADO program. There are
two special but self-explanatory nodes in every program. Execution
begins at the Start node. When the system hits the End node or an¬
other preset condition, execution is over. Thus, the flow of execution

4It is well known that tree and linear genomes are also graphs. That is,
both have edges and nodes. But trees and linear genomes are graphs with
very particular constraints for the edges.

is determined by the edges in the graph. More will be said about
that later.

Like all GP systems, PADO needs memory to give its nodes the
data upon which to operate. Here, data is transferred among nodes
by means of a stack. Each of the nodes executes a function that
reads from and/or writes to the stack. For example, the node A in
Figure 5.3 reads the value of the input A from RAM and pushes it
onto the stack. The node 6 pushes the value 6 onto the stack. The
node x pops two values from the stack, multiplies them, and pushes
the result onto the stack. Thus, the system has localized memory.
The process may be found in more detail in Chapter 11.

Data may also be saved by PADO in indexed memory. The node
labeled Write pops two arguments from the stack. It writes the value
of the first argument into the indexed memory location indicated
by the second argument. The Read node performs much the same
function in reverse. The indexed memory is global memory.

There are two things each node in the graph must do:

1. It must perform some function on the stack and/or the indexed
memory; and

2. It must decide which node will be the next node to execute.

This latter role is what determines program execution order in a
graph. The program itself determines order of execution by choosing
between the outgoing edges from the node each time a node is exe¬
cuted. Consider Figure 5.3 again. The x node may transfer control
to the Write node, the Read node or the 4 node. The system has a
decision logic which tests a memory or stack value and, based upon
that value, chooses the next node.

5.2.4 Structure as Convention

On the phenomic level, program structure in a virtual tree is just a
convention for ordering execution of the nodes and for localizing or
globalizing memory. Conventions may be changed as long as they are
recognized as conventions. This is a great area of potential flexibility
of genetic programming.

This issue is quite different with the register machine system dis¬
cussed above. That system evolves actual machine code - the pro¬
gram structure is not virtual, nor are the conventions regarding order
of execution. The phenomic structure and the execution order are
dictated by the CPU. The register machine system is much faster
than tree or graph systems. But to get that extra speed, it sacrifices

Stack Memory in
PADO

PADO Indexed Memory

the ability to experiment with changes in the conventions regarding
order of execution.5

The issue is also resolved quite differently by the PADO system.
It has discarded traditional GP order of execution conventions. There
is no tree or linear structure at all saying "go here next and do this."
A PADO program evolves its own execution order. This is another
example of the freedom of representation afforded by GP.

5.3 Initializing a GP Population

The first step in actually performing a GP run is to initialize the
population. That means creating a variety of program structures for
later evolution. The process is somewhat different for the three types
of genomes under consideration.

Maximum Program One of the principal parameters of a GP run is the maximum
Size size permitted for a program. For trees in GP, that parameter is

expressed as the maximum depth of a tree or the maximum total
number of nodes in the tree.

Depth Definition 5.4 The depth of a node is the minimal number of
nodes that must be traversed to get from the root node of the tree to
the selected node.

The maximum depth parameter (MDP) is the largest depth that
will be permitted between the root node and the outermost terminals

j in an individual. For the commonest nodes of arity 2, the size of
the tree has a maximum number of 2MDP nodes. For linear GP,
the parameter is called maximum length and it simply means the
maximum number of instructions permitted in a program. For graph
GP, the maximum number of nodes is effectively equivalent to the
size of the program.6

. , ,^.v:- f?

5.3.1 Initializing Tree Structures

The initialization of a tree structure is fairly straightforward. Recall
that trees are built from basic units called functions and terminals.
We shall assume, now, that the terminals and functions allowable in
the program trees have been selected already:

T={a,b,c,d,e] (5.1)
5This system can evolve order of execution but not by changing high-

level conventions regarding order of execution. It must do so by including
low-level branching or jump instructions [Nordin and Banzhaf, 1995b],

6 For comparison purposes it might be better to use the maximum num¬
ber of nodes in a tree as the size parameter.

P — {->- — v % 1 (^ 9^
J. I 1~ 5 5 1 ' 0 f \ /

There are two different methods for initializing tree structures in
common use. They are called full and grow [Koza, 1992d].

Figure 5.4 shows a tree that has been initialized using the grow
method with a maximum depth of four. Grow produces trees of ir¬
regular shape because nodes are selected randomly from the function
and the terminal set throughout the entire tree (except the root node,
which uses only the function set). Once a branch contains a terminal
node, that branch has ended, even if the maximum depth has not
been reached.

The Grow Method

Figure 5.4
Tree of maximum depth
four initialized with grow
method

In Figure 5.4, the branch that ends with the input d has a depth
of only three. Because the incidence of choosing terminals is random
throughout initialization, trees initialized using grow are likely to be
irregular in shape.

Instead of selecting nodes randomly from the function and the
terminal set, the full method chooses only functions until a node is
at the maximum depth. Then it chooses only terminals. The result
is that every branch of the tree goes to the full maximum depth.

The tree in Figure 5.5 has been initialized with the full method
with a maximum depth of three.

If the number of nodes is used as a size measure, growth stops
when the tree has reached the preset size parameter.

5.3.2 The Ramped Half-and-Half Method

Diversity is valuable in GP populations. By itself, the above method
could result in a uniform set of structures in the initial population

The Full Method

Figure 5.5
Tree of maximum depth
three initialized with full
method

because the routine is the same for all individuals. To prevent this,
the "ramped-half-and-half" technique has been devised. It is in¬
tended to enhance population diversity of structure from the outset
[Koza, 1992c].

In trees the technique is like this. Suppose the maximum depth
parameter is 6. The population is divided equally among individuals
to be initialized with trees having depths 2, 3, 4, 5, and 6. For each
depth group, half of the trees are initialized with the full technique
and half with the grow technique.

5.3.3 Initializing GP Linear Structures

Initializing linear GP structures is somewhat different than the ini¬
tialization of tree structures. Again, we shall look at the AIMGP
system for illustration purposes. AIMGP represents programs as a
linear sequence of machine code instructions that operate on CPU
registers, as we have seen in Figure 5.2.

Machine code GP individuals have four parts, described as fol¬
lows:

The Header

The Body

The Footer

The Return Instruction

For the purpose of this section, the header and the footer may be
regarded as housekeeping segments that do not undergo evolution.
The return instruction is quite different. Although it, too, may not
undergo evolution, it provides the crucial point, for each program,

where that program ends. This section will deal primarily with the
initialization of the body of the GP individual.

Figure 5.6 shows the basic setup of four registers and one AIMGP
individual. The four CPU registers r0,ri, r2, r^ have been selected for
use. These registers are the equivalent of the terminals in trees and
might hold either variables (r0 , r i , r2) or constants (73). The range
of constants has to be denned as well. Generally, register TO is chosen
as the output register. This means that the value that appears in
register TQ at the end of execution is the output of the program.

Figure 5.6

Linear AIMGP genome

operating on CPU

registers. Registers

TO, r i , . . . ,rs are used

here.

Each node in the body of the program is a machine code instruc¬
tion. Again we shall assume that the number and sort of instructions
which are the equivalent of functions in trees have been fixed be¬
forehand. The machine code instructions in the sample program of
Figure 5.6 act on three of the four registers. The constant register r%
is not used in this example program.

The task of initialization in AIMGP now is to choose initial, ran¬
dom instructions that operate on an appropriate subset of the CPU's
registers. A AIMGP individual is initialized as follows:

1. Randomly choose a length between two and the maximum length
parameter;

2. Copy the predefined header to the beginning of an individual;

3. Initialize and add instructions to the individual until the num¬
ber of instructions added equals the length chosen in step 1.

The instructions are initialized by randomly choosing an in¬
struction type and then randomly filling out the instruction
with references to randomly chosen registers from the register
set arid/or randomly chosen constants from the constant range;

4. Copy the predefined footer to the end of the individual;

5. Copy the predefined return instruction to the end of the indi¬
vidual.

In this way, the entire population can be initialized. The method
described here is used instead of the full and grow methods in trees.
An equivalent to those methods might be applied as well.

5.4 Genetic Operators

An initialized population usually has very low fitness. Evolution pro¬
ceeds by transforming the initial population by the use of genetic
operators. In machine learning terms, these are the search operators.
While there are many genetic operators, some of which will appear
in Chapter 10, the three principal GP genetic operators are:

G Crossover;

Q Mutation; and

Q Reproduction.

This section will give an introduction to the three basic genetic
operators.

5.4.1 Crossover

The crossover operator combines the genetic material of two parents
by swapping a part of one parent with a part of the other. Once
again, tree linear and graph crossover will be discussed separately.

Tree-Based Crossover Tree-based crossover is described graphically in Figure 5.7. The
parents are shown in the upper half of the figure while the children
are shown in the lower half.

More specifically, tree-based crossover proceeds by the following
steps:

Q Choose two individuals as parents, based on mating selection
policy.7 The two parents are shown at the top of Figure 5.7.

7Like, e.g., fitness-proportional selection.

Figure 5.7
Tree-based crossover

Q Select a random subtree in each parent. In Figure 5.7, the se¬
lected subtrees are shown highlighted with darker lines. The
selection of subtrees can be biased so that subtrees constitut¬
ing terminals are selected with lower probability than other
subtrees.

Q Swap the selected subtrees between the two parents. The re¬
sulting individuals are the children. They are shown at the
bottom of Figure 5.7.

Linear crossover is also easily demonstrated. Instead of swapping
subtrees, linear crossover, not surprisingly, swaps linear segments of
code between two parents. Linear crossover is shown graphically in
Figure 5.8. The parents are in the left half of the figure while the
children are in the right half of the figure.

The steps in linear crossover are as follows:

Q Choose two individuals as parents, based on mating selection
policy.

Linear Crossover

G Select a random sequence of instructions in each parent. In
Figure 5.8, the selected instructions are shown highlighted with
light gray.

Q Swap the selected sequences between the two parents. The
resulting individuals are the children. They are shown at the
right of Figure 5.8.

Graph Crossover Graph crossover is somewhat more complicated. The following
procedure is employed by Teller [Teller, 1996]:

LJ Choose two individuals as parents, based on mating selection
policy.

ij Divide each graph into two node sets.

Q Label all edges (pointers, arcs) internal if they connect
nodes within a fragment, label them otherwise as external.

Q Label nodes in each fragment as output if they are the
source of an external edge and as input if they are the
destination of an external edge.

Q Swap the selected fragments between the two parents.

Q Recombine edges so that all external edges in the fragments
now belonging together point to randomly selected input nodes
of the other fragments.

Figure 5.8
Linear crossover

With this method, all edges are assured to have connections in
the new individual and valid graphs have been generated.

This brief treatment of crossover demonstrates the basics. More
advanced crossover topics will be treated in Chapter 6.

5.4.2 Mutation

Mutation operates on only one individual. Normally, after crossover
has occurred, each child produced by the crossover undergoes muta¬
tion with a low probability. The probability of mutation is a param¬
eter of the run. A separate application of crossover and mutation,
however, is also possible and provides another reasonable procedure.

When an individual has been selected for mutation, one type of
mutation operator in tree GP selects a point in the tree randomly
and replaces the existing subtree at that point with a new randomly
generated subtree. The new randomly generated subtree is created in
the same way, and subject to the same limitations (on depth or size)
as programs in the initial random population. The altered individual
is then placed back into the population. There are other types of
mutation operators which will be discussed in Chapter 9.

In linear GP, mutation is a bit different. When an individual is
chosen for mutation, the mutation operator first selects one instruc¬
tion from that individual for mutation. It then makes one or more
changes in that instruction. The type of change is chosen randomly
from the following list:

Q Any of the register designations may be changed to another
randomly chosen register designation that is in the register set.

Q The operator in the instruction may be changed to another
operator that is in the function set.

Q A constant may be changed to another randomly chosen con¬
stant in the designated constant range.

Suppose the instruction
ro = ri + r2

has been selected for mutation. Here are samples of acceptable mu¬
tations in this instruction:

n = ri + r2

fa — r-i + r2

TO = 7"i OR T2

ro = ri + r0

Many of the apparent differences between tree and linear muta¬
tion are entirely historical. Tree mutation can alter a single node as

Mutation in Tree
Structures

Mutation in Linear
Structures

Tree vs. Linear
Mutation

linear mutation alters a single instruction. Linear mutation can re¬
place all instructions that occur after a randomly chosen instruction
with another randomly chosen sequence of instructions - a procedure
similar to replacing a subtree introduced above. Graph mutation is
possible as well, but is not treated here.

5.4.3 Reproduction

The reproduction operator is straightforward. An individual is se¬
lected. It is copied, and the copy is placed into the population. There
are now two versions of the same individual in the population.

5.5 Fitness and Selection

As noted in Chapter 1, genetic programming neither is a hill climb¬
ing system (which searches only one path through the search space)
nor does it conduct an exhaustive search of the space of all possible
computer programs. Rather, GP is a type of beam search. The GP
population is the beam - the collection of points in the search space
from which further search may be conducted.

Of course, GP must choose which members of the population
will be subject to genetic operators such as crossover, reproduction,
and mutation. In making that choice, GP implements one of the most
important parts of its model of organic evolutionary learning, fitness-
based selection. Fitness-based selection affects both the ordering of
the individuals in the beam and the contents of the beam.

GP's evaluation metric is called a fitness function and the manner
in which the fitness function affects the selection of individuals for
genetic operators may be referred to as the GP selection algorithm.
Fitness functions are very problem specific. There are a number of
different selection algorithms used in GP.

5.5.1 The Fitness Function

Definition 5.5 Fitness is the measure used by GP during simu¬
lated evolution of how well a program has learned to predict the out-
put(s) from the input(s) - that is, the features of the learning domain.

The goal of having a fitness evaluation is to give feedback to the
learning algorithm regarding which individuals should have a higher
probability of being allowed to multiply and reproduce and which
individuals should have a higher probability of being removed from
the population. The fitness function is calculated on what we have
earlier referred to as the training set.

Continuous Fitness

Function

The fitness function should be designed to give graded and con¬
tinuous feedback about how well a program performs on the training
set.

Definition 5.6 A continuous fitness function is any manner
of calculating fitness in which smaller improvements in how well a
program has learned the learning domain are related to smaller im¬
provements in the measured fitness of the program, and larger im¬
provements in how well a program has learned the learning domain
are related to larger improvements in its measured fitness.

Such continuity is an important property of a fitness function because
it allows GP to improve programs iteratively. Two more definitions
will be useful before we go into more detail about fitness functions.

Definition 5.7 Standardized fitness is a fitness function or a
transformed fitness function in which zero is the value assigned to
the fittest individual.

Standardized fitness has the administrative feature that the best
fitness is always the same value (zero), regardless of what problem
one is working on.

Definition 5.8 Normalized fitness is a fitness function or a trans
formed fitness function where fitness is always between zero and one.

With these definitions in hand, let us look at an example. Sup¬
pose we want to find a function satisfying the fitness cases in Ta¬
ble 5.1. Each input/output pair constitutes a training instance or
fitness case. Collectively, all of the fitness cases constitute the train¬
ing set.

Standardized Fitness

Input Output
Fitness Case 1
Fitness Case 2
Fitness Case 3
Fitness Case 4
Fitness Case 5

1
2
4
7
9

2
6
20
56
90

Table 5.1
Input and output values
in a training set

Suppose that GP was to evolve a program that learned the pat¬
terns in the Table 5.1 training set - that is, a program that could
predict the output column by knowing only the value in the input
column. The reader will probably note that this example is trivially
simple and that a program representing the function f(x) — a;2 + x
would be a perfect match on this training set.

Normalized Fitness

Error Fitness Function

One simple and continuous fitness function that we could use for
this problem would be to calculate the sum of the absolute value of
the differences between actual output of the program and the output
given by the training set (the error). More formally, let the output of
the z'th example in the training set be DJ. Let the output from a GP
program p on the z'th example from the training set be pi. In that
case, for a training set of n examples the fitness fp of p would be:

(5.3)

This fitness function is continuous. As pi gets a little closer to
Oi, the fitness gets a little better. It is also standardized because any
perfect solution, like f(x) = x2 + x, would have zero fitness.

Squared Error Fitness A common alternative fitness function is to calculate the sum of
Function the squared differences between pi and o,, called the squared error.

Scaled Fitness In some applications a squared or otherwise scaled fitness mea-
Functions surement can result in better search results. Scaling refers to the

fact that one can amplify or damp smaller deviations from the target
output. A square function damps small deviations, whereas a square
root or inverse function amplifies them.

How do these different fitness functions affect the fitness calcula¬
tion? Suppose that one individual, Q, in a GP population is equiv¬
alent to x2. Table 5.2 shows the output values of Q for the same
training instances used in Table 5.1. The last two columns of Table
5.2 are the fitness for Q calculated by the error and the squared error
methods, respectively.

J
Fitness Case 1
Fitness Case 2
Fitness Case 3
Fitness Case 4
Fitness Case 5

| Total fitness

Input

1
2
4
7
9

-

Output

2
6
20
56
90

-

Q Output

1
4
16
49
81
-

Error fitness

1
2
4
7
9

23

Squared error fitness |

2
4
16
49
81

151 |

Table 5.2
Two different fitness
calculations Where the learning domain is comprised of numeric inputs and

outputs, the process of inducing programs that have learned the nu-
Symbolic Regression meric examples is called symbolic regression. Many GP applications

(5.4)

can be reformulated as instances of symbolic regression. The above
problem is an example of symbolic regression.

There are many other ways to cast a fitness function. Examples
of fitness functions similar to symbolic regression are:

G The number of matching pixels in an image matching applica¬
tion.

Q The number of wall hits for a robot controlled by GP and learn¬
ing obstacle avoidance.

Q The number of correctly classified examples in a classification
task.

Q The deviation between prediction and reality in a prediction
application.

Q The money won by a GP-controlled agent in a betting game.

Q The amount of food found and eaten by an artificial agent in
an artificial life application.

There are also other methods for calculating fitness. In co-ev¬
olution methods for fitness evaluation [Angeline and Pollack, 1993]
Hillis, 1992], individuals compete against each other without an ex¬
plicit fitness value. In a game-playing application, the winner in a
game may be given a higher probability of reproduction than the
loser. In some cases, two different populations may be evolved si¬
multaneously with conflicting goals. For example, one population
might try to evolve programs that sort lists of numbers while the
other population tries to evolve lists of numbers that are hard to
sort. This method is inspired by arms races in nature where, for
example, predators and prey evolve together with conflicting goals.

In some cases, it might be advantageous to combine very different
concepts in the fitness criteria. We could add terms for the length
of the evolved programs or their execution speed, etc. Such a fitness
function is referred to as a multiobjective fitness function.

5.5.2 The Selection Algorithm

After the quality of an individual has been determined by applying a
fitness function, we have to decide whether to apply genetic operators
to that individual and whether to keep it in the population or allow it
to be replaced. This task is called selection and assigned to a special
operator, the selection operator.

There are various different selection operators, and a decision
about the method of selection to be applied under particular circum¬
stances is one of the most important decisions to be made in a GP

The GA Scenario

The ES Scenario

run. Selection is responsible for the speed of evolution and is often
cited as the culprit in cases where premature convergence stalls the
success of an evolutionary algorithm.

We shall discuss selection in a very general context here, including
some details of what has been developed in the ES community. Selec¬
tion in general is a consequence of competition between individuals
in a population. This competition results from an overproduction of
individuals which can withstand the competition to varying degrees.
The degree to which they can withstand the competition is regulated
by the selection pressure, which depends on the ratio of offspring to
individuals in the population.

Two main scenarios for generational selection have been estab¬
lished since evolutionary algorithms were first studied in the 1960s:
(i) the GA scenario, and (ii) the ES scenario.

The GA scenario starts with a population of individuals with
known fitness and performs a selection of individuals based on their
fitness. These are then subjected to variation operations like cross¬
over and mutation or passed on untouched via reproduction into the
next generation. In this way, the pool of the following generation
is filled with individuals. The next generation usually consists of
the same number of individuals as the former one, and fitness com¬
putation follows in preparation for another round of selection and
breeding. Figure 5.9a outlines the procedure, also known as mating
selection.

The ES scenario is different. Starting from a given population,
a usually larger set of offspring is generated by randomly selecting
parents. After fitness evaluation, this population is then reduced
by selection to the size of the original population. Thus, a smaller
population can be used, as the selection is applied to the pool of
offspring (possibly including even the parents). Figure 5.9b outlines
the procedure, also known as overproduction selection.

The difference between the two generational scenarios may be
seen in the ability in the ES type scenario to tune selection pressure
by adjusting the ratio of the number of offspring to the number of
parents. The larger this ratio, the higher the selection pressure. A
corresponding pressure can be introduced into GAs if the require¬
ment is relaxed that an equal number of offspring be produced after
selection. If the size of the offspring pool is larger than the size of
the parent pool, then again a larger selection pressure is exerted.

Fitness-Proportional Selection

Fitness-proportional selection is employed in a GA scenario for gener¬
ational selection and specifies probabilities for individuals to be given

a chance to pass offspring into the next generation. An individual i
is given a probability of

Figure 5.9
Different selection
schemes in EAs of type
A GA and B ES

(5.5)

for being able to pass on traits. Depending on the variation operator
used, this might result (i) in a copy of that individual, or (ii) in a
mutated copy, or (iii) in case two individuals have been selected in
the way mentioned, two offspring with mixed traits being passed into
the next generation.

Following Holland [Holland, 1975], fitness-proportional selection
has been the tool of choice for a long time in the GA community. It
has been heavily criticized in recent times for attaching differential
probabilities to the absolute values of fitness [Blickle and Thiele, 1995].
Early remedies for this situation were introduced through fitness scal¬
ing, a method by which absolute fitness values were made to adapt
to the population average [Grefenstette and Baker, 1989], and other
methods [Koza, 1992d].

Truncation or (//, A) Selection

The second most popular method for selection comes from ES-type
algorithms [Schwefel, 1995] where it is known as (/z, A) selection. A
number n of parents are allowed to breed A offspring, out of which the
H best are used as parents for the next generation. The same method
has been used for a long time in population genetics and by breeders
[Crow and Kimura, 1970] [Bulmer, 1980] under the name truncation
selection [Miihlenbein and Schlierkamp-Voosen, 1994].

A variant of ES selection is (p, + A) selection [Rechenberg, 1994]
where, in addition to offspring, the parents participate in the selection
process.

Neither (/u, A) / truncation selection nor the following selection
procedures are dependent on the absolute fitness values of individuals
in the population. The n best will always be the best, regardless of
the absolute fitness differences between individuals.

Ranking Selection

Ranking selection [Grefenstette and Baker, 1989] [Whitley, 1989] is
based on the fitness order, into which the individuals can be sorted.
The selection probability is assigned to individuals as a function of
their rank in the population. Mainly, linear and exponential ranking
are used. For linear ranking, the probability is a linear function of
the rank:

where p /N is the probability of the worst individual being selected,
and p+ /N the probability of the best individual being selected, and

with 0 <c<l.

Tournament Selection

Tournament selection is not based on competition within the full
generation but in a subset of the population. A number of individu¬
als, called the tournament size, is selected randomly, and a selective

(5.6)

(5.7)

should hold in order for the population size to stay constant.
For exponential ranking, the probability can be computed using

a selection bias constant c,

(5.8)

competition takes place. The traits of the better individuals in the
tournament are then allowed to replace those of the worse individ¬
uals. In the smallest possible tournament, two individuals compete.
The better of the two is allowed to reproduce with mutation. The
result of that reproduction is returned to the population, replacing
the loser of the tournament.

The tournament size allows researchers to adjust selection pres¬
sure. A small tournament size causes a low selection pressure, and a
large tournament size causes high pressure.

Tournament selection has recently become a mainstream method
for selection, mainly because it does not require a centralized fitness
comparison between all individuals. This not only accelerates evo¬
lution considerably, but also provides an easy way to parallelize the
algorithm. With fitness-proportional selection, the communication
overhead between evaluations would be rather large.

5.6 The Basic GP Algorithm

It is now possible to assemble all of the individual elements (functions,
terminals, fitness-based selection, genetic operators, variable length
programs, and population initialization) into an overall algorithm
for a basic GP run. There are two ways to conduct a GP run, a
generational approach and a steady-state approach. In generational
GP, an entire new generation is created from the old generation in
one cycle. The new generation replaces the old generation and the
cycle continues. In steady-state GP, there are no generations. We
will present an algorithm for each approach.

First, however, we will review the preparatory steps for making
a GP run. Then we will discuss the two basic ways to approach the
GP run algorithm itself.

Summary of Preparatory Steps

Here are the preliminary steps in a GP run, which we have already
described in detail in this chapter.

1. Define the terminal set.

2. Define the function set.

3. Define the fitness function.

4. Define parameters such as population size, maxiirmm individual
size, crossover probability, selection method, and termination
criterion (e.g., maximum number of generations).

Once these steps are completed, the GP run can commence. How
it proceeds depends on whether it is generational or steady state.

Generational GP Algorithm

Traditionally, genetic programming uses a generational evolutionary
algorithm. In generational GP, there exist well-defined and distinct
generations. Each generation is represented by a complete popula¬
tion of individuals. The newer population is created from and then
replaces the older population. The execution cycle of the generational
GP algorithm includes the following steps:

1. Initialize the population.

2. Evaluate the individual programs in the existing population.
Assign a numerical rating or fitness to each individual.

3. Until the new population is fully populated, repeat the following
steps:

Q Select an individual or individuals in the population using
the selection algorithm.

Q Perform genetic operations on the selected individual or
individuals.

Q Insert the result of the genetic operations into the new
population.

4. If the termination criterion is fulfilled, then continue. Other¬
wise, replace the existing population with the new population
and repeat steps 2-4.

5. Present the best individual in the population as the output from
the algorithm.

Steady-State GP Algorithm

The steady-state or tournament selection model is the principal al¬
ternative to generational GP. In this approach there are no fixed
generation intervals. Instead, there is a continuous flow of individu¬
als meeting, mating, and producing offspring. The offspring replace
existing individuals in the same population. The method is simple
to implement and has some efficiency benefits together with benefits
from parallelization. Good general convergence results have been re¬
ported with the method, and it is currently gaining ground in the
research community. Here is an example of a basic GP algorithm
using the steady-state method and a small tournament size for selec¬
tion.

1. Initialize the population.

2. Randomly choose a subset of the population to take part in the
tournament (the competitors).

3. Evaluate the fitness value of each competitor in the tournament.

4. Select the winner or winners from the competitors in the tour¬
nament using the selection algorithm.

5. Apply genetic operators to the winner or winners of the tour¬
nament.

6. Replace the losers in the tournament with the results of the
application of the genetic operators to the winners of the tour¬
nament.

7. Repeat steps 2-7 until the termination criterion is met.

8. Choose the best individual in the population as the output from
the algorithm.

The approach is called steady state because the genetic opera¬
tors are applied asynchronously and there is no centralized mecha¬
nism for explicit generations. Nevertheless, it is customary in pre¬
senting results with steady-state GP to talk about generations. In
fact, steady-state generations are the intervals during training which
can be said to correspond to generations in a generational GP al¬
gorithm. These intervals are often when fitness is evaluated for the
same number of individuals as the population size. For experiments
and detailed references on generational versus steady-state GP see
[Kinnear, Jr., 1993b].

5.7 An Example Run

This section demonstrates some examples of individuals and mea¬
surements from a typical GP run. The task was a function regression
with the simple function:

(5.9)

Ten fitness cases were used for this function regression task, taken
from the x-interval [0,1] and shown in Table 5.3.

Following the steps of Section 5.6 we prepare the run by first
deciding on the following issues:

1. Terminal set: Variable x, integer constants between -5 and +5.

Table 5.3
Fitness cases (input and
output values) in the
training set

1
Fitness Case 1
Fitness Case 2
Fitness Case 3
Fitness Case 4
Fitness Case 5
Fitness Case 6
Fitness Case 7
Fitness Case 8
Fitness Case 9
Fitness Case 10

Input

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900

Output [

0.000
0.005
0.020
0.045
0.080
0.125
0.180
0.245
0.320
0.405

2. Function set: Arithmetic functions+, - , *, '/,.

3. Fitness function: Standardized fitness, based on root mean
square error over 10 fitness cases.

4. Parameters of individual and population, the initialization and
selection method, operator probabilities.

Koza has introduced a very lucid form of listing parameters in
the tableau of Table 5.4 named after him. From there, we can read
off that P — 600 individuals were used for this GP run in a tree-
based system. Crossover probability was pc — 0.9. Fitness was based
on the error that an individual produced when fed with the input of
these fitness cases. More details are listed in the table.

Let us inspect some selected individuals from a GP run. In initial
generation 0, the distribution of fitness values was broad. Figure 5.10
shows the best individual in generation 0. We shall call the function
resulting from the best individual in generation i fi(x). So /o reads:

(5.12)

Figures 5.11-5.15 show best individuals from subsequent genera¬
tions 1, 2, 3, and from generation 5. So / i reads:

(5.10)

(5.11)

As we can see, the tree size first expands on its way to an optimal
solution and then shrinks again. /2 reads:

Table 5.4
Koza Tableau

Figure 5.10
Best individual in
generation 0. % is
protected division.
/o(x) = f

In generation 3, the best individual has found the correct solution
iu its simplest form.

(5.13)

Subsequent generations start to combine this correct solution
with others, with the consequence that the size of the best individual
increases again. Because we did not always conserve the best indi¬
vidual found so far (a strategy that is called elitist and could be used
in a GP run), quality fell again in later generations.

Table 5.5 shows how the function of the best individual program
approaches desired outputs over the course of generations 0-3. Fig-

| Parameters

objective:

terminal set:
function set:
population size:
crossover probability:
mutation probability:
selection:
termination criterion:
maximum number of generations:
maximum depth of tree after crossover:
maximum mutant depth:
initialization method:

Values

evolve function fitting the values
of the fitness case table
x, integers from -5 to +5
ADD, SUB, MUL, DIV
600
90 percent
5 percent
tournament selection, size 4
none
100
200
4
grow

Figure 5.11
Best individual in
generation 1. Tree has
expanded considerably.

Figure 5.12
Best individual in
generation 2. Tree has
expanded again. (See
text)

ure 5.16 shows the corresponding behavior of the functions for the
best individuals.

Figure 5.13
Best individual in
generation 2 continued:
Subtree Sub 1

Figure 5.14
Best individual in
generation 3. Perfect
individual of simplest
form found. f(x) = ^-

Fitness Case 1
Fitness Case 2
Fitness Case 3
Fitness Case 4
Fitness Case 5
Fitness Case 6
Fitness Case 7
Fitness Case 8
Fitness Case 9
Fitness Case 10

Target output

0.000000
0.005000
0.020000
0.045000
0.080000
0.125000
0.180000
0.245000
0.320000
0.405000

Gen. 0

0.000000
0.033333
0.066667
0.100000
0.133333
0.166667
0.200000
0.233333
0.266667
0.300000

Gen. 1

0.000000
0.017544
0.037037
0.058824
0.083333
0.111111
0.142857
0.179487
0.222222
0.272727

Gen. 2

0.000000
0.002375
0.009863
0.023416
0.044664
0.076207
0.122140
0.188952
0.287024
0.432966

Gen. 3

0.000000
0.005000
0.020000
0.045000
0.080000
0.125000
0.180000
0.245000
0.320000
0.405000

The above individuals are from a single GP run - a dynamic
process that changes profoundly during its execution. Figure 5.17

Table 5.5
Target output and best
individual output for
generations 0 to 3

Figure 5.15
Best individual in
generation 5. Length
increases again. Fitness
score is still perfect.

Figure 5.16
Behavior of best
individuals of generations
0, 1, 2, 3. Generation 3
individual is identical to
function itself.

shows how the average fitness of the entire population and the fitness
of the best individual change as the run progresses.

As we shall discuss in Chapter 7, it is instructive to observe the
development of program complexity during a run. We have therefore
included a complexity measure in Figure 5.17 for illustrative pur¬
poses. We can see that average length of programs begins to increase
quickly after the best fitness has arrived at its optimal value.

Figure 5.17
Development of fitness
over generations. Best
individual, average
fitness, average length of
individuals, scaled

What is interesting is how the simple process of a GP run - some
terminals, some functions, crossover, mutation, and iteration - could
have such a profound effect. This dynamic nature of the GP process
and the many ways in which it manifests itself will prove to be a
recurring theme in this book.

Exercises

1. Mention three important features shared by most GP systems.

2. What are the two different basic components of a GP program
structure?

3. Give two different types of terminals.

4. What is the arity of a function?

5. Describe three different types of GP genomes.

6. Describe two methods for initialization of a tree structure indi¬
vidual.

7. Name the principal operations of a GP system.

8. How does a basic crossover operator work in a tree structure?

9. Describe three different selection algorithms.

10. Which are the preparatory steps before a GP experiment?

11. What is the difference between generational GP and steady-
state GP?

12. Why do we not use only the best individuals as a source for the
next generation?

13. Design a terminal and function set in order to classify dogs as
terriers, standard poodles, toy poodles, or German shepherds.
Which terminals and functions would you not include and why?

14. Design a terminal and function set to derive one of Kepler's
laws. Did you consider and reject the inclusion of any terminals
or functions?

15. Formulate the grow method of initialization in linear GP.

6 Crossover — The
Center of the Storm

Contents

6.1 The Theoretical Basis for the
Building Block Hypothesis in GP 145

6.2 Preservation and Disruption of Building
Blocks: A Gedanken Experiment 148

6.2.1 Crossover as a Disruptive Force 148

6.2.2 Reproduction and Crossover 150

6.3 Empirical Evidence of Crossover Effects . . . 151

6.3.1 The Effect of Crossover on the Fitness
of Offspring 151

6.3.2 The Relative Merits of Program Induction via
Crossover versus Hill Climbing or Annealing 153

6.3.3 Conclusions about Crossover as Macromutation . 155

6.4 Improving Crossover — The Argument

from Biology 156

6.5 Improving Crossover — New Directions 158

6.5.1 Brood Recombination 158

6.5.2 "Intelligent" Crossover 161

6.5.3 Context-Sensitive Crossover 162

6.5.4 Explicit Multiple Gene Systems 163

6.5.5 Explicitly Defined Introns 164

6.5.6 Modeling Other Forms of Genetic Exchange.. . . 165

6.6 Improving Crossover - A Proposal 166

6.7 Improving Crossover - The Tradeoffs 169

6.8 Conclusion 170

Crossover and Building
Blocks

Crossover -The

Controversy

Search operators are among the most important parts of any machine
learning system - they define the manner in which the system moves
through the space of candidate solutions (see Chapter 1). In most GP
systems, crossover is the predominant search operator. For example,
in [Koza, 1992d] the crossover operator is applied 90% of the time.
Most GP researchers have followed suit.

GP's heavy use of crossover is more than just a preference. Chap¬
ter 2 analyzed the mechanism of biological sexual reproduction, in¬
cluding crossover, at some length. The remarkable amount of bi¬
ological energy that goes into maintaining species and homologous
crossover suggests that crossover may well be an effective search op¬
erator in population-based machine learning systems like GP. The
analogy with biological crossover is, of course, the original inspiration
for the use of crossover in machine learning systems. Simply put, GP
crossover attempts to mimic the process of sexual reproduction.

The crossover operator has been used as basis for the claim that
GP search is more effective than systems based on random transfor¬
mations (mutations) of the candidate solutions, like simulated an¬
nealing. Essentially, Koza has argued that a GP population contains
building blocks. Simply put, a building block could be any GP tree or
subtree that shows up in a fraction of the population. The building
block hypothesis of GP follows the same line of argument as does the
building block hypothesis from genetic algorithms [Holland, 1975].
Good building blocks improve the fitness of individuals that include
them. Therefore, individuals with good building blocks are more
likely to be selected for reproduction or breeding. Hence, good build¬
ing blocks are likely to multiply and spread as they are duplicated
and exchanged among individuals.

GP works faster than systems just based on mutations, according
to this hypothesis, because good building blocks get combined into
ever larger and better building blocks to form better individuals.
This argument is based on the schema theorem, which is one of the
theoretical underpinnings of genetic algorithms [Goldberg, 1989].

The argument about the effectiveness of crossover has generated
a good deal of controversy in other parts of the machine learning com¬
munity [Lang, 1995] and has also provoked some thoughtful analysis
in the GP community about just what a building block in GP is and
whether we can realistically expect good GP building blocks to be se¬
lected by the crossover operator and to be combined into larger and
better solutions [Altenberg, 1994b] [O'Reilly and Oppacher, 1992].

This chapter will focus on the central dispute regarding the cross¬
over operator by posing the following two questions:

6.1 The Theoretical Basis for the Building Block Hypothesis in GP

Q Does the GP crossover operator outperform mutation-based
systems by locating and combining good building blocks or is
GP crossover, itself, a form of macromutation?

Q What sorts of improvements may be made to the crossover op¬
erator to improve its performance?

Our discussion of other important aspects of the crossover oper¬
ator, such as its role in creating so-called introns will be deferred to
later chapters.

This chapter will focus at length on the undoubted shortcom¬
ings of the GP crossover operator. It is important, nevertheless, to
remember that something is going on with GP crossover. GP has
amassed an impressive record of achievements in only a few years.
Whether crossover acts as a macromutation operator or whether it
can, in addition, locate good schemata and combine them into better
schemata, GP crossover already has a substantial record of accom¬
plishment.

The next several sections of this chapter will be devoted to a
critical analysis of GP crossover. First, we will look at the theoretical
bases for both the building block hypothesis and the notion that
GP crossover is really a macromutation operator. Second, we will
survey the empirical evidence about the effect of crossover. Third,
we will compare and contrast GP crossover with biological crossover.
Finally, we will look at several promising directions for improving GP
crossover.

6.1 The Theoretical Basis for the
Building Block Hypothesis in GP

The schema theorem of Holland [Holland, 1975] is one of the most in¬
fluential and debated theorems in evolutionary algorithms in general
and genetic algorithms in particular. The schema theorem addresses
the central question of why these algorithms work robustly in such
a broad range of domains. Essentially, the schema theorem for fixed
length genetic algorithms states that good schemata (partial building
blocks that tend to assist in solving the problem) will tend to multiply
exponentially in the population as the genetic search progresses and
will thereby be combined into good overall solutions with other such
schemata. Thus, it is argued, fixed length genetic algorithms will
devote most of their search to areas of the search space that contain
promising partial solutions to the problem at hand.

Recently, questions have been raised about the validity of the
schema theorem for fixed length genetic algorithms. Nevertheless,

Koza's Schema

Theorem Analysis

O'Reilly's Schema

Theorem Analysis

the schema theorem remains the best starting point for a mathemat¬
ically based analysis of the mechanisms at work in genetic algorithms
using crossover. There have been several attempts to transfer the
schema theorem from genetic algorithms to GP. However, the GP
case is much more complex because GP uses representations of vary¬
ing length and allows genetic material to move from one place to
another in the genome.

The crucial issue in the schema theorem is the extent to which
crossover tends to disrupt or to preserve good schemata. All of the
theoretical and empirical analyses of the crossover operator depend,
in one way or another, on this balance between disruption and pre¬
servation of schemata.

Koza was the first to address the schema theorem in GP. In his
first book [Koza, 1992d, pages 116-119], Koza provides a line of rea¬
soning explaining why the schema theorem applies to variable length
GP. In his argument, a schema is a set of subtrees that contains
(somewhere) one or many subtrees from a special schema defining
set. For example, if the schema defining set is the set of S-expressions
HI = {(- 2 y), (+ 2 3)} then all subtrees that contain (— 2 y) or
(+ 2 3) are instances of HI. Koza's argument is informal and he does
not suggest an ordering or length definition for his schemata.

Koza's statement that GP crossover tends to preserve, rather
than disrupt, good schemata depends crucially on the GP reproduc¬
tion operator, which creates additional copies of an individual in the
population. Individuals that contain good schemata are more likely
to be highly fit than other individuals. Therefore, they are more likely
to be reproduced. Thus, good schemata will be tested and combined
by the crossover operator more often than poorer schemata. This
process results in the combination of smaller but good schemata into
bigger schemata and, ultimately, good overall solutions.

These ideas are formalized and extended considerably in
[O'Reilly and Oppacher, 1995b] [O'Reilly and Oppacher, 1994b] by
defining a schema as a multiset of subtrees and tree fragments under
fitness-proportional selection and tree-based crossover. Fragments of
trees are defined with a method similar to Holland's original schema
theorem using a don't care symbol (#). O'Reilly defines her schemata
similarly to Koza but with the presence of a don't care symbol in one
or more subtrees, HI = {(— # y), (+ 2 #)}. Thus, if the defining set
for HI contains several identical instances of a tree fragment, then
the tree must contain the same number of matching subtrees in order
to belong to the schema HI.

O'Reilly's use of the don't care symbols is a major contribution to
GP schema theory. It makes it possible to define an order and a length
of the schemata. The order of a schema is the number of nodes which

are not •#• symbols and the length is the number of links in the tree
fragments plus the number of links connecting them. The sum of all
links in a tree is variable and the probability of disruption depends on
the size and shape of the tree matching a schema. O'Reilly therefore
estimates the probability of disruption by the maximum probability
of disruption, Pd(H,t), producing the following schema theorem:

(6.1)

f(H, t) is mean fitness of all instances of a certain schema H and f(i)
is average fitness in generation t, while E[m(H, t + 1)] is the expected
value of the number of instances of H and pc is crossover probability.

The disadvantage of using the maximum probability is that it
may produce a very conservative measure of the number of schemata
in the next generation. Even the maximum probability of disrup¬
tion varies with size, according to O'Reilly's analysis. While this is
not a surprising result in variable length GP, it makes it very diffi¬
cult to predict whether good schemata will tend to multiply in the
population or will, instead, be disrupted by crossover.

Whigham has formulated a definition of schemata in his grammar-
based GP system (see Chapter 9) [Whigham, 1995c]. In Whigham's
approach, a schema is defined as a partial derivation tree. This ap¬
proach leads to a simpler equation for the probability of disruption
than does O'Reilly's approach. However, like O'Reilly's derivation,
Whigham's predicted probability of disruption also depends on the
size of the tree.

Recently, Poll and Langdon [Langdon and Poll, 1997] have for¬
mulated a new schema theorem that asymptotically converges to the
GA schema theorem. They employed 1-point crossover and point mu¬
tation as GP operators. The result of their study suggests that there
might be two different phases in a GP run: a first phase completely
depending on fitness, and a second phase depending on fitness and
structure of the individual (e.g., schema defining length). Whereas
this work has introduced new operators to make schema dynamics
more transparent, Rosca has concentrated on the structural aspect
[Rosca, 1997]. He recently derived a version of the schema theorem
for rooted-tree schemata. A rooted-tree schema is a subset of the
set of program trees that matches an identical tree fragment which
includes the tree root.

None of the existing formulations of a GP schema theorem pre¬
dicts with any certainty that good schemata will propagate during
a GP run. The principal problem is the variable length of the GP
representation. In the absence of a strong theoretical basis for the
claim that GP crossover is more than a macromutation operator, it

Whigham's Schema
Theorem Analysis

Newer Schema
Theorems

Inconclusive Schema
Theorem Results for
GP

is necessary to turn to other approaches. In the next two sections, we
will first look at the probability of disruption issue with a gedanken
experiment and then analyze the empirical studies of the crossover
operator.

6.2 Preservation and Disruption of Building
Blocks: A Gedanken Experiment

We begin with an intuitive discussion of the difficulties of the cross¬
over operator. First, we observe that the crossover operator is a
destructive force as well as a constructive one. We have discussed
the inconclusive theoretical basis for crossover's possible role in as¬
sembling good building blocks into complete solutions. This section
describes a way to think about the balance of the constructive and
destructive aspects of crossover.

Figure 6.1
A tree assembling
building blocks

6.2.1 Crossover as a Disruptive Force

Consider Figure 6.1. It may serve to illustrate what happens when

GP assembles good building blocks into a good program. We will
look at the assembly of a good program block by block.

Let us first assume that the dark nodes (7-9) constitute a good
building block. At this point there are 19 crossover points in the indi¬
vidual in Figure 6.1. If crossover is distributed randomly among these
nodes, the probability of our good building block being disrupted by
crossover is 2/19 or about 10.5%.

Now let us assume that crossover finds a new, good building block
containing our original good block. That larger block is designated
in Figure 6.1 by the black and dark gray nodes (nodes 6—11). The
probability that this new block will be disrupted by a crossover event
is 5/19 or 26.3%.

Now assume that the light gray nodes are part of a newly found
good building block that has been assembled by GP crossover (nodes
1-11). What happens when this larger but better building block
faces the crossover operator again? The answer is straightforward.
The probability that this new block will be disrupted by a crossover
event is 10/19 or 52.6%.

As the reader can see, as GP becomes more and more successful
in assembling small building blocks into larger and larger blocks, the
whole structure becomes more and more fragile because it is more
prone to being broken up by subsequent crossover. In fact, assume
that our building block (now, all of the colored nodes) is almost a
perfect program. All that needs to be done now is to get rid of the
code represented by the white nodes in Figure 6.1. The individual
in Figure 6.1 is crossed over and the resulting individual is shown in
Figure 6.2. This solution is almost there. There is only one node to
get rid of before the solution is perfect. But in this case, just before
success, the probability that the perfect solution will be disrupted by
crossover is 10/11 or 90.9%.

Crossover can damage fitness in ways other than breaking up
good building blocks. Assume that our good building block in Figure
6.2 survives crossover. It may, nevertheless, be moved into a new
individual that does not use the good building block in any useful
way - in other words, it may be moved to an inhospitable context.

Consider the numbers. If constructive crossover occurs between
10% and 15% of the time, this means that, on average, a good building
block that is large must be involved in many crossover events before
it is involved in a crossover event that does not break it up.

But that is not the end of the story. In the one event where the
good block is not disrupted by crossover, what are the chances that

Figure 6.2
A tree that has a/most

assembled a perfect

solution to a problem

it will be inserted into another individual where it is used to good
effect and where other code does not cancel out the effect of this good
block? The insertion is context dependent.

The conclusion is inevitable; crossover is a disruptive force as
well as a constructive force - putting building blocks together and
then tearing them apart. The balance is impossible to measure with
today's techniques. It is undoubtedly a dynamic equilibrium that
changes during the course of evolution. We note, however, that for
most runs, measured destructive crossover rates stay high until the
very end.

6.2.2 Reproduction and Crossover

In standard GP the reproduction operator takes the fittest individuals
in the population and duplicates them. Thus, the argument goes, the
good building blocks in those duplicated individuals will have many
chances to try to find crossovers that are not disruptive.

This argument depends, of course, on the assumption that the
high quality of the building block shown by the darkened nodes in
Figure 6.1 will somehow be reflected in the quality of the individual

in which it appears. But if the nodes around the good code ignore it
or transform it in an unacceptable way, that will not be the case.

It also depends on the balance between the reproduction operator
and the destructive effects of crossover at any given time in a run.
Sometimes good blocks will improve the fitness of the individual they
are in. Other times not. So the balance between the constructive and
the destructive aspects of crossover is still the dominant theme here.
Knowing the correct reproduction parameter and how to adjust it
during a run to deal with the dynamic aspects of this problem is
something on which no research exists.

After theoretical considerations and this gedanken experiment,
our analysis is still inconclusive. It is impossible to predict with any
certainty yet whether GP crossover is only a macromutation opera¬
tor or something more. Therefore, it is time to consider empirical
measurements of the crossover operator.

Schema Theorem
Analysis Is Still
Inconclusive

6.3 Empirical Evidence of Crossover Effects

Two sets of empirical studies bear on the effect of crossover. The
first suggests that crossover normally results in severe damage to
the programs to which it is applied. The second suggests that well-
designed hill climbing or simulated annealing systems, which do not
use population-based crossover, are very competitive with GP sys¬
tems. We shall have a look at them both in turn.

6.3.1 The Effect of Crossover on the Fitness
of Offspring

We began measuring the effect of crossover on the relative fitness
of parents and their offspring in 1995 [Nordin and Banzhaf, 1995a]
[Nordin et al., 1995]. There are two important issues in this regard:

J How can we measure the effect of crossover?
Measuring the effect of crossover is not as straightforward as it
might seem. The problem is that there are always at least two
parents and one or more children. So GP systems are never
measuring a simple one-to-one relationship.

Q Likewise, it is not entirely clear what should be measured.

Figure 6.3 shows a graph of the effect of crossover on fitness of
offspring during the course of a run in symbolic regression in
linear GP. Fitness change A/p e r c e n t is defined as

(6.2)

Figure 6.3
Effects of crossover are of
different kinds

with /before fitness before crossover and fajter after crossover
under the assumption of a standardized fitness function, fbeat =
0, fworst — 00-

Individuals with a fitness decrease of more than 100% are accu¬
mulated at the left side. Note that throughout training, there
are two dominant forms of crossover - very destructive crossover
(left) and neutral crossover (middle). There is also a low level
of constructive crossover. Although it is possible to measure
positive and negative crossover effects exactly, we have found
it beneficial to do categorizing measurements. A substantial
amount of information may be gleaned already from measuring
neutral crossover as a separate category.1

Two basic approaches to measuring the effect of crossover have
been used in the literature:

The average fitness of all parents has been compared with the
average fitness of all offspring [Nordin and Banzhaf, 1995a].
Note that the effect of this is that both parents and offspring
are counted as one crossover event. Thus no special cases, like
2 parents and 3 children versus 3 parents and 2 children, need
to be treated separately.

1 Neutral crossover in existing studies has been defined as any crossover
event where the fitness of the children is within ± 2.5% of the fitness of
the parents.

Q The fitness of children and parents is compared on an individual
basis [Teller, 1996] [Francone et al., 1996]. In this approach,
one child is assigned to one parent.

Therefore, each such pairing is counted as one crossover event.
In this case, a further specialization is necessary. Do we com¬
pare offspring to the best or worst parent? Do we compare
them one by one (only possible if numbers are equal)?

Regardless how the measurement is conducted, it is important to
separate destructive, neutral, and constructive crossover and to pro¬
vide a separate measurement for each. The resulting measurements
are very informative no matter what technique is used for measure¬
ment.

The effect of crossover has been measured for tree-based GP, lin¬
ear (machine code) GP [Nordin and Banzhaf, 1995a], and graph GP
[Teller, 1996]. In all three cases, crossover has an overwhelmingly
negative effect on the fitness of the offspring of the crossover. For ex¬
ample, in linear genomes, the fitness of the children is less than half
the fitness of the parents in about 75% of all crossover events. Simi¬
lar measurements apply to tree-based crossover [Nordin et al., 1996].
Recently, Teller has measured similar figures for crossover in the
graph-based system PADO. Although his measurements were not
precisely equivalent to the tree and linear measurements of cross¬
over cited above, his findings are quite consistent - less than 10%
of crossover events in graph-based GP result in an improvement in
the fitness of offspring relative to their parents. Note that these are
global numbers over entire runs. There is certainly a change over the
course of a run that cannot be reflected in these numbers at all.

What is remarkable is that three very different ways of measuring
crossover on three completely different representations have yielded
such similar results. The conclusion is compelling: crossover routinely
reduces the fitness of offspring substantially relative to their parents
in almost every GP system. This stands in stark contrast to biological
crossover.

The Results of
Measuring the Effect of
Crossover

6.3.2 The Relative Merits of Program Induction via
Crossover versus Hill Climbing or Annealing

Lang [Lang, 1995] launched a controversial attack on GP crossover
in 1995. Lang's study argued that crossover in a population did not
perform nearly as well as a macromutation operator that has been
whimsically dubbed headless chicken crossover.

In headless chicken crossover, only one parent is selected from
preexisting learned solutions. An entirely new individual is created

Headless Chicken

Crossover

randomly. The selected parent is then crossed over with the new
and randomly created individual. The offspring is kept if it is better
than or equal to the parent in fitness. Otherwise, it is discarded.
Thus, headless chicken crossover is a form of hill climbing. In one
genetic algorithm study, headless chicken crossover slightly outper¬
formed both traditional genetic algorithms and hill climbing using
bit-flipping mutations [Jones, 1995].

Lang's study went considerably further in its conclusion. Lang
argued that headless chicken crossover was much better than GP
crossover. However, his study was based on one small problem (3-
argument Boolean functions) and the broad interpretation of his lim¬
ited results is dubious [O'Reilly, 1995].

Lang's results are of questionable usefulness because of the single
problem he chose to show that hill climbing outperformed genetic
programming. Every machine learning technique has a bias - a ten¬
dency to perform better on certain types of problems than on others.
Lang picked only one test problem, the Boolean 3-multiplexer prob¬
lem. Boolean multiplexer problems have the property that there are
no strict local minima. That is [Juels and Wattenberg, 1995]:

... from any point in the search space, the graph denning the
neighborhood structure contains a path to some optimal solution
such that every transition in the path leads to a state with an
equal or greater fitness. A. JUELS AND M. WATTENBERG, 1995

In other words, Boolean multiplexer problems like the simple one
Lang used are well suited to be solved by hill climbing algorithms
like headless chicken crossover. That is, the bias of a hill climbing
algorithm is particularly well suited to solving Boolean multiplexer
problems.

However, other more thorough studies have raised significant
questions about whether the crossover operator may be said to be
better than mutation-oriented techniques. One set of those studies is
discussed above - crossover is highly destructive to offspring. Other
studies suggest that mutation techniques may perform as well as and
sometimes slightly better than traditional GP crossover.

For example, O'Reilly measured GP crossover against several
other program induction algorithms that did not rely on population-
based crossover. Two were of particular interest to her, mutate-
simulated annealing and crossover-hill climbing. Each algorithm
starts with a current solution. This is then changed to generate a
new solution. For example, the crossover-hill climbing algorithm
changes the current candidate solution by crossing it over with a ran¬
domly generated program, a form of headless chicken crossover. If

Crossover vs.
Non- Popula tion- Based

Operators

the new solution has higher fitness, it replaces the original solution.2

If the new solution has lower fitness, it is discarded in crossover-hill
climbing but kept probabilistically in mutate-simulated annealing.

O'Reilly found [O'Reilly and Oppacher, 1994a] that the mutate-
simulated annealing and crossover-hill climbing algorithms performed
as well as or slightly better than standard GP on a test suite of six
different problems; see also [O'Reilly and Oppacher, 1995a].

In another recent study, O'Reilly extended her results by com¬
paring GP with other operators, most notably a hierarchical variable
length mutation, which is an operator explicitly constructed for keep¬
ing distances between parent and offspring low.3 She concluded that
crossover seems to create children with large syntactic differences be¬
tween parents and offspring, at least relative to offspring generated
by hierarchical variable length mutation. This adds weight to the
crossover-is-macromutation theory.

More recently, Angeline tested population-based and selection-
driven headless chicken crossover against standard GP subtree cross¬
over (see Chapters 5 and 9). He compared the two types of operators
over three different problem sets. His conclusion: macromutation of
subtrees (headless chicken crossover in GP) produces results that are
about the same or possibly a little better than standard GP subtree
crossover [Angeline, 1997].

6.3.3 Conclusions about Crossover as Macromutation

The empirical evidence lends little credence to the notion that tra¬
ditional GP crossover is, somehow, a more efficient or better search
operator than mutation-based techniques. On the other hand, there
is no serious support for Lang's conclusion that hill climbing outper¬
forms GP. On the state of the evidence as it exists today, one must
conclude that traditional GP crossover acts primarily as a macromu¬
tation operator.

That said, several caveats should be mentioned before the case
on crossover may be closed. To begin with, one could easily conclude
that traditional GP crossover is an excellent search operator as is.
What is remarkable about GP crossover is that, although it is lethal to
the offspring over 75% of the time, standard GP nevertheless performs
as well as or almost as well as techniques based on long established
and successful algorithms such as simulated annealing.

2In evolutionary strategies, this is known as a (1 + 1) strategy.
3This, of course, requires a measure of distance in trees, which

O'Reilly took from [Sankoff and Kruskal, 1983]. The same measure was
used earlier in connection with the measurement of diversity in GP
[Keller and Banzhaf, 1994].

Furthermore, the failure of the standard GP crossover operator
to improve on the various mutation operators discussed above may
be due to the stagnation of GP runs that occurs as a result of what
is referred to as "bloat" - in other words, the exponential growth of
GP "introns." In Chapter 7, we will discuss the exponential growth
of GP introns at some length. One of our conclusions there will be
that the destructive effect of standard GP crossover is the principal
suspect as the cause of the GP bloating effect. By way of contrast,
the studies comparing crossover and macromutation operators use
macromutation operators that are much less likely to cause bloat
than standard subtree crossover. So it may be that by avoiding or
postponing bloat, macromutation permits a GP run to last longer
and, therefore, to engage in a more extensive exploration of the search
space [Banzhaf et al., 1996].

Finally, the evidence suggests there may be room for substantial
improvement of the crossover operator. Crossover performs quite well
even given its highly disruptive effect on offspring. If it were possible
to mitigate that disruptive effect to some degree, crossover would
likely perform a faster and more effective search. A reexamination
of the analogy between biological crossover and GP crossover and
several recent studies on crossover suggest various directions for such
improvements in crossover.

6.4 Improving Crossover - The Argument
from Biology

Although there are many differences between the GP crossover op¬
erator and biological crossover in sexual reproduction, one difference
stands out from all others. To wit, biological crossover works in
a highly constrained and highly controlled context that has evolved
over billions of years. Put another way, crossover in nature is itself an
evolved operator. In Altenberg's terms [Altenberg, 1994b], crossover
may be seen as the result of the evolution of evolvability.

There are three principal constraints on biological crossover:

1. Biological crossover takes place only between members of the
same species. In fact, living creatures put much energy into
identifying other members of their species - often putting their
own survival at risk to do so. Bird songs, for example, attract
mates of the same species . . . and predators. Restricting
mating to intraspecies mating and having a high percentage of
viable offspring must be very important in nature.

2. Biological crossover occurs with remarkable attention to pre¬
servation of "semantics." Thus, crossover usually results in the
same gene from the father being matched with the same gene
from the mother. In other words, the hair color gene does not
get swapped for the tallness gene.

3. Biological crossover is homologous. The two DNA strands are
able to line up identical or very similar base pair sequences
so that their crossover is accurate (usually) almost down to the
molecular level. But this does not exclude crossover at duplicate
gene sites or other variations, as long as very similar sequences
are available.

In nature, most crossover events are successful - that is, they
result in viable offspring. This is a sharp contrast to GP crossover,
where over 75% of the crossover events are what would be termed in
biology "lethal."

What causes this difference? In a sense, GP takes on an enormous
chore. It must evolve genes (building blocks) so that crossover makes
sense and it must evolve a solution to the problem all in a few hundred
generations. It took nature billions of years to come up with the
preconditions so that crossover itself could evolve.

GP crossover is very different from biological crossover. Crossover
in standard GP is unconstrained and uncontrolled. Crossover points
are selected randomly in both parents. There are no predefined build¬
ing blocks (genes). Crossover is expected to find the good building
blocks and not to disrupt them even while the building blocks grow.

Let's look more closely at the details:

Q In the basic GP system, any subtree may be crossed over with
any other subtree. There is no requirement that the two sub¬
trees fulfill similar functions. In biology, because of homol-
ogy, the different alleles of the swapped genes make only minor
changes in the same basic function.

Q There is no requirement that a subtree, after being swapped, is
in a context in the new individual that has any relation to the
context in the old individual. In biology, the genes swapped are
swapped with the corresponding gene in the other parent.

Q Were GP to develop a good subtree building block, it would be
very likely to be disrupted by crossover rather than preserved
and spread. In biology, crossover happens mostly between sim¬
ilar genetic material. It takes place so as to preserve gene func¬
tion with only minor changes.

G There is no reason to suppose that randomly initialized indi¬
viduals in a GP population are members of the same species -
they are created randomly.

Given these differences, why should we expect crossover among
GP individuals to have anything like the effect of biological crossover?
Indeed, crossing over two programs is a little like taking two highly
fit word processing programs, Word for Windows and WordPerfect,
cutting the executables in half and swapping the two cut segments.
Would anyone expect this to work? Of course not. Yet the indis-
putible fact is that crossover has produced some remarkable results.
So each difference between biological and GP crossover should be re¬
garded as a possible way to improve GP crossover - some of which,
as we will see below, have already been implemented.

6.5 Improving Crossover — New Directions

Our critique of crossover suggests areas in which the crossover oper¬
ator might be improved. We regard the most basic and promising
approach to be modification of GP crossover so that it acts more like
homologous crossover in nature. Nature has gone to great lengths to
avoid macromutation in crossover (see Chapter 2). There is likely to
be a reason for the energy nature devotes to avoiding macromutation.
We submit, therefore, that homology should be the central issue in
redefining the crossover operator.

However, most of the efforts to improve crossover to date have
focussed on the preservation of building blocks, not the preserva¬
tion of homology. Some of those efforts have been successful, others
have intriguing empirical implications regarding the building block
hypothesis, and others represent a first look by the GP community
at the issue of homology. The remainder of this section will look at
these studies.

6.5.1 Brood Recombination

Drawing on work by Altenberg [Altenberg, 1994a], Tackett devised a
method for reducing the destructive effect of the crossover operator
called brood recombination [Tackett, 1994]. Tackett attempted to
model the observed fact that many animal species produce far more
offspring than are expected to live. Although there are many different
mechanisms, the excess offspring die. This is a hard but effective way
to cull out the results of bad crossover.

Tackett created a "brood" each time crossover was performed.
One of the key parameters of his system was a parameter called brood

Figure 6.4
Brood recombination
illustrated

size N. Figure 6.4 shows the creation and evaluation of a brood where
N = 4, which took place in the following steps:

1. Pick two parents from the population.

2. Perform random crossover on the parents AT times, each time
creating a pair of children as a result of crossover. In this case
there are eight children resulting from N = 4 crossover opera¬
tions.

3. Evaluate each of the children for fitness. Sort them by fitness.
Select the best two. They are considered the children of the
parents. The remainder of the children are discarded.

There is one big problem with this approach. GP is usually slow
in performing evaluations. Instead of having two children to evalu¬
ate, as in standard crossover, brood recombination appears to make

Time-Saving Evaluation

Methods

Is Brood
Recombination

Effective?

it necessary to evaluate 27V children. Will this not slow down GP
tremendously? The answer is no, because of a clever approach Al-
tenberg and Tackett take to evaluation. Tackett reasons that it is only
important that the selection on the brood selects children that are
"in the ballpark" - not that they are certainly the best of the brood.
So he evaluates them on only a small portion of the training set. Be¬
cause the entire brood is the offspring of one set of parents, selection
among the brood members is selecting for effective crossovers - good
recombinations.

Brood recombination is similar to ES-style selection (see Section
4.3.2). There, immediately after applying the genetic operators to
H parents, a selection step chooses the best offspring. However, the
number of offspring in (//, A) selection, A, is greater than //, whereas
in brood recombination the number of offspring is an integer multiple
of/x.4

In Chapter 1 we looked at GP as a type of beam search. The
beam is the population. Viewed another way, the beam is the genetic
material in the population, not just the individuals. In this light,
crossover combined with selection could be viewed as part of the
evaluation metric to select genetic material from the beam as the next
search point. Brood recombination would then be a discriminating
addition to the evaluation metric for the beam.

However we view it, we would expect brood recombination to
be less disruptive to good building blocks than ordinary crossover
because the children of destructive crossover events would tend to be
discarded when the brood is evaluated. Therefore, we would predict
that GP could build larger building blocks with brood recombination
before disruptive forces began to break them up. That being the
case, we would expect GP with brood recombination to search for
solutions more efficiently than regular GP. That is, for each unit of
CPU time, brood recombination should produce a better result.

In fact, that is exactly what happened. Tackett found that brood
recombination performed significantly better than standard GP on
a suite of problems. Indeed, he found that there was only a small
reduction in performance by using 30 out of the 360 training instances
to evaluate the brood. In all cases measured, the results achieved by
particular amounts of computation and diversity in the population

4The trick of not using all fitness cases for program evaluation has
been applied successfully completely independent of brood recombination.
Gathercole used this technique in 1994 [Gathercole and Ross, 1994]. We
refer to the technique as "stochastic sampling" because it uses a stochasti¬
cally selected subset of all the training cases. In an extreme case, stochastic
sampling can be used to train a population on only a single member from
the training set at a time[Nordin and Banzhaf, 1995c].

both improved when brood recombination was added. He also found
that it was possible to reduce the population size when he used brood
recombination.

Brood recombination raises two interesting questions. Does brood
recombination work by not disrupting building blocks or by adding
a different form of search process to the GP algorithm - in machine
learning terms, giving the GP algorithm the ability to look ahead
when adjusting the beam? Tackett's results may be regarded as con¬
sistent with either premise.

All that we would expect the brood recombination operator to
do is to change the balance between destructive crossover and con¬
structive crossover. In short, we would predict that, with brood re¬
combination, GP would be able to maintain larger building blocks
against destructive crossover. Eventually, as the building blocks got
larger, the probability of destructive crossover would increase and we
would predict that bloat would set in to protect the larger building
blocks. This suggests that a dynamic form of brood recombination,
where the size of the brood grows as evolution proceeds, may yield
best results.

6.5.2 "Intelligent" Crossover

Recently, researchers have attempted to add intelligence to the cross¬
over operator by letting it select the crossover points in a way that
is less destructive to the offspring.

The PADO system was discussed (Section 5.2.3) as a prototypic
graph-based GP system. Simple crossover in GP systems is rather
straightforward. But it is far from obvious how to cause intelligent
crossover, especially in a graph GP system. Teller has devised a
complex but surprisingly effective technique for improving the rate
of constructive crossover in PADO by letting an intelligent crossover
operator learn how to select good crossover points. Teller gives his in¬
telligent crossover operator access to information about the execution
path in an evolved program, among other things. This information is
then used to guide crossover [Teller and Veloso, 1995b] [Teller, 1996].

Teller's intelligent recombination operator significantly improved
the performance of traditional GP crossover. The percentage of re¬
combination events that resulted in offspring better than the parents
approximately doubled. Zannoni used a cultural algorithm (a more
traditional machine learning algorithm) to select crossover points
with similar results [Zannoni and Reynolds, 1996].

Iba [Iba and de Garis, 1996] has proposed a form of intelligent
heuristic guidance for the GP crossover operator. Iba computes a so-
called performance value for subtrees. The performance value is used

A Crossover Operator

That Learns

A Crossover Operator
Guided by Heuristics

to decide which subtrees are potential building blocks to be inserted
into other trees, and which subtrees are to be replaced. This heuristic
recombinative guidance improves the effect of crossover substantially.

These results are quite consistent with the building block theory.
The intelligent operators discussed here obviously found regularities
in the program structures of very different GP systems and devised
rules to exploit those regularities. As a result, the systems were
able to choose better crossover sites than systems based on standard
GP crossover, which chooses crossover sites randomly. These studies
therefore suggest that in GP:

Q There are blocks of code that are best left together - perhaps
these are building blocks.

Q These blocks of code have characteristics that can be identified
by heuristics or a learning algorithm.

Q GP produces higher constructive crossover rates and better re¬
sults when these blocks of code are probabilistically kept to¬
gether.

These points are not a statement of the building block hypothesis
in its strong form - they do not prove that the blocks of code are as¬
sembled into better combinations. However, the points are certainly
strong support for a weak building block hypothesis, namely, that
there are blocks of code evolved in GP that are best not disrupted.

Both of the above techniques, brood recombination and smart
crossover, attack the crossover problem as a black box. In essence,
they take the position that it does not matter how you get better
crossover. What is important is to improve the final overall result.
The next few techniques we will discuss are based on attempting to
model biological crossover so that better results from crossover will
emerge from the evolutionary process itself. Although the results of
this approach to date are less impressive than brood recombination
and smart crossover in the short run, they may hold the most promise
in the long run.

6.5.3 Context-Sensitive Crossover

D'haeseleer [D'haeseleer, 1994] took an emergent approach to improv¬
ing crossover. His work was based on the idea that most crossover
does not preserve the context of the code - yet context is crucial to
the meaning of computer code. He devised an operator called strong
context preserving crossover (SCPC) that only permitted crossover
between nodes that occupied exactly the same position in the two

parents. D'haeseleer found modest improvements in results by mix¬
ing regular crossover and SCPC.

In a way, this approach introduced an element of homology into
the crossover operator. It is not strong homology as in the biological
example, but requiring crossover to swap between trees at identical
locations is somewhat homologous.

6.5.4 Explicit Multiple Gene Systems

Evolution in nature seems to proceed by making small improvements
on existing solutions. One of the most ambitious attempts to create
an emergent system in which crossover is more effective is Altenberg's
constructional selection system [Altenberg, 1995]. He proposes a sys¬
tem in which fitness components are affected by all or some of the
genes. Altenberg's system is highly theoretical because the fitness of
the individual is just the sum of the fitness components. Figure 6.5
is a stylized diagram of the system.

Figure 6.5
Altenberg's
constructional selection
in operation (adopted
from [Altenberg, 1995])

During evolution, a gene is periodically added. If it improves the
fitness of the individual, it is kept; otherwise, it is discarded. Between
gene additions, the population evolves by intergene crossover. Having
multiple fitness functions allows the genes to be more independent or,
in biological terms, to be less epistatic. Altenberg's results suggest
that the population maintains its evolvability because of the selection
when adding a new gene. Also, his results clearly suggest that the
system is less epistatic with constructional selection.

Altenberg's work was extended and applied to real-world model¬
ing of industrial processes by Hiiichliffe [Hinchliffe et al., 1996], who
used multiple trees to create a multiple gene model.

Let T represent the output of a GP tree. Hinchliffe's model cal- Using Regression

where T1, T2, . . . , Tn are outputs of separate trees which are his genes.
Hinchliffe calculates the parameters a,b,c,... ,n using pseudo-inverse
linear regression. There is, in a sense, a hill climbing step between the
GP results and the calculation of the output. The linear regression
tends to reduce the impact of negative crossover by assigning higher
values to trees that are highly correlated with the actual output.

In this multiple gene system, crossover occurs in two ways:

Q As high-level crossover. Only T̂ s would be exchanged with T;s
in the other individual.

Q As low-level crossover. Subexpressions may be exchanged from
anywhere in either parent.

This algorithm clearly outperformed standard GP. It is unclear,
however, whether the multiple gene structure or the addition of hill
climbing was the cause of the improved performance. Nevertheless,
Hinchliffe's high-level crossover operator bears a strong resemblance
to base-pair matching in biological homologous crossover.

6.5.5 Explicitly Defined Introns

Recently, we introduced explicitly denned introns (EDI) into GP.5 An
integer value is stored between every two nodes in the GP individ¬
ual. This integer value is referred to as the EDI value (EDIV). The
crossover operator is changed so that the probability that crossover
occurs between any two nodes in the GP program is proportional
to the integer value between the nodes. That is, the EDIV integer
value strongly influences the crossover sites chosen by the modified
GP algorithm during crossover [Nordin et al., 1996].

The idea behind EDIVs was to allow the EDIV vector to evolve
during the GP run to identify the building blocks in the individual
as an emergent phenomenon. Nature may have managed to identify
genes and to protect them against crossover in a similar manner.
Perhaps if we gave the GP algorithm the tools to do the same thing,
GP, too, would learn how to identify and protect the building blocks.
If so, we would predict that the EDIV values within a good building
block should become low and, outside the good block, high. Our
results were modestly positive in linear genomes and inconclusive in
tree-based genomes.

5Why we used the term intron will become clear in the next chapter.

culates its output as follows:

(6.3)

Despite our modest results [Nordin et al., 1995], the EDI tech¬
nique seems to be a promising direction for GP research. Emergent
learning is powerful and, if designed properly, permits learning that
reflects as few of the biases of the user as possible.

Angeline devised a much better implementation of EDIs in 1996
using real-valued EDIVs and constraining changes in the EDIVs by a
Gaussian distribution of permissible mutation to the EDIVs
[Angeline, 1996]. The result of applying this new form of EDIs to
GP crossover was a substantial improvement in GP performance.

The conclusion that may be drawn about crossover from Ange-
line's EDI results is that crossover may be improved substantially
by allowing the GP algorithm to protect some groups of code from
crossover preferentially over other groups of code. This suggests that
there are building blocks in GP individuals, that their existence in
the solution, on average, does create better fitness in the individual,
and that protecting such blocks of code helps crossover to propagate
the better building blocks throughout the population.

6.5.6 Modeling Other Forms of Genetic Exchange

So far we have discussed variants of the crossover operator that were
inspired by biological sexual recombination. These variants dominate
both genetic algorithms and genetic programming.6 However, there
are several ways in which individuals exchange genetic material in
nature. These forms include conjugation, transduction, and transfor¬
mation (see the discussion in Chapter 2). Certainly, in the future it
will be important to do research on GP operators inspired by such
forms of genetic exchange.

Conjugation is used to describe the transfer of genetic information
from one bacterial cell to another. Smith has proposed a conjugation
operator for GAs he deems useful for GP as well [Smith, 1996]. Sim¬
ple conjugation in GAs works like this: two genotypes are selected
for conjugation. One of them is the donor, the other one is the re¬
cipient. A starting point (with identical position in each genotype)
and an end point (again with identical position) are chosen. Then
the donor's selected substring is copied from beginning to end to the
recipient, replacing the corresponding substring in the recipient.

In GP, we need to distinguish between different representations.
In a tree-based GP system, start and end points are nodes in the
trees with the same position. In a linear representation, start and
end points are the position of an instruction in the programs. In
graph-based GP, they are the coordinates of a node in the graphs.

6Often, operators of this kind are called recombination operators, al¬
though in nature recombination is a much more general term.

To foster the spread of potentially advantageous genetic informa¬
tion, conjugation might be combined with tournament selection. In a
2-tournament scheme, the winner would become the donor, the loser
the recipient of genetic material. Multiple conjugation could be done
by several different donors copying genetic information to the same
recipient. Multiple conjugation involving n donors could be combined
preferentially with n + 1-tournament selection.

6.6 Improving Crossover — A Proposal

In the course of the discussion of GP crossover, we have seen its main
weaknesses. To remedy the situation, we present here a homologous
crossover operator for tree-based GP that shares what we identified
as important advantages of natural crossover.

When we say we want to achieve "homologous" crossover in GP,
we could be speaking about one of two things:

1. The mechanism by which biology causes homology, i.e., spe-
ciation, almost identical length or structure of DNA between
parents, and strict base pairing during crossover; or

2. The reason that mechanism of homology has evolved. The
reason the mechanism has evolved makes the actual mecha¬
nism somewhat irrelevant when changing the medium. In other
words, new media like GP may imply new mechanisms.

Our proposal will fall into category 2. That is, we would like to
propose a mechanism for crossover that fits the medium of GP and
that may achieve the same results as homologous crossover in biology.

So the question is what result does homologous crossover have?

Q Two parents have a child that combines some of the genome of
each parent.

Q The exchange is strongly biased toward experimenting with ex¬
changing very similar chunks of the genome - specific genes per¬
forming specific functions - that have small variations among
them, e.g., red eyes would be exchanged against green eyes, but
not against a poor immune system.

Note that this second issue has two aspects, structure and func¬
tion. Obviously, in DNA, similarity of structure is closely related
to similarity of function. Otherwise homologous crossover would not
work. DNA crossover relies entirely on structure (base pair bonding)
so far as we know - it does not measure function. It is speciation

that assures similarity of genetic function during homologous bio¬
logical crossover. So if we are proposing a mechanism to achieve a
result similar to biological crossover, either we must make sure that
structure alone may be used to approximate function or we must sep¬
arately measure functional homology and use those measurements to
guide the crossover.

Here is what we suggest. We measure structural distances by
comparing genotypes and functional distances by comparing pheno-
typic behavior. This way we have two different sources of homology
that we can use either separately or combined. In tree-based GP,
homologous crossover would work like this:

1. Mating selection
Two trees are selected randomly.

2. Measurement of structural similarity
Structural similarity is denned by using edit distances, already
applied by [Sankoff and Kruskal, 1983]. This is a method for
comparing variable length structures for similarity. We only
need to fix an order in which to traverse the tree: depth first.7

We number all edges between nodes in both trees according to
depth-first traversal. Each edge will subsequently serve as the
"coordinate" of the subtree starting from the node it points to.

Once we have found, for each edge k in the larger tree, a subtree
with smallest distance (and therefore an edge imin(k)) in the
other tree - a distance we call Ds(k,imin(k)) - we add up all
these minimal distances

and normalize each Ds(k,imin(k)) through division by DS to
yield a quantity Dc[(k,imin(k)}.8

3. Measurement of functional similarity
We measure the output of each subtree (again, in the smaller
tree) for a (small) sample of the fitness cases. We compare the
outputs to those of the other tree and its subtrees and calculate

^Efficient search techniques need to be used for the algorithm. It is
best to traverse one tree (say, the larger) and to check with all subtrees
of the other (say, the smaller) the distance between the two. Since we are
always looking for the minimal distance only, distance computation can
be stopped as soon as it assumes a larger value than the presently known
nearest subtree.

8We can do the same for the other tree, in order to act symmetrically.

(6.4)

the functional difference,

(6.5)

for the sample of a fitness cases. The resulting distances are
again normalized by dividing by their sum DF

4. Selection of crossover points

We use these two measures to determine the probability that
the trees are crossed over at a specific edge according to a chosen
policy. Table 6.1 gives some ideas for possible policies.

Table 6.1
Different policies for
crossover point selection
with the homologous
crossover operator. SMD:
structurally most distinct;
FMS: functionally most
similar. P is the
probability of crossover at
edge k. n is a
normalizing factor
assuring that P is a
probability.

A GP 1-Point

Crossover Operator

L Type

SMD
FMS

FMS/SMD

P(Crossover at edge fc)

Dg(k,imin(k))
l-D$(k,jmin(k))

J-S a (rC, ITTlZTli Kj J 1 1 — D p (KI JTT12,TL(K} J I / Tl

To this end, values in Table 6.1 are interpreted as probabilities,
and a roulette wheel is used to select one of the edges (subtrees) for
crossover. Suppose we have selected ks in parent 1 by this method.
We then act either deterministically by taking the corresponding edge
(subtree) imin(ks) or jmin(ks), respectively, from parent 2, or we
proceed by selecting a subtree in parent 2 by employing the roulette
wheel again. This way we have biased crossover probabilities by
structural and functional features of the trees.

An analogous method can be used for linear programs. Here, we
could even apply a much simpler method, based on position in the
linear sequence only. There is a problem for graph-based systems,
though, since we do not have a clear order of execution.

Recently, Poli and Langdon have formulated a new crossover op¬
erator for tree-based GP that has distinctly homologous overtones
[Poli and Langdon, 1997b]. It is based on an analogous formulation of
the one-point crossover of GAs for genetic programming. One-point
crossover for a GA selects one point only in both parents to exchange
genetic material at this point (see Figure 4.3). In the work of the au¬
thors, this selection process involves checking for structural similarity
of the trees in order to find a corresponding point in the second par¬
ent, once it has been determined in the first. The experimental evi¬
dence so far achieved for this new operator [Poli and Langdon, 1997a]

suggests that its behavior is in line with our expectations for a ho¬
mologous crossover operator: destructive crossover diminishes over
the course of generations. Note that Poll and Langdon have based
their operator on finding structural homology alone.

6.7 Improving Crossover - The Tradeoffs

We have concluded that, in its present state, standard GP crossover
acts mainly as a macromutation operator. Indeed, much of our dis¬
cussion in this chapter has focused on how to improve crossover -
how to make it more than a simple macromutation operator. All this
seems to assume that simple macromutation is not enough. But it is
important not to underestimate the power of a simple mutation op¬
erator. Orgel, Tuerk/Gold, and Bartel/Szostak's biological test tube
evolution experiments demonstrate the power of simple population-
based evolutionary search using only mutation, selection, and repli¬
cation (see Chapter 2). GP crossover may do no more than replicate
Orgel, Tuerk/Gold, and Bartel/Szostak's search techniques in digital
form. By itself, this would suggest that GP is a powerful algorithm
for program induction.

However, because of the claims of the schema theorem, we have
expected more of crossover. All indications are that crossover can be
improved substantially in both the quality and efficiency of the search
it conducts. But there is a cost associated with improving crossover
in GP. Each of the techniques we have discussed for enhancing cross¬
over - brood recombination, explicitly defined introns, and so forth -
may carry additional digital overhead such as less efficient use of
memory and CPU time. This digital overhead may be likened to the
large amount of biological energy expended to maintain homologous
crossover in nature. Crossover that acts as something other than a
macromutation operator does not come free - in biology or in GP.
This suggests two important issues:

LI Duplicating homologous crossover is probably well worth try¬
ing. Nature would not waste so much energy on homologous
crossover unless it played an important role in evolutionary
learning.

Q We probably should not expect the benefits of homologous
crossover at any lesser cost than is paid by nature.

It remains to be seen whether we are best off with a minimal cost
approach similar to Orgel's fast RNA, or Tuerk and Gold's SELEX
algorithm from biology, or whether incurring the significant overhead
of implementing more homologous GP crossover will put GP over a

Tradeoffs

Digital Overhead and
Homology

Locating the Threshold

threshold that yields disproportionately large results. This threshold
appears to exist in nature - natural evolution has incurred the over¬
head of inventing and maintaining species, peacock tails, and huge
dysfunctional antlers on male deer as part of the process of main¬
taining homology in crossover. Whether we can find a way to cross
that threshold in GP is one of the great unanswered questions in
evolutionary algorithms.

6.8 Conclusion

The same arguments we have raised for the crossover operator might
apply to the mutation operator as well. The mutation operator is
stochastic. It certainly stands to benefit from improvements, for ex¬
ample, through smart mutation or other types of added mechanisms.

For the sake of the argument, we have concentrated here on the
crossover operator because it is at the heart of standard genetic pro¬
gramming. It is clearly an imperfect operator in the current state of
the art. However, recent developments suggest that it will become
a much more powerful and robust operator over the next few years
as researchers incorporate the approaches discussed in this chapter
into their systems, combine the approaches, and devise new ways to
improve the operator.

What is the future of the building block hypothesis? Ironically,
one of the strongest arguments for the building block hypothesis is the
manner in which a GP population adapts to the destructive effects of
crossover. GP individuals tend to accumulate code that does nothing
during a run we refer to such code as introns. Recent experimental
results strongly suggest that the buildup of introns is primarily an
emergent response by a GP population to the destructive effects of
crossover [Nordin et al , 1996] [Soule and Foster, 1997a].9

We will discuss this phenomenon at greater length in the follow¬
ing chapter, but here the important point is that the presence of
introns underlines how important prevention of destructive crossover
is in the GP system. Indications are strong that there is something
valuable to protect from crossover - probably good building blocks.

9There has been some controversy about whether bloat was caused by
a GP system defending itself against the destructive effect of crossover.
Some researchers have reasoned that bloat could not be due to defense
against crossover [Altenberg, 1994a]. Others have argued to the contrary
[Angeline, 1996]. The empirical study referred to in the text suggests that
Angeline is correct. There is a very strong correlation between bloat and
the reduction of destructive crossover in GP systems.

So the challenge in GP for the next few years is to tame the crossover
operator and to find the building blocks.

Table 6.2
Fitness distribution for
exercise 5

Exercises

1. What is the commonest effect of a crossover event in GP?

2. Give two methods for improving crossover in GP.

3. What is brood recombination?

4. Describe the crossover operator of a graph-based system like
PADO.

5. In the text, we mention that the effect of crossover may be
measured by pairing one child with one parent. How would you
pair the parents of Table 6.2 with the children? How would you
score the crossover event where the parents and the children had
the following fitnesses (assume that higher is more fit)? You

Parent 1
100
900
900
900
900
900

Parent 2
1000
1000
1000
1000
1000
1000

Child 1
500
1400
900
1000
450
800

Child 2
900
900
1000
900
1100
900

may wish to consult Figure 6.3 in justifying your decision.

6. Prove to yourself that it would be better to have a system that
uses natural selection and combines good building blocks than
a system that uses only natural selection.

7. If you were trying to improve crossover in tree-based GP by
using a higher-level learner as in [Zannoni and Reynolds, 1996]
or [Teller, 1996], what kind of information would you give to
the high-level learning system?

8. Devise an algorithm to let tree-based GP grow "one gene at a
time." How would you keep track of the genes as the population
evolved?

9. How would you introduce species to GP?

10. Design a conjugation operator for GP with linear genomes.

11. What effects could result from using GP conjugation instead of
crossover?

12. Suggest a GP operator for transduction and transformation.

Further Reading

P.J. Angeline,
EVOLUTIONARY ALGORITHMS AND
EMERGENT INTELLIGENCE.
Ohio State University, Columbus, OH, 1995.

H. Iba, H. de Garis, and T. Sato,
RECOMBINATION GUIDANCE FOR
NUMERICAL GENETIC PROGRAMMING.
In 1995 IEEE CONFERENCE ON EVOLUTIONARY COMPUTATION.
IEEE Press, Piscataway, NJ, 1995.

U.-M. O'Reilly,
AN ANALYSIS OF GENETIC PROGRAMMING.
Ottawa-Carleton Institute for Computer Science, Ottawa, Ontario,
Canada, 1995.

W.A. Tackett,
RECOMBINATION, SELECTION, AND THE GENETIC CONSTRUCTION
OF COMPUTER PROGRAMS.
University of Southern California, Department of Electrical
Engineering Systems, 1995.

7 Genetic Programming
and Emergent Order

Contents

7.1 Introduction 176

7.2 Evolution of Structure and
Variable Length Genomes 177

7.3 Iteration, Selection, and Variable Length
Program Structures 179

7.4 Evolvable Representations 180

7.4.1 Ignoring Operators or Terminals 180

7.4.2 Finding Solutions of the Correct Length 180

7.4.3 Modularization and Meta-Learning 181

7.5 The Emergence of Introns,

Junk DNA, and Bloat 181

7.5.1 What Can We Learn from Biological Introns? . . 183

7.6 Introns in GP Defined 185

7.7 Why GP Introns Emerge 187

7.8 Effective Fitness and Crossover 188

7.9 Effective Fitness and Other Operators 190

7.10 Why Introns Grow Exponentially 191

7.11 The Effects of Introns 194

7.11.1 Problems Caused by Introns 195

7.11.2 Possible Beneficial Effects of Introns 197

7.12 What to Do about Introns 199

7.12.1 Reduction of Destructive Effects 199

7.12.2 Parsimony 200

7.12.3 Changing the Fitness Function 200

Similarity between GP
and DNA / RNA

Representation of the
Problem

7.1 Introduction

The dynamics of a GP run are similar to the changes that take place
during the Q/3 replicase RNA experiments discussed in Chapter 2.1

Both feature substantial variety in large populations at the outset of
the evolutionary process. Both effect profound structural and func¬
tional changes in the population during the run, and both eventually
stagnate. That is, both GP and Q/3 replicase runs eventually reach
a point where further evolution is impossible (see Figure 5.17).

Changes in a GP run reflect the fact that GP, like natural evolu¬
tion, is a complex process. It has emergent properties that may not
be obvious until observed in action. This chapter focuses on emergent
properties arising from GP's freedom of representation of the prob¬
lem space. GP programs share many features with DNA and RNA
(see Chapters 2 and 5). All have variable length structures, all have
elements that code for particular actions (functions and codons), and
over time, these elements may be moved around or combined with
other elements during evolution.

The reader may recall from Chapter 1 that the GP problem rep¬
resentation is, theoretically, a superset of the representations of all
other machine learning systems. This stems from both its variable
length structure and its freedom of choice of functions and terminals -
if a computer can do it, GP can use it in its representation.

GP's enormous freedom of representation is a mixed blessing.
With such a huge search space, an algorithm might have to search
for a long time. There are benefits to narrowing the search space as
long as the researcher has grounds for believing that the answer to
the problem lies somewhere in that narrow space. But the price of
narrowing the search space is that the problem representation cannot
evolve outside this range if the solution does not lie there.

In this chapter, we will look closely at two important emergent
properties of GP:

Q GP's ability to search the space of the problem representation.

Q The problem (or promise) of introns or bloat

We group these issues together because both present important
and unresolved questions for the future of GP and both appear to
emerge in GP runs as a result of one of the most distinctive features
of GP - variable length genotypes.2

1With one important exception: The selection pressure is much more
constant in conventional GP systems than in the Q/3 experiments.

2Angeline has argued correctly that the distinction between GP and
fixed-length GAs is not a real distinction [Angelina, 1994]. That is, every

7.2 Evolution of Structure and
Variable Length Genomes

The capability to evolve a representation of the problem depends
on the ability of a learning algorithm to modify the structure of its
own solutions. We shall illustrate this point with a, simple gedanken
experiment about how evolution of representation is possible with
variable length genotypes. We contrast that result with fixed length
genotypes.

Typical fixed length evolutionary algorithms (EA) come in many
flavors. They may optimize a fixed length vector of real numbers sub¬
ject to constraints (evolutionary programming or evolution strate¬
gies). Or they may evolve fixed length bit strings (as in a standard
genetic algorithm). As we will see, such fixed length structures have
little capacity for evolution of their genotype (their structure) be¬
cause the length and meaning of each element have been determined
in advance.

By evolving structure, a variable length genotype may be able
to learn not only the parameters of the solution, but also how many
parameters there should be, what they mean, and how they interre¬
late. This introduces many degrees of freedom into the evolutionary
search that are missing in fixed length structures.

Let us look now at how two very simple EAs - one fixed and one
variable in length - would evolve a rod of a certain target length, say,
LI — 9 cm. In this very simple form, the problem could be solved
using very simple fixed length parameter optimization. The genome
would consist of just one gene (a fixed length of 1), which coded
for the "length" of the rod. An evolutionary search minimizing the
deviation of the actual length d — (L — Lt)

n with n > 0 would solve
the problem easily.

Let us make the task more difficult. Now, the target rod must be
assembled from other rods of three different lengths, say,

11 = 4 cm (7.1)

12 = 2 cm (7.2)

13 = 1 cm (7.3)

GP system sets some maximum size on its representation. So in that
sense, it has a fixed length. Likewise, any GA system could set its fixed
length to a very high value and then allow the GA to be effectively shorter,
as is exemplified in [Wineberg and Oppacher, 1996]. Nevertheless, as a
practical matter, GAs rarely assume this form and GP almost always does.
So when we refer to GP's "unusual" property of being variable in length,
it is a practical argument.

Fixed Length
Genotypes

Variable Length
Genotypes

A Gedanken
Experiment

7 Genetic Programming and Emergent Order

Table 7.1

Solutions to rod assembly

problem, Lt = 9, given

copies of three

elementary pieces

h = l , / 2 = 2,/3 = 4

A rod length L of varying size could be generated by putting together
a number N of these elements in arbitrary sequence:

(7.4)

where each element l^ is chosen from one of the available lengths

l(i)e{l1,l2,l3},i = l,...,N (7.5)

Now the problem is strongly constrained because the EA may
only use "quantized" pieces of rod. A fixed length genome may as¬
semble only a fixed number of rods into the target rod. The quality
of such a fixed length system is entirely dependent on what value of
N the researcher picks. Table 7.1 shows how the choice of N affects
the probable success of the search.

Table 7.1 gives the number of correct solutions possible for differ¬
ent genome sizes, together with examples for each size. There is no

Genome size

2
3
4
5

6

7
8
9
10

7̂ perfect solutions

0
3
12
20
5
6

120
42
8
1

0

Sample solution

-
4 4 1

4 2 2 1
4 2 1 1 1
2 2 2 2 1

4 1 1 1 1 1
2 2 2 1 1 1

2 2 1 1 1 1 1
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

-

solution where TV < 3 or TV > 9. Further, if one chooses N = 5, the
system can find only a subset of all possible solutions. This subset
might even be disconnected in the sense that there is no smooth path
through the search space on the way to a perfect solution.3

3 One possible fixed length genome coding that would work in this par¬
ticular case would be to have three genes, each a natural number that
defines how many of one of the rod lengths are to be used in a solution.
This cleverly allows the genotype to stay fixed but the phenotype to change.
This approach depends on the researcher knowing the problem domain well
and using a clever device to solve the problem. It would work only as long
as the number of pieces to be assembled remains constant. But what if it

Of course, if a variable length solution were used to represent the
problem in Table 7.1, the EA would have access to every possible
solution in the table and would not be dependent on the researcher's
up-front choice of N. Thus, our gedanken experiment with the rods
and the variable length genome may be seen in one aspect as very
similar to the Q/3 replicase RNA experiments discussed in Chapter 2.
The original RNA template was over 4000 base pairs long. If the
RNA had not been able to change its very structure, it would never
have found the fast RNA solution, which was only 218 base pairs long.
The variable length genotype is perhaps genetic programming's most
radical practical innovation compared to its EA roots.

7.3 Iteration, Selection, and Variable Length
Program Structures

Until now, our argument may have appeared to assume that varia¬
ble length solutions, by themselves, have some magical property of
changing their own structure. In reality, this property emerges only
when the variable length structure is part of a larger dynamic of iter¬
ation and selection. That is, the unique properties of variable length
structures appear in an evolutionary context. This result is perhaps
not surprising. DNA itself varies greatly in length and structure from
species to species. Even the Q/3 replicase RNA experiments involved
the evolution of variable length structures.

The essence of evolution might be subsumed as being (1) itera¬
tive insofar as generation after generation of populations are assigned
reproduction opportunities; and (2) selective, insofar as the better
performing variants get a better chance to use these opportunities.

It is thus the interplay between iteration and selection that makes
evolution possible. Dawkins has called this aspect cumulative selec¬
tion [Dawkins, 1987]. It is cumulative because the effects of selection
acting on one generation are inherited by the next. The process does
not have to start again and again under random conditions. What¬
ever has been achieved up to the present generation will be a starting
point for the variants of the next.

So far we have dealt with abstract notions about variable length
structures, problem representation, iteration, and emergent proper¬
ties. Now it is time to look at how these notions have important prac-

turns out that for some reason it would be good to form another piece of,
say, length U = 5 cm by combining two original pieces together? There
would be no gene for such a piece in the genome just introduced; therefore,
no modules could be formed that would by themselves constitute further
elements for construction of rods.

tical implications in GP. Simply put, the emergent GP phenomena of
(1) evolvable problem representations and (2) introns are among the
most interesting and troubling results of combining variable length
structures with iterative selection. The remainder of this chapter will
be devoted to these two issues.

7.4 Evolvable Representations

The reader will recall that the problem representation is one of the
crucial defining facts of a machine learning system (see Chapter 1).
Most ML paradigms are based upon a fairly constrained problem
representation - Boolean, threshold, decision trees, case-based repre¬
sentations and so forth. Constraints sometimes have the advantage
of making the traversal of the solution space more tractable - as long
as the solution space is well tailored to the problem domain. By way
of contrast, GP may evolve any solution that can be calculated using
a Turing complete language. Therefore, GP search space includes
not only the problem space but also the space of the representation
of the problem. Thus, it may be that GP can evolve its own problem
representations.4

7.4.1 Ignoring Operators or Terminals

A simple example is illustrative. Suppose a GP system had the fol¬
lowing functions to work with: Plus, Minus, Times, Divide. GP
can change this representation by ignoring any of these functions,
thereby reducing the function set. Why should this happen? When
iteration and selection are applied to variable length structures, the
system should magnify the exploration of sections of the representa¬
tion space that produce better results [Eigen, 1992]. So if solutions
that use the divide operator were, in general, producing worse results
than others, we could expect the system to reduce and, eventually,
to eliminate the divide operator from the population.

7.4.2 Finding Solutions of the Correct Length

Elimination of operators is not the only way by which GP may evolve
representations. Let us go back to the example above about evolving
a rod of a particular length. There is an area of the search space

4This is not to say that GP always discovers good representations.
There is some evidence that overloading a GP system with functions can
cause the system to stick in a local minimum [Koza, 1992d]. Nevertheless,
unlike other machine learning paradigms, it is able to evolve representa¬
tions.

between a genome size of three and eight that is a better area to
check than, say, a genome size of twenty. The multiplicative effect
of iteration, selection, and variable length solutions should draw the
search away from genomes that have a size of twenty very quickly
and should focus it on the promising area.

Where we do not know the size of the best solution to a problem
in advance, the ability of GP to examine different size solutions is very
important. If limited to a fixed length, a solution may be too big or
too small. Both situations cause problems. If the largest permitted
solution is less than the optimal solution size, a fixed length system
simply lacks the firepower to find the best answer. On the other hand,
if a fixed length solution is too long, it may not generalize well (see
Chapter 8). Genetic programming can find a short or a long solution
where a fixed length representation cannot.

7.4.3 Modularization and Meta-Learning

The capability of GP to search the space of the problem representa¬
tion is an area where research has only begun. Modularization re¬
search (see Chapter 10) and Koza's automatically defined functions
are two promising directions in this regard.

Another very exciting approach to this issue in GP is a meta-
learning approach. Meta-learning occurs when information about the
problem representation from one GP run is used to bias the search
in later GP runs. In 1995, Whigham designed an evolvable context-
free grammar. The grammar defined what types of programs could
be created by the GP system on initialization. His system was de¬
signed to capture aspects of the function and terminal set that were
associated with successful individuals during a run and to use that
information to bias the grammar used in future runs. His results
were very encouraging [Whigham, 1995a]. This work is probably the
best example to date of how GP's flexibility may be used explicitly
to evolve problem representations. The authors regard this direction
as one of the most promising areas for future GP research.

While variable length solutions have potentially great advantages,
they also appear to be the cause of what may be troubling emergent
properties in GP runs called, variously, introns or bloat.

7.5 The Emergence of Introns,
Junk DMA, and Bloat

In 1994, Angeline noted that many of the evolved solutions in Koza's
book contained code segments that were extraneous. By extraneous,

GP Intron Terminology

GP Bloat

The Persistence of
Introns

Bloat and Run
Stagnation

he meant that if those code segments were removed from the solution,
this would not alter the result produced by the solution. Examples
of such code would be

a = a + 0
b = b * 1

Angelina noted that this extra code seemed to emerge spontaneously
from the process of evolution as a result of the variable length of
GP structures and that this emergent property may be important to
successful evolution [Angeline, 1994].

Angeline was the first GP researcher to associate this emergent
"extra code" in GP with the concept of biological introns. In Chapter
2, we briefly discussed biological introns. Questions may be raised
as to the appropriateness of the analogy between this extra code and
biological introns, as we will note below. Nevertheless, the use of the
term intron to refer to this extra code has become widespread in the
GP community and we will, therefore, use the term introns or GP
introns to refer to the extra code in GP that was first identified by
Angeline in 1994.

Also in 1994, Tackett observed that GP runs tend to "bloat."
That is, the evolved individuals apparently grow uncontrollably until
they reach the maximum tree depth allowed. Tackett hypothesized
that GP bloat was caused by blocks of code in GP individuals that,
while they had little merit on their own, happened to be in close
proximity to high fitness blocks of code. Tackett referred to this
phenomenon as hitchhiking [Tackett, 1994].

A body of research since 1994 has meanwhile established that GP
bloat is, in reality, caused by GP introns [McPhee and Miller, 1995]
[Nordin and Banzhaf, 1995a] [Nordin et al., 1995] [Soule et al., 1996]
[Nordin et al., 1996] [Soule and Foster, 1997b] [Rosca, 1997]. Though
Angeline saw the extraneous code as an "occasional occurrence," sub¬
sequent research has revealed that introns are a persistent and prob¬
lematic part of the GP process. For example, studies in 1995 and
1996 suggest that in the early to middle sections of GP runs, in¬
trons comprise between 40% and 60% of all code. Later in the run,
emergent GP introns tend to grow exponentially and to comprise
almost all of the code in an entire population [Nordin et al., 1995]
[Nordin et al., 1996] [Soule et al., 1996] [Soule and Foster, 1997b]
[Rosca, 1997]. The evidence is strong that evolution selects for the
existence of GP introns.

Bloat is a serious problem in GP. Once the exponential growth of
introns associated with bloat occurs, a GP run almost always stag¬
nates - it is unable to undergo any further evolution [Tackett, 1994]
[Nordin et al., 1995] [Nordin et al., 1996]. On the other hand, Ange-

line suggested in his seminal article that emergent iritrons may have a
beneficial effect on evolution in GP. Was Angeline wrong or are there
two different but closely related phenomena at work here?

It may well be that during the early and middle part of a run,
introns have beneficial effects. For example, theory and some ex¬
perimental evidence suggests introns may make it more likely that
good building blocks will be able to protect themselves against the
damaging effects of crossover [Angeline, 1996] [Nordin et al., 1995]
[Nordin et al., 1996]. On the other hand, the exponential growth of
introns (bloat) at the end of the run is probably deleterious.

The remainder of this chapter will be devoted to the major issues
in GP regarding introns. In brief summary, they are as follows:

Q How valid is the analogy between GP introns and biological
introns? Can we learn anything from biology about GP introns?

Q How should the term intron be defined in GP?

Q What causes the emergence of GP introns?

LI What are the relative costs and benefits of introns in GP runs?

Q How may GP researchers deal with bloat?

With this introduction in hand, it is now possible to move on to
a detailed analysis of the phenomenon of introns.

7.5.1 What Can We Learn from Biological Introns?

In Chapter 2, we briefly discussed introns, exons, and junk DNA. In
a greatly oversimplified overview, DNA is comprised of alternating
sequences of:

Q Base pairs that have no apparent effect on the organism called
junk DNA;

Q Base pairs that exert control over the timing and conditions of
protein production, often referred to as control segments; and

Q Base pairs that comprise genes. Genes are the active DNA
sequences responsible for manufacturing proteins and polypep-
tides (protein fragments).

The gene sequences themselves may be further divided into:

Q Exons, base sequences that actively manufacture proteins or
polypeptides; and

No Direct Effect on the
Genotype

Protection Role of GP
and Biological Introns

Q Introns, base sequences that are not involved in the manufac¬
ture of proteins.

It is tempting to conclude that, because biological introns are not
involved in protein manufacture, they must be the biological equiva¬
lent of the GP introns. They are there but they do nothing. While
there are undoubted similarities between GP introns and biological
introns, there are also real differences that must be taken into account
when making analogies between the two. The following are some of
the more important similarities and differences.

A gene produces a protein by first transcribing an mRNA (mes¬
senger RNA) molecule that is effectively a copy of the base sequence
of the gene. Then the mRNA molecule is translated into a protein or
protein fragment. What happens to the introns during this process
is fascinating. Each intron in a gene has a base pair sequence at the
beginning and end of the intron that identifies it as an intron. Be¬
fore the mRNA is translated to a protein, all of the intron sequences
are neatly snipped out of the translating sequence. In other words,
biological introns do not directly translate into proteins. Therefore,
they do not directly translate into the phenotype of the organism.
In this sense they are quite similar to GP introns. The "extraneous
code" in GP introns does not affect the behavior of a GP individual
at all. Recall that best analogy in GP to the biological phenotype is
the behavior of the GP individual. Thus, neither biological nor GP
introns directly translate to their respective phenotypes.

We will describe in detail, later, the theoretical and experimental
results that suggest that GP introns may play some role in protecting
good building blocks against destructive crossover. Watson describes
a similar role for biological introns:

[Sjeveral aspects of the structures of interrupted genes hint that
the presence of introns (coupled with the ability to excise them
at the RNA level) could have been used to advantage during the
evolution of higher eucaryotic genomes.

Since exons can correspond to separate structural or functional
domains of polypeptide chains, mixing strategies may have been
employed during evolution to create new proteins. Having individ¬
ual protein-coding segments separated by lengthy intron sequences
spreads a eucaryotic gene out over a much longer stretch of DNA
than the comparable bacterial gene. This will simultaneously in¬
crease the rate of recombination between one gene and another
and also lower the probability that the recombinant joint will fall
within an exon and create some unacceptable aberrant structure
in the new protein. Instead, recombination will most likely take

place between intron sequences, thereby generating new combina¬
tions of independently folded protein domains.

WATSON ET AL., 1987

Note that this is very much like our later description of the pos¬
sible "structural" effect of introns in the early and middle part of GP
runs. In their structural role, introns would serve to separate good
blocks of code and to direct the crossover operator to portions of the
genome where crossover will not disrupt the good blocks.

On the other hand, there is no biological analogy to the runaway,
exponential growth of introns at the end of GP runs that is referred
to as bloat. So while it may be valid to draw the analogy between
GP introns that serve a structural role and biological introns, the
analogy is strained at best when it comes to bloat.

As we discussed in Chapter 2, the existence and contents of bi¬
ological introns are correlated with significant effects on both the
amount and the quality of the proteins expressed by the gene in
which the introns occur. This is true despite the fact that introns
have no direct effect on protein manufacture. The mechanism of the
indirect effect is not known. Nevertheless, we can conclude that bi¬
ological introns do indirectly affect the survivability of the organism
and its genetic material.

GP introns do not have any known effect on the survivability
of the GP individual, direct or indirect. However, they probably
do affect the survivability of the offspring of a GP individual quite
profoundly (see below). Thus, GP introns do have an indirect effect
on the survivability of the genetic material of an individual.

Notwithstanding that both biological and GP introns have an
indirect effect on survivability, the nature of the effect is different.
Accordingly, while there are similarities between biological introns
and GP introns, the differences are substantial and must be taken
into account when reasoning from one domain to the other.

Introns Affect the
Survivability of the
Organism Only
Indirectly

Conclusion

7.6 Introns in GP Defined

In Chapters 2 and 5, we discussed how GP frequently does not distin¬
guish between genotype and phenotype structures. In that case, the
GP program may be regarded as the genotype and its behavior (that
is, the state transitions it causes in the computer) may properly be
regarded as the phenotype [Maynard-Smith, 1994] [Angeline, 1994].
On the other hand, many GP and GA systems feature an explicit dis¬
tinction between the genotype structure and the phenotype structure.
In that case, the phenotype's structure is, by analogy with biology,

Introns Defined

Intron Equivalents

properly regarded as part of the phenotype. But the behavior of the
entity would be part of the phenotype in this situation also.

Defining a GP introii becomes rather tricky when one must be
consistent with the biological analogy upon which the theory of in-
trons is based. Recall that the strict biological definition of an intron
is a sequence of base pairs that is clipped out before the maturing
of messenger RNA. More generally, since an organism may survive
only by structure or behavior, an intron is distinctive primarily as
a sequence of the DNA that affects the chances of the organism's
survival only indirectly.

From the above argument, two features may be used to define
introns:

Q An intron is a feature of the genotype that emerges from the
process of the evolution of variable length structures; and

Q An intron does not directly affect the survivability of the GP
individual.

Under the above definition, the following S-expressions would be
examples of introns:

(NOT (NOT X)),
(AND .. . (OR X X)),

(+ . . . (-XX)) ,

(+ X 0),

(* * i),
(*. . . (DIVXX)) ,
(MOVE-LEFT MOVE-RIGHT),
(IF (2 = 1) . . . X),
(SET A A)

By this definition, we draw very heavily on Angeline's 1994 con¬
cepts, which also focused on the very interesting dual aspect of in¬
trons. Introns are emergent and they do not directly affect the fitness
of the individual [Angeline, 1994]. In GP, this means that any code
that emerges from a GP run and does not affect the fitness of the
individual may properly be regarded as an intron.

By this definition, we also ignore the details from biology of how
an intron manages not to be expressed (i.e., the intron is snipped
out before the maturing of mRNA). In short, we regard the fact that
biological introns are not expressed as proteins to be more impor¬
tant than the manner in which that occurs. The importance of this
distinction will become clear in the next section.

In Chapter 6, we noted that many researchers have used various
techniques to insert "artificial" introns into their GP systems. While

both emergent and artificially inserted introns may behave in similar
ways, the distinction is important. In this book, when we use the
term intron, we mean an emergent intron as defined above. When
we refer to artificially inserted introns, we shall use the term artifi¬
cial intron equivalents. Therefore, the insertion into the genome of
explicitly defined introns by Nordin et al. and Angeline, of introns by
Wineberg et al., and of write instructions that have no effect by An¬
dre et al. may all be regarded as different ways of inserting artificial
intron equivalents into the genome. Unlike introns, artificial intron
equivalents do not emerge from the evolutionary process itself.

One final distinction: we shall call an intron global if it is an
intron for every valid input to the program, and we call it local if it
acts as an intron only for the current fitness cases and not necessarily
for other valid inputs.

Global vs. Local Introns

7.7 Why GP Introns Emerge

By definition, introns have no effect on the fitness of a GP individual.
We would not expect to see strong selection pressure to create any
genomic structure that does not affect the fitness of an individual. So
why do introns emerge? The short answer is that, while introns do not
affect the fitness of the individual, they do affect the likelihood that
the individual's descendants will survive. We shall refer to this new
concept of fitness, which includes the survivability of an individual's
offspring, as effective fitness.

The effective fitness of an individual is a function not only of how
fit the individual is now but also of how fit the individual's children
are likely to be. By this view, the ability of an individual to have high-
fitness children (given the existing genetic operators) is as important
to the continued propagation of the individual's genes through the
population as is its ability to be selected for crossover or mutation in
the first place. It does no good for an individual to have high fitness
and to be selected for crossover or mutation if the children thereby
produced are very low in fitness. Thus, we would expect individuals
to compete with each other to be able to have high-fitness children.

The reader will recall that the normal effect of crossover is that
the children are much less fit than the parents; see Chapter 6. So
too is the normal effect of mutation. Any parent that can ameliorate
either of these effects even a little will have an evolutionary advantage
over other parents. And this is where introns come in.

Simply put, the theoretical and experimental evidence today sup¬
ports the hypothesis that introns emerge principally in response to the
frequently destructive effects of genetic operators [Nordin et al., 1995]

Destructive Genetic
Operators

Effective Fitness

An Important Caveat

[Nordin et al., 1996] [Soule et al., 1996] [Soule and Foster, 1997b]
[Rosca, 1997]. The better the parent can protect its children from
being the results of destructive genetic operators, the better the ef¬
fective fitness of the parent. Introns help parents do that.

This concept of effective fitness will be very important later. It
is clearly a function of at least two factors:

1. The fitness of the parent. The fitter the parent, the more likely
it is to be chosen for reproduction.

2. The likelihood that genetic operators will affect the fitness of
the parent's children.

Introns emerge as a result of competition among parents with
respect to the second item.

It is important to note what we are not saying. We do not con¬
tend that destructive crossover is always bad or that it is always
good that children have fitness as good or better than their parents
[Andre and Teller, 1996]. In fact, such a rule would reduce GP to
simple hill climbing. Rather, we are saying that destructive genetic
operators are the principal cause of introns. Therefore, one should not
take our use of the term constructive crossover to mean that crossover
should always be constructive. Nor should one understand from the
term destructive crossover that it should never happen. Evolution is
more complex than that. Thus, whether introns are beneficial, detri¬
mental, or both in the GP evolution process has nothing to do with
the question of why introns emerge.

Absolute vs. Effective
Complexity

7.8 Effective Fitness and Crossover

It is possible to derive a formula that describes the effective fitness
of an individual. That formula predicts that there will be selection
pressure for introns. Before deriving this formula, it is necessary to
define the effective and absolute complexity of a program.

By the complexity of a program or program block we mean the
length or size of the program measured with a method that is natural
for a particular representation. For a tree representation, this could
be the number of nodes in the block. For the binary string represen¬
tation, it could be, e.g., the number of bits. The absolute length or
absolute complexity of a program or a block of code is the total size
of the program or block. The effective length or effective complexity
of a program or block of code is the length of the active parts of the
code within the program or block, in contrast to the intron parts.
That is, the active parts of the code are the elements that affect the
fitness of an individual.

7.8 Effective Fitness and Crossover EEj]

In deriving the effective fitness of the individual, we must be

careful to distinguish between effective and absolute complexity. We

may star t deriving the effective fitness of an individual by formulating

an equation tha t resembles the schema theorem [Holland, 1992] for

the relationship between the entities described above.

The following definition will be useful: A Few Definitions and

a Statement
• Let C? be the effective complexity of program j , and CJ its

absolute complexity.

• Let pc be the s tandard G P parameter for the probability of

crossover at the individual level.

• The probability tha t a crossover in an active block of program j

will lead to a worse fitness for the individual is the probability

of destructive crossover, pj. By definition p^ of an absolute

intron5 is zero.

• Let fj be the fitness6 of the individual and / be the average

fitness of the population in the current generation.

Using fitness-proportionate selection7 and block exchange crossover,

for any program j , the average proportion Pj+1 of this program in

the next generation is:

(7.6)

In short, equation (7.6) states tha t the proportion of copies of

a program in the next generation is the proportion produced by the

selection operator minus the proportion of programs destroyed by

crossover. Some of the individuals counted in P t + 1 might be modified

by a crossover in the absolute intron part , but they are included

because they still show the same behavior at the phenotype level.

The proportion P * + 1 is a conservative measure because the individual

j might be recreated by crossover with other individuals.8

Equation (7.6) can be rewritten as:

An absolute intron is defined as neither having an effect on the output
nor being affected by crossover.

6 Notice that this is not standardized fitness used in GP. Here a better
fitness gives a higher fitness value (GA).

7The reasoning is analogous for many other selection methods.
8The event of recreating individuals can be measured to be low except

when applying a very high external parsimony pressure that forces the
population to collapse into a population of short building blocks.

ll'U 7 Genetic Programming and Emergent Order

t+1 „ (fj-Pc-fj-ti-Cj/C? j ~ l r
We may interpret the crossover-related term as a direct subtraction

from the fitness in an expression for reproduction through selection.

In other words, reproduction by selection and crossover acts as re

production by selection only, if the fitness is adjusted by the term:

Pc-fi-^-pl (7-8)

Term (7.8) can be regarded as a fitness term proportional to

program complexity. Hence we define effective fitness fj as:

n = h-p*-n-%-pdi (^

The effective fitness of a parent individual, therefore, measures how

many children of tha t parent are likely to be chosen for reproduction

in the next generation.9 A parent can increase its effective fitness by

lowering its effective complexity (that is, having its functional code

become more parsimonious) or by increasing its absolute complexity

or both. Either reduces the relative target area of functioning code

tha t may be damaged by crossover. Either has the effect of increas

ing the probability tha t the children of tha t parent will inherit the

good genes of the parent intact. In other words, the difference be

tween effective fitness and actual fitness measures the extent to which

the destructive effect of genetic operators is warping the real fitness

function away from the fitness function desired by the researcher.

Rooted-Tree Schemata Recently, Rosea has derived a version of the schema theorem for

"rooted-tree schemas" tha t applies to GP. A rooted-tree schema is a

subset of the set of program trees tha t match an identical tree frag

ment which includes the tree root. The rooted-tree schema theorem

also predicts tha t an individual may increase the likelihood that its

genetic material will survive intact in future generations by either

increasing the fitness of the individual or increasing the size of the

individual [Rosea, 1997].

7.9 Effective Fitness and Other Operators

The above equations could easily be refined to quantify the effect of

the destructive quality of any genetic operator simply by replacing

the term for the probability of destructive crossover with, say, a new

I his assumes / « /

(7.7)

Effective Fitness,

Formal

7.10 Why Introns Grow Exponentially wm

term for the probability of destructive mutation. Since the effect of
mutation is normally quite destructive, this model would predict that
some form of intron should emerge in response to mutation. In fact,
that is exactly what happens.

An example of such an intron we found in great numbers in
AIMGP when increasing the probability of mutation is:

Registerl = Register2 > > Register^ (7.10)

Shift-right (>>) is effectively a division by powers of 2. Here, mu
tations that change argument registers or the content of argument
registers are less likely to have any effect on fitness. By way of con
trast, an intron like

A Mutation-Resistant
Intron

Registerl = Registerl + 0 (7.11)

more typical for a high crossover probability run would very likely
be changed into effective code by a mutation. In short, a type 7.10
intron may be relatively more resistant to mutation than a type 7.11
intron. Interestingly, these new introns are also resistant to crossover.

We can suspect a general tendency of the GP system to protect
itself against the attack of operators of any kind. When it is no
longer probable that fitness will improve, it becomes more and more
important for individuals to be protected against destructive effects
of operators, regardless of whether these are crossover, mutation, or
other kinds of operators.

Equation 7.9 could thus be generalized to include the effects of
other operators as well:

fi-m-~E^-^d-cr] (7.12)

Solutions Defend
Themselves

where r runs over all operators trying to change an individual, pr is
the probability of its application, pr,' is the probability of it being
destructive, and C^'e is the effective complexity for operator r.

7.10 Why Introns Grow Exponentially

Introns almost always grow exponentially toward the end of a run.
We believe that the reason is that introns can provide very effective
global protection against destructive crossover. By that, we mean
that the protection is global to the entire individual. This happens
because at the end of a run, individuals are at or close to their best
performance. It is difficult for them to improve their fitness by solving
the problem better. Instead, their best strategy for survival changes.

(Genetic Programming and Emergent Order

Their s trategy becomes to prevent destructive genetic operators from

disrupting the good solutions already found.

No End to Intron One can reformulate equation 7.12 as follows:

Growth

n=u • [i - i>fr • i1 - (<?r/c?))] (7-i3)
where p • 'r now lumps together the probability both of application

and of destructiveness of an operator r, and Cl-'r is the corresponding

intron complexity. When fitness (fj) is already high, the probability

of improving effective fitness by changing actual fitness is much lower

than at the beginning of the run. But an individual can continue

to increase its effective fitness, even late in a run, by increasing the

number of introns (C*' r) against r in its s tructure.

Further, there is no end to the predicted growth of introns. Be

cause the number of introns in an individual is always less than the

absolute size of an individual, the ratio (supressing index r) C j / C ?

is always less than one. So introns could grow infinitely and continue

to have some effect on the effective fitness of an individual as long as

pD > 0 .

Here are two pictures of how tha t works in practice. Figure 7.1

represents a good solution of functioning (non-intron) code tha t has

no introns. If crossover and mutat ion are destructive with high proba

bility, then the individual in Figure 7.1 is very unlikely to have highly

fit children. In other words, its effective fitness is low.

Figure 7.1
A group of functioning

nodes. E indicates

"effective" code.

By way of contrast, Figure 7.2 shows the same functioning code.

But the individual in Figure 7.2 is at tached to fourteen introns. Al

together, there are four crossover points tha t would result in break

ing up the functioning code in the individual and fourteen crossover

points tha t would not. This individual's effective fitness is, therefore,

relatively higher than the effective fitness of the individual in Fig

ure 7.1. Tha t is, the individual in Figure 7.1 is likely to have children

7.10 W h y Introns Grow Exponentially TT1

Figure 7.2
Same functioning nodes

as in Figure 7.1. Introns

(I) have been added.

that will not compete well with the children of Figure 7.2, even if
their regular GP fitness is identical.

The effect of explosive intron growth is dramatic. Normally,
crossover is destructive more than 75% of the time. But after introns
occupy most of the population, destructive crossover is replaced al
most completely with neutral crossover. Why? At that point, the
individuals are just swapping introns with higher and higher prob
ability each generation. Swapping code that has no effect between
two individuals will have no effect. Hence neutral crossover comes to
dominate a run after the explosive growth of introns.

The Effect of

Exponential Intron

Growth

We have presented a theory about why introns grow exponen
tially. The theory has a good theoretical basis and also some grow
ing experimental support [Nordin et al., 1995] [Nordin et al., 1996]
[Soule and Foster, 1997b]. One additional prediction of this theory
is that exponential growth will come mostly or entirely from introns
or groups of introns that are, in effect, terminals. This is because
introns that occur in the middle of blocks of functioning code are
unlikely to result in neutral crossover if crossover occurs in the in
trons - because there is functioning code on either side of the introns
and it will be exchanged among individuals. Soule's research sup
ports this prediction - bloat appears to grow at the end of GP trees
[Soule and Foster, 1997b].

A Prediction

7 Genetic Programming and Emergent Order

7.11 The Effects of Introns

Various effects have been attributed to introns [Angeline, 1994]
[Nordin et al., 1995] [Andre and Teller, 1996] [Nordin et al., 1996]
[Soule et al., 1996] [Wineberg and Oppacher, 1996]. Some have ar
gued that introns may benefit evolution while others argue that in
trons almost always result in poor evolution and extended computa
tion time. This field is very young and it may be that all of these
studies, some seemingly inconsistent, just represent different points
on the very complex surface that represents the effect of introns.
Much more study is necessary before anything more than tentative
conclusions may be stated. Accordingly, this section will be devoted
more toward outlining the few effects of introns that may be clearly
stated and, as to the other effects, trying to provide a clear outline
of the unanswered issues.

We start by noting again that introns are an emergent phe
nomenon and probably exhibit a good deal of complexity and sensi
tivity to initial conditions. It is important, in outlining these issues,
to keep several points clear:

• Introns may have differing effects before and after ex
ponential growth of introns begins. After exponential
growth occurs, the exponential effect surely overwhelms what
ever effect the introns had previously, if any.

• Different systems may generate different types of in
trons with different probabilities. It may, therefore, be
harder to generate introns in some GP systems than in others
[McPhee and Miller, 1995].

• The extent to which genetic operators are destructive
in their effect is likely to be a very important initial
condition in intron growth. Equation 7.12 and Rosca's work
[Rosea, 1997] predict that the maximum extent to which intron
growth can modify effective fitness is equal or proportional to
pD (the probability of destructive crossover). Furthermore, the
effect of any given change in the ratio Cl /C° on effective fit
ness will be proportional to pD. This underlines the impor
tance of measuring and reporting on destructive, neutral, and
constructive crossover figures when doing intron research (see
Chapter 6).

LI Mutation and crossover may affect different types of in
trons differently. How this works may depend on the system,
the function set and the mix of genetic operators.

7.11 The Effects of Introns mj
A function set tha t uses no conditionals can generate in

trons (a = a + 0). Such introns will be changed, with high

probability, into functioning code by the mutat ion oper

ator [Banzhaf et al., 1996]. Adding more mutat ion will,

therefore, change the initial conditions of the stew.

On the other hand, adding conditional branching creates

the possibility of such introns as I f 2 < 1 t h e n X. If X

represents a subtree of any length, both X and each node

of X would be introns. However, unlike the example in

the prior paragraph, X type introns will be quite immune

to mutat ion within X. Again the initial conditions are

changed.

[J Finally, it is important to distinguish between emergent introns

and artifical intron equivalents. In most systems, the existence

and growth of artifical intron equivalents is more or less free

to the system - a gift from the programmer so to speak. This

may well make artificial intron equivalents much more likely to

engage in exponential growth than emergent introns.

Wi th this in mind, here are some reflections on the possible ben

efits and drawback of introns.

7.11.1 Problems Caused by Introns

Researchers have identified possible problems caused by introns, in

cluding run stagnation, poor results, and a heavy drain on memory

and CPU time.

Run stagnation appears to be, in part , a result of bloat - the Run Stagnation and

exponential growth of introns. This effect is not something for which Bloat

the researcher should strive. Once the population is swapping only

introns during crossover, no improvement is likely to come in the best

or any other individual. All effective growth has ended.

One might argue tha t exponential intron growth is not really

important because it merely reflects tha t the run is over. Tha t is,

the argument goes, individuals in the run cannot improve, given the

problem and the s tate of the population. Tha t introns explode at this

point is therefore of no consequence. While this may be part ly true,

stagnation due to intron growth is probably the result of a balance

between the probability of destructive crossover and the extent to

which changes in effective fitness may be more easily found by finding

bet ter solutions or by adding introns (see equation 7.12). Of course,

it is more difficult to find bet ter solutions after quite some evolution

had already occurred. But tha t does not mean tha t it is impossible

IL'U 7 Genetic Programming and Emergent Order

or even improbable, just less likely. Thus, it is quite possible tha t the

ease of improving effective fitness by adding introns just overwhelms

the slower real evolution tha t occurs toward the end of a run. If this

hypothesis is correct, then the exponential growth of introns would

prevent the population from finding better solutions. This possibility,

of course, becomes greater and greater as the destructive effects of

crossover become greater.

One study suggests that effective evolution may be extended (and

stagnation averted for at least a while) by increasing the mutat ion

rate in a system where mutat ion converts introns to functional code

with high probability. In the high mutat ion runs, the durat ion of

the runs was extended significantly before stagnation, the number of

introns in the populat ion was reduced, and bet ter overall solutions

were found [Banzhaf et al., 1996].

Poor Results Researchers [Andre and Teller, 1996] [Nordin et al., 1995] report

ing poor best individual fitness results have a t t r ibuted those results

to introns. Andre et al. reported very bad results when they added a

form of artificial intron equivalents to their system. They added nodes

tha t were deliberately designed to do nothing but take up space in the

code. Nordin et al. added explicitly defined introns (EDI) (another

type of artificial intron equivalents), which allowed the probability

of crossover to be changed at each potential crossover point. We re

ported good results up to a point but when it became too easy for

the system to increase the EDI values, evolution tended to find local

minima very quickly.

It is difficult to assess how general either of these results is. One

possible explanation for the results is suggested by the argument

above regarding balance. Both studies made it very easy to add in

trons in the experiments tha t showed bad results. The easier it is to

add introns, the sooner one would expect the balance between im

proving fitness, on the one hand, and adding introns, on the other,

to t ip in favor of adding introns and thus cause exponential growth.

By making it so easy to add introns, exponential growth may have

been accelerated, causing evolution to s tagnate earlier. In bo th stud

ies, making it harder for the system to generate introns seemed to

improve performance.

Some support for this tentative conclusion is lent by another

s tudy tha t used explicitly defined introns similar to ours but evolved

them differently. Angeline [Angeline, 1996] inserted EDIs into a tree-

based system. He made it quite difficult for the introns to change

values rapidly by treat ing the EDI vector as an evolvable evolution

ary programming vector. Thus, growth was regulated by Gaussian

distributions around the earlier EDI vectors. This approach led to

excellent results.

7.11 The Effects of Introns MVfi

The computat ion burden of introns is undisputed. Introns occupy Computational Burden

memory and take up valuable CPU time. They cause systems to page

and evolution to grind to a halt .

7.11.2 Possible Beneficial Effects of Introns

Three different benefits may be at t r ibutable to introns.

Although introns tend to create large solutions filled with code

that has no function, they may tend to promote parsimony in the

real code - tha t is, the code tha t computes a solution. As noted else

where, short effective complexity is probably correlated with general

and robust solutions. Ironically, under some circumstances, theory

suggests tha t introns may actually part icipate in a process tha t pro

motes parsimonious effective solutions and tha t this is an emergent

property of G P [Nordin and Banzhaf, 1995a].

Recall equation 7.12. It may be rewritten as follows to make it

easier to see the relationship between parsimony and introns:

fe = f-[l-pD-(Ce/Ca)] (7.14)

supressing indices j and r.

If Ce is equal to Ca, there are no introns in the individual. In

that case, the influence of destructive crossover on the effective fit

ness of an individual is at its maximum. On the other hand, if there

are introns in the individual, a reduction in Ce increases its effec

tive fitness. When Ce is smaller, the solution is more parsimonious

[Nordin and Banzhaf, 1995a]. The conditions tha t would tend to pro

mote such a factor are:

• A high probability of destructive crossover.

• Some introns in the population (almost never a problem).

• A system tha t makes it relatively easier to reduce the amount

of effective code than to add more introns.

Soule's work tends to support the prediction of equation 7.14.

When no destructive crossover is allowed, the amount of effective

code (code tha t has an effect on the behavior of the G P individ

ual) is significantly higher than when normal, destructive crossover is

permitted. The effect persists in virtually all generations and grows

as the run continues [Soule and Foster, 1997b]. Thus, the prediction

tha t effective fitness will tend to compress the effective code of G P

individuals and tha t the effect will be more pronounced as the de-

structiveness of crossover increases now has significant experimental

support.

Compression and
Parsimony

111:1 7 Genetic Programming and Emergent Order

Structural Protection

Against Crossover

Global Protection

Against Crossover and

Bloat

Researchers have also suggested tha t introns may provide a sort

of s tructural protection against crossover to G P building blocks dur

ing the earlier stages of evolution. This would occur if blocks of

introns developed in a way so tha t they separated blocks of good

functional code. Thus, the intron blocks would tend to a t t rac t cross

over to the introns, making it more likely tha t crossover would be

swapping good functional blocks of code instead of breaking them

up. 1 0 This is very similar to Watson et al.'s view of biological introns

in the quotation above.

It is important to distinguish between this structural effect of

introns and the global effect (explosive intron growth effect) discussed

above. The two types of intron effects should have very different

results and should look very different.

• The global effect usually has a very bad effect on G P runs.

It protects the entire individual from the destructive effects of

crossover. It is probably implemented when crossover swaps

groups of introns that are, effectively, terminals.

• The structural effect would, on the other hand, tend to protect

blocks of effective code from the destructive effects of crossover -

not the entire individual. Unlike global protection, which al

most always has negative effects, s tructural protection could be

very beneficial if it allowed building blocks to emerge despite

the destructive effects of crossover and mutat ion.

This s tructural effect would look considerably different than the

global effects of introns discussed above. Structural protection would

be characterized by groups of introns between groups of functional

code instead of introns tha t were, effectively, terminals. In fact, in

linear genome experiments, the authors have located a tendency for

introns and functional code to group together. It can be observed by

looking at the development of the so-called intron map which shows

the distribution of effective and intron code in a genome.

Intron Maps Figure 7.3 shows such an intron map. It records, over the gen

erations, the feature of particular locations on the genome, whether

they are introns or not. The figure was the result of a pa t te rn recog

nition run with GP. In the early generations, the length of programs

quickly increases up to the maximum allowed length of 250 lines of

code. The further development leads to a stabilization of the feature

at each location, which in the beginning had been switching back and

forth between effective and intron code.

10The theoretical basis for this idea is formalized in [Nordin et al., 1995]
[Nordin et al., 1996]. Angeline's results with explicitly defined introns tend
to support this hypothesis [Angeline, 1996].

7.12 W h a t to Do about Introns KIM

Intron-Map

! i i ! i i ! i l i i i i i!

i ! l

il I i i : Hi
Hi! I I I ! ; !

!!| ' '! ill :
! i i ; i j >

:!!!!! i!!!

I

: ! i ! l iJ l l j l ! l l | ! | | l l i l j : ! | i l ! ! | l !J I ! ! ! l i !J ! ! i ! i ! ! !

; :M n : ! i i :

hi

il
i i i i i l i i i i i

nil
iNl i ' l l i

I '!!! ' ' •'!
i i i i i l i

I I I

II I I I I I |i!M I : j ' :! i l !

ilii:ij;ii!iiJ!ill!iJi
i i i ! ! ! ! ! !

I ! ! ! i l l !

:i i : ; iii

i l i i i i :ni;i
li : : : [l : l l l l ! l l l l ! i l l l ! l l l l l l l ! l ! l l l l l l !
: i ! i ! ; : ; ; i i ; ; ; ; ; ; ; ; i ; i ; ! ; ; i ! ; : ; i ; i i ; ; ; ; ; ;

! i i ; l l l l ! IM I I I I ! l iMM! i i
: : ! ! ' ! ! ! ! !n ! i ! !> I i ! !M! ! ! i
{jjijliiiiiiiiiiilliljiiii!

in ! ! : ! i ! ! ! ! : ! ! ! ! ! i ! ! ! i ! !
j i l l ! ! ! ! :

11H11H t i I! i M!! M! IU! IM! MI i n [i

0 500000 1e*06 15e+06 2e+06 2 50+06 38+06 3 5o+06 Ae*OB 4 5e*06 Se«06
Toumaments

7.12 What to Do about Introns

The above equations and other experimental results suggest several

directions for controlling and possibly harnessing introns.

7.12.1 Reduction of Destructive Effects

Figure 7.3

Development of an intron

map over the course of a

run. Introns are drawn in

black; effective code is

left white.

In Chapter 6 the destructive effect of crossover was discussed at

some length along with recent a t t empts to improve the crossover

operator. Equat ion 7.12 suggests tha t reducing the destructiveness

of crossover will, itself, reduce the tendency of introns to emerge

or at least postpone the t ime at which exponential growth begins

[Soule and Foster, 1997b].

Therefore, all of the different techniques explored in Chapter 6

for improving the crossover operator - brood recombination, explic

itly defined introns, intelligent crossover operators, and the like -

are likely to have a measurable effect on G P bloat. We argued in

that chapter that the essence of the problem with the G P crossover

operator is tha t it fails to mimic the homologous na ture of biologi

cal recombination. The problem of bloat may be viewed in a more

general way as the absence of homology in G P crossover.

Of course, it would be easy to take reducing the destructiveness

of crossover too far. We would not want to reduce the destructive

effect of crossover to zero, or G P would become just a hill climber.

K i U 7 Genetic Programming and Emergent Order

7.12.2 Parsimony

The effect of parsimony pressure is to a t tach a penalty to the length of

programs. Thus, a longer solution will be automatically downgraded

in fitness as compared to a short solution. Whereas this will prevent

introns from growing exponentially, it depends on the s trength of

that penalty at what point in evolution introns become suppressed

altogether.

Figure 7.4 shows an AIMGP run with parsimony pressure. Fig

ure 7.5 shows a similar run, though without this pressure. Whereas

initially both runs look the same, the run with parsimony pressure

succeeds in suppressing introns, effectively prohibiting explosive in-

tron growth.

Figure 7.4

Length of program during

evolution with parsimony

pressure in AIMGP

in
.E

L
en

g
th

!

300

250

200

150

100

50

Absolute Complexity and Effective Complexity

"Absolute Length" -
"Effective L e n g t h - —

- /^"A

" I \

L\
j \ V

5 10 15 20 25 30 35 40
Generations

7.12.3 Changing the Fitness Function

Changing the fitness function during a run may also help to suppress

explosive intron growth. When the fitness function becomes variable,

G P individuals might find ways to improve their fitness, despite the

fact tha t they might have stagnated under a constant fitness function.

If, for instance, one were to change a specific parameter in the fitness

function for the sole purpose of keeping the G P system busy finding

bet ter fitness values, this would greatly reduce the probability of a

run getting stuck in explosive intron growth. Fitness functions might

just as well change gradually or in epochs; the lat ter technique is also

used for other purposes. Even a fitness function tha t is constantly

changing due to co-evolution will help avoid explosive intron growth.

7.12 What to Do about Introns win

Absolute Complexity and Effective Complexity

Figure 7.5

Length of program during

evolution without

parsimony pressure in

AIMCP

0 5 10 15 20 25 30 35 40
Generations

Exercises

1. Give two examples tha t could be seen as G P evolving its own

representation.

2. Give three examples of introns in GP.

3. Wha t is an artificial intron equivalent?

4. W h a t is effective fitness? Explain the difference between effec

tive and absolute fitness.

5. Name a beneficial effect of an intron for an individual. Wha t is

a detr imental effect of an intron?

6. Is it possible to find code segments tha t are introns against

crossover, but not against mutat ion?

7. Give three examples of how an individual can increase its effec

tive fitness.

8. Describe two methods of preventing exponential intron growth.

EH 7 Genetic Programming and Emergent Order

Further Reading

D. Andre and A. Teller,
A STUDY IN PROGRAM RESPONSE AND THE NEGATIVE EFFECTS

OF INTRONS IN GENETIC PROGRAMMING.

In J.R. Koza, D.E. Goldberg, D.B. Fogel, and R.L. Riolo (eds.),
GENETIC PROGRAMMING 1996:

PROCEEDINGS OF THE FIRST ANNUAL CONFERENCE.

MIT Press, Cambridge, MA, 1996.

P.J. Angeline,
GENETIC PROGRAMMING AND EMERGENT INTELLIGENCE.

In K.E. Kinnear, Jr. (ed.),
ADVANCES IN GENETIC PROGRAMMING. :

MIT Press, Cambridge, MA, 1994.

P.J. Angeline,
Two SELF-ADAPTIVE CROSSOVER OPERATORS

FOR GENETIC PROGRAMMING.

In P.J. Angeline and K.E. Kinnear, Jr. (eds.), , !
ADVANCES IN GENETIC PROGRAMMING 2.

MIT Press, Cambridge, MA, 1996.

W. Banzhaf, F.D. Francone, and P. Nordin,
T H E EFFECT OF EXTENSIVE USE OF THE MUTATION OPERATOR

ON GENERALIZATION IN GENETIC PROGRAMMING

USING SPARSE DATA SETS.

In H. Voigt, W. Ebeling, I. Rechenberg, and H. Schwefel (eds.),
P R O C . PPSN IV,
Springer, Berlin, 1996.

P. Nordin, F.D. Francone, and W. Banzhaf,
EXPLICITLY DEFINED INTRONS AND DESTRUCTIVE CROSSOVER

IN GENETIC PROGRAMMING.

In P.J. Angeline and K.E. Kinnear, Jr. (eds.),
ADVANCES IN GENETIC PROGRAMMING 2.

MIT Press, Cambridge, MA, 1996.

T. Soule, J.A. Foster, and J. Dickinson,
CODE GROWTH IN GENETIC PROGRAMMING.

In J.R. Koza, D.E. Goldberg, D.B. Fogel, and R.L. Riolo (eds.),
GENETIC PROGRAMMING 1996:

PROCEEDINGS OF THE FIRST ANNUAL CONFERENCE.

MIT Press, Cambridge, MA, 1996.

8 Analysis — Improving
Genetic Programming
with Statistics

Contents

8.1 Statistical Tools for GP 205

8.1.1 Basic Statistics Concepts 205

8.1.2 Basic Tools for Genetic Programming 205

8.2 Offline Preprocessing and Analysis 209

8.2.1 Feature Representation Constraints 210

8.2.2 Feature Extraction 210

8.2.3 Analysis of Input Data 214

8.3 Offline Postprocessing 216

8.3.1 Measurement of Processing Effort 216

8.3.2 Trait Mining 218

8.4 Analysis and Measurement of Online Data . 219

8.4.1 Online Data Analysis 219

8.4.2 Measurement of Online Data 219

8.4.3 Survey of Available Online Tools 220

8.5 Generalization and Induction 229

8.5.1 An Example of Overfitting

and Poor Generalization 230

8.5.2 Dealing with Generalization Issues 233

8.6 Conclusion 235

EiH 8 Analysis — Improving Genetic Programming with Statistics

The foregoing chapters established some theoretical grounding for ge

netic programming. Nevertheless, G P is 99% an experimental method

ology. Like natural evolution, G P produces complex and emergent

phenomena during training (see Chapter 7) and, as in natura l evolu

tion, predicting the results of changes in a G P system is difficult. In

other words, the gap between theory and practice is wide indeed.

To illustrate this point, assume tha t G P run 1 produces a good re

sult and continues for 200 generations before intron explosion occurs.

For G P run 2, only the random seed is changed. All other parameters

are the same as for G P run 1. But G P run 2 could easily produce

a bad result and terminate after only 15 generations because of in

tron explosion. Such wide variances in results are typical in genetic

programming.

As a result, measuring what is going on before, during, and after

a G P run and measuring its significance is important for at least three

reasons:

1. D y n a m i c R u n Contro l
••} ' * 8

One would like to be able to use the information to control the

run itself.

2. D a t a P r e p r o c e s s i n g

It is good to present the da ta to the G P system in a way tha t

maximizes the chance of testable, useful predictions.

3. S ignif icance or M e a n i n g of R u n

It is important to interpret the results of the run for mean

ing and statistical significance - tha t is, does an evolved G P

individual have any statistically valid predictive value?

Online Analysis Tools This chapter refers to measurements made during a G P run as

"online measurements." Online measurements of fitness have been

with G P since its beginning [Koza, 1992d]. In 1995, researchers

s tarted systematically to measure other aspects of G P runs online,

such as introns, effective size, and crossover results.

Offline Analysis Tools "Offline" analysis tools are measurements and statistical analysis

performed before and after G P runs. Typical offline tools include

da ta preprocessing and statistical analysis of whether a G P run is

"generalizing" well to da ta it has not yet seen.

This chapter begins with some basic statistical concepts such as

populations and samples, and several elementary statistical tests tha t

are widely applicable in GP. Then, we look at ways to use both online

and offline tools in analyzing and improving G P runs.

8.1 Statistical Tools for GP BdiU

8.1 Statistical Tools for GP

8.1.1 Basic Statistics Concepts

By statistical population we mean the entire group of instances (mea- Statistical Population

sured and unmeasured) about which one wishes to draw a conclusion.

If, for example, one wished to know how many men living in the city

of Dortmund, Germany, weighed more than 100 kg, the statistical

population to examine would be all men living in Dor tmund. 1

A sample is a subset of a statistical population. To comprise Sample

a sample, the subset must be drawn randomly from the statistical

populat ion and the draws must be independent of each other (see

Chapter 3).

Many populations cannot be measured as a whole. Often, the

best we can do is to select a sample from the population (say, 1000

of the men who live in Dor tmund) and measure their heights. We

would hope tha t the distribution of men's heights in tha t sample is

representative and would let us est imate the distribution of heights

in the entire male population of Dortmund.

Statistics as a discipline does not give black and white answers.

It gives probabilities tha t certain measurements or findings will be

replicated on subsequent samplings from the population. For in

stance, suppose tha t the 1000-man sample from Dor tmund had a

mean weight of 80 kg with a s tandard deviation of 7 kg. Statisticians

can estimate the probability tha t a second sample of 1000 men from

Dortmund will weigh, on average, 110 kg. The probability would be

very low. But statistics could not say tha t this event could not occur.

The statistical significance level is a percentage value, chosen for Statistical Significance

judging the value of a measurement. The higher the level chosen, Level

the more stringent the test. Statistical significance levels chosen are

usually values from 95% to 99%.

8.1.2 Basic Tools for Genetic Programming

There are many statistical tools available to the G P researcher. This Generically Applicable

section is a brief survey of basic tools tha t apply generically to mea- Tools

surements taken from samples drawn from populations. They should,

therefore, be considered whenever a measurement is made of a sample

drawn from a population in GP.

1 "Statistical population" is offbeat terminology - statistics texts would
refer to all men living in Dortmund as the "population." However, the term
population already has a special meaning in GP. Therefore, we will use the
term statistical population to refer to what ordinary statistics literature
would call a "population."

ES3 8 Analysis — Improving Genetic Programming with Statistics

How to calculate the statistics referred to in this section may be

easily found in any basic text or handbook on statistics.

Conf idence Intervals

A confidence interval is a range around a measured occurrence of

an event (expressed as a percentage) in which the statistician esti

mates a specified portion of future measurements of that same event.

The confidence interval expresses how much weight a particular pro

portion is entitled to. A narrow confidence interval means tha t the

measurement is accurate. A wide one means the opposite. Normally,

confidence intervals are measured at the 95% and 99% statistical sig

nificance levels.

Confidence Intervals in Wha t follows is a real-world example of the use of confidence in-

the Real World tervals to determine the feasibility of redesigning a G P system. The

importance of measuring G P introns has been discussed elsewhere

(see Chapter 7). Let us assume a G P population (not a statistical

population) size of 3000 programs. To measure the percentage of

nodes in the G P population tha t are introns, the statistical popu

lation is comprised of every node of every individual in the entire

G P population. If the average individual is 200 nodes in size, the

statistical population size is large - 600 000 nodes.

Sometimes it is possible to take the measure of the entire pop

ulation. In fact, one recent s tudy did measure the average num

ber of introns per individual for the entire statistical population

for every generation. Doing it tha t way was very t ime consuming

[Francone et al., 1996].

After completing tha t study, we began to look for ways to speed

up intron checking. One suggestion was to take a sample of, perhaps,

1000 nodes (out of the 600 000 nodes) and measure introns in the

sample. This sample could be used to estimate the percentage of

introns for the entire population - reducing the t ime used for intron

checking by a factor of 600.

The payoff from this approach is clear. But what would be lost?

Suppose tha t 600 of the 1000 sampled nodes were introns. Does

this mean tha t 60% of the entire 600 000 node population are com

prised of introns? No, it does not. The 95% confidence interval for

this measured value of 60% is actually between 57% and 63%. This

means, in 95% of all 1000-node samples drawn from the same G P

population, between 57% and 63% of the nodes will likely be introns.

Viewed another way, we could say tha t the probability is less than

5% tha t a 1000-node sample drawn from the same G P population

would have fewer than 570 introns or more than 630 introns. In a

run of two-hundred generations, however, one would expect at least

8.1 Statistical Tools for GP

ten generations with anomalous results just from sampling error. So

we decided to run intron checks on about 2000 randomly gathered

nodes per generation. This tightened up the confidence interval to

between 59% and 6 1 % .

In G P work, calculating confidence intervals on proportions is im

por tant - intuition about proportions and how significant they ought

to be are frequently wrong. Wha t would happen to confidence inter

vals if the sample size of 1000 fell to a more typical G P level of thir ty

samples? Of those thir ty nodes, suppose tha t 60% (18 nodes) were

introns. Would we be as confident in this 60% measure as we were

when the sample size was 1000? Of course not, and the confidence

interval reflects tha t . The 95% confidence interval for a sample com

prised of thir ty nodes is between 40% and 78% - a 38% swing. To

obtain a 99% confidence interval from the thir ty sample nodes, we

would have to extend the range from 34% to 82%. The lesson in this is

tha t proportions should always be tested to make sure the confidence

intervals are acceptable for the purpose for which the measurement

is being used.

Confidence Intervals
and Intuition

Corre la t ion M e a s u r e s

There are several different ways to test whether two variables move

together - tha t is, whether changes in one are related to changes

in the other. This chapter will look at two of them - correlation

coefficients and multiple regression.2

Correlation coefficients may be calculated between any two da ta

series of the same length. A correlation coefficient of 0.8 means 80%

of the variation in one variable may be explained by variations in

the other variable. If the correlation coefficient is positive, it means

increasing values of the first variable are related to increasing values

of the second variable. If negative, it means the reverse.

A correlation coefficient comes with a related statistic, called the

student's t-test. Generally, a t-test of two or bet ter means tha t the

two variables are related at the 95% confidence level or bet ter .

Assume a project involves many runs where the mutat ion rate is

changed from 5% to 20% to 50%. The runs are finished. Did runs

using higher mutat ion rates produce bet ter or worse performing in

dividuals? Calculating the correlation coefficient and t-test between

mutat ion rate and performance would be a good way to s tar t an

swering this question. If the value of the t-test exceeded 2.0, then the

2 Correlation analysis does not test whether changes in variable 1 cause
changes in variable 2, only whether the changes happen together. Statistics
does not establish causation.

Correlation Coefficient

Student's t-Test

Use of Correlation
Analysis in GP

m j j j 8 Analysis — Improving Genetic Programming with Statistics

correlation between mutat ion and performance is significant at the

95% level.

Multiple Regression Multiple regression is a more sophisticated technique than simple

correlation coefficients. It can uncover relationships tha t the simpler

technique misses. Tha t is because multiple regression is able to mea

sure the effects of several variables simultaneously on another varia

ble. Like correlation analysis, multiple regression is linear and yields

bo th a coefficient and a t score for each independent variable.

If the researchers in the mutat ion/performance study referred

to above had not found a statistically significant relationship be

tween mutat ion and performance using the correlation coefficient,

they might have to deal with one additional fact. In their runs, they

did not just vary the mutat ion rate, they also varied the parsimony

rate . The effect of changes in the parsimony rate could well have

obscured the effect of the changes in the mutat ion rate. Multiple re

gression might have helped in this case because it would have allowed

to hold the parsimony rate constant and test for just the effect of the

mutat ion rate.

Tes t ing P r o p o s i t i o n s

F scores are frequently useful to determine whether a proposition

is not false. Assume a project involving measurements of the value

of best individual hits in thir ty separate G P runs. Tha t thir ty-run

sample will have a mean (call it 75%) and the individual samples will

vary around tha t mean (some runs will have hits of 78% and others

72%).

F- Test An F- tes t analyzes the mean and the variance of the sample and

tests the proposition tha t the mean of the thir ty samples is not zero.

The F- tes t is expressed in probabilities. Therefore an F-teat of 0.05

would mean the probability tha t the mean of the thir ty samples is

zero is only 5%. (See [Andre et al., 1996a] for a successful application

of the F- tes t to establish that a tiny but very persistent difference in

results was statistically significant.)

More complex F- tes ts are available. For example, one can test

the proposition tha t the means of two different samples are differ

ent by more than a specified interval. This is a very useful measure

in establishing the relative performance of different machine learn

ing systems (benchmarking). In a typical benchmarking study, each

system produces a variety of runs and results on the same data .

A recent s tudy ran a G P system and a neural network on the same

test da ta . The G P system did a little bet ter than the neural network

across the board but the difference was not large. For example, for

the best 10% of runs on one da ta set, G P averaged 72% correct and

8.2 Offline Preprocessing and Analysis

the network averaged 68% [Francone et al., 1996]. Is tha t difference

statistically significant? Fortunately, this was a big s tudy and there

were a lot of runs. The F- tes t for a hypothesized difference between

two means assuming unequal variances is very useful in this situation.

It gave a 95% confidence level tha t the difference in means cited above

was at least a 1% difference.

All of the above tests can provide excellent feedback about the Caveat

weight tha t should be given to experimental results. Nevertheless,

statistics is an analytic science. A number of assumptions had to be

made to derive t-tests, F- tes ts , and the like. For example, most sta

tistical measures assume tha t the distribution of the sample on which

the test is being performed is approximately normal (see Chapter 3).

In practice, the tests work pret ty well even if the distribution is fairly

distant from a Gaussian. But it is always a good idea to take a look

at a histogram of the da ta one is analyzing to make sure it does not

grossly violate this assumption of normality. If it does, the value of

any of the tests described above is dubious.

8.2 Offline Preprocessing and Analysis

Before a G P run, there is only data . It is usually comprised of dif

ferent instances of different da ta series. The task of the researcher is

twofold:

1. To select which da ta series and da t a instances should be fed to

the G P system as input(s) ;3 and

2. To determine which, if any, transformations should be applied

to the da ta before it is fed to the G P system.

Preprocessing and analysis of da ta before a run plays a crucial role

in the machine learning literature, particularly the neural network

literature.

Preprocessing and analysis comes in three forms:

1. Preprocessing to meet the input representation constraints of

the machine learning system;

2. Preprocessing to extract useful information from the da ta to

enable the machine learning system to learn; and

3. Analyzing the da ta to select a training set.

3This is a largely unexplored domain in GP. The little research that
exists on selecting inputs indicates that GP does not do well when fed a
lot of irrelevant inputs [Koza, 1992dl.

8 Analysis — Improving Genetic Programming with Statistics

The next three subsections discuss the integration of such tech

niques into GP.

8.2.1 Feature Representation Constraints

Much of the preprocessing of da ta for neural networks or other ma

chine learning methods is required by the constraints on feature (in

put) representation in those methods (see Chapter 1). For example,

most neural networks can accept inputs only in the range of —1 to 1.

Boolean systems accept inputs of only 0 or 1, t r u e or f a l s e . So it is

usually necessary to center and normalize neural network inputs and

to transform inputs for a Boolean system to be either 0 or 1.

By way of contrast, G P has great freedom of representation of

the features in the learning domain. As a result, it can accept inputs

in about any form of da ta tha t can be handled by the computer

language in which the G P system is writ ten and, of course, over a

very wide range. It has been suggested tha t it may be useful to

have the different inputs cover roughly the same ranges and tha t

the constants allowed in the G P system cover tha t range also. The

authors are not aware of any experimental proof of this concept but it

seems a good suggestion to follow. However, unlike in most machine

learning systems, this is not a major issue in GP.

8.2.2 Feature Extraction

One challenging goal among G P researchers is to be able to solve

problems using no prior knowledge of the learning domain. Fre

quently, however, we can obtain prior knowledge of the domain by

using well-established statistical techniques. These techniques may

extract useful types of information from the raw da ta or filter out

noise.

Some of these techniques are simple. For example, one might look

at a histogram of an input da ta series and determine tha t outlying

points in the distribution should be t runcated back to three s tandard

deviations from the mean of the series. Other techniques are much

more complex but nevertheless very useful. This chapter will touch

on only two techniques: principal components analysis and extraction

of periodic information in t ime series data .

Pr inc ipa l C o m p o n e n t s A n a l y s i s

Real-world problems frequently have inputs that contain a large quan

tity of redundant information. One series of input components might

frequently be correlated with another series of input components to

a high degree. If both series are used as inputs to a machine learning

8.2 Offline Preprocessing and Analysis

system, they contain redundant information. There are two reasons

why this is relevant:

1. G P star ts in a hole. It has to learn how to undo the redundancy

and to find the useful information.

2. Redundancy of this kind creates unnecessarily large input sets.

One way to at tack this problem would be to calculate the corre

lation coefficient for each pair of potential input variables. In fact,

this is a good idea before a G P run in any event. But suppose the

correlation between two of the variables is high. Do we throw one

out? Do we keep them both? 4

Principal components analysis (PCA) extracts the useful varia

tion from several partially correlated da ta series and condenses tha t

information into fewer but completely uncorrelated da ta series. The

series extracted by P C A are called the components or principal com

ponents. Each of the principal components is numbered (the first

principal component, the second ... and so forth). The actual tech

nique for calculating principal components is beyond the scope of this

chapter. Wha t follows is a visual metaphor for what P C A is doing

when it extracts components.

P C A calculates the first principal component by rotat ing an axis

through the n-dimensional space defined by the input da ta series.

P C A chooses this axis so that it accounts for the maximum amount

of variation in the existing da ta set. The first principal component is

then the projection of each da ta element onto tha t axis.

P C A calculates the additional principal components in a similar

manner except tha t the variation explained by previous components

is not compensated for in positioning subsequent axes. It should

be apparent tha t each new principal component must be measured

on an axis tha t is orthogonal to the axes of the previous principal

component(s) . One very nice feature of P C A is tha t it reduces the

number of inputs to the G P system substantially while keeping most

of the information contained in the original da ta series. In fact, it is

not normally necessary to extract more than two or three components

to get the vast bulk of the variance. This is t rue even when there are

many da ta series.

However, P C A is not an automatic process nor is it a panacea

for all input problems, for at least three reasons:

Actually, where there are only two highly correlated variables, it of
ten helps to use their sum and their difference as inputs rather than the
variables themselves. If there are more than two, it is necessary to use
principal components analysis.

E3I 8 Analysis — Improving Genetic Programming with Statistics

1. PC A involves judgment calls about how many components to
use.

2. Weighting inputs to the PCA system to emphasize "important"
variance and to deemphasize "unimportant" variance can help
the performance of the PCA tool. But assigning importance
to variance is a task GP itself ought to be doing. For GP
purposes, the manual assignment of weights seems rather self-
defeating unless one has specific domain knowledge to justify
the decision.

3. When, for instance, twelve components are reduced to only
three components, some information will be lost. It could be
the information that the GP system needed.

Notwithstanding these drawbacks, PCA can be an effective tool and,
used properly, helps far more often than it hurts.

Extraction of Periodic Information in Time Series Data

Engineers and statisticians have spent decades developing techniques
to analyze time series. Some of that work has made its way into GP
[Oakley, 1994a]. The purpose of this section is to give the broadest
overview of the types of work that have been done in these areas to
spur further research by the interested reader. > ; ' •''•'•

Figure 8.1
A time series shown in 3 5 • •

the time domain ,

To begin with, there are simple techniques to extract different
types of information from time series data such as simple or expo
nential moving averages (SMAs or EMAs). For example, Figure 8.1 is

8.2 Offline Preprocessing and Analysis

a time series plotted over ten years. To the eye, it has some periodic
components but there appears to be a lot of noise.

Figure 8.2 is the same time series as in Figure 8.1 except that
two different simple moving averages have been applied to the series.
Note that the simple moving averages serve as a sort of low pass filter,
allowing only low frequencies through. This tends to filter out what
might be noise. In many instances, SMA-type preprocessing greatly
assists machine learning systems because they do not have to learn
how to filter out the noise.5

Untransformed Data

-Six Month SMA

-One Year SMA

This brief treatment of SMAs is far too simple. The price of the
low pass filter is that the smoothed data series lags behind changes
in the real world. The greater the smoothing, the greater the lag.
Further, if the actual data exhibits genuine periodicity, this means
that the smoothed data may be out of phase with the actual data
unless exactly the right window was chosen for the SMA. There is a
rich body of literature in the trading technical analysis world dealing
with this issue and, in particular, how to identify the dominant cycle
and how to adjust the filters so that the filtered data end up in phase
with the real-world data [Ehlers, 1992].

There are many other techniques to extract periodic components
or otherwise preprocess time series data such as detrending and cen-

Should there be concern that the SMA is filtering out valuable high
frequency information, the residuals may be calculated (that is, the differ
ence between the original series and the SMA). Those residuals may be fed
to the GP system as a separate data source.

Figure 8.2
The time series from 8.1

with a simple moving

average

Other Preprocessing

Techniques

WSHM 8 Analysis — Improving Genetic Programming with Statistics

tering, differencing, digital filtering, the maximum entropy spectrum

technique, quadrature mirror filters, and wavelets.6

Let us look at discrete Fourier transforms and the power spectrum

as an example of the many preprocessing techniques tha t are available

for real-world t ime series data.

The Discrete Fourier Figure 8.1 is a t ime series plotted in the t ime domain. This means

Transform tha t the series in Figure 8.1 is represented as a function of t ime and

value. It is possible to transform the series into other domains. A

popular transform is the discrete Fourier transform. Once the Fourier

transform is performed, the real and imaginary parts of the transform

are mapped to a power spectrum. This converts the series from the

t ime domain to a frequency/power domain.

How is this useful? If Figure 8.1 were a sound wave, feeding the

results of the discrete Fourier transform to a G P system might help

the G P system to bet ter extract useful information from the wave. In

effect, the G P system would not have to go to the trouble of learning

1 how to extract the periodic information. A much simpler statistical

device would be doing that for the G P system.

8.2.3 Analysis of Input Data

Selecting a training set often presents two problems:

1. How to choose among input series

2. How to choose training instances

C h o o s i n g a m o n g I n p u t Ser ies

The G P researcher is frequently faced with many da ta series but has

no idea (other t han intuition) which of the da t a series are relevant.

This problem arises frequently in real-world problems - especially

in sound and image processing problems, t ime series problems, and

da ta mining problems. How to choose input series is one of the great

unexplored areas in GP. Wha t little research there is suggests tha t ,

when G P is fed too many irrelevant inputs, its performance is severely

compromised [Koza, 1992d].

Some Suggestions In the long term, a meta-learning approach is probably the best

solution. But for most G P systems, serious meta-learning will have

to wait for faster computers. Here are some suggestions until then:

• Run correlation coefficients between each potential input and

the output . This might help narrow what inputs to use. Ob

viously, inputs with higher correlations should be used, but it

6A11 of these subjects are treated well and in detail in [Masters, 1995b].

8.2 Offline Preprocessing and Analysis

would be unwise to stop there. The correlation coefficient will

frequently miss many of the important variables.

U Run correlation coefficients between each potential input. For

those tha t are correlated, group them together, do a principal

components analysis, as suggested above, and use the resulting

components as inputs.

• Try different runs with different combinations of variables. Keep

da ta on which runs do the best. Select the variables tha t are

most often associated with good runs. Do more runs with the

possibly good variables. Keep repeating this until the system

produces acceptable results. In effect, this is performing meta-

learning manually with respect to variable selection.7

C h o o s i n g Training I n s t a n c e s

Data analysis may also be of use in selecting a training set when there

is an abundance of data . This is a different issue than choosing among

da ta series. This issue assumes tha t the da ta series have been chosen.

Now there are n examples of the training domain using those da ta

series. Which of the examples will be used to t rain the G P system?

The reader will, of course, recognize this as another incarnation of

the problem of getting a representative sample from a population.

In da t a mining the G P system combs through a large, frequently Data Mining

mainframe or server database, and searches for pat terns in the data .

Increasingly, machine learning applications, including GP, are being

used for da t a mining. The important characteristic here of da t a min

ing is tha t there are usually many more training instances available

than a G P system could possibly digest. Large companies often have

millions or more records of da ta . The problem is, how to select the

particular training instances to make up the da ta set, given a gross

overabundance of data?

Obviously, there will be problem-specific selection issues. But

once the problem-specific criteria have been fulfilled, it is still very

7This suggestion illustrates the importance of calculating statistical sig
nificance levels. If input variable x appears in two runs that do well, that is
not so impressive. If it appears in 800 runs that do well, it is. Somewhere
in between 2 and 800 is a number of runs that will give you 95% confidence
that having variable i i n a run is related to having a good output on the
run. Knowing what that number of runs is can save you from chasing a
relationship that does not exist (if you draw conclusions based on too few
runs). It can also save you much calculation time confirming a relationship
for which you already have enough evidence.

BW 8 Analysis — Improving Genetic Programming with Statistics

important tha t the training set be representative of the overall da ta

set. There are several possible approaches:

• Select a random sample of training instances from the million-

plus database. But tha t raises the problem we have seen before,

variance caused by sampling error. A random sample can be

quite unrepresentative of the overall training set. This chapter

has been filled with instances where statisticians would expect

very substantial variation among different random samples from

the same population.

• Large da ta sets for da ta mining usually have many input vari

ables in addition to many records. It would take some t ime,

but the mean and variance of each of those records could be

calculated. From that , it should be possible to define an ac

ceptable level of variance for each such variable. Either by cal

culation or by repeated sampling and measurement of different

size samples, one could calculate the approximate sample size

tha t produces a sufficiently representative training set. If the

sample size chosen is not so large tha t G P training would be

unduly slow, this is a workable option.

• One could also look at the distributions of the input variables

in the overall da ta set and make sure tha t the "random sample"

tha t is picked matches those distributions closely.

• The above approach is workable but unsatisfying. Perhaps this

is a situation for stochastic sampling (see Chapter 10). In tha t

method, the researcher never does pick a training set. Rather ,

the G P system is programmed to pick a new small training set

regularly, t rain on it for a brief period, and then pick another

new, small training set.

The above are just a few of the methods in which statistical

analysis and da ta preprocessing may be used before a G P run even

starts . The next sections will show what we can do with the results of

a G P run and demonstrate how to measure what is going on during

a G P run.

8.3 Offline Postprocessing

8.3.1 Measurement of Processing Effort

Koza has designed a method for G P performance measuring with

respect to the processing effort needed for finding an individual -

8.3 Offline Postprocessing BJH

with a certain probability - that satisfies the success predicate of a
given problem [Koza, 1992d]. The success predicate sometimes is a
part of the termination criterion of a GP run. It is a condition that
must be met by an individual in order to be acceptable as a solution.

The processing effort is identified with the number of individuals
that have to be processed in order to find - with a certain probabil
ity - a solution. Note that this measure assumes a constant process
ing amount for each individual, which is a simplification of reality. In
general, different individuals will have different structures and this
implies different processing efforts. For example, an individual hav
ing a loop may require a significantly higher processing effort for its
evaluation than an individual that does not use loops.

Because of the simplification, we can concentrate on the popula
tion size M and the number of generations evolved in a certain run
as the two important parameters.

Koza's method starts with determining the instantaneous prob- Instantaneous
ability I(M, i) that a certain run with M individuals generates a Probability
solution in generation z. One can obtain the instantaneous proba
bility for a certain problem by performing a number of independent
runs with each of these runs using the same parameters M and i.

If I{M, i) has been determined for all i between the initial gener- Success Probability
ation 0 and a certain final generation, the success probability P(M, i)
for the generations up to i can be computed. That is, p = P(M, i)
is a cumulative measure of success giving the probability that one
obtains a solution for the given problem if one performs a run over i
generations.

With this function measured, the following question can be an
swered: given a certain population size M and a certain generation
number i up to which we want to have a run perform at most, what
is the probability of finding a solution, at least once, if we do R
independent runs with each run having the parameters M and il

To answer this question, consider that the probability of not find
ing a solution in the first run is 1 — P(M,i). Since the runs are
independent of each other, the probability of again not finding the
solution in the second run is (1 — P(M, i))2. In general, the probabil
ity of not finding the solution in run Ris(l- P(M,i))R. Thus, the
probability of finding a solution by generation i, using R runs, is:

z = l-(l-P{M,i))R (8.1)

Our question was: what is the probability of finding a solution, at
least once, if we do R runs? We can now turn this question around
and ask: how many runs do we need to solve a problem with a certain

8 Analysis — Improving Genetic Programming with Statistics

probability z? Solving the above equation for R gives

_ log(l - z)

l o g (l - P (M , »)) ^ j

R must be rounded up to the next higher integer to yield the answer.

If mutat ion is one of the genetic operators, then the success prob

ability P(M, i) rises the more generations a run performs. For given

values of M and z, this means that the evolution of more generations

per run requires fewer runs to be done in order to find a solution

with probability z, while, on the other hand, the evolution of fewer

generations per run requires more runs to be done.

Which generation number requires a certain number of runs such

tha t the overall number of processed individuals - the processing ef

fort - is minimal? This question can only be answered in a problem-

specific way since the instantaneous probability is empirically ob

tained by doing runs on the problem at hand.

8.3.2 Trait Mining

Usually, a program induced by genetic programming is not at all a

piece of code tha t software engineers would rate as high quality with

respect to understandabili ty by a human. It often is very monolithic,

contains problem-relevant but redundant code and - even worse - a

lot of code irrelevant to the problem at hand. Tackett approaches

this problem with a method he calls t rai t mining [Tackett, 1995].

Redundant and irrelevant code bloats the program and often very

effectively disguises the salient expressions - the expressions t ha t ac

tually help in solving the problem. Trait mining helps to identify

those expressions.

Knowledge emerges stepwise during a genetic programming run.

Initially, the population-inherent knowledge about the problem is

very small, because programs are random structures. Soon, at least in

a successful genetic programming run, the behavior of more and more

programs begins to reflect the problem, which means the population

gradually acquires more knowledge about the problem.

However, due to their size and often tricky and counter-intuitive

structures, the evolved programs mostly are hard for humans to read

and understand. A naive approach to avoiding this unpleasant sit

uat ion and alleviating program analysis is to restrict the size and

complexity of the programs. On the other hand, program size and

complexity may be needed for solving a problem.

Gene Banking For this reason, trai t mining does not impose restrictions on these

program at t r ibutes in order to identify salient expressions. It ra ther

8.4 Analysis and Measurement of Online Data BJU

keeps book on all expressions evolved so far during a genetic program
ming run. This approach has been called gene banking. Obviously,
due to the large number of such expressions, gene banking consumes a
significant amount of CPU time and memory. Tackett claims that an
integrated hashing-based mechanism keeps this consumption within
acceptable limits.

Finally, when a genetic programming run has ended, trait mining
allows for the evaluation of expressions with respect to how salient
they are.

8.4 Analysis and Measurement of Online Data

8.4.1 Online Data Analysis

The first question in online data analysis is: why would one want to do
it? The answer is twofold and simple. Doing so is (i) fascinating and
(ii) often immensely useful. GP runs usually start in a random state
and go through a period of rapid change during which the fitness
of the population grows. Eventually GP runs reach a point where
change ends - even though simulated evolution continues.

Online tools monitor the transition from randomness to stability.
Not only do they highlight how the transition takes place, they also
raise the possibility of being able to control GP runs through feedback
from the online measurements.

In the next subsections, we will first address measurement issues
for online data. Then we will describe some of the online data tools
that are already being used. Finally, we will discuss the use of online
measurements for run control.

8.4.2 Measurement of Online Data

This chapter has already addressed some measurement issues for on
line measurement tools. Recall the earlier discussion of intron check
ing, a relatively recent addition to the arsenal of online analysis tools.
Because intron checking is so computationally intensive, the reader
will recall that a statistical approach to intron checking was recom
mended. A statistical approach to measuring any online data is pos
sible. Whether it would be useful depends on the tradeoff between
CPU cycles and the uncertainty caused by confidence intervals.

Many of the typical GP online measurements characterize the Generational Online
population as a whole - average fitness, percentage of the population Measurement
that is comprised of nitrons, and so forth. In the generational model,
each new generation is a distinct new group of individuals and it is
created all at once (see Chapter 5). It therefore makes good sense to

KJiB 8 Analysis — Improving Genetic Programming with Statistics

measure the online statistics once per generation at tha t t ime. This

is the typical practice in GP.

Steady-State Online Steady-state models, on the other hand, do not have distinct gen-

Measurement erations (see Chapter 5). Steady-state G P maintains the illusion of

generations by stopping once every P fitness evaluations (where P is

the population size) and measuring their online statistics. This con

vention has proved effective and is used almost universally in steady-

state G P systems. Here, we will follow this convention. The reader

should recall, however, tha t a generation is no more than an agreed

convention in steady-state models and any online statistic could be

calculated so as to reflect the reality of a steady-state system more

precisely.8

8.4.3 Survey of Available Online Tools

F i t n e s s

Understandbly, fitness was the earliest online measurement in wide

spread use [Koza, 1992d]. The most frequently used fitness measures

are:

• Fitness of the presently best individual;

• Average fitness of the entire population;

• Variance of the fitness of the entire population.

The last two statistics characterize the population as a whole

and are shown in Figure 8.3 for the same run of a pa t te rn recogni

tion problem. Both average and variance first decrease quickly, then

increase again on finding a simple approximative solution which is

not optimal. Later, average fitness decreases continuously, whereas

variance stays at a certain level.

D i v e r s i t y

Diversity is another measure of the s tate of the population. Genetic

diversity is a necessary condition for the fast detection of a high-

fitness individual and for a fast adaptat ion of the population to a

8One way to maintain online statistics in a steady-state system would be
as EMAs. Each time a new fitness value was calculated, it would be added
to the existing EMA for average fitness. If the illusion of generations is to
be maintained, the width parameter of the EMA could be set so that the
window of the average is approximately one generation. More interesting,
however, would be to set the width to accommodate only a short window
of data. Or possibly to maintain several different windows simultaneously.

8.4 Analysis and Measurement of Online Data

§ 40000 (,

Average Fitness
Variance Figure 8.3

Average fitness and

variance of fitness for a

pattern recognition

problem in AIMGP

1.5e+06
Tournaments

changing environment. To maintain genetic diversity during runs, it
is useful to measure diversity and changes in diversity. There are two
overall approaches to measuring diversity:

• Genotypic Diversity
Measuring the structural differences between genotypes; and

• Phenotypic Diversity
Measuring differences in behavioral aspects of the phenotype
that are believed to be related to diversity.

Genotypic diversity is diversity among the actual structures in the
population - the trees, the graphs, or the linear genomes. Genotypic
diversity might be an online statistic of the state of the GP population
that is orthogonal to the online fitness measurements. This would be
valuable indeed. To construct such a measure, it would be ideal if no
quality (fitness) information were contained in the diversity measures.
Viewed this way, diversity should be based on a comparison of the
structure of the individuals only.

One good measure of diversity that fits this requirement is to use
"edit distances" between programs. The edit distance of two pro
grams could be calculated as the number of elementary substitution
operations necessary to traverse the search space from one program
to another. The definition of the edit distance <5, which goes back
to [Levenshtein, 1966], states that 5(g, h) of two genotypes g, h is the
minimal number of applications of given elementary edit operations
needed to transform g into h.

Measuring Genotypic
Diversity

Edit Distance

8 Analysis — Improving Genetic Programming with Statistics

Edit Distance for Fixed

Length Genomes

Edit Distance for Tree
Genomes

Edit Distance and

Introns

t>v

On the genospace of fixed length binary strings with single-bit
flipping as the only edit operation, for instance, the Hamming dis
tance, that is the minimal number of single-bit flips needed to trans
form one string into another, is a type of edit distance often used.
As an example, consider the strings g — 100001 and h = 011111. In
order to transform g into h, we have to apply a single-bit flip at least
5 times. Thus, we have S(g, h) = 5.

In a tree space G, on the other hand, basic edit operations could
be the insertion and deletion of nodes. Let the notation be del{l) and
add(l), where I is a node label. Since we have a bijection between G
and prefix strings, we can write each tree as a string the characters
of which are leaf labels. For example, consider g = +a/bc and h —
+ * abc. The sequence

del(b), del(c), del(/), add(c), del(a), add(*), add(a), add(b)

is a minimal sequence leading from g to h. Thus, we have 6(g, h) = 8.
If we imagine the space of all genotypes as a high-dimensional

space [Keller and Banzhaf, 1994], a genotype - that is a structure -
takes exactly one position. Intuitively, there is high genetic diversity
in a population if the individuals represent many different genotypes
that are "equally distributed" over this entire space.

The edit distance approach to diversity is based on the assump
tion that edit distance actually measures diversity. It is not clear
that this is the case. For example, two individuals with identical
working code would be far apart in edit distance if one of the in
dividuals had an intron structure comprised of hundreds of nodes.
Such structures are not uncommon. Although there would be great
apparent diversity caused by the introns, in fact the only contribu
tion of the introns would be to change the probability of crossover
in the working code, that is, the effective fitness of the working code
[Nordin et al., 1996]. Arguably, the difference between the effective
fitness of the two individuals constitutes diversity. Because effective
fitness increases with the number of introns, the edit distance would
be related to the difference in effective fitness. It is especially unclear
that the edit distance necessary to factor in introns is in any way
equivalent to the edit distance to get from one piece of working code
to another.

Because it has been so hard to define genotypic diversity and
because measuring it is computationally intensive, edit distance as a
measure of structural diversity is not widely used.

GP researchers have also measured diversity by measuring vari
ance in the performance of the phenotype - a good example is mea
surement of variance of fitness in the population. Such measure
ments compute some aspect of phenotypic behavior. While such mea-

8.4 Analysis and Measurement of Online Data

sures are clearly not orthogonal to fitness, they are computationally
tractable. Several methods have been used to calculate phenotypic
diversity:

• Fitness Variance
Experimental use of fitness variance suggests that it measures
some quantity of the state of the population that is different
from fitness. Changes in such measures of diversity within the
population may presage major leaps in the quality of the best
individuals in the population [Rosea, 1995b] (see Figure 8.3).
Thus, fitness variance provides a look into the diversity issue
but it is far from the ideal of being orthogonal to the fitness
vector.

• Fitness Histograms
Fitness histograms provide a more subtle look into the diversity
of the population. Both Rosea and Koza have experimented
with this measure. Figure 8.4 shows an example of a fitness
histogram used by [Rosea, 1995b].

3 0 0 0 -

• ° 2 0 0 0 -

Figure 8.4
Fitness histogram. The

number of hits (fulfilled

fitness cases) increases

over the course of a run.

(Reproduced with

permission from

[Rosea, 1995b].)

35 0 Generations

Hits

• Entropy
In accordance with developments in the GA community, en-
tropic measures of diversity are also proliferating. Rosea points
out that diversity in populations of program individuals can be

W7TM 8 Analysis — Improving Genetic Programming with Statistics

represented by a measure

E(P) =-Y,Pk log Pk (8.3)
k

where pk is the proportion of a population P tha t is in category

or part i t ion k with reference to a specific feature, such as fitness.

Regardless of what measurement is used, all phenotypic fitness

measures assume, implicitly, tha t fitness differences do in fact reflect

differences in the genotypes of individuals. While this assumption

is intuitively appealing, neutral variants having huge differences in

their s t ructure often behave in virtually the same manner, and thus

evaluate to the same fitness. It is not clear how to handle this prob

lem.

Wha t is the purpose of observing diversity, either of the phe-

notypes or the genotypes? The reason one would want informa

tion about the s ta tus of diversity of the population is simply tha t

it helps estimate the chances tha t continuing the run would have

some prospect of discovering a solution to the problem. High diver

sity would give an indication tha t it is profitable to extend the run;

low diversity would indicate the opposite. Thus, a re-start with a

newly seeded population might in this situation be the bet ter choice.

M e a s u r i n g O p e r a t o r Effects

Each variation operator in G P has its own effect on the population

and on the emergent dynamic of the run. By observing these effects,

one can t ry to see which operators are useful in a certain stage of the

evolution and which are not.

To distinguish between useful and useless operators, one has to

isolate their effects radically. If a generational selection scheme is

used, it will in general not be possible to discern the effect of different

operators. Therefore, a tournament or (/x, A) selection scheme should

be used to check immediately which effects have been caused by an

operator. Also, each operator should be applied exclusively, i.e., no

sequence of operators (apart from reproduction) should be allowed.

Crossover Effects The most useful measurement of operator effects to date has been

tha t of the effects of crossover on the fitness of parents relative to the

fitness of their children. The goal is to be able to assign any operator

event - here, crossover - into a category tha t tells us whether it

was successful, neutral, or unsuccessful. Two basic approaches to

measuring the effect of crossover have been discussed earlier in the

book.

• The average fitness of bo th parents has been compared with the

average fitness of both children [Nordin and Banzhaf, 1995a]

8.4 Analysis and Measurement of Online Data

[Nordin et al., 1996]. If the average of the children is more

than 2.5% bet ter than the average of the parents, the cross

over is counted as being constructive; if more than 2.5% worse,

it is counted as being destructive; and if the average fitness

for the children is within 2.5% of the parents, it is counted as

neutral . The effect of this measurement technique is tha t bo th

parents and both children are counted as one crossover event.

This method gives three simple online measurements t ha t can

be followed during evolution.

• The fitness of children and parents are compared one by one

[Francone et al., 1996] [Teller, 1996]. In this approach, one child

is assigned to one parent. Therefore, each such pairing is counted

as one crossover event.

Measurements of crossover effects have permit ted at least two

different systems to achieve run-t ime control over G P runs. Those

successes will be described later in this chapter.

Let us look at a more formal way to s tudy operator effects. Given

the number of predecessors I = 1, 2, . . . , N with 1=1 for mutat ion,

1 = 2 for conventional crossover, I = N for multirecombinant oper

ators, and a number of offspring J = 1, ...,M one can quantify the

"progress" between individuals gained from applying operator k as

fitgainik) = (/ / - fj)/fi (8.4)

where / / , fj are scalar measures of the participating predecessors and

offspring, respectively. In the simplest case these measures could be

generated by taking the ari thmetic average

/ / = y l > (8-5)

and

fj=l
1

Stf, (8-6)

Improvements are signaled by positive values of fitgain, whereas de

teriorations are signaled by negative values (assuming fitness falls to

0 for the optimal value).

Intron M e a s u r e m e n t s

Introns are code in a G P individual tha t does not affect the output of

the individual. As we have seen in Chapter 7, a large proportion of

introns in a population often indicates tha t all effective evolution is

IIJ1 8 Analysis — Improving Genetic Programming with Statistics

Intron Counting in Tree
Structures

over and tha t crossover is only swapping introns back and forth. The

process of ascertaining the number of introns is called intron counting.

It is important to note tha t all intron measurement methods are

estimations.

Assume a binary tree with addition nodes where two values arc

t ransmit ted up into a node via the input branches and one value

is t ransmit ted from the node further up in the tree via the result

branch. The top node in Figure 8.5 receives two inputs, 6 and 0. The

node itself adds the two inputs together and produces the sum as its

output . The output value is obviously 6. Further, it is obvious tha t ,

so long as the right input is 0, the result will always equal the left

input. Viewed in this manner the right tree, which produces 0 as an

output , is irrelevant because it does not affect the output value of the

function at all.

Of course, introns are code tha t does not affect output . But what

does tha t mean? For an intron, the output of the node in Figure 8.5 is

the same as the left-hand side input for all fitness cases. Pu t another

way, if the output is the same as one of the inputs for all fitness cases,

then we regard the irrelevant subtree together with the node under

examination as an intron.

The algorithm for measuring tree-based introns is not very com

putationally expensive. Each node contains a flag indicating whether

this node so far has had the same output as one of the inputs. This

flag is then updated by the evaluation interpreter each t ime it passes

the node - for each fitness case. When all fitness cases have been

calculated, the tree is passed through again to sum up the intron

contents by analyzing the flag values.

Figure 8.5
Intron measurement in

tree-based GP

Intron Counting in
Linear Genomes

Intron counting began with linear genomes in AIMGP. Not sur

prisingly, the technique is straightforward. The genome is a string of

machine instructions because AIMGP evolves machine code directly.

Other linear G P systems could evolve linear sequences of code (LoC).

A no-op instruction (NOP) , i.e., an operation tha t does nothing, can

be inserted in place of each instruct ion/LoC in order to check whether

this particular instruct ion/LoC is effective in the code or not. Thus,

an intron counting method would read:

8.4 Analysis and Measurement of Online Data

For each instruct ion/LoC in the individual do:

1. Run each fitness case through the individual and store the out

put values.

2. Replace the instruct ion/LoC with a NOP-instruction.

3. Rerun the fitness function on each fitness case.

4. If there was no change for any of the fitness cases after the N O P

was exchanged then classify the instruct ion/LoC as an intron

else classify it as an exon.

5. Remove the NOP-ins t ruct ion/LoC and replace it with the orig

inal one.

When this procedure is completed the number of introns is summed

together as the intron length of tha t individual. However, this is not

the only method to measure introns. At the moment, researchers are

actively examining various methods for intron removal.

C o m p r e s s i o n M e a s u r e m e n t

In the previous chapter it was argued tha t the effective length of

an individual often is reduced during evolution. This phenomenon

is called compression. Compression can be estimated with a simple

method. We measure the effective length by subtract ing the length

of the introns from the total length. Every time the fitness of the

best individual changes, we store the value of the effective length.

At termination of a run, we measure the difference between effective

length of the best individual and the stored value. When fitness

stagnates at the end of a run, we can see how much the effective size

of an individual has decreased since it assumed its fitness value for

the first t ime. It is also possible to store the number of generations

over which this compression has taken place.

N o d e U s e a n d B l o c k A c t i v a t i o n

Node use and block activation are two other important online anal

ysis tools. Node use measures how often individual nodes from the

terminal and function set are used in the present generation. The

run-time overhead is small, since measuring just means incrementing

a counter associated with a node.

The same measure can be applied to blocks of code, tha t is, to

subtrees of arbitrary depth, although this approach will quickly be

come unfeasible for larger subtrees due to combinatorial explosion

(see Section 8.3.2).

8 Analysis — Improving Genetic Programming with Statistics

Block activation is defined as the number of times the root node
of a block is executed. This requires an additional counter recording
the number of times the node has been activated.

By looking at node use one can easily get an impression of how
important a certain function or terminal is in a particular problem.
A node might turn out never to be used over consecutive generations,
indicating that it is mainly a burden in the search process and has
no obvious advantage for successful programs. In a new run it could
be discarded or substituted by a potentially better suited node.

The reader is advised, however, to be careful when using such
an observational measure, because the observed frequencies could be
misleading. Introns often comprise a large part of evolved programs,
and measuring node use for introns would indicate high usage where
no use is made of the node for behavioral purposes. It follows that
it would be better to measure node use on effective code only. This
way, one could at least ignore those parts of the code that do not
contribute to fitness.

Rosea [Rosea, 1995a] introduced another term, salient block, as
a means to indicate those parts of the code which influence fitness
evaluation. A good modularization method, in his proposal, should
identify those blocks. Rosea proposes to consider block activation as
one piece of information necessary to identify salient blocks. Block ac
tivation, however, can usually be measured only for trees with a small
depth. For details of the method, see [Rosea and Ballard, 1994a].

Real-Time Run Control Using Online Measurements

Two systems have successfully used online measurements to effect

online control during a G P run. ,. ;.. >, ,. _

• PADO
Chapter 6 describes how Teller conducted meta-learning during
PADO runs. The meta-learning module changed the crossover
operator itself during the run. Like its fitness function, the
meta-learning module used online measurements of the effect
of crossover.

• AIMGP
We performed a very large GP study involving 720 runs. A
running total was maintained for each generation of the per
centage of total crossover events that constituted destructive
crossover. Destructive crossover usually exceeds 75% of total
crossover events. Previous studies [Nordin et al., 1996] estab
lished that, when destructive crossover fell below 10% of total

8.5 Generalization and Induction m
crossover events, intron explosion had occurred and all effective

evolution was over.

As a result of this previous study, a run-t ime termination cri

terion was adopted: terminate the run after 200 generations or

when destructive crossover falls below 10% of total crossover

events, whichever comes first. The result of using this termina

tion criterion was tha t the run t ime for all 720 runs was reduced

by 50%. In short, this run-time termination criterion effectively

doubled the speed of the system [Francone et al., 1996].

8.5 Generalization and Induction

Once upon a time, there was a little girl named Emma. Emma
had never eaten a banana, nor had she been on a train. One day
she went for a journey from New York to Pittsburgh by train.
To relieve Emma's anxiety, her mother gave her a large bag of
bananas. At Emma's first bite of a banana, the train plunged
into a tunnel. At the second bite, the train broke into daylight
again. At the third bite, Lo! into a tunnel; the fourth bite, La!
into daylight again. And so on all the way to Pittsburgh and to
the bottom of her bags of bananas. Our bright little Emma told
her grandpa: "Every odd bite of a banana makes you blind; every
even bite puts things right again."

After Li and HANSON

This story is an example of the principles and risks of induction. We

use G P to find a generally valid set of rules or pat terns from a set

of observations. Chapter 1 described how machine learning systems

do their learning on a training set. For Emma, her training set is

her train ride. GP, machine learning, and E m m a all have tried to do

something more - they have tried to come up with general rules tha t

will work on da ta they did not learn upon. Chapter 1 referred to this

type of da ta as a testing set.

Generalization occurs when learning that occurs on the training

da ta remains, to some extent, valid on test data . Viewed another way, Generalization as a

generalization is a problem of drawing a sample from a population and Sampling Problem

making predictions about other samples from the same population.

The noise from one sample to the next is probably different, perhaps

a lot different. In other words, sampling error can be a big problem.

Recall tha t sampling error can cause the 95% confidence interval on

thir ty samples to extend all the way from 40% to 78%.

But there is another, perhaps equally difficult problem commonly Overfitting

referred to as overfitting. Ideally, G P would learn the t rue relation

ship between the inputs and the outputs and would ignore the noise.

FSffli 8 Analysis — Improving Genetic Programming with Statistics

But GP is constantly pushed by its fitness function to lower the error
on the training data. After GP has modeled the true relationship,
GP individuals can and do continue to improve their fitness by learn
ing the noise unique to the sample that comprises the training data
- that is, by overfitting the training data. An overfit individual will
often perform poorly on the test set.

Let's go back to poor Emma. Of course, her learning is not likely
to generalize the next time she eats a banana in, say, her kitchen. She
has learned the noise in her training set. But can this be a problem
in actual machine learning and GP? It can. Overfitting has plagued
the neural network world and some GP researchers have noted its
existence in their runs. Three factors may play a part in causing
overfitting:

1. Complexity of the learned solution
In Section 3.3 we discussed the complexity of computer pro
grams. The simpler the solution, the higher the probability
that it will generalize well. More has to be said about this
below.

2. Amount of time spent training
In neural networks, it is important to stop training before the
network overfits the data. A large part of neural network liter
ature deals with this problem. It is not clear yet how this factor
fits into GP training because the end of training can be a very
complex dynamic (see Chapter 7).

3. Size of the training set
The smaller the training set (i.e., the smaller the sample size
from the population), the less reliable the predictions made
from the training set will be.

The next section presents an example of overfitting caused by the
first and second factors above.

8.5.1 An Example of Overfitting
and Poor Generalization

Here is an example of how extensive training and complex solutions
can cause overfitting of noisy data. The task is to learn the simple
quadratic function:

y = x2 (8.7)

in the interval between x = — 1 and x = +1 .
A simple sine function formed the atoms of our learning system:

y = a sin(bx + c) + K (8.8)

8.5 Generalization and Induction

These were subjected to a hill climbing algorithm. We varied the

complexity of the solution by adding more sine terms. For example:

y — a sin(6x + c) + d sin(ea; + /) + K (8.9)

Figure 8.6

Results of learning with 1

degree of freedom

Let us refer to a solution containing one sine expression as having

one degree of freedom, a solution containing two as having two degrees

of freedom, and so forth. While this is not a formal use of the term

degrees of freedom, we use it here for convenience.

Noise was added to the function's 200 sample values between

—0.5 and 0.5. The noise was distributed normally around 0 with

a s tandard deviation of 0.1. Newtonian descent was then used to

find solutions to the da ta with 1,2,4,8, and 16 degrees of freedom.

The algorithm was run as long as any improvement was found by the

algorithm (this was to encourage overfitting by training for too long).

Figures 8.6, 8.7, and 8.8 show a dramatic change in the nature

of the learning tha t occurs as the degrees of freedom increase. Wi th

only one degree of freedom, the real function is found in the noise

very accurately. But as the degrees of freedom increase, the learning

began to fit the noise. At sixteen degrees of freedom, the system is

modeling the noise rather effectively.

8 Analysis — Improving Genetic Programming wi th Statistics

-0.2

-0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5

Figure 8.7
Results of learning with 4

degrees
When the complex solutions were tested on new values of x be

tween — 1 and + 1 with different random noise,9 the story was com

pletely different. The in-sample testing error (the error on points

between —0.5 and +0.5) increased by 3 1 % as the number of degrees

of freedom rose from one to sixteen. The out-of-sample testing error

(the error from —1 to +1) more than doubled. The simpler solutions

generalized better.

Table 8.1 shows tha t the more complex solutions modeled the

training data be t ter than did the simple solutions.

Table 8.1
Comparison of learning

and generalization

performance for varying

degrees of freedom. ISE

(in-sample error):

- 0 . 5 < x < +0.5; OSE

(out-of-sample error):

- 1 .0 < x < +1.0

Deg. of freedom

1
2
4
8
16

Training error

1.00
1.00
0.95
0.91
0.83

ISE

1.00
1.01
1.08
1.19
1.31

OSE

1.00
0.98
0.95
2.04
2.09

9The noise was generated with precisely the same mean and standard
deviation; the only difference was the random seed.

8.5 Generalization and Induction

This example demonstrates clearly that G P researchers must pay

careful at tent ion to generalization issues any time they use G P to

make predictions on da ta other than training data .

Learned function
Function to learn with noise

Function to learn

Figure 8.8

Results of learning

16 degrees

8.5.2 Dealing with Generalization Issues

Overfitting and sampling error are the principal problems in ma

chine learning generalization. There are several methods of address

ing these issues statistically. The problem with these methods is tha t

most G P systems are very computationally intensive. Performing

enough runs to produce a statistically significant result is sometimes

very difficult. So the G P researcher frequently opts for no statistical

validation or the first type of validation to be discussed. Regardless

of what is possible under particular circumstances, there is a range

of options for dealing with generalization issues.

Training a n d Test Set

The tradit ional way for G P to test generalization is to split the da ta

into a training and a test set. Wha t this procedure really amounts

to, however, is having two samples from one population. After train-

E£ZI 8 Analysis — Improving Genetic Programming with Statistics

ing, the best individual on the training da ta is run on the test set.

Because the best individual has never before seen any test data , its

performance is then used as a measure of how well tha t individual

will generalize on further samples drawn from the overall statistical

population.

Though this approach is a good start ing point to check general

ization, it has some drawbacks. To begin with, what criterion should

be used to choose the best individual on the training set? The indi

vidual with the highest fitness on the training set may be precisely

the individual to avoid because it might overfit the training data .

One way out of this problem would be to have a good stopping crite

rion. If we knew just when to stop the run, tha t would be a powerful

solution.1 0

Another approach would be to test other individuals from the

run on the test set to find a bet ter generalizer. Based on experience,

this method produces decent results as long as the individual also

j performs well on the training set. Because the test set becomes now

part of the training set, however, this method has a serious problem:

The test set ceases to be an independent set used only for measuring
1 performance. Therefore, it is called the validation set and a new test

set has to be introduced.1 1 ;

• J > ? • ' ; - '•' •-.:• *• •'<• 'C 0-

. v - t i A d d i n g a N e w T e s t Se t

Adding a third set of da ta tha t the system has never previously seen

<v for performance-measuring purposes should be encouraged. But a

single independent test set has problems all of its own. Again, vari

ance and sampling error are important quantities to consider.

The Variance of the An example will help. Suppose a test set is comprised of 100

Mean Prediction Error instances and the best individual has a mean error of only 1.2% on

the test set. We should not yet be satisfied, and a few tests should

be performed first.

The variance of the predictor on the test set is one essential test.

The mean error of 1.2% hides whether the individual errors are all

close to 1.2% or whether they frequently exceed 5% or —5%. A —5%

error could be a disaster in many predictive models. It is possible

to est imate the s tandard deviation of the population for the mean of

the prediction error. Let fi be the mean of the absolute errors for

the predictor. Let /ut be the i-th absolute error. Let n be the sample

size. An estimate of the s tandard deviation of the errors from the

10The increasing power of the online indicators lends hope that this may
be possible some day.

11 In the literature, test and validation set are sometimes interchanged.

8.6 Conclusion MdtH

population can then be given as:

1 n

T _ I 2 (/ i i - M) 2 (8-10)
i = i

If the distribution of the errors appears normal and if <rM =; 0.8, then

one could cautiously conclude tha t 95% of the predictions will have

an error no greater than 1.6%.

The above equation is not valid for statistics like percentiles or Measuring the Variance

percentage of predictions where the error is greater than a certain of Statistics Other

percentage. For those predictions, one can add new sets of test data . Than Mean Error

Were it possible to draw 1000 test sets of 100 instances each and

to repeatedly test the best individual on those 1000 test sets, the

variance caused by the sampling error could be calculated easily and

one could assess in this way whether the best individual was worth

keeping. In data-mining applications, such a brute force approach

may be feasible. But in most G P applications, da ta is dear and one

has to make the most of limited data .

There are powerful statistical techniques not covered here tha t

may be used to estimate the bias and variance of any statistic from

sparse data . The techniques go by such names as the Jackknife and

the Bootstrap. If testing a G P individual uses measures other than the

mean error, these techniques can improve the researcher's confidence

in the integrity of the results. Or they can reveal variance so wide as

to render the predictions made by the G P individual useless. Ei ther

way, crucial information can be obtained.

Special Techn iques for Class i f icat ion

Classification problems are increasingly being confronted by G P sys

tems as more G P researchers at tack real-world problems. Many clas

sification models are structured so that the output indicates whether

an instance is a member of a class or not. In tha t case, Kendall 's

t score measures how well the system distinguishes instances from

non-instances [Walker et al., 1995]. It is a good star t ing measure

with which to judge the predictions of a classification system.

8.6 Conclusion

The common thread running through this chapter is observe, mea

sure, and test. The tools to estimate the predictive value of G P

models exist and are easily applied to GP. The tools to improve G P

systems or to test theories about, say, the crossover operator, exist

and can be applied easily. Wha t is needed is a decision to use them.

\

8 Analysis — Improving Genetic Programming with Statistics

Exercises

1. What is a statistical population?

2. What is a sample?

3. Describe two basic statistical tools for GP.

4. Describe a moving average.

5. Give an overview of how to choose among input series.

6. What is an online tool, and what is an offline tool?

7. Give four different useful fitness measurements.

8. Give two examples for diversity measures in populations of pro
gram individuals.

9. Describe a method for measuring introns in a tree-structured
individual.

10. What is generalization? What is overntting? How can overnt
ting be avoided?

•••'->j'!>- :..ri >'.';••.'• i t - . ; . , ; J / M ' - r n ;-••

Further Reading

B. Efron,
T H E JACKKNIFE, THE BOOTSTRAP

AND OTHER RESAMPLING PLANS.

Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1995.

B. Efron and R.J. Tibshirani, rr ,- i . , ,••>. ',->;;:•.-_•,• :I,K
AN INTRODUCTION TO THE BOOTSTRAP.

Chapman & Hall, London, 1993.

J.S.U. Hjorth,
COMPUTER INTENSIVE STATISTICAL METHODS VALIDATION,

MODEL SELECTION, AND BOOTSTRAP.

Chapman & Hall, London, 1994.

S.M. Weiss and C.A. Kulikowski,
COMPUTER SYSTEMS THAT LEARN.

Morgan Kaufmann, San Francisco, CA, 1991.

Part III

Advanced Topics in
Genetic Programming

9 Different Varieties of

Genetic Programming

Contents

9.1 GP with Tree Genomes 240

9.2 GP with Linear Genomes 243

9.2.1 Evolutionary Program Induction with Introns ..248

9.2.2 Developmental Genetic Programming 250

9.2.3 An Example: Evolution in C 254

9.2.4 Machine Language 257

9.2.5 An Example: Evolution in Machine Language . .262

9.3 GP with Graph Genomes 265

9.3.1 PADO 265

9.3.2 Cellular Encoding 266

9.4 Other Genomes 267

9.4.1 STROGANOFF 267

9.4.2 GP Using Context-Free Grammars 270

9.4.3 Genetic Programming of L-Systems 273

9 Different Varieties of Genetic Programming

Structures Used in GP We have already seen how the G P arena has been populated with

numerous different approaches to program evolution. It is astonishing

how the simple theme can be varied without destroying the basic

mechanism. In this chapter we will take a closer look at G P variants.

Table 9.1 gives an indication of which kinds of s tructure have been

used with GP. As we can see, some of these variants are very different

and quite incompatible with each other, a s trength rather than a

weakness of the fundamental idea.

Structure name

S-expression

GMDH primitives

T B

J B

bits

bits

abstract date types

production rules

production rules

PADO

cellular encoding

Description

tree s tructure

tree s tructure

linear postfix

linear prefix

linear genomes

machine code instructions

lists, queues, stacks

grammars

graph structure

graph structure

tree grammars

Source

[Koza, 1992d]

[Iba et al., 1995b]

[Cramer, 1985]

[Cramer, 1985]

[Banzhaf, 1993b]

[Nordin, 1994]

[Langdon, 1995b]

[Whigham and McKay, 1995]

[Jacob, 1996a]

[Teller and Veloso, 1995b]

[Gruau, 1993]

Table 9.1

Some of the many

different structures used

for GP

The following sections present a selection of these variants, s tart

ing with a look at tree-based GP, currently in most frequent use in

the G P community.

Td* ' , , ? * M H 5 < M ? S t i i » b C h.fi

9.1 GP with Tree Genomes

The general working of G P on trees was introduced in Chapter 5.1

Here we shall review the different types of operators tha t have been

introduced over the years for manipulat ing tree structures. As men

tioned earlier, the simplest operator is the reproduction operator which

does nothing but copy the individual into the next generation. The

next more complicated operator is the mutation operator which acts

on a single tree at a time. Table 9.2 gives an overview of what sorts

of mutat ion operators have been used with trees. Figures 9.1-9.6

summarize graphically the effect of certain mutat ion operators.

In many applications, the mutat ion operator is not applied di

rectly to a reproduced individual, but is applied to the result of

1There are trees of different kinds. Mostly we shall use "expression"
trees in our examples.

9.1 GP with Tree Genomes

Figure 9.1

Different mutation

operators used in tree-

based GP: point mutation

another operator, canonically working on two trees: crossover. If
crossover is used as the follow-up operator to reproduction, two indi
viduals are copied into the next generation. Subsequently, one node
is selected in each tree and the subtree below this node is cut out
and transferred to the location of the node selected in the second
tree, and vice versa. The function of crossover is to swap genetic
material between trees.2 As Table 9.3 shows, various crossover oper
ators are applicable to trees and it is a matter of a priori choice and
implementation which one to take in an actual run.

2Usage of the crossover operator to generate one new individual is also
very common.

i>m 9 Different Varieties of Genetic Programming

Operator name

point mutat ion

permutat ion

hoist

expansion mutat ion

collapse subtree mutat ion

subtree mutat ion

gene duplication

Description of effect

single node exchanged against

random node of same class

arguments of a node permuted

new individual generated

from subtree

terminal exchanged against

random subtree

subtree exchanged against

random terminal

subtree exchanged against

random subtree

subtree subst i tuted for

random terminal

Operator name

subtree exchange crossover

self crossover

module crossover

context-preserving crossover

SCPC

W C P C

Description of effect

exchange subtrees

between individuals

exchange subtrees

between individual and itself

exchange modules

between individuals

exchange subtrees if

coordinates match exactly

coordinates match approximately

Table 9.3
Crossover operators

applied within tree-based

GP CPC:

context-preserving There should be a close correspondence between crossover and
crossover mutation operators, the former being applied to two individuals and

swapping information between them and the latter being applied to

one individual alone with additional random action. One can as

sume that a crossover operator can be constructed to correspond to

each mutation operator, and vice versa. The fact that this has not

been done systematically in the past says more about the status of

systematization in GP than about the potential of those operators.

Figures 9.7-9.9 summarize graphically the effect of certain cross

over operators on trees.

Table 9.2
Mutation operators

applied in tree-based GP

9.2 GP with Linear Genomes JED

Figure 9.2
Different mutation

operators used in tree-

based GP: permutation

9.2 GP with Linear Genomes

Linear GP acts on linear genomes, like program code represented by

bit strings or lines of code for register machines. Before we discuss

a few variants of linear G P we should contrast the behavior of linear

G P to tha t of tree-based G P .

When we consider the effects of applying different operators to

tree individuals there is one aspect of the hierarchical tree repre

sentation tha t specifically a t t rac ts our attention: in a hierarchical

representation there is a complicated interplay between the order of

execution of the program and the influence of changes made at var-

tfllU 9 Different Varieties of Genetic Programming

Figure 9.3
Different mutation

operators used in tree-

based GP: hoist

ious levels of the tree. Trees are usually executed in a depth-first

manner, i.e., the left branches of nodes are evaluated before the right

branches. Thus order of execution is from left to right. However, the

influence of change is determined in a hierarchical representation by

the level at which a particular node resides. An exchange at a deeper

level in the program tree will naturally have fewer consequences than

an exchange at a higher level.

For the following consideration we have to make two simplifying

assumptions, they are, however, not very restrictive. First , we shall

assume tha t our tree is constructed from binary functions. Second,

we shall assume tha t trees are (nearly) balanced.

Operator Hit Rate D e f i n i t i o n 9.1 The hit r a t e of an operator in relation to a feature

of nodes is the probability by which one node or more nodes in the

tree possessing this particular feature are selected for operation.

9.2 GP with Linear Genomes UM4

Figure 9.4
Different mutation

operators used in tree-

based GP: expansion

mutation

Pu t plainly, the hit rate of nodes in the deepest level of a tree, i.e.,

nodes with the feature of being on the deepest level, is - assuming

balanced binary trees - 1/2. It follows tha t all nodes in the rest of the

tree possess a hit ra te of 1/2 in total , with 1/4 going to the second

deepest level, 1/8 to the next higher level, and so on. Hence, with

overwhelming probability, nodes at the lowest level are hit most often

for crossover or mutat ion operations.3

3Very often, therefore, precautions are taken in tree-based GP systems
to avoid high hit rates at the lowest level of a tree by biasing the hit rate.

nn 9 Different Varieties of Genetic Programming

Figure 9.5
Different mutation

operators used in tree-

based GP: collapse

subtree mutation

Together, the two facts mentioned above result in the conclusion
that in tree-based GP, the most frequent changes are small. This is
true for all operators uniformly selecting nodes from a tree.

The influence of change in a linear structure can be expected to
follow the linear order in which the instructions are executed. An ex
change later in the sequence will have fewer behavioral consequences
than an exchange earlier on. The hit rate of operators, on the other
hand, in relation to the position of a node or instruction in that
sequence is equal for the entire linear genome. Hence, it can be ex
pected that in GP with linear representations, changes of all sizes are
equally frequent. This is true for all operators uniformly selecting
nodes from a sequence.

9.2 GP with Linear Genomes WAM

Figure 9.6
Different mutation

operators used in tree-

based GP: subtree

mutation

Figure 9.10 demonstrates the behavior of tree-based G P for a

simple regression problem. The amount of change (improvements

as well as deteriorations) relative to the fitness of predecessors is

recorded. Small changes are by far the most frequent ones.

Figure 9.11 shows a marked difference to Figure 9.10. Here, the

same regression problem has been approached with machine language

GP. Changes of all sizes are more frequent, which can be seen from

the distribution of the aggregations of black dots.

We should keep in mind tha t results from this comparison are

not yet conclusive, but it is an interesting research area to compare

the behavior of different representations in genetic programming.

MrlbU 9 Different Varieties of Genetic Programming

Figure 9.7
Different crossover

operators used in tree-

based GP: subtree

exchange crossover

Figure 9.8
Different crossover

operators used in tree-

based GP: selfcrossover

c
,S ">v

'K.V - V , / VJV * \J

u

9.2.1 Evolutionary Program Induction with Introns

Wineberg and Oppacher [Wineberg and Oppacher, 1994] have for

mulated an evolutionary programming method they call EPI (evo

lutionary program induction). The method is built on a canonical

genetic algorithm. They use fixed length strings to code their indi-

9.2 GP with Linear Genomes S3

Figure 9.9
Different crossover

operators used in tree-

based GP: module

crossover

Figure 9.10
Changes during an

evolutionary run for a

regression problem in

tree-based GP. Each dot

denotes a change relative

to predecessors. Small

changes are most

frequent.

1000 2000 3000 4000 5000 6000 7000

viduals and a GA-like crossover. However, their linear genomes code

for trees tha t are identical to program trees in tree-based GP. The

fixed length of individuals and their coding scheme imply a predefined

maximal depth of trees in evolutionary program induction with in-

trons. The coding is constructed to maintain a fixed structure within

the chromosome tha t allows similar alleles to compete against each

other at a locus during evolution. As a consequence, the genome

normally will be filled with introns, which they argue is beneficial to

the search process [Wineberg and Oppacher, 1996].

1M1 9 Different Varieties of Genetic Programming

Figure 9.11
Changes during an

evolutionary run for a

regression problem in

linear (AIMGP)

representation. Each dot

symbols a relative change

to predecessors. Changes

show levels that are most

frequent.

1000 2000 3000 4000 5000 6000 7000 8000

M.

Genotypes vs.

Phenotypes

9.2.2 Developmental Genetic Programming

Developmental genetic programming (DGP)4 is an extension of G P

by a developmental step. In tree-based GP, the space of genotypes

(search space) is usually identical to the space of phenotypes (solu

tion space) and no distinction is made between genotypes and phe

notypes: an individual is always identified with a computer program

of syntactically correct s t ructure which is interpreted or compiled for

execution. Developmental genetic programming, on the other hand,

maps binary sequences, genotypes, through a developmental process

[Banzhaf, 1994] into separate phenotypes. These phenotypes are the

working programs with the syntactic s tructure of an LALR(l) gram-

Two abstract properties of how G P approaches a problem are

evident:

Feasible vs. Infeasible

Structures

1. G P optimizes a fitness measure tha t reflects the behavior of a

program

2. The optimization problem is hard-constrained, since the set of

feasible points in search space is identical to the solution space.

In the tree-based G P approach, the second property is reflected by

the fact tha t it is a constrained search process: creation and variation

are only allowed to yield feasible programs.

However, given a certain syntax, a function and terminal set, and

a maximal sequence length, the set of infeasible programs is often ex

tremely large compared to the set of feasible programs - as every

4We had earlier called this method binary genetic programming or BGP
[Keller and Banzhaf, 1996] but have now decided DGP is more to the point.

9.2 GP with Linear Genomes JeJil

programmer knows from painful personal experience. Despite this

fact, infeasible programs may contain syntactically correct par ts tha t

could prove useful during evolution. A huge amount of genetic diver

sity might become unavailable to the search process if it could not

make use of these parts . To make the diversity of infeasible programs

accessible, the search process should be unconstrained, i.e., the search

operators should be able to accept and to produce an arbi trary se

quence. Prior to fitness evaluation, however, an infeasible program

should be mapped into a feasible program. D G P implements this

function by using a specifically designed genotype-phenotype map

ping.

There is one further argument to add plausibility to these con

siderations: it is sometimes preferable to search in a space with more

dimensions than the solution space. More dimensions enable the

search to cut through dimensions instead of being forced to evolve

along longer paths in solution space. One can expect tha t searching

with shortcuts will increase the probability of finding bet ter solutions

dramatically.

As we already mentioned, genotypes in D G P take the simplest

and most universal form of a binary representation. The representa

tion of phenotypes (programs), on the other hand, is determined by

the language used. Simple search operators, as in s tandard GAs, can

be used in DGP.

Once the genotypic representation has been fixed, we can define The

the mapping between genotype and phenotype. At least two steps Genotype-Phenotype

are needed to make the genotype-phenotype mapping work: Mapping

1. The high-dimensional genotype (binary sequence) must be tran

scribed into the low-dimensional phenotypic representation (raw

symbol sequence).

2. In case the raw symbol sequence is infeasible, it must be edited

into a feasible symbol sequence.

For transcription, the obvious approach is to identify each symbol Transcription

from the terminal and symbol set - which we could call token - with

at least one binary subsequence which we shall call codon. If all

codons have equal length, there is a mapping from the set of all n-bit

codons into the set of all symbols. A binary sequence of m codons

thus represents a raw sequence of m symbols.

For instance, if a, b, + are represented by 00, 01, 10, then the raw

(and feasible) sequence a+b is given by 001001. In this example, we

have a three-dimensional solution space if we consider all syntactically

correct symbol sequences of length 3. The search space, however, has

6 dimensions.

9 Different Varieties of Genetic Programming

Editing The raw sequence produced by transcription is usually illegal,

and an editing step is needed to map a raw sequence into an edited

sequence. Here we consider only LALR(l) grammars [Aho, 1986],

i.e., the D G P as discussed here can only evolve programs in languages

defined by such a grammar. Many practically relevant languages like

C are LALR(l) languages. Let us introduce the notion of a legal

symbol set: a symbol tha t represents a syntax error at its position

in a raw sequence will be called illegal. When, during parsing of a

raw sequence, an illegal symbol s is detected, the corresponding legal

symbol set is guaranteed to be computable in LALR(l) grammars .

This set is computed and a subset of it, the minimal-distance set, is

selected. It holds the candidates for replacing s. Depending on the

actual mapping, there can be more than one such symbol. In order

to resolve this ambiguity, the symbol with lowest integer value among

all codons of closest symbols will be selected.

If this procedure is applied, editing will often produce symbol se

quences tha t terminate unfinished. For instance, editing could result

in the unfinished arithmetical expression sin(a) *cos(fc)+. In order to

handle this problem, we assign a termination number to each symbol.

This number indicates how appropriate the symbol is for the short

est possible termination of the sequence. In the above expression, for

instance, a variable would terminate the sequence, while an operator

symbol like s i n would call for at least three more symbols, (, vari

able,). The termination number of a symbol is simply the number

of additionally needed symbols to terminate the expression. Thus , in

the example, a variable-symbol like a has termination number 0, while

a symbol like sin has termination number 3. Note tha t the number of

symbols actually needed for termination when using a certain symbol

can be larger than its termination number. For instance, there could

be an open parenthesis prior to the end of the unfinished sequence,

which had to be closed before termination. Such context-sensitive

circumstances shall not be reflected in a termination number. In case

there are several symbols with equal minimal termination number,

t ha t one is taken which is encoded by a codon with the lowest index

among all codons of the symbols in question.

Translation Edit ing yields a feasible symbol sequence which is subsequently

completed by language-specific s tandard information such as a func

tion header. Finally, the resulting program is interpreted or compiled

and executed in order to evaluate its fitness.

Consider the example in Table 9.4. The genotype 000 001 011 is

transcribed into a raw sequence ab*. Editing scans a as first and legal

symbol. It then scans b as an illegal symbol with 001 as its codon in

the genotype. { + , *} is the legal symbol set. The symbol closest to b

is *. Thus, b gets replaced by *, thereby terminating the removal of

9.2 GP wi th Linear Genomes

Binary code

000
001

010

Oil

100

101

110

111

Token

a

b

+
*

a

b

+
*

Table 9.4
Example of redundant

genetic code mapping

codons into tokens

the syntax error. The partially edited raw sequence now equals a * *.

Edit ing continues, replacing the last symbol * with b.

The edited sequence a * b is passed on to translation, which

adds, for instance, a function frame. The translated sequence might

look like doub le f n c (d o u b l e a , doub le b) { r e t u r n a * b ; } . This

sequence could now be integrated with other edited sequences, for

example, into a main program tha t a C compiler could handle. Ex

ecution would then allow the fitness of the corresponding genotypes

to be evaluated.

As can be seen, 000 001 011 gets mapped into the phenotype a*b.

However, 010 011 101, 000 011 001, and 100 111 101 all get mapped

into a * b as well. When analyzing this phenomenon, it becomes clear

immediately tha t bo th the redundancy of the genetic code and the

editing mechanism are responsible for this effect.

The following unconstrained search operators are used in D G P .

They perform operations on sets of codons and bits within codons.

• Creation

Search Operators

• Mutat ion

• Recombination

Creation generates individuals as random binary sequences tha t con

sist of m-bit codons. Mutation may work within codons or it may

change bits of different codons at the same time. A codon-limited

mutat ion corresponds to exploring few dimensions in the same sub-

space, while a codon-unlimited muta t ion may explore the search space

in many dimensions. These mutat ion operators do not produce vast

changes in the genotype because they do not replace complete syntac

tic units, as they would in tree-based GP. Thus, this type of mutat ion

seems closer to natural mutat ion. Crossover is implemented in deve

lopmental genetic programming by a s tandard GA operator like one-

EI 9 Different Varieties of Genetic Programming

or two-point crossover. In particular, swapped subsequences may be

of different length, thus producing offspring with different length.

Figure 9.12 outlines the central piece of the D G P algorithm. Ad

dition of a genotype-phenotype mapping step could be considered for

any G P algorithm. The genotype-phenotype mapping must always

happen prior to fitness evaluation.

Figure 9.12
The central piece of the

DGP algorithm, the

genotype-phenotype

mapping

[Genotype J -

Search Space
(unconstrained)

Genotype -Phenotype
Mapping (GPM)

Constraint implementation

[Phenotype J

Solution space
(constrained)

Major DGP Parameters

Sample Problem

Protected Functions

9.2.3 An Example: Evolution in C

D G P can be used for the evolution of a program in an arbi t rary

LALR(l) target language. Assume D G P has been evolving FOR

T R A N programs for some problem, and now we want it to produce

C programs. In principle, four system parameters must be changed.

First , we exchange the FORTRAN parser for a C parser. Second, we

subst i tute those target symbols in the genetic code tha t are specific

of FORTRAN by the semantically corresponding C symbols. Third ,

the editing phase must supply C-specific phenotype par ts , like C-style

function headers. Fourth, any commercially available C compiler will

be called prior to fitness evaluation. D G P will now happily evolve C

programs for the given problem.

Let us consider an example for the evolution of C programs along

the lines of [Keller and Banzhaf, 1996]. Since C is the chosen target

language, each phenotype will be a symbol sequence obeying C syn

tax. The test problem is a symbolic function regression on a four-

dimensional parameter space. The function we would like to model

is

/ = sin(m) • cos(z;) • -== + tan(a) (9-1)

All parameter values shall be real-valued. The domain of the test

problem suggests variables, unary and binary ari thmetic functions,

and parenthesis operators as elements of the terminal and function

sets. To protect against division by zero, we use a division function

D tha t re turns the reciprocal value of its single argument. If the

argument equals zero, the function returns 1. We supply a protected

square root function sqrt tha t returns the square root of the absolute

9.2 GP with Linear Genomes MJ33

value of its argument. Furthermore, an overflow-protected exponen

tial function exp(x) is provided tha t normally returns ex, but in case

the value of x causes an overflow, returns 1.

The code shown in Table 9.5 is used.

Binary code

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Token

+
*

*

D

m

V

q
a

(

)
sin

cos

tan

sqrt

exp

)

Abbr. token

+
*

*

D

m
V

q
a

(
)
S

c
T

R
E

)

The codons get mapped into a set of 16 symbols, featuring 14

different symbols of variables and operations. This genetic code is re

dundant with respect to the multiplication and the closing-parenthesis

operator. This might have positive and negative effects on conver

gence. For instance, the redundancy of the multiplication opera

tor could result in phenotypes tha t consist of many such operators.

This can be advantageous since the problem function features two

such operators. On the other hand, the redundancy concerning the

closing-parenthesis operator could pose a handicap to evolution, since

it enlarges the probability tha t a needed long subexpression never

emerges.

The genotype length is fixed at 25 codons; tha t is, each genotype

consists of 25 codons. Since there are 16 different codons in the

genetic code, the search space contains 1625 or approximately 1.3E30

genotypes. When using the unrestricted mutat ion operator described

above, D G P faces 25 • 4 = 100 degrees of freedom, since each codon

consists of 4 bits. In other words, in addition to the relatively large

size of the search space, this space is high-dimensional, with 100

dimensions.

Table 9.5
Genetic code of the

example function

regression problem,

including one-character

abbreviations

im.< 9 Different Varieties of Genetic Programming

Sometimes the actual length of phenotypes after repair can sur

pass 25 target symbols. Imagine, for instance, the - improbable -

case of a phenotype like

D(D(D(D(D(D(D(D(D(D(D(D(D (a)))))))))))))

Prior to the space character within the symbol sequence, there are 25

symbols. Shortest possible termination of the phenotype still requires

appending 15 more symbols, most of them being) to close open

parenthesis levels.

Due to the real-valued four-dimensional parameter space, a fitness

case consists of four real input values and one real output value.

We supply a set of fitness cases with randomly chosen input values.

Although the problem is significantly harder than many regression

problems used to test G P systems, we increase the difficulty further

by providing only ten fitness cases to the system. Note tha t G P

systems will take advantage of this si tuation and develop a simpler

model of the da ta than would have evolved with a large number of

fitness cases.

An Example Result Runs lasted for 50 generations at most, with a population size of

500 individuals. In one experimental run, the genotype

1100 0010 1000 0111 1001 0010 1101 1001 0111 1110
0000 1011 1001 1110 1001 1010 1101 0011 1100 1111
0101 1010 0110 1110 0001

evolved. W h a t must happen to this genotype in order to evaluate the

fitness of the corresponding individual? Transcription derives from it

the raw symbol sequence (using the one-letter abbreviations)

T*(a)*R)aE+C)E)SRDT)vSqE*

Repairing transforms this illegal sequence into

{T((a)*R(a+m))+(S(D((v+q+D>

Since this sequence is unfinished, repairing terminates by com

pleting the sequence into .._ , .,.

{T((a)*R(a+m))+(S(D((v+q+D(m)))))>

Finally, editing produces

doub le i n d (d o u b l e m,double v , d o u b l e q , d o u b l e a)

{ r e t u r n T ((a) * R (a + m)) + (S (D ((v + q + D (m))))) ; }

9.2 GP wi th Linear Genomes

A C compiler takes over to generate an executable that is valid on the
underlying hardware platform. This executable is the final phenotype
encoded by the genotype. As a formula this reads

tan(a * \Ja + m) + sin(=-) (9-2)

This phenotype featured a normalized least-square error fitness of
0.99 (with 1.0 as perfect fitness), which is quite acceptable, consider
ing the size of the search space and the use of mutation as the only
search operator besides creation.

As a side effect, this example shows that GP can be used to
find "simpler good models" (i.e., solutions) for a "reality" (i.e., a
problem) described by fitness cases. While the perfect solution is
an expression that uses the cosine and the exponential function, the
almost perfect solution above does without these functions. This
inherent potential of GP can be applied to problems where a certain
degree of compromise between quality and complexity is acceptable.

9.2.4 Machine Language

Commercial computers are - at a low level of abstraction - regis
ter machines. A register machine executes a program by reading
the numbers in its memory cells and interpreting them as operations
between memory and registers. The registers form a small set of
memory cells internal to the processor. A typical machine code in
struction may look like x=y+z, which should be interpreted as "add
the content of register y to the content of register z and store the re
sult in register a;." The instructions could also access and manipulate
the RAM memory. The instructions x=memory c e l l [y] will inter
pret the content of register y as an address pointing to a memory cell
whose value should be moved into register x. Instructions that realize
jumps and comparisons enable the creation of conditional branches
and loops.

A simple four-line program in machine language might look like
this:

1: x=x-l
2: y=x*x
3 : x=x*y
4: y=x+y

This program uses two registers, x, y, to represent a function, in
this case the polynomial f(x) = (x — l) 2 + (x — l) 3 . The input for
the function is placed in register x and the output is what is left in
register y when all (four) instructions have been executed. Register

EEEM 9 Different Varieties of Genetic Programming

Figure 9.13

The dataflow graph of

the (x- l) 2 + (x - l) 3

polynomial
-1

rr

i l

rr

y is initially zero. Note tha t registers are variables which could be

assigned at any point in the program. Register y, for instance, is

used as temporary storage in instruction 2, before its final value is

assigned in the last instruction. The program has more of a graph

than a tree structure, where the register assignments represent edges

in the graph. Figure 9.13 shows the dataflow graph of the function

computat ion for (x — l) 2 + (x — l) 3 . We can see tha t the machine code

program corresponds to this graph very closely. Compare this to an

equivalent individual in a tree-based G P system such as in Figure

9.14.

Figure 9.14

The representation of

{x - l) 2 + {x- l) 3 in a

tree-based genome

9.2 GP with Linear Genomes

A disadvantage of the more compact register machine representa
tion might be that it may be more brittle because of the dependencies
between registers. On the other hand, temporary storage of values in
registers can be seen as a simple substitute for automatically defined
functions (see Section 10.1), since the reuse of calculated values could
under certain conditions replace the need to divide the programs into
functions [Nordin, 1994].

Machine code programming is often used when there is a need for
very efficient solutions - with applications having hard constraints on
execution time or memory usage. In general, the reasons for using
machine code in GP - as opposed to higher-level languages - are
similar to those for programming in machine code by hand:

• The most efficient optimization can be done at the machine
code level. This is the lowest level of a program and is also
where the biggest gains are possible. Optimization could aim
at speed or memory space or both. For instance, GP could be
used to evolve short machine code subroutines with complex
dependencies between registers and memory.

• Another reason for using machine language is that high-level
tools might simply not be available for a target processor. This
is often the case for special-purpose processors in embedded
control applications.

• Machine code is often considered hard to learn, program, and
master. Although this is a matter of taste, sometimes it could
be more convenient to let the computer evolve small pieces of
machine code programs itself rather than learning to master
machine code programming.

Although it is possible to evolve machine code with a tree-based
system (by building trees of machine instructions), there are addi
tional reasons for using binary machine code directly:

• The GP algorithm can be made very fast by having the individ
ual programs in the population in binary machine code. This
method eliminates the interpreter in the evaluation of individu
als. Instead, evaluation requires giving control of the processor
to the machine code constituting the individual. This acceler
ates GP around 60 times compared to a fast interpreting system
[Nordin and Banzhaf, 1995b]. As a result, this method becomes
the fastest approach to GP.

• The system is also much more memory efficient than a tree-
based GP system. The small system size is partly due to the

9 Different Varieties of Genetic Programming

fact tha t the definition of the language used is supplied by the

CPU designer in hardware - there is no need to define the

language and its interpretation in the system. Low memory

consumption is also due to the large amount of work expended

by CPU manufacturers to ensure tha t machine instruction sets

are efficient and compact. Finally, manipulation of individuals

as a linear array of integers is more memory efficient than using

symbolic tree structures.

• An additional advantage is tha t memory consumption is sta

ble during evolution with no need for garbage collection. This

consti tutes an important property in real-time applications.

In the rest of this section we will take a look at the methods used

to realize machine code G P systems.

E v o l v i n g M a c h i n e C o d e w i t h an In terpre t ing S y s t e m

The most straightforward approach to G P with machine code would

be to define a function and terminal set suitable for a machine code

variant. The terminal set would be the registers and the constants

while the function set would be the operators used. The problem with

such an approach is tha t one cannot crossover arbitrary subtrees with

out violating the syntax of the machine language used. A solution

is to have a strongly typed G P system where one can only crossover

subtrees of the same type [Montana, 1994]. In strongly typed G P

(STGP) one cannot crossover a subtree returning a Boolean with a

subtree returning a float, to give one example. In a similar way, we

would not crossover nodes tha t are registers with nodes tha t are op

erators. Figure 9.15 illustrates how the small machine code segment

representation below could be represented in a strongly typed tree

structure:

1: x=x-l * " "•'"•'•'•"•'• ' " ' : '

2 : y = x * x . . : ! v w , i » , . l , i i ; i , . . : | 1 l ' A , s V ; ! ; , - . ' l f -
3: x=x*y .: .. , v ; ,,[;,,..... .,.,;r .;.'*. •.,. ; . .- , i - , ; i :- r !

4: y=x+y

There are three different types of nodes in this figure. Terminal

nodes represent constants or register values. Operator nodes calculate

values from two of their operands and store the result in the register

specified by their first operand. The operands are tied together with

I nodes which do not represent a calculation but instead are used to

give the operand nodes a defined execution order. In our example we

execute the operand nodes in depth-first order.

9.2 GP with Linear Genomes EH

IjjL Figure 9.15
^ ^ ^ ^ Representation of

C\\ T O machine code language

s' ^ \ / \ \ individual in a tree

r~~\^ ^^Y~\ f\ f\ r~\ structure
(I) r) (y) l ») l y)

(- 7 (") (v) (x) (y)

O l O (O [y) v O \ O

Strongly typed G P is similar to grammar-restricted GP, which

uses a grammar of the language to restrict, e.g., crossover

[Whigham, 1995a]. This way it is also possible to guarantee correct

operation of G P operators on individuals. This method is also well

suited for evolution of machine code. There are also other methods

for structure preserving crossover which might be used [Koza, 1992d].

These tree-based G P methods for evolution of machine language

might seem slightly forced. Most researchers have used a crossover

method, instead, which is similar to GA crossover due to the lin

ear s t ructure of machine code programs. This crossover operator

exchanges pieces of machine code in a linear representation.

T h e J B L a n g u a g e

One of the earliest approaches to evolution of computer programs

similar to machine code is the J B language [Cramer, 1985]. Cramer

formulated his method as a general approach to evolve programs,

but his register machine language is in many ways similar to a simple

machine code language and will thus serve as a good illustration

for register machine G P . He uses a string of digits as the genome.

Three consecutive digits represent an instruction. The first integer

in the triple determines the type of instruction. This is similar to the

syntax of a machine code instruction which has specific bit fields to

determine the type of instruction. There are five different instructions

or s ta tements in J B . INCREMENT adds one to a specified register. The

register number is given by the second digit of the triple. ZERO clears

a register while SET assigns a value to a register. There are also

BLOCK and LOOP instructions tha t group instructions together and

enable w h i l e - d o loops. Figure 9.16 shows a very short J B example.

Neither INCREMENT nor CLEAR uses the last digit of its triple. J B

WMM 9 Different Varieties of Genetic Programming

Figure 9.16

Program representation

in JB

0 = BLOCK (group statements)
1= LOOP
2 = SET
3 = ZERO (clear)
4 = INCREMENT

Individual genome:
0 0 1 3 1 H i 2 1 4 1 X

block stat. 1 stat.2
registers = 0
repeat stat.1, register2
registeri = registerl +1

employs a variable-length string crossover. In part to avoid infinite

loops, Cramer later abandoned this method in favor of an approach

using a tree-based genome.

T h e G E M S S y s t e m

One of the most extensive systems for evolution of machine code is

the GEMS system [Crepeau, 1995]. The system includes an almost

complete interpreter for the Z-80 8-bit microprocessor. The Z-80 has

691 different instructions, and GEMS implements 660 instructions,

excluding only special instructions for interrupt handling and so on.

It has so far been used to evolve a "hello world" program consisting of

58 instructions. Each instruction is viewed as atomic and indivisible,

hence crossover points always fall between the instructions in a linear

string representation. Figure 9.17 illustrates the crossover method

used in GEMS, where new offspring are created by exchanging a

block of instructions between two fit parents.

9.2.5 An Example: Evolution in Machine Language

A typical application of G P is symbolic regression. Symbolic regres

sion is the procedure of inducing a symbolic equation, function, or

program tha t fits given numerical data . A G P system performing

symbolic regression takes a number of numerical i npu t /ou tpu t rela

tions, called fitness cases, and produces a function or program tha t

is consistent with these fitness cases. Consider, for example, the fol

lowing fitness cases:

f (2) = 2

f (4) = 36

f (5) = 80

f (7) = 2 5 2 ,. . .

9.2 GP with Linear Genomes MJifci

Parents
Figure 9.17

Lesser fit parent ^-^ Better fit parent The crossover of GEMS

One of the infinite number of perfect solutions would be f(x) —

(x — l) 2 + (x — l) 3 . The fitness function would, for instance, be

the sum of the difference between an individual's (function's) actual

output and the target output specified by a fitness case. If a matching

formula is found by the G P system it can be used to predict the values

between or outside the given range of points.

The first issue we need to decide is which instructions from ma

chine language we would like to include in the function set. When

evolving a program in machine language, we should always spend

some t ime assuring tha t the representation of the problem and the

fitness cases are well suited for the available machine code instruc

tions. Sometimes it is advantageous to map the fitness cases to an

other representation which bet ter corresponds to primitives of the

language. By introducing a CALL instruction, one can use any sort

of user-defined function even when working with machine code evo

lution. However, the power of machine code G P is exploited to the

highest degree only when native machine code instructions are used

for calculation. In our symbolic regression problem, we choose three

ari thmetic instructions for the function set + , —, x .

We must also decide on the number of registers an individual has

access to. Hardware usually provides an upper limit on the number

of registers accessible. This limit is between 2 and 64 registers, de

pending on the processor type and the programming environment. If

EU 9 Different Varieties of Genetic Programming

there are not enough registers available for the application, one has

to include instructions for stack manipulation. In our case, we can

assume tha t two registers (x,y) will be enough.

After the number of registers, the type of the registers has to be

fixed. Three types exist: input registers, calculation registers, and

output registers.5 The input value to the function is assigned to the

x register while the y register is cleared.

If the machine code instruction format allows for constants inside

the instructions, then we also need to give an initialization range for

these instructions. The initialization range can be smaller than the

maximal number expected in the formula because the system can

build arbitrary constants by combining them.

The usual parameters for G P runs, like population size and cross

over or mutat ion probabilities, have to be fixed as well. The popu

lation is initialized as random programs with random length. The

maximum length of programs during initialization is another param

eter of the system. In our example, two average individuals are the

parents in Figure 9.18. The figure shows a possible crossover event

between the parents. In this instance, a perfect individual is found

tha t satisfies all the fitness cases and has a fitness 0.

Parents
Figure 9.18
Example crossover with

fitness of parents and

offspring

Dad: equivalent (x-x-ii) Worn: equivalent
V l y to f (x)=x - i

I Fitness 358

Children

(x=y rj Offspring #1: equivalent
to f(x)=x
Fitness 352

Offspring #2: equivalent
tof(x)=(x-1)'+(x-lf
Fitness 0 (perfect)

• < 4 . swm.vM
5Sometimes, specific state registers need to be used. Here this is not

the case and we defer a discussion of those to Chapter 11.

9.3 GP with Graph Genomes

9.3 GP with Graph Genomes

Graphs are another important structure on which G P has been ap

plied. In this section we shall discuss two examples, the PADO system

of Teller and Veloso [Teller and Veloso, 1995b], and the developmen

tal system of Gruau [Gruau, 1992b].

9.3.1 PADO

The graph-based G P system PADO (Parallel Algorithm Discovery

and Orchestration) employs several different innovative ideas. The

topic we discuss in this section is tha t PADO works not with S-

expressions but with programs. Teller and Veloso say they prefer this

way to evolve a superset of those elements of tradit ional hierarchical

G P functions.

The programs of PADO are regarded as N nodes in a directed

graph, with as many as N arcs going out from each node. Each node

consists of an action part and a branch-decision par t . Figure 9.19

shows a program, a subprogram, and the memory organization for

each node.

Each program has a stack and an indexed memory for its own

use of intermediate values and for communication. There are also

the following special nodes in a program:

• Start node

• Stop node

• Subprogram calling nodes

• Library subprogram calling nodes

There are also parameters stat ing, for example, the minimum

and maximum time for a program to run. If a particular program

stops earlier, it is simply restarted from the s tar t node, with values

accumulated in stack or memory reused. Library subprograms are

available to all nodes, not just the one which is calling, whereas sub

programs without tha t provision are for a program's "private" use

only.

A population of these programs competes for performance on sig

nal classification tasks. In fact, no one program becomes responsible

for a decision; instead, a number of programs are "orchestrated" to

perform the task. Teller claims tha t the system is able to classify sig

nals bet ter thus than with LISP-like constructs such as S-expressions

and ADFs [Teller and Veloso, 1995a]. In addition, due to the spe

cial representation of programs in directed graphs, loops are easily

incorporated.

l&ffl 9 Different Varieties of Genetic Programming

Main Program
Figure 9.19
The representation of a

program and a

subprogram in the PADO

system. Each node is

comprised of: Number,

Action, Branch, Arcl,

Arc2, ..., Branch

Constant.

START

STOP

Stack

Indexed Memory

Subprogram (private or public)
" :0-K>.!:,r; i.

: I i

Special care has to be taken to provide good mutat ion and cross

over operators for such a system. Teller and Veloso use a co-evolution

ary approach they call smart operators [Teller, 1996] (see Chapter 6).

There are more sophisticated breeding details, which we shall omit

here, as well as additional evaluation procedures specifically curtailed
to facilitate pa t te rn recognition, but the above is the gist of PADO's

graph representation.

9.3.2 Cellular Encoding

An interesting scheme for a developmental approach toward graph

evolution has been proposed by Gruau [Gruau, 1992b] [Gruau, 1993]

[Gruau, 1994a]. Gruau designed a rewriting system tha t can work on

graph structures as exemplified by neural networks, electrical circuits,

or finite s ta te automata . Because the notion of graphs is ubiquitous

9.4 Other Genomes §E3

in computer science, the application area of this method is potentially

large.

The general idea is tha t what ult imately should result as a phe-

notype is separated from the genotype of the tree-based individual.

The phenotype is a (possibly) cyclic graph, something strictly for

bidden in tree structures by their very definition, which forces the

separation between genotype and phenotype.

The genotype is a so-called grammar tree, which contains rules Grammar Trees as

for rewriting, like the models of Whigham (see Section 9.4.2) or Jacob Genotype

(see Section 9.4.3). W h a t is rewritten, however, is not a string but

a graph, whose nodes (cells) or edges (connections) are undergoing

rewriting. The former is called division by Gruau, the lat ter change

of weights/l inks/connections. These operations are applied in a par

allel manner so tha t grammar trees develop over t ime like L-systems

[Lindenmayer, 1968]. Figure 9.20 shows a selection of operations in

this rewriting system.

Another aspect of Gruau 's work in cellular encoding is the ability

to define modules once tha t subsequently can be applied in various

locations in the grammar tree. We shall discuss an example of the

development of a neural network for a walking insect-like robot in

Chapter 12.

9.4 Other Genomes

A wealth of other structures has been used for evolution. This section

will discuss a few of them.

9.4.1 STROGANOFF

Iba, Sato, and deGaris [Iba et al., 1995b] have introduced a more

complicated structure into the nodes of a tree tha t could represent

a program. They base their approach on the well-known Group

Method of Data Handling (GMDH) algorithm for system identifi

cation [Ivakhnenko, 1971]. In order to understand STructured Rep

resentation On Genetic Algorithms for NOnlinear Function Fitting

(STROGANOFF) we first have to understand GMDH.

Suppose we have a black box with m inputs £i,:c2> • • • ,xm and

one output y; see Table 9.6. The black box receives signals on its

input lines and responds with a signal on its output line. We can

model the process by saying that the system computes a function /

from its inputs:

y = f(xi,x2,...,xm) (9.3)

trHM 9 Different Varieties of Genetic Programming

Figure 9.20

Side effects of nodes of

cellular encoded grammar

trees ([Gruau, 1995],

copyright MIT Press,

reproduced with

permission)

1 2 3 4

(a) Initial graph (b) Sequential Division 'S ' (c) Parallel Division 'P'

(d) Division "T (e) Division 'A'

(g) Division 'H' (h) Division 'G'

(f) Division 'A'

(i) Recurrent Link 'R'

(j) Cut input link 'C 3' (k) Change Input Weight 'D 3' (1) Change Output Weights 'K 2'

Unfortunately, we cannot know anything about the system's internal
working. We can only observe the system's reactions to a number N
of input stimuli.

Table 9.6
Input/output behavior of

the black box to be

modeled

Obs.
1
2
k
N

Input

1 1 1 ^ 1 2 • • -Xlm

X2\X22 • • •X2m

%N1XN2 • • -XNTTI

Output

2/i

V2

Vk

VN

To tackle the problem of estimating the true function / with an
approximation / , GMDH now assumes that the output can be con
structed by using polynomials of second order in all input variables.
Thus the assumption is that the system has a binary tree structure

9.4 Other Genomes J£}J

of the kind shown in Figure 9.21. Intermediate variables 2j compute
(recursively) input combinations.

f~\ Figure 9.21
\-—\ Group Method of Data

/ \ Handling (GMDH) using
s~V y— ^ 'nPut variables xi ... x$
(P2) (P A)

P3

x1) (x2) (x3) (x4) (x5

The polynomials are of second order in their input variables,
which by themselves might be the result of other second-order poly
nomials:

Pj(xi,x2) = Zj = a0 + aixi + a2x2 + a^x\ + a^x\ + a5xix2 (9-4)

assuming for the moment a polynomial in inputs xi,x2. Given the
observations of Xi,X2,... ,xm, y, we can now adjust the parameters
ai,a2, 0,3,0,4, a5 by conventional least mean square algorithms. The
parameter fitting aims to minimize the difference between observed
output yi and output jji, i — 1 . . . m generated by the polynomial tree
structure. Multiple regression analysis may be used, for instance, to
achieve this goal. Now that the best parameter set of all Pj has been
found, it is considered an individual of a GP population.

The STROGANOFF method applies GP crossover and muta
tion to a population of the above polynomial nodes. A sketch of how
crossover works is shown in Figure 9.22. Note that a node returns a
complicated function of its inputs that is subject to a local search pro
cess before being finally fixed. Thus, the features of the function set
are not determined from the very beginning, except for their overall
form. Instead, a local search process that Iba et al. call a "relabeling
procedure" is used to find the best combination of parameters to fit
the output function, provided a structure is given. The overall form,
on the other hand, is the same for all non-terminal nodes.

The fitness of the GP algorithm, now operating on polynomial
trees as shown in Figure 9.23, is not necessarily the degree of fitting

1MB 9 Different Varieties of Genetic Programming

©

Figure 9.22

Crossover of trees of

GMDH nodes, 5 variables

x i . . . X5. In offspring

only part of the functions

has to be recomputed for

evaluation: y[,y!i (left

side), y±,y'2.

that is used in the multiple regression part. Instead, it can use other
measures, such as complexity of the individual - Iba et al. use the
minimal description length (MDL) criterion - or a combination of
fitness and complexity, to compare the quality of solutions.

r In Section 12.2 we will see an application example of this method.

9.4.2 GP Using Context-Free Grammars

Whigham [Whigham, 1995a] [Whigham, 1995b] has introduced a very
general form of grammar-based genetic programming. He uses context-
free grammars as the structure of evolution in order to overcome the
closure requirements for GP. By the use of a context-free grammar,
typing and syntax are automatically assured throughout the evolu
tionary process, provided the genetic operators follow a simple rule.

9.4 Other Genomes KII

Figure 9.23
Different mutations of a
tree of GMDH nodes, 5
variables xi .. .x$

In context-free grammar GP, the central role of a function pos
sessing arguments is taken over by a production rule generating new
symbols. A context-free grammar can be considered a four-tuple
(S,Z,,N,P) [Gustafson et al., 1986], where S U N is the set of non-

9 Different Varieties of Genetic Programming

terminal symbols, with S the starting symbol, £ the set of terminal
symbols, and P the set of production rules.

Terminal of a Definition 9.2 A terminal of a context-free grammar is a
Context-Free Grammar symbol for which no production rule exists in the grammar.

Production Rule Definition 9.3 A production rule is a substitution of the kind
X -» Y where XeNandYeNUY,.

There might be more production rules applicable to a symbol X 6 N
that can be expressed using the disjunction |; for example, X —> Y\z
means that the non-terminal symbol X can be substituted by either
the non-terminal Y or the terminal z (we adopt the convention that
non-terminals are written with capital letters).

What has been a terminal in the conventional tree-based ap
proach to GP has become a terminal in context-free grammar, too,
but, in addition, all functions of conventional GP have now become
terminals as well. Thus, a sort of developmental process has been in
troduced into evolution, with production rules applied until all sym
bols have reached (from left to right) terminal character. A functional
expression of traditional GP can then be read off from left to right
following all leaves of the structure.

As an example, we discuss the following grammar:

/">

V ; S -> B

B -> +BB\ - BB\ * BB\%BB\T

(9.5)

(9.6)

(9.7)

where S is the start symbol, B a binary expression, T a terminal,
and x and 1 are variables and a constant. The arithmetic expres
sion discussed earlier can be considered a possible result of repeated
application of these production rules as shown in Figure 9.24.

Crossover in context-free grammar ensures syntactic closure by
selecting, in one of the parents, a non-terminal node of the tree, and
then searching, in the second parent, for the same non-terminal. If
the same non-terminal is not found, then no crossover operation can
take place; otherwise, crossover is allowed at precisely this node. It
is easy to see that diversity comes in when a non-terminal allows
more than one production rule to be applied. In this way, differences
between two individuals can develop in the first place.

Mutation involves selecting one non-terminal and applying ran
domly selected productions until (at the latest) the maximally al
lowed depth of a tree is reached.

9.4 Other Genomes

Figure 9.24
Arithmetic expression of

Figure 9.14 expressed as

a grammatical structure.

S: start symbol, B: binary

expression, T: terminal,

x,l: variables, a constant

B B - B B B B - B B

T T T T T T T T

1 x 1 1 x 1

Whigham [Whigham, 1995a] has also considered a modification
of the context-free grammar by incorporating new beneficial produc
tions into the grammar at certain stages of the evolutionary process
(epochs). Wong and Leung introduced an even more general system
by using context-sensitive grammars as the basis of his GP system
[Wong and Leung, 1996].

9.4.3 Genetic Programming of L-Systems

Lindenmayer systems (also known as L-system [Lindenmayer, 1968]
[Prusinkiewicz and Lindenmayer, 1990] have been introduced inde
pendently into the area of genetic programming by different research
ers [Koza, 1993a] [Jacob, 1994] [Hemmi et al., 1994b]. L-systems were
invented for the purpose of modeling biological structure formation
and, more specifically, developmental processes. The feature of rewrit
ing all non-terminals in parallel is important in this respect. It allows
various branches to develop independently of each other, much as a
true developmental process does.

L-systems in their simplest form (OL-systems) are context-free
grammars whose production rules are applied not sequentially but
simultaneously to the growing tree of non-terminals. As we have seen
in the previous section, such a tree will grow until all branches have
produced terminal nodes where no production rule can be applied
any more. The situation is more complicated in context-sensitive

Different L-Systems

WFEM 9 Different Varieties of Genetic Programming

L-systems (IL-systems), where the left and right contexts of a non
terminal influence the selection of the production rule to be applied.
Naturally, if more than one production rule is applicable to a non
terminal, a non-deterministic choice has to be taken.

The goal of evolution is to find the L-system whose production
rules generate an expression that is most suitable for the purposes
envisioned. Thus, L-systems are individuals themselves. They are
evaluated after all non-terminals have been rewritten as terminals
according to the grammar. Figure 9.25 shows a typical individual
where each LRule consists of a non-terminal predecessor and a ter
minal or non-terminal successor (in the simplest case of OL-systems).

Figure 9.25

Context-free L-system

individual encoding a

production rule system of

Lindenmayer type

LRulel

OL-System

AxiomA LRules

LRule2 LRule3

pred succ pred succ pred succ

' - ' - *) • ; »

Note that individuals of this kind cannot be varied arbitrarily, but
only following the "meta-grammar" of how L-systems are encoded.
For instance, the Axiom A branch is not allowed to change into an
LRule. Rather, it can change only into a different axiom, say, Axiom
B. The situation is very similar to the variation of ADF trees in Koza's
treatment [Koza, 1994a]. There, for example, a result-producing
branch in one tree can be recombined only with the result-producing
branch of another tree, not with its function-defining branch.

Jacob [Jacob, 1994] gives a general treatment of how allowed vari
ations may be filtered out of the total of all variations.

.ivi.ti-j''. -\ invirM--

Exercises

1. Give four examples of different mutation operators acting on
trees.

2. Give four examples of different crossover operators acting on
trees.

3. Describe a linear GP system.

4. Describe the STROGANOFF GP system.

5. Give an example of a GP system that has a graph genome.

6. Describe the genotype-phenotype mapping in the BGP method.

7. Give two reasons why it is beneficial to evolve machine code.

8. Describe cellular encoding.

9. Why is it not possible to allow unrestricted crossover in GP
using a context-free grammar as genome?

Further Reading

K.E. Kinnear, Jr. (ed.),
ADVANCES IN GENETIC PROGRAMMING.

MIT Press, Cambridge, MA, 1994.

J.R. Koza,
GENETIC PROGRAMMING.

MIT Press, Cambridge, MA, 1992.

J.R. Koza et al.,
GENETIC PROGRAMMING 1996. PROCEEDINGS OF THE FIRST A N

NUAL CONFERENCE.

MIT Press, Cambridge, MA, 1996. °

J.P. Rosea (ed.),
PROCEEDINGS OF THE WORKSHOP ON GENETIC PROGRAMMING:

FROM THEORY TO R E A L - W O R L D APPLICATIONS.

Tahoe City, CA, 1995. ' -?,

E.S. Siegel and J.R. Koza (eds.),
WORKING NOTES FOR THE AAAI SYMPOSIUM

ON GENETIC PROGRAMMING. W ^

AAAI Press, 1995. , '

10 Advanced Genetic
Programming

Contents

10.1 Improving the Speed of GP 279

10.1.1 Run Termination 279

10.1.2 Parallelization 279

10.1.3 Parallel Fitness Evaluations 280

10.1.4 Machine Code Evolution 280

10.1.5 Stochastic Sampling 280

10.2 Improving the Evolvability of Programs 282

10.2.1 Modularization 283

10.2.2 Automatically Defined Functions 284

10.2.3 Encapsulation 288

10.2.4 Module Acquisition 289

10.2.5 Adaptive Representation 290

10.2.6 Automatically Defined Macros 291

10.2.7 Modules and Crossover 292

10.2.8 Loops and Recursion 293

10.2.9 Memory Manipulation 294

10.2.10 Strongly Typed Genetic Programming 298

10.3 Improving the Power of GP Search 299

10.3.1 Ontogeny 299

10.3.2 Adaptive Parsimony Pressure 302

10.3.3 Chunking 303

10.3.4 Co-Evolution 303

10.3.5 Hybrid Approaches 305

on 10 Advanced Genetic Programming

Convergence and
Diversity

The Granularity of
Programs

Closure and Typing

The basic approach to genetic programming has many limita

tions. Over t ime, G P researchers have become aware of those limita

tions and there is widespread consensus among them tha t despite its

successes, there is vast room for improvement in the G P algorithm.

In this introduction we shall quickly highlight three limitations of the

basic approach to genetic programming, before we delve into a more

detailed and systematic discussion.

One of the most serious problems of s tandard G P algorithms

is the convergence of a population. An often used rule states tha t

what has not been achieved in a G P run in 50 generations will never

be achieved. Although this is an informal s tatement, it points to a

serious weakness of the paradigm: in a population tha t is recombined

repeatedly, sooner or later uniformity will develop. Diversity will be

the keyword for finding remedy to this situation, which can be found

by parallelizing genetic programming using demes.

Another problem of G P is its dependence on the terminal and

function set initially chosen for a certain task. It may well be that

the abstractions residing in this terminal and function set are too

high or too low to allow for a sensible evolution of individuals. If

they are too low, the system will find the task too complicated to

simultaneously move in the various directions necessary to improve

a solution. This is the complexity issue, which would actually call

for a correlated change in individuals as could be achieved by using

modules tha t might be modified as wholes. If the abstractions are

at too high a level, the task cannot be broken down appropriately

and the solutions developed will always be more abstract , i.e., more

general, than the fitness cases would dictate. The system will thus be

forced to ignore part of the information in the fitness cases shown to

it, with all the negative consequences following from tha t . We shall

discuss this topic in Section 10.2.1.

A more practical consideration is related to the requirement of

closure of genetically evolved programs. If the set of terminals and

functions were of such a kind tha t not all functions could bear all

terminals as arguments, the system would become britt le. Typing

is one of the ways out of this dilemma (see Section 10.2.10), where

each node carries its type as well as the types it can call, thus forcing

functions calling it to cast the argument into the appropriate type.

We have mentioned just a few examples of the potential for im

provement of the basic algorithm of genetic programming. In Chap

ter 6 we already discussed potential improvements for the crossover

operator. This chapter will focus on three principal areas for im

provement: . _..

10.1 Improving the Speed of GP

1. Improving the speed of GP;

2. Improving the evolvability of programs;

3. Improving the power of GP search.

10.1 Improving the Speed of GP

GP is computationally intensive. That arises from the need to evalu
ate each individual's fitness over many different fitness cases. There
have been a number of different approaches to accelerating GP runs.

10.1.1 Run Termination

Often there is a need for exploring parameter choices to be set for an
entire GP run. This can be done serially by choosing different sets of
parameters for subsequent runs. In such a situation it is very helpful
to have various criteria for signaling the end of a run. For exam
ple, one such signal could be the intron explosion we introduced in
Chapter 7. Fitness improvement is effectively over once exponential
intron growth sets in. In this way, criteria for early run termination
can accelerate the exploration of the parameter space of GP consid
erably. In one set of experiments, where the maximum number of
generations was set to 200, the early termination criterion reduced
the run time by 50% [Francone et al., 1996].

10.1.2 Parallelization

Another way to accelerate GP and, at the same time to keep diver
sity high, is to use parallelization. Parallel populations, also known
as demes, might possess different parameter settings that can be ex
plored simultaneously, or they might cooperate with the same set
of parameters, but each work on different individuals. Paralleliza
tion is possible for all EAs, of course, due to their population-based
approach.

Parallel Populations

Koza has developed a system that provides fast performance on 64
Power PC processors arranged in a toroidal mesh. The host in charge
of the entire run is a Pentium PC. This system is modeled as an
island GA [Andre and Koza, 1996a]. That is, each processor has its
own population, which is separate from the populations of the other
processors. Each processor sends a "boatload" of "migrants" to the
four adjacent processors on the toroid in each generation. So the

10 Advanced Genetic Programming

isolation of the individual domes, or populations, is tempered by a

weak migration of individuals from processor to processor.

A typical implementation of this system would involve 64 demes

of population 800 each. The total population over all demes would

be 51200 [Koza et al., 1996b]. Of course, the parallelization of the

system results in a great speed-up in processing such a large popula

tion. Koza and Andre have reported intriguing results of a more than

linear speed-up due to this arrangement. It is possible tha t a larger

population allows the system to find solutions with fewer evaluations

[Keith and Martin, 1994].

10.1.3 Parallel Fitness Evaluations

Another way to parallelize a G P system is to evaluate programs in

parallel. In [Juille and Pollack, 1996] a system is reported tha t uses

the 4096 processors of a MasPar MP-2 parallel computer (SIMD)

to implement parallel evaluation of trees. The machine in question

has a peak performance of 17 GIPS. The idea of Juille and Pollack

was to implement a virtual processor with its own specific memory

organization in order to simultaneously execute a population of pro

grams on this SIMD architecture. Depending on the specific problem

they used (trigonometric identities and symbolic integration), ap

proximately 1000 S-expressions could be evaluated per second. For

two other problems (tic-tac-toe and the spiral problem) the authors

used more sophisticated fitness evaluations.

Oussaidene et al. [Oussaidene et al., 1996] report in another s tudy

where they used farming of fitness cases to slave processors from a

master processor tha t , for problems of 1000 and more fitness cases

on an IBM SP-2 machine, a nearly linear speed-up can be obtained.

10.1.4 Machine Code Evolution / . - v ! =n <̂

Evolution of programs in machine code is t reated in more detail else

where (see Chapters 9 and 11). Here we note only tha t , due to the fast

execution of machine code on processors, a considerable speed-up can

be reached by directly evolving machine code. Though figures differ

somewhat depending on which system is compared to machine code

evolution, an acceleration factor of between 60 and 200 compared to

a tradit ional G P system can be safely assumed.

10.1.5 Stochastic Sampling

In many G P problems, the evaluation of a program individual is

a time-consuming process. Consider, for example, the problem of

10.1 Improving the Speed of GP

teaching a robot the correct behavior in an unknown environment.
An entire population of programs has to be evaluated in order to
find out which behavior is appropriate (has a high fitness) in this
environment, and which is not. A common procedure to compute this
fitness measure is to let each program control the robot for a certain
time, allowing the robot to encounter sufficiently many situations to
be able to judge the quality of this program. The same process is
repeated for all programs in the population, with the robot suitably
prepared for generating equal conditions for all programs.

A simple calculation should help to illustrate the difficulties. Sup
pose the robot can perform an elementary behavior within 500 ms,
i.e., every 500 ms there will be a command issued from the robot that
depends on its state and the inputs present at the outset of this pe
riod. Because a task such as navigating or searching in the real world
is complex, at least 100 different situations (the fitness cases) should
be examined in order to get a measure of fitness for the individual
program. Thus, 50 s will be consumed for the evaluation of one in
dividual. Given a relatively small population of 50 programs used
for the GP runs, we end up needing at least 40 minutes to evaluate
one generation of behavioral programs. In order to do so, however,
we had to prepare an initial starting state for the robot every 50 s.
Without counting the time taken for that, a moderate test run with,
say, 20 generations would require more than 13 hours to be invested,
a rather full workday for an experimenter. As many researchers have
found, evaluation is a tedious process, even without the preparation
for identical initial conditions.

There is one radical step to shorten the time of an individual's
evaluation: allow each individual program to control the robot for
just one period of 500 ms, i.e., evaluate only one fitness case. This
way evaluation is accelerated by a factor of 100. In addition, we can
skip - under these non-deterministic conditions - the preparation into
a normalized initial state. Each program will have to steer the robot
under different conditions anyway!

This example can be generalized to any type of application. A
way to accelerate fitness evaluation is to evaluate each individual with
a different (possibly small set of) fitness case(s), a method we call
"stochastic sampling" [Nordin and Banzhaf, 1995c]. The assumption
is that over a number of sweeps through the entire set of fitness cases,
accidental advantages or disadvantages caused by the stochastic as
signment of fitness cases to individuals will cancel out and individuals
will develop that are fit on the basis of the entire set of fitness cases.

A side effect of this method is the tendency toward generaliza
tion. We can expect that the drive toward more general solutions
is much stronger with this method than with keeping the fitness

10 Advanced Genetic Programming

cases constant. A similar effect has been observed with the on

line versus batch learning methods for supervised neural networks

[Hecht-Nielsen, 1988].

Stochastic sampling is also much closer to fitness evaluation in

nature and natural selection, where evaluation can take place only

locally in space and t ime. The non-determinism implicit in such an

approach can even be used to good effect, e.g., for escaping local

minima.

In [Gathercole and Ross, 1994] [Gathercole and Ross, 1997a] an

other approach toward selection of fitness cases is proposed. Through

observation of the performance of a G P run Gathercole and Ross's

system obtains da ta about which fitness cases are difficult and which

are easy (there is also an age factor weighed in). Subsequently, the

system preferentially selects those fitness cases which have a higher

rank based on these criteria. So in this approach, a "sorting" of fitness

cases takes place which leads to a two-fold acceleration in learning,

first based on the fact tha t only subsets of the entire training set are

selected, and second based on the fact tha t the system chooses the

harder ones.

Another interesting suggestion [Gathercole and Ross, 1997a]

[Gathercole and Ross, 1997b] by the same authors is to restrict fit

ness evaluation by keeping track of the cumulative error an individual

has collected in the course of evaluation. If, during evaluation, the

cumulative error should exceed an adaptive threshold, evaluation is

stopped, and all fitness cases tha t have not been evaluated are reg

istered as failures. The error threshold adapts to the performance of

the best individual of a generation.

10.2 Improving the Evolvability of Programs

G P has established itself as a powerful learning tool - often with very

basic function sets. For example, using only P l u s , Minus, Times,

D iv ide and bitwise Boolean operators, a linear G P system has out

performed neural networks on pat tern recognition problems. But the

G P system was not allowed I f - t h e n - e l s e , For, D o - u n t i l , Do-whi le ,

or other looping constructs, whereas a multilayer feedforward neural

network has addition, subtraction, multiplication, division, and con

ditional branching capabilities built into its neuron squashing and

threshold functions and its transfer functions. G P can accomplish

a lot with a very restricted set of operators. Tha t said, there are

many ways tha t G P can improve the expressive power of evolvable

programs.

10.2 Improving the Evolvability of Programs

1 0 . 2 . 1 M o d u l a r i z a t i o n

A natural tool for humans when defining an algorithm or computer
program is to use a modularization technique and divide the solution
into smaller blocks of code. Human programmers find it useful to sub
divide a program hierarchically into functions. This is an example of
a divide and conquer strategy - one of the most basic problem solv
ing strategies known. GP systems may have some tendency toward
self-modularization.

Modularization in general is a method by which functional units
of a program are identified and packaged for reuse. Since human pro
grammers have to struggle constantly with the increasing complexity
of software - as humans generally have to when dealing with the com
plexity of their environment - the natural tool of thought, namely,
to bundle entities into abstractions to be used later on as units, is
also useful in programming. Modular approaches are mainstream in
software engineering and result, generally speaking, in simpler and
more generic solutions.

Let us first look at a general definition of modules as given by
Yourdon and Constantine [Yourdon and Constantine, 1979].

Definition 10.1 A module is a lexically contiguous sequence of
program statements, bounded by boundary elements, having an aggre
gate identifier.

A module has at least the following properties:

• it is logically closed;

• it is a black box (referred to as the information hiding principle
in computer science); and

• it offers an interface to other modules.

Module

An interface between modules is the set of operations and data
types offered to other modules by a module.

Modularization approaches are central when trying to tackle two
of the main problems of simple GP: scaling and inefficiency. Modu
larization methods weigh in the benefits of encapsulating code and
ultimately generalizing from one to more applications of the same (en
capsulated) piece of code. If GP is able to work with building blocks,
as some researchers have suggested (and others have doubted), then
modules will be synonymous with building blocks.

A key to understanding why modularization and encapsulation
are useful in GP has to do with the effects of crossover on build
ing blocks. All modularization techniques are ways of encapsulating

Encapsulation of Code
against Inefficiency

Building Blocks

10 Advanced Genetic Programming

blocks of code. Such encapsulated blocks become subroutines and can

be called repeatedly from the main program or from other subrou

tines. This means tha t a program can reduce its length by put t ing

frequently used identical blocks of code into a subroutine. As we

have argued earlier in Chapter 7, programs of shorter effective length

have bet ter chances of survival than programs with larger effective

length. Thus it might be expected tha t some modularization tech

niques work spontaneously: as soon as working code is encapsulated,

the odds of it being destroyed by crossover are zero. Hence, encapsu

lation is a crossover protection, and more generally, a variation pro

tection mechanism. In addition to tha t , shorter programs are bet ter

at generalizing when applied to unseen data . Thus modularization in

G P can be seen to affect generalization in a positive way. Re-use of

modules is further facilitated by placing modules into a library from

where they can be called by different individuals.

Different modularization techniques have been suggested for ge

netic programming. Automatically defined functions (ADF) are the

most thoroughly evaluated method [Koza, 1994a]. Other examples of

modularization techniques include encapsulation [Koza, 1992d] and

module acquisition [Angeline and Pollack, 1993].

10.2.2 Automatically Defined Functions

Automatically defined functions (ADFs) have been proposed by Koza

and represent a large proportion of his more recent work [Koza, 1994a].

ADFs are inspired by how functions are defined in LISP during nor

mal manual programming. The program individual containing ADFs

is a tree just like any program in regular tree-based GP. However,

when using ADFs, a tree is divided into two par ts or branches:

| 1. The result-producing branch, which is evaluated during fitness

calculation; and

2. the function-defining branch, which contains the definition of

one or more ADFs.

These two branches are similar to program structures in, e.g.,

C or Pascal. There, a main par t is accompanied by a part for the

definition of functions. The main part corresponds to the result-

producing branch while the definition part naturally corresponds to

the function-defining branch. Both of these program components

part icipate in evolution, and the final outcome of G P with ADFs is

a modular program with functions.

Figure 10.1 gives an example of a program individual with an

ADF. At the top one can see the root node Program which is jus t

10.2 Improving the Evolvability of Programs EE3

a place holder to keep the different par ts of the tree together. The

node def un to the left is the root node of an ADF definition. If there

were more than one ADF then we would have more than one def un

node under the Program node. In other words, we may need more

than one ADF definition in the function-defining par t of the program.

Likewise, it is also possible to have more than one result-producing

branch. The Va lues function determines the overall ou tput from this

individual. If the result-producing branch returns a single value only,

then it is called the result-producing branch. The ADF definition Result-Producing

branch has a similar Values node which wraps the result from the Branch

ADF body. In most examples Values is a dummy node returning

what it receives from below in the tree.

The node labeled ADFO in Figure 10.1 is the name of the single

ADF we use in the individual. This is a name of a function and it

will be a par t of the function set of the result-producing branch to

allow this branch to call the ADF. Jus t to the right of the ADFO

node is the argument list. This list defines the names of the input

variables to the ADFO function. These variable names will then be

a par t of the terminal set of the ADFO function body. The principle

is similar to a function definition in C or Pascal where we need to

give the function a name and define its input variables together with

a function body defining what the function does. All evolution takes

place in the bodies of the ADFs and the result-producing branch (see

Figure 10.1).

Depending on how the system is set up it is also possible to have

hierarchies of ADFs, where an ADF at a higher level is allowed to

call an ADF at a lower level. Normally, one must take care to avoid

recursion though an ADF tha t calls itself either directly or via a chain

of other ADFs. In principle, it would be possible to allow recursive

ADF calls, but this is an area of G P tha t needs more exploration.

It is evident tha t the ADF approach will work only with a spe

cial, syntactically constrained crossover. We cannot use the simple

G P crossover crossing over any subtree with any other subtree. For

instance, we must keep all of the nodes tha t do not evolve in Figure

10.1 intact. There are separate function sets for the result-producing

branch and the function-defining branch, and the terminal sets are

also different. Crossover must not move subtrees between the two dif

ferent branches of the ADF. Hence, crossover is done by first selecting

a subtree in either the function-defining or the result-producing part

of one parent . The crossover point in the second parent then has to

be chosen in the same type of branch, ensuring tha t we switch sub

trees only between ADF branch and ADF branch or result-producing

branch and result-producing branch.

EEl 10 Advanced Genetic Programming

Figure 10.1

A typical automatically

defined function

definition

Before starting a run with a GP system that uses ADFs we must
determine the number of ADFs and the number of arguments each
is allowed to use. In other words, we have to specify the shape of
the nodes that do not evolve in Figure 10.1. During initialization
the system will keep track of this definition and will produce only
individuals with this shape. The function-defining bodies and the
result-producing bodies are then generated randomly.

Figure 10.2 shows an example individual where the cube function
has evolved as an ADF. This ADF is then used in the result-producing
branch to realize the x6 function.

ADFs have been shown to outperform a basic GP algorithm in
numerous applications and domains. Also, Kinnear has compared
the performance of ADFs to the performance of another modular
ization technique called "module acquisition" defined below (see Sec
tion 10.2.4). In his study [Kinnear, Jr., 1994], ADFs outperformed
both a basic GP algorithm and a GP algorithm with module acquisi
tion. But in accordance with what we said earlier, ADFs seemed to
give a performance advantage only when the introduction of functions
reduced the length of possible solutions sufficiently [Koza, 1994a].

In summary, these are the steps needed when applying GP with
ADFs:

1. Choose the number of function-defining branches.

2. Fix the number of arguments for each ADF.

3. Determine the allowable referencing between ADFs if more than
one ADF is used.

10.2 Improving the Evolvability of Programs TST1

Figure 10.2

Example of an ADF

program tree

4. Determine the function and terminal sets for both of the branches
(remember they are different).

5. Define the fitness measure and fix parameters and the termina
tion criterion, as in any other GP run.

A weakness of the ADF approach is that the architecture of the
overall program has to be defined by the user beforehand. The ar
chitecture consists of the number of function-defining branches in the
overall program, the number of arguments (if any) possessed by each
function-defining branch, and, if there is more than one function-
defining branch, the nature of the hierarchical references (if any) al
lowed by them. This requirement adds another set of parameters
to the initial parameters of a GP run. It would be much better if
the complete structure of an individual could evolve, including all
ADF specifications. Koza [Koza, 1995a] has proposed architecture
altering operations as a method to achieve this goal. Architecture
refers to the complete structure of the program individual. He pro-

Architecture Altering

Operations

K:1:B 10 Advanced Genetic Programming

posed six architecture altering genetic operations tha t can add initial

ADF structures, clone them, and change the number of parameters .

Again, na ture was used as a source of inspiration by referring to gene

duplication [Ohno, 1970].

Gene Duplication Evolution by gene duplication works by occasional duplication

of a gene that does something useful. The risk of such an event is

small - an additional copy of the same gene only marginally affects

an individual. However, the copy can be muta ted away from its

original function into a different function because the original gene

is still functional. Using architecture altering operations and gene

duplication, no additional prespecified information is necessary for

an ADF run compared to a basic G P run. Even iteration-performing

branches could be added with this method [Koza and Andre, 1996b].

A system with architecture altering operations can be bench-

marked against an ADF system with predefined size and shape, but

the outcome will strongly depend on which predefined architecture it

was compared to. One recent s tudy [Koza, 1995b] compared, for one

problem, the architecture altering method to the best known prede

fined architecture. The result was tha t the new method performed

slower. It is too early to draw any conclusion, though, and one should

always keep in mind tha t the benefits of specifying fewer parameters

are very important .

10.2.3 Encapsulation

The original idea of encapsulation in G P is due to Koza [Koza, 1992d]

who introduced it as an elementary operation into hierarchical GP.

All of the following, however, is also applicable to linear GP.

Encapsulation of The operation of encapsulation consists of selecting an individ-

Subtrees into Terminals ual from the population, selecting a non-terminal node within tha t

individual and replacing the subtree below tha t node with a newly

defined terminal node tha t contains the subtree removed. The new

terminal is applicable in other individuals from this moment on. Re

moving the entire subtree has the effect of admit t ing only functions

with arity 0 as encapsulated code. Nevertheless, if the newly defined

terminal should tu rn out to contain useful code, reuse has been made

possible.

An example of encapsulation is shown in Figure 10.3 for the arith

metic expression of Figure 9.14. By replacing a subtree with a new

node EQ, crossover can no longer recombine par ts of the subtree.

Analogously, other operations are prohibited from changing this part

of the code. Provided the subtree contains useful operations, this

is beneficial. At present it is unclear whether encapsulation really

confers a significant advantage on a G P system.

10.2 Improving the Evolvability of Programs ESJ

©

Figure 10.3
Eo is used as a terminal

to symbolize an

encapsulated subtree of

the arithmetic expression

of Figure 9.14. The full

tree can be shortened

through the substitution.

10.2.4 Module Acquisition

Another form of preparing code for reuse is module acquisition cis-
cussed in [Angeline and Pollack, 1992] [Angeline and Pollack, 1993].
Module acquisition can be used as an elementary operator to act on
an individual. From a chosen individual a subtree is selected and a
part of this subtree (up to a certain depth) is defined as a module.
This operation has also been called compression. The parts of the
subtree below the module are considered arguments to the module.
In this way, module acquisition offers a way to create new functions,
much as Koza's encapsulation operation generates new terminals.

Angeline and Pollack go another way, however. In their approach,
the new module is placed in a library of modules from where it can
be referenced by individuals in the population. Figure 10.4 gives a
sketch of the procedure. If a module provides some fitness advantage
in the population, it will spread to more individuals, thus increasing
the number of references to it in the library. As long as there is any
one individual in the population to refer to this module, it is kept in
the library.

Much in the spirit of encapsulation, once a module is defined it
ceases to evolve any further. Module acquisition thus gives opera
tor protection to the modules, although parameters are allowed to
change. The compression operation carries a parameter itself, the
depth at which the module is cut off. There might even be two
parameters used, one for minimal depth, one for maximal depth of
modules. We note in passing that the authors also introduce an op
erator countering the effect of compression: expansion. Expansion
selects a single module to expand in an individual and expands it one
level. So other modules are not affected nor are any modules that
might be inside the expanded module.

Encapsulation into

Library Functions

The Library Is Available

to the Entire

Population

The Counter-Operator:

Expansion

EETfil 10 Advanced Genetic Programming

Figure 10.4
How a module is

acquired. A node is

selected, and its subtree,

down to a certain depth,

is considered a module

and moved into the

library. The module

might contain terminal

branches, as well as

functional branches that

become arguments of the

module.

One very important similarity to the encapsulation method men

tioned in the foregoing section is tha t newly defined modules are

available globally, i.e., to the entire population. Kinnear has done

a comparative study on the use of module acquisition but concludes

tha t there is no obvious advantage [Kinnear, Jr. , 1994]. However, it

is too early to close the books on modide acquisition, because the one

study done was based on a limited sample of runs and problems.

10.2.5 Adaptive Representation

Adaptive representation is another technique for modularization in

G P [Rosea and Ballard, 1994b]. Based either on heuristic informa

tion about the problem domain or, preferably, on certain statistical

information available in the population, small subtrees are named to

10.2 Improving the Evolvability of Programs MM I

be candidates for modules. These subtrees are extracted from the

population in order to serve as new functions or subroutines for fur

ther evolution.

Every step of this kind can be done by use of a part ial new seed- Epochs

ing of the population with individuals containing the newly defined

functions. Thus, the EA has a new time scale called an epoch lasting a

number of generations until a new set of candidates for modules is ex

t racted from the population. Rosea et al. [Rosea and Ballard, 1994b]

claim tha t their method is the only bot tom-up method for modular

ization developed so far tha t really catches what should be contained

in modules.

To determine which parts of programs might serve as viable mod- Viability of Modules

ules, Rosea et al. introduce the learning of adaptive representation

based on differential offspring-parent fitness and on the notion of

activity of certain par ts of the programs. In a nutshell, the former

criterion identifies individuals in the population tha t presumably pos

sess highly fit subtrees. The notion is tha t , once an individual has

made a j u m p in fitness compared to its parents, this should be due

to a useful combination of genetic material in this individual.

Now tha t the genetic material has been narrowed down, the Salient Blocks of Code

search for salient blocks of code is the second step. The criterion and Block Activation

applied here is block activation, tha t is, the execution frequency of

a particular par t of the code within the individual. The measure

ment of block activation of new blocks of code is, according to Rosea

[Rosea, 1995a], done in 0{N) t ime. Nodes with the highest value of

block activation are considered candidates, provided all nodes in the

subtree have been activated at least once.

Once blocks of code have been selected, they are generalized by

dropping variables, which is an important heuristic. Rosea argues

that this way he is able to create modules of a variable number of

arguments.

He claims to find extremely interesting modules using the adap

tive representation method. In experimental results presented on an

agent behavior problem in a dynamic world [Rosea, 1995a] - a Pac-

man-like problem earlier described by Koza [Koza, 1992d] - Rosea

shows tha t adaptive representation runs maintain higher diversity in

the population and discover appropriate modules much faster than

conventional GP.

10.2.6 Automatically Defined Macros

Spector has suggested and evaluated a variant of ADFs called Auto

matically Defined Macros (ADMs) [Spector, 1996]. Macros are mod

ularization structures which are part of most computer languages and

10 Advanced Genetic Programming

define transformations to be performed on the source code before it

is compiled or interpreted. A common macro transformation is sub

sti tution, where the programmer substi tutes frequent code fragments

by macros. The macros are expanded by a preprocessor before compi

lation or interpretation. Many LISP dialects contain powerful macro

capabilities tha t can be used to implement new control structures. If

a program is purely functional, then there is no difference in result

between a macro and a function. However, if the macro uses side ef

fects or is sensitive to its calling context, then it can produce unique

effects.

Spector shows how substi tution macros can be evolved simulta

neously with the main program in a method analogous to the ADF

method. The evolved macros can be seen as special control structures,

producing, for example, specialized forms of i teration or conditional

execution.

One disadvantage of macros is tha t the macro expansion process

and the execution of expanded macros can sometimes take much more

t ime than calls to functions, depending on the implementation. In

addition, the caching of values provided by arguments to functions,

but not by arguments to macros, can sometimes be valuable. So

macros should only be used where side effects or context sensitivity

are an important par t of the application. Spector shows how the

ADM method has advantages over ADFs in certain simulated control

tasks while ADFs produce bet ter results in other control tasks. He

concludes tha t ADMs are likely to produce bet ter results in non

functional domains while ADFs may be bet ter suited for functional

domains with few side effects.

10.2.7 Modules and Crossover

The discussion above has shown how we can protect code from being

destroyed by variation operations like crossover or mutat ion. The

main answer of authors was encapsulation. By freezing code and

compressing it into terminals and functions, this goal certainly can be

reached, since, by definition, functions and terminals are the "atomic

units" of GP. Also, modularization using ADFs has been shown to

increase protection of code [Teller, 1996].

But we might turn the question around, and ask: if a G P system

has evolved (without the help of encapsulation) a solution to a prob

lem, a solution tha t contains chunks of code separated by crossover-

protecting code segments like introns,1 are these chunks of code ac

tually modules? If we go back to the definition of modules given

1 Crossover protection is by far the most important protection, given the
large amount of crossover used in GP.

10.2 Improving the Evolvability of Programs

earlier in this chapter, a definition which is now adopted widely in
computer science, they do fit this definition exactly.

In fact, crossover can be expected to be the only operator to find
these chunks of code, since contiguity is one of its hallmarks. In addi
tion, it can be argued that intron segments separating effective pieces
of code will evolve preferentially at those places where interactions
between subsequent instructions are minimal and disruption of the
sequence is not harmful. Those pieces of code that have minimal
interaction will therefore be automatically singled out. But what is
missing is the aggregate identifier, though this could be added when
making the module explicit. The boundary elements need to be added
at the same time.

We are therefore led to the conclusion that chunks of code which
evolved together and have an actual function, i.e., are not introns,
can be considered modules or candidate modules.

10.2.8 Loops and Recursion

Loops and recursion are useful to any computer system. Without
them, a computer would simply consume all of its program memory
in a few seconds and then stop. This does not mean that we could
not have any useful program parts without iterative structures or that
GP would be useless without loops, but for a computer system to be
complete it needs iteration. GP, too, must be able to address these
issues in order to scale up to more complex problem domains. One of
the challenges of GP is to evolve complete computer applications, and
if this is ever going to be possible, then iteration is necessary. But
loops and recursion are also beneficial to smaller programs of the type
currently addressed with GP. Iteration can result in more compact
programs that among other things allow better generalization.

The problem with iteration is that it is very easy to form infinite Infinite Loops
loops. Worse, it is theoretically impossible to detect infinite loops in
programs. The halting theorem described in Section 3.3.2 states that
we cannot decide whether a computer program will halt or not. In
GP this could mean that the entire system might wait for the fitness
evaluation of an individual that has gone into an infinite loop. Even if
we were able to detect infinite loops, there would still be enough finite
loops executing far too long to be acceptable in a learning situation.
Hence, we must find a way to control the execution of programs that
contain loops and recursion.

There are in principle three ways to address the issue of infinite
and "near-infinite" loops:

10 Advanced Genetic Programming

• The simplest solution is to define a limit on the number of

iterations for each program and fitness case. A global variable

is incremented for each iteration and execution is aborted when

it exceeds a predefined maximum value.

• The iteration limit can be defined more flexibly by allowing the

program to distribute execution t ime among different fitness

cases and even to make its own judgments of the tradeoff be

tween quality of solutions and execution t ime. This method is

referred to as aggregate computat ion t ime ceiling.

• In some cases, it is possible to ensure tha t the problem do

main and the function and terminal sets are constructed such

tha t there could be no infinite or very long loops. It might be

necessary to change the original representation and to switch

primitives to achieve this goal.

An example from the last category is Brave's system for evolution

of tree search programs [Brave, 1994] [Brave, 1995]. A tree search

program navigates in a tree da ta s tructure in order to find a specific

node or to obtain a specific s tate [Nilsson, 1971]. Each program is

recursive in its s tructure, but due to the limited depth of the input

trees each program is destined to terminate .

Kinnear uses a specialized loop construct (dobl) to evolve sort

ing algorithms [Kinnear, Jr. , 1993b]. The loop construct operates on

indices of lists with limited length, and hence also limits the number

of iterations to a finite number.

Koza has also performed experiments where he evolved recursive

sequences, and he has been able to produce the Fibonacci sequence

[Koza, 1992d]. This experiment is not really an instance of a recursive

program bu t it touches recursive issues. His programs belong to the

third category where termination is guaranteed. In recent work, Koza

demonstrated the evolution of i teration [Koza and Andre, 1996b].

Time-Bounded Categories 1 and 2 above are examples of t ime-bounded execu-

Execution tion, a technique tha t can be used both with iteration and recursion.

The next section examines these methods in more depth. Time-

bounded execution in G P is when a program is limited in how many

execution steps or t ime units it is allowed to perform, or as a milder

restriction, if the program is punished for long execution times.

10.2.9 Memory Manipulation

Programming in most common computer languages such as Pascal,

C, FORTRAN, or Ada relies on the assignment of memory or struc

tures in memory. All commercial computers are register machines

10.2 Improving the Evolvability of Programs

that operate by assigning values to memory or to internal registers

of the CPU. This means tha t even purely functional languages will

end up being implemented by memory assignment. Consequently,

manipulation of memory and variables is an important concept in

computer science.

The earliest method for evolution of computer programs tha t was

evaluated on a large scale - tree-based G P - used programs with LISP

syntax. The reason is tha t LISP has one of the simplest syntaxes of

any computer language. The simpler the syntax the easier is it to

ensure tha t crossover and mutat ion result in syntactically correct

programs. The crossover operator working with LISP must in princi

ple ensure only tha t the parentheses are balanced. This will result in

syntactically correct programs. A crossover operator exchanging sub

trees is such an operator: it always leaves the number of parentheses

balanced in offspring.

LISP is a functional language in its purest form and hence does

not use assignment. In the tree representing a LISP program the

terminal node variables always represent the same value. In an im

perative language such as C, a variable can be assigned at different

moments and will hence correspond to different values. Complete

LISP systems give an interface to assignment through special func

tions such as the set function for assignment or storage of values.

A s s i g n m e n t of Variables

Koza uses a S e t - V a l u e function to set the content of a single varia

ble [Koza, 1992d]. The variable is then included in the terminal set

where it can be read like any other variable. In other G P paradigms,

variables and side effects are a more integrated part of the represen

tation. In machine code GP, for instance, each instruction results in

the assignment of memory or registers. It is a natural step from the

assignment of a variable to the manipulation of indexed memory.

C o m p l e x D a t a S t r u c t u r e s a n d A b s t r a c t D a t a T y p e s

GP differs from other evolutionary techniques and other "soft com

puting" techniques in tha t it produces symbolic information (i.e.,

computer programs) as output . It can also process symbolic infor

mation as input very efficiently. Despite this unique strength, genetic

programming has so far been applied mostly in numerical or Boolean

problem domains.

A G P system can process fitness cases consisting of any da t a type

for which we can supply the necessary function set. These could be

strings, b i tmap images, trees, graphs, elements of natural language,

10 Advanced Genetic Programming

or any other da ta type tha t we can process with computer programs.

For instance, G P has been used to evolve mathematical proofs where

the fitness cases are trees representing s tatements about ari thmetic

[Nordin and Banzhaf, 1997a] and to evolve sorting algorithms oper

ating on lists [Kinnear, Jr., 1993b].

G P can also be used to evolve its own abstract da ta types. A

human programmer working in a high-level programming language

can define his or her own abstract da ta structures fitting the prob

lem domain he or she is working in. Da ta structures often help to

s tructure a problem and result in higher quality code. Langdon has

succeeded in evolving abstract da ta types with a G P system. He ar

gues tha t these structures may help to increase the scalability of G P

[Langdon, 1995c]. Abstract da ta structures have also been shown in

several cases to be superior to an unstructured, fiat indexed memory

[Langdon, 1995a] [Langdon, 1996b].

In Langdon's work, abstract da ta structures are evolved from a

flat index memory similar to the one used by Teller. The system has

a handful of primitives at its disposal in order to address and move

around in the indexed memory. The genome consists of multiple trees.

The number of trees is predefined and corresponds to the functions

expected to be necessary to manipulate the da ta s tructure. The stack

da ta structure, for example, has five trees in its genome, correspond

ing to the five stack manipulat ion operations tha t one would like to

evolve (push, pop, top, makenull, empty) . All functions are evolved

simultaneously. Crossover can exchange subtrees freely between the

different trees in the genome. Figure 10.5 illustrates the multiple tree

s tructure of the genome with abstract da ta types.

Cul tura l G P

Spector and Luke present an approach tha t may be called "cultural

G P " [Spector and Luke, 1996a] [Spector and Luke, 1996b]. The prin

ciple here is to increase G P performance by methods t ha t are an ana

log of cultural learning, i.e., of learning by non-genetic information

transfer between individuals. To tha t end, Teller's indexed-memory

technique gets used in a modified form [Teller, 1994a] [Teller, 1993].

For some problems, Spector and Luke show tha t the computat ional

effort for problem solving gets reduced by employing cultural GP.

In the context of cultural G P , culture is viewed as the sum of all

non-genetically transferred information. For instance, when a pro

gram t ransmits a numerical value to another program, this is an

instance of culture. Referring to Dawkins [Dawkins, 1989], Spector

and Luke use the term meme to designate the cultural analog of a

gene: a meme is a cultural information unit.

10.2 Improving the Evolvability of Programs E£3

pop

©

0 ©
® ©

push

© 0 / X
® ©

empty makenu l l top

® x ® © ®
® ® < / x ®

Figure 10.5
77ie multiple tree

structure of the genome

with abstract data types

GENOME

A key issue in the context of culture is the interaction between

evolutionary and cultural learning. It can be argued tha t :

• the dissemination speed of genetic information is slow compared

to tha t of cultural information;

• hence, the gene pool is more stable compared to the meme pool.

Considering these properties, the synthesis of bo th learning methods

may be superior to an approach using either one of them. One may

hope, for instance, that beneficial memes would spread fast and could

get exploited by many individuals, while, due to selection, deleteri

ous memes - also spreading fast - would not "poison" the complete

population.

The basic idea behind implementing cultural G P is to let all indi

viduals have access to the same indexed memory. This memory gets

initialized once only, tha t is, when a run starts . Tha t way it serves

as an information storage within and across generations. In particu

lar, a certain individual may transfer information to itself. It would

store information during its evaluation on a certain fitness case, and

it would read this information during a subsequent evaluation on an

other fitness case. It could also transfer the information to another

individual of the same generation or to an individual of a subsequent

Indexed Memory

10 Advanced Genetic Programming

generation. Thus, the meme pool (indexed memory) would evolve

over t ime like the gene pool.

Spector and Luke empirically investigated the efficiency of cul

tural G P on sample problems from symbolic regression, control, and

artificial intelligence. They found tha t in some cases the computa

tional effort was significantly lower with cultural G P than without .

The method of cultural G P surely is an interesting approach tha t

deserves further at tention, since it represents a significant extension

of G P toward a software analog of organic evolution that incorporates

more features than just genetic learning.

10.2.10 Strongly Typed Genetic Programming

Most modern programming languages, such as C-\—h, have mecha

nisms preventing the programmer from mixing different da ta types

unintentionally. For instance, trying to pass an integer argument

to a function tha t is declared a string function will result in an er

ror. If the programmer wants to violate the types he or she has de

clared, he or she must say so explicitly. Besides helping the program

mer to avoid mistakes, these strongly typed programming languages

make the source code more readable. Strongly typed genetic pro

gramming (STGP) introduces typed functions into the G P genome

[Montana, 1994]. Using types might make even more sense in G P

than with a human programmer because the G P system is completely

random in its recombination. The human programmer has a mental

model of what he is doing, whereas the G P system has no such guid

ance. Type checking also reduces the search space, which is likely to

improve the search.

The use of strongly typed G P is motivated by the closure prop

erty of the function set. All functions in the individuals must be able

to gracefully accept all input tha t can be given from other functions

in the function set. This could be rather difficult in real-life applica

tions with many different types of information represented as many

different da ta structures.

A common example is a mix of Boolean and numeric functions.

Let us say tha t we want to evolve a customer profile from a customer

database. For instance, we would like to know to which customers

we should mail our latest product offer. The function set consists of

Boolean functions (AND, OR, . . .) , ar i thmetic functions (+, - , *, /) ,

comparison functions (>, <, =) and conditionals (IF THEN ELSE).

We might want to evolve criteria such as IF the latest customer order

is bigger than the average customer order times 10 OR IF the cus

tomer is a regular costumer, THEN send him the offer. This kind

of rule mixes numerical and Boolean information. It probably makes

10.3 Improving the Power of GP Search | £ l i l

little sense to recombine the two different sorts of da t a with crossover.

Interpreting a numerical as a Boolean value (0=TRUE; l=FALSE) does

not make much sense here and is not likely to improve the search. If

we instead use a strongly typed G P system, we can guarantee tha t

crossover will switch only two subtrees tha t re turn the same type.

N

(IF) Figure 10.6
, / ~ p \ A strongly typed GP

/ I \ individual
B N N

In Figure 10.6 we see how each link between the nodes in the

program tree is typed as either a Boolean or a numerical value. The

comparison functions take a numerical and produce a Boolean, the

ari thmetical functions both take and produce numerical values, while

the Boolean functions use only Boolean inputs and outputs . Condi

tionals may be defined in different ways. The leftmost input should

be a Boolean, while the other inputs and the output are either com

pletely Boolean or completely numerical. Functions tha t can manip

ulate several different da ta types are called generic types.

10.3 Improving the Power of GP Search

One of the central issues in machine learning is: how does an al

gorithm move from point n in the search space to point n + 1? In

GP, the basic G P operators crossover and mutat ion are used to tha t

end. Genetic programming search can be improved by employing ad

ditional mechanisms, some of which we present below. Among them

are software analogs of ontogeny and co-evolution as well as hybrids

built from different search paradigms.

10.3.1 Ontogeny

While evolutionary biology is concerned with processes tha t result

in genotypic adapta t ion to an environment, developmental biology

10 Advanced Genetic Programming

investigates a process tha t modifies the structure and, thus, the be

havior of an organism during its entire lifetime. This process is called

ontogeny.

Many G P systems ignore ontogeny altogether, because it cer

tainly adds enormous complexity to the evolutionary process. Here

we shall discuss those G P approaches that make explicit use of on

togenetic ideas. It has been shown empirically for certain prob

lems tha t these systems improve the search in GP. The interested

reader will find additional material in [Gruau, 1994a] [Teller, 1994a]

[Iba et al., 1995a] [Zomorodian, 1995] [Keller and Banzhaf, 1996]

[Spector and Stoffel, 1996b] [Spector and Stoffel, 1996a].

D e v e l o p m e n t

From an abstract point of view, a s tructure is the carrier of a func

tion. An individual in an evolutionary algorithm is such a s tructure.

The interpretation of the structure in the context of a problem do

main determines the function tha t will be carried by tha t s t ructure.

For instance, this structure can be a real-valued vector, a cellular

au tomaton rule, a 3D-wire-frame model of a real object, a tree, a

network, etc. In GP, the function of an individual is defined by the

semantics of the program language.

In our opinion, developmental approaches to G P t ry to address

at least one of the following problems:

• How can the search be left unconstrained, whereas the solutions

need to be highly constrained through syntax?

• How can one use a compact genetic representation tha t unfolds

into a complex individual program?

• Is there a way to include the "environment" into the process

of generating complexity? Can the environment even help in

organizing an individual program?

Developmental biology, as one very important branch of biology,

will provide more insights into the ontogeny of an individual, and G P

stands to learn a lot from those models. Not only G P but also other

EAs will benefit as well. We anticipate theories of development to

have a considerable impact on genetic programming and evolutionary

algorithms in general in the coming years.

As one example of what has already been achieved, we shall dis

cuss in the rest of this section a model due to Spector et al.

10.3 Improving the Power of GP Search

O n t o g e n e t i c P r o g r a m m i n g

Spector and Stoffel [Spector and Stoffel, 1996b] present an approach

they call ontogenetic programming. By including program self-modifi

cation operators into the function set, a program may evolve tha t can

change its s t ructure during run t ime. Such a program represents an

analog of an organism tha t changes its s t ructure during its lifetime,

for instance, when it grows. A change in the program structure may

modify the program's future behavior. Since the self-modification

operators are elements of the function set, the self-modification of a

certain program may evolve itself.

Ontogenetic modification of an individual program - versus phy- Ontogeny vs.

logenetic modification of the population, which is what every G P Phylogeny

system does - may enhance the performance of a program under cer

tain circumstances. For instance, if different expressions of a certain

program feature are needed over the program's run t ime, ontogenetic

program modification may yield it.

For an example, the authors describe a program performing as

an adventure-game agent. Depending on the properties of the game

environment, different tactical agent behavior in different game stages

may be helpful in reaching the strategic goal of the game. Thus, a

development of the individual may be needed.

Different behaviors of the same program might be realized, how- Ontogeny vs.

ever, in a much simpler way t han by ontogenetic modification, by Conditionals

using conditionals. On the other hand, ontogenetic modification al

lows for a potentially unlimited number of different behaviors over

the run t ime and is therefore significantly more flexible.

Stoffel and Spector use their own system called HiGP

[Stoffel and Spector, 1996] t o validate the ontogenetic approach. A

HiGP program has a linear structure. The self-modification opera

tors are tailored to this s tructure. Stoffel and Spector describe three

such operators, al though many others are possible: segment-copy re

places a program part by the copy of another part , s h i f t - l e f t and

s h i f t - r i g h t rota te the program instruction-wise.2 On a problem of

binary sequence prediction, ontogenetic programming has enhanced

program performance considerably.

2In fact, Spector has recently been focusing on rather different ontoge
netic operators, including an i n s t ruc t i on instruction that replaces itself

or another instruction - with an instruction obtained from a lookup ta
ble. He has also been adding functions that allow a program to know
how "old" it is so that it can incorporate timed developmental strategies
[Spector, personal communication, July 1997].

10 Advanced Genetic Programming

The concept of ontogenetic programming can also be used with

S-expression-based programs, although the implementation is easier

for linear program structures.

10.3.2 Adaptive Parsimony Pressure

Zhang and Miihlenbein [Zhang and Miihlenbein, 1996] have suggested

a simple method for adaptively controlling parsimony pressure dur

ing evolution. The method is simple, well grounded in theory and

empirically validated [Zhang and Muehlenbein, 1995] [Blickle, 1996].

The theoretical analysis of the concepts draws from the notion of the

minimal description length (MDL) principle [Rissanen, 1984] and it

considers the programs as Gaussian models of the data . For details

the reader may consult the original sources.

Let Ei{g) denote the error produced by a given individual i in

generation g. Similarly, let Ci(g) denote the complexity of an individ

ual i in generation g. For Ei(g) and Ci{g) the following assumptions

should hold:

0 < Ei(g) < 1 (10.1)

Ci(g) > 0 (10.2)

Then fitness is defined as the error plus an adaptive parsimony term

a(g) t imes complexity:

Fi(g) = Ei(g) + a(g) • Ci(g) (10.3)

where a(g) is determined as follows. Let N be the size of the training

set and e be the maximal error allowed in an acceptable solution.

The e-factor is given before training and is an important ingredient

of the method: it could be said to represent the expected noise in

the training data . Given this, the parsimony factor should be chosen

according to the following equation:

P{g) J &*%£$• if lW*-D>e
\ ^ i W g - i W , , , . (g) o t h e r w i s e-

Ebestis — 1) is the error of the best performing individual in the

preceding generation while C'be3t(g) ls a n est imation of the size of the

best program, estimated at generation (g — 1). Cbest(g) is used to

normalize the influence of the parsimony pressure.

This method has some similarities to the way a human may solve

a problem or program an algorithm. First, we are more directed

toward finding a solution tha t works, and when this is achieved we

might t ry to simplify the solution and to make it more elegant and

generic. Similarly, the parsimony pressure decreases while the error is

10.3 Improving the Power of GP Search

falling. In contrast, when the fitness approaches zero the parsimony

pressure decreases to encourage small, elegant, generic solutions.

10.3.3 Chunking

An almost obvious method to improve the efficiency of a G P sys

tem when dealing with very large sets of fitness cases is to divide

the fitness case set into smaller chunks.3 A solution can then be

evolved for each of the smaller chunks, and the overall program will

be some kind of concatenation of all the solution generated for the

chunks. For instance, consider the programmatic compression of im

ages [Nordin and Banzhaf, 1996], where we try to evolve a G P pro

gram tha t produces a b i tmap image - close to a target image - when

executed. This application has fitness case sets of hundreds of thou

sands of i npu t /ou tpu t pairs, one for each image pixel. The image

can be chunked into subimages and a program for each subimage can

be evolved. The overall solution to the compression problem is then

a loop activating the evolved results for each of the chunks in the

correct order.

10.3.4 Co-Evolution

The idea behind co-evolution of fitness functions is to get rid of the

static fitness landscape usually provided by a fixed set of fitness cases.

In fitness co-evolution, all fitness cases are considered to be the re

sult of an algorithm tha t can be subjected to the same principles of

variation, evaluation, and selection as the population to be evolved.

Thus, a separate population encoding a variety of fitness tests

for the original population could be co-evolved by allowing the per

formance of tests to influence their survival probabilities. In other

words, the environment for the second population is given by the

first, and vice versa. Because both populations are allowed to evolve,

and weaknesses of the first population are exploited by the second, as

are weaknesses of the second population by the first, an "arms race"

will develop [Dawkins, 1987].

Figure 10.7 shows a sketch of different evaluation pat terns for

both populations. In (a), all members of the first population are sys

tematically tested against all the members of the second. In (b), all

are tested against the best performing member of the other popula

tion. In (c), randomly selected members are tested with randomly

selected members from the other population.

3This usage of the word chunking should not be confused with that in
other fields of artificial intelligence, for instance, in connection with the
SOAR system.

IrfiM 10 Advanced Genetic Programming

(a) (t»

Figure 10.7

Three scenarios for

competitive co-evolution

with two populations: (a)

all vs. all; (b) random;

(c) all vs. best. Similar

patterns can be used

within one population,

(from [Sims, 1994])

Both populations will improve their fitness in response to the cri

teria set forth in their respective evaluation function, which is allowed

to shift dynamically to more sophisticated levels. Hillis [Hillis, 1989]

[Hillis, 1992], Angeline and Pollack [Angeline and Pollack, 1993] and

Sims [Sims, 1994] report a considerable improvement in the degree

of optimization reached when performance is judged dynamically.

Ronge [Ronge, 1996] has examined the artificial ant problem under

the provision that trails providing food pellets to a population of

searching ants themselves develop to escape the searching ants.

In Jannink [Jannink, 1994] pseudo-random number generators

are co-evolved with testers. Testing programs t ry to guess the se

quence of numbers generated by an algorithm. The problem has

a long history with roots going back to von Neumann and Mor-

genstern's seminal work [von Neumann and Morgcnstcrn, 1944] on

game theory. It can be shown tha t a random strategy is the best

a player can apply in order to test another player's random strat

egy. Thus, bo th populations, pseudo-random number generators and

pseudo-random number testers will be driven in the direction of bet

ter pseudo-random number series.

Competit ive co-evolution can be set up even within one popu

lation. Juille and Pollack [Juille and Pollack, 1996] have reported

good results by put t ing individuals from one population into oppo

site camps for a game. Wha t they aimed at was to reward differential

fitness instead of absolute fitness. Therefore, fitness was computed

using tournaments between individuals, but only those fitness cases

10.3 Improving the Power of GP Search

were counted on each side tha t were unique hits. A number of tourna

ments were executed for each individual and the scores were summed

up to yield a fitness for the individual.

So far, we have considered competitive co-evolution, which has

a long-standing tradit ion in population biology under the heading of

predator-prey models. However, cooperative co-evolution is another

legitimate strategy. Here, it is not the weakness of the counterpart

tha t is exploited, but the strength of the other population tha t helps

improve one's fitness. So each population should benefit the other

one, and itself profit from the thriving of the other one. A typi

cal application is the co-evolution of solutions to a search problem

with genetic search operators tha t themselves are allowed to evolve

[Teller, 1996].

10.3.5 Hybrid Approaches

We noted earlier tha t there are different kinds of learning4 in na ture -

genetic learning, learning from experience, and learning from culture.

Many types of learning are going on simultaneously. Some researchers

have developed hybrid systems combining genetic learning with other

types of learning.

We distinguish two classes of hybrid approaches. In the first class,

G P is blended with other general-purpose search algorithms, such as

simulated annealing (SA) or stochastic i terated hill climbing (SIHC).

We will discuss this issue first.

Later, we discuss a second class of hybrid approaches where G P

is merged with special-purpose search algorithms. The specialty lies

in the fact tha t , given a certain choice of terminals and functions

(including their side effects), various algorithms can be employed to

add explorative power to GP.

G P a n d G e n e r a l - P u r p o s e Search A l g o r i t h m s

This subsection covers combinations of G P with other algorithms

for general-purpose search. Like GP, other general-purpose search

algorithms for program induction have to deal with the following

problems:

• Local minima

• Size of search space

Thus, the class of algorithms combinable with G P is restricted. Ba

sically, all the algorithms tha t have been blended with GAs are also

We take learning in a natural system to be synonymous with search in
an artificial system.

I t f iU 10 Advanced Genetic Programming

candidates to be blended with GP. Table 10.1 shows which techniques

have been combined with G P so far.

Search technique

stochastic i terated

hill climbing

cultural transmission

Problem domain

6-, 11-multiplexer

sort

block stacking

regression

lawnmower

Wumpus agent world

Source

[O'Reilly and Oppacher, 1996]

[O'Reilly and Oppacher, 1996]

[O'Reilly and Oppacher, 1996]

[Spector and Luke, 1996a]

[Spector and Luke, 1996a]

[Spector and Luke, 1996a]

Table 10.1
Combination or

comparison of GP with

other general-purpose G p a n d S p e c i a l - P u r p o s e Search A l g o r i t h m s
search techniques

Special-purpose algorithms are designed in the realm of a particular

problem domain. They are intended to provide problem-specific op

erations working only on a specific representation of solutions. Their

advantage is t ha t they work efficiently and fast; on the other hand,

they usually suffer from being local search tools tha t can be easily

t rapped by local minima. It is here tha t G P offers a remedy.

G P can benefit heavily from an insertion of efficient local search

operations; see Table 10.2. Iba et al. [Iba et al., 1994] have done a

s tudy on the problem class of Boolean problems. The ordinary G P

approach to Boolean problems is augmented by a specific local search

procedure tha t does not change the tree s tructure of the individuals

but periodically employs what they call a relabeling of nodes. Every

now and then, the entire population is subjected to this relabeling,

where the nodes of all trees are exchanged with those nodes tha t

guarantee optimal performance, given the s tructure of the trees. This

local algorithm is the adaptive logic network algorithm first published

in 1979 by Armstrong et al. [Armstrong and Gecsei, 1979].

The key idea of their G P system is to use a local search procedure

periodically to improve all trees of the population simultaneously.

Thus, s t ructured advantages are not lost due to overspecification.

Iba et al. [Iba et al., 1994] report favorable results for low periods of

2-3 generations before an adaptive logic network algorithm is applied

in the population: with much smaller populations or tree depths, a

perfect solution can be found. Up to 50 t imes fewer evaluations have

to take place for this hybrid G P as compared to conventional GP.

In a second comparison, Iba et al. used the GMDH algorithm

[Iba et al., 1994] for relabeling nodes in a system identification prob

lem. We explained this approach in more detail in Chapter 9. The

10.3 Improving the Power of GP Search BcllH

Search technique

ALN

GMDH

Problem domain

6-,11-mult
6-,11-mult, non-stationary

even 3,4,5 parity
Emerald's robot world

regression: Heron formula
Glass-Mackey time series prediction

pattern recognition

Source

[Iba et al., 1994]
[Iba et al., 1994]
[Iba et al., 1993]
[Iba et al., 1993]
[Iba et al., 1994]

[Iba et al., 1995a]
[Iba et al., 1995b]

problem of symbolic regression of the Heron formula

S =
(a + b + c)(a + b - c)(a - b + c) (-o + b + c)

16
(10.4)

Table 10.2
Combination of GP with

special-purpose search

techniques. ALN =

adaptive logic network

algorithm

was successfully solved with 10 times fewer evaluations than in con
ventional GP [Iba et al., 1994].

As we have seen in the GA community, we can expect that other
local search methods will be employed together with GP to yield
better results that could not have been achieved by either method
alone.

Exercises

1. Give two limitations to the basic G P approach.

2. Describe two methods for parallelizing GP.

3. Wha t is stochastic sampling?

4. Name three modularization techniques.

5. Describe the basic ADF technique. Wha t is an architecture

altering operation?

6. Wha t is similar and what is different between the encapsulation

method and the module acquisition method?

7. Give two examples of how to do t ime-bounded execution.

8. How does a strongly typed G P system work?

9. Give two examples of competitive co-evolution in populations.

Wha t is cooperative co-evolution?

10. Which concepts of developmental biology could be included in

GP?

11. Wha t is the idea behind hybridizing G P with other algorithms?

Give two examples. ~! •"-;' "? •• ' • • • ' , : - "

Further Reading

P.J. Angeline and K.E. Kinnear, Jr . (eds.),

A D V A N C E S IN G E N E T I C P R O G R A M M I N G 2.

MIT Press, Cambridge, MA, 1996. . ,,

J.R. Koza, : : ^

G E N E T I C P R O G R A M M I N G II . •••-' ' : *

MIT Press, Cambridge, MA, 1994. ; ' ! : ' - { ' > '

J.R. Koza et al.,

G E N E T I C P R O G R A M M I N G 1997. P R O C E E D I N G S O F T H E S E C O N D

A N N U A L C O N F E R E N C E . ; .

Morgan Kaufmann Publishers, San Francisco, CA, 1997.

11 Implementation —
Making Genetic
Programming Work

Contents

11.1 Why Is GP so Computationally Intensive? . . 310

11.1.1 Why Does GP Use so Much CPU Time? 311

11.1.2 Why Does GP Use so Much Main Memory? 312

11.2 Computer Representation

of Individuals 314

11.3 Implementations Using LISP 316

11.3.1 Lists and Symbolic Expressions 316

11.3.2 The "How to" of LISP Implementations 317

11.3.3 The Disadvantages of LISP S-Expressions 318

11.4 Some Necessary Data Structures 319

11.4.1 Arrays 320

11.4.2 Linked Lists 321

11.4.3 Stacks 324

11.5 Implementations With Arrays or Stacks . . . 325

11.5.1 Postfix Expressions with a Stack 325

11.5.2 Prefix Expressions with Recursive Evaluation . . . 327

11.5.3 A Graph Implementation of GP 328

11.6 Implementations Using Machine Code 330

11.6.1 Evolving Machine Code with AIMGP 330

11.6.2 The Structure of Machine Code Functions 333

11.6.3 Genetic Operators 334

11.7 A Guide to Parameter Choices 334

11 Implementation — Making Genetic Programming Work

r This chapter addresses fundamental "how to" issues of GP. A G P

system has to store representations of the individuals it is evolving,

perform genetic operations upon them, interpret the stored individu

als as programs, and perform fitness calculations using the interpreted

individuals. Coding a G P system tha t is fast, memory efficient, easily

maintainable, portable, and flexible is a difficult task. As a mat te r

of fact there are many tradeoffs, and this chapter will describe how

major G P systems have addressed those tradeoffs.

The chapter will discuss the following subjects:

1. We will present examples to show why G P uses C P U cycles

and memory so profusely. This is the central problem faced by

G P programmers. In the examples of C P U and memory use,

the numbers we present are approximate and could vary sub

stantially from system to system and from machine to machine.

The purpose of these numeric examples is to explain and to un

derline the magnitude of the difficulties tha t must be faced in

GP.

2. We will describe systematically various low-level representa

tions of evolving programs. The three principal models tha t

have been used for storing G P individuals during evolution are

(LISP) lists, compiled language (such as C + +) da ta structures,

and native machine code. We will discuss how they have been

implemented and what the relative advantages and disadvan

tages are. . . ,_. h . , r

3. We will give an overview of the parameters tha t must be set

during G P runs and suggest rules of t humb for setting those

parameters .

The thread tha t will run through the entire chapter is tha t G P

programs need speed, flexibility, portability, and efficient use of mem

ory, but tha t there are tradeoffs among these goals. Inevitably, in

discussing tradeoffs, the authors will often point out what may seem

to be a drawback of a particular approach. In doing so, they do

not mean to criticize the decision tha t led to these approaches or to

discourage their use.

11.1 Why Is GP so Computationally Intensive?

A brief examination of the nature of G P will make it clear why G P is

so very intensive in its use of CPU time and memory. Three factors

are at work. • •

11.1 Why Is GP so Computationally Intensive?

1. Large Populations
GP evolves a population or populations of individuals. Typical
population sizes range between 500 and 5000. But they can be
much larger to good effect. In Koza's parallel implementation
on 64 Power PCs, populations in excess of 600 000 individuals
have been evolved successfully [Andre and Koza, 1996b]. One
of our own experiments went up to population sizes of 1 000 000
individuals in AIMGP.

2. Large Individual Programs
GP works with variable length individuals (programs). This
fact frequently results in large GP program sizes for two rea
sons. First, the problem to be solved often appears to require
reasonably long solutions. Second, invariably the problem of
bloat occurs during GP runs. Much of that problem is con
nected to the accumulation of introns in the GP individuals.
The growth of introns is ultimately exponential during a GP
run unless controlled.

3. Many Fitness Evaluations
Almost all of the time consumed by a GP run is spent per
forming fitness evaluations. Fitness evaluations are necessary
because they provide the metric by which GP performs selec
tion on the population. To understand why fitness evaluations
are so CPU intensive we have to add two more factors. First,
GP fitness evaluations typically take place using a training set
of fitness cases. The size of the training set varies enormously,
depending on the problem - from 50 to 5000 or more fitness
cases is not unusual. Second, every GP individual is normally
evaluated on each fitness case in each generation.

11.1.1 Why Does GP Use so Much CPU Time?

Let us look at what these three factors mean for CPU use during
a sample GP run. Our sample run will last G — 50 generations
and have a training set of F = 200 fitness population size of
P = 2000 and an average individual size that grows from (Ninn) = 50
nodes to (Nmax) = 800 nodes during the run due to bloat. We assume
each of the nodes will be evaluated during evaluation.

Even in this average-size run, the demand on the processor is
very substantial. For example, in the initial generation of this run,
each individual must be evaluated for each training instance. In other
words, for each individual in the population in the first generation,
(Ninit) x F = 104 nodes must be executed. To perform fitness eval
uation during the first generation, the GP system must evaluate all

11 Implementation — Making Genetic Programming Work

individuals. So, the G P system must execute {Ninit) x F x P — 2 • 107

nodes jus t to evaluate the individuals in the first generation. There

fore, 108 node evaluations would be required for the first 5 generations

of the example run. Table 11.1 shows how this node number grows

as bloat sets in.

Generations

0 - 4
5 - 9

1 0 - 14
15 - 19
20 - 24
25 - 29
30 - 34
3 5 - 3 9
40 - 44
4 5 - 4 9

Ave. no. of nodes
per individual

50
50
100
100
200
200
400
400
800
800

Nodes evaluated
(millions)

100
100
200
200
400
400
800
800

1,600
1,600

Cum. nodes evaluated
(millions)

100
200
400
600

1,000
1,400
2,200
3,000
4,600
6,200

Table 11.1

Example of node

calculations with a

population of 2000 GP

individuals

By the 50th generation, the G P system will have performed over

6 • 109 node evaluations! Had we used the very large population size

(600000) employed by Andre and Koza, the number would have been

1.86 • 1012 node evaluations just through generation 50. It should,

therefore, come as no surprise tha t G P programmers have labored

hard to make G P node evaluation as efficient and fast as possible.

Limits of Efficient

Memory Use

11.1.2 Why Does GP Use so Much Main Memory?

The high CPU time consumption is not the only problem. G P also

consumes a lot of memory. Ideally, every G P individual should be

stored in RAM in as compact a manner as possible. Further, tha t

compact representation should make application of genetic operations

simple and interpretation of the individual as a program easy and fast.

Needless to say, it is not quite tha t easy. We will first take a look at

the practical limit of efficiently representing an individual in memory.

Then we will suggest some of the problems tha t have prevented G P

programmers from reaching tha t ideal.

A compiled computer program is no more than a sequence of in

structions in native machine code. Processor designers have spent

years compressing a large amount of information into the native ma

chine code format designed for their processor. Thus, we may safely

regard the amount of memory tha t would be used by a G P individual,

11.1 Why Is GP so Computationally Intensive?

expressed as native machine code, as the practical minimum amount
of memory that must be devoted to an individual. A 100-node in
dividual would occupy 400 bytes of memory, expressed as machine
code, assuming that each node is equivalent to and may be expressed
as one 32-bit machine code instruction.

Most GP systems do not begin to approach the efficiency of mem
ory usage that is implicit in a machine code representation of a par
ticular program. This might seem unusual. We are, after all, talking
about genetic programs. But with one exception, genetic programs
are not stored in memory directly as machine code. Rather, most GP
systems represent the individuals/programs symbolically in some sort
of high-level data structure. That data structure is interpreted by the
GP system as a program when it is time to conduct a fitness evalua
tion. The decision to represent the GP individual in data structures
that are less efficient memory-wise is often a deliberate tradeoff made
by the software designer to effect, for instance, easier application of
the genetic operators or portability.

An example will be useful. One structure often used in GP sys
tems is an expression tree. Essentially, each node in an individual is
stored in an array or a linked list that identifies what function the
node represents and where the node gets its inputs from. Both the
function and the inputs are identified with pointers. In modern pro
gramming languages, pointers consume, say, four bytes of memory.
If the average arity of the nodes in an individual is two, then it takes,
on average, three pointers to represent each node - two pointers to
point to the input nodes and one pointer for the function represented
by the node. For a 100-node GP individual, therefore, it would take
at least 1200 bytes of memory to represent the individual symboli
cally rather than in machine code. As a practical matter, more is
necessary - 1600 bytes would be a conservative estimate.

We may now look at the approximate memory requirements of
the same example run that we discussed in the above table. In the
first generation, a population of P — 2000 individuals would occupy
(Nina) x P x 16 bytes = 1.6 megabytes. But, by the 50th generation,
the population averages (Nmax) = 800 nodes for each individual and
would occupy around (Nmax) x P x 16 bytes = 25.6 megabytes of
memory. This exceeds the memory available on many modern com
puters for an application. Thus, the run would degenerate into disk
swapping.

There are two prominent effects of extensive memory use:

1. Memory access is slow
Every byte of data used to describe an individual during evo
lution causes the GP system to slow down. Every time the

A Memory Usage
Example

Effects of Extensive
Memory Use

11 Implementation — Making Genetic Programming Work

processor must look to RAM for data, the processor usually

has to stop and wait several cycles - say it averages three cy

cles waiting for a response from RAM. If each node is defined

by 16 bytes of da ta held in RAM, it takes four RAM accesses

to get tha t da ta on a 32-bit machine. This means it takes ap

proximately twelve cycles of the processor to get those 16 bytes

of da ta from RAM. During tha t t ime, the processor could have

executed at least twelve instructions. Given these assumptions,

the run in the above table would have required 74.4 billion pro

cessor cycles just to access the RAM for loading nodes.1

2. G a r b a g e co l l ec t ion

There is a more subtle memory problem caused by many G P

representation schemes like LISP list systems and C tree sys

tems. Tha t problem is garbage collection. One of the common

features shared by systems interpreting C and by LISP lists is

tha t memory is being constantly allocated and deallocated for

the nodes and the elements of the lists. When small chunks

of memory are being allocated and deallocated constantly, it

leads to RAM tha t resembles Swiss cheese, where the holes in

the cheese represent available RAM, and the cheese itself rep

resents allocated RAM. Over the course of evaluating several

billion nodes during a G P run, one would expect a lot of small

holes to develop in the cheese: the memory gets fragmented.

Thus, it gets increasingly harder to find contiguous memory

chunks large enough for housing certain da ta structures.

Dealing with fragmented memory is a task known as garbage

collection, a practice of moving the "cheese" around in RAM

such tha t one gets large "holes" again. This process may be

very t ime consuming. This problem has caused researchers to

abandon LISP lists for storage of G P individuals. Instead, they

use high-level symbolic da ta structures (arrays) to contain sym

bols tha t are then interpreted as a program.

11.2 Computer Representation

of Individuals

Ultimately, all programs are just information about what operations

on which da ta to perform with the processor. A G P individual may,

therefore, be viewed as only a collection of information tha t should

be interpreted as a program. Perhaps the most important decision a

'This consideration does not take into account cache effects.

11.2 Computer Representation of Individuals

GP programmer must make is how to store that information. This
decision affects how simple it is to create and maintain genetic op
erators, how fast the system runs, how efficient the use of memory
is, and many other important aspects of performance. Programmers
have represented the GP individual during evolution in three different
ways. Here is a brief description of the three approaches and their
various advantages and disadvantages:

1. LISP lists
LISP is a high-level programming language that is very popular
with artificial intelligence programmers. The GP individual in
this approach is represented as a LISP list. LISP lists are very
convenient for the representation of tree-based programs - they
make crossover and mutation simple to implement. LISP is
not so convenient for genome structures other than tree-based
structures. As long as the programmer sticks to tree structures,
however, a LISP-based system is easy to maintain and makes
execution of the individual simple since LISP has a built-in
interpreter.

2. Data structures in compiled languages such as C, PAS
CAL, or FORTRAN
In this approach, information about the individual is stored
symbolically in a data structure such as a tree, an array, or a
linked list. When it comes time to evaluate the individual for
fitness, compiled programs are much faster than LISP. On the
other hand, C data structures, for instance, are much more la
bor intensive to provide than LISP lists. This approach requires
the programmer to write genetic operators that operate on va
riable length structures and that usually engage in large-scale
pointer manipulation - always a tricky task. The C program
mer must also write and maintain his or her own interpreter to
convert the symbolic program information stored in the data
structure into a usable program.

3. Native machine code
In this approach, the GP individuals are stored as arrays in
memory. The arrays actually contain machine code instruc
tions in the form of binary code, which operate directly on the
CPU registers. There is no high-level interpretation or com
pilation step involved since the instructions get interpreted -
that is, executed - directly by the processor. This approach
is very fast (about sixty times faster than compiled C code
[Nordin and Banzhaf, 1995b]) and is very compact in its use of
memory. However, programming this type of system is more

11 Implementation — Making Genetic Programming Work

difficult than either LISP list or C da ta s tructure systems, and

much greater effort is needed to assure portability, flexibility,

and maintainability.

The next several sections of this chapter will discuss four different

actual implementations of a G P system using these three different

representations of the individual. The emphasis here will be on the

details of how the G P individuals are stored, executed, and crossed

over.

11.3 Implementations Using LISP

Because of the prominence of Koza's work, references to LISP and

LISP type concepts dominate large parts of the G P li terature. In

fact, many researchers who do not use LISP systems nevertheless re

port their results using LISP S-expressions. LISP is, in many ways,

a natura l language for AI and tree-based machine learning applica

tions because of its simplicity and its strong support of dynamic da t a

s tructures.2 Indeed, our discussion of the LISP approach will be much

simpler than our discussion of the C and machine code approaches

for one reason - most of the support for storing and manipulat ing

tree structures is handled by the LISP language itself.

Before we look at how LISP implementations of G P work, it will

be useful to define a few terms.

11.3.1 Lists and Symbolic Expressions

A LISP list is an ordered set of items inside parentheses. For the

purpose of this work, a symbolic expression (S-expression) may be

regarded as a list. In LISP, individuals are wri t ten and stored as S-

expressions. Here is an example of a very simple S-expression, which

could be a simple G P program:

(xab) (11.1)

This expression is equivalent to the algebraic expression:

•s;:.r:n " M i Y i 'OMi . .

(a x b) (11.2)

Therefore, if the value of a is 2 and the value of b is 13, the above

S-expression evaluates to 26.

Other researchers have devised GP systems for other high-level lan
guages such as PROLOG and MATHEMATICA. We will address the LISP
systems here because of their prominence.

11.3 implementations Using LISP

S-expressions can be more complex than this simple example.
In particular, parentheses may be nested. Note how the above S-
expression is nested into the S-expression below:

(-(xafc)c) (11.3)

This S-expression is equivalent to the algebraic expression:

(axb)-c (11.4)

These three equivalent expressions are shown in Figure 11.1.

Expression Tree

Figure 11.1
A program statement as

an expression tree, an

S-expression, and an

algebraic expression

S-Expression (- (* A B) C)

Algebraic Notation (A * B) - C

11.3.2 The "How to" of LISP Implementations

S-expressions have several important properties that make them use
ful for GP programmers. To begin with, the GP programmer does
not need to write any code interpreting the symbolic information in
the S-expression into machine code that may be executed. The LISP
interpreter does that for the programmer.

Furthermore, LISP S-expressions make it very easy to perform
genetic operations like tree-based crossover. An S-expression is itself
an expression tree. As such it is possible to cut any subtree out of an

l c U : l 11 Implementation — Making Genetic Programming Work

S-expression by removing everything between any pair of matching

parentheses. Note how this works for the S-expression in Figure 11.1.

Crossing over the subtree under the x symbol is accomplished in an

S-expression by clipping out the string (x a b) . The process of

performing this operation is shown in Figure 11.2.

Figure 11.2

Clipping out a subtree

from an expression tree

and an S-expression Expression Tree

S-Expression C)

(* A B)
i-a

Clipping out a subtree in LISP is thus very simple compared to

performing crossover on a G P individual tha t is held in a C array. Ex

changing subtrees during crossover is also simple. It is only necessary

to make sure tha t the portion to be clipped out of each S-expression

is between matching parentheses in each individual. Then the two

segments are clipped and exchanged as shown in Figure 11.3.

Likewise, mutat ion is simple. The subtree (* a b) could easily

be muta ted by changing the * to a + in the S-expression. In tha t

case, the resulting subtree would be (+ a b). The reason for this

simplicity is tha t manipulating tree structures is something tha t LISP

was designed to do.

11.3.3 The Disadvantages of LISP S-Expressions

We have already indicated above tha t LISP S-expressions can cause

memory problems. This is because lists are constantly being created

11.4 Some Necessary Data Structures irn

Parents

(- ((+ d e) f) g)

Children

(- (- (+ d e) f) c) (* (* a b) g)

and destroyed during evolution. Although many flavors of LISP have
built-in garbage collection, GP may create garbage faster than it can
be collected.

Another problem with LISP is speed. C-based GP is more than
ten times as fast as LISP-based GP. Finally, although LISP lists pro
vide the advantage of simple tree manipulation, LISP does not have
the same advantage in manipulating other GP type genomes such as
a linear graph genome.

Figure 11.3

Exchanging two subtrees

in LISP crossover

11.4 Some Necessary Data Structures

Many GP systems today are written in a compiled language, which
often is C. We have already described C systems that use pointers
to link together the nodes of a tree. Other researchers have used a
quite different approach in compiled language GP. They combine a
more linear C data structure such as a linked list or an array with
a stack. This chapter will focus on implementation issues in two of
these systems:

1. The systems described in [Keith and Martin, 1994], which im
plemented tree-based GP in an array/stack arrangement, and

2. Teller's PADO system which implements GP as a directed graph
of program execution nodes that are held in linked-list struc
tures. PADO also relies on a stack to implement the system
[Teller and Veloso, 1996].

Many readers will already be familiar with arrays, linked lists,
and stacks. Understanding these basic data structures and how the

11 Implementation — Making Genetic Programming Work

memory for them is allocated and de-allocated is essential to under
standing the remainder of this chapter. If the terms push, pop, pointer
to next, and pointer to prior are familiar to you, then you may skip
to the next section.

/

11.4.1 Arrays

An array is an ordered list of items of the same type with each of the
items having an index. Such a type may be integer, real, or character,
for instance. Figure 11.4 shows a generic array and an array filled
with integers.

Figure 11.4

Two ways of looking at

arrays

Index

Stored
Data *

Index

Stored
ntegers

0

Datal

0

13

Generic Array

1

Data 2

2 3

Data 3 Data 4

Array of Integers

1

22

2

1025

3

300

4

Data 5

4

97

To access an item, the programmer simply uses its index. For
example, to access the fourth integer in the array of integers shown
in Figure 11.4, the programmer could write array [3]. Of course, the
value of array [3] in Figure 11.4 is 300. It should be obvious that a
GP individual can be stored in an array. In fact, some GP systems
do just that.

There are several problems that arise in using arrays for storing
GP individuals:

• Variable size individuals
Although it is possible in C-|—\- to create arrays of undetermined
size, resizing arrays at run time requires a lot of programming
and memory allocation and de-allocation. This is an impor
tant factor in GP where the evolving individuals are variable in
length. If a program holds the individuals in the GP run in ar
rays, crossover is constantly changing the size of the individual,
allocating and de-allocating memory. This can cause garbage
collection problems.

i

• Complex crossover operators
Figure 11.3 has shown how crossover is performed in LISP S-
expressions. Note that the sizes of the subtrees that are ex-

11.4 Some Necessary Data Structures

changed in tha t figure are different. There is no obviously easy

way, as there is in LISP, to clip out part of an array contain

ing, say, four elements, and exchange those four elements with

five elements taken from another array. Both arrays have to

be resized, which implies programming work and computat ion

overhead. We will see two different solutions to this problem

below.

• Var iable a m o u n t s of d a t a p e r n o d e

In GP, different nodes often have different numbers of inputs.

For example, a P lus node has two inputs. On the other hand,

an I f / T h e n / E l s e node has three inputs. This makes an ar

ray representation difficult to keep track of, because the P l u s

node will need at least three array elements to store it (one

element to identify the type of function and the other two to

identify the inputs to the operator) . Using the same logic, the

I f / T h e n / E l s e node will use up at least four array elements.

This would require the G P programmer to add logic to keep

track of what operators are where in the array, bo th for cross

over and for execution.

None of the above problems is insoluble, and we will look at how

programmers have addressed them. Consistent with the theme of this

chapter, we conclude tha t al though arrays are easy to manipulate and

to access, there are tradeoffs in using arrays to hold G P individuals.

11.4.2 Linked Lists

The details of creating and traversing linked lists are beyond the

scope of this section. However, it is important to know what such a

list looks like, because linked lists can provide important flexibility

in creating a G P system, as we will see when we examine the PADO

system.

A linked list is a sequence of elements. Each element contains

some data . In addition, it contains a pointer to the next element

in the list and, sometimes, a pointer to the previous element in the

list. Technically, a pointer is simply an integer, stored at one place in

memory, tha t identifies a second location in memory. Using pointers,

a program can hop around in memory in order to access da t a in a

very flexible manner. Figure 11.5 shows a doubly linked list.

It is obvious tha t , from any element in Figure 11.5, the program

mer can move forward or backward to any other element in the list

jus t by following the pointers.

11 Implementat ion — Making Genetic Programming Work

Figure 11.5
A doubly linked list, a

versatile storage structure

for GP individuals

1
Node

i ,

N e x t — •

Prior

V

Node

Prior

N e x t — * Node

I !

- N e x t — f c > Node

Figure 11.6

Inserting GP nodes into a

linked list

A linked list is a very flexible type of da ta s tructure because any

information may be at tached to an element. It has several advantages

and disadvantages over arrays for storing G P individuals:

• E a s e in r e s i z i n g

Resizing a linked list requires only tha t memory be allocated or

de-allocated for the nodes to be added or deleted. For example,

Figure 11.6 shows how a node may be easily inserted into the

middle of a linked list.

List Before Insertion

•*— Prior — i i Pnor 2

- Next-

Prlor

-Next 1 - > Node

Insertion Point

Nodes to be Inserted

•+- Prior 3 —I

t Next 4 > ^ ^ » -

Prior 5 1

'1
- Nex t -

- Prior -

List After Insertion

Prior 3 -

- N e x M

L - Prior S 1

Prior 2 -

Next 6 - * j Nods ^Next-

The node insertion is a simple mat te r of reassigning four point

ers (the relevant pointers are numbered so tha t the insertion

may be clearly followed). The only memory allocation tha t oc

curs is the one for the inserted node. It is equally easy to clip

a node out of a linked list.

11.4 Some Necessary D a t a S t ruc tu res

• Simple to crossover
Crossover between two linked lists is simpler than for an array.
Consider Figure 11.7. All that is required to crossover these
two linked lists is to rearrange the pointers between the nodes.
Not only is this simpler than array crossover, it is also much
less likely to cause garbage collection problems than the use
of an array. Note that both of the linked lists in Figure 11.7
change size after crossover. A linked list would not, as would
an array, have to create a new (and different sized) array for
each individual, allocate memory for them, transfer the data
from the old arrays to the new arrays, and then de-allocate the
old arrays.

^-Prioi n.
• Next-

- Prioi—

Parents Before Crossover

Prior-

PrioF 1

F

t

- N e x t — G

—Prior 2 —

- N e x t — H

Figure 11.7

Crossover between two

doubly linked lists

^-Prior—I

Children After Crossover
Priot 1 I Prior-

• Ne: . Next-

• Flexible in size of elements
We noted above that an element in a linked list can contain
whatever data may be desired. Thus, for an If/Then/Else
operator, one linked list element can have four items of data,
while, for a Plus operator, the linked list element needs to carry
only three items of data. The corollary of this is that the pro-

11 Implementation — Making Genetic Programming Work

grammer may establish a one-to-one correspondence between

the elements of a linked list and the program operators.

• Fast i n s e r t i o n / d e l e t i o n
A linked list is faster to insert into or delete from than an array.

• D e m a n d i n g in m e m o r y r e q u i r e m e n t s
A linked list consumes more memory than an array representa

tion because the lat ter does not use pointers.

• S low a c c e s s

A linked list is slower to access than an array. This can be

very expensive during fitness evaluations where every element

is accessed repeatedly.

Of course, it is not necessary to use either a linked list or an array

only. The PADO system uses a linked list to store individuals and to

perform genetic operations. But it uses an array structure to execute

the individual programs.

11.4.3 Stacks L „_,.., <_-.T

Two of the systems tha t we will consider use a stack for temporary

da ta storage. A stack can be thought of as an ever-changing pile of

da ta . Both the da ta items and their number change in the pile. A

stack is a little like using a pile of books to store your books instead

of using a bookcase. You would place a book onto the pile by put t ing

it on top of the top book. On the other hand, you could get to any

book in the pile by successively taking the top book off the pile and

reading it until you reached the book.

W h a t seems odd about this arrangement is tha t you can only

get to the top book and you can only store a book by put t ing it on

top. While a top-of-the-pile-only arrangement would be an odd way

to store books, it is a powerful way to store short- term da ta during

execution of a program. Wha t we just described is also known as

LIFO: Last In - First Out . This acronym comes from the property

of a stack tha t the last item you put into - tha t is, on top of - the

stack will be the first item you can remove again.

In the computer, a stack is an area of memory tha t holds da ta

much like the pile of books stores books. When you push an i tem

onto the stack, the top of the stack now holds tha t item for later

use. Tha t is like when you put the book on top of the pile of books.

Figure 11.8 shows graphically how a piece of da ta may be stored by

being pushed onto the stack for later use.

When you pop an item off the stack, you get the top item to use

in program execution. Popping da ta off a stack is like taking the top

11.5 Implementations W i t h Arrays or Stacks

PROGRAM
INSTRUCTIONS

^^7 \
17
19

237
6
15

17
19

237
6
15

Figure 11.8

Push and pop operations

on a stack

STACK STACK

book off the pile. Figure 11.8 shows an item being popped off the

stack.

Technically, a stack is realized by using a stack pointer pointing

to the address in memory address space where the presently newest

value resides. Wi th these basics in mind, we are now prepared to

describe various C-based G P systems.

11.5 Implementations Wi th Arrays or Stacks

In 1994, Keith and Mart in looked at five different approaches to pro

gramming G P in C + + [Keith and Martin, 1994]. We have already

looked briefly at the tree approach, where every node contains a

pointer to each of its input nodes. Keith and Mart in also consid

ered two systems where the G P individuals were stored in an array

and the tree structure was implicit in the ordering of the elements of

the array. One of these approaches used a stack and postfix ordering

to effect the implicit tree structure. The other used prefix ordering

and recursive evaluations of the next node to accomplish the same

thing.

11.5.1 Postfix Expressions with a Stack

Postfix ordering occurs when the operator follows its operands. For

example, the following postfix ordering of nodes for evaluation:

wx x yz+ xSQRT (11.5)

MiVIM 11 Implementation — Making Genetic Programming Work

is equivalent to the following algebraic expression:

A / (W x x) x (y + z) (11.6)

One advantage of postfix ordering is tha t , if one evaluates the

postfix expression from left to right, one will always have evaluated

the operands to each operator before it is necessary to process the

operator. Thus, one need not spend time finding the operands so

tha t they can be evaluated prior to the operator processing.

Keith and Mart in proposed tha t one way to represent G P indi

viduals would be to hold a symbolic representation of each operator

and operand - the elements of an expression - in an array in postfix

order. The top array in Figure 11.9 shows how the above postfix

expression would appear in an array.3

Figure 11.9
Postfix and prefix

expression representation

0

w

0

r

t

X

1

MUL

2

MUL

2

*

3

Y

3

z

4

Z

4

Y

5

*

5

MUL

6

MUL

6

X

7

sT

7

W

Postfix Evaluation

Stack Evaluation

Postfix Crossover

One question remains: where do intermediate and final results

occuring during execution get stored? For example, element 0 eval

uates the value of the input w. But w is not needed until after the

system has also gotten the value of x from element 1 of the array.

Only then is the system ready to evaluate the product of w and x as

required by the multiplication operator in element 2 of the array.

A stack is a simple way to effect this kind of storage, and Keith

and Mart in do exactly tha t . The logic of evaluation is set up so tha t

values are pushed onto and popped off the stack so as to maintain

the logic of the tree structure. For example, element 0 in the array

represents the value of the input w which is pushed onto the stack.

The same is t rue for element 1 with respect to input x. Element 2

represents popping two values from the stack (w and x), multiplying

them and pushing the result onto the stack. Now the product of w

and x is safely stored in the stack for later use as an input. Execution

proceeds in tha t manner right down the array.

There is no intuitive LISP-like way to perform crossover in this

postfix arrangement. Take a moment and try to figure out a general

3 The programmer would probably not use symbols like letters and
strings - MUL, for instance - that we have used. Rather, each element

11.5 Implementations Wi th Arrays or Stacks BckH

rule tha t would always crossover valid subexpressions and is as simple

as the LISP "match the parentheses" rule. Actually, the answer is

easier than it seems, but it is still far from being as simple as the

LISP rule. The answer is: s tar t at any node, and move to the right

to another node. If the number of items on the stack is never less

than zero, and the final number of items on the stack is one, then the

visited nodes represent a subtree, tha t is, a subexpression.

The principal advantage of this arrangement is the compact in

dividual representation in memory. It is a little slower than the tree

arrangements [Keith and Mart in, 1994], and the compactness of the

representation could make the system difficult to extend. The main

reason it is slower is tha t each element must be evaluated for what

type it is - the element type needs to be stored by a symbolic repre

sentation. Tha t symbol must be interpreted, and Keith and Mart in

do so with a switch s ta tement , which takes a substantial amount of

t ime to evaluate.

The other principal drawback to this method is that it does not

allow for skipping evaluation of parts of the program tha t do not

need to be evaluated. For example, assume tha t x = 10. In the

following expression, it is unnecessary to evaluate y, I f x < 10 Then

y E l s e z. However, in a postfix representation, y would be evaluated

nevertheless.

11.5.2 Prefix Expressions with Recursive Evaluation

Keith and Martin also proposed a prefix expression representation

with recursive evaluations. Prefix ordering is the opposite of postfix

ordering. The operator precedes the operands. The second array of

Figure 11.9 shows the same expression we used above but expressed

in prefix ordering. A problem here is tha t the operands must be

known in order to process the operator, while the operands follow

the operator.

Keith and Mart in solve tha t problem with their EvalNextArg

function. Every t ime EvalNextArg is called, it increments a counter

that identifies the current element in the array. Then it calls itself in

a manner appropriate for the type of the identified element. When it

calls itself, it automatically jumps to the next element in the array.

Let us look at how this works more specifically. To begin evalu- Evaluating a Prefix

ating the array in Figure 11.9, EvalNextArg gets called for element Array

0 of the array. The function reads element zero and interprets it to

mean "take the square root of the next element in the array." To do

would be represented by, say, an integer. However, for clarity, we will use
symbols.

11 Implementation — Making Genetic Programming Work

tha t , EvalNextArg might execute the following pseudocode: r e t u r n

SQRT(EvalNextArg).

The effect of this pseudocode is to a t t empt to take the square

root of element 1 in the array.4 However, clement 1 in the array

interprets to MUL. It has no inherent re turn value of which there is a

square root until the multiplication has been performed. This means

tha t the square-root operator must wait for its operands until further

evaluations have been performed. The further evaluations happen

in the following manner. EvalNextArg might execute the following

pseudocode at this point: r e t u r n EvalNextArg * EvalNextArg.

Note what happens here. The system tries to multiply the values

in elements 2 and 3 of the array. A review of the array shows tha t

further evaluations will still be necessary because element 2 is a +

operator, and it has no immediate value until it, too, has been eval

uated. So, the system calls EvalNextArg over and over again until it

has completely evaluated the individual.

Prefix Crossover Crossover is performed in a way similar to tha t of the postfix

approach. Start ing at any element, take the arity of each element

minus one and sum these numbers from left to right. Wherever the

sum equals minus one, a complete subexpression is covered by the

visited nodes. For instance, for elements two, three, and four, this

gives 1 + (—1) + (—1) = —1, and, indeed, + z y is a complete prefix

expression.

This arrangement is superior to the postfix arrangement in tha t

it allows for skipping over code tha t does not need to be evaluated.

It shares the compactness of representation of the postfix approach.

The interested reader may review the original article, which includes

an innovative opcode approach to storing the values in the array.

11.5.3 A Graph Implementation of GP

Another G P system employing arrays and stacks is PADO (Parallel

Algorithm Discovery and Orchestration) [Teller, 1996]. Using graphs,

it looks unlike the tree-based systems whose implementation we have

considered so far in this chapter. Graphs are capable of representing

complex program structures compactly. In addition, PADO does not

just permit loops and recursion, it positively embraces them. This is

not a trivial point, since other G P systems have experimented with

loops and recursion only gingerly because of the great difficulties they

"'""" cause.

A graph structure is no more than nodes connected by edges.

The edges, sometimes also called arcs, may be thought of as pointers

4Remember EvalNextArg automatically goes to the next element in the
array every time it is called.

11.5 Implementations Wi th Arrays or Stacks

between two nodes indicating the direction of a movement from one

node to the other. Each edge represents a part of the flow of program

control. The reader may note tha t tree genomes and linear genomes

can also be represented as graphs. In a tree structure, for instance,

there may be several incoming but only one outgoing edge at each

node. In a graph system, however, there may be several incoming and

several outgoing edges for each node. Figure 5.3 showed a diagram

of a small PADO program.

A few points about the system are important before we can look

at implementat ion issues.

LI S t a r t a n d e n d n o d e s

There are two special nodes, S t a r t and End. Execution begins

at S t a r t , and when the system hits End, the execution of the

program is over.5 The flow of execution is determined by the

edges in the graph. More about tha t later.

• P A D O u s e of t h e s t a c k

Data is transferred among nodes by means of a stack. Each of

the nodes executes a function tha t reads from or writes to the

stack. For example, the node A reads the value of the operand a

from RAM and pushes it onto the stack. The node 6 pushes the

value 6 onto the stack. The node MUL pops two values from the

stack, multiplies them, and pushes the result onto the stack.

• P A D O use of i n d e x e d m e m o r y
Data may also be saved by the system in the indexed memory.

The node labeled Wr i te pops two arguments from the stack. It

writes the value of the first argument into the indexed memory

location indicated by the second argument. Read fetches da ta

from the memory location.

Note tha t there are really two things tha t each node must do: it

must perform some function on the stack and /or the indexed memory,

and it must decide which node will be the next to execute. This

lat ter function is really a mat te r of choosing between the outgoing

edges from the node. Consider Figure 5.3 again. The MUL node may

transfer control to Wri te , Read, or 4. For this purpose each node

has a branch-decision function which determines, depending on the

stack, memory cells, constants, or the foregoing node, which of the

edges to take.

5 In some implementations, PADO repeats execution a fixed number of
times or until a certain condition is met. So, it is not quite accurate to say
that the program always ends when the End node is reached.

IckU 11 Implementation — Making Genetic Programming Work

From an implementation viewpoint, PADO is much more diffi

cult than tree or linear genomes. For example, there are a lot more

pointers to keep track of. Imagine crossing over the program repre

sentation in Figure 5.3 with another program representation. Wha t

to do with all of the nodes and, worse, all of the pointers tha t have

been cut? How do you keep track of the pointers, and where do they

get reat tached? The designer has come up with good solutions to

these problems, but the point is tha t the problem was a tough one

relative to other G P systems.

Dual Representation of Because of the difficulty of coding this system, an individual is

Individuals represented in two different structures. For the purpose of storage,

crossover, and mutat ion, individuals are stored in a linked list. Each

element in the list contains all of the information necessary to iden

tify a PADO node. On the other hand, for the purpose of execution,

individuals are stored as arrays. The purpose of this dual representa

tion is tha t the linked list provides simple crossover and mutat ion but

would slow down the system if it were the basis of program execu

tion. On the other hand, while an array provides for fast execution,

'•> it would be complicated to keep track of all of the pointers during

crossover in the array.

The minute details of implementation of this interesting and pow

erful system are beyond the scope of this section. The reader may con

sult [Teller and Veloso, 1995a] [Teller and Veloso, 1995b] [Teller, 1996]

[Teller and Veloso, 1996] for more information.

11.6 Implementations Using Machine Code

While the systems presented above represent individuals as high-level

da ta structures, machine code-oriented genetic programming systems

use low-level representations. Let us take a closer look at how such

systems are implemented.

11.6.1 Evolving Machine Code with A I M G P

No mat te r how an individual is initially represented, it is always

represented finally as a piece of machine code, because a processor

has to execute the individual for fitness evaluation. Depending on

the initial representation there are at least the following three G P

approaches, the third of which is the topic of this section.

1. The common approach to G P uses a technique where an indivi

dual representation in a problem-specific language is executed

by a virtual machine, as shown in Figure 11.10 (top). This

solution gives high ability to customize the language depending

11.6 Implementations Using Machine Code

on the properties of the problem at hand. The disadvantage of

this paradigm is tha t the need for the virtual machine involves

a large programming and run t ime overhead.

Genetic operators

Evaluation result

Genetic operators

Evaluation result
Binaries

Genetic operators

individual [CPUj
Evaluation result

Binaries

2. Another approach is to compile each individual from a higher-

level representation into machine code before evaluation, as

shown in Figure 11.10 (middle). This approach can provide

genetic programming with problem-specific and powerful oper

ators and also results in high-speed execution of the individual.

The compilation itself is an overhead, of course, and compilers

do not produce perfectly optimized machine code. Neverthe

less, the speed-up can be considerable if an individual runs, on

average, for a long time during fitness evaluation. Long exe

cution times may be due to, say, a long-running loop or may

be due to a large number of fitness cases in the training set.

Problem-specific operators are frequently required.

Figure 11.10
Three approaches to

make GP work

Figure 11.11
Machine code GP with

genetic compilation

1 1 Implementat ion — Mak ing Genetic Programming Work

This approach has been used by [Keller and Banzhaf, 1996] and
[Friedrich and Banzhaf, 1997]. While the first approach evolves
code in a potentially arbitrary language which then gets inter
preted or compiled by a standard compiler like ANSI-C, the
second uses its own genetic compiler. Thus, there is no separate
compilation step for the system and execution times approach
those of the system that manipulates machine code directly.
Figure 11.11 shows how tokens representing machine code in
structions are compiled - by a fast and simple genetic compiler
- to machine code which then gets executed. This method has
advantages when working with CISC processors, where machine
language features variable length instructions.

Genome of equally sized tokens:

inc A dec B pop S ret

Efficient on-the-fly translation or "compilation"

I \ \
: 01110010O110001Oojl 0111101110101010111011001100010^1010110111010101

Binary code to be executed.

3. The central approach of this section - automatic induction of
machine code with GP (AIMGP) - represents individuals as
machine code programs which are directly executable. Thus,
each individual is a piece of machine code. In particular, there
are no virtual machines, intermediate languages, interpreters,
or compilers involved. This approach was earlier introduced as
the compiling genetic programming system [Nordin, 1994].6

AIMGP has been implemented in C. Thus, individuals are in
voked with a standard C function call. The system performs
repeated type casts between pointers to arrays for the manipu
lation of individuals and between pointers to functions for the
execution of the individuals as programs.

AIMGP has accelerated individual execution speed by a factor of
2000 compared to LISP implementations [Nordin and Banzhaf, 1995b].

The approach was earlier called "compiling" because it composes ma
chine code programs which are executed directly. Because the approach
should not be confused with other approaches using a compiler for the
mapping into machine code, we have renamed it.

11.6 Implementations Using Machine Code

It is the fastest approach available in GP for applications that allow
for its use [Nordin, 1997]. (See www.aimlearning.com.)

11.6.2 The Structure of Machine Code Functions

As said earlier, the individuals of AIMGP consist of machine code se
quences resembling a standard C function. Thus AIMGP implements
linear genomes, and its crossover operator works on a linear struc
ture. Figure 11.12 illustrates the structure of a function in machine
code. The function code consists of the following major parts:

1. The header deals with administration necessary when a func
tion gets entered during execution. This normally means ma
nipulation of the stack - for instance, getting the arguments for
the function from the stack. There may also be some process
ing to ensure consistency of processor registers. The header is
often constant and can be added at the initialization of each in
dividual's machine code sequence. The genetic operators must
be prevented from changing the header during evolution.

2. The footer "cleans up" after a function call. It must also be
protected from change by the genetic operators.

3. The return instruction follows the footer and forces the sys
tem to leave the function and to return program control to the
calling procedure. If variable length programs are desired, then
the return operator could be allowed to move within a range
between the minimum and maximum program size. The footer
and the return instruction must be protected against the effects
of genetic operators.

4. The function body consists of the actual program represent
ing an individual.

5. A buffer is reserved at the end of each individual to allow for
length variations.

Header -•- •*- Body

V d=c*a s=c+14

Footer

i
Buffer

a=c+d restore

Figure 11.12

Structure of a program

individual in AIMGP

11 Implementation — Making Genetic Programming Work

11.6.3 Genetic Operators

AIMGP has the following two genetic operators:

1. A m u t a t i o n operator changes the content of an instruction

by mutat ing op-codes, constants or register references. It ran

domly changes one bit of the instruction provided certain crite

ria are fulfilled. The operator can change only the instruction

to a member of the set of approved instructions to assure tha t

there will be no illegal instructions, bus errors, unwanted loops

or jumps, etc. Furthermore, the operator ensures ari thmetic

consistency, such as protection against division by zero.

2. The crossover operator works on variable length individuals.

Two crossover methods have been used in AIMGP. The first

method (protected crossover) uses a regular GA binary string

crossover where certain par ts of the machine code instruction

are protected from crossover to prevent creation of illegal or

unwanted instructions, as shown in Figure 11.13. The second

method (instruction crossover) allows crossover only between

instructions, in 32-bit intervals of the binary string. Hence, the

genome is snipped and exchanged so as to respect the 32-bit

machine code instruction boundaries. Figure 11.14 illustrates

the lat ter crossover method [Nordin and Banzhaf, 1995b].

:'! »:1 t

Figure 11.13
Protected crossover.

crossover point

Hitting an illegal location 3 2 b j t i n s t m c t i o n
 ,~\

for crossover is prohibited . - — r .T..T. ^m.—. „,,,,.—
bv deflecting crossover to i oii1ooi°oi'OOOl<»ioiiiioiii#ioio|oiiioiiooii<»oi<»ioioii^Jioiojoiiiooiioiioooiooioioiioiiioioi(

a neighboring legal

crossover point.
- protected field

11.7 A Guide to Parameter Choices

Once a system has been coded, one must choose parameters for a

G P run. The good news is tha t G P works well over a wide range of

parameters . The bad news is tha t G P is a young field and the effect

of using various combinations of parameter values is just beginning

to be explored. We end this chapter by describing the typical pa

rameters, how they are used, and what is known about their effects.

11.7 A Guide to Parameter Choices | £ 2 J

Much of what G P researchers know about parameters is anecdotal

and based on experience. We will suggest rules of thumb for the

various parameters based on our experience. Our aim here is not

merely to list parameters tha t are well described elsewhere, but to

look at those parameters where real experience makes it possible to

give some practical advice about real implementation issues.

Population size is an important parameter setting in a G P run Population Size

for several reasons. To begin with, bigger populations take more

t ime when evolving a generation. Also, bigger populations have more

genetic diversity, explore more areas of the search space, and may

even reduce the number of evaluations required for finding a solution.

Positive results have been achieved with population sizes ranging

from P = 10 to P = 1 000 000 individuals. Between 10 and 100 000

individuals, the authors have experienced a near linear improvement

in performance of the system. A start ing point of P = 1000 is usu

ally acceptable for smaller problems. But as the problem grows more

difficult, the population size should grow. A rule of thumb in deal

ing with more difficult problems is tha t , if a problem is sufficiently

difficult, then the population size should start at around P = 10 000.

This number should be increased if the other parameters tend to ex-

ItfctJ 11 Implementation — Making Genetic Programming Work

Maximum Number of
Generations

ert heavy selection pressure. On the other hand, if there is a lot of

noise in selection (very small tournaments and the like), then smaller

populations will suffice.

A larger number of training cases requires an increase in the pop

ulation size. In a smaller problem, say, less than 10 fitness cases, a

population size of 10 to 1000 usually suffices. Between 10 and 200

fitness cases, it is bet ter to use 1000 < P < 10 000. Above 200 train

ing cases, we recommend using P > 10 000. Koza summarizes his

experiences with population size in Chapter 26 of [Koza, 1992d]. He

uses 50 < P < 10 000 in his book, but reports 500 individuals as the

commonest setting.

Early in the history of GP, it was argued that the limit on gener

ations should be quite low because nothing happens after generation

Gmax = 50. Tha t has not been our experience. In some runs, inter

esting evolution has been delayed to as late as generation 1000. Other

t imes, evolution will seem to s tagnate and then suddenly pick up and

begin improving the popidation again. We have seen examples where

interesting things happen after generation 10 000.

Tha t said, it is impractical to run most G P systems for tha t many

generations - there is not enough C P U time available. There are two

possible practical solutions:

1. Star t testing with a relatively low setting for Gmax, such as 50 <

Gmax < 100 generations. If you are not getting the results you

want, first raise the population size and then raise the number

of generations.

2. Monitor the run to determine whether it may safely be termi

nated. Explosive growth of introns almost always marks the end

of effective evolution. This growth may be measured indirectly

by measuring the percentage of to ta l crossover events t ha t are

destructive. As a rule of thumb, when destructive crossover

falls to below 10% of all crossover events, no further effective

evolution will occur. So it is possible to set Gmax quite high but

to catch the runs in which evolution is finished and terminate

them early.

Terminal and A few rules of thumb for the terminal set and function set have

Functions Set served the authors well:

• Make the terminal and function set as small as possible. Larger

sets usually mean longer search t ime. The same is t rue for the

number of registers used in AIMGP.

11.7 A Guide to Parameter Choices

• It is not tha t important to have (all) customized functions in the

function set: the system often evolves its own approximations.

• It is very important , however, tha t the function set contains

functions permit t ing non-linear behavior, such as if-then func

tions, Boolean operators on numbers, and sigmoid squashing

functions.

• The function set should also be adapted to the problem in

the following way: problems t ha t are expected to be solved by

smooth curves should use function sets tha t generate smooth

curves, and functions t ha t are expected to be solved by other

types of functions should have at least one representative of

these functions in the function set.

• Sometimes transformations on da ta are very valuable, for in

stance, fast Fourier transforms [Oakley, 1996].

The typical settings of mutat ion and crossover probabilities in G P

involve very high rates of crossover and very low rates of mutat ion.

Experiments suggest tha t a different balance (pc = 0.5, pm = 0.5)

between the two operators may lead to be t te r results on harder prob

lems [Banzhaf et al., 1996] and tha t the worst results are obtained

when either operator is left out.

The proper balance between these operators is, therefore, a wide

open question and may be very problem dependent. A rough ride of

thumb would be to s tar t with 90% crossover and 10% mutat ion. If

the results are not pleasing, increase the mutat ion rate .

Selection pressure is another parameter to be put under some

conditions. If tournament selection is applied, the size of the tour

nament will determine the selection pressure. The authors have very

good experiences with low selection pressure. Tournaments of 4 in

dividuals regularly perform very well.

Research in the area of parsimony pressure is not fully conclusive

at this t ime. Some researchers have reported good results with parsi

mony pressure. Our own experience is that constant parsimony pres

sure usually gives worse results and makes local opt ima more likely.

However, variable parsimony pressure produces very nice, short, and

elegant solutions. Some researchers have reported good results with

adaptive parsimony, which is applied only when a solution tha t per

forms well is found.

As a general rule, the maximum depth of trees or the maximum

program size should be set such tha t the programs can contain about

ten times the number of nodes as the expected solution size. This

allows both for estimation error in predicting the solution size and

for intron growth.

Mutation and
Crossover Balance

Parsimony Pressure

Maximum Program
Size

11 Implementation — Making Genetic Programming Work

Initial Program Size Typically, the initial program size should be very small compared

to the maximum size. This allows the system to build up good indi

viduals piece by piece. But for complex problems, when no success

results from this approach, we suggest trying longer programs at the

s tar t to allow the system to s tar t with some complexity already and

to avoid local minima early on.

Exercises

1. Why is G P computationally expensive?

2. Wha t is garbage collection, and why is it necessary in some G P

implementations?

3. Give three examples of how to represent an individual in GP.

4. Why is it easier to do crossover when using linked lists than

when using arrays to represent individuals in a tree?

5. Define postfix and prefix representations.

6. Describe two methods of implementing tree structures suitable

for GP.

7. Describe three important parameters of G P runs.

12 Applications of Genetic

Programming

Contents

12.1 General Overview 340

12.2 Applications from A to Z 340

12.3 Science-Oriented Applications of GP 341

12.3.1 Biochemistry Data Mining 341

12.3.2 Sequence Problems 347

12.3.3 Image Classification in Geoscience and Remote
Sensing 351

12.4 Computer Science-Oriented

Applications 354

12.4.1 Cellular Encoding of Artificial Neural Networks . 354

12.4.2 Development and Evolution of

Hardware Behaviors 357

12.4.3 Intrusion Detection 358

12.4.4 Autoparallelization 359

12.4.5 Confidence of Text Classification 360

12.4.6 Image Classification with the PADO System . . . 362

12.5 Engineering-Oriented Applications of GP . . 363

12.5.1 Online Control of Real Robot 363

12.5.2 Spacecraft Attitude Maneuvers 368

12.5.3 Hexapodal Robot 370

12.5.4 Design of Electrical Circuits 371

12.5.5 Articulated Figure Motion Animation 373

12.6 Summary 376

12 Applications of Genetic Programming

Table 12.1

Development of GP

literature since 1989

12.1 General Overview

In this chapter we discuss a selected number of applications of genetic
programming. The selection is arbitrary but is intended to give a
taste of what is already discussed in GP. Regretfully, due to the large
number of practically relevant applications of genetic programming,
we had to select among very many important contributions. This
section and the next, however, are devoted to an overview of the
diversity of applications researchers have tackled with GP.

To start with, it is clear that the number of applications must be
correlated with the number of papers published in GP. This will give
a lower bound on applications, because it can be safely assumed that
a considerable percentage of applications never get published at all.

So let us first look at the development of GP publications in
general. Table 12.1 summarizes the history of of GP publications
since 1989 in part using data given in [Alander, 1995].

Year

1989
1990
1991
1992
1993
1994
1995
1996
1997

Number of publications

1
12
18
30
40
95

140 (est.)
220 (est.)

150 (1st half, est.)

o

&d:

r w
12.2 Applications from A to Z

Table 12.2 gives an overview of applications according to our classifi
cation. As one can see, genetic programming has spawned numerous
interesting applications in the short time of its existence.

It can be safely assumed that at least the same growth factor
applies to applications as it does to GP in general.

Table 12.3-12.6 on the following pages present the different ap
plications of genetic programming, including the sources where more
information can be found. Some entries are repeated as they fit under
more than one heading.

12.3 Science-Oriented Applications of GP EH

Application domain

algorithms

art

biotechnology

computer graphics

computing

control (general)

control (process)

control (robots and agents)

control (spacecraft)

da ta mining

electrical engineering

financial

hybrid systems

image processing

interactive evolution

modeling

natural languages

optimization

pa t t e rn recognition

signal processing

First publication

1992

1993

1993

1991

1992

1992

1990

1992

1996

1996

1994

1994

1993

1993

1991

1994

1994

1994

1994

1992

Cum. number

8

5

9

7

17

4

5

27

2

6

9

9

9

14

4

7

4

7

20

5

The following sections discuss some applications in more detail

in order to give an impression of the diversity of problems G P has

been applied to. The authors have made an arbitrary selection and

do not claim to cover all topics exhaustively.

We group the selected applications roughly in the following do

mains:

1. Science-oriented applications

2. Computer science-oriented applications

3. Engineering-oriented applications

12.3 Science-Oriented Applications of GP

12.3.1 Biochemistry Data Mining

In many areas of science and technology, so much knowledge has Problem Domain

accumulated tha t the methods of da ta mining are needed in order to

discover interesting and valuable aspects of the da ta tha t would have

gone undiscovered otherwise.

Table 12.2
Summary overview of

applications of GP in

different areas

EH 12 Applications of Genetic Programming

Application domain

algori thms

art

biotechnology

computer graphics

computing

Year j Application

1996
1997
1996
1994
1994
1996
1993
1992
1994
1993
1995
1995
1994
1996
1995
1995
1993
1994
1994
1994
1993
1996
1994
1994
1991
1991
1993
1995
1997
1995
1994
1996
1992
1996
1991
1996
1996
1994
1994
1995
1996
1996
1997
1996
1995
1994

acyclic graph evaluation
caching algori thms
chaos exploration
crossing over between subpopulat ions
randomizers (R)
recursion
sorting algori thms
sorting networks
artworks
images
jazz melodies
musical s t ruc ture
vir tual reality
biochemistry
control of biotechnological processes
DNA sequence classification
detector discovering and use
protein core detect ion (R2)
protein segment classification
protein sequence recognition
sequencing
solvent exposure prediction (R2)
3D object evolution
3D modeling (R)
artificial evolution
artificial evolution
computer animat ion
computer animat ion
computer animat ion
computer security
damage-immune programs
da t a compression
da ta encoding
da ta processing s t ruc ture identification
decision trees
decision trees
inferential est imation
machine language
monitoring
machine language
object orientat ion
parallelization
parallelization
specification refinement
software fault number prediction
virtual reality

Source

[Ehrenburg, 1996]
[Paterson and Livesey, 1997]
[Oakley, 1996]
[Ryan, 1994]
[Jannink, 1994]
[Wong and Leung, 1996]
[Kinnear, Jr . , 1993a, Kinnear, Jr . , 1994]
[Hillis, 1992]
[Spector and Alpern, 1994]
[Sims, 1993a]
[Spector and Alpern, 1995]
[Spector and Alpern, 1995]
[Das et al., 1994]
[Raymer et al., 1996]
[Bettenhausen et al., 1995a]
[Handley, 1995]
[Koza, 1993b]
[Handley, 1994a]
[Koza and Andre, 1996a]
[Koza, 1994b]
[Handley, 1993a]
[Handley, 1996b]
[Nguyen and Huang, 1994]
[Nguyen et al., 1993]
[Sims, 1991a]
[Sims, 1991b]
[Ngo and Marks, 1993]
[Gritz and Hahn, 1995]
[Gritz and Hahn, 1997]
[Crosbie and Spafford, 1995]
[Dickinson, 1994]
[Nordin and Banzhaf, 1996]
[Koza, 1992d]
[Gray et al., 1996a]
[Koza, 1991]
[Masand and Piatesky-Shapiro, 1996]
[McKay et al., 1996]
[Nordin, 1994]
[Atkin and Cohen, 1993]
[Crepeau, 1995]
[Bruce, 1996]
[Walsh and Ryan, 1996]
[Ryan and Walsh, 1997]
[Haynes et al., 1996]
[Robinson and Mcllroy, 1995a]
[Das et al., 1994]

Table 12.3

GP applications overview,

part I (R means

"repeated") Various da ta mining methods exist. One of them is (automatic)

clustering of da ta into groups such tha t from the s tructure of those

clusters one can draw appropriate conclusions. Clustering methods

are a general tool in pa t tern recognition, and it can be argued that

da ta in a database are pat terns organized according to a homogeneous

set of principles, called features.

The problem of da ta mining thus becomes a problem of feature

extraction, and it is this point of view tha t is discussed in this appli-

12.3 Science-Oriented Applications of GP MfTi

Application domain

control

control (process)

control (robotics)

control (spacecraft)

da t a mining

Year

1995
1995
1994
1992
1990
1996
1995
1996
1994

1993
1994
1994
1994
1994
1994
1994
1995
1997
1995
1992
1996
1997
1997
1997
1994
1993
1994
1994
1996
1992
1994
1992
1996
1997
1993
1994

1996
1997
1996
1996
1995
1997
1995
1995

Application

boardgame
cooperating strategies

s teady s tates of dynamical systems
vehicle systems

control s t rategy programs
modeling chemical process systems

process engineering
process engineering

stirred tank
autonomous agents
autonomous agents
autonomous agents
autonomous agents
autonomous agent

bat t le tank
corridor following

juggling
manipulator motion

motion
motion in cri t ter populat ion

motion planning
motion and planning

navigation
navigation

obstacle avoiding
planning
planning
planning

sensor evolution
subsumption

terrain flattening
trailer back-up
wall-following
wall-following

walking and crawling
walking and crawling

maneuvering
maneuvering

da tabases
internet agents

predicting DNA
rule induction

signal identification
t ime series

Source

[Ferrer and Mart in , 1995]
[Haynes et al., 1995]

[Lay, 1994]
[Hampo and Marko, 1992]

[Koza and Keane, 1990]
[Hinchliffe et al., 1996]

[McKay et al., 1995]
[McKay et al., 1996]

[Lay, 1994]
[Atkin and Cohen, 1993]
[Atkin and Cohen, 1994]
[Fraser and Rush, 1994]

[Ghanea-Hercock and Fraser, 1994]
[Rush et al., 1994]

[D'haeseleer and Bluming, 1994]
[Reynolds, 1994a]

[Taylor, 1995]
[Howley, 1997]

[Nordin and Banzhaf, 1995c]
[Reynolds, 1992]

[Faglia and Vetturi , 1996]
[Banzhaf et al., 1997a]

[Bennett III , 1997]
[Iba, 1997]

[Reynolds, 1994b]
[Handley, 1993b]
[Handley, 1994b]
[Spector, 1994]

[Balakrishnan and Honavar, 1996]
[Koza, 1992a]
[Lott, 1994]

[Koza, 1992b]
[Ross et al., 1996]

[Dain, 1997]
[Spencer, 1993]
[Spencer, 1994]
[Howley, 1996]

[Dracopoulos, 1997]
[Raymer et al., 1996]
[Zhang et al., 1996]

[Handley, 1995]
[Freitas, 1997]

[Teller and Veloso, 1995c]
[Lee, 1995]

Table 12.4

GP applications overview,

cation. As a particular example where it has been applied success- p

fully, we shall discuss the biochemistry database CONSOLV contain

ing da ta on water molecules bound to a number of proteins.

Using the classification technique of K-nearest neighbors (Knn)

and a G P system to feed this classification scheme, a very successful

feature analysis can be done resulting in an identification of important

features as well as a good classification of untrained da t a entries.

The authors of this s tudy did earlier work using a genetic algo

r i thm for the same task [Punch et al., 1993] but concluded tha t G P

would be bet ter suited for the goals to be achieved. One important

EH 12 Applications of Genetic Programming

Application domain

electrical engineering
circuit design

financial market

hybrids

image processing

interactive evolution

Year

1997
1994
1996
1996
1994
1997
1994
1996
1996
1996
1994
1996
1997
1995
1994
1994
1996
1997

1996
1996
1996
1997
1994
1994
1994
1997
1994
1995
1996
1996
1996
1996
1996
1993
1995
1996
1997
1994
1995
1994
1994
1992
1991
1992
1993

Application

analog source identification circuit
circuit design
circuit design
circuit design

circuit simplification
controller circuit

evolvable hardware
facility layout

decision diagrams
bargaining

horse race prediction
hypothesis

investment behavior
share prediction

strategies
t rade strategies

t rade models
volatility models

cellular au toma ta rules
fuzzy logic controllers

L-systems
learning rules

neural network training
neural network training
neural network t raining
neural network training

regular languages
analysis
analysis

classification
compression
compression

edge detection
feature extract ion
feature extract ion
feature extract ion

image enhancement
magnetic resonance image processing

recognition
s t ruc ture of na tura l images

visual routines
dynamical systems

interactive image evolution
procedural models
procedural models

Source

[Koza et al., 1997b]
[Ehrenburg and van Maanen, 1994]

[Koza et al., 1996a]
[Koza et al., 1996b]

[Coon, 1994]
[Koza et al., 1997a]

[Hemmi et al., 1994a]
[Garces-Perez et al., 1996]

[Drechsler et al., 1996]
[Dworman et al., 1996]

[Perry, 1994]
[Chen and Yeh, 1996]

[Lensberg, 1997]
[Robinson and Mcllroy, 1995a]

[Andrews and Prager , 1994]
[Lent, 1994]

[Oussaidene et al., 1996]
[Chen and Yeh, 1997]
[Andre et al., 1996b]

[Alba et al., 1996]
[Jacob, 1996b]

[Segovia and Isasi, 1997]
[Bengio et al., 1994]

[Gruau, 1994b]
[Zhang and Muehlenbein, 1994]

[Esparcia-Alcazar and Sharman, 1997]
[Dunay et al., 1994]

[Robinson and Mcllroy, 1995b]
[Bersano-Begey et al., 1996]

[Zhao et al., 1996]
[Jiang and Butler, 1996]

[Nordin and Banzhaf, 1996]
[Harris and Buxton, 1996]

[Tackett, 1993]
[Daida et al., 1995]

[Daida et al., 1996b]
[Poli and Cagnoni, 1997]

[Thedens, 1994]
[Teller and Veloso, 1995a]

[Gordon, 1994]
[Johnson et al., 1994]

[Sims, 1992a]
[Sims, 1991a, Sims, 1991b]

[Sims, 1992b]
[Sims, 1993b]

Table 12.5

GP applications overview,

part III
strength of their method, the authors claim, is that it is useful in
noisy environments [Pei et al., 1995].

Genetic algorithms can do an optimization based on a linear
weighting of features, whereas genetic programming can do non-linear
weighting and an adjustment of the function [Raymer et al., 1996].

Task The task Raymer et al. considered was to generate a good scal
ing of features for a Knn classifier of data entries in the biochemical
database CONSOLV. This database contained data on the environ
ment of a set of 1700 randomly selected water molecules bound to

12.3 Science-Oriented Applications of GP BtiU

Applicat ion domain

modelling

na tura l languages

opt imizat ion

pa t t e rn recognition

signal processing

Year

1995
1995
1997
1995
1995
1994
1995
1994
1994
1996
1997
1994
1996
1994
1996
1996
1995
1994
1994
1996
1997
1995
1994
1994
1994
1996
1996
1993
1994
1996
1997
1997
1994
1994
1996
1996
1996
1996

1992
1996
1993
1993
1996

Application j Source

biotechnological fed-batch fermentation
macro-mechanical model

metallurgic process model
model identification

model induction
spatial interaction models

system identification
confidence of text classification (R)

language decision trees
language processing

sense clustering
da tabase query optimizat ion
da tabase query optimizat ion

job shop problem
maintenance scheduling

network (LAN)
railroad track maintenance

t ra ining subset selection
classification
classification
classification

dynamics extract ion
feature extract ion

filtering
combustion engine misfire detect ion

magnet ic resonance da ta classification
myoelectric signal recognition

noise filtering
optical character recognition

object classification
object detection

preprocessing
signal filtering

text classification
text classification

t ime series
t ime series prediction

visibility graphs
control vehicle systems

digital
signal filtering

signal modeling
waveform recognition

[Bettenhausen et a]. , 1995b]
[Schoenauer et al., 1995]

[Greeff and Aldrich, 1997]
[Schoenauer et al., 1996]

[Babovic, 1995]
[Openshaw and Turton, 1994]

[Iba et al., 1995b]
[Masand, 1994]

[Siegel, 1994]
[Dunning and Davis, 1996]

[Park and Song, 1997]
[Kraft et al., 1994]

[Stillger and Spiliopoulou, 1996]
[Atlan et al., 1994]
[Langdon, 1996a]

[Choi, 1996]
[Grimes, 1995]

[Gathercole and Ross, 1994]
[Tackett and Carmi , 1994]

[Abramson and Hunter , 1996]
[Gray and Maxwell, 1997]

[Dzeroski et al., 1995]
[Andre, 1994a]
[Oakley, 1994b]

[Hampo et al., 1994]
[Gray et al., 1996b]

[Fernandez et al., 1996]
[Oakley, 1993]
[Andre, 1994b]

[Ryu and Eick, 1996]
[Winkeler and Manjunath , 1997]

[Sherrah et al., 1997]
[Oakley, 1994a]
[Masand, 1994]

[Clack et al., 1996]
[Masand and Piatesky-Shapiro, 1996]

[Mulloy et al., 1996]
[Veach, 1996]

[Hampo and Marko, 1992]
[Esparcia-Alcazar and Sharman, 1996]

[Oakley, 1993]
[Sharman and Esparcia-Alcazar, 1993]

[Fernandez et al., 1996]

Table 12.6
GP applications overview,

20 different proteins. Four features were used to characterize each of part IV (R means

the water molecules in their ligand-free structure: repeated)

1. the crystalographic tempera ture factor, called the B-value

2. the number of hydrogen bonds between the water molecule and

the protein

3. the number of protein atoms packed around the water molecule,

called the atomic density

4. the tendency of the protein atoms to a t t rac t or repel the water

molecule, called the hydrophilicity

KIM 12 Applications of Genetic Programming

Based on those features of the ligand-free configuration, the water

molecules binding to active sites were classified into cither conserved

or displaced, predicting whether they participate in ligand-active site

binding (conserved) or not (displaced). The authors claimed tha t ,

if the active-site water molecules could be classified correctly and

thus predicted, this would have broad applications in biotechnol

ogy [Raymer et al., 1996]. From the 1700 water molecules in the

database, only 157 were binding to the active site, and those were

used to part icipate in training of the system.

Figure 12.1 shows the idea behind scaling of features for Knn

classification. The scaling is done in order to maximize classification

correctness in the training set. Validation is done using a separate

par t of the database tha t has not been involved in the training.

Figure 12.1
Scaling of the x-axis

(B-value) changes the

classification of the water

in question.

t
I
•1
2 V

)l

rea
t

• /
/

• v
\

•

•
•

s

O

^^
•

•

• \ \
•
• /

J y
• — ^ •

D •

S
•s
c

<s

(A
to

I
1

/
/ / / •
\ V
V

•
D

^

•
v ^ _

•

•

• \
\

• 1

^y
n •

n

n

Feature 2 (B-value) Feature 2 (B-value)

System Structure

GP Elements

The G P system evolves functions tha t map the original values of

the features into values allowing bet ter separability of the pat terns

and, therefore, bet ter classification of the water molecules. The entire

system consisting of a G P module mapping the features into the Knn

classifier module is depicted in Figure 12.2. Input to the system

are the original features stored in the database as well as the correct

classification results expected from the Knn classifier. These are then

used as a qviality measure for the G P system's mapping (scaling) of

the features according to Figure 12.2.

Raymer et al. used the basic ari thmetic functions + , — , * , % as

the function set of the G P module. The terminals consisted of the

original features to be mapped and of random ephemeral constants.

A peculiarity of their work was tha t each tree of the genetic pro

gramming population consisted of 4 subtrees, corresponding to the

four features to be mapped. In order to maintain those subtrees dur

ing evolution, they were coded as ADFs to be called by the main tree.

The fitness measure was simply the degree of correct classification by

a Knn with K = 3 among the 1700 water molecules, including 157

active-site binding water molecules.

12.3 Science-Oriented Applications of G P

Target Classification

1
Classification Result

n

GP System KNN Classifier

Figure 12.2

A system for improved

Knn classification

Input features

The G P run was done using a ramped half-and-half initializa

tion and the convergence termination criterion or the generation

limit given below. The following parameters were chosen: P =

100; Gmax = 300; pc = 0.9; MDP = 17; MDPmit = 6. Raymer

et al. report improved performance of the classifier and therefore im

proved prediction accuracy of the G P system over a comparable sys

tem using a genetic algorithm as feature-scaling device. The overall

classification rate on all 157 active-site water molecules rose from

77% to 79%. The authors claim this to be a very good result given

the difficulty of reaching more than 70% accuracy for protein sec

ondary structure prediction from ab initio or knowledge-based meth

ods [Mehta et al., 1995] [Rost and Sander, 1993].

The four features were mapped differently, with an overall in

crease in importance given to the first and third. For illustration

purposes, Figure 12.3 shows one of the developed non-linear map

pings of features for atomic density. The scaling was done after the

original features were normalized to the interval [1,10]. The compu

tat ion t ime per generation was about 15 minutes on a SUN SPARC

502.

Results

12.3.2 Sequence Problems

In many areas of science, there are problems with sequences of in

formation carriers. These sequences might come about as the result

of temporal processes or might be generated in the course of trans

forming spatial distributions into a form tha t can be subjected to

sequence analysis. The very process by which you read these lines is

such a case. During the process of reading text we are transforming

Problem Domain

ESS 12 Applications of Genetic Programming

Figure 12.3
A GP-evolved function

for the B-value with a

Knn ofK = 3. It

approximately follows a

f(x) — — x3 function.

([Raymer et al., 1996],

copyright MIT Press,

reproduced with

permission)

2.58+31

28*31

1.58+31

1a+31

5e+30

0

-5e+30

-1e+31

-1.58+31

•28+31

-2£s+31

GP function for B-Vaiue

\ _

-

Feature 2: B-Value

\ -

spatial pa t terns (dot pa t te rn on paper) into a spatio-temporal form

tha t our brain can process.

A glimpse of the ubiquity of sequence problems is given here:

• Speech processing

• Communication in general

• Language understanding and translation

• Analysis of economic problems

• DNA pat te rn recognition

• Time series analysis: prediction of weather, etc.

• Secondary and tert iary protein s tructure prediction

As we can see, sequence problems are widespread, and computer

science and biology contain especially challenging instances of these

problems. These problems have in common tha t the da ta type of

sequence elements is usually the same over the entire sequence. Thus,

whether an element is at the beginning of the sequence or at the end,

it would have the same meaning in either case. In other words, there

is positional independence or translational invariance as far as the

sematics is concerned.

12.3 Science-Oriented Applications of GP

Handley has created a special set of functions for solving sequence

problems [Handley, 1996a] and applied this set to two problems for

demonstrat ion purposes.

The task given by the analysis of sequences is usually simply Task

to recognize certain pat terns in a sequence or to compare sequences

for similarity when the number of elements tha t might express tha t

pa t t e rn is not fixed. According to Handley, many machine learning

techniques approach the problem by forcing the sequence into a fixed

length pat tern , tha t is, by sliding a window over the sequence. The

window size thus determines the size of the pat tern , which is now

fixed in length irrespective of the entire length of the sequence. Han

dley, instead, proposes a more flexible approach using an arbi trary

or adjustable window size, up to the extreme of taking the influence

of the entire sequence into account for one specific pat tern .

Handley's G P system is a tradit ional one, except tha t it is en- GP Elements

hanced by his so-called statistical computing-zone function set. These

functions may be divided into two classes: convolution functions and

statistical functions.

Convolution functions are functions tha t compute values from

par t s of the sequence, independently of what the same convolution

function has computed on other par ts of the sequence. The situation

is depicted in Figure 12.4.

A' B" C

Typical representatives of those convolution functions are:

• ari thmetic functions on single elements or on sequences

Figure 12.4
The effect of a

convolution function on

a sequence. Values

are computed locally,

independently of the

computations for other

parts of the sequence.

• conditional branches on single elements or on sequences

• sequence manipulation functions, like shift left or shift right

Statistical functions, on the other hand, do depend on the appli

cation of the same function earlier on in the sequence. As a typical

instance, Handley mentions a summing operation tha t returns, at

the end of the sequence, the sum of all values found on the sequence.

Until the end, however, this function returns part ial sums only, with

each partial sum depending on partial sums computed earlier on. The

si tuation is depicted in Figure 12.5.

IcUi l 12 Applications of Genetic Programming

Figure 12.5
The effect of a statistical

function on a sequence.

Values are computed

locally, but are dependent

on computations of the

same function earlier on

in the sequence.

A' B' C

The statistical functions are based on one important function

called scz, which inverts the order of execution usually valid in gene

tic programming. Instead of moving along a sequence and evaluating

the elements in this order, this function moves over the sequence and

evaluates in the opposite order. This allows it to take into account

values tha t should be computed earlier in the sequence when evalu

ating later par ts of the sequence. This is similar to storing values in

registers in AIMGP when moving along the sequence.

Results In one example, Handley applied this newly introduced function

set to a problem of amino-acid classification in proteins. More specifi

cally, the question was to predict the buriedness of a particular amino

acid in the sequence, a problem closely related to tert iary s tructure

prediction. Buriedness has to do with the tendency of an amino acid

to t ry to hide from water within the protein fold or to t ry to be

exposed to water at the surface.

Handley used 122 proteins from the Brookhaven Protein Da ta

Bank [Bernstein et al., 1977] and separated them into training (60),

test (30), and evalutation (32) sets. Runs were done with a 64-node

parallel machine with denies of size 300, resulting in a total pop

ulation of 19 200 individuals. Emigration of 5% was allowed per

generation on a 2D toroidal mesh. Results reported by Handley

[Handley, 1996b] compare very favorably with other methods on the

same problem (although using another set of proteins). Prediction

accuracy was 90% for the evaluation set, much bet ter than the ac-

12.3 Science-Oriented Applications of GP BtHI

curacy of 52% reached by Holbrook et al. using a neural network

[Holbrook et al., 1990] [Holbrook et al., 1993].

12.3.3 Image Classification in Geoscience and Remote
Sensing

Daida et al. [Daida et al., 1996a] have implemented an impressive

GP-supported image processing system for the analysis of satellite

radar images in a geoscience application. The objectives of their

work are:

1. to describe an instance of a computer-assisted design of an

image-processing algorithm where the computer assistance has

a G P par t ,

2. to present one solution produced with the help of G P compo

nents, and

3. to present a special method for fitness specification using large

da t a sets.

The images come from the ERS (European Remote Sensing Satel

lite) which scans the earth with a radar called SAR (Synthetic Aper

ture Radar) . Figure 12.6 shows an example image (1024 x 1024 pix

els).

The goal is to detect pressure ridges from images of ice in the

Arctic Sea. A pressure ridge can be the result of first-year ice buck

ling under pressure from thicker, older ice. To a viewer on location

the pressure ridge may look like a 5-10 meter high, long hill made of

shat tered ice blocks. The pressure ridges affect how the floating ice

moves and drifts, which is of interest to meteorologists, for instance.

On the radar images, pressure ridges appear, at best, as low-contrast

brighter curves or blobs, which are very t ime consuming and tedious

to extract by hand. The primary goal is, therefore, to find an auto

matic algorithm tha t can extract these diffuse features directly from

satellite images.

Daida et al. use the scaffolding to describe a system tha t assists

in algorithm design and that features G P as an essential component.

The reason for using a system for algorithm design is part ly tha t the

goodness criterion or fitness function is not easy to define for pressure-

ridge extraction. Experts may agree on where a pressure ridge is on a

radar image, but they largely disagree on what defines such a feature

in general. Hence, it is hard to just define a fitness criterion and then

use a G P system for the algorithm design. Instead, the system uses

an interactive cycle for designing the algorithm, illustrated in Figure

12.7.

12 Applications of Genetic Programming

Figure 12.6

Example target bitmap

([Daida et ai, 1996a],

copyright MIT Press,

reproduced with

permission)

'&*> "If-5

Figure 12.7
Diagram of scaffolded GP

system

([Daida et ai, 1996b],

copyright MIT Press,

reproduced with

permission)

Output Imagi

Input Image \
H . • Texture

Filtering TQ

•
Texture

Filtering T w

1
Select

Channels

I i

Select
Test Points

Input Image B

Texture
Filtering TQ

Texture
- * Filtering T..

Select GP
Parameters

Select Test
Subimage(s)

12.3 Science-Oriented Applications of GP

The user selects the terminal and function set together with test

images, a fitness function, and G P parameters . When the G P system

terminates, the best individual is tested on a full image, and an ex

pert judges its performance. These steps are repeated until the G P

component has found an acceptable image-processing algorithm.

The terminals tha t can be used in a terminal set represent image

da t a and texture filters.

The function set components are the ari thmetic operators and the

conditional I f - L e s s - T h a n - o r - E q u a l - t o (IFLTE). The operators are

modified such tha t they are closed under 8-bit ari thmetic.

The fitness calculation is based on manually classified single im

age points and on at t r ibutes of these points. The use of subimages

turned out to be too computationally expensive even when subimages

were as small as 8 X 8 pixels, and the results found did not generalize

for full images. This is the reason for using manually classified single

image points as fitness cases. A test point is a vector of values. The

first value is a Boolean quanti ty simply giving the manually classi

fied ridge or non-ridge property. Next comes the 8-bit pixel-intensity

value of the test point followed by several intensity values for the

image tha t has been processed by a selection of texture filters. The

fitness is computed as the number of hits over the classification set.

The first work by Daida et al. in this field used a fixed training

set. Later, bet ter results were achieved using a dynamic training set

tha t is changed during evolution. Daida et al. describe the method

and its results:

A GP system starts a run with a training set that is relatively
small and contains test points that should, in theory, be easy for
the algorithm to score well. When an individual scores a certain
number of hits, a few points are added to the training set under
evaluation. This process can continue until either an individual
scores a maximum number of hits or maximum number of gener
ations has been reached. Not only has this strategy resulted in
a better individual than described in [Daida et al., 1995], but the
overall process under this fitness function has been proven to be
more controllable than when using a static training set.

J. DAIDA ET AL., 1996

The method is inspired by the work of Goldberg [Goldberg, 1989]

and Holland [Holland et al., 1986].

The results are encouraging when the best-of-runs individual is

applied to two full test images. In a qualitative examination, it is

shown tha t the extracted features are very well correlated with the

pressure-ridge and rubble features identified by human experts; see

Figure 12.8. These results consti tute the first automat ic extraction of

| c j £ l 12 Applications of Genetic Programming

pressure-ridge features as low-contrast curvilinear features from SAR

imagery.

12.4 Computer Science—Oriented

Applications

12.4.1 Cellular Encoding of Artificial Neural Networks

Problem Domain Gruau has attacked the problem of automatic generation of neural

networks using a developmental approach. He reasoned tha t for an

encoding method to be compact and efficient, a modular approach

must be employed. His idea was to use modular descriptions of parts

of neural networks tha t could be used repeatedly in the course of

construction (development) of a complete and presumably complex

neural network.

Earlier work in the field of development of complex neural systems

[Mjolsness et al., 1988] [Mjolsness et al., 1995] [Kitano, 1990] had al

ready demonstrated the feasibility of grammars . In a series of pa

pers Gruau proposed and later refined a developmental approach

based on graph grammars [Gruau, 1992b] [Gruau and Whitley, 1993]

[Gruau et al., 1994] [Gruau, 1995].

Task The task Gruau considered in one demonstrat ion of the feasibility

of his approach is controlling a six-legged insect. Each leg has a

number of neurons for control: three motor neurons and one sensor

neuron recording the s ta tus of the leg. The task is to coordinate the

different neurons on different legs so as to end up with coordinated

motion in various gaits.

It is necessary to allow for recurrent connections in the network

due to the problem of storing s tate information. Each artificial neural

12.4 Computer Science—Oriented Applications

network cell consists of input and output connections to other cells,

thus it is t reated as a directed labeled graph. The author simpli

fies the concept as much as possible in order to be able to generate

directed graphs.

The developmental approach comes in when Gruau specifies a

list of graph rewriting rules to be applied to the cells. We have al

ready seen a collection of graph rewriting rules in Figure 9.23. The

basic idea is to allow for a division of cells under conservation of

connections. Adding, removing, and changing weights are other pos

sible rewriting rules. Originally, Gruau had only binary weights, but

recently he has added more functionality to the weights.

The rewriting rules specified in this way are encoded as a tree

and applied in a chosen order to arrive at a fully developed neural

net. Figure 12.9 shows a sample with three different trees which are

applied repeatedly.

Tree 1 Tree 2 Tree 3

Figure 12.9

Sample cellular code,

designed by hand, r i l

means that the next tree

in order from left to right

is to be applied at that

position. Capital letter

nodes refer to rewriting

rules of Figure 9.20.

The development of the neural network is shown in Figure 12.10.

Keep in mind, however, tha t the rules are hand-designed for this

demonstrat ion, thus a highly symmetric solution results.

Genetic programming is now employed to evolve solutions similar GP Elements

to Figure 12.10 but start ing from random rewriting rules and, hence,

from randomly developed neural nets. Because the process is compu

tationally expensive, Gruau implemented the algorithm on a MIMD

machine (IPSC860 with 32 processors) as an island model with 2D

torus-like topology. After the structure was developed, a stochastic

hill climbing algorithm was applied to the weights of the neural net.

Gruau used a population size of 32 x 64 individuals.

Gruau found networks of the kind shown in Figure 12.11. The Results

left example uses an additional refinement called automatic definition

t H l 12 Applications of Genetic Programming

Lay out of the input and output units

Figure 12.10
The development of a

neural network specified

through rules of Figure

12.9 ([Gruau, 1995],

copyright MIT Press,

reproduced with

permission)

of subnetworks which is the cellular encoding version of ADFs. It

can be seen clearly tha t such a network needs fewer nodes and has

a more ordered structure than the simple approach of Figure 12.11

(right). The resulting networks are similar to the ones seen previously

[Beer and Gallagher, 1992].

12.4 Computer Science-Oriented Applications

ABPl PEP I AEP2 PEP2 AEP3 PEP3 AEPJ PEP4 AEPS PEPS AEP6 PEP*

PS1 RSI PS2 RS2 PS3 RS3 PS4 RS4 PS5 RS5 PS6 RS6

Figure 12.11
GP-evolved solutions:

(left) including ADSN,

(right) without ADSN

([Gruau, 1995], copyright

MIT Press, reproduced

with permission)

Gruau claims tha t his method is well suited for problems with

regularities in them. Cellular encoding can discover those regulari

ties and exploit them in the course of the development of a suitable

solution.

12.4.2 Development and Evolution of

Hardware Behaviors

Hemmi et al. describe an application from the domain of circuit syn

thesis [Hemmi et al., 1994a]. The authors do not report on a real-

world application, but on a contribution - with GP-like means - to

a field tha t will become highly practically relevant: hardware evolu

tion. This work is a step toward hardware tha t may self-adapt its

behavior with respect to an environment.

The authors present a process tha t consists of a developmental

and an evolutionary phase. Hardware description language (HDL)

programs get developed and evolved, which represent hardware spec

ifications, which ultimately represent behavior of circuitry.

In the developmental phase, a program gets "grown" from a s tar t

symbol by using a rewriting system. Beginning with the s tar t sym

bol, this system produces a tree structure by using production rules.

The s tar t symbol corresponds to a zygote while the sequence of leafs

produced corresponds to the multi-cellular organism, in this case a

program. The authors term this tree a chromosome since it represents

the final program.

In the evolutionary phase, chromosomes may be subject to mu

tat ion and crossover, much like tree structures in common G P ap

proaches. Fitness evaluation is performed by converting a chromo

some into a programmable-logic device (PLD) program which mod

ifies a PLD such that it represents the circuitry described by the

chromosome. This circuitry can then be evaluated with respect to

its behavior. This evaluation can be used to assign a fitness to the

corresponding chromosome.

12 Applications of Genetic Programming

Finally, by using this method, the authors evolve a binary adder

circuit t ha t produces the binary sum of two input values.

12.4.3 Intrusion Detection

Crosbie et al. report on a prototype in the domain of computer system

defense [Crosbie and Spafford, 1995]. Due to the high connectivity

between systems worldwide, there is high potential for an intrusion

into a system. In general, an intruder aims at getting access to and

control over the system in order to perform an activity tha t is dele

terious to the system's functionality or to a user, like deleting system

files or accessing classified information.

A common intrusion detector is a central unit watching the com

plete system for intrusion. The authors propose a decentralized de

tection approach: autonomous software agents watch the system -

each of them observing just a system part - and each of them learns

to detect a potential intrusion related to the observed par t . These

agents are evolved by genetic programming.

The decentralized approach has several advantages over the cen

tral approach, according to the authors. Two important ones follow.

First, a system change can be easily answered by a change in the num

ber and potential speciation of agents. In contrast to this, a central

approach might require a high effort in redesigning the detector.

Second, a central detector tha t gets conquered by an intruder is

not only useless but actually very dangerous to the system, since it

will provide information signaling non-existent system safety to the

administrator. However, a single subverted software agent corrupts

just a t iny par t of the complete decentralized detector. Thus, the

detector stays functional - although with decreased effectiveness.

Detector-Agent Design The red line in the design of detector agents is concentration and

inter-agent communication. A single agent focuses on one or just a

few aspects of intrusive activity. If it detects a potential intrusion,

it communicates this circumstance to all other agents, which will

modify their operation accordingly. If the communication activity

between agents reaches a certain degree - so tha t the probability of

an actual intrusion is rather high - this may be communicated to

a human agent, for instance, a system administrator . Of course, a

single agent may wrongly assess a certain activity sequence - like

two consecutive failed login trials to the same user account - as an

intrusion trial. However, this single misinformation will not make it

to the administrator. Thus, a single "paranoid" agent cannot disturb

the system performance.

To detect intrusive activity, an agent scans system audit da ta , like

login trials or ftp connections. For fitness evaluation, several scenar-

12.4 Computer Science-Oriented Applications

ios get presented to each agent. Each scenario consists of potentially

intrusive and legitimate activities, and it has a certain actual proba

bility tha t it represents an intrusion. Based on this probability and

the agent 's assessment of this probability, the agent gets a certain

fitness value.

Actually, the prototype application succeeds in evolving an agent

tha t classifies two of three scenarios correctly. Certainly, the under

lying concept has to be extended and tested more intensively, but the

prototype results indicate a potential for future GP-based detection

systems.

12.4.4 Autoparallelization

Walsh et al. report on an application from the domain of software en

gineering [Walsh and Ryan, 1996]. Considering the huge body of se

rial software, an automatic parallelization of serial programs is highly

relevant. The authors present P A R A G E N , a GP-based system for au

toparallelization of serial software. The system's goal is to transform

a serial program into a functionally equivalent highly parallel pro

gram. To tha t end, PARAGEN tries to reassemble a parallel program

from the s ta tements of the serial program such tha t the parallel pro

gram performs fast and correctly.

An individual is a parse tree. Each s tatement from a serial pro

gram represents a terminal. Fitness evaluation works in two ways:

fitness reflects both a degree of functional equivalence and a degree

of parallelism.

An evolved individual, representing a potentially functionally e-

quivalent parallel version of a serial program, gets executed for several

different initializations of the variables used in the serial program.

The serial program gets executed using the same initializations. The

smaller the differences between the corresponding results are, the

bet ter is the parallelizing individual with respect to functional equiv

alence.

Furthermore, the degree of parallelism gets evaluated. The faster

the parallel version performs, the bet ter is the parallelizing individual

with respect to generating a high degree of parallelism. Thus, a

balance between correctness and good parallelity gets established in

a population.

P A R A G E N was tested on common problems from the domain of

parallelization. The authors report on a successful transformation

of all corresponding serial programs, using a population size of 100

individuals over 10 generations. An example follows. When execut

ing assignment s tatements that share variables, execution order is

12 Applications of Genetic Programming

crucial. Consider the following sequence of assignment s tatements

5 2 , 5 5 , 5 6 , 5 8 .

f o r i : = l t o n do

b e g i n

S2: f [i] := 57;

S5 : b [i] := a [i] + d [i] ;

S6: a [i] := b [i] + 2;

S8: c [i] := e [i - l] * 2 ;

end;

Obviously, the sequence 55 , 5 6 is critical, since its s ta tements share

the array variables a and b with identical index i. Thus, in gen

eral, this sequence will result in different values for a[i],6[i] than the

sequence 56 , 5 5 . Therefore, when parallelizing the above code, P A R -

AGEN must produce parallel code tha t ensures the execution order

5 5 , 56 . Indeed, the system comes up with

DoAcross i := 1 to n

begin

PAR-BEGIN

S8: c [i] := e [i - l] * 2 ;

S5 : b [i] := a [i] + d [i] ;

PAR-END

PAR-BEGIN

S2: f [i] := 57;

S6: a [i] := b [i] + 2 ;

PAR-END

end;

The semantics of PAR-BEGIN. .PAR-END is to execute all s ta tements

between these two keywords in parallel. DoAcross loops over the

sequence of PAR blocks. Note how this code ensures the execution of

5 5 prior to the execution of 56 yet also parallelizes execution.

The authors plan to focus further work on making PARAGEN

generate OCCAM code - O C C A M is a prominent parallel language -

and on having it generate parallel programs directly out of a problem

description.

12.4.5 Confidence of Text Classification

The flood of information pouring over us is increasing by the day. We

speak about the information society where information is the main

commodity t raded. One of the biggest, problems in the information

society is how to sort and discriminate information tha t is interesting

and relevant to you and your work. Several companies offer services

12.4 Computer Science-Oriented Applications

where information is classified and given keywords according to con

tents. The keywords can then be used to compile material of interest

for different groups. One such provider is Dow Jones, which daily

assigns keywords or codes to several thousand texts . The texts come

from many different sources, like newspapers, magazines, news wires,

and press releases. The large volume of texts makes it impractical or

impossible for Dow Jones ' editors to classify it all without computer

support .

One such support system uses a memory-based reasoning tech

nique (MBR) [Dasrathy, 1991] for assigning keywords automatically

to articles. However, it is desirable tha t the automatic system can in

dicate which classification it is uncertain of and then call for manual

assistance.

The system should, in other words, assign a confidence value to

the classification that allows it to classify easy texts automatically

while giving difficult cases to the editors. Brij Masand has success

fully applied G P to the evolution of such confidence values for auto

matically classified news stories [Masand, 1994].

The coding of a text consists of assigning one or more keywords or

codes to the document. There are about 350 different codes, such as

industrial, Far East Japan, technology, computers, automobile manu

facturers, electrical components & equipment. A single story typically

will have a dozen codes assigned to it.

The automatic MBR classification system - which in itself has

nothing to do with genetic programming - is trained on a database

of 87000 already classified stories. Performance is measured by the

two concepts recall and precision. Recall is the proportion of codes

tha t were assigned both by the system and the editors. Precision is

the rat io of correct codes to total number of assigned codes.

The automatic system has a recall of about 82% and precision

of about 71%. For each of the codes assigned to a text the system

also produces a score which can be used as a measure of certainty

for the particular code. The objective of the G P system is to evolve

a general measure given the sorted list of confidence scores from the

assigned codes.

The fitness of the G P system is the product of the recall, preci

sion, and the proportion of texts accepted for automatic classification.

Thus, the system simply tries to achieve highest possible quality in

judgment together with automatic judgment of as many texts as pos

sible.

The terminal set contains the scores of the assigned codes and

five numerical constants (1 — 5). The function set contains the four

ar i thmetic operators +,—, x , / and the square-root function. The

output of each individual is normalized, and all output above 0.8

12 Applications of Genetic Programming

is interpreted as an accept of the text, while output below 0.8 is

interpreted as give the text to manual classification. The G P system

is trained on 200 texts and validated on another 500 texts.

Results show the confidence formulas evolved by the G P sys

tem beat hand-constructed formulas by about 14%, measured by the

number of correctly accepted or transfered texts .

12.4.6 Image Classification with the PADO System

Teller and Veloso [Teller and Veloso, 1996] use their PADO system

for classification of images and sound. The PADO system is an evo

lutionary program-induction system tha t uses a graph representation

of the individuals. It is a quite complex system which is briefly de

scribed in Section 12.12. Classifying images and sounds means deal

ing with large da ta sets and fuzzy relationships. The system has

many different application areas, such as robotic control.

PADO has been used for bo th image and sound classification,

but here we concentrate on an image classification experiment. The

system is trained on one object image each t ime. After training, the

classification performance is evaluated on an unseen image portraying

the same object. This unseen image is taken from a validation set

containing close to 100 images of the object. Examples of training

and validation image pairs are shown in Figure 12.12. Objects in

the images include book, bott le , cap, glasses, hammer, and shoe.

Recognizing such objects in an image is an easy task for the human

brain, but the problem is of extreme complexity, and it is very hard

to find a general adaptive algorithm tha t can solve the task with

a minimum of domain knowledge. Consequently, very few generic

algorithms for this kind of image processing exist. The PADO system,

however, has shown remarkable success in the limited domain it has

been applied to .

Each program in the population has an indexed memory of 256

integers tha t are 8-bit values. The terminal set includes functions

and procedures of many different types. There are ar i thmetic prim

itives (ADD, SUB, MUL, DIV, MOT, MAX, MIN) and conditional branches

(IF-THEN-ELSE and EITHER). The terminal set also includes functions

specific to the domain - PIXEL, LEAST, MOST, AVERAGE, VARIANCE,

DIFFERENCE - which either give information on a single specific pixel

value or perform a simple statistical function on an image area. The

parameters for the functions reside on the system stack.

The population size is 2800 individuals, and the system is run

over 80 generations for each of the 98 training images. The results

show tha t the classification program is correct between 70% and 90%

12.5 Engineering-Oriented Applications of GP Btf.ii

FTP

H i
A#

> 1 ^^m

Figure 12.12
77?e training and test im

ages classified with PA DO

([Teller and Veloso, 1996],

copyright Oxford

University Press, Inc.,

reproduced with

permission)

of the test cases, depending on the difficulty of the respective image.

Similar results are achieved in a sound classification task.

12.5 Engineering-Oriented Applications of GP

12.5.1 Online Control of Real Robot

Genetic programming has great potential for control applications.

Many control applications demand solutions tha t are hard or impos

sible to derive with analytical methods. Nevertheless, nature has

proved to us tha t there exist ingenious solutions to many advanced

control problems.

Consider the miracle of controlling a house fly (Musca domestica),

for instance. The fly shows significant precision in its movements,

controlling several wings in the context of the extremely non-linear

dynamics of small-scale aeronautics. In addition, we know tha t the

hardware elements controlling the flight - the neurones - are fewer

than one million, with a clock frequency thousands of times slower

than tha t of the processing elements of a computer. The control algo

r i thm is also run on a fault tolerant massively parallel tiny hardware

12 Applications of Genetic Programming

base without problems. This example - one of many - is indeed an

impressive achievement of evolution. If G P could evolve solutions to

problems a fraction as complex as insect flying, this would already

have enormous potential in the field of control.

Problem Domain Robot control is an area tha t has interested several G P research

ers (see Table 12.2). However, most experiments have been performed

with a simulation of a robot in the computer. A problem with many

of these approaches is tha t it is difficult to move the experiment from

a simulated robot to a real one. The commonest way of doing G P

for a control problem is to create a population of random programs.

Each program then controls the robot for a predefined number of

t ime steps. The robot is reset to exactly the same point before ev

ery program evaluation. The individual program's performance is

judged according to the fitness function as usual. When all programs

have been evaluated, the best performing ones are reproduced into

the next generation. Subsequently, the genetic operators are applied.

These steps are repeated until a good solution is found. Let us say

approximately 100 generations are needed for convergence. If we have

a population size of 500 programs and each individual is evolved dur

ing 100 time steps then we need 100 x 500 x 100 = 5 000 000 time

steps of evaluation before a good controller is found. This is imprac

tical for a real robot. The dynamic response from the environment

generally requires at least 300 ms for meaningful feedback - the re

sult of too short a control action will drown in the different kinds

of mechanical, electronic, and algorithmic noise the robot produces.

This means an evolution t ime of 1 500 000 seconds, or two weeks. The

robot also needs to be reset to its initial position before each program

evaluation, in this case 50 000 times. A computer simulation, on the

other hand, could be run much faster than a real-time simulation,

and resetting the position would not be a problem either.

In this section, we present our own work on an online version

of a G P control architecture which allows for efficient use of G P to

control a real robot .1 The experiments are performed with a genetic

programming system (AIMGP) evolving machine code control pro

grams. This system - described in Section 9.2.4 - is well suited for

low-level control, since it gives acceptable performance even on very

weak architectures while also allowing for a compact representation

of the population.

Task The objective of the control system is to evolve obstacle-avoiding

behavior given da ta from eight infrared proximity sensors. The exper-

1For details, see the following papers: [Nordin and Banzhaf, 1995c]
[Olmer et al., 1996] [Banzhaf et al., 1997b] [Nordin and Banzhaf, 1997b]
[Nordin and Banzhaf, 1997c].

12.5 Engineering-Oriented Applications of GP Mcl.il

iments were performed with a s tandard autonomous miniature robot,

the Swiss mobile robot platform Khepera [Mondada et al., 1993],

shown in Figure 12.13. The mobile robot has a circular shape, a

diameter of 6 cm, and a height of 5 cm. It possesses two motors and

an on-board power supply. The motors can be independently con

trolled by a PID controller. The robot has a microcontroller onboard

which runs both a simple operating system and the GP-based online

learning system.

Figure 12.13
The Khepera robot

The fitness in the obstacle-avoiding task has a pain and a pleasure

par t . The negative contribution to fitness - pain - is simply the sum

of all proximity sensor values. The closer the robot 's sensors are to an

object, the higher the pain. In order to keep the robot from standing

still or gyrating, it has a positive contribution to fitness - pleasure -

as well. It receives pleasure from going straight and fast. Both motor

speed values minus the absolute value of their difference is thus added

to the fitness.

The online G P is based on a probabilistic sampling of the envi

ronment. Different solution candidates (programs) are evaluated in

different situations. This could result in unfair comparison because a

good individual dealing with a hard situation can be rejected in favor

of a bad individual dealing with a very easy situation. The conclusion

of these experiments, however, is tha t a good overall individual tends

to survive and reproduce in the long term. The somewhat paradoxi

cal fact is tha t sparse training da ta sets or probabilistic sampling in

evolutionary algorithms often both increase convergence speed and

keep diversity high enough to escape local opt ima during the search.

The remarkable fact tha t evolutionary algorithms might prefer

noisy fitness functions is also illustrated in [Fitzpatrick et al., 1984].

Here, a genetic algorithm is used to match two digital pictures, each

consisting of 10 000 pixels. The most efficient sample size in the

fitness evaluation turned out to be 10 (out of 10 000) pixels. In other

GP Elements

12.5 Engineering-Oriented Applications of GP

The robot shows exploratory behavior from the beginning on.

This is a result of the diversity in behavior residing in the first gener

ation of programs which has been generated randomly. Naturally, the

behavior is erratic at the outset of a run. During the first minutes,

the robot keeps colliding with different objects, but , as t ime goes on,

the collisions become less and less frequent. The first intelligent be

havior usually emerging is some kind of backing up after a collision.

Then, the robot gradually learns to steer away in an increasingly

sophisticated manner.

On average, in 90% of the experiments, the robot learns how to

reduce the collision frequency to less than 2 collisions per minute. The

convergence t ime is about one hour. It takes about 40-60 minutes, or

200-300 generation equivalents, to evolve good obstacle-avoiding be

havior. Figure 12.15 shows how the number of collisions per minute

diminishes as the robot learns and as the population becomes domi

nated by good control strategies.

Results

50

40

30

-
20

10

"../Collisions"

-

•

•

.
1 -n

i - i

. -H i

•

=c "h r-Th .n miir- -rfl m . n

Figure 12.15

The number of collisions

per minute in a typical
training run with the

environment given in

Figure 12.14

30
Minutes

These experiments indicate the potential of G P for online control

and how genetic programming combined with a technique for evolv

ing machine code can make the evolution of low-end architectures

possible.

12 Applications of Genetic Programming

12.5.2 Spacecraft Attitude Maneuvers

Howley describes a nice application from the domain of optimal con

trol [Howley, 1996]. The object to be controlled is a spacecraft. The

problem is to find a control program tha t performs a 3D craft re

orientation in minimal t ime. This means tha t , given an initial craft

a t t i tude and a desired final a t t i tude , the program is required to rotate

the craft into the final a t t i tude in minimal t ime by rotat ing the craft

around one or more of its three body axes. These axes are pairwisely

orthogonal.

Problem Domain The craft components affecting the rotation are called actuators.

For each body axis, there is an actuator , which generates a positive

or a negative torque tha t lets the craft rota te - depending on the

definition of positive and negative - anticlockwise or clockwise, say,

about the respective axis. Each actuator is assumed to have a bang-

bang characteristic, so tha t it generates either a maximal positive or

maximal negative torque.

This problem is practically relevant in the area of satellite-based

da ta transmission and observation, for instance. Typically, an obser

vation satellite has to keep an optical system in focus on a planetary

target area. If the satellite is moving relative to the planetary sur

face, it has to reorient continuously - or, at least, at sufficiently short

t ime intervals - in order to stay focused.

Task The application concentrates on two maneuver types: rest-to-rest

and rate-limited non-zero (RLNZ) terminal velocity. A rest-to-rest

maneuver begins and ends with zero angular rates - ra te is a synonym

for velocity here - so there is no rotat ion about any axis before or after

the maneuver. Often, however, a RLNZ maneuver is needed: before

or after the maneuver, the craft is rotat ing about one or more axes

with certain angular rates. For instance, when the craft is supposed

to track a moving and maneuvering target with an optical system,

RLNZ maneuvers are needed. The maximal angular rates are limited

by the maximal forces the actuators can generate. In particular, a

rest-to-rest maneuver can be viewed as a RLNZ maneuver with zero

initial and final rate.

Note tha t , according to a theorem of Euler, a rigid body can get

from an arbi trary a t t i tude into another arbi trary a t t i tude by a rota

tion through a certain angle about a certain axis, called the eigenaxis.

Thus, instead of doing a rotation sequence about one or more body

axes, the craft may just rota te through a certain angle about the

corresponding eigenaxis. This rotation is implemented by operat ing

one or more actuators in parallel.

If you have trouble imagining this, take a rubber eraser and a

needle. Hold the eraser in some initial a t t i tude , then move it into

12.5 Engineering-Oriented Applications of GP

some final a t t i tude by a sequence of body axis rotations. For each

pair of initial and final a t t i tude, you can always stick the needle

through the eraser such tha t , when rotat ing the needle appropriately,

the eraser will move from the initial to the final a t t i tude: the needle

represents the eigenaxis.

Thus, a maneuver means changing an initial eigenaxis/rate into

a final eigenaxis/rate. The control problem is to do this as fast as

possible.

Since an actuator has a bang-bang characteristic, the complete Control Law

maneuver consists of a sequence of actuator-switching commands.

Each command switches one or more actuators, each to positive or

negative torque. For instance, such a command may switch actuators

one and two to positive and three to negative. Thus, a command

can be represented by a 3D torque vector u\,U2,uz with each u;

designating maximal positive or negative torque. This vector is the

output of a control law tha t takes as input the final eigenaxis/rate

and the current eigenaxis/rate.

Thus, for the control law implementation at the s tar t of the ma

neuver, the initial eigenaxis/rate are the current parameters . The

control law becomes active for the first t ime, computing a torque

vector. The corresponding actuator activities lead to a new current

eigenaxis and rate . The control law becomes active again, and so on,

until the desired eigenaxis/rate are reached. Then the control loop

terminates.

The control problem for rest-to-rest maneuvers has a known nu

merical solution. However, the computat ion of this solution takes

some time, whereas the problem must be solved in real t ime: there is

no sense in computing an optimal solution tha t , when finally found,

can no longer be used since it is out of date . An approximate but

real-time solution is required. It is realized by the control loop tha t

makes the craft move incrementally into the final eigenaxis/rate.

For the genetic programming search, an individual is a control GP Elements

law: G P evolves expressions tha t are used as control law within the

control loop. The terminal set reflects the described input and output

parameters . The function set contains + , —, x , a protected division

operator, sign inversion, the absolute-value function, an if-a-less-6-

then-action-else-action construct, and three ADF symbols.

The fitness cases consist of the initial eigenaxis/rate, the final

eigenaxis/rate, and a time-out limit. Fitness evaluation considers an

individual as successful if its application by the control loop results

in the final eigenaxis/rate within certain error bounds and before

time-out.

For rest-to-rest maneuvers, runs went over 51 generations and Results

used population size 5000. For RLNZ maneuvers, the values were

12 Applications of Genetic Programming

74 and 10 000. As genetic operators, 80% node crossover, 10% leaf

crossover, and 10% copying were employed. As for hardware and

software, Andre 's D G P C was used on an IBM RS6000.

Genetic programming produced a result for the rest-to-rest ma

neuver within plus or minus 2% of the numerical solution. Addition

ally, this solution generalized to solve further randomly generated

maneuvers. As for the RLNZ maneuver, G P produced a solution

tha t solved all fitness cases but did not generalize.

12.5.3 Hexapodal Robot

Spencer reports on an application of genetic programming to robotics

[Spencer, 1994]. A simulated hexapodal (six-legged) robot is to be

controlled by an evolved program such tha t the robot walks as far as

possible in an environment before a time-out. Each leg of the robot

can be lifted up to a final position or put down until the foot touches

the ground. Each leg can also be moved forward and backward -

parallel to the ground - with varying force. Thus, if the leg is down

and moves, this action results in a robot-body movement. The robot

is unstable if its center of gravity is outside the polygon defined by

the feet t ha t are on the ground. After a certain t ime, an unstable

robot falls.

Task A subgoal of this application is having the robot learn to walk

with minimal a priori knowledge about this function. Thus, three

experimental setups are presented, each providing the robot with less

knowledge.

GP Elements The genotype is a tree expression. The terminal set contains ran

dom floating-point constants, and - depending on the experimental

setup - O s c i l l a t o r and Ge t -Leg -Fo rce -n . O s c i l l a t o r represents

10sin(^), t being the number of elapsed t ime units since the s tar t of

an experiment. G e t - L e g - F o r c e - n returns the force leg n moves with.

The function set consists of unary negation , + , —, X, protected

division, min and max functions, and the f mod function (floating-point

modulo). A ternary i f function answers its second argument if the

first argument is positive, and its third argument if the first argument

is non-positive.

For leg control, there are two functions. Unary S e t - L e g - F o r c e - n

sets a certain force for leg n. The leg will be moved with this force.

Unary S e t - L e g - S t a t e - n lifts leg n up or puts it down dependent on

the argument 's sign.

The fitness of an individual corresponds to the distance - between

the s tar t and end points of the walked pa th - the robot walks under

sf'.vr.? the individual's control until a t ime-out. Distance is measured in

space units. The time-out occurs 500 time units after the simulation

12.5 Engineering-Oriented Applications of GP

has s tar ted. After each elapsed t ime unit, an individual gets evalu

ated. The evaluation - the execution - may cause leg actions. As

a consequence, the individual may fall. In this case, the simulation

stops at once.

A populat ion size of 1000 individuals is used, with 50, 65, or

100 generations, depending on the experimental setup. The selection

scheme is a 6-tournament, and 0.5% mutat ion and 75% crossover are

employed as genetic operators.

Spencer introduces constant perturbat ion, which gets used with

25% probability. This operator, applied to an individual, changes

each constant in the expression by plus or minus 10%. Spencer argues

tha t this kind of mutat ion is more beneficial than s tandard mutat ion

since it is just the coefficients tha t get changed, not the structure,

which might disrupt the program logic.

The leg-related terminals and functions may give rise to inter

esting side effects. For instance, certain legs can be controlled im

mediately by the s tate of other legs. For example, the s tatement

S e t - L e g - F o r c e - l (G e t - L e g - F o r c e - 2 (. .)) makes leg 1 move with

the force of leg 2. This kind of inter-leg communication is actually

a software analog of a similar concept implemented in the neural

leg-motion control system of certain insects.

Spencer reports tha t , in all three experiments, individuals emerge Results

t ha t can control the robot such tha t it performs "efficient, sustained

locomotion," and believes tha t the application can be scaled up to

three-dimensional robots.

This application raises a very interesting possibility: real-time

G P control of robotic systems. Obviously, evolving a program for a

real-time application is usually infeasible during run t ime, since the

evolution takes too long. So, the naive approach is to evolve a very

good solution offline and to transfer this program to the control unit

of a robot where it performs in real t ime. However, a big disadvan

tage with this approach is tha t , no mat ter how good the solution

is, once it has been evolved and transferred, it cannot evolve fur

ther to adapt to a potentially changing environment. Spencer briefly

considers combining genetic programming with classifier systems to

overcome this disadvantage.

12.5.4 Design of Electrical Circuits

The most obvious application area for G P is evolving programs. How

ever, variants of the technique can be used to evolve structures rep

resenting objects that are not immediately identified as conventional

programs. One such application is the automatic design of electrical

circuits.

12 Applications of Genetic Programming

74 and 10 000. As genetic operators, 80% node crossover, 10% leaf

crossover, and 10% copying were employed. As for hardware and

software, Andre 's D G P C was used on an IBM RS6000.

Genetic programming produced a result for the rest-to-rest ma

neuver within plus or minus 2% of the numerical solution. Addition

ally, this solution generalized to solve further randomly generated

maneuvers. As for the RLNZ maneuver, G P produced a solution

tha t solved all fitness cases but did not generalize.

12.5.3 Hexapodal Robot

Spencer reports on an application of genetic programming to robotics

[Spencer, 1994]. A simulated hexapodal (six-legged) robot is to be

controlled by an evolved program such tha t the robot walks as far as

possible in an environment before a t ime-out. Each leg of the robot

can be lifted up to a final position or put down until the foot touches

the ground. Each leg can also be moved forward and backward -

parallel to the ground - with varying force. Thus, if the leg is down

and moves, this action results in a robot-body movement. The robot

is unstable if its center of gravity is outside the polygon defined by

the feet tha t are on the ground. After a certain t ime, an unstable

robot falls.

Task A subgoal of this application is having the robot learn to walk

with minimal a priori knowledge about this function. Thus, three

experimental setups are presented, each providing the robot with less

knowledge.

GP Elements The genotype is a tree expression. The terminal set contains ran

dom floating-point constants, and - depending on the experimental

setup - O s c i l l a t o r and Ge t -Leg -Fo rce -n . O s c i l l a t o r represents

10sin(i) , t being the number of elapsed t ime units since the s tar t of

an experiment. G e t - L e g - F o r c e - n returns the force leg n moves with.

The function set consists of unary negation , + , —, x , protected

division, min and max functions, and the f mod function (floating-point

modulo). A ternary i f function answers its second argument if the

first argument is positive, and its third argument if the first argument

is non-positive.

For leg control, there are two functions. Unary S e t - L e g - F o r c e - n

sets a certain force for leg n. The leg will be moved with this force.

Unary S e t - L e g - S t a t e - n lifts leg n up or puts it down dependent on

the argument 's sign.

The fitness of an individual corresponds to the distance - between

the s tar t and end points of the walked pa th - the robot walks under

?" the individual's control until a t ime-out. Distance is measured in

space units. The time-out occurs 500 time units after the simulation

12 Applications of Genetic Programming

Koza et al. have used genetic programming successfully to evolve

a large number of different circuits with good results

[Koza et al., 1996b] [Koza et al., 1996c]. Here, a recipe for how to

construct a circuit is evolved by the G P system. Each individual

contains nodes with operations tha t manipulate an electrical circuit.

At the beginning of an individual evaluation a - predefined em

bryonic circuit is created. This small but consistent circuit is then

changed by the operators in the G P individual, and the resulting

circuit is evaluated for its performance by a simulator for electrical

circuits using the original task. The simulator is often very com

plex and the fitness function thus takes a very long t ime to compute.

Nevertheless, it is possible to evolve well-performing electrical circuit

designs faster and bet ter than a human could design them manually.

The technique is an example of a method where the phenotype -

the circuit - differs from the genotype - the G P individual - and is

part ly based on the work of Gruau described in Section 12.4.1.

The circuits tha t have been successfully synthesized include both

passive components (wires, resistors, capacitors, etc.) and active

components (transistors). Figures 12.16 and 12.17 show examples

of evolved circuits.

Figure 12.16
An evolved circuit

([Koza et al., 1996b],

copyright MIT Press,

reproduced with

permission)

x \ - c^>*
^S B S O U R C E

1 -

-•-

O -

iqsourecE

p»C3lslD

*"'
r -

dl>

A

Z O U T ^

V D U T

H L O A Q ;

1-

5

=-

The function set contains functions of three basic types:

• Connection-modifying functions

• Component-creating functions .;

• Automatically defined functions

<*..£ .,* J

At each moment, there are several writing heads in the circuit.

The writing heads point to components and wires in the circuit t ha t

will be changed by the next function to be evaluated in the program

12.5 Engineering-Oriented Applications of GP E3

Figure 12.17
An evolved circuit

([Koza et al., 1996b],

copyright MIT Press,

reproduced with

permission)

Aztf

tree. A writing head moves and/or spawns new writing heads after
each operation.

Connection-modifying functions can flip a component upside down
or duplicate a component in series or in parallel with it. Component-
creating functions insert a new component into the circuit at the
location of a writing head.

The program tree is typed (see Section 10.2.10), and crossover
exchanges only subtrees of the same type. Initialization is guaranteed
to create trees obeying syntactic constraints, that is, a tree has a
correct number of subtrees. There is also a mutation operator that
complies with the syntactic rules of the circuit.

The SPICE package from the University of California at Berkeley
is used to simulate electronic circuits for fitness evaluation. Simulat
ing electronic circuits is very time consuming, thus the system is run
on a 64-processor (PowerPC) parallel machine with a parallel GP
implementation using demes (see Section 10.1.2).

The results show that, using a population size of 640 000 over
about 200 generations, it is possible to solve problems that are re
garded as difficult for a human designer.

12.5.5 Articulated Figure Motion Animation

Computer-assisted character animation became a multimillion-dollar Problem Domain
business in the 1990s. With the advent of powerful graphic worksta
tions and parallel-processor farms for simulating lighting conditions
and other aspects of animated scenes, the automated generation of
articulated figure motion is a growing need.

Professional animators have until recently been able to keep up
with the demand for frames, but the manual generation of frames is
becoming more and more outdated. Gritz and Hahn have proposed
using GP for animating figures [Gritz and Hahn, 1995]. They observe

12 Applications of Genetic Programming

tha t , although it is difficult for humans to generate character motion,

it is easy for humans to judge generated motion for its quality. Their

suggestion is to let a G P system generate motion and to have the

human provide the judgment as to whether it is good or bad.

The agents to be animated are controlled by programs which will

be subject to evolution via GP. The hope is that G P is able to find

good controller programs, start ing from a population of randomly

generated motion control programs.

Task The task Gritz and Hahn consider is to generate control programs

for artificial agents consisting of a figure model with fixed geometry

and dynamical features. A figure is t reated as a tree of rigid links

with damped angular springs, and a simulation of its dynamics is

performed using established methods [Armstrong and Green, 1985]

[Hahn, 1988] [Wilhelms, 1990].

Figure 12.18 shows one of the joints with the corresponding quan

tities to be used for the dynamics simulation. The joint has a desired

orientation tha t can be achieved by integrating, with a proportional-

derivative (PD) controller, the forces of the spring.

Figure 12.18

The torque at the joint is

proportional to the

angular difference

between actual and

desired orientation of the

links. The desired angle

is the output of the

controller program

([Gritz and Hahn, 1995]).

System Structure

GP Elements

Rigid Link i

Rigid Linki+1
(actual pos.)

O--- Desired pos. link i+1

The G P system evolves controller programs tha t output desired

orientations for all the joints which are then used by the dynamics

model to generate motion by integrating the dynamics equations for

a number of t ime steps. The dynamics simulation also performs col

lision detection and collision response, yielding a physically realistic

motion of the figure.

The entire system consisting of a G P module communicating with

the dynamics module is depicted in Figure 12.19.

The figure model of the particular character to be animated is

considered the input, as is the fitness function specifying what kind

of motion is good or bad. The control programs giving commands as

to how to move the figure are the output of the system.

The minimal set of functions Gritz and Hahn consider are the

basic ar i thmetic functions + , — , * , % and a function i f l t z , which

needs three arguments. More elaborate functions, such as cos or abs ,

or while-control functions or special functions like r e l e a s e — g r i p or

d i s t a n c e — t o — n e a r e s t — n e i g h b o r , are mentioned but not used.

12.5 Engineering-Oriented Applications of GP

Controller Program
i

GP System

•

Fitness Metric ..- \,--n.

Articulated figure
dynamics simulation

Figure Model

Output

System
(Black box)

Input
(User supplied)

Figure 12.19
A system for rigid body

animation

([Gritz and Hahn, 1995])

i'K h()OV -::i:

The terminals consist of the internal state variables of the figure
and outputs of sensors accessible to the figure. These quantities are
read out at the time of evaluation of the control program and used
as its input. Gritz and Hahn also use random ephemeral constants
as terminals for their simulations.

Because there is usually more than one joint in a figure, the con
trol programs for each of the joints are evolved simultaneously but
separately.

The fitness measure consists of two terms one evaluates the main
goal of the movement, and the other one judges the style of movement.
In one example used by Gritz and Hahn, the main goal is to move a
lamp - as the animated figure - to a certain place. Parameters used
were: P = 250, Gmax = 50, pc = 0.9.

The lamp figure has four links and three internally controllable
3D degrees of freedom. The resulting lamp motions (see.Figure 12.20)
consisted of jumps and looked smooth, physically realistic, efficient
and surprisingly organic [Gritz and Hahn, 1995]. Gritz and Hahn
also use a humanoid figure with a total of 28 degrees of freedom,
between 4 and 10 of which are controlled by the GP system.

As to the style of the motion, Gritz and Hahn played a nice trick
applicable anywhere. Initially, the fitness function consisted of the
distance to the goal only. The movement-style terms were gradually
phased in after some generations. "In this manner, we allowed the
motion to start crudely and get, progressively more stable over several
generations. This was easier for the system than requiring optimal
motion at the very start" [Gritz and Hahn, 1995].

Figure 12.20
The lamp's jumping

motion: the main goal is

to move the lamp to the

target point X

([Gritz and Hahn, 1995],

copyright John Wiley,

reproduced with

permission)

12 Applications of Genetic Programming

Style was judged by a weighted sum of the following:

• bonus for completing the motion early

• penalty for excess movement after the goal was met

• penalty for hitting its head or falling over

• bonus for ending with joints at neutral angles

The computation time per generation was a few minutes on a
MIPS R4000 processor. This performance appears good when com
pared to that of a human animator drawing a sequence of frames by
hand.

12.6 Summary

In this chapter, we have seen an amazing variety of applications.
Genetic programming has shown its worth in a broad spectrum of
real-life problem domains with remarkable flexibility as a machine
learning technique. GP is also unique in its combination of symbolic
and subsymbolic application areas. In contrast to neural networks,
for instance, it is possible - but not always easy - to interpret the
GP output individual and thus to generate potentially new insights
into the solved problem. In this way, we have seen or mentioned
how GP can be applied to highly symbolic tasks such as natural
language processing and even theorem proving. At the other end of
the spectrum, it can be used for low-level signal processing.

Genetic programming has shown its value in hybrid techniques
together with other machine learning paradigms such as neural net
works. In other experiments, it compared well to other such machine
learning paradigms in terms both of speed and learning capability.
GP techniques have been used to evolve binary machine code, which
gives very efficient evolved programs.

Some GP applications learn with only a few fitness cases while
others work in domains with huge data sets such as image processing.
In other examples, for instance, in Koza's circuit design approach, GP
has been shown to match human expert performance both in time
expenditure and in solution quality.

Some of this flexibility may be attributed to the freedom in choos
ing an arbitrary function set. By changing the function set, it is pos
sible to adapt GP toward any problem domain where a suitable fit
ness function can be defined. Another reason for the broad spectrum
of GP application domains is the generally very robust evolutionary
search. Evolutionary search is not always the most efficient search in

12.6 Summary

specialized problem domains but it is known to be very robust in its
applicability - at worst degrading to a hill climbing algorithm.

The achievements in GP research over only five years or so are
truly encouraging for the future.

13 Summary and
Perspectives

Contents

13.1 Summary 380

13.2 The Future of Genetic Programming 381

13.3 Conclusion 383

13 Summary and Perspectives

The engineering process doesn't work very well when it gets com
plicated. We are beginning to depend on computers that use a
process very different from engineering - a process that allows us
to produce things of much more complexity than we could with
normal engineering. Yet we don't quite understand the possibili
ties of that process, so in a sense it's getting ahead of us. We are
now using those programs to make much faster computers so that
we will be able to run this process much faster. The process is
feeding on itself. It's becoming faster. It's autocatalytic. We are
analogous to the single-celled organisms when they were turning
into multicellular organisms. We are the amoebas, and we can't
quite figure out what the hell this thing is we are creating. We are
right at that point of transition, and there is something coming
along after us.

• : — D. HlLLIS, 1991

13.1 Summary

In this book we have set out to introduce the reader to genetic pro

gramming, an exciting new field in computer science. G P is par t of

the machine learning branch of artificial intelligence. Therefore, it

seemed to us appropriate to s tar t this book with a look at machine

learning in Chapter 1. Our main point here was t ha t G P is able to

evolve computer programs and, as such, GP ' s problem representation

is a superset of the representations of all other ML methods, all of

which work on computers, too.

G P has also drawn heavily on ideas from biology. In particular, it

is an ML paradigm built on the theory of evolution. Chapter 2 thus

presented some biological background, and we looked at how natura l

evolution proceeds in the living world. Throughout this book, we

have a t tempted to return to the biological metaphor in explaining

G P or in posing possible answers to unresolved questions. In the

judgment of the authors, much more is to be learned by studying

this analogy further and into more depth.

G P can be said to be the "offspring" resulting from a crossover

of biology with computer science. Accordingly, Chapter 3 presented

some mathemat ics and computer science background. In particular,

we looked at the question of generating randomness, and randomness

with different features for algorithms, and into the computer science

methods available for GP.

There are other offspring from such a crossover of biology with

computer science, notably EP, GA, and ES, which were discussed

in more detail in Chapter 4. The main differences between G P and

these other algorithms were mentioned.

13.2 The Future of Genetic Programming

The chapters treat ing G P directly started with an introduction

to the basics in Chapter 5. Elementary representations for breeding

programs were presented along with the commonest genetic operators

and selection schemes tha t work on these representations.

One of the most heavily used genetic operators in GP, crossover,

was the subject of Chapter 6. Our point of view was tha t crossover,

in its simplest embodiment, has some flaws tha t need improvement.

We argued tha t a homologous crossover operator or other means to

decrease the rate of destructive crossover would be impor tant steps

in tha t direction.

In looking at the run dynamics of GP, we learned in Chapter 7

how introns can spoil G P runs and why they emerge in the first place.

The mixed blessing of this emergent phenomenon was the main theme

in the chapter. We tried to make clear tha t understanding emergent

effects helps in understanding evolution.

Validation of results and understanding complex run dynamics

are essential to advancing the discipline. Accordingly, Chapter 8

describes the toolkit available to practitioners to measure important

observables during G P runs and to validate G P results.

After these general considerations, Chapter 9 presented a set of

G P variants. Roughly, they can be classified by their genotypic struc

ture into three groups: sequence, tree, and graph structures.

Chapter 10 was devoted to discussing a large variety of advanced

methods for G P which were organized around how they improved

the features of GP: speed, power of evolution, and the power of the

evolved programs.

Chapter 11 then dealt with implementation issues - the tech

niques necessary to make G P work on the computers available today.

We discussed systems based on list processing, on arrays and stacks,

and on machine code.

Chapter 12, finally, discussed a large variety of subjectively se

lected application problems tha t have been tackled using GP.

13.2 The Future of Genetic Programming

But the only way of discovering the limits of the possible is to
venture a little way past them into the impossible.

A.C. CLARKE

Some of the ideas presented in this section will seem to be just around

the corner, while others may appear far-fetched. However, we should

not forget tha t dynamic systems - and G P is part of such a system,

science and technology sometimes show non-linear behavior which

may result in accelerated development during critical phases.

13 Summary and Perspectives

Let us remind ourselves of the ul t imate goal. We want to be

able to tell computers what we want them to do - and computers

should learn how to do it automatically. Computers should be able

to program themselves, and G P is one approach tha t might take us

toward tha t goal.

However, if we can tell a computer what to do, why should not

a computer tell another computer what to do? Consider the increas

ing connectivity of computers worldwide. It is intriguing to think

about computers delegating subtasks of a complex overall task to

their peers. In July 1996 there were close to 13 million hosts in the

Internet. A certain percentage may often be down, slow, or busy, but

this still leaves us with an impressive number of CPUs t ha t could

solve delegated G P subtasks instead of being idle.

i Genetic programming requires substantial computing resources in

order to perform the task of breeding generations of complex struc

tures. Programs can be considered to be jus t special cases of such

structures. It does not actually mat te r to G P whether crossover

works with parse trees, strings, graphs, or, say, bridge components.

The generation of general structures may become a major topic of

G P in the future.

The idea of generating all kinds of structures once more illustrates

the flexibility of GP. At least one s trength of G P compared to other

evolutionary paradigms might be mentioned here: its power to handle

symbolic expressions. G P also has its weaknesses, like depending

on explicit fitness measures. Thus, there is a great potential for

combining genetic programming with other paradigms into hybrids

appropriate for certain problem domains.

Many real-world situations may well be so complex tha t explicit

fitness measures cannot be defined. For instance, what is the fitness

function for evolving a program telling you when to sell and when to

buy stocks and shares, for controlling traffic in a complex highway

system, or for simulating tissue growth in an organism? Typically, we

are in trouble when trying to define a meaningful fitness measure for

problems tha t involve many interacting entities with different s trate

gies in a dynamic environment. The trouble arises because, in such

situations, the underlying fitness landscape becomes dynamic and

cannot be described by a static fitness measure. •-; •• .

Such situations are very similar to what happens in organic evo

lution. Organisms change their environment, which then changes

the organisms. Hence, it is interesting to combine genetic program

ming and artificial life: evolved programs should represent behavior

implicitly evaluated by program-program and program-environment

interactions. It is typical for artificial life environments tha t there is

13.3 Conclusion TH

no explicit fitness measure. A certain entity continues its existence
or vanishes due to its specific interaction with its environment.

Some research has already gone into combining genetic program
ming and artificial life, such as ERUNTICLAB 1 or PHILIA,2 the latter
a project implemented by students at Dortmund University. GP for
co-evolving agents in an environment is becoming a more widespread
technique [Luke and Spector, 1996] [Qureshi, 1996].

We referred to work on making electronic hardware evolve "like Hardware Evolution
an organism." May we, in the future, expect GP to grow circuits
more complex than a binary adder or an asymmetric bandpass filter
[Koza et al., 1996b]? For instance, imagine a circuit that rewires in
order to replace the lost functionality of a damaged subsystem, like
certain brain parts may take over tasks from damaged parts.

Work on combining genetic programming with robotics has also GP and Robotics
been presented. Usually, such approaches focus on evolving a control
program for a mechanical device that does not develop or evolve, like
a little mobile robot. May we, in the future, expect GP to grow and
evolve hardware in general, not just electronic hardware? A blending
of GP with nanotechnology [Drexler, 1992] could be interesting.

Meta-GP is another area where we can expect dramatic progress Meta-GP
in the coming years. Self-adaptation of parameters of GP runs and
evolution of operators through a GP system are issues that have been
mentioned in this book. With the acceleration of GP systems, these
areas will become more and more accessible for researchers.

13.3 Conclusion

It is our strong belief that, over the next decade, GP will make
progress on the challenges we have presented and on other issues
mentioned. The question is: How far can we go? The evolution of
GP might itself follow an improvement law similar to the ones we can
observe in numerous evolutionary algorithm runs: very fast improve
ment over the first few years of its evolution, then a gradual decline
in speed until phases of stagnation are only occasionally interrupted
by incremental improvements.

GP must be able to scale up and generate solutions for problems
demanding larger solution programs. There should be clearer guide
lines for the application engineer, so as to make GP application less of
an art and more routine. Off-the-shelf software packages would help
in the emergence of commercial applications. GP must also prove its

1 http://hanip.hampshire.edu/CCL/Projects/ErunticLab/
2http://lsll-www.informatik.uni-dortmund.de/gp/philia.html

E2J 13 Summary and Perspectives

worth in more real-life applications and generate money in large-scale

industrial applications.

We are still in the first phase of rapid progress as more and more

researchers enter the field of GP. It is impossible to predict where the

field will be in ten years. All the indications are tha t , as the speed of

software and hardware improves, the learning domains tha t may be

addressed successfully with G P will grow. We see two main factors

tha t will determine the rate and longevity of tha t growth.

GP Needs Speed Returning one last t ime to the biological metaphor, greater speed

means tha t G P populations may become much larger and a G P run

may be able to conduct a much broader search of the space of pos

sible programs. The importance of the massive parallelism seen in

biological evolution may be the key to bet ter G P algorithms. The

remarkable results of the Q/3 replicase experiments involve literally

billions of RNA molecules, all evolving in parallel. The same is true

for the elegant and promising SELEX algorithm (Chapter 2). To

day, even very large G P runs involve, perhaps, no more than one

million individuals because of the speed of present-day hardware and

G P systems. Accordingly, increases in the speed of G P software and

hardware will be one key factor determining GP ' s growth over the

next few years.

GP Needs Efficiency Speed is not the only factor. It is also important to re turn again

to our discussion in Chapter 1 about GP ' s place among machine

learning systems. The problem representation and the efficiency of

the search algorithm are very important . Impor tant research and

innovation lies ahead in improving the G P search algorithm.

If increases in G P speed are also accompanied by increases in the

efficiency of the G P search algorithm, it is possible tha t we may al

ready have begun a historic move away from the "guild" era of writing

computer programs toward an era where we can, as Friedberg said

in 1958, tell a computer "precisely how to learn" - how to program

itself and other computers. Even in the new era, however, it would

remain our burden to specify tasks worthy of being learned.

A Printed and Recorded
Resources

The following URLs are also available from the homepage of this
book.

http://www.mkp.com/GP-Intro «

The reader is advised to check with the URL to find the most up-to-
date information.

A . l Books on Genetic Programming

• Koza, J.R. (1992). Genetic Programming: On Programming
Computers by Means of Natural Selection. MIT Press, Cam
bridge, MA.

http: / /www-leland.Stanford.edu/~phred/jaws1.html

• Kinnear, K.E. Jr. (ed.) (1994). Advances in Genetic Program
ming. MIT Press, Cambridge, MA.

ht tp: / /www-cs-facui ty .Stanford.edu/~koza/aigp.html

• Koza, J.R. (1994). Genetic Programming II: Automatic Dis
covery of Reusable Programs. MIT Press, Cambridge, MA.

http: / /www-leland.Stanford.edu/~phred/jaws2.html

• Angeline, P.J. and Kinnear, K.E. Jr. (eds.) (1996). Advances
in Genetic Programming 2. MIT Press, Cambridge, MA.

h t tp : / /www-dept .cs .uc l .ac .uk/s ta f f /w. langdon/a igp2 .h tml

• Koza, J.R. and Goldberg, D. E. and Fogel, D. B. and Riolo,
R. L. (eds.) (1996). Genetic Programming 1996: Proceedings
of the First Annual Conference. Stanford University, Stanford,
CA. MIT Press, Cambridge, MA.

A Printed and Recorded Resources

• Koza, J.R. and Deb, K. and Dorigo, M. and Fogel, D. B. and
Garzon, M. and Iba, H. and Riolo, R. L. (eds.) (1997). Genetic
Programming 1997: Proceedings of the Second Annual Confer
ence. Stanford University, Stanford, CA. Morgan Kaufmann,
San Francisco, CA.

A.2 GP Video Tapes

• Koza, J.R. and Rice, J. P. (1992). Genetic Programming: The
Movie. MIT Press, Cambridge, MA.

• Koza, J.R (1994). Genetic Programming II Videotape: The
Next Generation. MIT Press, Cambridge, MA.

• (1996). Genetic Programming 1996: Video Proceedings of the
First Annual Conference. Sound Photo Synthesis, CA.

A.3 Books on Evolutionary Algorithms

• Holland, J.H. (1975 and 1995). Adaptation in Natural and Ar
tificial Systems. University of Michigan Press, Ann Arbor, MI.

• Schwefel, H.-P. (1981 and 1995). Evolution and Optimum Seek
ing. John Wiley & Sons, New York.

• Davis, L. (ed.) (1987). Genetic Algorithms and Simulated An
nealing. Pitman, London.

• Goldberg, D. E. (1989). Genetic Algorithms in Search, Op
timization, and Machine Learning. Addison-Wesley, Reading,
MA.

• Davis, L. (1991). Handbook of Genetic Algorithms. Van Nos-
trand Reinhold, New York.

• Fogel, D.B. (1995). Evolutionary Computation. IEEE Press,
New York.

• Michalewicz, Z. (1992). Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, Berlin. 1996: 3rd edi
tion.

• Mitchell, M. (1996). An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA.

Some dissertations have also been published in book form.

A.4 Selected Journals

A.4 Selected Journals

• Adaptive Behavior, MIT Press

• Artificial Intelligence, Kluwer Academic

• Artificial Life, MIT Press

• Biological Cybernetics, Springer-Verlag

• BioSystems, Elsevier Science

• Complexity, Academic Press

• Complex Systems, Complex Systems Publications

• Evolutionary Computation, MIT Press

• IEEE Transactions on Evolutionary Computation, IEEE

• IEEE Transactions on Systems, Man, and Cybernetics, IEEE

• Machine Learning, Kluwer Academic

Jc|£]

B Information Available
on the Internet

The following URLs are also available from the homepage of this
book.

http://www.mkp.com/GP-Intro

The reader is advised to check with the URL to find the most up-to-
date information.

B.l GP Tutorials

http://metricanet.com/people/j j f/gp/Tutorial/tutorial.html

http://research.germany.eu.net:8080/encore/www/Ql_5.htm

http://alphard.ethz.ch/gerber/approx/default.html

http://www.byte.com/art/9402/secl0/artl.htm

http://aif.wu-wien.ac.at/~geyers/archive/ga/gp/gp/node2.html

http://www.geneticprogramming.com

B.2 GP Frequently Asked Questions

http://www.salford.ac.uk/docs/depts/eee/gp2faq.html

http://www.salford.ac.uk/docs/depts/eee/gpfaq.html

B.3 GP Bibliographies

This always close-to-complete bibliography is being maintained by
Bill Langdon:

f tp : / / i tp .cs .bham.ac .uk/pub/authors /W.B.Langdon/bib l io /gp-bib l iography.b ib

h t tp : / / l i inwww.ira .uka .de/bibl iography/Ai /genet ic .programming.html

Jarmo Alander's GP Bibliography:

h t t p : / / r e imar i . uwasa . f i /~jal /gaGPbib/gaGPlis t .html

'IP*

IrfsIiM B Information Available on the Internet

B.4 GP Researchers

Lists of researchers and their homepages can be found on

ht tp: / /www-cs-facui ty .Stanford.edu/~koza/gpers .html

h t tp : / /www.cs .uc l .ac .uk / research /genprog/

h t tp : / /metr icanet .com/people / j j f /gp/GPpages/misc .h tml

This resource offers various GP-oriented links and links to Koza's
papers:

h t tp: / /www-leland.s tandford.edu/"phred/ john.html

B.5 General Evolutionary Computation

GGAA

http://www.aic.nrl.navy.mil/galist/

ENCORE

http://research.germany.eu.net:8080/encore/www/top.htm

Evolutionary Computation Page

http://rodin.cs.uh.edu/~twryu/genetic.html

B.6 Mailing Lists

There are two genetic programming e-mailing lists: one global list
with more than 1000 researchers participating, and one local list for
the San Francisco bay area. You may subscribe to the global list by
sending a subscription request consisting of the message

subscribe genetic-programming

to

genetic programming-REQUESTScs.Stanford.edu

B.6 Mailing Lists

If you would like to unsubscribe, send a request consisting of the
message

unsubscribe genetic-programming

to

genet ic programming-REQUESTQcs.Stanford.edu

The local list announces the periodic genetic programming lunches
held at Stanford to people in the San Francisco bay area. It is occa
sionally also used to announce conference events and jobs in the bay
area. You can subscribe to the local list by sending a subscription
request consisting of the message

subscribe ba-gp

to

ba-gp-REQUESTQcs.Stanford.edu

If you wish to unsubscribe, send a request consisting of the message

unsubscribe ba-gp

to

ba-gp-REQUESTQcs.Stanford.edu

Related Mailing Lists and News Groups

• Genetic algorithm mailing list

g a - l i s t - r e q u e s t Q a i c . n r l . n a v y . m i l

• Genetic algorithms and neural networks mailing list

gann-reques tQcs . ias ta te .edu

• Genetic algorithms news group

USENET news group:

comp.ai .genet ic

• Artificial life news group

USENET news group:

alife.bbs.ga

C GP Software

The following URLs are also available from the homepage of this
book.

http://www.mkp.com/GP-Intro

The reader is advised to check with the URL to find the most up-to-
date information.

C.l Public Domain GP Systems

• GP in C++; author: Adam Eraser

f t p : / / f t p . s a l f o r d . a c . u k / p u b / g p /

U lilGP; source: GARAGe

h t tp : / / ga rage . cps .msu .edu / so f tware / l i l -gp / index .h tml

• GP-QUICK; author: Andy Singleton

• GP-QUICK with data structures (Bill Langdon)

f tp: / / f tp . io .com/pub/genet ic-programming/GPdata-20-aug-95. tar .Z

• DGPC; author: David Andre

h t tp : / /www-le land.Stanford .edu/~phred/gp. tar .gz

• Genetic Programming Kernel, C + + class library;
author: Helmut Horner

h t tp : / / a i f .wu-wien .ac .a t /~geyers /a rch ive /gpk/Dok/kurz /kurz .h tml

• SGPC-Simple Genetic Programming in C;
authors: Walter Alden Tackett, Aviram Carmi

available at the genetic programming FTP site

• YAGPLIC-Yet Another Genetic Programming Library In C

contact Tobias Blickle: blickle@tik.ee.ethz.ch

• Common LISP implementation;

! W

££y^ L i) f software

f tp: / / f tp . io .com/pub/genet ic-programming/code/
koza-book-gp-implementation.l isp

This is a LISP implementation of genetic programming as de
scribed Koza's first book. There is also a file containing source
from Koza's second book which includes ADFs.

• GPX/Abstractica

Interactive evolution a la Karl Sims

f tp: / / f tp . io .com/pub/genet ic-programming/code/
a b s . t a r . Z

• Symbolic regression using genetic programming in MATHEMAT-

ICA

f tp: / / f tp . io .com/pub/genet ic-programming/code/
GPSRegress.m

• A framework for the genetic programming of neural networks

f tp : / / f tp . io .com/pub/genet ic-programming/code/
cerebrum.tar .Z

C.2 Commercial GP Software

Discipulus"", genetic programming software for desktop PCs. This
tool evolves machine code directly and is fast and efficient. Nice user
interface. Free version is available at

http://www.aimlearning.com

C.3 Related Software Packages

D A V I N C I tree drawing tool

http://www.informatik.uni-bremen.de/~inform/forschung/

daVinci/daVinci.html

C.4 C + + Implementation Issues

http://www.fre.ri.emu.edu/~mcm/chapt.html

D Events

The following URLs are also available from the homepage of this
book.

http://www.mkp.com/GP-Intro

The reader is advised to check with the URL to find the most up-to-
date information.

D.l GP Conferences

The annual genetic programming conference series started in 1996.
Information about it can be found at

ht tp: / /www.cs.brandeis .edu/~zippy/gp-96.html

The Genetic Programming 1997 conference is presented at

ht tp: / /www-cs-facuity.Stanford.edu/~koza/gp97.html

The Genetic Programming 1998 conference is presented at

http://www.genetic-programming.org/

D.2 Related Conferences and Workshops

ICGA International Conference on Genetic Algorithms (ICGA) con
ference series

• Grefenstette, John J. (ed.). Proceedings of the First Interna
tional Conference on Genetic Algorithms and Their Applica
tions. Hillsdale, NJ. Lawrence Erlbaum Associates. 1985.

• Grefenstette, John J.(ed.). Proceedings of the Second Interna
tional Conference on Genetic Algorithms. Hillsdale, NJ. Lawrence
Erlbaum Associates. 1987.

• Schaffer, J. David (ed.). Proceedings of the Third International
Conference on Genetic Algorithms. San Mateo, CA. Morgan
Kaufmann. 1989.

• Belew, Richard and Booker, Lashon (eds.). Proceedings of the
Fourth International Conference on Genetic Algorithms. San
Mateo, CA. Morgan Kaufmann. 1991.

U t V C I I I S

• Forrest, Stephanie (ed.). Proceedings of the Fifth International
Conference on Genetic Algorithms. San Mateo, CA. Morgan
Kaufmann. 1993.

• Eshelman, Larry (ed.). Proceedings of the Sixth International
Conference on Genetic Algorithms. San Francisco, CA. Morgan
Kaufmann. 1995.

Parallel Problem Solving from Nature (PPSN) conference series

• Schwefel, Hans-Paul and Manner, Reinhard (eds.). Parallel
Problem Solving from Nature I. Volume 496 of Lecture Notes
in Computer Science. Berlin. Springer-Verlag. 1991.

• Manner, Reinhard and Manderick, Bernard (eds.). Parallel
Problem Solving from Nature II. Amsterdam. North-Holland.
1992.

• Davidor, Yuval and Schwefel, Hans-Paul and Manner, Reinhard
(eds.). Parallel Problem Solving from Nature III. Volume 866
of Lecture Notes in Computer Science. Berlin. Springer-Verlag.
1994.

• Ebeling, Werner and Rechenberg, Ingo and Schwefel, Hans-Paul
and Voigt, Hans-Michael (eds.). Parallel Problem Solving from
Nature IV. Volume 1141 of Lecture Notes in Computer Science.
Berlin. Springer-Verlag. 1996.

Evolutionary Programming (EP) conference series

• Fogel, David B. and Atmar, Wirt (eds.). Proceedings of the
First Annual Conference on Evolutionary Programming. San
Diego, CA. Evolutionary Programming Society. 1992.

• Fogel, David B. and Atmar, Wirt (eds.). Proceedings of the
Second Annual Conference on Evolutionary Programming. San
Diego, CA. Evolutionary Programming Society. 1993.

• Sebald, Anthony V. and Fogel, Lawrence J. (eds.). Proceedings
of the Third Annual Conference on Evolutionary Programming.
River Edge, NJ. World Scientific. 1994.

• McDonnell, John R. and Reynolds, Robert G. and Fogel, David
(eds.). Proceedings of the Fourth Annual Conference on Evo
lutionary Programming. Cambridge, MA. MIT Press. 1995.

• Fogel, Lawrence J. and Angeline, Peter J. and Back, Thomas
(eds.). Proceedings of the Fifth Annual Conference on Evolu
tionary Programming. Cambridge, MA. MIT Press. 1996.

D.2 Related Conferences and Workshops

IEEE International Conference on Evolutionary Computation (ICEC)
series

• Proceedings of the First IEEE Conference on Evolutionary Com
putation. New York. IEEE Press. 1994.

• Proceedings of the Second IEEE Conference on Evolutionary
Computation. New York. IEEE Press. 1995.

• Proceedings of the Third IEEE Conference on Evolutionary
Computation. New York. IEEE Press. 1996.

Foundations Of Genetic Algorithms (FOGA) series

• Rawlins, Gregory (ed.). Foundations of Genetic Algorithms.
San Mateo, CA. Morgan Kaufmann. 1991.

• Whitley, Darrell (ed.). Proceedings of the Workshop on the
Foundations of Genetic Algorithms and Classifier Systems. Vail,
CO. Morgan Kaufmann. 1992.

• Whitley, Darrell and Vose, Michael (eds.). Proceedings of the
Third Workshop on the Foundations of Genetic Algorithms.
San Mateo, CA. Morgan Kaufmann. 1995.

• Belew, Richard and Vose, Michael (eds.). Proceedings of the
Fourth Workshop on the Foundations of Genetic Algorithms.
San Mateo, CA. Morgan Kaufmann. 1997.

Artificial Life (AL) series

• Brooks, Rodney and Maes, Pattie (eds.). Proceedings of the
Fourth International Workshop on the Synthesis and Simulation
of Living Systems. Cambridge, MA. MIT Press. 1994.

European Conference on Artificial Life (ECAL) series

• Varela, Francisco J. and Bourgine, Paul (eds.). Toward a Prac
tice of Autonomous Systems: Proceedings of the First Euro
pean Conference on Artificial Life. Cambridge, MA. MIT Press.
1992.

• Moran, Federico and Moreno, Alvaro and Merelo, Juan J. and
Chacon, Pablo (eds.). Advances in Artificial Life. Berlin. Springer-
Verlag. 1995.

u events

Others

• Cliff, Dave and Husbands, Philip and Meyer, Jean-Arcady and
Wilson, Stewart W. (eds.). Proceedings of the Third Inter
national Conference on the Simulation of Adaptive Behavior.
Cambridge, MA. MIT Press. 1994.

Q Altman, Russ and Brutlag, Douglas and Karp, Peter and Lath-
rop, Richard and Searls, David (eds.). Proceedings of the Sec
ond International Conference on Intelligent Systems for Molec
ular Biology. Menlo Park, CA. AAAI Press. 1994.

Bibliography

Bibliography

[Abramson and Hunter, 1996] Abramson, M. and Hunter, L. (1996).
Classification using cultural co-evolution and genetic program
ming. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo,
R. L., editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 249-254, Stanford University, CA. MIT
Press, Cambridge, MA.

[Aho, 1986] Aho, A. (1986). Compilers. Addison-Wesley, London.

[Alander, 1995] Alander, J. T. (1995). An indexed bibliography of
genetic programming. Report Series no 94-1-GP, Department of
Information Technology and Industrial Management, University of
Vaasa, Finland.

[Alba et al., 1996] Alba, E., Cotta, C , and Troyo, J. J. (1996). Type-
constrained genetic programming for rule-base definition in fuzzy
logic controllers. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and
Riolo, R. L., editors, Genetic Programming 1996: Proceedings of
the First Annual Conference, pages 255-260, Stanford University,
CA. MIT Press, Cambridge, MA.

[Altenberg, 1994a] Altenberg, L. (1994a). Emergent phenomena in
genetic programming. In Sebald, A. V. and Fogel, L. J., editors,
Evolutionary Programming — Proceedings of the Third Annual
Conference, pages 233-241. World Scientific, Singapore.

[Altenberg, 1994b] Altenberg, L. (1994b). The evolution of evolv-
ability in genetic programming. In Kinnear, Jr., K. E., editor,
Advances in Genetic Programming, chapter 3, pages 47-74. MIT
Press, Cambridge, MA.

[Altenberg, 1995] Altenberg, L. (1995). Genome growth and the
evolution of the genotype-phenotype map. In Banzhaf, W. and
Eeckman, F. H., editors, Evolution as a Computational Process.
Springer-Verlag, Berlin, Germany.

[Andre, 1994a] Andre, D. (1994a). Automatically defined features:
The simultaneous evolution of 2-dimensional feature detectors and

BiDiiograpny

an algorithm for using them. In Kinnear, Jr. , K. E., editor, Ad

vances in Genetic Programming, chapter 23, pages 477-494. MIT

Press, Cambridge, MA.

[Andre, 1994b] Andre, D. (1994b). Learning and upgrading rules

for an OCR system using genetic programming. In Proceedings

of the 1994 IEEE World Congress on Computational Intelligence,

Orlando, FL. IEEE Press, New York.

[Andre et al., 1996a] Andre, D., Bennett III, F. H., and Koza, J. R.

(1996a). Discovery by genetic programming of a cellular au tomata

rule tha t is bet ter than any known rule for the majority classifica

tion problem. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and

Riolo, R. L., editors, Genetic Programming 1996: Proceedings of

the First Annual Conference, pages 3-11, Stanford University, CA.

MIT Press, Cambridge, MA.

[Andre et al., 1996b] Andre, D., Bennett III, F . H., and Koza, J. R.

(1996b). Evolution of intricate long-distance communication sig

nals in cellular au tomata using genetic programming. In Artifi

cial Life V: Proceedings of the Fifth International Workshop on

the Synthesis and Simulation of Living Systems, volume 1, Nara,

Japan . MIT Press, Cambridge, MA.

[Andre and Koza, 1996a] Andre, D. and Koza, J. (1996a). A par

allel implementation of genetic programming tha t achieves super-

linear performance. In Arabnia, H. R., editor, Proceedings of the

International Conference on Parallel and Distributed Processing

Techniques and Applications, volume Volume III, pages 1163-1174,

Athens, GA. CSREA.

[Andre and Koza, 1996b] Andre, D. and Koza, J. R. (1996b). Par

allel genetic programming: A scalable implementation using the

t ransputer network architecture. In Angeline, P. J. and Kinnear,

Jr. , K. E., editors, Advances in Genetic Programming 2, chapter 16,

pages 317-338. MIT Press, Cambridge, MA.

[Andre and Teller, 1996] Andre, D. and Teller, A. (1996). A study

in program response and the negative effects of introns in genetic

programming. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and

Riolo, R. L., editors, Genetic Programming 1996: Proceedings of

the First Annual Conference, pages 12-20, Stanford University,

CA. MIT Press, Cambridge, MA.

[Andrews and Prager, 1994] Andrews, M. and Prager, R. (1994). Ge

netic programming for the acquisition of double auction market

strategies. In Kinnear, Jr. , K. E., editor, Advances in Genetic

Bibliography

Programming, chapter 16, pages 355-368. MIT Press, Cambridge,
MA.

[Angeline, 1997] Angeline, P. (1997). Subtree crossover: Building
block engine or macromutation. In Koza, J., Deb, K., Dorigo, M.,
Fogel, D., Garzon, M., Iba, H., and Riolo, R., editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference,
July 13-16, 1997, pages 9-17, Stanford University, Stanford, CA.
Morgan Kaufmann, San Francisco, CA.

[Angeline, 1993] Angeline, P. J. (1993). Evolutionary Algorithms and
Emergent Intelligence. PhD thesis, Ohio State University.

[Angeline, 1994] Angeline, P. J. (1994). Genetic programming and
emergent intelligence. In Kinnear, Jr., K. E., editor, Advances in
Genetic Programming, chapter 4, pages 75-98. MIT Press, Cam
bridge, MA.

[Angeline, 1996] Angeline, P. J. (1996). Two self-adaptive crossover
operators for genetic programming. In Angeline, P. J. and Kinnear,
Jr., K. E., editors, Advances in Genetic Programming 2, chapter 5,
pages 89-110. MIT Press, Cambridge, MA.

[Angeline and Pollack, 1992] Angeline, P. J. and Pollack, J. B.
(1992). The evolutionary induction of subroutines. In Proceedings
of the Fourteenth Annual Conference of the Cognitive Science So
ciety, Bloomington, Indiana. Lawrence Erlbaum Associates, Hills
dale, NJ.

[Angeline and Pollack, 1993] Angeline, P. J. and Pollack, J. B.
(1993). Competitive environments evolve better solutions for com
plex tasks. In Forrest, S., editor, Proceedings of the 5th Interna
tional Conference on Genetic Algorithms, ICGA-93, pages 264-
270, University of Illinois at Urbana-Champaign. Morgan Kauf
mann, San Mateo, CA.

[Armstrong and Gecsei, 1979] Armstrong, W. W. and Gecsei, J.
(1979). Adaptation algorithms for binary tree networks. IEEE
Transactions on Systems, Man and Cybernetics (SMC), 9:276-285.

[Armstrong and Green, 1985] Armstrong, W. W. and Green, M. W.
(1985). The dynamics of articulated rigid bodies for purposes of
animation, volume 1, pages 231-240. Springer-Verlag, Berlin.

[Atkin and Cohen, 1993] Atkin, M. and Cohen, P. R. (1993). Genetic
programming to learn an agent's monitoring strategy. In Proceed
ings of the AAAI-93 Workshop on Learning Action Models. AAAI,
Menlo Park, CA.

piDiiograpny

[Atkin and Cohen, 1994] Atkin, M. S. and Cohen, P. R. (1994).
Learning monitoring strategies: A difficult genetic programming
application. In Proceedings of the 1994 IEEE World Congress on
Computational Intelligence, pages 328-332a, Orlando, FL. IEEE
Press, New York.

[Atlan et al., 1994] Atlan, L., Bonnet, J., and Naillon, M. (1994).
Learning distributed reactive strategies by genetic programming
for the general job shop problem. In Proceedings of the 7th annual
Florida Artificial Intelligence Research Symposium, Pensacola, FL.
IEEE Press, New York.

[Babovic, 1995] Babovic, V. (1995). Genetic model induction based
on experimental data. In Proceedings of the XXVIth Congress of
International Association for Hydraulics Research.

[Balakrishnan and Honavar, 1996] Balakrishnan, K. and Honavar,
V. (1996). On sensor evolution in robotics. In Koza, J. R., Gold
berg, D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic Pro
gramming 1996: Proceedings of the First Annual Conference, pages
455-460, Stanford University, CA. MIT Press, Cambridge, MA.

[Banzhaf, 1993a] Banzhaf, W. (1993a). Genetic programming for
pedestrians. MERL Technical Report 93-03, Mitsubishi Electric
Research Labs, Cambridge, MA.

[Banzhaf, 1993b] Banzhaf, W. (1993b). Genetic programming for
pedestrians. In Forrest, S., editor, Proceedings of the 5th Inter
national Conference on Genetic Algorithms, ICGA-93, page 628,
University of Illinois at Urbana-Champaign. Morgan Kaufmann,
San Francisco, CA.

[Banzhaf, 1994] Banzhaf, W. (1994). Genotype-phenotype-mapping
and neutral variation - A case study in genetic programming. In
Davidor, Y., Schwefel, H.-P., and M R., editors, Parallel Problem
Solving from Nature III.

[Banzhaf et al., 1996] Banzhaf, W., Francone, F., and Nordin, P.
(1996). The effect of extensive use of the mutation operator on
generalization in genetic programming using sparse data sets. In
Voigt, H., Ebeling, W., Rechenberg, I., and Schwefel, H.-P., ed
itors, Parallel Problem Solving From Nature IV. Proceedings of
the International Conference on Evolutionary Computation, vol
ume 1141 of Lecture Notes in Computer Science, pages 300-310,
Berlin. Springer-Verlag, Berlin.

Bibliography

[Banzhaf and Friedrich, 1994] Banzhaf, W. and Friedrich, J. (1994).
Efficient implementation of GP in C + + and assembler. (In Ger
man).

[Banzhaf et al., 1997a] Banzhaf, W., Nordin, P., and Olmer, M.
(1997a). Generating adaptive behavior for a real robot using func
tion regression within genetic programming. In Koza, J. R., Deb,
K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo,
R. L., editors, Genetic Programming 1997: Proceedings of the Sec
ond Annual Conference, pages 35-43, Stanford University, CA,
USA. Morgan Kaufmann.

[Banzhaf et al., 1997b] Banzhaf, W., Nordin, P., and Olmer, M.
(1997b). Generating adaptive behavior for a real robot using func
tion regression within genetic programming. In Koza, J. R., Deb,
K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L.,
editors, Genetic Programming 1997: Proceedings of the Second An
nual Conference, pages 35-43, Stanford University, CA. Morgan
Kaufmann, San Francisco, CA.

[Barnes, 1982] Barnes, J. G. (1982). Programming in Ada. Addison-
Wesley, London.

[Bartel and Szostak, 1993] Bartel, D. and Szostak, J. (1993). Iso
lation of new ribozymes from a large pool of random sequences.
Science, 261:1411-1418.

[Barto et al., 1983] Barto, A., Sutton, R., and Anderson, C. (1983).
Neuronlike elements that can solve difficult learning control prob
lems. IEEE Transactions on Systems, Man, and Cybernetics,
13:835-846.

[Beer and Gallagher, 1992] Beer, R. and Gallagher, J. (1992). Evolv
ing dynamical neural netsworks for adaptive behavior. Adaptive
Behavior, 1:92-122.

[Belady and Lehman, 1985] Belady, L. and Lehman, M. (1985). Soft
ware Evolution. Addison-Wesley, Reading, MA.

[Bengio et al., 1994] Bengio, S., Bengio, Y., and Cloutier, J. (1994).
Use of genetic programming for the search of a new learning rule for
neutral networks. In Proceedings of the 1994 IEEE World Congress
on Computational Intelligence, pages 324-327, Orlando, FL. IEEE
Press, New York.

[Bennett III, 1997] Bennett III, F. H. (1997). A multi-skilled robot
that recognizes and responds to different problem environments.
In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba,

H., and Riolo, R. L., editors, Genetic Programming 1991: Pro
ceedings of the Second Annual Conference, pages 44-51, Stanford
University, CA. Morgan Kaufmann, San Francisco, CA.

[Bernstein et al., 1977] Bernstein, F., Koetzle, T., Williams, G.,
Meyer, J., Brice, M., J.R., R., Kennard, O., Shimaouchi, T., and
Tasumi, M. (1977). The protein data bank: A computer based
archival file for macromolecular structures. J. Mol.BioL, 112:535-
542.

[Bersano-Begey et al., 1996] Bersano-Begey, T. F., Daida, J. M.,
Vesecky, J. F., and Ludwig, F. L. (1996). A platform-independent
collaborative interface for genetic programming applications: Im
age analysis for scientific inquiry. In Koza, J. R., editor, Late Break
ing Papers at the Genetic Programming 1996 Conference, pages
1-8, Stanford University, CA. Stanford Bookstore, Stanford, CA.

[Bettenhausen et al., 1995a] Bettenhausen, K. D., Gehlen, S.,
Marenbach, P., and Tolle, H. (1995a). BioX++ - New results and
conceptions concerning the intelligent control of biotechnological
processes. In Munack, A. and Sch K., editors, 6th International
Conference on Computer Applications in Biotechnology.

[Bettenhausen et al., 1995b] Bettenhausen, K. D., Marenbach, P.,
Freyer, S., Rettenmaier, H., and Nieken, U. (1995b). Self-
organizing structured modeling of a biotechnological fed-batch fer
mentation by means of genetic programming. In Zalzala, A. M. S.,
editor, First International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications, GALESIA,
volume 414, pages 481-486, Sheffield, UK. IEE, London, UK.

[Beyer, 1995] Beyer, H. (1995). Toward a theory of evolution strate
gies: On the benefit of sex - the (/////, A)-strategy. Evolutionary
Computation, 3:81-111.

[Biethahn and Nissen, 1995] Biethahn, J. and Nissen, V. E. (1995).
Evolutionary Algorithms in Management Applications. Springer-
Verlag, Berlin.

[Blickle, 1996] Blickle, T. (1996). Evolving compact solutions in ge
netic programming: A case study. In Voigt, H.-M., Ebeling, W.,
Rechenberg, I., and Schwefel, H.-P., editors, Parallel Problem Solv
ing From Nature IV. Proceedings of the International Conference
on Evolutionary Computation, volume 1141 of Lecture Notes in
Computer Science, pages 564-573, Berlin. Springer-Verlag, Berlin,
Germany.

[Blickle and Thiele, 1995] Blickle, T. and Thiele, L. (1995). A com
parison of selection schemes used in genetic algorithms. TIK-
Report 11, TIK Institut fur Technische Informatik und Kommu-
nikationsnetze, Computer Engineering and Networks Laboratory,
ETH, Swiss Federal Institute of Technology, Gloriastrasse 35, 8092
Zurich, Switzerland.

[Brave, 1994] Brave, S. (1994). Evolution of planning: Using recur
sive techniques in genetic planning. In Koza, J. R., editor, Artificial
Life at Stanford 1994, pages 1-10. Stanford Bookstore, Stanford,
CA.

[Brave, 1995] Brave, S. (1995). Using genetic programming to evolve
recursive programs for tree search. In Louis, S., editor, Fourth
Golden West Conference on Intelligent Systems, pages 60-65. In
ternational Society for Computers and their Applications, ISCA.

[Brave, 1996] Brave, S. (1996). Evolving deterministic finite au
tomata using cellular encoding. In Koza, J. R., Goldberg, D. E.,
Fogel, D. B., and Riolo, R. L., editors, Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 39-44, Stanford
University, CA. MIT Press, Cambridge, MA.

[Bremermann, 1962] Bremermann, H. (1962). Optimization through
evolution and recombination. In Yovits, M., Jacobi, G., and Gold
stein, G., editors, Self-Organizing Systems, pages 93-106. Spartan
Books, New York.

[Bruce, 1996] Bruce, W. S. (1996). Automatic generation of object-
oriented programs using genetic programming. In Koza, J. R.,
Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic
Programming 1996: Proceedings of the First Annual Conference,
pages 267-272, Stanford University, CA. MIT Press, Cambridge,
MA.

[Bulmer, 1980] Bulmer, M. G. (1980). The Mathematical Theory of
Quantitative Genetics. Clarendon Press, Oxford, UK.

[CacouUos, 1966] CacouUos, T. (1966). Estimation of a multivariate
density. Annals of the Institute of Statistical Mathematics (Tokyo),
18:179-189.

[Celko, 1995] Celko. J. (1995). SQL for Smarties: Advanced SQL
Programming. Morgan Kaufmann, San Francisco, CA.

[Chen and Yeh, 1996] Chen, S.-H. and Yeh, C.-H. (1996). Genetic
programming and the efficient market hypothesis. In Koza, J. R.,
Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic

D i u i i u g i a | j i i y

Programming 1996: Proceedings of the First Annual Conference,
pages 45-53, Stanford University, CA. MIT Press, Cambridge, MA.

[Chen and Yeh, 1997] Chen, S.-H. and Yeh, C.-H. (1997). Using ge
netic programming to model volatility in financial time series. In
Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba,
H., and Riolo, R. L., editors, Genetic Programming 1997: Pro
ceedings of the Second Annual Conference, pages 58-63, Stanford
University, CA. Morgan Kaufmann, San Francisco, CA.

[Choi, 1996] Choi, A. (1996). Optimizing local area networks using
genetic algorithms. In Koza, J. R., Goldberg, D. E., Fogel, D. B..
and Riolo, R. L., editors, Genetic Programming 1996: Proceedings
of the First Annual Conference, pages 467-472, Stanford Univer
sity, CA. MIT Press, Cambridge, MA.

[Clack et al., 1996] Clack, C , Farringdon, J., Lidwell, P., and Yu, T.
(1996). An adaptive document classification agent. Research Note
RN/96/45, University College London, University College London,
Dept. of Computer Science, London, UK. Submitted to BCS-ES96.

[Coon, 1994] Coon, B. W. (1994). Circuit synthesis through gene
tic programming. In Koza, J. R., editor, Genetic Algorithms at
Stanford 1994, pages 11-20. Stanford Bookstore, Stanford, CA.

[Cramer, 1985] Cramer, N. L. (1985). A representation for the adap
tive generation of simple sequential programs. In Grefenstette,
J. J., editor, Proceedings of an International Conference on Genetic
Algorithms and the Applications, pages 183-187, Carnegie-Mellon
University, Pittsburgh, PA.

[Crepeau, 1995] Crepeau, R. L. (1995). Genetic evolution of ma
chine language software. In Rosea, J. P., editor, Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World
Applications, pages 121-134, Tahoe City, CA.

[Crosbie and Spafford, 1995] Crosbie, M. and Spafford, E. H. (1995).
Applying genetic programming to intrusion detection. In Siegel,
E. V. and Koza, J. R., editors, Working Notes for the AAAI Sym
posium on Genetic Programming, pages 1-8, MIT, Cambridge,
MA. AAAI, Menlo Park, CA.

[Crow and Kimura, 1970] Crow, J. F. and Kimura, M. (1970). An
introduction to population genetics theory. Burgess Publ. Co., Min
neapolis, MN.

[Daida et al., 1996a] Daida, J. M., Bersano-Begey, T. F., Ross, S. J.,
and Vesecky, J. F. (1996a). Computer-assisted design of image
classification algorithms: Dynamic and static fitness evaluations

in a scaffolded genetic programming environment. In Koza, J. R.,
Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic
Programming 1996: Proceedings of the First Annual Conference,
pages 279-284, Stanford University, CA. MIT Press, Cambridge,
MA.

[Daida et al., 1996b] Daida, J. M., Hommes, J. D., Bersano-Begey,
T. F., Ross, S. J., and Vesecky, J. F. (1996b). Algorithm discovery
using the genetic programming paradigm: Extracting low-contrast
curvilinear features from SAR images of arctic ice. In Angeline,
P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic Pro
gramming 2, chapter 21, pages 417-442. MIT Press, Cambridge,
MA.

[Daida et al., 1995] Daida, J. M., Hommes, J. D., Ross, S. J., and
Vesecky, J. F. (1995). Extracting curvilinear features from SAR
images of arctic ice: Algorithm discovery using the genetic pro
gramming paradigm. In Stein, T., editor, Proceedings of IEEE
International Geoscience and Remote Sensing, pages 673-675, Flo
rence, Italy. IEEE Press, New York.

[Dain, 1997] Dain, R. A. (1997). Genetic programming for mobile
robot wall-following algorithms. In Koza, J. R., Deb, K., Dorigo,
M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Ge
netic Programming 1997: Proceedings of the Second Annual Con
ference, pages 70-76, Stanford University, CA. Morgan Kaufmann,
San Francisco, CA.

[Darwin, 1859] Darwin, C. (1859). On the Origin of Species by Means
of Natural Selection or the Preservation of Favoured Races in the
Struggle for Life. Murray, London, UK.

[Das et al., 1994] Das, S., Franguidakis, T., Papka, M., DeFanti,
T. A., and Sandin, D. J. (1994). A genetic programming applica
tion in virtual reality. In Proceedings of the first IEEE Conference
on Evolutionary Computation, volume 1, pages 480-484, Orlando,
FL. IEEE Press, New York. Part of 1994 IEEE World Congress
on Computational Intelligence, Orlando, FL.

[Dasrathy, 1991] Dasrathy (1991). Nearest Neighbor (NN) Norms:
NN Pattern Classification Techniques. IEEE Computer Society
Press, Los Alamitos, CA.

[Dawkins, 1987] Dawkins, R. (1987). The Blind Watchmaker. Pen
guin Books, London, UK.

[Dawkins, 1989] Dawkins, R. (1989). The Selfish Gene. Oxford Uni
versity Press, Oxford, UK.

[DeGaris, 1993] DeGaris, H. (1993). Evolvable hardware: Genetic
programming of a Darwin machine. In Albrecht, R. F., Reeves,
C. R., and Steele, N. C., editors, Proc. of Artificial Neural Nets and
Genetic Algorithms, Innsbruck, Austria, pages 443-449. Springer-
Verlag, Berlin.

[D'haeseleer, 1994] D'haeseleer, P. (1994). Context preserving cross
over in genetic programming. In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, volume 1, pages
256-261, Orlando, FL. IEEE Press, New York.

[D'haeseleer and Bluming, 1994] D'haeseleer, P. and Bluming, J.
(1994). Effects of locality in individual and population evolution.
In Kinnear, Jr., K. E., editor, Advances in Genetic Programming,
chapter 8, pages 177-198. MIT Press, Cambridge, MA.

[Dickinson, 1994] Dickinson, A. (1994). Evolution of damage-
immune programs using genetic programming. In Koza, J. R.,
editor, Genetic Algorithms at Stanford 1994, pages 21-30. Stan
ford Bookstore, Stanford, CA.

[Dickmanns et al., 1987] Dickmanns, D., Schmidhuber, J., and Win-
klhofer, A. (1987). Der genetische Algorithmus: Eine Implemen-
tierung in Prolog. Project, Technical University Munich, Munich.

[Dracopoulos, 1997] Dracopoulos, D. C. (1997). Evolutionary control
of a satellite. In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B.,
Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic Program
ming 1997: Proceedings of the Second Annual Conference, pages
77-81, Stanford University, CA. Morgan Kaufmann, San Francisco,
CA.

[Drechsler et al., 1996] Drechsler, R., Becker, B., and Gockel, N.
(1996). A genetic algorithm for the construction of small and highly
testable OKFDD circuits. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., and Riolo, R. L., editors, Genetic Programming 1996: Pro
ceedings of the First Annual Conference, pages 473-478, Stanford
University, CA. MIT Press, Cambridge, MA.

[Drexler, 1992] Drexler, K. E. (1992). Nanosyst ems: Molecular Ma
chinery, Manufacturing, and Computation. Wiley Interscience,
New York.

[Dunay et al., 1994] Dunay, B. D., Petry, F. E., and Buckles, W. P.
(1994). Regular language induction with genetic programming. In
Proceedings of the 1994 IEEE World Congress on Computational
Intelligence, pages 396-400, Orlando, FL. IEEE Press, New York.

[Dunning and Davis, 1996] Dunning, T. E. and Davis, M. W. (1996).
Evolutionary algorithms for natural language processing. In Koza,
J. R., editor, Late Breaking Papers at the Genetic Programming
1996 Conference, pages 16-23, Stanford University, CA. Stanford
Bookstore, Stanford, CA.

[Dupre, 1987] Dupre, J. (1987). The latest on the best. Essays on
Evolution an Optimality. MIT Press, Cambridge, MA.

[Dworman et al., 1996] Dworman, G., Kimbrough, S. O., and Laing,
J. D. (1996). Bargaining by artificial agents in two coalition games:
A study in genetic programming for electronic commerce. In Koza,
J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors,
Genetic Programming 1996: Proceedings of the First Annual Con
ference, pages 54-62, Stanford University, CA. MIT Press, Cam
bridge, MA.

[Dzeroski et al., 1995] Dzeroski, S., Todorovski, L., and Petrovski, I.
(1995). Dynamical system identification with machine learning.
In Rosea, J. P., editor, Proceedings of the Workshop on Genetic
Programming: From Theory to Real- World Applications, pages 50-
63, Tahoe City, CA.

[Ehlers, 1992] Ehlers, J. (1992). Seminar on cycles. CompuServe
Information Service, INVFORUM, Library.

[Ehrenburg, 1996] Ehrenburg, H. (1996). Improved direct acyclic
graph handling and the combine operator in genetic programming.
In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., ed
itors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 285-291, Stanford University, CA. MIT Press,
Cambridge, MA.

[Ehrenburg and van Maanen, 1994] Ehrenburg, H. H. and van Maa-
nen, H. A. N. (1994). A finite automaton learning system using
genetic programming. NeuroColt Tech Rep CS-R9458, Dept. of
Computer Science, CWI, Centrum voor Wiskunde en Informatica,
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.

[Eigen, 1992] Eigen, M. (1992). Steps Toward Life. Oxford University
Press, Oxford, UK.

[Esparcia-Alcazar and Sharman, 1996] Esparcia-Alcazar, A. I. and
Sharman, K. (1996). Some applications of genetic programming
in digital signal processing. In Koza, J. R., editor, Late Breaking
Papers at the Genetic Programming 1996 Conference, pages 24-31,
Stanford University, CA. Stanford Bookstore, Stanford, CA.

[Esparcia-Alcazar and Sharman, 1997] Esparcia-Alcazar, A. I. and
Sharman, K. (1997). Evolving recurrent neural network architec
tures by genetic programming. In Koza, J. R., Deb, K., Dorigo, M.,
Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Ge
netic Programming 1997: Proceedings of the Second Annual Con
ference, pages 89-94, Stanford University, CA. Morgan Kaufmann,
San Francisco, CA.

[Faglia and Vetturi, 1996] Faglia, R. and Vetturi, D. (1996). Motion
planning and design of CAM mechanisms by means of a genetic
algorithm. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and
Riolo, R. L., editors, Genetic Programming 1996: Proceedings of
the First Annual Conference, pages 479-484, Stanford University,
CA. MIT Press, Cambridge, MA.

[Feller, 1968] Feller, W. (1968). An Introduction to Probability The
ory and Its Applications, Volume 1. John Wiley & Sons, New
York.

[Feller, 1971] Feller, W. (1971). An Introduction to Probability The
ory and Its Applications, Volume 2. John Wiley & Sons, New
York.

[Fernandez et al., 1996] Fernandez, J. J., Farry, K. A., and
Cheatham, J. B. (1996). Waveform recognition using genetic pro
gramming: The myoelectric signal recognition problem. In Koza,
J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors,
Genetic Programming 1996: Proceedings of the First Annual Con
ference, pages 63-71, Stanford University, CA. MIT Press, Cam
bridge, MA.

[Ferrer and Martin, 1995] Ferrer, G. J. and Martin, W. N. (1995).
Using genetic programming to evolve board evaluation functions
for a boardgame. In 1995 IEEE Conference on Evolutionary Com
putation, volume 2, page 747, Perth, Australia. IEEE Press, New
York.

[Fitzpatrick et al., 1984] Fitzpatrick, J. M., Grefenstette, J., and
Van Gucht, D. (1984). Image registration by genetic search. In
Proceedings of IEEE Southeast Conference, Piscataway, NY. IEEE
Press, New York.

[Fogel, 1995] Fogel, D. B. (1995). Evolutionary Computation. IEEE
Press, New York.

[Fogel et al., 1965] Fogel, L., Owens, A., and Walsh, M. (1965). Ar
tificial intelligence through a simulation of evolution. In Maxfield,

M., Callahan, A., and Fogel, L., editors, Biophysics and Cybernetic
Systems, pages 131-155.

[Fogel et al., 1966] Fogel, L., Owens, A., and Walsh, M. (1966). Ar
tificial Intelligence through Simulated Evolution. John Wiley &
Sons, New York.

[Francone et al., 1996] Francone, F. D., Nordin, P., and Banzhaf, W.
(1996). Benchmarking the generalization capabilities of a compiling
genetic programming system using sparse data sets. In Koza, J. R.,
Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic
Programming 1996: Proceedings of the First Annual Conference,
pages 72-80, Stanford University, CA. MIT Press, Cambridge, MA.

[Fraser and Rush, 1994] Fraser, A. P. and Rush, J. R. (1994).
Putting INK into a BIRo: A discussion of problem domain knowl
edge for evolutionary robotics. In Fogarty, T. C , editor, Evolution
ary Computing, volume 865 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany.

[Freitas, 1997] Freitas, A. A. (1997). A genetic programming frame
work for two data mining tasks: Classification and generalized rule
induction. In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Gar-
zon, M., Iba, H., and Riolo, R. L., editors, Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 96-101,
Stanford University, CA. Morgan Kaufmann, San Francisco, CA.

[Friedberg, 1958] Friedberg, R. (1958). A learning machine, part I.
IBM J. Research and Development, 2:2-13.

[Friedberg et al., 1959] Friedberg, R., Dunham, B., and North, J.
(1959). A learning machine, part II. IBM J. of Research and
Development, 3:282-287.

[Friedrich and Banzhaf, 1997] Friedrich, J. and Banzhaf, W. (1997).
A simple genetic compiler system for efficient genetic programming
on CISC-architectures. Unpublished.

[Fujiki and Dickinson, 1987] Fujiki, C. and Dickinson, J. (1987). Us
ing the genetic algorithm to generate LISP source code to solve
the prisoner's dilemma. In Grefenstette, J. J., editor, Genetic Al
gorithms and their Applications: Proceedings of the second inter
national conference on Genetic Algorithms, pages 236-240, MIT,
Cambridge, MA. Lawrence Erlbaum Associates, Hillsdale, NJ.

[Garces-Perez et al., 1996] Garces-Perez, J., Schoenefeld, D. A., and
Wainwright, R. L. (1996). Solving facility layout problems using
genetic programming. In Koza, J. R., Goldberg, D. E., Fogel,

D. B., and Riolo, R. L., editors, Genetic Programming 1996: Pro
ceedings of the First Annual Conference, pages 182-190, Stanford
University, CA. MIT Press, Cambridge, MA.

[Gathercole and Ross, 1994] Gathercole, C. and Ross, P. (1994). Dy
namic training subset selection for supervised learning in genetic
programming. In Davidor, Y., Schwefel, H.-P., and M R., editors,
Parallel Problem Solving from Nature III, volume 866 of Lecture
Notes in Computer Science.

[Gathercole and Ross, 1997a] Gathercole, C. and Ross, P. (1997a).
Small populations over many generations can beat large popula
tions over few generations in genetic programming. In Koza, J. R.,
Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo,
R. L., editors, Genetic Programming 1997: Proceedings of the Sec
ond Annual Conference, pages 111-118, Stanford University, CA.
Morgan Kaufmann, San Francisco, CA.

[Gathercole and Ross, 1997b] Gathercole, C. and Ross, P. (1997b).
Tackling the boolean even N parity problem with genetic program
ming and limited-error fitness. In Koza, J. R., Deb, K., Dorigo, M.,
Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference,
pages 119-127, Stanford University, CA. Morgan Kaufmann, San
Francisco, CA.

[Ghanea-Hercock and Eraser, 1994] Ghanea-Hercock, R. and Fraser,
A. P. (1994). Evolution of autonomous robot control architectures.
In Fogarty, T. C , editor, Evolutionary Computing, volume 865 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Ger
many.

[Goldberg, 1989] Goldberg, D. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley, Reading,
MA.

[Gordon, 1994] Gordon, B. M. (1994). Exploring the underlying
structure of natural images through genetic programming. In Koza,
J. R., editor, Genetic Algorithms at Stanford 1994, pages 49-56.
Stanford Bookstore, Stanford, CA.

[Gray et al., 1996a] Gray, G. J., Murray-Smith, D. J., Li, Y., and
Sharman, K. C. (1996a). Nonlinear model structure identification
using genetic programming. In Koza, J. R., editor, Late Breaking
Papers at the Genetic Programming 1996 Conference, pages 32-37,
Stanford University, CA. Stanford Bookstore, Stanford, CA.

[Gray and Maxwell, 1997] Gray, H. F. and Maxwell, R. J. (1997).
Genetic programming for multi-class classification of magnetic res
onance spectroscopy data. In Koza, J. R., Deb, K., Dorigo, M.,
Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference,
page 137, Stanford University, CA. Morgan Kaufmann, San Fran
cisco, CA.

[Gray et al., 1996b] Gray, H. F., Maxwell, R. J., Martinez-Perez, I.,
Arus, C., and Cerdan, S. (1996b). Genetic programming for classi
fication of brain tumours from nuclear magnetic resonance biopsy
spectra. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Ri
olo, R. L., editors, Genetic Programming 1996: Proceedings of the
First Annual Conference, page 424, Stanford University, CA. MIT
Press, Cambridge, MA.

[Greeff and Aldrich, 1997] Greeff, D. J. and Aldrich, C. (1997). Evo
lution of empirical models for metallurgical process systems. In
Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H.,
and Riolo, R. L., editors, Genetic Programming 1997: Proceedings
of the Second Annual Conference, page 138, Stanford University,
CA. Morgan Kaufmann, San Francisco, CA.

[Grefenstette and Baker, 1989] Grefenstette, J. J. and Baker, J. E.
(1989). How genetic algorithms work: A critical look at implicit
parallelism. In Proc. 3rd International Conference on Genetic Al
gorithms, pages 20-27, San Mateo, CA. Morgan Kaufmann, San
Francisco, CA.

[Grimes, 1995] Grimes, C. A. (1995). Application of genetic tech
niques to the planning of railway track maintenance work. In Za-
lzala, A. M. S., editor, First International Conference on Genetic
Algorithms in Engineering Systems: Innovations and Applications,
GALESIA, volume 414, pages 467-472.

[Gritz and Hahn, 1995] Gritz, L. and Hahn, J. (1995). Genetic pro
gramming for articulated figure motion. J. of Visualization and
Computer Animation, 6:129-142.

[Gritz and Hahn, 1997] Gritz, L. and Hahn, J. K. (1997). Genetic
programming evolution of controllers for 3-D character animation.
In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba,
H., and Riolo, R. L., editors, Genetic Programming 1997: Proceed
ings of the Second Annual Conference, pages 139-146, Stanford
University, CA. Morgan Kaufmann, San Francisco, CA.

[Gruau, 1992a] Gruau, F. (1992a). Cellular encoding of genetic neu
ral networks. Technical report 92-21, Laboratoire de l'lnformatique
du Parallelisme. Ecole Normale Superieure de Lyon, France.

[Gruau, 1992b] Gruau, F. (1992b). Genetic synthesis of boolean neu
ral networks with a cell rewriting developmental process. In Schaf-
fer, J. D. and Whitley, D., editors, Proceedings of the Workshop
on Combinations of Genetic Algorithms and Neural Networks (CO-
GANN92), pages 55-74. IEEE Computer Society Press.

[Gruau, 1993] Gruau, F. (1993). Genetic synthesis of modular neural
networks. In Forrest, S., editor, Proceedings of the 5th International
Conference on Genetic Algorithms, ICGA-93, pages 318-325, Uni
versity of Illinois at Urbana-Champaign. Morgan Kaufmann, San
Francisco, CA.

[Gruau, 1994a] Gruau, F. (1994a). Genetic micro programming of
neural networks. In Kinnear, Jr., K. E., editor, Advances in Genetic
Programming, chapter 24, pages 495-518. MIT Press, Cambridge,
MA.

[Gruau, 1994b] Gruau, F. (1994b). Neural Network Synthesis using
Cellular Encoding and the Genetic Algorithm. PhD thesis, Labora
toire de l'lnformatique du Parallelisme, Ecole Normale Superieure
de Lyon, France.

[Gruau, 1995] Gruau, F. (1995). Automatic definition of modular
neural networks. Adaptive Behaviour, 3(2):151-183.

[Gruau et al., 1994] Gruau, F., Ratajszczak, J., and Wiber, G.
(1994). A neural compiler. Journal of Theoretical Computer Sci
ence, 1834:1-52.

[Gruau and Whitley, 1993] Gruau, F. and Whitley, D. (1993).
Adding learning to the cellular development process: a compar
ative study. Evolutionary Computation, l(3):213-233.

[Gustafson et al., 1986] Gustafson, D., Barrett, W., Bates, R., and
Couch, J. D. (1986). Compiler Construction: Theory and Practice.
Science Research Assoc.

[Hahn, 1988] Hahn, J. (1988). Realistic animation of rigid bodies.
Computer Graphics, 22:299-308.

[Haigh, 1978] Haigh, J. (1978). The accumulation of deleterious
genes in a population — Muller's rachet. Theoretical Population
Biology, 14:251-267.

[Hampo et al., 1994] Hampo, R. J., Bryant, B. D., and Marko, K. A.
(1994). IC engine misfire detection algorithm generation using

genetic programming. In EUFIT'94, pages 1674-1678, Aachen,
Germany. ELITE Foundation.

[Hampo and Marko, 1992] Hampo, R. J. and Marko, K. A. (1992).
Application of genetic programming to control of vehicle systems.
In Proceedings of the Intelligent Vehicles '92 Symposium. June
29-July 1, 1992, Detroit, MI.

[Handley, 1993a] Handley, S. (1993a). Automatic learning of a detec
tor for alpha-helices in protein sequences via genetic programming.
In Forrest, S., editor, Proceedings of the 5th International Confer
ence on Genetic Algorithms, ICGA-93, pages 271-278, University
of Illinois at Urbana-Champaign. Morgan Kaufmann, San Fran
cisco, CA.

[Handley, 1993b] Handley, S. (1993b). The genetic planner: The au
tomatic generation of plans for a mobile robot via genetic program
ming. In Proceedings of the Eighth IEEE International Symposium
on Intelligent Control, Chicago, IL.

[Handley, 1994a] Handley, S. (1994a). Automated learning of a de
tector for the cores of a-helices in protein sequences via genetic
programming. In Proceedings of the 1994 IEEE World Congress
on Computational Intelligence, volume 1, pages 474-479, Orlando,
FL. IEEE Press, New York.

[Handley, 1994b] Handley, S. (1994b). The automatic generations of
plans for a mobile robot via genetic programming with automat
ically defined functions. In Kinnear, Jr., K. E., editor, Advances
in Genetic Programming, chapter 18, pages 391-407. MIT Press,
Cambridge, MA.

[Handley, 1995] Handley, S. (1995). Predicting whether or not a 60-
base DNA sequence contains a centrally-located splice site using
genetic programming. In Rosea, J. P., editor, Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World
Applications, pages 98-103, Tahoe City, CA.

[Handley, 1996a] Handley, S. (1996a). A new class of function sets for
solving sequence problems. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., and Riolo, R. L., editors, Genetic Programming 1996: Pro
ceedings of the First Annual Conference, pages 301-308, Stanford
University, CA. MIT Press, Cambridge, MA.

[Handley, 1996b] Handley, S. (1996b). The prediction of the degree
of exposure to solvent of amino acid residues via genetic program
ming. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo,
R. L., editors, Genetic Programming 1996: Proceedings of the First

Annual Conference, pages 297-300, Stanford University, CA. MIT
Press, Cambridge, MA.

[Harris and Buxton, 1996] Harris, C. and Buxton, B. (1996). Evolv
ing edge detectors. Research Note RN/96/3, UCL, University Col
lege London, Dept. of Computer Science, London, UK.

[Haynes et al., 1996] Haynes, T., Gamble, R., Knight, L.. and Wain-
wright, R. (1996). Entailment for specification refinement. In Koza,
J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors,
Genetic Programming 1996: Proceedings of the First Annual Con
ference, pages 90-97, Stanford University, CA. MIT Press, Cam
bridge, MA.

[Haynes et al., 1995] Haynes, T. D., Wainwright, R. L., and Sen,
S. (1995). Evolving cooperating strategies. In Lesser, V., edi
tor, Proceedings of the first International Conference on Multiple
Agent Systems, page 450, San Francisco, CA. AAAI, Menlo Park,
CA/MIT Press, Cambridge, MA. Poster.

[Hecht-Nielsen, 1988] Hecht-Nielsen, R. (1988). Neurocomputing.
Addison-Wesley, Reading, MA.

[Hemmi et al., 1994a] Hemmi, H., Mizoguchi, J., and Shimohara, K.
(1994a). Development and evolution of hardware behaviours. In
Brooks, R. and Maes, P., editors, Artificial Life IV, pages 371-376.
MIT Press.

[Hemmi et al., 1994b] Hemmi, H., Mizoguchi, J., and Shimohara, K.
(1994b). Hardware evolution — an HDL approach. In Proc. of
the Japan-US Symposium on Flexible Automation. The Institute
of Systems, Control and Information Engineers.

[Hicklin, 1986] Hicklin, J. F. (1986). Application of the genetic algo
rithm to automatic program generation. Master's thesis, Dept. of
Computer Science, University of Idaho.

[Hillis, 1989] Hillis, D. (1989). Co-evolving parasites. In Forrest, S.,
editor, Emergent Computation. MIT Press, Cambridge, MA.

[Hillis, 1992] Hillis, W. D. (1992). Co-evolving parasites improve sim
ulated evolution as an optimization procedure. In Langton, C. G.,
Taylor, C , Farmer, J. D., and Rasmussen, S., editors, Artificial
Life II, volume X of Sante Fe Institute Studies in the Sciences of
Complexity, pages 313-324. Addison-Wesley, Reading, MA.

[Hinchliffe et a l , 1996] Hinchliffe, M., Hiden, H., McKay, B., Willis,
M., Tham, M., and Barton, G. (1996). Modelling chemical pro
cess systems using a multi-gene genetic programming algorithm.

In Koza, J. R., editor, Late Breaking Papers at the Genetic Pro
gramming 1996 Conference, pages 56-65, Stanford University, CA.
Stanford Bookstore, Stanford, CA.

[Hirst, 1996] Hirst, A. (1996). Notes on the evolution of adaptive
hardware. In Proc. 2nd Int. Conf. on Adaptive Computing in
Engineering Design and Control (ACEDC-96), Plymouth, UK,
http://kmi.open.ac.uk/ monty/evoladaphwpaper.html.

[Holbrook et al., 1990] Holbrook, S., Muskal, S., and Kim, S. (1990).
Predicting surface exposure of amino acids from proteins sequence.
Protein Engineering, 3:659-665.

[Holbrook et al., 1993] Holbrook, S., Muskal, S., and Kim, S. (1993).
Predicting protein structural features with artificial neural net
works. In Hunter, L., editor, Artificial Intelligence and Molecular
Biology, pages 161-194. AAAI, Menlo Park, CA.

[Holland, 1975] Holland, J. (1975). Adaptation in natural and artifi
cial systems. MIT Press, Cambridge, MA.

[Holland, 1992] Holland, J. (1992). Adaptation in natural and artifi
cial systems. MIT Press, Cambridge, MA.

[Holland et al., 1986] Holland, J., Holyak, R., and Thagard, P.
(1986). Induction: Processes of Inference, Learning and Discov
ery. MIT Press, Cambridge, MA.

[Holland and Reitman, 1978] Holland, J. and Reitman, J. (1978).
Cognitive systems based on adaptive algorithms. In Waterman, D.
and Hayes-Roth, F., editors, Pattern-Directed Inference Systems.
Academic Press, New York.

[Howley, 1996] Howley, B. (1996). Genetic programming of near-
minimum-time spacecraft attitude maneuvers. In Koza, J. R.,
Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic
Programming 1996: Proceedings of the First Annual Conference,
pages 98-106, Stanford University, CA. MIT Press, Cambridge,
MA.

[Howley, 1997] Howley, B. (1997). Genetic programming and para
metric sensitivity: a case study in dynamic control of a two link
manipulator. In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B.,
Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic Program
ming 1997: Proceedings of the Second Annual Conference, pages
180-185, Stanford University, CA. Morgan Kaufmann, San Fran
cisco, CA.

[Huelsbergen, 1996] Huelsbergen, L. (1996). Toward simulated evo
lution of machine language iteration. In Koza, J. R., Goldberg,

D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic Programming
1996: Proceedings of the First Annual Conference, pages 315-320,
Stanford University, CA. MIT Press, Cambridge, MA.

[Iba, 1997] Iba, H. (1997). Multiple-agent learning for a robot nav
igation task by genetic programming. In Koza, J. R., Deb, K.,
Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L.,
editors, Genetic Programming 1997: Proceedings of the Second An
nual Conference, pages 195-200, Stanford University, CA. Morgan
Kaufmann, San Francisco, CA.

[Iba and de Garis, 1996] Iba, H. and de Garis, H. (1996). Extending
genetic programming with recombinative guidance. In Angeline,
P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic Pro
gramming 2, chapter 4, pages 69-88. MIT Press, Cambridge, MA.

[Iba et al., 1994] Iba, H., de Garis, H., and Sato, T. (1994). Genetic
programming with local hill-climbing. In Davidor, Y., Schwefel,
H.-P., and M R., editors, Parallel Problem Solving from Nature
III, volume 866 of Lecture Notes in Computer Science.

[Iba et al., 1995a] Iba, H., de Garis, H., and Sato, T. (1995a). Tem
poral data processing using genetic programming. In Eshelman,
L., editor, Genetic Algorithms: Proceedings of the Sixth Interna
tional Conference (ICGA95), pages 279-286, Pittsburgh, PA. Mor
gan Kaufmann, San Francisco, CA.

[Iba et al., 1993] Iba, H., Niwa, H., de Garis, H., and Sato, T.
(1993). Evolutionary learning of boolean concepts: An empirical
study. Technical Report ETL-TR-93-25, Electrotechnical Labora
tory, Tsukuba, Japan.

[Iba et al., 1995b] Iba, H., Sato, T., and de Garis, H. (1995b). Nu
merical genetic programming for system identification. In Rosea,
J. P., editor, Proceedings of the Workshop on Genetic Program
ming: From Theory to Real-World Applications, pages 64-75,
Tahoe City, CA.

[Ivakhnenko, 1971] Ivakhnenko, A. (1971). Polymonial theory of
complex systems. IEEE Transactions on Systems, Man and Cy
bernetics, 1:364-378.

[Jacob, 1994] Jacob, C. (1994). Genetic L-system programming. In
Davidor, Y., Schwefel, H.-P., and M R., editors, Parallel Problem
Solving from Nature III, volume 866 of Lecture Notes in Computer
Science.

[Jacob, 1996a] Jacob, C. (1996a). Evolving evolution programs: Ge
netic programming and L-systems. In Voigt, H., Ebeling, W.,

Rechenberg, I., and Schwefel, H., editors, Parallel Problem Solving
From Nature IV. Proceedings of the International Conference on
Evolutionary Computation, pages 42-51, Berlin. Springer-Verlag.

[Jacob, 1996b] Jacob, C. (1996b). Evolving evolution programs: Ge
netic programming and L-systems. In Koza, J. R., Goldberg, D. E.,
Fogel, D. B., and Riolo, R. L., editors, Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 107-115, Stan
ford University, CA. MIT Press, Cambridge, MA.

[Jannink, 1994] Jannink, J. (1994). Cracking and co-evolving ran
domizers. In Kinnear, Jr., K. E., editor, Advances in Genetic Pro
gramming, chapter 20, pages 425-443. MIT Press, Cambridge, MA.

[Jiang and Butler, 1996] Jiang, J. and Butler, D. (1996). An adap
tive genetic algorithm for image data compression. In Koza, J. R.,
editor, Late Breaking Papers at the Genetic Programming 1996
Conference, pages 83-87, Stanford University, CA. Stanford Book
store, Stanford, CA.

[Johannsen, 1911] Johannsen, W. (1911). The genotype conception
of heredity. The American Naturalist, 45:129-159.

[Johnson et al., 1994] Johnson, M. P., Maes, P., and Darrell, T.
(1994). Evolving visual routines. In Brooks, R. A. and Maes,
P., editors, Artificial Life IV, Proceedings of the fourth Interna
tional Workshop on the Synthesis and Simulation of Living Sys
tems, pages 198-209, MIT, Cambridge, MA. MIT Press, Cam
bridge, MA.

[Jones, 1995] Jones, T. (1995). Crossover, macromutation, and
population-based search. In Eshelman, L., editor, Genetic
Algorithms: Proceedings of the Sixth International Conference
(ICGA95), pages 310-317, Pittsburgh, PA. Morgan Kaufmann,
San Francisco, CA.

[Juels and Wattenberg, 1995] Juels, A. and Wattenberg, M. (1995).
Stochastic hillclimbing as a baseline method for evaluating genetic
algorithms. Technical Report CSD-94-834, Department of Com
puter Science, University of California at Berkeley, Berkeley, CA.

[Juille and Pollack, 1996] Juille, H. and Pollack, J. B. (1996). Mas
sively parallel genetic programming. In Angeline, P. J. and Kinn
ear, Jr., K. E., editors, Advances in Genetic Programming 2, chap
ter 17, pages 339-358. MIT Press, Cambridge, MA.

[Keith and Martin, 1994] Keith, M. J. and Martin, M. C. (1994).
Genetic programming in C++: Implementation issues. In Kinnear,

Jr., K. E., editor, Advances in Genetic Programming, chapter 13,
pages 285-310. MIT Press, Cambridge, MA.

[Keller and Banzhaf, 1994] Keller, R. and Banzhaf, W. (1994). Ex
plicit maintenance of genetic diversity on genospaces.
http://lsll-www.cs.uni-dortmund.de/people/banzhaf/
publications.html.

[Keller and Banzhaf, 1996] Keller, R. E. and Banzhaf, W. (1996).
Genetic programming using genotype-phenotype mapping from
linear genomes into linear phenotypes. In Koza, J. R., Goldberg,
D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic Programming
1996: Proceedings of the First Annual Conference, pages 116-122,
Stanford University, CA. MIT Press, Cambridge, MA.

[Kernighan et al., 1988] Kernighan, B. W., Tondo, C. L., and
Ritchie, D. M. (1988). The C Programming Language. Prentice
Hall, Englewood Cliffs, NJ.

[Kimura, 1983] Kimura, M. (1983). The Neutral Theory of Molecular
Evolution. Cambridge University Press, Cambridge, UK.

[Kinnear, Jr., 1993a] Kinnear, Jr., K. E. (1993a). Evolving a sort:
Lessons in genetic programming. In Proceedings of the 1993 Inter
national Conference on Neural Networks, volume 2, San Francisco,
CA. IEEE Press, New York.

[Kinnear, Jr., 1993b] Kinnear, Jr., K. E. (1993b). Generality and
difficulty in genetic programming: Evolving a sort. In Forrest, S.,
editor, Proceedings of the 5th International Conference on Gene
tic Algorithms, ICGA-93, pages 287-294, University of Illinois at
Urbana-Champaign. Morgan Kaufmann, San Francisco, CA.

[Kinnear, Jr., 1994] Kinnear, Jr., K. E. (1994). Alternatives in auto
matic function definition: A comparison of performance. In Kin
near, Jr., K. E., editor, Advances in Genetic Programming, chap
ter 6, pages 119-141. MIT Press, Cambridge, MA.

[Kirkerud, 1989] Kirkerud, B. (1989). Object-Oriented Programming
with Simula. Addison-Wesley, London.

[Kirkpatrick et al., 1983] Kirkpatrick, S., Gelatt, C , and Vecchi, M.
(1983). Optimization by simulated annealing. Science, 220:671-
680.

[Kitano, 1990] Kitano, H. (1990). Designing neural networks using
genetic algorithms with graph generation system. Complex Sys
tems, 4:461-476.

[Knuth, 1981] Knuth, D. (1981). The Art of Computer Programming.
Vol. 2: Seminumerical Algorithms. Addison-Wesley, Reading, MA,
2nd edition.

[Kohonen, 1989] Kohonen, T. (1989). Self-organization and Associa
tive Memory. Springer-Verlag, Berlin, 2nd edition.

[Kolmogorov, 1950] Kolmogorov, A. (1950). Foundations of the The
ory of Probability. Chelsea Publishing Company, New York.

[Koza, 1989] Koza. J. R. (1989). Hierarchical genetic algorithms op
erating on populations of computer programs. In Sridharan, N. S.,
editor, Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence IJCAI-89, volume 1, pages 768-774. Mor
gan Kaufmann, San Francisco, CA.

[Koza, 1991] Koza, J. R. (1991). Concept formation and decision
tree induction using the genetic programming paradigm. In Schwe-
fel, H.-P. and Manner, R., editors, Parallel Problem Solving from
Nature-Proceedings of 1st Workshop, PPSN 1, volume 496 of Lec
ture Notes in Computer Science, pages 124-128. Springer-Verlag,
Berlin, Germany.

[Koza, 1992a] Koza, J. R. (1992a). Evolution of subsumption using
genetic programming. In Varela, F. J. and Bourgine, P., editors,
Proceedings of the First European Conference on Artificial Life.
Towards a Practice of Autonomous Systems, pages 110-119, Paris,
France. MIT Press, Cambridge, MA.

[Koza, 1992b] Koza, J. R. (1992b). A genetic approach to finding a
controller to back up a tractor-trailer truck. In Proceedings of the
1992 American Control Conference, volume III, pages 2307-2311,
Evanston, IL. American Automatic Control Council.

[Koza, 1992c] Koza, J. R. (1992c). A genetic approach to the truck
backer upper problem and the inter-twined spiral problem. In Pro
ceedings of IJCNN International Joint Conference on Neural Net
works, volume IV, pages 310-318. IEEE Press, New York.

[Koza, 1992d] Koza, J. R. (1992d). Genetic Programming: On the
Programming of Computers by Natural Selection. MIT Press, Cam
bridge, MA.

[Koza, 1993a] Koza, J. R. (1993a). Discovery of rewrite rules in Lin-
denmayer systems and state transition rules in cellular automata
via genetic programming. In Symposium on Pattern Formation
(SPF-93), Claremont, CA.

[Koza, 1993b] Koza, J. R. (1993b). Simultaneous discovery of detec
tors and a way of using the detectors via genetic programming. In

1993 IEEE International Conference on Neural Networks, volume
III, pages 1794-1801, San Francisco, CA. IEEE, New York.

[Koza, 1994a] Koza, J. R. (1994a). Genetic Programming II: Auto
matic Discovery of Reusable Programs. MIT Press, Cambridge,
MA.

[Koza, 1994b] Koza, J. R. (1994b). Recognizing patterns in protein
sequences using iteration-performing calculations in genetic pro
gramming. In 1994 IEEE World Congress on Computational In
telligence, Orlando, FL. IEEE Press, New York.

[Koza, 1995a] Koza, J. R. (1995a). Evolving the architecture of a
multi-part program in genetic programming using architecture-
altering operations. In McDonnell, J. R., Reynolds, R. G., and
Fogel, D. B., editors, Evolutionary Programming IV Proceedings
of the Fourth Annual Conference on Evolutionary Programming.
pages 695-717, San Diego, CA. MIT Press, Cambridge, MA.

[Koza, 1995b] Koza, J. R. (1995b). Gene duplication to enable ge
netic programming to concurrently evolve both the architecture
and work-performing steps of a computer program. In IJCAI-95
Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, volume 1, pages 734-740, Montreal, Que
bec, Canada. Morgan Kaufmann, San Francisco, CA.

[Koza and Andre, 1996a] Koza, J. R. and Andre, D. (1996a).
Classifying protein segments as transmembrane domains using
architecture-altering operations in genetic programming. In An-
geline, P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic
Programming 2, chapter 8, pages 155-176. MIT Press, Cambridge,
MA.

[Koza and Andre, 1996b] Koza, J. R. and Andre, D. (1996b). Evo
lution of iteration in genetic programming. In Fogel, L. J., Ange-
line, P. J., and Baeck, T., editors, Evolutionary Programming V:
Proceedings of the Fifth Annual Conference on Evolutionary Pro
gramming. MIT Press, Cambridge, MA.

[Koza et al., 1996a] Koza, J. R., Andre, D., Bennett III, F. H.. and
Keane, M. A. (1996a). Use of automatically denned functions and
architecture-altering operations in automated circuit synthesis us
ing genetic programming. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., and Riolo, R. L., editors, Genetic Programming 1996: Pro
ceedings of the First Annual Conference, pages 132-149, Stanford
University, CA. MIT Press, Cambridge, MA,

[Koza et al., 1996b] Koza, J. R., Bennett III, F. H., Andre, D., and
Keane, M. A. (1996b). Automated WYWIWYG design of both the
topology and component values of electrical circuits using genetic
programming. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and
Riolo, R. L., editors, Genetic Programming 1996: Proceedings of
the First Annual Conference, pages 123-131, Stanford University,
CA. MIT Press, Cambridge, MA.

[Koza et al., 1996c] Koza, J. R., Bennett III, F. H., Andre, D., and
Keane, M. A. (1996c). Four problems for which a computer pro
gram evolved by genetic programming is competitive with human
performance. In Proceedings of the 1996 IEEE International Con
ference on Evolutionary Computation, volume 1, pages 1-10. IEEE
Press, New York.

[Koza et al., 1997a] Koza, J. R., Bennett III, F. H., Keane, M. A.,
and Andre, D. (1997a). Evolution of a time-optimal fly-to con
troller circuit using genetic programming. In Koza, J. R., Deb, K.,
Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L.,
editors, Genetic Programming 1997: Proceedings of the Second An
nual Conference, pages 207-212, Stanford University, CA. Morgan
Kaufmann, San Francisco, CA.

[Koza et al., 1997b] Koza, J. R., Bennett III, F. H., Lohn, J., Dun-
lap, F., Keane, M. A., and Andre, D. (1997b). Use of architecture-
altering operations to dynamically adapt a three-way analog source
identification circuit to accommodate a new source. In Koza, J. R.,
Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo,
R. L., editors, Genetic Programming 1997: Proceedings of the Sec
ond Annual Conference, pages 213-221, Stanford University, CA.
Morgan Kaufmann, San Francisco, CA.

[Koza and Keane, 1990] Koza, J. R. and Keane, M. A. (1990). Cart
centering and broom balancing by genetically breeding populations
of control strategy programs. In Proceedings of International Joint
Conference on Neural Networks, volume I, pages 198-201, Wash
ington, DC. Lawrence Erlbaum Associates, Hillsdale, NJ.

[Kraft et al., 1994] Kraft, D. H., Petry, F. E., Buckles, W. P., and
Sadasivan, T. (1994). The use of genetic programming to build
queries for information retrieval. In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, pages 468-473, Or
lando, FL. IEEE Press, New York.

[Lang, 1995] Lang, K. J. (1995). Hill climbing beats genetic search on
a boolean circuit synthesis of Koza's. In Proceedings of the Twelfth

International Conference on Machine Learning, Tahoe City, CA.
Morgan Kaufmann, San Francisco, CA.

[Langdon, 1995a] Langdon, W. B. (1995a). Data structures and ge
netic programming. Research Note RN/95/70, University College
London, University College London, Dept. of Computer Science,
London, UK.

[Langdon, 1995b] Langdon, W. B. (1995b). Evolving data struc
tures using genetic programming. In Eshelman, L., editor, Gene
tic Algorithms: Proceedings of the Sixth International Conference
(ICGA95), pages 295-302, Pittsburgh, PA. Morgan Kaufmann,
San Francisco, CA.

[Langdon, 1995c] Langdon, W. B. (1995c). Evolving data structures
using genetic programming. Research Note RN/95/1, UCL, Uni
versity College London, Dept. of Computer Science, London, UK.

[Langdon, 1996a] Langdon, W. B. (1996a). Scheduling maintenance
of electrical power transmission networks using genetic program
ming. Research Note RN/96/49, University College London, Uni
versity College London, Dept. of Computer Science, London, UK.

[Langdon, 1996b] Langdon, W. B. (1996b). Using data structures
within genetic programming. In Koza, J. R., Goldberg, D. E., Fo-
gel, D. B., and Riolo, R. L., editors, Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 141-148, Stan
ford University, CA. MIT Press, Cambridge, MA.

[Langdon and Poli, 1997] Langdon, W. B. and Poli, R. (1997). An
analysis of the MAX problem in genetic programming. In Koza,
J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and
Riolo, R. L., editors, Genetic Programming 1997: Proceedings of
the Second Annual Conference, pages 222-230, Stanford University,
CA. Morgan Kaufmann, San Francisco, CA.

[Langdon and Qureshi, 1995] Langdon, W. B. and Qureshi, A.
(1995). Genetic programming - computers using "natural selec
tion" to generate programs. Research Note RN/95/76, University
College London, University College London, Dept. of Computer
Science, London, UK.

[Langley, 1996] Langley, P. (1996). Elements of Machine Learning.
Morgan Kaufmann, San Francisco, CA.

[Lay, 1994] Lay, M.-Y. (1994). Application of genetic programming
in analyzing multiple steady states of dynamical systems. In Pro
ceedings of the 1994 IEEE World Congress on Computational In
telligence, pages 333-336b, Orlando, FL. IEEE Press, New York.

[Lee, 1995] Lee, G. Y. (1995). Explicit models for chaotic and noisy
time series through the genetic recursive regression. Unpublished.

[Lehmer, 1951] Lehmer, D. (1951). In Proc. 2nd Symp. on Large-
Scale Digital Calculating Machinery Cambridge, pages 141-146.
Harvard University Press, Cambridge, MA.

[Lensberg, 1997] Lensberg, T. (1997). A genetic programming ex
periment on investment behavior under knightian uncertainty. In
Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba,
H., and Riolo, R. L., editors, Genetic Programming 1997: Proceed
ings of the Second Annual Conference, pages 231-239, Stanford
University, CA. Morgan Kaufmann, San Francisco, CA.

[Lent, 1994] Lent, B. (1994). Evolution of trade strategies using ge
netic algorithms and genetic programming. In Koza, J. R., editor,
Genetic Algorithms at Stanford 1994, pages 87-98. Stanford Book
store, Stanford, CA.

[Levenshtein, 1966] Levenshtein, A. (1966). Binary codes capable
of correcting deletions, insertions, and reversals. Soviet Physics-
Doklady, 10:703-710.

[Li and Vitanyi, 1997] Li, M. and Vitanyi, P. (1997). An Introduction
to Kolmogorov Complexity and its Applications. Springer-Verlag,
Berlin, 2nd revised and expanded edition.

[Lindenmayer, 1968] Lindenmayer, A. (1968). Mathematical models
for cellular interaction in development, part I and II. Journal of
Theoretical Biology, 18:280-315.

[Lohmann, 1992] Lohmann, R. (1992). Structure evolution and in
complete induction. In Manner, R. and Manderick, B., editors,
Proceedings PPSN II, pages 175-185. North-Holland, Amsterdam.

[Lott, 1994] Lott, C. G. (1994). Terrain flattening by autonomous
robot: A genetic programming application. In Koza, J. R., edi
tor, Genetic Algorithms at Stanford 1994, pages 99-109. Stanford
Bookstore, Stanford, CA.

[Ludvikson, 1995] Ludvikson, A. (1995). Private communication.

[Luke and Spector, 1996] Luke, S. and Spector, L. (1996). Evolving
teamwork and coordination with genetic programming. In Koza,
J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors,
Genetic Programming 1996: Proceedings of the First Annual Con
ference, pages 150-156, Stanford University, CA. MIT Press, Cam
bridge, MA.

[Maniatis, 1991] Maniatis, T. (1991). Review. Science, 251:33-34.

[Masand, 1994] Masand, B. (1994). Optimising confidence of text
classification by evolution of symbolic expressions. In Kinnear, Jr.,
K. E., editor, Advances in Genetic Programming, chapter 21, pages
445-458. MIT Press, Cambridge, MA.

[Masand and Piatesky-Shapiro, 1996] Masand, B. and Piatesky-
Shapiro, G. (1996). Discovering time oriented abstractions in his
torical data to optimize decision tree classification. In Angeline,
P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic Pro
gramming 2, chapter 24, pages 489-498. MIT Press, Cambridge,
MA.

[Masters, 1995a] Masters, T. (1995a). Advanced Algorithms for Neu
ral Networks. John Wiley & Sons, New York.

[Masters, 1995b] Masters, T. (1995b). Neural, Novel and Hybrid Al
gorithms for Time Series Prediction. John Wiley & Sons, New
York.

[Maynard-Smith, 1994] Maynard-Smith, J. (1994). Evolutionary Ge
netics. Oxford University Press, Oxford, UK.

[McKay et al., 1995] McKay, B., Willis, M., and Barton, G. W.
(1995). On the application of genetic programming to chemical
process systems. In 1995 IEEE Conference on Evolutionary Com
putation, volume 2, pages 701-706, Perth, Australia. IEEE Press,
New York.

[McKay et al., 1996] McKay, B., Willis, M., Montague, G., and Bar
ton, G. W. (1996). Using genetic programming to develop inferen
tial estimation algorithms. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., and Riolo, R. L., editors, Genetic Programming 1996: Pro
ceedings of the First Annual Conference, pages 157-165, Stanford
University, CA. MIT Press, Cambridge, MA.

[McKnight et al., 1994] McKnight, R., Wall, R., and Hennighausen,
L. (1994). Expressions of genomic and CDNA transgenes after
co-integration in transgenic mice. Technical Report ARS Report
Number: 0000031671, United States Department of Agriculture,
National Agricultural Library.

[McPhee and Miller, 1995] McPhee, N. F. and Miller, J. D. (1995).
Accurate replication in genetic programming. In Eshelman, L.,
editor, Genetic Algorithms: Proceedings of the Sixth International
Conference (ICGA95), pages 303-309, Pittsburgh, PA. Morgan
Kaufmann, San Francisco, CA.

[Mehta et al., 1995] Mehta, P., Heringa, J., and Argos, P. (1995). A
simple and fast approach to prediction of protein secondary struc-

ture from multiply aligned sequences with accuracy above 70%.
Protein Science, 4:2517-2525.

[Meisel, 1972] Meisel, W. (1972). Computer-Oriented Approaches to
Pattern Recognition. Academic Press, New York.

[Michalewicz, 1994] Michalewicz, Z. (1994). Genetic Algorithms +
Data Structures = Evolution Programs. Springer-Verlag, Berlin,
1996: 3rd edition.

[Mitchell, 1996] Mitchell, T. (1996). Machine Learning. McGraw-
Hill, New York.

[Mjolsness et al., 1995] Mjolsness, E., Garret, C , Reinitz, J., and
Sharp, D. (1995). Modelling the connection between development
and evolution: Preliminary report. In Banzhaf, W. and Eeckman,
F., editors, Evolution and Biocomputation. Springer-Verlag, Berlin.

[Mjolsness et al., 1988] Mjolsness, E., Sharp, D., and Albert, B.
(1988). Scaling, machine learning and genetic neural nets. Techni
cal Report LA-UR-88-142, Los Alamos National Laboratories.

[Mondada et al., 1993] Mondada, F., Franzi, E., and Ienne, P.
(1993). Mobile robot miniaturization. In Yoshikawa, T. and
Miyazaki, F., editors, Experimental Robotics III: The 3rd Inter
national Symposium, Lecture Notes in Control and Information
Sciences, Vol, 200., Kyoto, Japan. Springer-Verlag, Berlin.

[Montana, 1994] Montana, D. J. (1994). Strongly typed genetic pro
gramming. BBN Technical Report #7866, Bolt Beranek and New
man, Cambridge, MA.

[Morgan and Schonfelder, 1993] Morgan, J. and Schonfelder, J.
(1993). Programming in Fortran 90. Alfred Waller, Oxfordshire,
UK.

[Miihlenbein and Schlierkamp-Voosen, 1994] Muhlenbein, H. and
Schlierkamp-Voosen, D. (1994). The science of breeding and its
application to the breeder genetic algorithm. Evolutionary Com
putation, 1:335-360.

[Muller, 1932] Muller, H. J. (1932). Some genetic aspects of sex. The
American Naturalist, 66:118-138.

[Mulloy et al., 1996] Mulloy, B. S., Riolo, R. L., and Savit, R. S.
(1996). Dynamics of genetic programming and chaotic time series
prediction. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and
Riolo, R. L., editors, Genetic Programming 1996: Proceedings of
the First Annual Conference, pages 166-174, Stanford University,
CA. MIT Press, Cambridge, MA.

[Ngo and Marks, 1993] Ngo, J. and Marks, J. (1993). Physically re
alistic motion synthesis in animation. Evolutionary Computation,
l(3):235-268.

[Nguyen and Huang, 1994] Nguyen, T. and Huang, T. (1994). Evolv-
able 3D modeling for model-based object recognition systems. In
Kinnear, Jr., K. E., editor, Advances in Genetic Programming,
chapter 22, pages 459-475. MIT Press, Cambridge, MA.

[Nguyen et al., 1993] Nguyen, T. C , Goldberg, D. S., and Huang,
T. S. (1993). Evolvable modeling: structural adaptation through
hierarchical evolution for 3-D model-based vision. Technical report,
Beckman Institute and Coordinated Science Laboratory, Univer
sity of Illinois, Urbana, IL.

[Nilsson, 1971] Nilsson, N. (1971). Problem-Solving Methods in Ar
tificial Intelligence. McGraw-Hill, New York.

[Nordin, 1997] Nordin, J. (1997). Evolutionary Program Induction of
Binary Machine Code and its Application. Krehl-Verlag, Miinster,
Germany.

[Nordin, 1994] Nordin, P. (1994). A compiling genetic programming
system that directly manipulates the machine code. In Kinnear,
Jr., K. E., editor, Advances in Genetic Programming, chapter 14,
pages 311-331. MIT Press, Cambridge, MA.

[Nordin and Banzhaf, 1995a] Nordin, P. and Banzhaf, W. (1995a).
Complexity compression and evolution. In Eshelman, L., editor,
Genetic Algorithms: Proceedings of the Sixth International Con
ference (ICGA95), pages 310-317, Pittsburgh, PA. Morgan Kauf-
mann, San Francisco, CA.

[Nordin and Banzhaf, 1995b] Nordin, P. and Banzhaf, W. (1995b).
Evolving Turing-complete programs for a register machine with
self-modifying code. In Eshelman, L., editor, Genetic Algorithms:
Proceedings of the Sixth International Conference (ICGA95), pages
318-325, Pittsburgh, PA. Morgan Kaufmann, San Francisco, CA.

[Nordin and Banzhaf, 1995c] Nordin, P. and Banzhaf, W. (1995c).
Genetic programming controlling a miniature robot. In Siegel,
E. V. and Koza, J. R., editors, Working Notes for the AAAI Sym
posium on Genetic Programming, pages 61-67, MIT, Cambridge,
MA. AAAI, Menlo Park, CA.

[Nordin and Banzhaf, 1996] Nordin, P. and Banzhaf, W. (1996). Pro
grammatic compression of images and sound. In Koza, J. R., Gold
berg, D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic Pro-

gramming 1996: Proceedings of the First Annual Conference, pages
345-350, Stanford University, CA. MIT Press, Cambridge, MA.

[Nordin and Banzhaf, 1997a] Nordin, P. and Banzhaf, W. (1997a).
Genetic reasoning - evolving proofs with genetic search. In Koza,
J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and
Riolo, R. L., editors, Genetic Programming 1997: Proceedings of
the Second Annual Conference, July 13-16, Stanford University,
Stanford, CA. Morgan Kaufmann, San Francisco, CA.

[Nordin and Banzhaf, 1997b] Nordin, P. and Banzhaf, W. (1997b).
An on-line method to evolve behavior and to control a miniature
robot in real time with genetic programming. Adaptive Behavior,
5:107-140.

[Nordin and Banzhaf, 1997c] Nordin, P. and Banzhaf, W. (1997c).
Real time control of a khepera robot using genetic programming.
Control and Cybernetics, 26 (3).

[Nordin et al., 1995] Nordin, P., Francone, F., and Banzhaf, W.
(1995). Explicitly defined introns and destructive crossover in ge
netic programming. In Rosea, J. P., editor, Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World
Applications, pages 6-22, Tahoe City, CA.

[Nordin et al., 1996] Nordin, P., Francone, F., and Banzhaf, W.
(1996). Explicitly defined introns and destructive crossover in ge
netic programming. In Angeline, P. J. and Kinnear, Jr., K. E.,
editors, Advances in Genetic Programming 2, chapter 6, pages 111-
134. MIT Press, Cambridge, MA.

[Oakley, 1993] Oakley, E. H. N. (1993). Signal filtering and data
processing for laser rheometry. Technical report, Institute of Naval
Medicine, Portsmouth, UK.

[Oakley, 1994a] Oakley, E. H. N. (1994a). The application of gene
tic programming to the investigation of short, noisy, chaotic data
series. In Fogarty, T. C , editor, Evolutionary Computing, volume
865 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Germany.

[Oakley, 1994b] Oakley, E. H. N. (1994b). Two scientific applications
of genetic programming: Stack filters and non-linear equation fit
ting to chaotic data. In Kinnear, Jr., K. E., editor, Advances
in Genetic Programming, chapter 17, pages 369-389. MIT Press,
Cambridge, MA.

[Oakley, 1996] Oakley, E. H. N. (1996). Genetic programming, the
reflection of chaos, and the bootstrap: Towards a useful test for

chaos. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo,
R. L., editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 175-181, Stanford University, CA. MIT
Press, Cambridge, MA.

[Ohno, 1970] Ohno, S. (1970). Evolution by Gene Duplication.
Springer-Verlag, New York.

[Olmer et a l , 1996] Olmer, M., Banzhaf, W., and Nordin, P. (1996).
Evolving real-time behavior modules for a real robot with genetic
programming. In Proceedings of the international symposium on
robotics and manufacturing, Montpellier, France.

[Openshaw and Turton, 1994] Openshaw, S. and Turton, I. (1994).
Building new spatial interaction models using genetic program
ming. In Fogarty, T. C , editor, Evolutionary Computing, volume
865 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Germany.

[O'Reilly, 1995] O'Reilly, U.-M. (1995). An Analysis of Genetic Pro
gramming. PhD thesis, Carleton University, Ottawa-Carleton In
stitute for Computer Science, Ottawa, Ontario, Canada.

[O'Reilly and Oppacher, 1992] O'Reilly, U. M. and Oppacher, F.
(1992). The troubling aspects of a building block hypothesis for ge
netic programming. Working Paper 94-02-001, Santa Fe Institute,
Santa Fe, NM.

[O'Reilly and Oppacher, 1994a] O'Reilly, U.-M. and Oppacher, F.
(1994a). Program search with a hierarchical variable length rep
resentation: Genetic programming, simulated annealing and hill
climbing. In Davidor, Y., Schwefel, H.-P., and M R., editors, Par
allel Problem Solving from Nature - PPSN III.

[O'Reilly and Oppacher, 1994b] O'Reilly, U.-M. and Oppacher, F.
(1994b). Using building block functions to investigate a building
block hypothesis for genetic programming. Working Paper 94-02-
029, Santa Fe Institute, Santa Fe, NM.

[O'Reilly and Oppacher, 1995a] O'Reilly, U.-M. and Oppacher, F.
(1995a). Hybridized crossover-based search techniques for program
discovery. In Proceedings of the 1995 World Conference on Evolu
tionary Computation, volume 2, page 573, Perth, Australia.

[O'Reilly and Oppacher, 1995b] O'Reilly, U.-M. and Oppacher, F.
(1995b). The troubling aspects of a building block hypothesis for
genetic programming. In Whitley, L. D. and Vose, M. D., editors,
Foundations of Genetic Algorithms 3, pages 73-88, Estes Park,
CO. Morgan Kaufmann, San Francisco, CA.

[O'Reilly and Oppacher, 1996] O'Reilly, U.-M. and Oppacher, F.
(1996). A comparative analysis of GP. In Angeline, P. J. and
Kinnear, Jr., K. E., editors, Advances in Genetic Programming 2,
chapter 2, pages 23-44. MIT Press, Cambridge, MA.

[Orgel, 1979] Orgel, L. (1979). Selection in vitro. Proc. Royal Soc.
of London.

[Osborn et al., 1995] Osborn, T. R., Charif, A., Lamas, R., and Du-
bossarsky, E. (1995). Genetic logic programming. In 1995 IEEE
Conference on Evolutionary Computation, volume 2, page 728,
Perth, Australia. IEEE Press, New York.

[Oussaidene et al., 1996] Oussaidene, M., Chopard, B., Pictet, O. V.,
and Tomassini, M. (1996). Parallel genetic programming: An ap
plication to trading models evolution. In Koza, J. R., Goldberg,
D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic Programming
1996: Proceedings of the First Annual Conference, pages 357-380,
Stanford University, CA. MIT Press, Cambridge, MA.

[Park and Song, 1997] Park, Y. and Song, M. (1997). Genetic pro
gramming approach to sense clustering in natural language pro
cessing. In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon,
M., Iba, H., and Riolo, R. L., editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, page 261, Stanford
University, CA. Morgan Kaufmann, San Francisco, CA.

[Parzen, 1962] Parzen, E. (1962). On estimation of a probability
density function and mode. Annals of Mathematical Statistics,
33:1065-1076.

[Paterson and Livesey, 1997] Paterson, N. and Livesey, M. (1997).
Evolving caching algorithms in C by genetic programming. In
Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba,
H., and Riolo, R. L., editors, Genetic Programming 1997: Proceed
ings of the Second Annual Conference, pages 262-267, Stanford
University, CA. Morgan Kaufmann, San Francisco, CA.

[Pei et al., 1995] Pei, M., Goodman, E., Punch, W., and Ding, Y.
(1995). Further research on feature selection and classification us
ing genetic algorithms for classification and feature extraction. In
Proc. of the Annual Meeting of the Classification Society of North
America, Denver, CO.

[Perry, 1994] Perry, J. E. (1994). The effect of population enrichment
in genetic programming. In Proceedings of the 1994 IEEE World
Congress on Computational Intelligence, pages 456-461, Orlando,
FL. IEEE Press, New York.

[Poli and Cagnoni, 1997] Poli, R. and Cagnoni, S. (1997). Genetic
programming with user-driven selection: Experiments on the evo
lution of algorithms for image enhancement. In Koza, J. R., Deb,
K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L.,
editors, Genetic Programming 1997: Proceedings of the Second An
nual Conference, pages 269-277, Stanford University, CA. Morgan
Kaufmann, San Francisco, CA.

[Poli and Langdon, 1997a] Poli, R. and Langdon, W. B. (1997a). An
experimental analysis of schema creation, propagation and disrup
tion in genetic programming. In Goodman, E., editor, Genetic
Algorithms: Proceedings of the Seventh International Conference,
Michigan State University, East Lansing, MI. Morgan Kaufmann,
San Francisco, CA.

[Poli and Langdon, 1997b] Poli, R. and Langdon, W. B. (1997b). A
new schema theory for genetic programming with one-point cross
over and point mutation. In Koza, J. R., Deb, K., Dorigo, M., Fo
gel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference,
pages 278-285, Stanford University, CA. Morgan Kaufmann, San
Francisco, CA.

[Prusinkiewicz and Lindenmayer, 1990] Prusinkiewicz, P. and Lin-
denmayer, A. (1990). The Algorithmic Beauty of Plants. Springer-
Verlag, New York.

[Punch et al., 1993] Punch, W., Goodman, E., and Pei, M. (1993).
Further research on feature selection and classification using gene
tic algorithms. In Proceedings of the Fifth International Conference
on Genetic Algorithms, ICGA-93, page 557. Morgan Kaufmann,
San Mateo, CA.

[Quinlan, 1979] Quinlan, J. (1979). Discovering rules by induction
from large collections of examples. In Michie, D., editor, In Expert
Systems in the Micro-electronic Age, pages 168-201. Edinburgh
University Press, Edinburgh, UK.

[Quinlan, 1993] Quinlan, J. (1993). C4-5: Programs for Machine
Learning. Morgan Kaufmann, San Francisco, CA.

[Qureshi, 1996] Qureshi, A. (1996). Evolving agents. Research Note
RN/96/4, UCL, University College London, Dept. of Computer
Science, London, UK.

[Rao and Rao, 1995] Rao, V. and Rao, H. (1995). C++, Neural Net
works and Fuzzy Logic. MIS:Press/M&T Books, New York, 2nd
edition.

[Raymer et al., 1996] Raymer, M. L., Punch, W. F., Goodman,
E. D., and Kuhn, L. A. (1996). Genetic programming for im
proved data mining: An application to the biochemistry of protein
interactions. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and
Riolo, R. L., editors, Genetic Programming 1996: Proceedings of
the First Annual Conference, pages 375-380, Stanford University,
CA. MIT Press, Cambridge, MA.

[Rechenberg, 1994] Rechenberg, I. (1994). Evolutionsstrategie '93.
Frommann Verlag, Stuttgart, Germany.

[Reynolds, 1992] Reynolds, C. W. (1992). An evolved, vision-based
behavioral model of coordinated group motion. In Meyer, J.-A. and
Wilson, S. W., editors, From Animals to Animats (Proceedings of
Simulation of Adaptive Behaviour). MIT Press, Cambridge, MA.

[Reynolds, 1994a] Reynolds, C. W. (1994a). Evolution of corridor
following behavior in a noisy world. In Simulation of Adaptive
Behaviour (SAB-94).

[Reynolds, 1994b] Reynolds, C. W. (1994b). Evolution of obstacle
avoidance behaviour: Using noise to promote robust solutions. In
Kinnear, Jr., K. E., editor, Advances in Genetic Programming,
chapter 10, pages 221-241. MIT Press, Cambridge, MA.

[Rissanen, 1984] Rissanen, J. (1984). Universal coding, information,
prediction and estimation. IEEE Transactions on Information
Theory, 30:629-636.

[Robinson and Mcllroy, 1995a] Robinson, G. and Mcllroy, P.
(1995a). Exploring some commercial applications of genetic pro
gramming. In Fogarty, T. C , editor, Evolutionary Computing, vol
ume 993 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Germany.

[Robinson and Mcllroy, 1995b] Robinson, G. and Mcllroy, P.
(1995b). Exploring some commercial applications of genetic pro
gramming. Project 4487, British Telecom, Systems Research Divi
sion, Martelsham, Ipswich, UK.

[Ronge, 1996] Ronge, A. (1996). Genetic programs and co-evolution.
Technical Report TRITA-NA-E9625, Stockholm University, Dept.
of Numerical Analysis and Computer Science.

[Rosea, 1995a] Rosea, J. (1995a). Towards automatic discovery of
building blocks in genetic programming. In Siegel, E. V. and Koza,
J. R., editors, Working Notes for the AAAI Symposium on Genetic
Programming, pages 78-85, MIT, Cambridge, MA. AAAI, Menlo
Park, CA.

[Rosea, 1995b] Rosea, J. P. (1995b). Entropy-driven adaptive repre
sentation. In Rosea, J. P., editor, Proceedings of the Workshop on
Genetic Programming: From Theory to Real-World Applications,
pages 23-32, Tahoe City, CA.

[Rosea, 1997] Rosea, J. P. (1997). Analysis of complexity drift in
genetic programming. In Koza, J. R., Deb, K., Dorigo, M., Fogel,
D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference,
pages 286-294, Stanford University, CA. Morgan Kaufmann, San
Francisco, CA.

[Rosea and Ballard, 1994a] Rosea, J. P. and Ballard, D. H. (1994a).
Genetic programming with adaptive representations. Technical Re
port TR 489, University of Rochester, Computer Science Depart
ment, Rochester, NY.

[Rosea and Ballard, 1994b] Rosea, J. P. and Ballard, D. H. (1994b).
Learning by adapting representations in genetic programming. In
Proceedings of the 1994 IEEE World Congress on Computational
Intelligence, Orlando, FL, Orlando, FL. IEEE Press, New York.

[Rose, 1994] Rose, A. (1994). Determining the intron sequences re
quired to enhance gene expression. Summary of Presentation 1-25,
University of California at Davis, Molecular and Cellular Biology,
University of California at Davis, CA.

[Ross et al., 1996] Ross, S. J., Daida, J. M., Doan, C. M., Bersano-
Begey, T. F., and McClain, J. J. (1996). Variations in evolution of
subsumption architectures using genetic programming: The wall
following robot revisited. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., and Riolo, R. L., editors, Genetic Programming 1996: Pro
ceedings of the First Annual Conference, pages 191-199, Stanford
University, CA. MIT Press, Cambridge, MA.

[Rost and Sander, 1993] Rost, B. and Sander, C. (1993). Prediction
of protein secondary structure at better than 70% accuracy. J.
Mol. Biol, 232:584-599.

[Rush et al., 1994] Rush, J. R., Fraser, A. P., and Barnes, D. P.
(1994). Evolving co-operation in autonomous robotic systems.
In Proceedings of the IEE International Conference on Control,
March 21-24, 1994, London. IEE, London, UK.

[Ryan, 1994] Ryan, C. (1994). Pygmies and civil servants. In Kin-
near, Jr., K. E., editor, Advances in Genetic Programming, chap
ter 11, pages 243-263. MIT Press, Cambridge, MA.

[Ryan and Walsh, 1997] Ryan, C. and Walsh, P. (1997). The evo
lution of provable parallel programs. In Koza, J. R., Deb, K.,
Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L.,
editors, Genetic Programming 1997: Proceedings of the Second An
nual Conference, pages 295-302, Stanford University, CA. Morgan
Kaufmann, San Francisco, CA.

[Ryu and Eick, 1996] Ryu, T.-W. and Eick, C. F. (1996). MASSON:
discovering commonalties in collection of objects using genetic pro
gramming. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo,
R. L., editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 200-208, Stanford University, CA. MIT
Press, Cambridge, MA.

[Samuel, 1963] Samuel, A. (1963). Sone studies in machine learning
using the game of checkers. In Feigenbaum, E. and Feldman, J.,
editors, Computers and Thought. McGraw-Hill, New York.

[Sankoff and Kruskal, 1983] Sankoff, S. and Kruskal, J. (1983). Time
Warps, String Edits and Macromokcules: The Theory and Prac
tice of Sequence Comparison. Addison-Wesley, Reading, MA.

[Schoenauer et al., 1995] Schoenauer, M., Lamy, B., and Jouve, F.
(1995). Identification of mechanical behaviour by genetic program
ming part II: Energy formulation. Technical report, Ecole Poly-
technique, 91128 Palaiseau, France.

[Schoenauer et al., 1996] Schoenauer, M., Sebag, M., Jouve, F.,
Lamy, B., and Maitournam, H. (1996). Evolutionary identification
of macro-mechanical models. In Argeline, P. J. and Kinnear, Jr.,
K. E., editors, Advances in Genetic Programming 2, chapter 23,
pages 467-488. MIT Press, Cambridge, MA.

[Schwefel, 1995] Schwefel, H.-P. (1995). Evolution and Optimum
Seeking. Sixth-Generation Computer Technology Series. John Wi
ley & Sons, New York.

[Schwefel and Rudolph, 1995] Schwefel, H.-P. and Rudolph, G.
(1995). Contemporary evolution strategies. In Advances in Ar
tificial Life, pages 893-907. Springer-Verlag, Berlin.

[Sedgewick, 1992] Sedgewick, R. (1992). Algorithms in Pascal.
Addison-Wesley, Reading, MA.

[Segovia and Isasi, 1997] Segovia, J. and Isasi, P. (1997). Genetic
programming for designing ad hoc neural network learning rules.
In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M.,
Iba, H., and Riolo, R. L., editors, Genetic Programming 1997:

Proceedings of the Second Annual Conference, page 303, Stanford
University, CA. Morgan Kaufrnann, San Francisco, CA.

[Sharman and Esparcia-Alcazar, 1993] Sharman, K. C. and
Esparcia-Alcazar, A. I. (1993). Genetic evolution of sym
bolic signal models. In Proceedings of the Second International
Conference on Natural Algorithms in Signal Processing, NASP'93,
Essex University.

[Sherrah et al., 1997] Sherrah, J. R., Bogner, R. E., and Bouzer-
doum, A. (1997). The evolutionary pre-processor: Automatic fea
ture extraction for supervised classification using genetic program
ming. In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Gar-
zon, M., Iba, H., and Riolo, R. L., editors, Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 304-
312, Stanford University, CA. Morgan Kaufmann, San Francisco,
CA.

[Siegel, 1994] Siegel, E. V. (1994). Competitively evolving decision
trees against fixed training cases for natural language processing.
In Kinnear, Jr., K. E., editor, Advances in Genetic Programming,
chapter 19, pages 409-423. MIT Press, Cambridge, MA.

[Sims, 1991a] Sims, K. (1991a). Artificial evolution for computer
graphics. Technical Report TR-185, Thinking Machines Corpo
ration, CA.

[Sims, 1991b] Sims, K. (1991b). Artificial evolution for computer
graphics. ACM Computer Graphics, 25(4):319-328. SIGGRAPH
'91 Proceedings.

[Sims, 1992a] Sims, K. (1992a). Interactive evolution of dynamical
systems. In Varela, F. J. and Bourgine, P., editors, Toward a
Practice of Autonomous Systems: Proceedings of the First Euro
pean Conference on Artificial Life, pages 171-178, Paris, France.
MIT Press, Cambridge, MA.

[Sims, 1992b] Sims, K. (1992b). Interactive evolution of equations
for procedural models. In Proceedings of IMAGINA conference,
Monte Carlo, January 29-31, 1992.

[Sims, 1993a] Sims, K. (1993a). Evolving images. Lecture. Presented
at Centre George Pompidou, Paris on March 4, 1993.

[Sims, 1993b] Sims, K. (1993b). Interactive evolution of equations
for procedural models. The Visual Computer, 9:466-476.

[Sims, 1994] Sims, K. (1994). Evolving 3D morphology and behavior
by competition. In Brooks, R. and Maes, P., editors, Proc. Artifi-

cial Life IV, pages 28-39, Cambridge, MA. MIT Press, Cambridge,
MA.

[Smith, 1996] Smith, P. (1996). Conjugation - A bacterially inspired
form of genetic recombination. In Koza, J. R., editor, Late Breaking
Papers at the Genetic Programming 1996 Conference, pages 167-
176, Stanford University, CA. Stanford Bookstore, Stanford, CA.

[Smith, 1980] Smith, S. F. (1980). A Learning System Based on Ge
netic Adaptive Algorithms. University of Pittsburgh.

[Soule and Foster, 1997a] Soule, T. and Foster, J. (1997a). Code size
and depth flows in genetic programming. In Koza, J., Deb, K.,
Dorigo, M., Fogel, D., Garzon, M., Iba, H., and Riolo, R., edi
tors, Genetic Programming 1997: Proceedings of the Second An
nual Conference, July 13-16, 1997, pages 313-320, Stanford Uni
versity, Stanford, CA. Morgan Kaufmann, San Francisco, CA.

[Soule and Foster, 1997b] Soule, T. and Foster, J. A. (1997b). Code
size and depth flows in genetic programming. In Koza, J. R., Deb,
K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo,
R. L., editors, Genetic Programming 1997: Proceedings of the Sec
ond Annual Conference, pages 313-320, Stanford University, Stan
ford, CA. Morgan Kaufmann, San Francisco, CA.

[Soule et al., 1996] Soule, T., Foster, J. A., and Dickinson, J. (1996).
Code growth in genetic programming. In Koza, J. R., Goldberg,
D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic Programming
1996: Proceedings of the First Annual Conference, pages 215-223,
Stanford University, CA. MIT Press, Cambridge, MA.

[Specht, 1990] Specht, D. (1990). Probabilistic neural networks. Neu
ral Networks, 3:109-118.

[Specht, 1991] Specht, D. (1991). A general regression neural net
work. IEEE Transactions on Neural Networks, 2:568-576.

[Spector, 1994] Spector, L. (1994). Genetic programming and AI
planning systems. In Proceedings of Twelfth National Confer
ence on Artificial Intelligence, Seattle, WA. AAAI, Menlo Park,
CA/MIT Press, Cambridge, MA.

[Spector, 1996] Spector, L. (1996). Simultaneous evolution of pro
grams and their control structures. In Angeline, P. J. and Kinnear,
Jr., K. E., editors, Advances in Genetic Programming 2, chapter 7,
pages 137-154. MIT Press, Cambridge, MA.

[Spector and Alpern, 1994] Spector, L. and Alpern, A. (1994). Crit
icism, culture, and the automatic generation of artworks. In Pro
ceedings of Twelfth National Conference on Artificial Intelligence,

pages 3-8, Seattle, WA. AAAI, Menlo Park, CA/MIT Press, Cam
bridge, MA.

[Spector and Alpern, 1995] Spector, L. and Alpern, A. (1995). In
duction and recapitulation of deep musical structure. In Proceed
ings of International Joint Conference on Artificial Intelligence,
IJCAI'95 Workshop on Music and AI, Montreal, Quebec, Canada.

[Spector and Luke, 1996a] Spector, L. and Luke, S. (1996a). Cul
tural transmission of information in genetic programming. In Koza,
J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors, Ge
netic Programming 1996: Proceedings of the First Annual Confer
ence, pages 209-214, Stanford University, CA. MIT Press, Cam
bridge, MA.

[Spector and Luke, 1996b] Spector, L. and Luke, S. (1996b). Culture
enhances the evolvability of cognition. In Cottrell, G., editor, Pro
ceedings of the Eighteenth Annual Conference of the Cognitive Sci
ence Society, pages 672-677. Lawrence Erlbaum Associates, Mah-
wah, NJ.

[Spector and Stoffel, 1996a] Spector, L. and Stoffel, K. (1996a). Au
tomatic generation of adaptive programs. In Maes, P., Mataric,
M. J., Meyer, J.-A., Pollack, J., and Wilson, S. W., editors, Pro
ceedings of the Fourth International Conference on Simulation of
Adaptive Behavior: From Animals to Animats 4, pages 476-483,
Cape Code. MIT Press, Cambridge, MA.

[Spector and Stoffel, 1996b] Spector, L. and Stoffel, K. (1996b). On
togenetic programming. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., and Riolo, R. L., editors, Genetic Programming 1996: Pro
ceedings of the First Annual Conference, pages 394-399, Stanford
University, CA. MIT Press, Cambridge, MA.

[Spencer, 1993] Spencer, G. F. (1993). Automatic generation of pro
grams for crawling and walking. In Forrest, S., editor, Proceedings
of the 5th International Conference on Genetic Algorithms, ICGA-
93, page 654, University of Illinois at Urbana-Champaign. Morgan
Kaufmann, San Francisco, CA.

[Spencer, 1994] Spencer, G. F. (1994). Automatic generation of pro
grams for crawling and walking. In Kinnear, Jr., K. E., editor, Ad
vances in Genetic Programming, chapter 15, pages 335-353. MIT
Press, Cambridge, MA.

[Stansifer, 1995] Stansifer, R. (1995). The Study of Programming
Languages. Prentice Hall, Englewood Cliffs, NJ.

[Stillger and Spiliopoulou, 1996] Stillger, M. and Spiliopoulou, M.
(1996). Genetic programming in database query optimization. In
Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., edi
tors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 388-393, Stanford University, CA. MIT Press,
Cambridge, MA.

[Stoffel and Spector, 1996] Stoffel, K. and Spector, L. (1996). High-
performance, parallel, stack-based genetic programming. In Koza,
J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors,
Genetic Programming 1996: Proceedings of the First Annual Con
ference, pages 224-229, Stanford University, CA. MIT Press, Cam
bridge, MA.

[Tackett, 1993] Tackett, W. A. (1993). Genetic programming for fea
ture discovery and image discrimination. In Forrest, S., editor,
Proceedings of the 5th International Conference on Genetic Algo
rithms, ICGA-93, pages 303-309, University of Illinois at Urbana-
Champaign. Morgan Kaufmann, San Francisco, CA.

[Tackett, 1994] Tackett, W. A. (1994). Recombination, Selection, and
the Genetic Construction of Computer Programs. PhD thesis, Uni
versity of Southern California, Department of Electrical Engineer
ing Systems.

[Tackett, 1995] Tackett, W. A. (1995). Mining the genetic program.
IEEE Expert, 10(3):28-38.

[Tackett and Carmi, 1994] Tackett, W. A. and Carmi, A. (1994).
The donut problem: Scalability and generalization in genetic pro
gramming. In Kinnear, Jr., K. E., editor, Advances in Genetic
Programming, chapter 7, pages 143-176. MIT Press, Cambridge,
MA.

[Taylor, 1995] Taylor, S. N. (1995). Evolution by genetic program
ming of a spatial robot juggling control algorithm. In Rosea,
J. P., editor, Proceedings of the Workshop on Genetic Program
ming: From Theory to Real-World Applications, pages 104-110,
Tahoe City, CA.

[Teller, 1993] Teller, A. (1993). Learning mental models. In Pro
ceedings of the Fifth Workshop on Neural Networks: An Inter
national Conference on Computational Intelligence: Neural Net
works, Fuzzy Systems, Evolutionary Programming, and Virtual Re
ality, San Francisco, CA.

[Teller, 1994a] Teller, A. (1994a). The evolution of mental models.
In Kinnear, Jr., K. E., editor, Advances in Genetic Programming,
chapter 9, pages 199-219. MIT Press, Cambridge, MA.

[Teller, 1994b] Teller, A. (1994b). Genetic programming, indexed
memory, the halting problem, and other curiosities. In Proceedings
of the 7th annual Florida Artificial Intelligence Research Sympo
sium, pages 270-274, Pensacola, FL. IEEE Press, New York.

[Teller, 1994c] Teller, A. (1994c). Turing completeness in the lan
guage of genetic programming with indexed memory. In Proceed
ings of the 1994 IEEE World Congress on Computational Intelli
gence, volume 1, pages 136-141, Orlando, FL. IEEE Press, New
York.

[Teller, 1996] Teller, A. (1996). Evolving programmers: The co-
evolution of intelligent recombination operators. In Angeline, P. J.
and Kinnear, Jr., K. E., editors, Advances in Genetic Programming
2, chapter 3, pages 45-68. MIT Press, Cambridge, MA.

[Teller and Veloso, 1995a] Teller, A. and Veloso, M. (1995a). A con
trolled experiment: Evolution for learning difficult image classifica
tion. In Seventh Portuguese Conference On Artificial Intelligence,
volume 990 of Lecture Notes in Computer Science, pages 165-176,
Funchal, Madeira Island, Portugal. Springer-Verlag, Berlin, Ger
many.

[Teller and Veloso, 1995b] Teller, A. and Veloso, M. (1995b). PADO:
Learning tree structured algorithms for orchestration into an ob
ject recognition system. Technical Report CMU-CS-95-101, De
partment of Computer Science, Carnegie Mellon University, Pitts
burgh, PA.

[Teller and Veloso, 1995c] Teller, A. and Veloso, M. (1995c). Pro
gram evolution for data mining. The International Journal of Ex
pert Systems, 8(3):216-236.

[Teller and Veloso, 1996] Teller, A. and Veloso, M. (1996). PADO:
A new learning architecture for object recognition. In Ikeuchi, K.
and Veloso, M., editors, Symbolic Visual Learning, pages 81-116.
Oxford University Press, Oxford, UK.

[Thedens, 1994] Thedens, D. R. (1994). Detector design by genetic
programming for automated border definition in cardiac magnetic
resonance images. In Koza, J. R-, editor, Genetic Algorithms at
Stanford 1994, pages 170-179. Stanford Bookstore, Stanford, CA.

[Tuerk and Gold, 1990] Tuerk, C. and Gold, L. (1990). Systematic
evolution of ligands by exponential enrichment. Science, 249:505-
510.

[Turing, 1936] Turing, A. M. (1936). On computable numbers, with
an application to the Entscheidungsproblem. Proc. London Math.
Soc, 42:230-265.

[Veach, 1996] Veach, M. S. (1996). Recognition and reconstruction
of visibility graphs using a genetic algorithm. In Koza, J. R., Gold
berg, D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic Pro
gramming 1996: Proceedings of the First Annual Conference, pages
491-498, Stanford University, CA. MIT Press, Cambridge, MA.

[von Neumann and Morgenstern, 1944] von Neumann, J. and Mor-
genstern, O. (1944). Theory of Games and Economic Behavior.
Princeton University Press, Princeton, NJ.

[Walker et al., 1995] Walker, R. F., Haasdijk, E. W., and Gerrets,
M. C. (1995). Credit evaluation using a genetic algorithm. In
Goonatilake, S. and Treleaven, P., editors, Intelligent Systems for
Finance and Business, chapter 3, pages 39-59. John Wiley & Sons,
New York.

[Walsh and Ryan, 1996] Walsh, P. and Ryan, C. (1996). Paragen: A
novel technique for the autoparallelisation of sequential programs
using genetic programming. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., and Riolo, R. L., editors, Genetic Programming 1996: Pro
ceedings of the First Annual Conference, pages 406-409, Stanford
University, CA. MIT Press, Cambridge, MA.

[Watson et al., 1987] Watson, J. D., Hopkins, N. H., Roberts, J. W.,
Steitz, J. A., and Weiner, A. M. (1987). Molecular Biology of the
Gene. Benjamin-Cummings, Menlo Park, CA.

[Whigham, 1995a] Whigham, P. A. (1995a). Grammatically-based
genetic programming. In Rosea, J. P., editor, Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World
Applications, pages 33-41, Tahoe City, CA.

[Whigham, 1995b] Whigham, P. A. (1995b). Inductive bias and ge
netic programming. In Zalzala, A. M. S., editor, First International
Conference on Genetic Algorithms in Engineering Systems: Inno
vations and Applications, GALESIA, volume 414, pages 461-466,
Sheffield, UK. IEE, London, UK.

[Whigham, 1995c] Whigham, P. A. (1995c). A schema theorem for
context-free grammars. In 1995 IEEE Conference on Evolutionary

Computation, volume 1, pages 178-181, Perth, Australia. IEEE
Press, New York.

[Whigham and McKay, 1995] Whigham, P. A. and McKay, R. I.
(1995). Genetic approaches to learning recursive relations. In
Yao, X., editor, Progress in Evolutionary Computation, volume 956
of Lecture Notes in Artificial Intelligence, pages 17-27. Springer-
Verlag, Berlin, Germany.

[White and Sofge, 1992] White, D. and Sofge, D. E. (1992). Hand
book of Intelligent Control. Neural, Fuzzy and Adaptive Ap
proaches. Van Nostrand Reinhold, New York.

[Whitley, 1989] Whitley, D. (1989). The genitor algorithm and selec
tion pressure: Why rank-based allocation of reproductive trials is
best. In Schaffer, J. D., editor, Proc. 3rd Int. Conference on Gene
tic Algorithms, pages 116-121, San Mateo, CA. Morgan Kaufmann,
San Francisco, CA.

[Wilhelms, 1990] Wilhelms, J. (1990). Dynamics for computer graph
ics: A tutorial. In ACM Siggraph'90 Course Notes, chapter 8, pages
85-115. Dallas Convention Center, TX.

[Wineberg and Oppacher, 1994] Wineberg, M. and Oppacher, F.
(1994). A representation scheme to perform program induction
in a canonical genetic algorithm. In Davidor, Y., Schwefel, H.-
P., and M R., editors, Parallel Problem Solving from Nature III,
volume 866 of Lecture Notes in Computer Science.

[Wineberg and Oppacher, 1996] Wineberg, M. and Oppacher, F.
(1996). The benefits of computing with introns. In Koza, J. R.,
Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors, Genetic
Programming 1996: Proceedings of the First Annual Conference,
pages 410-415, Stanford University, CA. MIT Press, Cambridge,
MA.

[Winkeler and Manjunath, 1997] Winkeler, J. F. and Manjunath,
B. S. (1997). Genetic programming for object detection. In Koza,
J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and
Riolo, R. L., editors, Genetic Programming 1997: Proceedings of
the Second Annual Conference, pages 330-335, Stanford Univer
sity, CA. Morgan Kaufmann, San Francisco, CA.

[Wong and Leung, 1996] Wong, M. L. and Leung, K. S. (1996).
Evolving recursive functions for the even-parity problem using ge
netic programming. In Angeline, P. J. and Kinnear, Jr., K. E.,
editors, Advances in Genetic Programming 2, chapter 11, pages
221-240. MIT Press, Cambridge, MA.

[Yourdon and Constantine, 1979] Yourdon, E. and Constantine, L.
(1979). Structured Design: Fundamentals of a Discipline of Com
puter Program and Systems Design. Prentice Hall, Englewood
Cliffs, NJ.

[Zannoni and Reynolds, 1996] Zannoni, E. and Reynolds, R. (1996).
Extracting design knowledge from genetic programs using cultural
algorithms. In Fogel, L., Angeline, P., and Back, T., editors, Pro
ceedings of the Fifth Evolutionary Programming Conference, San
Diego, CA, 1996, Cambridge, MA. MIT Press, Cambridge, MA.

[Zhang et al., 1996] Zhang, B.-T., Kwak, J.-H., and Lee, C.-H.
(1996). Building software agents for information filtering on the
internet: A genetic programming approach. In Koza, J. R., edi
tor, Late Breaking Papers at the Genetic Programming 1996 Con
ference, page 196, Stanford University, CA. Stanford Bookstore,
Stanford, CA.

[Zhang and Muehlenbein, 1994] Zhang, B.-T. and Muehlenbein, H.
(1994). Synthesis of sigma-pi neural networks by the breeder ge
netic programming. In Proceedings of IEEE International Con
ference on Evolutionary Computation (ICEC-94), World Congress
on Computational Intelligence, pages 318-323, Orlando, FL. IEEE
Computer Society Press.

[Zhang and Muehlenbein, 1995] Zhang, B.-T. and Muehlenbein, H.
(1995). Balancing accuracy and parsimony in genetic program
ming. Evolutionary Computation, 3(l):17-38.

[Zhang and Miihlenbein, 1996] Zhang, B.-T. and Miihlenbein, H.
(1996). Adaptive fitness functions for dynamic growing/pruning of
program trees. In Angeline, P. J. and Kinnear, Jr., K. E., editors,
Advances in Genetic Programming 2, chapter 12, pages 241-256.
MIT Press, Cambridge, MA.

[Zhao et al., 1996] Zhao, J., Kearney, G., and Soper, A. (1996). Emo
tional expression classification by genetic programming. In Koza,
J. R., editor, Late Breaking Papers at the Genetic Programming
1996 Conference, pages 197-202, Stanford University, CA. Stan
ford Bookstore, Stanford, CA.

[Zomorodian, 1995] Zomorodian, A. (1995). Context-free language
induction by evolution of deterministic push-down automata using
genetic programming. In Siegel, E. V. and Koza, J. R., editors,
Working Notes for the A A Al Symposium on Genetic Programming,
pages 127-133, MIT, Cambridge, MA. AAAI, Menlo Park, CA.

Person Index

A C

Altenberg, L., 28, 144, 156,158,
163, 170

Anderson, C , 29
Andre, D., 187, 188, 196, 208,

280, 370
Angeline, P.J., 6, 27, 129, 155,

165, 170, 176, 181-183,
185-187, 196, 198

Aspray, W., 76

B

Baker, J.E., 131, 132
Ballard, D., 228
Banzhaf, W., 11, 22, 46, 79,

114, 118, 151, 152, 155,
156, 160, 164, 182, 188,
206, 209, 222, 225, 228,
250

Barnes, J., 77
Barto, A., 29
Barton, G., 163
Bayes, T., 20
Belady, L., 59
Bennett, F., 208
Bernoulli, D., 65
Beyer, H.-G., 99
Biethahn, J., 9
Blickle, T., 131
Brave, S., 48
Bremermann, H., 90, 91
Bulmer, M., 132

Cacoullos, T., 20
Campbell-Kelly, M., 76
Celko, J., 77
Charif, A., 79
Clarke, A., 381
Cramer, N.L., 101
Cray, S., 75
Crow, J., 132

D

D'haeseleer, P., 162
Darwin, C , 35, 94, 99, 108
Dasrathy, 361
Dawkins, R., 179, 296
deGaris, H., 75, 88, 161, 267
Dick Tracy, 15
Dickinson, J., 101, 182, 188
Dickmanns, D., 101
Dubossarsky, E., 79
Dunham, B., 7
Dupre, J., 91

E

Ehlers, J., 213
Eigen, M., 34, 37, 59, 180
Euler, L., 368

F

Feller, W., 63
Fermat, P., 60
Flik, T., 73
Fogel, D., 101
Fogel, L., 100
Foster, J., 170, 182, 188
Francone, F.D., 11, 46, 151,153,

156, 164, 182, 188, 206,
209, 222, 225, 228

Friedberg, R., 7, 88, 89, 384
Friedrich, J., 114
Fujiki, C , 101

G

Gatherole, C , 160
Gauss, C., 65
Gelatt, C., 26
Gerrets, M., 235
Gold, L., 38
Goldberg, D., 21, 144
Grefenstette, J., 131, 132
Gritz, L., 373-375
Gruau, F., 46, 48, 265-267, 372

H

Haasdijk, E., 235
Hahn, J.K., 373-375
Haigh, J., 54
Handley, S., 349
Hanson, N., 229
Heisenberg, W., 90
Hicklin, J., 101

Hiden, H., 163
Hillis, D., 129, 380
Hinchcliffe, M., 163
Hirst, A., 75
Holland, J.H., 95, 97, 98, 101,

131, 144, 145, 189
Huelsbergen, L., 114

I

Iba, H., 161, 267, 269, 270, 307

J

Jacob, C., 240, 274
Jerne, N., 34
Johannsen, W., 45
Jones, T., 154
Juels, A., 154
Juille, H., 304

K

Keith, M.J., 79, 319, 325-327
Keller, R.E., 46, 79, 155, 222,

250
Kernighan, B., 77
Kimura, M., 42, 132
Kinnear, K.E., 114, 135, 176,

185, 186, 370
Kirkerud, B., 77
Kirkpatrick, S., 26
Knuth, D., 61, 62

Kohonen, T., 29
Kolmogorov, A., 63, 70
Koza, J.R., 5, 21, 24, 25, 46,

54, 59, 79, 88, 101,
102, 108, 119, 120, 131,
144, 146, 180, 181, 204,
208, 209, 214, 217, 220,
240, 274, 279, 287, 288,
311, 316, 336

Kruskal, J.B., 155, 167

L

Lamas, R., 79
Lang, K., 144, 153, 154
Langdon, W., 102
Langley, P., 13, 14, 23, 27
Lehman, M., 59
Lehmer, D., 61
Lem, S., 4
Levenshtein, A., 221
Li, M., 71, 229
Liebig, H., 73
Lindenmayer, A., 273
Lohmann, R., 100
Luke, S., 296, 383

M

Miihlenbein, H., 132, 302
Martin, M.C., 79, 319, 325-327
Masters, T., 20, 214
Maynard Smith, J., 35, 37, 46,

49, 51, 185
McKay, B., 163
McPhee, N.F., 182
Meisel, W., 20

Michalewicz, Z., 97
Mitchell, T., 4
Morgan, J., 77
Morgenstern, O., 304
Muller, H., 54

N

Nissen, V., 9
Nordin,P. , l l ,22,46, 114, 118,

151, 152, 156, 160, 164,
170, 182,187,188,196,
206, 209, 222, 225, 228,
315

North, J., 7

o
O'Reilly, U.-M., 27, 144, 146,

154, 155
Oakley, E.H.N., 212, 337
Oppacher, F., 27, 144, 146, 155,

177, 248
Orgel, L., 35, 47
Osborn, T., 79
Owens, A., 100

P

Parzen, E., 20
Pascal, B., 60
Planck, M., 90
Pollack, J.B., 129, 304

Prusinkiewicz, P., 273

Q

Quinlan, J., 20
Qureshi, A., 102, 383

R

Rao, H., 24
Rao, V., 24
Rechenberg, I., 98, 132
Reitman, J.S., 98
Reynolds, R., 161
Richie, D., 77
Rosea, J.P., 182, 188, 190, 223,

228, 291
Ross, P., 160
Russel, B., 88

s

Samuel, A., 4
Sankoff, S., 155, 167
Sato, T., 267
Schlierkamp-Voosen, D., 132
Schmidhuber, J., 101
Schonfelder, J., 77
Schwefel, H.-P., 98, 99, 132
Sedgewick, R., 77
Smith, P., 165
Smith, S., 98, 101
Sofge, D., 9

Soule, T., 170, 182, 188
Specht, D., 20
Spector, L., 296, 301, 306
Spencer, G.F., 370
Stanisfer, R., 78
Sutton, R., 29

T

Tackett, W.A., 28, 158, 182,
218

Teller, A., 22, 68, 116, 124,153,
161,188, 225, 228, 265,
266, 319, 362

Tham, M., 163
Thiele, L., 131
Tondo, C , 77
Tuerk, C , 38
Turing, A., 67, 88

V

Vecchi, M., 26
Veloso, M., 116, 161, 265, 266,

362
Vitanyi, P., 71
von Neumann, J., 58, 72, 73,

75, 77-79, 82, 304

w
Wadlow, R.R, 81
Walker, R., 235

Walsh, M., 100
Watson, J., 41-44, 48, 49, 51,

58
Wattenberg, M., 154
Whigham, P., 147, 181, 270
White, D., 9
Whitley, D., 132
Willis, M., 163
Wineberg, M., 177, 187, 248
Winklhofer, A., 101

Z

Zannoni, E., 161
Zhang, B.-T., 302

•

Subject Index

acceleration
run, 279

acid
amino, 40, 41, 350
deoxyribonucleic, 39
ribonucleic, 35-37

acquisition
module, 286, 289, 290

activation
block, 227, 291

adaptation
self, 99, 101

addition
gene, 163

adenine, 40
ADF, 274, 286, 287
ADSN, 357
agent

artificial, 374
software

autonomous, 358
AIMGP, 114, 120, 228, 332
AIMGP

buffer in, 333
crossover in, 334
footer in, 333
function body in, 333
header in, 333
mutation in, 334
return instruction in, 333

algorithm, 341
algorithm

basic, 278
evolutionary, 88
evolutionary

basic, 89, 92

genetic, 95, 343, 347
GP

generational, 134
steady state, 134

ID3, 20
learning, 12
logic network

adaptive, 307
search, 384
search

general-purpose, 305
special-purpose, 306

SELEX, 384
allele, 43
allocation

memory, 320
ALN, 307
analysis, 209
analysis

components
principal, 210

data
online, 219

animation
figure, 373

annealing
simulated, 26
simulated

mutate-, 154
application, 240
application

commercial, 383
control, 363
financial, 341
real-world, 8

approach
developmental, 266
evolutionary

co-, 266
genetic programming, 300
genetic programming

developmental, 300
hybrid, 305

arc, 265
argument

function, 271
arity, 109
array, 81, 320, 324, 326-328
array

generic, 320
art, 341
average

moving
exponential, 212
simple, 212

avoiding
obstacle, 343

axis
body, 368
eigen, 368, 369

B

background
biological, 380
computer science, 380
mathematics, 380

backpropagation, 27
balance

crossover/mutation, 337
banking

gene, 219
base pair, 34, 37, 39, 40
base pair

DNA, 40
beam, 27
behavior, 382
behavior

adaptive, 387
correct, 281
non-linear, 337, 381
program, 301

benchmarking, 208
BGP, 250
bias, 154
bibliography

genetic programming, 389
biotechnology, 341
bloat, 181, 195
block

activation of, 227
building, 144, 145, 148-150,

157, 160-162, 164, 165,
170, 171, 283

salient, 228, 291
Bootstrap, 235
box

black, 267
branch

axiom, 274
conditional, 362
definition

ADF, 285
function-defining, 284
result-producing, 284, 285

branching
conditional

"wet", 44
bridge component, 382
brood size, 159

c

C, 254, 284, 315, 319, 333
calculus

lambda, 78
candidate

solution, 89, 92, 101

cardinality, 21
carrier

function, 300
case

fitness, 127, 256, 264, 278,
280, 311, 331, 369

training, 10, 336
causality, 99
ceiling

time
aggregate computation,

294
cell

network
artificial neural, 355

CGPS, 114
change

fitness, 151
small, 249

checking
intron, 206
type, 298

chromosome, 92
chromosome

DNA, 44
chunk, 303
chunking, 303
circuitry, 357
class

result, 10
classification, 345
classification

Bayes/Parzen, 20
image, 362

classifier
K-nearest neighbor, 19

climbing
hill, 9, 26, 154
hill

crossover-, 154
parallel, 24

closure, 112, 278
clustering, 342
code

C
compiled, 315

cellular, 355
effective, 293
freezing of, 292
genetic, 253, 255
machine, 259, 280, 313, 317,

333
machine

automatic induction of
. . . with genetic pro
gramming, 332

native, 315
proportion of, 361
pseudo-, 328
useful, 288

codon, 40, 251, 255
coefficient

binomial, 61
correlation, 207

collection
garbage, 314

combination, 60
communication

inter-agent, 358
inter-leg, 371

completeness
Turing, 68

complexity, 39, 188, 387
complexity

absolute, 188
algorithmic, 70
effective, 188, 197
environmental, 283
Kolmogorov, 70
Kolmogorov-Chaitin, 70
program, 70

component
bridge, 382

compression, 227, 289
compression

image
programmatic, 303

computation

evolutionary, 387
evolutionary

general, 390
computing, 341
conjugation, 165
conjugation

. . . forGA, 165
Hfr, 49

conservation, 93
constant, 110, 112, 260, 264
constant

random ephemeral, 110
constructor, 79
constructor

set
function, 82

consumption
memory, 260

control
agent, 341
general, 341
process, 341
real-time, 371
robot, 341, 364
spacecraft, 341

controversy
crossover, 144

convergence, 278
correlation

cascade, 27
costumer

regular, 298
counting

intron, 226
criterion

termination
early, 279

crossover, 24, 94-96, 144, 154,
170, 194, 241, 242, 263,
269, 272, 292, 299, 320,
321, 323, 330, 334, 357,
370, 371, 382

crossover

biological, 156

complex, 320
constructive, 149, 153, 225
context preserving, 242
deflecting, 334
destructive, 153, 195, 225,

336, 381
difficulties of, 148
effect of, 151
effect of

measuring the, 151
negative, 153

GEMS, 263
genetic algorithm, 261
genetic programming, 157
graph, 124
headless chicken, 153, 154
homologous, 144
improvement of, 156
instruction, 334
intelligent, 161
intergene, 163
linear, 123
module, 242
neutral, 152, 153, 225
point

n-, 94
one-, 94, 96
two-, 94

postfix, 326
prefix, 328
preserving

strong context, 162
self, 242
smart, 162
structural protection against,

198
subtree exchange, 242
traditional genetic program

ming
macromutation emulated

by, 155
tree-based, 122

culture, 296
customer, 298

customer
average, 298

cybernetics
biological, 387

cycle
processor, 314

cytosine, 40

D

data
audit

system, 358
filtered, 213
noisy

overfitting of, 230
short-term, 324

defense
system

computer, 358
depth

maximum, 118
node, 118

design
algorithm, 351
circuit, 344
circuit

electrical, 372
electrical circuit

automatic, 371
detection

core
protein, 342

detector
intrusion, 358

determinism
non-, 274

device
programmable-logic, 357

DGP, 250, 251, 253, 255

DGPC, 370

dimensionality

curse of, 26

distance

edit, 221

distribution

binomial, 65

Gaussian, 65

log-normal, 66

normal, 65

probability, 64

spatial, 347

diversity, 220, 278

diversity

genotypic, 221

phenotypic, 221

division, 267

division

protected, 112

DNA, 39

DNA

human, 39

junk, 43, 45

non-coding, 45

domain

application, 341

learning, 10

learning

features of, 10

separable

linearly, 16

time, 214

donor, 165

duplication

gene, 288

dynamics

run, 381

E. coli, 53, 54
EA, 88
edge, 21, 81
EDI, 196
editing, 254
effect

crossover, 224
operator, 224

effort
computational, 298
processing, 217

encapsulation, 283, 288, 292
encoding

cellular, 266
data, 342

engineering
electrical, 341

enrichment
exponential

systematic evolution of
ligands by, 38

entropy, 59, 223
environment, 283
environment

unknown, 281
enzyme, 43
EPI, 248
epistasis, 94
epoch, 273, 291
equation

symbolic, 262
error

bus, 334
sampling, 207, 234
testing

in-sample, 232
ErunticLab, 383
ES, 98

EvalNextArg, 327
evaluation, 9
evaluation

fitness, 129, 254, 330
fitness

parallel, 280
graph

acyclic, 342
postfix, 326

event, 63
event

elementary, 63
evolution, 35, 39
evolution

. . . in C, 254
biological, 47
co-, 129, 303
co-

competitive, 305
cooperative, 305

code
machine, 263, 280

effective, 336
gleaning recipe from, 91
hardware, 357, 383
interactive, 341
natural, 34
operator, 383
program, 240
representation, 177
structure, 382
systematic

. . . of ligands by expo
nential enrichment, 38

example
real-world, 206

exchange
genetic, 50, 89
genetic

homologous, 50
homologous, 50
homologous

non-, 52
execution

conditional, 292
time-bounded, 294

exon, 44, 227

expansion, 289
experience, 4
experiment

in vitro, 35, 47
Q/3 replicase, 36
random, 63

experimenter, 281
exploration, 28
expression, 327
expression

algebraic, 316
S-, 240, 316, 317
S-

LISP, 317, 320
sub-, 327
symbolic, 382

extruction
feature, 210

F

F-test, 208
factor

temperature
crystalographic, 345

farm
processor

parallel-, 373
feature, 109
feature

domain, 10, 21
feature extraction, 210
feedback, 126
filter

pass
low, 213

fitness, 89, 91, 126, 154, 220,
264, 303

fitness
binary, 91

effective, 187-190, 192,194-
197, 222

normalized, 127
offspring-parent

differential, 291
standardized, 127

fitness change, 151
fitting

over, 229
formula

Heron, 307
FORTRAN, 315
fragment

tree, 146
frequency

clock, 363
relative, 63

function
arithmetic, 110
arithmetic

binary, 254
unary, 254

automatically defined, 274,
284, 286, 287

Boolean, 110
convolution, 349
cube, 286
fitness, 126
fitness

continuous, 127
error, 128
multiobjective, 129
scaled, 128
squared error, 128

if-then, 337
indexed memory, 111
potential, 20
probability density, 65
probability density

continuous, 65
RNA, 36
set, 295
set value, 295
transcendental, 110

variable assignment, 110

GA, 95
GEMS, 262, 263
gene, 43
gene

addition of, 163
generalization, 11, 70, 229
generation

maximum number of... s,
336

steady-state, 135
genetic programming

based
grammar, 270
tree, 243, 246

binary, 250
context-free grammar, 271
cultural, 296
developmental, 250, 251,

253, 255
L-system, 273
linear, 243
register machine, 261
step toward, 98
strongly typed, 260
tree-based, 295
typed

strongly, 298
genome, 46, 113, 267
genome

based
tree, 262

code
machine, 114

graph, 265
length

fixed, 178

variable, 179
linear, 243
tree, 240

genotype, 45, 46, 48, 185, 250,
253, 267

genotype
length

fixed, 177
variable, 177, 179

glut amine, 41
GMDH, 267
gradient descent, 24
grammar, 261, 272, 273
grammar

context-free, 270
context-free

terminal of, 272
graph, 81, 265, 295
graph

dataflow, 258
graphics

computer, 341
growth

exponential, 196
intron, 193, 337
tissue, 382

guanine, 40

H

handling
data

group method of, 267
hardware

evolvable, 75
heredity

biological, 46
HiGP, 301
histogram

fitness, 223

homology, 166
hypothesis

block
building, 144

building block
genetic programming, 24

I

identification
system, 267

image
bitmap, 295

implementation
genetic programming

using array for, 325
using stack for, 325

indeterminism, 6
individual

genetic programming, 314
size

variable, 320
induction, 229
induction

automatic, 114
program, 5, 27, 101
program

evolutionary, 248
information

algorithmic, 70
initialization

. . . in AIMGP, 121
body, 121
full, 119
grow, 119
ramped half-and-half, 119
random, 7
structure

linear, 120
tree, 118

innovation, 58, 93

input
Boolean, 299
number of, 321
numerical, 299

instance
training, 10

instruction, 7, 34
instruction

illegal, 334
intelligence

artificial, 8, 303, 380, 387
Internet, 382
interpreter, 17, 21, 315
interpreter

m of n, 18
Boolean

conjunctive, 17

LISP, 317

threshold, 18
interval

confidence, 206, 207
intron, 44, 45, 164, 170, 180,

181, 206, 225, 293
intron

artificially inserted, 187
defined

explicitly, 164
effect of

bad, 195
good, 197

emergent, 187, 195
explicitly defined, 196

global, 187
growth of, 193

local, 187

persistence of, 182
intron equivalent

artificial, 187, 195
intrusion, 358
iteration, 179, 292, 294

Jackknife, 235
joint, 374, 375
jump, 334

K

Khepera, 365
Knn, 347
knowledge, 8
knowledge

domain
expert system, 8

minimal a priori, 370

language
applicative, 78
assembly, 76
definition

concept, 21
description

concept, 13
hardware, 357

functional, 78
imperative, 77
JB, 261
level

high-, 77, 296
low-, 77

machine, 76, 257
machine

register, 261
natural, 295, 341

oriented
machine, 77
object, 78
problem, 77

predicative, 78
programming

Turing complete, 68
purpose

general, 77
special, 77

Turing complete, 22, 68
Last In - First Out, 324
law

improvement, 383
leaf, 21, 109
learning, 8
learning

cultural, 296
emergent, 165
evolutionary, 38, 58
inductive, 6
machine, 4, 9, 154, 376,

380, 387
machine

heuristic, 27
reinforcement, 29
representation

adaptive, 291
supervised, 28
unsupervised, 28

length
description

minimal, 270, 302
effective, 284
maximum, 118
variable, 22
variation of, 333

level
significance

statistical, 205
library, 265, 284
life

artificial, 382, 383, 387
LIFO, 324

limit
Bremermann, 90
iteration, 294

line
input, 267
output, 267

linkage, 94
LISP, 284, 295, 316
LISP

flavor of, 319
list, 81
list

argument, 285
deletion from, 324
insertion to, 324
linked, 321, 323, 324
linked

doubly, 322, 323
LISP, 314-316
ordered, 320

locus, 249
loop, 293, 334

M

machine
computing, 67
register, 114, 243, 257
register

three-address, 114
two-address, 114

state
finite, 100

Turing, 67
Turing

action of, 67
universal, 69

virtual, 330
von Neumann, 72, 73, 82

macro

automatically defined, 291
macromutation

traditional genetic program
ming crossover acts as,
155

mapping, 346
mapping

genotype-phenotype, 251
MDL, 270
MDP, 118
measure

fitness, 346, 382
measurement, 205, 206
measurement

intron, 226
meme, 296
memory, 113, 259, 293, 295,

312, 315
memory

fragmented, 314
global, 115
indexed, 117, 297, 298, 329
local, 113
localized, 117

methionine, 41
method

congruential
linear, 61

full, 119
metric

evaluation, 27
minimum

local, 154, 306, 338
mining

data, 215, 341
trait, 218

model, 257
model

mental, 298
modeling, 341
modification

ontogenetic, 301
phylogenetic, 301

modularization, 283

module, 283, 284, 289-291
module

acquisition of, 290
classifier, 346

Muller's rachet, 54
mutation, 7, 24, 49, 54, 58, 89,

93, 125, 154, 170, 194,
240, 244, 246, 269, 292,
299, 330

mutation
expansion, 245
frameshift, 49
gene duplication, 242
hoist, 244
linear, 125
macro-, 145, 147, 151, 153,

155, 156, 158, 169
permutation, 243
point, 241
subtree, 247
subtree

collapse, 246
tree based, 125
unrestricted, 255

N

neighbor
K-nearest, 19, 343

network
adaptive

fuzzy, 9
Boolean

conjunctive, 9
disjunctive, 9

neural, 5, 9, 354, 355
neural

automatic generation of,
354

general regression, 20

Kohonen, 29
multilayer feedforward,

12, 18
probabilistic, 20

sub-
automatic definition of,

356
neuron, 18
node, 81, 109, 321
node

depth of, 118
execution

program, 319
internal, 21
operator, 260
relabeling of, 306
root, 81
terminal, 260
use of, 227

non-separability, 19
number

random, 61
random

pseudo, 61
quasi, 61

termination, 252

o
object, 78
Occam, 360
offspring, 154
ontogeny, 46, 48, 299
opcode

virtual, 7
operation

altering
architecture, 287

operator
crossover, 122

effect of, 224
elimination of, 180
genetic

destructive, 187
return, 333
search, 23, 144
smart, 266
transformation, 23

optimization, 89, 304, 341
optimization

parameter
fixed length, 177

query
database, 345

optimum
local, 365

order
postfix, 113, 325
prefix, 113, 327

organism, 382
output

Boolean, 299
numerical, 299

overhead
run-time, 227

P

PADO, 116,153,161, 228, 240,
265, 328, 329, 362

Paragen, 359
parallel algorithm discovery and

orchestration, 265, 328,
329

parallel algorithm discovery and
orchstration, 265

parallelization, 134, 279
parallelization

automatic, 359
parameter, 334

parameter
setting of, 279, 310
strategy, 99

parsimony
adaptive, 337

part
program-

action, 265
branch-decision, 265

Parzen's estimator, 20
Pascal, 284, 315
path

search, 26
performance, 216
permutation, 60, 242
perturbation

constant, 371
phase

developmental, 357
evolutionary, 357

phenome, 46, 113
phenome

linear, 114
tree based, 113

phenotype, 45, 46, 48, 185, 250,
267

Philia, 383
point

crossover
legal, 334

polynomial, 13
polypeptide, 42
pool

gene, 297
meme, 297

pop, 324
population, 6, 93, 130, 311
population

asexual, 54
parallel, 279
statistical, 205

predicate, 78
preprocessing, 209
preprocessing

data, 210
pressure

parsimony, 302, 337
parsimony

adaptive, 302
selection, 130, 133
selection

low, 337
probability, 63, 205
probability

conditional, 64
disruption, 147

probability theory, 60
problem

ant
artificial, 304

approximation
function, 268

classification, 11
control, 292, 364
halting, 69
identification

system, 306
multiplexer

Boolean, 154
prediction

sequence, 100
sequence, 347
small, 335

process
Bernoulli, 65
engineering, 380
learning, 9, 34
stochastic, 108

processing
effort of, 217
image, 341
signal, 341

processor, 330
processor

master, 280
production

beneficial, 273
program, 112

program
assembler

virtual, 91
compiled, 312
feasible, 250
infeasible, 250
parallel, 360
search

tree, 294
sub-, 265
sub-

library, 265
private, 265

programmer, 4, 298, 315, 317,
326

programming
automatic, 4, 88, 101
evolutionary, 100
ontogenetic, 301

proposition, 208
protection

crossover, 198, 284, 292
global, 198

protein, 42
proving

theorem, 90
push, 324

Q

quality
learning, 10
solution, 270

R

RAM, 314

RAM
access the, 314

randomness, 60
rate

hit, 244, 245
hit

operator, 244
reasoning

based
memory, 361

recipient, 165
recognition

pattern, 90, 307, 341
recombination, 99, 253, 298
recombination

brood, 158, 160, 162
discrete, 99
homologous, 53
homologous

intragenic, 52
non-, 51

intermediate, 99
sexual, 54
sexual

homologous, 49
transposon, 52

record, 81
recursion, 293
redundancy

codon, 41
DNA, 41

register, 74, 257, 261, 263, 295
regression, 306
regression

function, 135
multiple, 207, 208
symbolic, 128, 262

relabeling
node, 306

repair, 48
representation, 18, 92, 210, 291,

310
representation

adaptive, 290

binary
fixed length, 95

constrained, 22
dual, 330
length

fixed, 95
level

low-, 310
problem, 12, 180
problem

constrained, 180
superset of . . . s, 22

reproduction, 28, 58, 95, 126,
150, 240

reproduction
sexual, 54, 58, 59, 144

researcher
genetic programming, 390

reuse, 288
ribozyme, 38
RNA, 35-37
RNA

fast, 37
functional, 44
Q/3 replicase, 176
r-, 42
t-, 42
transcribed

non-, 42
robot, 281
robot

hexapodal
simulated, 370

Khepera, 365
real, 364
simulated, 364

robotics, 370, 383
rotation, 368
rotation

axis

body, 369
rule

generations
50, 278

run

inference, 78
one gene-one polypeptide,

44
one gene-one protein, 44
production, 240, 272
rewriting

graph, 355
thumb, 310

accelerating a, 279
genetic programming, 176,

278, 279
GP, 133, 135
GP

generational, 133
steady state, 133

stagnation of, 195
terminating a, 279

sample, 205
sample

node, 206
sampling

probalistic, 365
stochastic, 160, 280

scenario
ES, 130
GA, 130

schema, 96, 145
schema

rooted-tree, 190
schema theorem, 145
science

computer, 348
search, 253, 365
search

beam, 9, 27, 160
blind, 9, 25

evolutionary, 37
exhaustive, 26
genetic programming, 299
local, 307
random, 37, 91
special-purpose, 307
tree

breadth-first, 26
depth-first, 26

unconstrained, 253
seed, 62
selection, 89, 94, 126, 129, 179
selection

H + A, 132
fi,\, 132
cumulative, 179
fitness proportional, 95, 130
fitness-based, 126
generational, 130
iterative, 180
mating, 89, 167
natural, 35, 37, 47, 48, 58,

99
over-production, 99
ranking, 132
roulette wheel, 96
steady state, 134
strategy

evolutionary, 99
tournament, 132, 134, 166
truncation, 132

selector, 82
SELEX, 38, 384
self-modularization, 283
semantics

preservation of, 157
sequence, 246
sequence

base pair
DNA, 34

control, 44
raw, 252
symbol, 254

series

time, 213
set

case
fitness, 281

data
Iris, 11

function, 110, 295, 336
function

statistical-computing-zone
349

minimal-distance, 252
parameter, 279
power, 82
symbol

legal, 252
terminal, 109, 336
test, 234
training, 10, 127, 215, 229,

234, 311, 331
validation, 234

significance, 204
significance

statistical, 204
SIMD, 280
similarity

structural
measurement of, 167

simulation, 371
size

brood, 159
individual

average, 311
population, 93, 311, 335,

336, 359
program

initial, 338
maximum, 337, 338

solution, 337
tree

sub-, 320
solution

candidate, 13, 23
length

fixed, 181

variable, 179, 181
optimal, 154

solving
problem, 90

space
function, 82
sample, 63
search, 60, 154

species, 53
speed, 259
SPICE, 373
stability, 59
stability

genetic, 48
inheritance, 48

stack, 324, 328, 329
stagnation, 176
stagnation

run,195
state

final, 36
statement

conditional, 111
loop, 111
program, 283
transfer

control, 111
statistics, 20
STGP, 260
strategy

evolutionary, 98, 99
string, 295
string

bit, 21
STROGANOFF, 267, 269
structure, 265, 300
structure

complex, 382
control, 292
data, 79, 313
data

abstract, 296
composed, 79
high-level, 330

simple, 79
gene

multiple, 164
genotype, 185
graph, 240, 328
length

fixed, 177
variable, 34

list
linked-, 319

phenotype, 185
program, 117, 301
program

linear, 302
recursive, 81
RNA, 36
storage, 322
tree, 5, 113, 118, 240, 316
tree

implicit, 325
virtual, 113

subroutine, 111
symbol

closest, 252
don't care, 146

syntax, 295
syntax

C, 254
synthesis

circuit, 357
system

0L-, 273
AIMGP, 114, 226
Bayes/Parzen, 12
Boolean

conjunctive, 15
disjunctive, 16
pure, 15

brittle, 278
C, 319
classification

automatic MBR, 361
classifier, 97, 98
conjunctive, 16

connectionist, 9

detection

genetic programming based,

359

disjunctive, 16

dynamical, 94, 344

expert, 8

GEMS, 262

genetic programming, 301,
346, 347, 349, 351, 361,
362, 366, 372, 374, 375,
393

genetic programming

compiling, 114

graph based, 265

interpreting, 260

machine code-oriented,
330

toroidal mesh, 279

tree-based, 259

HiGP, 301

hybrid, 305, 341

IL-, 274

instance averaging, 19

K-nearest neighbor, 20

knowledge

expert, 8

L-, 273

L-

context-sensitive, 274

learning

machine, 12, 27

Lindenmayer, 273

network

neural, 24

selection

constructional, 163

tree

C, 314

tank
stirring of a, 343

technique
memory

indexed, 296
terminal, 109, 288, 292
terminal

non-, 272, 274, 288
random, 242

termination, 294
termination

run, 279
terms

Aristotelian, 9
Boolean, 9, 14

test
X2,62
F, 208
F, 208
student's t, 207

theorem
halting, 70, 293
schema, 97, 145, 151
schema

rooted-tree, 190
thymine, 40
time

CPU, 311
run, 279

tool
analysis

offline, 204
online, 204

measurement
online, 219

torque, 374
tournament, 337
training, 9
training

network
neural, 344

transcription, 251
transfer

information
non-genetic, 296

transform
Fourier

discrete, 214
fast, 337

transition
point of, 380

translation, 252
transmission

cultural, 306
transposon, 50
tree, 113, 295
tree

ADF, 274
decision, 21
expression, 313, 317
multiple, 296
sub-, 260, 288-290, 318,

320, 327, 373
tree fragment, 146
tree structure, 316
truncation, 132
tube

test, 35
tutorial

genetic programming, 389
type

data, 298
data

abstract, 296
generic, 299

typing, 278

u
unit

threshold, 17

use
node, 227

V

value
B-, 345

expectation, 64
input

real, 256

output
real, 256

register, 260
variability

genetic, 48
variable

random, 64
variance, 64
variance

fitness, 223
variant, 6
variants

RNA, 37
variation, 35, 59, 61, 89
variation

additive, 65

genetic, 49

length, 333

multiplicative, 66
vector

length
fixed, 177

velocity

terminal
rate-limited non-zero, 368
rest-to-rest, 368

w
weights/links/connections

change of, 267

